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Chair’s introduction

Hans-Georg Rammensee

Interfakult�res Institut fˇr Zellbiologie, Abteilung Immunologie, Universit�t Tˇbingen,
Auf der Morgenstelle 15, D-72076 Tˇbingen, Germany

This is a timely meeting. Although Vladimir Brusic’s opening paper is titled
‘Immunoinformatics� the new kid in town’, this is actually a ¢eld that has been
around for a while, although under a di¡erent name. At least part of what we know
of as immunoinformatics was previously known as ‘theoretical immunology’.
There was an important meeting on this subject in New Mexico in 1988, which
resulted in a two-volume book (Perelson 1988).
The subject of immunoinformatics aswe see it today can roughly be divided into

three areas: the hard, the soft and the semi-soft. A challenge for this group is to
decide by the end of the meeting whether I am correct with this classi¢cation! Let
me start with a description of hard immunoinformatics. This contains what I will
call ‘hard facts’: DNA, RNA and peptide sequences that we can write down. This
part of immunoinformatics can be used for a growing number of applications that
will have a direct impact on biomedicine. One example is peptides for T cell
recognition, working out which peptides are recognized by the T cell receptor
during an infection. Hard immunoinformatics is one of the newest parts of the
¢eld and is only a few years old. The amount of information in this realm is
growing exponentially. 15 years ago all we had were a few DNA sequences, but
now we have a tremendous amount of data stored in various databases.
Semi-soft immunoinformatics comprises algorithms and parameters which we

use to create the ‘hard’ part. It includes all the prediction algorithmswe use inDNA
or peptide sequences: we say that a particular DNA sequence will interact with
some regulatory protein or this piece of protein sequence will interact with the
MHC. The one hallmark of this semi-soft area is that all the predictions can be
tested accurately. You can predict the peptide sequence to bind to HLA, and
then go on and test whether this is true. Some of the predictions will be correct
and others won’t. At one point, though, we may get to a stage where we can
omit the veri¢cation of the prediction by experiment. I personally think this will
never be the case, andwewill always have to verify our predictions, but othersmay
disagree.
Thenwe come to the soft part of immunoinformatics. This is Iwould to de¢ne as

something that can never be tested with hard facts. This may raise some
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controversy. I would classify this part of immunoinformatics as what has
previously been known as ‘theoretical immunology’. This includes mathematical
descriptions of the behaviour of populations, whether this is at the level of the
individual, or at cellular or antibody levels. It involves interactions between
antibodies, infectious agents and T cells. I would like to propose that these kinds
of models will stay soft because it is not possible to verify the predictions
experimentally. If you predict that you need 30 T cells in a human to start an
e⁄cient immune response against a viral infection using mathematical modelling,
you will never be able to prove this. On the other hand, while these predictions
cannot be tested accurately, they can certainly be of help. For example, if one can
calculate in a mathematical model the percentage of people that need to be
immunized against measles to avoid an epidemic, this will be of great use.
So I propose that it is useful to break down immunoinformatics into these three

categories of hard, semi-soft and soft. At the end of the meeting we can discuss
whether or not my proposal is correct. Two important questions related to this
are whether soft immunoinformatics can ever be tested accurately, and whether
the predictions from semi-soft immunoinformatics can stand alone without
experimental veri¢cation. Let’s now move to the ¢rst presentation.

Reference

Perelson AS (ed) 1988 Theoretical immunology. Proceedings of the Theoretical Immunology
Workshop, June 1987, Santa Fe, NewMexico. Addison-Wesley, Reading, MA
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Immunoinformatics� the new kid

in town

Vladimir Brusic*{ and Nikolai Petrovsky{{

*Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, {Centre for
Medical Informatics, Division of Science and Design, University of Canberra, Bruce ACT 2617
and {National Health Sciences Centre, Canberra Clinical School, Woden ACT 2606,
Australia

Abstract. The astounding diversity of immune system components (e.g. immuno-
globulins, lymphocyte receptors, or cytokines) together with the complexity of the
regulatory pathways and network-type interactions makes immunology a combinatorial
science. Currently available data represent only a tiny fraction of possible situations and
data continues to accrue at an exponential rate. Computational analysis has therefore
become an essential element of immunology research with a main role of immuno-
informatics being the management and analysis of immunological data. More advanced
analyses of the immune system using computational models typically involve conversion
of an immunological question to a computational problem, followed by solving of the
computational problem and translation of these results into biologically meaningful
answers. Major immunoinformatics developments include immunological databases,
sequence analysis, structure modelling, mathematical modelling of the immune system,
simulation of laboratory experiments, statistical support for immunological
experimentation and immunogenomics. In this paper we describe the status and
challenges within these sub-¢elds. We foresee the emergence of immunomics not only
as a collective endeavour by researchers to decipher the sequences of T cell receptors,
immunoglobulins, and other immune receptors, but also to functionally annotate the
capacity of the immune system to interactwith thewhole array of self and non-self entities,
including genome-to-genome interactions.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 3^22

Biotechnology has provided methods and instrumentation for analysis and
manipulation of biological systems on a massive scale. Information technology
has provided hardware and software that enable data processing at an
unprecedented speed and e⁄ciency. Bioinformatics, de¢ned as the storage,
manipulation and interpretation of biological data (MacLean & Miles 1999), has
emerged at the interface of life and information sciences. Bioinformatics has
evolved as a crucial methodology in genomics, proteomics, and structural
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biology. Immunoinformatics (also known as computational immunology) is a
subset of bioinformatics focusing on the ¢eld of immunology. Immuno-
informatics applications are increasingly becoming important to immunological
research. The major ¢ndings of structural, functional and regulatory aspects of
molecular immunology, coupled with the rapid accumulation of immunological
data have been complemented by the development of more sophisticated
computational solutions for immunology research.
Immunology is essentially a combinatorial science. The diversity in the human

immune system is enormous� the total number of combinatorial arrangements of
immunoglobulins (Ig) in an individual is greater than 109 (Jerne 1993). The T cell
receptor (TCR) diversity in humans has been estimated (Arstila et al 1999) at
between 107 and 1015 di¡erent clonotypes. There are approximately 1012 B cell
clonotypes in an individual human (Jerne 1993). More than 500 allelic variants of
class I human histocompatibility complex (MHC) molecules characterized to date
allow theoretically more than 1013 class I haplotypes. The theoretical number of
linear epitopes composed of nine amino acids, common targets in cellular
immunity, is of the order 1011. The number of conformational epitopes is far
higher. These crude numbers, re£ecting the complexity of the immune system in
a very simplistic manner, indicate its enormous diversity. This diversity underpins
our ability to discriminate between friend (self ) and foe (non-self) and mount
appropriate immune responses. Additional information includes multi-step
processing pathways, network-type interactions, complex signalling and
mechanisms for modulation of immune responses. Currently available data
represent only a tiny fraction of possible situations and the amount of
information will keep growing. With the steadily increasing amount of
immunological information our ability to decipher the speci¢c mechanisms of
immune responses or correct undesirable immune responses is increasingly
dependent on exploiting immunoinformatics strategies.
A major role of immunoinformatics is the management and analysis of

immunological data with the basic infrastructure comprising numerous
immunology database systems (Brusic et al 2000). Immunology databases
provide access to, data extraction from, and analysis of immunological data.
Standard bioinformatics methods, e.g. sequence analysis (Foster & Chanock
2000) and structural methods, e.g. structure modelling (immunoglobulin, Martin
et al 1989;MHC, Schueler-Furman et al 1998, Rognan et al 1999; or TCR,Garcia et
al 1998) are routinely applied to immunology studies. More advanced analyses of
the immune systemusing computationalmodels typically involve conversion of an
immunological problem to a computational one, solving the computational
problem, and translating the results into biologically meaningful interpretations.
Examples include data-driven modelling of peptide binding to MHC molecules
(Brusic et al 2001), theoretical modelling and complex analysis of the immune
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system (Perelson 1989, Kepler & Perelson 1993), and statistical support for
immunological experimentation (Merrill 1998). Virtually every aspect of
immunology research uses some form of immunoinformatics. The appropriate
use of informatics techniques has potential, as supported by examples of practical
applications, to vastly improve the e⁄ciency of immunology research. Complete
genomes ofmore than 900 viruses andmore than 80microbes have been sequenced
to date (Wheeler et al 2002). High-throughput approaches such as microarray
technology (Glynne & Watson 2001), proteomics (Marshall & Williams 2002)
and large-scale T cell epitope screening (Sch˛nbach et al 2002) provide for
genomic-scale screening and study of the immune system, and its role in
bene¢cial and pathological immune responses. Practical immunoinformatics
applications include screening of genomes for vaccine components (De Groot et
al 2002), disease-speci¢c gene expression (Saito 2001), studies of cell di¡erentiation
pathways, tolerance/immunity decision process and B cell transformation (Glynne
& Watson 2001), antibody recognition site identi¢cation (Yoshimori & Del
Carpio 2001), and integration of data into high level models of the immune
system (Yates et al 2001). In the following sections we describe the status and
challenges within the sub¢elds of immunoinformatics and discuss the prospects
for future developments.

Immunoinformatics

The immune system is intertwined with all other body systems. Bioinformatics
applications are relatively well developed for some immunological areas, such as
databases (Brusic et al 2000), genomic applications (Glynne&Watson 2001), study
of T cell epitopes (Brusic & Zeleznikow 1999), or modelling immune responses
(Bernaschi & Castiglione 2002). In other ¢elds of immunology bioinformatics
applications are still in their infancy, such as analysis of allergenicity of proteins
(Gendel 2002) or proteomics (Klade 2002). Because of the combinatorial nature
of immunological data, the importance of e⁄cient, accurate and comprehensive
use of immunoinformatic tools will continue to grow in importance for support
of immunology research.

Immunological databases

Both molecular biology and immunology produce large amounts of data that
have to be stored in general-purpose and specialist immunological databases.
General-purpose biological databases contain annotated entries of biological
sequences. These entries typically contain the sequence, a short description, the
source organism, a list of structural or functional features and literature
references. The major public databases include the nucleotide or protein

IMMUNOINFORMATICS 5



sequence databases GenBank/GenPept (www.ncbi.nlm.nih.gov/Genbank/index.html),
EMBL/TrEMBL (www.ebi.ac.uk/embl ), DDBJ/DAD (www.ddbj.nig.ac.jp), PIR
(www-nbrf.georgetown.edu), SWISS-PROT (www.expasy.ch/sprot), PDB (www.rcsb.org/
pdb), PROSITE (www.expasy.ch/prosite) and KEGG (www.genome.ad.jp/kegg/
kegg2.html). The nucleotide databases�Genbank, EMBL and DDBJ�focus on
collecting, annotating, and providing access to the entries of DNA sequences and
the related information.GenPept, TrEMBL andDADare protein databases derived
from the translations of coding sequences of the three main nucleotides databases.
SWISS-PROT and PIR are protein databases that are manually annotated. Their
content is of higher quality than GenPept, TrEMBL and DAD, but they contain
fewer entries. PDB is a database of 3D molecular structures. The PROSITE
database contains biologically signi¢cant patterns and motifs. The KEGG
databases comprise repositories on molecular interaction networks, chemical
compounds and reactions relevant to cellular processes, and genomics data.
General-purpose databases contain large numbers of immunologically relevant

entries and are invaluable resources, therefore, for immunology research. They do
not, however, provide su⁄cient detail on immunological function. Specialist
immunology databases provide more detailed information on immunologically
relevant molecules, systems and processes. They are typically annotated by
experts and contain immunology-speci¢c annotations. Kabat database
(kabatdatabase.com) contains entries of proteins of immunological interest: Ig,
T cell receptors (TCR), major histocompatibility complex (MHC) molecules and
other immunological proteins. The IMGT databases (imgt.cines.fr) contain high-
quality annotations of DNA and protein sequences of Ig, TCR and MHC. They
also contain IMGT-related genomic and structural data. The FIMM database
(sdmc.lit.org.sg/¢mm) focuses on protein antigens, MHC molecules and structures,
MHC-associated peptides and relevant disease associations. The SYFPEITHI
database (syfpeithi.bmi-heidelberg.com) contains entries of MHC ligands and
peptide motifs. The HIV molecular immunology database (hiv-web.lanl.gov/
immunology) is an annotated searchable repository of HIV1 T cell and B cell
epitopes. More detailed reviews of important immunological databases and
related issues can be found in (Brusic et al 2000, Petrovsky & Brusic 2002). The
important database issues relate to data standardisation, data quality, interpretation
of database entries, and the quality of computational tools for data extraction and
analysis (Petrovsky & Brusic 2002), which will be discussed later in this text.

Bioinformatics applications to the study of T cell epitopes

The identi¢cation of T cell epitopes relies heavily on bioinformatics for initial
screening followed by experimental validation. MHC molecules bind short
peptides produced mainly by intracellular (MHC class I) and extracellular (MHC
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class II) degradation of proteins and display them on the cell surface for
recognition by the T cells (using TCRs) of the immune system. Binding of
peptides to the MHC molecule is a prerequisite for immune recognition, but the
number of peptides that can bind to a speci¢c MHC molecule is limited. Peptides
that bind speci¢c MHC molecules are involved in initiation and regulation of
immune responses. Determining peptides that bind speci¢c MHC molecules is
important for understanding immunity and has applications to vaccine
discovery and design of immunotherapies. The combinatorial nature of this
problem makes computational approaches necessary for systematic mapping of
T cell epitopes.
Prediction methods are based on binding motifs (Rammensee et al 1999),

quantitative matrices (Parker et al 1994) or higher complexity prediction models
such as arti¢cial neural networks (ANN) (Brusic et al 2001), hidden Markov
models (HMM) (Brusic et al 2002) or molecular modelling (Schueler-Furman et
al 1998, Rognan et al 1999). The binding motif describes amino acids commonly
occurring at particular positions within peptides that bind to a speci¢c MHC
molecule. Quantitative matrices provide coe⁄cients for each amino acid and each
position within the peptide that can be used with appropriate formulae to calculate
scores that predict peptide binding. The arti¢cial intelligence methods of ANNs
and HMMs are based on higher order models that can capture non-linear
dependencies in the data sets. The data-driven models (binding motifs,
quantitative matrices, ANNs and HMMs) are derived from experimental data
sets and can be used for large-scale screening of potential vaccine components
(Sch˛nbach et al 2002, De Groot et al 2002). The important property of these
models is that each binding motif can be encoded as a quantitative matrix, and
each quantitative matrix can, in turn, be encoded as an ANN or a HMM. The
accuracy of data-driven methods depends on the complexity of the model relative
to the complexity of the peptide^MHC interaction, and on the quantity and
representativeness of the data available for building a particular model.
Molecular modelling methods utilise comparative modelling where known
crystal structures and protein-peptide interactions are used as templates for
building 3D models of molecular structures. If initial structural data are not
available, ab initio modelling based on atomic simulations and residue statistics
can be used. Molecular modelling is useful for detailed analysis of speci¢c 3D
structures and interactions, but being computationally intensive it is less useful
for large-scale screening. Molecular modelling can be used for building complex
data-driven methods, such as those for prediction of promiscuous MHC-binding
peptides (Brusic et al 2002), or quantitative structure^activity relationships
(QSAR) for vaccine discovery (Doytchinova & Flower 2002). The main issues
for prediction of MHC-binding peptides are the quality, quantity, and
representativeness of data available for model development, the complexity of
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the selected predictive model relative to the natural complexity of the peptide^
MHC interaction and the training and testing of the predictive model.

Mathematical modelling of the immune system

Observations of immune responses and cellular interactions at the organism level
produce de¢nite measurements, but are di⁄cult to interpret at the molecular level.
An example is the idiotypic network theory (Jerne 1993) which can be translated
into speculative explanations at the molecular level. Mathematical modelling
implemented as computational programs can easily translate speculative
hypotheses into quantitative descriptions (Perelson 1989). The parameters of the
mathematicalmodels can easily be tuned to represent real behaviour of the immune
system. Thesemodels can then be used for determining the framework for study of
the kinetics of immune responses and practical applications such as prediction of
immune interventions. Mathematical models of the immune system can model
interactions of a large number of elements (106 or higher) thereby approaching
the complexity of the human immune system. Remarkably accurate simulations
using mathematical models have been developed for study of B cell (Kepler &
Perelson 1993) and T cell responses (Coussens & Nobis 2002). More speci¢c
examples (Yates et al 2001) include modelling of tumour necrosis factor
oscillations in allografts, di¡erentiation of T helper cells (Th1/2), modelling T
cell memory and cross-talk between TCRs.
Systemic level mathematical models provide a framework for understanding of

the immune system as whole. We foresee the convergence of mathematical models
at the systemic and molecular level in the future. Huge experimental data sets
produced by genomics, proteomics and molecular biology e¡orts will ultimately
be integrated with mathematical models of the immune system at the organism
level to produce models of whole organism.

Emerging applications of immunoinformatics

Genomics focuses on the study and characterization of the complete set of DNA
sequences (genome) from an organism. Similarly, proteomics focuses on study and
characterization of the full protein complement of the genome. Following
successful integration of bioinformatics in various ¢elds of molecular biology,
notably genomics and proteomics, immunoinformatics is the next frontier,
namely the integration of bioinformatics with immunology. A major function of
the immune system is to help the organismmaintain homeostasis while interacting
with self and foreign entities. Bene¢cial immune responses are targeted towards
maintaining homeostasis, while pathological immune responses result in disease
states, such as allergies or autoimmunity. The emerging ¢eld of immunomics
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encompasses the genomics and proteomics of the immune system (Glynne &
Watson 2001, Marshall & Williams 2002, Saito et al 2001, Coussens & Nobis
2002, Zagursky & Russell 2001). Immunomics focuses not only on deciphering
the sequences of immunoglobulins and various cellular receptors, but is also
instrumental for functional annotation of the immune system interactions with
the whole array of self and foreign entities, including complete genome-to-
genome interactions. Examples of ¢elds that are expected to show rapid growth
are immunoinformatics of disease (allergies, cancer, autoimmunity, infectious
diseases), host^pathogen interactions, animal immunology, improved predic-
tions of organ rejections, cytokine signalling and other regulatory network
analysis, among others. In respect of development of immunoinformatics tools,
we expect to see the integration of immunological databases with generic
interfaces and ultimately the integration of system level mathematical models
with molecular level models leading to applications in the development of novel
therapeutic regimens and disease management.

Unifying concepts

The main issues that need to be resolved are those of common data standards, data
quality and the accuracy of computational methods. These issues are critical for
establishing a common immunoinformatics platform and enabling e⁄cient and
adequate use of immunoinformatics resources.

Standardization

Biochemical and molecular biology terms have been standardized by
nomenclature committees, such as IUPAC/IUBMB (www.chem.qmw.ac.uk/iubmb/
nomenclature). The gene ontology consortium (www.geneontology.org) has produced
a dynamic controlled vocabulary of genes and proteins that can be applied to all
organisms in rapidly changing environments. The immunogenetics ontologies
and nomenclature for immunoglobulins have been de¢ned recently (Ruiz &
Lefranc 2002) and are accessible at the IMGT database. The HLA nomenclature
system has been well-de¢ned and accepted (www.anthonynolan.org.uk/HIG/nomen/
nomen___index.html ). Although the MHC nomenclature for other organisms has
been under development (e.g. swine and bovine leukocyte antigens) a unifying
system for the MHC nomenclature is lacking. Cytokine and cytokine related gene
nomenclature is also not well de¢ned�a comprehensive list of cytokine names
can be found at the COPE web site (www.copewithcytokines.de).
In addition, each immunological database has its own unique structure, data

models, and interfaces. Common interfaces, such as SRS (srs6.ebi.ac.uk) can
integrate multiple databases and search tools, but are general tools. A common
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interface formultiple immunological tools and databaseswould provide long-term
bene¢ts for immunology research. This common interfacewould provide seamless
access to data and easy integration of both general and specialist bioinformatics
tools.

Data issues

The interpretation of data extracted from the databases is highly dependent on the
skills and knowledge of the user. In many cases the complicating factors are lack of
standards, ad hoc nomenclature, variable quality annotations of database entries,
incomplete data and biases embedded in the data. The optimal database searching
tools for addressing a particular problem may require careful selection as well as
setting of search parameters. Although the situation is slowly improving, the lack
of bioinformatics education represents a serious obstacle to extracting the best
value from data and unfortunately this problem often goes unnoticed by users.
Data residing in databases are not of uniform quality, and even well-curated
databases contain numerous errors (for a case study of errors in databases, see
Srinivasan et al 2002).

Accuracy of computational methods

Hundreds of bioinformatics tools are available for analysing biological data. Many
of these, such as sequence comparison and sequence alignment tools (such as
standard bioinformatics tools BLAST or FASTA) calculate the distance between
the query sequence and the database entries. This distance is based on user-selected
parameters of the search and statistical assessment of the data and method.
Therefore, search results may di¡er and assessing the accuracy of these tools is
not informative. On the other hand, assessment of accuracy of predictive
methods (such as prediction of peptide binding to MHC molecules) is of critical
importance. In the past, most of the predictive models were generated and
provided to the research community without careful assessment of their
predictive performance. This resulted in some predictions of poor accuracy and a
low level of acceptance of predictive bioinformatics models by the majority of
researchers. More recently, assessment of predictive performance has become
standard and vastly improved and re¢ned predictive methods are appearing. A
comparative study of the predictive performance of various methods has
been recently published (Yu et al 2002). In addition, it was shown that predictive
methods, when combined with experimental research in a cyclical fashion (Fig. 1.)
can signi¢cantly improve the e⁄ciency of research (Brusic et al 2001).
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Conclusion

Immunoinformatics is an enabling technology that will increasingly dominate
immunology research, following the pattern set by genomics and proteomics.
The scope of immunoinformatics is huge� it comprises databases, molecular-
level and organism-level models, genomics and proteomics of the immune
system, as well as genome-to-genome studies. Immunomics is thus the natural
extension of genomics and proteomics and includes the study of organism-to-self
and organism-to-organism interactions.
The e⁄cient development and use of immunoinformatics will require the

coordinated e¡orts of immunologists and bioinformaticians to establish common
standards and protocols as well as standardized tools and interfaces. While
coordinating e¡orts may be a challenge in this fast developing ¢eld, it is essential
if we are to make sense out of the mountains of immunological data that will be
produced in coming decades.
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DISCUSSION

Petrovsky: I would like to start in a slightly argumentative mode, by questioning
the idea that Hans Georg Rammensee brought up in this introduction that peptide
binding data constitute hard evidence and immunoinformatic predictions
constitute semi-soft or soft evidence. I would argue that the quality of data is
dependent on the level of its validation rather than whether it is derived from
laboratory studies or computer models. Hence, couldn’t well validated computer
algorithms be considered hard and poorly validated experimental assays be soft?
Rammensee: It is a matter of quality control.
Petrovsky: Exactly. The quality of the data is a re£ection of their statistical

validation rather than their source. As an example, consider how MHC
restriction was originally described: when did this evidence go from being soft to
being hard? We initially started with Zinkernagel and Doherty’s original
description of MHC restriction of viruses, but the nature of the molecules
involved and the manner in which they interacted was pure conjecture. Over
time experimental details led to the proposal that a complex of MHC, antigen
and a TCR underpinned this phenomenon. At that stage, however, given that
no-one had actually seen an MHC molecule or a TCR, was this hard or soft
evidence of the existence of these molecules. Later there was argument about
how MHC was binding antigens with some people believing the peptide was
bound in the cleft whereas others thought it was bound outside the cleft. More
recently crystal structures have begun to appear and for the ¢rst time we can
actually visualize what, up to that point, people had been hypothesizing about.
Hence substance is a question of validation. Sometimes we fool ourselves into
thinking that because something was measured in a lab it must be hard, whereas
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if it is derived from a computer model it must be soft. I do not think this reasoning
is correct.
Gulukota: I would add that when you have an interface between computational

biology and bench biology, often the computational side believes that 10
computations are not as good as a single experiment, but this could just be
because they don’t know that much about experiments. On the other side,
however many experiments the experimentalists do, they don’t quite believe it
until a computer prediction says something similar. There needs to be a cultural
shift. Hard and soft is very much in the eye of the beholder. When we talk about
biology, it is pretty much all soft!
Rammensee: I was restricting the use of ‘hard’ to just DNA, RNA and peptides

sequences. The hard facts aboutMHC restriction are the sequence of theMHC, the
sequence of the peptide and the sequence of the TCR.
DeLisi: In e¡ect, you are distinguishing data from concepts.
Gulukota:Even in data there are gradations of softness. If you consider data such

as MHC peptide binding, there are three or four di¡erent ways of measuring this.
I’m surewe all have our personal preferences aboutwhether IC50 is better than half-
life, for example. Until we have a consensus, we can’t even call experimental data
hard.
Brusic: I have experience with assessing which method is best for measuring

peptide binding. I started from the computational end and interviewed people
who measure peptide binding and asked them which method they considered the
best. I got a uni¢ed answer, ‘mine’! Then I took a fuzzy approach to interpreting
measurement data by converting all the values to approximate measures of values.
Rammensee: I don’t think the peptide binding is the most important component

of the quality of a certain peptide. The most important part is whether this peptide
is recognized under physiological conditions. If you have a virus-infected cell and a
T cell, does the T cell that is speci¢c for a particular peptide recognize the virus-
infected cell? This is the acid test. We again come to the point about what the right
test is and what the best criteria are for calling something solid or soft.
Stevanovic¤ : It is still di⁄cult to judge the properties of peptides. You say that

sequences are hard data, and I agree with this. But the properties of peptides in
terms of binding to MHC molecules or recognition by TCRs vary with the
experimental setting. In particular, in cancer immunology, we know very well
that there are so-called T cell epitopes that do not function in many labs. Even T
cell recognition can’t be called ‘hard’ data.
Rammensee: We are talking about immunoinformatics, but sequences in

databases are hard data.
Littlejohn: I think your concept of hard data is a useful one. Hard data should be

seen as discrete information, observations that can be digitized, and that are
qualitative and not continuously variable. ‘Hard data’ are the foundation stones
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in molecular observations. Then, on top of hard data, we can superimpose ‘noise’
and biological variation, and the contextually dependent observations thatwe have
discussed here. If this is what you mean by ‘hard immunoinformatics data’ then I
think this is an extremely useful concept that constitutes a good reference point
against which we can compute (i.e. carry out rigorous immunoinformatics).
DeLisi: Of course, there is noise in the hard data also. Sequencing has an error

rate of about one base in a thousand.
Rammensee: This brings us back to the issue of quality control.
Marsh: I like this idea of hard data. The HLA database that we run is a ‘hard

database’: it is a database of sequences. The di⁄culty we have is knowing how to
link our hard database to other databases. For example, there are many databases
doing peptide prediction forMHCbinding peptides.Which one shouldwe link up
with?We don’t want to link our hard database with a semi-soft database that gives
poor predictions.
DeLisi:There needs to be more benchmarking.We have done this with peptide

MHC. Zhiping Weng and her colleagues have an algorithm that is about 90%
reliable in terms of both speci¢city and sensitivity. This has been benchmarked in
terms of all the standard algorithms on the web. Parker comes close to that. If we
have more benchmarking like this, then this will go some way to alleviating this
problem.
Littlejohn: I think the problem is elsewhere: it lies with evidence. Many of the

databases do not ascribe evidence as to how the information was derived. Was it
experimental? What experiment? Was it computational? What method was used?
Who did it, when, and in what context? This is the big problem. The Gene
Ontology consortium is battling with this issue of ‘evidence’, and this
consortium has only just begun to think about how to ascribe evidence codes to
the methods used to assign function to genes. I’d argue that this is one of the great
problems in bioinformatics in general, and it needs to be tracked in the database as
well as the derived information.
Wingender: That was exactly the point I was going to make. When we

start di¡erentiating between hard, soft and semi-soft data, we have to assign
where the ‘facts’ come from. What is the source of the experimental or
computational evidence? Whenever we model these data and provide them
through a database, we simply have to provide the evidence, along with these
data and facts. We then need to try to make a quality assignment to the data on
the basis of this information. I would like to add a caution here against databases
that have been made using data collected in an automated manner. There are some
terrible mistakes in these. The data must be extracted manually from the literature,
but this is also an error-prone process. The original data in the paper can even
contain errors. At some point we have to rely on the quality control step of peer-
review, though.
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Rammensee: With regard to the problem of interconnectivity of databases, I
would say that if I had a database which is quality controlled and contains good
data, I don’t want to have it connected with a bad database� for instance, one
made automatically without adequate curation. I would like to protect my
database from being corrupted by poor data. Thus we need to discuss the two
important issues of interconnectivity and quality control together.
Margalit:We all agree about the need for quality control and good documenta-

tion.Who can do this?Most of the databases are assembled by research groups and
are not commercial. I know from other ¢elds that I am involved in, such as
transcription factor binding and protein^protein interactions, that these
databases may start in the academy, but at some point they decide they can’t
handle the scale of the database and they make a consortium or go commercial.
Perhaps this meeting represents an opportunity to think how we can best
develop a single, quality controlled immunoinformatic database that isn’t spoiled
by bad data.
Borras-Cuesta: I have a point about the quality control of databases. One issue is

whether a peptide binds or does not bind to MHC: one should control this. The
other thing, related to the predictive algorithms, is how these peptideswere de¢ned
and collected. You could have a database that tells you the truth with respect to
binding, butwhich is skewedwith respect to predicting the set of potential binders.
This is very important. People who like us work in the induction of immune
responses, and have to try to characterize a peptide to induce a response, go
through all the steps predicting this with one algorithm and then another. By the
end we do not trust any in particular. We use several algorithms, and select the
peptides predicted with higher scores from all algorithms. These peptides are
synthesized and tested in binding assays, if these are available, or used in
immunization experiments. But if algorithms are going to be described which are
potent, one should discuss how to build a good database. That is, a database which
has no bias for a particular set of peptides because it has been built up using, ideally,
several methods (i.e. peptides eluted from MHC molecules, identi¢ed with phage
display libraries, using peptide libraries, etc.). Peptides from this database could
then be used to develop an algorithm for the prediction of binding to MHC
molecules.
Rammensee: You raise the important point that predictions can be tested.
Borras-Cuesta: Yes, we predict and then we test in a binding assay. This is not

enough, of course, because they could be cryptic peptides. But if we predict and
then it binds, then we use it.
DeLisi: The assay has to be quality controlled also. For instance, take the assay

used by Parker. He validates it, but when you look at it you ¢nd this validity holds
only under a certain range of conditions on the rate constants. Somethingmay look
valid, you do an analysis of it, and you ¢nd there is only some domain of validity.
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The ¢rst thing that needs to be done, therefore, is to benchmark the assays. Then
you benchmark the algorithms on benchmarked assays.
DeGroot: I would like to second the idea of having a collective database. I would

suggest that we categorize the peptides in the database by peptides that bindMHC
and by peptides that are recognized by T cells. I agree that the type of assay is very
important in this respect. We all train or benchmark our algorithms on di¡erent
sets of peptides.We are now¢nding that the set of epitopes versus the set of binders
might be slightly di¡erent subsets of HLA binding peptides. I have a second
comment: I also wanted to mention that on Vladimir Brusic’s time-line, the date
that the structure of HLA was published by Don Wiley should be highlighted.
When I ¢rst met Hannah Margalit and Charles DeLisi in Jay Berzovsky’s
laboratory, we were talking about how the peptide bound to the groove, and we
were discussing about the peptide not being aligned with the sides of the groove.
Once the crystal structure was published, this showed everyone the fact that the
peptide was aligned parallel to the side of the HLA, and was also tightly
constrained within the groove. This was a turning point for the ¢eld.
DeLisi:There was no doubt that the peptide was linear; the question was how it

was oriented.
Rammensee: In the 1987 crystal structure (Bjorkman et al 1987), it was not clear

how the peptide was organized.
Borras-Cuesta:This raises the point of how the peptide is read by theMHC II. In

principle, it is possible that the peptide could be read from C-terminus to N-
terminus in some circumstances. This is relevant to predictions. Someone should
do the following experiment. Synthesize for instance 20 peptides known to be
recognised by a given MHC II molecule. These peptides should also be
synthesized in the C-terminal to N-terminal sense (that is, with the same amino
acid sequence, but read from the C-terminus to the N-terminus, and not in the
conventional way N-terminus to C-terminus). If some peptides from this new set
were immunogenic in the context of the same MHC II molecule, then predictions
should also take into account peptide sequences read from C-terminus to N-
terminus.
DeGroot: One thing we should add to the databases is information about non-

binding peptides. We are all constrained by ¢nances and we don’t make the
peptides that we predict wouldn’t bind, because it is expensive to make them.
However, many of us have done assays and found that some of the peptides that
we have predicted don’t bind. Someof us alsomake ‘negative control’ peptides and
test these. It will be important to include the negative sets in the databases in order
to improve the accuracy of our epitope prediction tools.
Rammensee: The quality of data will be worse if you include non-binding

peptides, because the peptide-binding assay might miss some non-binders. What
we call ‘non-binding’ peptides might bind if the assay conditions are altered.
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Kellam:What we have been discussing are quality issues. Anyone who has been
following themicroarray ¢eld for the last few years will have seen how people have
gone to extreme in describing how to ‘quality control’ experiments, to the point
where you try to document absolutely everything. There is a huge community
e¡ort to describe standards and common protocols. In the end, if people start
documenting what they are doing experimentally you have a chance of getting
to the context of the data in the databases. For example, how many people even
know the sex of the cell lines that they are working with? This can become
important.
Littlejohn: I would like to comment on that from a standards and sociology

point of view. The micoarray MIAME standard is supposed to be a minimum
standard, yet it is often referred to by the user-community as a ‘maximum
irritation’ standard, as it requires the biologists to capture more information than
they ordinarily might. With regard to the database integration issue, eight years
ago I attended the ‘Meeting for the Interconnection of Molecular Biology
Databases’ (see http://megasun.bch.umontreal.ca/ogmp/abstracts/mimdb.html on the
‘Organelle Genome Megasequencing Program’) where many of these issues were
discussed. There are a couple of developments in molecular biology databases that
would be useful for us to consider by the immunoinformatics community. First,
back then Peter Karp proposed that bioinformatics research would bene¢t from
having a uni¢ed system of data interchange standards. However, as this idea was
discussed, it became clear that each database curator has their own set of objectives,
and so was unlikely to redesign their systems to ¢t a broad-community-developed
standard that did not meet their narrower goals. The concept of bioinformatics
databank warehouses has been around for a long time and has not made much
headway into the community, primarily due to the fact that most databanks have
evolved in isolation and have their own schema and speci¢c target audiences,
making their absorption in to a warehouse problematic. In spite of this, there
has been a vast amount of e¡ort put into systems that allow databank
interconnectivity, such as the SRS system (Etzold et al 1996). Databank
integration does not come at a quality cost. For example, SWISS-PROT, EMBL
and GenBank all have databank cross references and these simply allow cross-
databank navigation. Databank integration and ‘ontological normalization’
(deriving a common set of key-terms for accessing information across databanks)
is a vigorous area of research, with many technologies variously called ‘wrappers’
or ‘agents’ serving as ‘middleware’ (software that joins other pieces of software or
data) in this area. Interconnectivity is a critical issue, and it isn’t in and of itself a
problem. The ¢nal comment I have is that the debate should continue to focus on
biology and not technology, although as Vladimir Brusic points out, at the end of
the day this is a technology, a means to an end. Immunoinformatics is all about
technologies that underpin the study of immunology, immunology is the
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rationale, and immunoinformatics provides a means to probe problems in
immunology.
Gulukota: I would like to second the comment you made about the microarray

¢eld. This is a much younger ¢eld than immunology, yet last month they had a
report on an XML standard called MAGE-ML (Spellman et al 2002; http://
genomebiology.com/2002/3/9/research/0046.1) for describing the hybridization
protocol, the data and the databases for microarrays. If we ever produce an
‘immunobank’ where we deposit this data, we will need some standard such as
this that would give us interoperability and connection, without at the same time
contaminating good data with bad.
DeLisi: There are parts of this that are worth emulating, and in particular the

sociological components. But there are some problems with the scienti¢c parts.
You could do the standardization as much as you want, but this assay has 90%
false positives. We don’t want to get into a situation where we are documenting
errors. This is why I raised the issue of benchmarking the assays: those assays have
not been benchmarked.
Gulukota: However, you cannot even begin benchmarking until everyone

documents the data.
Borras-Cuesta: The quality of the assays is crucial. I’ll give an example. We

started with a peptide which is restricted to HLA-A2. We measured binding of
this peptide to HLA-A2 using the T2 cell assay, but could not estimate its IC50

of binding because the peptide does not bind well to HLA-A2. However, in
spite of its poor binding, the peptide is immunogenic. This means that peptides
that can be negative in this assay can still be immunogenic. One mustn’t forget
that the immune response involves not only binding to MHC, but also
recognition by the TCR. A peptide which binds not so well, but which is well
recognized by the TCR, will be immunogenic. This is also a relevant point for
predictions. One should consider the amino acids that point to the TCR and try
to make predictions according to that.
Petrovsky: I think what everyone is saying here is consistent. Perhaps we should

classify immunoinformatics processes into a hierarchy of con¢dence levels.
Thus predictions for example of MHC^peptide binding, if the method is
robust and well validated could be accepted at a high level of con¢dence
approaching that of experimentally measured binding a⁄nities. Other less well
validated predictions would be a¡orded a lower level of con¢dence. A good
example is the FDA system for regulating drugs. The FDA has de¢ned minimum
acceptable standards whether it be for the laboratory (good laboratory practices,
GLP), manufacturing (good manufacturing practices, GMP) or clinical
trials (good clinical trial practices, GCP). This is what Vladimir Brusic was
alluding to when he talked about good prediction practices (GPP). For instance,
if you want to get a drug registered with the FDA, everything to do with the
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development and manufacture of this drug has to be done under good
practices, i.e. GLP, GCP and GMP. By building up a hierarchy of well
de¢ned standards you ensure that the product you end up with can be
trusted all the way back down through the system. This is what we need to be
able to do with immunoinformatic tools if we are truly to be able to trust their
outputs.
Littlejohn: High quality data was one of the gold standards of the Human

Genome Project. However, there is a real danger with preventing release of data
before it is considered ‘perfect’. If over stringent quality control had been imposed
at every step of the data generation cycle, the genomics community would never
have had access to data such as the high-throughput Genome Survey Sequences
portion of GenBank (http://www.ncbi.nlm.nih.gov/dbGSS/index.html ). The research
community demanded genomic data within 24 h of it being produced by the
sequencing machines in the genome centres. The community understood the
quality was lower, and treated it accordingly. It is the assignment of quality to
the data that is important here. While we need ‘gold standard’ high quality data,
there is also a need for rapid publication of lower quality data as long as it is
assigned as such.
Brusic: These are sequence data; we are also discussing functional issues

here.
Littlejohn: Yes, but surely there must be lots of non-sequence data that the

immunoinformatics community wants to throw out in a quick and dirty fashion,
so that researchers can have rapid access to this information?
Petrovsky: I disagree. If someone publishes a bad paper it can damage that whole

area of endeavour. There are many examples of this. Poor quality T cell
suppression papers in the 1980s damaged the area so badly that suppressor T cells
were a dirty word for the next 20 years and very few researchers were brave enough
to persist in the area. Twenty years on, we have slowly rediscovered suppressor
T cells, but this would have all happened much more quickly if it hadn’t been for
the original poor quality data that damaged the area.
Littlejohn: If this was the case, then I would argue that these data were assigned

too high a level of quality. If the data had been assigned a low-quality rating then it
might still have been useful to someone.
Petrovsky: The di⁄culty is deciding who is to assign the quality ranking.

You have to develop systems that validate the quality as the data are generated
and the results of this ranking need to be widely available. Many of the
suppressor cell data that were eventually discredited were published in very high
ranking journals so even peer review of publications may be insu⁄cient to ensure
high quality.
Gulukota: It doesn’t have to be personal, as in one person deciding whether

data are good or bad. You ask the author to describe their methodology,

20 DISCUSSION



which automatically ascribes the level of trust someone wants to put in it.
With high-throughput sequencing, everyone knows what it is and you can
believe it or not depending on your comfort level.
Rammensee:To answer Nikolai Petrovsky’s concern, we don’t have the problem

of bad papers being published that destroy the ¢eld. At the moment, no one can
publish a paper saying that they predict a certain peptide will bind somewhere
without any experimental data proving this prediction. The paper will not be
accepted.
Petrovsky: There are currently no agreed statistical standards for handling

predictions. If there isn’t an agreed statistical criterion, the reviewers might think
that t-tests are ¢ne for assessing the accuracy of predictions and not understand
relative operating characteristic (ROC) analysis which should be the gold
standard for assessing predictions.
DeLisi: There is less of a problem with publication than there is with the web.

On the web, anyone can put up a database. This is where the standard has to be.
Perhaps there needs to be an indication of whether or not the data have been
reviewed, and by whom.
Gulukota: We can’t prevent anyone putting up databases, but at least if there is

one database that all the community knows is documented in a certain way, people
would go there preferentially.
Perelson: I believe that publishing predictionswith or without experimental data

depends somewhat on the group. There are modelling groups that make
predictions but who do not have experimental collaborators. There may be some
value in having them publish their predictions so that they are available to
the community, and other people can then test them. The hard part is getting the
theory and experiment connected, so people read both the predictions and
the experimental validations.
Borras-Cuesta: If the databases are based on experimental facts, there is not

much danger of a peptide being a binder or not. The problem there is we need to
know which are the non-binders for the predictions. A panel of non-binder
peptides is necessary because these peptides are needed to test the speci¢city of
the algorithm. After all, we wish to accurately predict binder but also non-binder
peptides.
Kesmir: This idea of good prediction practice sounds good, but it is not enough

just to stipulate that a certain statistical test needs to be used or speci¢c performance
measures should be given: it depends solely on the test set that you are using. We
have been discussing MHC predictions. We are also doing some proteasome
predictions where the data are extremely sparse. We have to test our methods on
just two or three peptides. I wonder whether what we are discussing is a realistic
approach. It needs to be done, but we need to realise we are still working in a data
sparse area.
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Abstract. Advances in computational science, despite their enormous potential, have been
surprisingly slow to impact on clinical practice. This paper examines the potential of
bioinformatics to advance clinical immunology across a number of key examples
including the use of computational immunology to improve renal transplantation
outcomes, identify novel genes involved in immunological disorders, decipher
the relationship between antigen presentation pathways and human disease, and
predict allergenicity. These examples demonstrate the enormous potential for
immunoinformatics to advance clinical and experimental immunology. The acceptance
of immunoinformatic techniques by clinical and research immunologists will need robust
standards of data quality, system integrity and properly validated immunoinformatic
systems. Such validation, at a minimum, will require appropriately designed clinical
studies conducted according to Good Clinical Practice standards. This strategy will
enable immunoinformatics to achieve its full potential to advance and shape clinical
immunology in the future.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 23^42

The explosive growth in biotechnology combined with major advances in
information technology is producing vast quantities of readily accessible
biological data with direct relevance to immunology research and clinical
practice. New data are being added at an exponential rate through initiatives such
as the Human Genome Project, Mouse Genome Initiative and Functional
Annotation of the Mouse (FANTOM2) Project, amongst others. These
initiatives focus predominantly on biological sequences, i.e. biological structures,
genetic and physical maps, and pathways. Bioinformatic resources include
immunological databases and computational methods for data extraction and
analysis. Bioinformatic tools provide a means for fast and comprehensive
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extraction of biological sequence information for comparison, analysis or
interpretation. They also assist with the planning and design of laboratory
experiments and thereby have the potential to accelerate knowledge discovery.
The ability to e⁄ciently extract and analyse useful information from the rapidly
expanding number of databases is crucial for immunology research and
ultimately for immunology clinical practice.
The size of the human genome is between 30 000 and 100 000 genes. A major

current e¡ort is to identify all these genes, and elucidate the structure and
function of the proteins they encode. Many of these genes will be involved in
immune function and a subset of these in immune-related diseases. Bioinformatic
tools for database searching and biological sequence analysis allow quick
identi¢cation of sequences of interest and provide substantial bibliographic,
taxonomic or feature information. Tools for sequence comparison, motif
searching, or pro¢ling assist researchers in identifying biologically relevant
sequence similarities as well as a new generation of bioinformatic tools that
enables modelling of biological interactions and simulation of laboratory
experiments.
Di⁄culties in the application of computational tools arise from the fact that

most immunology researchers and particularly clinicians have only a limited
understanding of sophisticated data analysis and their applicability and
limitations, whilst most computer scientists lack understanding of the depth and
complexity of immunological data (Petrovsky & Brusic 2002). Therefore, success
in applying bioinformatics to immunology relies heavily upon individuals and
groups who are able to cross the divide between these two disparate ¢elds. The
focus of this paper is the potential ability of immunoinformatics to transform
clinical immunology practice and research. This point is illustrated with a
number of key examples including the use of computational immunology and
database mining to predict renal transplantation outcomes, identify novel genes
potentially involved in immunological disorders, better understand disease
relationships in HLA antigen presentation pathways and predict allergenicity.
Clinical practice whilst reliant upon research for advances is however guided by

a di¡erent set of principles such that research proof may not always translate into
clinical acceptance. The reasons for this aremany and varied but in part relate to the
central tenet of clinical practice which is ‘¢rst do no harm’. Also, clinicians by their
nature tend to be conservative and skeptical of ‘miracle’ cures or advances. Hence,
it will not be easy to get immunologists to accept the results of black boxes such as
arti¢cial neural networks or other computational prediction or modelling systems.
This is particularly true if we wish them to accept computer based predictions or
guidance in their clinical decision-making process. The onlyway forward therefore
is to develop appropriate immunoinformatics frameworks and clinical standards
capable of satisfying even the most skeptical clinician. Immunoinformatics
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methods need to be validated to minimum clinical as well as experimental
standards. This would require, for example, that all clinical modelling or
prediction systems should be validated where possible by blinded, prospective
clinical studies performed according to Good Clinical Practice standards. By
applying equally rigorous scienti¢c and clinical standards to immunoinformatics
practices we will ensure widespread acceptance of this new ¢eld by scientists and
clinicians alike.

Immunoinformatics in improving transplantation outcomes

Renal failure is an increasing problem around the world, with a rising incidence
largely due to the rising incidence of type 2 diabetes. Although dialysis is a short-
term solution, renal transplantation remains the optimum solution both for
restoring quality of life and for increasing life expectancy of patients. A major
limitation to renal transplantation is the supply of donor kidneys. Although
success rates from renal transplantation continue to improve, a signi¢cant
number of donor kidneys continue to be lost due to rejection or recurrent
disease. Consequently, a signi¢cant number of renal transplant recipients require
a second or subsequent graft. The ability to improve the graft success rate and
thereby reduce the number of patients requiring multiple grafts would both
improve patient outcomes and increase availability of donor kidneys for primary
recipients.
Although advances in renal transplantation such as HLA matching and

improved immunosuppressive medication have reduced transplant failure rates
further optimization of renal transplant outcomes is necessary to improve both
the survival time of the graft and the quality of life of recipients. Techniques
derived from the study of arti¢cial intelligence, e.g. arti¢cial neural networks
(ANN), o¡er the ability to better predict graft outcomes after training on a
combination of donor and recipient data and thereby to optimize donor^
recipient selection. They may also be useful for identi¢cation of patients at
increased risk of acute rejection and target them for more aggressive
immunosuppression.
Examples of ANN applications in organ transplantation include prediction of

liver transplant rejection (Hughes et al 2001), prediction of tacrolimus blood levels
in liver transplantation (Chen et al 1999), diagnosis of early acute renal allograft
rejection and evaluation of complications of renal transplants (Furness et al
1999), predicting cytomegalovirus disease after renal transplantation (Sheppard
et al 1999), prediction of pancreas transplant outcome (Dorsey et al 1997) and
MHC haplotype matching (Bellgard et al 1998). ANNs can be used to predict
delayed renal allograft function and to identify the most important variables in
prediction of chronic renal allograft rejection progression (Brier&Arono¡ 1996).
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To further demonstrate the applicability of an immunoinformatic approach to
organ transplantation we performed a study to see whether an ANN could be
trained to predict 6 month graft survival (Petrovsky et al 2002). For this we used
renal transplant data from theAustralian andNewZealandDialysis andTransplant
Registry (ANZDATA). ANZDATA contains clinical donor, recipient and
outcome data on all transplants performed in Australia over the last 30 years.
After training, a three-layer feed-forward ANN was able to correctly predict
84.95% of successful transplants and 71.7% of unsuccessful transplants thereby
demonstrating that an appropriately trained ANN is capable of predicting both
successful and unsuccessful renal transplants. The ANN is better in predicting
successful than unsuccessful transplants suggesting that the factors that
determine graft success may be inherently more predictable than the factors
which determine graft failure. We then used an ANN architecture to see if we
could predict the type of graft rejection. The ANN-based system correctly
predicted 59% of rejection outcomes with respect to the type of rejection. These
results indicate that an immunoinformatic approach is extremely useful for
predicting renal transplant rejection and could, therefore, be developed into a
useful clinical tool to improve transplantation outcomes. The biggest problem in
improving renal transplant allocation may, ironically, not be the development of
ANN-based prediction systems but rather gaining the acceptance by clinicians of
computer-based predictions. However, the accuracy and impartiality of an
immunoinformatic allocation system should ultimately be its greatest strength, as
thiswould prevent bias creeping into organ allocation.The technological advances
o¡ered by such methods of graft allocation may ultimately bene¢t the many
patients currently awaiting organ transplants.

Human immune disease-gene identi¢cation

The majority of common diseases such as cancer, allergy, diabetes or heart disease
are characterized by complex genetic traits where genetic and environmental
components contribute to disease susceptibility (Hirschhorn et al 2002). Our
knowledge of genetic factors contributing to the risk of common diseases is,
however, limited. A major goal in the post-genomic era is to identify and
characterize disease susceptibility genes and to de¢ne strategies to use this
knowledge for disease treatment and prevention. The mouse is the most
important model organism for the study of human disease genetics, and
discovery and validation of potential therapies. Genetic manipulations that can
be performed in the mouse include point mutations, gene disruptions, insertions,
deletions, or chromosomal rearrangements or random genome-wide mutagenesis
(Muller 1999, Zambrowicz & Friedrich 1998). The FANTOM2 project has
focused on the functional annotation of 60770 cDNA RIKEN clones by large-
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scale, computerized annotation followed by manual curation. Being the most
complete picture of the mouse transcriptome to date, the FANTOM2 dataset
provides an ideal opportunity for identi¢cation of novel mouse orthologues of
human genes involved in normal immune function and/or immune disease. We
analysed the RIKEN dataset to identify potential novel genes in mouse that are
highly similar (70^85% in more than 70% length) to human counterparts that
have been described in relation to immune disease and found 14 mouse clones
related to rheumatoid arthritis, systemic lupus erythematosus, Crohn’s disease
and Sjogren’s syndrome with nine of the genes encoding autoantigens.
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with

impaired humoral and cellular immune responses characterized by a chronic
in£ammation of the connective tissue, a¡ecting di¡erent systems such as joints,
kidneys, serous surfaces, and vessel walls (Oelke & Richardson 2002).
Antibodies to multiple di¡erent self proteins are found in the serum of these
patients (Lim et al 2002). Antibodies against DNA, nucleoproteins, histones,
nuclear ribonucleoprotein and other nuclear constituents (anti-nuclear
antibodies) are found in more than 98% of patient with SLE. Identi¢cation of
these autoantibodies is of high diagnostic value for SLE. An immunoinformatic
search of the RIKEN dataset found novel mouse transcripts similar to the SLE
autoantigens, DEK protein, AHNAK, replication protein A and U1 small
nuclear ribonucleoprotein C. Rheumatoid arthritis (RA) is a chronic disease
characterized by the presence of an in£ammatory in¢ltrate in the synovial
capsule inducing progressive destruction of bone and cartilage in the joints.
We identi¢ed novel mouse proteins similar to L1 retrotransposable elements,
small nuclear ribonucleoprotein-associated protein and cAMP-responsive
element binding protein, which have all been previously described as
autoantigens in RA. We found a mouse transcript similar to Golgin-97, a
Golgi complex antigen that is an autoantigen in patients with Sjogren’s
syndrome (Gri⁄th et al 1997). We also identi¢ed a mouse sequence similar to
the human zinc ¢nger protein, Cezanne (cellular zinc ¢nger anti-NFkB), a
NFkB negative regulator (Evans et al 2001). NFkB is related to multiple
in£ammatory diseases including rheumatoid arthritis (Muller-Ladner et al
2002). A mouse clone was identi¢ed that bore close similarity to NOD2, a
member of the Apaf1/Ced4 superfamily of apoptosis regulators that activates
the nuclear factor NFkB to enable monocytes in response to bacterial
challenges, and is defective in patients with Crohn’s disease (Hugot et al 2001).
Finally, a mouse clone similar to human HA-1 was identi¢ed that may represent a
novel minor histocompatability antigen. Minor histocompatibility complexes
play a key role in graft versus host (GVH) as well as playing a bene¢cial role in
the graft versus leukaemia response (GVL). Identi¢cation of antigenic peptides
related to minor histocompatibility molecules responsible for the induction of

COMPUTATIONAL MODELLING AND PREDICTION 27



GVL and not GVHD is a promising avenue for treatment of allogeneic bone
marrow and haematopoietic stem-cell transplantation (Warren et al 1998).

Antigen presentation pathways and their role in human disease

T lymphocytes (T cells) have evolved to be the major e¡ectors of cognate
immunity in the vertebrate immune system. T cells possess receptors (TCRs)
which, in a highly speci¢c manner, recognize human leukocyte antigen (HLA)-
presented peptides on the surface of host cells. HLA molecules bind peptides
produced by degradation of proteins. The transporter associated with antigen
processing (TAP) is a transmembrane protein responsible for the transport of
antigenic peptides into the endoplasmic reticulum where they are then bind to
HLA class I. The importance of TAP to the function of the HLA class I antigen
presentation pathway is demonstrated bymarkedly reduced cell-surface HLA class
I expression in cells defective in TAP expression (Spies & DeMars 1991).
Understanding the pathways of antigen processing and presentation is important
for the design of immunotherapeutic drugs and vaccines and for understanding the
mechanism behind HLA-associated disease associations.
Analysis of the relationship between TAP binding a⁄nity and HLA class I

binding a⁄nity across the full spectrum of HLA alleles is di⁄cult because of the
extensive polymorphism of HLA molecules. We addressed the problem by: (a)
generating a computational model, (b) combining the initial model with a
selected set of laboratory experiments for model re¢nement, and (c) using the
re¢ned model to analyse the functional relationship between TAP and HLA class
I molecules (Daniel et al 1998). The working ANN model was used to search for
patterns of TAP-bindingwithin sets of HLA-binding peptides. The proportion of
HLA-binding peptides with a⁄nity to TAP varied for eachHLA class I allele with
a range of 15% for HLA-B*5401 to 100% for HLA-B*2703 (Brusic et al 1999). On
the basis of these results we hypothesize that HLA alleles constitute two separate
classes: those that are TAP-e⁄cient for peptide loading (HLA-B27, -A3 and -A24)
and those that are TAP-ine⁄cient (HLA-A2, -B7 and -B8). The strong similarity
between the sets of peptides bound by TAP and HLA-B27 suggests close
functional co-evolution. Advantages could include increased resistance to
infection, cancers or autoimmunity at the individual or species level, but at the
price of increased predisposition to ankylosing spondylitis. TAP-ine⁄cient HLA
alleles utilize TAP-independent peptide transport pathways to a greater degree.
Evolutionary pressures may have selected TAP-ine⁄cient HLA alleles to counter
mechanisms evolved by pathogens to evade immune surveillance by blocking
TAP-dependent peptide transport. The availability of computer-based models of
TAP and HLA interaction is helpful in accelerating research into evolutionary
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relationships within the immune system as well as in designing more e⁄cient
human vaccines.

Prediction of allergenicity

Allergies constitute the most common cause of chronic illness in industrialized
countries, a¡ecting approximately one third of the general population. Clearly
there is much to be done to better understand and alleviate this debilitating
problem. Given the complexity of the ¢eld, immunoinformatics o¡ers great
potential to deliver new approaches to allergy management and treatment.
The assessment of protein allergenic potential focuses on three main aspects:

immunogenicity, cross-reactivity and clinical symptoms. Immunogenicity refers
to the likelihood of an IgE antibody or T cell response to a particular allergen.
Studies of B cell and T cell epitopes focus on de¢ning recognition sites on
allergens. Cross-reactivity refers to the ability of an IgE clonotype or a T cell
clone, which was previously induced by one allergen, to react with another
allergen. Studies of stinging insect venom allergens have shown that cross-
reactivity between allergens that have less than 70% sequence identity is
uncommon (King & Spangfort 2000). Studies of immunogenicity and cross-
reactivity have applications in the development of immunotherapies and vaccines.
The number of characterized protein allergens is increasing rapidly. The

Allergen Nomenclature Sub-Committee of the International Union of
Immunological Societies maintains a list of ‘agreed’ protein allergens with 360
protein allergens having been classi¢ed, as of September 2001 (www.allergen.org/
List.htm). While this list contains many characterized allergens, it is not
exhaustive as unlisted allergens can be found in the literature. Prediction tools
focus on functional and structural analysis of genes and proteins and
identi¢cation of those that have allergenic potential. Such tools have been used
for prediction of allergenicity, allergen cross-reactivity and T cell epitopes.
Structural bioinformatics helps identify structural properties of proteins, such as
secondary structure, or tertiary structure that a¡ect allergenicity largely through
a¡ecting the IgE binding sites. However, the common characteristics of allergens
such as structural, functional, or biochemical properties that explain their ability to
elicit allergic responses are still unclear. Basic sequence analysis methods include
the analysis of DNA and protein sequences using sequence comparison, sequence
alignment, database searching, or identi¢cation of various properties of protein
sequences. Homologous proteins usually share 3D structure, implying similar
function. The ¢rst step in the study of a novel protein is usually a search of public
databases for homologous sequences using standard or specialized pairwise
sequence alignment algorithms followed by multiple sequence alignment.
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Some examples of use of sequence comparison and analysis in the study of
allergens include molecular characterization of an allergen group from dust mites
(Mills et al 1999), characterization of a superfamily of proteins containing the
allergenic lipid transfer proteins (Iyer et al 2001), structural characterization of a
rice allergen (Izumi et al 1999), analysis of mutations of pollen allergens (Midoro-
Horiuti et al 2001), and identi¢cation of characteristic motifs in cat (Ichikawa et al
2001) or cockroach allergens (Yang et al 2000). Secondary structure prediction of a
selection of pollen, fruit and vegetable allergens using PredictProtein software
helped the identi¢cation of very similar structural elements and, in particular, the
‘P-loop’ region as a commondomain of pollen and related food allergens (Scheurer
et al 1999). This groupof sequences displayed strong allergenic cross-reactivity and
the presence of common and speci¢c epitopes. Third generation software,
PredictProtein, Jpred2, and PSIPRED accurately predict more than 75% of
amino acids that form a helices, b sheets and coils. Structural motif analysis can
be useful in studies of speci¢c protein properties, e.g. it successfully revealed the
presence of coiled-coil helices in the group 5 allergen Der p 5 from the house dust
mite (Liaw et al 2001). Protein allergenicity is determined by 3D structure and
structural knowledge can, therefore, help provide insight into the molecular
basis of allergenicity. For example, a common structural motif comprising a
groove located inside an ab motif has been identi¢ed within diverse allergens
(dust mite allergen Der p 1, cysteine protease papain, lipocalin Mus m 1, and
ragweed allergen Amb a 5) (Furmonaviciene & Shakib 2001).
A number of specialized clinical allergy tools have also been developed. One

example is the allergen avoidance database tool which, when queried, produces
an extensive list of skin care products that do not contain known allergens
speci¢c for a given patient (Yiannias & el-Azhary 2000). Another program
predicts sensitization to £our allergens in bakers using a stepwise logic regression
method (Popp et al 1994). We anticipate that more sophisticated bioinformatics
tools will appear in the future to support research, clinical practice and the
screening of novel synthetic or genetically manipulated (GM) foods and
products. Novel GM foods, nutraceuticals, cosmetics and other products need to
be carefully assessed for allergenic safety before they reach consumers.
Immunoinformatics currently provides the only cost-e¡ective and e⁄cient means
of performing such safety screening, hence its importance to the future of market
acceptance of GM products.

Discussion

The preceding examples indicate the power of immunoinformatic approaches to
accelerate knowledge acquisition in clinical immunology. Bioinformatics has
broad applicability to immunology with uses ranging from de¢ning disease
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genes and gene pathways to development of clinical prediction and information
systems. Given the potential for bioinformatics to transform immunology
research, immunoinformatics provides the key to develop radically new
immunology treatments and clinical practices. To achieve this objective will
require the development of appropriate immunoinformatics frameworks and
standards. In addition, attention will need to be focused on how to ensure that
clinical immunologists gain con¢dence in the computational modelling systems
used. Immunoinformatics methods will need to be validated according to
minimum clinical as well as experimental standards. An exciting prospect is the
development of in-silico models of entire systems. There is now the technology
available to build a virtual immune system, the construction of which will be one
of the major challenges for the next decade.
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DISCUSSION

DeLisi:The Human Genome Project is not a good model for what we want to
achieve. A better model is Al Gilman’s project mapping signalling pathways, the
Alliance for Cell Signaling. The human genome project was successful because it
was presented as an engineering project: the goals were to develop the high-
throughput technologies required for sequencing the human genome, and then
to sequence it. The Virtual Immune System is a scienti¢c project. The issue is
how we translate scienti¢c interest into government policy that is going to lead
to US$10^15 million a year in funding for such a project. NIH still has more
money than it knows how to spend intelligently, and one can think about a
US$10^15 million e¡ort if it is well de¢ned and articulated, with some good end
points.
Perelson: We have been thinking about whether or not this is feasible for many

decades. One of the problems in doing modelling is that we want it to be related to
the data. What is interesting about immunology is that di¡erent experimental
groups have focused on di¡erent aspects of the immune response, and with
di¡erent model organisms. From what we can tell, there is no single response to a
relevant pathogen that has been completely characterized. People tend work on
model antigens such as myoglobin or hen egg lysozome, which are easy to obtain
and which give rise to large, easy to measure responses. There has been little
integration in the immunological community to take a real antigen, such as a
pathogen, and then completely characterize T cell, B cell and cytokine responses.
A number of years ago we were considering getting together a group similar to
Max Delbruck’s phage group, with interests in di¡erent aspects of immunology,
and have themwork ononemodel antigen to start building an integrated picture of
how the di¡erent arms of the immune system work together. Our hope was that
this e¡ort would collect data that would drive a model integrating di¡erent aspects
of the immune response. Initially, people were intrigued and we had about ¢ve
di¡erent labs that were going to try. It eventually fell apart because everyone had
expertise working with their particular antigen. To characterize another antigen
people were willing to expend 5% e¡ort, but they weren’t willing to make a
major change in their career or laboratory’s expertise to move to someone else’s
antigen or system. Perhaps now the time is right to revisit such an endeavour.
There is a much larger community of people interested in quantitative
information. There is a large amount of money coming into studying immune
responses related to bioterrorism threats. With funding and incentive it may
become possible to build a large-scale model of an immune response to a
pathogen, but the current state of modelling is still rather primitive in many
respects and a large amount of work will need to be done. The early models of
immune responses were predator^prey models. They would say that there is
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some antigen that is either growing or not growing, and the antigen level would
drive immune responses in a concentration-dependent manner. We have clever
physicochemical models, at the level of B cells, of how receptor cross-linking
might occur and how this might generate signal transduction. Similarly, there are
now new models of the immunological synapse and the early events in T cell
activation (cf. Coombs et al 2002). But one of the things that we have learned in
the last few years is that the immune systemmight not work by simply monitoring
the antigen concentration and having its response driven by that. We have learned
from in vitromodels that much of the response may be pre-programmed. There are
proliferative responses that take place after a system has been pulsed with antigen,
and if the antigen is removed the response still continues for a number of days (cf.
van Stipdonk et al 2001, Badovinac et al 2002).
We are still in a primitive statewith regard to fully understanding the signals that

regulate T cell proliferation and di¡erentiation. The same is true of B cells. So I
think there has to be a combined e¡ort where experimental and modelling
groups work together and carefully elucidate the kinetic details of responses in
model systems. We also need to look at the responses to multiple antigens that
occur in real infections, and consider cross-reactivity and competing cytokine
signals, for instance. To build an accurate large scale model of the immune
system is an e¡ort that will take many years, but unless we start it will never be
achieved.
One further area that relates to immunoinformatics is that people who are trying

to characterize responses in T cells have a technology called the immunoscope that
measures the length of the CDR3 region of the b chain of the T cell receptor
(Pannetier et al 1995) rather than the full genetic sequence. Labs collecting huge
amounts of data of this sort are trying to characterize the diversity of the Vb
families of T cell receptors, and how they change during immune responses. I
don’t know what is happening to all these data. It would be useful to put this
information in databases so these data can be universally accessed.
Brusic: Nikolai Petrovsky’s optimism stemmed from successful linking of

predictions with subsequent experimental validations of TAP binding peptides.
We found someone who was willing to do a TAP binding study with 100
randomly generated peptides. By using such an approach we de¢ned a strategy
for de¢ning highly accurate models. This is the main problem: it is very di⁄cult
to get experimental people to invest in randomly generated peptides where they
don’t clearly see what is coming out.
Perelson: There are two issues. One is building models of particular systems. If

one wants to build models of TAP andMHC presentation, there are whole groups
of peoplewhowould bewilling to do this.WhatNikolai is proposing is something
much broader: trying to build a model of the whole immune response. This
involves getting people signed on who are not only interested in antigen
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presentation, but also the functional T cell response, the antibody response and
possibly people interested in vaccines. Another aspect of global modelling is that
depending on the organism you focus on, immune responses take di¡erent
characters. This is because the response is occurring within a host, and the host
can choose to mount a cell-mediated response, a humoral response or both. The
organism also may be trying to subvert the immune system such as by interfering
with antigen presentation. Thus the data one collects and the models that are
developed may depend on the particular host^antigen system being studied.
Petrovsky: What I was proposing is somewhat di¡erent to what people have

proposed before in that I am advocating a modular approach. If you can develop
a model of TAP binding that is close to 99% accurate, which we believe we have
done, you can then combine this with well validated models of MHC binding
which are also highly accurate. By combining these two modular components we
now have a signi¢cant part of the MHC Class I antigen presentation pathway
sorted out. You can then proceed to model other components such as the
proteosome or T or B cell recognition. In essence, we want to progressively
build a complete model of the immune system so we can put ideas in and see
what comes out the other end. The responses of the model can then be compared
to observations of responses in whole organisms.
Rammensee: I would like to comment on the two nice models you proposed.

One, the mutation model, was a black box model and was very successful. The
other was model-based predictions building on blocks. The problem with this
building block-based approach is that you are making the assumption that these
two blocks do everything and there is no additional in£uence. Usually, though,
nature is more complex. This causes a problem for the building block-based
model. Your example just missed the state between TAP and MHC, which is
now well established. This is where the trimming enzyme which shortens the
peptides comes in. The peptides are made shorter by aminopeptidase activity to
nine amino acids, so you don’t need the peptides coming in at exactly the right
length. Since this is missing in your prediction mark, it calls into question the
whole thing. You need to include this new building block of the speci¢city and
activity of the trimming peptidase and perhaps then the whole thing will be more
accurate.
DeLisi: There are models that do exactly what you are saying.
Rammensee:You have to know these steps from the experiments. Otherwise you

are in the black-box business.
Lybrand: I don’t think this is necessarily the case. Perhaps it is a di¡erence in

perspective of how you do modelling and exactly what modelling is. You can
take the kind of approach that I think Nik is outlining and try to couple these
di¡erent levels of models together. In many cases, what the overall mathematical
model will help reveal to you is where you have missed some steps. Initially,
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models de¢ne limiting behaviours and you have to begin to re¢ne them to come to
a better accord of what you can measure. It can be used to steer you back to areas
where you need more detailed experimental investigations.
Rammensee: In his TAP B27 example Nikolai Petrovsky did not conclude there

was something missing.
Petrovsky: I agree entirely with the comments made by Terry Lybrand, namely

that the model de¢nes limiting behaviours and helps us to identify missing
components. Because we couldn’t conceive of a whole class of MHC class I
alleles that have no capacity to bind peptide because it can’t get in to the Class I
pathway via normal TAP transport we started to look for the missing links: in
other words, how do these other peptides get into the Class I pathway if it is not
through TAP transport? Either, as Hans Georg says, it is because larger peptides
are being transported by TAP and then they are being trimmed once they are in the
ER, or perhaps these peptideswithout aTAPbindingmotif are fromviruseswhich
are expressed in the ER and would be anticipated to be loaded into MHC class I
molecules like HLA-A2 that bind peptides that don’t have a TAP binding motif.
Whenwe did a literature search,we found that there does seem to be a biaswhereby
the HLA molecules that don’t have similar binding to TAP seem to be important
for presenting viral and signal peptides.Models aren’tmeant to be perfect, but they
do alert you to incongruous results that make you then look experimentally to ¢nd
the missing links.
Rammensee: This missing link� the trimming peptidase in the ER�has

recently been published (Serwold et al 2002).
Petrovsky:This could easily be built into themodel and I agree this should be the

next step.
Bernaschi: I think we should distinguish between modelling that attempts to

explain the result of experiments and classical modelling, which tries to ¢nd the
smallest possible set of di¡erential equations which describes the result and can
be useful for understanding the experiment. It could take many years for us to
¢nd the right set of equations for the immune system. A completely di¡erent
approach to modelling is to try to simulate what we already know. Let me try to
explain this point by means of an analogy. We don’t know everything about the
laws of physics in £uid dynamics, and we don’t knowmuch about turbulence. But
we have very detailed £ight simulators, which are very useful for engineering. We
should adopt a slightly di¡erent approach to immunoinformatics. On the one hand
we should try to amass asmuch data as possible to provide a classic scienti¢cmodel.
On the other hand we should start as soon as possible to use the information we
have to simulate the immune system. They are quite di¡erent stories. Of course,
any simulator must be validated. This is always done in £uid dynamics. There is a
lot of working code, but no one would seriously suggest £ying an aeroplane that
was simply designed by computer. There are wind tunnels that are used for
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experiments, but the use of computer simulations saves a lot of money. The same
story could be true for immunology. Another point raised by Vladimir Brusic
concerned the necessity for joining di¡erent scales. We are already able to
reproduce many e¡ects at the cellular level. We have less information for the
intracellular level. These are di¡erent challenges. We now have enough
information, however, to write something that is useful and will be a starting
point for the real immune system simulator. I don’t know whether we will ever
be able to assemble a complete picture of a system as complex as the immune
system, but I am pretty sure it is useful to start with the information we already
have.
DeLisi:Asimulatorwould drive the experiments. It would have parameters that

we would know from experiments. But experimental parameters at one level of
modelling are predictable at a deeper (more fundamental) level. You want to do
experiments that give you the feeling of the parameters. For example, take cell
adhesion. You can measure the thermodynamic and kinetic binding constants
between particular cells under particular conditions, and they would allow you to
make predictions for those cells under those conditions, e g. how their interaction
rate changes with concentration, temperature receptor density, etc. That would be
helpful, but not very general. A theory of the binding constantswould allowyou to
extend the range of predictions enormously. For example, we might want to
predict adhesive properties knowing only the alleles of the relevant genes. From
those we would determine the protein sequences and from sequence determine
structure and from structure determine free energies in terms of surface amino
acids (the docking problem). What is a parameter at one level becomes detailed
experiments at another. I agree with that idea; in theory a simulator would drive
experiments at di¡erent levels. We are clearly never going to understand
everything, so the goal here is to be very concrete about what we really want to
accomplish with our resources. If we had US$15 million a year, what would we do
with this money towards that goal? There is a venture called the Virtual Human
Project. Its goal is to develop organ-level models and then to begin to connect
them. The immune system is one such organ. Other than the CNS, it is probably
the most complex. Modelling it certainly ¢ts with a lot of the culture that is
developing at least in the USA.
Gulukota:Wehave talked a great deal about data and a need for a data repository.

One concrete idea could be that one institute hosts a PDB-type database that is well
annotated with respect to the techniques that are used. With regard to neural
networks, and people’s reluctance to use them because it is a black box, if you
have a black box that you believe works almost 100% of the time, you can do
pretty much in¢nite calculation with it. This creates an in¢nite database because
you can place all your calculations into a repository. Also, the neural net doesn’t
have to be a black box in terms of explaining for two reasons. First, there are
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techniques for di¡erentiating neural nets which allow you to identify which input
components contribute most to the analysis. Second, with a large enough data
repository such as one created above, you can apply any other statistical tool to
recognize more intuitive patterns. Finally, I have a question for you. You
mentioned that you were looking at the success and failure of transplantation. I
guess you clari¢ed this a little by saying you were looking at success 6 months
out. Is that really binary?
Petrovsky: ‘Failure’ at any time point is an absolute end point in that itmeans that

the graft has failed and the patient is back on dialysis. ‘Success’ is more semantic in
that when we talk about ‘success’ at six months, we just mean that the graft is still
functioning at that time point. We plan to extend the study to see whether we can
similarly predict transplantation outcomes at one year, two years etc.
Gulukota: From a scienti¢c point of view, is it useful to look at some other

description of success or failure, such as the histology of the graft? Clinical
outcome is important, but is it important to correlate the black box with
something a little more concrete?
Petrovsky: Clinicians like studies with solid end points. In transplantation the

hardest endpoint is a graft that is functioning or one that has failed. A clinical
endpoint like this is more valid than measuring something such as serum
creatinine or graft histology, which may be good or bad but may not actually
re£ect the ¢nal graft outcome.
Beck:Howmuch are these data skewed by medication? After the initial success,

some people might be on strong medication and some might be on no medication
at all?
Petrovsky: What we have done is make the predictions based solely on pre-

transplant data and we don’t incorporate any post-transplant data. The goal is to
produce a method for allocating organs for transplantation more e¡ectively. The
amazing thing is that we don’t know what medication a patient will receive post-
transplant and yet we are still able to predict the graft outcome at a reasonable level
of con¢dence. This would suggest that at least at 6 months post-transplant
medication alone cannot fully compensate for other intrinsic factors in£uencing
graft outcome, for example the HLA types of the donor and recipient.
Beck: The post-transplant data would be useful. You rarely get the perfect

match. If you get a second-best match, it may be that this will work better with a
particular combination of drugs but not another.
Brusic: It is di⁄cult to get clean transplant data because of the knownproblem of

patient non-compliance in taking drugs.
Petrovsky:We certainly plan to address these sorts of questions with the system.

You could even predict how much drug a patient is likely to require in order to
have a successful graft. Togo into ¢ner detail and answer such questions,more data
are required to take into account the complexity. For example, one of the things
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that does in£uence outcome strongly is the surgeon performing the transplant. The
neural network understands this. If we take these data out, the performance of the
model falls. The beauty is that the network is a black box: one of the things that
people were very worried about is that the network would start to point ¢ngers at
particular surgeons. The neural network in fact does this in a subtle way, by
weighting the outcome downwards if it knows a particular surgeon with a
history of poor outcomes is proposed to do a particular transplant, but at the
same time it is taking into account many other variables so it is never possible to
say that the outcome is predicted to be bad just because of a particular surgeon.
Rammensee: Would you assume that your model would get better the more

parametersyouput in theblackbox,withoutknowingwhat the in£uencewouldbe?
Petrovsky:Exactly. The neural networkwill discard irrelevant data, or those data

that don’t contribute to the prediction, hence you can put in as many data as you
like and let the network sort out what is useful. This is di¡erent to many other
systemswhere irrelevantor fuzzydatamaydetract fromthepredictionperformance.
Rammensee: That’s not very scienti¢c, but it seems to work.
Gulukota: I wasn’t saying that the end point is not scienti¢c. I am suggesting that

if we want to understand the rejection process and see what will happen further
down the line, it might be more useful to look at some other markers.
Roth: That’s a fair point. We had clinical studies where pathologists assessed

kidney biopsies for chronic rejection. If you ask two pathologists they give you
two di¡erent opinions about the state of the graft. Not even the pathologists
have a clear opinion of how to assess rejection.
Kesmir: Idisagreewith the ideaofneuralnetworksbeingablackbox.Justbecause

themathematics behind it contains some partial di¡erential equations doesn’tmake
something a black box. All the parameters, i.e. weights, of the network can be
analysed. Then you can understand why it makes certain predictions.
Rammensee:The collection of data is the black box, as I understand it.
Kesmir: It is also possible to analyse the data. The worst black box is a mouse!

When we measure T cell responses, we don’t know what they are due to.
Flower: You won’t ¢nd many immunologists or clinicians who are prepared to

sit down with a neural network, take it to pieces and try to understand how it
works. It would be na|« ve to think otherwise. One must recall that the goals and
interests of distinct groups of scientists do di¡er. You will not even ¢nd many
computational chemists who are prepared to take a neural network to pieces. It is
perhaps only computer scientists who might be prepared to disassemble a neural
network.
Kellam: This may change in the near future so we would get more cross-

disciplinary research collaborations. What I don’t understand is the statement
that it is not scienti¢c to use a ‘black box’ analysis method if you assimilate a
lot of data, from a hypothesis and test it. How is this any di¡erent from taking
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the data, running them through a de¢ned prediction method and ¢nding that this
¢ts the data?
Gulukota: I was merely suggesting that looking at a di¡erent end-point might

give better predictive value over a longer time scale. You might even be able to
predict how long the graft will survive.
Petrovsky:We can certainly predict how long the kidney graft will survive if we

train on the appropriate data. If we incorporate post-transplant data the system
becomes more powerful at predicting outcome but would no longer be useful for
allocating cadaver kidneys as this can only be done based on data that is available
pre-transplant. The trouble is, once the transplant has already occurred you can no
longer go back and change things.
Roth: Post-graft data can help to tailor the immunosuppressive regime.
Petrovsky: Absolutely. Obviously a neural network approach can be used to

assist many separate clinical decisions in transplantation.
Gulukota: But you could look at post-transplant data for training purposes and

then use these data to train the neural network. Then for the testing set you only
have data coming from before the transplant is done.
DeGroot: I have a question for Nikolai Petrovsky and Vladimir Brusic, because

they seem to have two pieces of information that I don’t have: namely, that there is
a model of TAP that predicts an inverse relationship between what ends up as an
epitope and what binds to TAP. Hans-Georg Rammensee also mentioned that
there was a new ¢nding published in Nature. How would you explain what you
observed? To me as an immunologist it is very important to understand that
relationship. Do you feel that there is a second path by which the peptides are
getting in to the ER?
Brusic: There are at least four or ¢ve di¡erent pathways, but TAP is the major

one. It is responsible for approximately 90% of antigen transport.
De Groot: You are presumably using B7, A2 and A3 to model, and the model

predicted that thesewould bind toTAP.Yet they donot, and the ones that are poor
binders by your prediction method are not the ones that are epitopes.
Petrovsky: I agree that the predictions made by the model are very interesting

even if at ¢rst sight they appear somewhat paradoxical. What the model predicted
was that less than 1% of peptides that bind HLA-A2 would bind to TAP. But the
truth is that TAP transports millions of peptides, so even if the proportion that
bind to HLA-A2 is less than 1%, if you multiply this by the millions of peptides
available, there will still be many peptides transported by TAP that will bind A2,
but at a much lower frequency than for example is the case for HLA-B27 which is
predicted to bind with high a⁄nity close to 100% of peptides transported by TAP.
Rammensee: The assumption from the model is wrong. It assumes that 9-amino-

acid peptides are transported but not 10-amino-acid peptides, and this has now
been shown to be wrong.
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Margalit: It is possible that theHLA-A2 peptides are cleavedwith anN-terminal
extension and they are transported by TAP, like the 14-mer.
Brusic: Another explanation for this was that longer peptides are transported in

the context of HLA-A2, and it takes time for post-processing in endoplasmic
reticulum. If B27 peptide is processed in the cytosol to the optimum length then
it can be transported and presented very e⁄ciently.
Petrovsky: You might anticipate that optimal length peptides will be more

e⁄ciently processed but I agree that longer peptides may contain HLA-A2
binding motifs. However, by de¢nition all TAP transported peptides will also
have a B27 binding motif so there will still be competition between HLA
molecules for which gets to capture the TAP transported peptides and the model
would predict that B27 if present is usually going to win the race to capture most
TAP transported peptides.
De Groot: If you were to try to create something in the cytosol that is an A3

epitope, should you make it a 14-mer or a 9-mer?
Petrovsky: Ideally, you should make it a 14-mer with a TAP binding epitope

inserted into a A2 epitope, or linked to it.
DeGroot: This is an important issue for those of us who want to apply this. The

other possible interpretation might be that it is more important to predict what
binds to the HLA than to worry about TAP.
Petrovsky: I don’t think we should simply ignore TAP binding as it is clearly an

important route for antigens to get into the class I pathway. With our current
knowledge we can now model peptides to maximize their chances of both being
transported by TAP and binding to any particular HLAmolecule. This is a major
advance on just being able to model HLA binding.
Margalit: I recently read a review byAlfredGoldberg that suggests the contrary

(Goldberg et al 2002). He said that it is better for peptides to have an N-terminal
extension because they are being degraded fast by aminopeptidases present in the
cytosol. If they are longer the extension will be chopped and then they will have a
chance to be transported to the MHC at the right size.
Brusic:How hard are these data?
Rammensee:There are now data that even 9-mers transported inside the ER have

been attacked by peptidases before they can bind (Serwold et al 2002).
Brusic: The arginine is a primary anchor at position 2 for peptides that bind to

HLA-B27. It is also an ideal place for cleavage.
Rammensee:Aminopeptidases usually don’t distinguish between residues unless

there is a proline there, which they don’t like.
Borras-Cuesta: You seem to predict most of the peptides that are transported by

TAP, which is very interesting. Suppose you have an antigen that is 300 amino
acids long. Then you screen the possible 9-mers or 14-mers. How many peptides
end up being predicted as transported?
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Petrovsky: Less than 3%. If you look at random peptides, the number predicted
to have high TAP binding a⁄nity is down around 1%.
Borras-Cuesta: How does that correlate with the peptides that are presented in

any given model? If it is that restrictive, it would be marvellous.
Petrovsky:We generated completely random peptides and the predictions of the

neural networkmodel were shown to be 99% accurate, so we are not missingmany
peptides at all. Hence if you just look at 9-mers the system is highly restrictive, and
at least as restrictive asHLAbinding. The di⁄culty though, is knowing howmany
peptides are transported byTAP as longer fragments and then cleaved. This would
potentially reduce the level of restriction.The interesting thing aboutTAP is that it
appears to be themajor gate keeper to the class I pathway and therefore any level of
restriction is going to be important. Once peptides get into the ER then they are
going to have a large choice of di¡erentHLAmolecules to bind to so the restriction
is going to diminish.
Margalit: In your paper you also tested longer peptides, and you saw that only

the ¢rst three or four amino acids have the largest contribution (Daniel et al 1998).
These considerations should be incorporated in more advanced versions of the
predictive scheme that will also deal with longer peptides.
Petrovsky: When you start building these models you keep them relatively

simple because you are not sure they are going to work in the ¢rst instance.
Having shown they work really well, the answer is then to introduce more
complexity, such as di¡erent lengths of peptide. Again, this is a preliminary
model. We certainly plan to model longer peptides in due course.
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Abstract.Diagnosis of human disease has been undergoing steady improvement over the
past few centuries. Many ailments that were once considered a single entity have been
classi¢ed into ¢ner categories on the basis of response to therapy (e.g. type I and type II
diabetes), inheritance (e.g. familial and non-familial polyposis coli), histology (e.g. small
cell and adenocarcinoma of lung) and most recently transcriptional pro¢ling (e.g.
leukaemia, lymphoma). The next dimension in this ¢ner categorization appears to be
the typing of the patient rather than the disease i.e. disease X in person of type Y. The
problem of personalized medicine is to devise tests which predict the type of individual,
especially where the type is correlated with response to therapy. Immunology has been at
the forefront of personalizedmedicine for quite a while, even though the term is not often
used in this connection. Blood grouping and cross-matching (for blood transfusion), and
anaphylaxis test (for penicillin) are just two examples. In this paper I will argue that
immunological tests have an important place in the future of personalized medicine. I
will describe methods we developed for personalizing vaccines based on MHC allele
frequencies in human populations and methods for predicting peptide binding to class I
MHC molecules. In conclusion, I will argue that immunological tests, and consequently
immunoinformatics, will play a big role in making personalized medicine a reality.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 43^56

We are witnessing the slow unfolding of a paradigm shift in the practice of
medicine. Hitherto, only a small number of speci¢c attributes of patients like
age, gender, pre-existing conditions were considered important in the practice of
medicine� in diagnosis and therapy. Many other attributes of a person, such as
their genetic pro¢le, were relatively unimportant (except perhaps in forensic
medicine). Now, with the advent of pharmacogenomics, we stand poised to
exploit a great deal more information about patients to help with diagnosis and
also to help make the decision on what therapy to prescribe. The new paradigm
is often referred to as personalized medicine (PM). In this paper I will describe a
few scenarios of how immunological data analysis can help to personalize
medicine.
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De¢nition of personalized medicine

It is important to de¢ne PM not in terms of speci¢c technologies (e.g. genetic
haplotyping, transcriptional pro¢ling) but in terms of the results we wish to
attain. This is because most technologies which could be applied to PM are still
being developed and it is far from clear which (if any) will eventually succeed.
Thus a good de¢nition of the problem is as follows.

‘PM aims to develop diagnostic tests which classify a patient (rather than a
disease) in such a way that the classi¢cation is correlated with response to
therapy.’

Themost useful testswill be purely predictive, i.e. they can be employed before any
therapy is started and their results used to decide on a therapeutic course of action.
Then there are semi-predictive tests which can be employed only after drug
administration has begun but whose results become available before the e¡ect of
the drugs (e¡ective, ine¡ective or adverse e¡ect) becomes clinically obvious. These
semi-predictive tests can also be useful in that they help make quicker decisions
about changing the drug regimen where necessary.

Pharmacogenetic approaches

Themost prominentway to approach personalization ofmedicine has been to look
for correlation between human genetic variation and drug response. Since the
largest number of variations in the human genome is through single nucleotide
polymorphisms (SNPs) (International Human Genome Sequencing Consortium,
Lander et al 2001), the obvious initial approach is to examine whether there are any
SNPs in the coding region of the gene encoding the drug target. Then, the next
step is to see if the presence of these SNPs correlates with drug response. However,
SNPs in non-coding regions such as untranslated regions, introns or promoter
regions might also be valuable because these might a¡ect regulatory elements.
Also, only a portion of all human SNPs are known. Therefore it is quite possible
that an important SNP within the coding region is not yet known but a known
SNP in the non-coding region might be in linkage disequilibrium with it.
Another very important set of SNPs (from a drug response point of view)would

likely a¡ect coding or non-coding regions of genes encoding drug metabolizing
enzymes (Hall 2002) as these could have a profound impact on pharmacokinetics.
These two sets potentially make a large number of possible SNPs to examine.

Nevertheless, it has been possible to use prior knowledge about the function of the
enzyme thiopurine S-methyltransferase (Krynetski & Evans 2000) in the
metabolism of the drug mercaptopurine to narrow down this list of SNPs to
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identify successfully genotypes associated with toxicity to mercaptopurine (Evans
et al 2001).
Genetic variation considered above has a direct e¡ect on drug response since the

SNPs are located in the genes for the targets or for themetabolizing enzymes of the
drug. However, it is possible to further enlarge this already large list by including
SNPs that are located in genes which share a commonmetabolic pathway with the
above ‘direct’ genes. If so, the e¡ect of each of these indirect SNPs might be small
but combinations of them might still produce signi¢cant drug response
phenotypes (Drysdale et al 2000).
Such expansion (to other related genes) pretty quickly brings it close to a

genome-wide SNP analysis. The estimates of the number of SNPs needed to do a
genome-wide haplotype vary from 180 000 to 600 000 (see Judson et al 2002, for a
review). Most of these SNPs represent genetic variation which will probably have
no bearing on the particular drug response in question. Thus correlating a
haplotype based on a large number of SNPs to drug response phenotypes
becomes a highly statistical exercise often requiring very large sample sizes. For
these reasons, few clear correlations have yet been established between SNP
haplotypes and drug response.

Immunological approaches

It is surprising that immunological approaches are not prominently used in PM
because the earliest and most robust known tests which ¢t the PM de¢nition
(though they were not called PM) are from immunology. Examples include
penicillin skin test for allergy, blood grouping for transfusion and HLA typing
for transplantation. I will present two approaches I have been involved with
which aim to make PM a reality: personalized vaccines and computational
approaches to predicting MHC-peptide binding.

Personalized peptide vaccines

Vaccines made of short peptides have at least three advantages over the traditional
(full protein orwhole organism) vaccines. First, they can be chosen in such away as
to be ‘broad spectrum’, i.e. e¡ective against a large number of strains of the
pathogen. Second, their manufacture is easier to scale-up to production
quantities than that of long proteins. Third, it can be expected that they will
eliminate the rare adverse side e¡ects that a¥ict traditional vaccines.

Host and pathogenic genetic variation. Considering the well established principles of
immunology, peptides constituting vaccines will need to:
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(1) be a part of the pathogen’s proteome,
(2) bind one of the MHC molecules in the host, and
(3) trigger a T cell response in the host.

While condition (1) appears trivially obvious it could present practical
di⁄culties, especially in the case of rapidly mutating pathogens like HIV. In
these cases, the pathogen population infecting a single host is usually very non-
homogeneous resulting in immune escape of some sub-population or other of
the pathogen. In peptide vaccine design there is an e¡ective solution to this
problem: look for conserved regions within the pathogen’s proteome and choose
peptides exclusively from these regions. Notably, this solution is not feasible when
consideringwhole proteins as vaccines, since it is unlikely that a whole protein will
be conserved across many strains of a pathogen. Thus peptide vaccines could be
designed to be ‘broad spectrum’ over a large number of strains of a pathogen.
While condition (1) deals with pathogenic polymorphism, condition (2) raises

the problem of polymorphism in the host since the MHC locus is very
polymorphic. Because vaccines are typically expected to be e¡ective over a whole
(host) population, whichMHC allele should a peptide vaccine bind?One approach
to solve this is to look for promiscuous peptides, i.e. peptides which bind multiple
MHC alleles. However, the universe of possible peptides has already been shrunk
to just the conserved regions of the pathogenic proteome by condition (1). To ¢nd
peptides that bind anyMHC allele within these could already be a di⁄cult exercise.
To ¢nd one that is promiscuous would be doubly di⁄cult. An alternate approach
might be more promising: design the vaccine as a cocktail of peptides such that a
majority of the host population has an MHC allele which binds at least one of the
peptides in the cocktail.
One could also write other conditions (for example, related to proteasomal

cleavage of antigens) but I have left these out for the purposes of this
presentation. Alternately one could view these conditions as being subsumed in
the loosely de¢ned condition (3).

Howmanyallelesfor90%coverage? One approachwe took (Gulukota&DeLisi 1996)
to address the MHC polymorphism issue was to ask the question: what is the
minimum number of HLA alleles needed, in order to ‘cover’ a prespeci¢ed
proportion (say 90%) of a given ethnic group? 90% coverage implies that 90% of
people in the ethnic grouphave at least one of the chosen alleles.This appears to be
a trivial problem given the estimated frequencies of various HLA alleles; we
used the data tabulated by Imanishi et al (1993). However, a complication arises
due to linkage disequilibrium between alleles: the frequency of two alleles
occurring together (joint probability) is not the product of frequencies of
individual alleles.
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We devised a solution to tackle the linkage disequilibrium issue and tabulated
the alleles required to cover various ethnic groups at 90% (see Table 2 in Gulukota
& DeLisi 1996). Three to six alleles were su⁄cient to cover most ethnic groups at
90%. The relatively homogeneous groups such as the SouthernHanChinese could
be comfortably covered with three alleles while the more diverse populations like
those from Africa required up to six alleles.

How is this personalization? The chosen coverage (arbitrarily, 90%) is an upper
bound on the e⁄cacy of the vaccine.This appears like a major problem because
this procedure will handicap the vaccine from the beginning with this theoretical
upper limit. But three considerations somewhatmitigate this concern. First, while
avaccine e⁄cacy under 90% appears rather poor, for problematic viruses likeHIV,
90% e⁄cacywill be a major advance. Second,90% can still induce substantial herd
immunity and help arrest the spread of infection.
Third, there is this argument, connecting this up with PM: mixing cocktails

which have broad (90%) coverage of whole populations appears more like
‘ethno-selection’ than like personalization. But taken to its logical conclusion this
procedure can in fact be a sound basis for personalizing vaccines. For example,
mixing up the cocktail of peptides is something that can be achieved as a
formulation in the pharmacist’s o⁄ce. Thus, multiple cocktails could be used to
cover the whole population. And for persons especially at risk, a prior diagnostic
test to determine their HLA haplotype could be used to determine which cocktail
would be most e¡ective for them.
Pointedly, such a use of HLA haplotyping clearly ¢ts the PM de¢nition.

MHC^peptide binding prediction

Having chosenwhatHLAalleles are important forwhich ethnic groups, we set out
to develop computational methods for predicting peptides binding to these alleles.
HLA-A2 is a very prevalent allele at the A locus among almost all ethnic groups,
although its actual frequency varies; A2 turns out to be a component of all 90%
coverage peptide cocktails we examined. We started with A2 (Gulukota et al
1997) as our ¢rst test allele.
We developed two complementary methods for predicting peptide binding to

HLA-A2: one based on arti¢cial neural nets (ANNs) and the other called
polynomial method, is based on the independent binding of sidechains (IBS)
assumption (Parker et al 1994).
For bothmethods the raw data were generated using the IC50 method (Kast et al

1994) by our co-authors. We believe this consistency among the data is important
when looking for statistical correlations. Mixing data from a variety of methods
could lead to patterns that are complicated by the superposition of di¡erent biases
peculiar to the experimental techniques employed.
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Since IC50measurements yield a continuous variable, it is important to decide on
a resolution for the prediction i.e. are we looking to predict actual IC50 or some
coarser representation of it (like ‘strong binder’)? This is important because,
there are two e¡ects that make actual MHC^peptide binding deviate from the
IBS ideal. First, individual peptide residue interactions with MHC subtly alter
the local environment. These environmental changes a¡ect the structure of
neighbouring residues and hence their contribution to the overall binding free
energy. Second, the binding free energy is the di¡erence between the free
energies of the bound and free states of the peptide. And the free energy of the
free peptide could, in principle, be strongly in£uenced by inter-residue
interactions. Both these e¡ects are in direct contravention to the IBS assumption.
Nevertheless, it is possible that at a ‘coarse’ level of prediction, IBS is a good

starting point. We set out at the coarsest possible level of prediction viz. binary
prediction: simply predict whether a peptide ‘would bind’, de¢ned as an IC50

below a pre-speci¢ed level. In order for any patterns that exist among ‘actual
binders’ to emerge from our procedures, we chose this IC50 level close to an
antigenically relevant level of 500 nM (Sette et al 1994).
We built an ANN of two layers and with a single output neuron. Out of a

database of 463 peptide (9-mer) binding measurements, we varied our training
set size over a range and found that a training set size of about 250 measurements
was adequate for most purposes. The test set of 151 peptides was kept completely
separate and none of the test set measurements was used in training.
In comparison with simple motif searches, the ANN signi¢cantly reduced false

positiveswith an average speci¢city over 90%andpositive predictive value of 64%.
ANN’s sensitivity however was low (45%) at our relevant a⁄nity range (i.e.
de¢ning IC50¼500 nM as the border between binding and non-binding peptides).
The polynomial method, was complementary to the neural net and had a high

sensitivity (85%) at the cost of decreased speci¢city and positive predictive value
(23%).

How can all this help PM?

There are several methods other than the ANNand polynomial methods discussed
above for addressing the MHC-peptide binding problem and most of these are
familiar to this audience. I hope to prove in the rest of my presentation that these
common techniques could prove very valuable in helping bring about PM. For an
illustration, consider the case of Alzheimer’s Disease (AD) immunotherapy
proposed by the Irish company, Elan pharmaceuticals.

TheAN-1792 story. Elan’s Schenk et al (1999) reported that immunizing PDAPP
mice with a 42-amino-acid fragment of b amyloid dramatically reduced the
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AD-like pathology characteristic of these mice. Speci¢cally, they reported that
immunization of young mice (6 weeks age) almost completely prevented the
formation and that of older mice (11months) dramatically reduced the formation
of three pathologies characteristic of AD, viz. b amyloid plaque formation,
astrogliosis and neuritic dystrophy. This almost ‘picture perfect’ story continued
to show promise into phase I clinical trials (Schenk et al 2001) of this peptide,
dubbed AN-1792.
But early in 2002, the phase 2a clinical trial for the immunotherapy was halted

(Check 2002) due to the development of serious nerve in£ammation in a minority
of subjects. The exact number and proportion of subjects who developed this form
of in£ammation is unclear as Elan has not yet published the details of their clinical
trials. The exact nature of the in£ammation and whether any bene¢t was seen for
the rest of the patients are also unknown and this has prompted calls upon Elan to
publish their results as soon as possible (Bishop et al 2002).
If the patients who did not develop in£ammation showed improvement, then

clearly, AN-1792 is a problem waiting for a PM-style solution: is it possible to
devise a diagnostic procedure which predicts whether a certain individual will
develop the adverse e¡ect?
Since this is immunotherapy, examining the immunological correlates of the

occurrence of adverse e¡ects seems like a logical next step. For example, to which
HLA molecules do sub-sequences within the vaccine bind? Do these HLA alleles
show any relation to the HLA haplotypes of patients who developed
in£ammation? Given the central role that MHC plays in the immune process, it is
possible that Elan is already looking at the HLA types of their patients; however
nothing has yet been disclosed.
The susceptibility of speci¢cHLA types for some diseases is well known, such as

the celebrated association between HLA-B27 and ankylosing spondilitis. Disease
susceptibility is but one phenotype. We can think of drug response as simply
another phenotype which might have a correlation to HLA typing. This could
particularly be true in the case of immunological pathologies like allergies and
autoimmune diseases. In conclusion, I expect that immunological data and
consequently immunoinformatics, will have an important role to play in making
PM possible.
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DISCUSSION

Rammensee:There are a couple of problems with personalized medicine. These
relate not only to the tremendous e¡ort required, but also the principle. For
example, if you think of the promiscuous HLA binding type collection of
peptides, this essentially involves collecting a few peptides and immunizing a
certain group against a disease. Then you run into the risk of that the virus easily
adapts because just a very few peptides were taken from it. This counteracts the
reason why MHC polymorphism has been established over the last 40 million
years.
DeLisi: The key is to use conserved peptides. If you have multiple variants of a

virus sequence, you then look for conserved peptides and then use cocktails of
these. You choose your cocktails such that there is no known strain that has a
mutation in every one of the components of the cocktail. If you do this,
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combinatorially there are a lot of possibilities dependingon the person’s haplotype.
You end up with a set of antibodies that are directed against 100 conserved
peptides, and you determine which of these bind to which allele and then have
reagents against those peptide^allele combinations. When the person comes in
you test with a reagent to see what they are presenting, and then use a therapeutic
based on this. This is do-able because genome sequencing for viruses is easy. The
hard part is that for most viruses we don’t have 1000 or 10 000 di¡erent strain
sequences, so you would need to construct viral mutants.
Rammensee: Personalized medicine should not aim at ethnic groups or other

large groups, but individuals.
Gulukota: If you take it to the extremeof personalization, then even for a person I

am not suggesting that you give a single peptide, but a cocktail. You needmultiple
pathways for killing a virus.
DeLisi:The ethnic group aspects are a slightly di¡erent context.While there are

enormous numbers ofMHCalleles, there are probably just 15 alleles that will cover
90% of the world’s population. The key here is that we only have to think about
some ¢nite number of alleles and a ¢nite number of peptides that bind to those
alleles. This is an industrial problem, and we are doing this with a start-up.
Rammensee: But youmight not ¢nd conserved peptides for all of these 15 alleles.
DeLisi:That’s true, but I am thinking of a therapy not a vaccine. Itmight end up

that we can only treat a certain subfraction of the population. That is OK; it is
better than nothing. If I can treat 50% of people with HIV I will be very happy.
Margalit: Charles DeLisi, have you looked at the sequences of the viruses and

checked whether immunodominant peptides are conserved?
DeLisi: It is purely empirical.
Gulukota: I don’t think immunodominant epitopes would be conserved.
Brusic: The immune responses are more complicated than just considering 15

HLA alleles. If we take a group of people who share the same HLA allele and
then challenge them with an antigen, they often respond to di¡erent peptides.
DeLisi: That’s for a vaccine; I’m talking about a therapy, where these problems

don’t occur.
Borras-Cuesta: If you do therapy you can use almost any helper. But then, if you

don’t get rid of all the viruses, in the absence of Th memory you will be back to
square one. To do this you’d have to try to ¢nd a helper peptide from the viral or
tumour antigen, and use this helper for immunization experiments in order to
generate Th memory speci¢c for the antigen.
DeLisi:That’s true for cell based immunotherapies, but there are other options.
Borras-Cuesta: Provided that there are no reservoirs.
DeLisi:Quite. But in this case, there’s nothing you can do.
Petrovsky: In terms of applicability and what will be taken up ¢rst, I think

personalized medicine is more about identifying the individuals who won’t react
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orwhowill have adverse reactions than predictingwhich individuals will respond.
In other words, we may have a traditional vaccine and we know that there is a
percentage of people who will get encephalitis or other severe reactions. We
accept that we may harm one person for every 100 000 people who receive the
vaccine and are protected. The anti-vaccine lobby focuses solely on that one
person who su¡ers a side e¡ect. If we could identify that person before they are
vaccinated, this would be a useful role for personalized medicine. This is what
might come ¢rst, rather than developing cocktails of peptides to use as therapy.
Gulukota: I think you are completely right.
Borras-Cuesta: The strategy that Charles DeLisi was suggesting is logical. You

know which HLA class I and II the patient has, and you know whether they
respond. The logical thing then is to go ahead because you know you are going
to induce a response. The only thing you don’t know iswhether or not youwill kill
the pathogen.With the alternative approach you have to ¢sh outwhich people will
and won’t respond. This requires a tremendous e¡ort. I am not saying it shouldn’t
be done, but it would necessitate waiting for a long time before implementation of
the strategy.
Gulukota: I still think Nikolai Petrovsky is right. There will probably be a

correlation between drug response phenotypes and HLA typing or genotyping.
This will probably come before than tailor-made medicine for speci¢c
individuals. You are right that this is exploratory rather than hypothesis-driven
biology, but at least the road is clear. I am sure that someone at Elan or Wyeth is
looking at theHLAdi¡erences between those who had encephalitis and those who
didn’t. There has to be some immunological basis for this. It will be easy to ¢nd
once we look for it. However, if we are going to design drugs speci¢cally for
individual haplotypes, this will take longer.
DeGroot: I can speak fromexperience atmy company. People doing therapeutics

having looked at the EPO (erythropoeitin, a protein used to increase red blood
cells) event, where EPO was associated with some adverse events related to
antibody responses. Companies are now asking my group to analyse their
therapeutic proteins for epitopes. What is really interesting, because this will
probably surprise many, is that most of these therapeutic companies have not
analysed the HLA of the patients who had the adverse events. The ¢eld is new.
Then their next question is whether it is possible to reduce the immunogenicity
of the molecule. All of us know that this is fraught with problems: if you change
one amino acid then you may increase the binding to another allele. Do we have
models for all the alleles that exist? No. Industry is getting very involved in this
without really understanding what they are embarking on.
Rammensee: Could you say more about the problem with EPO?
De Groot: We have worked on thrombopoietin (TPO), actually, with

Genentech.
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Rammensee: Is there polymorphism in the protein in di¡erent people?
De Groot: I haven’t looked at EPO, but we have looked at TPO. The reason I

haven’t looked at EPO is because there are no HLA data.
Rammensee: Is there polymorphism in TPO? If there is, then one should

personalize the recombinant protein.
De Groot: I don’t know that, but there are regions in TPO that contain

promiscuous epitopes. First you have to show an association between the HLA
type and the adverse event, which has not been done. Then you have to show
that if you change the molecule you get less of the adverse event, which has also
not been done.
Marsh: I don’t ¢nd it surprising that companies haven’t analysed the HLA data.

Therapeutic companies are waking up to this idea ofHLA, and there is an awful lot
of HLA typing that is currently being done.
DeGroot:That is helpful for us becausewewill then start understandingwhether

there is an association between the presence of an epitope within a ‘self protein’
such as EPO or TPO, and whether the recognition of that epitope is related to
the occurrence of adverse events, or side e¡ects, from therapy in some patients.
Silva:What are the costs of this sort of treatment? If you have to test every single

HLA group then the cost will be higher.
Gulukota: When you look at cost of therapy, you have to look at the overall

cost. It is fashionable to complain that drugs are expensive, but if you look at
the di¡erence in the amount of money that is spent before and after a drug
has been released to the market, invariably the amount of money spent after is
lower. This is because before the drug therapy the alternatives were plain
su¡ering, failed drug treatments or surgery, for instance. The overall cost is
almost always lower.
De Groot: What about FDA concerns and making GMP quantities of these

peptide pools? Isn’t that a complication? Would you have to get each patient’s
personalized lot of peptides approved separately in preparation for a phase I trial?
Rammensee:We should ¢rst worry about what makes sense rather than the FDA

policy. The FDAmight then see sense. It would not be possible to test personalized
drugs in 100 people.
Gulukota: In personalizedmedicinewe are talking about diagnostics,which have

a less stringent standard than new drugs.
Rammensee: Regarding the costs for the genome data which one needs for this

sort of work, gene chips will become much cheaper in the future because there is a
lot of competition. Lee Hood suggests that in a few years it will be possible to
sequence the entire genome of one person in a single day.
Silva:Will this happen in the third world as well?
Rammensee: This depends on the price. Cheap genotyping testing combined

with a certain drug might have a better e⁄ciency than conventional treatments.
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Obviously, these technologieswill be applied in rich countries ¢rst because they are
expensive at the beginning.
Borras-Cuesta: Having lived in the third world myself I don’t think this is true

for the third world. These people just do not have enough money. One dollar in
Africa is a fortune. I amnot against personalizedmedicine, but it isn’t viable for the
third world.
Petrovsky: Are we able to come up with an immune panel that companies doing

trials on immune therapies should be using? If they are going to do HLA typing,
how deep should the HLA typing be? Should they be looking at a cytokine chip
with 200 cytokine genes that can be easily be done? If we are going to do trials
ourselves, what depth of testing should we do?
Rammensee: It depends on the disease or condition you are looking at. I don’t

think we can have a big chip and test for everything in every person.
Petrovsky: But if we are looking at the immune system there must be a general

panel. With HLA typing, we wouldn’t just HLA type people we are immunizing
for hepatitis, becauseHLA typing almost certainly has relevance for understanding
responses to all vaccinations. Hence, HLA typing should be part of a general
immune panel. The panel should be a generic process that should always be done
when we carry out immune intervention. Similarly, you could argue that there are
other things that you would do as a generic panel, and then on top of this you
would have other specialized tests that may be relevant to particular diseases or
interventions. I think it is an interesting idea to try to think what we should
include on a core panel using current technologies.
Gulukota: I would test for HLA types, cytokines and blood groups.
Rammensee: For cytokines you would probably look at RNA expression.
Kellam: It is hard to say that youwould pick just cytokines for arrays: would you

also therefore pick the cytokine receptors and their respective intracellular
signalling molecules, for example? You want to capture lots of data on a diverse
system and then work it out empirically or model the functional networks rather
than trying to guess the few cytokines that youwouldwant to put down in the ¢rst
instance.
Petrovsky:The great thing about chips is that whether it has 60 or 60 000 spots, it

doesn’t matter so much in terms of cost so the more the merrier.
DeLisi: You can develop a catalogue of common alleles of the immune system,

for example, and this would involve a ¢nite amount of genome sequencing, of say
probably 50 individuals. The immune system has perhaps 5000 genes. This could
be done within a couple of years and would give us a full catalogue of two or three
common alleles per gene. Once you have that catalogue you can do association
analyses with various diseases. I think immune system arrays detecting alleles
would be worthwhile.
Littlejohn: Isn’t one of the problems actually identifying those 5000 genes?
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DeLisi: You could look at expression levels in immune cells, such as
subpopulations of lymphocytes.
Petrovsky: Much of that data is already available as I know, for example, of

groups that have done hundreds of gene expression array analyses on
macrophages and T cells.
Gulukota: The thing is, we need to look only at genes that show genuine

polymorphism in the population.
DeLisi: All genes typically have two or three common alleles, except for HLA,

which hasmanymore.You can determine every one of these simply by full genome
sequencing. Within the next couple of years this will be routine. You can get a
whole catalogue of all common alleles. The estimate is that just 50 genomes will
be needed for this.
Brusic: Some of these assumptions are ¢ne, but genetic factors include many

tissue-speci¢c elements, particularly when we consider cytokines and various
receptors. There are factors such as promoter elements which are general and
there are factors which are speci¢c to an individual tissue for the same gene.
Lefranc:We also need to take into account the antigen receptor speci¢city. This

will be an added level of complexity. Sequences of the variable domains of
immunoglobulin or T cell receptors with known speci¢cities, particularly
sequences of the V^J and V^D^J junctions of the T cell receptor chains need to
be added. It means a lot of work but the experimental methodologies to obtain the
data are available, and there are IMGT software tools (IMGT/V-QUEST, IMGT/
JunctionAnalysis) to analyse them.
Rammensee: This would require that we ¢rst know the antigen epitope

exactly, and then that we take the T cell, and do a gene pro¢le of that
speci¢c T cell.
Lefranc: This morning we have been talking about the peptide and the MHC,

but the third component is the T cell receptor (TCR). The three have to go
together. It is not too di⁄cult to include the recognition by the T cell in our
approach. We indeed need to see how the peptide presented by the MHC is
speci¢cally recognized by the TCR.
Perelson: If I gave you an immunogenic protein and I asked you to tell mewithin

any individual here what sort of T cell would respond to that, how would you do
this?
Lefranc: The problem is much more fundamental than this. We want to know

which kind of peptide binds to theMHC andwhich kind of complex is recognized
by T cells. We need in vitro tests to say that a peptide linked to a given MHC can
activate a speci¢c T cell. We now have all these kinds of approaches with HLA
tetramers and so on. Things are going in the right direction and the
methodology is coming. The MHC tetramer is a good way to catch the
speci¢city of the TCR.
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Perelson: We are still a long way from having MHC tetramers for every MHC
type.
Lefranc:We are discussing which directions we want to go in. I am suggesting

we need to keep inmind the peptide^MHC^TCR interaction. It is a complex story.
Borras-Cuesta: What you are saying is important. The ¢nal outcome here is

recognition by the T cell. I would like to draw everyone’s attention to something
I have been thinking about for a while.When you have, for example, a peptide that
is recognized by HLA-A2, you more or less know the motifs and which amino
acids point to the TCR. What should be the characteristics of residues that point
to the TCR and becomewell recognized? They would be the amino acids that have
a high tendency of interacting with other proteins. For example, Singh and
Thornton have published a table which is a 20�20 matrix of side-chain
interactions in proteins (Singh & Thornton 1992) According to this table, one of
the amino acids that gives a better interaction is tryptophan, and another is
histidine. Tyrosine, aspartic and glutamic acid are also important. On this basis
you could predict whether one epitope would be well recognized by a TCR. But
this is good only for viruses and not tumours. In tumours there has been clonal
deletion, and in clonal deletion the easily recognized ones are eliminated; the only
ones you can use are the intermediate ormediocre ones. I agree, binding toMHC is
only part of the story. Binding and recognition are both important.
Gulukota:Also, when we are talking about immunoinformatics, what we might

need to start thinking about is that if we want to put together a simple database of
immune data, what would go in that? MHC^peptide binding and T cell
recognition epitopes are obvious candidates, but we also need phenotypic data
such as HLA disease associations and HLA drug response associations. Analysis
of all these data to give personalisedmedicine is one goal thatwe canwork towards.
Sch˛nbach: We also need SNPs and epigenetic data, particularly if we want to

design a therapeutic vaccine against cancer.
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From immunome to vaccine: epitope
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Abstract. Since the publication of the complete genome of a pathogenic bacterium in
1995, more than 50 bacterial pathogens have been sequenced and at least 120 additional
projects are currently underway. Faced with the expanding volume of information now
available from genome databases, vaccinologists are turning to epitope mapping tools to
screen vaccine candidates. Bioinformatics tools such as EpiMatrix and Conservatrix,
which search for unique or multi-HLA-restricted (promiscuous) T cell epitopes and can
¢nd epitopes that are conserved across variant strains of the same pathogen, have
accelerated the process of epitope mapping. Additional tools for screening epitopes for
similarity to ‘self ’ (BlastiMer) and for assembling putative epitopes into strings if they
overlap (EpiAssembler) have been developed at EpiVax. Tools that map proteasome
cleavage sites are available on the Internet. When used together, these bioinformatics
tools o¡er a signi¢cant advantage over traditional methods of vaccine design since high
throughput screening and design is performed in silico, followed by con¢rmatory studies
in vitro. These new tools are being used to develop novel vaccines and therapeutics for the
prevention and treatment of infectious diseases such asHIV, hepatitis C, tuberculosis, and
some cancers. More recent applications of the tools involve deriving novel vaccine
candidates directly from whole genomes, an approach that has been named ‘genome to
vaccine’.
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New tools emerging from the informatics revolution are likely to have a dramatic
impact on vaccines, accelerating the development of new vaccines, enabling the re-
engineering of existing ones, and overcoming traditional barriers to vaccine
design. These new tools are urgently needed, since e¡ective vaccines against two
pathogens that are responsible for global epidemics�HIV and tuberculosis
(TB)�have yet to be successfully developed. Despite years of e¡ort, only one
HIV vaccine is in phase I trials, and new vaccines against TB are only now
entering the clinical trial pathway. Why the delay? How can new tools developed
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in the sphere of immunoinformatics accelerate the process of TB and HIV vaccine
development?
The development of vaccines against HIV andMycobacterium tuberculosis (Mtb)

has proven more di⁄cult because the correlates of immunity to the pathogen have
yet to be well-de¢ned and humoral response to a single protein or set of proteins
has not been su⁄cient to provide protection. Protection against HIV and TB
appears to be linked to cellular immune responses (by T helper cells and
cytotoxic T cells) to a diverse set of proteins. Vaccines that e¡ectively generate
cell-mediated response are needed to provide protection against these pathogens
(Seder & Hill 2000).
Selecting the correct antigen or antigens has also been a stumbling block for

vaccine development. New genome analysis tools such as microarrays,
bioinformatics, immunoinformatics, and high-throughput immunology assays
are enhancing our ability to derive proteins or antigens of interest from the
genomes of pathogens and are contributing to the development of new concepts
in vaccine design such as ‘multi-epitope’ or ‘epitope-driven’ vaccines. These tools
have also allowed scientists to better de¢ne the ‘Immunome’, that is, the set of
information derived from a pathogen that stimulates an immune response.
New vaccine delivery approaches have also been introduced in the last two

decades. These include the use of bacterial and viral vectors such as Salmonella
(Lowe et al 1999), Listeria (Lieberman & Frankel 2002), vaccinia and other
poxviruses (Stephenson 2001), and adenovirus (Sharpe et al 2002), the use of
‘naked DNA’ as a means to deliver vaccine components (Johnston & Barry
1997) and the development of new vaccine delivery tools such as gene guns. This
article addresses the development of new concepts, tools, and approaches that may
accelerate vaccine development from genomic information.

De¢ning the immunome

In general, host immune response to a pathogen is thought to be due to a number of
pathogen-speci¢c responses (provided by antibodies; T helper cells, which drive
antibody response; and CTL, for intracellular pathogens). The T cell response is
stimulated by the presence of short peptides or epitopes, that are derived from
pathogen-speci¢c antigens by antigen presenting cells and presented to T cells in
the context of MHC surface proteins (major histocompatability complex
molecules, or MHC). Whether the immune response is directed against a single
immunodominant epitope or against many epitopes, the generation of a
protective immune response does not appear to require the development of T
and B cell memory to every possible peptide from every antigen in the entire
pathogen. T and B cell responses to the ensemble of epitopes derived from
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selected antigens (and not to the whole pathogen) appear su⁄cient to provide
protective immunity.
Consider for example the hepatitis B virus (HBV) vaccine, the cowpox virus,

known as vaccinia, which is used prevent smallpox infection, and BCG vaccine,
which is used to prevent TB disease. The HBV vaccine consists of a single
recombinant protein, separated from the other proteins of HBV. Antibodies
developed in response to this protein-based vaccine protect against hepatitis B
infection. Thus only HBV protein, and not the entire virus, is needed to generate
a protective immune response. While the smallpox and TB and their vaccines are
related, they are not identical. Presumably the protective immune response against
the pathogen that is generated by immunizationwith vaccinia is due to B andT cell
epitopes that are conserved between the pathogen and its vaccine. Therefore,
vaccines that contain a single protein (HBV vaccine) or a subset of proteins
(vaccinia and BCG), or even just epitopes derived from those proteins, may be
able to create an immune response to challenge the pathogen that is just as
e¡ective as vaccines containing whole proteins or whole pathogens. The set of
epitopes, which de¢ne the ‘immunome’ of the pathogen, can be de¢ned and
discovered by comparing genome sequences and applying new
immunoinformatics tools (Fig. 1).

Comparing genomes: a new approach to vaccine development

The publication of the Haemophilus in£uenzae genome in 1995 (Fleischmann et al
1995) was rapidly followed by the genome of Mycoplasma genitalium, one of the
smallest free-living organisms (only 470 predicted coding regions; Fraser et al
1995). Using these two genomes as a departure point, the research teams
discovered the minimal set of genes necessary for independent survival (those
contained in the smallerM. genitalium genome). Additional contrasts between the
genomes of H. in£uenzae and Escherichia coli soon followed (Tatusov et al 1996).
These genome-comparison approaches set a useful pattern for future contrasts
between organisms.

Selecting antigens that may be excluded from vaccines

Certain proteins perform routine functions and are therefore often conserved
across di¡erent species of microbes, a feature that may make them attractive for
vaccine development. A vaccine containing these proteins might protect across
species. However, T cells responding to epitopes derived from these proteins
may have been tolerized if the housekeeping proteins also resemble similar
proteins in the host (Grossman & Paul 2001). Inducing a response to these
epitopes might even induce autoimmunity, since minor variations in epitopes
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that are conserved between self proteins and pathogens have been associated with
loss of tolerance. In contrast, proteins that are pathogen-speci¢c, particularly those
that are secreted by a pathogen, presumably in an attempt to alter the host
environment, are more relevant for vaccine development because they are
potentially involved in pathogenic activities.
For example, vaccinologists have long been aware of potential di¡erences

between the genomes ofMycobacterium bovis strain Bacille Calmette Guerin (BCG,
the attenuated vaccine used against TB) andM. tuberculosis. BCG is not pathogenic
in immunocompetent hosts. Genomic analysis of BCG vaccines has now shown
that numerous genetic changes (single nucleotide polymorphisms, duplications
and deletions) probably occurred during the half-century of ongoing passage of
BCG vaccines in vitro. A number of genes were also lost. Although the impact of
these changes on the protective e⁄cacy of BCG observed in ¢eld trials remains to
be determined, some researchers have speculated that these genetic deletions have
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contributed to making the BCG less e¡ective as a vaccine (Behr et al 2001). A
comparison of the genomes of BCG and Mtb, followed by selection of Mtb
unique epitopes (not conserved in BCG), is one approach to TB vaccine
development currently being explored (De Groot et al 2002).

Selecting antigens that may be included in vaccines

Just as the proteome of an organism can be derived from its genome, the
immunome may be derived from comparisons between virulent and avirulent
organisms, or between an established vaccine and the pathogen for which it
provides protection.
In the case of smallpox, the cell-mediated immune response to vaccinia virus

(VV) appears to be one of the major correlates of protection (Erickson &Walker
1993). Some studies have shown that VV-speci¢c, HLA-restricted cytotoxic T
lymphocyte (CTL) activity is mediated primarily by CD8+ cells, although low
levels of lytic activity by CD4+ cells may also occur. Indeed, the persistent
strength of pre-existing cellular immunity to VV has been a concern for
vaccinologists who seek to use VV as a vaccine vector: such immunity may
interfere with CTL response to VV-vectored vaccine components upon
revaccination. Even though the two genomes are quite large and several variants
of vaccinia and smallpox have been sequenced, bioinformatics-driven comparisons
between the genomes focusing on conserved subsequences may very well lead to
the selection of candidates for a novel smallpox vaccine.
Comparisons between the genomes of pathogens and their vaccines may also

reveal the immunome if the vaccine is a subunit or attenuated vaccine that
represents only a portion of the genome of the original pathogen (Ito et al 2001).
This approach may be of use for evaluating other licensed vaccines (Dengue
vaccine for example) for expanded use against emerging pathogens (Dengue is
also cross-conserved with West Nile Virus). A summary of the types of
comparisons described here is provided in Table 1.

Tools

De¢ning the immunome in silico

Microarray technology is an excellent method for reducing the bewildering array
of potential genes to screen in any given genome to a manageable number.
Microarrays enable researchers to determine which proteins are expressed during
a given phase of the organisms’ lifecycle. Comparisons between genomes can also
be performed, as can comparisons between genes that are expressed in di¡erent
‘states’ such as those are also up-regulated under ‘host conditions’ (Schena et al
1995, Cummings & Relman 2000, Dhiman et al 2001). These approaches may be
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useful for obtaining and collating information relevant to the search for vaccine
candidates for a wide range of bacterial and parasitic pathogens.

Bioinformatics tools

One of the major forces driving the development of vaccines from genomes is
computational immunology. Computer algorithms for evaluating genomes have
evolved in tandem with genome sequencing. We owe the organization of
overlapping genome fragments, the derivation of open reading frames (ORFs)
encoding putative proteins, and comparisons between newly sequenced ORFs
and existing genes to bioinformatics.
Other bioinformatics tools can be used to select genome-derived sequences for

characteristics associated with pathogenicity or immunogenicity. For example,
protection from disease has, in some cases, been associated with cellular immune
response to speci¢c classes of proteins, such as antigens secreted by pathogens into
their cellular environment or antigens that span the cellular membrane. Such
proteins may now be rapidly identi¢ed by scanning a pathogen’s genome with
computer programs that predict secretory signal peptides (SignalP; Menne et al
2000), transmembrane domains (TMpred; Suhan & Hovde 1998), and
lipoprotein attachment sites (Prosite Scan; Falquet et al 2002).

Immunoinformatics tools

Immunoinformatics tools dramatically reduce the time and e¡ort involved in
screening potential epitopes (Schafer et al 1998, De Groot et al 2001). Genomes
can be scanned and in vitro T cell con¢rmation can be accomplished in a matter of
months, instead of years. Thesemethods, coupledwith the increased availability of
complete and partial genome sequences raises the exciting possibility of building
epitope-driven vaccines by directly scanning genomic sequences.
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TABLE 1 Approaches to using genomic information for vaccines

Approach Result

Compare unrelated genomes Uncover similarities that could be used to make
broader vaccines

Contrast genomes of virulent and
avirulent strains

Identify antigens associated with virulence for
vaccines

Compare genomes of microbial
pathogens and their vaccines, or
vaccines that might be used

Identify antigens responsible for protective immune
response (e.g. BCG and Mtb)



In general, matrix-based T cell epitope mapping algorithms are highly
accurate means of searching for putative T cell epitopes. The matrix method
enables the assessment of the contribution of secondary anchor residues
which engage secondary binding pockets of the MHC molecule. Predictions
that examine only the main amino acid anchors have not proven very
e¡ective. EpiMatrix (EpiVax, Providence RI), is one of several such matrix-tools
(for an extensive reviewof epitopemapping tools, seeDeGroot et al 2002). Several
in vitro studies have con¢rmed the accuracy of EpiMatrix, in both retrospective
(DeGroot et al 1997) and prospective studies (Jin et al 2000, De Groot et al 2001).
Additional approaches to epitope mapping include predictive strategies based

on neural networks, threading algorithms, and non-linear functions (Altuvia et al
1995). In several side-by-side comparisons (TB/HIV Research Lab, unpublished
comparisons, Yu et al 2002) ANN and matrix-based methods have been found to
be essentially equivalent, a ¢nding that provides support for the ‘independent side
chain contribution hypothesis’ on which the matrix methods are based. The most
important determinant of the accuracy of the prediction appears to be the actual
quality and quantity of the binding data used to derive the predictive method.
Following the example of V. Brusic (Brusic et al 1994), researchers who are
actively designing epitope-mapping algorithms have amassed large databases of
MHC binding peptides.
Recently, the teams of Sturniolo et al (1999) and Zhang et al (1998) proposed

that unknown motifs might be predicted by mixing and matching MHC binding
pocket characteristics (Fig. 2). Using the approach described by Sturniolo,
developers at EpiVax have constructed 74 class II MHC binding prediction
matrices (De Groot et al 2003). This new means of developing epitope prediction
tools is proving to be extremely useful.

Tools for identifying conserved epitopes

A number of pathogens have been shown to vary between individuals as well as
during the course of infection of a single individual. HIV and hepatitis C virus
(HCV) are prime examples of such variations; both clades and subtypes
(describing variation between infected individuals) and quasispecies (de¢ning
variation within a single individual) have been de¢ned. The process of
developing vaccines for variable pathogens is complicated by potential variation
of key T cell epitopes. However, the Conservatrix algorithm, a bioinformatics tool
developed by the TB/HIV Research Lab, can determine which regions are both
conserved (across subtypes or quasispecies) and potentially immunogenic.
Conservatrix accomplishes this by parsing every sequence in a given database
into 9^10 amino acid long text strings. After the algorithm performs a simple
string-of-text-based search similar to the approach used by the ‘¢nd’ function in
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word-processing programs, each of these text strings is ranked by the number of
times it occurs in the set of text strings. Highly conserved peptide text strings are
then input into EpiMatrix and ranked for immunogenicity by EBP. This tool has
been applied to the analysis of HIV-1, Hepatitis C, and Human Papilloma Virus
(DeGroot et al 2001 and EpiVax, Providence RI, unpublished results). BlastiMer,
another text-based tool developed at EpiVax, compares predicted epitopes for
similarity with the human genome. Epitopes that are similar to (less than three
amino acids di¡erent) or identical to the human genome can be eliminated from
the list of epitopes included in a vaccine. Screening vaccine candidates with
BlastiMer may eliminate concerns about eliciting autoimmune responses or
failure to elicit response due to tolerance of ‘self ’ epitopes.

Epitope-driven vaccines

Epitope-driven vaccines contain only selected sub-sequences, or epitopes, derived
from whole proteins. Epitope-driven approaches to evaluating candidate vaccine
antigens may even permit a more rapid development of vaccines from pathogenic
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genomes since epitopes can be synthesized directly after selection from a genome
sequence database. This approach spares researchers labour-intensive steps
involving the cloning and expression of the immunogenic proteins prior to
development and testing of the vaccine. The concept that an ensemble of
epitopes, in the context of the appropriate delivery vehicle, may be able to
stimulate a protective response, is driving the development of ‘epitope-driven’
vaccines in a large number of laboratories (examples include Whitton 1993, Tine
et al 1996, Hanke et al 1998, An et al 2000, Morris 2000). Complex vaccines
containing T helper and B cell epitopes alongside cytotoxic T lymphocyte (CTL)
epitopes derived from a variety of pathogens (such as ¢ve viruses and one
bacterium) have already been constructed and tested (An & Whitton 1997). A
typical epitope-based vaccine construct contains a single start codon with
epitopes inserted consecutively in the construct, with or without intervening
spacer amino acids. In vitro studies of these constructs have con¢rmed that the
epitopes are expressed, stimulate protective immune responses, and do not
interfere with one another. Another epitope-driven vaccine approach is to mix
several plasmids together, each of which contains genes for di¡erent proteins or
di¡erent minigene epitopes. These vaccines induce no adverse e¡ects, may induce
enhanced responses, and may shift responses toward the Th1 phenotype (Tatusov
et al 1996). These discoveries suggest that epitope-based vaccines may be
particularly useful for pathogens for which no vaccines currently exist.

Epitope strings

EpiVax and theTB/HIVResearchLab have implemented approaches described by
other laboratories for enhancing multi-epitope DNA vaccines (Rodriguez &
Whitton 2000, Thomson et al 1998). One approach to delivering multiple
epitopes in a single plasmid consists of presenting the epitopes as a ‘string of
beads’ without any intervening or ‘spacer’ sequences separating the individual
epitopes (Fig. 3). Several other DNA vaccine researchers have had some success
with this approach (An et al 2000). However, in a ‘string of beads’ construct, the
individual epitopes are usually very closely apposed, without their ‘natural
£anking sequences’� this has raised concern that their proteolytic processing
may be compromised, and that peptides other than the speci¢c peptides of
interest may be generated as a result of processing (junctional epitopes) (Godkin
et al 2001). To address this concern, we have developed the following means of
evaluating junctional epitopes: they are paired up, (Fig. 3a) then aligned in
sequence, and inserted into a vector plasmid (Fig. 3b). There is some evidence
that the introduction of spacer sequences to separate the individual epitopes may
help focus the immune response on the speci¢c epitopes (Livingston et al 2001).
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Spacers and breakers

Studies conducted in murine models have demonstrated that residues £anking an
MHC class I epitope strongly in£uence the delivery of the intact epitope to TAP
following proteasome degradation (Holzhutter et al 1999, Thomson et al 1995).
However, many of the minigene (multi-epitope) vaccines that have been studied
to date have not required the insertion of £anking residues, suggesting that spacers
between epitopes are not absolutely necessary to obtain CTL responses. In a recent
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comparison of two polyepitope-containing plasmids, Velders et al (2001) have
demonstrated the superiority of the construct containing spacers. We have,
therefore, implemented the AAY spacer approach described by Kast for our class
I epitope-containing prototype vaccines. Published information available on
spacers for class II epitopes is relatively limited. Recent work by Livingston et al
(2001) with HIV has demonstrated that the use of a standard spacer sequence
(-GPGPG-) for HIV vaccine constructs consisting of MHC II-restricted Th cell
epitopes disrupts junctional epitopes that would be created by juxtaposing the
epitopes and that might compete for degradation or for MHC binding (both G
and P are unusual C-terminal anchors for a peptide that binds to class II MHC).
This approach has been used for constructs with up to 20 epitopes, in assays
where responses were detected to the majority of epitopes.

Directing epitope sequences to class I and II pathways

An additional modi¢cation of class II-restricted DNA vaccine epitopes involves
the use of signal sequences to target antigenic proteins for display or secretion by
infected host antigen presenting cells (APCs). Proteins entering the MHC class II
lysosomal degradation pathway do so either via recycling from the cell membrane
of the host APCs in which they were made, or more commonly, are shed into the
extracellular milieu and taken up by host APCs. The attachment of speci¢c ‘signal
sequences’ to these proteins results in their translation on the membrane-bound
ribosomes of the rough endoplasmic reticulum (ER), export into the ER, and
subsequent export for either enhanced secretion or membrane localization, which
leads to enhanced lysosomal degradation and enhanced activation of the host
immune response. For example, the conjugation of a tissue plasminogen
activator (tPA) signal sequence to a peptide construct (Malin et al 2000, Li et al
1999) appears to confer the secretory signal necessary for secretion.

Con¢rming vaccine immunogenicity in transgenic mice

After using in vitroT cell assays to select for naturally processed T cell epitopes, it is
important to evaluate the ability of vaccines derived from these epitopes to induce
an immune response in vivo. Non-humanized animal models are not suitable for the
evaluation of vaccines designed to induce human HLA-restricted immune
responses, as the motifs of epitopes that bind to their MHC molecules often di¡er
from humanMHCmotifs. Fortunately, a number of transgenic mouse strains that
express the most common HLA-A, HLA-B and HLA-DR molecules have been
developed (Ishioka et al 1999, Charo et al 2001). A very close correlation has
been found between CTL responses in infected individuals and CTL responses
induced in immunized HLA transgenic mice (Shirai et al 1995, Le et al 1989, Man
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et al 1995). HLA transgenic mice are now routinely used to assay and optimize
vaccines in pre-clinical studies.
A number of tools have been developed that incorporate these aspects of vaccine

design.One such tool, ‘Vaccine-CAD’ (computer assisted vaccine design), is under
development at EpiVax. This tool incorporates evaluation of junctional epitopes,
the insertion of spacers and breakers, requirements for secretion or processing tags,
and the evaluation of epitope strings for potential homologies to human gene
fragments (Fig. 4).
It should be noted that the concept of epitope-driven vaccines is novel, and only

a few of these vaccine constructs have reached the stage of phase III e⁄cacy trials in
humans. In the cancer andHIV vaccine ¢elds, where the concept of epitope-driven
vaccines is well-accepted, a number of epitope-driven vaccines have successfully
passed preclinical tests and are either currently in phase I/II clinical trials or trials
are soon to be (Bende & Johnston 2000). Whole protein or attenuated vaccines
present well-known risks: the possibility that the live-attenuated vaccine strain
may revert to a more virulent form; threats to immunocompromised individuals
and individuals with common skin conditions such as eczema (smallpox); and the
potential subversion of cellular processes by bacterial and viral proteins to the
detriment of the host. Epitope-driven vaccines present several advantages over
these other vaccine approaches.

Conclusion

The availability of a large volume of genomic information, coupledwith new tools
for screening genome sequences in silico and re¢ned assays for measuring T cell
response to candidate vaccine components have dramatically accelerated the
process of vaccine research and development. The discovery of vaccine
components no longer appears to depend on understanding the structure
and functionality of each of the pathogens’ proteins�nor do the proteins have
to be isolated or cloned prior to screening. Genome sequences can now serve
as a convenient point of departure for in silico and in vitro approaches to vaccine
design.
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DISCUSSION

Margalit:Can you explain more about the use of tetramers in this context?
De Groot: We are working on West Nile virus which is a big problem in Israel

and now the USA. As a clinician, I know that when I have a patient come into the
emergency room with aseptic meningitis, I am now committed to a 5^6 day
hospitalization because I have to rule out West Nile. This requires acute serology
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and follow-up serology.There is nomethodofdetectingwhether this personmight
have recently been exposed toWestNilewhen theywalk into the emergency room.
Our idea is that you might be able to identify T cells in their circulation that are
speci¢c for West Nile virus using the tetramer technology. This is what we
proposed. It wouldn’t be a screen for blood banks because there they just do PCR.
In our procedure you could mix the whole blood with the tetramer, run it through
theFACSmachine in theclinical laband thendetectwhether thepersonhadrecently
been exposed to the West Nile virus. T cell responses are much quicker than the
antibody response. We are also very interested in looking at smallpox and
vaccinia. You could di¡erentiate people who had been immunized with vaccinia
versus people who had been exposed to smallpox in an exposure situation. How
else would you know how to quarantine people?
Petrovsky:The problemwith that strategy is that it isMHC speci¢c and therefore

you can’t really develop a generic reagent. It is also epitope speci¢c and you’d need
an enormous cocktail to cover most of the epitopes.
DeGroot: It is a new idea and there are many potential obstacles. If you include

the main ¢veMHC types, you could say for these people with these HLAs, it is not
a 100% reliable test in all cases, but if it is positive then you have your answer. A
negative result doesn’t help.
Rammensee:The critical issue is to verify the predictions. In the case of HIV, this

is donewith T cells frompatients. As I understand it, you test them for recognition
of the synthetic peptides, but you don’t know whether these peptides are actually
processed.
DeGroot:We do know that the epitopes were actually processed, because if they

are naturally infected and they respond to the peptides, then presumably they have
been exposed to a peptide like that which was naturally processed and presented.
Rammensee: There still could be some kind of cross-priming by other cells, and

this might not be the same peptide as presented by the infected cell.
De Groot: It could be slightly di¡erent, but I don’t think it would be very

di¡erent.
Rammensee: The key question here is whether you could test a cell that is not

infected but which is transfected with di¡erent genes of interest to see whether
they are recognized. This would ensure that these peptides are really relevant.
DeGroot: It is hard to knowwhat is in a human.We are going to be doing studies

in transgenicmicewhich are immunizedwith a constructwhich contains thewhole
gene that may contain some of our epitopes. Thenwewill be coming back (in vitro)
with the epitopes. This may answer your concerns.
Rammensee:Will you have some cells expressing the virus or part of the virus?
De Groot: No, they will be getting a DNA vaccine containing a gene from the

virus. We will know if the epitope is naturally processed or not.
Rammensee: It is critical to show that the peptides are naturally processed.
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De Groot: This is hard to do in humans who are naturally infected, because we
don’t know the sequence of the original strain of the virus. If there is a negative
response, is it because the epitope wasn’t processed, or because the subject have a
di¡erent strain of HIV and they have never seen that epitope? Presumably, we are
¢nding conserved epitopes, but maybe not. The mouse experiment will be able to
answer some of these questions.
Borras-Cuesta: I have a question and a comment with respect to the strategy

you have used. You immunize with DNA with multiple epitopes. If I
understood you correctly, you said that at the end you had a response when
you stimulated with the fuller peptides. What happens to individual peptides? I
know from my own experience that sometimes you just get a response to one
peptide.
De Groot: It is a very frustrating collaboration. We will be doing individual

peptides, but this hasn’t been done yet. Currently we only have results showing
response to all of the epitopes, in a pool of peptides.
Borras-Cuesta:We have done this in our lab and other people have reported the

same thing. If you immunize with these types of plasmids, you can end up having a
response to only one of them. It is a crucial issue.
DeGroot: This is obviously of great interest to me, because I want to know how

many peptides are coming in.
Borras-Cuesta: You mentioned that a peptide was recognized by about 60% of

people, and you thought it was a good candidate. In general terms I think you are
right, but then you have to ask yourself why these people are still infected. The fact
that this peptide is recognised by 60% of the people doesn’t make it a good peptide
DeGroot: It is big problem. I don’t think anyone who is working in HIV knows

how to sort this out. There are some data fromBruceWalker looking at the types of
T cell responses in patients who are acutely infected. They actually recognize
di¡erent epitopes in the early infection phase than they recognize during chronic
infection. We can’t, however, dissect whether this is due to the evolution of the
virus or whether it is due to di¡erential processing. The best you can do is base
your hypothesis on what is known about e¡ective containment of HIV infection.
It appears to be due to the recognition of multiple epitopes. Livingston et al
(2001) have shown that if epitopes are presented as single units in a string, this
will cause better or broader recognition of a greater number of epitopes than is
done if just the gene is presented. You can pack more information in a
pseudogene like this than you can using a single gene as an immunogen. It is a
mix of hypothesis-driven research and practical experience. We are trying to
make something that will work on the basis of what we know. The problem is
we don’t know whether an immune response to an epitope we identify in this
manner is going to work to protect against infection, since the people we are
testing already have HIV infection. I should also add that for the Th epitopes we

74 DISCUSSION



use long-term non-progressors. Perhaps these are better, because people who do
not progress to AIDS do recognize the epitopes.
Borras-Cuesta: So you are hoping to use a good CTL response in vaccination so

you would not reach that situation.
DeGroot: Yes.
Perelson: I think with HIV vaccines we have to be somewhat careful in

distinguishing them from other vaccines. With most vaccines we try to generate
what we call sterilizing immunity, so that one person will not become successfully
infected by the disease. In HIV no one has been able to establish that state of
protection. Most of the vaccines that have been tried in animal studies are non-
sterilizing and act as therapeutic vaccines: where we have seen the most success is
in generating enough of an immune response to maintain levels of CD4+ T cells
that are higher than in unvaccinated animals, and hence extend their lives.
De Groot: This is a major shift in our thinking about vaccines. This deserves

emphasis here. In Barcelona, Larry Corey talked about modifying the goal for
HIV vaccines. He said that we should not demand that the vaccine act as
prophylaxis. Instead, an acceptable new goal is to contain infection. This is a
completely new way of thinking about HIV. Perhaps the reason we have
‘lowered our expectations’ is because we now realize that it will be very di⁄cult
to make a vaccine that works prophylactically, so we will accept something that
works after infection, by containing the virus better than a non-immunized host.
The concept of containing infection is an interesting one, and re£ects a shift in the
vaccine community in general: therapeutic vaccines will be better accepted in the
future on the basis of this work in HIV.
Rammensee: Regarding HIV vaccination, we would probably think in terms of

applying the vaccine between phases of HAART.
De Groot: Brigitte Autran in France has set up a network of collaborators and

they are looking at therapeutic vaccination forHIV infected patients. The idea is to
treat with HAART and get the virus load low, and then vaccinate duringHAART
with the intention of educating (priming) the maximum number of T cells to
respond so that when you take the HAART away you can look at the slope of
viral load increase to see whether or not the vaccine is working.
Brusic: Coming back to immunoinformatics, you can see here that there are a

number of analytical steps or models that have been put together, starting from
genomic information all the way to constructing candidates for vaccines. We
would expect that with so many steps involved, errors would creep in and we
might not successfully ¢nd vaccine targets. Fortunately, the results are quite
encouraging. A signi¢cant number of peptidic vaccine studies started with
predicted targets which were subsequently shown to be functional in patients.
This is an illustration of how immunoinformatics can help move the whole ¢eld
forward. However these are only preliminary studies and we can improve the
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synergy between predictions and experimentation. I am pleased to see that you
built 74 models for MHC class II peptide binding. This takes a lot of e¡ort. How
many people do you have to maintain your prediction system?
DeGroot: Just one.
Brusic: We have recently developed a prediction system where a single model

predicts peptide binding to an array of HLA molecules. This was achieved by
modelling interactions between peptides and multiple MHC molecules. Our
single predictive model can in parallel predict peptide binding to multiple HLA-
DR molecules, and another model predicts peptide binding to multiple HLA-A2
molecules. This is an example where computational immunology can help us do
things more e⁄ciently. There are two sides to the problem�how to discover
better vaccines and also how to improve the research methodology. We should
strive to advance both these aspects of our research work.
De Groot: Don’t you think that we are also expanding our horizons in

immunology? Regardless of how you ¢nd the protein (by microarray or by direct
sequencing), we are looking at the immunogenicity of proteins that people haven’t
even been able to isolate.What excites me is this ‘immunome’ problem: howmuch
information (in terms of epitopes) is required in order to get a host to respond
e¡ectively to a pathogen? I also don’t think that the information required just
involves T cell epitopes; it is also B cell epitopes (which I can’t model). I think
the question ‘how much immune information is required to generate a protective
response?’ is an interesting question to ask. Themorewe apply these tools, perhaps
the closer we will get to answering it.
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Insights fromMHC-bound peptides

Hanah Margalit and Yael Altuvia
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Abstract.Cytotoxic T cells recognize short antigenic peptides, the processing products of
protein antigens, when they are bound to major histocompatibility complex (MHC)
class I molecules. Peptide binding to MHC molecules has been studied extensively in
numerous laboratories, providing vast amounts of sequence and structure data that
have been used as a rich source for bioinformatic research. MHC-bound peptides and
their £anking sequences provide information about the sequence requirements of the
di¡erent processing stages, in particular, the cleavage by the proteasome and the
binding to MHC molecules. Elucidation of these sequence requirements sheds light on
the evolutionary forces that have shaped and designed these peptides, and should lead to
the development of an integrative predictive algorithm. Remarkably, the peptide
sequence and structure data are also valuable for the study of biological questions that
are apparently unrelated to cellular immunity, namely, sequence^structure relationship
and genome annotation. Here we describe our computational analyses of MHC-bound
peptides, applied to all these biological topics.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 77^97

Cytotoxic T cells recognize short peptides, the processing products of protein
antigens, presented on the surface of antigen presenting cells in association with
MHC class I molecules. Binding to MHC is a prerequisite for any T cell-mediated
immune response and therefore has been studied extensively by various
experimental approaches, which have attempted to elucidate the sequence and
structure features that determine the binding speci¢city. Crystallographic studies
revealed the structures of dozens of MHC molecules with their bound peptides,
shedding light on MHC and peptide residues that play critical roles in speci¢c
binding (e.g. Madden 1995). In parallel, binding experiments and large-scale
sequencing e¡orts of peptides eluted from MHC molecules provided thousands
of MHC-binding peptide sequences, which have been compiled in publicly
available databases (Brusic et al 1994, Rammensee et al 1999). Multiple sequence
alignment of peptides known to bind to a given MHC molecule was used to
reveal the residues that are preferred for binding. In turn, these aligned sequences
were used for the development of computer algorithms for prediction of

77

Immunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function:
Novartis Foundation Symposium 254. Volume 254

Edited by Gregory Bock and Jamie Goode
Copyright  Novartis Foundation 2003. ISBN: 0-470-85356-5



binding peptides based on sequence data (De Groot et al 1997, Parker et al 1994,
Rammensee et al 1999).
AlthoughMHC^peptide binding is the most selective stage in the processing of

protein antigens, other antigen processing stages contribute to peptide selection.
In particular, it was shown that proteasomal cleavage of the protein antigen into
short peptides, and the transport of the degraded products to the endoplasmic
reticulum by the transporter associated with antigen processing (TAP) are also
sequence dependent and play a role in determining the repertoire of
immunodominant peptides (reviewed in Yewdell & Bennink 1999). Since both
proteasomal cleavage and TAP transport precede MHC binding, the sequences
and/or £anking regions in the source proteins of peptides eluted from MHC
molecules carry the information that has been used by the cleavage and transport
machineries. Therefore, MHC-bound peptides provide a rich source for
computational studies attempting to reveal not only the MHC recognition rules,
but also the sequence features that play a role in the other processing stages. Here
we describe our computational studies that use sequence and structure information
to reveal the sequence requirements for MHC binding (Altuvia et al 1995) and
proteasome cleavage (Altuvia & Margalit 2000). We also show how the
approaches we have taken can be applied to prediction of MHC-binding peptides
(Altuvia et al 1997, Schueler-Furman et al 2000), and to selection of peptides with
high cleavage potential.
Surprisingly, due to their special characteristics, MHC-bound peptides may

provide additional insight, beyond their immunological connotation. First, as
they reside both in their native protein and in the MHC groove, analysis of
peptides whose structure was solved in these two di¡erent environments can be
used to examine sequence^structure relationships (Schueler-Furman et al 2001).
Secondly, as peptides eluted from MHC molecules reside in proteins that were
expressed in the cell, they provide evidence for gene expression at the protein
level and are informative for gene veri¢cation. By comparing the sequences of
the peptides with translation products of the human genome, gene structure and
identity can be studied (Altuvia et al 2001). The last two sections of ourmanuscript
discuss both these topics.

Using structural information for prediction of binding peptides

Many computational studies that attempted to unravel the rules governing peptide
binding to MHC, used the sequences of MHC-binding peptides. By aligning the
sequences known to bind to a given MHC molecule, favourable residues for
binding could be identi¢ed along the peptide. Synthesis of this knowledge
together with that obtained from crystallographic studies has led to
understanding of the basic principles that guide peptide^MHC recognition.
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Mainly, it was found that certain peptide residues in anchor positions were highly
conserved, and contributed signi¢cantly to the binding by their optimal ¢t to
residues in the MHC binding groove (reviewed in Madden 1995 and in
Rammensee et al 1997). Subsequently, the wealth of MHC-binding sequences
were used to generate matrices of coe⁄cients that re£ect the suitability of each of
the 20 amino acids at each peptide position to bind to a speci¢c MHC molecule.
These matrices serve as the basis of many predictive algorithms that evaluate the
compatibility of a peptide to bind to an MHC molecule (De Groot et al 1997,
Parker et al 1994, Rammensee et al 1999). Their derivation needs, however,
extensive experimental work, attempted to obtain a large number of various
binding peptides to a given MHC allele.
The approach that we have developed to study peptide-MHC binding does not

rely on binding data and sequence information per se, but rather uses structural
information and employs computational methods developed in the ¢eld of
computational structural biology. We have shown that these approaches enable
us to decipher favourable peptide residues for allele-speci¢c MHC binding, and
can be applied for prediction of good binding peptides based on the protein
sequence and the solved structures of peptide^MHC complexes (Altuvia et al
1995).
Structural studies indicated that allMHCclass I-binding peptides adopt a similar

extended backbone conformation in theMHC groove (Madden 1995). Relying on
this structural conservation, we developed a structure-based algorithm for MHC
binding prediction, adopting the threading approach used in structural biology for
protein structure prediction (e.g. Jones et al 1992). The algorithm uses the
backbone coordinates of the known peptide fold in a given MHC molecule as a
template upon which the sequences of peptide candidates are threaded. For each
peptide position we determine the MHC contact residues based on the crystal
structures. The interaction of an amino acid at a certain position with its MHC
contact residues is evaluated by pair-wise contact potentials (Betancourt &
Thirumalai 1999, Miyazawa & Jernigan 1985). By this procedure we were able to
explore the suitability of di¡erent amino acids at di¡erent positions along the
peptide for binding to a speci¢c MHC molecule, and to calculate an estimate for
the binding energy of a peptide by summing the energies through all peptide
positions. We tested this algorithm for several MHC alleles and showed that it
succeeds to distinguish between binding and non-binding peptides, and that
there is a correlation between the computed binding scores and experimentally
measured binding values. Moreover, the algorithm succeeds in ranking highly
known immunogenic peptides within all overlapping same-length peptides
spanning their respective protein sequences, further supporting its predictive
potential (Altuvia et al 1997, Schueler-Furman et al 2000). Still, for MHC alleles
where binding data are available, the sequence-based approaches achieve better
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prediction performance than the threading approach. Thus, the algorithm is
advantageous for MHC alleles that lack binding data but have a solved structure
when complexed with peptide, or, alternatively, a structural model of the complex
based on known structures.

Extraction of proteasomal cleavage signals

There is accumulating evidence suggesting that proteasomal cleavage is the ¢rst
step in the processing pathway of most antigenic peptides presented to cytotoxic
T cells (reviewed in Koopmann et al 1997, Pamer & Cresswell 1998, Rock &
Goldberg 1999). The proteasome is the main protein degradation machine in
both the cytosol and nucleus of eukaryotic cells (reviewed in Baumeister et al
1998). Although the structure of the 20 S catalytic core of this multimeric
proteinase has been solved and the biochemical activities of the catalytic sites
have been characterized, the exact cleavage mechanism and the cleavage
speci¢cities are not fully understood.
In a search for potential proteasomal cleavage signals, we performed a rigorous

analysis of the residues at the termini and £anking regions spanning 50 residues at
both sides of individually sequenced peptides eluted from MHC class I molecules
(Altuvia &Margalit 2000, for nomenclature see Fig. 1). We found that the amino
acid frequency distributions at the peptides’ terminal positions (PN and PC), as well
as the ¢rst position £anking the C-terminus of the peptide (C1), deviated
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FIG. 1. Terminology used in this study. (A) Nomenclature for positions within the peptide
and in its £anking regions. (B) Enzymology nomenclature for a cleavage site. (Reproduced with
permission from Altuvia &Margalit 2000.)



signi¢cantly from random (Fig. 2). At position PN basic amino acids and tyrosine
were favourable, small amino acids were frequent but not to a statistical
signi¢cance, and cysteine, proline and leucine were unfavourable. At position PC

hydrophobic and basic residues were favoured. At position C1 small and basic
amino acids were over-represented, while acidic amino acids and phenylalanine
were under-represented.
The lack of signi¢cant deviation from randomat theN-terminal £anking residue

(Fig. 2) is not surprising, as it is known that the peptides can be cleaved with an N-
terminal extension that is trimmed in later stages (e.g. Craiu et al 1997). As for the
C-terminus, experimental studies have suggested that the C-terminus of most
cytosolic antigenic peptides is generated directly by the proteasome and is not
cleaved further in later processing stages (York et al 1999). Therefore, it is most
likely that the amino acid frequency distributions at positions PC and C1 describe
very closely the amino acid preferences for proteasomal cleavage at the P1 and P1’
positions of a cleavage site, respectively. Indeed, the preferences found at position
PC recon¢rm the well-established preference for hydrophobic and basic
amino acids at position P1 of proteasomal degradation products, as well as at the
C-termini of antigenic peptides. The preferences found at position C1 reinforce and
extend the preferences that were found experimentally at the P1’ position of
proteasomal degradation products. Interestingly, a similar preference has been
also observed at the N-terminal position of peptides transported by TAP (Daniel
et al 1998, Uebel et al 1997, Uebel&Tampe 1999, vanEndert et al 1995), a position
which coincides with the P1’ position of the peptide’s N-terminal proteasome
cleavage site (Altuvia & Margalit 2000). The latter observation accentuates the
possible role of the signal at position P1’ in determining the cleavage speci¢city.
We suggest that the amino acid frequency distribution at positions PC andC1 can

be used to develop ameasure for evaluating the cleavage potential between any two
residues along a given sequence (Fig. 2 and http://bioinfo.md.huji.ac.il/marg/cleavage/).
Indeed, in a recent study we used this measure to explore the cleavage potential
between internal positions of nonameric antigenic peptides, and found a
signi¢cantly lower cleavage score between the forth and ¢fth positions of the
peptides. Analysis of the amino acid distribution at those positions revealed that
phenylalanine, isoleucine, leucine, methionine and tyrosine, that are favourable at
the P1 position of a cleavage site, are under-represented at the fourth position of
the peptides (Fig. 3). Correspondingly, proline, glycine, and aspartic and glutamic
acid residues, which are unfavourable at the P1 position are abundant at the fourth
position. It seems therefore that the amino acid preferences at this peptide position
are the mirror image of those at position P1 of cleavage sites. A similar pattern,
although somewhat less prominent, is observed at the ¢fth peptide position.
Favourable amino acid residues at position P1’ of a cleavage site, such as alanine,
arginine and serine, are under-represented at the ¢fth peptide position, whereas less
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FIG. 2. Amino acid frequencies at positions PN, PC , C1 and N1 compared to the background
frequencies. Dark and light columns represent the observed and expected amino acid
frequencies, respectively. Arrows mark statistically signi¢cant deviations between observed
and expected frequencies (", observed 4 expected; #, observed 5 expected ). Amino acids
are denoted by their one letter code. (Reproduced with permission from Altuvia & Margalit
2000.)



favourable amino acid residues, such as proline, valine and isoleucine are relatively
abundant. Taken together, these observations suggest the possible role of the amino
acid residues at the central peptide positions in the prevention of internal cleavage.
Notably, one of the most frequent amino acids at both positions is proline. Indeed,
proline was shown experimentally to prevent internal proteasomal cleavage of
peptides (Shimbara et al 1998), and was found to be abundant at position P4 of
proteasomal cleavage sites (Nussbaum et al 1998).
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FIG. 3. Amino acid distribution at the central peptide positions. The frequency distribution
for each amino acid at the fourth and ¢fth positions is compared to the background distribution
and to the corresponding value at the cleavage sites of the proteasome. The background
frequencies were calculated from the database of protein sequences, SWISSPROT. Amino acid
frequencies for the P1 and P1’ positions were based on our analysis (Altuvia &Margalit 2000).
Peptides in which the central positions are important for the speci¢c binding to the MHC
molecule were excluded from the analysis to prevent possible bias. The amino acid
distributions at both positions deviated signi¢cantly from the background (w2¼170,
P¼0.001, n¼299 for the fourth position and w2 ¼63, P¼0.001, n¼278 for the ¢fth position).
(a) Amino acid frequencies at the fourth peptide position (white bars) as compared to position P1
of a cleavage site (grey bars) and to the background (black bars). (b) Amino acid frequencies at
the ¢fth peptide position (white bars) as compared to position P1’ of the cleavage site (grey bars)
and to the background (black bars).
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It was suggested that proteasomal cleavage plays a role in the selection of
immunodominant peptides (e.g. Yewdell & Bennink 1999). If our ¢ndings were
correct wewould expect the residues at position C1 and the central residues to a¡ect
immunogenicity (in addition to the well-known e¡ect of the C-terminus). Indeed,
it was recently shown experimentally that the type of residue at position C1 a¡ects
immunogenicity (Livingston et al 2001), and the favourable residues correlated
well with those identi¢ed computationally (Fig. 2). It was also shown that
cleavage within the peptides could reduce or eliminate completely their
presentation (reviewed in Niedermann et al 1999, Yewdell & Bennink 1999,
York et al 1999). Based on our ¢ndings we have developed a quantitative
measure that takes into account the two important cleavage considerations of
antigenic peptides, namely, exact cleavage at the C-terminus and resistance to
cleavage at the centre of the peptides. This measure, which is a linear
combination of the internal and terminal cleavage scores, succeeds fairly well in
distinguishing between immunodominant and cryptic peptides (our unpublished
results).

Structural properties of MHC-binding peptides

MHC-binding peptides are very intriguing for analyses of sequence^structure
relationships, as they actually exist in two di¡erent structural environments:
their native source proteins and the MHC binding groove. We studied the
structural properties of the peptides within their two structural environments
addressing both the immunological question, regarding possible structural
constraints imposed on T cell antigenic peptides, as well as the general question
regarding the relationship between sequence and structure (Schueler-Furman
et al 2001).
Our study involved 14 peptides that were solved crystallographically both

within their native protein and when bound to the MHC molecule (both class I
and class II-bound peptides, the latter being recognized by helper T cells).
Comparison of their conformations in both environments revealed that while
both MHC class I and class II binding peptides showed conserved extended
structures in the MHC binding groove, they displayed a large variety of
secondary structure types within their native proteins (Fig. 4). These secondary
structures ranged from helical through extended to coil. While the native
structure of a few peptides was extended and resembled their MHC-bound
structure, most peptides adopted entirely di¡erent structures in their native
conformation. The variety of secondary structure types exhibited by antigenic
peptides within their native proteins implies that they adopt the required
conformation within the MHC groove independent of their structural
background.
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To test this further we organized a database of 67 nonameric class I MHC-
binding peptides whose native proteins were solved crystallographically. Ideally,
wewould have compared the structures of these peptides to their structures within
the MHC groove, but the latter have not been solved yet. Still, based on the high
structural conservation of MHC-bound peptides, it is conceivable that they adopt
similar conformations upon binding. Therefore, their overall structural properties
could be compared to those of a group of 21 other nonamerswhose structureswere
solved within the MHC groove. The distributions of three structural properties
were examined within each group: secondary structure, Ca^Ca distance of peptide
termini, and root-mean-square deviation (RMSCa ) between all possible pairs of
peptides. For all three parameters the native structures were signi¢cantly more
variable compared to the MHC-bound structures. The secondary structures, and
the Ca^Ca distances of peptide termini were also compared to a dataset of random
nonameric peptides derived from the same source proteins. No signi¢cant
di¡erence was found, supporting the notion that the MHC binding potential is
independent of the peptide structure in its native protein, and that a peptide can
essentially be derived from any region in a protein.
Short subsequences up to nine amino acids long that adopt di¡erent

conformations when embedded in di¡erent proteins were reported before (e.g.
Zhou et al 2000) and termed ‘chameleons’ (Minor & Kim 1996). It has been
claimed that the structural environment induces the structure of these short
sequences, and that their ¢nal structure is in£uenced by long-range interactions.
The MHC-bound peptides expand this collection and support this conjecture.
The deep burial of the peptides in the MHC groove justi¢es their treatment as an
integral part of theMHC protein (discussed in Schueler-Furman et al 2001). Thus,
they provide additional data of subsequences that adopt di¡erent structures in
di¡erent environments, and set a higher limit of 14 amino acids for the length of
such peptides. This has important implications for structure prediction algorithms
that are based on structures of short sub-sequences (e.g. Simons et al 1997).

Naturally processed peptides (NPPs) and genome annotation

One of the major roles of the cellular immune system is to destroy cells expressing
non-self or mutated proteins. Nevertheless, most of the antigen processing stages
are indi¡erent to the peptide source, and therefore a large fraction of NPPs that are
eluted from MHC molecules, originate from self cellular translation products.
These include native proteins, as well as ‘defective ribosomal products’ (DRiPs),
(Yewdell et al 2001), consisting of various damaged proteins and protein
fragments.
Since the presence of an MHC-bound peptide indicates that its source protein

was present in the cell, we suggested that tracing those peptides back to their DNA
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source should be very informative for gene annotation and for veri¢cation of
bona ¢de gene expression. Accordingly, we carried out a comprehensive search
comparing hundreds of individually sequenced peptides eluted from MHC
molecules from the SYFPEITHI database (Rammensee et al 1999) to all
accumulated human sequence data in the form of proteins, mRNA, expressed
sequence tags (ESTs), and human protein and mRNA predictions (Altuvia et al
2001). In addition, the availability of the draft of the human genome (http://
genome.ucsc.edu) allowed us to directly match the peptides against all six translated
reading frames of each chromosome.
The detailed search results are available at http://bioinfo.md.huji.ac.il/marg/

IMtoGENE/. *73% of the 514 analysed peptides were matched exactly to
human proteins and/or translated mRNA (most of these hits were documented
previously in the SYFPEITHI database (Rammensee et al 1999). This implies
that their genes are translated and expressed at the protein level. This
information is especially valuable for verifying the expression of hypothetical
proteins derived by conceptual translation. 48 of the above peptides did not
match exactly any human chromosome (in all six reading frames). Analysis of
those peptides showed that *63% spanned a splice site and *14% matched a
translated genomic sequence with one nucleotide mismatch. This implies that
tracing NPPs can add supporting evidence for putative splice junctions, and can
also hint at possible polymorphisms.A small number of peptides did notmatch any
human protein ormRNA sequence, still theymatched a human genomic sequence,
and/or human EST, and/or other mammalian protein or mRNA sequence. Those
hits were especially attractive as pointers to potential new genes.

Summary

MHC-bound peptides provide a rich source of information. Their analysis
provides important insight into a broad spectrum of biological questions. Firstly,
the unique structural properties of the peptides expand the repertoire of
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FIG. 4. MHC-binding peptides as chameleon sequences. Structural pairs of identical
peptides in two di¡erent structural environments are shown, ordered according to the
RMSCa between the peptide structure in the native protein (upper structure) and in the MHC
groove (lower structure). Left panel: MHC class I binding peptides. (A) HIV-1 reverse
transcriptase (128^135), (B) HIV-1 P17 (24^31), (C) HIV-1 reverse transcriptase (309^
317), (D) HIV-1 Nef (75^82), (E) HBV nucleocapsid (18^27), (F) spectrin (190^198). (G)
chicken ovalbumin (257^264), (H) HIV-1 integrase (28^36), (I) in£uenza matrix protein
(58^66). Right panel: MHC class II binding peptides (A) chicken ovalbumin (323^334),
(B) HLA-A*0201 (128^141), (C) in£uenza haemagglutinin (306^318), (D) HSP70 (236^
248), (E) hen egg lysozyme (50^62). (Reproduced with permission from Schueler-Furman
et al 2001.)



subsequences that can fold di¡erently in two unrelated environments. The upper
limit of 14 amino acids that we have found might even be set higher with newly
solvedMHC class II structures with longer peptides. This is of great importance to
the general sequence^structure relationship question, and has direct implications
for structure prediction algorithms, as it shows the limitations of local homology
modelling. Secondly, the ‘sampling nature’ of these peptides, that constantly
present fractions of the content of the cells’ proteins, can be used for gene
annotation and veri¢cation of gene expression at the protein level. Although the
analysis described here focused on tracing back human NPPs, we suggest that this
method can be a useful annotation tool for other organisms and in particular it can
be easily applied to mouse, since the draft of the mouse genome, as well as a large
database of mouse NPPs, are already available.
Most importantly,MHC-binding peptides are ¢rst and foremost elements of the

cellular immune system. They undergo various selective antigen-processing
stages, storing in their sequence and structure valuable information of the
di¡erent cellular mechanisms they encounter. When we piece together these bits
of information the remarkable evolutionary compatibility of the di¡erent
components of the cellular immune system emerges. It has already been shown
that the preference for hydrophobic and basic amino acids at the peptides’
C-termini is compatible with the requirements for binding to many MHC class I
alleles (Rammensee et al 1997, 1999), as well as for TAP binding (Daniel et al 1998,
Uebel et al 1997, Uebel &Tampe 1999, van Endert et al 1995) and for proteasomal
cleavage (reviewed in Niedermann et al 1999). Likewise, as we have described
above, the amino acid preferences at the P1’ positions of proteasomal cleavage
sites match the TAP binding requirements at the N-terminus of transported
peptides (Altuvia & Margalit 2000, Daniel et al 1998, Uebel et al 1997, Uebel &
Tampe 1999, van Endert et al 1995). Also, it seems that there is a good agreement
between non-cleavage preferences at the centre of nonameric peptides and the
structural and sequence constraints that are imposed by MHC binding. The
residues that are unfavourable for cleavage and are abundant at the fourth and/or
¢fth positions, namely proline, glycine, aspartic and glutamic acids, asparagine and
glutamine, are the very same residues that are expected to suit best the structural
constraints at the centre of the peptide. Proline and glycine that are known as ‘turn
formers’ (Chou & Fasman 1974) can contribute to the bulge formation at the
centre of the peptide, and the hydrophilic amino acids are compatible with the
more exposed structural environment that those positions encounter (Madden
1995).
Finally, the bound structure of the peptide enforced by the MHC binding

groove seems like a very successful fold, as it is so general and robust as to allow
peptides that originate from di¡erent structural environments to adopt it. This
enlarges the repertoire of potential immunodominant peptides and increases the
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chance that in a population there will always be an individual with a haplotype that
recognizes at least one peptide within an invader’s protein (Schueler-Furman et al
2001).
The ‘integrative approach’ that evolution has taken in shaping the sequence and

structure features of antigenic peptides is impressive. A similar integrative
approach is the challenge for future predictive algorithms. The currently avail-
able algorithms are based mainly on identifying good binders to MHCmolecules.
However, binding to MHC per se does not guarantee immunodominance, as the
peptide has ¢rst to go successfully through the preceding processing stages. As
shown above, computational analysis of the peptides revealed additional
sequence features used by the various processing stages, and the challenge ahead
is to incorporate those appropriately in one predictive algorithm.
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DISCUSSION

Rammensee:Your data set is biased in that most of the peptides are HLA-A2 and
most peptides are produced by the immunoproteasome, rather than the
constitutive one. Most of the sequenced ligands are from cell lines which grow
rapidly in vitro, and these cells frequently express the immunoproteasome. Only a
few of the peptides in your database are from cells known to express constitutive
proteins.
Margalit: This is a good thing frommy perspective. I was somewhat concerned

knowing that I have a mixture of naturally processed peptides that are cleaved by
the constitutive proteasome and antigenic peptides that are cleaved by the
immunoproteasome. But if you tell me that most of the peptides are cleaved by
the immunoproteasome, this is good. We want to discover the cleavage of the
immunoproteasome and to integrate it in a predictive scheme.
Rammensee: There is a concern that the middle of the peptide is preferentially

selected for cleavage by the proteasome. There are several cases where di¡erent
peptides from one protein bind to di¡erent HLA molecules, and the overlap that
occurs to create binding to one HLA molecule requires cleavage of, let’s say, an
HLA-A2 epitope. Thus, a certain cleavage of the proteasome might create the
correct C-terminus for one HLA molecule and at the same time destroy the
ligand for another one. Perhaps this ¢nding might be a consequence of the bias
for HLA-A2. A larger database might be able to consider such situations.
Kesmir:Wehave done this.We tookHannahMargalit’s database andwe knew it

was biased towards A2, so we added a lot of peptides fromMHCPEP so that these
55 MHC molecules were more or less similarly represented. We ended up with
more than 1000 peptides. Indeed, you lose the signal on PN, but the signals on
PC and C2 remain.
Rammensee: With MHCPEP we have a new problem that it is not ligands, it is

just binding and ligands together. It is a mix of everything.
Kesmir: But at least we got rid of the bias problem!
Stevanovic¤ : You have to consider that this cleavage is just one cleavage in the

whole protein. If we analyse the peptides that are created in the proteasome� if
we digest whole proteins�we see there are 100^300 cleavage sites in the protein
and we have no clue whether your cleavage sites are the more dominant ones. It is
important that these peptides are created, but this will not give us much
information about the total speci¢city of the immunoproteasomes, because the
quantitative e¡ects of the proteasome cutting one protein are completely
neglected.
Margalit: I accept this, but in the context of the antigenic peptide I hope it may

make some contribution. I’d like tomention that Arieh Admon inHaifa, an expert
in mass spectrometry, took cells from lung cancer and isolated the peptides bound
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to MHC molecules from these cells. The proteins that were expressed in lung
cancer are in a database on the Internet. We took these data and analysed the
peptides, and we found very similar preferences at the P1 and P1’ positions with
just one exception that didn’t ¢t.We found leucine in the P1’position.All the other
preferences were very similar to the ones we found.
Rammensee:Youmight have a constitutive proteasome in lung cancer cells. This

changes the P1 position.
Margalit: It is the P1’ position.
Petrovsky:What was the MHC that he was eluting from?
Margalit: I don’t remember. However, we used these data to test our predictive

algorithm. The other predictive algorithms were developed on the degradation
products of the constitutive proteasome. When they were applied to MHC
binding peptides they succeeded in predicting 64 out of 160. They said that they
need a lot more data to re¢ne the predictive algorithms to make better predictions.
It is still work in progress. I believe there is still no good prediction algorithm for
cleavage of the antigenic peptides.
Brusic: A major problem with this is that we still have a strong bias where we

have plenty of data on HLA-A2 or HLA-A1, but less data on some other alleles.
How can we generalize using the results for a small number of HLA alleles? Of
course, we can do an analysis for HLA-A2, but a systematic study requires the
translation of results into poorly characterized alleles?
Margalit: I understand how the bias you mentioned a¡ects the P1 position,

because HLA-A2 prefers hydrophobic residues at the C-terminal position. But I
don’t see a problem with the £anking residue because there is no dependence
between these two positions. It is detached; it doesn’t exist any longer in the
peptide after the cleavage, so I have a strong feeling that this is a proteasomal
cleavage.
Brusic: Perhaps. In our unpublished studies we have seen clustering of potential

targets in regions of the protein. T cell epitopes do cluster: hydrophobic regions are
preferred by HLA-A2. This could introduce additional biases, compared with
HLA-A3 binding peptides, which prefer charged residues at the C-terminus.
Kesmir: I agree with all of your comments that this is not really the right

approach to tackle proteasome speci¢city with. On the other hand, if we use this
approach and then test it on the real degradation data, we are able to predict 75% of
the cleavages made by the immunoproteasome correctly. This is very good. For
constitutive proteasome cleavages we can only predict 45%. We know about
the bias problem and we are trying to reduce it as much as we can, but there
is still some signal there that you can use to classify the cleavage sites from the
non-cleavage sites. In ¢ve years, if we have su⁄cient degradation data that we
can also understand the stochastic nature of these enzymes, then I think this will
be ¢ne.
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Brusic: The key issue is to understand what can be done with data, and how
can we improve our knowledge. This also touches on the issue about the need
for reference data sets that are representative. If we got all data together and
perform data preparation we can have richer data sets. The experimental work
following on from predictions could be designed to also produce background
information data. If we don’t have many data, only simple predictive models can
be built.
Gulukota:Youmentioned that one of the possible false positives here is whether

there is a cleavage site in the middle of the peptide. How many such cleavage sites
would you ¢nd if you looked at the rest of the protein? You talked about aligning
the peptide to the protein, and you are saying there is a cleavage site at both ends of
the peptide, but there should not be one in the middle.
Margalit: There is a low cleavage score potentially in the middle.
Gulukota: How many sites would you ¢nd in the rest of the protein with low

potential cleavage sites? The criterion appears pretty weak.
Margalit: It looks very weak, because we found only two positions at each side.

We looked at 50 positions at each side and we didn’t ¢nd any signi¢cance in any of
the other positions. The degradation studies initially found additional signi¢cant
positions at the N-terminal region of the cleavage site, and not in the C-terminal
region. This ¢ts nicely with the experimental results. There is a recent paper on the
immunoproteasome in which Schild and colleagues also ¢nd that the main
contribution is in the P1 and P1’ position, and with very weak contributions
from other residues (Toes et al 2001). It is a very weak signal. I believe that other
residues in the £anking regions have some in£uence, but we haven’t found it yet. I
wanted to raise for discussion the issue of howwe integrate all this into a prediction
scheme that integrates TAP binding and theMHC.We could do this, rank ¢rst the
peptides by their cleavage potential and then by binding scores. The cleavage
provides an additional parameter.
Beck: At the beginning you commented that the eluted peptide data

can also be used to validate genome annotation or gene prediction. This
is an interesting point, and it has not been taken up by the genome community
so far. It probably also depends on how big the databases are that contain
these sequences of experimentally determined peptides rather than predicted
peptides.
Margalit:Thiswas an exciting idea, andwewanted to do it, butwe didn’t end up

with 100s of peptides.We had 500 peptideswhichwe succeeded tomatch to human
proteins and human genes. Most of them were known and had already been
annotated. We were left with 30% of the 500 genes.
Beck: That’s a signi¢cant proportion. If we could add even a fraction of this to

the annotation, it would give a lot of additional value. How big is the data set of all
known eluted peptides?
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Stevanovic¤ : It is hard to be precise, but it is several hundred.
Beck: Presumably it will be di⁄cult to get this ¢gure into thousands of peptide

sequences.
Stevanovic¤ : Too di⁄cult.
Margalit: There are some interesting examples. We found two peptides that had

a substitution in one position. We looked at the paper describing their discovery,
and they were eluted from the same cell. We found that they matched two
paralogue proteins. This means that these two paralogue proteins were both
expressed in that cell.
Beck:Which is the best database to look for these eluted peptides?
Brusic: The best database of eluted peptides is SYFPEITHI.
Rammensee: You mentioned that the N-terminus of the peptides produced

by the proteasome might be selected for ¢tting well to TAP. There is an arginine
at the N-terminus which then binds well to TAP. But there are aminopeptidases
also in the cytosol, and they would compete with TAP for the N-terminus of these
peptides.
Margalit: This is all based on the premise that there is very little trimming in the

cytosol.
Rammensee:We can’t assume this. Jack Bennink and Jonathan Yewdell showed

convincingly that a peptide brought into the cytosol is rapidly degraded. It can
only be degraded by peptidases. We have to assume that the half-life of free
peptides in the cytosol is very short. We cannot assume that they are running
around for a long time.
Perelson:What do you mean by very short?
Rammensee: Two or three minutes, I suspect.
Margalit: So how would you explain this impressive compatibility between the

preferences for the ¢rst residuewithTAP and the P1’ position of the proteasome. It
is an impressive coincidence.
Kesmir: One explanation is that people have shown that the immuno-

proteasomes can co-localize with TAP.
Rammensee: In general, I would conclude from this that the speci¢city of TAP is

the least important of the three components�proteasome, HLA and TAP.
Petrovsky: I can’t see how you can say that TAP has the least speci¢city or is the

least important. The proteasome is much less speci¢c than TAP in terms of its
cleavage sites and does not have a de¢ned motif unlike TAP or MHC. Also, TAP
is the major route into the MHC class I pathway and therefore acts as the
gatekeeper. This is a highly important role as shown by the lack of class I
expression when TAP is knocked out.
Rammensee: You need to distinguish between our ability to predict something

and the mechanism. The proteasome is very conserved in its cleavage, the TAP
also. Both have to work with very polymorphic MHC molecules. Maybe the

94 DISCUSSION



speci¢city of TAP is so well adapted to that of the proteasome that if the
proteasome makes a peptide it is guaranteed that TAP collects it.
Petrovsky: That’s a better way of putting it.
Margalit: So we don’t need a predictive scheme for TAP.
Petrovsky: If TAP predicts proteosome and proteasome predicts TAP, and TAP

prediction works much better, one could dispense with the proteasome prediction
rather than the other way around.
Brusic: If proteasome cleavage is probabilistic, then this process will

produce more of some peptides, but altogether it will produce all di¡erent
peptides.
Kesmir: I didn’t say it is probabilistic but it does have a stochastic component, so

you can’t reproduce your experiments 100%.
Brusic: When we examine all known HLA class I-binding peptides all amino

acids will be represented at N-termini of the peptides.
Borras-Cuesta: If one assumes that the C-terminal amino acid is due to the

cleavage by the proteasome, then in principal the C-terminal amino acid of all the
di¡erent motifs should be hydrophobic. Is this the case?
Kesmir: No. You can’t say that the proteasome only cleaves after hydrophobic

residues. Consider that the proteasome was there to degrade the proteins. The best
way to degrade a protein is to be as non-speci¢c as possible. Then came the
immunoproteasome, but there are some cells that express the immuno-
proteasome all the time. The main function of the immunoproteasome is still to
degrade the proteins. This is very important for the cell. It has preference for the
hydrophobic residues but it still cleaves after other residues. If you make a kind of
population study on your MHC binding markers, look at the diversity of amino
acids on the ninth position and compare it with the second position, you will see
that on the second position there are more diverse amino acids than on the ninth
position.
Borras-Cuesta: If you have this type of processing, you would need mainly

hydrophobic residues in the C-terminus.
Margalit:Why? It also cleaves after basic residues.
Borras-Cuesta:Wouldn’t it bemore logical to assume that it binds toMHCand is

then trimmed o¡ from the ends.
Rammensee: The proteasome is in a di¡erent place than the MHC. There are

MHC molecules that like hydrophobic ends, those that like basic ends, those that
like acidic ends (we are not aware of them because they are in the chicken).
Sch˛nbach: One should also look at the amount of disorder in proteins to see

whether there is any association between the preference for proteins cleaved by
the proteasome and the degree of disorder. Disordered proteins seem to be more
prone to degradation (Iakoucheva et al 2001). There is a preference for certain
amino acids (e.g. PEST sequence).
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Petrovsky: Isn’t there an intrinsic contradiction here? Because you have done
your analysis on MHC binding peptides, you are presuming that there is no
trimming because otherwise your analysis is invalid. You are saying this is what
is transported in, so pre-trimming must be occurring.
Margalit: There is no trimming after the proteasome cleavage.
Rammensee: Not at the C-terminus, but there is trimming at the N-terminus.

That’s what we agree on.
Brusic:What about all the reports that state that there are some peptides whose

C-termini actually protrude out of the groove when they are bound to class I
MHCs?
Rammensee: There was one peptide on B27 that was very long and that was

recognized by antibody.
Brusic: There was another 10-mer peptide one that had glycine at position 10

protruding out of the groove.
Stevanovic¤ : In the experiments done inHansj˛rg Schild’s lab, several proteins and

many precursor proteins have been digested by the proteasome. We really found
that every amino acid that you can think of can be a cleavage site of the proteasome.
We even found cleavage after and before proline and glycine. Hydrophobics are
preferred, but cleavage can occur at any site.
Margalit:This is good, because the role of the proteosome is to degrade proteins.
Borras-Cuesta: What makes the di¡erence? You end up with the hydrophobic

residues. Whatever the mechanism, hydrophobic residues are found at the
C-terminus of processed peptides.
Stevanovic¤ : The peptides bind to MHC molecules by hydrophobic residues.

There is a very strong bias to hydrophobic C-termini. But the proteosome is
creating peptides with any kind of C-terminal amino acid.
Petrovsky: This means that your predictions can never go beyond the bias. You

will never go beyond 60% because you can’t. Essentially you are saying that it
could be cutting anywhere.
Rammensee:This is a matter of the amount of quanti¢ed data we put in. Thenwe

get to a certain probability which will never be 100%.
Petrovsky:What it is saying is that it can cleave anywhere, so there is a slight bias

which can be predicted, which gets us to 60%. But it doesn’t matter how many
additional data there are, they will show that the proteasome can ultimately cut
anywhere although it is more likely to cut in some places than others.
Stevanovic¤ : If you include the quantitative data then it is just a question

of distinguishing between speci¢city and sensitivity. If you set the
threshold rather low then you get any cleavage perfectly, but you have 300
cleavages in a proteasome. If you minimize the potential cleavages in the
proteasome by your prediction threshold to 10, then perhaps you miss 80% of all
cleavages.
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General discussion I

Rammensee:I’d like towelcome discussion of general points regarding the papers
we have heard so far.What we can agree on is that we have a lot of data to work on,
but the connectivity between the data and databases needs to be optimized. But we
still don’t have enough data, and sometimes it is hard to generate hard data to put
into prediction models.
Kesmir:We started the day with a classi¢cation of immunoinformatics into two

branches: soft and semi-soft. How can we join these two di¡erent approaches? Is it
possible to combine the mathematical models and computer simulations of the
immune system with the sequence analysis-based work? We should discuss this.
Aminopeptidase activity that we have just been hearing about is a good example,
because these peptidases don’t have a great speci¢city, but it is a matter of how
much they can access the peptide. This gives the end result of the trimming. We
can only work out how long the peptides come into contact with peptidases if we
make mathematical models of how peptides are generated, how they are
transported to the endoplasmic reticulum (ER), how fast they bind to MHC and
so on.
Rammensee: I think the answer to your question is rather easy. The test of any

mathematical model is the experiment.
Kesmir:What I am saying is that with amathematicalmodel we can estimate how

much peptide can be exposed to aminopeptidase, and then we can include this into
our optimal epitope predictions.
Rammensee: This would be di⁄cult.
Bernaschi:Hans-Georg Rammensee, fromwhat you say it sounds like it is simple

to test model predictions by experiments. My understanding is that it is very
di⁄cult to make a good experiment in immunology.
Rammensee: I wasn’t suggesting that the experiments are easy.
Bernaschi: If I want to know the half-life of a T cell, for example, I don’t have an

easyway to answer this question.There should bemore interaction between people
in the lab and those making mathematical models. It is not as simple as one person
making a model and then this being tested by an experimenter. Often it is not
possible to make a good model because of a lack of speci¢c data. Other times
there are too many data, and it is di⁄cult to identify the right ones to use.
Slightly di¡erent approaches should be used to provide a methodology for
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¢nding the right information required by peopleworking onnewmodels, and then
the model should be tested.
Rammensee:As I tried to say earlier, for somemodelling there is no way to prove

its accuracy. For instance, modelling the half-lives of T cells. This belongs to the
‘soft’ branch of immunoinformatics.
Kesmir:Nonetheless, we can still use that estimate. It is better than just sayingwe

don’t know.
Brusic:There are deterministic and statistical questions that a researchermay ask.

Some questions can be answered by speci¢c experimental methods while others
need to be treated statistically. We know very well that before elections pollsters
take a sample of say 1000 voters and can predict the outcome of the election fairly
accurately. In biology we can do the same for certain problems, but we need to
know the limit of these predictions and how they can be applied. If we can do
direct experimental validation, then it is a deterministic problem. The
explanation of many deterministic measurements typically requires a statistical
approach.
Bernaschi:This raises another interesting point.What is themeaning of statistics?

If you consider that you areworking in a ¢eldwith 40million peoplewith a speci¢c
disease and you build your statistical models from just 10 people, does this make
any sense? The answer is no. But it is the only thing you can do in an experiment.
Rammensee: It depends on the di¡erence between the two groups, I guess, and

the type of experiment.
Lefranc: Nick Petrovsky, I was quite interested by your slide describing all the

steps needed for sharing experimental and clinical data between labs and clinicians.
At the end of your slide there were two headings. One was managing laboratory
information and the other was protecting clinical data. These are two areas where a
lot ofwork remains to be done. Could you comment on the kinds of standards to be
set up?
Petrovsky: What I was saying was that it is very hard to assess information

coming out of a lot of di¡erent laboratories. Although in their publications
people are meant to describe enough information in their methods for other
people to be able to reproduce those experiments, we all know this can be very
di⁄cult. This is mainly because if people said exactly what they did, the methods
section would end up being huge. Similarly, with clinical data the problem is that
they are generally very incomplete. If you go to any clinical databases they are very
much biased by the clinician and their ideas about the disease. In fact, if you talk to
two clinicians they may actually de¢ne the disease quite di¡erently. As we get
laboratory data, such as those provided by gene expression arrays, it will be hard
to match this precise information up with clinical information if the latter is
imprecise. We are saying that we need to ensure that both sets of information are
precise and standardized.At that point it will be possible to bring the two together.
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People are currently trying to bring together expression data and disease data, and
one of the reasons they are ¢nding this problematic is that there is so much
imprecision and lack of standardization in both data sets. We need to try to
introduce standards and get some consistency in diagnostic criteria and clinical
attributes so that we can interpret the laboratory data in a more consistent way.
DeLisi: Expression arrays can achieve this: they can stratify diseases that were

previously thought to be the same disease. Particularly with neurological diseases
this is a serious problem. Imaging will help there, but one needs to ¢nd hard
phenotypic correlates of what is going on genetically.
Lefranc: To make the clinical data more precise, any available phenotypic,

serological or genetic markers related to a gene should be entered. At the
beginning of the 1980s when we sequenced the immunoglobulin IGHG and
IGHA genes, we cloned and sequenced genes from individuals for whom we had
previously analysed the familial pedigree and determined the Gm allotypes by
serological typing. In many cases, unfortunately, a lot of information was lost
because many labs which cloned and sequenced genes at that time were not
concerned by the genetic information and polymorphisms (serological, RFLP,
etc.) associated with their clone or phage sequences. Coming back to the clinical
side, what kind of standard information do you see for the future? What is the
minimum level of information that needs to be collected?
Petrovsky: If you are researching a disease from the laboratory viewpoint, you

need to ensure the clinicians you are working with are able to give you the
classi¢cation of disease that they are using. Increasingly, clinicians are trying to
agree on common diagnostic criteria. Someone who runs an assay has to be able
to reference it in order to publish it. If a clinician tells you that this is a group of
patients with a particular type of rheumatoid arthritis, you should demand a
reference for how they were classi¢ed as being in that particular subgroup. If
they can’t, then you have a problem. Many clinical groups have decided that they
need a system for classifying particular diseases and have developed internal
guidelines on classi¢cation. Once a group of experts has agreed on a system, then
everyone else generally eventually adopts it.
Kellam: This already exists in some diseases, for example the lymphomas and

leukaemias, which have international recognized standards for diagnosis and
classi¢cation.
Petrovsky: It is like annotation. As long as they can say which guidelines they are

using, people can then go back to the source and work out what they are dealing
with. As long as they can reference the source, that should be ¢ne. As scientists we
will have very noisy data if the person giving us the clinical samples we are using in
our studies isn’t classifying them according to some sort of de¢ned criteria.
Gulukota: In some of the microarray communities they use strict classi¢cations

such as that given in the commercial package SNOMEDwhich has an ontological
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classi¢cation for much of medicine i.e. pathologies, tissue anatomy, drugs etc.
Something of this sort could be developed in the open standards community in a
manner similar to Gene Ontology.
Kellam: I think SNOMED is designed to be this: the equivalent clinical

description to Gene Ontology.
Gulukota: The problem with SNOMED is that it isn’t free.
Kellam:There is an open-source equivalent available. There are somemicroarray

pages as well for clinical annotation. Again, it is di⁄cult to get everything
annotated retrospectively.
DeGroot:The problem is that most of the clinical information is hand-written in

doctors’ scribble.
Petrovsky: SNOMED ismore a dictionary than it is a set of diagnostic criteria for

each disease. It still leaves the diagnosis to the clinician in their individual
judgement, which is not annotatable, unless you annotate the name of the
diagnosing clinician!
Gulukota: I agree. Often clinical trials don’t just say what the disease is but also

have explicit inclusion and exclusion criteria. These are fairly rigorous. We might
need to have something like this in mind when we are investigating a particular
disease from a collaboration point of view.
Rammensee: Our task is to talk to the clinicians and tell them what kind of

information we need for our di¡erent purposes. I don’t think we can generalize
about the conditions which our clinical partners have to follow. We are not the
right people to do this.
DeGroot:What will happen is that as they come to us for an explanation, wewill

say they need to start collecting HLA data if you want us to explain why your
therapeutic proteins are causing side e¡ects, for example. There will be an
evolution and this will be important. I think also that there is an acceptance of
immunoinformatics which is key here. Vladimir Brusic pointed out that a few
years ago we were looking at a black box. There has been a change in the
acceptance of this technology so we are now in a position to start asking for some
better data.
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Computational vaccinology:

quantitative approaches

Darren R. Flower, Helen McSparron, Martin J Blythe, Christianna Zygouri,
Debra Taylor, Pingping Guan, Shouzhan Wan, Peter V. Coveney*1, Valerie Walshe,
Persephone Borrow and Irini A. Doytchinova

Edward Jenner Institute for Vaccine Research, High Street, Compton, Berkshire, RG0 7NN
and *Centre for Computational Science, Department of Chemistry, Queen Mary, University of
London, Mile End Road, London E1 4NS, UK

Abstract. The immune system is hierarchical and has many levels, exhibiting much
emergent behaviour. However, at its heart are molecular recognition events that are
indistinguishable from other types of biomacromolecular interaction. These can be
addressed well by quantitative experimental and theoretical biophysical techniques, and
particularly by methods from drug design. We review here our approach to
computational immunovaccinology. In particular, we describe the JenPep database and
two new techniques for T cell epitope prediction. One is based on quantitative structure^
activity relationships (a 3D-QSAR method based on CoMSIA and another 2D method
based on the Free^Wilson approach) and the other on atomistic molecular dynamic
simulations using high performance computing. JenPep (http://www.jenner.ac.uk/
JenPep) is a relational database system supporting quantitative data on peptide binding
to major histocompatibility complexes, TAP transporters, TCR-pMHC complexes, and
an annotated list of B cell and T cell epitopes. Our 2D-QSAR method factors the
contribution to peptide binding from individual amino acids as well as 1^2 and 1^3
residue interactions. In the 3D-QSAR approach, the in£uence of ¢ve physicochemical
properties (volume, electrostatic potential, hydrophobicity, hydrogen-bond donor and
acceptor abilities) on peptide a⁄nity were considered. Both methods are exempli¢ed
through their application to the well-studied problem of peptide binding to the human
class I MHC molecule HLA-A*0201.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 102^125

One of the principal goals of immunoinformatics, a newly emergent branch of
bioinformatics focusing on immunobiology problems, is to develop
computational vaccinology (computer-aided vaccine design or CAVD) as a
practical science for the discovery of new vaccines. The recognition of antigenic
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epitopes, either small discrete T cell epitopes or large conformational epitopes
recognized by soluble antibodies or B cells, is the key molecular event at the
heart of the immune response. Within the context of cellular immunology,
peptide immunogenicity is contingent upon the ability of epitopes to bind major
histocompatibility complexes (MHC) and to be recognized subsequently by T cell
receptors (TCR). Traditionally, T cell epitopes have been identi¢ed by examining
immune responses to overlapping peptides generated from target antigens.
Logistically, this process becomes prohibitive when studying the thousands of
gene products found within microbial genomes, and recourse to computational
analysis is required to reduce subsequent experimental work. It is well known that
only peptides making high a⁄nity interactions with MHC molecules are
recognized as T cell epitopes (Sette et al 1994). In terms of a competition assay,
the IC50 must be less than 500 nM. Thus MHC-binding prediction is a necessary
preliminary to the identi¢cation of T cell epitopes. The accurate prediction of B
and T cell epitopes, around which modern polyepitope vaccines are constructed,
is a pivotal challenge for CAVD. While the prediction of B cell epitopes remains
primitive (Alix 1999), or depends on an often-elusive knowledge of protein
structure (Thornton et al 1986), a broad spectrum of sophisticated methods for
the prediction of T cell epitopes has evolved (Flower et al 2002). These began
with early motif methods (Sette et al 1989), and have grown to exploit both
qualitative or semi-quantitative approaches, typi¢ed by neural network
classi¢cation methods (Honeyman et al 1998), and a variety of more
quantitative approaches (Parker et al 1994, Rognan et al 1999, Doytchinova &
Flower 2002a).
We review here our quantitative approach to the rapidly evolving ¢eld of

computational vaccinology, and include discussion of recent updates to our
JenPep database and the application of two powerful techniques for T cell
epitope prediction. One is based on a quantitative structure^activity relationship,
or QSAR, approach, implementing both 2D and 3D methods (Doytchinova &
Flower 2001, 2002b, Doytchinova et al 2002), and the other on atomistic
molecular dynamics simulations using high performance computing.

JenPep

JenPep is an integrated relational database system for functional and quantitative
data on peptide binding within immunobiology (Blythe et al 2002) and is the ¢rst
of its type to concentrate on thermodynamic measurements, thus complementing
the existing system. The database is available free via the Internet (http://
www.jenner.ac.uk/JenPep). The current version of JenPep (version 2.0) is
composed of ¢ve types of data: (i) quantitative measures for peptides binding to
class I and class II MHC; (ii) a compendium of T-cell epitopes; (iii) quantitative
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measures for peptide binding to theTAPpeptide transporter; (iv) a⁄nitymeasures
for the formation of the peptide^MHC^TCR complex; and (v) a compilation of B
cell epitopes. The size of the database is outlined in Table 1. Version 2.0 is
implemented in a bespoke system using open source postgreSQL as the database
engine and a graphical user interface (GUI) written in perl/HTML. Together with
the peptide sequence, JenPep includes various kinds of binding measure, MHC
restriction and the protein sequence from which the peptide originates. Data on
T and B cell epitopes are currently limited to a list of binders and, in this context,
we rely on the judgement of experimental immunologists to de¢ne what are, or are
not, epitopes.
We should like to extend JenPep to allow analysis of non-natural mutants of

MHC molecules and non-amino acid ligands of MHC molecules, such as post-
translationally modi¢ed peptides, as well as complementing our thermodynamic
data with kinetic data on peptide binding. Another addition to our cellular
immunological data would be information on other immunological recognition
events, such superantigen binding to MHCs and TCRs and the interaction of cell
surface co-receptors.
We also look forward to the daywhen immunologists submit their experimental

binding data to an online archive, such as ours, much as today’s molecular
biologists must submit their data to a publicly curated sequence database. Taking
a lead from the Interpro Project (Apweiler et al 2002), one can envisage an inter-
national collaboration aimed at producing a broadly focused immunogenicity
database. In Interpro, existing databases of sequence families, such as PRINTS
(Attwood et al 2002), have been combined to produce a more complete coverage
of known sequence families, combining annotation details from the di¡erent
component databases. A similar super-database, incorporating, inter alia, JenPep,
SYFPEITHI (Rammensee et al 1999), the HIV Molecular Immunology database
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TABLE 1 Epitope data

Peptide class

Total
number of
peptides

Length a

distribution Class I b
Length a

distribution Class IIb
Length a

distribution

B cell Epitope 816 3^47

T cell Epitope 3218 7^35 2060 7^24 1158 8^35

MHC binding 12336 4^28 6411 4^23 5925 7^28

TCR^pMHC 49 8^20

TAP Transporter 441 7^15

aRange in amino acids
bNumber of peptides



(Korber et al 2002), and FIMM (Sch˛nbach et al 2000), into a comprehensive
database of immunogenic peptides, is the obvious immunological counterpart to
Interpro.

QSARmethods for binding a⁄nity prediction

QSAR methods are powerful tools for the prediction and rationalization of
structure-property relationships within physical science, and have proved
particularly successful within pharmaceutical research. The fundamental
objective of QSAR is to take a set of molecules, for which a biological response
has been measured, and using statistical, or arti¢cial intelligence methods, such as
an arti¢cial neural network or genetic algorithm, relate this measured activity to
some description of their structure. The outcome, then, of a QSAR study are
equations that relate, through statistically sound and hopefully predictive
models, the activity, or, more generally, the biological responses or physical
properties, of a set of molecules to their molecular structure. Their ability to
provide mechanistic explanations is dependent on the form of the particular
molecular description. There are two areas of technical development with
QSAR: the development of new, and hopefully improved, descriptions of
molecular structure and the development of new statistical or arti¢cial
intelligence methods which can relate these descriptions to some measured
biological or physical property. We have developed or applied two techniques
from QSAR. One is based solely on the sequence of peptides, this is a 2D QSAR
technique which we call the Additive method (Doytchinova et al 2002). The
second technique is based on CoMSIA (Klebe et al 1994), and is a 3D QSAR
technique using the 3D coordinates of bound peptides (Doytchinova & Flower
2001, 2002b).
The additive method exploits the Free^Wilson concept, a well-established

QSAR technique (Free & Wilson 1964), whereby each substituent makes an
additive and constant contribution to the biological activity irrespective of
structural variation in the rest of the molecule. The independent binding of
sidechains (IBS) hypothesis, developed by Parker et al (1994) is the
immunological counterpart to the Free^Wilson concept. We have extended this
concept by adding additional terms that account for near neighbour side-chain
interactions. The binding a⁄nity of a peptide will depend on contributions from
each amino acid as well as the interactions of adjacent and every second side-chain:

binding affinity ¼ const þ
X9

i¼1

Pi þ
X8

i¼1

PiPiþ1 þ
X7

i¼1

PiPiþ2, (1)
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where the const accounts, albeit nominally, for the peptide backbone contribution,
S9
i¼1Pi is the sum of amino acids contributions at each position, S8

i¼1PiPiþ1 is
the sum of adjacent peptide side-chain interactions, and S7

i¼1PiPiþ2 is the sum
of every second side-chain interaction. This choice of parameterization is
based on the observation that HLA-A*0201-bound peptides assume extended
but twisted conformations, so that adjacent side-chains point in essentially
opposite directions: both 1^2 and 1^3 interactions are possible between side-
chains.
In our initial application, we extracted from JenPep 420 IC50 values for 340

nonamer peptides sequences that bound to the HLA-A*0201 molecule. As is
common practice amongst QSAR practitioners, IC50 values were converted to p-
units (negative decimal logarithm). Themechanistic details of the additivemethod
are outlined in Fig. 1. A term is equal to 1 when a certain amino acid at a certain
position, or a certain interaction, exists, and 0 otherwise. As the columns are more
numerous than the rows, the equations were solved using PLS and their predictive
power assessed using cross-validation and multiple linear regression parameters
(see Table 2). The contributions made by individual amino acids and by certain
interacting side-chains at particular peptide positions are shown in Fig. 2. We
have subsequently applied this method to a variety of other alleles, the results of
which will be published separately. The statistics for these models are shown in
Table 3. Moreover, we have developed an internet server, called MHCPred,
which implements the additive method. It is available over the Internet at http://
www.jenner.ac.uk/MHCPred (see Fig. 3).
One of the most reliable methods for investigating the structure^activity trends

within sets of biological molecules is 3D-QSAR. The explanatory power of 3D-
QSAR methods is considerable, manifest not only in their accurate prediction of
binding a⁄nities, but through their capacity to display advantageous and
disadvantageous 3D interaction potential mapped onto the molecular structure
being investigated. We have applied a 3D-QSAR method (CoMSIA) to gain an
understanding of the relationship between certain physicochemical properties
(volume, electrostatic potential, local hydrophobicity and hydrogen-bond donor
and acceptor abilities) and the a⁄nities of HLA-A*0201 binding peptides.
266 9-mer peptides were analysed using CoMSIA. As before, their IC50 values

were taken from JenPep and converted to p-units. All molecular modelling and
QSAR calculations were performed on a Silicon Graphics octane workstation
using the SYBYL 6.7 molecular modelling software. The X-ray structure of the
nonameric viral peptide TLTSCNTSV39 was used as the template onto which
all structures were built. Five similarity indices were calculated, using a common
probe atomwith 1— radius, charge+1, hydrophobicity +1, hydrogen-bond donor
and acceptor properties +1. The predictive power of the ¢nal model was assessed
using the same statistical parameters as for the additive method. Leave-one-out
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cross-validation (LOO-CV), CV in two and ¢ve groups, and a bootstrap analysis
(20 runs) were performed.
The model was improved by excluding a limited number of very poorly

predicted peptides in a stepwise manner, beginning with the peptide with the
highest residual. The ¢nal CV model had signi¢cantly higher parameter values:
q2 = 0.683 at 7 components and r2 = 0.891. This model was used to predict the
binding a⁄nities of the excluded peptides. The predictions improved for both
well-predicted and poorly predicted peptides. The mean jresidualj value for this
model was 0.489. The stability of the ¢nal CoMSIA model was tested by CV in
two and ¢ve groups. The mean q2 for 20 runs for CV in ¢ve groups was 0.656,
which is close to the LOO-CV value. The ‘leave-half-out’ CV gave a lower value
for q2 (themean of 50 runs is 0.558), which remains close to the other q2 values, and
r2bootstrap¼0.924. The non-cross-validated CoMSIAmodel was used to display the
coe⁄cient contour maps. Results were visualized using the ‘StDev*Coe¡’
mapping option contoured by actual values (see Fig. 4). We have subsequently
applied this approach to other alleles, the results of which we will publish
separately. The statistics for our CoMSIA models are shown in Table 4.

Atomistic molecular dynamic simulations

The growth of computer power during the last two decades has allowed
biologically interesting systems to be studied using atomistic molecular dynamics
methodology. We are still faced, however, with problems concerning the short
duration of simulations possible on current serial machines. Many approaches
have been tried to circumvent these limitations, but only with restricted success.
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TABLE 2 Statistical parameters for the HLA-A*0201 additive model

Number of peptides¼340

Number of components¼5

q2¼0.337

SEP¼0.726

r2¼0.898

SEE¼0.285

F¼588.883

RESIDUALS:

50.5 172 peptides 50.5 %

0.5^1.0 128 peptides 37.5 %

41.0 40 peptides 12.0%

jResidualj¼0.573 (SD = 0.442)



Almost any attempt to reach longer time scales will result in more approximations
in the model. Previous attempts to utilize molecular dynamics and other atomistic
simulation methods to investigate peptide MHC interactions have foundered on
such technical limitations. Many methods exist which predict thermodynamic
properties from simulations, but typically take an unrealistically long time:
simulations yielding a free energy of binding require at least 10 nanoseconds. An
average desktop serial workstation requires a compute time in the order of 300
hours per nanosecond. With down-time, simulating a few dozen peptides might
occupy a machine for several years.
To escape these limitations, we might take advantage of high performance,

massively parallel implementations of molecular dynamic (MD) codes running
on supercomputers with 128, 256 or 512 nodes. We are pursuing this goal within
the context of grid computing: an ambitious global e¡ort to develop an
environment where individual users access computational or data resources
simply and transparently, irrespective of their location, and which is named by
analogy with the national power transmission grid. If one desires to switch on a
light or run a refrigerator, one is not required to wait while su⁄cient current is
downloaded, thus grid computing seeks to make available all necessary compute
power at the point of need. As part of the RealityGrid Project (http://
www.realitygrid.org), we are using an implementation of the popular molecular
dynamics force-¢eld AMBER, as implemented in LAMMPS, a specially written
parallel molecular dynamics program, to simulate solvated A*0201 peptide
complexes as an initial test of this approach. Biomolecular simulations show
signi¢cant acceleration relative to single processor runs (see Table 5), reducing
the time needed to simulate a nanosecond to 12 hours. We intend to utilize such
performance gains to run large simulations for a su⁄cient duration that atomistic
simulation of peptide^MHC complexes will become a realistic tool in epitope
prediction.

Discussion

We have described the continuing development of quantitative approaches to the
prediction of MHC binding built around data in JenPep, our database of binding
measures. Despite the di¡erences between the additive method and CoMSIA, we
found good agreement between results generated by these techniques. CoMSIA
can extrapolate, predicting the a⁄nity of a peptide with an amino acid absent in
the initial training set, but it can not assess the relative contribution of individual
amino acids nor the interactions between them. The opposite is true for the
additive method: it extrapolates poorly, but gives a good assessment of the
contributions made by amino acids. Thus the results of our methods are
complementary: they give greater insight when used together.
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In developing these methods, we have encountered technical challenges that are
only rarely encountered in QSAR analyses of small molecules. These include the
number of molecules investigated, perhaps 10 times that for a small molecule
study; the very size of the peptide molecules being studied; and the great
diversity of physicochemical properties associated with each peptide. Since it is
clear from crystallography that there are only minor di¡erences in backbone
conformation for nonamer peptides, we have avoided the thorny issue of
molecular alignment in our CoMSIA studies by assuming a constant backbone.
As most peptides are well predicted, variations in the binding conformation do
not seem signi¢cant.
We have also extended thesemethods to address a number of related problems in

immunobiology. For example, we have used both the CoMSIA and additive
methods to re¢ne A2 and A3 peptide-binding super-types (Doytchinova &
Flower 2002c, 2003, Guan et al 2003a,b). We are also using in-house
experimental cell surface stabilization assays to test out the predictivity of our
modelling approach (Walshe, Doytchinova, Borrow and Flower, unpublished),
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TABLE 3 Model statistics for additive method

A*0101 A*0201 A*0202 A*0203 A*0206

n 95 335 69 62 57

q2 0.42 0.377 0.317 0.327 0.475

NC 4 6 9 6 6

SEP 0.907 0.694 0.606 0.841 0.576

r2 0.997 0.731 0.943 0.963 0.989

A*0301 A*1101 A*3101 A*6801 A*6802

n 70 62 31 37 46

q2 0.305 0.428 0.453 0.370 0.500

NC 4 3 6 4 7

SEP 0.699 0.593 0.727 0.664 0.647

R2 0.972 0.977 0.990 0.974 0.983

B*3501

n 50

q2 0.516

NC 8

SEP 0.725

R2 0.996



and to this end we are designing and testing synthetic super-binding peptides as
well as developing comprehensive models for poorly characterized alleles using
experimental design. Furthermore, we are also applying our techniques to the
iterative optimization of heteroclitic peptides as potential cancer vaccines (Rigley
and Flower, unpublished).

Conclusions

Hitherto, a dichotomy of approaches has been apparent in immunoinformatics.
Initially, work in the area was informed by an engineering or computer science
perspective emphasizing the need to solve problems or reach objectives. This is
re£ected in the qualitative, or more precisely, semi-quantitative approach taken
by the creators of databases such as MHCPEP (Brusic et al 1998) or SYFPEITHI
(Rammensee et al 1999) or the users of neural networks as a prediction engine. A
classi¢cation scheme is used here as a data fusion device to agglomerate and
simplify accumulated epitope data. Recently, there has been a move, within the
discipline, towards a quantitative approach (Rognan et al 1999, Doytchinova &
Flower 2002a). To some extent this is grounded in a more physicochemical
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FIG. 3. MHCPred homepage.
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perception, with a focus on the use of direct data, such as IC50s, and a greater
implicit emphasis on explanation, and ultimately, a greater explicit
understanding of underlying molecular mechanisms. Both viewpoints are
increasingly immunologically aware, and are best seen as complementary. To
some extent, the remaining con£icts between these di¡ering perspectives can, in
principal, be reconciled by methods originating, or ¢nding application, in Drug
Design, such asQSARormolecular dynamics. Theymeet both objectives: seeking
to explain and understand without sacri¢cing the ultimate utilitarian value of the
undertaking.
The immune system is hierarchical and many levelled, exhibiting much

emergent behaviour. However at the heart of the phenomena are
straightforward molecular recognition events that are indistinguishable from
other types of biomacromolecular interaction, such as enzyme^inhibitor or
antagonist^receptor interactions. Binding of an epitope to a MHC or pMHC
to a TCR is, at the level of underlying physicochemical phenomena, identical,
say, to the binding of a drug to a receptor protein. Indeed, the terms agonist
and antagonist, commonly used within the immunological community,
originate from pharmacology.
An important corollary to this observation is the emphasis placed on the

important role of non-anchor residues in in£uencing the energetics of peptide^
MHC binding. In contradiction to the dogma extant amongst many
immunologists, it is clear that anchor residues alone cannot account for peptide
binding. Rather it is the combination, albeit weighted, of all amino acids within
the peptide that ultimately determines the observed a⁄nity of binding. Thus it is
only methods which account for all interactions within a quantitative setting that
can properly address the issue of binding prediction.
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TABLE 5 Biomolecular simulations show signi¢cant
acceleration relative to single processor runs

ProcessorNumber Speed up

1 1.00

2 2.07

4 4.42

8 9.19

16 17.79

32 30.58

64 52.02

128 83.23



As part of its ambitious programme, the Edward Jenner Institute for Vaccine
Research is committed to the development of computational vaccinology as a vital
component in the battle against infectious disease. Informatics techniques have
proved their worth time and again in the search for new drugs. The time is
approaching when they will do the same for vaccine design. Methods that allow
us to predict accurately individual epitopes or immunogenic proteins will prove to
be crucial tools for the vaccinologist of tomorrow.
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DISCUSSION

Rammensee: I have a practical question. If you look at the a⁄nity of the knownT
cell epitopes and line them up in order of highest to lowest IC50s, do you see
anything interesting? For instance, are the virus peptides on top and tumour
peptides at the bottom?
Flower:Wehaven’t done this. There is a lot of potential for datamining here, but

you need both the resources and an appropriate motivation to undertake the task. I
would expect that as our database grows we, or others, will do so.
Rammensee: The reason for this particular comparison is that it is thought that

tumour epitopes in general have lower a⁄nity for MHC than virus epitopes. It
would be nice to see this result from your unbiased measurements.
Borras-Cuesta: Up to now we have been talking about predictions. We have not

taken into account what characteristics peptides should have to induce certain
responses. That is, it is known by experiments that a helper peptide that induces
mainly interferons� that is Th1 cytokines�will drive towards cytotoxic
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responses. However, if it is more Th0- or Th2-like, it will drive towards inducing
antibodies. This is very important.When we predict peptides, we only predict that
they bind.We don’t predict that they will achieve their goal. As far as prediction is
concerned, there are two things that need to be taken into account. One is binding
to MHC. The other one�and amazingly we have not taken this seriously� is
recognition by the TCR. What you mentioned about the epitopes in cancer is
correct. Because of clonal deletion in cancer, the T lymphocytes that recognize
the good epitopes are deleted. It is not just that they have to be bad binders; they
can be good binders but poorly recognized, because the deletion is made at that
end. All these people who are so good at predicting should take this seriously
and predict binding to the TCR. It sounds very odd but it can be approximated.
Certain amino acids do tend to have stronger interactions, such as the charged
amino acids. If one considers the positions of proteins that point to the TCR, if
they have these amino acid residues, they might be good candidates for T cell
recognition. I suggest that this should be taken into account. I have written
programs that consider this, but I don’t have a good database to test this. The
idea, however, is a logical one.
DeLisi: We have done that. I published a paper in 1996 looking at the whole

ternary complex (Vasmatzis et al 1996), before the ternary complex was done
experimentally. There are enough ternary complexes now so that by homologous
extension we could probably get pretty good results.
Borras-Cuesta: It is amazing that we talk about prediction without considering

this. If you use a helper peptide that produces interferon and induces a CTL
response, this protects mice from a certain type of cancer. If you immunize with a
peptide that induces response that is Th0 type, it protects partially. If you mix the
helper peptide producing high interferon with the other one which is Th0, then
you are back to square one and you get the same protection as Th0 alone.
Kellam: Is this saying that it is the strength of signalling through the TCR

receptor?
Borras-Cuesta: It is the total e¡ect. It is not just recognition by theTCR. If there is

a lot of peptide presented byMHC, plus a good recognition, that is the best you can
have. It is a chemical problem.
Kellam: And the local cytokine and signalling environment are

important.
Borras-Cuesta: This will probably drive strong interactions. Many people think

that strong interactions will drive towards production of interferon and a Th1-like
response.
Rammensee: This will also depend on background genes. This is the case in the

mouse: in BALB/c and B6 there is a strain-related di¡erence in the Th1/Th2
balance. This needs to be taken into account. Darren Flower, with respect to the
TCR interaction, will it be possible to predict the structure of all 1016 TCRs? For
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each MHC peptide combination, can you work out which of the TCRs would
bind? Is it just a computational problem?
Flower: If you could accurately predict the structures of a peptide^MHC^TCR

complex, you had a big enough computer, and you could run your simulations
for long enough, then I’m sure this would be achievable. However, the most
important thing is to verify constantly what you do by undertaking directed
experiments. You can’t disentangle experiment from prediction. Experimental
scientists will not believe you if you say your predictions work 100% of the time.
You have to do at least some experiments in order to prove your predictions are
accurate.
Gulukota: The lack of computational resources is a bottleneck, but an even

bigger one is our understanding of the physical chemistry. Even given the most
powerful computer we can imagine, we don’t know enough about the interactions
between the atoms.
DeLisi: When proteins fold or complexes form, polar and apolar groups often

move between regions having very di¡erent dielectric properties, e.g. from being
fully solvated in a denatured protein, to the interior of the native form. Such
changes have substantial free energy components. What kind of salvation free
energy functions did you do? Did you use explicit water?
Flower: Yes.
DeLisi: Is this why it has taken so long? Have you tried looking at some kind

of semi-empirical calculation? We have developed several which are very e¡ective
and fast.
Flower:There are obviouslymany things thatwe have yet to try.We are still very

much at the beginning of things.
DeLisi: You are in a position to be able to approach these problems, but you

need to be able to speed up that part of the calculation. If you look into some
e¡ective free energy functions for solvation you might be able to do that. Now
there are three ternary complexes available and you are in a position to start
considering these things.
Flower: We are running a series of benchmarks at the moment so that we can

believe that the results that we obtain from our simulations are essentially the
same as the AMBER force ¢eld implemented in its native code. Once we are
happy that the simulation itself is working correctly we will consider ways of
taking this further and using some sort of solvation model.
Lybrand:Abigger issue here is one that you raised in your paper, and this relates

to the quality of the a⁄nity data you are comparing with. These are not easy
experiments to do. Depending on the method used to measure a⁄nities, or
which lab does them, you get fairly di¡erent answers. When you are in the
process of calibrating the various methods, which you are doing now, this is a
source of great frustration.
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Flower:This is why something like isothermal titration calorimetry (ITC)would
be amuch better way of obtaining data, but it takes a whole day to do a peptide and
is very expensive. Speaking practically, it is not something one could use easily to
measure hundreds of peptides. If you could take that as a gold standard, and
compare the rest of your data with results from ITC, demonstrating good
correlations, this would be a signi¢cant advance. I feel that the quality and
reliability of the data is a limiting factor in studies such as these.
Lybrand: You will need these data, especially if you want to use a technique like

Charles DeLisi implies, involving an empirical or semi-empirical model for
representing the solvent in these systems. It is now well documented that if you
put in all the explicit detail and do exhaustive simulations as you suggest�which
by the way scale a lot better in AMBER than your chart showed�you can get
quantitatively reproducible free energy predictions for large biomolecular
complexes. One of the di⁄culties here is that in a system like a ternary complex,
with the MHC peptide and TCR, the experimental numbers are often all over the
place. Consequently, you don’t know whether you are doing a good job or not.
The technology is here to do these kinds of calculations. These system sizes are no
longer particularly daunting. These are much smaller complexes thanmany people
are now simulating.One of the di⁄culties that I see is that someof the experimental
numbers we have here are still a bit messy, so we don’t know for sure whether we
are properly addressing issues in these systems or not.
Brusic: If the starting points and assumptions are not solid we have a problem.

For example, it is often assumed that T cell epitopes are the only peptides that bind
strongly to MHC molecules. Is this really the case?
Borras-Cuesta: Even if they don’t bind all that well, they can still be

immunogenic because the other side compensates. It is not only binding, but also
recognition by the TCR that matters.
Brusic: We were discussing the QSAR analysis and other data-driven models.

Neural networks can used for QSARs, so can other methods which may overlap.
I consider that bindingmotifs, quantitativematrices, and arti¢cial neural networks
are essentially modelling the very same properties. They are just models that
encode di¡erent levels of complexity. We can take a neural network that models
peptide^MHC interactions and start reducing it. By removing hidden layers and
use a linear activation function, our neural network would become a quantitative
matrix. We can reduce this neural network further by removing connections from
the architecture and get a neural network that is a binding motif. The key issue for
modelling is matching the complexity of biological interaction with the
complexity of the model that simulates that interaction. Currently we have a
variety of computational models, and most of the models that we use are the
simpli¢cation of the real process or system. Another important issue arising from
Darren Flower’s paper is on combiningmultiple methods. For example, we can do
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quick-and-dirty methods for large-scale screening to identify promising targets.
We can then do detailed analysis on the targets of interest using more
complicated modelling methods.
DeLisi:With theTCR themixmay evenbemore complex, because the accessory

molecules provide a lot of the stability for that interaction. In some cases they have
to di¡use over. Basicallywe can view theTCR as just holding the complex together
long enough for some accessorymolecule to di¡use over. The dissociation time has
to be just a little bit longer than the time constant for di¡usion in the membrane in
order for a stable complex to form. It is the ratio of those two rate constants�one
di¡usion in the membrane and the other dissociation� that may ultimately
determine whether you get a stable complex. It is a biologically subtle situation. I
don’t think it is di⁄cult to put those factors in, but it is a little more complicated
than a simple biomolecular reaction.
Flower: If you are looking at whole cells interacting, an important phenomenon

is formation of the immunological synapse, where all sorts of other accessory
molecules are involved in the signal transduction. It is very complicated process
and we are just modelling a very small part of it rather than the whole thing. There
may be many other emergent properties of the system that we are completely
ignoring, and these could be driving what is going on. If we could model the
whole process this would make the prediction much more e¡ective.
DeLisi:There is a subtlety. The reverse rate constant of the T cell receptor could

be critically important. It sets the time scale for whether all those subsequent
processes happen or not. You want to characterize that. It is not just a matter of
the stability of the complex itself. If the rest of those steps take longer than the
dissociation process you wouldn’t get a high a⁄nity. It is an interesting problem.
Lybrand: This is a nice example of where you can merge detailed molecular

modelling with some of the higher-level mathematical models that we have
talked about. Of course, we don’t know all of the rate constants. I am not sure
we either know all of the players involved in what is an incredibly complicated
multimolecular complex� the functional T cell signalling apparatus. My
experimental colleagues who are doing experiments to compare with our
simulations now tell me that depending on di¡erential rates you get dramatically
di¡erent immune responses or read-outs. It gets even more complicated than just
putting in simple binary or ternary rate constants. Again, this is an ideal situation
where you can go from the detailed modelling to a more formal mathematical
model for the entire assembly. This is the kind of thing we are trying to do in a
number of di¡erent systems. You have to deal with what you have got in hand
and can address in a more tangible way, because there are too many other
unknown variables to address all these issues right now.
Flower: It would be nice to simulate twowhole cells interacting, butwe are some

time away from this.
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Lybrand: It may happen sooner than you think.
DeLisi: It dependswhat level you attempt this. If you get phenomenological at a

di¡erent level it might be easier.
Perelson: I have a comment about the level we are at right now. Many of you are

aware of the phenomenon of altered peptide ligands. You can have two peptides
binding the same MHC, and the T cell will interact with both peptide^MHC
complexes with the same free energy change, and yet one will stimulate and one
won’t. This e¡ect depends on the reverse rate constants or equivalently the lifetime
of the peptide^MHC^T cell receptor complex, as Charles DeLisi has pointed out.
We need to know not only the energy of the reaction, but in terms of the functional
response of the T cell the lifetimes of complexes are also very important. Many
studies are involved with trying to optimise the a⁄nity of interactions. When we
start looking at functional responses at the level of the T cell it is not at all clear
when one wants to have the highest possible a⁄nity interaction. Typically if one
is doing this one is restricting the number of T cells that will enter the response.
There tend to bemany fewer T cells that will respond at high a⁄nity.Wemaywant
to look at breadth of response. One might also think about the same issue at the
level of theMHC: towhat extent dowewant cross-reactivity of our peptideswith a
number of MHCs, rather than just designing very speci¢cally for one MHC? For
the functional response we have to worry about both the breadth and the strength
of the response. When we start thinking about system-wide properties, we need to
think of the whole T cell repertoire and how it responds.
Flower: The methods that others, such as Didier Rognan, and ourselves have

been trying to develop will allow you to predict higher binders and lower
binders, and explore the a⁄nity range. We are now starting to gather together
kinetic data so we can begin to model on rates and o¡ rates in a similar way to the
modelling of a⁄nities.
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IMGT, the international

ImMunoGeneTics information

system1, http://imgt.cines.fr
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Abstract. IMGT, the international ImMunoGeneTics information system1 (http://
imgt.cines.fr), is a high quality integrated knowledge resource specializing in
immunoglobulins (IG), T cell receptors (TR) and major histocompatibility complexes
(MHC) and related proteins of the immune system (RPI) of human and other
vertebrates, created in 1989 by LIGM at the Universite¤ Montpellier II, CNRS,
Montpellier, France. IMGT provides a common access to standardized data which
include nucleotide and protein sequences, oligonucleotide primers, gene maps, genetic
polymorphisms, speci¢cities, and 2D and 3D structures. IMGT includes ¢ve databases
(IMGT/LIGM-DB, IMGT/3Dstructure-DB, IMGT/MHC-DB, IMGT/PRIMER-DB,
IMGT/GENE-DB) Web resources (‘IMGT Marie-Paule page’) and interactive tools
(IMGT/V-QUEST, IMGT/JunctionAnalysis, IMGT/PhyloGene, IMGT/LocusView,
IMGT/GeneView, IMGT/GeneSearch, IMGT/StructureQuery). IMGT data are
expertly annotated according to the rules of the IMGT Scienti¢c chart based on IMGT-
ONTOLOGY. IMGT tools are particularly useful for the analysis of the IG and TR
repertoires in physiological normal and pathological situations. IMGT has important
applications in medical research (autoimmune diseases, AIDS, leukaemias, lymphomas,
myelomas), biotechnology related to antibody engineering (phage displays,
combinatorial libraries) and therapeutic approaches (graft, immunotherapy). IMGT is
freely available at http://imgt.cines.fr.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 126^142

The molecular synthesis and genetics of the immunoglobulin (IG) and T cell
receptor (TR) chains is particularly complex and unique as it includes biological
mechanisms such as DNA molecular rearrangements in multiple loci (three for
IG and four for TR in humans) located on di¡erent chromosomes (four in
humans), nucleotide deletions and insertions at the rearrangement junctions (or
N-diversity), and somatic hypermutations in the IG loci (for review Lefranc &
Lefranc 2001a,b). The number of potential protein forms of IG and TR is almost
unlimited.Owing to the complexity and high number of published sequences, data
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control, classi¢cation and detailed annotations are di⁄cult tasks for the generalist
databanks such as EMBL, GenBank, and DDBJ. These observations were the
starting point of IMGT, the international ImMunoGeneTics information
system1 (http://imgt.cines.fr) (Lefranc 2001a) created in 1989 by the Laboratoire
d’ImmunoGe¤ ne¤ tique Mole¤ culaire (LIGM) at the Universite¤ Montpellier II,
CNRS (Montpellier, France).
IMGT is a high quality integrated information system specializing in IG,

TR, MHC and RPI of human and other vertebrates which consists of ¢ve
databases (IMGT/LIGM-DB, IMGT/3Dstructure-DB, IMGT/MHC-DB,
IMGT/PRIMER-DB, IMGT/GENE-DB), Web resources (‘IMGT Marie-Paule
page’) and interactive tools (IMGT/V-QUEST, IMGT/JunctionAnalysis,
IMGT/PhyloGene). IMGT expertly annotated data and tools are particularly
useful for the analysis of the IG and TR repertoires in physiological and
pathological situations. By its easy data distribution, IMGT has important
implications in medical research (autoimmune diseases, AIDS, leukaemias,
lymphomas, myelomas), biotechnology related to antibody engineering, (phage
displays, combinatorial libraries) and therapeutic approaches (grafts,
immunotherapy). IMGT is freely available at http://imgt.cines.fr.

IMGT databases

IMGT/LIGM-DB is a comprehensive database of IG andTRnucleotide sequences
from human and other vertebrate species, with translation for fully annotated
sequences, created in 1989 by LIGM and on the Web since July 1995 (Lefranc
2001a). In July 2003, IMGT/LIGM-DB contained 74 387 nucleotide sequences
of IG and TR from 105 species.
IMGT/LIGM-DB data are provided with a user-friendly interface (Giudicelli

et al 1997). The Web interface allows searches according to immunogenetic
speci¢c criteria and is easy to use without any knowledge of a computing
language (Fig. 1). A selection is displayed at the top of the resulting sequences
pages, so the users can check their own queries (Lefranc et al 1999). Users are able
to modify their request or consult the results with a choice of nine possibilities
(Lefranc 2002). IMGT/LIGM-DB data are also distributed by anonymous FTP
servers at CINES ( ftp://ftp.cines.fr/IMGT/), EBI ( ftp://ftp.ebi.ac.uk/pub/
databases/imgt/) and from many SRS (Sequence Retrieval System) sites. IMGT/
LIGM-DB can be searched by BLAST or FASTA on di¡erent servers (EBI,
IGH, INFOBIOGEN, Institut Pasteur, etc.).
IMGT/3Dstructure-DB is a database which provides the IMGT gene and

allele identi¢cation and 2D graphical representations or Colliers de Perles of
IG, TR, MHC and RPI with known 3D structures, created by LIGM, and on the
Web sinc November 2001 (Ruiz & Lefranc 2002) (Fig. 2). In July 2003, IMGT/
3Dstructure-DB contained 648 entries.
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IMGT/MHC-DB is hosted at EBI and comprises a database of the humanMHC
allele sequences, IMGT/MHC-HLA, developed by Cancer Research UK and
Anthony Nolan Research Institute, London, UK, which has been on the Web
since December 1998 (Robinson et al 2000) and a database of MHC class II
sequences from non-human primates, IMGT/MHC-NHP, curated by BPRC, the
Netherlands, on the Web since April 2002.
IMGT/PRIMER-DB is an oligonucleotide primer database for IG and TR-

MHC, developed by LIGM and EUROGENTEC, Belgium.
IMGT/GENE-DB allows a search by gene name for IG and TR.

IMGTWeb resources

IMGTWeb resources (‘IMGTMarie-Paule page’) comprise 8000 HTML pages in
the following sections: IMGT Scienti¢c chart, IMGT Repertoire, IMGT Bloc-
notes, IMGT Education, IMGT Aide-me¤ moire and IMGT Index.

IMGT scienti¢c chart

The IMGT Scienti¢c chart provides the controlled vocabulary and the annotation
rules and concepts de¢ned by IMGT for the identi¢cation, the description, the
classi¢cation and the numerotation of the Ig and TCR data of human and other
vertebrates (Giudicelli & Lefranc 1999).
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Concept of identi¢cation: standardized keywords. IMGTstandardized keywords for IG
and TR include general keywords, indispensable for the sequence assignments,
and speci¢c keywords, more speci¢cally associated to particularities of the
sequences or to diseases (Giudicelli et al 1997).

Concept of description: standardized sequence annotation. 387 feature labels are necessary
to describe all structural and functional subregions that compose IG and TR
sequences, whereas only seven of them are available in EMBL, GenBank or
DDBJ. Annotation of sequences with these labels constitutes the main part of the
expertise (Giudicelli et al 1997).

Concept of classi¢cation: standardized IG and TR gene nomenclature. The objective is to
provide immunologists and geneticists with a standardized nomenclature per
locus and per species which will allow extraction and comparison of data for the
complex B and Tcell antigen receptor molecules. The concepts of classi¢cation
have been used to set up a unique nomenclature of human IG and TR genes,
which was approved by the Human Genome Organization (HUGO)
Nomenclature Committee (HGNC) in 1999 (Lefranc 2000a,b,c,d, Lefranc
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2001b,c,d).The complete list of the human IG andTR gene names was entered by
the IMGT Nomenclature Committee in GDB, Toronto, and LocusLink, NCBI,
USA, and is available from the IMGT site (Lefranc & Lefranc 2001a,b). IMGT
reference sequences have been de¢ned for each allele of each gene based on one
or, whenever possible, several of the following criteria: germline sequence, ¢rst
sequence published, longest sequence and mapped sequence (Lefranc et al 1998).
They are listed in the germline gene tables of the IMGT Repertoire (Pallare' s et al
1998, 1999, Barbie¤ & Lefranc 1998, Ruiz et al 1999, Folch & Lefranc 2000a,b,
Scaviner & Lefranc 2000a,b).The protein displays show translated sequences of
the alleles (*01) of the functional or ORF genes (Scaviner et al 1999, Folch et al
2000, Lefranc & Lefranc 2001a,b).

Concept of numerotation: the IMGTunique numbering. A uniform numbering system
for IG and TR sequences of all species has been established to facilitate
sequence comparison and cross-referencing between experiments from di¡erent
laboratorieswhatever the antigen receptor (IGorTR), the chain type, or the species
(Lefranc1997,1999).The IMGTunique numbering represents a big step forward in
the analysis of the IG andTR sequences of all vertebrate species. It has allowed (i) a
standardized description of the allele polymorphisms (Lefranc et al1998,1999) and
of the IG somatic hypermutations, and (ii) the rede¢nition of the limits of the FR
and CDRof the IG andTRvariable domains (Lefranc et al 2003).The FR-IMGT
and CDR-IMGT lengths become in themselves crucial information which
characterize variable regions belonging to a group, a subgroup and/or a gene.
Moreover, it gives insight into the structural con¢guration of the domains and
opens interesting views on the evolution of these sequences, since this
numbering has been applied with success to all the sequences belonging to the
V-set and C-set of the immunoglobulin superfamily.

IMGTRepertoire

IMGT Repertoire is the global Web Resource in ImMunoGeneTics for the IG,
TR, MHC and RPI of human and other vertebrates, based on the IMGT
Scienti¢c chart. IMGT Repertoire provides an easy-to-use interface to carefully
and expertly annotated data on the genome, proteome, polymorphism and
structural data of the IG, TR, MHC and RPI. Only titles of this large section are
quoted here. Genome data include chromosomal localizations, locus
representations, locus description, gene tables, lists of genes and links between
IMGT, HUGO, GDB, LocusLink and OMIM, correspondence between
nomenclatures. Proteome and polymorphism data are represented by protein
displays, alignments of alleles, tables of alleles and allotypes. Structural data

comprise Colliers de Perles, FR-IMGT and CDR-IMGT lengths, and 3D
representations (Ruiz et al 2000, Ruiz & Lefranc 2002).
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Other IMGTWeb sections

The IMGT Bloc-notes provides numerous hyperlinks towards the Web servers
specializing in immunology, genetics, molecular biology and bioinformatics
(Lefranc 2000e). IMGT Education and IMGT Aide-me¤ moire provide useful
information for students (¢gures, tutorials). IMGT Index is a fast way to access
data when information has to be retrieved from di¡erent parts of the IMGT site.

IMGT interactive tools

IMGT/V-QUEST

IMGT/V-QUEST (V-QUEry and STandardization) is an integrated software tool
for IG and TR. This easy-to-use tool analyses an input IG or TR germline or
rearranged variable nucleotide sequences (Fig. 3). IMGT/V-QUEST results
comprise the identi¢cation of the V, D and J genes and alleles and the nucleotide
alignments, by comparisonwith sequences from the IMGTreference directory, the
delimitations of the FR-IMGT and CDR-IMGT based on the IMGT unique
numbering, the protein translation of the input sequence, the identi¢cation of the
JUNCTION and the V-REGIONCollier de Perles. The set of sequences from the
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FIG. 3. IMGT/V-QUEST (http://imgt.cines.fr) results. IMGT/V-QUEST compares the input
germline or rearranged IG or TR variable sequences with the IMGT/V-QUEST reference
directory sets. The IMGT/V-QUEST results comprise the translation of the JUNCTION for
rearranged sequences, and also, not shown in the ¢gure, the delimitations of the FR-IMGT and
CDR-IMGT, the protein translation and the V-REGION Collier de Perles.



IMGT reference directory, used for IMGT/V-QUEST, can be downloaded in
FASTA format from the IMGT site.

IMGT/JunctionAnalysis

IMGT/JunctionAnalysis is a tool, complementary to IMGT/V-QUEST, which
provides a thorough analysis of the V^J and V^D^J junctions of IG and TR
rearranged genes (Fig. 4). IMGT/JunctionAnalysis identi¢es the D-GENE and
allele involved in the IGH, TRB and TRD V^D^J rearrangements by com-
parison with the IMGT reference directory, and delimits precisely the P, N and D
regions. Several hundred junction sequences can be analysed simultaneously.
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FIG. 4. IMGT/JunctionAnalysis (http://imgt.cines.fr) results. The IMGT/JunctionAnalysis
results comprise, for each junction, the identi¢cation of the D-GENE and allele, the
identi¢cation of the P and N regions (N1, N2, etc.) and their precise delimitations, and the
junction translation. The CDR3-IMGT numbering is according to the IMGT unique
numbering for V-DOMAIN. Vmut, Dmut and Jmut correspond to the number of mutations
in the input junction sequence by comparison to the germline allele sequences. Ngc is the ratio
of the number of g+c nucleotides to the total number of nucleotides in the N regions. IMGT/
JunctionAnalysis analyses, in a single search, an unlimited number of junctions provided that the
V-GENE and J-GENE allele IMGT names are identi¢ed.



Other IMGT tools

IMGT/PhyloGene is an online package for comparative analysis of IG and
TR sequences (Fig. 5). IMGT/GeneSearch, IMGT/GeneView and IMGT/
LocusView provide a display of physical maps. IMGT/StructureQuery is a tool
for 3D structure analysis of the IG, TR, MHC and RPI.

IMGT-ONTOLOGY and IMGT interoperability

IMGT-ONTOLOGY

IMGT distributes high quality data with an important incremental value added by
the IMGT expert annotations, according to the rules described in the IMGT
Scienti¢c chart. IMGT has developed a formal speci¢cation of the terms to be
used in the domain of immunogenetics and bioinformatics to ensure accuracy,
consistency and coherence in IMGT. This has been the basis of IMGT-
ONTOLOGY (Giudicelli & Lefranc 1999), the ¢rst ontology in the domain,
which allows the management of the immunogenetics knowledge for all
vertebrate species. Control of coherence in IMGT combines data integrity
control and biological data evaluation (Giudicelli et al 1998a,b).
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FIG. 5. IMGT/PhyloGene (http://imgt.cines.fr) resulting phylogenetic tree for the human and
mouse TRGV genes.



IMGT interoperability

Since July 1995, IMGThas been available on theWeb at http://imgt.cines.fr. IMGT
provides biologists with an easy to use and friendly interface. Since January 2000,
the IMGTWWW Server at Montpellier was accessed by more than 210 000 sites.
IMGThas an exceptional responsewithmore than 120 000 requests amonth.Two-
thirds of the visitors are equally distributed between the European Union and the
USA.

Conclusion

The information provided by IMGT is of much value to clinicians and biological
scientists in general (Lefranc 2002, 2003). IMGT is designed to allow a common
access to all immunogenetics data, and a particular attention is given to the
establishment of cross-referencing links to other databases pertinent to the users
of IMGT.

Citing IMGT

Authors whomake use of the information provided by IMGT should cite Lefranc
(2001a) as a general reference for the access to and content of IMGT, and quote the
IMGT home page URL, http://imgt.cines.fr.
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DISCUSSION

Flower: I have not used the IMGTdatabasemuchmyself, but colleagues who are
computationally oriented and also various lab immunologists have said to me that
while this database seems to have a fantastic amount of information, which is
potentially very useful, what they ¢nd di⁄cult is actually searching it. It appears
to be quite di⁄cult to extract speci¢c information in some cases. Are you planning
to improve the querying functions?
Lefranc: IMGT (http://imgt.cines.fr) is an integrated information system

specializing in IG, TR, MHC and RPI, and as such, includes several
databases (IMGT/LIGM-DB, IMGT/PRIMER-DB, IMGT/GENE-DB,
IMGT/3Dstructure-DB, etc.), Web resources (‘IMGT Marie-Paule page’)
comprising 8000 HTML pages, and several interactive tools. Queries by users
can therefore be very diverse. Navigating through the Web resources and using
the IMGT tools is quite easy. Searching the databases is a little more
sophisticated because it requires that the users are aware of the level of
knowledge available in the literature in immunogenetics to make the right query.
IMGT/LIGM-DB, the ¢rst and largest IMGT database, comprises 75 000
nucleotide sequences of IG and TR from human and 104 other vertebrate
species. IMGT/LIGM-DB data are provided with a user-friendly interface
(http://imgt.cines.fr). The Web interface allows searches according to
immunogenetic speci¢c criteria and is easy to use without any knowledge of a
computing language. Selection is displayed at the top of the resulting pages, so
the users can check their own queries. Users have the possibility to modify their
request or consult the results. They can (1) add new conditions to increase or
decrease the number of resulting sequences, (2) view details concerning the
selected sequences and choose among nine possibilities: annotations, IMGT £at
¢le, coding regions with protein translation, catalogue and external references,
sequence in dump format, sequence in FASTA format, sequence with three
reading frames, EMBL £at ¢le, IMGT/V-QUEST (with automatically generated
Collier de Perles), or (3) search for sequence fragments corresponding to a
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particular label. IMGT/LIGM-DB data are also distributed by anonymous FTP
servers at CINES (ftp://ftp.cines.fr/IMGT/) and EBI (ftp://ftp.ebi.ac.uk/pub/
databases/imgt/) and from many SRS (sequence retrieval system) sites. IMGT/
LIGM-DB can be searched by BLAST or FASTA on di¡erent servers (EBI,
IGH, INFOBIOGEN, Institut Pasteur, etc.).
Margalit:Do you curate the data?
Lefranc: I have six people working full time on the IMGT/LIGM-DB

annotations. We daily receive data from EMBL (and, via EMBL, from GenBank
and DDBJ). These data (about 500 sequences a week) are checked, standardized
IMGT keywords are added and data are entered in the IMGT/LIGM-DB database
(at the ‘keyword annotation’ level). Sequences are then annotated by batch. All the
corresponding tables of IMGTRepertoire and the IMGT tools are updated and, if
necessary, new tables and HTML pages are created on speci¢c subjects. This work
is carried out by eight people.When you query the IMGT/LIGM-DBdatabase you
can tell what level of annotation has been provided: ‘keyword annotation level’ or
‘fully annotated’ and, if so, whether it is ‘automatically annotated’ or whether it is
‘annotated by annotators’. ‘Automatically annotated’ in IMGT/LIGM-DBmeans
a level of sequence annotation as high as the one done by the annotators, since the
tools used for the automatic annotations are developed based on the IMGT
Scienti¢c chart rules. However, this only applies to cDNAs from species (human
and mouse) for which all IG and TR genes are known. Genomic sequences from
gene clusters and sequences from other species can only be annotated by the
annotators. Comments based on the literature search are always added manually.
Brusic: Your database is one of the highest quality biological databases. It is

based on serious classi¢cation, ontology and modelling work. Can you tell us
about your struggle for database quality and acceptance by researchers?
Lefranc: It took 10 years to have the immunoglobulin and T cell receptor genes

widely accepted in the genome databases. Indeed, there was a general fear, at the
end of the 1980s, that the IG and TR genes would introduce a bias in the genome
databases by their number.Moreover the generalist databases did not knowhow to
deal with the molecular synthesis and genetics of the IG and TR chains which is
particularly complex and unique since it includes DNAmolecular rearrangements,
nucleotide deletions and insertions at the rearrangement junctions, and
hypermutations in the Ig loci. It was, in 1989, at the 10th International Human
Gene Mapping Workshop (HGM 10) in New Haven, that for the ¢rst time the
human TRG genes on chromosome 7 that we sequenced in 1984^1985 were
entered in the Genome Database (GDB). During that meeting, we demonstrated
that the standards set up, in our lab, for the identi¢cation, the classi¢cation and the
description of the human TRG genes and alleles could be applied to all genes and
alleles of the other IG andTR. This led to the creation in June 1989, at HGM10, of
IMGT. IMGT is now the international reference in immunogenetics, and had, for
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its 10th anniversary, the honour of the Nucleic Acids Research (NAR) cover of the
January database issue. IMGT data annotations for IG and TR of all vertebrate
species are based on the ‘IDENTIFICATION’, ‘CLASSIFICATION’,
‘DESCRIPTION’, ‘NUMEROTATION’ and ‘OBTENTION’ concepts of
IMGT-ONTOLOGY (Giudicelli & Lefranc 1999), the ¢rst ontology in
immunogenetics and in immunoinformatics. The rules based on the IMGT-
ONTOLOGY concepts are described in the IMGT Scienti¢c chart (http://
imgt.cines.fr). In 1999, IMGT gene names and de¢nitions for all the human Ig and
TCR genes, based on the IMGT-ONTOLOGY ‘CLASSIFICATION’ concept,
were approved by the Human Genome Organization Gene Nomenclature
Committee (HGNC) (Lefranc & Lefranc 2001a,b). The IMGT Nomenclature
Committee is delegated by HGNC to assign new IG and TR gene symbols and
alleles, via the IMGT/LIGM-DB database (Wain et al 2002).
IMGT combines data integrity control, biological evaluation and

interoperability with other databases. IMGT/LIGM-DB (75 000 entries of IG
and TR from vertebrates) is complementary to the generalist database SWISS-
PROT (120 000 entries from bacteria, viruses, plants, invertebrates and
vertebrates). Only a few representatives of IG and TR are present in SWISS-
PROT in order to avoid the bias of introducing a large amount of specialized
data in a generalist database. The reciprocity with the genome databases works
quite nicely. However we have to be aware that data are harvested automatically
in the generalist genome databases. At the beginning the data in LocusLink were
very clean with just one IMGT reference sequence entered manually for each IG
and TR gene. Now it isn’t possible to recognize which one is the IMGT reference
sequence. GDB has been much more cautious and had identi¢ed the IMGT
reference sequence as Seq.@IMGT: For us the concept of reference sequence is
important. The IMGT reference sequences for IG and TR have been de¢ned
based on one or, whenever possible, several of the following criteria: germline
sequence, ¢rst sequence published, longest sequence, mapped sequence.
Interestingly, most of the human IG and TR genes had been sequenced before
the human genome project. When the complete genome was published we
already had identi¢ed most of the reference sequences. We are con¢dent that the
oldest sequences are usually the best ones, because people were sequencing
manually, on both strands, and took a year or so for each gene. We also check
carefully that the reference sequences have been mapped in a physical way (on a
phage, cosmid, YAC, etc.) and not only obtained by PCR from genomic DNA.
Littlejohn: Turning to the technological issues, one of the things that impresses

me about the ENSEMBL database is that it allows multiple options for accessing
the data: I can download the data, I can use their WWW interface or I can use a
direct MySQL interface to the data. If I understand your technology, you are not
using relational databases at the back end� is this correct?
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Lefranc: IMGT is an information system which includes several relational
databases, 8000 HTML pages and several tools. The three largest databases
(IMGT/LIGM-DB, IMGT/GENE-DB and IMGT/PROTEIN-DB) use Sybase.
Two databases (IMGT/3Dstructure-DB and IMGT/PRIMER-DB) use MySQL.
Littlejohn:Do you allow connections to the Sybase database directly? This is the

¢rst technological issue to get around the problems that people have seen with the
£exibility of querying. If you have a direct access to the database using ODBC to
the database, then this allows tremendous £exibility in querying.
Lefranc: We have built an Application Programming Interface (API) to access

the database and its software tools and to facilitate the integration of IMGT data
into applications developed by other laboratories. The information for API direct
links to IMGTknowledge data, sequence data and human gene data is provided in
the IMGT Informatics page (http://imgt.cines.fr/informatics/).
Littlejohn: In this case there are no theoretical problems with the complexity of

queries that you allow. If I could make a secondary comment, what I don’t like
about ENSEMBL is the poor description of the metadata in the databank. The
only way to do this is to deduce it from the table structure and ¢eld names.
My feeling from IMGT is that you have better descriptions of metadata, which is
ideal.
Brusic: The most appropriate data model will depend on the purpose of the

database. If we want to use a database for data extraction and a quick search the
relational model is very useful. However, for a higher-level analysis relational
model it is not adequate. The issue here is how to provide a solution for
problems based on di¡erent and often contradictory requirements. We need to
discuss the database issues in more detail.
Littlejohn: I am not a huge advocate of relational databases, as biological data are

object-oriented not tabular, but at the end of the day you have got to go with
technologies that have been adopted broadly by the community. In some ways it
is not a bad de facto standard, at least as a raw storage mechanism.
Brusic: We should not judge a particular database model as bad or good but

determine whether its strengths correlate with our requirements.
Littlejohn: Most of the immunoinformatics we are discussing will draw on

databases of one form or another. One of the great problems with databases is
their upkeep and curation. We have a good example here of high quality
curation, which requires six full time curators. SWISS-PROT has some 20 sta¡
full time managing their databank.
Lefranc: Six people are indeed annotating the IMGT/LIGM-DB data, but our

total lab consists of some 20 people. Eight people work on the IMGT Repertoire,
tools updates and the other IMGT databases (IMGT/GENE-DB, IMGT/
PROTEIN-DB, IMGT/PRIMER-DB, IMGT/3Dstructure-DB). Two people
work on the interface and computing development. I am very keen that there is
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active immunoinformatics research behind IMGT, so we have three or four PhD
students working alongside the databases.
Littlejohn: It seems that most funding agencies are not particularly interested in

funding the upkeep of what are essential data.
De Groot: NIH is very interested: they have developed an epitope mapping

Request for Applications (RFP).
Flower: But they want to create a group of 20 people to run a database that will

presumably subsume everyone else’s. It is not necessarily a collaborative exercise.
DeGroot: It could be a collaborative exercise.
Brusic: Biological databases don’t usually make money. Rather, they represent a

basic resource. However, when developing a database I always keep onmind what
are the important applications of such a data set. A good application justi¢es the
existence of the database and the e¡ort for developing it.
Littlejohn: The problem is not making money, or even usability or utility. It is

the currency of science�publication in high-quality peer-reviewed journals. It
has typically been di⁄cult to get a high-quality publications based on this kind of
work. Nevertheless, it is a critical resource.
Brusic: A publication of a database is a matter of making it good, interesting, or

new. People who try to reproduce what is already around will have a hard time
trying to publish a database paper.
Flower: It is really the scale that you look at. Within immunoinformatics you

might say that our database is di¡erent to that of other people because it has
di¡erent kinds of data within it. But someone from outside the ¢eld will say it is
exactly the same as other immunoinformatic databases.
Marsh:To answer this question, the ¢rst funding for the IMGT/HLASequence

Database came through the grants we put together with Marie-Paule Lefranc that
were EU funded. In 2000 we stopped receiving any EU money for that project. It
had always beenmy aim to get sponsorship from commercial users. There aremany
people out there creating HLA typing reagents. These companies wanted a good
data set to show the regulatory bodies. They know they couldn’t do it themselves.
We now have a situation where these companies and a number of other
organization put money into a central pot that funds the work we do. It is
tenuous in that we only ever know that we are going to get 12 months funding in
advance, but it does seem to work.
Littlejohn:The di⁄culty in this case would be if your database were seen to have

no direct relevance to a commercial partner. I wonder how well SWISS-PROT is
doingwith a similar model. The community is even seeing amovement away from
publishing in journals because many scientists believe that the knowledge they
create in the lab is for the public good should be accessible to all people at zero
cost. But I’m wondering whether a journal-style model might be a better way for
databases.

140 DISCUSSION



Flower: You cannot rely on commercial funding for databases, because the
commercial realities of individual companies might change very rapidly. We
want�we need� long-term stability.
Littlejohn: I think it has to be seen as infrastructure and paid for as such.
Flower:We need £esh and blood people to look at the information that is being

mined. This makes databases expensive. You cannot rely solely on electronic data
capture or text mining.
Marsh: It is relatively easy to source money to create a database, but it is

more di⁄cult to ¢nd support to maintain the database once it is up and
running.
Bernaschi: I ¢nd it strange that there is so much discussion of the importance of

databases and their quality, yet there is no agreement on database development and
maintenance. I see two possible choices. One, there is a company that makes a
business out of databases, selling access to reliable reference databases. This is
what has happened in the ¢nancial markets. There is lots of information, much of
which is not reliable. Then there are two or three companies who make a lot of
money building ¢nancial market databases that people really use. There are other
databases that are available for free, but people working seriously in ¢nancial
markets always use Bloomberg or Datastream. In biology it would not be easy to
¢nd companies willing to do this. Sowe are left with the second option. If we really
believe that databases are important a major e¡ort should be made to ¢nd
agreement among database developers. It is a waste of time looking through
multiple databases trying to sort out which information is reliable. And with
regard to clever access to the data, many people work in the ¢eld of data mining,
so why should we re-invent the wheel? We should talk with other people to
implement strategies for data mining in this ¢eld.
Littlejohn: Developing viable business models for companies curating and

selling data in life sciences is very hard, because biological research is not like
¢nance. There are only around 20 large pharmaceutical companies globally that
will pay lots of money for data, and thousands of smaller biotech companies that
may pay something for data, but these numbers are tiny in comparison with, for
example, the number of banks and ¢nancial analysts. I have seen a number of
bioinformatics companies fail in this area, or be forced to change direction. As an
example, Celera is a company that has changed its business model from an
information company to a pharmaceutical company. Information is a tough
business in life sciences. For data mining, there is a lot of transplantation of
technology and expertise from other industries.
Brusic: Life sciences are fragmented. To obtain the expertise for a particular

sub¢eld, ¢rst we need to employ an expert. Second we need to train other
members of the team so that they can talk to the expert. A huge diversity within
life sciences prevents us from ¢nding the ‘big answers’.

IMGT 141



Littlejohn: I have been attending bioinformaticsmeetings for 10 years, but this is
the ¢rst that has been speci¢c, focusing on just immunoinformatics. This is
fantastic, but it re£ects the speci¢city of the domain knowledge required to come
to terms with a particular informatics problem.
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Abstract. During the past few years, a huge amount of information aboutHLA-presented
peptides has been compiled: several thousand naturally processed ligands of such cell
surface receptors are already known. Nevertheless, our knowledge covers only a minute
proportion of the total peptide repertoire. The overall amount of di¡erent peptides
presented by one given HLA class I molecule lies between 1000 and 10 000 individual
sequences per cell. There is, however, no HLA molecule of which more than 100
ligands have been published so far. The situation is further complicated by the fact that
di¡erent cells present di¡erent sets of peptides by the same HLAmolecules, a feature that
provides great hope for immunotherapy. We have been analysing HLA-presented
peptides for many years for three reasons. First, the basic rules of peptide presentation
(the ‘peptide motifs’) had to be established. Second, the listing of individual peptides
presented by HLA molecules is steadily continuing, although a comprehensive
catalogue of all possible HLA-presented peptides is utopical in our days. Third,
quantitative di¡erences in the presentation of individual HLA ligands provide
information about the dynamic state of the host cells. Comprehensive information
about HLA-presented peptides enables accurate epitope prediction and provides a basis
for diagnostic assessment and therapeutic intervention.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 143^164

After several years ofHLA ligand analysis, we introduced a listing ofMHC ligands
and peptide motifs (Rammensee et al 1995) as a comprehensive source of
information. Very soon after, the number of identi¢ed sequences became too
large for a printed listing and grew too fast, so we established the internet
database SYFPEITHI (www.syfpeithi.de, Rammensee et al 1999). This
bioinformatic tool provides information about thousands of MHC-presented
peptides� immunogenic or not�and o¡ers T-cell epitope prediction for a
number of MHCmolecules as a service.
The immunologist’s interest in HLA-presented peptides extends from basic

research to clinical application: The interaction between MHC speci¢city pockets
(Garrett et al 1989) and bound ligands is as interesting a feature as the eradication of
tumours by T cell recognition ofMHC-presented peptides (Zwaveling et al 2002).
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Not only immunogenic HLA-peptide complexes may turn out as important for
diagnostic and therapeutic purposes: ligands derived from housekeeping proteins
may indicate the normal state of a cell (at least with respect to antigen presentation).
Viral or bacterial infections or even malignant transformations may be recognized
during a very early stage by ligands from disease-associated proteins even if no
immune reaction can be monitored. For a detailed immunoanalysis, the density
of certain HLA ligands can be investigated either in absolute numbers or as a
ratio between di¡erent cells.
Usually, HLA ligands are isolated by immunoprecipitation of MHCmolecules,

followed by acid-mediated peptide release (R˛tzschke et al 1990). This strategy has
been performed in many variations, and usually ends up with a low molecular
weight fraction of peptides which are then separated by high performance liquid
chromatography (HPLC).One problem inHLA ligand analysis is the small overall
amount of peptides: from 10 billion HLA-expressing cells, less than one
microgram of HLA ligand can be retrieved. The di¡erent abundance of
individual peptides and the high complexity of the peptide pool represent major
obstacles in obtaining fractions that contain pure individual sequences, which are
present only in low nanogram quantities.

The classical method: analysis of peptide pools

In the early 1990s, it was the very low sensitivity of peptide analysis as well as poor
recoveries of MHC-bound peptides that forced us to sequence complete peptide
pools eluted from MHC molecules by Edman degradation (Falk et al 1991).
Although in the meantime methods have been optimized and are now more
sensitive by a factor of 41000, pool sequencing still represents a very quick and
reliable method to gain comprehensive information about allele-speci¢c peptide
motifs. Pool data reveal positions and importance of anchor amino acids, show
auxiliary anchors and preferred residues in every sequence position of MHC
ligands, and may even give an impression of under-represented amino acids in
certain positions. Thus, a basic peptide motif can be established by one analytical
process that takes half a day�much less time than for analysis and alignment of
more than 20 individual ligands. There are, however, some limitations intrinsic to
the method: the N-terminal position is often hard to interpret because of high
background noise, the C-terminal position because of fading signals due to
sample loss. In addition, some amino acids escape the method (cysteine, in part
also tryptophan) because of chemical instability, and ¢nally, the absence of
distinct amino acids in a given sequence position is di⁄cult to recognize due to
background e¡ects.
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Analysis of individual ligands by mass spectrometry

Although the ¢rst individual sequences of MHC ligands were de¢ned by Edman
degradation (Van Bleek & Nathenson 1990, Falk et al 1991) and many groups
followed this strategy for several years (DiBrino et al 1993, Barber et al 1997), the
limitations of this approach are obvious: only peptides that arewell-separated from
other sequences and highly dominant in their quantity can be analysed. Analysis of
sequences which are less abundant and contaminated by other peptides leads
to misinterpretations resulting in arti¢cial sequences. In contrast, mass
spectrometry, especially techniques using quadrupol instruments, can select
single ion species from dozens of other peptides present in the same fraction.
Therefore, mass spectrometry seems nowadays to represent the only technology
that is able to analyse hundreds or even thousands of MHC-presented peptides
from one biological source. From the pioneering work of Hunt and colleagues,
we received a ¢rst estimation of the complexity of HLA ligands (Hunt et al 1992)
and learned how to sequence peptides by tandem electrospray mass spectrometry.
Later, the analytical methods were further improved, especially by the
introduction of the nanospray technology (Wilm & Mann 1996), and also the
interpretation of mass spectra became easier and more reliable with the aid of
web-based databases (Mann & Wilm 1994). Mass spectrometry is, in addition,
able to characterize post-translationally modi¢ed peptides (see below). Compared
to Edman degradation, the determination of yet unknown sequences (‘de novo
sequencing’) is much more di⁄cult, since interpretation of primary experimental
data depends heavily on database entries. The sensitivity of mass spectrometry as
used for HLA ligand characterization is superior to any other analytical method
that reveals structural details. Current technologies are able to successfully
sequence peptides in the low femtomolar range on a routine basis, and
sophisticated applications may even perform well in the attomolar range.

Alignment, motif determination and epitope prediction

All information obtained from pool sequencing is complemented by individual
ligand characterization in order to establish a comprehensive peptide motif
suitable for reliable epitope prediction. This process will be described in the
following example. Table 1 shows 28 peptides presented by HLA-A*2402
molecules. The presence or absence of every amino acid in each sequence
position is scrutinized and compared to information resulting from other
sources, such as pool sequencing (Maier et al 1994), binding studies with
synthetic peptides (Kondo et al 1995), listings of T cell epitopes, and the 3D
structure of the MHC molecule. Most of the information provided by Table 1 is
in agreement with previous ¢ndings: the anchor residues Y in position 2 (P2) and
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L, F, I in P9, the preference for several amino acids in di¡erent positions (such as V
in P1, P in P3, E in P4), and the general length of nine or, more rarely, 10 amino
acids (Kubo et al 1994). Nevertheless, the set of 28 peptides seems not to be
representative with respect to two features. First, a phenylalanine in P2 is not
found in any of the ligands, but we know from pool sequencing, from binding
studies, and from individual T cell epitopes that F plays a certain role in A*2402
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TABLE 1 Natural HLA-A*2402 ligands used for establishing a prediction matrix

Sequence Protein Position

AYVHMVTHF Testis-enhanced gene transcript 45^53

DYLKRFYLY Matrilysin 37^45

EYPDRIMNTF b tubulin 159^167

FYLEGGFSKF Dual speci¢city phosphatase 6 130^139

FYPPKVELF Multifunctional protein ADE2 121^129

GYGGGFGNF Grancalcin 5^13

IYTKIMDLI KIAA0877 24^32

KYISKPENL FLJ12577 199^207

KYITQGQLLQF Long chain fatty acid elongation enzyme 200^210

KYPDRVPVI GABAA receptor associated protein 24^32

KYPENFFLL NK cell activation protein 76^84

LYPQFMFHL Sec23A 576^584

NYIDKVRFL Vimentin 116^124

QYVPVIIHLI Elongation of very long chain fatty acids 228^236

RYPDSHQLF Ras^GAP SH3 binding protein 326^334

SYIEHIFEI Phosphoprotein enriched in astrocytes 15 61^69

SYLPLAHMF Long-chain-fatty-acid-CoA ligase 6 318^326

TYGEIFEKF NADH-dehydrogenase subunit B14.5B 107^115

TYLEKAIKI Ubiquitin C-terminal hydrolase 7 1092^1100

TYWVVYGVF Polyposis locus protein 1 84^92

VYIEKNDKL v-erb-b2 oncogene homologue 3 147^155

VYIKHPVSL Proteasome subunit p31 131^139

VYISEHEHF Cleft lip and palate associated tm protein 107^115

VYLKHPVSL Proteasome 26S subunit non-ATPase 8 131^139

VYLPNINKI KIAA0740 526^534

VYSHVIQKL Serine dehydratase 277^285

YYIFIPSKF Dead box protein 241^249

YYEEQHPEL NK cell protein 4 107^115



ligands. Second, one ligand carries Y in P9, an amino acid that has not been found
before to be important amongA*2402-presented peptides. Thus,we have to notice
that this number of ligands is still too small to represent all features of the peptide
pool presented by a given HLA allotype, and we estimate that more than 50
sequences are required for comprehensive information.
After compiling all the information, the motif is translated into a computer-

readable matrix as shown in Table 2. This matrix assigns de¢nite values to every
amino acid in each sequence position, but is not able to deal withmutual in£uences
between amino acids within one sequence.
The capacity of the matrix is ¢nally validated by two steps: ¢rst, the source

proteins of natural ligands are screened, and experimentally determined
sequences are expected among top-scoring peptides. These steps usually work
with a success rate of more than 90% (data not shown), only the 11mer peptide in
Table 1 escapes this kind of prediction, since the prediction patterns are strictly
length-dependent and only available for 9mer and 10mer peptides. Second,
HLA-A*2402-restricted T cell epitopes are compiled from the literature (e.g. as
listed in the SYFPEITHI database), and their source proteins are subjected to
epitope prediction. Table 3 lists the results of epitope prediction, including 50
HLA-A*2402-restricted T cell epitopes from 31 antigenic proteins of di¡erent
origin. Such predictions can be reproduced using the SYFPEITHI epitope
prediction programme, the A*2402 matrix has been incorporated into the latest
update in September 2002. According to our de¢nition, epitope prediction has
been successful if a peptides ranks among the top-scoring 2% of peptides. For
example, the sequence of a 500 amino acid protein harbours 492 possible
nonamer peptides. Thus, the correct epitope should rank among the highest ten
values. The far right column in Table 3 indicates that with the newly established
epitope prediction, 38 epitopes would have been precisely predicted (76%
reliability). If we only consider one epitope per antigen, epitope prediction from
28 out of 31 antigens was successful (90% reliability).

Modi¢ed peptides

Using routine procedures, it is hardly possible to characterize phosphorylated or
glycosylated peptides. Their physicochemical properties impede their recovery
from the HLA-bound peptide pool, since HPLC separation, Edman degradation
andmass spectrometry are for di¡erent reasons not able to easily detect and analyse
such modi¢ed peptides. Apart from reports on T cell recognition of glycosylated
peptides (Ferris et al 1996) and qualitative description of glycopeptide presentation
by HLA molecules (Kastrup et al 2000), we know a number of phosphorylated
HLA ligands, identi¢ed again by Hunt and co-workers after employing special
chromatographic procedures (Zarling et al 2000). More easily recognizable
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modi¢cations are point mutations (W˛lfel et al 1995) and frameshift mutations
(Ronsin et al 1999), since they do not change the peptidic character of analytes.
Other post-translational modi¢cations have also been described (Skipper et al
1996, Pierce et al 1999), but it is impossible at present to exactly determine the
overall quantity or ratio of modi¢ed peptides among all naturally presented HLA
ligands. Interestingly, the presentation of phosphorylated peptides occurs more
often by HLA-B*0702 molecules in comparison to HLA-A*0201molecules.

A question of quantity

The absolute copynumberof agivenMHC-peptide complex is important in several
respects. From the analytical point of view, it decides whether a ligand might be
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TABLE 2 Motif pattern used for the prediction of HLA-A*2402-restricted T cell
epitopes

(i) Nonamers

Sequence position

AA 1 2 3 4 5 6 7 8 9

A 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0

D 0 0 0 1 0 0 0 0 0

E 0 0 0 2 0 0 1 0 0

F 0 6 0 0 0 1 1 0 10

G 0 0 0 0 0 0 0 0 0

H 0 0 �1 0 1 1 0 1 0

I 0 0 2 0 1 1 0 0 10

K 1 0 �1 1 1 0 0 2 0

L 0 0 2 0 0 0 0 2 10

M 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0

P 0 0 2 1 0 1 0 0 0

Q 0 0 0 0 0 0 0 0 0

R 0 0 �1 0 1 0 0 0 0

S 0 0 0 0 0 0 0 0 0

T 1 0 0 0 0 0 0 0 0

V 2 0 0 0 1 1 0 0 0

W 0 0 0 0 0 0 0 0 0

X 0 0 0 0 0 0 0 0 0

Y 0 10 0 0 0 0 0 0 0



detectable or below the detection limit. From the cell biologist’s viewpoint, it may
indicate the turnover of the source protein within the cell, since proteasomal
degradation represents a crucial step during antigen processing (Groettrup et al
2001). Nomatter if proteins are targeted to the proteasome by ubiquitylation after
incorrect biosynthesis (defective ribosomal products:DRiPs,Yewdell et al 1996)or
after having passed their lifetime in a functional state, the turnover rate seems to be
more important forHLA-ligand creation than the overall amount of the respective
source protein within the cell. From the medical point of view, the quality and the
quantity ofHLA-peptide presentation gives invaluable information about the state
of a cell. Not only the presence or absence of HLA ligands derived from viral
proteins tells about acute or latent infections but also tumour immunologists have
great hope of using highly overpresented peptides from tumour antigens for
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TABLE 2 (Continued)

(2) Decamers

Sequence position

AA 1 2 3 4 5 6 7 8 9 10

A 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0

D 0 0 0 1 0 0 0 0 0 0

E 0 0 0 2 0 0 0 1 0 0

F 0 6 0 0 0 0 1 1 0 10

G 0 0 0 0 0 0 0 0 0 0

H 0 0 �1 0 0 0 1 0 1 0

I 0 0 2 0 0 0 1 0 0 10

K 1 0 �1 1 0 0 0 0 2 0

L 0 0 2 0 0 0 0 0 2 10

M 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0

P 0 0 2 1 0 0 1 0 0 0

Q 0 0 0 0 0 0 0 0 0 0

R 0 0 �1 0 0 0 0 0 0 0

S 0 0 0 0 0 0 0 0 0 0

T 1 0 0 0 0 0 0 0 0 0

V 2 0 0 0 0 0 1 0 0 0

W 0 0 0 0 0 0 0 0 0 0

X 0 0 0 0 0 0 0 0 0 0

Y 0 10 0 0 0 0 0 0 0 0
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TABLE3 Validation of the epitope prediction. Veri¢cation of theHLA-A*2402motif
pattern by prediction of all known HLA-A*2402-restricted CTL epitopes as listed in
SYFPEITHI from their respective source proteins. Top 2%, the sequence is among
the highest-scoring peptides in the respective protein. Parentheses indicate
secondary epitopes from the respective protein

Source Sequence
Swissprot ID/
tremblAccession score rank length top 2%

ART-1 EYCLKFTKL O94864 24 1 414 +

ART4 DYPSLSATDI Q9ULX3 22 3 412 +

ART4 AFLRHAAL Q9ULX3 n.d. n.d. 412 (�)

b catenin mut. SYLDSGIHF CTNB 24 1 781 +

CEA TYACFVSNL CEA5 22 5 702 +

CEA QYSWFVNGTF CEA5 20 12 702 (+)

CMV pp65 QYDPVAALF PP65_ 24 1 561 +

CMV pp65 VYALPLKML PP65_ 22 3 561 (+)

Cyclophilin B KFHRVIKDF CYPB 18 3 208 +

Cyclophilin B DFMIQGGDF CYPB 16 4 208 (+)

EBV EBNA3 RYSIFFDY EBN3_EBV n.d. n.d. 812 �

EBV LMP-2 TYGPVFMCL LMP2_EBV 24 1 497 +

EBV Rta DYCNVLNKEF BRL1_EBV 20 3 605 +

HBV core EYLVSFGVW CORA_HPBVA 22 1 211 +

HCV AYSQQTRGL POLG_HCVBK 22 11 3010 +

HER-2/neu TYLPTNASL ERB2 24 1 1255 +

HER-2/neu RWGLLLALL ERB2 12 n.d. 1255 (�)

HIV-1 (BRU) gag p17 KYKLKHIVW GAG_HV1BR 12 n.d. 511 �

HIV-1 (BRU) gp41 RYLKDQQLL ENV_HV1BR 25 1 963 +

HIV-1 (BRU) gp120 LFCASDAKAY ENV_HV1BR 6 n.d. 861 �

MAGEA1 NYKHCFPEI MAG1 21 2 309 +

MAGEA2 EYLQLVFGI MAG2 24 1 314 +

MAGEA3 TFPDLESEF MAG3 20 2 314 +

MAGEA3 IMPKAGLLI MAG3 15 12 314 (-)

MDR p3 LYAWEPSFL MRP3 21 10 1527 (+)

MDR p3 AYVPQQAWI MRP3 21 10 1527 (+)

MDR p3 VYSDADIFL MRP3 23 5 1527 +

Nicot. U08021 YYMIGEQKF NNMT 22 2 264 +

p15 AYGLDFYIL MA15 21 2 128 +

p53 EYLDDRNTF P53 23 1 393 +

p53 TYSPALNKMF P53 22 2 393 (+)

p53 NYMCNSSCM P53 10 n.d. 393 (�)



diagnostic or therapeutic purposes. It is, however, a tedious process to determine
the exact copy number of individualHLA ligands. Such a task can be performed by
HPLC mass spectrometry with synthetic peptides used as calibrants. A di¡erent
approach, used for example for the analysis of di¡erences in peptide presentation
between tumour cells and normal cells of the same tissue, determines the ratio of
peptides presented by a pair of samples. Figure 1 shows the analysis of two HLA
ligands compared between a colon carcinoma sample and the corresponding
normal tissue from the same tumour patient. The peptide ESTGSIAKR is equally
presented by tumour tissue and normal tissue, while the peptideDAAHPTNVQR
is presented byHLA-A*6801molecules in a signi¢cantly higher amount.The latter
peptide is derived from b catenin, a protein which has been described as tumour-
associated. Although the role of b catenin and its HLA-A*6801 ligand have not
yet been elucidated, such di¡erences in peptide presentation may in future
contribute much to diagnostic or therapeutic strategies. Table 4 shows a number
of HLA-A*6801-presented peptides and their presentation ratios as determined
from the above-mentioned tumour.
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TABLE 3 (Continued)

Source Sequence
Swissprot ID/
tremblAccession score rank length top 2%

p53 AIYKQSQHM (?) P53 2 n.d. 393 (�)

p53 TFRHSVVV P53 n.d. n.d. 393 (�)

PRAME LYVDSLFFL MAPE 22 2 509 +

Recoverin AYAQHVFRSF RECO 21 1 199 +

Recoverin QFQSIYAKF RECO 19 3 199 (+)

Recoverin QFQSIYAKFF RECO 16 9 199 (�)

SART1 EYRGFTQDF O43290 19 4 800 +

SART2 DYSARWNEI Q9UL01 21 8 958 +

SART2 AYDFLYNYL Q9UL01 20 14 958 (+)

SART3 AYIDFEMKI Q15020 25 1 963 +

SART3 VYDYNCHVDL Q15020 23 4 963 (+)

Telomerase VYAETKHFL TERT 24 1 1132 +

Telomerase VYGFVRACL TERT 23 2 1132 (+)

Tyrosinase AFLPWHRLF TYRO 22 3 529 +

Tyrosinase AFLPWHRLFL TYRO 19 11 529 (�)

WT1 RWPSCQKKF WT1 14 6 449 +

WT1 CMTWNQMNL WT1 10 n.d. 449 (�)

Yo AYRARALEL PC17 20 6 443 +



Tissue-speci¢city and disease association

Wehave to face the fact that mostHLA ligands we know have been extracted from
quickly dividing, transformed cell lines with a high rate of metabolism. Therefore,
it is not surprising that we know many HLA ligands from cell cycle-associated
proteins, factors from signal transduction pathways, or proteins involved in
protein biosynthesis. In contrast, only very few ligands have been characterized
from normal, resting tissue with low division rates. Therefore, the majority of
HLA ligands listed in the SYFPEITHI database might correspond to a
transformed state in some way. Before we identify large numbers of MHC-
presented peptides from normal tissue, we cannot judge the di¡erences in the
HLA-peptide repertoire between a normal state and a transformed state. It would
also be interesting to know how big the di¡erences between tissues of di¡erent
origin are. Since B-lymphoblastoid cell lines (B-LCL) have commonly been used
as a source of HLA-presented peptides, we know many HLA ligands that are
speci¢c for immune cells but that are not to be expected among HLA-presented
peptides from solid tissues, and we cannot imagine with our present knowledge
which part of the peptide pool is overlapping between di¡erent cell types. So, if
we estimate the HLA peptide repertoire of one given cell at 10 000 di¡erent
sequences, the HLA ‘ligandome’ of a human being might be much more
complex and may contain far more than 100 000 unique peptides.
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FIG. 1. Quantitative di¡erences in HLA-A*6801-presented peptides between colon
carcinoma and normal colon tissue from the same patient. From 7.2 g of normal tissue,
5.2 nmol of total HLA class I was immunoprecipitated (de¢ned as 100%); from 7.0 g of
tumour tissue, the total HLA class I yield was 9.8 nmol (188%). The peptide ESTGSIAKR
was detected in an ratio tumour vs. normal of 173%, which corresponds to similar levels of
presentation in both tissues. The peptide DAAHPTNVQR was detected at a higher level in
the tumour.
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DISCUSSION

Gulukota: You mentioned that some peptides were over-present and under-
present. Is that the average of many experiments, or is that from a single sample?
Stevanovic¤ :Themain problem is that we have just one experiment. This is always

a very individual story. We have a tumour sample and because the amount of
peptide is so low we cannot divide it. We are doing well if we can get peptides at
all from these solid tumour samples. This was a preliminary list from just one
experiment. We have been extracting solid tumours for seven years now, but this
is the ¢rst time we attempted a quantitative comparison. Usually we end up with a
list of 20 peptides and we have to screen through databases to ¢nd out which ones
might be tumour associated. If we get a proto-oncogene, it is clearly tumour
associated. But many other proteins are just over-expressed on the protein level
and over-presented on the peptide level. This is what we try to establish, but it is
always on an individual level. Perhaps we could compare di¡erent individuals if
some peptides happen to be over-presented many times.
Perelson:Do you get your normal tissues from the same patients?
Stevanovic¤ : Yes. This is still a problem because we need rather homogeneous

tissue, and this is di⁄cult for many cell types.
Beck: Is there any programme in place to generate peptide sequences presented

by tumour cells?
Stevanovic¤ :We still need more data. This won’t happen until we get quantitative

data, and this will take two or three more years. From our predictions we are not
able to say anything about quantities of presented peptides.
DeGroot:Could you say something about the clinical applications of yourwork?
Stevanovic¤ : At the moment we are still in the state of patient individual analysis.

Wewould like to use these patient-speci¢c peptides in therapy.We have to evaluate
whether they are tumour associated or tumour speci¢c, and if they are they could be
used as a patient-speci¢c vaccine. Then we would like to compose a cocktail of
peptides that should address several MHCmolecules and several antigens, because
then we would have a good chance of avoiding tumour escape. We would like to
vaccinate the patient with this cocktail, and the advantage is that we already know
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that these peptides are presented by the autologous tumour. We haven’t started
these vaccinations yet, but they should take place in the next fewweeks.
DeGroot: Are you using whole antigen?
Stevanovic¤ :No, only peptides.
DeGroot: This is in the context of the individualized vaccines, and the concerns

about how feasible it is to do this. I amvery interested in this because Iwould like to
make DNA plasmids that contain the right set of MHC-restricted peptides or
epitopes for certain individuals. It is the same idea, but it sounds like you are
going patient speci¢c rather than MHC speci¢c. The other question is how much
di¡erence is there between patients? Do you see di¡erent antigens being presented?
Is it worth taking colon cancer antigens from one patient and including that in a
cocktail for everyone with A2?
Stevanovic¤ : Yes and no. We have analysed thoroughly the ¢rst two patients with

renal cell carcinoma, andwe saw that some of theHLA-A*0201-presented peptides
were shared and the corresponding antigens were over-expressed in the respective
tumours.Others are really speci¢c for each patient. Iwouldn’t like towrite a bill for
what we are doing because this is very expensive at the moment. The analytical
phase is expensive because we do analysis of HLA presented peptides (not too
expensive) and gene expression pro¢ling (more expensive). Therapy at the
beginning is very expensive because we have to synthesize the peptides under
GMP conditions. But if we ¢nd that some of the peptides are overlapping or
shared between patients, this may make it possible to get most of the peptides
from the shelf, which would cut costs.
De Groot: What about using tumour-in¢ltrating lymphocytes, like Steve

Rosenberg is doing?
Rammensee: Generally, the peptides that Stefan ¢nds are not recognized by T

cells. We went to great lengths to ¢nd such T cells both in patients and healthy
subjects. By and large we don’t ¢nd T cells that recognize these peptides. If the
patient’s T cells would be e¡ective against the tumour, the tumour would not be
there.
Silva:Are di¡erent peptides being presented in di¡erent di¡erentiation processes

in the tumour?When the tumour starts growing the di¡erentiation state of the cells
is di¡erent. As it progresses, the phenotype of the cell changes.
Rammensee:Most likely, but this is very hard to follow.
Silva: If youwant to vaccinate against a tumour, it will be di⁄cult to knowwhat

its di¡erentiation stage is.
Borras-Cuesta: I’d like to make a comment about predicting poor binders and

good binders, because this is relevant to the ¢eld you are studying. Poor binders
are important in cancer. It is important to be able to predict those, because it is from
them that we will be able to induce an immune response against cancer. In some
cases, such as HLA-A2, it has been described that if you put tyrosine in position 1,
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then you greatly enhance binding (Tourdot et al 2000), although that doesn’t come
out of your original motif in the paper that you published in Nature (Falk et al
1991). We have tried this ourselves. We really can enhance the immunogenicity
of these peptides just by putting a tyrosine in. The induction that you induce
cross-reacts with a wild-type peptide, which is very good.
Rammensee: Not every clone will cross react. You will probably get a certain

number of clones that will.
Borras-Cuesta: It recognizes the wild-type peptide presented by lysed cancer

cells. We know this. We have replaced amino acid at position 1 by Tyr in many
peptides, and it works. That is, the peptides become more immunogenic. The
original paper did the same (Tourdot et al 2000). My question is, have you
changed these in your prediction program now to see whether binding can be
enhanced if tyrosine or phenylalanine are in position 1?
Stevanovic¤ :Wedonot look at binding data. Right from the beginningwe decided

only to take into account the natural ligands, so we don’t care about the binding
strength, and we don’t care about binding studies with synthetic peptides. We just
include the occurrence of amino acids in natural peptides. I have no idea what the
score of tyrosine in position 1 in A2 is.
Borras-Cuesta: I have done it for you: I have reprocessed your data and shown

that tyrosine is important in position 1.
Margalit: Is there a correlation between the gene expression and the peptide

presentation?
Stevanovic¤ :From the gene expression analysis, from themany thousands of genes

that are tested we usually get several hundred that are over-expressed more than
fourfold. But the peptides we ¢nd, even if we ¢nd 77 like in the patient where we
have been most successful so far, from those 77 ligands we have about 10 coming
from the over-expressed genes. There is a long way to go frommRNA expression
to peptide presentation. Hopefully wewill ¢nd out in the next year or twowhether
there is some correlation.
Gulukota: I wanted to expand on what Hans-Georg Rammensee was saying

about whether our natural antigenic peptides are among the top 5% of binders. If
you are talking about therapy, you might want to look for under-represented
peptides. The cancer already knows how to deal with the over-represented ones.
The signi¢cance of whether a peptide binds strongly or weakly to an MHC
complex depends on what it is we want to do with that. Natural ligands
perhaps bind reasonably well. When we are looking at tinkering with the
system in therapy, we can’t just go with the £ow of the biology: we probably
need to look at other things. We might want to look for poor binders and see
how we can exploit this.
Kellam:Many of these tumour antigens are expressed and function normally in

cell developmental pathways. If you look at many stages of lymphomas and
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leukaemias, the genes that are over-expressed re£ect the stage of a normal B cell. If
you are going to start to use peptide epitopes to target a tumour, whether it is solid,
or a lymphoma or a leukaemia, are you not going to run the risk of an Elan-type
scenario of actually removing a normal stage of cell development?This could result
in acute or long-term toxicity.
Borras-Cuesta: They are monoclonal. If you have lymphoma, they are

monoclonal, so you deal with that.
Kellam: But the vaccine is against a particular epitope from a normal host

protein. It is not something exogenous.
Borras-Cuesta:Inthecaseofmyelomayouwouldhaveanimmunoglobulinthatwill

be exactlymonoclonal. If you target this speci¢cally, youwill not target the others.
Kellam: If you target something that is not an immunoglobulin you would have

a problem.
Borras-Cuesta:Most tumourantigensare self-antigens.That iswhy it is important

to target thepeptides thatdon’tbindparticularlywell to theMHCbecause theyhave
not been deleted during clonal selection. This is the point I wasmaking before. It is
important to address the question of which peptide antigens to target.
Rammensee:There are two di¡erent concerns here.One is thatwewould not get a

T cell response, the other is that we would get a T cell response against an
important host antigen expressed at a particular developmental stage. This latter
point is a serious concern.We have tried to address it by looking at gene expression
from all kinds of standardized tissue samples. On the other hand, those people who
are using total tumour cell lysate would have the same concern. But usually the T
cell responses are so weak that they do not attack the tumour, and there are usually
no autoimmune complications in all sorts of vaccinations exceptwith vitiligo upon
immunization with melanocyte antigens.
Kellam: I quite agree. When you are looking in an acute model of whether the

tumour regresses or not, this is not the same as looking over ¢ve years as towhether
you get pathology associated with the long-term vaccination.
De Groot: Are you saying that you have done studies and you have seen some

autoimmunity?
Rammensee: No, we have not done these studies, they are in the literature

(Ludewig et al 2000).
DeGroot:This would obviously be a problem if you are identifying self antigens

and you are putting them back in with dendritic cells which are great at expressing
them and with an adjuvant or cytokine.
Rammensee:This iswhat is done inmany clinical studies, but justwith one or two

peptides.
Brusic: Tumour cells express sets of genes di¡erent to healthy cells. The same

pattern has been observed in viral infection: the cell starts producing di¡erent
products, not necessarily just viral proteins, and the immune systems starts
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seeing these products. The amount of peptides shown on the cell surface is
important for immune recognition. For self-antigens, the T cell clones are
usually deleted. Researchers start by analysing proteins that induce immune
responses. They start with longer fragments that induce immune recognition,
and study them further to identify peptides of ideal length. There are many viral
and cancer T cell epitopes described in the literature that don’t conform to the
proposed canonical motifs. They lack speci¢c canonical amino acids at anchor
positions. Eluted self-peptides usually have common anchor positions. This is a
big problem for predictive modelling because our datasets are heavily pre-
selected by the presence of anchor residues. These sets are used for assessing the
quality of predictions resulting a self-justifying cycle. If I was a patient in need of a
vaccine I would like to identify every peptide that can induce an immune response
inmy cancer, not only the few peptides that are best known.Our predictivemodels
actually miss many true T-cell epitopes because of the pre-selection bias. Prilliman
and Hildebrand from Oklahoma City extracted motifs using large quantities of
HLA from bioreactors and actually found that for one molecule, B15, there are
four di¡erent motifs. Can you comment on this? What should we do to obtain a
more complete picture, rather than focusing on a subset of peptides that we can
predict very well?
Rammensee: The aim should be to identify more than 10 000 peptides on one

MHCmolecule. They might fall into discernible groups that may identify motifs.
Brusic:Theremust be a way to identifyMHC-binding peptides faster than using

a rather pedestrian identi¢cation of a single peptide at a time. This is a major role of
immunoinformatics.
Margalit: If they extract the peptides from the MHC molecules, these are the

peptides that bind there. These are the facts.
Brusic:But are we extracting only themost abundant peptides, which are likely a

consequence of the high quantity of protein being produced inside the cell?
Borras-Cuesta: The possible combinations are terri¢c. This is very di⁄cult. I am

convinced that all the prediction methods currently available predict only part of
the picture. It is important to increase this number of peptides.
Rammensee: Perhaps the quantitative approach would help here. Darren Flower,

would it be desirable to include in your database parameters such as the copy
number of this peptide on a given cell to make it more complex with regard to
information on the hierarchy of T cell responses?
Flower: If the data are out there, then they could be incorporated.
DeGroot: Could you imagine collecting all those data?
Rammensee:We are talking about the optimum approach here.
Perelson: It would be fantastic if someone were to do this.
Lybrand: There is another option for expanding your repertoire. You have

the QSAR parameters: have you thought about proposing other peptide
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motifs that should be physically compatible on the basis of your QSAR
pro¢le?
Flower: Again, this is the idea of heteroclitic residues where you are trying to

increase a⁄nity. We haven’t done this yet. It still comes back to the bias problem,
that ourmodels are still built with biased data; there is a lot of informationmissing.
You could make some extrapolations and try to test them. The same is true with
experimental design, trying to get away from the bias in the data sets that have been
extracted from the literature. If you take a motif initially and generate a diverse set
of peptides, you could test them and look for high binders. If you then look at the
changes to themain anchors and run this process iteratively. This should allow you
to get a much broader and deeper model.
Brusic: The strategy is to start in a grey area, do computational analysis, and

follow this up with experimental validation.
Flower:You can’t just do this once. This has to be run for several cycles in order

to explore all the possibilities.Whatwe have at themoment is a very biased data set,
as it is self-reinforcing.
DeLisi: There is a more fundamental approach. This is to take each of the

pockets, and on the basis of the amino acids in the pockets and the type of
variability that exists, there is a ¢nite number of families and superfamilies
into which all MHCs can be put. On the basis of the pockets you can
accommodate certain types of amino acid side chains, so you wind up with a
set of families and superfamilies of MHC which accommodates a certain
number of side chains in each pocket. You know what these are on the basis
of a detailed physicochemical analysis of the interaction between particular side
chains and particular pockets. This produces a very large combinatorial set, but
we know exactly which amino acids could be accommodated by which pockets.
In principle, you could predict the entire repertoire this way. We did this in a
paper in 1998 (Zhang et al 1998) and we validated the results with the then
available data: we had about 95% e⁄cacy. I haven’t pursued this approach,
but there are no data biases in it.
Rammensee: You have the bias that your pockets are de¢ned on high binding

peptides.
DeLisi: The pockets are de¢ned on the basis of crystal structures.
Rammensee: And the crystals are made of high binding peptides. There is no

crystal structure of an MHC with a poorly binding peptide.
DeLisi:Howmuch does the binding of the peptide biaswhich amino acids are in

the pocket? It may bias the structure of the peptides a little bit.
Rammensee: Some reports have suggested that there are alternative binding

frames for the low a⁄nity peptides.
DeLisi: If you take thepeptideoutof thepocket youare leftwith an emptyMHC.
Rammensee: The pocket might change.
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DeLisi:Wecan take that into account.We take into accountwhich side chains in
the pocket are £exible. This could be done.
Lybrand: This is the strategy that we have been trying to use for eight or nine

years now. I agree that this is a much more unbiased way to attempt to map out a
potential repertoire of bindingmotifs. But there are two issues that have frustrated
us to some extent. The ¢rst is that this kind of analysis is predicated on higher
a⁄nity binding of ligands to a target site than we are looking at here. There is a
tendency to over emphasize the nature of the compatibility of the anchor residues
with the pockets. We have had the best success in using this strategy in telling us
what kinds of anchor residues are prohibited, but somewhat less success in telling
us the full range of anchor residues that are OK. This is what we are focusing on
here: we don’t want the really good binders. We can tell you what is optimal and
what is prohibited in these anchor pockets, but we cannot give you as good a feel
for the intermediate kinds of anchors that would give the less good binders that
people would like to explore.
DeLisi: I am not sure what the problem is for you. It depends on how good the

free energy function is.
Lybrand:The other issue I have noticedmore recently is that aswe have begun to

get a wider range of peptide^MHC crystal structures we are seeing a little more
localized structural variation in these anchor pocket regions than I would have
anticipated three or four years ago. A couple of these we have actually been able
to predict successfully; others we never would have predicted successfully. We
have seen side chains swing into di¡erent orientations and a¡ect the local nature
of the anchor pocket itself. I agree, though, that there is not a lot of structural
variation here, so we are not looking at some highly variable target, which makes
the philosophy a very attractive one. There is a little more variation than wewould
have hoped several years ago. It is not quite as simple an exercise as we anticipated,
but it is still an appealing strategy to pursue.
Perelson: Stefan Stevanovic¤ , could we return to your estimate of 1000^10 000

peptides potentially being able to bind to a given MHC. Can you explain how
you reached this number?
Stevanovic¤ :Theremay have been somemisunderstanding. This is not the number

of peptides that is able to bind to the MHC, but instead is the number actually
presented by one cell. It has been calculated that millions of di¡erent peptides can
bind to one certain kind of MHC.
Brusic: What is the di¡erence in expression levels between a normal cell and an

activated cell?
Stevanovic¤ : You would probably ¢nd a di¡erent pattern of MHC-presented

peptides, but there are no data.
Perelson: The number presented by one cell is limited by the number of MHCs

expressed per cell.
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Stevanovic¤ : This is assuming that there are around 100 000 MHC copies per cell
and they are just presenting between 1000 and 10 000 di¡erent epitopes.
Flower:Has this been measured?
Stevanovic¤ : It has been measured in several experiments. The highest number I

have seen is 680 000MHCmolecules in one cell; the lowest is 50 000.We know that
tumour cells have a tendency to reduce the number of MHCmolecules expressed.
Forourpeptide copynumbers there are alsodata fromviral epitopes: somehave100
copies,others500.For thepeptideSYFPEITHI itselfweknowthat it is5000copies.
Flower: So there are 1000^10 000 di¡erent peptides per cell. But you can only

identify 77 of those, so how do you know there are many more?
Stevanovic¤ :Many papers fromDonald Hunt’s group have shown this (Hunt et al

1992, Luckey et al 2001). He pioneered mass spectrometry analysis of MHC
ligands. From his pro¢les he identi¢ed peptide peaks but he couldn’t sequence
them because the intensity was too low. He estimated that there were 2000 of
them. Other groups have made estimates that are in this range.
Gulukota: I’d like toget back to the computational discussion.Wehavediscussed

motifs, andwhether insilico analysis could produce a list of peptides that could bind.
Ifwe lookat theother sideof this, are there anyexperimental strategies thatwecould
adopt which would enrich for the low copy peptides? For example, if you had
antibodies to the high copy peptides, could you pull them out so that what is left
in the system is an enriched population of low copy peptides?
Brusic: There is a strategy involving bioreactors where su⁄cient yield of low

quantity peptides can be produced. We have a formidable task� the complete
number of peptides known to bind to HLA alleles is smaller than the diversity of
peptides expressed by a single cell. We are still in the dark ages.
Littlejohn:This area looks like it is ripe for a functional genomics approach. You

could take protein chips and wash the MHC peptide across them in a high-
throughput analysis. I would synthesize every 9-mer, and bind them to a
microarray. I would then wash MHCs across and see which ones bound. Is this a
ridiculous idea?
DeLisi: No, we are developing assays to do exactly that. You need the right

optical monitoring system.
Rammensee: There was a paper back in 1989 (Bouillot et al 1989) where many

peptides were put on a plastic surface, and soluble MHC molecules were added.
The result was the MHC molecules didn’t have any reasonable peptide binding
speci¢city! This was published inNature.
Perelson: If one calculates the number of possible 9-mers it is 5�1011 peptides.

What are the current estimates of how many of these a given MHC can bind?
Brusic: It is approximately 1%.
Perelson:How is this ¢gure derived?
Petrovsky: By making overlapping peptides and then measuring binding.
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Rammensee: Charles DeLisi, could you describe the chip you are working on?
DeLisi: Right now we are focusing on the engineering: how to fabricate arrays

rapidly. We are doing both nucleic acids and peptides. We do in situ synthesis. The
reason this isn’t done much is because it is very expensive. If you want to do in situ
synthesis you need physical masking at each step, and that becomes very expensive.
But we do it in a di¡erent way. In a morning we can have a chip with 100 000
di¡erent pixels, with more than 1 000 000 oligos at each pixel We don’t do
random synthesis of the peptides because there has to be some sort of intelligent
selection. The status is we can make the peptide arrays and we are characterizing
them right now.
Rammensee: Isn’t the problem that if you have the peptide on the surface, MHC

has no access.
DeLisi: It has to be spaced. The same problemoccurswith nucleic acids: we need

a spacer of the right length. The peptides need to be far enough apart to avoid
interference. This needs to be taken into account.
DeGroot: Can you then add MHC and see what binds?
DeLisi:Yes, you can also do other things like running a phage display library

over it. If you take a whole genome, for example, you could take a proteomic
strategy seeing what the protein distribution is in a cell. If you have the whole
genome you can select peptides that tend to be in surface proteins. You place these
on the array and run a phage display library over it and then for those peptides that
bind, you thenhavephagewhichbinds andwill therefore cross reactwith thenative
protein. Now you have the whole array of phage and you knowwhich phage binds
towhich protein. You then plate the phage and use that as an assay for your protein
distribution.Theengineeringbit turnsout tobecomplicatedbecause thereare some
puri¢cationsteps that requireprecisionengineering.But this is all technology that is
becoming available in the next year or two.
Rammensee: From a purist’s perspective, I would say that the way to solve

this problem is to try to analyse all the 10 000 peptides on one cell. This
would require us to improve our methodology and instrumentation. For many
years we have been looking for the reverse translatase which makes RNA out of
the peptide. Then we could amplify the RNA and easily identify a single peptide
copy!
Kesmir: Stefan’s data represent a wonderful test set for all these predictions we

have been talking about.He alsomentioned that just to get the number of copies of
peptide per cell it will take two to three years. Could you explain a little more about
why the quantitative datawill take so long? It would be great to test anymethod on
those data, because they are direct presentation data.
Stevanovic¤ : The main problem is just experimental details. You have to be sure

that you get the peptides in a quantitative way, and this is very di⁄cult. Usually if
we try to get peptides in a quantitative way by mass spectrometry this is not

HLA PEPTIDE REPERTOIRE 163



possible. In order to quantify the peptides you need tomodify the peptides, and the
modi¢cation step causes some to be lost.
Kesmir: I hope that there are also other experimental groups thatwill pick up this

method.
Stevanovic¤ : It was easier in the early days when we did Edman degradation. This

is a method used for quantitation so you can put all the peptides you get from the
cell in the sequencer. But you can only sequence ¢ve or six peptides per cell by
Edman degradation. Below the picogram range mass spectrometry is needed and
this is not quantitative.
Rammensee: Coming back to the problem of predicting TCR recognition of the

peptide, we know a couple of CDR sequences in Marie-Paule’s database, and we
know a few of them are fromTCRswith de¢ned speci¢city. Are there enough data
so far to compare the databases of CDR3 sequences with that of the peptides
recognized by the TCRs? If not, which direction should we take in this area? The
aim would be to predetermine the speci¢city of a TCR, or to ¢nd a motif in the
CDR3 sequence that would tell us which peptide is recognized.
Lefranc: The approach which consists in identifying speci¢c T cells is more

e⁄cient. We don’t have enough data to make predictions on CDR3. What we are
doing now in IMGT is to try to put together the amino acid sequence from the
CDR3, the peptide and from the MHC, so people can know exactly that an
amino acid is coming from a CDR3 of such a length and in such an environment,
and that it is in contact with such an amino acid of the peptide andMHC. Tools are
developed which will allow queries based on the amino acid properties and
polymorphisms and on the amino acid positions according to the IMGT unique
numbering in the TR CDR3 and in the MHC.
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HLA nomenclature and the

IMGT/HLA Sequence Database
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Abstract. Early in their study it was recognized that the genes encoding the HLA
molecules were highly polymorphic and that there was a need for a systematic
nomenclature. The result was the WHO Nomenclature Committee for Factors of the
HLA System, which ¢rst met in 1968, and laid down the criteria for successive
meetings. This committee meets regularly to discuss issues of nomenclature and has
published 16 major reports documenting ¢rstly the HLA antigens and more recently
the genes and alleles. The standardization of HLA antigenic speci¢cities has been
controlled by the exchange of typing reagents and cells in the International Histo-
compatibility Workshops. Since 1989 when a large number of HLA allele sequences
were ¢rst analysed and named, the job of curating and maintaining a database of
sequences has been of prime importance. In 1998 the IMGT/HLA database became the
o⁄cial repository forHLAsequences. In addition to the nucleotide and protein sequences
the database contains information of the cell from which the sequence was obtained. The
database which provides tools for sequence analysis and the submission of new data, is
updated quarterly and now contains over 1500 HLA allele sequences.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 165^176

Many of the advances in the HLA ¢eld have come about through the collaborative
International HistocompatibilityWorkshops (IHWs). The ¢rst of these took place
at Duke University, Durham, USA in 1964, andworkshops have taken place every
three to ¢ve years since with the most recent, the 13th, taking place in Victoria,
Canada in 2002. In the early days the numbers of participants was small, only
sixteen laboratories took part in the 1st Workshop, where they compared the
typing of a panel of eight cells using seven di¡erent techniques. However, by the
time of the 12th Workshop in 1996, over 400 laboratories world-wide were
participating in a variety of di¡erent projects using many di¡erent molecular
based techniques and typing thousands of samples.
Early in the study ofHLA, the potential complexity of the systemwas beginning

to be recognized and the need for standardized nomenclature understood. Thiswas
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felt during both the 1st IHW in 1964 and again at the 2nd IHW in 1965 at the
University Hospital, Leiden, The Netherlands, where it became apparent that
di¡erent groups were each using their own local designations to describe the
same antigens. During the 2nd IHW a committee was formed to discuss
nomenclature. It met only once believing that the time was not ripe to decide on
a ¢nal nomenclature and suggesting that only provisional terms be used. The
report of this meeting signalled to the community that the need for a standard
nomenclature had been recognized, and was no more than a single sentence: ‘The
question of nomenclature of the leukocyte antigens has been raised during the workshop. An
advice on this matter will be formulated by a committee on nomenclature, which has been
formed during this Workshop’ (Bruning et al 1965). During the 3rd IHW in Torino,
Italy, in June 1967 the issue of nomenclature was discussed again, and following a
second meeting in Williamsburg (USA) in September, while still awaiting the
formation of an o⁄cial nomenclature committee, the main investigators in the
¢eld ‘agreed to use the term HL-A for indicating the major system of leukocyte antigens
(previous names: Du-1, Four, Hu-1, LA etc)’ (Amos 1968; Nomenclature
Committee 1967). Contrary to popular belief the name assigned, ‘HL-A’ was not
an abbreviation for ‘Human Leucocyte Antigen’ or ‘Human Locus A’ but simply
as a contraction of the ‘H’ from ‘Hu-1’ system ofDausset and ‘LA’ from the system
named by Payne and Bodmer (Amos 1999). In September 1968 under the auspices
of the World Health Organisation (WHO) the ¢rst meeting of the ‘WHO
Leucocyte Nomenclature Committee’ took place in New York. This meeting was
recorded and a full verbatim account of the meeting was reported later (Walford
1990). The ¢rst eight serologically de¢ned HL-A antigens were named at this time
HL-A1 through HL-A8. These o⁄cial names together with their previous locally
assigned designations, as used in 10 di¡erent laboratories, were listed in the ¢rst full
Nomenclature Report (WHO Nomenclature Committee 1968). The report also
listed guidelines on the use of the new nomenclature and on the criteria used in
the assignment of new antigens.
After the 4th IHW which took place in Los Angeles in 1970, a further four

antigens were deemed worthy of an o⁄cial designation HL-A10, -A11,
-A12, -A13. For some reason HL-A9 is not listed at this time, however, the
nomenclature report makes reference to its existence and that it was readily
recognizable, suggesting that this antigen had been named in the intervening
period between the workshops (WHO Nomenclature Committee 1970).
Following the 5th IHW in Evian, France in 1972, the Nomenclature Committee
announced that the de¢nition of a histocompatibility antigen would pass through
four stages. Firstly, a new speci¢city would be detected by a laboratory and given a
local designation. Secondly, if this speci¢city were to be con¢rmed by several of
the reference laboratories, it would be given a provisional number preceded by the
pre¢x ‘W’. In the third stage, when all the reference laboratories had reached a ¢rm
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agreement on the de¢nition of the new speci¢city, an HL-A number would be
assigned. In the fourth stage, a chemical or molecular analysis would allow the
HL-A speci¢city to be con¢rmed (WHO Nomenclature Committee 1972). Ten
new HL-A speci¢cities were listed in this report, each of which bares the new
‘W’ pre¢x, indicating that the antigen had ‘Workshop’ status. It was also
recognized by this time that some speci¢cities, for example HL-A9, appeared to
represent a cross-reactivity between two component antigens. The committee
introduced the concept of a ‘Broad’ speci¢city, such as A9 and its components,
later to be termed ‘Splits’, which were named AW23 and AW24.
It had been evident for some time that the relationship between di¡erent HL-A

antigens was complex, and that the original serologically de¢ned speci¢cities of
this system were being assigned to two separate series (¢rst or LA, and second or
FOUR) corresponding to two linked genes, each with multiple alleles. As such
these two genes would require a separate nomenclature. Following the 6th IHW
in —rhus, Denmark in 1975, it was decided to remove the hyphen from the name
HL-A, and use HLA as a designation of the system (WHO IUIS Terminology
Committee 1975). This was followed by a hyphen used as a separator, before a
gene designation A, B, C, D etc. Hence the antigens de¢ned previously were
assigned either to the HLA-A (previously LA or ¢rst) or HLA-B (previously
FOUR or second) gene. The speci¢cities 1, 2, 3, 9, 10 and 11 became HLA-
A1, -A2, -A3, -A9, -A10 and -A11; speci¢cities 5, 7, 8, 12, 13, etc. became HLA-
B5, -B7, -B8, -B12, -B13. The use of a lower case ‘w’ to indicate a provisional
speci¢city was retained with the ‘w’ being inserted between the gene name and
antigen number, hence HLA-Aw23. Once antigens had been veri¢ed successfully
it could be upgraded to full HLA status by omission of the ‘w’. In addition at this
time two new genes were recognized and named the HLA-C and HLA-D loci. A
total of 51 di¡erent HLA antigens had been recognized and assigned o⁄cial
designations by 1975.
The HLA Nomenclature Report published after the 7th IHW in Oxford,

UK in 1977, saw the introduction of the HLA-DR locus. The designation
DR for ‘D’ related, indicated that these serological speci¢cities were in some
way related to the HLA-D speci¢cities which had previously been de¢ned
using the cellular technique of Mixed Lymphocyte Culture (MLC) (WHO
Nomenclature Committee 1978). The notation used to represent antigen
splits was revisited at this time with the suggestion that the broad antigen
name should follow the split name in parenthesis; for example Aw23(9),
where Aw23 was a split of the A9 antigen. Although the numbers 4 and 6
had been held in reserve since 1968 for the 4a and 4b speci¢cities, it was
not until the 1977 report that these were o⁄cially named Bw4 and Bw6 and
were recognized as public epitopes being present on all of the HLA-B
antigens.
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The 1980 Nomenclature Report included only a handful of new antigens and
saw no major additions or changes to the HLA nomenclature; a total of 92
antigens were listed (WHO Nomenclature Committee 1980). The 1984
Nomenclature Report, published after the 9th IHW in Mˇnchen, Germany, saw
the assignment of two new HLA genes, HLA-DQ and HLA-DP (WHO
Nomenclature Committee 1985). The newly assigned DQ speci¢cities, DQw1,
DQw2 and DQw3 were de¢ned by serological techniques; the six new DP
antigens, DPw1 to DPw6 were de¢ned using the cellular assay Primed
Lymphocyte Typing (PLT). In addition two new DR antigens were named
DRw52 and DRw53. At the time it was unclear whether these represented public
epitopes on the DRmolecule in an analogous way to the Bw4 and Bw6 epitopes of
HLA-B. It was later shown that these were the products of secondary HLA-DR
genes. By this time an elementarymap of theHLA region had been established and
the ¢rst HLA genes had been cloned, and it was clearly understood that the HLA
class II molecules consisted of two polypeptide chains whose genes were both
located within the HLA region. The suggestion was made that the genes for the
separate chains be called DRA and DRB etc.
In 1987 following the 10th IHW in Princeton, USA a molecular nomenclature

for both genes andDNA allele sequences was introducedwith the recognition that
many pseudogenes were also located in the HLA region (Bodmer et al 1989).
Expanding the previously suggested notation, the HLA genes were given o⁄cial
names, the gene encoding the DRa chain was called DRA. Several di¡erent
genes encoding DRb chains had been identi¢ed and were named HLA-DRB1,
-DRB2, -DRB3 and -DRB4.TheHLA-DRB2genewas shown tobe a pseudogene.
In addition to namingmany new genes, it was recognized that many of the antigen
speci¢cities previously de¢ned by serology, such as HLA-A2, could be subdivided
still further by DNA sequencing. Four di¡erent A2 sequences were named at this
time, A*0201, A*0202, A*0203 and A*0204. The asterisk was used as a separator
between the gene name, and the four-digit code used to distinguish between the
alleles. The ¢rst two digits indicating the HLA antigen encoded by the allele and
the second two digits indicating that number of the allele in that series, where each
allele di¡ers from the others by at least one nucleotide substitution that changes the
amino acid sequence of the encoded protein. A total of 12 HLA class I alleles and
nine class II alleles were named at this time.
The meeting of the HLANomenclature Committee in 1989 was the ¢rst to take

place between workshops and recognized the need to assign o⁄cial names to the
many newHLA allele sequences that were being published (Bodmer et al 1990). A
total of 56 class I and 78 class II alleles were named in the report of this meeting. It
had become necessary to emphasise the need to deposit the newly discovered
sequences in an appropriate database, and that this would need to be continually
updated.
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Since 1989 the HLANomenclature Committee has continued tomeet every one
to two years to establish further guidelines for the naming ofHLAgenes and alleles
(Bodmer et al 1991, 1992, 1994, 1995, 1997, 1999, Marsh et al 2001, 2002). The
HLA allele names were ¢rst extended to ¢ve digits in 1990 to allow for the
discrimination of alleles di¡ering only in non-coding (synonymous) substitutions
within the coding sequence (Bodmer et al 1991). In 1995 they were again extended
to seven digits to allow for the naming of alleles which di¡ered only in introns or
the 3’ or 5’ regions of the gene (Bodmer et al 1995). Then in 2002, due to the
increasing number of alleles being described, an additional digit was inserted
between the four and ¢fth digits to allow for more than nine alleles di¡ering only
by synonymous substitutions (Marsh et al 2002). Aside from extending the number
of digits used to code for the di¡erent alleles, and the adding of optional su⁄xes to
indicate whether an allele is null (anN), lowly expressed (an L) or only translated in
a soluble form (an S), the nomenclature used for alleles has changed little since it
was ¢rst introduced in 1987. The greatest development has been the dramatic
increase in the numbers of HLA allele sequences discovered in this time. By 2002
the number of alleles that had been assigned had steadily grown to over 880 HLA
class I alleles and over 600 class II alleles (see Fig. 1).
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It became apparent as early as 1989 that the analysis and assigning of o⁄cial
names to alleles could not wait for periodic histocompatibility workshops or
even annual Nomenclature Committee meetings, and so began the process of
daily assessing newly de¢ned HLA allele sequences. This work was carried out
by Julia Bodmer and Steven Marsh at the Imperial Cancer Research Fund (ICRF)
in collaborationwith Peter Parham at StanfordUniversity. It was out of the need to
record and manage the HLA sequence data being submitted to the Nomenclature
Committee that the ¢rst incarnation of an HLA Sequence Databank (HLA-DB)
emerged (Marsh & Bodmer 1993).
Periodically HLA class I (Arnett & Parham 1995, Mason & Parham 1998,

Zemmour & Parham 1991, 1992) and class II (Marsh 1998, Marsh & Bodmer
1990, 1991, 1992, 1994, 1995) sequence alignments were published in a variety
of journals and by 1995 the numbers of new alleles being reported warranted the
publication of monthly nomenclature updates (Marsh 1995), something which
continues to this day. Also by 1995, the expansion of the Internet and the
introduction of the World Wide Web (WWW) saw the ¢rst distribution of the
HLA sequence alignments from the web pages of the Tissue Antigen Laboratory
at the ICRF. This work transferred to the Anthony Nolan Research Institute
(ANRI) in 1996 where it continues today. In an e¡ort to make the data held in
the database available in a more accessible and interactive format the IMGT/
HLA Database project was begun in 1997 as part of a European collaboration
involving the ICRF, ANRI and the European Bioinformatics Institute (EBI)
who maintain the European Molecular Biology Laboratory’s nucleotide
sequence database (EMBL) (Robinson et al 2000, 2001). The work was initially
funded by grants from the European Union, BIOMED1 (BIOCT930038) and
BIOTECH2 (BIO4CT960037), awarded to the ICRF as part of the
International ImMunoGeneTics (IMGT) databases project (Giudicelli et al
1997, Lefranc 2001, Ruiz et al 2000). The IMGT database project contains a
number of distinct databases specializing in sequences of immunological
interest. The IMGT/HLA database was ¢rst released in 1998, the database
combines the sequence data and information previously provided to the
WHO Nomenclature Committee for Factors of the HLA System and the
additional data found in the original EMBL/GenBank/DDBJ entries. The
database can be accessed from www.ebi.ac.uk/imgt/hla. The current release of the
database, version 2.1.0 contains over 1580 HLA alleles and details of over 2700
cells that have been sequenced for one or more HLA alleles. The database is
updated every three months and provides a suite of tools for analysing the
nucleotide and protein sequences. Since 2000 the IMGT/HLA Sequence
Database has been supported by the generous donations of a number of
commercial companies, immunogenetic organizations and bone marrow
registries.
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Under a new initiative the Immuno-Polymorphism Database (IPD) was
launched in 2003, as part of a collaboration between the ANRI and the EBI. The
¢rst two component databases of this project are the IPD-MHC project, a database
of MHC sequences from a variety of di¡erent animal species, and the IPD-KIR
database, a sequence database of the Human Killer-cell Immunoglobulin-like
Receptors (KIR). These databases may be accessed from www.ebi.ac.uk/ipd.
The value of a database of HLA allele sequences to the user communities in

transplantation, research and clinical practice, is critically dependant on the
quality and accuracy of the information it contains. Even single nucleotide errors
in transcribing and reporting sequences cannot be tolerated if the data are to be
relied on. The job of maintaining and curating the database is thus of vital
importance and necessarily requires meticulous attention to detail. However, the
IMGT/HLA Sequence Database now goes well beyond just providing a list of
sequences and provides a whole range of linked information such as details of the
cell line from which the sequence was derived. The online database incorporated
many tools for data retrieval, analysis and submission of new data and is regularly
updated. With the completion of the Human Genome Project and the
identi¢cation of many new polymorphic genes, the IMGT/HLA Sequence
Database and the HLA Nomenclature, which has evolved over the past thirty
years, is clearly a model of how this new polymorphic data can be managed.
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Appendix: access and contact

IMGT/HLAHomepage: http://www.ebi.ac.uk/imgt/hla/
IMGT/HLA Submissions: http://www.ebi.ac.uk/imgt/hla/subs/submit.html
Contact: hladb@ebi.ac.uk
IPD-KIR Homepage: http://www.ebi.ac.uk/ipd/kir/
IPD-MHCHomepage: http://www.ebi.ac.uk/ipd/mhc/
Non-human primates: http://www.ebi.ac.uk/ipd/mhc/nhp
Canines: http://www.ebi.ac.uk/ipd/mhc/dla
Felines: http://www.ebi.ac.uk/ipd/mhc/£a
Contact: ipd@ebi.ac.uk
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DISCUSSION

Beck:Are the data on these KIR genes available yet?
Marsh:Not yet. TheMHC data for some species are on the web but not theKIR

data. We are working on a KIR nomenclature report, and when this is ¢nalized we
will make the ¢rst set of alignments available.
Beck:Will this be a separate database?
Marsh: I am not sure yet. We will provide links to it from where we are at the

moment. [Since these discussions took place, the IPD/KIR Sequence Database has
been released and is available from the www.ebi.ac.uk/ipd/kir.]
Rammensee: You didn’t mention the mouse. Is anyone working on the mouse?
Marsh:Wecurrently have no plans to tackle themouseMHC, althoughwe are in

contact with several other groups for the inclusion of MHC sequences from this
species.
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Lefranc: I tried for many years to get people involved with the mouse
MHC, without success. Since there is such a need in that ¢eld our lab
decided ¢nally to get involved in the way we could. We implemented the cards
for the mouse MHC 3D structures in IMGT/3Dstructure-DB (http://
imgt.cines.fr). We also added tables on ‘Correspondence between the mouse MHC
nomenclatures’ in IMGTRepertoire, available from the IMGTHomepage (http://
imgt.cines.fr).
Marsh: If we can ¢nd someone who is willing to curate mouse MHC data, then

we will certainly work with them to provide a database structure and the tools to
manipulate their data.
Brusic: We also have data on BoLA and SLA data. There was a problem with

nomenclature. The same naming problem that appeared 30 years ago in the HLA
¢eld is being faced in BoLA and SLA. There is serious resistance towards
standardizing names of MHC molecules for other organisms. The nomenclature
issues need to be resolved ¢rst.
Marsh: We are working on the model system where we are in contact with

nomenclature committees, with people who want to curate their own data and
who have the agreement of the people working in the ¢eld. They each have their
own nomenclatures which they are going to maintain and which all of them will
use. This has worked for HLA because it goes back nearly 40 years. It has not
always worked for the other species, but the structured database approach that
we are planning should aid in the uptake and use of these nomenclatures.
Sch˛nbach: For example, the BoLA (bovine lymphocyte antigens) nomenclature

committee seems to promote their own existing nomenclature although it could be
improved in terms of creating and maintaining a searchable database and
compatibility with existing MHC nomenclature rules.
Marsh: The data we are curating and making available in the database are

nucleotide and amino acid sequences, and as such we need a robust genetic
nomenclature that meets the needs of such data, rather than relying on old
serological de¢nitions.
Rammensee: With the mouse, the Jackson Laboratory has some gene bank

availability, but not of the structure of MHC molecules and their peptide
speci¢city.
Petrovsky: I am sure they would be interested. I don’t think anyone has

approached them. Ed Leiter at Jackson Laboratory is generally very enthusiastic
about any programme for classifying mice.
Lefranc: We need to always clearly indicate the strain for mouse. We have, in

IMGT, indicated the strains for the immunoglobulin and T cell receptor genes
but this was quite a heavy task. Authors often forget to indicate the strain when
submitting their sequences to EMBL or GenBank so we had to go back to the
literature. The list of the mouse strains quoted in IMGT Repertoire, with links to
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Mouse Genome Informatics (MGI), is available from the IMGT Index (http://
imgt.cines.fr)4Strains.
Kesmir: You don’t have any information about the frequency of HLA alleles.
Marsh: That’s true.
Kesmir: This would be useful information. Is it possible to get it somewhere

else?
Marsh: We haven’t linked to too many other databases yet because we are

unsure of the quality of some of the other databases out there. I would like to
include more links because this would improve the functionality of what we
have. A new database is now beginning called ‘Allele Frequencies Database’
(www.allelefrequencies.net). This is a new database that is collecting HLA frequency
data as well as other genetic markers such as KIR alleles and cytokine
polymorphism frequencies. At the present time there are few data. They
currently link to the IMGT/HLA database but we don’t have reciprocal links
back yet. This is partly because of the structure of their database, which requires a
password for access. The bottom line is that for the 1500 or so alleles that we have
there aren’t well controlled good quality frequency data in a variety of di¡erent
populations, which is what we would love to see. It would be nice to click on a
button andget theA*0259 allele frequencies in every population around theworld.
Kesmir:What about haplotype information?
Marsh:The haplotype information comes after the frequency data. The best data

set is still from the 1991 HLAworkshop, and this was based on serology for class I
and someDNA typing for class II. They looked at over 100 populations. Nothing
has happened globally since then to give us a similar sort of data set. The Allele
Frequencies database is storing haplotype frequency data in addition to allele
frequencies.
Littlejohn:What are your submission processes? Do people have to submit data

to EBI/EMBL ¢rst and then you?
Marsh:Yes.The criteriawere drawnup a long time agowhenweweren’t surewe

would ever get funding for our database and how big it would grow. We never
wanted to have the data only in this database and then ¢nd that it can’t be
curated. We therefore stipulated that people should submit their data to
Genbank/EMBL/DDBJ as well as to us.
Littlejohn: Theoretically, once the MHCmultispecies starts ¢lling up it will also

have phylogenetic analysis tools.
Rammensee: Is there any connection with the bone marrow transplantation

repositories? So far 8 million people have been typed. Is there exchange of data?
Marsh:Wesupply sequence alignments to themajor registries every quarter, and

they support us, but the level of resolution in the registries is low ormedium. Even
if you were to try to generate frequencies for some of these alleles it is impossible
from this data set. On the clinical side, with regard to matching between donors
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and patients, there are big studies going on where we are looking at the level of
matching that is being obtained between patients and donors in retrospective
analysis, and following it up with clinical data.
Rammensee: I was thinking the otherway round: it might be interesting to see the

plain frequency of one allele or family in the bone marrow transplantation registry
to get some idea of the frequency of an allele in the population.
Marsh: As most of the data in the registry are low or medium level, we don’t

achieve anything more than what was achieved in the 1991 workshop where
everything was done at the serological level.
Margalit: I wanted to ask about the annotation of the non-synonymous

substitutions. Does this have any practical implications, or is it just for
phylogenetic analysis?
Marsh: In transplantation, because there is such strong linkage disequilibrium it

can tell us what other genes we expect to be on the same haplotype. This is one
issue. The second issue is that when you are designing reagents that are speci¢c
for single nucleotide changes we need to be able to identify and name those
sequences so we can use, in some cases, two or three probes to a speci¢c site
because we have these known substitutions.
Beck: Synonymous substitutions a¡ecting CpG positions might also be

important if you consider methylation patterns.
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From immunogenetics to

immunomics: functional prospecting

of genes and transcripts

Christian Sch˛nbach

Biomedical Knowledge Discovery Team, Bioinformatics Group, RIKEN Genomic Sciences
Center (GSC), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan

Abstract.Human and mouse genome and transcriptome projects have expanded the ¢eld
of ‘immunogenetics’ beyond the traditional study of the genetics and evolution ofMHC,
TCR and Ig loci into the new interdisciplinary area of ‘immunomics’. Immunomics is the
study of the molecular functions associated with all immune-related coding and non-
coding mRNA transcripts. To unravel the function, regulation and diversity of the
immunome requires that we identify and correctly categorize all immune-related
transcripts. The importance of intercalated genes, antisense transcripts and non-coding
RNAs and their potential role in regulation of immune development and function are
only just starting to be appreciated. To better understand immune function and
regulation, transcriptome projects (e.g. Functional Annotation of the Mouse,
FANTOM), that focus on sequencing full-length transcripts from multiple tissue
sources, ideally should include speci¢c immune cells (e.g. T cell, B cells, macrophages,
dendritic cells) at various states of development, in activated and unactivated states and
in di¡erent disease contexts. Progress in deciphering immune regulatory networks will
require the cooperative e¡orts of immunologists, immunogeneticists, molecular
biologists and bioinformaticians. Although primary sequence analysis remains useful
for annotation of new transcripts it is less useful for identifying novel functions of
known transcripts in a new context (protein interaction network or pathway). The most
e⁄cient approach to mine useful information from the vast a priori knowledge contained
in biological databases and the scienti¢c literature, is to use a combination of
computational and expert-driven knowledge discovery strategies. This paper will
illustrate the challenges posed in attempts to functionally infer transcriptional
regulation and interaction of immune-related genes from text and sequence-based data
sources.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 177^192

The discovery of the DNA-double helix 50 years ago (Watson & Crick 1953)
triggered a new wave of biology that for the ¢rst time enabled biologists to link
biological phenomena to the function of particular genes. The main technologies
that have driven this revolution are cloning, sequencing and the identi¢cation of
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speci¢c functions at the sequence, transcript, protein, cellular and whole organism
level. The release of the human draft genome (Lander et al 2001, Venter et al 2001)
and mouse genome (Waterston et al 2002) in combination with annotation e¡orts
(e.g. HAVANA) and haplotype structure and linkage disequilibrium analyses
(Daly et al 2001, Rioux et al 2001) have set the stage for analysing the genome
using the transcriptome and vice versa. Extensively curated cDNA clone data
(Kawai et al 2001; FANTOM2; Human-Invitational cDNA Annotation
Jamboree), gene pro¢ling (Sha¡er et al 2001) and oligo arrays (Shoemaker et al
2001) facilitate deciphering of the genetics and multi-dimensional structure of
molecular processes that regulate immune function.

What can the transcriptome tell us about the immunome?

The functional annotation of 21 076 mouse full-length cDNA sequences as part of
the RIKEN mouse gene encyclopaedia project (FANTOM1, Kawai et al 2001)
resulted in the identi¢cation of 15 295 genes of which 58.3% did not correspond
to known genes. The value of the FANTOM cDNA collection lies in the fact that
it includes predominantly full length transcripts, from the diversity of tissue
sources used to construct the libraries, with an emphasis on enrichment with
novel transcripts, multiplicity of splice variants and its expert human curation.
Interestingly, 95 clones were con¢rmed to be in reverse orientation and these
may present candidate antisense transcripts that are involved in gene regulation.
A comparison of ab initio predicted exons with novel FANTOM transcripts

showed that only 21% of transcripts perfectly overlapped with GenScan
predicted exons, 38% showed partial matches and 41% were not predicted. The
disparity between the large transcriptional capacity of the mouse genome and
number of algorithm-predicted exons was also con¢rmed by oligonucleotide
arrays (Kapranov et al 2002) of chromosome 21 and 22, which contained about
770 predicted and characterized genes whereas the actual transcriptional capacity
of these chromosomes exceeded the number of predicted genes by an order of
magnitude. Therefore, gene structure and the transcriptional capacity of the
genome cannot be fully captured without transcriptional data derived from
physical clones. Moreover, these data question the capacity to predict regulatory
elements such as promoters without transcriptional supporting data.

De¢ning immunomics

Since publication of the FANTOM1 analysis results 60 000 cDNA sequences have
undergone computational analyses and human curation (FANTOM2; Okazaki
et al 2002) while this manuscript was being prepared. With the release of the
RIKEN mouse cDNAs and the complete mouse genome sequence, we now
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have an extraordinary reference resource for computational and experimental
studies of immune system transcriptional regulation, protein interactions,
signalling and metabolism. The size of the transcriptome depends on the
de¢nition of transcription unit, tissue sources of cDNA libraries, and
representation of mRNA transcripts. A transcriptional unit requires that a
promoter determines the direction and start-site of a transcription unit and a
termination site the end. Transcripts that arise by recombination events or
rearrangement such as Ig and Tcr would therefore be excluded. If we de¢ne
‘immunomics’ as the molecular functions associated with all immune-related
coding and non-coding mRNA transcripts, the number of immune-related
transcripts is estimated to be several orders of magnitude higher than the number
genes encoding them. If we extrapolate the estimate of Arnone &Davison (1997)
that each gene interacts with four to eight other genes and is involved in up to 10
di¡erent biological functions it is clear that functional transcript-based diversity
and complexity is simply enormous. This poses problems for bioinformatics
analyses and modelling of transcriptional networks. Before I highlight the
biological e¡ects consequent upon transcriptional diversity, some caveats
relating to the current data need to addressed.

Caveats

The mouse genome sequence is derived from a female C57BL6/J animal with
disease model mice (e.g. NOD, NZM) yet to be sequenced. The situation for the
human genome is similar with all sequence data being derived from a very limited
number of individuals. The identi¢cation of the genetic aetiology, susceptibility
and protective loci or alleles of complex, human diseases will require the
sequencing of many more common haplotypes. For example, a comparison of
linkage hits of seven asthma studies (Altmuller et al 2001) showed 42 hits on 17
di¡erent chromosomes. When applying the signi¢cance criteria of Lander &
Kruglyak (1995) six studies resulted only in suggestive linkage and one in no
signi¢cant linkage.
At the transcriptional level immunomics faces the problem that inducible and

cell type-speci¢c transcripts from, for example, T cells, B cells or macrophages
present at low levels in whole tissue mRNA are underrepresented in mouse
cDNA (e.g. FANTOM) or human cDNA (e.g. KIAA; Ohara et al 1997)
libraries. For example, cytokines are largely only induced in nucleated cells in
response to danger (Schwarz et al 2001). Hence, cytokine transcripts would be
anticipated to be underrepresented in libraries of unstimulated immune tissues. A
framework for the construction and sharing of immunopathological cDNA
library resources should be encouraged to boost the number of publicly available
immune-related transcripts and transcriptional variants.
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Transcriptional diversity

Antisense. Transcriptional variation will play a growing role in elucidating
characteristic phenotypes in a cellular context. For example, RU2AS, the
translated antisense transcript of Ru2 (Chr 6p22.1) was found to be an HLA-B7
restricted renal carcinoma antigen (Van den Eynde et al 1999). The transcription
of RU2AS is initiated by an cryptic antisense-oriented promoter in the ¢rst intron
of Ru2. The translation of antisense is known for retroviruses (e.g. HIV) which
have cytoplasmic control elements that facilitate the transport of RNA into the
cytoplasm. It remains to be seen whether antisense translation in cancer cells
adds to the existing range of variations shown to be caused by aberrant intron
transcription (MGAT5), unspliced introns (e.g. as seen in melanoma ubiquitous
mutated protein 1, Coulie et al 1995; SILV, Robbins et al 1997; and DCT, Lupetti
et al 1998) or translation of alternative open reading frames (e.g. as seen inTYRP1
and CTAG1 (Wang et al 1996, 1998).

Alternative splicing. Alternative splicing, as seen in 42% of human transcripts of
which 74% a¡ect protein coding sequences (Modrek et al 2001), has relevance for
non-Mendelian disease aetiology (Stamm 2002). Among immune-related
transcripts, Tcr and Ig are prone to premature termination codons caused by
frameshift and nonsense mutations due to rearrangement. Two groups have
independently shown that aberrant Tcrb transcripts with nonsense codons are
down-regulated by nonsense-mediated decay factor UPF2 and internal ribosome
entry sites (Wang et al 2002a, Mendell et al 2002). On the other hand, Tcrb
transcript mutations that generate premature termination or nonsense codons are
compensated for by an increase in the number of alternatively spliced transcripts
that skip the nonsense codon (Wang et al 2002b), thereby retaining some protein
function. It will be interesting to see whether the interdependency of RNA
scanning and alternative splicing a¡ects TCR repertoire and is associated with
disease. Nambiar and co-workers (2001) showed that the expression of
alternatively spliced 3’ untranslated region of Tcrz which may a¡ect mRNA
stability, was increased in patients with systemic lupus erythematosus. For
bioinformatics, these ¢ndings underline the problems with trying to apply to
humans, gene network modelling techniques (Friedman et al 2000) that work for
bacteria and yeast, but which have less sophisticated regulatory mechanisms than
mammals.

Repeats. Simple, tandem and dispersed repeats (e.g. transposable elements such as
SINEs and LINEs or retrotransposed genes) can generate signi¢cant functional
diversity by a¡ecting the coding sequence. More than 15% of currently available
mouse mRNA sequences with protein coding potential contain repeats that
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overlap with the coding sequence (Sch˛nbach C, Nagashima T, Silva DG,
unpublished data). How much splice variation is attributable to repeats and may
have disease implications is under investigation. The distribution of repeat
element is not random. For example, SINEs (short interspersed nucleotide
elements) occur less frequently in imprinted regions (Greally et al 2002).
Depending on the location of the insertion SINE B2 may a¡ect the transcription
of neighbouring genes by acting as a pol II promoter (Ferrigno et al 2001).
Endogenous retrovirus insertion (ERV) in complement C4 a¡ects expression of
C4A and C4B by antisense inhibition (Schneider et al 2001). The TOLL-like
receptor 4 cDNA (AK014533) of a C57BL6/J mouse contains a MaLR long-
terminal repeat and an in-frame B2 repeat in the CDS that result in a premature
termination codon and possibly a truncated (1^146 aa) form of TLR4 that lacks the
cytoplasmic domain and most of the extracellular region and therefore lead to
hyposensitivity to LPS (Hoshino et al1999).

Protein motifs and domains

Motifs and domains provide a rich data source of functional clues for hypothetical
proteins, signalling pathways, protein^protein interactions and regulatory or
active sites. SWISS-PROT (Bairoch & Apweiler 2000), a protein knowledge
base containing curated protein sequences and functional information on
domains, and diseases, in 15 years grew 30-fold from 3939 entries in 1986 to
119 805 entries in release 40.36 (November 2002). Despite the human and mouse
genome sequencing e¡orts and release of large transcriptome sets, the number of
human and mouse protein sequences with curated functional information in
SWISS-PROT remains low: 8855 (7.4%) for human and 5947 (5.0%) for mouse
compared with an estimated proteome of about 500 000 sequences (Banks et al
2000).
The majority of sequences in the TrEMBL database of SWISS-PROT/

TrEMBL or FANTOM are hypothetical proteins or otherwise uninformative
sequences, with names such as ‘Similar to hypothetical protein FLJ22055 . . .’ or
‘Hypothetical protein FLJ23636 (Similar to weakly similar to glutathione
peroxidase 2’). These sequences generally have no informative homologue or
common ancestor and instead match best to a non-informative homologue.
Algorithms for identi¢cation of motifs are commonly used to help classify these
sequences and provide functional clues on their binding and catalytic, active sites,
or structure^function relations. For example 5873 of 21 050 predicted FANTOM
protein sequences contain InterPro motifs/domains and for 900 (15%) sequences
the InterPro name is the only functional description.
Candidate novel functions of known proteins are sometimes mediated by

domains or motifs that are not found in existing databases or the literature. For
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example, Kawaji et al (2002) discovered seven novel motifs using a maximum-
density subgraph detection method in combination with subtraction of known
motifs. Among the novel motifs was an AGPAT sub-motif containing a
transmembrane domain that distinguishes mammalian 1-acyl-SN-glycerol-3-
phosphate acyltransferase AGPAT3 and AGPAT4 from all other acyltransferase
domain containing proteins. Whether the sub-motif plays a modulating role in
in£ammatory responses involving AGPAT family members remains to be shown
but in vitro over-expression of AGPAT1 and AGPAT2 enhanced IL6 and TNFa
transcription and synthesis after IL1b stimulation (West et al 1997).
Many protein functions are the consequence of cellular context plus protein

structure. In turn this is dependent on the protein sequence, transcription,
translation and post-translational modi¢cations, and subcellular localization.
Motif analyses will, therefore, provide only partial answers for one layer of
complexity (protein sequence). The functional interpretation of motifs,
particularly new motifs, requires additional e¡orts such as literature searching.

Using the bibliome to explore the immunome

Technological advances and large-scale initiatives are closing data gaps, but the
interpretation and functional inference process is time consuming and causes a
major bottleneck in result interpretation. Traditional data mining methods that
¢nd patterns occurring with high frequency are not applicable to context-
dependent and interrelated data that require more detailed analysis to understand.
Immunology is a knowledge-based subject with highly descriptive presentation

of results in the literature and a large body of elaborate metadata (e.g. annotations)
that describe the raw data (e.g. sequences). Sequence comparison tools provide a
¢rst-pass functional inference based on similarity. If the results indicate similarity
to a known sequence whose metadata are informative, subsequent analysis steps
usually involve a MEDLINE search of abstracts and/or associated full-text
papers. The knowledge gained from reading the abstracts or articles related to
the similar sequence of interest is transferred to the query sequence. Functional
knowledge extraction from microarray data or interrelating gene expression data
with pathway and molecular interaction data, faces similar problems.

Ontologies

As immunomics has to deal with both complex and incomplete data, for functional
inference we need to at least be able to semi-automate knowledge inference.
Ontologies, such as gene ontology (GO) terms (Ashburner et al 2000) or Medical
Subject Headings (Nelson et al 2001) use a curated, controlled vocabulary that link
related concepts in a hierarchical structure. Given the multiplicity of functions and
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context dependency of a transcript or its product, existing gene ontologies need to
be re¢ned. For example, the action of a cytokine is dependent upon the presence of
cells that express the cell surface receptor for that cytokine. TGFb1, which is
expressed during B cell development, at low concentration triggers an increase in
the secretion of IgG3 and IgG2, but inhibits their secretion and cell growth at
higher concentration (Bouchard et al 1994, Ollila & Vihinen 2002). Current GO
terms for TGFb1 are relatively coarse grain, for example, ‘extracellular matrix’,
‘growth factor’, ‘transforming growth factor-beta receptor ligand’, ‘cell growth’,
‘cell proliferation’, ‘defense response’, ‘in£ammatory response’, ‘lymph gland
development’, ‘myogenesis’, ‘necrosis’, ‘negative regulation of cell proliferation’,
‘organogenesis’, ‘regulation of myogenesis’, and ‘skeletal development’. Fine
grain terms such ‘B cell development’ or ‘regulation of isotype production’,
‘concentration dependent’ together with MEDLINE identi¢er and disease
MeSH terms where applicable, would improve concept mapping and establish
automatic interrelations between biological process and associated diseases. At
the same time retrieval of MEDLINE abstracts with GO terms and extraction of
sentences that containGOwords at a given distance from the gene or protein name
of interest would gain in speci¢city.

Text information retrieval and natural language processing

Advances in information retrieval, classi¢cation, and natural language processing
have led to improved expression data analysis by literature pro¢ling (Chaussabel&
Sher 2002) or knowledge extraction tools. For example, XplorMed (Perez-Iratxeta
et al 2001), MedMiner (Tanabe et al 1999) PubGene (Jennsen et al 2001) facilitate
the exploration of keyword-retrieved abstracts by quantitative word dependencies
and identi¢cation of co-occurrences of gene names in MEDLINE abstracts. Data
mining and information extraction systems for protein^protein interactions are
based on association rules (Oyama et al 2002) or Bayesian statistics (Marcotte et al
2001) and have been used to support annotation and expansion of the DIP
Database of Interacting Proteins (Xenarios et al 2001). PIES (Wong 2001) and
SUISEKI (Blaschke et al 2001) infer protein^protein interactions from sentences
if the query word and prede¢ned interaction words occur in the same sentence.

Interrelating text and biomolecular data

Some of the above tools lack biological context information integration, while
others are specialized on the analysis of small data restricted to one topic (e.g.
only protein^protein interactions). None of the tools has large-scale annotation
capabilities. Annotation of free-text and computationally inferred functions is a
necessity to prevent massive error propagation when inferred information is
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incorporated into other curated databases. We have developed a semi-automated
rule-based knowledge discovery support system with annotation capability
(FACTS) that interrelates sequence-inferred molecular functional information
with text-inferred functional information mined from sentences of MEDLINE
abstracts, gene ontology, OMIM, BIND, DIP, motif databases and other
biological databases.
Our system facilitates the intuitive exploration and annotation of mouse cDNA

related molecular interactions and pathologies by simple and complex keyword or
sequence searches (Nagashima et al 2003). We applied the system to nearly 28 900
cDNA clone annotations that were informative for text searches. Twenty-three
per cent of cDNA clones were associated with molecular interaction-containing
sentences, and 33% with gene ontology identi¢ers. Comparisons of sequence and
text-inferred functional information with text-search informative queries revealed
that three-quarters and one-quarter of transcripts shared GO terms and OMIM
Morbidmap titles, assigned by both methods, respectively. The comparison of
inferred disease associations by manual querying and information extraction with
the semi-automated rule-based system showed that about one quarterwere inferred
by only one of the methods and half by both methods combined.
The protein^protein interaction networks of FACTS are shown in the context

of tissue distribution or expression data, disease information (MeSH, OMIM),
InterPro protein domain information and gene ontology terms. The non-
canonical presentation of inferred functional associations can help visualization
di¡erences in transcriptional activity and tissue context and is therefore more
amenable to analysing the complex relationships of immune molecular networks.
In a second system (GEpi) we demonstrated the inference of functional

information for gene expression data during HIV1 infection of T cells (see Fig. 1)
(Sch˛nbach et al 2002). GEpi is a prototype for gene expression, epitope, protein
interaction information extraction and integration. Context and temporal
information is important when studying dynamic processes such as viral
infection and regulation of adaptive and innate immune responses through
cytokine and signal dependent transcription factors. However the use of abstract-
derived information has its limitation. For example, epitope (word and sequence)
information in PubMed abstracts is sparse and often lacks necessary context
information, such as HLA-restriction.

Conclusions

Progressing from immunogenetics to immunomics necessitates large-scale sharing
of resources and integration of huge amounts of complex data on multiple
biological levels. This data must be acquired from multiple sources and
integrated. Large-scale integration tools such as KLEISLI (Chung & Wong
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1999) and CORBA that were predicted to provide the future of automated data
examination and knowledge discovery for unknown reasons have not been
widely adopted in academic biological research. It is too early to predict whether
recent computer infrastructure sharing and data integration initiatives such as the
BIOGRID or the Biomedical Research Network (BIRN) of the National Center
for Research Resources at NIH will accelerate data integration in biology or
immunomics. Part of the problem arises from the di¡ering priorities and research
interests of computer scientists, bioinformaticians and immunologists.
Integrated systems based on literature and biomolecular data queries that

traverse biological hierarchies are required for immunomics to ful¢l its promise.
One-dimensional analyses at the sequence level such as peptide binding prediction
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FIG. 1. Screenshot of GEpi functional report for neurothrophin 3 (NTF3). The table shows
basic information such as expression data source and pro¢le, a summary of MEDLINE search
and extraction results, as well as nomenclature, motif and pathway information integrated from
external databases. Inferred molecular interaction and MeSH-based disease information are
shown for NTF3 which can bind to TRKB.



or motif discovery remain important to solve particular problems.
Immunoinformatics tools that are created to support immunomics research need
to focus on the multi-dimensional character and context-dependent view of
immunological phenomena. In this way immunomics can facilitate the transfer of
immunological knowledge to diagnosis and therapy of human immune diseases.
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DISCUSSION

Rammensee:How would you envisage that normal scientists will be able to use
this kind of tool?
Sch˛nbach: FACTS (Functional Association/Annotation of cDNA Clones from

Text/Sequence Sources), is currently being used by our collaborators through the
website http://facts.gsc.riken.go.jp/. Perhaps Diego Silva who used FACTS for the
identi¢cation and exploration of human-disease-related genes frommouse cDNAs
can say something about the functionality as a ‘normal’ user.
Silva: FACTS is a very useful tool for a normal user, we have used it to identify

novel human disease-related genes from a set of FANTOM mouse transcripts.
Based on sequence analysis we identi¢ed mouse transcripts with 50^75%
similarity to human genes, then using FACTS we queried MEDLINE to select
by MESH term matching, those genes directly related to human disease. The
¢nal list of requested genes was then uploaded to the system for manual curation.
Candidate genes were then analysed based on protein interactions, presence of
motifs and genome mapping. FACTS is a very e¡ective tool for data mining in
genomics research.
Rammensee: Could I do this on your website?
Sch˛nbach: By the time our paper (Nagashima et al 2003) has been accepted for

publication the web site will be open to everyone.
Petrovsky: Essentially, what it is saying is that you have to do your own

annotation. This will search the literature and give you the results, but you will
then have to annotate it yourself.
Kellam: There are quite a few sources of noise that can come into this. If you

started o¡ with just the GO terms that are annotated by the literature, and if you
used a carefully curated pathway with annotation to learn the natural processing
and language rules, would you end up with a better predictive power from the
literature?
Sch˛nbach: Yes.
Kellam: If so, you would over-¢t for what you were originally looking at.
Sch˛nbach:Yes, this is a potential problem. This is why I didn’t touch the natural

language processing side. In the natural language processing community are very
few attempts for using and integrating data from di¡erent domains (e.g. sequence
and text data). Making toy models with highly speci¢c or small data sets is in my
opinion akin to a self-ful¢lling hypothesis. For biological or biomedical
applications we need a large and standardized test set (e.g. for protein^protein
interactions) and be frank about the speci¢city of prediction. For example, when
we applied to our predicted protein^protein interactions sequence-based criteria
(e.g. complete sequence, sequence similarity) which are important for protein^
protein interaction the speci¢city dropped to 5^6%.
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Kellam: Does it matter if you over-learn a way of extracting information for a
particular area of science?
Sch˛nbach: It is useful for one particular area. For GO I think it will be di⁄cult

because of indirect associations and similar functions caused by di¡erent
mechanisms. For retrieving subsets of molecular interactions over-learning
appears to be useful. Currently we focus on protein^protein interactions.
Therefore we improve the speci¢city for protein^protein interactions and accept
the consequent loss of information on protein^DNA or protein^small molecule
interactions.
Kellam: For your query construction it is really an expert system. Could you also

learn a systemusing neural networks or genetic algorithms, rather than taking your
expert system that is also inherently biased?
Sch˛nbach: In theory. In the long-term perhaps we should use the growing body

of annotated data to construct a system based on neural networks or genetic
algorithms.
Petrovsky: Presumably a lot of the problems arise from inconsistent or

overlapping terminology.
Sch˛nbach: Yes. For some cytokines it is very messy. There is a cytokine called

April, which is a common English word. Another example is that we analysed
the top 10 hits in abstracts. 12 000 abstracts contained the word ‘great’, which is a
synonym for G protein-coupled receptor.
Kellam:Howmuch do errors in the literature cause problems?
Sch˛nbach: I cannot give numbers because we have not yet evaluated of errors in

the literature. But there are intrinsic problems with the usage of ambiguous
symbols, inconsistent nomenclature and speci¢city of MeSH (Medical Subject
Headings) in MEDLINE abstracts. For example MeSH can be applied for
disease concept mapping. Terms such as ‘Acute Disease’ are very broad and a
cause of false positives.
Littlejohn: How does your approach compare with other well established

systems, such as Omniviz, SRS and related systems? Natural language
processing and the integration of heterogeneous databases are very powerful for
this.
Sch˛nbach: I cannot comment on the systems that you mentioned. To my

knowledge no one has done a fair comparison with standardized data, which is a
common problem in this ¢eld. The reason I compared our work with results
described by Blaschke et al (2001) is because his group also used term matching. I
didn’t use parsing or other more sophisticated natural language processing (NLP)
techniques, so I cannot compare mine to the system you mentioned. Some of the
NLP approaches that apply parsing use a very small data set for training and
evaluation and obtain quite high performance. Parsing which is computationally
intensive hasn’t been applied to amillion abstracts that we extracted, processed and
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integrated in FACTS and GEpi with biomolecular data retrieved from other
databases.
Littlejohn: With the annotation process, you have two options. One thing

looks a lot like Lincoln Stein’s DAS (distributed annotation system) system. Is it
related to this or does it exploit it?
Sch˛nbach: No, it is not related to DAS and does not exploit DAS technology.

FACTS or GEpi annotation pages are accessible through a web-based interface.
Littlejohn:How are the con¢dence levels assigned?
Sch˛nbach: Low level con¢dence values were computationally assigned using

indicator words such as ‘might’, ‘it implies’, ‘suggests’, etc. During the
annotation curators assigned con¢dence values ‘low’, ‘medium’ and ‘high’
according to annotation rules. The con¢dence values are qualitative and not
meant to be for statistics.
Beck: How do you foresee the use of comparative data? These databases

are aimed at protein^protein interactions of human proteins, but the
biggest experimental data set on such interactions exist for the worm and
yeast. Certainly for the worm, more than 40% of the proteins appear to
have orthologues in other species, so one could extract a lot there. But
if you extract the data from text-based sources, these genes might be
known by totally di¡erent names. Even at the sequence level you could run into
problems. There is a good experimentally generated data set but at neither the
literature or the sequence level is it easy to extract out the information about the
human genes.
Sch˛nbach: We used sequence data as supporting evidence for the literature-

derived data. For example we compared the text-based protein^protein
interactions with records of BIND (Biomolecular Interaction Network Database,
http://www.bind.ca), if available.
Beck:Did you go to DIP (Database of Interacting Proteins, http://dip.

doe-mbi.ucla.edu/) ¢rst?
Sch˛nbach: The problem with DIP database is that its founder requires users to

get permission to redistribute contents, for example interacting proteins and their
annotation. I have not yet obtained the permission. To answer your previous
question, it depends on the sequence similarity threshold. Currently we use
sequence comparison (e.g. BLASTP or FASTY). We want to be on the
conservative side to decrease the number of false positives. The threshold we use
is currently 90% identity.
Beck: That is very conservative. I understand why you use this, but it excludes a

lot of orthologues.
Sch˛nbach: Yes. However, termmatching is ignorant to alternative splice forms,

truncated or partial sequences. Since protein^protein interactions can be abolished
by substitution of one amino acid residue, text-extracted protein interactions
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should be carefully inspected by either sequence similarity search or reading the
full-text article.
Beck:How can we overcome this problem?
Sch˛nbach: I am looking into this issue. Another problem is that with yeast two-

hybrid data. I wouldn’t consider these to be hard data. This is why we introduced
this annotation for the text-based data. If the annotator ¢nds that there is a
reference to yeast two-hybrid in the abstract the con¢dence value ‘low’ will be
assigned.
Margalit: There are in the region of 50% false positives.
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Abstract. I describe how mathematical models have been used to elucidate the principles
which govern HIV and immune system dynamics in relation to antiviral drug therapy.
The review starts by introducing a basicmodel of virus infection and demonstrates how it
was used to study HIV dynamics and to measure crucial parameters which lead to a new
understanding of the disease process. Since this analysis indicates that eradication of the
virus is not feasible during the lifetime of the patient, I continue to discuss mathematical
models with the aim to explore how drug therapy can be used to induce long-term
immunological control of the infection.
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The dynamics between viral infections and the immune system involve many
di¡erent components and are multifactorial. Given such a scenario, the principles
governing the dynamics and the outcome of infection cannot be understood by
verbal or graphical reasoning. Mathematical models provide an essential tool to
capture a set of assumptions and to follow them to their precise logical
conclusions. They allow us to generate new hypotheses, suggest experiments,
and to measure crucial parameters.
A particular example is HIV infection. The interactions between HIV and the

immune system are more complex compared with most other infections. While
immune responses have the potential to ¢ght the virus, HIV infects CD4+

T helper cells which are a central component orchestrating the generation of
speci¢c immune responses. Depending on co-receptor usage, HIV can infect
other immune cells, such as macrophages and dendritic cells, which are also
involved in the generation of antiviral immunity. Thus, suboptimal immune
responses develop during the acute phase of the infection and can contribute to
viral persistence and to the ability of the virus to mutate and evolve. The
infection remains asymptomatic for years before viral load increases su⁄ciently
and the population of CD4+ T cells falls to low levels upon development of
AIDS. Disease progression is associated with the evolution of speci¢c viral
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variants which are more virulent and pathogenic (e.g. evolution of strong T cell
tropism, escape from immune responses, faster viral replication, and higher
degrees of cytopathicity). Anti-retroviral drug therapy has been used successfully
to signi¢cantly suppress viral replication and to delay disease progression in many
patients. Currently, these drugs act by two mechanisms: reverse transcriptase
inhibitors interfere with the process of reverse transcription and prevent the
virus from infecting a cell; protease inhibitors prevent the assembly of new
infectious viral particles by an infected cell. Because HIV integrates into the host
genome, however, the infected cells remain una¡ected and provide a viral
reservoir. While most productively infected cells have a relatively short lifespan,
many cells are latently infected and are very long-lived. Thus, virus eradication by
drug therapy is not possible during the lifetime of the host. Because continued
administration of drugs is associated with many problems, such as side e¡ects and
the generation of drug resistance,more recent research e¡orts have been directed at
¢nding therapy regimes which boost HIV-speci¢c immune responses.
In this review, I show how mathematical models can be used to understand the

dynamics of HIV infection and therapy. The paper starts by describing a basic
model of virus infection and continues to show how it was used to get some
crucial insights into the dynamics during the asymptomatic phase of the disease. I
discuss HIV and immune response dynamics during antiviral therapy and explore
how drug therapy can be used to boost virus-speci¢c immunity, resulting in long-
term control of the infection.

A basic model of virus dynamics

Basic virus dynamics can be described by a model which consists of three variables
(Fig. 1). The population sizes of uninfected cells, x; infected cells, y; and free virus
particles, v. These quantities can either denote the total abundancewithin a host, or
the abundance in a given volume of blood or tissue.
Free virus particles infect uninfected cells at a rate proportional to the product of

their abundances, bxv. The rate constant, b, describes the e⁄cacy of this process,
including the rate at which virus particles ¢nd uninfected cells, the rate of virus
entry and the rate and probability of successful infection. Infected cells produce
free virus at a rate proportional to their abundance, ky. Infected cells die at a rate
ay, and free virus particles are removed from the system at rate uv. Therefore, the
average lifetime of an infected cell is 1/a, whereas the average lifetime of a free virus
particle is 1/u. The total amount of virus particles produced from one infected cell,
the ‘burst size’, is k/a.
Uninfected cells are produced at a constant rate, l, and die at a rate dx. The

average lifetime of an uninfected cell is 1/d. In the absence of infection, the
population dynamics of host cells is given by _xx¼l�dx. This is a simple linear
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di¡erential equation. Without virus, the abundance of uninfected cells converges
to the equilibrium value l /d.
Combining the dynamics of virus infection and host cells, we obtain a model of

virus dynamics (De Boer & Perelson 1998, Nowak & Bangham 1996):

_xx ¼ l� dx� bxv

_yy ¼ bxv� ay

_vv ¼ ky� uv

(1)

This is a system of non-linear di¡erential equations. An analytic solution of the
time development of the variables is not possible, but we can derive various
approximations and thereby obtain a complete understanding of the system.
Before infection, we have y¼0, v¼0, and uninfected cells are at equilibrium
x¼l/d. Denote by t¼0 the time when infection occurs. Suppose infection
occurs with a certain amount of viral particles, v0. Thus the initial conditions
are x0¼l/d, y0¼0, and v0. Whether or not the virus can grow and establish an
infection depends on a condition very similar to the spread of an infectious
disease in a population of host individuals. The crucial quantity is the basic
reproductive ratio, R0, which is de¢ned as the number of newly infected cells that
arise from any one infected cell when almost all cells are uninfected. The rate at
which one infected cell gives rise to new infected cells is given by bkx/u. If all
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FIG. 1. Schematic illustration of the basic model of viral dynamics. Uninfected cells ‘react’
with free virus to give rise to infected cells; the rate constant is b. Infected cells produce free
virions at a rate k. Uninfected cells, free virus and infected cells die at the rates d, u and a,
respectively. Uninfected cells are replenished at a constant rate l.



cells are uninfected then x¼l/d. Since the lifetime of an uninfected cell is 1/a, we
obtain R0¼blk/(adu).
If R051 then the virus will not spread, since every infected cell will on average

produce less than one other infected cell. The chain reaction is subcritical. On
average we expect 1/(1�R0) rounds of infection before the virus population dies
out. If on the other hand R041, then every infected cell will on average produce
more than one newly infected cell. The chain reaction will generate an explosive
multiplication of virus. Virus growth will not continue inde¢nitely, because the
supply of uninfected cells is limited. There will be a peak in viral load and
subsequently damped oscillations until an equilibrium is reached. The
equilibrium abundance of uninfected cells, infected cells and free virus is given
by x*¼x0 /R0, y*¼(R0�1)du/(bk), v*¼(R0�1)d/b.
At equilibrium, any one infected cell will on average give rise to one newly

infected cell. The fraction of free virus particles that manage to infect new cells is
thus given by the reciprocal of the burst size, a/k. The probability that a cell (born
uninfected) remains uninfected during its lifetime is 1/R0. The equilibrium ratio of
uninfected cells before and after infection is x0/x*¼R0.
If the virus has a basic reproductive ratio much larger than one, then x* will be

greatly reduced compared to x0, which means that during infection the
equilibrium abundance of uninfected cells is much smaller than before infection.
In other words, the above simple model cannot explain a situation where during a
persistent viral infection almost all ‘infectable’ cells remain uninfected (x*&x0),
except in the case when R0 is only slightly bigger than unity (which is a priori
unlikely in general).
Furthermore, if R0441, then the equilibrium abundance of infected cells and

free virus is approximately given by y*&l/a and v*&(lk)/(au). Interestingly, both
quantities do not depend on the infection parameter b (Bonhoe¡er et al 1997). The
reason is that a highly infectious virus (large b) will rapidly infect uninfected cells,
but at equilibrium there will only be few uninfected cells in the system. A less
infectious virus (smaller b) will take longer to infect uninfected cells, but the
equilibrium abundance of uninfected cells is higher. For both viruses the product
bxwill be the same at equilibrium, resulting in a constant rate of production of new
infected cells, and therefore in similar equilibrium abundances of infected cells and
free virus.
For a highly cytopathic virus (amuch larger than d ), the equilibrium abundance

of infected cells will be small compared to the abundance of cells prior to infection.
In fact, the larger a, the smaller the abundance both of infected cells and of free
virus.
For a non-cytopathic virus (a&d ), the equilibrium abundance of infected cells

will be roughly equivalent to the total abundance of susceptible cells prior to
infection.
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Virus dynamics and antiviral therapy

During HIV infection, reverse transcriptase inhibitors prevent infection of new
cells. Suppose ¢rst, for simplicity, that the drug is 100% e¡ective and that the
system is in equilibrium before the onset of treatment. Then we put b¼0 in
eq (1), and the subsequent dynamics of infected cells and free virus are given by
_yy¼�ay and _vv¼ky�uv. This leads to y(t)¼y*e�at and v(t)¼v*(ue�at�ae�ut)/(u�a)
assuming u=a. Infected cells fall purely as an exponential function of time,whereas
free virus falls exponentially after an initial ‘shoulder phase’ (Fig. 2). Since the half-
life of free virus particles is signi¢cantly shorter than the half-life of virus
producing cells, u44a, plasma virus abundance does not begin to fall noticeably
until the end of a shoulder phase of duration Dt&1/u. Thereafter virus decline
moves into its asymptotic phase, falling as e�at. Hence, the observed exponential
decay of plasma virus re£ects the half-life of virus producing cells, while the half-
life of free virus particles determines the length of the shoulder phase.Note that the
equation for v(t) is symmetrical in a and u, and therefore if a44u the converse is
true.
In the more general case when reverse transcriptase inhibition is not 100%

e¡ective, we may replace b in eq (1) with �bb¼ sb, with s51 (100% inhibition
corresponds to s¼0). If the time-scale for changes in the uninfected cell
abundance, 1/d, is longer than other time-scales (d55a,u), then we may
approximate x(t) by x*. It follows that the asymptotic rate of decay is
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FIG. 2. Initial dynamics of HIV decay following the onset of antiviral therapy. Infected cells
fall purely as an exponential function of time,whereas free virus falls exponentially after an initial
shoulder phase.



exp[�at(1�s)] for u44awhile the duration of the shoulder phase remainsDt&1/u.
Thus the observed half-life of virus producing cells,T1/2¼(ln 2)/[a(1�s)], depends
on the e⁄cacy of the drug.
Protease inhibitors prevent infected cells from producing infectious viral

particles. Free virus particles, which have been produced before therapy starts,
will for a short while continue to infect new cells, but infected cells will produce
non-infectious viral particles, w. The equations become _yy¼bxv�ay, _vv¼�uv,
_ww¼ky�uw. The situation is more complex, because the dynamics of infected cells
and free virus are not decoupled from the uninfected cell population. However, we
can obtain analytic insights if we again assume that the uninfected cell population
remains roughly constant for the time-scale under consideration. This gives the
total viral abundance as v(t)+w(t)¼v* [e�ut+{(e�at�e�ut)u/(a�u)+ate�ut}u/(a�u)].
For u44a this function describes a decay curve of plasma virus with an initial
shoulder (of duration Dt¼�(2/a)ln(1�a/u)&2/u) followed by an exponential
decay of e�at. The situation is very similar to reverse transcriptase inhibitor
treatment. The main di¡erence is that the viral decay function is no longer
symmetrical in u and a, and therefore a formal distinction between these two rate
constants is possible.
Sequential measurements of viral load in HIV1-infected patients treated with

reverse transcriptase or protease inhibitors usually permit a good assessment of
the slope of the exponential decline, which re£ects the half-life of infected cells,
(ln 2)/a (Fig. 3). This half-life is usually found to be between 1 and 3 days (Co⁄n
1995, Ho et al 1995, Perelson et al 1997, 1996, Wei et al 1995). The half-life of free
virus particles is of the order of a few hours, possibly even less. The process that
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FIG. 3. Long-term dynamics of viral decay following onset of antiviral therapy. The ¢rst and
rapid decay of virus (infected cell half-life of 1^3 days) is followed by a second decay phase which
is signi¢cantly slower (infected cell half-life of 10 days and longer).



leads to the clearance of viral particles from the peripheral blood is not understood.
The half-life of virus producing cells is determined by a combination of antiviral
CTL responses and viral cytopathicity (Klenerman et al 1996).
Only a small fraction of HIV1-infected cells, however, have a half-life of 2 days.

These short-lived cells are thought to be productively infected CD4+ T cells. They
account for the production of about 99% of the plasma virus present in a patient.
But most infected peripheral blood mononuclear cells (PBMCs) live much longer.
During highly active anti-retroviral therapy (HAART), the relatively fast decline
of plasma virus load only lasts for about one or two weeks. Subsequently the
decline in viral load enters a second and slower phase (Perelson et al 1997). This
second phase has a half-life of the order of 10 days (Fig. 3). The rate of decline is
thought to slow down even further with time, characterized by a half-life of up to
100 days (Chun et al 1997). The population of long-lived infected cells is
heterogeneous. It may comprise productively infected antigen presenting cells,
such as macrophages. But more importantly, cells can become latently infected
with HIV, and this population of infected cells is characterized by the longest
lifespan (Chun et al 1997).
These observations have two important implications for understanding HIV

infection and therapy. (i) The high turnover rate of most productively infected
cells allows the virus to mutate and evolve rapidly. This could contribute to
progression of the disease. (ii) While successful therapy can suppress viral load
below detection limit, complete viral eradication from the patient is not possible
under normal circumstances because of long-lived latently infected cells. Since
lifelong therapy is not feasible (problems with compliance, resistance and side-
e¡ects), it is important to seek therapeutic strategies which result in a boost of
immunity and long-term virus control in the absence of continuous therapy.
This will be explored in the following section.

Using drug therapy to induce long-term immunological control

As described above, the antiviral therapy currently available cannot eradicate HIV
from the host during the lifetime of the patient. Since lifelong treatment is not
feasible, research has focused on identifying therapy regimes, which could result
in long-term immune-mediated control of HIV in the absence of drugs. Among
immune responses, cytotoxic T lymphocyte (CTL) responses have been shown to
be particularly e¡ective at ¢ghting HIV replication (Jin et al 1999, Schmitz et al
1999). The development of protective CTL responses depends on the presence of
CD4+ T cell help. HIV infects and kills CD4+ T cells and this can result in
signi¢cant impairment of immunity against HIV. Indeed, HIV-speci¢c helper
cell impairment has been documented even in patients during the primary phase
of infection (Rosenberg et al 2000).
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How does this helper cell impairment in£uence the dynamics between HIV and
speci¢c CTL responses? In order to understand the nature of immune impairment,
we have to knowwhich immunological factors are required for e⁄cient control of
viral replication, or virus clearance. Mathematical models have identi¢ed two
parameters. First, the rate of CTL activation/proliferation in response to antigen
is important for limiting viral load (Nowak & Bangham 1996), and this has been
shown in persistent infections such asHIV andHTLV (Je¡ery et al 1999, Saah et al
1998). However, in addition virus clearance, or e⁄cient long-term CTL-mediated
control also requires antigen independent long-term persistence of memory CTLp
(Wodarz et al 2000a,b). This ensures that immune pressure is maintained on the
declining viral population, and this drives the virus to extinction. If CTLp are
short-lived in the absence of antigen, they will decline after viral load has been
reduced to low levels following CD8-mediated activity. This enables the virus to
regrow, resulting in an equilibrium describing persistent viral infection in the
presence of an ongoing CTL response, maintained by the persisting antigen.
Hence, antigen-independent persistence of memory CTLp is required for
clearance of infection. This is a new role for the antigen-independent persistence
of memory CTL in viral infections.
Experiments in LCMV infected mice have shown that the development of a

long-lived memory CTL response requires CD4+ T cell help (Borrow et al 1996,
1998, Thomsen et al 1996, 1998). In HIV infection, the high viral load attained
during the acute phase has been shown to result in the absence of signi¢cant
CD4+ T cell proliferative responses (Rosenberg et al 2000). This absence of
CD4+ T cell help could result in the failure to generate memory CTL that are
long-lived in the absence of antigen. According to theory the early impairment
could be the reason for persistent HIV replication and eventual loss of viral
control. This hypothesis is supported by data showing that many of the CTL
seen in chronic HIV infection are short-lived when viral load is reduced by drug
treatment (Kalams et al 1999). This indicates that they cannot be maintained in the
absence of antigenic stimulation. These CTL might be suboptimal, developing in
the absence of CD4+ T cell help.
These immune impairment dynamics can be captured by the following

mathematical model (Wodarz & Nowak 1999).

_xx ¼ l� dx� bxv

_yy ¼ bxv� ay

_vv ¼ ky� uv

_ww ¼ cxyw� cqyw� bw

_zz ¼ cqyw� hz

(2)
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The model is based on the simple viral dynamics equations described at the
beginning of this review (system 1). The target cells, x, are now assumed to be
immune cells that are susceptible to HIV and that are involved in the delivery of
‘help’ (e.g. CD4+ T cells or antigen presenting cells). In addition, we introduce a
CTL response. The population of CTL is subdivided into precursors or CTLp, w,
and e¡ectors or CTLe, z. CTLp are assumed to proliferate in response to antigenic
stimulation, and then to di¡erentiate into e¡ectors. CTLp proliferate at a rate cxyw
and die at a rate bw. This means, that proliferation not only requires antigen, y, but
also the presence of uninfected helper cells, x. The higher the viral load, the more
the uninfected helper cells becomedepleted, and the stronger the degree of immune
impairment. Di¡erentiation into e¡ectors occurs at a rate cqyw and is thus not
assumed to require help. Finally, CTLe die at a rate hz. Thus, the mechanism of
impairment underlying the model is that low levels of help result in more CTL
di¡erentiation than proliferation which eventually leads to extinction of the
helper-dependent CTL response. The results do not, however, rely on this
particular mechanism. The conclusions reached from this model remain
qualitatively similar as long as it is assumed that high levels of viral load increase
the amount of immune impairment (e.g. by alternative mechanisms such as
anergy).
The behaviour of the model depends on the rate of viral replication relative to

the strength of the CTL response. Three parameter regions can be distinguished
(Fig. 4). (i) If the viral replication rate is slow and lies below a threshold, the degree
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FIG. 4. Three di¡erent outcomes of the model describing CTL memory and the control of
HIV. The outcome of infection depends on the replication rate of the virus. If it replicates
slowly, the degree of immune impairment is low and CTL memory is generated. This
corresponds to long-term non-progression. If the replication rate of the virus is high, immune
impairment is strong and CTL memory can never be established, resulting in progression of
disease. If the replication rate of the virus is intermediate, both outcomes are possible,
depending on the initial conditions, as indicated in the diagram.



of immune impairment is weak and CTL memory is established. The outcome of
infection is long-term control. This outcome could correspond to the long-term
non-progressors. They are characterized by sustained high levels of CTL despite
very lowviral loads even 15^20 years after infection. (ii) If the replication rate of the
virus is high and lies above a threshold, viral growth and immune impairment are
overwhelming. CTL memory cannot be established and long-term virus control
cannot be achieved. (iii) If the replication rate of the virus is intermediate, both
outcomes of infection are possible: establishment of CTL memory leading to
long-term control of HIV; and failure to establish CTL memory leading to
disease progression. Which of the two outcomes is attained depends on the initial
conditions, most importantly on the initial number of CTLs. If a host is naive and
the initial number of speci¢c CTLs is low, the system is likely to converge on the
outcome describing failure of CTL memory and disease progression. This
outcome is also promoted by high initial viral loads.
On the other hand, if the initial number of speci¢c CTLs is high, maintenance of

sustained CTL memory and long-term control is achieved. This outcome is also
promoted by low initial viral loads. We assume that HIV lies in the parameter
region where the outcome of infection depends on the initial conditions. In this
scenario, na|« ve hosts fail to establish CTL memory and become progressors.
However, since the CTL memory and control equilibrium is still stable, the
model suggests that HAART can be used to establish CTL memory and to
switch a progressor into a state of long-term non-progression. According to the
model this can be done by a phase of early therapy (Fig. 5). The immune system is
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FIG. 5. Early therapy can lead to long-term control of HIV. During natural infection, HIV
replicates to high levels during the asymptomatic phase of the infection. This results in high
levels of immune impairment, failure to generate CTL memory, and high viral load. Early
therapy prevents HIV from overwhelming the immune system while providing an antigenic
stimulus. This allows the development of a CTL memory response. Once memory has been
generated, it will be maintained upon cessation of treatment. Hence, early therapy can convert
a progressor into a state of long-term non-progression. Experimental veri¢cation of this idea
comes from SIV infection in macaques and HIV infection in humans.



provided with an antigenic stimulus, but treatment prevents the virus from
reaching to high levels and signi¢cantly impairing immunity. Su⁄cient levels of
speci¢c CD4+ T cell help are preserved, and a CTLmemory response can develop.
Once the memory CTL have been generated, cessation of treatment will result in
maintenance of viral control. This is because the starting conditions have been
altered by therapy: The initial level of memory CTL upon cessation of treatment
is high.
These therapy regimes have also been studied experimentally (Lifson et al 2000,

2001). Macaques were infected with SIV, and treatment was started 24 h and 72 h
post-infection. Animals that received treatment 24 h p.i. showed boosted CD4+

cell proliferative responses and long-term viral control if therapy was stopped
after 4 weeks. Animals that received treatment 72 h p.i. required 8 weeks of
therapy to achieve improved immunological control. Animals that were
characterized by undetectable viral load following cessation of treatment received
a homologous re-challenge (with the same SIV isolate). Re-challengewas followed
by a self-contained small blip of viraemia which was subsequently reduced
below the limit of detection. Similar results were observed when the same
animals were re-challenged with a more virulent SIV strain about a year after
infection. When CD8+ T cells were subsequently depleted with antibodies, viral
load increased dramatically. These experimental results suggest that early therapy
can substantially alter the dynamics betweenHIV and the immune system, and that
sustained viral control can be achieved.They further demonstrate that protection is
based on CTL responses, and that memory has been successfully generated
(protection against re-challenge), as suggested by our model.
Further mathematical modelling has been used to explore the relationship

between the e⁄cacy of the drugs and the duration of therapy required for
successful induction of long-term control (Komarova et al 2003). The results are
summarized in Fig. 6. If therapy is strong, viral load is quickly reduced to very low
levels. Upon start of therapy, the model suggests a temporary phase of CTL
expansion before the response declines to insigni¢cant levels. The reason is as
follows. Upon start of treatment, su⁄cient antigenic stimulation is still present
and immune impairment is reduced. This allows the CTL response to expand. As
viral load declines to very low levels, however, the amount of antigenic stimulation
is not su⁄cient to maintain the response during treatment, hence the decline. In
order tomaximize the chances of success, therapy should be stoppedwhen theCTL
response is around its highest levels. Therefore, treatment should be stopped
relatively early, before the response has declined to low levels (Fig. 6a). If
treatment is continued for too long, cessation of treatment will result in virus
rebound to pre-treatment levels (Fig. 6a). The situation is di¡erent if antiviral
therapy is less e⁄cient (Fig. 6b). Now, viral load is reduced less e⁄ciently during
treatment. As a result, the amount of antigenic stimulation during therapy is
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su⁄cient to maintain the CTL response. As shown in Fig. 6b, following a certain
time delay after start of therapy, the CTL response expands and is sustained. After
the response has risen above a certain level, cessation of treatment will result in
long-term control. Thus, if treatment is relatively weak, therapy has to be
continued beyond a time threshold before it can be stopped (Fig. 6b). If
treatment is ended too early, we observe virus rebound to pre-treatment levels
(Fig. 6b). The SIV experiments discussed above could correspond to a scenario
where treatment is relatively weak. This is because a single drug, PMPA, has
been used in these studies, and this is known to be much less e⁄cient than the
combination therapy used with HIV-infected patients.
So far, I have discussed how a single phase of drug therapy can result in the

induction of long-term immunological control of HIV. Recently, so-called
structured therapy interruptions (STI) have received much attention. This
involves temporary interruptions of treatment and is thought to result in a boost
of HIV-speci¢c immune responses. Mathematical analysis (Komarova et al 2003),
however, indicates, that inmost cases interruptions are not required and that long-
term control can be achieved by a single phase of therapy if the combination of
drug e⁄cacy and treatment duration is optimized. Modelling suggests that
interruptions are only required if the e⁄cacy of antiviral drugs is very strong. In
this case, the temporary phase of CTL expansion upon start of treatment is not of
su⁄cient magnitude to enable the induction of long-term control. In this case,
interruptions can help to boost the response to su⁄ciently high levels
(Komarova et al 2003).
All the treatment regimes discussed here are only likely to work if treatment is

initiated relatively early in the infection process, preferably during the acute phase
of the infection. As the disease progresses, HIV deletes the necessary
immunological speci¢cities. Therefore, treatment cannot be used to induce
immune responses anymore. During the chronic phase of the infection, research
should focus on a combination of drug therapy and therapeutic vaccination
approaches to boost the level of immune responses and to convert a patient to a
state of long-term non-progression. Such treatment strategies also keep the
amount of viral replication at a minimum, which reduces the likelihood of
generating mutations conferring immune escape or drug resistance (Bonhoe¡er
et al 2000).

Conclusion

This review has shown the importance of mathematical models for understanding
infection dynamics, and in particular HIV dynamics. I demonstrated how a simple
model of viral infection can be applied to data in order to measure crucial
parameters which can lead to important new insights. I described how
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mathematical models can be used to generate new hypotheses which could explain
the failure of the immune system to contain HIV infection and elucidate the
principles underlying immunological control. These insights were applied to
guide therapy regimes aimed at long-term immune-mediated control of HIV.
While some of the theoretical results have been backed up by experimental
studies of SIV infected macaques, more experimental work has to be coupled
with mathematical models in order to test theories in more detail and to measure
more parameters.
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DISCUSSION

Littlejohn:The shapes of the curves are pretty clear, but it is the absolute values
that seem tomatter. Howdo you knowwhen you are at the right absolute values to
intervene?
Wodarz: In practical terms I can’t tell you. All I can tell you is that if you put the

patient on therapy, you should monitor the immune responses. If you see that the
immune response has peaked, you can try stopping therapy. Every patient will
have di¡erent parameter values, and these are more qualitative results trying to
understand how these dynamics work.
Littlejohn: In the clinic can you tell when someone has peaked?
Wodarz: If you monitor CTL responses you can see the £uctuations. These are

not rational guidelines on how to treat patients: we are just trying to gain insights
into how patients respond.
Rammensee: Where do your oscillating T cell responses come from? Is this

calculated by you?
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Wodarz: This is a sort of predator^prey model.
Rammensee: Doesn’t experience teach us that if the T cell response goes up the

virus is reduced?
Wodarz:Yes, butwe are looking at persistent infection. TheT cell response goes

up, the virus disappears, the T cell response goes down and the virus comes up.
This results in damped oscillations.
Rammensee: Are these oscillations seen in the absence of mutations?
Wodarz: Yes, they are, but in some parameter regions they aren’t. I don’t

attribute too much signi¢cance to the presence of the oscillations themselves,
more to the eventual outcome.
Silva:Have you correlated clinical data with your model?
Wodarz: The way we test the model at the moment is rather crude and

qualitative. We have a SIV-infected monkey that doesn’t receive the treatment
and another that does, and we look at the outcomes.
De Groot: In the studies I described earlier in which we looked at the CTL

epitopes in HIV patients, we noticed a certain cohort of patients that were
extremely adherent to therapy with undetectable viral loads, and they had very
few CTL responses. When we moved to a di¡erent patient cohort where they
were less adherent and had blips of virus present in their blood, we had a lot of
CTL responses to the epitopes that we were mapping. This gives clinical back-up
for what you are describing. We assumed that it was this loss of immune response
and it is nice to see your model predict that. It is very di⁄cult to detect in any
particular patient. You get a £at viral load. How many months out would you
stop therapy? What would be your indicator for stopping treatment?
Wodarz: In an ideal scenario I would monitor as closely as possible. If there was

an immune response that I thought was responsible for killing the virus, I would
watch it grow up. Eventually it will go down again, and then I would try to stop
just after it has peaked. This is when you have reached some maximal level of
immune response.
De Groot: In strategic treatment interruption (STI) studies, in most of the

patients their viral load goes right up after the STI almost as if they are na|« ve, and
had not protective immune responses. Presumably, due to e¡ective viral
suppression by HAART you lose the immune response, and then if you take
away the drugs you re-expose the ‘almost-na|« ve’ immune system to the virus.
Wodarz: That is not interruption, because you have just described one phase of

treatment.What you do is take the drugs away, the virus comes up and you give the
drugs again.
DeGroot:Then youmight have deleted the T cell clones that are speci¢c to those

epitopes.
Wodarz: If you have deleted them then you are in trouble. That is why all the

monkey experiments are performed in primary infection.
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De Groot: It works in primary but it doesn’t work in chronic infection. At
the Barcelona meeting (the World AIDS Conference, Barcelona 2002) most of
the researchers agreed that we should not use STI because it doesn’t work in
chronic infection. In acute infection it does work, but only if you treat at a very
early stage.
Wodarz: I guess you can think of therapy regimes that somehow circumvent the

necessity for CD4 cells, for example by cross-ligating CD40 to stimulate dendritic
cells directly without the need for CD4 cells.
De Groot: You could deliver a vaccine that enhances a broad CD8+ T cell

response.
Rammensee:When? During HAART therapy or afterwards?
De Groot: That’s a good question. I think you would do it during HAART,

while the viral load is low.
Wodarz: I would do it then because then we have no immune impairment.
Rammensee: Could youmodel in a situation where antigen comes in which is not

infectious?
Wodarz:Yes, it would be possible tomodel in exactly that framework. The e¡ect

of adding non-infectious antigenwould be to push the immune response above the
separatrix, and when you take the drugs away, long-term immunological control
could be achieved
Perelson: That protocol has been tried in therapy interruption trials where

patients on HAART were vaccinated to try to boost the immune response before
therapy was withdrawn (cf. Markowitz et al 2002).
Wodarz: There is a huge CTL response but for some reason they don’t do

anything.
DeGroot:Oneof the problems is that you are immunizingwith a cladeB antigen,

and you have a chronically infected person with a diverse HIV. It is probably not
the same strain of HIV so you need to immunize almost with the same strain, or
cross-conserved epitopes.
Bernaschi: I would like to return to the problem of mutation of di¡erent strains

especially during the chronic phase. You can probably keep one or few of the
strains under control. But how do you keep under control any possible mutation
if there are not enough T cells free to control new strains? What we ¢nd in our
simulations is that the major problem is not a reduction in number of the T cells,
but a reduction in speci¢city of the repertoire, leading in the long term to a fatal
disease.
Wodarz: The reduction in number is important as well. What we are looking at

here is the primary infection. During the primary infection the virus population is
relatively homogeneous. If youmanage to get good control at this stage the virus is
pushed to a very low level. The ability of the virus to mutate is thus greatly
reduced.
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DeGroot: This is why STI would be very dangerous, because you are allowing
the virus to mutate under immune pressure. I have always been totally opposed to
this. You are forcing evolution.
Wodarz: Yes, and also under partial drug presence.
Brusic:Have you modelled the situation re£ecting normal life?
Wodarz: Then you are in the chronic phase and it becomes very di⁄cult to do

that. One interesting thingwe have studied is hepatitis C infection. This also seems
to impair CD4 responses. We have worked with Paul Klenerman on this, and he
had patients that went on one continuous drug treatment in the chronic phase of
infection. He monitored their CD4 response, and saw them go up and down. By
chance, some of the patients were taken o¡ therapywhen the immune responsewas
around the peak. Once they were taken o¡ drug treatment they had undetectable
virus load. On the other hand, in patients treated for longer until the immune
response was already gone, the virus came straight back when treatment was
stopped. In this respect hepatitis C is a nicer scenario because it doesn’t seem to
kill the immune cells; it just seems to impair their responses and the speci¢city is
still there.
Gulukota: A couple of the points that were raised earlier considering the

mutation and the diversity of the virus population, could probably be treated
together in your model. To do this, instead of a single virus and one set of
equations for, you could couple 10 di¡erent variants of viruses and have
equations for each.
Wodarz: This has been done. However, I was interested here in the very basic

dynamics of immunosuppressive infection and the immune response against this
infection.
Borras-Cuesta:Why do you think that you can’t cure chronic infections?
Wodarz: I don’t think that. Treatments involving therapeutic vaccination

during treatment in the chronic infections could work. On the other hand, using
drug therapy to boost immunity during chronic HIV infection is unlikely to work
because theHIV-speci¢c responses are already strongly impaired, and are unable to
react
Borras-Cuesta: Unless there has been remission of CD4.
Wodarz: Of CD8. You have to cleverly boost the CD8s. CD8 cell responses

require CD4 cell help. If CD4 helper cells have been depleted by the virus, you
can try to directly stimulate CD8 cells with activated antigen presenting cells
(APCs) without the need for CD4 cells. Normally, CD4 cells activate APCs, and
APCs activate CD8 cells. You can circumvent CD4 cells by arti¢cially activating
the APCs by cross-ligation
Borras-Cuesta: You could do that. You could also use an exogenous helper

peptide. So you think you can cure chronic HIV infections?
Wodarz: You can boost the immune responses and see what happens.
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De Groot: You can convert the patients to long-term non-progressives. That is
the goal. There is now a completely di¡erent attitude aboutHIV vaccines. The aim
is not prophylaxis, but conversion to long-term non-progression�containment
of infection.
Kellam: What do you think about comments that people make that your

modelling system is using linear dynamics, and the system might have non-
linearity?
Wodarz: It is not linear; it is strongly non-linear. All the models are non-linear

except the very basic treatment model.
Flower:How do you code in the strength of the drug treatment?
Wodarz: By the amount by which the infection parameter b is reduced.
Flower: So is there any relationship between those changes and some property of

the actual drugs you might use in treatment?
Wodarz: I guess if you just used a single drug that is not very e¡ective, that the

infection rate would be reduced less than if triple drug therapy is used.
DeGroot: People look at the slope of viral load decline to evaluate the strength of

the drug therapy.
Perelson: If you analyse the slope of plasma virus decline induced by drug

therapy, you can show that the rate of decline depends both on the e⁄cacy of
therapy and the death rate of productively infected cells. In fact, if you look at
phase I and II clinical trials where the dosage of drugs is changed, you can
correlate the slope of plasma virus decline with the drug dosage (Mittler et al
2001). It is also possible to compare di¡erent dosing regimes and early slope
estimates of e⁄cacy with longer-term correlates of outcome.
Flower: So it is not just a case of saying we will modify the infection rate,

or other modelling parameter, by some arbitrary amount, say by 0.5
or 0.1.
Perelson:However, we don’t have an absolute measure of drug e⁄cacies yet for

HIV therapies, although we can get measures of relative e⁄cacy on the basis of
these criteria (cf. Louie et al 2003).
De Groot: What do you think about the e¡ect of delaying therapy, which has

been the new recommendation this year? We used to start treatment at a T cell
count of 500, then it was 350 and now it is 250. Have you looked at how the
model handles delays in therapy?
Wodarz: It depends what you want to do with treatment. If you want to boost

the immune response this doesn’t make any sense. If you want to avoid resistance
mutation this alsomight be a bad thing, because the viruswill have been replicating
over a longer period, and the more replication cycles the higher the chance that all
sorts of mutations will have been generated.
De Groot: I agree, I worry that by delaying therapy, you are increasing the

number of variant viruses you’ll need to immunize against or treat with
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medications. There are archived T cell epitope mutations and archived drug
mutations in the pool of the virus, and you are initiating treatment later.
Wodarz:Yes. On the other hand, if the patient really su¡ers by having treatment

earlier because of side e¡ects, it might be impossible to initiate treatment early.
De Groot: There is a clinician versus immunologist non-dialogue that is taking

place here, and the clinicians have won for the time being. They say that the drugs
are toxic, and people are recognizing lipidystrophies, cardiac complications and
neuropathies related to the drugs. They also talk about pill burden, although the
newer treatments only require one pill in the morning and one in the evening.
There are certainly lipidystrophies and one would argue that they can be
managed. There is an argument that the patient is being exposed to toxicities, but
people don’t seem to understand what is being discussed here, which is the impact
on the immune system, the archiving of the mutations and the expanding diversity
of the virus. Although there is no drug pressure, the immune pressure will cause
the diversity to explode.
Kesmir: I don’t agree fully with that. If your CD4 count is running low, then

there won’t be so much selection pressure on the virus. It might be that the wild-
type virus is coming back again because the resistant mutants only have a selective
advantage if there is a good immune response.
Wodarz: They will probably still be maintained in the population. The longer

the infection is allowed to continue, the more of them will be around.
Littlejohn:Do we know the comparative ¢tness of the mutants versus the wild-

type?
Wodarz: The mutants are less ¢t than the wild-type, but they archive.
Bernaschi: There is some agreement that in the case of HIV there is a subtle

impact on the general homeostasis, particularly of the CD4 cells. Do you plan to
include this element in your model?
Wodarz:Themodel looks at responses speci¢c to the virus. I don’t really look at

homeostasis. It is not just the CD4 cells that I am considering; I am looking at the
compartment of immune cells susceptible to HIV, which includes macrophages,
CD4 cells and dendritic cells. Inmore elaborate models we would want to consider
these populations separately and look at how they are regulated.
Littlejohn: I have a query about the stability of the steady state. Presumably it is

easy to perturb. If the immune system is dampened in its steady state it could crash
very quickly.
De Groot: You could have tuberculosis, which would cause explosion of the

virus. This is exactly what happens.
Petrovsky: Can you extend this model to overall T cell numbers, moving away

from HIV and going into a broader model? How good is this modelling if you
wanted to look at the immune response to viral infections or what happens in
autoimmunity with autoreactive T cells?

212 DISCUSSION



Wodarz: This model is describing an immune response against an infection that
damages the immune response. By de¢nition it considers a subset of viruses that
might be doing something like HIV or hepatitis. Other viral infections such as
in£uenza do not inhibit the immune response at all. You would need a di¡erent
model with di¡erent assumptions for these other viruses.
Petrovsky: They should be simpler to model, then. They don’t have a feedback

loop.
Wodarz: Yes.
Perelson: We are modelling the acute phase of in£uenza infection using simple

target cell limited models.
Petrovsky:What about autoimmunity?
Perelson: That’s more complicated. It is not a ¢ve day infection like

in£uenza.
Wodarz: We don’t even know the reason for autoimmunity. There is great

uncertainty.
Petrovsky: The issue is really one of whether we can generate models and create

an arti¢cial autoimmunity. Thismight help people to go back and ¢nd outwhether
the reality ¢ts the model.
Perelson: Currently, there is a lot e¡ort in looking at T cell dynamics in the

context of HIV infection. If one looks at the data on the kinetics of CD4 and
CD8 cells in infected and healthy individuals, one can potentially develop models
of the normal regulation of the T cell compartment and also examine the e¡ects of
infection. This has been di⁄cult because the population of T cells is
heterogeneous, and involves memory and na|« ve cells, antigen-speci¢c and non-
speci¢c cells, etc. There have been a number of experiments involving labelling
of T cells. For example, Cli¡ Lane’s group at the NIH has conducted pulse
labelling studies with BrdU in humans even though it is somewhat carcinogenic.
A safer technique is to label with a stable isotype, such as a deuterated form of
glucose, where some hydrogen atoms are replaced by deuterium. The deuterated-
glucose is metabolized into deoxynucleotides so every time a cell synthesizes DNA
in the presence of this label it picks up deuterium. You can then isolate any cell
population in the body, e.g. CD4+ T cells, do mass spectrometry on its DNA and
by measuring the fraction of ‘heavy’ DNA it has, you can determine what fraction
of the cells have divided. You can also do washout experiments where you stop
labelling and then monitor the kinetics of the decay of these labels, which gives
an estimate of the lifetime of any labelled cell population. In collaboration with
David Ho’s group at the Rockefeller University we have used deuterated glucose
labelling to measure the kinetics of CD4+ and CD8+ T cells in humans (Mohri et al
2001, Ribeiro et al 2002).
Petrovsky: Presumably you could then combine this work with tetramers. You

would then have a very powerful technology.
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Perelson: Yes. In mice we can combine these techniques with CSFE labelling,
which gives us the whole division history of a cell. There is a lot of powerful
technology available to help us answer kinetic questions in a profound way.
Rammensee:Do you see bystander T cell activation with this kind of analysis?
Perelson: We can’t tell. When we do the labelling analysis we don’t look at

antigen speci¢c cells because we can not harvest enough cells from humans to
isolate the million or so antigen speci¢c ones needed for analysis by mass
spectroscopy. We just have enough cells to measure the label in the entire CD4+

or CD8+ population.
Rammensee: We have a system for getting speci¢c T cell responses in a mouse

model with tetramers. We see not only that the tetramer-positive cells are
activated, but also other cells are activated which do not stain with the tetramer.
These cells do not recognize the original peptide. We don’t know the signi¢cance
of this.
Perelson:Observations like that go very far back in immunology. Early on in the

study of B cell responses in mice, people such as Alistair Cunningham foundmany
more antigen non-speci¢c B cells were stimulated into antibody production than
antigen-speci¢c B cells. Also therewas Jonathan Sprent’swork on themaintenance
of T cell memory. He found that type 1 interferon stimulated by the response to
any infection would stimulate memory T cells non-speci¢cally into dividing
once.
Rammensee:Dominic Wodarz, you didn’t include memory cells in your model.
Wodarz: I looked at the overall CTL response. I can go into modelling memory

in more detail at another stage.
Rammensee: I would assume that memory cells have a certain low degree of

proliferation depending on antigen presence or absence and on the presence of
the restricting MHCmolecules.
Wodarz: Memory cells have a higher degree of proliferation and can be

maintained at a much lower level of antigen than e¡ector cells. There is a whole
degree of confusion there: what is a memory cell? Some people have labelling
de¢nitions, while others have functional de¢nitions. I have considered memory
and done models of it. I argue that in HIV, due to the lack of CD4+ cell help, the
CTL response that is generated is suboptimal and not a memory response; it
therefore declines at low levels of antigen when we suppress the virus by drugs.
On the other hand, if we have CD4+ cell help, the CTL response that develops is
one that can bemaintained at low levels of antigen and that is why they control it in
the long term.This presence or absence of help iswhatwewant tomodel in therapy
or vaccination.
DeGroot: The longer you delay therapy the fewer HIV-speci¢c CD4+ T helper

cells are present. If you come inwith therapy at aT cell count of 250 rather than 500,
there probablywon’t be anyHIV-speci¢cThelp left to rebuild the immune system.
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Wodarz: Yes. One of the hypotheses is that in HIV this is the basic fault of the
immune response, and the aim of therapy should be to convert such a non-memory
response to a memory response.
Perelson: Gorochov and colleagues (Gorochov et al 1998) have looked at the

changes in T cell repertoire with the immunoscope, which measures the length of
the CDR3 region of the T cell receptor b chain. Initially when patients are put on
therapy the CDR3 distributions in the T cell Vb regions are very skewed. With
continued therapy they tend to normalize, which is surprising.
DeGroot: So the broad TCR repertoire comes back.
Perelson: It is not clear whether this means that the thymus is still functional or

that a diversity of T cells are present at very low levels and then come back with
therapy. This doesn’t tell us about the functional response; it just says that the
receptor repertoire looks like it is being restored. I guess we also know that in
patients who have received long-term therapy that their ability to respond to
opportunistic infections comes back.
DeGroot: It has been shown that this does happen but you don’t necessarily get

the HIV-speci¢c immune responses back.
Perelson: That is probably because we have not been able to totally control the

HIV infection. We are in this funny situation where HIV, even under therapy, is
probably still replicating and infecting the HIV-speci¢c cells preferentially.
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General discussion II

Rammensee: In this general discussion, perhaps it would be interesting to discuss
the HLA nomenclature issues together with the HIV database issues. The
complexity is related. Is anyone able to comment on LANL, the HIV database
(http://hiv-web.lanl.gov)?
De Groot: I use it a lot. We also use Genbank for our sequences. We don’t

exclusively use LANL. One of the biggest problems with LANL is annotation.
When we go through the sequences looking for country-speci¢c information, we
have to sort out whether, for example, the sequence is isolated from a patient in
France or is it a sequence from France. It is a linguistics problem. You have to look
at sentence structure to ¢gure this out. I am interested to know whether Christian
Sch˛nbach’s approach would be able to deal with this.
Sch˛nbach: The majority of sequences in the HIV database have some accession

numbers leading to a public database such as Genbank or SWISS-PROT. The
feature table or comments can be used to extract the origin of the sequence.
DeGroot:This isn’t always the case. A lot of information comes from comments.

There might be 20 lines of comments, and a lot of time this is where we get the
information from. People put the information in and they don’t put it in in a
particularly thought-out way. It is a problem when we are trying to categorize
65 000 HIV sequences. On a separate note, I wanted to mention that I really
appreciated the HLA descriptions by Steven Marsh. The nomenclature has
always been a mystery to me and now I understand.
Beck: I have one question concerning the HLA descriptions. Why were the

remaining ‘w’s not removed?
Marsh: The ‘w’s are the Bw4 and Bw6 in the HLA B locus antigens. This is

because they are essentially epitopes and not molecules. The HLA C antigens still
keep their ‘w’ and so do the alleles. This is sowe don’t talk abut C3 andC4, and risk
mixing them up with complement components which are also encoded within the
MHC. The HLA-D and HLA-DP speci¢cities keep their ‘w’s just because they are
essentially not used anymore: they were de¢ned by MLC and PLT cellular assays.
We left them to show that they were assigned using di¡erent cellular techniques.
Gulukota: In general relational database theories it is said that your names should

be stupid: they should not contain information. It seems that you have an eight
character/digit reference, with each having signi¢cance. Has any thought been
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given to just using dumb names, with the ancillary information being stored
somewhere else?
Marsh: Di¡erent models are being used. Some people like dumb names and

others like names that tell us everything that can possibly be known. We are
somewhere in the middle. Ultimately, though, the important thing about a name
is that it is unique. It is nice to include some information in the name, and the
structure we have does this. If we use dumb names the transplant community
would go crazy, and they are the main user of this database.
De Groot: Something that would be useful to me, which perhaps you already

have, would be a good de¢nition of the amino acids that form the pockets. We
use a MHC handbook that describes where the pockets are when they are known.
However we need more information. Do you de¢ne them in your HLA database?
Marsh: They are not on the website. We did publish a book a few years ago

called the ‘HLA FactsBook’ (Marsh et al 1999), and they are listed there.
De Groot: That is what we use. But this isn’t updated as frequently as the

database. This is useful information because we are now modelling on the basis
of HLA structure. We know what the amino acids are that ¢t by various means.
We believe that there is a huge diversity in HLA, but that probably the pockets are
fairly limited.
Marsh:This is something thatwewould like to do nextwith the database, giving

people the opportunity to look at models of the structure so that they can
determine where the polymorphisms lie and how di¡erent alleles di¡er in
structure. This then can be related to peptide binding.
DeGroot:The reason I ask is that I had this idea thatwe could probably go across

species: among di¡erent species it is likely that the pockets are fairly conserved.We
have made one attempt to do this, and were able to produce a model in which we
used the pocket pro¢le method to predict BoLA epitopes, using a data set that was
de¢ned by eluting peptides o¡ BoLA molecules. The method we describe (in a
forthcoming paper) is a combination of the two methods. This approach could
then be extended using human pocket pro¢le de¢nitions extrapolated to other
animals. This would be very useful.
Marsh: We are providing our HLA database as a model for the MHC of

other species. This is something we introduced this year for the ¢rst time
and is something that we intend to expand. Any of the tools that we provide
for the human HLA analysis will then be directly available for the other
MHCs.
DeGroot: Something that would advance the ¢eld enormouslywould be to have

the pockets de¢ned across species. Everything we have learned for human peptide
binding could then be applied.
Rammensee: Are you talking about the prediction or modelling of pockets, not

based on crystal structures?
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De Groot: I am talking about looking at the amino acid residues that form the
pocket (in the animal analogue of HLA): if the residues that form the pockets are
similar to those that line known HLA pockets, then it might be possible to de¢ne
the amino acids that are likely to bind in those pockets and construct new epitope
prediction tools, for animals, using this information.
Rammensee: Still, there might be in£uences you don’t expect. The modelling

might not ¢t the actual structure correctly.
DeGroot: Then you have to test it.
Brusic: I think we can get away without analysing pockets. Pockets represent an

oversimpli¢cation of the actual structure. Instead, we can use the complete
positional environment of a bound peptide. This includes every amino acid in
the groove that is in the proximity of peptide residues.
De Groot: You would have to superimpose the polymorphisms on the crystal

structure. If we could do this it would be great. The peptide binding modelling
people would love this.
Brusic: It is doable.
Kesmir: Perhaps I can say a few words about the HIV database. There is also an

HIV epitope database. In many ways this reminds me of your SYFPEITHI
database, because it is also a very high quality database where Bette Korber and
her group are very careful in going through the literature and taking only the
epitopes that they are convinced are of high quality. We have been discussing
where to ¢nd data to test our prediction systems: this is de¢nitely a place to look,
because there are already a few hundred ligands there that we knowwill generate a
good immune response. And it is not biased by A2. They have quite a broad range
of MHC molecules.
Flower: But they are highly biased by the small number of proteins that they are

focusing on, compared with a whole tranche of eukaryotic andmicrobial genomes
accessible to immunology.
DeGroot:They also look based onmotifs. A lot of bias is introduced to databases

because motif searches are used to initiate the synthesis of the peptides.
Flower: HIV has been looked at in a great deal of detail and the database is of a

very high quality, but it is still very focused on a small set of motifs and proteins.
Kesmir: You are right; it is a small genome that is being looked at.
Petrovsky:My concern is that there must be 10 times as many data out there than

are getting published. Most of these databases seem to be extracting their
information from published detail.
Rammensee: There is a reason for this: quality control.
Petrovsky: I don’t think getting something published has anything to do with

quality. It is more to do with positive results and who you know. There are lots of
good T cell labs out there who do a lot of studies, and unless it is topical or related
to HIV, and unless they get lots of positive responses and know some nice
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reviewers, the data don’t get published. These are still valuable data. Can we
establish a website where people can submit data that they don’t publish? I don’t
believe that what is published represents the true amount of good quality data.
Littlejohn: There are precedents for this in the human mutation community.
Rammensee: The problem will be the quality control.
Flower: It would be a start if journals which published immunological

information stipulated that before publication the data must be submitted to an
appropriate database. This would be a realistic start.
DeGroot: That is a great idea. The problem is that people don’t want to disclose

data before publication.
Flower: I envisage a situation similar to the PDB protein structural databank,

with a date of release when the data become public.
Littlejohn:Coming back towhat Nikolai Petrovsky was saying, there are a lot of

data out there that you don’t want to publish in journals. The human mutation
community is a good example, because there are a lot of diagnostic labs
collecting data which wouldn’t be suitable for publication, but they are good
data for the database.
Flower: There still has to be some validation of this exercise, otherwise there is

nothing to stop people puttingmassive amounts of ¢ctitious data into the database.
Littlejohn:The humanmutation community does this by appointing curators to

authorise data entry. It is at least a two-step process.
Brusic:Bindingmotifs used to be published regularly for alleles. A similar sort of

publication could be established for peptides, where people deposit data and the
listing is published in a journal.
Rammensee: I think TissueAntigens would be interested in this sort of section.
Brusic: If we can establish a basic quality control of data, high quality data can be

published regularly in a special section.
Littlejohn: The plant molecular biology community have done this for a long

time. You could submit very short single page sequence-based publications.
Marsh: This is essentially what we do with the HLA database. We insist that

people submit the data to the database to get a name before they can publish it.
Then we give nomenclature updates every month which give people credit for
¢nding the sequence. Some of them don’t go on to publish their data, but this
doesn’t matter because they are there in the well curated database. We accept the
data before it is published, we check it and give the sequence o⁄cial names. Only
then will the journals publish the sequences, once that they have been assigned a
WHO o⁄cial name.
Littlejohn:Themicroarray community have adopted theMIAME standard, and

there is a lot to be learned from this, particularly as it seems to relate to the HIV
database which you were saying has some problems in terms of tracking the
samples.
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De Groot: It is a wonderful database that is extremely accessible, but they are
putting GenBank data in, and the problem here is the original GenBank entry.
Littlejohn:TheMIAMEgroup has thought about this, and we could adopt a lot

of their approach wholesale.
Scho« nbach: Another problem with the HIV database is that there are epitope

sequences that are just assigned to HLA-A2 without any allele speci¢city. Those
should be deleted because they cannot be used for predictions or allele-based
analyses.
Kesmir: They were published in that way.
DeGroot:And class II epitopes are a big problem, because they are 15-mers or 20-

mers and somewhere in there is your DRB101 epitope, but it is hard to extract the
preciseDR epitope (which is only really about 9 amino acids long) from these data.
Littlejohn: When you have something like a MIAME, you then can have

MAGE, which is a XML standard. Then you can have technologies that are
MAGE compliant. Now there is a database called GeneX, which is a microarray
database that is MAGE compliant. The MIAME description of minimum
information is just a four-page document. A lot of this relates to where the
sample comes from and how it was prepared.
DeGroot:What are the kinds of standards that you use for people putting entries

into the HLA database?
Marsh:We have a page of standards and conditions. For example, the sequences

must be sequenced in both directions. If the sequence is determined from clones
they must have sequenced in multiple clones. There are limits on the minimum
amount of information we require: for HLA class II sequences we want the
complete exon 2 sequence, whereas for HLA class I alleles it must be both exon 2
and exon 3. We encourage people to do full genomic sequences so we have both
exons and introns. These data are starting to come through. They must submit
their sequence to one of the generalist databanks. If they de¢ne novel
polymorphisms that have not been described before they must provide
information as to how they have gone back and retyped a speci¢c sample with
newly designed probes and primers to validate that they actually have obtained
the correct sequence. Most of the new HLA polymorphisms that we see are just
recombinants with little motif shu¥es, and these are usually picked up with the
existing reagents.
DeGroot:Do people have to provide the source of the sample?
Marsh:We like to know the ethnic origin and full HLApro¢le of the sample that

has been sequenced. In an ideal worldwewould also like some of the sample, and in
a fantastically ideal worldwewould actually have the facilities to go back and re-do
the sequence ourselves in house and con¢rm its validity.
De Groot: What are the criteria for epitope selection for the HIV epitope

database?
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Rammensee: The criteria for our SYFPEITHI database are as follows. For the
ligands, they have to be sequenced from the MHC molecule, a tough criterion.
For the T cell epitope section, there should be T cell data in the publication, and
the T cell should not only recognize the peptide but also the natural target which is
for example the virus-infected cell. Alternatively, if it has been shown that the
peptide is most likely naturally processed, this is also accepted. For example, if a
mouse is immunized with a transfected cell or a protein and the mouse then
produces a T cell recognizing the peptide that has been predicted, this is accepted.
DeGroot:This would exclude a lot of the HIV epitope data. People use £ow cell

cytometry to look at overlapping peptides and all they do is look for a positive T
cell response.
Rammensee:Wewould exclude these peptides. It is a lot ofwork to evaluate these

data. Stephen Marsh, how many HLA sequences do you get per month?
Marsh:About 30 submissions. Some are con¢rmations of previously submitted

data. We get at least one sequence submitted each day on average.
Rammensee: I imagine that if one opened a site for submission ofHLA-associated

peptides one would get 20^30 per day. We couldn’t handle this.
Petrovsky:Youmight need to have a teamof curators distributed across di¡erent

countries or sites. It is still achievable.
DeGroot:You could also have di¡erent tiers of epitopes depending on how they

were identi¢ed.
Brusic: Yes, you could attach a level of con¢dence to these data.
Kesmir: The user can also decide the level of accuracy they want.
Lefranc: The big problemwith this kind of approach is that you could easily get

bias in the representation of the database: some people will be keen to send
sequence data in as soon as they have something (even if not very valuable), and
others will never send their data (even if excellent). One of the failures of GDBwas
when they moved for a while to direct author submission, then it was open for
anyone to enter what they wanted. This led to bias.
DeGroot:What would you suggest?
Lefranc: We need to have a database that is curated with each entry being

checked. For the generalist databases, the situation is di¡erent. If a group is not
submitting its sequence data to the generalist databases, then it should be
encouraged to do so. If I receive a journal or see a paper from a group which has
not submitted its data toGenBankorEMBL, I send a smallmessage,with a copy to
the editor. In contrast, for a high quality database, I think that open submission is
very dangerous.
Wingender: I strongly support this idea. There can be no real high quality

database without expert annotation. Whether the data are extracted manually or
they are submitted, there must be manual curation. I could give some interesting
examples of the sort of junk that exists in databases likeGenBank.Many people are
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just happy to get accession numbers so they can publish their data and they never
go back and edit the entries they are responsible for. Only they can make the error
corrections.
Marsh: This is the problem we found when we ¢rst started looking at the HLA

sequences. We had no control. The problem is that we may realize there are lots of
junk sequences in EMBL and GenBank, but many people out there using the
databases don’t realize this.
Wingender:What doeswork iswhendatabases are serving a small community in a

well de¢ned ¢eldwhere there is some kind of sociological control: the people know
each other.We had a good experiencewith a small specialized database focusing on
certain aspects of chromatin structure. This worked and the community paid close
attention to what they submitted.
Gulukota: Another fundamental problem that EMBL and GenBank had from

the beginning is that they didn’t give any thought to evidence links: how the
experiment was done.
Lefranc: Personally, I strongly believe in the importance of generalist databases,

even though they have their problems.
Kellam: To paraphrase Sydney Brenner, ‘We have to be careful to distinguish

between junk and rubbish’. We all throw out rubbish, but we also keep junk for
the future:we are not surewhatwewill use it for butwehold on to it anyway. If you
apply too rigid criteria you endupwith a databasewhich doesn’t have anything like
expressed sequence tags (ESTs) in it, becausewhen theywere sequenced they could
be thought of as incomplete rubbish or junk. Therefore we need databases that
have standards but which aren’t exclusive. You can then decide afterwards
whether you want to parse certain aspects of it out, or treat it all as a large
database. If you don’t collate it all in the ¢rst place, you have nowhere to start from.
Brusic:Weneed to be realistic. The role ofGenBank andEMBL is to disseminate

as many data as fast as possible to the research community. A certain error rate will
thus be contained in the data. The specialist databases clean outmost of these errors
and present the data to specialized users. We need to know the limitations and
con¢dence levels of each database to use them e¡ectively.
Rammensee:As has occurred several times at this meeting, we have ended up in a

discussion of problems in engineering and organization. This gives a good picture
of our ¢eld of immunoinformatics.
Petrovsky: This suggests that we need more organization within the ¢eld,

perhaps in the form of a society or working group, to tackle these problems.
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Immunogenomics: towards a digital

immune system

Stephan Beck

Wellcome Trust Sanger Institute, Hinxton Genome Campus, Cambridge CB10 1SA, UK

Abstract. One of the major di¡erences that set apart vertebrates from non-vertebrates is
the presence of a complex immune system. Over the past 400^500 million years, many
novel immune genes and gene families have emerged and their products form
sophisticated pathways providing protection against most pathogens. The Human
Genome Project has laid the foundation to study these genes and pathways in
unprecedented detail. Members of the immunoglobulin (Ig) superfamily alone were
found to make up over 2% of human genes possibly constituting the largest gene family
in the human genome. A subgroup of these human immune genes, those (among others)
involved in antigen processing and presentation, are encoded in a single region, themajor
histocompatibility complex (MHC) on the short arm of chromosome 6. My laboratory
has a long-standing interest in understanding themolecular organization and evolution of
the MHC. To this end, we have been generating a range of MHC genomic resources that
we make available in the form of maps and databases. Much of the complex data of the
immune system can be reduced to binary (on/o¡) information that can easily be made
available and analysed by bioinformatics approaches, thus contributing to better
understand immune function via a ‘digital immune system’.

2003 Immunoinformatics: bioinformatic strategies for better understanding of immune function.
Wiley, Chichester (Novartis Foundation Symposium 254) p 223^233

The free availability of the human genome draft sequence has initiated many large-
scale analysis e¡orts and generated the need for novel analysis tools, databases and
browsers (International Human Genome Sequencing Consortium, Lander et al
2001). Regions of great immunological interest such as the T cell receptor
complex and the major histocompatibility complex (MHC) had been sequenced
ahead of the rest of the genome (Rowen et al 1996, MHC Sequencing
Consortium 1999) but, until now, could not be analysed within the higher order
context of entire chromosomes or the genome as a whole. Accessing and
visualizing this great wealth of diverse genome data has been (and still is) a great
challenge for bioinformatics and has resulted in new developments such as the
ENSEMBL genome database at http://www.ensembl.org/ (Hubbard et al 2002) and
the UCSC genome browser at http://genome.ucsc.edu/ (Kent et al 2002).
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Many of the data that we have been generating on theMHC are already available
through these two public resources. The MHC is the most important genetic
region in relation to common human diseases such as autoimmunity and
infection. It ¢rst emerged over 400 million years ago in early vertebrates and its
main function is to provide protection against pathogens. It achieves this
through sophisticated antigen processing and presentation pathways that are able
to recognize self from non-self. Driven by pathogen variability, theMHC is under
enormous pressure to evolve and adapt quickly. Over time, it has become themost
polymorphic region in the human genome with some genes (such as HLA-B)
having over 500 alleles. However, even subtle changes in the self/non-self
recognition system can lead to genetic miscommunication and result in
autoimmune diseases such as diabetes, multiple sclerosis and arthritis, to name
just a few. This genetic balancing act also presents a major challenge to transplant
medicine where the aim is to minimize the rejection of non-self transplants while
not having to compromise the patient’s immune system. Our research aims to
generate, integrate and provide genetic and associated data to better understand
MHC biology and disease.

Results and discussion

Using both computational and experimental approaches, we have been generating
detailed pro¢les of theMHC as illustrated in Fig. 1. In human, theMHC (known in
humans as the HLA complex) is located on the short arm of chromosome 6
(6p21.3).

Genes

The initial analysis of theMHC sequence revealed 224 gene loci of which 128 were
predicted to be expressed (MHC Sequencing Consortium 1999). This makes the
MHC one of the most gene-dense regions of the human genome. The high
number of pseudogenes is thought to facilitate the creation of new alleles
through mechanisms such as gene conversion. While some genes (e.g. HLA class
I and class II genes) have a known function in immunity, the function and possible
involvement in immunity of many genes remains still unclear. In order to estimate
the contingent of MHC genes involved in immunity, the following criteria were
used to de¢ne immune function: homology to immunoglobulin domain or other
immune superfamilies (based on Pfam); immune-tissue speci¢c expression;
involvement in antigen processing and presentation (histocompatibility) or
in£ammation; implication in regulation of expression of immune loci; and
inducible by immune mediators such as interferon. According to these criteria,
about 40% of the expressed MHC genes can be associated with immune function.
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The clustering of so many immune-related genes in the MHC region is quite
striking and unlikely to be coincidental. Another hallmark of the MHC is the
extremely high linkage disequilibrium (LD) between genes suggesting that
certain haplotypes are under functional selection. LD together with conserved
synteny and other genomic features has contributed to re-de¢ne the classical
boundaries of the MHC. In addition to the classical class I, class II and class III
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been generating using both computational and experimental approaches.



subregions, extended class I and class II regions are now considered part of the
extended MHC (xMHC) (Stephens et al 1999). The xMHC has recently been
analysed by the Sanger Institute and the annotation is available via the 6ACE
database at http://webace.sanger.ac.uk/index.html (Horton & Beck 2003).

Variation/haplotypes

In the quest to identify genes involved in complex disease and to better understand
human evolution, over 1.4 million single nucleotide polymorphisms (SNPs) have
already been mapped across the human genome (The International SNP Map
Working Group, Sachidanandam et al 2001). This in turn requires an e¡ort of
millions of genotypes, a task doable in scale but not yet a¡ordable at current cost.
A possible solution to this problem is to map a representative subset of SNPs into
haplotypes. Haplotypes are de¢ned as groups of SNPs that are inherited together
(e.g. are not separated by recombination). Initial studies have shown that
haplotypes have an average size of around 60 kb (Reich et al 2001). In this way,
one or more representative SNP(s) can be chosen from each haplotype reducing
the complexity of the genotyping task accordingly. The situation in the MHC is
further complicated through the ¢nding of up to 50-fold higher variation levels
than the genome average (Horton et al 1998). In order to address this problem,
the MHC Haplotype Project (http://www.sanger.ac.uk/HGP/Chr6/MHC/) was set
up to determine the completeDNAsequences ofmultiple commonhaplotypes and
identify all variation (SNPs and insertions/deletions). Using this catalogue of
variations, the consortium will establish the precise ancestral relationships
between these haplotypes and develop a set of master SNPs suitable for the
systematic identi¢cation of MHC-linked disease loci. Initially, the consortium
will analyse eight haplotypes selected for their susceptibility to or their
protection against type 1 diabetes and multiple sclerosis, the ¢rst two disease
associations to be studied as part of the project. The resources generated as part
of this project are freely available and provide a framework for association
studies of all MHC-linked diseases (Allcock et al 2002).

Methylation

Disease is not only caused by genetic changes but also by epigenetic changes such as
altered cytosine methylation at CpG dinucleotides (Robertson & Wol¡e 2000).
Epigenetics or the study of methylation patterns is one of the key areas of future
research that will help to elucidate how genomes work. It combines genetics and
the environment to address complex biological systems such as the plasticity of our
genome. While all nucleated human cells carry the same genome, its genes are
expressed di¡erentially in time and space. Much of this is governed by epigenetic
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changes resulting in di¡erential methylation of the genome�or di¡erent
epigenomes (Novik et al 2002). Individual studies over the past decades have
already established the involvement of DNA methylation in imprinting, gene
regulation, chromatin structure, genome stability and disease, especially cancer
(Jones & Baylin 2002). With the availability of the human genome sequence,
epigenetic phenomena can now be studied genome-wide giving rise to a new ¢eld,
epigenomics (Novik et al 2002). The study of genome-widemethylation patterns is
theaimof theHumanEpigenomeConsortium(Becketal 1999).Asapilot study, the
consortium is currently determining themethylation pattern of theMHC.Around
300 loci (including all expressed MHC genes) involving over 4500 CpGs will be
analysed in di¡erent tissues making this pilot the largest epigenetic study to date
(Novik et al 2002). Di¡erentially methylated CpGs are identi¢ed by bisulphite
sequencing and catalogued as methylation variable positions (MVPs) in the above
mentioned 6ACEpublic database (Beck 2001).MVPs can then be epigenotyped for
disease association in the sameway as SNPs either bymass spectrometry (Sauer et al
2000) or microarray analysis (Adorjan et al 2002).

Paralogy

Thehumangenomecontainsmany (up to10%)segmentalduplications theoriginof
which is subject to much debate (Bailey et al 2001, 2002). As a consequence, many
genes have paralogues somewhere else in the genome. Paralogues are de¢ned as
genes that have arisen by duplication from a common ancestor within the same
species. While some paralogues have diverged in function over time, some have
retained similar or even redundant function. The latter are of particular interest in
the context of disease association studies for obvious reasons.Drivenby the need to
constantly evolve new alleles to recognize ever-changing pathogens, theMHC has
undergone extensive duplications among other mechanisms (Beck & Trowsdale
2000). In the past, quite a fewMHC paralogues have been found to cluster in three
regionsoutside theMHConchromosomes1, 9and19 lending support to the theory
of chromosomeor evenwhole genomeduplication (MHCSequencingConsortium
1999). Again, the availability of the human genome sequence now allows us to
identify and to characterize paralogous genes genome-wide with no regional bias
or restrictions. Such a study is currently underway inmy laboratory complemented
by in silico and microarray-based analyses to check for possible MHC-redundant
gene function outside theMHC.

Orthology

Comparative sequencing has long been recognized as a powerful approach for gene
and genome analysis. It contributes to the identi¢cation of genes and other features
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of interest and helps to unravel their evolutionary and phylogenetic origin. In
many cases it also allows to make functional assumptions based on the common
notion that conserved synteny equals conserved function. For the MHC,
comparative sequencing has uncovered many interesting ¢ndings. The
sequencing of the chicken MHC (also known as B-locus), for instance, has
de¢ned a minimal essential set of genes required for MHC function (Kaufman et
al 1999). Compared to the humanMHC, the chicken MHCwas found to be about
40-fold smaller in physical size and to encode about 20-fold fewer genes.
Comparative analysis of the MHC in human and mouse has further led to the
formulation of the ‘Framework Hypothesis’ dividing MHC genes into conserved
(framework) genes and non-conserved genes (Amadou 1999). By going back even
further in evolution, the analysis of several ¢sh MHCs revealed that for MHC
function, MHC genes do not have to be encoded within a single complex or
linkage group (Flajnik et al 1999). Today, the MHC has probably been (at least
partially) sequenced in more species than any other region of the human genome,
including several primates, rodents, birds, cattle, pig, cat, amphibians and ¢sh.

Matrix recognition signals

On the DNA level, gene transcription is regulated locally by promoter and other
regulatory sequences (including their epigeneticmodi¢cations) and globally by the
higher-order structure of the chromatin. While many promoter sequences have
been identi¢ed and catalogued in databases such as the eukaryotic promoter
database (Praz et al 2002), comparatively little is known about chromatin
structure. According to the inter-chromosome domain (ICD) compartment
model (Cremer et al 1995), chromosomes are compartmentalized into distinct
territories de¢ned by their attachment to the nuclear matrix via short DNA
sequences, called matrix attachment regions (MARs) (Boulikas 1995). MARs are
thought to mediate the organization of chromatin into multiple topologically
constrained loops anchored at their bases to the nuclear ribonucleoprotein
matrix. In this way MARs can provide access for transcription factors and, at the
same time, can provide insulation from adjacent transcription units (Volpi et al
2000). Recently, a unique bipartite sequence motif called MAR recognition
signal (MRS) was identi¢ed (and experimentally veri¢ed) that can be used to
predict the positions of MARs in genomic DNA sequences (van Drunen et al
1999). Such a prediction has been carried out across the MHC and, for some
MARs, it could be shown that they not only bind to the nuclear matrix but also
recruit the heterogenous nuclear ribonucleoproteinA1 (hnRNP-A1) in vivo during
transcriptional up-regulation (Donev et al 2003). hnRNP-A1 is involved in
packaging, splicing and transport of mRNA and thus con¢rms the proposed
involvement of MARs in higher-order transcriptional control.
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Conclusion

The criteria and data sets discussed above are obviously only part of the data
required for the possibility to computationally simulate immune pathways.
Other laboratories are already in the process of generating these missing data
using chip technology, transgenetics, proteomics and, of course, bioinformatics
to develop the necessary software tools towards a digital immune system.
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DISCUSSION

Rammensee: Could your modelling tell us more about the methylation in variable
positions? As I understand it, methylation is highly variable. Does it make sense if
you look in the di¡erent tissues? The next day it may have changed again.
Beck: It is not that variable. I gave you a simpli¢ed version of this. What we call

methylation at variable positions, where there is a clear on or o¡, is rarely found.
You have to look at a very large region, and then you get a pro¢le.Wewould never
just go to a single position and ask whether this is functional. In reality, we look at
hundreds to thousands of CpGs to get a pro¢le. Then we can say that within a
certain cell, this is the pro¢le. There are multiple positions that will contribute to
each gene. It becomes more complicated if you look at the tissue level. Within a
tissue there will be slightly di¡erentmethylation pro¢les within cells, because there
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isn’t a homogeneous population of cells. It is developmentally dependent. In an
ideal world, methylation data should be generated from individual, micro-
dissected cells but the DNA that can be isolated from a single cell is (currently)
not su⁄cient to analyse multiple let alone all human genes. In practice, we ¢nd
that DNA isolated from macro-dissected tissue (e.g. by a pathologist) is perfectly
suitable. The problem is similar to microarrays where experimental noise is ¢ltered
out by statistical analyses.
Rammensee: You said that you pool tissues of di¡erent individuals. Is this to

reduce the amount of variation?
Beck:One of our biggest problems is to obtain healthy tissue. This is di⁄cult for

us to control. For the pilot project the disease we chose together with our
collaborators at CNG (Evry) is psoriasis. For that we need skin biopsies from
both patients and healthy individuals. Skin samples are easier to obtain than
many other tissue types, which is partially why we chose it. Understandably,
nobody wants to give a sample of their healthy heart, for example. Therefore, we
did consider whether or not the project should be done inmouse. But, for the same
reason as for the SNP project, the main and foremost interest (and therefore
funding) is in human. In many ways, the mouse would be a better system to do it
in because you would have all the tissues in unlimited supply. Also in respect to
funding, we would like to model this project on the SNP project, and attract a
combination of private and public funding. Companies are mainly interested in
human methylation to develop diagnostic tools.
Silva: Is there a link between methylation patterns and disease?
Beck:The best-correlated data are those from cancer. A common scenario is that

certain genes are switched o¡ by hypermethylation, and if this includes a tumour
suppressor gene a tumour can develop. Various syndromes (e.g. Beckwith^
Wiedemann syndrome and Prader^Willi syndrome) have also been linked to
methylation, but these are less well supported. In our approach, we like to make
sure that we cover all the ground whenwe investigate complex diseases. Take type
1 diabetes as an example. Lots of people have been looking for variation causing
diabetes in the MHC and the time has come to use a brute force approach to
systematically analyse all genetic variations and consider epigenetic variations as
well. It is well established, for instance, that epigenetic down-regulation can lead
to an imbalance of transcripts and result in disease.
Silva: If a gene is switched o¡ by methylation, can it be switched on again?
Beck:Theoretically yes, although little is known about this process.Methylation

can be lost (and gene activity potentially be regained) if methylation is not re-
established on the newly synthesized strand after replication. Usually, however, it
works the other way round. Over time, the epigenome gains rather than loses
methylation as part of the normal ageing process. Environmental factors such as
diet can also play a role.
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Littlejohn:How does the array-based detection of methylation work?
Beck: The trick is in using bisul¢te treatment which converts non-methylated

(but not methylated) cytosines into uracils which, in turn, become thymines after
PCR ampli¢cation. Complimentary oligos for methylated and non-methylated
target sequences are attached to the chip and hybridized with bisul¢te treated and
non-treated patient DNA (e.g. Adorjan et al 2002). Another approach to type
methylation is based on mass spectrometry which is being developed by our
collaborators at CNG, the French centre for genotyping in Evry.
Margalit:How does it work?
Beck: Matrix-assisted laser desorption ionization mass spectrometry (MALDI-

MS) is based on gas phase separation of biomolecules according tomolecularmass.
The measured di¡erence in molecular mass is indicative whether or not the analyte
was methylated.
Wingender: There is a company we are collaborating with, Epigenomics in

Berlin, who are speci¢cally working on methylation patterns.
Beck: As I mentioned before, Epigenomics and CNG are members of the

consortium. Epigenomics is the leading company in the ¢eld of methylation and
they are making a big contribution to this work. They came up with the chip
analysis and bisul¢te conversion method used in this project.
Kellam: I was interested in the looping out of the MHC and the exposure to

interferon inducers. Some of these interferon-responsive genes must be
constitutively expressed. In this case, before the interferon are they looped out
already and are just packed tightly to the chromatin? Also, did you see looping
out of the orthologous or paralogous regions that you have been mapping?
Beck: The looping out occurs very fast, about 10 mins after the addition of

interferon. and smaller, not detectable sections could loop out even faster. We
haven’t looked at MHC orthologous or paralogous regions but did look at other
regions outside the MHC as control regions.
Silva:How easy is it to scan the whole genome to look for looping out?
Beck:Now that we have a clone tile path for the entire genome, it is technically

possible but it would be an enormous amount ofwork. It would have to be done in
multiple cell lines. There are many more matrix attachment regions than are being
used in a particular cell type. It is somehow similar to promoters: not every cell type
produces all transcription factors. What we currently don’t know is which MARs
are used in which cell type. There are probably di¡erent MARs being used, for
example, in B cells than in ¢broblasts.
Lefranc: Can you do these kinds of things for the adaptive immune response?

Would it be useful to compare the looping out of the T cell receptor and MHC?
Beck: This would be an interesting experiment to do.
De Groot: I understand that you can see the induction of gene expression by

interferon g, using the method you have developed. When you are talking about
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the digital immune systemwhat you are inferring is that it might be possible to see
every step of cellular activation in someway. So you could put together a movie of
what is happening in the cell at each stage.
Beck: In addition to computational simulation, this is very much my vision of a

digital immune system. Another method to digitize cellular processes is by using
green £uorescent protein (GFP) tagging.
Flower: Are people working towards decreasing the resolution of this process,

or have we reached a fundamental limit?
Beck: I don’t think the limit of resolution has been reached yet. What would be

really nice to visualize in future is not only the transcriptional activation in the form
of looping out but the actual RNA being made.
Kellam:There is a very similar story in B cell activation domains, where there is

looping out of regions of chromatin into regions of the nucleus that aremore dense
with transcription factors and processing factors. When the state of the cell is
changed, multiple things come o¡ di¡erent chromosomes that all end up in a
substructure of the nucleus which is more transcriptionally active.
Beck: I think you are probably referring to the inter-chromosomal domain (ICD)

compartment model developed by the Cremer brothers.
Kellam: So you should be able to correlate genome-wide transcriptional patterns

with the chromosome loops popping out.
Beck: If you have knowledge of which region responds to which cytokine, you

could probably paint the corresponding chromosomes and stain the target regions
with the same or di¡erent £uorophores to visualize multiple transcriptionally
active regions.
Kellam: Does this make a prediction that complex transcriptional changes

should have their genes fairly contiguous on chromosome locations?
Beck: I think so. I don’t think that the chromosomal locations of genes are

random. The MHC is a good example.
Littlejohn: Has anyone done something resembling an EST experiment, where

S1 nuclease is used and all the fragments that are subsequently released are
sequenced? This would help us to look at the regions that are looping out.
Beck:Not that I am aware of.

Reference
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Viral bioinformatics: computational
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Abstract. Wherever cellular life occurs, viruses are also found. As a result, complex
organism and cellular antiviral responses co-evolve with virally encoded
countermeasures. Since viruses co-opt or interfere with speci¢c cellular pathways
during their replication, knowledge of viral genome sequences has helped fundamental
understanding of host biology. During viral infection, shifts in the balance between host
and viral biological processes result in acute or chronic viral disease pathology
accompanied with either active viral replication, viral containment/persistence or viral
clearance. Studying host^virus interactions at the level of single gene e¡ects, however,
fails to produce a global systems-level understanding. This should now be achievable in
the context of complete host and pathogen genome sequences. New experimental
methods and computational approaches are rapidly developing, allowing global views
of dynamic viral and cellular molecular mechanisms. Systems level virology using DNA
microarrays and speci¢c viral data resources will reveal the detailed cellular context in
which viruses replicate, highlighting common and distinct antiviral mechanisms, the
e¡ect of di¡erent host cell gene expression programs, and the response of cells to similar
or diverse virus types. Ultimately, microbiology and immunology will tend towards a
systems-level view of how host and pathogen interact.
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Post-genomic virology

Biological science has developed into many distinct disciplines. Now, such
scienti¢c disciplines face interpreting their knowledge base in the context of ¢nite
and de¢ned complete genomic sequence data. This requires thinking of and using
information outside the con¢nes of previously structured research boundaries.
Due to the diverse nature and large volumes of information available
computational biology will play an ever-increasing role in such research.
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Currently this manifests itself in gene, protein and biological function orientated
databases designed to encompass a corpus of knowledge. The explosion of such
data resources is charted each year in the database issue of Nucleic Acids Research.
But, rather than these resources being dull and lifeless, they actually provide a
platform for thinking genomically. For example, as viruses infect every domain
of life, insights into antiviral strategies are available from bacteria to humans.
This has been highlighted recently by the rise in interest in ‘innate’ antiviral
responses such as RNA interference of plants and animals (Hannon 2002) and
Toll-like receptors of insects and mammals (O’Neill 2002).
Microbes e¡ectively co-evolve with other organisms present in their

environment. As host immune complexity evolves so pathogens co-evolve, and
vice versa, in a Darwinian manner. Immunoinformatics should therefore
encompass pathogen bioinformatics. Post genomic research therefore allows us
to take an overarching view of how a ¢nite human genome facilitates and
maintains essential biological functions and homeostasis whilst guarding against
and responding appropriately to acute, persistent or commensal infections (Kellam
2001).

Viral bioinformatics

Comparative virology has documented di¡erences and similarities in virus
structures, genome types and replication strategies. Computational biology is
now expanding on this theme (Kellam & Alba' 2002). The starting point for
functional genomics/bioinformatics is often the entire genome sequence of the
organism in question. Such ‘genome sequencing projects’ have produced an
explosion of specialist ‘organism-centred’ genome databases. The number and
diversity of completely sequenced viral genomes in GenBank, however, far
outstrips any other genome centred resource. By organizing virus genome
sequences and grouping viral proteins into families of proteins that share amino
acid sequence similarity a wide range of comparative virology is possible. VIDA,
an animal virus database, is a prototype of such a viral centred genome data
repository. VIDA organizes information based upon viral open reading frames
(ORFs) from complete or partial genomic sequences derived from GenBank
(Alba' et al 2001a). The families within VIDA are automatically derived for all
ORFs from a given virus family, for example the herpesviruses, based on
conserved regions of amino acid similarity that de¢ne a viral homologous
protein family (HPF). Viral ORFs can exhibit high mutation rates and can
diverge quickly. Therefore, the identi¢cation of such conserved sequence regions
is a valuable tool in identifying functionally important protein regions and to
cross-compare di¡erent virus genomes (Alba' et al 2001b, Montague &
Hutchison 2000).
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Perhaps more importantly, as viruses are obligate intracellular parasites and
utilize many normal cellular pathways and components during their replication
cycle, bioinformatics strategies can be used to identify virus proteins that
interfere with the host system. A variety of methods are available to search for
homologues in the host genome. Simple searches of a single protein against a
database of other proteins will identify close homologues that have global or
local areas of amino acid similarity. More sensitive searches can be performed
against the same protein databases using conserved motifs. This relies on the fact
that related proteins performing related functions have conserved regions of
amino acid similarity in certain domains of the proteins (i.e. active sites). By
comparing many di¡erent related protein domains, it is possible to extract a
consensus motif and represent this as a Position Sequence Scoring Matrix
(PSSM), which is essentially a normalized frequency of occurrence table for each
amino acid position within the matrix. Searching protein databases with such
PSSMs identi¢es more distant homologues to the group of proteins that
comprise the de¢ned motif. This method was used successfully to identify certain
herpesvirus proteins as inhibitors of Fas-mediated apoptosis (Thome et al 1997)
and when performed systematically identi¢es more host cell relatives of
herpesvirus proteins in the complete human genome sequence (Holzerlandt et al
2002).
This analysis can lead to functional insights into host and pathogen processes.

For example, the Kaposi’s sarcoma-associated herpesvirus (KSHV; human
herpesviruses 8, HHV8) encodes two proteins K3 and K5 shown to promote the
down-regulation of cell surface proteins. In particular K3 promotes the endocytic
down-regulation ofmajor histocompatability complex (MHC) class I (HLA-A, -B,
-C, and -E) cell surface expression by increasing the rate of endocytosis and
targeting the internalized proteins for degradation. Although the precise
mechanisms remain to be determined it seems clear that K3 and K5 ubiquitinate
their target proteins facilitating their endocytosis and then target the internalized
proteins to the lysosome in a ubiquitin-proteasome-dependentmanner (Lorenzo et
al 2002, Means et al 2002). The equivalent protein in murine herpesvirus 68
(MHV68), namely MK3 (ORF 12) also down-regulates murine MHC-I (H-2D)
by binding to H-2D in the endoplasmic reticulum, targeting the proteins for
degradation and thereby preventing cell surface expression (Boname &
Stevenson 2001). The K3/K5 protein family in VIDA contains homologous viral
proteins from other herpesviruses, namely, IE1 in bovine herpesvirus 4 (BHV4),
MK3 (MHV68), and ORF 12 in saimirine herpesvirus 2 (HVS2), all of which
contain the sequence motif known as the BKS (BHV-4, KSHV, and Swinepox)
motif, a member of the PHD/LAP zinc ¢nger class (C4HC3), but clearly di¡ering
from PHD/LAP zinc ¢ngers due to its distinct spacing of the cysteine/histidine
residues (Fig. 1). Many proteins that contain a PHD/LAP motif have been
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shown to act as ubiquitin ligases but the e¡ect of the small insertion in the BKS
motif remains to be determined.
Six unannotated human proteins were identi¢ed using the BKS PSSM, all

containing the highly conserved BKS ¢nger motif. In the herpesvirus proteins
the motif is always found in the N-terminus but in one human protein it
appeared in the central part of the peptide whilst in another, the counterpart of
murine axotrophin, at the C-terminus (Fig. 1) (Holzerlandt et al 2002, Jenner &
Bosho¡ 2002). Interestingly, the K5 protein of KSHV, in addition to removing
HLA-A and -B from the cell surface also reduces the level of cell surface,
expression of intercellular adhesion molecule 1 (ICAM1) and the co-stimulatory
molecule B7-2 (Coscoy & Ganem 2001, Ishido et al 2000). This suggests the
possibility that the entire family of host and viral BKS motif proteins can
selectively remove speci¢c cell surface proteins.
Computational approaches alone can provide insights, as described above, but

often fail to reveal related mechanisms employed by distinct viral types. Cross-
comparison between any species is particularly vulnerable to misinterpretation if
there is no universal understanding of the functional de¢nitions for homologous
genes. This has resulted in the Gene Ontology Consortium developing a
standardized controlled vocabulary to de¢ne ‘biological process’, ‘molecular
function’ and ‘cellular component’ for the annotation of any gene product
(Ashburner et al 2000). Each of these ontologies is represented by directed
acyclic graphs (DAGs); each node of the graph can have multiple ‘children’, in
which case it is termed a parent, and each child can likewise have more than one
parent (Fig. 2), thereby distinguishingDAGs from classical hierarchies. Each node
of the DAG represents a de¢ned level of function, with each child (i.e. further
down the DAG) being a more specialized sub-section of the higher parent’s
function. Such a system is readily expanded to include viral-speci¢c terms (R.
Holzerlandt, personal communication). This should eventually lead to an
integrated view of related processes encoded by di¡erent viral species and how in
some case these integrate with host cell functions. For example, viruses encode
extensive mechanisms for immune evasion (Alcami & Koszinowski 2000). As
described, herpesviruses can interfere with MHC class I cell surface presentation,
but many other diverse virus types also use this strategy. Representing this
information within a DAG not only makes analysis computationally tractable
but leads to a continuously updateable cross-species, information resource (Fig.
2) (Table 1).

Funtional genomics of host and pathogen

As viruses are obligate intracellular parasites, a range of regulated host-cell factors
and pathways are used by viruses to enable viral gene expression and replication.
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Integrated viral data resources can provide information-rich but static data. This
needs to be interpreted in the context of the dynamic process occurring in the host
cells and tissues during infection and immune response. Determining which
mRNAs are expressed in a cell gives an idea of which proteins are present. Large-
scale gene expression mapping using gene arrays is motivated by the premise that
the functional state of the organism is largely determined by its expressed genes
(based on the central dogma). This means it is possible to de¢ne an organism’s or
cell’s phenotypic state in terms of the range of genes that are expressed. This ¢eld of
functional genomics has been called ‘transcriptomics’.
The e¡ects of viral infection on the transcriptome of cells in vitro and in vivo has

been determined for viruses as diverse as retroviruses, herpesviruses,
orthomyxoviruses, enteroviruses, adenoviruses, hepatitis B and C viruses, and
papilloma viruses. These initial studies show that viruses cause both common
and unique changes in cellular gene expression pro¢les during their replication
cycle (Fruh et al 2001, Kellam 2000, 2001). However, the degree of host
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TABLE 1 Representative herpesvirus, adenovirus and lentivirus proteins that
interfere with antigen presentation.

Function/
Activity Gene/protein Virus Mechanism

E¡ect on MHC E3/19K Adenovirus Binding and retention of class I in ER

class I US3 HCMV Binding and retention of class I in ER

US2, US11 HCMV Relocation of heavy chain into ER for
degradation

m4 MCMV Binds class I molecules

m6 MCMV Binding of class I molecules and transport to
lysosome for degradation

m152 MCMV Retains class I in ER-Golgi intermediate
compartment

K3, K5 KSHV Down-regulation of class Imolecules through the
ubiquitination pathway

MK3 MHV68 Removal of class I molecules from the ER

Nef HIV Endocytosis of surface class I and CD4

Vpu HIV Destabilization of class I, targets CD4 to
proteosome

E¡ect on
antigen
processing

EBNA-1 EBV A Gly-Ala repeat motif prevents proteosomal
degradation

pp65 HCMV Modulates processing of other HCMV proteins



transcriptional modulation is likely to be more complicated than a simple
re£ection of the type of virus causing the infection. Whereas viral cellular
tropism is often thought of as activated by the presence or absence of an
appropriate viral cell surface receptor, tropism actually includes all aspects of the
cellular environment required for productive virus infection. It is possible that
viruses with restricted tissue tropism re£ect the reliance on a tissue or cell speci¢c
component or pathway (Sheehy et al 2002). Di¡erential cellular gene expression is
not a new concept but the extent of cellular transcriptional di¡erences is clearly
shown by microarray studies (Fig. 3). Viruses with broad tissue tropism may
therefore utilize core cellular pathways present in many cell types. Alternatively
viruses may be able to ‘sense’ a particular cellular environment and modify it
towards the needs of the virus. Indications that this can happen come from
studies of human cytomegalovirus (HCMV). In vivo, HCMV productively infects
¢broblasts, epithelial cells, endothelial cells and macrophages. Uninfected
¢broblasts and endothelial cells express di¡erent subsets of genes (Fig. 3a), and
when infected by the same strain of HCMV elicit cell-type dependent and
independent transcriptional changes (Fig. 3a). In such an example, host cell
transcriptional changes can re£ect either virus induced cell type speci¢c changes
to facilitate virus replication, cell type speci¢c responses to infection, or a
combination of both.
Functional genomics methods also have the potential for reunifying studies of

bacteriology, virology and parasitology under an umbrella of how host and
microbe interact. In this instance it is informative to examine the e¡ect of
microbial products on immune and non-immune system cell types. Again, this
serves to illustrate the functional complexity of transcriptional responses to a
common signal. For example, when HeLa cells (epithelial cells) and peripheral
blood dendritic cells are exposed to bacterial lipopolysaccharide (LPS), cell-type
speci¢c transcriptional pro¢les are clearly seen (Fig. 3b). Following LPS
exposure dendritic cells massively up-regulate a set of genes that are
transcriptionally unresponsive in HeLa cells. In the case of dendritic cells
exposed to a virus, a bacterium or a yeast, such transcriptional plasticity could be
rationalized into core and pathogen-speci¢c transcriptional responses (Huang et al
2001). There is likely to be even greater di¡erential gene regulation in vivo, taking
into account cell interactions, tissue location and the shifting cytokine
environment. Perhaps the greatest challenge of such systems biology and
immunoinformatics is to de¢ne and model such complex biology within the
appropriate contextual environment of the host.
Given the inherent complexity and incomplete knowledge of host^pathogen

interactions, can computational and functional genomics have an impact on
therapies for otherwise di⁄cult-to-treat viral diseases? Three examples of the
strategy of using global views of di¡erential gene expression to de¢ne drug
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FIG. 3. Di¡erent cellular transcriptional responses to extracellular agents or virus infection
measured using human gene DNA microarrays. Shades of grey indicate detectable gene
expression above and black below the median expression for that gene in all the samples. (a)
Human vascular endothelial cells (HUVEC) and ¢broblasts display cell type speci¢c gene
expression patterns (group of 18 genes, timepoint zero). When these cells were infected with
human cytomegalovirus di¡erential gene expression occurred in the di¡erent cell types. For
example in the group of 24 genes, infection of HUVECs results in a decrease in gene
expression whilst the same genes remain largely unchanged in ¢broblasts. Also in the group of
17 genes infection of HUVECs results in increased gene expression by 48 hours whilst there is
rapid induction and then little change in the ¢broblast gene expression levels. (b) Human
dendritic cells and HeLa cells were mock exposed or exposed to lipopolysaccharide (LPS) over
a 24 hour time course. For this group of 34 genes initiallymore highly expressed in dendritic cells
than HeLa cells, the addition of LPS results in a massive increase in gene expression in dendritic
cells but no e¡ect in HeLa cells.



VIRAL BIOINFORMATICS 245

FIG. 4. Predicting drug sensitivity from gene expression pattern. (a) The relative log2
expression level of the vitamin D receptor gene in the follicular lymphoma cell line Karpas-422
and the KSHV infected primary e¡usion lymphoma (PEL) cell line HBL-6 showing higher
expression in HBL-6. (b) Cell proliferation of HBL-6 but not Karpas-422 is inhibited in a dose
dependantmanner by the vitaminD analogue drugEB 1089. The proliferation assay is expressed
as percentage of no drug control. (�) Karpas-422, (o) HBL-6.



targets in herpesvirus infections now exist. In the case of HCMV, infection of
¢broblasts results in the induction of multiple elements of the prostaglandin E2
synthesis pathway including the gene encoding for cylo-oyxgenase 2 (COX2)
(Zhu et al 1998). Inhibitors of COX2 prevent prostaglandin synthesis, and
importantly COX2 inhibitors also block HCMV replication in vitro (Fruh et al
2001). Similarly, the proto-oncogene c-kit was shown to be up-regulated by
KSHV during viral transformation of endothelial cells. c-kit is a molecular target
for Gleevec which is licensed for the treatment of gastrointestinal stromal tumours
(GISTs). Gleevec was shown to reverse KSHV-induced morphological
transformation of endothelial cells (Moses et al 2002). In a similar study the
expression pro¢ling of viral and non-viral induced B-cell lymphomas revealed
that KSHV driven lymphomas overexpress the vitamin D receptor. Targeting of
these lymphomas in vitro with vitamin D analogue drugs prevented lymphoma
proliferation in a dose-dependent manner (Fig. 4) (Jenner et al 2003). These three
studies begin to o¡er hope that detailed viral bioinformatics and functional
genomics will open up novel insights and therapeutic strategies for viral
infections that are at present di⁄cult to treat e¡ectively.
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DISCUSSION

De Groot: I thought your point that you see di¡erent gene expression in di¡erent
cell types was important. I had thought that things were a lot simpler. This makes
me concerned about the interaction between host and pathogen, which will be
di¡erent in di¡erent cell types.
Kellam: I think so. The level of complexity increases even further when you start

looking at multi cell-type environments and the context of what is going on in an
immune response.
De Groot: There are large viruses and small viruses. But even in HIV, our

colleague Willy Hildebrand has performed an analysis of those peptides
presented in the context of autologous HLA molecules in a normal cell line and
those that are presented an HIV-infected cell line, and has now shown that two
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di¡erent sets of epitopes derived from self proteins are processed and presented.
The e¡ect of infections on epitope processing and presentation will be complex
to unravel.
Kesmir: Could this be because virally infected cells here have an

immunoproteasome which cleaves di¡erently than the constitutive proteasome? I
am not sure it is entirely the e¡ect of the virus we are seeing here.
Kellam: There are some other large-scale expression analyses that start to hint at

the complexity. For example, if you take herpes simplex virus or human
cytomegalovirus and expose cells to live or inactivated virus, the HCMV seems
to signal through its cell surface receptors that it is attaching to and induce an
interferon response inside the cell. The result is that when the virus internalizes
into the cell it then disarms certain components of the cell machinery, whilst
keeping certain components going. In contrast, HSV doesn’t do this at the level
of the cell surface, but when it is internalized it seems to induce very similar pro¢les
to HCMV and then starts to turn o¡ processes that it doesn’t want. It has been
assumed in the past that for viruses that are simple and which infect multiple cell
types it is at the level of the cell surface receptor where the tropismmanifests itself.
But this is probably a vast oversimpli¢cation.
Petrovsky: If we are going to model immune responses, particularly to

pathogens, we are going to have to be very careful that we look at the e¡ect of
the pathogens on the immune system at the same time as we are looking at the
e¡ects of the immune system on the pathogen. For example, in T cell assays
people would tend to test a peptide or dead bacterium or virus, and not use live
organisms, which might result in completely di¡erent responses.
Rammensee: This is being done with virus-infected cells.
Petrovsky:We tend not to put live bacteria into cultures, though.
Rammensee:No one wants bacteria in their incubators.
Wingender: We used Pseudomonas on cultures of epithelial cells. The results are

dependent on the strain of Pseudomonas and also the cell type. It doesn’t surprise
me that we ¢nd such di¡erent responses in di¡erent cells, when we consider that
one promoter exerts di¡erent e¡ects on a gene in di¡erent cellular contexts. The
same promoter is occupied by completely di¡erent sets of transcription factors in
di¡erent cell lines.
Kellam: If you represent lots of knowledge, you still have to add a dynamic

context in order to interpret some of the gene expression changes. There always
needs to be a healthy interplay between the experimental biologist and the
computational scientist.
Brusic: From the modelling perspective it seems that systems of di¡erential

equations will not take us very far. At least for some situations we need to use
network models, which can describe complex interactions, including feedback
loops.
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Perelson: It depends on what level of information you would like to get. If you
are interested in overall patterns of growth of virus and numbers of cells infected,
one still might want to work at the di¡erential equation level. If one wants to look
at the responses of the host cells and the details of what is happening at the cellular
level then maybe we need network models. There is room for di¡erent types of
models to answer di¡erent questions.
Kellam:This raises the possibility that we can use this knowledge e¡ectively.We

can use the cellular pro¢le in response to a pathogen as a diagnostic tool. This may
allow us to determine what pathogen the immune system is seeing at the moment.
There is evidence from the dendritic cells that exposure to di¡erent pathogens
produces a di¡erent transcriptional pro¢le. If you can determine such changes
from the peripheral blood you might improve prognostic and diagnostic
indications of di¡erent pathogens. Just by documenting what is di¡erent and
what is the same we can get some immediate bene¢ts, rather than having to go to
a full network model to understand it.
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Final general discussion

Littlejohn: I have a general observation from the perspective of a relative
outsider looking in. The immune system is obviously a fantastically intricate one
with a whole lot of inputs and outputs. And we are collecting and cataloguing a
great many sets of data, which we are putting into a digital format so we can do
immunoinformatics. In terms of thinking about the database issues I would like to
see a mapping of the inputs and outputs of the immune system in a logical domain-
speci¢c classi¢cation. Then we could stipulate, for example, that we have to build
20 databases integrated in the following ways, and these are the ones we should
build ¢rst. If we were to do this we could get to a point where the molecular
biology informatics community is with cross-links between the major databases
it uses. Is this a useful mud map to draw out?
Brusic:TimLittlejohn is talking about a conceptualmodel of the immune system

that is hierarchical so that we can zoom in at the speci¢c parts at di¡erent levels.
When I started working on theMHC this is exactly what I did. I drew a conceptual
model of the immune system and then de¢ned subsystem all the way to molecular
interactions such as MHC^peptide binding.
Littlejohn: This could be used to derive a plan for databases.
Brusic: The advantage of this approach is that it can show inter-relationships at

high levels and also at low levels. Alan Perelson and his colleagues have been
working on this for ages.
Littlejohn: It is probably more of a directed acyclic graph than a hierarchy.
Perelson: I agreewith you. There are a variety of levels at whichwe can look. As a

community, people have focused in on particular molecular details, mainly
emphasizing MHC and epitopes; I think there are practical issues of vaccine
design driving this. There is another community that is involved with cytokines:
I don’t know what the status of their databases are, but they will be important to
integrate. Then there is a lot of information that is just not being captured, such as
functional information coming out of functional assays, which can be quite messy
comparedwith sequence data. Investigators are nowdoing a lot ofworkmeasuring
the functional response of T cells after they are stimulated by particular epitopes.
As far as I know these data are just sitting in publications. There is also the issue of
somatic hypermutation in B cells in germinal centres. There are some scattered
databases gathering sequence information looking at some of the genetic changes
here. It would be nice to combine this informationwith other pieces of the picture.

250

Immunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function:
Novartis Foundation Symposium 254. Volume 254

Edited by Gregory Bock and Jamie Goode
Copyright  Novartis Foundation 2003. ISBN: 0-470-85356-5



Lefranc: I think Tim Littlejohn’s proposal is still a bit of a dream rather than
reality, but it is nice to have this as a goal. In practice, I don’t know whether it is
feasible. When we try to do these things, even in a small area, very quickly we get
into a situation where it is impossible to compare all the steps of the database.
Littlejohn: I would like to remind everyone of the informatics bene¢ts here. My

two favourite examples are the human mutation database initiative and the
MIAME/MGED (Minimum Information About a Microarray Experiment;
http://www.mged.org/Workgroups/MIAME/miame.html) initiative. The MIAME/
MGED initiative for microarrays has derived not only minimum information
capturing standards but also ontologies for the capture and storage of that
information. Because of this it has the fringe bene¢ts of XML formats and
compliant databases. This is fantastic. The other good model for this community
is the human mutation database, with distrubuted curation and domain experts all
doing their bit. The bene¢ts of having a group stand over it and look at the holistic
problem are immense.
Schonbach: The MIAME standards are useful from a technical and

implementation perspective, but we should also discuss how we can capture and
compare data that are time dependent, or which are spatial data. This is muchmore
complicated.
Gulukota: A point I would like to raise is what kind of non-immunological

applications there could be for the kind of knowledge that will be derived from
immunoinformatics. One example might be ways of combating computer
viruses. It is not a self/non-self problem like in immunology, but it is a malicious
versus non-malicious problem.
Littlejohn: That is a good thought. Think of predator^prey models like those

developed for HIV battling the immune system in environmental biology. I
imagine this could be a bidirectional information £ow.
Flower:There are lots of computer science people interested in arti¢cial immune

systems who are using the immune system as a metaphor for doing very di¡erent
things.
Perelson: There are also possibilities for using immune system analogies in

pattern recognition, such as in analysing computer systems for unusual patterns
that might indicate intruders.
De Groot: Another application is using tetramers for detection of acutely

infected individuals. One of the bene¢ts of this type of discussion here is that as
people who are working in informatics we are pushing the limits of understanding
of the immune systemby asking questions that then have to be proven in vitro. If we
say that we think that most of the proteins in TB are going to be seen by the
immune system, experimentalists have to go and prove us wrong. Having been
here I’m starting to think that there might be an immunome in a certain state in a
certain tissue, and another immunome in another state of alert in a di¡erent tissue.
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Littlejohn:Another general observation is that this is the ¢rstmeeting that I have
been to with a domain-speci¢c bioinformatics theme. This is tremendous. The
concept of ‘immunoinformatics’ is very focusing. This could act as a template for
other disciplines. Oncoinformatics is the next obvious one.
Wingender: I am not sure that the concepts here are not so di¡erent from the

concepts arising in systems biology. In Germany a funding programme has just
been launched for systems biology on the liver as an organ.
Littlejohn: The problem is that you either make it too big or too technological,

and this is the intersection of a speci¢c domain in technology.
Wingender: That is what I understood they were trying to do in these systems

biology programmes as well.
Kellam: The other thing is that this is tractable. With the best will in the world

you can work on the liver but you are not going to be able to do time-dependent
sampling on an individual. The same is true in development: in the human system
you can’t do these sorts of things, quite rightly. But you would have more of an
access to the immune system. It makes a good model for working in systems
biology.
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Closing remarks

Hans-Georg Rammensee

Interfakult�res Institut fˇr Zellbiologie, Abteilung Immunologie, Universit�t Tˇbingen,
Auf der Morgenstelle 15, D-72076 Tˇbingen, Germany

It is very di⁄cult to sum up ameeting like this, because we are still at the beginning
in this ¢eld. I think we are about where the HLA ¢eld was in 1969 when it was
recognized that the subject was very complex and that it was important to give
internationally recognized names to the genes and proteins, and standardize
procedures for identifying these. It was also recognized that the collection of data
would grow enormously. We are now in a similar position: we recognize that the
procedures and names have to be standardized, and that there is a long way still to
go.
In my introduction, I broke informatics down into three categories, hard, semi-

soft and soft. After our discussions, I thinkwe need to downgrade everything! The
top category, hard informatics�which represents exact knowledge�probably
won’t ever be part of immunoinformatics. It is our aim, but it won’t be reached
by this ¢eld. I should add here that ‘hard’, ‘semi-soft’ and ‘soft’ do not mean good
or bad: we need all of these categories, they are just descriptions. The top level of
immunoinformatics is, I think, three-quarters hard, one-quarter soft. The semi-
soft part represents the algorithms trying to predict something which is then
veri¢ed experimentally, and then we have the soft category composed of the
models that eventually lead to predictions. However, we now need an extra
category, which I will call the ‘liquid’ category, a term coined by Stephan Beck:
beyond the soft. This classi¢cation is more-or-less semantic, but perhaps it helps
to structure our thoughts.
Something else I would like to include in this summing-up is that we have

missed out quite a number of ¢elds within immunoinformatics. Most
signi¢cantly, there is the entire ¢eld of B cell immunology. Another important
area not dealt with in depth is that of chemokines and cytokines. The ¢eld of
signal transduction is closely linked to immunology, and I am sure that are more
¢elds we haven’t done justice to. Altogether, though, this meeting will probably
inspire a lot of future activity, and I would like to thank you all for your
participation.

253

Immunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function:
Novartis Foundation Symposium 254. Volume 254

Edited by Gregory Bock and Jamie Goode
Copyright  Novartis Foundation 2003. ISBN: 0-470-85356-5



Index of contributors

Non-participating co-authors are indicated by asterisks. Entries in bold indicatepapers; other
entries refer to discussion contributions.

A

*Altuvia, Y. 77

B

Beck, S. 38, 93, 94, 155, 173, 176, 191, 216,
223, 230, 231, 232, 233

Bernaschi, M. 36, 98, 99, 141, 209, 212
*Blythe, M. J. 102

Borras-Cuesta, F. 16, 17, 19, 21, 41, 42, 51,
52, 54, 56, 74, 75, 95, 96, 121, 122, 124,
156, 157, 158, 159, 210

*Borrow, P. 102

Brusic, V. 3, 14, 20, 23, 34, 38, 40, 41, 51,
55, 75, 76, 92, 93, 94, 95, 96, 99, 123, 139,
140, 141, 158, 159, 160, 161, 162, 174,
210, 218, 219, 221, 222, 248, 250

C

*Coveney, P. 102

D

De Groot, A. S. 17, 40, 41, 52, 53, 57, 72,
73, 74, 75, 76, 101, 140, 155, 156, 158,
159, 163, 208, 209, 210, 211, 212, 214,
215, 216, 217, 218, 219, 220, 221, 232,
247, 251

DeLisi, C. 14, 15, 16, 17, 19, 21, 33, 35, 37,
50, 51, 54, 55, 100, 121, 122, 124, 125,
160, 161, 162, 163

*Doytchinova, I. A. 102

E

*Eberle, U. 143

F

Flower, D. R. 39, 102, 120, 122, 123, 124,
125, 136, 140, 141, 159, 160, 162, 211,
218, 219, 233, 251

G

*Gramoustianou, E. 234

*Guan, P. 102

Gulukota, K. 14, 19, 20, 21, 37, 38, 39, 40,
43, 51, 52, 53, 54, 55, 56, 93, 100, 101,
122, 155, 157, 162, 210, 216, 222, 251

H

*Ha« ntschel, M. 143

*Holzerlandt, R. 234

J

*Jenner, R. 234

K

Kellam, P. 18, 39, 54, 100, 101, 122, 157,
158, 189, 190, 211, 222, 232, 233, 234,
247, 248, 249, 252

Kesmir, C. 21, 39, 92, 93, 95, 96, 98, 99, 163,
164, 175, 212, 218, 220, 221, 248

*Kwan, A. 243

L

Lefranc, M.-P. 55, 56, 99, 100, 126, 136,
137, 138, 139, 140, 164, 174, 221, 222,
232, 251

*Lemmel, C. 143

254

Immunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function:
Novartis Foundation Symposium 254. Volume 254

Edited by Gregory Bock and Jamie Goode
Copyright  Novartis Foundation 2003. ISBN: 0-470-85356-5



Littlejohn, T. 14, 15, 18, 20, 54, 138, 139,
140, 141, 142, 162, 175, 190, 191, 207,
212, 219, 220, 232, 233, 250, 251, 252

Lybrand, T. 35, 123, 125, 159, 161

M

Margalit, H. 16, 41, 42, 51, 72, 77, 91, 92,
93, 94, 95, 96, 137, 157, 159, 176, 192,
232

Marsh, S. G. E. 15, 53, 140, 141, 165, 173,
174, 175, 176, 216, 217, 219, 220, 221,
222

*Martin, W. 57
*McSparron, H. 102

P

Perelson, A. S. 21, 33, 34, 55, 56, 75, 94,
125, 155, 159, 161, 162, 209, 211, 213,
214, 215, 248, 250, 251

Petrovsky, N. 3, 13, 19, 20, 21, 23, 35, 36,
38, 39, 40, 41, 42, 51, 54, 55, 73, 94, 95,
96, 99, 100, 101, 162, 174, 189, 190, 212,
213, 218, 221, 222, 248

R

Rammensee, H.-G. 1, 13, 14, 15, 16, 17, 21,
35, 36, 39, 40, 41, 50, 51, 52, 53, 54, 55,

73, 74, 75, 91, 92, 94, 95, 96, 98, 99, 101,
120, 121, 122, 156, 157, 158, 159, 160,
162, 163, 164, 173, 174, 175, 176, 189,
207, 208, 209, 214, 216, 217, 218, 219,
221, 222, 230, 231, 248, 253

Roth, L. 39, 40

S

Scho« nbach, C. 56, 95, 174, 177, 189, 190,
191, 192, 216, 220, 251

Silva, D. 23, 53, 156, 189, 208, 231, 232
Stevanovic¤ , S. 14, 91, 94, 96, 143, 155, 156,

157, 161, 162, 163, 164

T

*Taylor, D. 102

W

*Walshe, V. 102

*Wan, S. 102

Wingender, E. 15, 221, 222, 232, 248, 252
Wodarz, D. 193, 207, 208, 209, 210, 211,

212, 213, 214, 215

Z

*Zygouri, C. 102

INDEX OF CONTRIBUTORS 255



Subject index

A

6ACE database 226
acute infection detection, tetramers

251
additive method 106, 107, 118
‘agents’ 18
AGPAT sub-motif 182
alignment 145^147
Allele Frequency Database 175
allele names 168^170
allergenicity 5, 29^30
altered peptide ligands 125
alternative splicing 180
Alzheimer’s disease, therapy 48^49
AMBER 109
amino acid
frequency distributions 81
residues 84

aminopeptidase activity 35
AN-1792 48^49
antibody recognition site identi¢cation 5
antigen
presentation pathways 28^29
receptor speci¢city 55
vaccines 59^61

anti-retroviral drug therapy 194, 197^198
HAART 75, 199, 202, 209

antisense translation 180
ANZDATA 26
arti¢cial neural networks (ANN)
black box 37, 39
MHC peptide binding 47
QSARs 123
T cell epitope mapping 7, 63
TAP-binding 28
transplantation outcomes 25^26, 38^40

assays, quality control 16^17, 19
atomistic molecular dynamic simulations

108^109
autoimmunity 213, 224
automised data collection 15

B

B cell
clonotypes 4
epitope prediction 104
lymphomas 246
mathematical modelling 8
transformation 5

bacterial vectors 58
bakers, £our allergens 30
BCG vaccine 59, 60^61
benchmarking 15, 17
bibliome 182^184
binding motifs 7
BIOGRID 185
bioinformatics
applications 5
de¢nition 3
T cell epitopes 6^8
vaccine development 62
viruses 234^247

Biomedical Informatics Research Network
(BIRN) 185

biotechnology 3
BKS (BHV-4, KSHV, Swinepox) motif

236^237
black box 37, 39^40
BLAST 10
BlastiMer 64
BoLA (Bovine leucocyte antigens) 174, 217
bone marrow transplantation repositories

175^176
breakers 66^67
building block-based approach 35

C

c-kit 246
cancer
antisense translation 180
methylation 231
peptide binding 92^93
vaccines 56, 68, 118

cat allergens 30

256

Immunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function:
Novartis Foundation Symposium 254. Volume 254

Edited by Gregory Bock and Jamie Goode
Copyright  Novartis Foundation 2003. ISBN: 0-470-85356-5



b catenin 151
cDNA clones
curated data 178
FACTS 184, 189

CDR3 164
cell
adhesion 37
di¡erentiation pathways 5

‘chameleons’ 87
chicken MHC 228
chronic infection, curing 210^211
classical modelling 36
clinical allergy tools 30
clinical data 99^101
clinical practice 24
CNG (Centre National de Genotypage) 232
cockroach allergens 30
combinatorial science 4
complement C4, ERV 181
complex analysis 4^5
computational immunology 4
computational methods, accuracy 10^11
computational models 4^5
computational tools, application di⁄culties

24
computational vaccinology 102^120
computer algorithms, vaccine development

62
CoMSIA (Comparative Molecular Similarity

Index Analysis) 105, 106, 108, 116^117
conceptual models 250
con¢dence levels 19^20
Conservatrix algorithm 63^64
conserved epitopes 63^64
conserved peptides 50^51
conserved sequence identi¢cation 235
containing infection 75
COPE (Cytokines online path¢nder

encyclopaedia) 9
CORBA (Common Object Request Broker

Architecture) 185
costs 53^54
COX2 inhibitors 246
Crohn’s disease 27
cross-reactivity 29
curation 137^138, 140, 221
cytokine
nomenclature 9, 190
tests 54

(human) cytomegalovirus (HCMV) 243,
246, 248

cytotoxic T lymphocyte (CTL) response
199^205, 207, 208, 209

D

DAD (DDBJ Amino acid sequence
Database) 6

data 10
automised collection 15
mining 142, 183
quality 10, 13, 15, 20^21, 218^219

data-driven models 4, 7
databanks 18
databases 4, 5^6

automised data collection 15
data errors 10
entry criteria 220^221
integration 19
interfaces 9^10
linking up 15, 16
negative sets 17
quality control 15, 16, 138^139
web 21

DDBJ (DNAData Bank of Japan) 6
defective ribosomal products (DRiPs) 88,

149
dendritic cells, LPS exposure 243
Dengue vaccine 61
deuterated glucose labelling 213
di¡erential equations 248^249
digital immune system 223^230, 233
DIP (Database of Interacting Proteins) 183,

191
directed acyclic graphs (DAGs) 237
disease-speci¢c gene expression 5
disease susceptibility genes 26^28
domains 181^182
drug

regulation 19^20
resistance 205
response 44^45

dumb names 216^217
dust mite allergens 30

E

Edman degradation 144, 145, 164
education 10
Elan pharmaceuticals 48^49
eluted peptides 88, 93^95

SUBJECT INDEX 257



EMBL (EuropeanMolecular Biology Lab)
6, 18, 222

endogenous retrovirus insertion (ERV) 181
ENSEMBL database 139, 140, 223
epigenetics 226^227, 231
Epigenomics 232
EpiMatrix 63
epitope
breakers 66^67
conserved 63^64
immunome 59
junctional 65
mapping 7, 63
numbers 4
prediction 63, 147
spacers 66^67
strings 65^66
therapeutic proteins 52
vaccines 64^68

EpiVax 63, 65, 68
erythropoietin (EPO) 52
Escherichia coli 59
ethnicity 46^47, 51
evidence 15
evolution 28^29
experimental method 10, 98^99, 122
extended MHC (xMHC) 226

F

FACTS (Functional Association/Annotation
of cDNA Clones from Text/Sequence
Sources) 184, 189

FANTOM (Functional Annotation of
Mouse) 26^27, 178

FASTA 10
FDA 19^20, 53
FIMM database 6, 105
¢sh MHC 228
£our allergens 30
food allergens 30
frameshift mutations 148
Framework Hypothesis 228
Free^Wilson concept 105
functional genomics 162, 237, 242^246
funding 140, 141

G

gastrointestinal stromal tumours (GISTs)
246

GenBank 6, 18, 221, 222
gene expression, peptide presentation 157
gene guns 58
gene network modelling 180
gene ontology consortium 9
gene ontology terms 182, 183
gene pro¢ling 178
GeneX 220
genome comparisons, vaccine development

59
genome sequencing 5, 235
genomics 5, 8, 9
GenPept 6
GEpi 184
Gleevac 246
glycine 81, 89
good prediction practices (GPP) 19^20
graft survival prediction 25^26, 38^40
graft versus host disease (GVHD) 27^28
graft versus leukaemia response 27^28

H

HAART 75, 199, 202, 209
Haemophilus in£uenzae 59
haplotypes 47, 226
hard immunoinformatics 1, 13^15, 253
HeLa cells 243
hepatitis B vaccine 59
hepatitis C 63, 210
herpesviruses 235, 236^237
heteroclitic peptides 113
heterogenous nuclear ribonucleoprotein A1

(hnRNP-A1) 228
hidden Markov models 7
high level models 5
highly active anti-retroviral therapy

(HAART) 75, 199, 202, 209
HIV
cytotoxic T lymphocyte (CTL) response

199^205, 207, 208, 209
databases 6, 103, 216, 218^219, 220^221
delaying therapy 211^212
HAART 75, 199, 202, 209
individual variations 63
long-term non-progression 211
mathematical models 193^207
protease inhibitors 194, 198
reverse transcriptase inhibitors 194,

197^198

258 SUBJECT INDEX



structured therapy interruptions (STI)
205, 208^209, 210

T cell dynamics 213^214
vaccine 57^58, 67, 68, 75

HL-A 166
HL-A9 166, 167
HLA-A 167
HLA-A*2402 145^147
HLA-A*6801 151
HLA-A0201^4 168
HLA-A2 47, 168
HLA allele names 168^170
HLA-B 167
(HLA)-B7-2 237

HLA-C 167
HLA-D 167
HLA-DP 168
HLA-DQ 168
HLA-DR 167
DRA 168
HLA-DRB1^4 168

HLA nomenclature 9, 165^170, 220, 221
dumb names 216^217
split names 167
‘W/w’ pre¢x 166^167, 216

HLA peptide repertoire 143^155
HLA Sequence Databank 170
HLA typing 47, 52, 53, 54
homologous protein family (HPF) 235
homologues, host genome 236
host^pathogen interaction 243, 246,

247^248
house dust mite allergen 30
human cytomegalovirus (HCMV) 243, 246,

248
Human Epigenome Consortium 227
human genome 24, 178, 179
Human Genome Project 33
Human Killer-cell Immunoglobulin-like

Receptors (KIR) 171, 173

I

IC50 method 47^48
ICAM1 (Intercellular Adhesion Molecule 1)

237
idiotypic network theory 8
Ig 180
IMGT 6, 126^136
Application Programming Interface

(API) 139

citing 134
curation 137, 139^140
databases 127^128
funding 140, 141
interactive tools 131^132
interoperability 133^134
ontology 133^134
quality 137^138
queries 136
relational databases 138^139
web resources 128^131

IMGT/HLA Database project 170, 175
immune escape 205
immune response modelling 5, 33^35
immune system

mathematical modelling 8
as a metaphor 251

immunity decision processes 5
immunogenicity 29
immunogenomics 223^230
immunoglobulins

combinatorial arrangement 4
ontologies/nomenclatures 9

immunoinformatics 4, 5^9
con¢dence levels 19^20
emerging applications 8
hard 1, 13^15, 253
liquid 253
practical applications 5
role 4
semi-soft 1, 13, 98, 253
soft 1^2, 13^14, 98, 253
unifying concepts 9^11
vaccine development 62^63

immunology 4
immunome 58^61
immunomics 9, 178^179
Immuno-Polymorphism Database (IPD)

171
immunoscope 34
independent binding of side chains (IBS)

hypothesis 47, 105
in£uenza infection 213
information retrieval 183
information technology 3
‘innate’ antiviral responses 235
insect venom allergens 29
inter-chromosome domain (ICD)

compartment model 228
interfaces 9^10
interferon response 224, 232^233

SUBJECT INDEX 259



International Histocompatibility Workshops
(IHWs) 165^168

Interpro Project 104
IPD-KIR database 171, 173
IPD-MHC project 171
isothermal titration calorimetry (ITC) 123
IUPAC-IUBMB (International Union of Pure

and Applied Chemistry & International
Union of Biochemistry and Molecular
Biology) 9

J

JenPep database 103^105
junctional epitopes 65
junk/rubbish distinction 222

K

K3 236
K5 236, 237
Kabat database 6
Kaposi’s sarcoma-associated herpesvirus

(KSHV) 236, 237, 246
KEGG (Kyto Encyclopaedia of Genes and

Genomes) 6
KIR (Killer cell Ig-like receptors) 171, 173
KLEISLI query system 184^185

L

laboratory information 99^101
LAMMPS (Large-scale Atomic/Molecular

Massively Parallel Simulator) 109
LANL (Los Alamos National Laboratory)

HIV database 6, 216, 218^219, 220^221
linkage disequilibrium 225
lipid transfer proteins, allergenicity 30
lipopolysaccharide (LPS)
dendritic cell exposure 243
hyposensitivity 181

liquid immunoinformatics 253
listeria, vaccine delivery 58
liver transplantation 25
lung cancer, peptide binding 91^92
lymphomas 246

M

MAGE-ML 19
major histocompatibility complex (MHC)

223^230
alleles 4

chicken 228
extended MHC (xMHC) 226
¢sh 228
genes 224^226
haplotypes 226
MAR recognition signals (MRS) 228
methylation 226^227, 230^232
mouse database 173^174
nomenclature 9
orthologues 227^228
paralogues 227
peptide binding 6^8, 13, 14, 16, 19, 47^48,

77^90, 159^162
polymorphism 46^47, 50
tetramer 55^56
tumour cell expression 162
variation 226

MALDI-MS 232
MAR (Matrix attachment region) recognition

signals (MRS) 228
mass spectrometry
HLA ligand characterization 145
MALDI-MS 232
methylation variable positions 227, 232

mathematical modelling 2, 8
HIV/immune system interaction 193^207

matrix-assisted laser desorption ionization
mass spectrometry (MALDI-MS) 232

matrix attachment regions (MARs) 228, 232
matrix-based T cell epitope mapping 63
Medical Subject Headings (MeSH) 182, 190
MEDLINE 182, 183
MedMiner 183
memory cells 8, 214
mercaptopurine toxicity 44^45
metaphor 251
methylation 226^227, 230^232
MGED (Microarray Gene Expression Data)

Society 251
MHC seemajor histocompatibility complex
MHC Haplotype Project 226
MHCPEP 113
MHCPred 106
MIAME 18, 219^220, 251
microarrays 5
immunome de¢nition 61^62
methylation variable positions 227
quality control 18, 19

‘middleware’ 18
MK3 236
modi¢ed peptides 147^148

260 SUBJECT INDEX



modular approach 35
molecular modelling 7
motifs
allergenicity 30
peptide binding 7
peptides 147
protein 181^182

mouse
genome 178, 179
MHC database 173^174

murine herpesvirus 68 (MNV68) 236
Mycobacterium bovis 60
Mycobacterium tuberculosis vaccine 58, 60
Mycoplasma genitalium 59

N

‘naked DNA’, vaccine delivery 58
nanospray technology 145
natural language processing 183, 189, 190
naturally processed peptides (NPPs) 88
network models 248^249
neural networks see arti¢cial neural networks
NFkB 27
noise 15
nomenclature 9, 190 see alsoHLA

nomenclature
non-binding peptides 17, 21
nuclear factor NFkB 27
nucleotide sequence databases 5^6

O

oligo arrays 178
ontologies 182^183
IMGT 133^134
immunoglobulins 9

open reading frames (ORFs) 235
ORF 12 236

orthologues 227^228

P

P-loop, allergens 30
pancreas transplantation 25
paralogues 227
parsing 190
patient attributes 43
patient-speci¢c vaccines 45^47, 50^52,

155^156
pattern recognition 251
PDB (Protein Data Bank) 6

peptides
binding database (JenPep) 103^105
conserved 50^51
eluted 88, 93^94
heteroclitic 113
MHC binding 6^8, 13, 14, 16, 19, 47^48,

77^90, 159^162
modi¢ed 147^148
naturally processed (NPPs) 88
non-binding 17, 21
pools 144
presentation, gene expression and 157
super-binding peptides 113
vaccine 45^47

personalized medicine 43^50
costs 53^54
de¢nition 44
vaccines 45^47, 50^52, 155^156

pharmacogenetics 44^45
PHD/LAP motif 236^237
phosphorylated HLA ligands 147
PIES (Protein Interaction Extraction

System) 183
PIR (Protein Information Resource) 6
point mutations 148
pollen allergens 30
polymorphism 46^47, 50
polynomial method, MHC peptide binding

47
Position Sequence Scoring Matrix (PSSM)

236
poxviruses, vaccine delivery 58
predictions

accuracy 10
assay quality 19
good prediction practices 19^20
personalized medicine 44
statistical standards 21
testing 1, 16

PRINTS database 104
proline 81, 84, 89
PROSITE database 6
Prosite Scan 62
prostaglandin 243, 246
protease inhibitors 194, 198
proteasomal cleavage 78, 80^85, 89, 91^96
protein

allergens 5, 29, 30
disordered 95
motifs and domains 181^182

proteomics 5, 8, 9

SUBJECT INDEX 261



pseudogenes 168
psoriasis 231
PubGene 183
publication 20, 218^219

Q

quality control
assays 16^17, 19
data 10, 13, 15, 20^21, 218^219
databases 15, 16, 138^139
microarrays 18, 19
over stringent 20
publication 20, 218^219

quantitative matrices 7
quantitative structure^activity relationships

(QSAR) 7, 105^108, 118, 123

R

RealityGrid Project 109
renal transplantation 25, 26
repeat elements 180^181
reverse transcriptase inhibitors 194, 197^198
rheumatoid arthritis 27
rice allergen 30
RNA interference 235
RU2AS 180
rubbish/junk distinction 222

S

Salmonella, vaccine delivery 58
semi-predictive tests 44
semi-soft immunoinformatics 1, 13, 98, 253
sequence analysis 4, 5
allergens 29^30

sequence^structure relationships 78
SignalP 62
SINEs (Short interspersed nucleotide

elements) 181
single nucleotide polymorphisms (SNPs)

44^45, 226
SIV 203, 205
Sjogren’s syndrome 27
skin biopsies 231
skin care products 30
SLA (Swine leucocyte antigens) 174
smallpox vaccine 59
SNOMED (Systematized Nomenclature of

Medicine) 101^102
soft immunoinformatics 1^2, 13^14, 98, 253

spacers 66^67
Splits concept 167
SRS interface 9, 18
standardization 9^10
statistical models 99
statistical standards 21
statistical support 5
stem-cell transplantation 28
stinging insect venom allergens 29
structural motif analysis 30
structure modelling 4
structured therapy interruptions (STI) 205,

208^209, 210
SUISEKI tool 183
super-binding peptides 113
super-database 104
suppressor T cells 20
surgeons, transplant outcome 38^39
SWISS-PROT 6, 18, 139, 181
SYFPEITHI 6, 88, 94, 104, 113, 143, 221
systemic lupus erythematosus (SLE) 27, 180

T

T cell epitopes 6^8, 120
binding, computational vaccinology

102^120
mapping 7, 63
screening 5

T cell memory, mathematical modelling 8
T cell receptor (TCR) 28
binding prediction 120^122
cross-talk, mathematical modelling 8
diversity 4
peptide recognition 55^56, 164

T cell response, mathematical modelling 8
T helper cells, mathematical modelling 8
TAP-binding 40^42
HLA binding and 28^29
N-terminal position preference 81, 89, 94
speci¢city 94^95
validations 34

TB/HIV Research Lab 63, 65
Tcr 180
tetramers
acute infection detection 251
MHC 55^56
T cell dynamics 213^214
vaccines 72^73

text^data interrelation 183^184
text information retrieval 183

262 SUBJECT INDEX



TGFb1 183
Th1/2, mathematical modelling 8
‘theoretical immunology’ 1, 2
theoretical modelling 4^5
thiopurine S-methyltransferase 44
third world 53^54
three-dimensional structure 6, 7
thrombopoietin (TPO) 52^53
tissue plasminogen activator (tPA) 67
TMpred 62
tolerance decision processes 5
TOLL-like receptor 4 cDNA 181
Toll-like receptors 235
transcriptional diversity 179, 180^181
transcriptome 178
transcriptomics 242
transplantation, outcome prediction 25^26,

38^40
transporter associated with antigen

processing see TAP-binding
TrEMBL (translations of EMBL) 6
trimming peptidase 35, 36
tropism 243
tuberculosis vaccine 57^58, 59, 60^61
tumour antigens 149, 151, 157^158
tumour cells
MHC molecule expression 162
peptide presentation 151

tumour necrosis factor (TNF) 8
tumour-speci¢c vaccines 155^156

U

UCSC genome browser 223

V

Vaccine-CAD 68
vaccines 57^72
anti-cancer 56, 68, 113
antigens 59^61

computational vaccinology 102^120
delivery 58
design 29, 61^64
epitope-driven 64^68
genome comparisons 59
hepatitis B 59
HIV 57^58, 67, 68, 75
immunogenicity in transgenic mice 67^68
personalized 45^47, 50^52, 155^156
QSAR (Quantitative Structure Activity

Relationship) 7
screening 5, 7
smallpox 59
tetramers 72^73
tuberculosis 57^58, 59, 60^61
tumour-speci¢c 155^156
variable pathogens 63^64

vaccinia 58, 59, 61
VIDA (Virus Database) 235
Virtual Human Project 37
viruses

bioinformatics 234^247
di⁄cult-to-treat 243, 246
dynamics 194^196
tropism 243
vaccine delivery 58

vitamin D analogues 246
vocabulary control 9, 237

W

‘W/w’ pre¢x 166^167, 216
West Nile virus 72^73
WHO Leucocyte Nomenclature Committee

166^167
‘wrappers’ 18

X

xMHC 226
XplorMed 183

SUBJECT INDEX 263


