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Preface

The probabilistic method is one of the most powerful and widely used tools applied
in combinatorics. One of the major reasons for its rapid development is the important
role of randomness in theoretical computer science and in statistical physics.

The interplay between discrete mathematics and computer science suggests an
algorithmic point of view in the study of the probabilistic method in combinatorics,
and this is the approach we tried to adopt in this book. The book thus includes a
discussion of algorithmic techniques together with a study of the classical method as
well as the modern tools applied in it. The first part of the book contains a description
of the tools applied in probabilistic arguments, including the basic techniques that
use expectation and variance, as well as the more recent applications of martingales
and correlation inequalities. The second part includes a study of various topics in
which probabilistic techniques have been successful. This part contains chapters on
discrepancy and random graphs, as well as on several areas in theoretical computer
science: Circuit Complexity, Computational Geometry, Graph Property Testing and,
Derandomization of randomized algorithms. Scattered between the chapters are gems
described under the heading “The Probabilistic Lens.” These are elegant proofs that
are not necessarily related to the chapters after which they appear and can usually be
read separately.

The basic probabilistic method can be described as follows: In order to prove the
existence of a combinatorial structure with certain properties, we construct an appro-
priate probability space and show that a randomly chosen element in this space has the
desired properties with positive probability. This method was initiated by Paul Erdős,
who contributed so much to its development over a 50-year period that it seems appro-
priate to call it “The Erdős Method.” His contribution can be measured not only by
his numerous deep results in the subject but also by the many intriguing problems
and conjectures posed by him that stimulated a big portion of the research in the area.

It seems impossible to write an encyclopedic book on the probabilistic method; too
many recent interesting results apply probabilistic arguments, and we do not even try
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to mention all of them. Our emphasis is on methodology, and we thus try to describe
the ideas, and not always to give the best possible results if these are too technical
to allow a clear presentation. Many of the results are asymptotic, and we use the
standard asymptotic notation: for two functions f and g, we write f = O(g) if f ≤ cg
for all sufficiently large values of the variables of the two functions, where c is an
absolute positive constant. We write f = Ω(g) if g = O(f ) and f = Θ(g) if f = O(g)
and f = Ω(g). If the limit of the ratio f∕g tends to zero as the variables of the functions
tend to infinity we write f = o(g). Finally, f ∼ g denotes that f = (1 + o(1))g; that is,
f∕g tends to 1 when the variables tend to infinity. Each chapter ends with a list of
exercises. The more difficult ones are marked by (∗). The exercises enable readers to
check their understanding of the material and also provide the possibility of using the
book as a textbook.

This is the fourth edition of the book; it contains several improved results and
covers various additional topics that developed extensively during the last few years.
A breakthrough approach to the Local Lemma is described in Chapter 5. A new
algorithmic approach to the “six standard deviations” result in discrepancy theory
is presented in Chapter 12. A novel proof for the study of Property B, based on a
random greedy coloring, appears in Chapter 3. In all the above cases, the algorith-
mic proofs provide essentially new arguments for the existence of the desired objects.
A new, short section on graph limits has been added to Chapter 9. A technique for
counting independent sets in graphs and its application in a graph coloring problem
is described in Chapter 1. Further additions include a new Probabilistic Lens, several
additional exercises, and a new appendix with hints to selected exercises.

As in the previous editions, it is a special pleasure to thank our wives, Nurit and
Mary Ann. Their patience, understanding, and encouragement have been key ingre-
dients in the success of this enterprise.

Noga Alon
Joel H. Spencer

Tel Aviv and New York, 2015
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PART I

METHODS





1
The Basic Method

What you need is that your brain is open.
–Paul Erdős

1.1 THE PROBABILISTIC METHOD

The probabilistic method is a powerful tool for tackling many problems in discrete
mathematics. Roughly speaking, the method works as follows: trying to prove that
a structure with certain desired properties exists, one defines an appropriate prob-
ability space of structures and then shows that the desired properties hold in these
structures with positive probability. The method is best illustrated by examples. Here
is a simple one. The Ramsey number R(k,𝓁) is the smallest integer n such that in
any two-coloring of the edges of a complete graph on n vertices Kn by red and blue,
either there is a red Kk (i.e., a complete subgraph on k vertices all of whose edges are
colored red) or there is a blue K𝓁 . Ramsey (1929) showed that R(k,𝓁) is finite for any
two integers k and 𝓁. Let us obtain a lower bound for the diagonal Ramsey numbers
R(k, k).

Proposition 1.1.1 If
(

n
k

)
⋅ 2

1−
(

k
2

)
< 1, then R(k, k) > n. Thus R(k, k) > ⌊2k∕2⌋ for

all k ≥ 3.

Proof. Consider a random two-coloring of the edges of Kn obtained by coloring each
edge independently either red or blue, where each color is equally likely. For any

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



4 THE BASIC METHOD

fixed set R of k vertices, let AR be the event that the induced subgraph of Kn on R
is monochromatic (i.e., that either all its edges are red or they are all blue). Clearly,

Pr [AR] = 2
1−
(

k
2

)
. Since there are

(
n
k

)
possible choices for R, the probability that at

least one of the events AR occurs is at most
(

n
k

)
2

1−
(

k
2

)
< 1. Thus, with positive prob-

ability, no event AR occurs and there is a two-coloring of Kn without a monochromatic
Kk; that is, R(k, k) > n. Note that if k ≥ 3 and we take n = ⌊2k∕2⌋, then

(n
k

)
2

1−
(

k
2

)
<

21+ k
2

k!
⋅

nk

2k2∕2
< 1

and hence R(k, k) > ⌊2k∕2⌋ for all k ≥ 3. ◾

This simple example demonstrates the essence of the probabilistic method.
To prove the existence of a good coloring, we do not present one explicitly, but
rather show, in a nonconstructive way, that it exists. This example appeared in a
paper of P. Erdős from 1947. Although Szele had applied the probabilistic method
to another combinatorial problem, mentioned in Chapter 2, already in 1943, Erdős
was certainly the first to understand the full power of this method and apply it
successfully over the years to numerous problems. One can, of course, claim that the
probability is not essential in the proof given above. An equally simple proof can be
described by counting; we just check that the total number of two-colorings of Kn is
larger than the number of those containing a monochromatic Kk.

Moreover, since the vast majority of the probability spaces considered in the study
of combinatorial problems are finite, this claim applies to most of the applications of
the probabilistic method in discrete mathematics. Theoretically, this is indeed the
case. However, in practice the probability is essential. It would be hopeless to replace
the applications of many of the tools appearing in this book, including, for example,
the second moment method, the Lovász Local Lemma and the concentration via
martingales by counting arguments, even when these are applied to finite probability
spaces.

The probabilistic method has an interesting algorithmic aspect. Consider,
for example, the proof of Proposition 1.1.1, which shows that there is an edge
two-coloring of Kn without a monochromatic K2log2n. Can we actually find such a
coloring? This question, as asked, may sound ridiculous; the total number of possible
colorings is finite, so we can try them all until we find the desired one. However,

such a procedure may require 2

(
n
2

)
steps; an amount of time that is exponential

in the size
[
=
(

n
2

)]
of the problem. Algorithms whose running time is more than

polynomial in the size of the problem are usually considered impractical. The class
of problems that can be solved in polynomial time, usually denoted by P (see, e.g.,
Aho, Hopcroft and Ullman (1974)), is, in a sense, the class of all solvable problems.
In this sense, the exhaustive search approach suggested above for finding a good
coloring of Kn is not acceptable, and this is the reason for our remark that the proof
of Proposition 1.1.1 is nonconstructive; it does not supply a constructive, efficient,
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and deterministic way of producing a coloring with the desired properties. However,
a closer look at the proof shows that, in fact, it can be used to produce, effectively,
a coloring that is very likely to be good. This is because, for large k, if n = ⌊2k∕2⌋,
then (n

k

)
⋅ 2

1−
(

k
2

)
<

21+ k
2

k!

( n
2k∕2

)k
≤

21+ k
2

k!
≪ 1.

Hence, a random coloring of Kn is very likely not to contain a monochromatic K2 log n.
This means that if, for some reason, we must present a two-coloring of the edges of
K1024 without a monochromatic K20, we can simply produce a random two-coloring

by flipping a fair coin
(

1024
2

)
times. We can then deliver the resulting coloring safely;

the probability that it contains a monochromatic K20 is less than 211∕20!, probably
much smaller than our chances of making a mistake in any rigorous proof that a
certain coloring is good! Therefore, in some cases the probabilistic, nonconstructive
method does supply effective probabilistic algorithms. Moreover, these algorithms
can sometimes be converted into deterministic ones. This topic is discussed in some
detail in Chapter 16.

The probabilistic method is a powerful tool in combinatorics and graph theory. It is
also extremely useful in number theory and in combinatorial geometry. More recently,
it has been applied in the development of efficient algorithmic techniques and in the
study of various computational problems. In the rest of this chapter, we present several
simple examples that demonstrate some of the broad spectrum of topics in which
this method is helpful. More complicated examples, involving various more delicate
probabilistic arguments, appear in the rest of the book.

1.2 GRAPH THEORY

A tournament on a set V of n players is an orientation T = (V ,E) of the edges of the
complete graph on the set of vertices V . Thus for every two distinct elements x and
y of V , either (x, y) or (y, x) is in E, but not both. The name “tournament” is natural,
since one can think of the set V as a set of players in which each pair participates in
a single match, where (x, y) is in the tournament iff x beats y. We say that T has the
property Sk if, for every set of k Players, there is one that beats them all. For example,
a directed triangle T3 = (V ,E), where V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)},
has S1. Is it true that for every finite k there is a tournament T (on more than k vertices)
with the property Sk? As shown by Erdős (1963b), this problem, raised by Schütte,
can be solved almost trivially by applying probabilistic arguments. Moreover, these
arguments even supply a rather sharp estimate for the minimum possible number of
vertices in such a tournament. The basic (and natural) idea is that, if n is sufficiently
large as a function of k, then a random tournament on the set V = {1,… , n} of n
players is very likely to have the property Sk. By a random tournament we mean here
a tournament T on V obtained by choosing, for each 1 ≤ i < j ≤ n, independently,
either the edge (i, j) or the edge (j, i), where each of these two choices is equally
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likely. Observe that in this manner, all the 2

(
n
2

)
possible tournaments on V are equally

likely; that is, the probability space considered is symmetric. It is worth noting that
we often use in applications symmetric probability spaces. In these cases, we shall
sometimes refer to an element of the space as a random element, without describing
explicitly the probability distribution . Thus, for example, in the proof of Proposi-
tion 1.1.1 random two-colorings of Kn were considered; that is, all possible colorings
were equally likely. Similarly, in the proof of the next simple result we study random
tournaments on V .

Theorem 1.2.1 If
(

n
k

)
(1 − 2−k)n−k

< 1, then there is a tournament on n vertices that
has the property Sk.

Proof. Consider a random tournament on the set V = {1,… , n}. For every fixed sub-
set K of size k of V , let AK be the event that there is no vertex that beats all the
members of K. Clearly, Pr[AK] = (1 − 2−k)n−k. This is because, for each fixed vertex
𝑣 ∈ V − K, the probability that 𝑣 does not beat all the members of K is 1 − 2−k, and all
these n − k events corresponding to the various possible choices of 𝑣 are independent.
It follows that

Pr
⎡⎢⎢⎣ ∨

K⊂V|K|=k

AK

⎤⎥⎥⎦ ≤
∑
K⊂V|K|=k

Pr[AK] =
(n

k

)
(1 − 2−k)n−k

< 1.

Therefore, with positive probability, no event AK occurs; that is, there is a tournament
on n vertices that has the property Sk. ◾

Let f (k) denote the minimum possible number of vertices of a tournament that

has the property Sk. Since
(

n
k

)
<

(
en
k

)k
and (1 − 2−k)n−k

< e−(n−k)∕2k
, Theorem

1.2.1 implies that f (k) ≤ k2 ⋅ 2k ⋅ (ln 2)(1 + o(1)). It is not too difficult to check that
f (1) = 3 and f (2) = 7. As proved by Szekeres (cf. Moon (1968)), f (k) ≥ c1 ⋅ k ⋅ 2k.

Can one find an explicit construction of tournaments with at most ck
2 vertices

having property Sk? Such a construction is known but is not trivial; it is described
in Chapter 9.

A dominating set of an undirected graph G = (V ,E) is a set U ⊆ V such that every
vertex 𝑣 ∈ V − U has at least one neighbor in U.

Theorem 1.2.2 Let G = (V ,E) be a graph on n vertices, with minimum degree 𝛿 > 1.

Then G has a dominating set of at most n
1 + ln (𝛿 + 1)

𝛿 + 1
vertices.

Proof. Let p ∈ [0, 1] be, for the moment, arbitrary. Let us pick, randomly and inde-
pendently, each vertex of V with probability p. Let X be the (random) set of all vertices
picked and let Y = YX be the random set of all vertices in V − X that do not have any
neighbor in X. The expected value of |X| is clearly np. For each fixed vertex 𝑣 ∈ V ,
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Pr[𝑣 ∈ Y] = Pr[𝑣 and its neighbors are not in X] ≤ (1 − p)𝛿+1. Since the expected
value of a sum of random variables is the sum of their expectations (even if they
are not independent) and since the random variable |Y| can be written as a sum of n
indicator random variables 𝜒

𝑣
(𝑣 ∈ V), where 𝜒

𝑣
= 1 if 𝑣 ∈ Y and 𝜒

𝑣
= 0 otherwise,

we conclude that the expected value of |X| + |Y| is at most np + n(1 − p)𝛿+1. Conse-
quently, there is at least one choice of X ⊆ V such that |X| + |YX| ≤ np + n(1 − p)𝛿+1.
The set U = X ∪ YX is clearly a dominating set of G whose cardinality is at most
this size.

The above argument works for any p ∈ [0, 1]. To optimize the result we use
elementary calculus. For convenience, we bound 1 − p ≤ e−p (this holds for all
nonnegative p and is a fairly close bound when p is small) to give the simpler bound

|U| ≤ np + ne−p(𝛿+1) .

Take the derivative of the right-hand side with respect to p and set it equal to zero.
The right-hand side is minimized at

p = ln (𝛿 + 1)
𝛿 + 1

.

Formally, we set p equal to this value in the first line of the proof. We now have

|U| ≤ n
1 + ln (𝛿 + 1)

𝛿 + 1
, as claimed. ◾

Three simple but important ideas are incorporated in the last proof. The first is
the linearity of expectation; many applications of this simple, yet powerful principle
appear in Chapter 2. The second is perhaps more subtle and is an example of the
“alteration” principle that is discussed in Chapter 3. The random choice did not supply
the required dominating set U immediately; it only supplied the set X, which has to
be altered a little (by adding to it the set YX) to provide the required dominating set.
The third involves the optimal choice of p. One often wants to make a random choice
but is not certain what probability p should be used. The idea is to carry out the proof
with p as a parameter giving a result that is a function of p. At the end, that p is
selected which gives the optimal result. Here, there is yet a fourth idea that might be
called asymptotic calculus. We want the asymptotics of min np + n(1 − p)𝛿+1, where
p ranges over [0, 1]. The actual minimum p = 1 − (𝛿 + 1)−1∕𝛿 is difficult to deal with,
and in many similar cases precise minima are impossible to find in a closed form.
Rather, we give away a little bit, bounding 1 − p ≤ e−p, yielding a clean bound. A
good part of the art of the probabilistic method lies in finding suboptimal but clean
bounds. Did we give away too much in this case? The answer depends on the emphasis
for the original question. For 𝛿 = 3, our rough bound gives |U| ≤ 0.596n, while the
more precise calculation gives |U| ≤ 0.496n, perhaps a substantial difference. For 𝛿
large, both methods give asymptotically n ln 𝛿∕𝛿.

It can easily be deduced from the results in Alon (1990b) that the bound in
Theorem 1.2.2 is nearly optimal. A non-probabilistic, algorithmic proof of this
theorem can be obtained by choosing the vertices for the dominating set one by
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one, when in each step a vertex that covers the maximum number of yet-uncovered
vertices is picked. Indeed, for each vertex 𝑣, denote by C(𝑣) the set consisting of 𝑣
together with all its neighbors. Suppose that during the process of picking vertices
the number of vertices u that do not lie in the union of the sets C(𝑣) of the vertices
chosen so far is r. By the assumption, the sum of the cardinalities of the sets C(u)
over all such uncovered vertices u is at least r(𝛿 + 1), and, hence by averaging, there
is a vertex 𝑣 that belongs to at least r(𝛿 + 1)∕n such sets C(u). Adding this 𝑣 to the
set of chosen vertices, we observe that the number of uncovered vertices is now at
most r(1 − (𝛿 + 1)∕n). It follows that in each iteration of the above procedure the
number of uncovered vertices decreases by a factor of 1 − (𝛿 + 1)∕n and, hence after
n ln (𝛿 + 1)∕(𝛿 + 1) steps, there will be at most n∕(𝛿 + 1) yet uncovered vertices that
can now be added to the set of chosen vertices to form a dominating set of size at
most equal to the one in the conclusion of Theorem 1.2.2.

Combining this with some ideas of Podderyugin and Matula, we can obtain a very
efficient algorithm to decide whether a given undirected graph on n vertices is, say,
n∕3 edge-connected. A cut in a graph G = (V ,E) is a partition of the set of vertices
V into two nonempty disjoint sets V = V1 ∪ V2. If 𝑣1 ∈ V1 and 𝑣2 ∈ V2, we say that
the cut separates 𝑣1 and 𝑣2. The size of the cut is the number of edges of G having
one end in V1 and the other end in V2. In fact, we sometimes identify the cut with the
set of these edges. The edge connectivity of G is the minimum size of a cut of G. The
following lemma is due to Podderyugin and Matula (independently).

Lemma 1.2.3 Let G = (V ,E) be a graph with minimum degree 𝛿, and let V = V1 ∪
V2 be a cut of size smaller than 𝛿 in G. Then every dominating set U of G has vertices
in V1 and in V2.

Proof. Suppose this is false and U ⊆ V1. Choose, arbitrarily, a vertex 𝑣 ∈ V2, and
let 𝑣1, 𝑣2,… , 𝑣

𝛿
be 𝛿 of its neighbors. For each i, 1 ≤ i ≤ 𝛿, define an edge ei of the

given cut as follows: if 𝑣i ∈ V1, then ei = {𝑣, 𝑣i}, otherwise 𝑣i ∈ V2, and since U
is dominating, there is at least one vertex u ∈ U such that {u, 𝑣i} is an edge; take
such a u and put ei = {u, 𝑣i}. The 𝛿 edges e1,… , e

𝛿
are all distinct and all lie in the

given cut, contradicting the assumption that its size is less than 𝛿. This completes
the proof. ◾

Let G = (V ,E) be a graph on n vertices, and suppose we wish to decide whether
G is n∕3 edge-connected; that is, whether its edge connectivity is at least n∕3. Mat-
ula showed, by applying Lemma 1.2.3, that this can be done in time O(n3). By the
remark following the proof of Theorem 1.2.2, we can slightly improve it and get an
O(n8∕3 log n) algorithm as follows. We first check if the minimum degree 𝛿 of G is at
least n∕3. If not, G is not n∕3 edge-connected, and the algorithm ends. Otherwise, by
Theorem 1.2.2, there is a dominating set U = {u1,… , uk} of G, where k = O(log n),
and it can in fact be found in time O(n2). We now find, for each i, 2 ≤ i ≤ k, the min-
imum size si of a cut that separates u1 from ui. Each of these problems can be solved
by solving a standard network flow problem in time O(n8∕3) (see, e.g., Tarjan (1983)).
By Lemma 1.2.3, the edge connectivity of G is simply the minimum between 𝛿 and
min2≤i≤k si. The total time of the algorithm is O(n8∕3 log n), as claimed.
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1.3 COMBINATORICS

A hypergraph is a pair H = (V ,E), where V is a finite set whose elements are called
vertices, and E is a family of subsets of V , called edges. It is n-uniform if each of
its edges contains precisely n vertices. We say that H has property B, or that it is
two-colorable, if there is a two-coloring of V such that no edge is monochromatic.
Let m(n) denote the minimum possible number of edges of an n-uniform hypergraph
that does not have property B.

Proposition 1.3.1 [Erdős (1963a)] Every n-uniform hypergraph with less than
2n−1 edges has property B. Therefore m(n) ≥ 2n−1.

Proof. Let H = (V ,E) be an n-uniform hypergraph with less than 2n−1 edges. Color
V randomly by two colors. For each edge e ∈ E, let Ae be the event such that e is
monochromatic. Clearly, Pr[Ae] = 21−n. Therefore,

Pr

[
∨

e∈E
Ae

]
≤

∑
e∈E

Pr[Ae] < 1

and there is a two-coloring without monochromatic edges. ◾

In Section 3.6 we present a more delicate argument, due to Cherkashin and Kozik
(2015), which shows that

m(n) ≥ Ω
(( n

ln n

)1∕2
2n

)
.

The best known upper bound to m(n) is found by turning the probabilistic argument
“on its head.” Basically, the sets become random and each coloring defines an event.
Fix V with 𝑣 points, where we shall later optimize 𝑣. Let 𝜒 be a coloring of V with a
points in one color, b = 𝑣 − a points in the other. Let S ⊂ V be a uniformly selected
n-set. Then

Pr[S is monochromatic under 𝜒] =

(
a
n

)
+
(

b
n

)
(
𝑣

n

) .

Let us assume 𝑣 is even for convenience. As
(

y
n

)
is convex, this expression is mini-

mized when a = b. Thus

Pr[S is monochromatic under𝜒] ≥ p,

where we set

p =
2
(
𝑣∕2

n

)
(
𝑣

n

)
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for notational convenience. Now let S1,… , Sm be uniformly and independently
chosen n-sets, with m to be determined. For each coloring 𝜒 , let A

𝜒
be the event in

which none of the Si is monochromatic. By the independence of the Si

Pr[A
𝜒
] ≤ (1 − p)m.

There are 2𝑣 colorings, so

Pr

[
∨
𝜒

A
𝜒

]
≤ 2𝑣(1 − p)m .

When this quantity is less than 1, there exist S1,… , Sm so that no A
𝜒

holds; that is,
S1,… , Sm is not two-colorable and hence m(n) ≤ m.

The asymptotics provide a fairly typical example of those encountered when
employing the probabilistic method. We first use the inequality 1 − p ≤ e−p. This is
valid for all positive p, and the terms are quite close when p is small. When

m =
⌈
𝑣 ln 2

p

⌉
,

then 2𝑣(1 − p)m < 2𝑣e−pm ≤ 1 so m(n) ≤ m. Now we need to find 𝑣 to minimize 𝑣∕p.
We may interpret p as twice the probability of picking n white balls from an urn with
𝑣∕2 white and 𝑣∕2 black balls, sampling without replacement. It is tempting to esti-
mate p by 2−n+1, the probability for sampling with replacement. This approximation
would yield m ∼ 𝑣2n−1(ln 2). As 𝑣 gets smaller, however, the approximation becomes
less accurate and, as we wish to minimize m, the tradeoff becomes essential. We use
a second-order approximation

p =
2
(
𝑣∕2
n

)
(
𝑣

n

) = 21−n
n−1∏
i=0

𝑣 − 2i
𝑣 − i

∼ 21−ne−n2∕2𝑣

as long as 𝑣 ≫ n3∕2, estimating

𝑣 − 2i
𝑣 − i

= 1 − i
𝑣

+ O

(
i2

𝑣
2

)
= e−i∕𝑣+O(i2∕𝑣2).

Elementary calculus gives 𝑣 = n2∕2 for the optimal value. The evenness of 𝑣 may
require a change of at most 2, which turns out to be asymptotically negligible. This
yields the following result of Erdős (1964):

Theorem 1.3.2 m(n) < (1 + o(1))e ln 2
4

n22n.

Let  = {(Ai,Bi)}h
i=1 be a family of pairs of subsets of an arbitrary set. We call a

(k,𝓁)-system if |Ai| = k and |Bi| = 𝓁 for all 1 ≤ i ≤ h, Ai ∩ Bi = ∅ and Ai ∩ Bj ≠ ∅ for
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all distinct i, j, with 1 ≤ i, j ≤ h. Bollobás (1965) proved the following result, which
has many interesting extensions and applications:

Theorem 1.3.3 If  = {(Ai,Bi)}h
i=1 is a (k,𝓁)-system then h ≤

(
k+𝓁

k

)
.

Proof. Put X =
⋃h

i=1(Ai ∪ Bi) and consider a random order𝜋 of X. For each i, 1 ≤ i ≤
h, let Xi be the event that all the elements of Ai precede all those of Bi in this order.

Clearly, Pr[Xi] = 1∕
(

k+𝓁
k

)
. It is also easy to check that the events Xi are pairwise

disjoint. Indeed, assume this is false, and let 𝜋 be an order in which all the elements
of Ai precede those of Bi and all the elements of Aj precede those of Bj. Without loss
of generality, we may assume that the last element of Ai does not appear after the last
element of Aj. But in this case, all elements of Ai precede all those of Bj, contradicting
the fact that Ai ∩ Bj ≠ ∅. Therefore, all the events Xi are pairwise disjoint, as claimed.
It follows that

1 ≥ Pr

[
h
∨

i=1
Xi

]
=

h∑
i=1

Pr[Xi] = h
/(k + 𝓁

k

)
,

completing the proof. ◾

Theorem 1.3.3 is sharp, as shown by the family  = {(A,X ⧵ A) ∶ A ⊂ X, |A| =
k}, where X = {1, 2,… , k + 𝓁}.

1.4 COMBINATORIAL NUMBER THEORY

A subset A of an abelian group G is called sum-free if (A + A) ∩ A = ∅, that is, if there
are no a1, a2, a3 ∈ A such that a1 + a2 = a3.

Theorem 1.4.1 [Erdős (1965a)] Every set B = {b1,… , bn} of n nonzero integers
contains a sum-free subset A of size |A| > 1

3
n.

Proof. Let p = 3k + 2 be a prime that satisfies p > 2max1≤i≤n|bi|, and put C = {k +
1, k + 2,… , 2k + 1}. Observe that C is a sum-free subset of the cyclic group Zp and
that |C|

p − 1
= k + 1

3k + 1
>

1
3

.

Let us choose at random an integer x, 1 ≤ x < p, according to a uniform distribu-
tion on {1, 2,… , p− 1}, and define d1,… , dn by di ≡ xbi(mod p), 0 ≤ di < p. Triv-
ially, for every fixed i, 1 ≤ i ≤ n, as x ranges over all numbers 1, 2,… , p − 1, di ranges
over all nonzero elements of Zp, and hence Pr[di ∈ C] = |C|∕(p − 1) > 1

3
. Therefore,

the expected number of elements bi such that di ∈ C is more than n∕3. Consequently,
there is an x, 1 ≤ x < p, and a subsequence A of B of cardinality |A| > n∕3, such that
xa(mod p) ∈ C for all a ∈ A. This A is clearly sum-free, since, if a1 + a2 = a3 for
some a1, a2, a3 ∈ A, then xa1 + xa2 ≡ xa3(mod p), contradicting the fact that C is a
sum-free subset of Zp. This completes the proof. ◾
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Remark. The above proof works whenever p is a prime that does not divide any of
the numbers bi. This can be used to design an efficient deterministic algorithm for
finding a sum-free subset A of size bigger than |B|∕3 in a given set B as above. In
Alon and Kleitman (1990), it is shown that every set of n nonzero elements of an
arbitrary abelian group contains a sum-free subset of more than 2n∕7 elements, and
that the constant 2∕7 is the best possible. For quite some time it was not clear whether
or not the constant 1∕3 in Theorem 1.4.1 can be replaced by a larger constant, until
Eberhard, Green and Manners (2013) proved that the constant 1∕3 is tight. The prob-
lem of deciding whether or not every set of n nonzero integers contains a sum-free
subset of cardinality at least n∕3 +𝑤(n), where 𝑤(n) tends to infinity with n, remains
open. It will be very surprising if there is no such 𝑤(n).

1.5 DISJOINT PAIRS

The probabilistic method is most striking when it is applied to prove theorems
whose statement does not seem to suggest at all the need for probability. Most of the
examples given in the previous sections are simple instances of such statements. In
this section we describe a (slightly) more complicated result, due to Alon and Frankl
(1985), which solves a conjecture of Daykin and Erdős.

Let  be a family of m distinct subsets of X = {1, 2,… , n}. Let d( ) denote the
number of disjoint pairs in  , that is

d( ) = |{{F,F′} ∶ F,F′ ∈  , F ∩ F′ = ∅}|.
Daykin and [Erdős] conjectured that, if m = 2(1∕2+𝛿)n, then for every fixed 𝛿 > 0,
d( ) = o(m2), as n tends to infinity. This result follows from the following theorem,
which is a special case of a more general result:

Theorem 1.5.1 Let  be a family of m = 2(1∕2+𝛿)n subsets of X = {1, 2,… , n}, where
𝛿 > 0. Then

d( ) < m2−𝛿2∕2 . (1.1)

Proof. Suppose (1.1) is false; pick independently t members A1,A2,… ,At of  with
repetitions at random, where t is a large positive integer, to be chosen later. We will
show that with positive probability |A1 ∪ A2 ∪ · · · ∪ At| > n∕2 and still this union is
disjoint to more than 2n∕2 distinct subsets of X. This contradiction will establish (1.1).

In fact,

Pr[|A1 ∪ A2 ∪ · · · ∪ At| ≤ n∕2]

≤

∑
S⊂X,|S|=n∕2

Pr[Ai ⊂ S, i = 1,… , t]

≤ 2n(2n∕2∕2(1∕2+𝛿)n)t = 2n(1−𝛿t)
. (1.2)
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Define
𝑣(B) = |{A ∈  ∶ B ∩ A = ∅}|.

Clearly, ∑
B∈

𝑣(B) = 2d( ) ≥ 2m2−𝛿2∕2.

Let Y be a random variable whose value is the number of members B ∈  that are
disjoint to all the Ai (1 ≤ i ≤ t). By the convexity of zt, the expected value of Y satisfies

E[Y] =
∑
B∈

(
𝑣(B)

m

)t

= 1
mt

⋅ m

(∑
𝑣(B)t

m

)

≥
1
mt

⋅ m

(
2d( )

m

)t

≥ 2m1−t𝛿2∕2
.

Since Y ≤ m, we conclude that

Pr[Y ≥ m1−t𝛿2∕2] ≥ m−t𝛿2∕2. (1.3)

One can check that, for t = ⌈1 + 1∕𝛿⌉, m1−t𝛿2∕2
> 2n∕2 and the right-hand side of (1.3)

is greater than the right-hand side of (1.2). Thus, with positive probability, |A1 ∪ A2 ∪
· · · ∪ At| > n∕2 and still this union is disjoint to more than 2n∕2 members of F. This
contradiction implies inequality (1.1). ◾

1.6 INDEPENDENT SETS AND LIST COLORING

Containers

A recent powerful method has been developed independently by Saxton and
Thomason (2012) and by Balogh, Morris and Samotij (2014). This method sup-
plies a structural characterization of the independent sets in uniform hypergraphs
satisfying certain natural conditions, by showing that in such hypergraphs every
independent set is almost fully contained in one of a small number of sparse
sets (called containers). This general result leads to many interesting consequences
including sparse random analogs of several classical results like Szemerédi’s theorem
and Turán’s theorem. The method is elementary but somewhat technical; here we
only present the basic approach dealing with independent sets in regular graphs,
and describe one interesting application to a seemingly unrelated graph coloring
problem. Many additional applications can be found in Saxton and Thomason (2012)
and in Balogh et al. (2014).

The basic approach for regular graphs has been discovered earlier by several
researchers, most notably by Sapozhenko (2001). We proceed with the statement
and its short proof.
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Theorem 1.6.1 Let G = (V ,E) be a d-regular graph on n vertices, and let 𝜖 > 0 be
a positive real. Then there is a collection  of subsets of V, so that

|| ≤ ∑
i≤n∕(𝜖d)

(n
i

)

each C ∈  is of size at most n
𝜖d

+ n
2−𝜖 , and every independent set in G is fully con-

tained in a member C ∈ . Moreover, for each C ∈ , the degree of each vertex 𝑣 ∈ C
in the induced subgraph of G on C is at most 𝜖d.

Proof. Let S be an independent set in G. Define a set C containing S as follows:
Starting with T = ∅, as long as there is a vertex 𝑣 ∈ S so that |N(𝑣) − N(T)| ≥ 𝜖d,
add it to T. Here, N(𝑣) is the set of all neighbors of 𝑣, and N(T) is the set of all
neighbors of vertices in T. Note that T may depend on the order in which the vertices
of S are inspected, but for our purpose here any order will do. This process clearly
ends with a subset T ⊂ S, where |T| ≤ n

𝜖d
as each addition of a vertex to T increases|N(T)| by at least 𝜖d. Moreover, each vertex 𝑣 ∈ S − T has at least (1 − 𝜖)d neighbors

in N(T). Let B(T) denote the set of all vertices 𝑣 ∈ V − (T ∪ N(T)) that have at least
(1 − 𝜖)d neighbors in N(T). Note that, crucially, B(T) is determined by T. Define
C = T ∪ B(T). By the discussion above S ⊂ C, every vertex of T has no neighbors in
C, and every vertex in C − T has at most 𝜖d neighbors in C. Since C − T = B(T) is
contained in V − N(T), its size is at most n − |N(T)|, and as each of its vertices has
at least (1 − 𝜖)d neighbors in N(T), it follows that |B(T)| ≤ |N(T)d|

(1−𝜖)d = |N(T)|
1−𝜖 . Taking a

convex combination of the above two bounds, we conclude that

|B(T)| ≤ 1
2 − 𝜖

(n − |N(T)|) + 1 − 𝜖

2 − 𝜖

|N(T)|
1 − 𝜖

= n
2 − 𝜖

.

The set of containers  can thus be defined as the collection of all sets T ∪ B(T),
where T is an independent set of size at most n

𝜖d
in G. ◾

List Coloring

The list chromatic number (or choice number) 𝜒𝓁(G) of a graph G = (V ,E) is the
minimum integer k such that, for every assignment of a list of k colors to each vertex
𝑣 of G, there is a proper vertex coloring of G in which the color of each vertex is in its
list. This notion was introduced independently by Vizing (1976) and by Erdős, Rubin
and Taylor (1980). In both papers, the authors realized that this is a variant of usual
coloring that exhibits several new interesting properties, and that in general 𝜒𝓁(G),
which is always at least as large as the chromatic number of G, may be arbitrarily
large even for graphs G of chromatic number 2.

An intriguing property of list coloring of graphs, which is not shared by ordinary
vertex coloring, is the fact that the list chromatic number of any graph with a large
average degree is large. Indeed, it is shown in Alon (2000) that the list chromatic
number of any graph with average degree d is at least Ω(log d). Here we present a
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short proof of this result for regular graphs, using the notion of containers. This proof
appears in Saxton and Thomason (2012) and provides an asymptotically sharp lower
bound for the choice number in terms of the degree of regularity. It can be extended,
with some additional work, to nonregular graphs as well, but for simplicity we restrict
the description to regular graphs.

Theorem 1.6.2 Let d > k > 2 be integers satisfying

k2 ⋅ H

(
log d

d

)
<

[
1 −
(

1
2
+ 1

log d

)( k
k − 1

)]k

log e, (1.4)

where H(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function and all log-
arithms are in base 2. Then the choice number of any d-regular graph exceeds k.
Therefore, there exists an absolute positive constant c so that, if d ≥ ck42k, then the
choice number of any d-regular graph exceeds k.

Proof. Let G = (V ,E) be a d-regular graph on n vertices, and let k be an integer so
that (1.4) holds. Fix a set K = {1, 2,… , k2} of k2 colors and assign to each vertex
𝑣 ∈ V , randomly and independently, a subset L

𝑣
of cardinality k chosen uniformly

among all k-subsets of K. We claim that, with positive probability, there is no proper
coloring of G assigning to each vertex 𝑣 a color from its list L

𝑣
. To prove this claim

using the union bound, it suffices to show that the probability that there are k2 inde-
pendent sets S1, S2,… , Sk2 in G so that for each vertex 𝑣 there is an independent set
Si satisfying 𝑣 ∈ Si and i ∈ L

𝑣
is smaller than 1. Indeed, in any proper coloring, the

set Si of all vertices colored i forms an independent set, and if the color i of a vertex
𝑣 belongs to its list L

𝑣
, then we must have 𝑣 ∈ Si and i ∈ L

𝑣
. However, the number

of independent sets in G may well be too large for using the union bound, hence we
replace the independent sets by the containers described above. By Theorem 1.6.1
with 𝜖 = 1∕ log d, there is a family  of at most

∑
i≤n log d∕d

(n
i

)
≤ 2H(log d∕d)n

subsets C of V , each of size at most n
( log d

d
+ 1

2−1∕ log d

)
< n
( 1

2
+ 1

log d

)
so that any

independent set is fully contained in at least one of them. It suffices to show that, with
positive probability, for any choice of k2 containers C1,C2,… ,Ck2 , there is a vertex
𝑣 so that 𝑣 is not contained in Ci for any i ∈ L

𝑣
. As the number of containers is much

smaller than the total number of independent sets, this can be proved by the union
bound. The details follow. There are ||k2

ways to choose the containers C1,… ,Ck2.
Fix such a choice and note that, since each container is small, so is their average size,
implying that the average, over the vertices 𝑣, number of containers Ci that contain 𝑣

is at most k2
( 1

2
+ 1

log d

)
. Let k

𝑣
denote the number of containers Ci such that 𝑣 ∈ Ci,

and let k = 1
n

∑
𝑣
k
𝑣

be its average over the vertices 𝑣. The probability that the list L
𝑣

of 𝑣 does not contain any index i so that 𝑣 ∈ Ci is exactly
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(
k2−k

𝑣

k

)
(

k2

k

) ≥ g(k
𝑣
),

where the function g(z) is defined by

g(z) =
[

k2 − k − z
k2 − k

]k

=
(

1 − z
k2 − k

)k

for 0 ≤ z < k2 − k and by g(z) = 0 for z ≥ k2 − k. It follows that the probability that,
for the above fixed choice of containers, for each vertex 𝑣 there is an i ∈ L

𝑣
with

𝑣 ∈ Ci, is at most ∏
𝑣

[1 − g(k
𝑣
)] ≤ e−

∑
𝑣
g(k

𝑣
).

Since the function g(z) is convex for all z ≥ 0, it follows by Jensen’s inequality that∑
𝑣
g(k

𝑣
) ≥ ng(k), and thus the probability that the random lists do yield a proper

coloring by color classes contained in the fixed set of containers above is at most
e−ng(k). Since g(z) is non-increasing and k ≤ k2( 1

2
+ 1

log d
), it follows that

g(k) ≥
⎡⎢⎢⎢⎣

k2 − k − k2
(

1
2
+ 1

log d

)
k2 − k

⎤⎥⎥⎥⎦
k

=
[

1 −
(

1
2
+ 1

log d

)
k

k − 1

]k

and the above probability is at most

e
−n
[
1−
(

1
2
+ 1

log d

)
k

k−1

]k
.

By (1.4), this probability multiplied by the number of choices of a sequence of k2

containers, which is at most

2
k2H
(

log d
d

)
,

is smaller than 1, and the union bound completes the proof. ◾

1.7 EXERCISES

1. Prove that, if there is a real p, 0 ≤ p ≤ 1 such that(n
k

)
p

(
k
2

)
+
(n

t

)
(1 − p)

(
t
2

)
< 1,

then the Ramsey number R(k, t) satisfies R(k, t) > n. Using this, show that

R(4, t) ≥ Ω(t3∕2∕(ln t)3∕2).
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2. Suppose n ≥ 4, and let H be an n-uniform hypergraph with at most 4n−1∕3n

edges. Prove that there is a coloring of the vertices of H by four colors so that in
every edge all four colors are represented.

3. (*) Prove that for every two independent and identically distributed real random
variables X and Y,

Pr[|X − Y| ≤ 2] ≤ 3 Pr[|X − Y| ≤ 1].

4. (*) Let G = (V ,E) be a graph with n vertices and minimum degree 𝛿 > 10. Prove
that there is a partition of V into two disjoint subsets A and B so that |A| ≤
O(n ln 𝛿∕𝛿), and each vertex of B has at least one neighbor in A and at least
one neighbor in B.

5. (*) Let G = (V ,E) be a graph on n ≥ 10 vertices, and suppose that if we add to G
any edge not in G, then the number of copies of a complete graph on 10 vertices
in it increases. Show that the number of edges of G is at least 8n − 36.

6. (*) Theorem 1.2.1 asserts that for every integer k > 0 there is a tournament Tk =
(V ,E) with |V| > k such that for every set U of at most k vertices of Tk there is
a vertex 𝑣 so that all directed arcs {(𝑣, u) ∶ u ∈ U} are in E.
Show that each such tournament contains at least Ω(k2k) vertices.

7. Let {(Ai,Bi), 1 ≤ i ≤ h} be a family of pairs of subsets of the set of integers such
that |Ai| = k for all i and |Bi| = l for all i, Ai ∩ Bi = ∅, and (Ai ∩ Bj) ∪ (Aj ∩ Bi) ≠
∅ for all i ≠ j. Prove that h ≤ (k + l)k+l∕(kkll).

8. (Prefix-free codes; Kraft inequality). Let F be a finite collection of binary strings
of finite lengths, and assume that no member of F is a prefix of another one. Let
Ni denote the number of strings of length i in F. Prove that

∑
i

Ni

2i
≤ 1.

9. (*) (Uniquely decipherable codes; Kraft–McMillan inequality). Let F be a finite
collection of binary strings of finite lengths, and assume that no two distinct
concatenations of two finite sequences of codewords result in the same binary
sequence. Let Ni denote the number of strings of length i in F. Prove that

∑
i

Ni

2i
≤ 1.

10. Prove that there is an absolute constant c > 0 with the following property: let A
be an n × n matrix with pairwise distinct entries. Then there is a permutation of
the rows of A so that no column in the permuted matrix contains an increasing
subsequence of length at least c

√
n.



THE PROBABILISTIC LENS:
The Erdős–Ko–Rado
Theorem

A family  of sets is called intersecting if A,B ∈  implies A ∩ B ≠ ∅. Suppose
n ≥ 2k, and let  be an intersecting family of k-element subsets of an n-set, for def-

initeness {0,… , n − 1}. The Erdős–Ko–Rado theorem is that | | ≤ (n−1
k−1

)
. This is

achievable by taking the family of k-sets containing a particular point. We give a
short proof due to Katona (1972).

Lemma 1 For 0 ≤ s ≤ n − 1, set As = {s, s + 1,… , s + k − 1}, where addition is
modulo n. Then  can contain at most k of the sets As.

Proof. Fix some As ∈  . All other sets At that intersect As can be partitioned
into k − 1 pairs {As−i,As+k−i}, (1 ≤ i ≤ k − 1), and the members of each such
pair are disjoint. The result follows, since  can contain at most one member of
each pair. ◾

Now we prove the Erdős–Ko–Rado theorem. Let a permutation 𝜎 of {0,… ,

n − 1} and i ∈ {0,… , n − 1} be chosen randomly, uniformly and independently and
set A = {𝜎(i), 𝜎(i + 1),… , 𝜎(i + k − 1)}, addition again modulo n. Conditioning on
any choice of 𝜎, the lemma gives Pr[A ∈  ] ≤ k∕n. Hence Pr[A ∈  ] ≤ k∕n. But A
is uniformly chosen from all k-sets so

k
n
≥ Pr[A ∈  ] =

| |(
n
k

)
and | | ≤ k

n

(n
k

)
=
(n − 1

k − 1

)
.



2
Linearity of Expectation

The search for truth is more precious than its possession.
–Albert Einstein

2.1 BASICS

Let X1,… ,Xn be random variables, X = c1X1 + · · · + cnXn. Linearity of Expectation
states that

E[X] = c1E[X1] + · · · + cnE[Xn] .

The power of this principle comes from there being no restrictions on the dependence
or independence of Xi. In many instances, E[X] can easily be calculated by a judicious
decomposition into simple (often indicator) random variables Xi.

Let 𝜎 be a random permutation on {1,… , n}, uniformly chosen. Let X(𝜎) be the
number of fixed points of 𝜎. To find E[X], we decompose X = X1 + · · · + Xn, where
Xi is the indicator random variable of the event 𝜎(i) = i. Then

E[Xi] = Pr[𝜎(i) = i] = 1
n

so that
E[X] = 1

n
+ · · · + 1

n
= 1 .

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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In applications, we often use that there is a point in the probability space for which
X ≥ E[X] and a point for which X ≤ E[X]. We have selected results with a purpose of
describing this basic methodology. The following result of Szele (1943) is oftentimes
considered the first use of the probabilistic method.

Theorem 2.1.1 There is a tournament T with n players and at least n!2−(n−1) Hamil-
tonian paths.

Proof. In the random tournament, let X be the number of Hamiltonian paths. For each
permutation 𝜎, let X

𝜎
be the indicator random variable for 𝜎 giving a Hamiltonian

path, that is, satisfying (𝜎(i), 𝜎(i + 1)) ∈ T for 1 ≤ i < n. Then X =
∑

X
𝜎

and

E[X] =
∑

E[X
𝜎
] = n!2−(n−1)

Thus some tournament has at least E[X] Hamiltonian paths. ◾

Szele conjectured that the maximum possible number of Hamiltonian paths
in a tournament on n players is at most n!∕(2 − o(1))n. This was proved in Alon
(1990a) and is presented in “The Probabilistic Lens: Hamiltonian Paths” (following
Chapter 4).

2.2 SPLITTING GRAPHS

Theorem 2.2.1 Let G = (V ,E) be a graph with n vertices and e edges. Then G con-
tains a bipartite subgraph with at least e∕2 edges.

Proof. Let T ⊆ V be a random subset given by Pr[x ∈ T] = 1∕2, these choices being
mutually independent. Set B = V − T. Call an edge {x, y} crossing if exactly one of
x, y is in T. Let X be the number of crossing edges. We decompose

X =
∑

{x,y}∈E

Xxy ,

where Xxy is the indicator random variable for {x, y} being crossing. Then

E[Xxy] =
1
2

as two fair coin flips have probability 1∕2 of being different. Then

E[X] =
∑

{x,y}∈E

E[Xxy] =
e
2

.

Thus X ≥ e∕2 for some choice of T, and the set of those crossing edges forms a
bipartite graph. ◾
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A more subtle probability space gives a small improvement (which is tight for
complete graphs).

Theorem 2.2.2 If G has 2n vertices and e edges, then it contains a bipartite subgraph
with at least en∕(2n − 1) edges. If G has 2n + 1 vertices and e edges, then it contains
a bipartite subgraph with at least e(n + 1)∕2n + 1 edges.

Proof. When G has 2n vertices, let T be chosen uniformly from among all n-element
subsets of V . Any edge {x, y} now has probability n∕(2n − 1) of being crossing, and
the proof concludes as before. When G has 2n + 1 vertices, choose T uniformly from
among all n-element subsets of V , and the proof is similar. ◾

Here is a more complicated example in which the choice of distribution requires a
preliminary lemma. Let V = V1 ∪ · · · ∪ Vk, where the Vi are disjoint sets of size n. Let
h ∶ Vk → { ± 1} be a two-coloring of the k-sets. A k-set E is crossing if it contains
precisely one point from each Vi. For S ⊆ V set h(S) =

∑
h(E), the sum over all k-sets

E ⊆ S.

Theorem 2.2.3 Suppose h(E) = +1 for all crossing k-sets E. Then there is an S ⊆ V
for which |h(S)| ≥ cknk .

Here, ck is a positive constant, independent of n.

Lemma 2.2.4 Let Pk denote the set of all homogeneous polynomials f (p1,… , pk) of
degree k with all coefficients having absolute value at most 1, and p1p2 · · · pk having
coefficient 1. Then for all f ∈ Pk, there exist p1,… , pk ∈ [0, 1] with

| f (p1,… , pk)| ≥ ck .

Here, ck is positive and independent of f .

Proof. Set
M( f ) = max

p1,…,pk∈[0,1]
| f (p1,… , pk)| .

For f ∈ Pk, M( f ) > 0 as f is not the zero polynomial. As Pk is compact and M ∶ Pk →
R is continuous, M must assume its minimum ck. ◾

Proof [Theorem 2.2.3]. Define a random S ⊆ V by setting

Pr[x ∈ S] = pi, x ∈ Vi ,

these choices being mutually independent, with pi to be determined. Set X = h(S).
For each k-set E, set

XE =

{
h(E) if E ⊆ S,

0 otherwise.
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Say, E has type (a1,… , ak) if |E ∩ Vi| = ai, 1 ≤ i ≤ k. For these E,

E[XE] = h(E)Pr[E ⊆ S] = h(E)pa1
1 · · · pak

k .

Combining terms by type

E[X] =
∑

a1+···+ak=k

pa1
1 · · · pak

k

∑
E of type (a1,··· ,ak )

h(E) .

When a1 = · · · = ak = 1, all h(E) = 1 by assumption, so

∑
E of type (1,…,1)

h(E) = nk .

For any other type, there are fewer than nk terms, each ±1, so

||||||
∑

E of type (a1 ,…,ak)
h(E)

|||||| ≤ nk .

Thus
E[X] = nkf (p1,… , pk) ,

where f ∈ Pk, as defined by Lemma 2.2.4.
Now select p1,… , pk ∈ [0, 1] with | f (p1,… , pk)| ≥ ck. Then

E[|X|] ≥ |E[X]| ≥ cknk .

Some particular value of |X| must exceed or equal its expectation. Hence there is a
particular set S ⊆ V with |X| = |h(S)| ≥ cknk. ◾

Theorem 2.2.3 has an interesting application to Ramsey Theory. It is known (see
Erdős (1965b)) that, given any coloring with two colors of the k-sets of an n-set,
there exist k disjoint m-sets, m = Θ((ln n)1∕(k−1)), so that all crossing k-sets are the
same color. From Theorem 2.2.3, there then exists a set of size Θ((ln n)1∕(k−1)), at
least 1

2
+ 𝜖k of whose k-sets are the same color. This is somewhat surprising since it

is known that there are colorings in which the largest monochromatic set has size at
most the k − 2-fold logarithm of n.

2.3 TWO QUICKIES

Linearity of Expectation sometimes gives very quick results.
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Theorem 2.3.1 There is a two-coloring of Kn with at most

(n
a

)
2

1−
(

a
2

)

monochromatic Ka.

Proof [Outline]. Take a random coloring . Let X be the number of monochromatic
Ka and find E[X]. For some coloring, the value of X is at most this expectation. ◾

In Chapter 16, it is shown how such a coloring can be found deterministically and
efficiently.

Theorem 2.3.2 There is a two-coloring of Km,n with at most(m
a

)(n
b

)
21−ab

monochromatic Ka,b.

Proof [Outline]. Take a random coloring. Let X be the number of monochromatic
Ka,b and find E[X]. For some coloring, the value of X is at most this expectation. ◾

2.4 BALANCING VECTORS

The next result has an elegant non-probabilistic proof, which we defer to the end of
this chapter. Here, |𝑣| is the usual Euclidean norm.

Theorem 2.4.1 Let 𝑣1,… , 𝑣n ∈ Rn, all |𝑣i| = 1. Then there exist 𝜖1,… , 𝜖n = ±1 so
that |𝜖1𝑣1 + · · · + 𝜖n𝑣n| ≤ √

n ,

and also there exist 𝜖1,… , 𝜖n = ±1 so that

|𝜖1𝑣1 + · · · + 𝜖n𝑣n| ≥ √
n .

Proof. Let 𝜖1,… , 𝜖n be selected uniformly and independently from { − 1,+1}. Set

X = |𝜖1𝑣1 + · · · + 𝜖n𝑣n|2 .

Then

X =
n∑

i=1

n∑
j=1

𝜖i𝜖j𝑣i ⋅ 𝑣j .
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Thus

E[X] =
n∑

i=1

n∑
j=1

𝑣i ⋅ 𝑣jE[𝜖i𝜖j] .

When i ≠ j, E[𝜖i𝜖j] = E[𝜖i]E[𝜖j] = 0. When i = j, 𝜖2
i = 1 so E[𝜖2

i ] = 1. Thus

E[X] =
n∑

i=1

𝑣i ⋅ 𝑣i = n .

Hence there exist specific 𝜖1,… , 𝜖n = ±1 with X ≥ n and with X ≤ n. Taking square
roots gives the theorem. ◾

The next result includes part of Theorem 2.4.1 as a linear translation of the p1 =
· · · = pn = 1∕2 case.

Theorem 2.4.2 Let 𝑣1,… , 𝑣n ∈ Rn, all |𝑣i| ≤ 1. Let p1,… , pn ∈ [0, 1] be arbitrary,
and set 𝑤 = p1𝑣1 + · · · + pn𝑣n. Then there exist 𝜖1,… , 𝜖n ∈ {0, 1} so that, setting
𝑣 = 𝜖1𝑣1 + · · · + 𝜖n𝑣n,

|𝑤 − 𝑣| ≤ √
n

2
.

Proof. Pick 𝜖i independently with

Pr[𝜖i = 1] = pi, Pr[𝜖i = 0] = 1 − pi .

The random choice of 𝜖i gives a random 𝑣 and a random variable

X = |𝑤 − 𝑣|2 .

We expand

X =
|||||

n∑
i=1

(pi − 𝜖i)𝑣i

|||||
2

=
n∑

i=1

n∑
j=1

𝑣i ⋅ 𝑣j(pi − 𝜖i)(pj − 𝜖j)

so that

E[X] =
n∑

i=1

n∑
j=1

𝑣i ⋅ 𝑣jE[(pi − 𝜖i)(pj − 𝜖j)] .

For i ≠ j,
E[(pi − 𝜖i)(pj − 𝜖j)] = E[pi − 𝜖i]E[pj − 𝜖j] = 0 .

For i = j,

E[(pi − 𝜖i)2] = pi(pi − 1)2 + (1 − pi)p2
i = pi(1 − pi) ≤

1
4

,
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(E[(pi − 𝜖i)2] = Var[𝜖i], the variance to be discussed in Chapter 4.) Thus

E[X] =
n∑

i=1

pi(1 − pi)|𝑣i|2 ≤
1
4

n∑
i=1

|𝑣i|2 ≤
n
4

and the proof concludes as in that of Theorem 2.4.1. ◾

2.5 UNBALANCING LIGHTS

Theorem 2.5.1 Let aij = ±1 for 1 ≤ i, j ≤ n. Then there exist xi, yj = ±1, 1 ≤ i, j ≤ n
so that

n∑
i=1

n∑
j=1

aijxiyj ≥

(√
2
𝜋

+ o(1)

)
n3∕2 .

This result has an amusing interpretation. Let an n × n array of lights be given,
each either on (aij = +1) or off (aij = −1). Suppose for each row and each column
there is a switch so that if the switch is pulled (xi = −1 for row i and yj = −1 for
column j) all of the lights in that line will be “switched” on to off or off to on. Then
for any initial configuration it is possible to perform switchings so that the number of
lights on minus the number of lights off is at least (

√
2∕𝜋 + o(1))n3∕2.

Proof [Theorem 2.5.1]. Forget the x’s. Let y1,… , yn = ±1 be selected indepen-
dently and uniformly and set

Ri =
n∑

j=1

aijyj ,R =
n∑

i=1

|Ri| .

Fix i. Regardless of aij, aijyj is ±1 with probability 1∕2, and their values (over j)
are independent; that is, whatever the ith row is initially after random switching, it
becomes a uniformly distributed row, with all 2n possibilities equally likely. Thus Ri
has distribution Sn – the distribution of the sum of n independent uniform {− 1, 1}
random variables – and so

E[|Ri|] = E[|Sn|] =
(√

2
𝜋

+ o(1)

)√
n .

These asymptotics may be found by estimating Sn by
√

nN, where N is standard
normal and using elementary calculus. Alternatively, a closed form

E[|Sn|] = n21−n

(
n − 1⌊(n − 1)∕2⌋

)
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may be derived combinatorially (a problem in the 1974 Putnam competition!) and
the asymptotics follows from Stirling’s formula.

Now apply the Linearity of Expectation to R:

E[R] =
n∑

i=1

E[|Ri|] =
(√

2
𝜋

+ o(1)

)
n3∕2 .

There exist y1,… , yn = ±1 with R at least this value. Finally, pick xi with the same
sign as Ri so that

n∑
i=1

xi

n∑
j=1

aijyj =
n∑

i=1

xiRi =
n∑

i=1

|Ri| = R ≥

(√
2
𝜋

+ o(1)

)
n3∕2 . ◾

Another result on unbalancing lights appears in “The Probabilistic Lens: Unbal-
ancing Lights” (following Chapter 13). The existence of Hadamard matrices and
the discussion in Section 9.1 show that the estimate in the last theorem cannot be
improved to anything bigger than n3∕2.

2.6 WITHOUT COIN FLIPS

A non-probabilistic proof of Theorem 2.2.1 may be given by placing each vertex in
either T or B sequentially. At each stage, place x in either T or B so that at least half
of the edges from x to previous vertices are crossing. With this effective algorithm,
at least half the edges will be crossing.

There is also a simple sequential algorithm for choosing signs in Theorem 2.4.1.
When the sign for 𝑣i is to be chosen, a partial sum𝑤 = 𝜖1𝑣1 + · · · + 𝜖i−1𝑣i−1 has been
calculated. Now if it is desired that the sum be small, select 𝜖i = ±1 so that 𝜖i𝑣i makes
an obtuse (or right) angle with 𝑤. If the sum need be big, make the angle acute or
right. In the extreme case when all angles are right angles, Pythagoras and induction
give that the final 𝑤 has norm

√
n; otherwise, it is either less than

√
n or greater than√

n, as desired.
For Theorem 2.4.2, a greedy algorithm produces the desired 𝜖i. Given 𝑣1,… , 𝑣n ∈

Rn, p1,… , pn ∈ [0, 1], suppose 𝜖1,… , 𝜖s−1 ∈ {0, 1} have already been chosen. Set

𝑤s−1 =
∑s−1

i=1 (pi − 𝜖i)𝑣i, the partial sum. Select 𝜖s so that

𝑤s = 𝑤s−1 + (ps − 𝜖s)𝑣s =
s∑

i=1

(pi − 𝜖i)𝑣i

has minimal norm. A random 𝜖s ∈ {0, 1} chosen with Pr[𝜖s = 1] = ps gives

E[|𝑤s|2] = |𝑤s−1|2 + 2𝑤s−1 ⋅ 𝑣sE[ps − 𝜖s] + |𝑣s|2E[ps − 𝜖s]2

= |𝑤s−1|2 + ps(1 − ps)|𝑣s|2
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so for some choice of 𝜖s ∈ {0, 1},

|𝑤s|2 ≤ |𝑤s−1|2 + ps(1 − ps)|𝑣s|2 .

As this holds for all 1 ≤ s ≤ n (taking 𝑤0 = 0), the final

|𝑤n|2 ≤

n∑
i=1

pi(1 − pi)|𝑣i|2 .

While the proofs appear similar, a direct implementation of the proof of
Theorem 2.4.2 to find 𝜖1,… , 𝜖n might take an exhaustive search with expo-
nential time. In applying the greedy algorithm at the sth stage, one makes two
calculations of |𝑤s|2, depending on whether 𝜖s = 0 or 1, and picks that 𝜖s giving the
smaller value. Hence there are only a linear number of calculations of norms to be
made, and the entire algorithm takes only quadratic time. In Chapter 16, we discuss
several similar examples in a more general setting.

2.7 EXERCISES

1. Suppose n ≥ 2 and let H = (V ,E) be an n-uniform hypergraph with |E| = 4n−1

edges. Show that there is a coloring of V by four colors so that no edge is
monochromatic.

2. Prove that there is a positive constant c so that every set A of n nonzero reals
contains a subset B ⊂ A of size |B| ≥ cn, so that there are no b1, b2, b3, b4 ∈ B
satisfying

b1 + 2b2 = 2b3 + 2b4 .

3. Prove that every set of n nonzero real numbers contains a subset A of strictly more
than n∕3 numbers such that there are no a1, a2, a3 ∈ A satisfying a1 + a2 = a3.

4. Suppose p > n > 10m2, with p prime, and let 0 < a1 < a2, < · · · < am < p be inte-
gers. Prove that there is an integer x, 0 < x < p, for which the m numbers

(xai (mod p)) mod n, 1 ≤ i ≤ m

are pairwise distinct.

5. Let H be a graph, and let n > |V(H)| be an integer. Suppose there is a graph on
n vertices and t edges containing no copy of H, and suppose that tk > n2 log en.
Show that there is a coloring of the edges of the complete graph on n vertices by
k colors with no monochromatic copy of H.

6. (∗) Prove, using the technique in the probabilistic lens on Hamiltonian paths, that
there is a constant c > 0 such that for every even n ≥ 4 the following holds: for
every undirected complete graph K on n vertices whose edges are colored red and
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blue, the number of alternating Hamilton cycles in K (i.e., properly edge-colored
cycles of length n) is at most

nc n!
2n

.

7. Let  be a family of subsets of N = {1, 2,… , n}, and suppose there are no A,B ∈
 satisfying A ⊂ B. Let 𝜎 ∈ Sn be a random permutation of the elements of N,
and consider the random variable

X = |{i ∶ {𝜎(1), 𝜎(2),… , 𝜎(i)} ∈ }| .

By considering the expectation of X, prove that | | ≤ (
n⌊n∕2⌋

)
.

8. (*) Let X be a collection of pairwise orthogonal unit vectors in Rn, and suppose
the projection of each of these vectors on the first k coordinates is of Euclidean
norm at least 𝜖. Show that |X| ≤ k∕𝜖2, and this is tight for all 𝜖2 = k∕2r

< 1.

9. Let G = (V ,E) be a bipartite graph with n vertices and a list S(𝑣) of more than
log 2n colors associated with each vertex 𝑣 ∈ V . Prove that there is a proper col-
oring of G assigning to each vertex 𝑣 a color from its list S(𝑣).



THE PROBABILISTIC LENS:
Brégman’s Theorem

Let A = [aij] be an n × n matrix with all aij ∈ {0, 1}. Let ri =
∑

1≤j≤naij be the number
of 1’s in the ith row. Let S be the set of permutations 𝜎 ∈ Sn with ai,𝜎i = 1 for 1 ≤ i ≤
n. Then the permanent per(A) is simply |S|. The following result was conjectured by
Minc and proved by Brégman (1973). The proof presented here is similar to that of
Schrijver (1978).

Theorem 1 [Brégman’s Theorem] per(A) ≤
∏

1≤i≤n
(ri!)1∕ri .

Pick 𝜎 ∈ S and 𝜏 ∈ Sn independently and uniformly. Set A(1) = A. Let R
𝜏1 be the

number of 1’s in row 𝜏1 in A(1). Delete row 𝜏1 and column 𝜎𝜏1 from A(1) to give A(2).
In general, let A(i) denote A with rows 𝜏1,… , 𝜏(i − 1) and columns 𝜎𝜏1,… , 𝜎𝜏(i− 1)
deleted and let R

𝜏i denote the number of 1’s of row 𝜏i in A(i). (This is nonzero as the
𝜎𝜏ith column has a 1.) Set

L = L(𝜎, 𝜏) =
∏

1≤i≤n

R
𝜏i .

We think, roughly, of L as Lazyman’s permanent calculation. There are R
𝜏1 choices

for a 1 in row 𝜏1, each of which leads to a different subpermanent calculation. Instead,
Lazyman takes the factor R

𝜏1, takes the one from permutation 𝜎, and examines A(2).
As 𝜎 ∈ S is chosen uniformly, Lazyman tends toward the high subpermanents and
so it should not be surprising that he tends to overestimate the permanent. To make
this precise, we define the geometric mean G[Y]. If Y > 0 takes values a1,… , as
with probabilities p1,… , ps, respectively, then G[Y] =

∏
api

i . Equivalently, G[Y] =
eE[ln Y]. Linearity of Expectation translates into the geometric mean of a product being
the product of the geometric means.

Claim 1 per(A) ≤ G[L].
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Proof. We show this for any fixed 𝜏 . Set 𝜏1 = 1 for convenience of notation. We use
induction on the size of the matrix. Reorder, for convenience, so that the first row has
1’s in the first r columns, where r = r1. For 1 ≤ j ≤ r, let tj be the permanent of A
with the first row and jth column removed or, equivalently, the number of 𝜎 ∈ S with
𝜎1 = j. Set

t =
t1 + · · · + tr

r

so that per(A) = rt. Conditioning on 𝜎1 = j, R2 · · ·Rn is Lazyman’s calculation of
per(A(2)), where A(2) is A with the first row and jth column removed. By induction,

G[R2 · · ·Rn|𝜎1 = j] ≥ tj

and so

G[L] ≥
r∏

j=1

(rtj)tj∕ per(A) = r
r∏

j=1

t
tj∕rt

j . ◾

Lemma 2

(
r∏

j=1
t
tj
j

)1∕r

≥ tt.

Proof. Taking logarithms, this is equivalent to

1
r

r∑
j=1

tj ln tj ≥ t ln t ,

which follows from the convexity of the function f (x) = x ln x. ◾

Applying the lemma,

G[L] ≥ r
r∏

j=1

t
tj∕rt

j ≥ r(tt)1∕t = rt = per(A) . ◾

Now we calculate G[L] conditional on a fixed 𝜎. For convenience of notation,
reorder so that 𝜎i = i, all i, and assume that the first row has 1’s in precisely the first
r1 columns. With 𝜏 selected uniformly, the columns 1,… , r1 are deleted in a random
order uniform over all r1! possibilities. R1 is the number of those columns remaining
when the first column is to be deleted. As the first column is equally likely to be in
any position among those r1 columns, R1 is uniformly distributed from 1 to r1 and
G[R1] = (r1!)1∕r1 . “Linearity” then gives

G[L] = G

[
n∏

i=1

Ri

]
=

n∏
i=1

G[Ri] =
n∏

i=1

(ri!)1∕ri .

The overall G[L] is the geometric mean of the conditional G[L] and hence has the
same value. That is,

per(A) ≤ G[L] =
n∏

i=1

(ri!)1∕ri .



3
Alterations

Beauty is the first test: there is no permanent place in the world for ugly mathematics.
–G. H. Hardy

The basic probabilistic method was described in Chapter 1 as follows: trying to
prove that a structure with certain desired properties exists, one defines an appropri-
ate probability space of structures and then shows that the desired properties hold
in this space with positive probability. In this chapter we consider situations where
the “random” structure does not have all the desired properties but may have a few
“blemishes.” With a small alteration, we remove the blemishes, giving the desired
structure.

3.1 RAMSEY NUMBERS

Recall from Section 1.1 that R(k, l) > n means there exists a two-coloring of the edges
of Kn by red and blue so that there is neither a red Kk nor a blue Kl.

Theorem 3.1.1 For any integer n, R(k, k) > n −
(

n
k

)
2

1−
(

k
2

)
.

Proof. Consider a random two-coloring of the edges of Kn obtained by coloring each
edge independently either red or blue, where each color is equally likely. For any set
R of k vertices, let XR be the indicator random variable for the event for which the
induced subgraph of Kn on R is monochromatic. Set X =

∑
XR, the sum over all

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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such R. By Linearity of Expectation, E[X] =
∑

E[XR] = m with m =
(

n
k

)
2

1−
(

k
2

)
.

Thus there exists a two-coloring for which X ≤ m. Fix such a coloring. Remove from
Kn one vertex from each monochromatic k-set. At most m vertices have been removed
(we may have “removed” the same vertex more than once but this only helps), so s
vertices remain with s ≥ n − m. This coloring on these s points has no monochromatic
k-set. ◾

We are left with the “calculus” problem of finding that n which will optimize the
inequality. Some analysis shows that we should take n ∼ e−1k2k∕2(1 − o(1)), giving

R(k, k) > 1
e
(1 + o(1))k2k∕2.

A careful examination of Proposition 1.1.1 gives the lower bound

R(k, k) > 1

e
√

2
(1 + o(1))k2k∕2.

The more powerful Lovász Local Lemma (see Chapter 5) gives

R(k, k) >
√

2
e

(1 + o(1))k2k∕2.

The distinctions between these bounds may be considered inconsequential since
the best known upper bound for R(k, k) is (4 + o(1))k. The upper bounds do not
involve probabilistic methods and may be found, for example, in Graham, Rothschild
and Spencer (1990). We give all three lower bounds in following our philosophy of
emphasizing methodologies rather than results.

In dealing with the off-diagonal Ramsey numbers, the distinction between the
basic method and the alteration is given in the following two results.

Theorem 3.1.2 If there exists p ∈ [0, 1] with

(n
k

)
p

(
k
2

)
+
(n

l

)
(1 − p)

(
l
2

)
< 1,

then R(k, l) > n.

Theorem 3.1.3 For all integers n and p ∈ [0, 1],

R(k, l) > n −
(n

k

)
p

(
k
2

)
−
(n

l

)
(1 − p)

(
l
2

)
.

Proof. In both cases, we consider a random two-coloring of Kn obtained by coloring
each edge independently either red or blue, where each edge is red with probability p.
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Let X be the number of red k-sets plus the number of blue l-sets. Linearity of Expec-
tation gives

E[X] =
(n

k

)
p

(
k
2

)
+
(n

l

)
(1 − p)

(
l
2

)
.

For Theorem 3.1.2, E[X] < 1, so there exists a two-coloring with X = 0. For
Theorem 3.1.3, there exists a two-coloring with s “bad” sets (either red k-sets or blue
l-sets), s ≤ E[X]. Removing one point from each bad set gives a coloring of at least
n − s points with no bad sets. ◾

The asymptotics of Theorems 3.1.2 and 3.1.3 can get fairly complex. Oftentimes,
Theorem 3.1.3 gives a substantial improvement on Theorem 3.1.2. Even further
improvements may be found using the Lovász Local Lemma. These bounds have
been analyzed in Spencer (1977).

3.2 INDEPENDENT SETS

Here is a short and sweet argument that gives roughly half of the celebrated Turán’s
theorem. 𝛼(G) is the independence number of a graph G; 𝛼(G) ≥ t means there exist
t vertices with no edges between them.

Theorem 3.2.1 Let G = (V ,E) have n vertices and nd∕2 edges, d ≥ 1. Then
𝛼(G) ≥ n∕2d.

Proof. Let S ⊆ V be a random subset defined by

Pr[𝑣 ∈ S] = p,

p to be determined, the events 𝑣 ∈ S being mutually independent. Let X = |S|, and
let Y be the number of edges in G|S. For each e = {i, j} ∈ E, let Ye be the indicator
random variable for the event i, j ∈ S so that Y =

∑
e∈EYe. For any such e,

E[Ye] = Pr[i, j ∈ S] = p2,

so by Linearity of Expectation,

E[Y] =
∑
e∈E

E[Ye] =
nd
2

p2.

Clearly, E[X] = np, so, again by Linearity of Expectation

E[X − Y] = np − nd
2

p2.
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We set p = 1∕d (here using d ≥ 1) to maximize this quantity, giving

E[X − Y] = n
2d

.

Thus there exists a specific S for which the number of vertices of S minus the number
of edges in S is at least n∕2d. Select one vertex from each edge of S and delete it.
This leaves a set S∗ with at least n∕2d vertices. All edges having been destroyed, S∗

is an independent set. ◾

The full result of Turán is given in “The Probabilistic Lens: Turán’s Theorem”
(following Chapter 6).

3.3 COMBINATORIAL GEOMETRY

For a set S of n points in the unit square U, let T(S) be the minimum area of a triangle
whose vertices are three distinct points of S. Put T(n) = maxT(S), where S ranges
over all sets of n points in U. Heilbronn conjectured that T(n) = O(1∕n2). This con-
jecture was disproved by Komlós, Pintz and Szemerédi (1982) who showed, by a
rather involved probabilistic construction, that there is a set S of n points in U such
that T(S) = Ω(log n∕n2). As this argument is rather complicated, we only present
here a simpler one showing that T(n) = Ω(1∕n2).

Theorem 3.3.1 There is a set S of n points in the unit square U such that
T(S) ≥ 1∕(100n2).

Proof. We first make a calculation. Let P,Q,R be independently and uniformly
selected from U, and let 𝜇 = 𝜇(PQR) denote the area of the triangle PQR. We bound
Pr[𝜇 ≤ 𝜖] as follows: Let x be the distance from P to Q so that

Pr[b ≤ x ≤ b + Δb] ≤ 𝜋(b + Δb)2 − 𝜋b2

and in the limit Pr[b ≤ x ≤ b + db] ≤ 2𝜋b db. Given P,Q at distance b, the altitude
from R to the line PQ must have height h ≤ 2𝜖∕b, and so R must lie in a strip of
width 4𝜖∕b and length at most

√
2. This occurs with probability at most 4

√
2𝜖∕b. As

0 ≤ b ≤

√
2, the total probability is bounded by

∫

√
2

0
(2𝜋b)(4

√
2𝜖∕b)db = 16𝜋𝜖.

Now let P1,… ,P2n be selected uniformly and independently in U, and let X denote
the number of triangles PiPjPk with area less than 1∕(100n2). For each particular i, j, k,
the probability of this occurring is less than 0.6n−2, and so

E[X] ≤
(2n

3

)
(0.6n−2) < n.
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Thus there exists a specific set of 2n vertices with fewer than n triangles of area less
than 1∕(100n2). Delete one vertex from the set from each such triangle. This leaves
at least n vertices, and now no triangle has area less than 1∕(100n2). ◾

We note the following construction of Erdős showing T(n) ≥ 1∕(2(n − 1)2) with
n prime: On [0, n − 1] × [0, n − 1], consider the n points (x, x2), where x2 is reduced
mod n (more formally, (x, y) where y ≡ x2 mod n and 0 ≤ y < n). If some three points
of this set were collinear, they would lie on a line y = mx + b, and m would be a
rational number with denominator less than n. But then in Z2

n , the parabola y = x2

would intersect the line y = mx + b at three points, so that the quadratic x2 − mx − b
would have three distinct roots, an impossibility. Triangles between lattice points in
the plane have as their areas either half-integers or integers, hence the areas must be
at least 1∕2. Contracting the plane by an n − 1 factor in both coordinates gives the
desired set. While this gem does better than Theorem 3.3.1, it does not lead to the
improvements of Komlós, Pintz, and Szemerédi.

3.4 PACKING

Let C be a bounded measurable subset of Rd, and let B(x) denote the cube [0, x]d of
side x. A packing of C into B(x) is a family of mutually disjoint copies of C, all lying
inside B(x). Let f (x) denote the largest size of such a family. The packing constant
𝛿 = 𝛿(C) is defined by

𝛿(C) = 𝜇(C) lim
x→∞

f (x)x−d,

where 𝜇(C) is the measure of C. This is the maximal proportion of space that may be
packed by copies of C (this limit can be proved always to exist but even without that
result the following result holds with lim replaced by lim inf).

Theorem 3.4.1 Let C be bounded, convex, and centrally symmetric around the ori-
gin. Then 𝛿(C) ≥ 2−d−1.

Proof. Let P,Q be selected independently and uniformly from B(x), and consider the
event (C + P) ∩ (C + Q) ≠ ∅. For this to occur, we must have, for some c1, c2 ∈ C,

P − Q = c1 − c2 = 2
c1 − c2

2
∈ 2C

by central symmetry and convexity. The event P ∈ Q + 2C has probability at most
𝜇(2C)x−d for each given Q, hence

Pr[(C + P) ∩ (C + Q) ≠ ∅] ≤ 𝜇(2C)x−d = 2dx−d
𝜇(C).

Now let P1,… ,Pn be selected independently and uniformly from B(x), and let X
be the number of i < j with (C + Pi) ∩ (C + Pj) ≠ ∅. From Linearity of Expectation,

E[X] ≤ n2

2
2dx−d

𝜇(C).
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Hence there exists a specific choice of n points with fewer than that many intersecting
copies of C. For each Pi,Pj with (C + Pi) ∩ (C + Pj) ≠ ∅, remove either Pi or Pj from
the set. This leaves at least n − (n2∕2)2dx−d

𝜇(C) nonintersecting copies of C. Set
n = xd2−d∕𝜇(C) to maximize this quantity, so that there are at least xd2−d−1∕𝜇(C)
nonintersecting copies of C. These do not all lie inside B(x) but, letting 𝑤 denote an
upper bound on the absolute values of the coordinates of the points of C, they do all
lie inside a cube of side x + 2𝑤. Hence

f (x + 2𝑤) ≥ xd2−d−1∕𝜇(C)

and so 𝛿(C) ≥ lim
x→∞

𝜇(C)f (x + 2𝑤)(x + 2𝑤)−d ≥ 2−d−1. ◾

A simple greedy algorithm does somewhat better. Let P1,… ,Pm be any max-
imal subset of [0, x]d with the property that the sets C + Pi are disjoint. We have
seen that C + Pi overlaps C + P if and only if P ∈ 2C + Pi. Hence the sets 2C + Pi
must cover [0, x]d. As each such set has measure 𝜇(2C) = 2d

𝜇(C), we must have
m ≥ xd2−d∕𝜇(C). As before, all sets C + Pi lie in a cube of side x + 2𝑤, with 𝑤 a
constant, so that

f (x + 2𝑤) ≥ m ≥ xd2−d∕𝜇(C)

and so
𝛿(C) ≥ 2−d.

A still further improvement appears in “The Probabilistic Lens: Efficient Packing”
(following Chapter 14).

3.5 GREEDY COLORING

When a random coloring does not suffice for solving a problem, there are several
ways to proceed. One of them is to apply a random recoloring to fix the blemishes
left by the original random procedure. This has been useful in the study of Property B
discussed in Section 1.3. Here we use the same notation: m(n) > m means that, given
any n-uniform hypergraph H = (V ,E) with m edges, there exists a two-coloring of
V so that no edge is monochromatic. Beck (1978) improved Erdős’ 1963 bound to
m(n) = Ω(2nn1∕3). Building on his methods, Radhakrishnan and Srinivasan (2000)
proved m(n) = Ω(2n(n∕ ln n)1∕2). Both proofs applied random recoloring.

A simpler beautiful proof, based on a random greedy coloring, has been found
by Cherkashin and Kozik (2015), following an approach of Pluhár (2009), and it
is that proof that we describe below. The first edition of the book includes Beck’s
proof, the previous edition includes that of Radhakrishnan and Srinivasan (2000),
and this one contains the new proof of Cherkashin and Kozik (2015). Note that the
natural normalized quantity of interest here is m(n)∕2n−1, since the expected number
of monochromatic edges in a random two-coloring of a hypergraph with m edges,
each of size n, is m∕2n−1. Thus, the expression m(n)∕2n−1 measures the ratio between
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m(n) and the trivial lower bound for it. This means that, after more than 50 years of
study of this problem, which led to lots of elegant ideas, the upper and lower bounds
on m(n)∕2n−1, which are O(n2) and Ω(

√
n∕ ln n), remain quite far apart!

Theorem 3.5.1 If there exists p ∈ [0, 1]with k(1 − p)n + k2p < 1, then m(n) > 2n−1k.

Corollary 3.5.2 m(n) = Ω(2n(n∕ ln n)1∕2).

Proof. Bound 1 − p ≤ e−p. The function ke−pn + k2p is minimized at p = ln(n∕k)∕n.
Substituting back in, if

k2

n
(1 + ln (n∕k)) < 1,

then the condition of Theorem 3.5.1 holds. This inequality is true when
k = c(n∕ ln n)1∕2 for any c <

√
2, with n sufficiently large. ◾

Proof. [Theorem 3.5.1] Fix H = (V ,E)with m = 2n−1k edges and p satisfying the
condition. We describe a randomized algorithm that yields a coloring of V .

For each vertex 𝑣 ∈ V , let x
𝑣

be a uniform random label in [0, 1], where all choices
are independent. Note that, with probability 1, all labels are distinct. The algorithm
goes over the vertices by an increasing order of their labels, coloring each vertex
blue, unless it is the last vertex in an edge in which all previous vertices have been
colored blue. In this case, the vertex is colored red. By definition, there are no blue
edges. Also, a red edge can appear only if each of its vertices, and in particular its first
vertex, is the last vertex of another edge all of whose previous vertices are colored
blue. Call an ordered pair of edges (e, f ) a conflicting pair if the last vertex of e is the
first vertex of f . By the discussion above, if there are no conflicting pairs, then the
coloring will produce no red edge. We proceed to show that with positive probability
there are no such pairs.

To prove this fact, split the interval [0, 1] into three subintervals, L,M, and R
(denoting left, middle, and right) as follows: L = [0, 1−p

2
),M = [ 1−p

2
,

1+p
2
), and R =

[ 1+p
2
, 1]. The probability that there is a conflicting pair (e, f ) in which e ⊂ L or f ⊂ R

is clearly bounded by the probability that there is an edge of H contained in L or in
R, which is at most 2k2n−1( 1−p

2
)n = k(1 − p)n.

For any other conflicting pair (e, f ), the unique vertex 𝑣 = e ∩ f must satisfy
x
𝑣
∈ M. In addition, for any vertex u ∈ e − 𝑣, xu < x

𝑣
, and for any vertex 𝑤 ∈ f − 𝑣,

x
𝑤
> x

𝑣
. For each ordered pair of edges (e, f ) of H whose intersection is a single

vertex 𝑣, we bound the probability that (e, f ) forms a conflicting pair as above as
follows: The probability that x

𝑣
∈ M is p. Given that this is the case, and given

the value of x
𝑣
, the probability that xu < x

𝑣
for all u ∈ e − 𝑣 and x

𝑤
> x

𝑣
for all

𝑤 ∈ f − 𝑣 is xn−1
𝑣

(1 − x
𝑣
)n−1 ≤ ( 1

4
)n−1. Therefore, the probability that (e, f ) is such

a conflicting pair is at most p( 1
4
)n−1. As there are less than k24n−1 ordered pairs of

edges of H, the probability of having a conflicting pair of any kind is smaller than

k(1 − p)n + k24n−1p
(1

4

)n−1
= k(1 − p)n + k2p
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which is less than 1, by assumption. This shows that the algorithm produces a coloring
with no monochromatic edges with positive probability, completing the proof. ◾

Note that the algorithm in the proof above can also be formulated as a recoloring
procedure, justifying the inclusion of this section in the present chapter. Indeed, after
selecting the random labels x

𝑣
, one can color all vertices 𝑣 with x

𝑣
∈ L ∪ M blue and

all vertices u with xu ∈ R red. We can then go over the vertices of M according to
the order of their labels, and recolor any blue vertex which is the last one in a blue
edge red.

3.6 CONTINUOUS TIME

Discrete random processes can sometimes be analyzed by placing them in a continu-
ous time framework. This allows powerful methods of analysis (such as integration!)
to be applied. The approach seems most effective when dealing with random order-
ings. The proof of Theorem 3.5.1 is of this form. We here give a second example,
involving Random Greedy Packing.

Let H be a (k + 1)-uniform hypergraph on a vertex set V of size N. The e ∈ H,
which we call edges, are simply subsets of V of size k + 1. We assume the following
conditions:

Degree condition: that is, every 𝑣 ∈ V is in precisely D edges.
Codegree condition: that is, every distinct pair 𝑣, 𝑣′ ∈ V have only o(D) edges in

common.
We think of k fixed (k = 2 being an illustrative example) and the asymptotics as

N,D → ∞, with no set relationship between N and D.
A packing is a family P of vertex disjoint edges e ∈ H. Clearly |P| ≤ N∕(k + 1).

We define a randomized algorithm to produce a (not necessarily optimal) packing.
Assign to each e ∈ H uniformly and independently a birth time xe ∈ [0,D). [The
choice of [0,D) rather than [0, 1] proves to be a technical convenience. Note that, as
the xe are real variables with probability 1, there are no ties.] At time zero, P ← ∅. As
time progresses from 0 to D, when an edge e is born, it is added to P if possible—that
is, unless there is already some e′ ∈ P that overlaps e. Let Pc denote the value of
P just before time c—when all e with birth times te < c have been examined. Set
P FINAL = PD. Note that by time D all edges have been born and their births were
in random order. Thus P FINAL is identical to the discrete process—often called the
random greedy algorithm—in which H is first randomly ordered and then the e ∈ H
are considered sequentially.

Theorem 3.6.1 Spencer (1995) The expected value of |P FINAL| is asymptotic to
N∕(k + 1).

We say 𝑣 ∈ V survives at time c if no e ∈ Pc contains 𝑣, and we let Sc denote the
set of 𝑣 ∈ V so surviving. Rather than looking at P FINAL, we shall examine Pc, where
c is an arbitrary fixed nonnegative real. Let

f (c) = lim∗ Pr[𝑣 ∈ Sc],
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where, formally, we mean here that for all 𝜖 > 0 there exist D0,N0, and 𝛿 > 0 so that,
if H is (k + 1)-uniform on N > N0 vertices with each 𝑣 in D > D0 edges and every
distinct pair 𝑣, 𝑣′ ∈ V has less than 𝛿D common edges, then |f (c) − Pr[𝑣 ∈ Sc]| < 𝜖

for all 𝑣 ∈ V .
The heart of the argument lies in showing that f (c) exists by defining a continuous

time birth process yielding that value. We now describe the birth process, omitting
some of the epsilondeltamanship needed to formally show the limit.

Our birth process starts at time c, and time goes backwards to 0. It begins with root
Eve, our anthropomorphized 𝑣. Eve has births in time interval [0, c). The number
of births is given by a Poisson distribution with mean c and, given their number,
their times are uniformly and independently distributed. [This is a standard Poisson
process with intensity 1. Equivalently, on any infinitesimal time interval [x, x + dx),
Eve has probability dx of giving birth and these events are independent over disjoint
intervals.] Our fertile Eve always gives birth to k-tuplets. Each child is born fertile
under the same rules, so if Alice in born at time x, she (in our unisexual model) has a
Poisson distribution with mean x of births, uniformly distributed in [0, x).

The resulting random tree T = Tc can be shown to be finite (note the time interval
is finite) with probability 1. Given a finite T, we say for each vertex Alice that Alice
survives or dies according to the following scheme:

Menendez Rule: If Alice has given birth to a set (or possibly several sets) of
k-tuplets all of whom survived, then she dies; otherwise she survives.

In particular, if Alice is childless, she survives. We can then work our way up the
tree to determine of each vertex whether she survives or dies.

Example. c = 10, k = 2. Eve gives birth to Alice, Barbara at time 8.3, and then to
Rachel, Siena at time 4.3. Alice gives birth to Nancy, Olive at time 5.7 and Rachel
gives birth to Layla, Mayavati at time 0.4. There are no other births. The leaves Nancy,
Olive, Layla, Mayavati, Barbara, and Siena then survive. Working up the tree, Alice
and Rachel die. In neither of Eve’s births did both children Survive, and therefore
Eve survives.

We define f (c) to be the probability that the root Eve survives in the random birth
tree T = Tc.

We outline the equivalence by defining a tree T = Tc(𝑣) for 𝑣 ∈ H. For each edge
e containing 𝑣 with birth time t = te < c, we say that e − {𝑣} is a set of k-tuplets born
to 𝑣 at time t. We work recursively; if 𝑤 is born at time t, then for each e′ containing
𝑤 with birth time t′ = te′ < t we say that e′ − {𝑤} is a set of k-tuplets born to 𝑤 at
time t′. Possibly, this process does not give a tree since the same vertex 𝑤 may be
reached in more than one way—the simplest example is if 𝑣 ∈ e, e′, where both have
birth times less than c and e, e′ share another common vertex 𝑤. Then the process is
stillborn, and Tc(𝑣) is not defined. We will argue that, for any particular tree T

lim∗ Pr[Tc(𝑣) ≅ T] = Pr[Tc = T]. (3.1)

As
∑

T Pr[Tc = T] = 1, this gives a rather roundabout argument that the process defin-
ing Tc(𝑣) is almost never stillborn.
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We find Tc(𝑣) in stages. First consider the D edges e containing 𝑣. The number of
them with birth time te < c has binomial distribution BIN[D, c∕D], which approaches
(critically) the Poisson distribution with mean c. Given that there are l such e, their
birth times te are uniformly distributed. There are (by the codegree condition) o(D2)
pairs e, e′ containing 𝑣 and also some other vertex so there is probability o(1) that
two such e, e′ have birth time less than c. Now suppose Tc(𝑣) has been built out to
a certain level and a vertex 𝑤 has been born at time t. There are only o(D) common
edges between 𝑤 and any of the finite number of 𝑤′ already born, so there are still
about D edges e containing 𝑤 and no other such 𝑤

′. We now examine their birth
times, the number with te < x has binomial distribution BIN[D − o(D), x∕D] which
approaches the Poisson distribution with mean x. As above, almost surely no two
such e, e′ will have a common vertex other than 𝑤 itself. For any fixed T, the calcu-
lation of Pr[Tc(𝑣) ≅ T] involves a finite number of these limits, which allows us to
conclude (3.1).

With c < d, the random tree Td includes Tc as a subtree by considering only those
births of Eve occurring in [0, c). If Eve survives in Td, she must survive in Tc. Hence,
f (d) ≤ f (c). We now claim

lim
c→∞

f (c) = 0.

If not, the nondecreasing f would have a limit L > 0, and all f (x) ≥ L. Suppose in Tc
Eve had i births. In each birth there would be probability at least Lk that all k children
survived. The probability that Eve survived would then be at most (1 − Lk)i. Since
the number of Eve’s births is Poisson with mean c

f (c) ≤
∞∑

i=0

e−c ci

i!
(1 − Lk)i = e−Lkc

but then limc→∞ f (c) = 0, a contradiction.
By Linearity of Expectation, E[|Sc|] → f (c)n. As (k + 1)|Pc| + |Sc| = n,

E[|Pc|] → (1 − f (c))n∕(k + 1). But E[|P FINAL|] ≥ E[|Pc|]. We make f (c) arbitrarily
small by taking c appropriately big, so that E[|P FINAL|] ≥ (1 − o(1))n∕(k + 1). As|P FINAL| ≤ n∕(k + 1) always, the theorem follows.

Remark. We can actually say more about f (c). For Δc small, f (c + Δc) − f (c) ∼
−(Δc)f (c)k+1 as, roughly, an Eve starting at time c + Δc might have a birth in time
interval [c, c + Δc), all of whose children survive, while Eve has no births in [0, c),
all of whose children survive. Letting Δc → 0 yields the differential equation f ′(c) =
−f (c)k+1. The initial value f (0) = 1 gives a unique solution f (c) = (1 + ck)−1∕k . It is
intriguing to plug in c = D. This is not justified, as our limit arguments were for c
fixed and N,D → ∞. Nonetheless, that would yield E[|SD|] = O(ND−1∕k), that is,
the random greedy algorithm would leave O(ND−1∕k) vertices uncovered. Suppose
we replace the codegree condition by the stronger condition that every distinct pair
𝑣, 𝑣

′ ∈ V has at most one edge in common. There is computer simulation data which
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show that in those cases the random greedy algorithm does leave O(ND−1∕k) ver-
tices uncovered. This remains an open question, though it is shown in Alon, Kim and
Spencer (1997) that this is the case for a modified version of the greedy algorithm.

Corollary 3.6.2 Under the assumptions of the theorem, there exists a packing P of
size ∼ N∕(k + 1).

Proof. We have defined a random process that gives a packing with expected size
∼ N∕(k + 1), and our usual magic implies that such a P must exist. ◾

In particular, this gives an alternate proof to the Erdős–Hanani conjecture, first
proved by Rödl (1985) as given in Section 4.7. We use the notation of that section and
define the packing number m(n, k, l) as the maximal size of a family F of k-element
subsets of [n] = {1,… , n} such that no l-set is contained in more than one k-set.
Define a hypergraph H = H(n, k, l) as follows: The vertices of H are the l-element
subsets of [n]. For each k-element A ⊂ [n], we define an edge eA as the set of
l-element subsets of A. A family F satisfying the above conditions then corresponds

to a packing P = {eA ∶ A ∈ F} in H. H has N =
(

n
l

)
vertices. Each edge eA has size

K + 1 =
(

k
l

)
. Each vertex is in D =

(
n−l
k−l

)
edges. The number of edges containing

two vertices 𝑣, 𝑣
′ depends on their intersection. It is largest (given 𝑣 ≠ 𝑣

′) when

𝑣, 𝑣
′ (considered as l-sets) overlap in l − 1 points, and then it is

(
n−l−1
k−l−1

)
. We assume

(as in Section 4.7) that k, l are fixed and n → ∞ so this number of common edges
is o(D). The assumptions of Section 4.7 give K + 1 fixed, N,D → ∞, so that there
exists P with

m(n, k, l) = |P| ∼ N∕(K + 1) ∼
(n

l

)/(k
l

)
.

3.7 EXERCISES

1. As shown in Section 3.1, the Ramsey number R(k, k) satisfies

R(k, k) > n −
(n

k

)
2

1−
(

k
2

)

for every integer n. Conclude that

R(k, k) ≥ (1 − o(1))k
e

2k∕2.

2. Prove that the Ramsey number R(4, k) satisfies

R(4, k) ≥ Ω((k∕ ln k)2).
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3. Prove that every three-uniform hypergraph with n vertices and m ≥ n∕3 edges
contains an independent set (i.e., a set of vertices containing no edges) of size at
least

2n3∕2

3
√

3
√

m
.

4. (*) Show that there is a finite n0 such that any directed graph on n > n0 vertices
in which each outdegree is at least log2 n − 1

10
log2 log2 n contains an even simple

directed cycle.



THE PROBABILISTIC LENS:
High Girth and High
Chromatic Number

Many consider this one of the most pleasing uses of the probabilistic method, as the
result is surprising and does not appear to call for nonconstructive techniques. The
girth of a graph G is the size of its shortest cycle, 𝛼(G) is the size of the largest
independent set in G, and 𝜒(G) denotes its chromatic number.

Theorem 1 Erdős (1959) For all k, l, there exists a graph G with girth(G) > l and
𝜒(G) > k.

Proof. Fix 𝜃 < 1∕l and let G ∼ G(n, p) with p = n𝜃−1; that is, G is a random graph
on n vertices chosen by picking each pair of vertices as an edge randomly and inde-
pendently with probability p. Let X be the number of cycles of size at most l. Then

E[X] =
l∑

i=3

(n)i
2i

pi
≤

l∑
i=3

n𝜃i

2i
= o(n)

as 𝜃l < 1. In particular,
Pr[X ≥ n∕2] = o(1).

Set x = ⌈(3∕p) ln n⌉ so that

Pr[𝛼(G) ≥ x] ≤
(n

x

)
(1 − p)

(
x
2

)
<

[
ne−p(x−1)∕2]x = o(1).

Let n be sufficiently large so that both these events have probability less than
0.5. Then there is a specific G with less than n∕2 cycles of length at most l and
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with 𝛼(G) < 3n1−𝜃 ln n. Remove from G a vertex from each cycle of length at most
l. This gives a graph G∗ with at least n∕2 vertices. G∗ has girth greater than l and
𝛼(G∗) ≤ 𝛼(G). Thus

𝜒(G∗) ≥ |G∗|
𝛼(G∗)

≥
n∕2

3n1−𝜃 ln n
= n𝜃

6 ln n
.

To complete the proof, let n be sufficiently large so that this is greater than k. ◾



4
The Second Moment

Many persons who have not studied mathematics confuse it with arithmetic and consider
it a dry and arid science. Actually, however, this science requires great fantasy.
–Sophia Kovalevsky

4.1 BASICS

After expectation, the most vital statistic for a random variable X is the variance. We
denote it Var[X]. It is defined by

Var[X] = E[(X − E[X])2]

and measures how spread out X is from its expectation. We shall generally, follow-
ing standard practice, let 𝜇 denote expectation and 𝜎

2 denote variance. The positive
square root 𝜎 of the variance is called the standard deviation. With this notation, here
is our basic tool.

Theorem 4.1.1 [Chebyshev’s Inequality] For any positive 𝜆,

Pr[|X − 𝜇| ≥ 𝜆𝜎] ≤ 1
𝜆

2
.

Proof. 𝜎
2 = Var[X] = E[(X − 𝜇)2] ≥ 𝜆

2
𝜎

2 Pr[|X − 𝜇| ≥ 𝜆𝜎]. ◾

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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The use of Chebyshev’s Inequality is called the second moment method.
Chebyshev’s Inequality is best possible when no additional restrictions are placed

on X as X may be 𝜇 + 𝜆𝜎 and 𝜇 − 𝜆𝜎 with probability 1∕2𝜆2 and otherwise 𝜇. Note,
however, that when X is a normal distribution with mean 𝜇 and standard deviation 𝜎,
then

Pr[|X − 𝜇| ≥ 𝜆𝜎] = 2
∫

∞

𝜆

1√
2𝜋

e−t2∕2dt

and for 𝜆 large, this quantity is asymptotically
√

2∕𝜋e−𝜆
2∕2∕𝜆, which is significantly

smaller than 1∕𝜆2. In Chapters 7 and 8, we shall see examples where X is the sum of
“nearly independent” random variables and these better bounds can apply.

Suppose we have a decomposition

X = X1 + · · · + Xm .

Then Var[X] may be computed by the formula

Var[X] =
m∑

i=1

Var[Xi] +
∑
i≠j

Cov[Xi,Xj] .

Here the second sum is over ordered pairs, and the covariance Cov[Y, Z] is defined by

Cov[Y, Z] = E[YZ] − E[Y]E[Z] .

In general, if Y, Z are independent, then Cov[Y, Z] = 0. This often simplifies variance
calculations considerably. Now suppose further, as will generally be the case in our
applications, that the Xi are indicator random variables: that is, Xi = 1 if a certain
event Ai holds, and Xi = 0 otherwise. If Xi is one with probability pi = Pr[Ai], then

Var[Xi] = pi(1 − pi) ≤ pi = E[Xi] ,

and so
Var[X] ≤ E[X] +

∑
i≠j

Cov[Xi,Xj] .

4.2 NUMBER THEORY

The second moment method is an effective tool in number theory. Let 𝜈(n) denote
the number of primes p dividing n. (We do not count multiplicity though it would
make little difference.) The following result says, roughly, that “almost all” n have
“very close to” ln ln n prime factors. This was first shown by Hardy and Ramanujan
(1920) by a quite complicated argument. We give a remarkably simple proof of Turán
(1934), a proof that played a key role in the development of probabilistic methods in
number theory.
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Theorem 4.2.1 Let 𝜔(n) → ∞ arbitrarily slowly. Then the number of x in {1,… , n}
such that |𝜈(x) − ln ln n| > 𝜔(n)

√
ln ln n

is o(n).

Proof. Let x be randomly chosen from {1,… , n}. For p prime, set

Xp =
{

1 if p|x,
0 otherwise.

Set M = n1∕10 and set X =
∑

Xp, with the summation being over all primes p ≤ M.
As no x ≤ n can have more than 10 prime factors larger than M, we have 𝜈(x) − 10 ≤

X(x) ≤ 𝜈(x) so that large deviation bounds on X will translate into asymptotically
similar bounds for 𝜈. [Here 10 could be any (large) constant.] Now

E[Xp] =
⌊n∕p⌋

n
.

As y − 1 < ⌊y⌋ ≤ y,
E[Xp] = 1∕p + O(1∕n) .

By Linearity of Expectation,

E[X] =
∑
p≤M

(
1
p
+ O

(1
n

))
= ln ln n + O(1) ,

where we used the well-known fact that
∑

p≤x(1∕p) = ln ln x + O(1), which can be
proved by combining (in a clever way) Stirling’s formula with Abel summation.

Now we find an asymptotic expression for

Var[X] =
∑
p≤M

Var[Xp] +
∑
p≠q

Cov[Xp,Xq] .

As Var[Xp] = (1∕p)(1 − 1∕p) + O(1∕n),

∑
p≤M

Var[Xp] =

(∑
p≤M

1
p

)
+ O(1) = ln ln n + O(1) .

With p, q distinct primes, XpXq = 1 if and only if p|x and q|x, which occurs if and
only if pq|x. Hence

Cov[Xp,Xq] = E[XpXq] − E[Xp]E[Xq]

=
⌊n∕pq⌋

n
−

⌊n∕p⌋
n

⌊n∕q⌋
n
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≤
1

pq
−
(

1
p
− 1

n

)(
1
q
− 1

n

)

≤
1
n

(
1
p
+ 1

q

)
.

Thus ∑
p≠q

Cov[Xp,Xq] ≤
1
n

∑
p≠q

(
1
p
+ 1

q

)
≤

2M
n

∑ 1
p

.

Thus ∑
p≠q

Cov[Xp,Xq] ≤ O(n−9∕10 ln ln n) = o(1)

and similarly ∑
p≠q

Cov[Xp,Xq] ≥ −o(1) .

That is, the covariances do not affect the variance Var[X] = ln ln n + O(1), and
Chebyshev’s inequality actually gives

Pr
[|X − ln ln n| > 𝜆

√
ln ln n

]
< 𝜆

−2 + o(1)

for any constant 𝜆 > 0. As |X − 𝜈| ≤ 10, the same holds for 𝜈. ◾

In a classic paper, Erdős and Kac (1940) showed, essentially, that 𝜈 does behave
like a normal distribution with mean and variance ln ln n. Here is their precise result:

Theorem 4.2.2 Let 𝜆 be fixed, positive, negative, or zero. Then

lim
n→∞

1
n

||||
{

x ∶ 1 ≤ x ≤ n, 𝜈(x) ≥ ln ln n + 𝜆

√
ln ln n

}|||| = ∫

∞

𝜆

1√
2𝜋

e−t2∕2dt .

Proof. We outline the argument, emphasizing the similarities to Turán’s proof.
Fix a function s(n) with s(n) → ∞ and s(n) = o((ln ln n)1∕2)—for example,
s(n) = ln ln ln n. Set M = n1∕s(n). Set X =

∑
Xp, the summation over all primes

p ≤ M. As no x ≤ n can have more than s(n) prime factors greater than M, we
have 𝜈(x) − s(n) ≤ X(x) ≤ 𝜈(x) so that it suffices to show Theorem 4.2.2 with 𝜈

replaced by X. Let Yp be independent random variables with Pr[Yp = 1] = p−1,
Pr[Yp = 0] = 1 − p−1, and set Y =

∑
Yp, the summation over all primes p ≤ M. This

Y represents an idealized version of X. Set

𝜇 = E[Y] =
∑
p≤M

p−1 = ln ln n + o
(
(ln ln n)1∕2)
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and
𝜎

2 = Var[Y] =
∑
p≤M

p−1(1 − p−1) ∼ ln ln n

and define the normalized Ỹ = (Y − 𝜇)∕𝜎. From the central limit theorem, Ỹ
approaches the standard normal N and E[Ỹk] → E[Nk] for every positive integer k.
Set X̃ = (X − 𝜇)∕𝜎. We compare X̃, Ỹ .

For any distinct primes p1,… , ps ≤ M,

E[Xp1
· · ·Xps

] − E[Yp1
· · ·Yps

] = 1
n

⌊
n

p1 · · · ps

⌋
− 1

p1 · · · ps
= O(n−1) .

We let k be an arbitrary fixed positive integer and compare E[X̃k] and E[Ỹk]. Expand-
ing, X̃k is a polynomial in X with coefficients no(1). Further expanding each
Xj = (

∑
Xp)j—always reducing Xa

p to Xp when a ≥ 2—gives the sum of
O(Mk) = no(1) terms of the form Xp1

· · ·Xps
. The same expansion applies to Ỹ .

As the corresponding terms have expectations within O(n−1), the total difference

E[X̃k] − E[Ỹk] = n−1+o(1) = o(1) .

Hence, each moment of X̃ approaches that of the standard normal N. A standard,
though nontrivial, theorem in probability theory gives that X̃ must therefore approach
N in distribution. ◾

We recall the famous quotation of G. H. Hardy:

317 is a prime, not because we think so, or because our minds are shaped in one way
rather than another, but because it is so, because mathematical reality is built that way.

How ironic—though not contradictory—that the methods of probability theory can
lead to a greater understanding of the prime factorization of integers! Additional
results applying information about the moments of a distribution in order to determine
it appear in Chapter 8; see also Billingsley (1995).

4.3 MORE BASICS

Let X be a nonnegative integral-valued random variable, and suppose we want to
bound Pr[X = 0] given the value 𝜇 = E[X]. If 𝜇 < 1, we may use the inequality

Pr[X > 0] ≤ E[X]

so that, if E[X] → 0, then X = 0 almost always. (Here we are imagining an infinite
sequence of X dependent on some parameter n going to infinity.) But now suppose
E[X] → ∞. It does not necessarily follow that X > 0 almost always. For example,
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let X be the number of deaths due to nuclear war in the 12 months after reading this
paragraph. Calculation of E[X] can make for lively debate, but few would deny that
it is quite large. Yet we may believe—or hope—that Pr[X ≠ 0] is very close to zero.
We can sometimes deduce X > 0 almost always if we have further information about
Var[X].

Theorem 4.3.1 Pr[X = 0] ≤ Var[X]
E[X]2

.

Proof. Set 𝜆 = 𝜇∕𝜎 in Chebyshev’s Inequality. Then

Pr[X = 0] ≤ Pr[|X − 𝜇| ≥ 𝜆𝜎] ≤ 1
𝜆

2
= 𝜎

2

𝜇
2

. ◾

We generally apply this result in asymptotic terms.

Corollary 4.3.2 If Var[X] = o(E[X]2), then X > 0 almost always.

The proof of Theorem 4.3.1 actually gives that, for any 𝜖 > 0,

Pr[|X − E[X]| ≥ 𝜖E[X]] ≤ Var[X]
𝜖

2E[X]2

and thus in asymptotic terms we actually have the following stronger assertion:

Corollary 4.3.3 If Var[X] = o(E[X]2), then X ∼ E[X] almost always.

Suppose, again, X = X1 + · · · + Xm, where Xi is the indicator random variable for
event Ai. For indices i, j, write i ∼ j if i ≠ j and the events Ai,Aj are not independent.
We set (the sum over ordered pairs)

Δ =
∑
i∼j

Pr[Ai ∧ Aj] .

Note that, when i ∼ j

Cov[Xi,Xj] = E[XiXj] − E[Xi]E[Xj] ≤ E[XiXj] = Pr[Ai ∧ Aj]

and that when i ≠ j and not i ∼ j, then Cov[Xi,Xj] = 0. Thus

Var[X] ≤ E[X] + Δ .

Corollary 4.3.4 If E[X] → ∞ and Δ = o(E[X]2), then X > 0 almost always. Fur-
thermore X ∼ E[X] almost always.

Let us say X1,… ,Xm are symmetric if for every i ≠ j there is a measure preserving
mapping of the underlying probability space that permutes the m events and sends
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event Ai to event Aj. Examples will appear in the next section. In this instance, we
write

Δ =
∑
i∼j

Pr[Ai ∧ Aj] =
∑

i

Pr[Ai]
∑
j∼i

Pr[Aj | Ai]

and note that the inner summation is independent of i. We set

Δ∗ =
∑
j∼i

Pr[Aj | Ai] ,

where i is any fixed index. Then

Δ =
∑

i

Pr[Ai]Δ∗ = Δ∗
∑

i

Pr[Ai] = Δ∗E[X] .

Corollary 4.3.5 If E[X] → ∞ and Δ∗ = o(E[X]), then X > 0 almost always. Fur-
thermore, X ∼ E[X] almost always.

The condition of Corollary 4.3.5 has the intuitive sense that conditioning on any
specific Ai holding does not substantially increase the expected number E[X] of events
holding.

4.4 RANDOM GRAPHS

The random graph G(n, p) is, informally, the graph on n labeled vertices, obtained
by selecting each pair of vertices to be an edge, randomly and independently, with
probability p. A property of graphs is a family of graphs closed under isomorphism.
A function r(n) is a threshold function for some property P, if whenever p = p(n) ≪
r(n), then G(n, p) does not satisfy P almost always, and whenever p ≫ r(n), then
G(n, p) satisfies P almost always. For more precise definitions of the random graph
G(n, p) and of threshold functions, see Section 10.1.

The results of this section are generally surpassed by those of Chapter 10 but
they were historically the first results and provide a good illustration of the second
moment. We begin with a particular example. By 𝜔(G) we denote here and in the rest
of the book the number of vertices in the maximum clique of the graph G.

Theorem 4.4.1 The property 𝜔(G) ≥ 4 has threshold function n−2∕3.

Proof. For every 4-set S of vertices in G(n, p), let AS be the event “S is a clique” and
XS its indicator random variable. Then

E[XS] = Pr[AS] = p6

as six different edges must all lie in G(n, p). Set

X =
∑
|S|=4

XS
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so that X is the number of 4-cliques in G, and 𝜔(G) ≥ 4 if and only if X > 0. Linearity
of Expectation gives

E[X] =
∑
|S|=4

E[XS] =
(n

4

)
p6 ∼

n4p6

24
.

When p(n) ≪ n−2∕3, E[X] = o(1) and so X = 0, almost surely.
Now suppose p(n) ≫ n−2∕3 so that E[X] → ∞, and consider the Δ∗ of Corollary

4.3.5. (All 4-sets “look the same” so that the XS are symmetric.) Here S ∼ T if and
only if S ≠ T and S, T have common edges, that is, if and only if |S ∩ T| = 2 or 3.
Fix S. There are O(n2) sets T with |S ∩ T| = 2, and for each of these, Pr[AT | AS] = p5.
There are O(n) sets T with |S ∩ T| = 3, and for each of these Pr[AT | AS] = p3. Thus

Δ∗ = O(n2p5) + O(np3) = o(n4p6) = o(E[X])

since p ≫ n−2∕3. Corollary 4.3.5 therefore applies and X > 0; that is, there does exist
a clique of size 4, almost always. ◾

The proof of Theorem 4.4.1 appears to require a fortuitous calculation of Δ∗. The
following definitions pave the way for the more general Theorem 4.4.2:

Definition 1 Let H be a graph with 𝑣 vertices and e edges. We call 𝜌(H) = e∕𝑣 the
density of H. We call H balanced if every subgraph H′ has 𝜌(H′) ≤ 𝜌(H). We call H
strictly balanced if every proper subgraph H′ has 𝜌(H′) < 𝜌(H).

Example. K4 and, in general, Kk are strictly balanced. The graph

is not balanced, as it has density 7∕5, while the subgraph K4 has density 3∕2. The
graph

is balanced but not strictly balanced as it and its subgraph K4 have density 3∕2.

Theorem 4.4.2 Let H be a balanced graph with 𝑣 vertices and e edges. Let A(G) be
the event that H is a subgraph (not necessarily induced) of G. Then p = n−𝑣∕e is the
threshold function for A.

Proof. We follow the argument of Theorem 4.4.1. For each 𝑣-set S, let AS be the
event that G|S contains H as a subgraph. Then

pe
≤ Pr[AS] ≤ 𝑣!pe .
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(Any particular placement of H has probability pe of occurring and there are at most 𝑣!
possible placements. The precise calculation of Pr[AS] is, in general, complicated due
to the overlapping of potential copies of H.) Let XS be the indicator random variable
for AS and

X =
∑
|S|=𝑣 XS

so that A holds if and only if X > 0. Linearity of expectation gives

E[X] =
∑
|S|=𝑣 E[XS] =

(n
𝑣

)
Pr[AS] = Θ(n𝑣pe) .

If p ≪ n−𝑣∕e, then E[X] = o(1), so X = 0 almost always.
Now assume p ≫ n−𝑣∕e so that E[X] → ∞ and consider the Δ∗ of Corollary 4.3.5.

(All 𝑣-sets look the same, so the XS are symmetric.) Here S ∼ T if and only if S ≠ T
and S, T have common edges, that is, if and only if |S ∩ T| = i with 2 ≤ i ≤ 𝑣 − 1.
Let S be fixed. We split

Δ∗ =
∑
T∼S

Pr[AT | AS] =
𝑣−1∑
i=2

∑
|T∩S|=i

Pr[AT | AS] .

For each i, there are O(n𝑣−i) choices of T. Fix S, T and consider Pr[AT | AS]. There are
O(1) possible copies of H on T. Each has—since, critically, H is balanced—at most
ie∕𝑣 edges with both vertices in S and thus at least e − (ie∕𝑣) other edges. Hence

Pr[AT | AS] = O
(
pe−(ie∕𝑣))

and

Δ∗ =
𝑣−1∑
i=2

O
(
n𝑣−ipe−(ie∕𝑣))

=
𝑣−1∑
i=2

O
(
(n𝑣pe)1−i∕𝑣)

=
𝑣−1∑
i=2

o(n𝑣pe)

= o(E[X])

since n𝑣pe → ∞. Hence Corollary 4.3.5 applies. ◾

Theorem 4.4.3 In the notation of Theorem 4.4.2, if H is not balanced, then p = n−𝑣∕e

is not the threshold function for A.
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Proof. Let H1 be a subgraph of H with 𝑣1 vertices, e1 edges, and e1∕𝑣1 > e∕𝑣. Let
𝛼 satisfy 𝑣1∕e1 < 𝛼 < 𝑣∕e, and set p = n−𝛼 . The expected number of copies of H1 is
then o(1), so almost always G(n, p) contains no copy of H1. But if it contains no copy
of H1, then it surely can contain no copy of H. ◾

The threshold function for the property of containing a copy of H, for general H,
was examined in the original papers of Erdős and Rényi (1960). It still provides an
excellent introduction to the theory of random graphs. Let H1 be that subgraph with
maximal density 𝜌(H1) = e1∕𝑣1. (When H is balanced, we may take H1 = H.) They
showed that p = n−𝑣1∕e1 is the threshold function. We do not show this here though
it follows fairly straightforwardly from these methods.

We finish this section with two strengthenings of Theorem 4.4.2.

Theorem 4.4.4 Let H be balanced with 𝑣 vertices, e edges and a automorphisms. Let
X be the number of copies of H in G(n, p). Assume p ≫ n−𝑣∕e. Then almost always

X ∼
n𝑣pe

a
.

Proof. Label the vertices of H by 1,… , 𝑣. For each ordered x1,… , x
𝑣
, let Ax1,…,x

𝑣

be the event in which x1,… , x
𝑣

provides a copy of H in that order. Specifically we
define

Ax1,…,x
𝑣

∶ {i, j} ∈ E(H) ⇒ {xi, xj} ∈ E(G) .

We let Ix1,…,x
𝑣

be the corresponding indicator random variable. We define an equiv-
alence class on 𝑣-tuples by setting (x1,… , x

𝑣
) ≡ (y1,… , y

𝑣
) if there is an automor-

phism 𝜎 of V(H) so that y
𝜎(i) = xi for 1 ≤ i ≤ 𝑣. Then

X =
∑

Ix1,…,x
𝑣

gives the number of copies of H in G, where the sum is taken over one entry from
each equivalence class. As there are (n)

𝑣
∕a terms,

E[X] =
(n)

𝑣

a
E[Ix1,…,x

𝑣

] =
(n)

𝑣
pe

a
∼

n𝑣pe

a
.

Our assumption p ≫ n−𝑣∕e implies E[X] → ∞. It suffices therefore to show Δ∗ =
o(E[X]). Fixing x1,… , x

𝑣
,

Δ∗ =
∑

(y1,…,y
𝑣
)∼(x1,…,x

𝑣
)
Pr[A(y1,…,y

𝑣
) | A(x1,…,x

𝑣
)] .

There are 𝑣!∕a = O(1) terms with {y1,… , y
𝑣
} = {x1,… , x

𝑣
}, and for each, the con-

ditional probability is at most 1 (actually, at most p), thus contributing O(1) = o(E[X])
toΔ∗. When {y1,… , y

𝑣
} ∩ {x1,… , x

𝑣
} has i elements, 2 ≤ i ≤ 𝑣 − 1, the argument of
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Theorem 4.4.2 gives that the contribution to Δ∗ is o(E[X]). Altogether, Δ∗ = o(E[X])
and we apply Corollary 4.3.5. ◾

Theorem 4.4.5 Let H be any fixed graph. For every subgraph H′ of H (including H
itself), let XH′ denote the number of copies of H′ in G(n, p). Assume p is such that
E[XH′ ] → ∞ for every H′. Then

XH ∼ E[XH]

almost always.

Proof. Let H have 𝑣 vertices and e edges. As in Theorem 4.4.4, it suffices to show
Δ∗ = o(E[X]). We split Δ∗ into a finite number of terms. For each H′ with 𝑤 vertices
and f edges, we have those (y1,… , y

𝑣
) that overlap with the fixed (x1,… , x

𝑣
) in a

copy of H′. These terms contribute, up to constants,

n𝑣−𝑤pe−f = Θ

(
E
[
XH

]
E[XH′ ]

)
= o(E[XH])

to Δ∗. Hence Corollary 4.3.5 does apply. ◾

4.5 CLIQUE NUMBER

Now we fix the edge probability p = 1
2

and consider the clique number 𝜔(G). We set

f (k) =
(n

k

)
2
−
(

k
2

)
,

the expected number of k-cliques. The function f (k) drops under one at k ∼ 2log2 n.
(Very roughly, f (k) is like nk2−k2∕2.)

Theorem 4.5.1 Let k = k(n) satisfy k ∼ 2log2 n and f (k) → ∞. Then almost always
𝜔(G) ≥ k.

Proof. For each k-set S, let AS be the event “S is a clique” and XS the corresponding
indicator random variable. We set

X =
∑
|S|=k

XS

so that 𝜔(G) ≥ k if and only if X > 0. Then E[X] = f (k) → ∞, and we examine the
Δ∗ of Corollary 4.3.5. Fix S and note that T ∼ S if and only if |T ∩ S| = i, where
2 ≤ i ≤ k − 1. Hence

Δ∗ =
k−1∑
i=2

(k
i

)(n − k
k − i

)
2

(
i
2

)
−
(

k
2

)
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and so
Δ∗

E[X]
=

k−1∑
i=2

g(i),

where we set

g(i) =

(
k
i

)(
n−k
k−i

)
(

n
k

) 2

(
i
2

)
.

Observe that g(i) may be thought of as the probability that a randomly chosen T will
intersect a fixed S in i points times the factor increase in Pr[AT] when it does. Setting
i = 2,

g(2) = 2

(
k
2

)(
n−k
k−2

)
(

n
k

) ∼ k4

n2
≤ o(n−1) .

At the other extreme i = k − 1,

g(k − 1) = k(n − k)2−(k−1)(
n
k

)
2
−
(

k
2

) ∼ 2kn2−k

E[X]
.

As k ∼ 2log2 n, the numerator is n−1+o(1). The denominator approaches infinity and so
g(k − 1) ≤ o(n−1). Some detailed calculation (which we omit) gives that the remain-
ing g(i) and their sum are also negligible so that Corollary 4.3.5 applies. ◾

Theorem 4.5.1 leads to a strong concentration result for 𝜔(G). For k ∼ 2log2 n,

f (k + 1)
f (k)

= n − k
k + 1

2−k = n−1+o(1) = o(1) .

Let k0 = k0(n) be that value with f (k0) ≥ 1 > f (k0 + 1). For “most” n, the function
f (k) will jump from a large f (k0) to a small f (k0 + 1). The probability that G contains
a clique of size k0 + 1 is at most f (k0 + 1), which will be very small. When f (k0)
is large, Theorem 4.5.1 implies that G contains a clique of size k0 with probability
nearly 1. Together, with very high probability 𝜔(G) = k0. For some n, one of the
values f (k0), f (k0 + 1) may be of moderate size so this argument does not apply. Still
one may show a strong concentration of the result found independently by Bollobás
and Erdős (1976) and Matula (1976).

Corollary 4.5.2 There exists k = k(n) so that

Pr[𝜔(G) = k or k + 1] → 1 .

We give yet stronger results on the distribution of 𝜔(G) in Section 10.2.
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4.6 DISTINCT SUMS

A set x1,… , xk of positive integers is said to have distinct sums if all sums∑
i∈S

xi, S ⊆ {1,… , k}

are distinct. Let f (n) denote the maximal k for which there exists a set

{x1,… , xk} ⊂ {1,… , n}

with distinct sums. The simplest example of a set with distinct sums is {2i ∶ i ≤
log2 n}. This example shows

f (n) ≥ 1 + ⌊log2 n⌋ .

Erdős offered $300 for a proof or disproof that

f (n) ≤ log2 n + C

for some constant C. From above, as all 2f (n) sums are distinct and less than nk,

2f (n)
< nk = nf (n) ,

and so
f (n) < log2 n + log2 log2 n + O(1) .

Examination of the second moment gives a modest improvement. Fix {x1,… , xk} ⊂

{1,… , n} with distinct sums. Let 𝜖1,… , 𝜖k be independent with

Pr[𝜖i = 1] = Pr[𝜖i = 0] = 1∕2

and set
X = 𝜖1x1 + · · · + 𝜖kxk .

(We may think of X as a random sum.) Set

𝜇 = E[X] =
x1 + · · · + xk

2

and 𝜎
2 = Var[X]. We bound

𝜎
2 =

x2
1 + · · · + x2

k

4
≤

n2k
4
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so that 𝜎 ≤ n
√

k∕2. By Chebyshev’s Inequality, for any 𝜆 > 1,

Pr
[|X − 𝜇| ≥ 𝜆n

√
k∕2

]
≤ 𝜆

−2 .

Reversing,

1 − 1
𝜆

2
≤ Pr

[|X − 𝜇| < 𝜆n
√

k∕2
]

.

But X has any particular value with probability either zero or 2−k since, critically, a
sum can be achieved in at most one way. Thus

Pr
[|X − 𝜇| < 𝜆n

√
k∕2

]
≤ 2−k(𝜆n

√
k + 1)

and

n ≥
2k(1 − 𝜆

−2) − 1√
k𝜆

.

While 𝜆 =
√

3 gives optimal results, any choice of 𝜆 > 1 gives the following:

Theorem 4.6.1 f (n) ≤ log2 n + (1∕2)log2 log2 n + O(1).

4.7 THE RÖDL NIBBLE

For 2 ≤ l < k < n, let M(n, k, l), the covering number, denote the minimal size of a
family  of k-element subsets of {1,… , n} having the property that every l-element

set is contained in at least one A ∈ . Clearly, M(n, k, l) ≥
(

n
l

)
∕
(

k
l

)
since each

k-set covers
(

k
l

)
l-sets and every l-set must be covered. Equality holds if and only

if the family  has the property that every l-set is contained in exactly one A ∈ .
This is called an (n, k, l) tactical configuration (or block design). For example, (n, 3, 2)
tactical configurations are better known as Steiner Triple Systems. The question of
the existence of tactical configurations, raised by Steiner in 1853, has been a central
one for combinatorics. In the previous editions of this book, we have written that this
question is one for which probabilistic methods (at least so far!) played little role.
Very recently, Keevash (2014) settled this question using a sophisticated combina-
tion of probabilistic and algebraic arguments. He proved that whenever the necessary
divisibility conditions hold, and n is sufficiently large as a function of k and l, then an
(n, k, l) block design exists. The full argument is complicated, and we will not give it
here. Instead, we present a simpler result, proving the existence of asymptotic near
designs.

In 1963, Paul Erdős and Haim Hanani conjectured that for fixed 2 ≤ l < k,

lim
n→∞

M(n, k, l)(
n
l

)/(
k
l

) = 1.
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Their conjecture was, roughly, that one can get asymptotically close to a tactical
configuration. While this conjecture seemed ideal for a probabilistic analysis, it was a
full generation before Rödl (1985) found the proof, which we describe in this section.
[One may similarly define the packing number m(n, k, l) as the maximal size of a
family  of k-element subsets of {1,… , n} having the property that every l-element
set is contained in at most one A ∈ . Erdős and Hanani noticed from elementary
arguments that

lim
n→∞

M(n, k, l)(
n
l

)/(
k
l

) = 1 ⇐⇒ lim
n→∞

m(n, k, l)(
n
l

)/(
k
l

) = 1.

While the Rödl result may be formulated in terms of either packing or covering, here
we deal only with the covering problem.]

Several researchers realized that the Rödl method applies in a much more general
setting, dealing with covers in uniform hypergraphs.This was first observed by Frankl
and Rödl and has been simplified and extended by Pippenger and Spencer (1989) as
well as by Kahn (1996). Our treatment here follows the one in Pippenger and Spencer
(1989) and is based on the description of Füredi (1988), where the main tool is the
second moment method.

For an r-uniform hypergraph H = (V ,E) and for a vertex x ∈ V , we let dH(x) [or
simply d(x), when there is no danger of confusion] denote the degree of x in H, that
is, the number of edges containing x. Similarly, for x, y ∈ V , d(x, y) = dH(x, y) is the
number of edges of H containing both x and y. A covering of H is a set of edges
whose union contains all vertices. In what follows, whenever we write ±𝛿 we mean
a quantity between −𝛿 and 𝛿. The following theorem is due to Pippenger, following
Frankl and Rödl.

Theorem 4.7.1 For every integer r ≥ 2 and reals k ≥ 1 and a > 0, there are
𝛾 = 𝛾(r, k, a) > 0 and d0 = d0(r, k, a) such that for every n and D ≥ d0 the following
holds:

Every r-uniform hypergraph H = (V ,E) on a set V of n vertices in which all ver-
tices have positive degrees and which satisfies the following conditions:

(1) For all vertices x ∈ V but at most 𝛾n of them, d(x) = (1 ± 𝛾)D;

(2) For all x ∈ V, d(x) < kD;

(3) For any two distinct x, y ∈ V, d(x, y) < 𝛾D;

contains a cover of at most (1 + a)(n∕r) edges.

The basic idea in the proof is simple. Fixing a small 𝜖 > 0, one shows that a ran-
dom set of roughly 𝜖n∕r edges has, with high probability, only some O(𝜖2n) vertices
covered more than once, and hence covers at least 𝜖n − O(𝜖2n) vertices. Moreover,
after deleting the vertices covered, the induced hypergraph on the remaining vertices
still satisfies the properties described in (1), (2), and (3) above (for some other val-
ues of n, 𝛾 , k, and D). Therefore, one can choose again a random set of edges of this
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hypergraph, covering roughly an 𝜖-fraction of its vertices with nearly no overlaps.
Proceeding in this way for a large number of times, we are finally left with at most
𝜖n uncovered vertices, and we then cover them trivially by taking for each of them an
arbitrarily chosen edge containing it. Since 𝜖 is sufficiently small, although this last
step is very inefficient, it can be tolerated.

The technical details require a careful application of the second moment method,
used several times in the proof of the following lemma:

Lemma 4.7.2 For every integer r ≥ 2 and reals K ≥ 1 and 𝜖 > 0, and for every real
𝛿
′
> 0, there are 𝛿 = 𝛿(r,K, 𝜖, 𝛿

′) > 0 and D0 = D0(r,K, 𝜖, 𝛿
′) such that for every n

and D ≥ D0 the following holds:
Every r-uniform hypergraph H = (V ,E) on a set V of n vertices which satisfies the

following conditions:

(i) For all vertices x ∈ V but at most 𝛿n of them, d(x) = (1 ± 𝛿)D;

(ii) For all x ∈ V, d(x) < KD;

(iii) For any two distinct x, y ∈ V, d(x, y) < 𝛿D;

contains a set E′ of edges with the following properties:

(iv) |E′| = (𝜖n∕r)(1 ± 𝛿
′).

(v) The set V′ = V − ∪e∈E′e is of cardinality |V ′| = ne−𝜖(1 ± 𝛿
′).

(vi) For all vertices x ∈ V ′ but at most 𝛿′|V′| of them, the degree d′(x) of x in the
induced hypergraph of H on V′ satisfies d′(x) = De−𝜖(r−1)(1 ± 𝛿

′).

Proof. Throughout the proof we assume, whenever this is needed, that D (and
hence n) is sufficiently large. We denote by 𝛿1, 𝛿2,… positive constants (that can be
explicitly estimated) that tend to 0 when 𝛿 tends to 0 and D tends to infinity (for fixed
r,K, 𝜖). Therefore, by choosing 𝛿 and D0 appropriately, we can ensure that each of
those will be smaller than 𝛿

′.
Let E′ be a random subset of E obtained by picking, randomly and independently,

each edge in E to be a member of E′ with probability p = 𝜖∕D. We have to show that
with positive probability, the properties (iv), (v), and (vi) hold.

The proof that (iv) holds is easy. Note that, by the assumptions, H has at least
(1 − 𝛿)n vertices of degree at least (1 − 𝛿)D, showing that its number of edges is at
least (1 − 𝛿)2nD∕r. Similarly, the number of edges of H does not exceed [(1 + 𝛿)
Dn + 𝛿nKD]∕r. Therefore |E| = (1 ± 𝛿1)Dn∕r. It follows that the expected value of
the size of E′ satisfies E[|E′|] = |E|p = (1 ± 𝛿1)(𝜖n∕r) and its variance is Var[|E′|] =|E|p(1 − p) ≤ (1 ± 𝛿1)(𝜖n∕r). Therefore, by Chebyshev’s inequality, for an appropri-
ately chosen 𝛿2 > 0,

Pr
[|E′| = (1 ± 𝛿2)

𝜖n
r

]
> 0.99,

say, giving (iv).
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To prove (v), define for each vertex x ∈ V an indicator random variable Ix, where
Ix = 1 if x ∉ ∪e∈E′e and Ix = 0 otherwise. Note that |V ′| = ∑

x∈VIx. Call a vertex
x ∈ V good if d(x) = (1 ± 𝛿)D; otherwise call it bad. If x is good, then

E[Ix] = Pr[Ix = 1] = (1 − p)d(x) =
(

1 − 𝜖

D

)(1±𝛿)D
= e−𝜖(1 ± 𝛿3) .

If x is bad, then, clearly, 0 ≤ E[Ix] ≤ 1. Since there are at most 𝛿n bad vertices, it
follows, by Linearity of Expectation, that the expected value of |V ′| is ne−𝜖(1 ± 𝛿4).

To compute the variance of |V ′| = ∑
x∈VIx, note that

Var[|V′|] = ∑
x∈V

Var[Ix] +
∑

x,y∈V ,x≠y

Cov[Ix, Iy]

≤ E[|V′|] + ∑
x,y∈V ,x≠y

Cov[Ix, Iy] .

However,

Cov[Ix, Iy] = E[IxIy] − E[Ix]E[Iy]

= (1 − p)d(x)+d(y)−d(x,y) − (1 − p)d(x)+d(y)

≤ (1 − p)−d(x,y) − 1 ≤

(
1 − 𝜖

D

)−𝛿D
− 1 ≤ 𝛿5 .

It follows that
Var[|V′|] ≤ E[|V ′|] + 𝛿5n2

≤ 𝛿6(E[|V ′|])2 ,

which, by Chebyshev, implies that with probability at least 0.99

|V′| = (1 ± 𝛿7)E[|V ′|] = (1 ± 𝛿8)ne−𝜖 ,

as claimed in (v).
It remains to prove (vi). To do so, note, first, that all but at most 𝛿9n vertices x

satisfy the following two conditions:

(A) d(x) = (1 ± 𝛿)D, and

(B) all but at most 𝛿10D edges e ∈ E with x ∈ e satisfy

|{f ∈ E ∶ x ∉ f , f ∩ e ≠ ∅}| = (1 ± 𝛿11)(r − 1)D . (4.1)

Indeed, (A) holds for all but 𝛿n < 𝛿9n∕2 vertices, by assumption. Moreover, the
total number of edges containing vertices whose degrees are not (1 ± 𝛿)D is at most
𝛿nKD and hence the number of vertices contained in more than 𝛿10D such edges
is at most 𝛿nKDr∕(𝛿10D) ≤ 𝛿9n∕2 for an appropriate choice of 𝛿9, 𝛿10. Note, next,
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that if x ∈ e and e contains no vertex of degree which is not (1 ± 𝛿)D, then, since
d(y, z) < 𝛿D for all y, z, the number of edges f not containing x that intersect e is
at most (r − 1)(1 ± 𝛿)D and at least (r − 1)(1 ± 𝛿)D −

(
r−1

2

)
𝛿D, and hence e satis-

fies (4.1).
It thus suffices to show that, for most of the vertices x satisfying (A) and (B), d′(x)

satisfies (vi). Fix such a vertex x. Call an edge e with x ∈ e good if it satisfies (4.1).
Conditioning on x ∈ V ′, the probability that a good edge containing x stays in the
hypergraph on V ′ is (1 − p)(1±𝛿11)(r−1)D. Therefore the expected value of d′(x) is

E[d′(x)] = (1 ± 𝛿10 ± 𝛿)D(1 − p)(1±𝛿11)(r−1)D ± 𝛿10D = e−𝜖(r−1)D(1 ± 𝛿12) .

For each edge e containing x, let Ie denote the indicator random variable whose value
is 1 iff e is contained in V′. Then, the degree d′(x) is simply the sum of these indicator
random variables, conditioned on x ∈ V ′. It follows that

Var[d′(x)] ≤ E[d′(x)] +
∑

x∈e,x∈f

Cov[Ie, If ]

≤ E[d′(x)] + 2𝛿10D2(1 ± 𝛿) +
∑

x∈e,x∈f ,e,f good

Cov[Ie, If ] .

It remains to bound the sum
∑

x∈e,x∈f ,e,f goodCov[Ie, If ]. For each fixed good e, this
sum is a sum of the form

∑
x∈f ,f goodCov[Ie, If ]. There are at most (r − 1)𝛿D edges f

in the last sum for which |e ∩ f | > 1, and their contribution to the sum cannot exceed
(r − 1)𝛿D. If e ∩ f = {x}, then let t(e, f ) denote the number of edges of H that intersect
both e and f and do not contain x. Clearly, in this case, t(e, f ) ≤ (r − 1)2𝛿D. It follows
that for such e and f , Cov[Ie, If ] ≤ (1 − p)−t(e,f ) − 1 ≤ 𝛿13, implying that for each fixed
good edge e, ∑

x∈f ,f good

Cov[Ie, If ] ≤ (r − 1)𝛿D + D(1 + 𝛿)𝛿13 ≤ 𝛿14D .

As the sum
∑

x∈e,x∈f ,e,f goodCov[Ie, If ] is the sum of at most D(1 + 𝛿) such quantities,
we conclude that

Var[d′(x)] ≤ E[d′(x)] + 𝛿15D2
≤ 𝛿16(E[d′(x)])2 .

It thus follows, by Chebyshev, that with probability at most 𝛿17, d′(x) is not
(1 ± 𝛿18)De−𝜖(r−1), and therefore, by Markov, that with probability at least, say, 0.99,
for all but at most 𝛿19n vertices, d′(x) = (1 ± 𝛿18)De−𝜖(r−1). This completes the proof
of the lemma. ◾

Proof. [Theorem 4.7.1] Fix 𝜖 > 0 such that

𝜖

1 − e−𝜖
+ r𝜖 < 1 + a ,
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and fix 1∕10 > 𝛿 > 0 such that

(1 + 4𝛿) 𝜖

1 − e−𝜖
+ r𝜖 < 1 + a .

Fix an integer t so that e−𝜖t
< 𝜖. The theorem is proved by applying the lemma t

times. Put 𝛿 = 𝛿t and then define, by reverse induction, 𝛿t > 𝛿t−1 > · · · > 𝛿0 such
that 𝛿i ≤ 𝛿i+1e−𝜖(r−1),

∏t
i=0(1 + 𝛿i) < 1 + 2𝛿, and for n ≥ D ≥ Ri one can apply the

lemma with r, K = ke𝜖i(r−1), 𝜖, 𝛿′ = 𝛿i+1 and 𝛿 = 𝛿i. This will give the assertion of
the theorem with 𝛾 = 𝛿0, d0 = maxRi. Indeed, by applying the lemma repeatedly we
obtain a decreasing sequence of sets of vertices V = V0,V1,… ,Vt, each contained in
the previous one, and a sequence of sets of edges E1,E2,… ,Et, where Ei is the set of
edges E′ obtained in the application of the lemma to the hypergraph induced on Vi−1.
Here

|Vi| = |Vi−1|e−𝜖(1 ± 𝛿i) ( = |V0|e−i𝜖(1 ± 2𝛿) ) ,

|Ei| = 𝜖|Vi−1|
r

(1 ± 𝛿i) ≤ (1 + 4𝛿)𝜖n
r

e−(i−1)𝜖
,

and
Di = Di−1e−𝜖(r−1) = De−𝜖i(r−1) .

By covering each vertex of Vt separately by an edge containing it, we conclude that
the total number of edges in the cover obtained is at most

(1 + 4𝛿)
t−1∑
i=0

𝜖n
r

e−i𝜖 + |Vt| ≤ (1 + 4𝛿)𝜖n
r

1
1 − e−𝜖

+ (1 + 2𝛿)ne−𝜖t

≤
n
r
(1 + 4𝛿)

(
𝜖

1 − e−𝜖
+ r𝜖

)
< (1 + a)n

r
.

This completes the proof. ◾

We conclude the section by showing how the theorem quickly implies Rödl solu-
tion of the Erdős–Hanani problem mentioned at the beginning of the section.

Theorem 4.7.3 [Rödl] For k, l fixed,

M(n, k, l) ≤ (1 + o(1))
(n

l

)/(k
l

)
where the o(1) term tends to zero as n tends to infinity.

Proof. Put r =
(

k
l

)
, and let H be the r-uniform hypergraph whose vertices are all

l-subsets of {1, 2,… , n}, and whose edges are all collections of
(

k
l

)
l-tuples that lie
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in a k-set. H has
(

n
l

)
vertices, each of its vertices has degree D =

(
n−l
k−l

)
, and every

two distinct vertices lie in at most
(

n−l−1
k−l−1

)
= o(D) common edges. Therefore, by

Theorem 4.7.1, H has a cover of size at most (1 + o(1))
(

n
l

) (
k
l

)
, as needed. ◾

4.8 EXERCISES

1. Let X be a random variable taking integral nonnegative values, let E[X2] denote
the expectation of its square, and let Var[X] denote its variance. Prove that

Pr[X = 0] ≤ Var[X]
E[X2]

.

2. (*) Show that there is a positive constant c such that the following holds: For any
n reals a1, a2,… , an satisfying

∑n
i=1 a2

i = 1, if (𝜖1,… , 𝜖n) is a { − 1, 1}-random
vector obtained by choosing each 𝜖i randomly and independently with uniform
distribution to be either −1 or 1, then

Pr

[|||||
n∑

i=1

𝜖iai

||||| ≤ 1

]
≥ c .

3. (*) Show that there is a positive constant c such that the following holds: For
any n vectors a1, a2,… , an ∈ R2 satisfying

∑n
i=1 ‖ai‖2 = 1 and ‖ai‖ ≤ 1∕10,

where ‖ ⋅ ‖ denotes the usual Euclidean norm, if (𝜖1,… , 𝜖n) is a { − 1, 1}-random
vector obtained by choosing each 𝜖i randomly and independently with uniform
distribution

Pr

[|||||‖
n∑

i=1

𝜖iai

‖‖‖‖‖ ≤ 1∕3

]
≥ c .

4. Let X be a random variable with expectation E[X] = 0 and variance 𝜎2. Prove that
for all 𝜆 > 0,

Pr[X ≥ 𝜆] ≤ 𝜎
2

𝜎
2 + 𝜆

2
.

5. Let 𝑣1 = (x1, y1),… , 𝑣n = (xn, yn) be n two-dimensional vectors, where each xi
and each yi is an integer whose absolute value does not exceed 2n∕2∕(100

√
n).

Show that there are two disjoint sets I, J ⊂ {1, 2,… , n} such that∑
i∈I

𝑣i =
∑
j∈J

𝑣j .

6. (*) Prove that for every set X of at least 4k2 distinct residue classes modulo a
prime p, there is an integer a such that the set {ax (mod p) ∶ x ∈ X} intersects
every interval in {0, 1,… , p− 1} of length at least p∕k.



THE PROBABILISTIC LENS:
Hamiltonian Paths

What is the maximum possible number of directed Hamiltonian paths in a tournament
on n vertices? Denote this number by P(n). The first application of the probabilistic
method in combinatorics is the result of Szele (1943) described in Chapter 2, which
states that P(n) ≥ n!∕2n−1. This bound follows immediately from the observation that
the right-hand side is the expected number of such paths in a random tournament on
n vertices. In the same paper, Szele shows that

1
2
≤ lim

n→∞

(
P(n)
n!

)1∕n

≤
1

23∕4
,

proves that this limit does exist, and conjectures that its correct value is 1∕2.
This conjecture is proved in Alon (1990a). The proof is given below. The main

tool is the Brégman proof of the Minc Conjecture for the permanent of a (0, 1)-matrix,
described in “The Probabilistic Lens: Brégman Theorem” (following Chapter 2).

Theorem 1 There exists a positive constant c such that, for every n,

P(n) ≤ cn3∕2 n!
2n−1

.

Proof. For a tournament T, denote by P(T) the number of directed Hamiltonian paths
of T. Similarly, C(T) denotes the number of directed Hamiltonian cycles of T, and
F(T) denotes the number of spanning subgraphs of T in which the indegree and the
outdegree of every vertex is exactly 1. Clearly,

C(T) ≤ F(T) . (1)
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If T = (V ,E) is a tournament on a set V = {1, 2,… , n} of n vertices, the adjacency
matrix of T is the n by n (0, 1)-matrix AT = (aij) defined by aij = 1 if (i, j) ∈ E and
aij = 0 otherwise. Let ri denote the number of ones in row i. Clearly,

n∑
i=1

ri =
(n

2

)
. (2)

By interpreting combinatorially the terms in the expansion of the permanent
per(AT), it follows that

per(AT) = F(T) . (3)

We need the following technical lemma.

Lemma 2 For every two integers a, b satisfying b ≥ a + 2 > a ≥ 1, the inequality

(a!)1∕a ⋅ (b!)1∕b
< ((a + 1)!)1∕(a+1) ⋅ ((b − 1)!)1∕(b−1)

holds.

Proof. The assertion is simply that f (a) < f (b − 1), for the function f defined by
f (a) = (a!)1∕a∕((a + 1)!)1∕(a+1). Thus it suffices to show that for every integer x ≥ 2,
f (x − 1) < f (x). Substituting the expression for f and raising both sides to the power
x(x − 1)(x + 1), it follows that it suffices to show that for all x ≥ 2,

((x − 1)!)x(x+1) ⋅ ((x + 1)!)x(x−1)
< (x!)2(x2−1) ,

that is, (xx

x!

)2
>

(x + 1
x

)x(x−1)
.

This is certainly true for x = 2. For x ≥ 3, it follows from the facts that 4x
> ex+1, that

x! < ((x + 1)∕2)x and that ex−1
> ((x + 1)∕x)x(x−1). ◾

Corollary 3 Define g(x) = (x!)1∕x. For every integer S ≥ n, the maximum of the func-
tion

∏n
i=1 g(xi), subject to the constraints

∑n
i=1 xi = S and xi ≥ 1 are integers, is

obtained iff the variables xi are as equal as possible (i.e., iff each xi is either ⌊S∕n⌋
or ⌈S∕n⌉.)

Proof. If there are two indices i and j such that xi ≥ xj + 2, then by Lemma 2 the
value of the product would increase once we add 1 to xj and subtract 1 from xi. ◾

Returning to our tournament T, we observe that the numbers ri defined above
are precisely the outdegrees of the vertices of T. If at least one of these is 0, then
clearly C(T) = F(T) = 0. Otherwise, by Brégman’s Theorem, by Corollary 3 and by
(2) and (3), F(T) is at most the value of the function

∏n
i=1 (ri!)1∕ri , where the integral
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variables ri satisfy (2) and are as equal as possible. By a straightforward (though
somewhat tedious) derivation of the asymptotics using Stirling’s formula this gives
the following:

Proposition 4 For every tournament T on n vertices,

C(T) ≤ F(T) ≤ (1 + o(1))
√
𝜋√
2e

n3∕2 (n − 1)!
2n

.

To complete the proof of the theorem, we have to derive a bound for the number
of Hamiltonian paths in a tournament from the above result. Given a tournament S
on n vertices, let T be the random tournament obtained from S by adding to it a
new vertex y and by orienting each edge connecting y with one of the vertices of S,
randomly and independently. For every fixed Hamiltonian path in S, the probability
that it can be extended to a Hamiltonian cycle in T is precisely 1∕4. Thus the expected
number of Hamiltonian cycles in T is 1

4
P(S), and hence there is a specific T for which

C(T) ≥ 1
4
P(S). However, by Proposition 4

C(T) ≤ (1 + o(1))
√
𝜋√
2e

(n + 1)3∕2 n!
2n+1

,

and thus
P(S) ≤ O

(
n3∕2 n!

2n−1

)
,

completing the proof of Theorem 1. ◾





5
The Local Lemma

It’s a thing that non-mathematicians don’t realize. Mathematics is actually an esthetic
subject almost entirely.
–John Conway

5.1 THE LEMMA

In a typical probabilistic proof of a combinatorial result, one usually has to show that
the probability of a certain event is positive. However, many of these proofs actually
give more and show that the probability of the event considered is not only positive
but is also large. In fact, most probabilistic proofs deal with events that hold with
high probability: that is, a probability that tends to 1 as the dimensions of the problem
grow. For example, consider the proof given in Chapter 1 that for each k ≥ 1 there are
tournaments in which for every set of k players there is one who beats them all. The
proof actually shows that for every fixed k, if the number n of players is sufficiently
large, then almost all tournaments with n players satisfy this property; that is, the
probability that a random tournament with n players has the desired property tends
to 1 as n tends to infinity.

On the other hand, there is a trivial case in which one can show that a certain
event holds with positive, though very small, probability. Indeed, if we have n mutu-
ally independent events and each of them holds with probability at least p > 0, then
the probability that all events hold simultaneously is at least pn, which is positive,
although it may be exponentially small in n.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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It is natural to expect that the case of mutual independence can be generalized
to that of rare dependencies and provide a more general way of proving that certain
events hold with positive, though small, probability. Such a generalization is, indeed,
possible and is stated in the following lemma, known as the Lovász Local Lemma.
This simple lemma, first proved in Erdős and Lovász (1975), is an extremely powerful
tool, as it offers a way for dealing with rare events.

Lemma 5.1.1 [The Local Lemma; General Case] Let A1,A2,… ,An be events
in an arbitrary probability space. A directed graph D = (V ,E) on the set of vertices
V = {1, 2,… , n} is called a dependency digraph for the events A1,… ,An if for each
i, 1 ≤ i ≤ n, the event Ai is mutually independent of all the events {Aj ∶ (i, j) ∉ E}.
Suppose that D = (V ,E) is a dependency digraph for the above events and suppose
there are real numbers x1,… , xn such that 0 ≤ xi < 1 and Pr[Ai] ≤ xi

∏
(i,j)∈E(1 − xj)

for all 1 ≤ i ≤ n. Then

Pr

[
n⋀

i=1

Ai

]
≥

n∏
i=1

(1 − xi).

In particular, with positive probability, no event Ai holds.

Proof. We first prove, by induction on s, that for any S ⊂ {1,… , n}, |S| = s < n, and
any i ∉ S,

Pr

[
Ai|⋀

j∈S

Aj

]
≤ xi. (5.1)

This is certainly true for s = 0. Assuming it holds for all s′ < s, we prove it for s. Put
S1 = {j ∈ S ∶ (i, j) ∈ E}, S2 = S ⧵ S1. Then

Pr

[
Ai|⋀

j∈S

Aj

]
=

Pr
[
Ai ∧

(⋀
j∈S1

Aj

) |||⋀𝓁∈S2
A𝓁

]
Pr

[⋀
j∈S1

Aj
|||⋀𝓁∈S2

A𝓁

] . (5.2)

To bound the numerator, observe that, since Ai is mutually independent of the events
{A𝓁 ∶ 𝓁 ∈ S2},

Pr

[
Ai ∧

(⋀
j∈S1

Aj

) ||||||
⋀
𝓁∈S2

A𝓁

]
≤ Pr

[
Ai

||||||
⋀
𝓁∈S2

A𝓁

]

= Pr[Ai] ≤ xi

∏
(i,j)∈E

(1 − xj) . (5.3)

The denominator, on the other hand, can be bounded by the induction hypothesis.
Indeed, suppose S1 = {j1, j2,… , jr}. If r = 0, then the denominator is 1, and (5.1)
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follows. Otherwise

Pr

[
Aj1

∧ Aj2
∧ · · · ∧ Ajr

| ⋀
𝓁∈S2

A𝓁

]

=

(
1 − Pr

[
Aj1

| ⋀
𝓁∈S2

A𝓁

])
⋅

(
1 − Pr

[
Aj2

|Aj1
∧

⋀
𝓁∈S2

A𝓁

])
⋅ · · ·

· · · ⋅

(
1 − Pr

[
Ajr

|Aj1
∧ · · · ∧ Ajr−1

∧
⋀
𝓁∈S2

A𝓁

])

≥ (1 − xj1
)(1 − xj2

) · · · (1 − xjr
) ≥

∏
(i,j)∈E

(1 − xj) . (5.4)

Substituting (5.3) and (5.4) into (5.2), we conclude that Pr[Ai|⋀j∈SAj] ≤ xi, com-
pleting the proof of the induction.

The assertion of Lemma 5.1.1 now follows easily, as

Pr

[
n⋀

i=1

Ai

]
= (1 − Pr[A1]) ⋅ (1 − Pr[A2|A1]) ⋅ · · ·

· · · ⋅

(
1 − Pr

[
An| n−1⋀

i=1

Ai

])
≥

n∏
i=1

(1 − xi) ,

completing the proof. ◾

Corollary 5.1.2 [The Local Lemma; Symmetric Case] Let A1,A2,… ,An be
events in an arbitrary probability space. Suppose that each event Ai is mutually
independent of a set of all the other events Aj but at most d, and that Pr[Ai] ≤ p for
all 1 ≤ i ≤ n. If

ep(d + 1) ≤ 1, (5.5)

then Pr[∧n
i=1Ai] > 0.

Proof. If d = 0, the result is trivial. Otherwise, by the assumption there is a depen-
dency digraph D = (V ,E) for the events A1,… ,An in which, for each i, |{j ∶ (i, j) ∈
E}| ≤ d. The result now follows from Lemma 5.1.1 by taking xi = 1∕(d + 1)(< 1)
for all i and using the fact that, for any d ≥ 1, (1 − 1∕(d + 1))d > 1∕e. ◾

It is worth noting that as shown by Shearer (1985), the constant “e” is the best pos-
sible constant in inequality (5.5). Note also that the proof of Lemma 5.1.1 indicates
that the conclusion remains true even when we replace the two assumptions that each
Ai is mutually independent of {Aj ∶ (i, j) ∉ E} and that for each i

Pr[Ai] ≤ xi

∏
(ij)∈E

(1 − xj)
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by the weaker assumption that for each i and each S2 ⊂ {1,… , n} ⧵ {j ∶ (i, j) ∈ E},

Pr

[
Ai|⋀

j∈S2

Aj

]
≤ xi

∏
(i,j)∈E

(1 − xj).

This turns out to be useful in certain applications.
In the next few sections we present various applications of the Local Lemma for

obtaining combinatorial results. There is no known proof of any of these results,
which does not use the Local Lemma. Additional applications of the Local Lemma
for coloring problems, and many more, can be found in Molloy and Reed (2002).

5.2 PROPERTY B AND MULTICOLORED SETS OF REAL NUMBERS

Recall that a hypergraph H = (V ,E) has property B (i.e., is two-colorable) if there is
a coloring of V by two colors so that no edge f ∈ E is monochromatic.

Theorem 5.2.1 Let H = (V ,E) be a hypergraph in which every edge has at least
k elements, and suppose that each edge of H intersects at most d other edges. If
e(d + 1) ≤ 2k−1, then H has property B.

Proof. Color each vertex𝑣 of H, randomly and independently, either blue or red (with
equal probability). For each edge f ∈ E, let Af be the event that f is monochromatic.
Clearly, Pr[Af ] = 2∕2|f | ≤ 1∕2k−1. Moreover, each event Af is clearly mutually inde-
pendent of all the other events Af ′ for all edges f ′ that do not intersect f . The result
now follows from Corollary 5.1.2. ◾

A special case of Theorem 5.2.1 is that, for any k ≥ 9, any k-uniform k-regular
hypergraph H has property B. Indeed, since any edge f of such an H contains k ver-
tices, each of which is incident with k edges (including f ), it follows that f intersects
at most d = k(k − 1) other edges. The desired result follows, since e(k(k − 1) + 1) <
2k−1 for each k ≥ 9.

The next result we consider, which appeared in the original paper of Erdős
and Lovász, deals with k-colorings of the real numbers. For a k-coloring
c ∶ ℝ → {1, 2,… , k} of the real numbers by the k colors 1, 2,… , k, and for a subset
T ⊂ ℝ, we say that T is multicolored (with respect to c) if c(T) = {1, 2,… , k}, that
is, if T contains elements of all colors.

Theorem 5.2.2 Let m and k be two positive integers satisfying

e(m(m − 1) + 1)k
(

1 − 1
k

)m
≤ 1. (5.6)

Then, for any set S of m real numbers, there is a k-coloring so that each translation
x + S (for x ∈ ℝ) is multicolored.

Note that (5.6) holds whenever m > (3 + o(1))k log k.
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Proof. We first fix a finite subset X ⊆ ℝ and show the existence of a k-coloring so
that each translation x + S (for x ∈ X) is multicolored. This is an easy consequence
of the Local Lemma. Indeed, put Y =

⋃
x∈X(x + S) and let c ∶ Y → {1, 2,… , k} be

a random k-coloring of Y obtained by choosing, for each y ∈ Y, randomly and inde-
pendently, c(y) ∈ {1, 2,… , k} according to a uniform distribution on {1, 2,… , k}.
For each x ∈ X, let Ax be the event in which x + S is not multicolored (with respect to
c). Clearly, Pr[Ax] ≤ k(1 − 1∕k)m. Moreover, each event Ax is mutually independent
of all the other events Ax′ but those for which (x + S) ∩ (x′ + S) ≠ ∅. As there are at
most m(m − 1) such events, the desired result follows from Corollary 5.1.2.

We can now prove the existence of a coloring of the set of all reals with the desired
properties, by a standard compactness argument. Since the discrete space with k
points is (trivially) compact, Tikhonov’s Theorem (which is equivalent to the axiom
of choice) implies that an arbitrary product of such spaces is compact. In particular,
the space of all functions from ℝ to {1, 2,… , k}, with the usual product topology, is
compact. In this space, for every fixed x ∈ ℝ, the set Cx of all colorings c, such that
x + S is multicolored, is closed. (In fact, it is both open and closed, since a basis to
the open sets is the set of all colorings whose values are prescribed in a finite num-
ber of places). As we proved above, the intersection of any finite number of sets Cx
is nonempty. It thus follows, by compactness, that the intersection of all sets Cx is
nonempty. Any coloring in this intersection has the properties in the conclusion of
Theorem 5.2.2. ◾

Note that it is impossible, in general, to apply the Local Lemma to an infinite num-
ber of events and conclude that in some point of the probability space none of them
holds. In fact, there are trivial examples of countably many mutually independent
events Ai, satisfying Pr[Ai] = 1∕2 and

⋀
i≥1Ai = ∅. Thus the compactness argument

is essential in the above proof.

5.3 LOWER BOUNDS FOR RAMSEY NUMBERS

The derivation of lower bounds for Ramsey numbers by Erdős in 1947 was one of
the first applications of the probabilistic method. The Local Lemma provides a simple
way of improving these bounds. Let us obtain, first, a lower bound for the diagonal
Ramsey number R(k, k). Consider a random two-coloring of the edges of Kn. For
each set S of k vertices of Kn, let AS be the event where the complete graph on S is

monochromatic. Clearly, Pr[AS] = 2
1−

(
k
2

)
. It is obvious that each event AS is mutu-

ally independent of all the events AT but those that satisfy |S ∩ T| ≥ 2, since this is
the only case in which the corresponding complete graphs share an edge. We can

therefore apply Corollary 5.1.2 with p = 2
1−

(
k
2

)
and d <

(
k
2

)(
n−2
k−2

)
to conclude the

following:

Proposition 5.3.1 If e
(

k
2

)(
n−2
k−2

)
⋅ 2

1−
(

k
2

)
< 1, then R(k, k) > n.
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A short computation shows that this gives R(k, k) > (
√

2∕e)(1 + o(1))k2k∕2, only
a factor 2 improvement on the bound obtained by the straightforward probabilis-
tic method. Although this minor improvement is somewhat disappointing, it is cer-
tainly not surprising; the Local Lemma is most powerful when the dependencies
between events are rare, and this is not the case here. Indeed, there is a total num-
ber of K =

(
n
k

)
events considered, and the maximum outdegree d in the dependency

digraph is roughly
(

k
2

)(
n

k−2

)
. For large k and much larger n (which is the case

of interest for us), we have d > K1−O(1∕k), that is, quite a lot of dependencies. On
the other hand, if we consider small sets S (e.g., sets of size 3), we observe that

out of the total K =
(

n
3

)
of them, each shares an edge with only 3(n − 3) ≈ K1∕3.

This suggests that the Local Lemma may be much more significant in improving
the off-diagonal Ramsey numbers R(k,𝓁), especially if one of the parameters, say,
𝓁, is small. Let us consider, for example, following Spencer (1977), the Ramsey
number R(k, 3). Here, of course, we have to apply the nonsymmetric form of the
Local Lemma. Let us two-color the edges of Kn randomly and independently, where
each edge is colored blue with probability p. For each set of three vertices T, let
AT be the event where the triangle on T is blue. Similarly, for each set of k vertices
S, let BS be the event where the complete graph on S is red. Clearly, Pr[AT] = p3

and Pr[BS] = (1 − p)
(

k
2

)
. Construct a dependency digraph for the events AT and BS

by joining two vertices by edges (in both directions) if the corresponding complete
graphs share an edge. Clearly, each AT-node of the dependency graph is adjacent to

3(n − 3) < 3n AT′-nodes and to at most
(

n
k

)
BS′-nodes. Similarly, each BS-node is

adjacent to at most
(

k
2

)
(n − 2) < k2n∕2 AT′-nodes and to at most

(
n
k

)
BS′-nodes. It

follows from the general case of the Local Lemma (Lemma 5.1.1) that, if we can find
a 0 < p < 1 and two real numbers 0 ≤ x < 1 and 0 ≤ y < 1 such that

p3
≤ x(1 − x)3n(1 − y)

(
n
k

)

and

(1 − p)
(

k
2

)
≤ y(1 − x)k2n∕2(1 − y)

(
n
k

)
,

then R(k, 3) > n.
Our objective is to find the smallest possible k = k(n) for which there is such a

choice of p, x, and y. An elementary (but tedious) computation shows that the best
choice is when p = c1n−1∕2, k = c2n1∕2 log n, x = c3∕n3∕2, and y so that

(
n
k

)
y = c4.

This gives R(k, 3) > c5k2∕log2k. A similar argument gives R(k, 4) > k5∕2+o(1) . In both
cases, the amount of computation required is considerable. However, the hard work
does pay; the bound R(k, 3) > c5k2∕log2k matches a lower bound of Erdős proved in
1961 by a highly complicated probabilistic argument. This was improved to R(k, 3) >
c6k2∕ log k by Kim (1995). The bound above for R(k, 4) is better than any bound for
R(k, 4) known to be proved without the Local Lemma.
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5.4 A GEOMETRIC RESULT

A family of open unit balls F in the three-dimensional Euclidean space ℝ3 is called
a k-fold covering of ℝ3 if any point x ∈ ℝ3 belongs to at least k balls. In particular,
a onefold covering is simply called a covering. A k-fold covering  is called decom-
posable if there is a partition of  into two pairwise disjoint families 1 and 2, each
being a covering of ℝ3. Mani-Levitska and Pach (1988) constructed, for any inte-
ger k ≥ 1, a nondecomposable k-fold covering of ℝ3 by open unit balls. On the other
hand, they proved that any k-fold covering ofℝ3 in which no point is covered by more
than c2k∕3 balls is decomposable. This reveals a somewhat surprising phenomenon:
it is more difficult to decompose coverings that cover some of the points of ℝ3 too
often than to decompose coverings that cover every point about the same number of
times. The exact statement of the Mani-Levitska–Pach Theorem is the Following:

Theorem 5.4.1 Let  = {Bi}i∈I be a k-fold covering of the three-dimensional
Euclidean space by open unit balls. Suppose, further, that no point of ℝ3 is contained
in more than t members of  . If

e ⋅ t3218∕2k−1
≤ 1,

then  is decomposable.

Proof. Define an infinite hypergraph H = (V(H),E(H)) as follows: The set of ver-
tices of H, V(H), is simply  = {Bi}i∈I . For each x ∈ ℝ3, let Ex be the set of balls
Bi ∈  that contain x. The set of edges of H, E(H), is simply the set of Ex, with the
understanding that when Ex = Ey the edge is taken only once. We claim each edge
Ex intersects less than t3218 other edges Ey of H. If x ∈ Bi, the center of Bi is within
distance 1 of x. If now Bj ∩ Bi ≠ ∅ the center of Bj is within distance three of x and so
Bj lies entirely inside the ball of radius four centered at x. Such a Bj covers precisely
4−3 = 2−6 of the volume of that ball. As no vertex is covered more than t times, there
can be at most 26t such balls. It is not too difficult to check that m balls in ℝ3 cut ℝ3

into less than m3 connected components so that there are at most (26t)3 distinct Ey
overlapping Ex.

Consider, now, any finite subhypergraph L of H. Each edge of L has at least k
vertices, and it intersects at most d < t3218 other edges of L. Since, by assumption,
e(d + 1) ≤ 2k−1, Theorem 5.2.1 (which is a simple corollary of the Local Lemma)
implies that L is two-colorable. This means that one can color the vertices of L blue
and red so that no edge of L is monochromatic. Since this holds for any finite L,
a compactness argument, analogous to the one used in the proof of Theorem 5.2.2,
shows that H is two-colorable. Given a two-coloring of H with no monochromatic
edges, we simply let 1 be the set of all blue balls, and 2 be the set of all red ones.
Clearly, each i is a covering of ℝ3, completing the proof of the theorem. ◾

It is worth noting that Theorem 5.4.1 can easily be generalized to higher dimen-
sions. We omit the detailed statement of this generalization.
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5.5 THE LINEAR ARBORICITY OF GRAPHS

A linear forest is a forest (i.e., an acyclic simple graph) in which every connected
component is a path. The linear arboricity la(G) of a graph G is the minimum num-
ber of linear forests in G, whose union is the set of all edges of G. This notion was
introduced by Harary as one of the covering invariants of graphs. The following con-
jecture, known as the Linear Arboricity Conjecture, was raised in Akiyama, Exoo
and Harary (1981).

Conjecture 5.5.1 [The Linear Arboricity Conjecture] The linear arboricity of
every d-regular graph is ⌈(d + 1)∕2⌉.

Note that since every d-regular graph G on n vertices has nd∕2 edges, and every
linear forest in it has at most n − 1 edges, the inequality

la(G) ≥ nd
2(n − 1)

>

d
2

is immediate. Since la(G) is an integer, this gives la(G) ≥ ⌈(d + 1)∕2⌉. The difficulty
in Conjecture 5.5.1 lies in proving the converse inequality: la(G) ≤ ⌈(d + 1)∕2⌉. Note
also that, since every graph G with maximum degree Δ is a subgraph of a Δ-regular
graph (which may have more vertices, as well as more edges than G), the Linear
Arboricity Conjecture is equivalent to the statement that the linear arboricity of every
graph G with maximum degree Δ is at most ⌈(Δ + 1)∕2⌉.

Although this conjecture received a considerable amount of attention, the best gen-
eral result concerning it, proved without any probabilistic arguments, is that la(G) ≤⌈3Δ∕5⌉ for evenΔ and that la(G) ≤ ⌈(3Δ + 2)∕5⌉ for oddΔ. In this section we prove
that, for every 𝜖 > 0, there is a Δ0 = Δ0(𝜖) such that, for every Δ ≥ Δ0, the linear

arboricity of every graph with maximum degreeΔ is less than
(

1
2
+ 𝜖

)
Δ. This result

(with a somewhat more complicated proof) appears in Alon (1988) and its proof relies
heavily on the Local Lemma. We note that this proof is more complicated than the
other proofs given in this chapter and requires certain preparations, some of which
are of independent interest.

It is convenient to deduce the result for undirected graphs from its directed version.
A d-regular digraph is a directed graph in which the indegree and the outdegree of
every vertex is precisely d. A linear directed forest is a directed graph in which every
connected component is a directed path. The dilinear arboricity dla(G) of a directed
graph G is the minimum number of linear directed forests in G whose union covers
all edges of G. The directed version of the Linear Arboricity Conjecture, first stated
in Nakayama and Peroche (1987), is the following:

Conjecture 5.5.2 For every d-regular digraph D

dla(D) = d + 1.
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Note that since the edges of any (connected) undirected 2d-regular graph G can
be oriented along a Euler cycle, so that the resulting oriented digraph is d-regular, the
validity of Conjecture 5.5.2 for d implies that of Conjecture 5.5.1 for 2d.

It is easy to prove that any graph with n vertices and maximum degree d contains
an independent set of size at least n∕(d + 1). The following proposition shows that,
at the price of decreasing the size of such a set by a constant factor, we can guarantee
that it has a certain structure.

Proposition 5.5.3 Let H = (V ,E) be a graph with maximum degree d, and let V =
V1 ∪ V2 ∪ · · · ∪ Vr be a partition of V into r pairwise disjoint sets. Suppose each set
Vi is of cardinality |Vi| ≥ 2ed, where e is the basis of the natural logarithm. Then
there is an independent set of vertices W ⊆ V that contains a vertex from each Vi.

Proof. Clearly, we may assume that each set Vi is of cardinality precisely g = ⌈2ed⌉
(otherwise, simply replace each Vi by a subset of cardinality g of it, and replace H by
its induced subgraph on the union of these r new sets). Let us pick from each set Vi
randomly and independently a single vertex according to a uniform distribution. Let
W be the random set of the vertices picked. To complete the proof, we show that with
positive probability W is an independent set of vertices in H.

For each edge f of H, let Af be the event where W contains both ends of f . Clearly,
Pr[Af ] ≤ 1∕g2. Moreover, if the endpoints of f are in Vi and in Vj, then the event Af
is mutually independent of all the events corresponding to edges whose endpoints do
not lie in Vi ∪ Vj. Thus there is a dependency digraph for the events in which the max-
imum degree is less than 2gd, and since e ⋅ 2gd ⋅ 1∕g2 = 2ed∕g < 1, we conclude, by
Corollary 5.1.2, that with positive probability none of the events Af holds. But this
means that W is an independent set containing a vertex from each Vi, completing the
proof. ◾

Proposition 5.5.3 suffices to prove Conjecture 5.5.2 for digraphs with no short
directed cycle. Recall that the directed girth of a digraph is the minimum length of a
directed cycle in it.

Theorem 5.5.4 Let G = (U,F) be a d-regular digraph with directed girth g ≥ 8ed.
Then

dla(G) = d + 1.

Proof. As is well known, F can be partitioned into d pairwise disjoint 1-regular span-
ning subgraphs F1,… ,Fd of G. [This is an easy consequence of the Hall–König
theorem; let H be the bipartite graph whose two classes of vertices A and B are copies
of U, in which u ∈ A is joined to 𝑣 ∈ B if (u, 𝑣) ∈ F. Since H is d-regular its edges can
be decomposed into d perfect matchings, which correspond to d 1-regular spanning
subgraphs of G.] Each Fi is a union of vertex disjoint directed cycles Ci1,Ci2,… ,Ciri

.
Let V1, V2,… ,Vr be the sets of edges of all the cycles {Cij ∶ 1 ≤ i ≤ d, 1 ≤ j ≤ ri}.
Clearly, V1,V2,… ,Vr is a partition of the set F of all edges of G, and by the girth
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condition, |Vi| ≥ g ≥ 8ed for all 1 ≤ i ≤ r. Let H be the line graph of G, that is, the
graph whose set of vertices is the set F of edges of G in which two edges are adjacent
iff they share a common vertex in G. Clearly, H is 4d − 2 regular. As the cardinality of
each Vi is at least 8ed ≥ 2e(4d − 2), there is, by Proposition 5.5.3, an independent set
of H containing a member from each Vi. But this means that there is a matching M in
G, containing at least one edge from each cycle Cij of the 1-factors F1,… ,Fd. There-
fore M,F1 ⧵ M,F2 ⧵ M,… ,Fd ⧵ M are d + 1 directed forests in G (one of which is a
matching) that cover all its edges. Hence

dla(G) ≤ d + 1.

As G has |U| ⋅ d edges, and each directed linear forest can have at most |U| − 1 edges,

dla(G) ≥ |U|d∕(|U|− 1) > d.

Thus dla(G) = d + 1, completing the proof. ◾

The last theorem shows that the assertion of Conjecture 5.5.2 holds for digraphs
with sufficiently large (directed) girth. In order to deal with digraphs with small girth,
we show that most of the edges of each regular digraph can be decomposed into a
relatively small number of almost regular digraphs with high girth. To do this, we
need the following statement, which is proved using the Local Lemma:

Lemma 5.5.5 Let G = (V ,E) be a d-regular directed graph, where d is sufficiently
large, and let p be an integer satisfying 10

√
d ≤ p ≤ 20

√
d. Then, there is a

p-coloring of the vertices of G by the colors 0, 1, 2,… , p− 1 with the following
property: for each vertex 𝑣 ∈ V and each color i, the numbers

N+(𝑣, i) = |{u ∈ V ∶ (𝑣, u) ∈ E and u is colored i}|
and

N−(𝑣, i) = |{u ∈ V ∶ (u, 𝑣) ∈ E and u is colored i}|
satisfy |N−(𝑣, i) − d∕p|, |N+(𝑣, i) − d∕p| ≤ 3

√
d∕p

√
log d. (5.7)

Proof. Let f ∶ V → {0, 1,… , p− 1} be a random vertex coloring of V by p colors,
where for each 𝑣 ∈ V , f (𝑣) ∈ {0, 1,… , p − 1} is chosen according to a uniform dis-
tribution. For every vertex 𝑣 ∈ V and every color i, 0 ≤ i < p, let A+

𝑣,i be the event
where the number N+(𝑣, i) of neighbors of 𝑣 in G whose color is i does not satisfy
inequality (5.7). Clearly, N+(𝑣, i) is a binomial random variable with expectation d∕p
and standard deviation

√
(d∕p)(1 − 1∕p) <

√
d∕p. Hence, by the standard estimates

for binomial distribution given in Appendix A, for every 𝑣 ∈ V and 0 ≤ i < p,

Pr[A+
𝑣,i] < 1∕d4.
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Similarly, if A−
𝑣,i is the event where the number N−(𝑣, i) violates (5.7), then

Pr[A−
𝑣,i] < 1∕d4.

Clearly, each of the events A+
𝑣,i

or A−
𝑣,i

is mutually independent of all the events A+
u,j

or
A−

u,j for all vertices u ∈ V that do not have a common neighbor with 𝑣 in G. Thus there
is a dependency digraph for all our events with maximum degree ≤ (2d)2 ⋅ p. Since
e ⋅ (1∕d4)((2d)2p + 1) < 1, Corollary 5.1.2 (i.e., the symmetric form of the Local
Lemma) implies that, with positive probability, no event A+

𝑣,i or A−
𝑣,i occurs. Hence

there is a coloring f that satisfies (5.7) for all 𝑣 ∈ V and 0 ≤ i < p, completing the
proof. ◾

We are now ready to deal with general regular digraphs. Let G = (V ,E) be an
arbitrary d-regular digraph. Throughout the argument, we assume, whenever needed,
that d is sufficiently large. Let p be a prime satisfying 10d1∕2 ≤ p ≤ 20d1∕2 (it is well
known that for every n there is a prime between n and 2n). By Lemma 5.5.5, there is
a vertex coloring f ∶ V → {0, 1,… , p − 1} satisfying (5.7). For each i, 0 ≤ i < p, let
Gi = (V ,Ei) be the spanning subdigraph of G defined by Ei = {(u, 𝑣) ∈ E ∶ f (𝑣) ≡
f (u) + i(mod p)}. By inequality (5.7), the maximum indegree Δ−

i and the maximum
outdegree Δ+

i
in each Gi are at most (d∕p) + 3

√
d∕p

√
log d. Moreover, for each i >

0, the length of every directed cycle in Gi is divisible by p. Thus the directed girth gi
of Gi is at least p. Since each Gi can be completed, by adding vertices and edges to a
Δi-regular digraph with the same girth gi and with Δi = max (Δ+

i ,Δ
−
i ), and since gi >

8eΔi (for all sufficiently large d), we conclude, by Theorem 5.5.4, that dla(Gi) ≤ Δi +
1 ≤ (d∕p) + 3

√
d∕p

√
log d + 1 for all 1 ≤ i < p. For G0, we only apply the trivial

inequality

dla(G0) ≤ 2Δ0 ≤ 2
d
p
+ 6

√
d
p

√
log d

obtained, for example, by embedding G0 as a subgraph of a Δ0-regular graph, split-
ting the edges of this graph into Δ0 1-regular spanning subgraphs, and breaking each
of these 1-regular spanning subgraphs into two linear directed forests. The last two
inequalities, together with the fact that 10

√
d ≤ p ≤ 20

√
d, imply

dla(G) ≤ d + 2
d
p
+ 3

√
pd
√

log d + 3

√
d
p

√
log d + p − 1 ≤ d + c ⋅ d3∕4(log d)1∕2.

We have thus proved the following:

Theorem 5.5.6 There is an absolute constant c > 0 such that for every d-regular
digraph G

dla(G) ≤ d + cd3∕4(log d)1∕2 .
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We note that by being a little more careful, we can improve the error term to
c′d2∕3(log d)1∕3. Since the edges of any undirected d = 2f -regular graph can be
oriented so that the resulting digraph is f -regular, and since any (2f − 1)-regular
undirected graph is a subgraph of a 2f -regular graph, the last theorem implies the
following:

Theorem 5.5.7 There is an absolute constant c > 0 such that, for every undirected
d-regular graph G,

la(G) ≤ d
2
+ cd3∕4(log d)1∕2 .

5.6 LATIN TRANSVERSALS

Following the proof of the Local Lemma, we noted that the mutual independency
assumption in this lemma can be replaced by the weaker assumption that the condi-
tional probability of each event, given the mutual nonoccurrence of an arbitrary set of
events, each nonadjacent to it in the dependency digraph, is sufficiently small. In this
section we describe an application, from Erdős and Spencer (1991), of this modified
version of the lemma. Let A = (aij) be an n × n matrix with, say, integer entries. A
permutation 𝜋 is called a Latin transversal (of A) if the entries ai𝜋(i) (1 ≤ i ≤ n) are
all distinct.

Theorem 5.6.1 Suppose k ≤ (n − 1)∕(4e), and suppose no integer appears in more
than k entries of A. Then A has a Latin transversal.

Proof. Let 𝜋 be a random permutation of {1, 2,… , n}, chosen according to a uniform
distribution among all possible n! permutations. Denote by T the set of all ordered
four-tuples (i, j, i′, j′) satisfying i < i′, j ≠ j′ and aij = ai′j′ . For each (i, j, i′, j′) ∈ T, let
Aiji′j′ denote the event where 𝜋(i) = j and 𝜋(i′) = j′. The existence of a Latin transver-
sal is equivalent to the statement that, with positive probability, none of these events
hold. Let us define a symmetric digraph (i.e., a graph) G on the vertex set T by making
(i, j, i′, j′) adjacent to (p, q, p′, q′) if and only if {i, i′} ∩ {p, p′} ≠ ∅ or {j, j′} ∩{q, q′} ≠

∅. Thus these two four-tuples are not adjacent if the four cells (i, j), (i′, j′), (p, q), and
(p′, q′) occupy four distinct rows and columns of A. The maximum degree of G is
less than 4nk; indeed, for a given (i, j, i′, j′) ∈ T, there are at most 4n choices of (s, t)
with either s ∈ {i, i′} or t ∈ {j, j′}, and for each of these choices of (s, t) there are less
than k choices for (s′, t′) ≠ (s, t) with ast = as′t′ . Each such four-tuple (s, t, s′, t′) can
be uniquely represented as (p, q, p′, q′) with p < p′. Since e ⋅ 4nk ⋅ [1∕n(n − 1)] ≤ 1,
the desired result follows from the above-mentioned strengthening of the symmetric
version of the Local Lemma, if we can show that

Pr

[
Aiji′j′ |⋀

S

Apqp′q′

]
≤

1
n(n − 1)

(5.8)
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for any (i, j, i′, j′) ∈ T and any set S of members of T that are nonadjacent in G to
(i, j, i′, j′). By symmetry, we may assume that i = j = 1, i′ = j′ = 2, and that hence
none of the p’s or q’s are either 1 or 2. Let us call a permutation 𝜋 good if it satisfies⋀

SApqp′q′ , and let Sij denote the set of all good permutations𝜋 satisfying 𝜋(1) = i and
𝜋(2) = j. We claim that |S12| ≤ |Sij| for all i ≠ j. Indeed, suppose, first, that i, j > 2.
For each good 𝜋 ∈ S12, define a permutation 𝜋∗ as follows: Suppose 𝜋(x) = i, 𝜋(y) =
j. Then define 𝜋

∗(1) = i, 𝜋∗(2) = j, 𝜋∗(x) = 1, 𝜋∗(y) = 2, and 𝜋
∗(t) = 𝜋(t) for all t ≠

1, 2, x, y. One can easily check that 𝜋∗ is good, since the cells (1, i), (2, j), (x, 1), (y, 2)
are not part of any (p, q, p′, q′) ∈ S. Thus 𝜋

∗ ∈ Sij, and since the mapping 𝜋 → 𝜋
∗

is injective, |S12| ≤ |Sij|, as claimed. Similarly, one can define injective mappings
showing that |S12| ≤ |Sij| even when {i, j} ∩ {1, 2} ≠ ∅. It follows that

Pr

[
A1122 ∧

⋀
S

Apqp′q′

]
≤ Pr

[
A1i2j ∧

⋀
S

Apqp′q′

]

for all i ≠ j and hence that

Pr

[
A1122|⋀

S

Apqp′q′

]
≤

1
n(n − 1)

.

By symmetry, this implies (5.8) and completes the proof. ◾

5.7 MOSER’S FIX-IT ALGORITHM

When the probabilistic method is applied to prove that a certain event holds with
high probability, it often supplies an efficient deterministic, or at least randomized,
algorithm for the corresponding problem.

By applying the Local Lemma, we often manage to prove that a given event holds
with positive probability, although this probability may be exponentially small in the
dimensions of the problem. Consequently, it is not clear if any of these proofs can pro-
vide polynomial algorithms for the corresponding algorithmic problems. For many
years, there was no known method of converting the proofs of any of the examples
discussed in this chapter into an efficient algorithm. In 1991, József Beck found such a
method that works for some of these examples, with a little loss in the constants. This
has been extended and modified by several researchers. In 2009, Robin Moser found
a remarkably simple algorithm, combined with a subtle analysis. This approach has
been extended in his joint work with Tardos, which provides an efficient algorithm
for essentially all known applications of the Local Lemma, with no loss in the con-
stants. In fact, in some examples the constants obtained are even better than those
that follow from the earlier existence proofs. We proceed with the details, following
Moser and Tardos (2010).

We first give the context. Let Ω be a finite set. For each 𝑣 ∈ Ω let C[𝑣] denote a
random variable. The variables C[𝑣] may have different distributions but, critically,
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they are mutually independent. Ω and the C[𝑣] then define a probability space. Let I
denote an index set. For each 𝛼 ∈ I, there is an associated set A[𝛼] ⊂ Ω and an event
BAD[𝛼]. Set p[𝛼] = Pr[BAD[𝛼]]. Critically, the event BAD[𝛼] depends only on the
values C[𝑣] for 𝑣 ∈ A[𝛼]. Our goal shall be to find (under suitable side conditions)
specific values for C[𝑣] such that none of the BAD[𝛼], 𝛼 ∈ I, holds. We define ∼ on
I by setting 𝛼 ∼ 𝛽 if A[𝛼] ∩ A[𝛽] ≠ ∅. (Note that 𝛼 ∼ 𝛼.) The relation ∼ does yield a
dependency graph D on the events BAD[𝛼] with (𝛼, 𝛽) an edge if 𝛼 ∼ 𝛽. The event
BAD[𝛼] is mutually independent of all BAD[𝛽] with (𝛼, 𝛽) not an edge since those
events are determined by C[𝑣] for 𝑣 ∉ A[𝛼].

As an instructive example, let A[𝛼] ⊂ Ω be a family of k element sets. For 𝑣 ∈ Ω,
let Pr[C[𝑣] = Red] = 1

2
, and Pr[C[𝑣] = Blue] = 1

2
. That is, C is a random 2-coloring

of Ω. For each 𝛼 let BAD[𝛼] denote the event where A[𝛼] is monochromatic. Thus
all p[𝛼] = 21−k. Our goal is then to find (under suitable side conditions) a coloring of
Ω for which no A[𝛼] is monochromatic. In other cases, Ω consists of Boolean vari-
ables x1,… , xn and C[xi] is true or false with independent probability 1∕2. Another
type S ⊂ Ω is a random set, C[𝑣] is that 𝑣 ∈ S, and the C[𝑣] are determined by
independent, though not necessarily identical, coin flips. When Ω is the set of pairs
{i, j} ⊂ {1,… , n} and Pr[C({i, j}) = 1] = pi,j, Pr[C({i, j}) = 0] = 1 − pi,j, one gets a
broad generalization of G(n, p). It is even possible for C[𝑣] to be multivalued. Indeed,
essentially all applications of the Local Lemma can be placed in this context.

MOSER’s FIX-IT ALGORITHM

FIX-IT I: For each 𝑣 ∈ Ω, choose C[𝑣] according to its distribution.

FIX-IT II: WHILE at least one BAD[𝛼] holds

FIX-IT III: Select one 𝛼 ∈ I for which BAD[𝛼].
FIX-IT IV: Reset C[𝑣] for each 𝑣 ∈ A[𝛼].
END WHILE

Tautologically, when and if the FIX-IT Algorithm terminates, the desired values of
C[𝑣] have been found. FIX-IT III allows an arbitrary deterministic selection process;
for definiteness we may imagine I to be linearly ordered and select the first 𝛼 ∈ I
for which BAD[𝛼]. We define the LOG to be the sequence 𝛼1𝛼2 · · · 𝛼u where 𝛼t is
the 𝛼 selected (not all the 𝛼 with BAD[𝛼]!) the t-th time FIX-IT III is applied. We
define TLOG = u, the number of times FIX-IT III is applied. A priori, TLOG = ∞
is possible, but we shall give conditions that imply E[TLOG] < ∞, which in turn
implies that the FIX-IT Algorithm will terminate with probability 1.

We define a Moser Tree to be a finite rooted tree T whose vertices are labeled by
𝛼 ∈ I. The depth of a node is its distance from the root, and the depth of a tree is the
maximal depth of its nodes. We require the following:

1. If a node labeled 𝛽 is a child of a node labeled 𝛼, then 𝛽 ∼ 𝛼.

2. If two nodes at the same depth have labels 𝛽, 𝛾 , then it cannot be that 𝛽 ∼ 𝛾 .
(In particular, the labels at a given depth are distinct.)
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Note, however, that many nodes may, and often will, have the same label. We
define p[T] as the product of the p[𝛼], where 𝛼 ranges over the labels of the nodes.
To clarify, when 𝛼 appears u times, the factor p[𝛼] appears u times.

Theorem 5.7.1 Suppose the sum of p[T] over all Moser Trees T is convergent, and
let s denote its sum. Then E[TLOG] ≤ s.

Let 𝛼1,… , 𝛼u be a prefix of LOG. We associate to it a Moser Tree Tu. The root is
labeled 𝛼u. Now let t run from u − 1 down to 1. If we do not have 𝛼t ∼ 𝛼t′ for some
t < t′ ≤ u for which 𝛼t′ has been already placed in Tu, then we ignore 𝛼t. Otherwise,
among all such t′, select one such that the node labeled 𝛼t′ is at the greatest depth. (In
case of ties, select any one such 𝛼t′ .) Add a node with label 𝛼t and make it the child
of the node labeled 𝛼t′ .

We claim T = Tu will be a Moser Tree. When a node with label 𝛽 is created as a
child of a node with label 𝛼, we must have 𝛼 ∼ 𝛽. Now suppose at depth D there are
two nodes with labels 𝛽, 𝛾 and 𝛽 ∼ 𝛾 . One of them would have been created first, say
the one with label 𝛽 = 𝛼t′ . Later in the process, we reach 𝛾 = 𝛼t. As 𝛾 ∼ 𝛽, the node
with label 𝛾 will be placed at depth at least D + 1, contradicting our assumption.

Remark. The prefix 𝛼1 · · · , 𝛼u depends on the selection process used in FIX-IT III.
In some sense, the Moser Tree Tu encapsulates the critical information leading to the
choice of 𝛼u. If, say, FIX-IT III had given priority to the nodes in the tree, then it
would have begun with precisely the nodes in the tree in any order for which children
come before their parent.

Example. Suppose Ω is the English alphabet and 𝛼 ∼ 𝛽 if they are equal or one or
two apart in alphabetical order. Consider the prefix RFSPTR. The Moser Tree begins
(at the end) with root R. T is a child of R. P is a child of R. S is a child of P, F is
ignored, and R is a child of S. Had F been given low priority in FIX-IT III, the prefix
would have been RSPTR. Had, further, P been given high priority, the prefix would
have been RPSTR.

Let u < 𝑣, and assume LOG has prefix 𝛼1 · · · 𝛼𝑣. We claim the Moser Trees Tu,
T
𝑣

are not equal. Indeed, suppose they are. As they have roots 𝛼u, 𝛼𝑣, it must be that
𝛼u = 𝛼

𝑣
. All 1 ≤ j ≤ u with 𝛼j in Tu would also have 𝛼j in T

𝑣
, and T

𝑣
would have the

additional node 𝛼
𝑣
, showing the two trees differ. A LOG of length u will then generate

u distinct Moser Trees. Hence

E[TLOG] =
∑

T

Pr[T = Tn for some n]

Theorem 5.7.2 For any Moser Tree T

Pr[T = Tn for some n] ≤ p(T)
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It is helpful to preprocess the random choices of C[𝑣]. For all integers t ≥ 0, let
C[𝑣, t] have the distribution of C[𝑣], and let all C[𝑣, t] be mutually independent.
At step FIX-IT I, 𝑣 is given C[𝑣, 0]. At step FIX-IT IV, if C[𝑣, t] has already been
used, then 𝑣 is given C[𝑣, t + 1]. Given the Moser Tree T, say vertex 𝑣 appears in
A[𝛼i0

],… ,A[𝛼iu
], where the nodes are listed in order of depth, the highest depth first.

Any s < iu with 𝑣 ∈ A[𝛼s] must appear in the Moser Tree. Hence, when FIX-IT IV is
applied to A[𝛼it

], it will use C[𝑣, t]. For some Tn = T (regardless of n), it is necessary
that BAD[𝛼t] for all t. The BAD[𝛼t] have probability p[𝛼t]. Critically, as the “coin
flips” C[𝑣, t] are mutually independent and none is used twice, the events BAD[𝛼t]
are mutually independent and so the probability that they all hold is the product of
the probabilities, namely p(T).

Example. Let A[𝛼] = {1, 2, 3}, A[𝛽] = {2, 3, 4}, and let T consist of root 𝛽 with sin-
gle child 𝛼. Let BAD[𝛼], BAD[𝛽] be the events that A[𝛼],A[𝛽] are monochromatic.
In order for T = Tn for some n, it is necessary that C[1, 0], C[2, 0], C[3, 0] be the
same and that C[2, 1], C[3, 1], C[4, 0] be the same. These are mutually independent
events, and the probability they both hold is (1∕4)2. If T = Tn, there cannot be any
other 𝛾 with 2 or 3 or 4 in A[𝛾] that appears before 𝛽, as that 𝛾 would have been a
node in the Moser Tree Tn. There cannot be any other 𝛾 with 1 ∈ A[𝛾] that appears
before 𝛼 as that 𝛼 would also have been a node in the Moser Tree Tn.

Calculating the sum of p[T] over all Moser Trees can be a daunting task. Instead,
we find a larger sum. We call a labeled (with I) rooted tree a weak Moser Tree if the
following conditions hold:

1. If a node labeled 𝛽 is a child of a node labeled 𝛼, then 𝛽 ∼ 𝛼.

2. The labels of the children of a node are distinct.

Weak Moser Trees have a nice recursive structure. For 𝛼 ∈ I, let 𝑤(𝛼) denote the
(possibly infinite) sum of p[T] over all weak Moser Trees with root labeled 𝛼. For
𝛼 ∈ I, let 𝑤(D, 𝛼) denote the sum of p[T] over all weak Moser Trees with root labeled
𝛼 and depth at most D. Weak Moser Trees with root 𝛼 and depth at most D decompose
into the root 𝛼 and some (maybe none) Moser Trees with roots 𝛽 ∼ 𝛼, all of whom
have depth at most D − 1. Thus 𝑤 is given by the recursive system

𝑤(D, 𝛼) = p(𝛼)
∏
𝛽∼𝛼

(1 +𝑤(D − 1, 𝛽)). (5.9)

The only tree with root 𝛼 and depth 0 consists solely of the root and has p(T) = p(𝛼).
This yields the initial condition 𝑤(0, 𝛼) = p(𝛼).

Theorem 5.7.3 Suppose there exist x[𝛼] ≥ p[𝛼] for 𝛼 ∈ I such that

x(𝛼) ≥ p(𝛼)
∏
𝛽∼𝛼

(1 + x(𝛽)). (5.10)

Then 𝑤(𝛼) ≤ x(𝛼). Further, E[TLOG] ≤
∑

𝛼∈Ix(𝛼).
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Proof. We show 𝑤(D, 𝛼) ≤ x(𝛼) for all 𝛼 ∈ I by induction on D. For D = 0,
𝑤(0, 𝛼) = p(𝛼) ≤ x(𝛼). Suppose, by induction on D, that 𝑤(D − 1, 𝛽) ≤ x(𝛽) for all
𝛽 ∈ I. From (5.9), (5.10), 𝑤(D, 𝛼) ≤ x(𝛼) for all 𝛼 ∈ I. Thus 𝑤(𝛼) = lim

D→∞
𝑤(D, 𝛼) ≤

x(𝛼). As all Moser Trees are weak Moser Trees, E[TLOG] is at most the sum of p(T)
over all weak Moser Trees, which is at most

∑
𝛼∈Ix(𝛼).

The symmetric case is particularly nice, and often occurs in applications. Suppose
all p[𝛼] ≤ p and for all 𝛼, |{𝛽 ∶ 𝛽 ∼ 𝛼}| ≤ d. We apply Theorem 5.7.3 with all x(𝛼) =
x. If there exists x ≥ p such that x ≥ p(1 + x)d, then E[TLOG] ≤ x|I|. x(1 + x)−d has
maximal value (d − 1)d−1d−d, given at x = (d − 1)−1. ◾

Theorem 5.7.4 If p ≤ (d − 1)d−1d−d, then E[TLOG] ≤ |I|∕(d − 1).

Theorem 5.7.5 If epd ≤ 1, then E[TLOG] ≤ |I|∕(d − 1).

Moser has also given an alternative analysis of the algorithm based on what he
calls an entropy compression argument. The basic idea here is to show that, if the
algorithm runs without terminating for a long time, then the LOG constructed enables
us to compress the random string to a shorter one, and this is impossible. Rather than
describing the argument for the general case, we give here only one simple and elegant
illustration, given in Grytczuk, Kozik and Micek (2013).

A repetition of length h in a sequence is two identical adjacent blocks, each consist-
ing of h consecutive elements. A sequence is nonrepetitive if it contains no repetitions.
Thus, for example, the sequence 1231241 is nonrepetitive, while 1213413451 is not,
as it contains the repetition 134134. Thue proved in 1906 that there is an infinite non-
repetitive sequence over an alphabet of three symbols. An extension is proved in Alon
et al. (2002) using the Local Lemma: the vertices of any graph with maximum degree
d can be colored by O(d2) colors so that every path in the graph is nonrepetitive. A
variant in which the allowed colors for each vertex must lie in a list associated with
the vertex has been considered as well. Here we prove the following:

Theorem 5.7.6 [Grytczuk et al. (2013)] For every n ≥ 1 and every sequence
of lists of symbols L1, L2,… , Ln, each of size 5, there is a nonrepetitive sequence
s1, s2,… , sn, where si ∈ Li. Moreover, there is a randomized algorithm that finds such
a sequence in expected time polynomial in n, given the lists.

Note that, by König’s Lemma, the above implies that any infinite sequence of lists
of size 5 admits a nonrepetitive sequence of symbols chosen from the lists. We note
also that it has been conjectured that lists of size 3 suffice (see the paragraph following
the proof for more about lists of size 3 and 4).

The proof of the theorem is by a simple algorithm: the sequence is generated by
choosing symbols randomly, independently, and uniformly from the lists, where every
time a repetition occurs, the repeated block is erased and the process continues. More
formally, consider the following algorithm for generating a nonrepetitive sequence
s1, s2,… , sn from the lists L1, L2,… , Ls, each of size 5:
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Starting with i = 1, as long as i ≤ n, perform an iteration as follows: let si be a
random element of Li. If the sequence s1, s2,… , si is nonrepetitive, increase i to i + 1
and go to the next iteration. Otherwise, note that, crucially, there is a unique repetition
ending at si, and let it be si−2h+1,… , si−h, si−h+1,… , si. In this case, replace i by i −
h + 1 and proceed to the next iteration. (This includes the case h = 1 where si = si−1
and si is deleted.)

Note that, if the algorithm terminates, it generates a nonrepetitive sequence of
length n, as required. To complete the proof, we show that with high probability it
terminates after O(n) iterations. To estimate the probability that it does not termi-
nate in M iterations, fix an arbitrary order of the symbols in each list and let rj ∈ [5]
be the position of the chosen element in iteration j (1 ≤ j ≤ M). Define a sequence
d1,… , dm, where d1 = 1 and dj is the difference between the value of i at the end of
iteration j and its value at the end of iteration j − 1. Thus dj = 1 if in iteration number
j no repetition is obtained; otherwise it is −h + 1 where h is the length of the repeated
block obtained. The LOG corresponding to the run of the algorithm is (DM, SM),
where DM = (d1,… , dM) and SM = (s1, s2 · · · , s𝓁) is the sequence obtained after M
iterations. The crucial fact is the following:

Fact: Every LOG which can be obtained corresponds to exactly one sequence
r1, r2,… , rM. Therefore, the probability to get it is 5−M .

To prove the fact, it suffices to show that by knowing the LOG (DM, SM)we can recon-
struct rM and (DM−1, SM−1), where DM−1 = (d1,… , dM−1) and SM−1 is the sequence
the algorithm generates after M − 1 iterations. The same process will then enable us
to reconstruct, by induction, rM−1,… , r1.

Knowing DM clearly reveals DM−1. If dM = 1, then rM is just the position of s𝓁 in
the list L𝓁 , and SM−1 is SM without its last symbol. Otherwise, dM = −h + 1, where
h is the length of the last repeated block. In this case, the h symbols that have been
erased from SM−1 together with the last chosen symbol to get SM are equal to the last
h symbols of SM, in order, and thus in this case SM−1 = s1,… , s𝓁, s𝓁−h+1,… , s𝓁−1
and rM is the location of s𝓁 in the list L𝓁+h. This proves the fact.

Each possible sequence DM = (d1,… , dm) can be encoded by a sequence over+,−
as follows: for each j, 1 ≤ j ≤ M, in order, write + once, followed by |dj − 1| times −
(note that dj − 1 is zero when dj = 1). Thus the total number of + in the sequence is
M, and the total number of − is exactly the number of symbols discarded during the
process, which is at most M − 1 (and at least M − n, but we will not use this last fact
here). This shows that the number of possibilities for DM in the LOG is smaller than
22M, and hence the number of possibilities for the LOG (DM , SM) is at most 22M5n.
By the fact, this implies that the probability the algorithm does not terminate after M
iterations is at most 4M5n−M, which is tiny for, say, M = 8n. Therefore, the algorithm
terminates, with high probability, after less than 8n iterations and the expected number
of iterations until termination is O(n). This completes the proof of the theorem.

The randomized algorithm described above is well defined for lists of any size. It
has been conjectured that, for some M = M(n), the algorithm terminates with high
probability when all lists have size 3. We give this as an Exercise when the lists all
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have size 4. Extensive simulations (at least, in the case where all Li are the same)
indicate that one can take M = O(n) even if each list is of size 3, but this remains a
conjecture.

5.8 EXERCISES

1. (*) Prove that, for every integer d > 1, there is a finite c(d) such that the edges of
any bipartite graph with maximum degree d in which every cycle has at least c(d)
edges can be colored by d + 1 colors so that there are no two adjacent edges with
the same color and there is no two-colored cycle.

2. (*) Prove that, for every 𝜖 > 0, there is a finite l0 = l0(𝜖) and an infinite sequence
of bits a1, a2, a3, · · ·, where ai ∈ {0, 1}, such that for every l > l0 and every i ≥ 1,
the two binary vectors u = (ai, ai+1,… , ai+l−1) and 𝑣 = (ai+l, ai+l+1,… , ai+2l−1)
differ in at least ( 1

2
− 𝜖)l coordinates.

3. Let G = (V ,E) be a simple graph, and suppose each 𝑣 ∈ V is associated with a set
S(𝑣) of colors of size at least 10d, where d ≥ 1. Suppose, in addition, that for each
𝑣 ∈ V and c ∈ S(𝑣) there are at most d neighbors u of 𝑣 such that c lies in S(u).
Prove that there is a proper coloring of G assigning to each vertex 𝑣 a color from
its class S(𝑣).

4. Let G = (V ,E) be a cycle of length 4n, and let V = V1 ∪ V2 ∪ · · · ∪ Vn be a par-
tition of its 4n vertices into n pairwise disjoint subsets, each of cardinality 4. Is
it true that there must be an independent set of G containing precisely one vertex
from each Vi? (Prove or supply a counterexample.)

5. (*) Prove that there is an absolute constant c > 0 such that for every k there is a
set Sk of at least ck ln k integers, such that for every coloring of the integers by
k colors there is an integer x for which the set x + S does not intersect all color
classes.

6. Suppose |I| = m and |{𝛽 ∶ 𝛼 ∼ 𝛽}| = d for all 𝛼 ∈ I. Suppose I and, for all 𝛼 ∈ I,
{𝛽 ∶ 𝛼 ∼ 𝛽} are given in linked lists. Suppose BAD[𝛼] can be checked in unit time.
Give a data structure so that FIX-IT runs in O(m + (d + 1)TLOG) time. (Note that
simply checking all BAD[𝛼] at step FIX-IT III could take time Θ(m ⋅ TLOG).)

7. Set m = 105 (this can be adjusted for computer speed) and n = 10m. Let
x[1],… , x[n] be Boolean variables. Let 𝜎1,… , 𝜎30 be permutations of 1,… , n.
For each 1 ≤ i ≤ 30 and 0 ≤ t < m, create a clause C = y[1] ∨ · · · ∨ y[10] where
yl is either x[𝜎i(10t + l)] or its negation. Show, using the Local Lemma, that the
conjunction of all 30m clauses is satisfiable. Selecting the permutations at random
and the y[l] at random, implement the FIX-IT algorithm to find a satisfying
assignment.

8. Consider the proof of Theorem 5.7.6. Prove that in the encoding of DM as a
sequence of +1 and −1 (regardless of the sizes of the lists), the string + + − −
− + + − − − + cannot occur. Now suppose the lists L1,… , Ls all have size four.
Show that, with high probability, the algorithm terminates after O(n) iterations.



THE PROBABILISTIC LENS:
Directed Cycles

Let D = (V ,E) be a simple directed graph with minimum outdegree 𝛿 and maximum
indegree Δ.

Theorem 1 [Alon and Linial (1989)] If e(Δ𝛿 + 1)(1 − 1∕k)𝛿 < 1, then D contains
a (directed, simple) cycle of length 0 (mod k).

Proof. Clearly, we may assume that every outdegree is precisely 𝛿, since otherwise
we can consider a subgraph of D with this property.

Let f ∶ V → {0, 1,… , k − 1} be a random coloring of V , obtained by choosing, for
each 𝑣 ∈ V , f (𝑣) ∈ {0,… , k − 1} independently, according to a uniform distribution.
For each 𝑣 ∈ V , let A

𝑣
denote the event where there is no u ∈ V , with (𝑣, u) ∈ E and

f (u) ≡ f (𝑣) + 1(mod k). Clearly, Pr[A
𝑣
] = (1 − 1∕k)𝛿 . One can easily check that each

event A
𝑣

is mutually independent of all the events Au but those satisfying

N+(𝑣) ∩ ({u} ∪ N+(u)) ≠ ∅ ,

where here N+(𝑣) = {𝑤 ∈ V ∶ (𝑣,𝑤) ∈ E}. The number of such u’s is at mostΔ𝛿 and
hence, by our assumption and by the Local Lemma (Corollary 5.1.2), Pr

[⋀
𝑣∈VA

𝑣

]
>

0. Thus there is an f ∶ V → {0, 1,… , k − 1} such that for every 𝑣 ∈ V there is a u ∈ V
with

(𝑣, u) ∈ E and f (u) ≡ f (𝑣) + 1 (mod k). (1)

Starting at an arbitrary 𝑣 = 𝑣0 ∈ V and applying (1) repeatedly, we obtain a sequence
𝑣0, 𝑣1, 𝑣2, · · · of vertices of D so that (𝑣i, 𝑣i+1) ∈ E and f (𝑣i+1) ≡ f (𝑣i) + 1(mod k)
for all i ≥ 0. Let j be the minimum integer so that there is an 𝓁 < j with 𝑣𝓁 = 𝑣j. The
cycle 𝑣𝓁𝑣𝓁+1𝑣𝓁+2 · · · 𝑣j = 𝑣𝓁 is a directed simple cycle of D whose length is divisible
by k. ◾



6
Correlation Inequalities

Sandwiched as we are between the “everything” that is behind us and the “zero” beyond
us, ours is an ephemeral existence in which there is neither coincidence nor possibility.
–from A Wild Sheep Chase, by Haruki Murakami

Let G = (V ,E) be a random graph on the set of vertices V = {1, 2,… , n} generated
by choosing, for each i, j ∈ V , i ≠ j independently, the pair {i, j} to be an edge with
probability p, where 0 < p < 1. Let H be the event where G is Hamiltonian, and let
P be the event where G is planar. Suppose one wants to compare the two quantities
Pr [P ∧ H] and Pr [P] ⋅ Pr [H]. Intuitively, knowing that G is Hamiltonian suggests
that it has many edges and hence seems to indicate that G is less likely to be planar.
Therefore, it seems natural to expect that Pr [P | H] ≤ Pr [P], implying

Pr [P ∧ H] ≤ Pr [H] ⋅ Pr [P] .

This inequality, which is, indeed, correct, is a special case of the FKG Inequality
of Fortuin, Kasteleyn and Ginibre (1971). In this chapter, we present the proof of
this inequality and several related results, which deal with the correlation between
certain events in probability spaces. The proofs of all these results are rather simple,
and still they supply many interesting consequences. The first inequality of this type
is due to Harris (1960). A result closer to the ones considered here is a lemma of
Kleitman (1966), stating that, if  and  are two monotonically decreasing families

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
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of subsets of {1, 2,… , n} (i.e., A ∈  and A′
⊆ A ⇒ A′ ∈  and, similarly, B ∈ 

and B′
⊆ B ⇒ B′ ∈ ), then

| ∩ | ⋅ 2n
≥ || ⋅ || .

This lemma was followed by many extensions and generalizations until Ahlswede
and Daykin (1978) obtained a very general result, which implies all these extensions.
In the next section we present this result and its proof. Some of its many applications
are discussed in the rest of the chapter.

6.1 THE FOUR FUNCTIONS THEOREM OF AHLSWEDE AND DAYKIN

Suppose n ≥ 1 and put N = {1, 2,… , n}. Let P(N) denote the set of all subsets of N,
and let ℝ+ denote the set of nonnegative real numbers. For a function𝜑 ∶ P(N) → ℝ+

and for a family  of subsets of N, denote 𝜑() =
∑

A∈𝜑(A). For two families
 and  of subsets of N, define  ∪  = {A ∪ B ∶ A ∈ ,B ∈ } and  ∩  =
{A ∩ B ∶ A ∈ ,B ∈ }.

Theorem 6.1.1 [The Four Functions Theorem] Let 𝛼, 𝛽, 𝛾, 𝛿 ∶ P(N) → ℝ+ be
four functions from the set of all subsets of N to the nonnegative reals. If, for every
two subsets A,B ⊆ N the inequality

𝛼(A)𝛽(B) ≤ 𝛾(A ∪ B)𝛿(A ∩ B) (6.1)

holds, then, for every two families of subsets , ⊆ P(N),

𝛼()𝛽() ≤ 𝛾( ∪ )𝛿( ∩ ) . (6.2)

Proof. Observe, first, that we may modify the four functions 𝛼, 𝛽, 𝛾, 𝛿 by defining
𝛼(A) = 0 for all A ∉ , 𝛽(B) = 0 for all B ∉ , 𝛾(C) = 0 for all C ∉  ∪ , and
𝛿(D) = 0 for all D ∉  ∩ . Clearly, (6.1) still holds for the modified functions, and
in inequality (6.2) we may assume now that  =  =  ∪  =  ∩  = P(N).

To prove this inequality, we apply induction on n. The only step that requires some
computation is n = 1. In this case, P(N) = {𝜙,N}. For each function𝜑 ∈ {𝛼, 𝛽, 𝛾, 𝛿},
define 𝜑0 = 𝜑(𝜙) and 𝜑1 = 𝜑(N). By (6.1), we have

𝛼0𝛽0 ≤ 𝛾0𝛿0 ,

𝛼0𝛽1 ≤ 𝛾1𝛿0 ,

𝛼1𝛽0 ≤ 𝛾1𝛿0 ,

𝛼1𝛽1 ≤ 𝛾1𝛿1 . (6.3)

By the above paragraph, we only have to prove inequality (6.2), where  =  =
P(N), that is, to prove that

(𝛼0 + 𝛼1)(𝛽0 + 𝛽1) ≤ (𝛾0 + 𝛾1)(𝛿0 + 𝛿1) . (6.4)
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If either 𝛾1 = 0 or 𝛿0 = 0, this follows immediately from (6.3). Otherwise, by (6.3),
𝛾0 ≥ 𝛼0𝛽0∕𝛿0 and 𝛿1 ≥ 𝛼1𝛽1∕𝛾1. It thus suffices to show that(

𝛼0𝛽0

𝛿0
+ 𝛾1

)(
𝛿0 +

𝛼1𝛽1

𝛾1

)
≥ (𝛼0 + 𝛼1)(𝛽0 + 𝛽1)

or, equivalently, that

(𝛼0𝛽0 + 𝛾1𝛿0)(𝛿0𝛾1 + 𝛼1𝛽1) ≥ (𝛼0 + 𝛼1)(𝛽0 + 𝛽1)𝛿0𝛾1 .

The last inequality is equivalent to

(𝛾1𝛿0 − 𝛼0𝛽1)(𝛾1𝛿0 − 𝛼1𝛽0) ≥ 0,

which follows from (6.3), as both factors on the left-hand side are nonnegative. This
completes the proof for n = 1.

Suppose, now, that the theorem holds for n − 1, and let us prove it for n (≥ 2).
Put N′ = N ⧵ {n}, and define for each 𝜑 ∈ {𝛼, 𝛽, 𝛾, 𝛿} and each A ⊆ N′, 𝜑′(A) =
𝜑(A) + 𝜑(A ∪ {n}). Clearly, for each function𝜑 ∈ {𝛼, 𝛽, 𝛾, 𝛿},𝜑′(P(N′)) = 𝜑(P(N)).
Therefore, the desired inequality (6.3) would follow from applying the induction
hypothesis to the functions 𝛼

′
, 𝛽

′
, 𝛾

′
, 𝛿

′ ∶ P(N′) → ℝ+. However, in order to apply
this hypothesis we have to check that these new functions satisfy the assumption of
Theorem 6.1.1 on N′; that is, that for every A′

,B′
⊆ N′,

𝛼
′(A′)𝛽′(B′) ≤ 𝛾

′(A′ ∪ B′)𝛿′(A′ ∩ B′) . (6.5)

Not surprisingly, this last inequality follows easily from the case n = 1, which we
have already proved. Indeed, let T be a 1-element set and define

𝛼(𝜙) = 𝛼(A′) , 𝛼(T) = 𝛼(A′ ∪ {n}) ,

𝛽(𝜙) = 𝛽(B′) , 𝛽(T) = 𝛽(B′ ∪ {n}) ,

𝛾(𝜙) = 𝛾(A′ ∪ B′) , 𝛾(T) = 𝛾(A′ ∪ B′ ∪ {n}) ,

𝛿(𝜙) = 𝛿(A′ ∩ B′) , 𝛿(T) = 𝛿((A′ ∩ B′) ∪ {n}) .

By the assumption (6.1), 𝛼(S)𝛽(R) ≤ 𝛾(S ∪ R)𝛿(S ∩ R) for all S,R ⊆ T and, hence, by
the case n = 1 already proved,

𝛼
′(A′)𝛽′(B′) = 𝛼(P(T))𝛽(P(T)) ≤ 𝛾(P(T))𝛿(P(T)) = 𝛾

′(A′ ∪ B′)𝛿′(A′ ∩ B′) ,

which is the desired inequality (6.5). Therefore, inequality (6.2) holds, completing
the proof. ◾

The Ahlswede–Daykin theorem can be extended to any arbitrary finite distributive
lattices. A lattice is a partially ordered set in which every two elements, x and y,
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have a unique minimal upper bound, denoted by x ∨ y and called the join of x and y,
and a unique maximal lower bound, denoted by x ∧ y and called the meet of x and y.
A lattice L is distributi𝑣e if, for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

or, equivalently, if for all x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) .

For two sets X, Y ⊆ L, define

X ∨ Y = {x ∨ y ∶ x ∈ X, y ∈ Y}

and
X ∧ Y = {x ∧ y ∶ x ∈ X, y ∈ Y} .

Any subset L of P(N), where N = {1, 2,… , n}, ordered by inclusion, which is closed
under the union and intersection operations, is a distributive lattice. Here, the join of
two members A,B ∈ L is simply their union A ∪ B, and their meet is the intersection
A ∩ B. It is somewhat more surprising (but easy to check) that every finite distributive
lattice L is isomorphic to a sublattice of P({1, 2,… , n}) for some n. [To see this,
call an element x ∈ L join-irreducible if, whenever x = y ∨ z, then either x = y or
x = z. Let x1, x2,… , xn be the set of all join-irreducible elements in L, and associate
each element x ∈ L with the set A = A(x) ⊆ N, where x = ∨i∈Axi, and {xi ∶ i ∈ A}
are all the join-irreducibles y satisfying y ≤ x. The mapping x → A(x) is the desired
isomorphism.] This fact enables us to generalize Theorem 6.1.1 to arbitrary finite
distributive lattices as follows:

Corollary 6.1.2 Let L be a finite distributive lattice, and let 𝛼, 𝛽, 𝛾 and 𝛿 be four
functions from L to ℝ+. If

𝛼(x)𝛽(y) ≤ 𝛾(x ∨ y)𝛿(x ∧ y)

for all x, y ∈ L, then for every X, Y ⊆ L

𝛼(X)𝛽(Y) ≤ 𝛾(X ∨ Y)𝛿(X ∧ Y) .

The simplest case in the last corollary is the case where all the four functions 𝛼,
𝛽, 𝛾 , and 𝛿 are identically 1, stated below.

Corollary 6.1.3 Let L be a finite distributive lattice, and suppose X, Y ⊆ L. Then

|X| ⋅ |Y| ≤ |X ∨ Y| ⋅ |X ∧ Y| .
We close this section by presenting a very simple consequence of the last corollary,

first proved by Marica and Schonheim (1969).
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Corollary 6.1.4 Let  be a family of subsets of a finite set N, and define

 ⧵ = {F ⧵ F′ ∶ F, F′ ∈ } .

Then | ⧵| ≥ ||.
Proof. Let L be the distributive lattice of all subsets of N. By applying Corollary
6.1.3 to  and  = {N ⧵ F ∶ F ∈ }, we obtain

||2 = || ⋅ || ≤ | ∪ | ⋅ | ∩ | = | ⧵|2 .

The desired result follows. ◾

6.2 THE FKG INEQUALITY

A function 𝜇 ∶ L → ℝ+, where L is a finite distributive lattice, is called
log-supermodular if

𝜇(x)𝜇(y) ≤ 𝜇(x ∨ y)𝜇(x ∧ y)

for all x, y ∈ L. A function f ∶ L → ℝ+ is increasing if f (x) ≤ f (y) whenever x ≤ y
and is decreasing if f (x) ≥ f (y) whenever x ≤ y.

Motivated by a problem from statistical mechanics, Fortuin et al. (1971) proved
the following useful inequality, which has become known as the FKG inequality:

Theorem 6.2.1 [The FKG inequality] Let L be a finite distributive lattice, and let
𝜇 ∶ L → ℝ+ be a log-supermodular function. Then, for any two increasing functions
f , g ∶ L → ℝ+, we have(∑

x∈L

𝜇(x) f (x)

)(∑
x∈L

𝜇(x)g(x)

)
≤

(∑
x∈L

𝜇(x) f (x)g(x)

)(∑
x∈L

𝜇(x)

)
. (6.6)

Proof. Define four functions 𝛼, 𝛽, 𝛾, 𝛿 ∶ L → ℝ+ as Follows: For each x ∈ L,

𝛼(x) = 𝜇(x) f (x) , 𝛽(x) = 𝜇(x)g(x) ,

𝛾(x) = 𝜇(x) f (x)g(x) , 𝛿(x) = 𝜇(x) .

We claim that these functions satisfy the hypothesis of the Ahlswede–Daykin
theorem, stated in Corollary 6.1.2. Indeed, if x, y ∈ L then, by the supermodularity
of 𝜇 and since f and g are increasing,

𝛼(x)𝛽(y) = 𝜇(x) f (x)𝜇(y)g(y) ≤ 𝜇(x ∨ y) f (x)g(y)𝜇(x ∧ y)

≤ 𝜇(x ∨ y) f (x ∨ y)g(x ∨ y)𝜇(x ∧ y) = 𝛾(x ∨ y)𝛿(x ∧ y) .
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Therefore, by Corollary 6.1.2 (with X = Y = L)

𝛼(L)𝛽(L) ≤ 𝛾(L)𝛿(L) ,

which is the desired result. ◾

Note that the conclusion of Theorem 6.2.1 holds also if both f and g are decreasing
(simply interchange 𝛾 and 𝛿 in the proof). In case f is increasing and g is decreasing
(or vice versa), the opposite inequality holds:(∑

x∈L

𝜇(x) f (x)

)(∑
x∈L

𝜇(x)g(x)

)
≥

(∑
x∈L

𝜇(x)f (x)g(x)

)(∑
x∈L

𝜇(x)

)
.

To prove it, simply apply Theorem 6.2.1 to the two increasing functions f (x) and
k − g(x), where k is the constant maxx∈Lg(x). [This constant is needed to guarantee
that k − g(x) ≥ 0 for all x ∈ L.]

It is helpful to view 𝜇 as a measure on L. Assuming 𝜇 is not identically zero, we
can define, for any function f ∶ L → ℝ+, its expectation

⟨f ⟩ = ∑
x∈L f (x)𝜇(x)∑

x∈L 𝜇(x)
.

With this notation, the FKG inequality asserts that, if 𝜇 is log-supermodular and f , g ∶
L → ℝ+ are both increasing or both decreasing, then

⟨fg⟩ ≥ ⟨f ⟩⟨g⟩ .

Similarly, if f is increasing and g is decreasing (or vice versa), then

⟨fg⟩ ≤ ⟨f ⟩⟨g⟩ .

This formulation demonstrates clearly the probabilistic nature of the inequality, some
of whose many interesting consequences are presented in the rest of this chapter.

6.3 MONOTONE PROPERTIES

Recall that a family  of subsets of N = {1, 2,… , n} is monotonically decreasing
if A ∈  and A′

⊆ A ⇒ A′ ∈ . Similarly, it is monotonically increasing if A ∈ 

and A ⊆ A′ ⇒ A′ ∈ . By considering the power set P(N) as a symmetric probability
space, one naturally defines the probability of  by

Pr [] =
||
2n

.

Thus Pr [] is simply the probability that a randomly chosen subset of N lies in .
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Kleitman’s Lemma, which was the starting point of all the correlation inequalities
considered in this chapter, is the following:

Proposition 6.3.1 Let  and  be two monotonically increasing families of subsets
of N = {1, 2,… , n}, and let  and  be two monotonically decreasing families of
subsets of N. Then

Pr [ ∩ ] ≥ Pr [] ⋅ Pr [] ,

Pr [ ∩] ≥ Pr [] ⋅ Pr [] ,

Pr [ ∩ ] ≤ Pr [] ⋅ Pr [] .

In terms of cardinalities, this can be read as follows:

2n| ∩ | ≥ || ⋅ || ,
2n| ∩| ≥ || ⋅ || ,
2n| ∩ | ≤ || ⋅ || ,

where here and in what follows,  ∩,  ∩, and ∩  denote usual intersections
of families.

Proof. Let f ∶ P(N) → ℝ+ be the characteristic function of ; that is, f (A) = 0 if
A ∉  and f (A) = 1 if A ∈ . Similarly, let g be the characteristic function of B. By
the assumptions, f and g are both increasing. Applying the FKG inequality with the
trivial measure 𝜇 ≡ 1, we get

Pr[ ∩ ] = ⟨fg⟩ ≥ ⟨f ⟩⟨g⟩ = Pr[] ⋅ Pr[] .

The other two inequalities follow similarly from Theorem 6.2.1 and the paragraph
following it.

It is worth noting that the proposition can be also derived easily from the
Ahlswede–Daykin theorem or from Corollary 6.1.3. ◾

The last proposition has several interesting combinatorial consequences, some of
which appear already in Kleitman’s original paper. Since those are direct combina-
torial consequences and do not contain any additional probabilistic ideas, we omit
their exact statement and turn to a version of Proposition 6.3.1 in a more general
probability space.

For a real vector p = (p1,… , pn), where 0 ≤ pi ≤ 1, consider the probability
space whose elements are all members of the power set P(N), where, for each A ⊆ N,
Pr[A] =

∏
i∈Api

∏
j∉A(1 − pj). Clearly, this probability distribution is obtained if

we choose a random A ⊆ N by choosing each element i ∈ N, independently, with
probability pi. Let us denote, for each  ⊆ P(N), its probability in this space by
Prp []. In particular, if all the probabilities pi are 1∕2, then Prp [] is the quantity
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denoted as Pr [A] in Proposition 6.3.1. Define 𝜇 = 𝜇p ∶ P(N) → ℝ+ by 𝜇(A) =∏
i∈Api

∏
j∉A(1 − pj).

It is easy to check that 𝜇 is log-supermodular. This is because, for A,B ⊆ N,
𝜇(A)𝜇(B) = 𝜇(A ∪ B)𝜇(A ∩ B), as can be checked by comparing the contribution aris-
ing from each i ∈ N to the left-hand side and to the right-hand side of the last equality.
Hence, one can apply the FKG inequality and obtain the following generalization of
Proposition 6.3.1:

Theorem 6.3.2 Let  and  be two monotonically increasing families of subsets of
N, and let  and  be two monotonically decreasing families of subsets of N. Then,
for any real vector p = (p1,… , pn), 0 ≤ pi ≤ 1,

Prp [ ∩ ] ≥ Prp [] ⋅ Prp [] ,

Prp [ ∩] ≥ Prp [] ⋅ Prp [] ,

Prp [ ∩ ] ≤ Prp [] ⋅ Prp [] .

This theorem can be applied in many cases and will be used in Chapter 8 to derive
the Janson inequalities. As a simple illustration, suppose that A1,A2,… ,Ak are arbi-
trary subsets of N, and one chooses a random subset A of N by choosing each i ∈ N,
independently, with probability p. Then, Theorem 6.3.2 easily implies that

Pr [A intersects each Ai] ≥
k∏

i=1

Pr [A intersects Ai] .

Note that this is false, in general, for other similar probabilistic models. For example,
if A is a randomly chosen 𝓁-element subset of N, then the last inequality may fail.

By viewing the members of N as the n =
(

m
2

)
edges of the complete graph on

the set of vertices V = {1, 2,… ,m}, we can derive a correlation inequality for ran-
dom graphs. Let G = (V ,E) be a random graph on the set of vertices V generated
by choosing, for each i, j ∈ V , i ≠ j, independently, the pair {i, j} to be an edge with
probability p. (This model of random graphs is discussed in detail in Chapter 10.) A
property of graphs is a subset of the set of all graphs on V , closed under isomorphism.
Thus, for example, connectivity is a property (corresponding to all connected graphs
on V), and planarity is another property. A property Q is monotonically increasing
if whenever G has Q and H is obtained from G by adding edges, then H has Q too.
A monotonically decreasing property is defined in a similar manner. By interpreting
the members of N in Theorem 6.3.2 as the

(
m
2

)
pairs {i, j} with i, j ∈ V , i ≠ j, we

obtain the following:

Theorem 6.3.3 Let Q1,Q2,Q3, and Q4 be graph properties, where Q1,Q2 are mono-
tonically increasing and Q3,Q4 are monotonically decreasing. Let G = (V ,E) be a
random graph on V obtained by picking every edge, independently, with probability p.
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Then
Pr [G ∈ Q1 ∩ Q2] ≥ Pr [G ∈ Q1] ⋅ Pr [G ∈ Q2] ,

Pr [G ∈ Q3 ∩ Q4] ≥ Pr [G ∈ Q3] ⋅ Pr [G ∈ Q4] ,

Pr [G ∈ Q1 ∩ Q3] ≤ Pr [G ∈ Q1] ⋅ Pr [G ∈ Q3] .

Thus, for example, the probability that G is both Hamiltonian and planar does not
exceed the product of the probability that it is Hamiltonian by that it is planar. It
seems hopeless to try and prove such a statement directly, without using one of the
correlation inequalities.

6.4 LINEAR EXTENSIONS OF PARTIALLY ORDERED SETS

Let (P,≤) be a partially ordered set with n elements. A linear extension of P is
a one-to-one mapping 𝜎 ∶ P → {1, 2,… , n}, which is order-preserving; that is, if
x, y ∈ P and x ≤ y, then 𝜎(x) ≤ 𝜎(y). Intuitively, 𝜎 is a ranking of the elements of
P that preserves the partial order of P. Consider the probability space of all linear
extensions of P, where each possible extension is equally likely. In this space, we can
consider events of the form, for example, x ≤ y or (x ≤ y) ∧ (x ≤ z) (for x, y, z ∈ P)
and compute their probabilities. It turns out that the FKG inequality is a very useful
tool for studying the correlation between such events. The best known result of this
form was conjectured by Rival and Sands and proved by Shepp (1982). (See also
Fishburn (1992) for a strengthening.) It asserts that for any partially ordered set P
and any three elements x, y, z ∈ P: Pr [x ≤ y ∧ x ≤ z] ≥ Pr [x ≤ y] Pr [x ≤ z].

This result became known as the XYZ theorem. Although it looks intuitively obvi-
ous, its proof is nontrivial and contains a clever application of the FKG inequality. In
this section we present this result and its elegant proof.

Theorem 6.4.1 Let P be a partially ordered set with n elements a1, a2,… , an. Then

Pr [a1 ≤ a2 ∧ a1 ≤ a3] ≥ Pr [a1 ≤ a2] Pr [a1 ≤ a3] .

Proof. Let m be a large integer (which will later tend to infinity), and let L be the set of
all ordered n-tuples x = (x1,… , xn), where xi ∈ M = {1, 2,… ,m}. (Note that we do
not assume that the numbers xi are distinct.) Define an order relation≤ on L as follows.
For y = (y1,… , yn) ∈ L and x as above, x ≤ y iff x1 ≥ y1 and xi − x1 ≤ yi − y1 for
all 2 ≤ i ≤ n. It is not too difficult to check that (L,≤) is a lattice in which the ith
component of the meet x ∧ y is (x ∧ y)i = min(xi − x1, yi − y1) + max(x1, y1) and the
ith component of the join x ∨ y is (x ∨ y)i = max(xi − x1, yi − y1) + min(x1, y1).

Moreover, the lattice L is distributive. This follows by an easy computation from
the fact that the trivial lattice of integers (with respect to the usual order) is distributive
and hence, for any three integers a, b, and c,

min(a,max(b, c)) = max(min(a, b),min(a, c)) , (6.7)
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and
max(a,min(b, c)) = min(max(a, b),max(a, c)) . (6.8)

Let us show how this implies that L is distributive. Let x = (x1,… , xn),
y = (y1,… , yn), and z = (z1,… , zn) be three elements of L. We must show that

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) .

The ith component of x ∧ (y ∨ z) is

x ∧ (y ∨ z))i = min(xi − x1, (y ∨ z)i − (y ∨ z)1)

+ max(x1, (y ∨ z)1)

= min(xi − x1,max(yi − y1, zi − z1))

+ max(x1,min(y1, z1)) .

Similarly, the ith component of (x ∧ y) ∨ (x ∧ z) is

((x ∧ y) ∨ (x ∧ z))i = max((x ∧ y)i − (x ∧ y)1, (x ∧ z)i − (x ∧ z)1)

+ min((x ∧ y)1, (x ∧ z)1)

= max(min(xi − x1, yi − y1),min(xi − x1, zi − z1))

+ min(max(x1, y1),max(x1, z1)) .

These two quantities are equal, as follows by applying (6.7) with a = xi − x1,
b = yi − y1, c = zi − z1, and (6.8) with a = x1, b = y1, c = z1.

Thus L is distributive. To apply the FKG inequality we need the measure function
𝜇 and the two functions f and g. Let 𝜇 be the characteristic function of P; that is, for
x = (x1,… , xn) ∈ L, 𝜇(x) = 1 if xi ≤ xj whenever ai ≤ aj in P and 𝜇(x) = 0 other-
wise. To show that 𝜇 is log-supermodular, it suffices to check that if 𝜇(x) = 𝜇(y) = 1,
then 𝜇(x ∨ y) = 𝜇(x ∧ y) = 1. However, if 𝜇(x) = 𝜇(y) = 1 and ai ≤ aj in P, then
xi ≤ xj and yi ≤ yj and hence

(x ∨ y)i = max(xi − x1, yi − y1) + min(x1, y1)

≤ max(xj − x1, yj − y1) + min(x1, y1) = (x ∨ y)j ,

that is, 𝜇(x ∨ y) = 1. Similarly, 𝜇(x) = 𝜇(y) = 1 implies 𝜇(x ∧ y) = 1 too.
Not surprisingly, we define the functions f and g as the characteristic functions

of the two events x1 ≤ x2 and x1 ≤ x3, respectively; that is, f (x) = 1 if x1 ≤ x2 and
f (x) = 0 otherwise, and g(x) = 1 if x1 ≤ x3 and g(x) = 0 otherwise. Trivially, both f
and g are increasing. Indeed, if x ≤ y and f (x) = 1, then 0 ≤ x2 − x1 ≤ y2 − y1 and
hence f (y) = 1, and similarly for g.

We, therefore, have all the necessary ingredients for applying the FKG inequality
(Theorem 6.2.1). This gives that in L the probability that an n-tuple (x1,… , xn) that
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satisfies the inequalities in P satisfies both x1 ≤ x2 and x1 ≤ x3 is at least as big as the
product of the probability that it satisfies x1 ≤ x2 by that it satisfies x1 ≤ x3. Note that
this is not yet what we wanted to prove; the n-tuples in L are not n-tuples of distinct
integers and thus do not correspond to linear extensions of P. However, as m → ∞,
the probability that xi = xj for some i ≠ j in a member x = (x1,… , xn) of L tends to 0,
and the assertion of the theorem follows. ◾

6.5 EXERCISES

1. Let G be a graph and let P denote the probability that a random subgraph of G
obtained by picking each edge of G with probability 1∕2, independently, is con-
nected (and spanning). Let Q denote the probability that in a random two-coloring
of G, where each edge is chosen randomly and independently to be either red
or blue, the red graph and the blue graph are both connected (and spanning). Is
Q ≤ P2?

2. A family of subsets  is called intersecting if G1 ∩ G2 ≠ ∅ for all G1,G2 ∈ . Let
1,2,… ,k be k intersecting families of subsets of {1, 2,… , n}. Prove that

||||||
k⋃

i=1

i

|||||| ≤ 2n − 2n−k .

3. Show that the probability that in the random graph G(2k, 1∕2) the maximum
degree is at most k − 1 is at least 1∕4k.



THE PROBABILISTIC LENS:
Turán’s Theorem

In a graph G = (V ,E), let d
𝑣

denote the degree of a vertex 𝑣 and let 𝛼(G) be the
maximal size of an independent set of vertices. The following result was proved by
Caro and Wei.

Theorem 1 𝛼(G) ≥
∑
𝑣∈V

1
d
𝑣
+ 1

.

Proof. Let < be a uniformly chosen total ordering of V . Define

I = {𝑣 ∈ V ∶ {𝑣,𝑤} ∈ E ⇒ 𝑣 < 𝑤} .

Let X
𝑣

be the indicator random variable for 𝑣 ∈ I and X =
∑

𝑣∈VX
𝑣
= |I|. For each 𝑣,

E[X
𝑣
] = Pr [𝑣 ∈ I] = 1

d
𝑣
+ 1

,

since 𝑣 ∈ I if and only if 𝑣 is the least element among 𝑣 and its neighbors. Hence

E[X] =
∑
𝑣∈V

1
d
𝑣
+ 1

and so there exists a specific ordering < with

|I| ≥ ∑
𝑣∈V

1
d
𝑣
+ 1

.

But if x, y ∈ I and {x, y} ∈ E, then x < y and y < x, a contradiction. Thus I is
independent and 𝛼(G) ≥ |I|. ◾
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For any m ≤ n, let q, r satisfy n = mq + r, 0 ≤ r < m, and let e = r
(

q+1
2

)
+

(m − r)
(

q
2

)
. Define a graph G = Gn,e on n vertices and e edges by splitting the

vertex set into m classes as evenly as possible and joining two vertices if and only if
they lie in the same class. Clearly, 𝛼(Gn,e) = m.

Theorem 2 Turán (1941) Let H have n vertices and e edges. Then 𝛼(H) ≥ m and
𝛼(H) = m ⇐⇒ H ≅ Gn,e.

Proof. Gn,e has
∑

𝑣∈V (d𝑣 + 1)−1 = m since each clique contributes 1 to the sum.
Fixing e =

∑
𝑣∈V d

𝑣
∕2,

∑
𝑣∈V (d𝑣 + 1)−1 is minimized with the d

𝑣
as close together

as possible. Thus for any H,

𝛼(H) ≥
∑
𝑣∈V

1
d
𝑣
+ 1

≥ m .

For 𝛼(H) = m, we must have equality on both sides above. The second equality
implies that d

𝑣
must be as close together as possible. Letting X = |I| as in the pre-

vious theorem, assume 𝛼(H) = E[X]. But 𝛼(H) ≥ X for all values of <, so X must
be a constant. Suppose H is not a union of cliques. Then, there exist x, y, z ∈ V with
{x, y}, {x, z} ∈ E, {y, z} ∉ E. Let < be an ordering that begins x, y, z and <

′ the same
ordering except that it begins y, z, x, and let I, I′ be the corresponding sets of vertices
all of whose neighbors are “greater.” Then I, I′ are identical except that x ∈ I, y, z ∉ I,
whereas x ∉ I′, y, z ∈ I′. Thus X is not constant. That is, 𝛼(H) = E[X] implies that
H is the union of cliques and so H ≅ Gn,e. ◾





7
Martingales and Tight

Concentration

Mathematics seems much more real to me than business—in the sense that, well,
what’s the reality in a McDonald’s stand? It’s here today and gone tomorrow. Now, the
integers—that’s reality. When you prove a theorem, you’ve really done something that
has substance to it, to which no business venture can compare for reality.
–Jim Simons

7.1 DEFINITIONS

A martingale is a sequence X0,… ,Xm of random variables so that for 0 ≤ i < m,

E[Xi+1 | Xi,Xi−1,… ,X0] = Xi .

Imagine a gambler walking into a casino with X0 dollars. The casino contains a variety
of games of chance. All games are “fair” in that their expectations are zero. The
gambler may allow previous history to determine his choice of game and bet. He
might employ the gambler’s definition of martingale—double the bet until you win.
He might play roulette until he wins three times, and then switch to keno. Let Xi be
the gambler’s fortune at time i. Given that Xi = a, the conditional expectation of Xi+1
must be a and so this is a martingale.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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A simple but instructive martingale occurs when the gambler plays “flip a coin”
for stakes of one dollar each time. Let Y1,… , Ym be independent coin flips, each +1
or −1 with probability 1∕2. Normalize so that X0 = 0 is the gambler’s initial stake,
though he has unlimited credit. Then Xi = Y1 + · · · + Yi has distribution Si.

Our martingales will look quite different, at least from the outside.

The Edge Exposure Martingale. Let the random graph G(n, p) be the underlying
probability space. Label the potential edges {i, j} ⊆ [n] by e1,… , em, setting m =(

n
2

)
for convenience, in any specific manner. Let f be any graph theoretic function.

We define a martingale X0,… ,Xm by giving the values Xi(H), where H is sampled
from G(n, p). Xm(H) is simply f (H). X0(H) is the expected value of f (G) with G ∼
G(n, p). Note that X0 is a constant. In general (including the cases i = 0 and i = m)

Xi(H) = E[ f (G) | ej ∈ G ⇐⇒ ej ∈ H, 1 ≤ j ≤ i] .

In words, to find Xi(H) we first expose the first i pairs e1,… , ei and see if they are in
H. The remaining edges are not seen and considered to be random. Xi(H) is then the
conditional expectation of f (G) with this partial information. When i = 0, nothing is
exposed and X0 is a constant. When i = m, all is exposed and Xm is the function f .
The martingale moves from no information to full information in small steps.

2

2.25

1.75

2.5

2

2

1.5

3

2

2

2

2

2

2

1

X0 X1 X2 X3

The edge exposure martingale with n = m = 3, f is the chromatic number and the
edges exposed in the order “bottom, left, right.” The values Xi(H) are given by tracing
from the central node to the leaf labeled H.

The figure shows why this is a martingale. The conditional expectation of f (H)
knowing the first i − 1 edges is the weighted average of the conditional expectations
of f (H), where the ith edge has been exposed. More generally—in what is sometimes
referred to as a Doob martingale process—Xi may be the conditional expectation of
f (H) after certain information is revealed as long as the information known at time i
includes the information known at time i − 1.
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The Vertex Exposure Martingale. Again, let G(n, p) be the underlying probability
space and f any graph theoretic function. Define X1,… ,Xn by

Xi(H) = E[ f (G) | for x, y ≤ i, {x, y} ∈ G ⇐⇒ {x, y} ∈ H] .

In words, to find Xi(H) we expose the first i vertices and all their internal edges, and
take the conditional expectation of f (G) with that partial information. By ordering the
edges appropriately, the vertex exposure martingale may be considered a subsequence
of the edge exposure martingale. Note that X1(H) = E[ f (G)] is constant as no edges
have been exposed, and Xn(H) = f (H) as all edges have been exposed.

7.2 LARGE DEVIATIONS

Maurey (1979) applied a large deviation inequality for martingales to prove an
isoperimetric inequality for the symmetric group Sn. This inequality was useful in
the study of normed spaces; see Milman and Schechtman (1986) for many related
results. The applications of martingales in graph theory also all involve the same
underlying martingale result used by Maurey, which is the following:

Theorem 7.2.1 [Azuma’s Inequality] Let 0 = X0,… ,Xm be a martingale with

|Xi+1 − Xi| ≤ 1

for all 0 ≤ i < m. Let 𝜆 > 0 be arbitrary. Then

Pr
[
Xm > 𝜆

√
m
]
< e−𝜆

2∕2 .

In the “flip a coin” martingale, Xm has distribution Sm and this result is Theorem
A.1.1. Indeed, the general proof is quite similar.

Proof. Set, with foresight, 𝛼 = 𝜆∕
√

m. Set Yi = Xi − Xi−1 so that |Yi| ≤ 1 and
E[Yi | Xi−1,Xi−2,… ,X0] = 0. Then, as in Theorem A.1.16,

E[e𝛼Yi | Xi−1,Xi−2,… ,X0] ≤ cosh(𝛼) ≤ e𝛼
2∕2 .

Hence

E[e𝛼Xm] = E

[
m∏

i=1

e𝛼Yi

]

= E

[(
m−1∏
i=1

e𝛼Yi

)
E[e𝛼Ym | Xm−1,Xm−2,… ,X0]

]

≤ E

[
m−1∏
i=1

e𝛼Yi

]
e𝛼

2∕2
≤ e𝛼

2m∕2
.
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Therefore

Pr
[
Xm > 𝜆

√
m
]
= Pr

[
e𝛼Xm > e𝛼𝜆

√
m
]

< E
[
e𝛼Xm

]
e−𝛼𝜆

√
m

≤ e𝛼
2m∕2−𝛼𝜆

√
m = e−𝜆

2∕2
,

as needed. ◾

Corollary 7.2.2 Let c = X0,… ,Xm be a martingale with

|Xi+1 − Xi| ≤ 1

for all 0 ≤ i < m. Then

Pr
[|Xm − c| > 𝜆

√
m
]
< 2e−𝜆

2∕2 .

A graph theoretic function f is said to satisfy the edge Lipschitz condition
if, whenever H and H′ differ in only one edge, | f (H) − f (H′)| ≤ 1. It satisfies
the vertex Lipschitz condition if, whenever H and H′ differ at only one vertex,| f (H) − f (H′)| ≤ 1.

Theorem 7.2.3 When f satisfies the edge Lipschitz condition, the corresponding edge
exposure martingale satisfies |Xi+1 − Xi| ≤ 1. When f satisfies the vertex Lipschitz
condition, the corresponding vertex exposure martingale satisfies |Xi+1 − Xi| ≤ 1.

We prove these results in a more general context later. They have the intuitive
sense that, if knowledge of a particular vertex or edge cannot change f by more than
1, then exposing a vertex or edge should not change the expectation of f by more than
1. Now we give a simple application of these results.

Theorem 7.2.4 Shamir and Spencer (1987) Let n, p be arbitrary, and let c =
E[𝜒(G)], where G ∼ G(n, p). Then

Pr
[|𝜒(G) − c| > 𝜆

√
n − 1

]
< 2e−𝜆

2∕2 .

Proof. Consider the vertex exposure martingale X1,… ,Xn on G(n, p) with
f (G) = 𝜒(G). A single vertex can always be given a new color, so the vertex
Lipschitz condition applies. Now apply Azuma’s Inequality in the form of Corollary
7.2.2. ◾

Letting 𝜆 → ∞ arbitrarily slowly, this result shows that the distribution of 𝜒(G)
is “tightly concentrated” around its mean. The proof gives no clue as to where the
mean is.
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7.3 CHROMATIC NUMBER

In Theorem 10.3.1, we prove that 𝜒(G) ∼ n∕2log2 n almost surely, where
G ∼ G(n, 1

2
). Here we give the original proof of Béla Bollobás using martin-

gales. We follow the notations of Section 10.3, setting f (k) =
(

n
k

)
2
−
(

k
2

)
, k0 so that

f (k0 − 1) > 1 > f (k0), k = k0 − 4 so that k ∼ 2log2 n, and f (k) > n3+o(1). Our goal is
to show

Pr[𝜔(G) < k] = e−n2+o(1)
,

where 𝜔(G) is the size of the maximum clique of G. We shall actually show in
Theorem 7.3.2 a more precise bound. The remainder of the argument is given in
Section 10.3.

Let Y = Y(H) be the maximal size of a family of edge disjoint cliques of size
k in H. This ingenious and unusual choice of function is key to the martingale proof.

Lemma 7.3.1 E[Y] ≥ (1 + o(1))(n2∕2k4).

Proof. Let  denote the family of k-cliques of G so that f (k) = 𝜇 = E[||]. Let W
denote the number of unordered pairs {A,B} of k-cliques of G with 2 ≤ |A ∩ B| <
k. Then, E[W] = Δ∕2, with Δ as described in Section 10.3 (see also Section 4.5),
Δ ∼ 𝜇

2k4n−2. Let  be a random subfamily of  defined by setting, for each A ∈ ,
Pr[A ∈ ] = q, q to be determined. Let W ′ be the number of unordered pairs {A,B},
A,B ∈  with 2 ≤ |A ∩ B| < k. Then

E[W′] = E[W]q2 = Δq2∕2.

Delete from  one set from each such pair {A,B}. This yields a set ∗ of edge disjoint
k-cliques of G and

E[Y] ≥ E[|∗|] ≥ E[||] − E[W ′] = 𝜇q − Δq2∕2 = 𝜇
2∕2Δ ∼ n2∕2k4 ,

where we choose q = 𝜇∕Δ (< 1) to minimize the quadratic. ◾

We conjecture that Lemma 7.3.1 may be improved to E[Y] > cn2∕k2. That is, with
positive probability there is a family of k-cliques that are edge disjoint and cover a
positive proportion of the edges.

Theorem 7.3.2
Pr[𝜔(G) < k] < e−(c+o(1))(n2∕ln8 n)

with c a positive constant.

Proof. Let Y0,… , Ym, m =
(

n
2

)
, be the edge exposure martingale on G(n, 1

2
) with

the function Y just defined. The function Y satisfies the edge Lipschitz condition, as
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adding a single edge can only add at most one clique to a family of edge disjoint
cliques. (Note that the Lipschitz condition would not be satisfied for the number
of k-cliques, as a single edge might yield many new cliques.) G has no k-clique

if and only if Y = 0. Apply Azuma’s Inequality with m =
(

n
2

)
∼ n2∕2 and E[Y] ≥

(1 + o(1))(n2∕2k4). Then

Pr[𝜔(G) < k] = Pr[Y = 0]

≤ Pr[Y − E[Y] ≤ −E[Y]]

≤ e
− E[Y]2∕2

(
n
2

)

≤ e−(c
′+o(1))n2∕k8

= e−(c+o(1))n2∕ln8 n
,

as desired. ◾

Here is another example where the martingale approach requires an inventive
choice of graph theoretic function.

Theorem 7.3.3 Let p = n−𝛼 , where 𝛼 >
5
6

is fixed. Let G = G(n, p). Then there exists
u = u(n, p) so that almost always

u ≤ 𝜒(G) ≤ u + 3 .

That is, 𝜒(G) is concentrated in four values.

We first require a technical lemma that has been well known.

Lemma 7.3.4 Let 𝛼, c be fixed, 𝛼 >
5
6
. Let p = n−𝛼 . Then almost always every c

√
n

vertices of G = G(n, p) may be three-colored.

Proof. If not, let T be a minimal set that is not three-colorable. As T − {x} is
three-colorable, x must have internal degree at least 3 in T for all x ∈ T. Thus, if T
has t vertices, it must have at least 3t∕2 edges. The probability of this occurring for
some T with at most c

√
n vertices is bounded from above by

c
√

n∑
t=4

(n
t

) ⎛⎜⎜⎝
(

t
2

)
3t∕2

⎞⎟⎟⎠ p3t∕2 .

We bound (n
t

)
≤

(ne
t

)t
and

⎛⎜⎜⎝
(

t
2

)
3t∕2

⎞⎟⎟⎠ ≤
( te

3

)3t∕2
,
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so each term is at most(
ne
t

t3∕2e3∕2

33∕2
n−3𝛼∕2

)t

≤
(
c1n1−3𝛼∕2t1∕2)t

≤
(
c2n1−3𝛼∕2n1∕4)t = (c2n−𝜖)t

with 𝜖 = 3
2
𝛼 − 5

4
> 0 and the sum is therefore o(1). ◾

Proof. [Theorem 7.3.3] Let 𝜖 > 0 be arbitrarily small and let u = u(n, p, 𝜖) be the
least integer so that

Pr[𝜒(G) ≤ u] > 𝜖 .

Now define Y(G) to be the minimal size of a set of vertices S for which G − S may be
u-colored. This Y satisfies the vertex Lipschitz condition since at worst one could add
a vertex to S. Apply the vertex exposure martingale on G(n, p) to Y. Letting 𝜇 = E[Y]

Pr[Y ≤ 𝜇 − 𝜆

√
n − 1] < e−𝜆

2∕2
,

Pr[Y ≥ 𝜇 + 𝜆

√
n − 1] < e−𝜆

2∕2
.

Let 𝜆 satisfy e−𝜆
2∕2 = 𝜖 so that these tail events each have probability less than 𝜖.

We defined u so that, with probability at least 𝜖, G would be u-colorable and hence
Y = 0. That is, Pr[Y = 0] > 𝜖. The first inequality therefore forces 𝜇 ≤ 𝜆

√
n − 1.

Now employing the second inequality,

Pr
[
Y ≥ 2𝜆

√
n − 1

]
≤ Pr

[
Y ≥ 𝜇 + 𝜆

√
n − 1

]
≤ 𝜖 .

With probability at least 1 − 𝜖 there is a u-coloring of all but at most c′
√

n vertices.
By the lemma, almost always, and so with probability at least 1 − 𝜖, these points may
be colored with three further colors, giving a (u + 3)-coloring of G. The minimality
of u guarantees that with probability at least 1 − 𝜖 at least u colors are needed for G.
Altogether

Pr[u ≤ 𝜒(G) ≤ u + 3] ≥ 1 − 3𝜖

and 𝜖 was arbitrarily small. ◾

Using the same technique, similar results can be achieved for other values of 𝛼.
Together with some related ideas, it can be shown that, for any fixed 𝛼 >

1
2
, 𝜒(G)

is concentrated on at most two values. See Łuczak (1991) and Alon and Krivelevich
(1997) for the detailed proofs.

7.4 TWO GENERAL SETTINGS

The martingales, useful in studying random graphs generally, can be placed in the
following general setting, which is essentially the one considered in Maurey (1979)
and in Milman and Schechtman (1986): Let Ω = AB denote the set of functions
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g ∶ B → A. (With B the set of pairs of vertices on n vertices and A = {0, 1}, we may
identify g ∈ AB with a graph on n vertices.) We define a measure by giving values
pab and setting

Pr[g(b) = a] = pab

with the values g(b) assumed mutually independent. [In G(n, p) all p1b = p, p0b =
1 − p.] Now fix a gradation

∅ = B0 ⊂ B1 ⊂ · · · ⊂ Bm = B .

Let L ∶ AB → R be a functional (e.g., clique number). We define a martingale
X0,X1,… ,Xm by setting

Xi(h) = E[L(g) | g(b) = h(b) for all b ∈ Bi] .

X0 is a constant, the expected value of L of the random g. Xm is L itself. The values
Xi(g) approach L(g) as the values of g(b) are “exposed.” We say the functional L
satisfies the Lipschitz condition relative to the gradation, if for all 0 ≤ i < m,

h, h′ differ only on Bi+1 − Bi ⇒ |L(h′) − L(h)| ≤ 1.

Theorem 7.4.1 Let L satisfy the Lipschitz condition. Then the corresponding
martingale satisfies |Xi+1(h) − Xi(h)| ≤ 1

for all 0 ≤ i < m, h ∈ AB.

Proof. Let H be the family of h′ that agree with h on Bi+1. Then

Xi+1(h) =
∑

h′∈H

L(h′)𝑤h′ ,

where 𝑤h′ is the conditional probability that g = h′, given that g = h on Bi+1. For
each h′ ∈ H, let H[h′] denote the family of h∗ that agree with h′ on all points except
(possibly) Bi+1 − Bi. The H[h′] partition the family of h∗, agreeing with h on Bi. Thus
we may express

Xi(h) =
∑

h′∈H

∑
h∗∈H[h′]

[L(h∗)qh∗ ]𝑤h′ ,

where qh∗ is the conditional probability that g agrees with h∗ on Bi+1 given that it
agrees with h on Bi. (This is because for h∗ ∈ H[h′], 𝑤h′ is also the conditional prob-
ability that g = h∗, given that g = h∗ on Bi+1.) Thus

|Xi+1(h) − Xi(h)| = ||||||
∑

h′∈H

𝑤h′

[
L(h′) −

∑
h∗∈H[h′]

L(h∗)qh∗

]||||||
≤

∑
h′∈H

𝑤h′
∑

h∗∈H[h′]
|qh∗ [L(h′) − L(h∗)]| .
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The Lipschitz condition gives |L(h′) − L(h∗)| ≤ 1, so

|Xi+1(h) − Xi(h)| ≤ ∑
h′∈H

𝑤h′
∑

h∗∈H[h′]
qh∗ =

∑
h′∈H

𝑤h′ = 1. ◾

Now we can express Azuma’s Inequality in a general form.

Theorem 7.4.2 Let L satisfy the Lipschitz condition relative to a gradation of length
m and let 𝜇 = E[L(g)]. Then for all 𝜆 > 0,

Pr
[
L(g) ≥ 𝜇 + 𝜆

√
m
]
< e−𝜆

2∕2
,

Pr
[
L(g) ≤ 𝜇 − 𝜆

√
m
]
< e−𝜆

2∕2
.

The second general setting is taken from Alon, Kim, and Spencer (1997). We
assume our underlying probability space is generated by a finite set of mutually
independent Yes/No choices, indexed by i ∈ I. We are given a random variable Y
on this space. Let pi denote the probability that choice i is Yes. Let ci be such that
changing choice i (keeping all else the same) can change Y by at most ci. We call ci
the effect of i. Let C be an upper bound on all ci. We call pi(1 − pi)c2

i the variance
of choice i.

Now consider a solitaire game in which Paul finds the value of Y by making queries
of an always truthful oracle Carole. The queries are always of a choice i ∈ I. Paul’s
choice of query can depend on Carole’s previous responses. A strategy for Paul can
then naturally be represented in a decision tree form. A “line of questioning” is a
path from the root to a leaf of this tree, a sequence of questions and responses that
determine Y. The total variance of a line of questioning is the sum of the variances of
the queries in it.

Theorem 7.4.3 For all 𝜖 > 0, there exists 𝛿 > 0 so that the following holds: Suppose
Paul has a strategy for finding Y such that every line of questioning has total variance
at most 𝜎2. Then

Pr[|Y − E[Y]| > 𝛼𝜎] ≤ 2e−𝛼
2∕2(1+𝜖) (7.1)

for all positive 𝛼 with 𝛼C < 𝜎(1 + 𝜖)𝛿.

Applications. For a specific suboptimal bound we may take 𝜖 = 𝛿 = 1. If C = O(1),
𝛼 → ∞, and 𝛼 = o(𝜎), the upper bound of (7.1) is exp[−Ω(𝛼2)]. In many cases, Paul
queries all i ∈ I. Then we may take 𝜎 with 𝜎

2 =
∑

i∈Ipi(1 − pi)c2
i . For example, con-

sider an edge Lipschitz Y on G(n, p) with p = p(n) → 0. I is the set of m =
(

n
2

)
potential edges, all pi = p, C = 1, so that 𝜎 = Θ(

√
n2p). If 𝛼 → ∞with 𝛼 = o(

√
n2p),

the upper bound of (7.1) is again exp[−Ω(𝛼2)].
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Proof. For simplicity we replace Y by Y − E[Y] so that we shall henceforth assume
E[Y] = 0. By symmetry, we shall bound only the upper tail of Y. We set, with fore-
sight, 𝜆 = 𝛼∕[𝜎(1 + 𝜖)]. Our side assumption gives that C𝜆 < 𝛿. We will show

E[e𝜆Y] ≤ e(1+𝜖)𝜆
2
𝜎

2∕2 . (7.2)

The martingale inequality then follows by the Markov bound

Pr[Y > 𝛼𝜎] < e−𝜆𝛼𝜎E[e𝜆Y] ≤ e−𝛼
2∕2(1+𝜖) .

We first claim that, for all 𝜖 > 0, there exists 𝛿 > 0 so that for 0 ≤ p ≤ 1 and |a| ≤ 𝛿

pe(1−p)a + (1 − p)e−pa
≤ e(1+𝜖)p(1−p)a2∕2 . (7.3)

Take the Taylor series in a of the left-hand side. The constant term is 1, the linear
term 0, the coefficient of a2 is 1

2
p(1 − p), and, for j ≥ 3, the coefficient of aj is at most

1
j!

p(1 − p)(pj−1 + (1 − p)j−1) ≤ 1
j!

p(1 − p) .

Pick 𝛿 so that |a| ≤ 𝛿 implies

∞∑
j=3

aj

j!
< 𝜖a2∕2.

(In particular, this holds for 𝜖 = 𝛿 = 1.) Then

pe(1−p)a + (1 − p)e−pa
≤ 1 + p(1 − p)a2

2
(1 + 𝜖)

and (7.3) follows from the inequality 1 + x ≤ ex.
Using this 𝛿, we show (7.2) by induction on the depth M of the decision tree.

For M = 0, Y is constant and (7.2) is immediate. Otherwise, let p, c, 𝑣 = p(1 − p)c2

denote the probability, effect, and variance, respectively, of Paul’s first query. Let
𝜇y, 𝜇n denote the conditional expectations of Y if Carole’s response is Yes or No,
respectively. Then 0 = E[Y] can be split into

0 = p𝜇y + (1 − p)𝜇n .

The difference 𝜇y − 𝜇n is the expected change in Y when all other choices are made
independent with their respective probabilities and the root choice is changed from
Yes to No. As this always changes Y by at most c,

|𝜇y − 𝜇n| ≤ c .
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Thus we may parameterize

𝜇y = (1 − p)b and 𝜇n = −pb

with |b| ≤ c. From (7.3)

pe𝜆𝜇y + (1 − p)e𝜆𝜇n ≤ e(1+𝜖)p(1−p)b2
𝜆

2∕2
≤ e(1+𝜖)𝑣𝜆

2∕2 .

Let Ay denote the expectation of e𝜆(Y−𝜇y), conditional on Carole’s first response
being Yes, and let An denote the analogous quantity for No. Given Carole’s first
response, Paul has a decision tree (one of the two main subtrees) that determines
Y with total variation at most 𝜎2 − 𝑣 and the tree has depth at most M − 1. So, by
induction, Ay,An ≤ A−, where we set

A− = e(1+𝜖)𝜆
2(𝜎2−𝑣)∕2 .

Now we split

E[e𝜆Y] = pe𝜆𝜇yAy + (1 − p)e𝜆𝜇nAn

≤ [pe𝜆𝜇y + (1 − p)e𝜆𝜇n]A−

≤ e(1+𝜖)𝜆
2(𝑣+(𝜎2−𝑣))∕2

,

completing the proof of (7.2) and hence of Theorem 7.4.3. ◾

We remark that this formal inductive proof somewhat masks the martingale.
A martingale E[Y] = Y0,… , YM = Y can be defined with Yt, the conditional expec-
tation of Y after the first t queries and responses. Theorem 7.4.3 can be thought of as
bounding the tail of Y by that of a normal distribution of greater or equal variance.
For very large distances from the mean, large 𝛼, this bound fails.

7.5 FOUR ILLUSTRATIONS

Let g be the random function from {1,… , n} to itself, all nn possible functions equally
likely. Let L(g) be the number of values not hit, that is, the number of y for which
g(x) = y has no solution. By Linearity of Expectation,

E[L(g)] = n
(

1 − 1
n

)n
,

and this quantity is at most n∕e and at least n(1 − 1∕n)n−1 ⋅ (1 − 1∕n) > (n − 1)∕e.
Set Bi = {1,… , i}. L satisfies the Lipschitz condition relative to this gradation

since changing the value of g(i) can change L(g) by at most 1. Thus we have the
following:
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Theorem 7.5.1 Pr
[|||L(g) − n

e

||| > 𝜆

√
n + 1

]
< 2e−𝜆

2∕2.

Deriving these asymptotic bounds from first principles is quite cumbersome.
As a second illustration, let B be any normed space, and let 𝑣1,… , 𝑣n ∈ B with

all |𝑣i| ≤ 1. Let 𝜖1,… , 𝜖n be independent with Pr[𝜖i = +1] = Pr[𝜖i = −1] = 1∕2, and
set

X = |𝜖1𝑣1 + · · · + 𝜖n𝑣n| .
Theorem 7.5.2

Pr
[
X − E [X] > 𝜆

√
n
]
< e−𝜆

2∕2
,

Pr
[
X − E [X] < −𝜆

√
n
]
< e−𝜆

2∕2
.

Proof. Consider { − 1,+1}n as the underlying probability space with all (𝜖1,… , 𝜖n)
equally likely. Then X is a random variable, and we define a martingale X0,… ,Xn = X
by exposing one 𝜖i at a time. The value of 𝜖i can only change X by 2, so direct appli-
cation of Theorem 7.4.1 gives |Xi+1 − Xi| ≤ 2. But let 𝜖, 𝜖′ be two n-tuples differing
only in the ith coordinate:

Xi(𝜖) = (Xi+1(𝜖) + Xi+1(𝜖′))∕2

so that |Xi(𝜖) − Xi+1(𝜖)| = |Xi+1(𝜖′) − Xi+1(𝜖)|∕2 ≤ 1.

Now apply Azuma’s Inequality. ◾

For a third illustration, let 𝜌 be the Hamming metric on {0, 1}n. For A ⊆ {0, 1}n,
let B(A, s) denote the set of y ∈ {0, 1}n so that 𝜌(x, y) ≤ s for some x ∈ A. [A ⊆ B(A, s)
as we may take x = y.]

Theorem 7.5.3 Let 𝜖, 𝜆 > 0 satisfy e−𝜆
2∕2 = 𝜖. Then

|A| ≥ 𝜖2n ⇒ |B(A, 2𝜆√n)| ≥ (1 − 𝜖)2n .

Proof. Consider {0, 1}n as the underlying probability space, all points equally likely.
For y ∈ {0, 1}n, set

X(y) = min
x∈A

𝜌(x, y) .

Let X0,X1,… ,Xn = X be the martingale given by exposing one coordinate of {0, 1}n

at a time. The Lipschitz condition holds for X: If y, y′ differ in just one coordinate,
then |X(y) − X(y′)| ≤ 1. Thus, with 𝜇 = E[X]

Pr
[
X < 𝜇 − 𝜆

√
n
]
< e−𝜆

2∕2 = 𝜖 ,

Pr
[
X > 𝜇 + 𝜆

√
n
]
< e−𝜆

2∕2 = 𝜖 .



FOUR ILLUSTRATIONS 115

But
Pr[X = 0] = |A|2−n

≥ 𝜖 ,

so 𝜇 ≤ 𝜆

√
n. Thus

Pr
[
X > 2𝜆

√
n
]
< 𝜖

and |B(A, 2𝜆√n)| = 2n Pr
[
X ≤ 2𝜆

√
n
]
≥ 2n(1 − 𝜖) . ◾

Actually, a much stronger result is known. Let B(s) denote a ball of radius s about
(0,… , 0). The isoperimetric inequality proved by Harper (1966) states that

|A| ≥ |B(r)| ⇒ |B(A, s)| ≥ |B(r + s)| .
One may actually use this inequality as a beginning to give an alternate proof that
𝜒(G) ∼ n∕2log2 n and to prove a number of the other results we have shown using
martingales.

We illustrate Theorem 7.4.3 with a key technical lemma (in simplified form) from
Alon, Kim, and Spencer (1997). Let G = (V ,E) be a graph on N vertices, each vertex
having degree D. Asymptotics will be for N,D → ∞. Set p = 1∕D. Define a random
subgraph H ⊆ G by placing each edge e ∈ E in H with independent probability p. Let
M (for matching) be the set of isolated edges of H. Let V∗ be those 𝑣 ∈ V not in any
{𝑣,𝑤} ∈ M. For 𝑣 ∈ V , set deg∗(𝑣) equal to the number of 𝑤 ∈ V∗ with {𝑣,𝑤} ∈ E.
As

Pr[𝑤 ∉ V∗] =
∑

{𝑣,𝑤}∈E

p(1 − p)2D−1 = e−2 + O(D−1) ,

Linearity of Expectation gives

E[deg∗(𝑣)] = D(1 − e−2) + O(1) .

We want deg∗(𝑣) tightly concentrated about its mean.
In the notation of Theorem 7.4.3, the probability space is determined by the

choices e ∈ H for all e ∈ E. All pi = p. Changing e ∈ H to e ∉ H can change
deg∗(𝑣) by at most C = 4.

Paul needs to find deg∗(𝑣) by queries of the form “Is e ∈ H?” For each 𝑤 with
{𝑣,𝑤} ∈ E, he determines if 𝑤 ∈ V∗ by the following line of inquiry: First, for all
u with {𝑤, u} ∈ E, he queries if {𝑤, u} ∈ H. If no {𝑤, u} ∈ H, then 𝑤 ∈ V∗. If two
(or more) {𝑤, u1}, {𝑤, u2} ∈ H, then 𝑤 cannot be in an isolated edge of H, so 𝑤 ∈
V∗. Now suppose {𝑤, u} ∈ H for precisely one u. Paul then asks (using his acquired
knowledge!) for each z ≠ 𝑤 with {u, z} ∈ E if {u, z} ∈ H. The replies determine if
{𝑤, u} is an isolated edge of H and hence if 𝑤 ∈ V∗. Paul has made at most D +
(D − 1) queries for each 𝑤 for a total of at most D(2D − 1) = O(D2) queries. We
deduce

Pr
[|deg∗(𝑣) − D(1 − e−2)| > 𝜆D1∕2] = exp[−Ω(𝜆2)]

when 𝜆 → ∞ and 𝜆 = o(D1∕2).
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In application, one wishes to iterate this procedure (now applying it to the restric-
tion of G to V∗) in order to find a large matching. This is somewhat akin to the Rödl
nibble of Section 4.7. There are numerous further complications, but the tight con-
centration of deg∗(𝑣) about its mean plays an indispensable role.

7.6 TALAGRAND’S INEQUALITY

LetΩ =
∏n

i=1 Ωi, where eachΩi is a probability space andΩ has the product measure.
Let A ⊆ Ω, and let x⃗ = (x1,… , xn) ∈ Ω. Talagrand (1996) gives an unusual, subtle,
and ultimately powerful notion of the distance—denoted 𝜌(A, x⃗)—from x⃗ to A. We
imagine moving from x⃗ to some y⃗ = (y1,… , yn) ∈ A by changing coordinates. 𝜌(A, x⃗)
will measure the minimal cost of such a move when a suitably restricted adversary
sets the cost of each change.

Definition 1 𝜌(A, x⃗) is the least value such that, for any �⃗� = (𝛼1,… , 𝛼n) ∈ Rn with|�⃗�| = 1, there exists y⃗ = (y1,… , yn) ∈ A with∑
xi≠yi

𝛼i ≤ 𝜌(A, x⃗) .

Note that y⃗ can, and generally will, depend on �⃗�.
We define for any real t ≥ 0

At = {x⃗ ∈ Ω ∶ 𝜌(A, x⃗) ≤ t} .

Note that A0 = A as, when x⃗ ∈ A, one can select y⃗ = x⃗.

Talagrand’s Inequality

Pr[A](1 − Pr[At]) ≤ e−t2∕4 .

In particular, if Pr[A] ≥ 1
2

(or any fixed constant) and t is “very large,” then all but a
very small proportion of Ω is within “distance” t of A.

Example. Take Ω = {0, 1}n with uniform distribution, and let 𝜏 be the Hamming
(L1) metric. Then, 𝜌(A, x⃗) ≥ miny⃗∈A𝜏(x⃗, y⃗)n−1∕2, as the adversary can choose all
𝛼i = n−1∕2. Suppose to move from x⃗ to A, the values x1,… , xl (or any particular l
coordinates) must be changed. Then 𝜌(A, x⃗) ≥ l1∕2, as the adversary could choose
𝛼i = l−1∕2 for 1 ≤ i ≤ l and zero elsewhere.

Define U(A, x⃗) to be the set of s⃗ = (s1,… , sn) ∈ {0, 1}n with the property that there
exists y⃗ ∈ A such that

xi ≠ yi ⇒ si = 1.

We may think of U(A, x⃗) as representing the possible paths from x⃗ to A. Note that,
when si = 1, we, for somewhat technical reasons, do not require xi ≠ yi. With this
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notation, 𝜌(A, x⃗) is the least real so that for all �⃗� with |�⃗�| = 1 there exists s⃗ ∈ U(A, x⃗)
with �⃗� ⋅ s⃗ ≤ 𝜌(A, x⃗).

Now define V(A, x⃗) to be the convex hull of U(A, x⃗). The following result gives an
alternate characterization of 𝜌 that supplies the concept with much of its richness:

Theorem 7.6.1
𝜌(A, x⃗) = min

𝑣∈V(A,x⃗)
|𝑣| .

Proof. Let 𝑣 ∈ V(A, x⃗) achieve this minimum. The hyperplane through 𝑣 perpen-
dicular to the line from the origin to 𝑣 then separates V(A, x⃗) from the origin so
that all s⃗ ∈ V(A, x⃗) have s⃗ ⋅ 𝑣 ≥ 𝑣 ⋅ 𝑣. Set �⃗� = 𝑣∕|𝑣|. Then all s⃗ ∈ U(A, x⃗) ⊆ V(A, x⃗)
have s⃗ ⋅ �⃗� ≥ 𝑣 ⋅ 𝑣∕|𝑣| = |𝑣|. Conversely, take any �⃗� with |�⃗�| = 1. Then �⃗� ⋅ 𝑣 ≤ |𝑣|.
As 𝑣 ∈ V(A, x⃗), we may write 𝑣 =

∑
𝜆is⃗i for some s⃗i ∈ U(A, x⃗), with all 𝜆i ≥ 0 and∑

𝜆i = 1. Then |𝑣| ≥ ∑
𝜆i(�⃗� ⋅ s⃗i)

and hence some �⃗� ⋅ s⃗i ≤ |𝑣|. ◾

The case Ω = {0, 1}n is particularly important and instructive. There, 𝜌(A, x⃗) is
simply the Euclidean distance from x⃗ to the convex hull of A.

Theorem 7.6.2

∫Ω
exp

[1
4
𝜌

2(A, x⃗)
]

dx⃗ ≤
1

Pr[A]
.

Talagrand’s theorem is an immediate corollary of the above result. Indeed, fix A and
consider the random variable X = 𝜌(A, x⃗). Then

Pr[At] = Pr[X ≥ t] = Pr
[
eX2∕4

≥ et2∕4
]
≤ E[eX2∕4]e−t2∕4

and the theorem states E[eX2∕4] ≤ 1∕Pr[A].

Proof. [Theorem 7.6.2]. We use induction on the dimension n. For n = 1, 𝜌(A, x⃗) =
1 if x⃗ ∉ A, and zero otherwise, so that

∫
exp

[1
4
𝜌

2(A, x⃗)
]
= Pr[A] + (1 − Pr[A])e1∕4

≤
1

Pr[A]
,

as the inequality u + (1 − u)e1∕4 ≤ u−1 for 0 < u ≤ 1 is a simple calculus exercise.
Assume the result for n. Write OLD =

∏n
i=1 Ωi, NEW = Ωn+1, so that

Ω = OLD × NEW and any z ∈ Ω can be uniquely written z = (x, 𝜔) with x ∈ OLD,
𝜔 ∈ NEW. Set

B = {x ∈ OLD ∶ (x, 𝜔) ∈ A for some 𝜔 ∈ NEW}
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and for any 𝜔 ∈ NEW set

A
𝜔
= {x ∈ OLD ∶ (x, 𝜔) ∈ A} .

Given z = (x, 𝜔) ∈ Ω, we can move to A in two basic ways—either by changing
𝜔, which reduces the problem to moving from x to B, or by not changing 𝜔, which
reduces the problem to moving from x to A

𝜔
. Thus

s⃗ ∈ U(B, x) ⇒ (s⃗, 1) ∈ U(A, (x, 𝜔))

and
t⃗ ∈ U(A

𝜔
, x) ⇒ (⃗t, 0) ∈ U(A, (x, 𝜔)) .

Taking the convex hulls, if s⃗ ∈ V(B, x) and t⃗ ∈ V(A
𝜔
, x), then ( s⃗, 1) and (⃗t, 0) are in

V(A, (x, 𝜔)), and hence for any 𝜆 ∈ [0, 1]

((1 − 𝜆)s⃗ + 𝜆t⃗, 1 − 𝜆) ∈ V(A, (x, 𝜔)) .

Then, by convexity

𝜌
2(A, (x, 𝜔)) ≤ (1 − 𝜆)2 + |(1 − 𝜆)s⃗ + 𝜆t⃗|2 ≤ (1 − 𝜆)2 + (1 − 𝜆)|s⃗|2 + 𝜆|⃗t|2 .

Selecting s⃗, t⃗ with minimal norms yields the critical inequality

𝜌
2(A, (x, 𝜔)) ≤ (1 − 𝜆)2 + 𝜆𝜌

2(A
𝜔
, x) + (1 − 𝜆)𝜌2(B, x) .

Quoting from Talagrand, “The main trick of the proof is to resist the temptation to
optimize now over 𝜆.” Rather, we first fix 𝜔 and bound

∫x
exp

[1
4
𝜌

2(A, (x, 𝜔))
]

≤ e(1−𝜆)
2∕4

∫x

(
exp

[1
4
𝜌

2(A
𝜔
, x)

])𝜆(
exp

[1
4
𝜌

2(B, x)
])1−𝜆

.

By Hölder’s Inequality, this is at most

e(1−𝜆)
2∕4

[
∫x

exp
[1

4
𝜌

2(A
𝜔
, x)

]]𝜆[
∫x

exp
[1

4
𝜌

2(B, x)
]]1−𝜆

,

which by induction is at most

e(1−𝜆)
2∕4

(
1

Pr
[
A
𝜔

]
)

𝜆(
1

Pr [B]

)1−𝜆

= 1
Pr[B]

e(1−𝜆)
2∕4r−𝜆 ,
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where r = Pr[A
𝜔
]∕Pr[B] ≤ 1. Now we use calculus and minimize e(1−𝜆)

2∕4r−𝜆 by
choosing 𝜆 = 1 + 2 ln r for e−1∕2 ≤ r ≤ 1, and 𝜆 = 0 otherwise. Further (somewhat
tedious but simple) calculation shows e(1−𝜆)

2∕4r−𝜆 ≤ 2 − r for this 𝜆 = 𝜆(r). Thus

∫x
exp

[1
4
𝜌

2(A, (x, 𝜔))
]
≤

1
Pr[B]

(
2 −

Pr
[
A
𝜔

]
Pr[B]

)
.

We integrate over 𝜔, giving

∫
𝜔
∫x

exp
[1

4
𝜌

2(A, (x, 𝜔))
]
≤

1
Pr[B]

(
2 − Pr [A]

Pr[B]

)
= 1

Pr[A]
x(2 − x) ,

where x = Pr[A]∕Pr[B] ∈ [0, 1]. But x(2 − x) ≤ 1, completing the induction and
hence the theorem.

7.7 APPLICATIONS OF TALAGRAND’S INEQUALITY

Let Ω =
∏n

i=1 Ωi, where each Ωi is a probability space and Ω has the product mea-
sure. Let h ∶ Ω → R. Talagrand’s Inequality enables us, under certain conditions, to
show that the random variable X = h(⋅) is tightly concentrated. In this sense, it can
serve the same function Azuma’s Inequality does for martingales and there are many
cases in which it gives far stronger results.

We call h ∶ Ω → R Lipschitz if |h(x) − h(y)| ≤ 1 whenever x, y differ in at most one
coordinate. Talagrand’s Inequality is most effective on those Lipschitz functions with
the property that, when h(x) ≥ s, there are a relatively small number of coordinates
that will certify that h(x) ≥ s. We formalize this notion as follows:

Definition 2 Let f ∶ N → N. h is f -certifiable if, whenever h(x) ≥ s, there exists I ⊆
{1,… , n}with |I| ≤ f (s) so that all y ∈ Ω that agree with x on the coordinates I have
h(y) ≥ s.

Example. Consider G(n, p) as the product of
(

n
2

)
coin flips, and let h(G) be the

number of triangles in G. Then h is f -certifiable with f (s) = 3s. For, if h(G) ≥ s, there
exist s triangles that together have at most 3s edges and any other G′ with those
3s edges has h(G′) ≥ s. Note that I, here the indices for those 3s edges, very much
depends on G. Also note that we need certify only lower bounds for h.

Theorem 7.7.1 Under the above assumptions and for all b, t,

Pr
[
X ≤ b − t

√
f (b)

]
Pr[X ≥ b] ≤ e−t2∕4 .

Proof. Set A = {x ∶ h(x) < b − t
√

f (b)}. Now suppose h(y) ≥ b. We claim y ∉ At.
Let I be a set of indices of size at most f (b) that certifies h(y) ≥ b as given above.
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Define 𝛼i = 0 when i ∉ I, and 𝛼i = |I|−1∕2 when i ∈ I. If y ∈ At, there exists a z ∈ A
that differs from y in at most t|I|1∕2 ≤ t

√
f (b) coordinates of I though at arbitrary

coordinates outside I. Let y′ agree with y on I and agree with z outside I. By the certi-
fication, h(y′) ≥ b. Now y′, z differ in at most t

√
f (b) coordinates and so, by Lipschitz,

h(z) ≥ h(y′) − t
√

f (b) ≥ b − t
√

f (b) ,

but then z ∉ A, a contradiction. So Pr[X ≥ b] ≤ Pr[At], and from Talagrand’s theorem,

Pr[X < b − t
√

f (b)] Pr[X ≥ b] ≤ e−t2∕4 .

As the right-hand side is continuous in t, we may replace “<” by “≤”, giving the
theorem. ◾

A small generalization is sometimes useful. Call h ∶ Ω → R K-Lipschitz if |h(x) −
h(y)| ≤ K whenever x, y differ in only one coordinate. Applying the above theorem
to h∕K, which is Lipschitz, we find

Pr
[
X ≤ b − tK

√
f (b)

]
Pr[X ≥ b] ≤ e−t2∕4 .

In applications, one often takes b to be the median so that, for t large, the prob-
ability of being t

√
f (b) under the median goes sharply to zero. But it works both

ways: by parameterizing so that m = b − t
√

f (b) is the median, one usually gets
b ∼ m + t

√
f (m) and that the probability of being t

√
f (b) above the median goes

sharply to zero. Martingales, via Azuma’s Inequality, generally produce a concen-
tration result around the mean 𝜇 of X, while Talagrand’s Inequality yields a concen-
tration result about the median m. Means tend to be easy to compute, and medians
notoriously difficult, but a tight concentration result will generally allow us to show
that the mean and median are not far away.

Let x = (x1,… , xn), where the xi are independently and uniformly chosen from
[0, 1]. Set X = h(x) to be the length of the longest increasing subsequence of x.
Elementary methods give that c1n1∕2

< X < c2n1∕2 almost surely for some positive
constants c1, c2 and that the mean 𝜇 and median m of X are both in that range.
Also, X is Lipschitz, as changing one xi can only change X by at most one. How
concentrated is X? We can apply Azuma’s Inequality to deduce that, if s ≫ n1∕2,
then |X − 𝜇| ≤ s almost surely. This is not particularly good since X itself is only
of order n1∕2. Now consider Talagrand’s Inequality. X is f -certifiable with f (s) = s
since, if x has an increasing subsequence of length s, those s coordinates certify that
X ≥ s. Then Pr[X < m − tm1∕2] ≤ e−t2∕4∕Pr[X ≥ m] ≤ 2e−t2∕4, as m is the median
value. But m = Θ(n1∕2). Thus, when s ≫ n1∕4, we have X > m − s almost surely.
For the other side, suppose t → ∞ slowly and let b be such that b − tb1∕2 = m.

Then, Pr[X ≥ b] ≤ e−t2∕4∕Pr[X ≤ m] ≤ 2e−t2∕4. Then X ≤ b almost surely. But
b = m + (1 + o(1))tm1∕2 so that X ≤ m + tm1∕2 almost surely. Combining, if
s ≫ n1∕4, then |X − m| < s almost surely. A much stronger result, determining the
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precise asymptotic distribution of X, has been obtained by Baik, Deift and Johansson
(1999), using deep analytic tools.

Let us re-examine the bound (Theorem 7.3.2) that G(n, 1
2
) has no clique of size

k with k as defined there. We let, as there, Y be the maximal number of edge dis-
joint k-cliques. From the work there, E[Y] = Ω(n2k−4) and Y is tightly concentrated
about E[Y] so that the median m of Y must also have m = Ω(n2k−4). As before, Y is
Lipschitz. Further, Y is f -certifiable with f (s) =

(
k
2

)
s, as the edges of the s-cliques

certify that Y ≥ s. Hence

Pr

[
Y ≤ m − tm1∕2

( k
2

)1∕2
]

Pr[Y ≥ m] < e−t2∕4 .

Set t = Θ(m1∕2∕k) so that m = tm1∕2
(

k
2

)1∕2
. Then

Pr[𝜔(G) < k] = Pr[Y ≤ 0] < 2e−t2∕4
< exp

[
−Ω

(
n2

ln 6n

)]
,

which improves the bound of Theorem 7.3.2. Still, we should note that application of
the Extended Janson Inequality in Section 10.3 does even better.

7.8 KIM–VU POLYNOMIAL CONCENTRATION

The approach of Kim and Vu (2000) is often useful. Let H = (V(H),E(H))be a hyper-
graph, and let each edge e ∈ E(H) have a nonnegative weight 𝑤(e). Let ti, i ∈ V(H)
be mutually independent indicator random variables with E[ti] = pi. Consider the
random variable polynomial

Y =
∑

e∈E(H)
𝑤e

∏
i∈e

ti .

We allow e = ∅, in which case
∏

i∈eti is by convention 1. We want to show that Y is
concentrated about its mean.

Let S ⊆ V(H) be a random set given by Pr[i ∈ S] = pi, these events being mutually
independent over i ∈ V(H). Then Y is the weighted number of hyperedges e in the
restriction of H to S. In applications, we generally have all weights equal, so that Y
simply counts the hyperedges in the random S. But we may also think abstractly of Y
as simply any polynomial over the indicators ti having all nonnegative coefficients.

We set n = |V(H)|, the number of vertices of H (number of variables ti). Let k
be an upper bound on the size of all hyperedges (upper bound on the degree of the
polynomial Y).

Let A ⊆ V(H) with |A| ≤ k. We truncate Y to YA as follows: for those terms
∏

i∈eti
with A ⊆ e, we set ti = 1 for all i ∈ A, replacing the term by

∏
i∈e−Ati. All other

terms (where e does not contain A) are deleted. For example, with A = {1}, 2t1t2 +
5t1t3t4 + 7t2t4 becomes 2t2 + 5t3t4. Intriguingly, as polynomials in the ti, YA is the
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partial derivative of Y with respect to the ti, i ∈ A. Set EA = E[YA]. That is, EA is the
expected number of hyperedges in S that contain A, conditional on all vertices of A
being in S. Set Ei equal to the maximal EA over all A ⊆ V(H) of size i. Set 𝜇 = E[Y]
for convenience, and set

E′ = max
1≤i≤k

Ei and E = max[𝜇,E′] .

Theorem 7.8.1 [Kim–Vu Polynomial Concentration] With the above hypotheses

Pr
[|Y − 𝜇| > ak(EE′)1∕2

𝜆
k]

< dke−𝜆nk−1

for any 𝜆 > 1.

Here, for definiteness, we may take ak = 8kk!1∕2 and dk = 2e2.
We omit the proof, which combines martingale inequalities similar to those of

Theorem 7.4.3 with a subtle induction on the degree k. There may well be room for
improvement in the ak, dk, and nk−1 terms. In applications, one generally has k fixed
and 𝜆 ≫ ln n so that the e−𝜆 term dominates the probability bound.

Applications of Kim–Vu polynomial concentration tend to be straightforward.
Let G ∼ G(n, p) with p = n−𝛼 , and assume 0 < 𝛼 < 2∕3. Fix a vertex x of G, and let

Y = Y(x) be the number of triangles containing x. Set 𝜇 = E[Y] =
(

n−1
2

)
p3 ∼

1
2
n2−3𝛼 . Let 𝛿 > 0 be fixed. We want to bound Pr[|Y − 𝜇| > 𝛿𝜇].

The random graph G is defined by the random variables tij, one for each unordered
pair of vertices, which are indicators of the adjacency of the two vertices. In that
context

Y =
∑
i,j≠x

txitxjtij .

This is a polynomial of degree k = 3. When A consists of a single edge {x, i}, we
find EA = (n − 2)p2; when it consists of three edges forming a triangle containing
x, we find EA = 1. When A = ∅, EA = 𝜇. Other cases give smaller EA. Basically,
E′ ∼ max[np2

, 1]. Calculation gives E′ ∼ c𝜇n−𝜖 for some positive 𝜖 (dependent on 𝛼)
throughout our range. We apply Kim–Vu polynomial concentration with 𝜆 = c′n𝜖∕6,
with c′ a small positive constant, to bound Pr[|Y − 𝜇| > 𝛿𝜇] by exp[−Ω(n𝜖∕6)]. Note
that the nk−1 factor is absorbed by the exponential.

In particular, as this probability is o(n−1), we have that almost surely every vertex
x is in ∼ 𝜇 triangles. This result generalizes. Fix 𝛼 ∈ (0, 1), and suppose (R,H) is a
rooted graph, safe, in the sense of Section 10.4, with respect to 𝛼. Let G ∼ G(n, p)
with p = n−𝛼 . For distinct vertices x1,… , xr, let Y = Y(x1,… , xr) denote the number
of extensions in G to H. Set 𝜇 = E[Y]. Kim–Vu polynomial concentration gives an
exponentially small upper bound on the probability that Y is not near 𝜇. In particular,
this probability is o(n−r). Hence, almost surely, every r vertices have ∼ 𝜇 extensions
to H.
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7.9 EXERCISES

1. Let G = (V ,E) be the graph whose vertices are all 7n vectors of length n over Z7,
in which two vertices are adjacent iff they differ in precisely one coordinate. Let
U ⊂ V be a set of 7n−1 vertices of G, and let W be the set of all vertices of G
whose distance from U exceeds (c + 2)

√
n, where c > 0 is a constant. Prove that|W| ≤ 7n ⋅ e−c2∕2.

2. (*) Let G = (V ,E) be a graph with chromatic number 𝜒(G) = 1000. Let U ⊂ V
be a random subset of V chosen uniformly from among all 2|V| subsets of V . Let
H = G[U] be the induced subgraph of G on U. Prove that

Pr[𝜒(H) ≤ 400] < 1∕100.

3. Prove that there is an absolute constant c such that, for every n > 1, there is an
interval In of at most c

√
n∕ log n consecutive integers such that the probability

that the chromatic number of G(n, 0.5) lies in In is at least 0.99.



THE PROBABILISTIC LENS:
Weierstrass Approximation
Theorem

The well-known Weierstrass approximation theorem asserts that the set of real
polynomials over [0, 1] is dense in the space of all continuous real functions over
[0, 1]. This is stated in the following theorem:

Theorem 1 [Weierstrass approximation theorem] For every continuous real
function f ∶ [0, 1] → ℝ and every 𝜖 > 0, there is a polynomial p(x) such that |p(x) −
f (x)| ≤ 𝜖 for all x ∈ [0, 1].

Bernstein (1912) gave a charming probabilistic proof of this theorem, based on
the properties of the binomial distribution. His proof is as follows:

Proof. Since a continuous f ∶ [0, 1] → ℝ is uniformly continuous, there is a 𝛿 > 0
such that, if x, x′ ∈ [0, 1] and |x − x′| ≤ 𝛿, | f (x) − f (x′)| ≤ 𝜖∕2. In addition, since f
must be bounded, there is an M > 0 such that | f (x)| ≤ M in [0, 1].

Let B(n, x) denote the binomial random variable with n independent trials and
probability of success x for each of them. Thus the probability that B(n, x) = j is pre-
cisely

(
n
j

)
xj(1 − x)n−j. The expectation of B(n, x) is nx, and its standard deviation is√

nx(1 − x) ≤
√

n. Therefore, by Chebyshev’s Inequality discussed in Chapter 4, for
every integer n, Pr[|B(n, x) − nx| > n2∕3] ≤ 1∕n1∕3. It follows that there is an integer
n such that

Pr
[|B(n, x) − nx| > n2∕3]

<

𝜖

4M

and
1

n1∕3
< 𝛿 .
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Define

Pn(x) =
n∑

i=0

(n
i

)
xi(1 − x)n−if (i∕n) .

We claim that, for every x ∈ [0, 1], |Pn(x) − f (x)| ≤ 𝜖. Indeed, since

n∑
i=0

(n
i

)
xi(1 − x)n−i = 1,

we have

|Pn(x) − f (x)| ≤ ∑
i∶|i−nx|≤n2∕3

(n
i

)
xi(1 − x)n−i| f (i∕n) − f (x)|

+
∑

i∶|i−nx|>n2∕3

(n
i

)
xi(1 − x)n−i[| f (i∕n)| + | f (x)|]

≤

∑
i∶|i∕n−x|≤n−1∕3

<𝛿

(n
i

)
xi(1 − x)n−i| f (i∕n) − f (x)|

+ 2M Pr
[|B(n, x) − nx| > n2∕3]

≤
𝜖

2
+ 2M

𝜖

4M
= 𝜖 .

This completes the proof. ◾





8
The Poisson Paradigm

One of the things that attracts us most when we apply ourselves to a mathematical
problem is precisely that within us we always hear the call: here is the problem,
search for the solution, you can find it by pure thought, for in mathematics there is no
ignorabimus.
–David Hilbert

When X is the sum of many rare indicator “mostly independent” random variables,
and 𝜇 = E[X], we would like to say that X is close to a Poisson distribution with
mean 𝜇 and, in particular, that Pr[X = 0] is nearly e−𝜇. We call this rough statement
the Poisson Paradigm. In this chapter, we give a number of situations in which this
paradigm may be rigorously proved.

8.1 THE JANSON INEQUALITIES

In many instances, we would like to bound the probability that none of a set of bad
events {Bi}i∈I occurs. If the events are mutually independent, then

Pr

[⋀
i∈I

Bi

]
=
∏
i∈I

Pr[Bi].

When the Bi are “mostly” independent, the Janson inequalities allow us, sometimes,
to say that these two quantities are “nearly” equal.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Let Ω be a finite universal set, and let R be a random subset of Ω given by

Pr[r ∈ R] = pr ,

these events being mutually independent over r ∈ Ω. Let {Ai}i∈I be subsets of Ω,
and I a finite index set. Let Bi be the event Ai ⊆ R. (That is, each point r ∈ Ω “flips a
coin” to determine if it is in R. Bi is the event where the coins for all r ∈ Ai came up
“heads.”) Let Xi be the indicator random variable for Bi, and X =

∑
i∈IXi the number

of Ai ⊆ R. The events
⋀

i∈IBi and X = 0 are then identical. For i, j ∈ I, we write i ∼ j
if i ≠ j and Ai ∩ Aj ≠ ∅. Note that, when i ≠ j and not i ∼ j, then Bi,Bj are independent
events since they involve separate coin flips. Furthermore, and this plays a crucial role
in the proofs, if i ∉ J ⊂ I and not i ∼ j for all j ∈ J, then Bi is mutually independent
of {Bj}j∈J , that is, independent of any Boolean function of those Bj. This is because
the coin flips on Ai and on ∪j∈JAj are independent. We define

Δ =
∑
i∼j

Pr[Bi ∧ Bj].

Here, the sum is over ordered pairs so that Δ∕2 gives the same sum over unordered
pairs. We set

M =
∏
i∈I

Pr[Bi],

which is the value of Pr
[⋀

i∈IBi

]
if the Bi were independent. Finally, we set

𝜇 = E[X] =
∑
i∈I

Pr[Bi].

The following results were given in Janson, Łuczak and Ruciński (1990).

Theorem 8.1.1 [The Janson Inequality] Let {Bi}i∈I , Δ,M, 𝜇 be as above, and
assume all Pr[Bi] ≤ 𝜖. Then

M ≤ Pr

[⋀
i∈I

Bi

]
≤ Me[1∕(1−𝜖)]Δ∕2

and, further

Pr

[⋀
i∈I

Bi

]
≤ e−𝜇+Δ∕2

.

For each i ∈ I
Pr[Bi] = 1 − Pr[Bi] ≤ e−Pr[Bi]
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so, multiplying over i ∈ I
M ≤ e−𝜇.

The two upper bounds for Theorem 8.1.1 are generally quite similar; we tend to use
the second for convenience. In many asymptotic instances, a simple calculation gives
M ∼ e−𝜇 . In particular, this is always the case when 𝜖 = o(1) and 𝜖𝜇 = o(1).

Perhaps the simplest example of Theorem 8.1.1 is the asymptotic probability that
G(n, c∕n) is triangle-free, given in Section 10.1. There, as is often the case, 𝜖 = o(1),
Δ = o(1), and 𝜇 approaches a constant k. In those instances, Pr[

⋀
i∈IBi] → e−k. This

is no longer the case when Δ becomes large. Indeed, when Δ ≥ 2𝜇, the upper bound
of Theorem 8.1.1 becomes useless. Even for Δ slightly less, it is improved by the
following result:

Theorem 8.1.2 [The Extended Janson Inequality] Under the assumptions of
Theorem 8.1.1 and the further assumption that Δ ≥ 𝜇

Pr

[⋀
i∈I

Bi

]
≤ e−𝜇

2∕2Δ
.

Theorem 8.1.2 (when it applies) often gives a much stronger result than Cheby-
shev’s Inequality as used in Chapter 4. In Section 4.3 we saw Var[X] ≤ 𝜇 + Δ, so
that

Pr

[⋀
i∈I

Bi

]
= Pr[X = 0] ≤ Var[X]

E[X]2
≤

𝜇 + Δ
𝜇

2
.

Suppose 𝜇 → ∞, 𝜇 ≪ Δ, and 𝛾 = 𝜇
2∕Δ → ∞. Chebyshev’s upper bound on

Pr[X = 0] is then roughly 𝛾
−1, while Janson’s upper bound is roughly e−𝛾 .

8.2 THE PROOFS

The original proofs of Janson are based on estimates of the Laplace transform of an
appropriate random variable. The proof we present here follows that of Boppana and
Spencer (1989). We shall use the inequalities

Pr

[
Bi |⋀

j∈J

Bj

]
≤ Pr[Bi],

valid for all index sets J ⊂ I, i ∉ J, and

Pr

[
Bi |Bk ∧

⋀
j∈J

Bj

]
≤ Pr[Bi |Bk],
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valid for all index sets J ⊂ I, i, k ∉ J. The first follows from Theorem 6.3.2. The
second is equivalent to the first since conditioning on Bk is the same as assuming
pr = Pr[r ∈ R] = 1 for all r ∈ Ak.

Proof [Theorem 8.1.1.] The lower bound follows immediately. Order the index
set I = {1,… ,m} for convenience. For 1 ≤ i ≤ m

Pr

[
Bi | ⋀

1≤j<i

Bj

]
≤ Pr[Bi]

so

Pr

[
Bi | ⋀

1≤j<i

Bj

]
≥ Pr[Bi]

and

Pr

[⋀
i∈I

Bi

]
=

m∏
i=1

Pr

[
Bi | ⋀

1≤j<i

Bj

]
≥

m∏
i=1

Pr[Bi].

Now the first upper bound. For a given i, renumber, for convenience, so that i ∼ j
for 1 ≤ j ≤ d and not for d + 1 ≤ j < i. We use the inequality Pr[A |B ∧ C] ≥ Pr[A ∧
B |C], valid for any A,B,C. With A = Bi, B = B1 ∧… ∧ Bd, and C = Bd+1 ∧… ∧
Bi−1,

Pr

[
Bi | ⋀

1≤j<i

Bj

]
= Pr[A |B ∧ C] ≥ Pr[A ∧ B |C]
= Pr[A |C] Pr[B |A ∧ C] .

From the mutual independence, Pr[A |C] = Pr[A]. We bound

Pr[B |A ∧ C] ≥ 1 −
d∑

j=1

Pr[Bj |Bi ∧ C] ≥ 1 −
d∑

j=1

Pr[Bj |Bi]

from the Correlation Inequality. Thus

Pr

[
Bi | ⋀

1≤j<i

Bj

]
≥ Pr[Bi] −

d∑
j=1

Pr[Bj ∧ Bi].

Reversing

Pr

[
Bi | ⋀

1≤j<i

Bj

]
≤ Pr[Bi] +

d∑
j=1

Pr[Bj ∧ Bi]

≤ Pr[Bi]

(
1 + 1

1 − 𝜖

d∑
j=1

Pr[Bj ∧ Bi]

)
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since Pr[Bi] ≥ 1 − 𝜖. Employing the inequality 1 + x ≤ ex

Pr

[
Bi | ⋀

1≤j<i

Bj

]
≤ Pr[Bi] exp

(
1

1 − 𝜖

d∑
j=1

Pr[Bj ∧ Bi]

)
.

For each 1 ≤ i ≤ m, we plug this inequality into

Pr

[⋀
i∈I

Bi

]
=

m∏
i=1

Pr

[
Bi | ⋀

1≤j<i

Bj

]
.

The terms Pr[Bi] multiply to M. The exponents add: for each i, j ∈ I with j < i and
j ∼ i, the term Pr[Bj ∧ Bi] appears once so they add to Δ∕2.

For the second upper bound, we instead bound

Pr

[
Bi | ⋀

1≤j<i

Bj

]
≤ 1 − Pr[Bi] +

d∑
j=1

Pr[Bj ∧ Bi]

≤ exp

(
− Pr[Bi] +

d∑
j=1

Pr[Bj ∧ Bi]

)
.

Now the − Pr[Bi] terms add to −𝜇, while the Pr[Bj ∧ Bi] terms again add to Δ∕2. ◾

Proof [Theorem 8.1.2.] The second upper bound of Theorem 8.1.1 may be rewrit-
ten as

− ln

(
Pr

[⋀
i∈I

Bi

])
≥

∑
i∈I

Pr[Bi] −
1
2

∑
i∼j

Pr[Bi ∧ Bj].

For any set of indices S ⊂ I, the same inequality applied only to {Bi}i∈S gives

− ln

(
Pr

[⋀
i∈S

Bi

])
≥

∑
i∈S

Pr[Bi] −
1
2

∑
i,j∈S,i∼j

Pr[Bi ∧ Bj].

Let now S be a random subset of I given by

Pr[i ∈ S] = p

with p a constant to be determined, and the events are mutually independent. (Here
we are using probabilistic methods to prove a probability theorem!) Each term Pr[Bi]
then appears with probability p, and each term Pr[Bi ∧ Bj] with probability p2, so that

E

[
− ln

(
Pr

[⋀
i∈S

Bi

])]
≥ E

[∑
i∈S

Pr[Bi]

]
− 1

2
E

[ ∑
i,j∈S,i∼j

Pr[Bi ∧ Bj]

]

= p𝜇 − p2Δ
2

.
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We set
p = 𝜇

Δ

so as to maximize this quantity. The added assumption of Theorem 8.1.2 assures us
that the probability p is at most 1. Then

E

[
− ln

(
Pr

[⋀
i∈S

Bi

])]
≥

𝜇
2

2Δ
.

Thus there is a specific S ⊂ I for which

− ln

(
Pr

[⋀
i∈S

Bi

])
≥

𝜇
2

2Δ
.

That is

Pr

[⋀
i∈S

Bi

]
≤ e−𝜇

2∕2Δ
.

But

Pr

[⋀
i∈I

Bi

]
≤ Pr

[⋀
i∈S

Bi

]
,

completing the proof. ◾

8.3 BRUN’S SIEVE

The more traditional approach to the Poisson Paradigm is called Brun’s sieve, after
its use by the number theorist T. Brun. Let B1,… ,Bm be events, Xi the indicator
random variable for Bi, and X = X1 +…+ Xm the number of Bi that hold. Let there
be a hidden parameter n (so that actually m = m(n), Bi = Bi(n), X = X(n)), which will
define our o,O notation. Define

S(r) =
∑

Pr[Bi1
∧… ∧ Bir

],

the sum over all sets {i1,… , ir} ⊆ {1,… ,m}, and put

X(r) = X(X − 1)… (X − r + 1).

The inclusion–exclusion principle gives

Pr[X = 0] = Pr[B1 ∧… ∧ Bm] = 1 − S(1) + S(2) −… + (−1)rS(r) … .



BRUN’S SIEVE 133

Theorem 8.3.1 Suppose there is a constant 𝜇 so that

E[X] = S(1) → 𝜇

and such that, for every fixed r

E
[(X

r

)]
= S(r) →

𝜇
r

r!
.

Then
Pr[X = 0] → e−𝜇

and indeed for every t

Pr[X = t] → 𝜇
t

t!
e−𝜇 .

Proof. We do only the case t = 0. Fix 𝜖 > 0. Choose s so that

||||||
2s∑

r=0

(−1)r 𝜇
r

r!
− e−𝜇

|||||| ≤
𝜖

2
.

The Bonferroni Inequalities state that, in general, the inclusion–exclusion formula
alternately over- and underestimates Pr[X = 0]. In particular,

Pr[X = 0] ≤
2s∑

r=0

(−1)rS(r) .

Select n0 (the hidden variable) so that for n ≥ n0

||||S(r) − 𝜇
r

r!
|||| ≤ 𝜖

2(2s + 1)

for 0 ≤ r ≤ 2s. For such n
Pr[X = 0] ≤ e−𝜇 + 𝜖.

Similarly, taking the sum to 2s + 1 we find n0 so that for n ≥ n0

Pr[X = 0] ≥ e−𝜇 − 𝜖.

As 𝜖 was arbitrary, Pr[X = 0] → e−𝜇. ◾

The threshold functions for G ∼ G(n, p) to contain a copy of a given graph H,
derived in Section 10.1 via the Janson Inequality, were originally found using Brun’s
sieve. Here is an example where both methods are used. Let G ∼ G(n, p), the random
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graph of Chapter 10. Let EPIT represent the statement that every vertex lies in a
triangle.

Theorem 8.3.2 Let c > 0 be fixed and let p = p(n), 𝜇 = 𝜇(n) satisfy(n − 1
2

)
p3 = 𝜇 ,

e−𝜇 = c
n
.

Then
lim
n→∞

Pr[G(n, p) satisfies EPIT] = e−c
.

In Spencer (1990a) threshold functions are found for a very wide class of “exten-
sion statements” that every r vertices lie in a copy of some fixed H.

Proof. First, fix x ∈ V(G). For each unordered y, z ∈ V(G) − {x}, let Bxyz be the event

where {x, y, z} is a triangle of G. Let Cx be the event
⋀

y,zBxyz and Xx the corresponding
indicator random variable. We use Janson’s Inequality to bound E[Xx] = Pr[Cx]. Here
p = o(1) so 𝜖 = o(1).

∑
Pr[Bxyz] = 𝜇 as defined above. Dependency xyz ∼ xu𝑣 occurs

if and only if the sets overlap (other than in x). Hence

Δ =
∑
y,z,z′

Pr[Bxyz ∧ Bxyz′ ] = O(n3p5) = o(1)

since p = n−2∕3+o(1). Thus
E[Xx] ∼ e−𝜇 = c

n
.

Now define
X =

∑
x∈V(G)

Xx,

the number of vertices x not lying in a triangle. Then from Linearity of Expectation,

E[X] =
∑

x∈V(G)
E[Xx] → c.

We need to show that the Poisson Paradigm applies to X. Fix r. Then

E
[(X

r

)]
= S(r) =

∑
Pr[Cx1

∧… ∧ Cxr
],

the sum over all sets of vertices {x1,… , xr}. All r-sets look alike, so

E
[(X

r

)]
=
(n

r

)
Pr[Cx1

∧… ∧ Cxr
] ∼ nr

r!
Pr[Cx1

∧… ∧ Cxr
],
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where x1,… , xr are some particular vertices. But

Cx1
∧… ∧ Cxr

=
⋀

Bxiyz ,

the conjunction over 1 ≤ i ≤ r and all y, z. We apply Janson’s Inequality to this con-

junction. Again, 𝜖 = p3 = o(1). The number of {xi, y, z} is r
(

n−1
2

)
− O(n), the over-

count coming from those triangles containing two (or three) of the xi. (Here it is
crucial that r is fixed.) Thus

∑
Pr[Bxiyz] = p3

(
r
(n − 1

2

)
− O(n)

)
= r𝜇 + O(n−1+o(1)).

As before, Δ is p5 times the number of pairs xiyz ∼ xjy
′z′. There are O(rn3) = O(n3)

terms with i = j and O(r2n2) = O(n2) terms with i ≠ j, so again Δ = o(1). Therefore

Pr[Cx1
∧… ∧ Cxr

] ∼ e−r𝜇

and
E
[(X

r

)]
∼ (ne−𝜇)r

r!
= cr

r!
.

Hence the conditions of Theorem 8.3.1 are met for X. ◾

8.4 LARGE DEVIATIONS

We return to the formulation of Section 8.1. Our object is to derive large deviation
results on X similar to those in Appendix A. Given a point in the probability space
(i.e., a selection of R), we call an index set J ⊆ I a disjoint family (abbreviated disfam)
if

• Bj for every j ∈ J.

• For no j, j′ ∈ J is j ∼ j′.

If, in addition

• If j′ ∉ J and Bj′ , then j ∼ j′ for some j ∈ J,

then we call J a maximal disjoint family (maxdisfam). We give some general results
on the possible sizes of maxdisfams. The connection to X must then be done on an
ad hoc basis.

Lemma 8.4.1 With the above notation and for any integer s,

Pr[there exists a disfam J, |J| = s] ≤ 𝜇
s

s!
.



136 THE POISSON PARADIGM

Proof. Let
∑∗ denote the sum over all s-sets J ⊆ I with no j ∼ j′. Let

∑o denote
the sum over ordered s-tuples (j1,… , js), with {j1,… , js} forming such a J. Let

∑a

denote the sum over all ordered s-tuples (j1,… , js). Then

Pr[there exists a disfam J, |J| = s] ≤
∗∑

Pr

[⋀
j∈J

Bj

]

=
∗∑∏

j∈J

Pr[Bj] =
1
s!

o∑
Pr[Bj1

]… Pr[Bjs
]

≤
1
s!

a∑
Pr[Bj1

]… Pr[Bjs
] ≤ 1

s!

(∑
i∈I

Pr[Bi]

)s

= 𝜇
s

s!
.

◾

Lemma 8.4.1 gives an effective upper bound when 𝜇
s
≪ s! – basically if s > 𝜇𝛼

for 𝛼 > e. For smaller s, we look at the further condition of J being a maxdisfam.
To that end, we let 𝜇s denote the minimum, over all j1,… , js ∈ I of

∑
Pr[Bi], the

sum taken over all i ∈ I except those i with i ∼ jl for some 1 ≤ l ≤ s. In application,
s will be small (otherwise we use Lemma 8.4.1) and 𝜇s will be close to 𝜇. For some
applications, it is convenient to set

𝜈 = max
j∈I

∑
i∼j

Pr[Bi]

and note that 𝜇s ≥ 𝜇 − s𝜈.

Lemma 8.4.2 With the above notation and for any integer s

Pr[there exists a maxdisfam J, |J| = s] ≤ 𝜇
s

s!
e−𝜇s eΔ∕2

≤
𝜇

s

s!
e−𝜇es𝜈eΔ∕2

.

Proof. As in Lemma 8.4.1, we bound this probability by
∑∗ of J = {j1,… , js} being

a maxdisfam. For this to occur, J must first be a disfam and then ∧∗Bi, where ∧∗ is
the conjunction over all i ∈ I except those with i ∼ jl for some 1 ≤ l ≤ s. We apply
Janson’s Inequality to give an upper bound to Pr[∧∗Bi]. The associated values 𝜇∗, Δ∗

satisfy

𝜇
∗
≥ 𝜇s ,

Δ∗
≤ Δ
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the latter because Δ∗ has simply fewer addends. Thus

Pr[
∗
∧Bi] ≤ e−𝜇s eΔ∕2

and

∗∑
Pr[J maxdisfam] ≤ e−𝜇seΔ∕2

∗∑
Pr

[⋀
j∈J

Bj

]

≤ e−𝜇seΔ∕2 𝜇
s

s!
.

◾

When Δ = o(1) and 𝜈𝜇 = o(1), or, more generally, 𝜇3𝜇 = 𝜇 + o(1), then
Lemma 8.4.2 gives a close approximation to the Poisson distribution since

Pr[there exists a maxdisfam J, |J| = s] ≤ (1 + o(1))𝜇
s

s!
e−𝜇

for s ≤ 3𝜇 and the probability is quite small for larger s by Lemma 8.4.1.

8.5 COUNTING EXTENSIONS

We begin with a case that uses the basic large deviation results of Appendix A.

Theorem 8.5.1 Set p = [(ln n)∕n]𝜔(n), where 𝜔(n) → ∞ arbitrarily slowly. Then in
G(n, p) almost always

deg(x) ∼ (n − 1)p

for all vertices x.

This is actually a large deviation result. It suffices to show the following:

Theorem 8.5.2 Set p = [(ln n)∕n]𝜔(n), where 𝜔(n) → ∞ arbitrarily slowly. Let x ∈
G be fixed. Fix 𝜖 > 0. Then

Pr[|deg(x) − (n − 1)p| > 𝜖(n − 1)p] = o(n−1).

Proof. As deg(x) ∼ B(n − 1, p), that is, it is a binomial random variable with the
above parameters, we have from Corollary A.1.14 that

Pr[|deg(x) − (n − 1)p| > 𝜖(n − 1)p] < 2e−c
𝜖
(n−1)p = o(n−1),

as c
𝜖

is fixed and (n − 1)p ≫ ln n. ◾
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This result illustrates why logarithmic terms appear so often in the study of random
graphs. We want every x to have a property, hence we try to get the failure probability
down to o(n−1). When the Poisson Paradigm applies, the failure probability is roughly
an exponential, and hence we want the exponent to be logarithmic. This often leads
to a logarithmic term for the edge probability p.

In Section 8.3 we found the threshold function for every vertex to lie on a triangle.
It basically occurred when the expected number of extensions of a given vertex to a
triangle reached ln n. Now set N(x) to be the number of triangles containing x. Set

𝜇 =
(

n−1
2

)
p3 = E[N(x)].

Theorem 8.5.3 Let p be such that 𝜇 ≫ ln n. Then almost always

N(x) ∼ 𝜇

for all x ∈ G(n, p).

As above, this is actually a large deviation result. We actually show the following:

Theorem 8.5.4 Let p be such that 𝜇 ≫ ln n. Let x ∈ G be fixed. Fix 𝜖 > 0. Then

Pr[|N(x) − 𝜇| > 𝜖𝜇] = o(n−1).

Proof. We shall prove this under the further assumption p = n−2∕3+o(1) (or equiv-
alently, 𝜇 = no(1)), which could be removed by technical methods. We now have,
in the notation of Lemmas 8.4.1 and 8.4.2, 𝜈𝜇,Δ = o(1). Let P denote the Poisson
distribution with mean 𝜇. Then

Pr[there exists a maxdisfam J, |J| ≤ 𝜇(1 − 𝜖)]

≤ (1 + o(1)) Pr[P ≤ 𝜇(1 − 𝜖)] ,

Pr[there exists a maxdisfam J, 𝜇(1 + 𝜖) ≤ |J| ≤ 3𝜇]

≤ (1 + o(1)) Pr[𝜇(1 + 𝜖) ≤ P ≤ 3𝜇] ,

Pr[there exists a maxdisfam J, |J| ≥ 3𝜇]

≤ Pr[there exists a disfam J, |J| ≥ 3𝜇] ≤
∞∑

s=3𝜇

𝜇
s

s!
= O((1 − c)𝜇) ,

where c > 0 is an absolute constant. Since 𝜇 ≫ ln n, the third term is o(n−1). The
first and second terms are o(n−1) by Theorem A.1.15. With probability 1 − o(n−1),
every maxdisfam J has size between (1 − 𝜖)𝜇 and (1 + 𝜖)𝜇.

Fix one such J. (There always is some maximal disfam –even if no Bi held, we
could take J = ∅.) The elements of J are triples xyz that form triangles, hence N(x) ≥|J| ≥ (1 − 𝜖)𝜇. The upper bound is ad hoc. The probability that there exist five trian-
gles of the form xyz1, xyz2, xyz3, xyz4, xyz5 is at most n6p11 = o(n−1). The probability
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that there exist triangles xyizi, xyiz
′
i , 1 ≤ i ≤ 4, all vertices being distinct, is at most

n12p20 = o(n−1). Consider the graph whose vertices are the triangles xyz, with ∼ giv-
ing the edge relation. There are N(x) vertices, and the maxdisfam J are the maximal
independent sets . In this graph, with probability 1 − o(n−1), each vertex xyz has
degree at most 9, and there is no set of four disjoint edges. This implies that for
any J, |J| ≥ N(x) − 27 and

N(x) ≤ (1 + 𝜖)𝜇 + 27 ≤ (1 + 𝜖
′)𝜇.

◾

For any graph H with “roots” x1,… , xr, we can examine in G(n, p) the number of
extensions N(x1,… , xr) of a given set of r vertices to a copy of H. In Spencer (1990b),
some general results are given that generalize Theorems 8.5.2 and 8.5.4. Under fairly
wide assumptions (see Exercise 5, Chapter 10), when the expected number𝜇 of exten-
sions satisfies 𝜇 ≫ ln n, then almost always all N(x1,… , xr) ∼ 𝜇.

8.6 COUNTING REPRESENTATIONS

The results of this section shall use the following very basic and very useful result:

Lemma 8.6.1 [The Borel–Cantelli Lemma] Let {An}n∈ℕ be events with

∞∑
n=1

Pr[An] < ∞.

Then

Pr

[ ∞⋀
i=1

∞⋁
j=i

Aj

]
= 0.

That is, almost always An is false for all sufficiently large n. In application, we shall
aim for Pr[An] < n−c with c > 1 in order to apply this lemma.

Again, we begin with a case that involves only the large deviation results of
Appendix A. For a given set S of natural numbers, let (for every n ∈ ℕ) f (n) = fS(n)
denote the number of representations n = x + y, x, y ∈ S, x < y.

Theorem 8.6.2 Erdős (1956) There is a set S for which f (n) = Θ(ln n). That is,
there is a set S and constants c1, c2 so that, for all sufficiently large n

c1 ln n ≤ f (n) ≤ c2 ln n.

Proof. Define S randomly by

Pr[x ∈ S] = px = min

[
10

√
ln x

x
, 1

]
.
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Fix n. Now f (n) is a random variable with mean

𝜇 = E[f (n)] = 1
2

∑
x+y=n,x≠y

pxpy.

Roughly, there are n addends with pxpy > p2
n = 100(ln n)∕n. We have pxpx =

Θ((ln n)∕n) except in the regions x = o(n), y = o(n), and care must be taken that
those terms do not contribute significantly to 𝜇. Careful asymptotics (and first-year
calculus!) yield

𝜇 ∼ (50 ln n)
∫

1

0

dx√
x(1 − x)

= 50𝜋 ln n.

The negligible effect of the x = o(n), y = o(n) terms reflects the finiteness of the indef-
inite integral at poles x = 0 and x = 1. The possible representations x + y = n are
mutually independent events, so that from Corollary A.1.14

Pr[|f (n) − 𝜇| > 𝜖𝜇] < 2e−𝛿𝜇

for constants 𝜖, 𝛿 = 𝛿(𝜖). To be specific, we can take 𝜖 = 0.9, 𝛿 = 0.1 and

Pr[|f (n) − 𝜇| > 0.9𝜇] < 2e−5𝜋 ln n
< n−1.1

for n sufficiently large. Take c1 < 0.1(50𝜋) and c2 > 1.9(50𝜋).
Let An be the event where c1 ln n ≤ f (n) ≤ c2 ln n does not hold. We have Pr[An] <

n−1.1 for n sufficiently large. The Borel–Cantelli Lemma applies, and almost always
all An fail for n sufficiently large. Thus there exists a specific point in the probability
space, that is, a specific set S, for which c1 ln n ≤ f (n) ≤ c2 ln n for all sufficiently
large n. ◾

The development of the infinite probability space used here, and below, has been
carefully done in the book Sequences by Halberstam and Roth (1983).

The use of the infinite probability space leaves a number of questions about the
existential nature of the proof that go beyond the algorithmic. For example, does there
exist a recursive set S having the property of Theorem 8.6.3? An affirmative answer
is given in Kolountzakis (1999).

Now for a given set S of natural numbers, let g(n) = gS(n) denote the number of
representations n = x + y + z, x, y, z ∈ S, x < y < z. The following result was actually
proved for representations of n as the sum of k terms for any fixed k. For simplicity,
we present here only the proof for k = 3.

Theorem 8.6.3 Erdős and Tetali (1990) There is a set S for which g(n) = Θ(ln n).
That is, there is a set S and constants c1, c2, so that for all sufficiently large n

c1 ln n ≤ g(n) ≤ c2 ln n.
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Proof. Define S randomly by

Pr[x ∈ S] = px = min

[
10
( ln x

x2

)1∕3
,

1
2

]
.

Fix n. Now g(n) is a random variable and

𝜇 = E[g(n)] =
∑

x+y+z=n

pxpypz .

Careful asymptotics give

𝜇 ∼ 103

6
ln n

∫

1

x=0 ∫

1−x

y=0

dx dy

[xy(1 − x − y)]2∕3
= K ln n,

where K is large. (We may make K arbitrarily large by increasing “10.”) We apply
Lemma 8.4.2. Here

Δ =
∑

pxpypzpy′pz′ ,

the sum over all five-tuples with x + y + z = x + y′ + z′ = n. Roughly, there are n3

terms, each ∼ p5
n = n−10∕3+o(1), so that the sum is o(1). Again, care must be taken that

those terms with one (or more) small variables do not contribute much to the sum.
We bound s ≤ 3𝜇 = Θ(ln n) and consider 𝜇s. This is the minimal possible

∑
pxpypz

over all those x, y, z with x + y + z = n that do not intersect a given set of s representa-
tions; let us weaken that and say a given set of 3s elements. Again, one needs that the
weight of

∑
x+y+z=npxpypz is not on the edges but “spread” in the center and one shows

𝜇s ∼ 𝜇. Now, as in Section 8.5, let P denote the Poisson distribution with mean 𝜇.
The probability that there exists a maxdisfam J of size less than 𝜇(1 − 𝜖) or between
𝜇(1 + 𝜖) and 3𝜇 is asymptotically the probability that P lies in that range. For moder-
ate 𝜖, as K is large, these –as well as the probability of having a disfam of size bigger
than 3𝜇 –will be o(n−c) with c > 1. By the Borel–Cantelli Lemma , almost always
all sufficiently large n will have all maxdisfam J of size between c1 ln n and c2 ln n.
Then, g(n) ≥ c1 ln n immediately.

The upper bound is again ad hoc. With this p, let f (n) be, as before, the number of
representations of n as the sum of two elements of S. We use only that px = x−2∕3+o(1).
We calculate

E[f (n)] =
∑

x+y=n

(xy)−2∕3+o(1) = n−1∕3+o(1)
,

again watching the “pole” at 0. Here the possible representations are mutually inde-
pendent, so

Pr[f (n) ≥ 4] ≤ E[f (n)]4∕4! = n−4∕3+o(1)
,

and by the Borel–Cantelli Lemma almost always f (n) ≤ 3 for all sufficiently large
n. But then almost always there is a C so that f (n) ≤ C for all n. For all sufficiently
large n, there is a maxdisfam (with representations as the sum of three terms) of size



142 THE POISSON PARADIGM

less than c2 ln n. Every triple x, y, z ∈ S with x + y + z = nmust contain at least one of
these at most 3c2 ln n points. The number of triples x, y, z ∈ S with x + y + z = n for a
particular x is simply f (n − x), the number of representations n − x = y + z (possibly
one less since y, z ≠ x), and so is at most C. But then, there are at most C(3c2 ln n)
total representations n = x + y + z. ◾

8.7 FURTHER INEQUALITIES

Here we discuss some further results that allow one, sometimes, to apply the Poisson
Paradigm. Let Bi, i ∈ I be events in an arbitrary probability space. As in the Lovász
Local Lemma of Chapter 5, we say that a symmetric binary relation ‘∼’ on I is a
dependency digraph if for each i ∈ I the event Bi is mutually independent of {Bj ∶
i ≁ j}. [The digraph of Section 5.1 has E = {(i, j) ∶ i ∼ j}.] Suppose the events Bi
satisfy the inequalities of Section 8.2:

Pr

[
Bi |⋀

j∈J

Bj

]
≤ Pr[Bi]

valid for all index sets J ⊂ I, i ∉ J and

Pr

[
Bi |Bk ∧

⋀
j∈J

Bj

]
≤ Pr[Bi |Bk]

valid for all index sets J ⊂ I, i, k ∉ J. Then, the Janson Inequalities in Theorems 8.1.1
and 8.1.2 and also Lemmas 8.4.1and 8.4.2 hold as stated. The proofs are identical;
the above are the only properties of the events Bi that were used.

Suen (1990) (see also Janson (1998) for significant Variations) has given a very
general result that allows the approximation of Pr[

⋀
i∈IBi] by M =

∏
i∈I Pr[Bi].

Again, let {Bi}i∈I be events in an arbitrary probability space. We say that a binary
relation ∼ on I is a superdependency digraph if the following holds: Let J1, J2 ⊂ I
be disjoint subsets so that j1 ∼ j2 for no j1 ∈ J1, j2 ∈ J2. Let B1 be any Boolean
combination of the events {Bj}j∈J1

, and let B2 be any Boolean combination of the
events {Bj}j∈J2

. Then B1
,B2 are independent. Note that the ‘∼’ of Section 8.1 is

indeed a superdependency digraph.

Theorem 8.7.1 [Suen] Under the above conditions

||||||Pr

[⋀
i∈I

Bi

]
− M

|||||| ≤ M
[
e
∑

i∼jy(i,j) − 1
]
,

where
y(i, j) = (Pr[Bi ∧ Bj] + Pr[Bi] Pr[Bj])

∏
l∼i or l∼j

(1 − Pr[Bl])−1
.
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We shall not prove Theorem 8.7.1. In many instances, the above product is not
large. Suppose it is less than 2 for all i ∼ j. In that instance

∑
i∼j

y(i, j) ≤ 2

(
Δ +

∑
i∼j

Pr[Bi] Pr[Bj]

)
.

In many instances,
∑

i∼j Pr[Bi] Pr[Bj] is small compared to Δ (as in many instances
when i ∼ j the events Bi,Bj are positively correlated). When, furthermore, Δ = o(1),
Suen’s theorem gives the approximation of Pr[∧i∈IBi] by M. Suen has applied this
result to examine the number of induced copies of a fixed graph H in the random
G(n, p).

Janson (1990) has given a one-way large deviation result on the X of Section 8.1
that is somewhat simpler to apply than Lemmas 8.4.1 and 8.4.2.

Theorem 8.7.2 Janson With 𝜇 = E[X] and 𝛾 > 0 arbitrary

Pr[X ≤ (1 − 𝛾)𝜇] < e−𝛾
2
𝜇∕[2+2(Δ∕𝜇)]

.

When Δ = o(𝜇), this bound on the tail approximates that of the normal curve with
mean and standard deviation𝜇. We shall not prove Theorem 8.7.2 here. The proofs of
Theorems 8.7.1 and 8.7.2, as well as the original proofs by Janson of Theorems 8.1.1
and 8.1.2, are based on estimations of the Laplace transform of X, bounding E[e−tX].

8.8 EXERCISES

1. Prove that for every 𝜖 > 0 there is some n0 = n0(𝜖) so that for every n > n0 there
is a graph on n vertices containing every graph on k ≤ (2 − 𝜖)log2n vertices as an
induced subgraph.

2. Find a threshold function for the property: G(n, p) contains at least n∕6 pairwise
vertex disjoint triangles.



THE PROBABILISTIC LENS:
Local Coloring

This result of Erdős (1962) gives further probabilistic evidence that the chromatic
number 𝜒(G) cannot be deduced from local considerations.

Theorem 1 For all k, there exists 𝜖 > 0 so that for all sufficiently large n there exist
graphs G on n vertices with 𝜒(G) > k and yet 𝜒(G|S) ≤ 3 for every set S of vertices
of size at most 𝜖n.

Proof. For a given k let c, 𝜖 > 0 satisfy (with foresight)

c > 2k2H(1∕k) ln 2 ,

𝜖 < e−533c−3
,

where H(x) = −xlog2x − (1 − x)log2(1 − x) is the entropy function. Set p = c∕n and
let G ∼ G(n, p). We show that G almost surely satisfies the two conditions of the
theorem.

If 𝜒(G) ≤ k, there would be an independent set of size n∕k. The expected number
of such sets is (

n
n∕k

)
(1 − p)

(
n∕k

2

)
< 2n(H(1∕k)+o(1))e−cn∕2k2(1+o(1))

,

which is o(1) by our condition on c. Hence almost surely 𝜒(G) > k.
Suppose some set S with t ≤ 𝜖n vertices required at least four colors. Then, as in

the proof of Lemma 7.3.4, there would be a minimal such set S. For any 𝑣 ∈ S, there
would be a three-coloring of S − {𝑣}. If 𝑣 had two or fewer neighbors in S, then this
could be extended to a three-coloring of S. Hence every 𝑣 ∈ S would have degree at
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least 3 in G|S and so G|S would have at least 3t∕2 edges. The probability that some
t ≤ 𝜖n vertices have at least 3t∕2 edges is less than

∑
t≤𝜖n

(n
t

) ⎛⎜⎜⎝
(

t
2

)
3t∕2

⎞⎟⎟⎠
( c

n

)3t∕2
.

We outline the analysis. When t = O(1), the terms are negligible. Otherwise we bound
each term from above by[

ne
t

( te
3

)3∕2( c
n

)3∕2
]t

≤ [e5∕23−3∕2c3∕2
√

t∕n]t .

Now since t ≤ 𝜖n, the bracketed term is at most e5∕23−3∕2c3∕2
𝜖

1∕2, which is less
than 1 by our condition on 𝜖. The full sum is o(1); that is, almost surely no such S
exists. ◾

Many tempting conjectures are easily disproved by the probabilistic method. If
every n∕ ln n vertices may be three-colored, then can a graph G on n vertices be
four-colored? This result shows that the answer is no.





9
Quasirandomness

You have brains in your head. You have feet in your shoes. You can steer yourself any
direction you choose. You’re on your own. And you know what you know. And YOU
are the one who’ll decide where to go...
–from Oh, The Places You’ll Go, by Dr. Seuss

Quasirandomness, like so many profound mathematical concepts, appears to be a
contradiction in terms. The random graph G(n, p) is not a graph, it is a probability
distribution over the family of graphs with n vertices. A specific graph cannot be a
random graph anymore than you, the reader, can be a random person. Despite this,
we shall give mathematically rigorous notions of quasirandomness.

As shown in the various chapters of this book, the probabilistic method is a pow-
erful tool for establishing the existence of combinatorial structures with certain prop-
erties. It is often the case that such an existence proof is not sufficient; we actually
prefer an explicit construction. This is not only because an explicit construction may
shed more light on the corresponding problem but also because it often happens that
a random-looking structure is useful for a certain algorithmic procedure; in this case
we would like to have an algorithm and not merely to prove that it exists.

The problem of finding explicit constructions may look trivial; after all, since we
are mainly dealing with finite cases, once we have a probabilistic proof of existence
we can find an explicit example by exhaustive search. Moreover, many of the prob-
abilistic proofs of existence actually show that most members of a properly chosen
random space have the desired properties. We may thus expect that it would not be too
difficult to find one such member. Although this is true in principle, it is certainly not

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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practical to check all possibilities; it is thus common to define an explicit construction
of a combinatorial object as one that can be performed efficiently, say, in time that is
polynomial in the parameters of the object.

Let us illustrate this notion by one of the best known open problems in the area
of explicit constructions, the problem of constructing explicit Ramsey graphs . The
first example given in Chapter 1 is the proof of Erdős that for every n there are graphs
on n vertices containing neither a clique nor an independent set on 2 log2 n vertices.
This proof is an existence proof; but can we actually describe such graphs explicitly?
Erdős offered a prize of $500 for the explicit construction of an infinite family of
graphs, in which there is neither a clique nor an independent set of size more than a
constant times the logarithm of the number of vertices, for some absolute constant.
Of course, we can, in principle, for every fixed n, check all graphs on n vertices until
we find a good one, but this does not give an efficient way of producing the desired
graphs and hence is not explicit. Although the problem mentioned above received a
considerable amount of attention, it is still open. The best known explicit construction
appears in Barak, Rao, Shaltiel and Wigderson (2012), improving an elegant earlier
construction of Frankl and Wilson (1981). This gives explicit graphs on n vertices

which contain neither a clique nor an independent set on more than 2log n
o(1)

vertices.
Although the problem of constructing explicit Ramsey graphs is still open, there

are several other problems for which explicit constructions are known. In this chapter
we present a few examples and discuss briefly some of their algorithmic applica-
tions. We then describe several seemingly unrelated properties of a graph, which all
turn out to be equivalent. All these are properties of the random graph, and it is thus
common to call a graph (more precisely, a sequence of graphs) that satisfies these
properties quasirandom. The equivalence of all these properties enables one to show,
in several cases, that certain explicit graphs have many pseudorandom properties by
merely showing that they possess one of them. In Section 9.4 we give the Szemerédi
Regularity Lemma, which is now recognized as a fundamental result for understand-
ing large graphs. Indeed, Endre Szemerédi was awarded the 2012 Abel Prize in part
for the importance of this result. In a rough sense, the Szemerédi Regularity Lemma
tells us that any large graph can be regarded as a kind of random graph. We culmi-
nate this chapter with Section 9.5, introducing the notion of Graphons. These objects
reflect the limiting behavior of a sequence of similar looking graphs. They provide a
completion of the family of finite graphs, much as the real numbers provide a com-
pletion of the rationals.

Whew! Lets get started.

9.1 THE QUADRATIC RESIDUE TOURNAMENTS

Recall that a tournament on a set V of n players is an orientation T = (V ,E) of the set
of edges of the complete graph on the set of vertices V . If (x, y) is a directed edge, we
say that x beats y. Given a permutation 𝜋 of the set of players, a (directed) edge (x, y)
of the tournament is consistent with 𝜋 if x precedes y in 𝜋. If 𝜋 is viewed as a ranking
of the players, then it is reasonable to try and find rankings with as many consistent
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arcs as possible. Let c(𝜋, T) denote the number of arcs of T that are consistent with 𝜋,
and define c(T) = max(c(𝜋, T)), where the maximum is taken over all permutations𝜋
of the set of vertices of T. For every tournament T on n players, if 𝜋 = 1, 2,… , n and

𝜋
′ = n, n − 1,… , 1, then c(𝜋, T) + c(𝜋′

, T) =
(

n
2

)
. Therefore c(T) ≥ 1

2

(
n
2

)
. In fact,

it can be shown that for every such T, c(T) ≥ 1
2

(
n
2

)
+ Ω(n3∕2). On the other hand,

a simple probabilistic argument shows that there are tournaments T on n players for
which c(T) ≤ (1 + o(1)) 1

2

(
n
2

)
. (The best known estimate, which gives the right order

of magnitude for the largest possible value of the difference of c(T) − 1
2

(
n
2

)
is more

complicated and was given by de la Vega (1983), where he showed that there are

tournaments T on n players for which c(T) ≤ 1
2

(
n
2

)
+ O(n3∕2).)

Can we describe explicitly tournaments T on n vertices in which c(T) ≤ (1 +
o(1)) 1

2

(
n
2

)
? This problem was mentioned by Erdős and Moon (1965) and by Spencer

(1985b). It turns out that several such constructions can be given. Let us describe one.
Let p ≡ 3 (mod 4) be a prime, and let T = Tp be the tournament whose vertices

are all elements of the finite field GF(p) in which (i, j) is a directed edge iff i − j is a
quadratic residue. [Since p ≡ 3 (mod 4), −1 is a quadratic nonresidue modulo p and
hence Tp is a well-defined tournament.]

Theorem 9.1.1 For the tournaments Tp described above,

c(Tp) ≤
1
2

(p
2

)
+ O(p3∕2 log p) .

In order to prove this theorem we need some preparations. Let 𝜒 be the quadratic
residue character defined on the elements of the finite field GF(p) by 𝜒(y) = y(p−1)∕2.
Equivalently, 𝜒(y) is 1 if y is a nonzero square, 0 if y is 0, and −1 otherwise. Let
D = (dij)

p−1
i,j=0 be the p × p matrix defined by dij = 𝜒(i − j).

Fact 1 For every two distinct j and l,
∑

i∈GF(p) dijdil = −1.

Proof.

∑
i

dijdil =
∑

i

𝜒(i − j)𝜒(i − l) =
∑
i≠j,l

𝜒(i − j)𝜒(i − l)

=
∑
i≠j,l

𝜒

(
i − j

i − l

)
=
∑
i≠j,l

𝜒

(
1 +

l − j

i − l

)
.

As i ranges over all elements of GF(p) besides j and l, the quantity (1 + (l − j)∕
(i − l)) ranges over all elements of GF(p) besides 0 and 1. Since the sum of 𝜒(r)
over all r in GF(p) is 0, this implies that the right-hand side of the last equation is
0 − 𝜒(0) − 𝜒(1) = −1, completing the proof of the fact. ◾
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For two subsets A and B of GF(p), let e(A,B) denote the number of directed edges
of Tp that start in a vertex of A and end in a vertex of B. By the definition of the matrix
D, it follows that ∑

i∈A

∑
j∈B

dij = e(A,B) − e(B,A) .

The following lemma is proved in Alon (1986b).

Lemma 9.1.2 For any two subsets A and B of GF(p),

||||||
∑
i∈A

∑
j∈B

dij

|||||| ≤ |A|1∕2|B|1∕2p1∕2
.

Proof. By the Cauchy–Schwarz Inequality and by the fact above,

(∑
i∈A

∑
j∈B

dij

)2

≤ |A|∑
i∈A

(∑
j∈B

dij

)2

≤ |A| ∑
i∈GF(p)

(∑
j∈B

dij

)2

= |A| ∑
i∈GF(p)

(
|B| + 2

∑
j<l∈B

dijdil

)

= |A‖B|p + 2|A| ∑
j<l∈B

∑
i∈GF(p)

dijdil

≤ |A‖B|p ,
completing the proof of the lemma. ◾

Proof. [Theorem 9.1.1]. Let r be the smallest integer satisfying 2r ≥ p. Let 𝜋 =
𝜋1,… , 𝜋p be an arbitrary permutation of the vertices of Tp, and define𝜋′ = 𝜋p,… , 𝜋1.

We must show that c(𝜋, Tp) ≤
1
2

(
p
2

)
+ O(p3∕2 log p) or, equivalently, that c(𝜋, Tp) −

c(𝜋′
, Tp) ≤ O(p3∕2 log p). Let a1 and a2 be two integers satisfying p = a1 + a2 and

a1 ≤ 2r−1
, a2 ≤ 2r−1. Let A1 be the set of the first a1 vertices in the permutation 𝜋,

and let A2 be the set of the last a2 vertices in 𝜋. By Lemma 9.1.2

e(A1,A2) − e(A2,A1) ≤ (a1a2p)1∕2
≤ 2r−1p1∕2

.

Next, let a11, a12, a21, a22 be integers each of which does not exceed 2r−2 such that
a1 = a11 + a12 and a2 = a21 + a22. Let A11 be the subset of A1 consisting of those
a11 elements of A1 that appear first in 𝜋, and let A12 be the set of the a12 remaining
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elements of A1. The partition of A2 into the two sets A21 and A22 is defined similarly.
By applying Lemma 9.1.2, we obtain

e(A11,A12) − e(A12,A11) + e(A21,A22) − e(A22,A21)

≤ (a11a12p)1∕2 + (a21a22p)1∕2

≤ 2 ⋅ 2r−2p1∕2
.

Continuing in the same manner, we obtain, in the ith step, a partition of the set of
vertices into 2i blocks, each consisting of at most 2r−i consecutive elements in the
permutation 𝜋. This partition is obtained by splitting each block in the partition cor-
responding to the previous step into two parts. By applying Lemma 9.1.2 to each
such pair A

𝜀1,A𝜀2 (where 𝜀 is a vector of length i − 1 with {1, 2}-entries) and by
summing, we conclude that the sum over all these 2i−1 vectors 𝜀 of the differences
e(A

𝜀1,A𝜀2) − e(A
𝜀2,A𝜀1) does not exceed

2i−12r−ip1∕2
≤ 2r−1p1∕2

.

Observe that the sum of the left-hand sides of all these inequalities as i ranges from 1
to r is precisely the difference c(𝜋, Tp) − c(𝜋′

, Tp). Therefore, by summing we obtain

c(𝜋, Tp) − c(𝜋′
, Tp) ≤ 2r−1p1∕2r = O(p3∕2 log p) ,

completing the proof. ◾

We note that any antisymmetric matrix with {1,−1}-entries in which each two
columns are roughly orthogonal can be used to give a construction of a tournament
as above. Some related results appear in Frankl, Rödl and Wilson (1988). The tour-
naments Tp, however, have stronger pseudorandom properties than do some of these
other tournaments. For example, for every k ≤

1
4

log p, and for every set S of k vertices
of Tp, the number of vertices of Tp that beat all the members of S is (1 + o(1))p∕2k.
This was proved by Graham and Spencer (1971) by applying Weil’s famous theorem
known as the Riemann hypotheses for curves over finite fields, see Weil (1948). Tak-
ing a sufficiently large p, this supplies an explicit construction for the Schütte problem
mentioned in Chapter 1.

9.2 EIGENVALUES AND EXPANDERS

A graph G = (V ,E) is called an (n, d, c)-expander if it has n vertices, the maximum
degree of a vertex is d, and, for every set of vertices W ⊂ V of cardinality |W| ≤ n∕2,
the inequality |N(W)| ≥ c|W| holds, where N(W) denotes the set of all vertices in
V ⧵ W adjacent to some vertex in W. We note that sometimes a slightly different
definition is used, but the difference is not substantial. Expanders share many of the
properties of sparse random graphs and are the subject of an extensive literature.
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A family of linear expanders of density d and expansion c is a sequence {Gi}
∞
i=1,

where Gi is an (ni, d, c)-expander and ni tends to infinity as i tends to infinity.
Such a family is the main component of the parallel sorting network of Ajtai,

Komlós and Szemerédi (1983) and can be used for constructing certain fault-tolerant
linear arrays. It also forms the basic building block used in the construction of
graphs with special connectivity properties and a small number of edges. Some
other examples of the numerous applications of these graphs to various problems
in theoretical computer science can be found, for example, in Alon (1986b) and
references therein.

It is not too difficult to prove the existence of a family of linear expanders using
probabilistic arguments. This was first done by Pinsker (1973). An explicit construc-
tion is much more difficult to find and was first given by Margulis (1973). This
construction was later improved by various authors; most known constructions are
Cayley graphs of certain groups of matrices, and their expansion properties are proved
by estimating the eigenvalues of the adjacency matrices of the graphs and by rely-
ing on the close correspondence between the expansion properties of a graph and its
spectral properties. This correspondence was first studied, independently, by Tanner
(1984) and Alon and Milman (1984). Since it is somewhat simpler for the case of
regular graphs, we restrict our attention here to this case.

Let G = (V ,E) be a d-regular graph, and let A = AG = (au𝑣)u,𝑣∈V be its adjacency
matrix given by au𝑣 = 1 if u𝑣 ∈ E and au𝑣 = 0 otherwise. Since G is d-regular, the
largest eigenvalue of A is d, corresponding to the all-1 eigenvector. Let 𝜆 = 𝜆(G)
denote the second largest eigenvalue of G. For two (not necessarily disjoint) subsets
B and C of V , let e(B,C) denote the number of ordered pairs (u, 𝑣), where u ∈ B,
𝑣 ∈ C, and u𝑣 is an edge of G. (Note that, if B and C are disjoint, this is simply the
number of edges of G that connect a vertex of B with a vertex of C.)

Theorem 9.2.1 For every partition of the set of vertices V into two disjoint subsets
B and C

e(B,C) ≥ (d − 𝜆)|B‖C|
n

.

Proof. Put |V| = n, b = |B|, and c = |C| = n − b. Let D = dI be the n × n scalar
matrix with the degree of regularity of G on its diagonal. Observe that, for any real
vector x of length n (considered as a function x ∶ V → ℝ), we have

⟨(D − A)x, x⟩ = ∑
u∈V

(
d(x(u))2 −

∑
𝑣∶u𝑣∈E

x(𝑣)x(u)

)

= d
∑
u∈V

(x(u))2 − 2
∑

u𝑣∈E

x(𝑣)x(u) =
∑

u𝑣∈E

(x(𝑣) − x(u))2 .

Define, now, a vector x by x(𝑣) = −c if 𝑣 ∈ B and x(𝑣) = b if 𝑣 ∈ C. Note that A
and D − A have the same eigenvectors and that the eigenvalues of D − A are pre-
cisely d − 𝜇, as 𝜇 ranges over all eigenvalues of A. Note, also, that

∑
𝑣∈V x(𝑣) = 0;

that is, x is orthogonal to the constant vector, which is the eigenvector of the smallest
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eigenvalue of D − A. Since D − A is a symmetric matrix, its eigenvectors are orthog-
onal to each other and form a basis of the n-dimensional space. It follows that x is a
linear combination of the other eigenvectors of D − A and, hence, by the definition
of 𝜆 and the fact that d − 𝜆 is the second smallest eigenvalue of D − A, we conclude
that ⟨(D − A)x, x⟩ ≥ (d − 𝜆)⟨x, x⟩ = (d − 𝜆)(bc2 + cb2) = (d − 𝜆)bcn .

By the second paragraph of the proof, the left-hand side of the last inequality is∑
u𝑣∈E(x(u) − x(𝑣))2 = e(B,C) ⋅ (b + c)2 = e(B,C) ⋅ n2. Thus

e(B,C) ≥ (d − 𝜆)bc
n

,

completing the proof. ◾

Corollary 9.2.2 If 𝜆 is the second largest eigenvalue of a d-regular graph G with n
vertices, then G is an (n, d, c)-expander for c = (d − 𝜆)∕2d.

Proof. Let W be a set of 𝑤 ≤ n∕2 vertices of G. By Theorem 9.2.1, there are at
least (d − 𝜆)𝑤(n −𝑤)∕n ≥ (d − 𝜆)𝑤∕2 edges from W to its complement. Since no
vertex in the complement is adjacent to more than d of these edges, it follows that|N(W)| ≥ (d − 𝜆)𝑤∕2d. ◾

The estimate for c in the last corollary can in fact be improved to 2(d − 𝜆)∕
(3d − 2𝜆), as shown by Alon and Milman (1984). Each of these estimates shows
that, if the second largest eigenvalue of G is far from the first, then G is a good
expander. The converse of this is also true, although more complicated. This is given
in the following result, proved in Alon (1986a), which we state without proof.

Theorem 9.2.3 If G is a d-regular graph which is an (n, d, c)-expander, then

𝜆(G) ≤ d − c2

4 + 2c2
.

The last two results supply an efficient algorithm for approximating the expanding
properties of a d-regular graph; we simply compute (or estimate) its second largest
eigenvalue. The larger the difference between this eigenvalue and d, the better the
expanding properties of G. It is thus natural to ask how far from d this second
eigenvalue can be. It is known (see Nilli (1991)) that the second largest eigenvalue of
any d-regular graph with diameter k is at least 2

√
d − 1(1 − O(1∕k)). Therefore, in

any infinite family of d-regular graphs, the limsup of the second largest eigenvalue is
at least 2

√
d − 1. Lubotzky, Phillips and Sarnak (1986), and independently Margulis

(1988), gave, for every d = p + 1 where p is a prime congruent to 1 modulo 4,
explicit constructions of infinite families of d-regular graphs Gi with the second
largest eigenvalues 𝜆(Gi) ≤ 2

√
d − 1. These graphs are Cayley graphs of factor
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groups of the group of all 2 × 2 invertible matrices over a finite field, and their
eigenvalues are estimated by applying the results of Eichler and Igusa concerning
the Ramanujan conjecture. Eichler’s proof relies on Weil’s theorem mentioned in
the previous section. The nonbipartite graphs G constructed in this manner satisfy
a somewhat stronger assertion than 𝜆(G) ≤ 2

√
d − 1. In fact, besides their largest

eigenvalue d, they do not have eigenvalues whose absolute value exceeds 2
√

d − 1.
This fact implies some strong pseudorandom properties, as shown in the next
results.

Theorem 9.2.4 Let G = (V ,E) be a d-regular graph on n vertices, and suppose the
absolute value of each of its eigenvalues but the first one is at most 𝜆. For a vertex
𝑣 ∈ V and a subset B of V, denote by N(𝑣) the set of all neighbors of 𝑣 in G, and let
NB(𝑣) = N(𝑣) ∩ B denote the set of all neighbors of 𝑣 in B. Then, for every subset B
of cardinality bn of V ∑

𝑣∈V

(|NB(𝑣)| − bd)2 ≤ 𝜆
2b(1 − b)n .

Observe that in a random d-regular graph each vertex 𝑣 would tend to have about
bd neighbors in each set of size bn. The above theorem shows that, if 𝜆 is much
smaller than d, then for most vertices 𝑣, NB(𝑣) is not too far from bd.

Proof. Let A be the adjacency matrix of G, and define a vector f ∶ V → ℝ by f (𝑣) =
1 − b for 𝑣 ∈ B and f (𝑣) = −b for 𝑣 ∉ B. Clearly,

∑
𝑣∈V f (𝑣) = 0; that is, f is orthog-

onal to the eigenvector of the largest eigenvalue of A. Therefore

⟨Af ,Af ⟩ ≤ 𝜆
2⟨ f , f ⟩ .

The right-hand side of the last inequality is 𝜆
2(bn(1 − b)2 + (1 − b)nb2) = 𝜆

2b
(1 − b)n. The left-hand side is∑

𝑣∈V

((1 − b)|NB(𝑣)| − b(d − |NB(𝑣)|))2 = ∑
𝑣∈V

(|NB(𝑣)| − bd)2 .

The desired result follows. ◾

Corollary 9.2.5 Let G = (V ,E), d, n, and 𝜆 be as in Theorem 9.2.4. Then for every
two sets of vertices B and C of G, where |B| = bn and |C| = cn, we have

|e(B,C) − cbdn| ≤ 𝜆

√
bcn .

Proof. By Theorem 9.2.4∑
𝑣∈C

(|NB(𝑣)| − bd)2 ≤

∑
𝑣∈V

(|NB(𝑣)| − bd)2 ≤ 𝜆
2b(1 − b)n .
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Thus, by the Cauchy–Schwarz Inequality

|e(B,C) − cbdn| ≤ ∑
𝑣∈C

|NB(𝑣) − bd| ≤ √
cn

(∑
𝑣∈C

(|NB(𝑣)| − bd)2
)1∕2

≤

√
cn𝜆

√
b(1 − b)n ≤ 𝜆

√
bc n . ◾

The special case B = C gives the following result. A slightly stronger estimate is
proved in a similar way in Alon and Chung (1988).

Corollary 9.2.6 Let G = (V ,E), d, n, and 𝜆 be as in Theorem 9.2.4. Let B be an arbi-
trary set of bn vertices of G, and let e(B) = 1

2
e(B,B) be the number of edges in the

induced subgraph of G on B. Then

||||e(B) − 1
2

b2dn
|||| ≤ 1

2
𝜆bn .

A walk of length l in a graph G is a sequence 𝑣0,… , 𝑣l of vertices of G, where for
each 1 ≤ i ≤ l, 𝑣i−1𝑣i is an edge of G. Obviously, the total number of walks of length l
in a d-regular graph on n vertices is precisely n ⋅ dl. Suppose, now , that C is a subset
of, say, n∕2 vertices of G. How many of these walks do not contain any vertex of
C? If G is disconnected, it may happen that half of these walks avoid C. However,
as shown by Ajtai, Komlós and Szemerédi (1987), there are many fewer such walks
if all the eigenvalues of G except the largest are small. This result and some of its
extensions have several applications in theoretical computer science, as shown in the
above-mentioned paper (see also Cohen and Wigderson (1989)). We conclude this
section by stating and proving the result and one of its applications.

Theorem 9.2.7 Let G = (V ,E) be a d-regular graph on n vertices, and suppose that
each of its eigenvalues but the first one is at most 𝜆. Let C be a set of cn vertices of G.
Then, for every l, the number of walks of length l in G that avoid C does not exceed
(1 − c)n((1 − c)d + c𝜆)l.

Proof. Let A be the adjacency matrix of G, and let A′ be the adjacency matrix of its
induced subgraph on the complement of C. We claim that the maximum eigenvalue
of A′ is at most (1 − c)d + c𝜆. To prove this claim, we must show that for every vec-
tor f ∶ V → ℝ satisfying f (𝑣) = 0 for each 𝑣 ∈ C and

∑
𝑣∈V f (𝑣)2 = 1, the inequality⟨Af , f ⟩ ≤ (1 − c)d + c𝜆 holds. Let f1, f2,… , fn be an orthonormal basis of eigenvec-

tors of A, where fi is the eigenvector of 𝜆i, 𝜆1 = d and each entry of f1 is 1∕
√

n. Then,
f =

∑n
i=1 ci fi, where

∑n
i=1 c2

i = 1 and

c1 =
∑
𝑣∈V

f (𝑣)√
n
=

∑
𝑣∈V⧵C

f (𝑣)√
n

≤

( ∑
𝑣∈V⧵C

f (𝑣)2
)1∕2(

(1 − c)n 1
n

)1∕2
=
√

1 − c ,
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where we used the Cauchy–Schwarz Inequality. Therefore
∑n

i=2 c2
i ≥ c and

⟨Af , f ⟩ = n∑
i=1

c2
i 𝜆i ≤ (1 − c)d + c𝜆,

supplying the desired estimate for the largest eigenvalue of A′.
Let 𝛾1 ≥ 𝛾2 ≥ … ≥ 𝛾m be the eigenvalues of A′, where m = (1 − c)n. By the

Perron–Frobenius theorem, it follows that the absolute value of each of them is
at most 𝛾1 ≤ (1 − c)d + c𝜆. The total number of walks of length l that avoid C is
precisely < A′lg, g >, where g is the all-1 vector indexed by the vertices in V − C.
By expressing g as a linear combination of the eigenvectors of A′, g =

∑m
i=1 bigi,

where gi is the eigenvector of 𝛾i, we conclude that this number is precisely

m∑
i=1

b2
i 𝛾

l
i ≤ 𝛾

l
1

m∑
i=1

b2
i = m𝛾

l
1 ≤ m((1 − c)d + c𝜆)l .

Substituting m = (1 − c)n, the desired result follows. ◾

A randomly chosen walk of length l in a graph G is a walk of length l in G chosen
according to a uniform distribution among all walks of that length. Note that, if G is
d-regular, such a walk can be chosen by choosing randomly its starting point 𝑣0, and
then by choosing, for each 1 ≤ i ≤ l, 𝑣i randomly among the d neighbors of 𝑣i−1.

Corollary 9.2.8 Let G = (V ,E), d, n, 𝜆,C, and c be as in Theorem 9.2.7, and suppose

(1 − c)d + c𝜆 ≤
d√
2
.

Then, for every l, the probability that a randomly chosen walk of length l in G avoids
C is at most 2−l∕2.

Proof. The number of walks of length l in G that avoid C is at most (1 − c)n
((1 − c)d + c𝜆)l ≤ ndl2−l∕2, by Theorem 9.2.7. Since the total number of walks is
ndl, the desired result follows. ◾

The results above are useful for amplification of probabilities in randomized algo-
rithms. Although such an amplification can be achieved for any Monte Carlo algo-
rithm, we prefer, for simplicity, to consider one representative example: the primality
testing algorithm of Rabin (1980).

For an odd integer q, define two integers a and b by q − 1 = 2ab, where b is odd.
An integer x, 1 ≤ x ≤ q − 1, is called a witness (for the nonprimality of q) if for
the sequence x0,… , xa defined by x0 = xb(mod q) and xi = x2

i−1(mod q) for 1 ≤ i ≤ a
either xa ≠ 1 or there is an i such that xi ≠ −1, 1 and xi+1 = 1. One can show that, if
q is a prime, then there are no such witnesses for q, whereas if q is an odd nonprime,
then at least half of the numbers between 1 and q − 1 are witnesses for q. (In fact,
at least three-fourths are witnesses, as shown by Rabin.) This suggests the following
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randomized algorithm for testing whether an odd integer q is a prime (for even inte-
gers there is a simpler algorithm!).

Choose, randomly, an integer x between 1 and q − 1, and check if it is a witness.
If it is, report that q is not a prime. Otherwise, report that q is a prime.

Observe that, if q is a prime, the algorithm certainly reports it is a prime, whereas
if q is not a prime, the probability that the algorithm makes a mistake and reports it
as a prime is at most 1∕2. What if we wish to reduce the probability of making such
a mistake? Clearly, we can simply repeat the algorithm. If we repeat it l independent
times, then the probability of making an error (i.e., reporting a nonprime as a prime)
decreases to 1∕2l. However, the number of random bits required for this procedure is
l ⋅ log(q − 1).

Suppose we wish to use fewer random bits. By applying the properties of a ran-
domly chosen walk on an appropriate graph, proved in the last two results, we can
obtain the same estimate for the error probability by using only log(q − 1) + O(l)
random bits. This is done as follows.

Let G be a d-regular graph with q − 1 vertices, labeled by all integers between
1 and q − 1. Suppose G has no eigenvalue, but the first one, which exceeds 𝜆, and
suppose that

d + 𝜆

2
≤

d√
2
. (9.1)

Now choose randomly a walk of length 2l in the graph G, and check, for each of the
numbers labeling its vertices, if it is a witness. If q is a nonprime, then at least half of
the vertices of G are labeled by witnesses. Hence, by Corollary 9.2.8 and by (9.1), the
probability that no witness is on the walk is at most 2−2l∕2 = 2−l. Thus we obtain the
same reduction in the error probability as the one obtained by choosing l independent
witnesses. Let us estimate the number of random bits required for choosing such a
random walk.

The known constructions of expanders given by Lubotzky et al. (1986) or
Margulis (1988) give explicit families of graphs with degree d and with 𝜆 ≤ 2

√
d − 1,

for each d = p + 1, where p is a prime congruent to 1 modulo 4. [We note that these
graphs will not have exactly q − 1 vertices but this does not cause any real problem,
as we can take a graph with n vertices, where q − 1 ≤ n ≤ (1 + o(1))(q − 1), and
label its ith vertex by i (mod q − 1). In this case, the number of vertices labeled by
witnesses would still be at least ( 1

2
+ o(1))n.] One can easily check that, for example,

d = 30 and 𝜆 = 2
√

29 satisfy (9.1) and thus we can use a 30-regular graph. The
number of random bits required for choosing a random walk of length 2l in it is
less than log(q − 1) + 10l + 1, which is much less than the l log(q − 1) bits that are
needed in the repetition procedure.

9.3 QUASIRANDOM GRAPHS

In this section we describe several pseudorandom properties of graphs, which, some-
what surprisingly, turn out to be all equivalent. All the properties are the ones satisfied,
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almost surely, by a random graph in which every edge is chosen, independently, with
probability 1∕2. The equivalence between some of these properties was first proved
by several authors; see Thomason (1987), Frankl et al. (1988), and Alon and Chung
(1988), but the first paper in which all of them (and some others) appear is the one
by Chung, Graham and Wilson (1989). Our presentation here follows that paper. In
order to simplify the presentation, we consider only the case of regular graphs. We
state the fuller result at the end of the section, leaving the (very similar) arguments as
an exercise.

We first need some notations. For two graphs G and H, let N∗
G(H) be the number

of labeled occurrences of H as an induced subgraph of G: that is, the number of
adjacency-preserving injections f ∶ V(H) → V(G) whose image is the set of vertices
of an induced copy of H in G. Similarly, NG(H) denotes the number of labeled copies
of H as a (not necessarily induced) subgraph of G. Note that NG(H) =

∑
L N∗

G(L),
where L ranges over all graphs on the set of vertices of H obtained from H by adding
to it a (possibly empty) set of edges.

Throughout this section, G always denotes a graph with n vertices. We denote the
eigenvalues of its adjacency matrix (taken with multiplicities) by 𝜆1,… , 𝜆n, where|𝜆1| ≥ … ≥ |𝜆n|. (Since we consider in this section only the eigenvalues of G, we
simply write 𝜆1 and not 𝜆1(G).) Recall also the following notation, used in the pre-
vious section: for a vertex 𝑣 of G, N(𝑣) denotes the set of its neighbors in G. If S is
a set of vertices of G, e(S) denotes the number of edges in the induced subgraph of
G on S. If B and C are two (not necessarily disjoint) subsets of vertices of G, e(B,C)
denotes the number of ordered pairs (b, c), where b ∈ B, c ∈ C, and bc is an edge of
G. Thus e(S) = 1

2
e(S, S).

We can now state the pseudorandom properties considered here. All the proper-
ties refer to a graph G = (V ,E) with n vertices. Throughout the section, we use the
o(⋅)-notation, without mentioning the precise behavior of each o(⋅). Thus occurrences
of two o(1), say, need not mean that both are identical but only mean that, if we con-
sider a family of graphs G and let their number of vertices n tend to infinity, then
each o(1) tends to 0. That is, the notions below apply to a sequence of graphs G = Gn
(we generally suppress the subscript n for simplicity of presentation) for which the
number of vertices n is going to infinity. It is not necessary that we have all, or even
all sufficiently large, n. Indeed, for the example of quadratic residue graphs given at
the end of the section, the values n must be primes of the form 4k + 1.

Property P1(s): For every graph H(s) on s vertices

N∗
G(H(s)) = (1 + o(1))ns2

−
(

s
2

)
.

Property P2: For the cycle C(4) with four vertices NG(C(4)) ≤ (1 + o(1))(n∕2)4.

Property P3: |𝜆2| = o(n).
Property P4: For every set S of vertices of G, e(S) = 1

4
|S|2 + o(n2).
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Property P5: For every two sets of vertices B and C, e(B,C) = 1
2
|B‖C| + o(n2).

Property P6:
∑

u,𝑣∈V
|||N(u) ∩ N(𝑣)| − n∕4|| = o(n3).

It is easy to check that all the properties above are satisfied, almost surely, by
a random graph on n vertices. In this section we show that all these properties are
equivalent for a regular graph with n vertices and degree of regularity about n∕2. The
fact that the innocent-looking property P2 is strong enough to imply for such graphs
P1(s) for every s ≥ 1 is one of the interesting special cases of this result.

Graphs that satisfy any (and thus all) of the properties above are called quasiran-
dom. As noted above, the assumption that G is regular can be dropped (at the expense
of slightly modifying property P2 and slightly complicating the proofs).

Theorem 9.3.1 Let G be a d-regular graph on n vertices, where d = ( 1
2
+ o(1))n. If

G satisfies any one of the seven properties P1(4),P1(s) for all s ≥ 1, P2, P3, P4, P5,
or P6, then it satisfies all seven.

Proof. We show that

P1(4) ⇒ P2 ⇒ P3 ⇒ P4 ⇒ P5 ⇒ P6 ⇒ P1(s) for all s ≥ 1 (⇒ P1(4)) .

1. P1(4) ⇒ P2.
Suppose G satisfies P1(4). Then NG(C(4)) =

∑
L N∗

G(L), as L ranges over the
four labeled graphs obtained from a labeled C(4) by adding to it a (possibly
empty) set of edges. Since G satisfies P1(4), N∗

G(L) = (1 + o(1))n42−16 for each
of these graphs L and hence NG(C(4)) = (1 + o(1))n42−4, showing that G sat-
isfies P2.

2. P2 ⇒ P3.
Suppose G satisfies P2 and let A be its adjacency matrix. The trace of A4 is
precisely

∑n
i=1 𝜆

4
i . On the other hand, it is easy to see that this trace is precisely

the number of (labeled) closed walks of length 4 in G, that is, the number of
sequences 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4 = 𝑣0 of vertices of G such that 𝑣i𝑣i+1 is an edge for
each 0 ≤ i ≤ 3. This number is NG((C(4)) plus the number of such sequences
in which 𝑣2 = 𝑣0, which is nd2, plus the number of such sequences in which
𝑣2 ≠ 𝑣0 and 𝑣3 = 𝑣1, which is nd(d − 1). Thus

n∑
i=1

𝜆
4
i = d4 +

n∑
i=2

𝜆
4
i = (1 + o(1))(n∕2)4 +

n∑
i=2

𝜆
4
i

= NG(C(4)) + O(n3) = (1 + o(1))(n∕2)4 .

It follows that
∑n

i=2 𝜆
4
i = o(n4), and hence that |𝜆2| = o(n), as needed.
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3. P3 ⇒ P4.
This is an immediate consequence of Corollary 9.2.6.

4. P4 ⇒ P5.
Suppose G satisfies P4. We first claim that it satisfies property P5 for disjoint
sets of vertices B and C. Indeed, if B and C are disjoint, then

e(B,C) = e(B ∪ C) − e(B) − e(C)

= 1
4
(|B| + |C|)2 − 1

4
|B|2 − 1

4
|C|2 + o(n2)

= 1
2
|B‖C| + o(n2) ,

proving the claim.
In case B and C are not disjoint, we have

e(B,C) = e(B ⧵ C,C ⧵ B) + e(B ∩ C,C ⧵ B) + e(B ∩ C,B ⧵ C) + 2e(B ∩ C) .

Put |B| = b, |C| = c, and |B ∩ C| = x. By the above expression for e(B,C) and
by the fact that G satisfies P4 and P5 for disjoint B and C, we get

e(B,C) = 1
2
(b − x)(c − x) + 1

2
x(c − x) + 1

2
x(b − x) + 2

4
x2 + o(n2)

= 1
2

bc + o(n2) = 1
2
|B‖C| + o(n2) ,

showing that G satisfies P5.

5. P5 ⇒ P6.
Suppose that G satisfies P5, and recall that G is d-regular, where d = ( 1

2
+

o(1))n. Let 𝑣 be a fixed vertex of G, and let us estimate the sum∑
u∈V ,u≠𝑣

|||| |N(u) ∩ N(𝑣)| − n
4

|||| .
Define

B1 =
{

u ∈ V , u ≠ 𝑣 ∶ |N(u) ∩ N(𝑣)| ≥ n
4

}
and similarly

B2 =
{

u ∈ V , u ≠ 𝑣 ∶ |N(u) ∩ N(𝑣)| < n
4

}
.

Let C be the set of all neighbors of 𝑣 in G. Observe that

∑
u∈B1

|||| |N(u) ∩ N(𝑣)| − n
4

|||| =
∑
u∈B1

|N(u) ∩ N(𝑣)| − |B1|n
4

= e(B1,C) − |B1|n
4
.
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Since G satisfies P5, and since d = ( 1
2
+ o(1))n, the last difference is 1

2
|B1|d +

o(n2) − |B1|n∕4 = o(n2).
A similar argument implies that

∑
u∈B2

|||| |N(u) ∩ N(𝑣)| − n
4

|||| = o(n2) .

It follows that, for every vertex 𝑣 of G,

∑
u∈V ,u≠𝑣

|||||N(u) ∩ N(𝑣)| − n
4

|||| = o(n2) ,

and by summing over all vertices 𝑣 we conclude that G satisfies property P6.

6. P6 ⇒ P1(s) for all s ≥ 1.
Suppose G = (V ,E) satisfies P6. For any two distinct vertices u and 𝑣 of G,
let a(u, 𝑣) be 1 if u𝑣 ∈ E and 0 otherwise. Also, define s(u, 𝑣) = |{𝑤 ∈ V ∶
a(u, 𝑤) = a(𝑣,𝑤)}|. Since G is d = ( 1

2
+ o(1))n-regular,

s(u, 𝑣) = 2|N(u) ∩ N(𝑣)| + n − 2d = 2|N(u) ∩ N(𝑣)| + o(n) .

Therefore the fact that G satisfies P6 implies that

∑
u,𝑣∈V

||||s(u, 𝑣) − n
2

|||| = o(n3) . (9.2)

Let H = H(s) be an arbitrary fixed graph on s vertices, and put Ns = N∗
G(H(s)).

We must show that

Ns = (1 + o(1))ns2
−
(

s
2

)
.

Denote the vertex set of H(s) by {𝑣1,… , 𝑣s}. For each 1 ≤ r ≤ s, put
Vr = {𝑣1,… , 𝑣r}, and let H(r) be the induced subgraph of H on Vr. We prove,
by induction on r, that for Nr = N∗

G(H(r)),

Nr = (1 + o(1))n(r)2
−
(

r
2

)
, (9.3)

where n(r) = n(n − 1) · · · (n − r + 1).
This is trivial for r = 1. Assuming it holds for r, where 1 ≤ r < s, we prove it
for r + 1. For a vector 𝛼 = (𝛼1,… , 𝛼r) of distinct vertices of G, and for a vector
𝜀 = (𝜀1,… , 𝜀r) of (0, 1)-entries, define

fr(𝛼, 𝜀) = |{𝑣 ∈ V ∶ 𝑣 ≠ 𝛼1,… , 𝛼r and a(𝑣, 𝛼j) = 𝜀j for all 1 ≤ j ≤ r}| .
Clearly, Nr+1 is the sum of the Nr quantities fr(𝛼, 𝜀) in which 𝜀j = a(𝑣r+1, 𝑣j)
and 𝛼 ranges over all Nr induced copies of H(r) in G.
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Observe that altogether there are precisely n(r)2
r quantities fr(𝛼, 𝜀). It is conve-

nient to view fr(𝛼, 𝜀) as a random variable defined on a sample space of n(r)2
r

points, each having an equal probability. To complete the proof, we compute the
expectation and the variance of this random variable. We show that the variance
is so small that most of the quantities fr(𝛼, 𝜀) are very close to the expectation,
and thus obtain a sufficiently accurate estimate for Nr+1, which is the sum of
Nr such quantities.
We start with the simple computation of the expectation E[fr] of fr(𝛼, 𝜀). We
have

E[fr] =
1

n(r)2r

∑
𝛼,𝜀

fr(𝛼, 𝜀) =
1

n(r)2r

∑
𝛼

∑
𝜀

fr(𝛼, 𝜀)

= 1
n(r)2r

∑
𝛼

(n − r) = n − r
2r

,

where we used the fact that every vertex 𝑣 ≠ 𝛼1,… , 𝛼r defines 𝜀 uniquely.
Next, we estimate the quantity Sr defined by

Sr =
∑
𝛼,𝜀

fr(𝛼, 𝜀)(fr(𝛼, 𝜀) − 1) .

We claim that
Sr =

∑
u≠𝑣

s(u, 𝑣)(r) . (9.4)

To prove this claim, observe that Sr can be interpreted as the number of ordered
triples (𝛼, 𝜀, (u, 𝑣)), where 𝛼 = (𝛼1,… , 𝛼r) is an ordered set of r distinct vertices
of G, 𝜀 = (𝜀1,… , 𝜀r) is a binary vector of length r, and u, 𝑣 is an ordered pair
of additional vertices of G so that

a(u, 𝛼k) = a(𝑣, 𝛼k) = 𝜀k for all 1 ≤ k ≤ r .

For each fixed 𝛼 and 𝜀, there are precisely fr(𝛼, 𝜀)(fr(𝛼, 𝜀) − 1) choices for the
pair (u, 𝑣) and hence Sr counts the number of these triples.
Now, let us compute this number by first choosing u and 𝑣. Once u, 𝑣 are chosen,
the additional vertices 𝛼1,… , 𝛼r must all belong to the set {𝑤 ∈ V ∶ a(u, 𝑤) =
a(𝑣,𝑤)}. Since the cardinality of this set is s(u, 𝑣), it follows that there are
s(u, 𝑣)(r) choices for 𝛼1,… 𝛼r. Once these are chosen, the vector 𝜀 is determined
and thus (9.4) follows.
We next claim that (9.2) implies∑

u≠𝑣

s(u, 𝑣)(r) = (1 + o(1))nr+22−r
. (9.5)

To prove this claim, define 𝜀u𝑣 = s(u, 𝑣) − n∕2. Observe that, by (9.2),∑
u≠𝑣|𝜀u𝑣| = o(n3) and |𝜀u𝑣| ≤ n∕2 ≤ n for each u, 𝑣. Hence, for every fixed

a ≥ 1
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∑
u≠𝑣

|𝜀u𝑣|a ≤ na−1
∑
u≠𝑣

|𝜀u𝑣| = o(na+2) .

This implies that∑
u≠𝑣

s(u, 𝑣)(r)

=
∑
u≠𝑣

(n
2
+ 𝜀u𝑣

)
(r)

=
r∑

k=0

∑
u≠𝑣

ck

(n
2

)k
𝜀

r−k
u𝑣 (for appropriate constants ck)

=
(n

2

)r
n(2) +

r−1∑
k=0

∑
u≠𝑣

ck

(n
2

)k
𝜀

r−k
u𝑣

≤

(n
2

)r
n(2) +

r−1∑
k=0

∑
u≠𝑣

|ck|nk|𝜀u𝑣|r−k

≤ nr+22−r + c
r−1∑
k=0

nk
∑
u≠𝑣

|𝜀u𝑣|r−k (for an appropriate constant c)

≤ nr+22−r + c
r−1∑
k=0

nk ⋅ o(nr−k+2)

= nr+22−r(1 + o(1)) ,

implying (9.5).
By (9.4) and (9.5), Sr = (1 + o(1))nr+22−r. Therefore∑

𝛼,𝜀

(fr(𝛼, 𝜀) − E[fr])2

=
∑
𝛼,𝜀

f 2
r (𝛼, 𝜀) −

∑
𝛼,𝜀

E[fr]2 ,

∑
𝛼,𝜀

(f 2
r (𝛼, 𝜀) − fr(𝛼, 𝜀)) +

∑
𝛼,𝜀

fr(𝛼, 𝜀) − n(r)2
r(n − r)22−2r

= Sr + n(r)2
rE[fr] − n(r)2

r(n − r)22−2r

= Sr + n(r+1) − n(r)2
r(n − r)22−2r = o(nr+2) .

Recall that Nr+1 is the summation of Nr quantities of the form fr(𝛼, 𝜀). Thus

|Nr+1 − NrE[fr]|2 =
||||||
∑

Nr terms

(fr(𝛼, 𝜀) − E[fr])
||||||
2

.
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By Cauchy–Schwarz , the last expression is at most

Nr

∑
Nr terms

(fr(𝛼, 𝜀) − E[fr])2 ≤ Nr

∑
𝛼,𝜀

(fr(𝛼, 𝜀) − E[fr])2

= Nr ⋅ o(nr+2) = o(n2r+2) .

It follows that |Nr+1 − NrE[fr]| = o(nr+1) ,

and hence, by the induction hypothesis

Nr+1 = NrE[fr] + o(nr+1)

= (1 + o(1))n(r)2
−
(

r
2

)
⋅ (n − r)2−r + o(nr+1)

= (1 + o(1))n(r+1)2
−
(

r+1
2

)
.

This completes the proof of the induction step and establishes Theorem 9.3.1.

◾

There are many examples of families of quasirandom graph sequences. The most
widely used is probably the family of Paley graphs Gp defined as follows: For a
prime p congruent to 1 modulo 4, let Gp be the graph whose vertices are the integers
0, 1, 2,… , p− 1 in which i and j are adjacent if and only if i − j is a quadratic residue
modulo p. The graphs Gp, which are the undirected analogs of the quadratic residue
tournaments discussed in Section 9.1, are (p − 1)∕2-regular. For any two distinct ver-
tices i and j of Gp, the number of vertices k that are either adjacent to both i and j
or nonadjacent to both is precisely the number of times the quotient (k − i)∕(k − j)
is a quadratic residue. As k ranges over all numbers between 0 and p − 1 but i and j,
this quotient ranges over all numbers but 1 and 0 and hence it is a quadratic residue
precisely 1

2
(p − 1) − 1 times. (This is essentially the same assertion as that of the first

fact given in the proof of Theorem 9.1.1.) We have thus shown that, for every two
vertices i and j of Gp, s(i, j) = (p − 3)∕2, and this, together with the fact that Gp is
(p − 1)∕2-regular, easily implies that it satisfies Property P6. Therefore it is quasir-
andom. As is the case with the quadratic residue tournaments , Gp satisfies, in fact,
some stronger pseudorandom properties that are not satisfied by every quasirandom
graph and can be proved by applying Weil’s theorem.

Let p ∈ (0, 1). We now give the fuller version of Theorem 9.3.1. We first give a
natural generalization of the properties listed earlier.

Property Pp
1(s): For every graph H(s) on s vertices with e edges

N∗
G(H(s)) = (1 + o(1))nspe(1 − p)

(
s
2

)
−e
.
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Property Pp
2: For the cycle C(4) with four vertices NG(C(4)) ≤ (1 + o(1))p4n4.

Property Pp
3: |𝜆2| = o(n).

Property Pp
4: For every set S of vertices of G, e(S) = p

2
|S|2 + o(n2).

Property Pp
5: For every two sets of vertices B and C, e(B,C) = p|B‖C| + o(n2).

Property Pp
6:
∑

u,𝑣∈V
|||N(u) ∩ N(𝑣)| − p2n|| = o(n3).

Theorem 9.3.2 Let 0 < p < 1. Let G = Gn be a sequence of graphs on n vertices

with p
(

n
2

)
(1 + o(1)) edges. Assume further that all but o(n) vertices have degree

pn(1 + o(1)). If G satisfies any one of the seven properties Pp
1(4),P

p
1(s) for all s ≥ 1,

Pp
2, Pp

3, Pp
4, Pp

5, and Pp
6, then it satisfies all seven.

We leave the proof of Theorem 9.3.2, which is quite similar to that of Theorem
9.3.1, as an exercise.

Definition 4 A sequence of graphs G = Gn satisfying any (and hence all) of the
properties given in Theorem 9.3.2 is called a quasirandom graph sequence with
parameter p.

9.4 SZEMERÉDI’S REGULARITY LEMMA

In this section we describe a fundamental result, the Regularity Lemma, proved by
Endre Szemerédi in the 1970s. The original motivation for proving it has been an
application in combinatorial number theory, leading, together with several additional
deep ideas, to a complete solution of the Erdős–Turán conjecture discussed in
Appendix B.2: that is, every set of integers of positive upper density contains arbi-
trarily long arithmetic progressions. It took some time to realize that the lemma is
an extremely powerful tool in extremal graph theory, combinatorics, and theoretical
computer science. Stated informally, the regularity lemma asserts that the vertices of
every large graph can be decomposed into a finite number of parts, so that the edges
between almost every pair of parts form a random-looking graph. The power of the
lemma lies in the fact it deals with an arbitrary graph, making no assumptions, and
yet supplies much useful information about its structure. A detailed survey of the
lemma and some of its many variants and fascinating consequences can be found in
Komlós and Simonovits (1996).

Let G = (V ,E) be a graph. For two disjoint nonempty subsets of vertices A,B ⊂

V , let e(A,B) denote the number of edges of G with one end in A and one in B,
and let d(A,B) = e(A,B)|A‖B| denote the density of the pair (A,B). For a real 𝜀 > 0, a pair
(A,B) as above is called 𝜀-regular if, for every X ⊂ A and Y ⊂ B that satisfy |X| ≥
𝜀|A|, |Y| ≥ 𝜀|B|, the inequality |d(A,B) − d(X, Y)| ≤ 𝜀 holds. It is not difficult to see
that for every fixed positive 𝜀, p, a fixed pair of two sufficiently large disjoint subsets
A and B of a random graph G = G(n, p) are very likely to be 𝜀-regular of density
roughly p. (This is stated in one of the exercises at the end of the chapter.) Conversely,
an 𝜀-regular pair A,B with a sufficiently small positive 𝜀 is random-looking in the
sense that it shares many properties satisfied by random (bipartite) graphs.
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A partition V = V0 ∪ V1 ∪ · · · ∪ Vk of V into pairwise disjoint sets in which V0
is called the exceptional set is an equipartition if |V1| = |V2| = · · · = |Vk|. We view
the exceptional set as |V0| distinct parts, each consisting of a single vertex. For two
partitions  and  ′ as above,  ′ is a refinement of  if every part in  is a union
of some of the parts of  ′. By the last comment on the exceptional set, this means,
in particular, that, if  ′ is obtained from  by shifting vertices from the other sets
in the partition to the exceptional set, then  ′ is a refinement of  . An equipartition
is called 𝜀-regular if |V0| ≤ 𝜀|V| and all pairs (Vi,Vj) with 1 ≤ i < j ≤ k, except at
most 𝜀k2 of them, are 𝜀-regular.

Theorem 9.4.1 The Regularity Lemma [Szemerédi (1978)] For every 𝜀 > 0 and
every integer t, there exists an integer T = T(𝜀, t) so that every graph with at least T
vertices has an 𝜀-regular partition (V0,V1,… ,Vk), where t ≤ k ≤ T.

The basic idea in the proof is simple. Start with an arbitrary partition of the set of
vertices into t disjoint classes of equal sizes (with a few vertices in the exceptional set,
if needed, to ensure divisibility by t). Proceed by showing that, as long as the existing
partition is not 𝜀-regular, it can be refined in a way that increases the weighted average
of the square of the density between a pair of classes of the partition by at least a
constant depending only on 𝜀. As this average cannot exceed 1, the process has to
terminate after a bounded number of refinement steps. Since in each step we control
the growth in the number of parts as well as the number of extra vertices thrown to
the exceptional set, the desired result follows. The precise details require some care,
and are given in what follows.

Let G = (V ,E) be a graph on |V| = n vertices. For two disjoint subsets U,W ⊂ V ,
define q(U,W) = |U‖W|

n2 d2(U,W). For partitions  of U and  of W, define

q( ,) =
∑

U′∈ ,W′∈
q(U′

,W′).

Finally, for a partition  of V , with an exceptional set V0, define q() =
∑

q(U,W),
where the sum ranges over all unordered pairs of distinct parts U,W in the parti-
tion, with each vertex of the exceptional set V0 forming a singleton part in its own.

Therefore, q() is a sum of
(

k+|V0|
2

)
terms of the form q(U,W). The quantity q()

is called the index of the partition  . Since d2(U,W) ≤ 1 for all U,W, and since the
sum

∑|U‖W| over all unordered pairs of distinct parts U,W is at most the number
of unordered pairs of vertices, it follows that the index of any partition is smaller
than 1∕2.

Lemma 9.4.2

(i) Let U,W be disjoint nonempty subsets of V, and let  be a partition of U and
 a partition of W. Then q( ,) ≥ q(U,W).

(ii) If  ′ and  are partitions of V and  ′ is a refinement of  , then q( ′) ≥ q().
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(iii) Suppose 𝜀 > 0, and suppose U,W are disjoint nonempty subsets of V and the
pair (U,W) is not 𝜀-regular. Then there are partitions  = {U1,U2} of U and
 = {W1,W2} of W so that q( ,) > q(U,W) + 𝜀

4 |U‖W|
n2 .

Proof.
(i) Define a random variable Z as follows: Let u be a uniformly chosen random

element of U, and let 𝑤 be a uniformly chosen random element of W. Let
U′ ∈  and W′ ∈  be those members of the partition so that u ∈ U′

, 𝑤 ∈
W′. Then Z = d(U′

,W′).
The expectation of Z is

∑
U′∈ ,W′∈

|U′‖W ′||U‖W| d(U′
,W′) =

∑
U′∈ ,W′∈

|U′‖W ′||U‖W| e(U′
,W′)|U′‖W ′| = d(U,W) .

By Jensen’s Inequality, E[Z2] ≥ (E[Z])2, and the desired result follows, as
E[Z2] = n2|U‖W|q( ,) and (E[Z])2 = d2(U,W) = n2|U‖W|q(U,W).

(ii) This is an immediate consequence of (i).

(iii) Since the pair (U,W) is not 𝜀-regular, there are subsets U1 ⊂ U,W1 ⊂ W so
that |U1| ≥ 𝜀|U|, |W1| ≥ 𝜀|W|, and |d(U1,W1) − d(U,W)| > 𝜀. Put U2 = U −
U1,W2 = W − W1, and define the partitions  = {U1,U2},  = {W1,W2}.
Let Z be the random variable defined in the proof of part (i). Then, as shown
in that proof

Var[Z] = E[Z2] − (E[Z])2 = n2|U‖W| (q( ,) − q(U,W)) .

However, as E[Z] = d(U,W), it follows that with probability |U1‖W1||U‖W| , Z devi-
ates from E[Z] by more than 𝜀, implying that

Var(Z) >
|U1‖W1||U‖W| 𝜀

2
≥ 𝜀

4
.

This provides the desired result. ◾

Proposition 9.4.3 Suppose 0 < 𝜀 ≤ 1∕4, let  = {V0,V1,… ,Vk} be an equiparti-
tion of V, where V0 is the exceptional set, |V0| ≤ 𝜀n, and |Vi| = c for all 1 ≤ i ≤ k.
If  is not 𝜀-regular, then there exists a refinement  ′ = {V ′

0,V
′
1,… ,V ′

𝓁} of  ,
in which k ≤ 𝓁 ≤ k4k, |V ′

0| ≤ |V0| + n
2k all other sets Vi are of the same size, and

q( ′) ≥ q() + 𝜀
5

2
.

Proof. For every pair 1 ≤ i < j ≤ k, define a partitionij of Vi andji of Vj as follows:
If the pair (Vi,Vj) is 𝜀-regular, then the two partitions are trivial. Else, each partition
consists of two parts, chosen according to Lemma 9.4.2, part (iii). For each 1 ≤ i ≤ k,
let i be the partition of Vi obtained by the Venn diagram of all (k − 1)-partitions
ij. Thus each i has at most 2k−1 parts. Let  be the partition of V consisting
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of all parts of the partitions i together with the original exceptional set V0. By
Lemma 9.4.2, parts (ii) and (iii), and since  is not 𝜀-regular, we conclude that the
index of  satisfies

q() ≥ q() + 𝜀k2
𝜀

4 c2

n2
= q() + 𝜀

5 (kc)2

n2
> q() + 𝜀

5

2
,

where we used the fact that kc ≥ (1 − 𝜀)n ≥ 3n∕4. Note that  has at most k2k−1

parts (besides the exceptional set), but those are not necessarily of equal sizes. Define
b = ⌊c∕4k⌋ and split every part of  arbitrarily into disjoint sets of size b, throwing
the remaining vertices in each part, if any, to the exceptional set. This process creates a
partition ′ with at most k4k nonexceptional parts of equal size and a new exceptional
set V ′

0 of size smaller than |V0| + k2k−1b < |V0| + kc∕2k ≤ |V0| + n
2k . Moreover, by

Lemma 9.4.2, part (ii), the index q( ′) of  ′ is at least q() > q() + 𝜀
5

2
, completing

the proof. ◾

Proof of Theorem 9.4.1. It suffices to prove the lemma for 𝜀 ≤ 1∕4 and t satisfying
2t−2

>
1
𝜀

6 , hence we assume that these inequalities hold. Put s =
⌈

1
𝜀

5

⌉
, and note that

for this choice 1
2k ≤

𝜀

2s
for all k ≥ t. Define k0 = t and ki+1 = ki4

ki for all i ≥ 0. We
prove the lemma with T = ks.

Let G = (V ,E) be a graph with |V| = n ≥ T vertices. Start with an arbitrary parti-
tion  = 0 of its vertices into k = k0 = t pairwise disjoint parts, each of size ⌊n∕t⌋,
and let the exceptional set consist of the remaining vertices, if any. Note that their
number is less than t, which is (much) smaller than 𝜀n∕2. As long as the partition
 we have already defined is not 𝜀-regular, apply Proposition 9.4.3 to refine it to a
new equipartition  ′ with at most k4k nonexceptional parts, whose index exceeds
that of  by at least 𝜀

5

2
, while the size of the exceptional set increases by at most

n
2k <

𝜀n
2s

. As the initial index is nonnegative, and the index never exceeds 1∕2, the
process must terminate in at most s steps, yielding an 𝜀-regular partition with at most
T nonexceptional parts, and an exceptional set of size smaller than 𝜀n. ◾

Remark. The proof shows that T(𝜀, 1
𝜀

) is bounded by a tower of exponents of height
roughly 1∕𝜀5. Surprisingly, as shown by Gowers (1997), this tower-type behavior is
indeed necessary.

Our next result both gives a good illustration of the near-random nature of
𝜀-regularity and shall play a role in the next section. N(x), as usual, denotes the set
of neighbors of x in the graph G. Let H be a graph on vertex set 1,… , s. Let G be a
graph on vertex set V . Let A1,… ,As be disjoint subsets of V , each of size m. Let N
denote the number of choices of x1 ∈ A1,… , xs ∈ As such that xi, xj are adjacent in
G whenever i, j are adjacent in H. (Note: Other xi, xj may or may not be adjacent.)
Set pij = d(Ai,Aj).
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Theorem 9.4.4 For all 𝜀, there exists 𝛾 = 𝛾H(𝜀)with the following property: Assume,
using the above notation, that (Ai,Aj) is 𝜀-regular for all i, j adjacent in H. Then

||||||Nm−s −
∏

{i,j}∈H

pij

|||||| ≤ 𝛾. (9.6)

Further, and critically, we may take 𝛾 such that

lim
𝜀→0+

𝛾H(𝜀) = 0. (9.7)

The proof has some technicalities, and the reader may take H as a triangle and
p12 = p13 = p23 = 1

2
to get the gist of the argument.

Proof. Set, with foresight, 𝜅 such that (𝜅 − 𝜀)s ≥ 𝜀. We say we are in Case 1 if
some pij ≤ 𝜅 (with i, j adjacent in H); otherwise we are in Case 2. We will have
𝛾 = max(𝛾1, 𝛾2) where 𝛾1, 𝛾2 handle two cases.

Case 1: Some pij ≤ 𝜅. Set 𝛾1 = 𝜅. The product of the pij over edges {i, j} is
itself at most 𝜅. There are pijm

2 ≤ 𝜅m2 choices of adjacent xi, xj and therefore
N ≤ 𝜅m2ms−2 = 𝜅ms. Also N ≥ 0. Thus (9.6) is satisfied.

Case 2: pij ≥ 𝜅 for all adjacent i, j. For 1 ≤ r ≤ s, we call a choice xi ∈ Ai, 1 ≤ i ≤ r
a partial copy if xi, xj are adjacent in G whenever i, j are adjacent in H. Further, we
call the choice normal (else abnormal) if the following holds for all r < l ≤ s: Let U
be the set of u ≤ r that are adjacent to l in H. Let Y be the intersection of the N(xu),
u ∈ U and Al. Then ∏

u∈U

(pul − 𝜀) ≤ |Y|m−1
≤

∏
u∈U

(pul + 𝜀). (9.8)

Let x1,… , xr be a normal partial copy. We say it is destroyed by xr+1 ∈ Ar+1 if
x1,… , xr+1 is a partial copy but is not normal. We claim at most 2s𝜀m vertices xr+1
can destroy x1,… , xr. How can this occur? Let l > r + 1 be adjacent to r + 1, and
let U, Y be as above (looking only at x1,… , xr). Then Y ∩ N(xr+1) would need to be
either too big or too small. If more than 2s𝜀m vertices xr+1 destroyed x1,… , xr, then
there would be a set X ⊂ Ar+1 of size at least m𝜀 of such xr+1, all with the same l
and with either all Y ∩ N(xr+1) too big or all too small. Assume the former, the lat-
ter being similar. Then d(X, Y) > pr+1,l + 𝜀. But, |Y| ≥ m𝜀 by our choice of 𝜅. From
𝜀-regularity, |X| ≤ m𝜀, as claimed.

The N choices of xi ∈ Ai, 1 ≤ i ≤ s for which xi, xj are adjacent in G whenever i, j
are adjacent in H fall into two categories. There are at most 2s2

𝜀ms choices such that
xr+1 destroys x1,… , xr for some r. The other choices are bounded in number between
ms ∏(pij − 𝜀) and ms ∏(pij + 𝜀), the products over i, j adjacent in H. Let f (𝜀) denote
the maximum distance between either of these products and

∏
pij. We can then set

𝛾2 = 2s2
𝜀 + f (𝜀). ◾
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9.5 GRAPHONS

As in Section 9.3, we let NG(H) denote the number of labeled copies of H as a (not
necessarily induced) subgraph of G. We set t(H,G) = NG(H)n−a, where H,G have
a, n vertices, respectively. This may naturally be interpreted as the proportion of H in
G, 0 ≤ t(H, G) ≤ 1 tautologically.

Definition 5 A sequence of graphs Gn is called a limit sequence if limn→∞t(H,Gn)
exists for all finite graphs H.

Definition 6 Two limit sequences Gn,G
′
n are called equivalent if limn→∞t(H,Gn) =

limn→∞t(H,G′
n) for all finite graphs H. A graphon is an equivalence class of limit

sequences.

A graphon is a subtle object, an abstract limit of a convergent (by definition 5)
sequences of graphs. (We call a limit sequence Gn a graphon even though, technically,
the graphon is the equivalence class.) It is not itself an infinite graph, though it may
seem like one. It reflects the properties of very large graphs (formally, in a limit sense)
of similar nature. The excellent book (Lovász 2012) serves as a general reference to
graphons.

Surprisingly, and integral to the strength of this concept, there is a good char-
acterization of graphons. Let W ∶ [0, 1] × [0, 1] → [0, 1] be a Lebesgue measurable
function with W(x, y) = W(y, x) for all x, y ∈ [0, 1]. For each positive integer n, we
define a random graph, denoted G(n,W) on vertex set 1,… , n as follows:

1. Select x1,… , xn ∈ [0, 1] uniformly and independently.

2. For i ≠ j, let {i, j} be an edge of G(n,W) with probability W(xi, xj), and let the
events where {i, j} are edges be mutually independent.

As an important example, when W is the constant function W(x, y) = p, G(n,W) is
simply G(n, p). We call W checkered if it splits into constant-valued rectangles. More
precisely, let K ≥ 1, let ai ≥ 0 for 1 ≤ i ≤ K with

∑K
i=1 ai = 1. Decompose [0, 1] into

intervals Ii, 1 ≤ i ≤ K, of length ai. Then define W(x, y) = W(y, x) = pij for x ∈ Ii, y ∈
Ij, x ≤ y. For such W, G(n,W) is basically a random multipartite graph with the vertex
set split into sets Vi of size ∼ nai and all {x, y}with x ∈ Vi, y ∈ Vj being adjacent with
independent probability pij.

Let H be a graph on 1,… , s. Set

c(H,W) =
∫

∏
{i,j}∈H

W(xi, xj), (9.9)

where the integral is over x1,… , xs ∈ [0, 1] and the null product is interpreted as
one. We leave as an exercise that, with probability 1, the sequence G(n,W) is a limit
sequence with

lim
n→∞

t(H,G(n,W)) = c(H,W). (9.10)
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We say that a graphon Gn is represented by W if

lim
n→∞

t(H,Gn) = c(H,W) (9.11)

for every finite H. Observe, from Property Pp
1(s) of Theorem 9.3.2, that a sequence

Gn is a graphon represented by the constant function W(x, y) = p if and only if Gn is
a quasirandom graph sequence with parameter p, as given by Definition 4.

Theorem 9.5.1 Every graphon is represented by some W.

The proof of Theorem 9.5.1 requires some techniques slightly beyond the scope
of this chapter. Rather, we prove the following weaker version.

Theorem 9.5.2 Let 𝜅 > 0, and let a positive integer L be given. Let Gn be an arbitrary
graphon. Then there exists a checkered W such that

| lim
n→∞

t(H,Gn) − c(H,W)| ≤ 𝜅 (9.12)

for all H with s ≤ L vertices.

Proof. Let 𝜀 be a small positive real and t a large positive integer, as described more
fully below. For each Gn, apply the Regularity Lemma (Theorem 9.4.1) to give an
𝜀-regular partition (V0,V1,… ,Vk) with t ≤ k ≤ T = T(𝜀, t). Take a subsequence on
which k is a constant. Further, take a subsequence on which the set of {i, j} for which
(Vi,Vj) is an 𝜀-regular pair is the same. Further, take a subsequence such that d(Vi,Vj)
approaches a limit pij for all 0 ≤ i, j ≤ t and such that the proportion of vertices in Vi
approaches a limit 𝛼i for all 0 ≤ i ≤ t. Now define a checkered W by splitting [0, 1]
into intervals Ii of length 𝛼i, 0 ≤ i ≤ t and letting W take the constant value pij on
Ii × Ij. Let H be a graph on vertex set 1,… , s with s ≤ L. We compare lim t(H,Gn) and
c(H,W). Let 𝜓 ∶ V(H) → V(Gn) with 𝜓(i) ∈ Vxi

. We say x1,… , xs ∈ {0, 1,… , t}
is normal (else, abnormal) if the xi are distinct and nonzero and all (Vxi

,Vxj
) are

𝜀-regular. The proportion of abnormal 𝜓 is then at most s𝜀 (some 𝜓(i) ∈ V0) plus(
s
2

)
𝜀 (some (Vxi

,Vxj
) are not 𝜀-regular) which is at most L2

𝜀. We can make this
arbitrarily small by adjusting 𝜀. Now suppose x1,… , xs is normal. Let N(x1,… , xs)
denote the number of choices of 𝑣i ∈ Vxi

, 1 ≤ i ≤ s, such that 𝑣i, 𝑣j are adjacent in G
whenever i, j are adjacent in H. From Theorem 9.4.4, N(x1,… , xs)m−L differs from∏

pij (product over adjacent i, j) by at most 𝛾 , where m is the size of each Vxi
. Sum-

ming over all normal x1,… , xs, the contribution to Nn−L differs from the contribution
to c(H,W) by at most 𝛾 . From (9.7), we may make 𝛾 arbitrarily small by choosing
appropriately small 𝜀. The total difference between t(H,Gn) and c(H,W) is then at
most L2

𝜀 + 𝛾 . For any given positive 𝜅, we may find 𝜀 so that this is less than 𝜅. ◾

Among the applications of graphons is the replacement of asymptotic questions
on graphs Gn with analytic questions on functions W. We satisfy ourselves with a
typical example.
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Let b be the minimal real number so that there exist Gn with 0.7
(

n
2

)
+ o(n2)

edges and b
(

n
3

)
+ o(n3) triangles. Let b′ be the minimum of ∫ W(x, y)W(x, z)W(y, z)

(x, y, z ∈ [0, 1]), given that ∫ W(x, y) = 0.7. (We leave as an exercise that the minima
b, b′ are attained.) Both are tough questions. We will show that they are the same, that
is, b = b′.

The easy part is b ≤ b′. Let W be such that c(K2,W) = 0.7 and c(K3,W) = b′.

Then the random sequence Gn ∼ G(n,W) has, with probability unity, 0.7
(

n
2

)
+ o(n2)

edges and b′
(

n
3

)
+ o(n3) triangles. Hence the minimal possible b has b ≤ b′.

For the opposite direction, we first give a natural topological result:

Theorem 9.5.3 Any sequence Gn contains a subsequence which is a limit sequence
in the sense of Definition 5.

Proof. Place all finite graphs into a countable list H1,H2,…, and set ti(G) = t(Hi,G).
Let SEQ0 denote the original sequence Gn. As all t1(G) ∈ [0, 1], we find a subse-
quence SEQ1 on which t1(G) converges. Given SEQi−1, we find a subsequence of
it, denoted SEQi, on which ti(G) converges. Employ diagonalization, letting SEQ

𝜔

be that sequence whose ith term is the ith term of SEQi. For each i, SEQ
𝜔

is a
subsequence of SEQi except for possibly the first i − 1 terms and hence ti(G) con-
verges. ◾

Now let Gn be any sequence with 0.7
(

n
2

)
+ o(n2) edges and b

(
n
3

)
+ o(n3) trian-

gles. Apply Theorem 9.5.3 to find a limit sequence with the same property. Now apply
Theorem 9.5.1 to find W representing that limit sequence. That W has c(K2,W) = 0.7
and c(K3,W) = b. Thus the minimal possible b′ has b′ ≤ b.

9.6 EXERCISES

1. By considering a random bipartite three-regular graph on 2n vertices obtained
by picking three random permutations between the two color classes, prove that
there is a c > 0 such that for every n there exists a (2n, 3, c)-expander.

2. Let G = (V ,E) be an (n, d, 𝜆)-graph, suppose n is divisible by k, and let C ∶ V →
{1, 2,… , k} be a coloring of V by k colors, so that each color appears precisely
n∕k times. Prove that there is a vertex of G which has a neighbor of each of the
k colors, provided k𝜆 ≤ d.

3. Let G = (V ,E) be a graph in which there is at least one edge between any two
disjoint sets of size a + 1. Prove that for every set Y of 5a vertices, there is a set
X of at most a vertices, such that for every set Z satisfying Z ∩ (X ∪ Y) = ∅ and|Z| ≤ a, the inequality |N(Z) ∩ Y| ≥ 2|Z| holds.

4. Prove that for every 𝜀 > 0 there exists an n0 = n0(𝜀) so that for every
(n, n∕2, 2

√
n)- graph G = (V ,E) with n > n0, the number of triangles M in G

satisfies |M − n3∕48| ≤ 𝜀n3.
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5. Let 𝜀 > 0, p ∈ (0, 1), 𝜆 > 0. Let G ∼ G(n, p), with vertex set Vn. Show that the
following property has limiting probability 1 as n → ∞: (An,Bn) is 𝜀-regular for
all disjoint An,Bn ⊂ Vn with |A| ≥ n𝜆 and |B| ≥ n𝜆.

6. Combine Turán’s theorem with the Regularity Lemma to prove the following
result, due to Erdős, Simonovits, and Stone: For every fixed graph H of chromatic
number r > 1 and every 𝜀 > 0, there is an n0 = n0(H, 𝜀) so that if n > n0 then any

simple graph with n vertices and at least (1 − 1
r−1

+ 𝜀)
(

n
2

)
edges contains a copy

of H.

7. Let t′(H,G) denote the number of induced copies of H in G, that is, the number
of vertex subsets S such that G|S is isomorphic to H. Show that Gn is a limit
sequence if and only if lim

n→∞
t′(H,Gn) exists for all finite graphs H.

8. Prove Theorem 9.3.2.

9. Prove that the minima b, b′ given in Section 9.5 are actually attained.

10. Let G = Gn be a sequence of bipartite graphs with designated parts Tn,Bn each of
size n. Let p ∈ (0, 1), and assume lim

n→∞
d(Tn,Bn) = p. Call such a sequence bipar-

tite quasirandom with parameter p if for all 𝜀 > 0 the pair (Tn,Bn) is 𝜀-regular for
n sufficiently large. State and prove a result analogous to Theorem 9.3.2, giving
equivalent notions for bipartite quasirandomness.

11. Prove that for all H,W and 𝜀 > 0, there exists 𝛼 > 0 such that

Pr[|t(H,G(n,W)) − c(H,W)| > 𝜀] < 2e−n𝛼
. (9.13)

Deduce that with probability 1 the sequence G(n,W) is a limit sequence satisfy-
ing (9.10).



THE PROBABILISTIC LENS:
Random Walks

A vertex-transitive graph is a graph G = (V ,E) such that for any two vertices u, 𝑣 ∈ V
there is an automorphism of G that maps u into 𝑣. A random walk of length l in G
starting at a vertex 𝑣 is a randomly chosen sequence 𝑣 = 𝑣0, 𝑣1,… , 𝑣l, where each
𝑣i+1 is chosen, randomly and independently, among the neighbors of 𝑣i (0 ≤ i < l).

The following theorem states that for every vertex-transitive graph G, the proba-
bility that a random walk of even length in G ends at its starting point is at least as big
as the probability that it ends at any other vertex. Note that the proof requires almost
no computation. We note also that the result does not hold for general regular graphs,
and the vertex transitivity assumption is necessary.

Theorem 1 Let G = (V ,E) be a vertex-transitive graph. For an integer k and for two
(not necessarily distinct) vertices u, 𝑣 of G, let Pk(u, 𝑣) denote the probability that a
random walk of length k starting at u ends at 𝑣. Then, for every integer k and for
every two vertices u, 𝑣 ∈ V,

P2k(u, u) ≥ P2k(u, 𝑣) .

Proof. We need the following simple inequality, sometimes attributed to Chebyshev.

Claim 1 For every sequence (a1,… , an) of n reals and for any permutation 𝜋 of
{1,… , n},

n∑
i=1

aia𝜋(i) ≤
n∑

i=1

a2
i .

Proof. The inequality follows immediately from the fact that

n∑
i=1

a2
i −

n∑
i=1

aia𝜋(i) =
1
2

n∑
i=1

(ai − a
𝜋(i))2 ≥ 0 . ◾
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Consider, now, a random walk of length 2k starting at u. By summing over all
the possibilities of the vertex that the walk reaches after k steps, we conclude that for
every vertex 𝑣

P2k(u, 𝑣) =
∑
𝑤∈V

Pk(u, 𝑤)Pk(𝑤, 𝑣) =
∑
𝑤∈V

Pk(u, 𝑤)Pk(𝑣,𝑤) , (1)

where the last equality follows from the fact that G is an undirected regular graph.
Since G is vertex-transitive, the two vectors (Pk(u, 𝑤))

𝑤∈V and (Pk(𝑣,𝑤))
𝑤∈V can

be obtained from each other by permuting the coordinates. Therefore, by the claim
above, the maximum possible value of the sum in the right-hand side of (1) is when
u = 𝑣, completing the proof of the theorem. ◾





PART II

TOPICS





10
Random Graphs

It is six in the morning. The house is asleep. Nice music is playing. I prove and
conjecture.
–Paul Erdős, in a letter to Vera Sós

Let n be a positive integer, 0 ≤ p ≤ 1. The random graph G(n, p) is a probability space
over the set of graphs on the vertex set {1,… , n} determined by

Pr[{i, j} ∈ G] = p

with these events mutually independent. This model is often used in the probabilis-
tic method for proving the existence of certain graphs. In this chapter we study the
properties of G(n, p) for their own sake.

Random graphs is an active area of research that combines probability theory and
graph theory. The subject began in 1960 with the monumental paper “On the Evolu-
tion of Random Graphs” by Paul Erdős and Alfred Rényi. The book Random Graphs
by Bollobás (2001) is the standard source in the field. Another book, also entitled
Random Graphs by Janson, Łuczak and Ruciński (2000) is also excellent. In this
chapter we explore only a few of the many topics in this fascinating area.

There is a compelling dynamic model for random graphs. For all pairs i, j, let xi,j
be selected uniformly from [0, 1], the choices being mutually independent. Imagine p
going from 0 to 1. Originally, all potential edges are “off”. The edge from i to j (which
we may imagine as a neon light) is turned on when p reaches xi,j, and then stays on.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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At p = 1, all edges are “on”. At time p, the graph of all “on” edges has distribution
G(n, p). As p increases, G(n, p) evolves from empty to full.

In their original paper, Erdős and Rényi let G(n, e) be the random graph with n ver-
tices and precisely e edges. Again, there is a dynamic model: Begin with no edges and
add edges randomly one by one until the graph becomes full. Generally, G(n, e) will
have very similar properties as G(n, p)with p ∼ e(

n
2

) . We will work on the probability

model exclusively.

10.1 SUBGRAPHS

The term “random graph” is, strictly speaking, a misnomer. G(n, p) is a probability
space over graphs. Given any graph theoretic property A, there will be a probabil-
ity that G(n, p) satisfies A, which we write Pr[G(n, p) ⊧ A]. When A is monotone,
Pr[G(n, p) ⊧ A] is a monotone function of p. As an instructive example, let A be the
event “G is triangle free”. Let X be the number of triangles contained in G(n, p).
Linearity of Expectation gives

E[X] =
(n

3

)
p3 .

This suggests the parametrization p = c∕n. Then

lim
n→∞

E[X] = lim
n→∞

(n
3

)
p3 = c3∕6 .

It turns out that the distribution of X is asymptotically Poisson. In particular,

lim
n→∞

Pr[G(n, p) ⊧ A] = lim
n→∞

Pr[X = 0] = e−c3∕6 .

Note that
lim
c→0

e−c3∕6 = 1 ,

lim
c→∞

e−c3∕6 = 0 .

When p = 10−6∕n, G(n, p) is very unlikely to have triangles, and when p = 106∕n,
G(n, p) is very likely to have triangles. In the dynamic view, the first triangles
almost always appear at p = Θ(1∕n). If we take a function such as p(n) = n−0.9 with
p(n) ≫ n−1, then G(n, p) will almost always have triangles. Occasionally, we will
abuse notation and say, for example, that G(n, n−0.9) contains a triangle – this
meaning that the probability that it contains a triangle approaches 1 as n approaches
infinity. Similarly, when p(n) ≪ n−1, for example, p(n) = 1∕(n ln n), then G(n, p)
will almost always not contain a triangle and we abuse notation and say that
G(n, 1∕(n ln n)) is triangle free. It was a central observation of Erdős and Rényi that
many natural graph theoretic properties become true in a very narrow range of p.
They made the following key definition:



SUBGRAPHS 181

Definition 7 r(n) is called a threshold function for a graph theoretic property A if

1. When p(n) ≪ r(n), limn→∞ Pr[G(n, p) ⊧ A] = 0,

2. When p(n) ≫ r(n), limn→∞ Pr[G(n, p) ⊧ A] = 1,

or vice versa.

In our example, 1∕n is a threshold function for A. Note that the threshold function,
when one exists, is not unique. We could equally have said that 10∕n is a threshold
function for A.

Let us approach the problem of G(n, c∕n) being triangle free once more. For every
set S of three vertices, let BS be the event that S is a triangle. Then Pr[BS] = p3. Then
“triangle freeness” is precisely the conjunction∧BS over all S. If the BS were mutually
independent, then we would have

Pr[∧BS] =
∏

Pr[BS] = (1 − p3)
(

n
3

)
∼ e

−
(

n
3

)
p3

→ e−c3∕6 .

The reality is that the BS are not mutually independent, though when |S ∩ T| ≤ 1, BS
and BT are mutually independent.

We apply Janson’s Inequality, Theorem 8.1.1. In the notation of Section 8.1,
I = {S ⊂ V(G) ∶ |S| = 3}, and S ∼ T if and only if |S ∩ T| = 2. Here, 𝜖 = p3 = o(1),
𝜇 =

(
n
3

)
p3 ∼ c3∕6, and M = e−𝜇(1+o(1)) = e−c3∕6+o(1) . There are 6

(
n
4

)
= O(n4)

pairs S, T of triples with S ∼ T. For each such pair Pr[BS ∧ BT] = p5. Thus

Δ = O(n4)p5 = n−1+o(1) = o(1) .

When Δ = o(1), Janson’s Inequality sandwiches an asymptotic bound:

lim
n→∞

Pr[∧BS] = lim
n→∞

M = e−c3∕6 .

Can we duplicate this success with the property A that G contains no (not neces-
sarily induced) copy of a general given graph H? We use the definitions of balanced
and strictly balanced graphs of Section 4.4.

Theorem 10.1.1 Let H be a strictly balanced graph with 𝑣 vertices, e edges, and a
automorphisms. Let c > 0 be arbitrary. Let A be the property that G contains no copy
of H. Then with p = cn−𝑣∕e

lim
n→∞

Pr[G(n, p) ⊧ A] = exp[−ce∕a] .
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Proof. Let A
𝛼
, 1 ≤ 𝛼 ≤

(
n
𝑣

)
𝑣!∕a, range over the edge sets of possible copies of H,

and let B
𝛼

be the event G(n, p) ⊇ A
𝛼
. We apply Janson’s Inequality. As

lim
n→∞

𝜇 = lim
n→∞

(n
𝑣

)
𝑣!pe∕a = ce∕a ,

we find
lim

n→∞
M = exp [−ce∕a] .

Now we examine (as in Theorem 4.4.2)

Δ =
∑
𝛼∼𝛽

Pr[B
𝛼
∧ B

𝛽
] .

We split the sum according to the number of vertices in the intersection of copies
𝛼 and 𝛽. Suppose they intersect in j vertices. If j = 0 or j = 1, then A

𝛼
∩ A

𝛽
= ∅, so

that 𝛼 ∼ 𝛽 cannot occur. For 2 ≤ j ≤ 𝑣, let fj be the maximal |A
𝛼
∩ A

𝛽
|, where 𝛼 ∼ 𝛽,

and 𝛼, 𝛽 intersect in j vertices. As 𝛼 ≠ 𝛽, f
𝑣
< e. When 2 ≤ j ≤ 𝑣 − 1, the critical

observation is that A
𝛼
∩ A

𝛽
is a subgraph of H, and hence, as H is strictly balanced,

fj
j
<

e
𝑣

.

There are O(n2𝑣−j) choices of 𝛼, 𝛽 intersecting in j points, since 𝛼, 𝛽 are determined,
except for the order, by 2𝑣 − j points. For each such 𝛼, 𝛽

Pr[B
𝛼
∧ B

𝛽
] = p|A𝛼

∪A
𝛽
| = p2e−|A

𝛼
∩A

𝛽
|
≤ p2e−fj .

Thus

Δ =
𝑣∑

j=2

O
(
n2𝑣−j)O

(
n−

𝑣

e
(2e−fj)

)
.

But

2𝑣 − j − 𝑣

e
(2e − fj) =

𝑣fj
e

− j < 0 ,

so each term is o(1) and hence Δ = o(1). By Janson’s Inequality

lim
n→∞

Pr[∧B
𝛼
] = lim

n→∞
M = exp [−ce∕a] ,

thus completing the proof. ◾
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10.2 CLIQUE NUMBER

In this section we fix p = 1∕2 (other values yield similar results) and consider the
clique number 𝜔(G(n, p)). For a fixed c > 0, let n, k → ∞, so that

(n
k

)
2
−
(

k
2

)
→ c .

As a first approximation,

n ∼ k

e
√

2

√
2

k
,

and
k ∼ 2 ln n

ln 2
.

Here, 𝜇 → c so M → e−c. The Δ term was examined in Section 4.5. For this k,
Δ = o(E[X]2), and so Δ = o(1). Therefore

lim
n,k→∞

Pr[𝜔(G(n, p)) < k] = exp [−c] .

Being more careful, let n0(k) be the minimum n for which

(n
k

)
2
−
(

k
2

)
≥ 1 .

Observe that for this n the left-hand side is 1 + o(1). Note that
(

n
k

)
grows, in n, like

nk. For any 𝜆 ∈ (−∞,+∞), if

n = n0(k)
[
1 + 𝜆 + o(1)

k

]
,

then (n
k

)
2
−
(

k
2

)
=
[

1 + 𝜆 + o(1)
k

]k

= e𝜆 + o(1) ,

and so
Pr[𝜔(G(n, p)) < k] = e−e𝜆 + o(1) .

As 𝜆 ranges from −∞ to +∞, e−e𝜆 ranges from 1 to 0. As n0(k + 1) ∼
√

2n0(k), the
ranges will not “overlap” for different k. More precisely, let K be arbitrarily large and
set

Ik =
[
n0(k)

[
1 − K

k

]
, n0(k)

[
1 + K

k

]]
.
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For k ≥ k0(K), Ik−1 ∩ Ik = ∅. Suppose n ≥ n0(k0(K)). If n lies between the intervals
(which occurs for “most” n), which we denote by Ik < n < Ik+1, then

Pr[𝜔(G(n, p)) < k] ≤ e−eK + o(1) ,

nearly zero, and
Pr[𝜔(G(n, p)) < k + 1] ≥ e−e−K + o(1) ,

nearly 1, so that

Pr[𝜔(G(n, p)) = k] ≥ e−e−K − e−eK + o(1) ,

nearly 1. When n ∈ Ik, we still have Ik−1 < n < Ik+1 so that

Pr[𝜔(G(n, p)) = k or k − 1] ≥ e−e−K − e−eK + o(1) ,

nearly 1. As K may be made arbitrarily large, this yields the celebrated two-point con-
centration theorem on clique number, Corollary 4.5.2 in Section 4.5. Note, however,
that for most n the concentration of 𝜔(G(n, 1∕2)) is actually on a single value!

10.3 CHROMATIC NUMBER

In this section we fix p = 1∕2 (there are similar results for other p) and let G be
the random graph G(n, 1∕2). We shall find bounds on the chromatic number 𝜒(G).
A different derivation of the main result of this section is presented in Section 7.3.
Set

f (k) =
(n

k

)
2
−
(

k
2

)
.

Let k0 = k0(n) be the value for which

f (k0 − 1) > 1 > f (k0) .

Then n =
√

2
k(1+o(1))

, so for k ∼ k0

f (k + 1)∕f (k) = n
k

2−k(1 + o(1)) = n−1+o(1) .

Set
k = k(n) = k0(n) − 4

so that
f (k) > n3+o(1) .

Now we use the Extended Janson Inequality (Theorem 8.1.2) to estimate
Pr[𝜔(G) < k]. Here 𝜇 = f (k). (Note that Janson’s Inequality gives a lower bound of
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2−f (k) = 2−n3+o(1)
to this probability but this is way off the mark since with probability

2
−
(

n
2

)
the random G is empty!) The value Δ was examined in Section 4.5, where

Δ
𝜇

2
= Δ∗

𝜇

=
k−1∑
i=2

g(i) .

There, g(2) ∼ k4∕n2 and g(k − 1) ∼ 2kn2−k∕𝜇 were the dominating terms. In our
instance, 𝜇 > n3+o(1) and 2−k = n−2+o(1), so g(2) dominates and

Δ ∼ 𝜇
2k4

n2
.

Hence we bound the clique number probability

Pr[𝜔(G) < k] < e−𝜇
2∕2Δ = e−Θ(n

2∕(ln n)4)

as k = Θ(ln n). [The possibility that G is empty gives a lower bound so that we may
say the probability is e−n2+o(1)

, though a o(1) in the hyperexponent leaves lots of room.]

Theorem 10.3.1 [Bollobás (1988)] Almost always

𝜒(G) ∼ n
2log2n

.

Proof. Let 𝛼(G) = 𝜔(G) denote, as usual, the independence number of G. The com-
plement of G has the same distribution G(n, 1

2
). Hence 𝛼(G) ≤ (2 + o(1))log2n almost

always. Thus
𝜒(G) ≥ n

𝛼(G)
≥

n
2log2n

(1 + o(1))

almost always.
The reverse inequality was an open question for a full quarter century! Set

m = ⌊n∕ln 2n⌋. For any set S of m vertices, the restriction G|S has the distribution
of G(m, 1∕2). Let k = k(m) = k0(m) − 4 as above. Note

k ∼ 2log2m ∼ 2log2n .

Then
Pr[𝛼[G|S] < k] < e−m2+o(1)

.

There are
(

n
m

)
< 2n = 2m1+o(1)

such sets S. Hence

Pr[𝛼[G|S] < k for some m -set S] < 2m1+o(1)
e−m2+o(1) = o(1) .

That is, almost always every m vertices contain a k-element independent set.
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Now suppose G has this property. We pull out k-element independent sets and give
each a distinct color until there are less than m vertices left. Then we give each point
a distinct color. By this procedure

𝜒(G) ≤
⌈n − m

k

⌉
+ m ≤

n
k
+ m

= n
2log2n

(1 + o(1)) + o

(
n

log2n

)
= n

2log2n
(1 + o(1)) ,

and this occurs for almost all G. ◾

10.4 ZERO–ONE LAWS

In this section we restrict our attention to graph theoretic properties expressible in
the first-order theory of graphs. The language of this theory consists of variables
(x, y, z, · · ·), which always represent vertices of a graph, equality and adjacency
(x = y, x ∼ y), the usual Boolean connectives (∧,¬, · · ·), and universal and existential
quantification (∀x, ∃y). Sentences must be finite. As examples, one can express the
property of containing a triangle

∃x∃y∃z[x ∼ y ∧ x ∼ z ∧ y ∼ z] ,

having no isolated point
∀x∃y[x ∼ y]

and having radius at most two

∃x∀y[¬(y = x) ∧ ¬(y ∼ x) → ∃z[z ∼ y ∧ z ∼ x]] .

For any property A and any n, p, we consider the probability that the random graph
G(n, p) satisfies A, denoted

Pr[G(n, p) ⊧ A] .

Our objects in this section will be the theorem of Glebskii et al. (1969), independently
obtained by Fagin (1976) (Theorem 10.4.1), and that of Shelah and Spencer (1988)
(Theorem 10.4.2).

Theorem 10.4.1 For any fixed p, 0 < p < 1 and any first-order A,

lim
n→∞

Pr[G(n, p) ⊧ A] = 0 or 1 .
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Theorem 10.4.2 For any irrational 𝛼, 0 < 𝛼 < 1, setting p = p(n) = n−𝛼 , and for any
first-order A,

lim
n→∞

Pr[G(n, p) ⊧ A] = 0 or 1 .

Both proofs are only outlined.
We shall say that a function p = p(n) satisfies the Zero-One Law if the above equal-

ity holds for every first-order A.
The Glebskii–Fagin theorem has a natural interpretation when p = 0.5 because

then G(n, p) gives equal weight to every (labeled) graph. It then says that any
first-order property A holds for either almost all graphs or for almost no graphs. The
Shelah–Spencer theorem may be interpreted in terms of threshold functions. The
general results of Section 10.1 give, as one example, that p = n−2∕3 is a threshold
function for containment of a K4. That is, when p ≪ n−2∕3, G(n, p) almost surely
does not contain a K4, whereas when p ≫ n−2∕3, it almost surely does contain
a K4. In between, say at p = n−2∕3, the probability is between 0 and 1, in this
case 1 − e−1∕24. The (admittedly rough) notion is that at a threshold function the
Zero–One Law will not hold, and to say that p(n) satisfies the Zero-One Law is to
say that p(n) is not a threshold function – that it is a boring place in the evolution of
the random graph, at least through the spectacles of the first-order language. In stark
terms: What happens in the evolution of G(n, p) at p = n−𝜋∕7? The answer: Nothing!

Our approach to Zero–One Laws will be through a variant of the Ehrenfeucht
Game, which we now define. Let G,H be two vertex disjoint graphs, and t be a posi-
tive integer. We define a perfect information game, denoted EHR[G,H, t], with two
players, denoted Spoiler and Duplicator. The game has t rounds. Each round has two
parts. First, the Spoiler selects either a vertex x ∈ V(G) or a vertex y ∈ V(H). He
chooses which graph to select the vertex from. Then the Duplicator must select a
vertex in the other graph. At the end of the t rounds, t vertices have been selected
from each graph. Let x1,… , xt be the vertices selected from V(G), and y1,… , yt be
the vertices selected from V(H), where xi, yi are the vertices selected in the ith round.
Then Duplicator wins if and only if the induced graphs on the selected vertices are
order-isomorphic: that is, if for all 1 ≤ i < j ≤ t,

{xi, xj} ∈ E(G) ↔ {yi, yj} ∈ E(H) .

As there are no hidden moves and no draws, one of the players must have a winning
strategy and we will say that this player wins EHR[G,H, t].

Lemma 10.4.3 For every first-order A, there is a t = t(A) so that, if G,H are any
graphs with G ⊧ A and H ⊧ ¬A, then Spoiler wins EHR[G,H, t].

A detailed proof would require a formal analysis of the first-order language, so
we give only an example. Let A be the property ∀x∃y[x ∼ y] of not containing an
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isolated point, and set t = 2. Spoiler begins by selecting an isolated point y1 ∈ V(H)
which he can do as H ⊧ ¬A. Duplicator must pick x1 ∈ V(G). As G ⊧ A, x1 is not
isolated, so Spoiler may pick x2 ∈ V(G) with x1 ∼ x2 and now Duplicator cannot
pick a “duplicating” y2.

Theorem 10.4.4 A function p = p(n) satisfies the Zero-One Law if and only if for
every t, letting G(n, p(n)),H(m, p(m)) be independently chosen random graphs on
disjoint vertex sets,

lim
m,n→∞

Pr[Duplicator wins EHR[G(n, p(n)),H(m, p(m)), t]] = 1 .

Remark. For any given choice of G,H, somebody must win EHR[G,H, t]. (That is,
there is no random play; the play is perfect.) Given this probability distribution over
(G,H), there will be a probability that EHR[G,H, t] will be a win for Duplicator, and
this must approach 1.

Proof. We prove only the “if” part. Suppose that p = p(n) did not satisfy the
Zero–One Law. Let A satisfy

lim
n→∞

Pr[G(n, p(n)) ⊧ A] = c ,

with 0 < c < 1. Let t = t(A) be as given by the Lemma. With limiting probability
2c(1 − c) > 0 exactly 1 of G(n, p(n)),H(m, p(m)) would satisfy A and thus Spoiler
would win, contradicting the assumption. This is not a full proof because, when
the Zero–One Law is not satisfied, lim

n→∞
Pr[G(n, p(n)) ⊧ A] might not exist. If there

is a subsequence ni on which the limit is c ∈ (0, 1), we may use the same argu-
ment. Otherwise, there will be two subsequences ni,mi on which the limit is zero
and 1, respectively. Then letting n,m → ∞ through ni,mi, respectively, Spoiler will
win EHR[G,H, t] with probability approaching 1. ◾

Theorem 10.4.4 provides a bridge from logic to random graphs. To prove that
p = p(n) satisfies the Zero-One Law, we now no longer need to know anything about
logic – we just have to find a good strategy for the Duplicator.

We say that a graph G has the full level s extension property if for every distinct
u1,… , ua, 𝑣1,… , 𝑣b ∈ G with a + b ≤ s, there is an x ∈ V(G) with {x, ui} ∈ E(G),
1 ≤ i ≤ a and {x, 𝑣j} ∉ E(G), 1 ≤ j ≤ b. Suppose that G,H both have the full level
s − 1 extension property. Then Duplicator wins EHR[G,H, s] by the following sim-
ple strategy: On the ith round, with x1,… , xi−1, y1,… , yi−1 already selected, and
Spoiler picking, say, xi, Duplicator simply picks yi having the same adjacencies to
the yj, j < i as xi has to the xj, j < i. The full extension property says that such a yi will
surely exist.

Theorem 10.4.5 For any fixed p, 0 < p < 1, and any s, G(n, p) almost always has
the full level s extension property.



ZERO–ONE LAWS 189

Proof. For every distinct u1,… , ua, 𝑣1,… , 𝑣b, x ∈ G with a + b ≤ s, we define
Eu1,…,ua,𝑣1 ,…,𝑣b ,x

to be the event that {x, ui} ∈ E(G), 1 ≤ i ≤ a and {x, 𝑣j} ∉ E(G),
1 ≤ j ≤ b. Then

Pr[Eu1,…,ua,𝑣1 ,…,𝑣b,x
] = pa(1 − p)b .

Now define
Eu1,…,ua,𝑣1 ,…,𝑣b

= ∧
x
Eu1,…,ua ,𝑣1,…,𝑣b ,x

the conjunction over x ≠ u1,… , ua, 𝑣1,… , 𝑣b. These events are mutually indepen-
dent over x since they involve different edges. Thus

Pr
[
∧
x
Eu1,…,ua ,𝑣1,…,𝑣b ,x

]
= [1 − pa(1 − p)b]n−a−b .

Set 𝜖 = min(p, 1 − p)s so that

Pr
[
∧
x
Eu1,…,ua,𝑣1 ,…,𝑣b ,x

]
≤ (1 − 𝜖)n−s .

The key here is that 𝜖 is a fixed (dependent on p, s) positive number. Set

E = ∨Eu1 ,…,ua,𝑣1 ,…,𝑣b
,

the disjunction over all distinct u1,… , ua, 𝑣1,… , 𝑣b ∈ G with a + b ≤ s. There are
less than s2ns = O(ns) such choices, as we can choose a, b and then the vertices. Thus

Pr[E] ≤ s2ns(1 − 𝜖)n−s .

But
lim

n→∞
s2ns(1 − 𝜖)n−s = 0

and so E almost never holds. Thus ¬E, which is precisely the statement that G(n, p)
has the full level s extension property, holds almost always. ◾

But now we have proven Theorem 10.4.1. For any p ∈ (0, 1) and any fixed s, as
m, n → ∞ with probability approaching 1, both G(n, p) and H(m, p)will have the full
level s extension property and so Duplicator will win EHR[G(n, p),H(m, p), s].

Why can’t Duplicator use this strategy when p = n−𝛼? We illustrate the diffi-
culty with a simple example. Let 0.5 < 𝛼 < 1, and let Spoiler and Duplicator play
a three-move game on G,H. Spoiler thinks of a point z ∈ G but does not tell Duplica-
tor about it. Instead, he picks x1, x2 ∈ G, both adjacent to z. Duplicator simply picks
y1, y2 ∈ H, either adjacent or not adjacent depending on whether x1 ∼ x2. But now
the wily Spoiler picks x3 = z. H ∼ H(m,m−𝛼) does not have the full level 2 exten-
sion property. In particular, most pairs y1, y2 do not have a common neighbor. Unless
Duplicator was lucky, or shrewd, he then cannot find y3 ∼ y1, y2 and so he loses. This
example does not say that Duplicator will lose with perfect play – indeed, we will
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show that he almost always wins with perfect play – it only indicates that the strategy
used need be more complex.

We begin our proof of the Zero–One Law, Theorem 10.4.2. Let 𝛼 ∈ (0, 1), 𝛼 irra-
tional, be fixed. A rooted graph is a pair (R,H) where H is a graph on vertex set, say,
V(H) = {X1,… ,Xr, Y1,… , Y

𝑣
}, and R = {X1,… ,Xr} is a specified subset of V(H),

called the roots. For example, (R,H) might consist of one vertex Y1 adjacent to the
two roots X1,X2. Let 𝑣 = 𝑣(R,H) denote the number of vertices that are not roots,
and let e = e(R,H) denote the number of edges, excluding those edges between two
roots. We say (R,H) is dense if 𝑣 − e𝛼 < 0 and sparse if 𝑣 − e𝛼 > 0. The irrational-
ity of 𝛼 assures us that all (R,H) are in one of these categories. We call (R,H) rigid
if, for all S with R ⊆ S ⊂ V(H), (S,H) is dense. We call (R,H) safe if, for all S with
R ⊂ S ⊆ V(H), (R,H|S) is sparse. Several elementary properties of these concepts
are given as Exercise 4. We sometimes write (R, S) for (R,H|S) when the graph H is
understood.

We think of rooted graphs as on abstract points. In a graph G, we say that vertices
y1,… , y

𝑣
form an (R,H) extension of x1,… , xr if, whenever Xi is adjacent to Yj in H,

xi is adjacent to yj in G and also whenever Yi and Yj are adjacent in H, yi and yj are
adjacent in G. Note that we allow G to have more edges than H and that the edges
between the roots “don’t count”.

Lemma 10.4.6 [Generic Extension] Let (R,H), as given above, be safe. Let
t ≥ 0 be an arbitrary, but fixed, integer. Then, in G ∼ G(n, n−𝛼) almost surely for all
x1,… , xr there exist y1,… , y

𝑣
such that

(i) y1,… , y
𝑣

form an (R,H) extension of x1,… , xr.

(ii) xi, yj are adjacent in G if and only if Xi, Yj are adjacent in H and yi, yj are
adjacent in G if and only if Yi, Yj are adjacent in H.

(iii) (For t > 0) If z1,… , zu with u ≤ t, form a rigid (R′
,H′) extension over

x1,… , xr, y1,… , y
𝑣
, then there are no adjacencies between any pair zk, yj.

Example. Let 𝛼 ∈
(

1
2
, 1
)

, t = 2, and let (R,H) have root X1, nonroot Y1, and edge

{X1, Y1}. Note that (R′
,H′) consisting of two roots X1,X2 with a common neighbor

Y1 has 𝑣 = 1, e = 2 and is rigid. Generic extension in this instance says that every x1
has a neighbor y1 such that x1, y1 do not have a common neighbor z1.

Proof. From Exercise 5, almost surely every x1,… , xr has Θ(n𝑣pe) (R,H) extensions
y1,… , y

𝑣
. Our rough notion will be that the number of these y1,… , y

𝑣
that fail to be

generic, in any of the bounded number of ways that could occur, would be bounded
by a smaller power of n.

Call y special if y ∈ clt+𝑣(x1,… , xr) (as defined below), otherwise nonspecial.
Let K, from the Finite Closure Lemma 10.4.7 below, be an almost sure bound on the
number of special y, uniform over all choices of the x’s. Extend (R,H) to (R+

,H+)
by adding K new roots and no new edges. This is still safe and of the same type as
(R,H), so again by Exercise 5 almost surely every x1,… , xr, z1,… , zK has Θ(n𝑣pe)
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(R+
,H+) extensions y1,… , y

𝑣
. Letting the z’s include all the special vertices, we have

that almost surely every x1,… , xr has Θ(n𝑣pe) (R,H) extensions y1,… , y
𝑣

with all yi
nonspecial. Now we bound from above the number of those nonspecial (R,H) exten-
sions that fail condition 2 or 3.

Consider those extensions (R,H′) with an additional edge yi, yj or xi, yj. This can-
not contain a rigid subextension, as that would make some yi special. Hence by
Exercise 4, it must be a safe extension. Applying Exercise 5, there are Θ(n𝑣pe+1) =
o(n𝑣pe) such extensions.

Consider extensions by y1,… , y
𝑣

and z1,… , zu as in condition 3 with some zj, yk
adjacent. We can further assume that the z’s form a minimal rigid extension over the
x’s and y’s. Let the z’s have type (𝑣1, e1) as an extension over the x’s and y’s, so that
𝑣1 − e1𝛼 is negative. If the y’s and z’s together formed a safe extension over the x’s,
there would be Θ(n𝑣+𝑣1 pe+e1) = o(n𝑣pe) such extensions and hence at most that many
choices for the y’s. Otherwise, by Exercise 4, there would be a rigid subextension. It
could not overlap the nonspecial y’s. From the minimality, it must be precisely all of
the z’s. Given the x’s from the Finite Closure Lemma 10.4.7, there are O(1) choices
for the z’s. Then the y’s form a (𝑣, e′) extension over the x’s and y’s with e′ > e. This
extension has no rigid subextensions (again, as the y’s are nonspecial) and hence is
safe. Again, applying Exercise 5, there are Θ(n𝑣pe′ ) such y’s for each choice of the
z’s and so O(n𝑣pe′ ) = o(n𝑣pe) total choices of such y’s.

In all cases, the number of y’s that fail conditions 2 or 3 is o(n𝑣pe). Hence there
exist y’s, indeed most choices of nonspecial y’s, that are (R,H) extensions and satisfy
conditions 2 and 3. ◾

A rigid t-chain in G is a sequence X = X0 ⊂ X1 ⊂ · · · ⊂ XK with all (Xi−1,Xi)
rigid and all |Xi+1 − Xi| ≤ t. The t-closure of X, denoted by clt(X), is the maxi-
mal Y for which there exists a rigid t-chain (of arbitrary length) X = X0 ⊂ X1 ⊂

· · · ⊂ XK = Y. When there are no such rigid t-chains, we define clt(X) = X. To see
this is well defined, we note (using Exercise 4) that, if X = X0 ⊂ X1 ⊂ · · · ⊂ XK = Z
and X = X0 ⊂ Y1 ⊂ · · · ⊂ YL = Y are rigid t-chains, then so is X = X0 ⊂ X1 ⊂ · · · ⊂
XK ⊂ Z ∪ Y1 ⊂ · · · ⊂ Z ∪ YL = Z ∪ Y. Alternatively, the t-closure clt(X) is the mini-
mal set containing X that has no rigid extensions of ≤ t vertices. We say x1,… , xr ∈
G, y1,… , yr ∈ H have the same t-type if their t-closures are isomorphic as graphs,
the isomorphism sending each xi to the corresponding yi.

The t-closure is a critical definition, describing the possible special properties

of the roots. Suppose, for example, 𝛼 ∈
(

1
2
, 1
)

and consider cl1(x1, x2). The only
rigid extension with t = 1 in this range is a nonroot adjacent to two (or more) roots.
A sample 1-type would be: x1, x2 have common neighbors y1, y2 and then x1, y1 have
common neighbor y3 and there are no further edges among these vertices and no pairs
have common neighbors other than those described. A randomly chosen x1, x2 would
have the type: x1, x2 have no common neighbors and are not adjacent.

We can already describe the nature of Duplicator’s strategy. At the end of the rth
move, with x1,… , xr and y1,… , yr having been selected from the two graphs, Dupli-
cator will assure that these sets have the same ar-type. We shall call this the (a1,… , at)
lookahead strategy. Here, ar must depend only on t, the total number of moves in the
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game, and 𝛼. We shall set at = 0 so that at the end of the game, if Duplicator can stick
to the (a1,… , at) lookahead strategy, then he has won. If, however, Spoiler picks, say,
xr+1 so that there is no corresponding yr+1 with x1,… , xr+1 and y1,… , yr+1 having
the same ar+1-type, then the strategy fails and we say that Spoiler wins. The values
ar give the “lookahead” that Duplicator uses, but before defining them we need some
preliminary results.

Lemma 10.4.7 (Finite Closure) Let 𝛼, r > 0 be fixed. Set 𝜖 equal to the minimal
value of e𝛼−𝑣

𝑣

over all integers 𝑣, e with 1 ≤ 𝑣 ≤ t and e𝛼 − 𝑣 > 0. Let K be such that
r − K𝜖 < 0. Then in G(n, n−𝛼), almost surely,

| clt(X)| ≤ K + r

for all X ⊂ G with |X| = r.

Proof. If not, there would be a rigid t-chain X = X0 ⊂ X1 ⊂ · · · ⊂ XL = Y with
K + r < |Y| < K + r + t. Letting (Xi−1,Xi) have type (𝑣i, ei), the restriction of G to
Y would have r +

∑
𝑣i vertices and at least

∑
ei edges. But(

r +
∑

𝑣i

)
− 𝛼

(∑
ei

)
= r +

∑
(𝑣i − 𝛼ei) ≤ r − 𝜖

∑
𝑣i < r − K𝜖 < 0,

and G almost surely has no such subgraph. ◾

Remark. The bound on | clt(X)| given by this proof depends strongly on how closely
𝛼 may be approximated by rationals of denominator at most t. This is often the
case. If, for example, 1

2
+ 1

s−1
> 𝛼 >

1
2
+ 1

s
, then a.s. there will be two points x1, x2 ∈

G(n, n−𝛼) having s common neighbors so that | cl1(x1, x2)| ≥ s + 2.

Now we define the a1,… , at of the lookahead strategy by reverse induction. We
set at = 0. If at the end of the game Duplicator can assure that the 0-types of x1,… , xt
and y1,… , yt are the same, then they have the same induced subgraphs and he has
won. Suppose, inductively, that b = ar+1 has been defined. We define a = ar to be
any integer satisfying

1. a ≥ b.

2. Almost surely | clb(W)| − r ≤ a for all sets W of size r + 1.

Now we need to show that almost surely this strategy works. Let G1 ∼ G(n, n−𝛼),
G2 ∼ G(m,m−𝛼), and Duplicator tries to play the (a1,… , at) lookahead strategy on
EHR(G1,G2, t).

Consider the (r + 1)th move. We have b = ar+1, a = ar, as above. Points
x1,… , xr ∈ G1, y1,… , yr ∈ G2 have already been selected. Set X = {x1,… , xr},
Y = {y1,… , yr} for notational convenience. We assume Duplicator has survived thus
far, so that cla(X) ≅ cla(Y), the isomorphism sending each xi to the corresponding
yi. Spoiler picks, say, x = xr+1 ∈ G1. Set X+ = X ∪ {x} and Y+ = Y ∪ {y}, where y
is Duplicator’s as-yet-undetermined countermove. We distinguish two cases.
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We say Spoiler has moved “Inside” if x ∈ cla(X). Then as b ≤ a, clb(X+) ⊆
cla(X). Duplicator looks at the isomorphism Ψ ∶ cla(X) → cla(Y) and selects

y = Ψ(x).
We say Spoiler has moved “Outside” if x ∉ cla(X). Let NEW be those vertices of

clb(X+) that do not lie in cla(X). NEW ≠ ∅ as x ∈ NEW. | NEW| ≤ a as NEW ⊆

clb(X+) − X. Consider NEW as an (R,H) extension of cla(X). This extension must
be safe, as otherwise it would have a rigid subextension NEW− but that subextension
would then be in cla(X). Duplicator now goes to G2 and, applying the Generic Exten-
sion Lemma 10.4.6 with t = b, finds an (R,H) extension of cla(Y). That is, he finds
an edge-preserving injection Ψ ∶ cla(X) ∪ NEW → H, extending the isomorphism
between cla(X) and cla(Y). Duplicator selects y = Ψ(x).

Why does this work? Set NEW′ = Ψ( NEW) and CORE = Ψ( clb(X+)). We can
reach clb(X+) by a rigid b-chain from X+, and the isomorphism gives the same
chain from Y+ to CORE so that clb(Y+) contains CORE. But can it have addi-
tional vertices? We use the genericity to say no. Suppose there was a rigid extension
MORE over CORE with at most b nonroots. We cannot have MORE entirely inside
Ψ[ cla(X) ∪ NEW], as then Ψ−1[ MORE] would be in clb(X+) as well. Let MORE+

be the vertices of MORE lying outside Ψ[ cla(X) ∪ NEW]. MORE+ is then a rigid
extension of Ψ[ cla(X) ∪ NEW]. By genericity, MORE+ would have no adjacencies
to NEW′ and so would be a rigid extension of Ψ[ cla(X)] = cla(Y). As a ≥ b, the
a-closure of a set cannot have rigid extensions with ≤ b vertices. Hence there is no
MORE.

The first move follows the same pattern but is somewhat simpler. Set b = a1, and
let a satisfy a ≥ b and a ≥ | clb(x)| for any x. Spoiler plays x ∈ G1. (Effectively, there
is no Inside move, as X = ∅ is the set of previous moves and cla(∅) = ∅.) Duplicator
calculates the graph H = clb(x) which has, say, 𝑣 vertices [including x] and e edges.
Since H is a subgraph of G1, the threshold function for the appearance of H must come
before n−𝛼. In particular, for every subgraph H′ of H with 𝑣

′ vertices and e′ edges,
we cannot have 𝑣′ − 𝛼e′ < 0 and therefore must have 𝑣′ − 𝛼e′ > 0. The conditions of
Theorem 4.4.5 then apply, and G2 almost surely has Θ(me−𝑣𝛼) copies of H. Consider
any graph H+ consisting of H together with a rigid extension of H with at most b
vertices. Such H+ would have 𝑣 + 𝑣

+ vertices and e + e+ edges, with 𝑣
+ − 𝛼e+ < 0.

The expected number of copies of H+ is then Θ(me−𝑣𝛼+(𝑣+−𝛼e+)), which is o(me−𝑣𝛼).
Hence there will be in G2 a copy of H which is not part of any such H+. (Effectively,
this is a generic extension over the empty set.) Duplicator finds the edge-preserving
injection Ψ ∶ clb(x) → G2, giving such a copy of H, and selects y = Ψ(x).

We have shown that the (a1,… , at) lookahead strategy almost surely results
in a win for Duplicator. By Theorem 10.4.4, this implies the Zero–One Law,
Theorem 10.4.2.

10.5 EXERCISES

1. Show that there is a graph on n vertices with minimum degree at least n∕2 in which
the size of every dominating set is at least Ω(log n).
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2. Find a threshold function for the property that G(n, p) contains a copy of the graph
consisting of a complete graph on four vertices plus an extra vertex joined to one
of its vertices.

3. Let X be the number of cycles in the random graph G(n, p), with p = c
n
. Give

an exact formula for E[X]. Find the asymptotics of E[X] when c < 1. Find the
asymptotics of E[X] when c = 1.

4. Here we write (R, S) for (R,H|S), where H is some fixed graph.

• Let R ⊂ S ⊂ T. Show that if (R, S), (S, T) are both dense, then so is (R, T). Show
that if (R, S), (S, T) are both sparse, then so is (R, T).

• Let R ⊂ S. Show that if (R, S) is rigid, then (X ∪ R,X ∪ S) is rigid for any X.

• R ⊂ U with (R,U) not sparse. Show that there is a T with R ⊂ T ⊂ U with (R, T)
dense. Show further that there is an S with R ⊂ S ⊂ T with (R, S) rigid.

• Show that any (R, T) is either rigid or sparse itself, or there exists S with R ⊂

S ⊂ T such that (R, S) is rigid and (S, T) is sparse.

5. We call (R,H) hinged if it is safe but there is no S with R ⊂ S ⊂ V(H) such that
(S,H) is safe. For x1,… , xr ∈ G, let N(x1,… , xr) denote the number of (R,H)
extensions. Set 𝜇 = E[N] ∼ n𝑣pe.

• Let (R,H) be hinged, and fix x1,… , xr ∈ G. Following the model of Section
8.5, especially Theorem 8.5.4, show that

Pr[|N(x1,… , xr) − 𝜇| > 𝜖𝜇] = o(n−r) .

• Deduce that almost surely all N(x1,… , xr) ∼ 𝜇.

• Show that N(x1,… , xr) ∼ 𝜇 holds for any safe (R,H), by decomposing (R,H)
into hinged extensions.



THE PROBABILISTIC LENS:
Counting Subgraphs

A graph G = (V ,E) on n vertices has 2n induced subgraphs but some will surely be
isomorphic. How many different subgraphs can G have? Here we show that there
are graphs G with 2n(1 − o(1)) different subgraphs. The argument we give is fairly
coarse. It is typical of those situations where a probabilistic approach gives fairly
quick answers to questions that are otherwise difficult to approach.

Let G be a random graph on n vertices with edge probability 1∕2. Let S ⊆ V ,|S| = t be fixed. For any one-to-one 𝜌 ∶ S → V , 𝜌 ≠ id, let A
𝜌

be the event where
𝜌 gives a graph isomorphism, that is, for x, y ∈ S, {x, y} ∈ E ⇐⇒ {𝜌x, 𝜌y} ∈ E. Set
M

𝜌
= {x ∈ S ∶ 𝜌x ≠ x}. We split the set of 𝜌 by g = g(𝜌) = |M

𝜌
|.

Consider the g(t − g) +
(

g
2

)
pairs x, y with x, y ∈ S and at least one of x, y in M.

For all but at most g∕2 of these pairs, {x, y} ≠ {𝜌x, 𝜌y}. (The exceptions are when
𝜌x = y, 𝜌y = x.) Let E

𝜌
be the set of pairs {x, y}with {x, y} ≠ {𝜌x, 𝜌y}. Define a graph

H
𝜌

with vertices E
𝜌

and vertex {x, y} adjacent to {𝜌x, 𝜌y}. In H
𝜌
, each vertex has

degree at most 2 ({x, y} may also be adjacent to {𝜌−1x, 𝜌−1y}) and so it decomposes
into isolated vertices, paths, and circuits. On each such component, there is an inde-
pendent set of size at least one-third the number of elements, the extreme case being
a triangle. Thus there is a set I

𝜌
⊆ E

𝜌
with

|I
𝜌
| ≥ |E

𝜌
| ≥ g(t − g) +

(
g
2

)
− g∕2

3
,

so that the pairs {x, y}, {𝜌x, 𝜌y} with {x, y} ∈ I
𝜌

are all distinct.
For each {x, y} ∈ I

𝜌
, the event {x, y} ∈ E ⇐⇒ {𝜌x, 𝜌y} ∈ E has probability 1∕2.

Moreover, these events are mutually independent over {x, y} ∈ I
𝜌

since they involve
distinct pairs. Thus we bound

Pr[A
𝜌
] ≤ 2−|I𝜌| ≤ 2

−(g(t−g)+
(

g
2

)
−g∕2)∕3

.
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For a given g, the function 𝜌 is determined by {x ∶ 𝜌x ≠ x} and the values 𝜌x for those
x so that there are less than n2g such 𝜌. We bound

∑
𝜌≠id

Pr[A
𝜌
] =

t∑
g=1

∑
g(𝜌)=g

Pr[A
𝜌
] ≤

t∑
g=1

n2g2
−(g(t−g)+

(
g
2

)
−g∕2)∕3

.

We make the rough bound

g(t − g) +
(g

2

)
− g∕2 = g

(
t −

g

2
− 1

)
≥ g

( t
2
− 1

)
,

since g ≤ t. Then ∑
𝜌≠id

Pr[A
𝜌
] ≤

t∑
g=1

[
n22(−

t
2
+1)∕3

]g
.

For, again being rough, t > 50 ln n, 2
1
3
− t

6 < n−3 and
∑

𝜌≠id Pr[A
𝜌
] = o(1). That is,

almost surely there is no isomorphic copy of G|S.
For all S ⊆ V with |S| > 50 ln n, let IS be the indicator random variable for there

being no other subgraph isomorphic to G|S. Set X =
∑

IS. Then E[IS] = 1 − o(1), so
by Linearity of Expectation (there being 2n(1 − o(1)) such S)

E[X] = 2n(1 − o(1)) .

Hence there is a specific G with X > 2n(1 − o(1)).
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The Erdős–Rényi Phase

Transition

She had been born with a map of time in her mind. She pictured other abstractions as
well, numbers and the letters of the alphabet, both in English and in Bengali. Numbers
and letters were like links on a chain. Months were arrayed as if along an orbit in space.
–from The Lowland, by Jhumpa Lahiri

In their great work On the Evolution of Random Graphs, Erdős and Rényi (1960)
expressed a special interest in the behavior ofΓn,N(n), the random graph with n vertices
and N(n) edges, when N(n) was near n

2
:

Thus the situation may be summarized as follows: the largest component of Γn,N(n) is of

order log n for N(n)
n

→ c <
1

2
, of order n2∕3 for N(n)

n
→ c ∼ 1

2
, and of order n for N(n)

n
→

c >
1

2
. This double “jump” of the size of the largest component when N(n)

n
passes the

value 1

2
is one of the most striking facts concerning random graphs.

Striking, indeed. The past half century has certainly confirmed the excitement that
Erdős and Rényi (1960) expressed in their discovery.

11.1 AN OVERVIEW

We favor the more modern viewpoint, examining the random graph G(n, p). The
behavior of Erdős and Rényi’s (1960) Γn,N(n) then corresponds to that of G(n, p) with

p = N(n)∕
(

n
2

)
. We shall assume p = Θ(n−1) throughout this chapter.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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We shall call
p = c

n
(11.1)

the coarse parametrization. The value 1
2

in the Erdős–Rényi formulation corresponds
to the value c = 1 in our parametrization. Values c < 1 and c > 1 give G(n, p) that are
essentially different. We shall call

p = 1
n
+ 𝜆n−4∕3 (11.2)

the fine parametrization. The importance of this parametrization is not a priori at
all obvious. Indeed, its “discovery” was one of the great advances in the field. In
Section 11.7 we give a heuristic argument why this is the appropriate fine parametriza-
tion. Along with the fine parametrization we also define

𝜖 = 𝜆n−1∕3 so that p = 1 + 𝜖

n
. (11.3)

We shall express various results in terms of either 𝜆 or 𝜖 (or both), whichever best
illustrates the result. We shall think of 𝜖, 𝜆 as functions of n. To avoid negative num-
bers, we shall sometimes parametrize p = 1−𝜖

n
with 𝜖 = 𝜆n−1∕3. This includes func-

tions such as p = 1
n
− 100n0.01n−4∕3. Of course, for n small, this would give p < 0

and so would be nonsense. For n sufficiently large, we will have p ∈ [0, 1]. As our
results are always asymptotic, we shall allow this slight abuse of notation and consider
G(n, p) defined only for n appropriately large.

In describing the nature of G(n, p), we shall refer to the complexity of compo-
nents, as defined below. Observe that complexity zero and one correspond to tree
components and unicyclic components, respectively.

Definition 1 A connected component of a graph G with 𝑣 vertices and e edges is said
to have complexity e − 𝑣 + 1. Components with complexity zero or one are called
simple; components with complexity greater than 1 are called complex.

Let C(𝑣) denote the component containing a given vertex 𝑣. Its size |C(𝑣)| has a
distribution. From the symmetry of G(n, p), the distribution of all |C(𝑣)| are the same.
We shall be concerned with the sizes of the largest components. We shall let Ci denote
the ith largest component and Li denote its number of vertices. Thus L1 = max

𝑣
|C(𝑣)|.

We shall be particularly interested in L1, L2 and whether they are close together.
The study of G(n, p) when p = Θ(n−1) splits into five regions. We describe them

in order of increasing p, thus giving some sense of the evolution.

Very Subcritical. Here we employ the coarse parametrization p = c
n

and assume c is

a constant with c < 1. Example: p = 1
2n

.

1. All components are simple.

2. L1 = Θ(ln n).
3. Lk ∼ L1 for all fixed k.



THREE PROCESSES 199

Barely Subcritical. Here we employ the fine parametrization. p = 1−𝜖
n

with
𝜖 = 𝜆n−1∕3. We assume 𝜖 = o(1). We assume that 𝜆 → ∞. Example:
p = 1

n
− n−4∕3n0.01.

1. All components are simple.

2. L1 = Θ(𝜖−2 ln (𝜆)) = Θ(n2∕3
𝜆
−2 ln (𝜆)).

3. Lk ∼ L1 for all fixed k.

The Critical Window. Here 𝜆 is a real constant. Example: p = 1
n
− 2n−4∕3. The value

𝜆 = 0, perhaps surprisingly, has no special status. The largest k components (k
fixed) all have size Lk = Θ(n2∕3). Parametrizing Lk = ckn2∕3 and letting dk denote
the complexity of Ck, there is a nontrivial joint distribution for c1,… , ck, d1,… , dk.

Barely Supercritical. Here we employ the fine parametrization. We assume 𝜖, 𝜆 > 0.
We assume 𝜖 = o(1). We assume that 𝜆 → +∞. Example: p = 1

n
+ n−4∕3n0.01.

1. L1 ∼ 2𝜖n = 2𝜆n2∕3.

2. The largest component has complexity approaching infinity.

3. All other components are simple.

4. L2 = Θ(𝜖−2 ln (𝜆)) = Θ(n2∕3
𝜆
−2 ln (𝜆)).

Note that the ratio L1∕L2 goes to infinity. For this reason, in this regime we call
the largest component the dominant component.

Very Supercritical. We employ the coarse parametrization and assume c > 1.

1. L1 ∼ yn, where y = y(c) is that positive real component satisfying the implicit
equation

e−cy = 1 − y (11.4)

2. The largest component has complexity approaching infinity.

3. All other components are simple.

4. L2 = Θ(ln n).

Following the terminology made famous by Erdős and Rényi, we call the largest
component the giant component.

We shall give arguments for only some of the above statements, and then often in
limited form. Other results are given in the exercises. Full arguments for these results,
and much more, can be found in the classic texts of Bollobás (2001) and of Janson
et al. (2000).

11.2 THREE PROCESSES

We place here in concise form three classes of probability spaces that we shall contrast
and analyze. Our goal is to analyze the graph branching model. It is estimated by the
binomial branching model, and thence by the Poisson branching model, which has a
particularly nice analysis.
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• The Poisson branching model

– Parameter: Nonnegative real c.

– Underlying space: An infinite sequence Zt, t = 1, 2,… of independent iden-
tically distributed random variables, each having Poisson distribution with
mean c.

– Auxiliary Yt , t ≥ 0, given by initial value Y0 = 1 and recursion Yt = Yt−1 +
Zt − 1.

– Auxiliary T: T is that minimal t with Yt = 0. If no such t exists, we write
T = ∞.

– Nomenclature: Zt is the number of nodes born at time t, Yt is the queue size
at time t, and T is the total size.

– Interpretation: T is the total size of a Galton–Watson process, as described in
Section 11.3, using a Poisson distribution with mean c.

• The binomial branching model

– Parameters: Positive Integer m, Real p ∈ [0, 1].
– Underlying space: An infinite sequence Zt, t = 1, 2,… of independent,

identically distributed random variables, each having a binomial distribution
B[m, p].

– Auxiliary Yt, t ≥ 0, given by the initial value Y0 = 1 and recursion
Yt = Yt−1 + Zt − 1.

– Auxiliary T: T is that minimal t with Yt = 0. If no such t exists, we write
T = ∞.

– Nomenclature: Zt is the number of nodes born at time t, Yt is the queue size
at time t, and T is the total size.

– Interpretation: T is the total size of a Galton–Watson process, as described in
Section 11.3 using a binomial distribution with parameters m, p.

• The graph branching model

– Parameters: Positive Integer n, Real p ∈ [0, 1].
– Underlying space: A sequence Z1,… , Zn. Zt has binomial distribution with

parameters Nt−1, p, with Nt−1 as given below.

– Auxiliary Yt , t ≥ 0, given by initial value Y0 = 1 and recursion Yt = Yt−1 +
Zt − 1.

– Auxiliary Nt, t ≥ 0, given by initial value N0 = n − 1 and recursion Nt =
Nt−1 − Zt. Equivalently: Nt = n − t − Yt.

– Auxiliary T: T is that minimal t with Yt = 0 or, equivalently,
Nt = n − t. 1 ≤ T ≤ n always.

– Nomenclature: Zt is the number of nodes born at time t, Yt is the queue size
at time t, Nt is the number of neutral vertices at time t, and T is the total size.

– Interpretation: T is the size of the component C(𝑣) of a given vertex 𝑣

in G(n, p), as found by the Breadth First Search process described in
Section 11.5.
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We use the superscripts po (Poisson), bin (binomial), and gr (graph) to distin-
guish these three processes when necessary.

11.3 THE GALTON–WATSON BRANCHING PROCESS

Let Z be a distribution over the nonnegative integers. The Galton–Watson process
begins with a single root node, we can call her Eve. Eve has Z children. Each of her
children (if there are any) now independently has Z children. The process continues,
each new offspring having an independent number Z children. Let T be the total
number of nodes (including Eve herself) created in the process. It is possible that the
process goes on forever, in which case we write T = ∞.

Our analysis of the Galton–Watson process uses fictional continuation. Let Zt,
t = 1, 2,…, be a countable sequence of independent, identically distributed variables,
each having distribution Z. This defines our probability space. We think of the chil-
dren being born in a Breadth First Search manner. That is, Eve has her children that
are ordered in some way. Now the children, in order, have children. Each child’s chil-
dren are ordered in some way, and this gives an ordering of Eve’s grandchildren. Now
the grandchildren have children in order, and the process continues. We count Eve as
node number 1, her children have node numbers 2,… , 1 + Z1 and, more generally,
each node is given a distinct positive integer as its node number. We let Zt be the
number of children of the tth node. Since the Zt are independent and have distribu-
tion Z, this corresponds to the Galton–Watson process. Imagine the tth node having
Zt children and then dying. By time t, we mean the process after the tth node has had
her children and died. Let Yt be the number of living children at time t. We set the
initial value Y0 = 1, corresponding to the node Eve. We have the following recursion:

Yt = Yt−1 + Zt − 1 for all t ≥ 1. (11.5)

There are two essentially different cases:

• Yt > 0 for all t ≥ 0. In this case, the Galton–Watson process goes on forever and
T = ∞.

• Yt = 0 for some t ≥ 0. In this case, let T be the least integer for which YT = 0.
Then the Galton–Watson process stops with the death of the Tth node, where T
is the total number of nodes in the process.

Our fictional continuation enables us to consider the Yt as an infinite random walk,
with step size Z − 1. When c < 1, the walk has negative drift and so tends to minus
infinity. When c > 1, the walk has positive drift and tends to plus infinity. The process
is called subcritical when c < 1, and it is called supercritical when c > 1. When c = 1,
the walk has zero drift and the situation is especially delicate.

The above is quite general. When Z is Poisson or binomial (the only cases of
interest to us), this yields the Poisson branching process or the binomial branching
process of Section 11.2, respectively.



202 THE ERDŐS–RÉNYI PHASE TRANSITION

11.4 ANALYSIS OF THE POISSON BRANCHING PROCESS

In this section we study T = T po
c . We often drop the value c and the superscript po

for notational simplicity.

Theorem 11.4.1 If c < 1, T is finite with probability 1. If c = 1, T is finite with proba-
bility 1. If c > 1, then T is infinite with probability y = y(c), where y is unique positive,
and real, satisfying (11.4).

Proof. Suppose c < 1. If T > t, then Yt > 0 so that Z1 + · · · + Zt ≥ t. Chernoff
bounds give that Pr[Yt > 0] < e−kt for a constant k. In particular, Pr[Yt > 0] → 0,
so that Pr[T > t] → 0 and T is finite with probability 1.

Suppose c ≥ 1. Set z = 1 − y = Pr[T < ∞]. Given that Eve has i children, the
probability that the branching process is finite is zi, as all i branches must be finite.
Thus

z =
∞∑

i=0

Pr[Z1 = i]zi =
∞∑

i=0

e−c cizi

i!
= ec(z−1).

Setting y = 1 − z gives (11.4). For c = 1, e−y
> 1 − y for y > 0, so the solution

must be y = 0. For c > 1, the function f (y) = 1 − y − e−cy has f (0) = 1, f (1) < 0,
and f ′(0) = c − 1 > 0, so there is a y ∈ (0, 1) with f (y) = 0. Further, as f is
convex, there is precisely one y. We have shown that either Pr[T < ∞] = 1 or
Pr[T < ∞] = 1 − y > 0. The argument that Pr[T < ∞] ≠ 1 (not surprising as the
walk has positive drift) is left as an exercise. ◾

Theorem 11.4.2 For any positive real c and any integer k, setting T = Tpo
c ,

Pr[T = k] = e−ck(ck)k−1

k!
.

We defer the proof of this classic result to Section 11.6 when we will give a proba-
bilistic proof!

When c = 1, Stirling’s Formula gives

Pr[T1 = k] = e−kkk−1

k!
∼ 1√

2𝜋
k−3∕2. (11.6)

This perforce approaches zero but it does so only at polynomial speed. In general

Pr[Tc = k] ∼ 1√
2𝜋

k−3∕2c−1(ce1−c)k.

For any c ≠ 1 (whether larger or smaller than 1), ce1−c
< 1 and therefore Pr[Tc = k]

approaches zero at exponential speed. This gives a bound on the tail distribution:

Pr[Tc ≥ u] < e−u(𝛼+o(1)) , (11.7)

where 𝛼 = c − 1 − ln c > 0.
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We are particularly interested in the Poisson branching process when c is near 1.
Let us parametrize

c = 1 + 𝜖.

When 𝜖 > 0, Pr[T1+𝜖 = ∞] is that y = y(𝜖) ∈ (0, 1) satisfying f (y) = 1 − y −
e−(1+𝜖)y = 0. Some fun calculus gives

Pr[T1+𝜖 = ∞] ∼ 2𝜖 as 𝜖 → 0+ . (11.8)

Suppose c → 1+ so that 𝜖 → 0+. We have

ln (ce1−c) = ln (1 + 𝜖) − 𝜖 ∼ −𝜖
2

2
.

Thus
Pr [T1+𝜖 = u] ∼ 1√

2𝜋
u−3∕2 for u = o(𝜖−2).

Note that Pr[T1+𝜖 = u] ∼ Pr[T1 = u] in this range. When u reaches order 𝜖−2, there
is a change. For u = A𝜖−2 and fixed A

Pr[T1+𝜖 = A𝜖−2] ∼ 1√
2𝜋

𝜖
3A−3∕2e−A∕2.

When A → ∞, we absorb smaller factors into the exponential term:

Pr[T1+𝜖 = A𝜖−2] = 𝜖
3e−(1+o(1))A∕2.

When c is slightly less than 1, we can write c = 1 − 𝜖, where 𝜖 → 0+. We have

ln (ce−c) ∼ − 1
2
𝜖

2, the same as for c = 1 + 𝜖. Indeed, when u = o(𝜖−3),

Pr[T1−𝜖 = u] ∼ Pr[T1+𝜖 = u].

For A → ∞
Pr[T1−𝜖 = A𝜖−2] = 𝜖

3e−(1+o(1))A∕2.

The Poisson branching processes with means 1 + 𝜖 and 1 − 𝜖 look almost the same,
with the (important!) distinction that the mean 1 + 𝜖 process is sometimes infinite
while the mean 1 − 𝜖 process never is.

In short, the Poisson branching process with mean 1 ± 𝜖 acts as if it had mean 1
until reaching size on the order 𝜖−2. Until then, Pr[T1±𝜖 = u] is dropping at a poly-
nomial rate. Upon reaching order 𝜖−2, Pr[T1±𝜖 = u] drops exponentially in u.

We are particularly interested in the tail distribution. For 𝜖 → 0+ and A → ∞,

Pr[T1−𝜖 > A𝜖−2] < e−(1+o(1))A∕2
𝜖. (11.9)



204 THE ERDŐS–RÉNYI PHASE TRANSITION

The same holds for the finite part of T1+𝜖:

Pr[∞ > T1+𝜖 > A𝜖−2] < e−(1+o(1))A∕2
𝜖. (11.10)

When A → ∞, this quantity is o(𝜖), so (11.8) gives

Pr[T1+𝜖 > A𝜖−2] ∼ 2𝜖 when 𝜖 → 0+ and A → ∞ . (11.11)

11.5 THE GRAPH BRANCHING MODEL

Abbreviation

We use BFS as the abbreviation for Breadth First Search. BFS algorithms are a main-
stay of computer science and central to our approach.

Let C(𝑣) denote the component, in G(n, p), containing a designated vertex 𝑣. We
generate C(𝑣) using the (standard) BFS algorithm to find C(𝑣). We begin with root 𝑣.
In this procedure, all vertices will be live, dead, or neutral. The live vertices will be
contained in a queue. Initially, at time zero, 𝑣 is live, the queue consists of one vertex,
𝑣 itself, and all other vertices are neutral. At each time t, we remove a live vertex 𝑤

from the top of the queue (in computer science parlance we “pop the queue”) and
check all pairs {𝑤,𝑤

′}, 𝑤′ neutral, for adjacency in G. The popped vertex 𝑤 is now
dead. Those neutral𝑤′ (if any) adjacent to𝑤 are added to the bottom of the queue and
are now live. (They can be placed in any particular order.) The procedure ends when
the queue is empty. We let T denote that time. At time T, all vertices are neutral or
dead, and the set of dead vertices is precisely the component C(𝑣). That is, T = |C(𝑣)|.

Let Zt denote the number of vertices added to the queue at time t. Let Yt denote the
size of the queue at the conclusion of time t. We set Y0 = 1, reflecting the initial size
of the queue. At time t, we remove one vertex and add Zt vertices to the queue so we
have the recursion Yt = Yt−1 − 1 + Zt . Let Nt denote the number of neutral vertices at
time t. As Zt vertices switch from neutral to live at time t, Nt satisfies the recursion
N0 = n − 1, Nt = Nt−1 − Zt. Equivalently, as there are t dead and Yt live vertices at
time t, Nt = n − t − Yt. Zt is found by checking Nt−1 pairs for adjacency. As these
pairs have not yet been examined, they remain adjacent with independent probability
p. That is

Zt ∼ B[Nt−1, p] ∼ B[n − (t − 1) − Yt−1, p]. (11.12)

The graph branching process of Section 11.2 mirrors the above analysis until time
T and then continues until time n. This fictional continuation shall be useful in the
analysis of C(𝑣). The graph branching process is similar to a binomial branching
process in that Zt have binomial distributions but dissimilar in that the parameter
Nt−1 in the graph branching process depends on previous values Zi.

As Nt = Nt−1 − Zt, (11.12) yields Nt ∼ B[Nt−1, 1 − p]. By induction we find the
distributions

Nt ∼ B[n − 1, (1 − p)t] for 0 ≤ t ≤ n.
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If T = t, it is necessary (though not sufficient, due to fictitious continuation) that
Nt = n − t. This yields the useful inequalities:

Theorem 11.5.1 In G(n, p)

Pr[|C(𝑣)| = t] ≤ Pr[B[n − 1, (1 − p)t] = n − t] (11.13)

or, equivalently,

Pr[|C(𝑣)| = t] ≤ Pr[B[n − 1, 1 − (1 − p)t] = t − 1]. (11.14)

An Alternate Analysis

The following analysis of C(𝑣) on G(n, p) has been explored by van der Hofstad and
Spencer (2006). Each 𝑤 ≠ 𝑣 flips a coin, heads with probability p, repeatedly until
getting a head. Let X

𝑤
denote that flip on which 𝑤 gets a head. Suppose X

𝑤
= j. Then

𝑤 enters the BFS at time j. (However, it may have missed the boat if the BFS has
already terminated.) This reverses the usual randomness; we are here imagining the
𝑤 ≠ 𝑣 trying to get into the BFS tree, rather than the BFS tree trying to expand by
finding neutral vertices. Suppose t = |C(𝑣)|. Every 𝑤 ≠ 𝑣 that is in C(𝑣) must have
entered by time t so X

𝑤
≤ t. Every 𝑤 ≠ 𝑣 that is not in C(𝑣) had t opportunities to

enter C(𝑣) and so X
𝑤
> t. Thus Pr[|C(𝑣)| = t] is at most the probability that X

𝑤
≤ t

for precisely t − 1𝑤 ≠ 𝑣. For each𝑤 ≠ 𝑣, Pr[X
𝑤
= t] = 1 − (1 − p)t and these events

are independent over𝑤, yielding (11.14). In van der Hofstad and Spencer (2006), this
analysis is extended to give more precise bounds on Pr[|C(𝑣)| = t].

11.6 THE GRAPH AND POISSON PROCESSES COMPARED

Set p = c
n
. A key observation is that Z1 ∼ B[n − 1, c

n
] approaches (in n) the Poisson

distribution with mean c. Further, in a more rough sense, the same holds for Zt as long
as Nt−1 ∼ o(n) or, equivalently, the number of live and dead vertices is o(n). That is,
the generation of C(𝑣) mimics the Poisson branching process with mean c as long as
the number of vertices found is not too large. This allows for a very accurate descrip-
tion in the very subcritical regime c < 1. But in the very supercritical regime c > 1,
the relationship between the generation of C(𝑣) and the Poisson branching process
breaks down. As the number Nt−1 of neutral vertices drops, so does the expected num-
ber E[Zt] of vertices added to the queue. Eventually, the drift of the walk Yt lowers
from positive to negative, and this eventually causes the process to halt. We call this
phenomenon the ecological limitation. Indeed, there must be an ecological limita-
tion. The Poisson branching process becomes infinite with positive probability, the
component C(𝑣) tautologically cannot be greater than n.

Theorem 11.6.1 For any positive real c and any fixed integer k

lim
n→∞

Pr[|C(𝑣)| = k in G(n, c∕n)] = Pr[Tc = k].
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Proof. Let Z po
t , T po, and Z gr

t , T gr denote the values in the Poisson branching process
with parameter c and the graph branching process with parameters n, p respectively.
Let Γ denote the set of k-tuples z⃗ = (z1,… , zk) of nonnegative integers such that the
recursion y0 = 1, yt = yt−1 + zt − 1 has yt > 0 for t < k and yk = 0. Then

Pr[T gr = k] =
∑

Pr[Z gr
i

= zi, 1 ≤ i ≤ k]

Pr[T po = k] =
∑

Pr[Z po
i = zi, 1 ≤ i ≤ k],

where both sums are over z⃗ ∈ Γ. Fix such a z⃗.

Pr[Z gr
i = zi, 1 ≤ i ≤ k] =

k∏
i=1

Pr[B[N gr
i−1, p] = zi].

As i, yi−1, zi are fixed, Zi−1 = n − O(1) and B[Zi−1, p] approaches the Poisson
distribution. More precisely,

lim
n→∞

Pr[B[Zi−1, p] = zi] = Pr[Z po
i

= zi].

Further, as the products are of a fixed number of terms

lim
n→∞

Pr[Z gr
i = zi, 1 ≤ i ≤ k] = Pr[Z po

i = zi, 1 ≤ i ≤ k]. ◾

Now we prove Theorem 11.4.2. From Theorem 11.6.1,

Pr[T po
c = k] = lim

n→∞
Pr[|C(𝑣)| = k],

where the second probability is in G(n, p) with p = c
n

and 𝑣 is an arbitrary vertex

of that graph. There are
(

n
k−1

)
choices for S ∶= C(𝑣). On any particular S, there

is probability O(pk) = O(n−k) that G(n, p) has more than k − 1 edges. If G(n, p) has
precisely k − 1 edges on S, they must form a tree. There are kk−2 such trees. Each

occurs with probability pk−1(1 − p)
(

k
2

)
−k+1 ∼ pk−1 = ck−1n1−k. Thus the total prob-

ability that G(n, p) restricted to S forms a connected graph is ∼ kk−2ck−1n1−k. For
S = C(𝑣), we must further have no edges between S and its complement; this has
probability (1 − p)k(n−k) ∼ e−ck. Thus

Pr[C(𝑣) = k] ∼
( n

k − 1

)
kk−2ck−1n1−ke−ck →

e−ck(ck)k−1

k!

as desired.
The graph branching process can be compared to the binomial branching

process in both directions. An important cautionary note: the event T bin
n−1,p ≥ u in

Theorem 11.6.2 (and similarly T bin
n−u,p ≥ u in Theorem 11.6.3) includes the possibility



THE PARAMETRIZATION EXPLAINED 207

that the binomial branching process is infinite. Indeed, in application this will be the
critical term.

Theorem 11.6.2 For any u

Pr[T gr
n,p ≥ u] ≤ Pr[T bin

n−1,p ≥ u].

Proof. We modify the graph branching process by constantly replenishing the supply
of neutral vertices. That is, when we pop the vertex 𝑤 and there are n − 1 − s neutral
vertices, we create s fictional vertices 𝑤′ and allow 𝑤,𝑤

′ to be adjacent with proba-
bility p. This gives a component of size T bin

n−1,p; the actual C(𝑣) will be a subset of it.

Thus T bin
n−1,p dominates T gr

n,p. ◾

Theorem 11.6.3 For any u

Pr[T gr
n,p ≥ u] ≥ Pr[T bin

n−u,p ≥ u].

Proof. We halt the graph branching process when the number of found (live plus
dead) vertices reaches u. This does not affect the probability of finding at least u
vertices. In this truncated graph process, we diminish the number of neutral vertices
to n − u. That is, when we pop the vertex 𝑤 and there are n − 1 − s ≥ n − u neutral
vertices, we select n − u of them and only allow adjacencies 𝑤,𝑤

′ to them. The trun-
cated graph process dominates this truncated binomial n − u, p process and so has a
greater or equal probability of reaching u. ◾

The Poisson Approximation

We are working in the range p = Θ(n−1). There, the binomial B[n − 1, p] distribution
and the Poisson distribution with mean np are very close. The Poisson branching
process is precisely understood and, we feel, is the “purest” branching process. Our
goal in this chapter is to give the reader a picture for the “why” of the various regimes.
To do this, we shall often avoid the technical calculations and simply assume that the
binomial n − 1, p branching process is very close to the Poisson branching process
with mean np.

11.7 THE PARAMETRIZATION EXPLAINED

In the parametrization (11.3) for the critical window, why is the exponent − 1
3

as

opposed to, say, − 1
4

or − 2
7
, or something completely different? In the experience of

the authors, this is the question most frequently asked about the Erdős–Rényi phase
transition. Here is a heuristic that may be helpful.

Parametrize p = 1+𝜖
n

with 𝜖 = 𝜖(n) positive and approaching zero. We look for the
following picture: Consider the Poisson branching process T = T po

1+𝜖 . It is infinite with
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probability ∼ 2𝜖; otherwise its probability of exceeding A𝜖−2 drops exponentially in
A. The graph branching process mimics the Poisson branching process as long as
it is not too successful. The cases when the Poisson branching process is finite are
mimicked, yielding components of size up to roughly 𝜖−2. The cases when the Poisson
branching process is infinite are mimicked by components that “escape” until the
ecological limitation sets in. These components all join together. They form a single
component, the dominant component, of size 2𝜖n.

In order for the above (admittedly rough) picture to hold, there must a distinc-
tion between the small components, up to size 𝜖

−2, and the dominant component of
size 2𝜖n. That is, we need 2𝜖n ≫ 𝜖

−2. This heuristic leads us to 𝜖 = n−1∕3 as the
breakpoint. When 𝜖 ≫ n−1∕3, we have the distinction between small and dominant
components and are in the supercritical regime. When 𝜖 = O(n−1∕3), there is no effec-
tive analogy to the Poisson branching process being infinite, and there is no dominant
component.

11.8 THE SUBCRITICAL REGIONS

Let p = c
n

with c < 1. Theorem 11.6.2 gives

Pr[T gr
n,p ≥ u] ≤ Pr[T bin

n−1,p ≥ u].

With the Poisson approximation, Pr[|C(𝑣)| ≥ u] ≤ (1 + o(1)) Pr[Tc ≥ u]. From
(11.7), this drops exponentially in u. Taking u = K ln n for appropriately large K,
Pr[|C(𝑣)| ≥ u] < n−1.01. As this holds for each of the n vertices 𝑣, the probability
that any 𝑣 has |C(𝑣)| ≥ u is less than nn−1.01 → 0. That is, L1 = O(ln n) with
probability tending to 1.

Let us push this argument into the barely subcritical regime p = 1−𝜖
n

with
𝜖 = 𝜆n−1∕3. Let I

𝑣
be the indicator random variable for C(𝑣) having at least u

vertices, with u to be determined below. As above, Theorem 11.6.2 and our Poisson
approximation give the bound

Pr[|C(𝑣)| ≥ u] ≤ (1 + o(1)) Pr[T1−𝜖 ≥ u] .

We now parametrize

u = K𝜖
−2 ln 𝜆 = Kn2∕3

𝜆
−2 ln 𝜆 .

For an appropriately large constant K, the bound (11.9) gives

Pr[T1−𝜖 ≥ u] ≤ 𝜖e−3.1𝜆 = 𝜖𝜆
−3.1 .

Let X =
∑

𝑣
I
𝑣

be the number of vertices 𝑣 in components of size at least u, and let Y
be the number of components of G(n, p) of size at least u. Linearity of Expectation
gives

E[X] = n E[I
𝑣
] ≤ n𝜖𝜆−3.1 = n2∕3

𝜆
−2.1 .
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As Y ≤ Xu−1,
E[Y] ≤ u−1 E[X] ≤ K−1

𝜆
−0.1 → 0 .

With probability approaching 1, Y = 0, and so

L1 ≤ u = K𝜖
−2 ln 𝜆 = Kn2∕3

𝜆
−2 ln 𝜆 .

11.9 THE SUPERCRITICAL REGIMES

In the supercritical regimes, there are two salient points about the giant or dominant
component. First, it exists. Second, it is unique. Neither is trivial.

We start with the very supercritical region, p = c
n
, with c > 1 constant. The ideas

here will carry into the barely supercritical region. Let y = y(c) be the positive real
solution of the equation e−cy = 1 − y. Let 𝛿 be an arbitrarily small constant, and let
K be an appropriately large constant. Set S = K ln n, L− = (y − 𝛿)n, L+ = (y + 𝛿)n.
Call a component C(𝑣) and its size |C(𝑣)| small if |C(𝑣)| < S, giant if L−

< |C(𝑣)| <
L+, awkward otherwise.

No Middle Ground. We claim that the probability of having any awkward com-
ponent is o(n−20). (We could make 20 arbitrarily large by changing K.) There
are n choices for 𝑣 and n choices for t = |C(𝑣)|. Thus it suffices to show that,
for any 𝑣 and for any awkward t, Pr[|C(𝑣)| = t] = o(n−18). From Theorem

11.5.1 it suffices to bound Pr
[
B[n − 1, 1 − (1 − c

n
)t] = t − 1

]
. We indicate

the technical calculations. When t = o(n), 1 − (1 − c
n
)t ∼ cn

t
, and c > 1, so

Pr
[
B[n − 1, 1 − (1 − c

n
)t] ≤ t − 1

]
is exponentially small in t. As t ≥ K ln n,

this is polynomially small in n. When t ∼ xn, 1 − (1 − c
n
)t ∼ 1 − e−cx. For x ≠ y,

1 − e−cx ≠ x, so the mean of the binomial is not near t and the probability that it
is equal to t is exponentially small in n. In all cases, the bounds on Pr[|C(𝑣)| = t]
follow from basic Chernoff bounds.

Escape Probability. Set 𝛼 = Pr[C(𝑣) not small]. (When this happens, we like to
think that the BFS on G(n, p) starting with root 𝑣 has escaped an early death.)
Theorems 11.6.2 and 11.6.3 sandwich

Pr[T bin
n−S,p ≥ S] ≤ 𝛼 ≤ Pr[T bin

n−1,p ≥ S].

From our Poisson approximation, both Pr[T bin
n−S,p ≥ S] and Pr[T bin

n−1,p ≥ S] are
asymptotic to Pr[Tc ≥ S]. Thus 𝛼 ∼ Pr[Tc ≥ S]. As c is assumed fixed and
S → ∞,

𝛼 ∼ Pr[Tc ≥ S] ∼ Pr[Tc = ∞] = y

with y as in (11.4).



210 THE ERDŐS–RÉNYI PHASE TRANSITION

Because there is no middle ground, not small is the same as giant. C(𝑣) is giant
with probability ∼ y. Thus the expected number of vertices in giant components
is ∼ yn. Each giant component has a size between (y − 𝛿)n and (y + 𝛿)n. Our goal
is a single giant component of size ∼ yn. We are almost there. But maybe with
probability 1∕2 there are two giant components.

Sprinkling. Set p1 = n−3∕2. (Any p1 with n−2
≪ p1 ≪ n−1 would do here.) Let G1 ∼

G(n, p1) be selected independently from G ∼ G(n, p) on the same vertex set, and
let G+ = G ∪ G1 so that G+ ∼ G(n, p+) with p+ = p + p1 − pp1. (We “sprinkle”
the relatively few edges of G1 on G to make G+.) Suppose G(n, p) had more than
one giant component, and let V1,V2 be the vertex sets of two of those components.
There are Ω(n2) pairs {𝑣1, 𝑣2} with 𝑣1 ∈ V1, 𝑣2 ∈ V2. We have selected p1 large
enough so that with probability 1 − o(1) at least one of these pairs is in the sprin-
kling G1. Adding this edge merges components V1,V2 into a component of size
at least 2y(1 − 𝛿)n in G+. We have selected p1 small enough so that p+ ∼ p = c

n
.

The probability that G+ has a component so large, and hence awkward, is there-
fore o(n−20). Hence the probability that G had more than one giant component is
o(n−20).
Finally, we make 𝛿 arbitrarily small. G(n, p)has an expected number∼ yn of points
in giant components and giant components all have size ∼ yn. Further, by the
sprinkling argument, the contribution to this expectation from the possibility of G
having more than one giant component is o(nn−20), which is negligible. Thus with
probability 1 − o(1), there is precisely one giant component. This gives the salient
features of the very supercritical phase. There is a giant component, so L1 ∼ yn.
There is only one giant component and no middle ground, so L2 ≤ S = O(ln n).
The Sprinkling for Complexity argument given below in the Barely Supercritical
Phase can be easily modified to show that the giant component has high complex-
ity, indeed, complexity Ω(n).

The Barely Supercritical Phase. Set p = 1+𝜖
n

with 𝜖 = 𝜆n−1∕3 and 𝜆 → ∞. Note
𝜖
−2 = 𝜆

−2n2∕3
≪ 2𝜖n. The analysis of the barely supercritical region becomes

more difficult as 𝜆 = 𝜆(n) approaches infinity more slowly. We shall add the
simplifying assumption that 𝜆 ≫ ln n. Further, we shall find somewhat weaker
bounds than stated on L2.
Bollobás (1984) in 1984 showed the existence of the dominant component when
𝜆 > K

√
ln n, K constant. That paper was the first indication of the appropriate

scaling for the critical window. Łuczak (1990) tightened the result to “best possi-
ble,” showing that if 𝜆 → +∞ then the dominant component exists.
Let 𝛿 be an arbitrarily small constant, and let K be an appropriately large constant.
Set S = K𝜖

−2 ln n, L− = (1 − 𝛿)2𝜖n, and L+ = (1 + 𝛿)2𝜖n. Call a component C(𝑣)
and its size |C(𝑣)| small if |C(𝑣)| < S, dominant if L−

< |C(𝑣)| < L+, and awk-
ward otherwise.

No Middle Ground. We claim that the probability of having any awkward
component is o(n−20). (We could make 20 arbitrarily large by changing K.)
There are n choices for 𝑣 and n choices for t = |C(𝑣)|. Thus it suffices to
show that, for any 𝑣 and for any awkward t, Pr[|C(𝑣)| = t] = o(n−18). Again,
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we bound Pr[B[n − 1, 1 − (1 − p)t] = t − 1]. We indicate the technical cal-
culations. Let 𝜇 and 𝜎

2 denote the mean and variance of the binomial. Then
𝜇 = (n − 1)(1 − (1 − p)t) and, in this range, 𝜎2 ∼ 𝜇. When t = o(n𝜖), we estimate
1 − (1 − p)t by pt = t + t𝜖 so that𝜇 is estimated by npt ∼ (1 + 𝜖)t. Then 𝜇 − t ∼ t𝜖
and 𝜎2 ∼ t. This probability is roughly exp [−(t𝜖)2∕2t] = exp [−t𝜖2∕2]. As t ≥ S,
the exponent is o(n−18) for K > 36. (To push S down to K𝜖

−2 ln (𝜆) requires a finer
bound on Pr[|C(𝑣)| = t].) Now suppose t ∼ xn𝜖, where x ≠ 2. The ecological
limitation now has an effect, and we estimate 1 − (1 − p)t by pt − 1

2
p2t2 so

𝜇 − t ∼ t𝜖 − 1
2

t2n−2 ∼ (n𝜖)(x − 1
2

x2).

(Observe that, when x = 2, the mean of the binomial is very close to t and so we
do not get a small bound on Pr[|C(𝑣)| = t]. This is natural when we consider
that there will be a dominant component of size ∼ 2𝜖n.) Again, 𝜎2 ∼ t, so the
probability is exp [−Ω((n𝜖)2∕t)], which is extremely small. When t ≫ n𝜖, the
probability is even smaller.

Escape Probability. Set 𝛼 = Pr[C(𝑣) not small]. Theorems 11.6.2 and 11.6.3 sand-
wich

Pr
[
T bin

n−S,p ≥ S
]
≤ 𝛼 ≤ Pr

[
T bin

n−1,p ≥ S
]

.

The Poisson approximation for T bin
n−1,p is T1+𝜖 . As S ≫ 𝜖

−2, bound (11.11) gives

𝛼 ≤ Pr[T1+𝜖 ≥ S] ∼ Pr[T1+𝜖 = ∞] ∼ 2𝜖 .

Replacing n − 1 by n − S lowers the mean by ∼ Sn−1. But Sn−1∕𝜖 ∼
(ln n)∕(n𝜖3) = 𝜆

−3 ln n, and we have made 𝜆 large enough that this is
o(1). That is, Sn−1 = o(𝜖). Therefore, T bin

n−S,p is approximated by T1+𝜖−o(𝜖) and

𝛼 ≥ Pr[T1+𝜖+o(𝜖) ≥ S] ∼ Pr[T1+𝜖+o(𝜖) = ∞] ∼ 2𝜖 .

𝛼 has been sandwiched and 𝛼 ∼ 2𝜖.
Because there is no middle ground, not small is the same as dominant. C(𝑣) is
dominant with probability∼ 2𝜖. Thus the expected number of vertices in the domi-
nant components is∼ 2n𝜖. Each giant component has size between (1 − 𝛿)2n𝜖 and
(1 + 𝛿)2n𝜖. As in the very supercritical case, we need worry about having more
than one giant component.

Sprinkling. Set p1 = n−4∕3. Let G1 ∼ G(n, p1) be selected independently from G ∼
G(n, p) on the same vertex set and let G+ = G ∪ G1 so that G+ ∼ G(n, p+) with
p+ = p + p1 − pp1 = 1 + 𝜖 + o(𝜖). Suppose G(n, p) had more than one giant com-
ponent and let V1,V2 be the vertex sets of two of those components. There are
≫ n4∕3 pairs {𝑣1, 𝑣2}with 𝑣1 ∈ V1, 𝑣2 ∈ V2. With probability 1 + o(1), at least one
of these pairs is in the sprinkling G1. Adding this edge merges components V1,V2
into a component of size at least (1 − 𝛿) 4𝜖n in G+. The probability that G+ has
such a large, and hence awkward, component is o(n−20). Thus the probability that
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G had two (or more) dominant components is o(n−20). Taking 𝛿 arbitrarily small,
as in the supercritical case, G has with probability 1 − o(1) precisely one dominant
component. Thus L1 ∼ 2n𝜖 and, as there is no middle ground, L2 ≤ K𝜖

−2 ln n.

Sprinkling for Complexity. Take p1 = (1 + 𝜖

2
)∕n and p2 ∼ 𝜖

2
∕n, so that p1 + p2 −

p1p2 = (1 + 𝜖)∕n. Let G1 ∼ G(n, p1), G2 ∼ G(n, p2), and G3 = G1 ∪ G2 so that
G3 ∼ G(n, (1 + 𝜖)∕n). G1,G3 will have dominant components V1,V3 of sizes ∼ n𝜖
and ∼ 2n𝜖. As G3 has “no middle ground” in its component sizes, V1 ⊆ V3. Now

the sprinkling G2 adds ∼ p2

(
n𝜖
2

)
∼ n𝜖3∕2 edges internal to V1. Thus V3 will have

complexity at least n𝜖3∕2 = 𝜆
3∕2, which approaches infinity.

11.10 THE CRITICAL WINDOW

We now fix a real 𝜆 and set p = 1
n
+ 𝜆n−4∕3. There has been massive study of this

critical window, Łuczak (1990) and the monumental Janson et al. (1993) being only
two examples. Calculations in this regime are remarkably delicate.

Fix c > 0, and let X be the number of tree components of size k = cn2∕3. Then

E[X] =
(n

k

)
kk−2pk−1(1 − p)k(n−k)+

(
k
2

)
−(k−1)

.

Watch the terms cancel!

(n
k

)
=

(n)k
k!

∼ nkek

kk
√

2𝜋k

k−1∏
i=1

(
1 − i

n

)
.

For i < k,

− ln
(

1 − i
n

)
= i

n
+ i2

2n2
+ O

(
i3

n3

)
,

so that
k−1∑
i=1

− ln
(

1 − i
n

)
= k2

2n
+ k3

6n2
+ o(1) = k2

2n
+ c3

6
+ o(1) .

Also pk−1 = n1−k(1 + 𝜆n−1∕3)k−1 and expanding ln (1 + 𝜖) = 𝜖 − 1
2
𝜖

2 + O(𝜖3):

(k − 1) ln(1 + 𝜆n−1∕3) = k𝜆n−1∕3 − 1
2

c𝜆2 + o(1) .

Also
ln (1 − p) = −p + O(n−2) = −1

n
− 𝜆

n4∕3
+ O(n−2)

and

k(n − k) +
( k

2

)
− (k − 1) = kn − k2

2
+ O(n2∕3) ,
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so that

[k(n − k) +
( k

2

)
− (k − 1)] ln(1 − p) = −k + k2

2n
− 𝜆k

n1∕3
+ 𝜆c2

2
+ o(1)

and

E[X] ∼ nkkk−2

kk
√

2𝜋knk−1
eA = nk−5∕2(2𝜋)−1∕2eA .

Here A = k − k2

2n
− c3

6
+ 𝜆k

n1∕3 − 𝜆
2c
2

− k + k2

2n
− 𝜆k

n1∕3 + 𝜆c2

2
. The k and n terms cancel,

and we can give A the intriguing form

A = A(c) = (𝜆 − c)3 − 𝜆
3

6
.

Writing k in terms of n then yields

E[X] ∼ n−2∕3eA(c)c−5∕2(2𝜋)−1∕2 .

For any particular such k, E[X] → 0 but, if we sum k between cn2∕3 and (c + dc)n2∕3,
we multiply by n2∕3dc. Going to the limit gives an integral. For any fixed a, b, 𝜆, let
X be the number of tree components of size between an2∕3 and bn2∕3. Then

lim
n→∞

E[X] =
∫

b

a
eA(c)c−5∕2(2𝜋)−1∕2dc .

The large components are not all trees. Wright (1977) proved that for fixed l ≥ 0

there are asymptotically clk
k−2+ 3

2
l connected graphs on k points with k − 1 + l edges,

where c0 = 1, c1 =
√
𝜋∕8 and cl was given by a specific recurrence. Asymptotically

in l, cl = l−l∕2(1+o(1)). The calculation for X(l), the number of such components on k

vertices, leads to extra factors of clk
3
2

l and n−l, which gives clc
3
2

l. For fixed a, b, 𝜆, l,

the number X(l) of components of size between an2∕3 and bn2∕3 with l − 1 more edges
than vertices satisfies

lim
n→∞

E[X(l)] =
∫

b

a
eA(c)c−5∕2(2𝜋)−1∕2

(
clc

3
2

l
)

dc,

and letting X∗ be the total number of components of size between an2∕3 and bn2∕3

lim
n→∞

E[X∗] =
∫

b

a
eA(c)c−5∕2(2𝜋)−1∕2g(c) dc ,

where

g(c) =
∞∑

l=0

clc
3
2

l ,
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a sum convergent for all c. A component of size ∼ cn2∕3 will have probabil-

ity clc
3
2

l∕g(c) of having complexity l, independent of 𝜆. As lim
c→0

g(c) = 1, most

components of size 𝜖n2∕3 , 𝜖 ≪ 1, are trees, but as c gets bigger, the distribution on l
moves inexorably higher.

An Overview

For any fixed 𝜆, the sizes of the largest components are of the form cn2∕3 with a
distribution over the constant. This distribution has as its support the positive reals.
Thus, for example, for 𝜆 = −4, there is some positive limiting probability that the
largest component is bigger than 10n2∕3, and for 𝜆 = +4 there is some positive limit-
ing probability that the largest component is smaller than 0.1n2∕3, though both these
probabilities are miniscule. The c−5∕2 term dominates the integral as c → 0+, reflect-
ing the notion that for any fixed 𝜆 there should be many components of size near
𝜖n2∕3 for 𝜖 = 𝜖(𝜆) appropriately small. When 𝜆 is large negative (e.g., 𝜆 = −4), the
largest component is likely to be 𝜖n2∕3, 𝜖 small, and there will be many components
of nearly that size. The non-tree components will be a negligible fraction of the tree
components. When 𝜆 is large positive (e.g., 𝜆 = +4), the dominant component will
have begun to emerge. The largest component is likely to be ∼ 2𝜆n2∕3 and of mod-
erately high (not zero or one) complexity, and the second largest component will be
considerably smaller and simple.

Now consider the evolution of G(n, p) in terms of 𝜆. Suppose that at a given 𝜆 there
are components of size c1n2∕3 and c2n2∕3. When we move from 𝜆 to 𝜆 + d𝜆, there is
a probability c1c2d𝜆 that they will merge. Components have a peculiar gravitation
in which the probability of merging is proportional to their sizes. With probability
(c2

1∕2)d𝜆, there will be a new internal edge in a component of size c1n2∕3 so that
large components rarely remain trees. Simultaneously, big components are eating up
other vertices.

With 𝜆 = −4, say, we have feudalism. Many small components (castles) are each
vying to be the largest. As 𝜆 increases, the components increase in size and a few
large components (nations) emerge. An already large France has much better chances
of becoming larger than a smaller Andorra. The largest components tend strongly
to merge, and by 𝜆 = +4, it is very likely that a dominant component, a Roman
Empire, has emerged. With high probability, this component is nevermore challenged
for supremacy but continues absorbing smaller components until full connectivity –
One World – is achieved.

11.11 ANALOGIES TO CLASSICAL PERCOLATION THEORY

The study of percolation has involved the intense efforts of both mathematicians and
physicists for many years. A central object of that study has been bond percolation
on Zd , as described below. Here we explore, without proofs, the fruitful analogies
between that percolation and the Erdős–Rényi phase transition. Grimmett (1999)
Percolation is a classic text in this field, and we shall follow its treatment.
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Let d ≥ 2. (All parameters below shall depend on the choice of d.) Let Zd, as
usual, represent the set of a⃗ = (a1,… , ad) with ai integers. The d-dimensional cubic
lattice, written Ld, is that graph with vertices Zd , two vertices a⃗, b⃗ being adjacent
if they agree on d − 1 coordinates and differ by one on the other coordinate. Let
p ∈ [0, 1]. The random subgraph Ld(p) contains each edge of Ld (and no others) with
independent probability p. We let C(a⃗) denote the connected component of Ld(p)
containing the vertex a⃗. We generally examine C(⃗0) as, by symmetry, all C(a⃗) look
the same. (In Grimmett (1999) and elsewhere the edges of Ld are called bonds and
they are open with probability p and closed otherwise. The word “cluster” is used in
place of connected component.) Naturally, as p becomes larger, Ld(p) will have more
adjacencies. There is a critical probability, denoted by pc, at which Ld(p) undergoes
a macroscopic change.

• For p < pc, the subcritical region, all connected components are finite.

• For p > pc, the supercritical region, there is precisely one infinite component.

• For p = pc, at the critical point, the situation is particularly delicate, as discussed
below.

The constant probabilities of bond percolation correspond to probabilities
parametrized p = c∕n in the Erdős–Rényi G(n, p). The value c = 1 is then the critical
probability in the Erdős–Rényi model.

• The infinite component in the bond percolation model is analogous to giant
components, components of size Ω(n), in the Erdős–Rényi model.

• The finite components in the bond percolation model are analogous to compo-
nents of size O(ln n) in the Erdős–Rényi model.

The uniqueness of the infinite component in bond percolation was an open ques-
tion (though the physicists “knew” it was true!) for many years. It was proven by
Aizenman, Kesten and Newman (1987), the Book Proof is given by Burton and Keane
(1989). This corresponds to the uniqueness of the giant component in G(n, p).

In the bond percolation model there are only three choices for p, that is, it can be
less than, greater than, or equal to pc. The barely subcritical and barely supercritical
phases of the Erdős–Rényi model correspond to an asymptotic study of the bond
percolation model as p approaches pc from below and from above, respectively. This
study is done through the use of critical exponents as described below.

Set 𝜃(p) = Pr[C(⃗0) is infinite]. For p < pc, 𝜃(p) = 0, as there are no infinite com-
ponents with probability 1. For p > pc, 𝜃(p) > 0. This corresponds to the infinite
component having positive density, strengthening the analogy to the giant compo-
nents of the Erdős–Rényi model. When p is barely greater than pc, there will be an
infinite component but its density will be very small. The critical exponent 𝛽 is that
real number so that

𝜃(p) = (p − pc)𝛽+o(1) as p → p+c .
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(As mathematicians we are aware that 𝜃(p) could behave erratically as p → p+c and 𝛽

might not exist. This holds for all critical exponents we discuss. For a physicist, there
is no doubt that the critical exponents do exist, and they can tell you the values to a
few decimal places!) Analogously, in the Erdős–Rényi model 𝜃(c) is the proportion
of points in the giant component, that y = y(c) > 0 satisfying (11.4). From (11.8),
y(1 + 𝜖) ∼ 2𝜖 as 𝜖 → 0+. Therefore, 𝛽 = 1.

The susceptibility, denoted by 𝜒(p) (not to be confused with chromatic number) is
given by 𝜒(p) = E[|C(⃗0)|]. For p > pc, 𝜒(p) = ∞ as with positive probability C(⃗0)
is infinite. For p < pc, 𝜒(p) is finite and 𝜒(p) → ∞ as p → p−c . That the susceptibility
approaches infinity at the same critical value for which an infinite component appears
is not at all obvious, and was one of the great developments of the field, due indepen-
dently to Alon and Boppana (1987) and Men’shikov (1986). When p is barely less
than pc, 𝜒(p) will be finite but large. The critical number 𝛾 is that real number so that

𝜒(p) = (pc − p)−𝛾+o(1) as p → p−c .

Analogously, in the Erdős–Rényi model we examine E[|C(𝑣)|] in G(n, 1−𝜖
n
). In the

subcritical region, this is well mirrored by T1−𝜖 , the total size of a subcritical Pois-
son branching process. We find E[T1−𝜖] by looking at each generation. There is one
root Eve, who has an expected number 1 − 𝜖 children. They behave similarly, and so
Eve has an expected number (1 − 𝜖)2 of grandchildren. This continues, there are an
expected number (1 − 𝜖)i nodes in the ith generation so that

E[T1−𝜖] =
∞∑

i=0

(1 − 𝜖)i = 𝜖
−1

precisely. Therefore 𝛾 = 1.
While 𝜒(p) is infinite in the supercritical region, we can examine the “finite

portion” of Ld(p). The finite susceptibility 𝜒
f is given by

𝜒
f (p) = E

[|C(⃗0)| conditional on C(⃗0) being finite
]

.

When p is barely greater than pc, 𝜒 f (p) will be finite but large. The critical number
𝛾
′ is that real number so that

𝜒
f (p) = (p − pc)−𝛾

′+o(1) as p → p+c .

The Erdős–Rényi analog is E [|C(𝑣)|] in G(n, 1+𝜖
n
), conditional on 𝑣 not being in

the giant component. In G(n, 1+𝜖
n
), |C(𝑣)| has basically distribution T po

1+𝜖 , with the
value T po

1+𝜖 = ∞ corresponding to being in the giant component. The finite analog
then corresponds to T po

1+𝜖 , conditional on it being finite. The probability T po
1+𝜖 is finite,

and approaches 1 as 𝜖 → 0+. The Poisson branching processes T po
1+𝜖,T

po
1−𝜖 have nearly

the same finite distribution. Conditioning on 𝑣 not being in the giant component,|C(𝑣)| then behaves like T po
1−𝜖 . Therefore 𝛾 ′ = 1.
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At the critical value p = pc, all components are finite. The distribution of |C(⃗0)|
will have a heavy tail. The critical number 𝛿 is that real number so that at p = pc

Pr[|C(⃗0)| ≥ s] = s−1∕𝛿+o(1) as s → ∞.

For the Erdős–Rényi analog we consider |C(𝑣)| in G(n, 1∕n). One needs be cautious
about the double limit. For any fixed s,

lim
n→∞

Pr [|C(𝑣)| ≥ s] = Pr
[
T po

1 ≥ s
]
= Θ(s−1∕2)

from (11.6). Therefore 𝛿 = 2.
We further examine the gap exponent, denoted by Δ. In the subcritical region

the distribution of |C(0⃗)| drops off exponentially. For each k ≥ 1, it has a finite kth
moment. The hypothetical quantity Δ is such that

E[|C(⃗0)|k+1]

E[|C(⃗0)|k] = (pc − p)−Δ+o(1).

The belief is that Δ does not depend on the choice of k. In the supercritical region,
the belief is that the same asymptotics hold when the infinite component is erased.
More precisely, the belief is that

E[|C(⃗0)|k+1 given C(⃗0) is finite]

E[|C(⃗0)|k given C(⃗0) is finite]
= (pc − p)−Δ+o(1)

for all k ≥ 1. In the Erdős–Rényi analog, the distribution of C(𝑣) in G(n, 1−𝜖
n
) mirrors

that of T po
1−𝜖 . (The supercritical G(n, 1+𝜖

n
), with its giant component erased, behaves

similarly.) From Section 11.4, Pr[T po
1−𝜖 = s] drops like s−3∕2 until k reaches Θ(𝜖−2)

when it begins its exponential drop-off. The region of exponential drop-off has neg-
ligible effect on the finite moments. The kth moment of T po

1−𝜖 is basically the sum of

s−3∕2sk for s = O(𝜖−2), which is of order (𝜖−2)k+
1
2 , or 𝜖−2k−1. The ratio of the (k + 1)th

and kth moments is then Θ(𝜖−2). Therefore Δ = 2.
For bond percolation in Zd, define the triangle function

T(p) =
∑

x⃗,y⃗∈Zd

Pr[⃗0 ↔ x⃗] Pr[⃗0 ↔ y⃗] Pr[x⃗ ↔ y⃗],

where x⃗ ↔ y⃗ means that x⃗, y⃗ lie in the same component. In Aizenman and Newman
(1984), the following condition was introduced:

Triangle condition: T(pc) < ∞.
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They showed that, when the triangle condition holds, some of the conditions for mean
field theory (as discussed below) are valid. For the Erdős–Rényi percolation analog
we fix a vertex 𝑣 of G(n, p) and define the discrete triangle function

T(p) =
∑
x,y

Pr[𝑣 ↔ x] Pr[𝑣 ↔ y] Pr[𝑣 ↔ y].

The critical probability pc is replaced by p = n−1. Finiteness is replaced by the bound-
edness giving the

Discrete triangle condition: T(p) = O(1).

The contribution to T(p) when two or three of 𝑣, x, y are equal is easily bounded,
leaving the contribution from all triples 𝑣, x, y of distinct vertices. As all pairs behave
the same and there are (n − 1)(n − 2) ∼ n2 terms,

T(p) ∼ O(1) + n2 Pr[𝑣 ↔ x]3

and
Pr[𝑣 ↔ x] =

∑
t

Pr[|C(𝑣)| = t] t − 1
n − 1

∼ n−1
∑

t

t Pr[|C(𝑣)| = t].

We know that Pr[|C(𝑣)| = t] behaves like t−3∕2 until t reachesΘ(n2∕3) and then drops
off exponentially. Ignore constants

∑
t

t Pr[|C(𝑣)| = t] = Θ
⎛⎜⎜⎝

∑
t=Θ(n2∕3)

tt−3∕2
⎞⎟⎟⎠ = Θ((n2∕3)1∕2).

Now Pr[𝑣 ↔ x] = Θ(n−2∕3). (Basically, the main contribution to Pr[𝑣 ↔ x] comes
when 𝑣 lies in a component of size Θ(n2∕3), even though that rarely occurs.) The
triangle condition does hold as

T(p) = O(1) + O(n2)Θ(n−2∕3)3 = O(1).

The discrete triangle condition does not hold in the barely supercritical region.
There, Pr[𝑣 ↔ x] is dominated by the probability that both 𝑣,𝑤 lie in the dominant
component. As the dominant component has size ≫ n2∕3, Pr[𝑣 ↔ x] ≫ n−2∕3, and
T(p) ≫ 1. This is not mere serendipity. Rather, the boundedness of T(p) provides
a natural boundary between the critical window and the barely supercritical region
for discrete random structures. This connection is explored in depth in Borgs et al.
(2005) and the more recent lecture notes Slade (2006).

Hara and Slade (1990) (see also the survey Hara and Slade (1994)) proved that
the triangle condition holds in the bond percolation model for sufficiently high
dimensions d. (More precisely, they showed that T(p) could be made very small by
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taking p slightly less than pc. Their argument works for d ≥ 19 and for all d > 6
with a somewhat different model. It is strongly believed that the condition does hold
for all d > 6.) Building on that, they found that the critical exponent values 𝛽 = 1,
𝛾 = 𝛾

′ = 2, 𝛿 = 2, Δ = 2 hold for those d. Mathematical physicists have a term
mean field, which, quoting Grimmett, “permits several interpretations depending
on context.” A commonly held requirement is that the critical exponents have the
values given above. Thus bond percolation for d ≥ 19 is regarded as exhibiting mean
field behavior. Using the analogs described above, it seems reasonable to say that the
Erdős–Rényi model exhibits mean field behavior.

11.12 EXERCISES

1. Consider the Poisson branching model with mean c = 1 and root Eve. For n ≥ 3,
let An be the event where Eve has precisely two children, Dana and Fan, and that
the total tree size T = n. Let X be the size of the subtree with root Dana. For each

j ≥ 1, find lim
n→∞

Pr[X = j | An]. Find an asymptotic formula for Pr
[

n
3
< X <

2n
3

]
.

2. Consider the binomial branching model with parameters m, p, and mp > 1. Set
y = y(m, p) = Pr[T = ∞]. Give an implicit equation for y analogous to (11.4).
With m fixed set mp = (1 + 𝜖). Find lim

𝜖→0+
y(m,p)

𝜖

.

3. Let c > 1. Let Zi, i = 1, 2,…, be independent Poisson variables with mean c. For
a > 1 consider the walk defined by the initial condition Y1 = a and recursion
Yt = Yt−1 + Zi − 1 for t ≥ 2. Use Chernoff bounds to show lim

a→∞

∑
t≥2 Pr[Yt ≤ 0] =

0. Use this to show that the walk defined by initial condition Y0 = 1 and recursion
Yt = Yt−1 + Zt − 1 for t ≥ 1 has a positive probability of being positive for all t.

4. An Openended Computer Experiment. Begin with vertices 1,… , n (n = 106 is
very quick when done right) and no edges. In each round, pick two random ver-
tices and add an edge between them. Use a Union-Find algorithm to keep track
of the components and the component sizes. Parametrize round number E by

E∕
(

n
2

)
= 1

n
+ 𝜆n−4∕3 and concentrate on the region −4 ≤ 𝜆 ≤ +4. Update the

10 largest component sizes, noting particularly when two of the ten largest com-
ponents merge. Watch the barely subcritical picture at 𝜆 = −4 turn into a barely
supercritical picture at 𝜆 = +4 as the bulk of the moderate size components merge
to form a dominant component.



THE PROBABILISTIC LENS:
Long paths in the
supercritical regime

As described in the last chapter, when p = 1+𝜖
n

, the graph G(n, p) contains, almost
surely, a linear size connected component. Ajtai, Komlós, and Szemerédi proved that
in fact it almost surely contains a path of linear length.

Theorem 1 [Ajtai, Komlós and Szemerédi (1981)] For a fixed small real 𝜖 > 0
and p = 1+𝜖

n
, the random graph G = G(n, p) contains, almost surely, a path of length

at least 𝜖
2n
12

.

The constant 1
12

can be easily improved, and we make no attempt to optimize
it here.

We describe here a beautiful, short proof, due to Krivelevich and Sudakov (2013).
The idea is to run a Depth First Search (DFS) algorithm on the graph, generating
it while running the algorithm. The DFS algorithm is a standard graph-searching
procedure. Let [n] = {1, 2,… , n} be the (ordered) set of vertices of the graph. The
algorithm maintains three pairwise disjoint sets of vertices, B (Black), P (Gray), and
W (White) whose union is [n], where B is the set of vertices whose exploration is
already complete, P is a path consisting of the vertices that have been visited already
but whose exploration has not ended, and W are the vertices that have not been
revealed yet. At the beginning, W = [n] is the set of all vertices of the graph, and
B = P = ∅, and at the end, B = [n] and W = P = ∅. At each round of the algorithm,
while W ∪ P ≠ ∅, if the path P is empty, the algorithm selects the first vertex in W and
shifts it to P, creating a path of one vertex. If P is nonempty, let 𝑣 be its last vertex.
The algorithm queries, in order, the existence of edges from 𝑣 to W and picks the first



THE PROBABILISTIC LENS: LONG PATHS IN THE SUPERCRITICAL REGIME 221

neighbor of 𝑣 in W, if there is such a neighbor, appending it to the end of the path. If
there is no such neighbor, 𝑣 is shifted to B. To complete the exploration of the graph,
when P = W = ∅ and B = [n], the algorithm queries all remaining pairs of vertices
in B which have not been queried before.

The crucial properties of the algorithm are that during its process P is always a
path, all pairs of vertices from B to W have been queried, and there are no edges
between B and W, and that in each round a vertex moves, either from the path P to
B, or from W to the path P.

We set N0 = 𝜖n2

2
and analyze the algorithm until N0 queries have been made. To

do so, consider a run of DFS on the random graph G(n, p) on the set of vertices [n],
where N =

(
n
2

)
, p = 1+𝜖

n
and the algorithm is fed with a sequence of i.i.d. Bernoulli

variables X1,X2,… ,XN , each being 1 with probability p. When the algorithm makes
its query number i about a pair of vertices, it gets a positive answer (i.e., an edge) if
Xi = 1 and a negative answer (a non-edge) if Xi = 0. This clearly generates a random
graph G(n, p) and enables us to establish the existence of a long path by analyzing

the properties of the sequence {Xi}
N
i=1. The only property of the sequence we will use

is that for N0 as above, the sum
∑N0

i=1 Xi is, almost surely, not much smaller than its
expected value. Without trying to optimize the constants, we require

N0∑
i=1

Xi ≥ pN0 −
𝜖

2n
12

= 𝜖n
2

+ 5𝜖n2

12
.

By Chernoff’s or Chebyshev’s Inequality, this occurs almost surely provided 𝜖
3n

tends to infinity, (indeed the argument works also when 𝜖 = 𝜖(n) approaches zero
appropriately slowly). We stress the fact that the only assumption about the sequence
(Xi) is that the number of 1’s it contains among its first N0 terms is not far less than its
expectation. This is a pretty mild assumption, but as the proof below shows it suffices
to ensure the existence of a long path.

Suppose, for contradiction, that the graph contains no path of length 𝜖
2n
12

. In that

case, during the course of the algorithm the size of P is always smaller than 𝜖
2n
12

. We
first claim that after N0 queries, |B| < n∕3. Indeed, otherwise sometime before that|B| has been of size exactly n∕3, as vertices join B one by one. Since |P| ≤ 𝜖

2n
12

< n∕3,
at that point |W| = |[n] − B − P| ≥ n∕3 and hence, as all pairs of vertices between
B and W have already been queried, the number of queries up to that point exceeds
n∕3 ⋅ n∕3 = n2∕9 > N0, which is a contradiction. Therefore, indeed, after N0 queries
B is of size smaller than n∕3. On the other hand, since every positive answer shifts
a vertex from W to P, the assumption about the sequence (Xi) implies that after N0

queries |B ∪ P| ≥ 𝜖n
2
+ 5𝜖2n

12
. As the size of P is smaller than 𝜖

2n
12

, it follows that

|B| ≥ 𝜖n
2

+ 5𝜖2n
12

− 𝜖
2n

12
= 𝜖n

2
+ 𝜖

2n
3

.
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As |W| = n − |B| − |P| ≥ n − |B| − 𝜖
2n
12

and |B| < n∕3, this implies that

|B‖W| ≥(
𝜖n
2

+ 𝜖
2n
3

)(
n − 𝜖n

2
− 𝜖

2n
3

− 𝜖
2n

12

)

= 𝜖n2

2
+ 𝜖

2n2

3
− 𝜖

2n2

4
− O(𝜖3)n2

>

𝜖n2

2
= N0.

This is impossible, as the number of queries is only N0 and yet all pairs of ver-
tices from B to W have been queried already. This establishes the existence of the
required path.



12
Circuit Complexity

It is not knowledge, but the act of learning, not possession but the act of getting there,
which grants the greatest enjoyment. When I have clarified and exhausted a subject,
then I turn away from it, in order to go into darkness again; the never-satisfied man is so
strange – if he has completed a structure then it is not in order to dwell in it peacefully,
but in order to begin another. I imagine the world conqueror must feel thus, who, after
one kingdom is scarcely conquered, stretches out his arms for another.
–Karl Friedrich Gauss

12.1 PRELIMINARIES

A Boolean function f = f (x1,… , xn) on the n variables x1, x2,… , xn is simply a
function f ∶ {0, 1}n → {0, 1}. In particular, 0, 1, x1 ∧ · · · ∧ xn, x1 ∨ · · · ∨ xn, x1 ⊕

· · ·⊕ xn denote, as usual, the two constant functions, the And function (whose
value is 1 iff xi = 1 for all i), the Or function (whose value is 0 iff xi = 0 for all
i), and the Parity function (whose value is 0 iff an even number of variables xi is
1), respectively. For a function f , we let f = f ⊕ 1 denote its complement Not f.
The functions xi and xi are called atoms. In this section we consider the problem
of computing various Boolean functions efficiently. A circuit is a directed, acyclic
graph, with a special vertex with no outgoing edges called the Output vertex.
Every vertex is labeled by a Boolean function of its immediate parents, and the
vertices with no parents (i.e., those with no ingoing edges) are labeled either by

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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∨
∧

+

x1

∧

x2 x3

Figure 12.1 A Boolean circuit.

one of the variables xi or by a constant 0 or 1. For every assignment of binary
values to each variable xi, one can compute, recursively, the corresponding value
of each vertex of the circuit by applying the corresponding function labeling it to
the already computed values of its parents. We say that the circuit computes the
function f = f (x1,… , xn) if for each xi ∈ {0, 1}, the corresponding value of the
output vertex of the circuit equals f (x1,… , xn). For example Figure 12.1 presents a
circuit computing f (x1, x2, x3) = (x1 ⊕ (x2 ∧ x3)) ∧ x1.

If every fanout in a circuit is at most 1 (i.e., the corresponding graph is a tree), the
circuit is called a formula. If every fanin in a circuit is at most 2, the circuit is called a
binary circuit . Therefore the circuit in Figure 12.1 is binary , but it is not a formula.
The size of a circuit is the number of vertices in it, and its depth is the maximum length
(number of edges) of a directed path in it. The binary circuit complexity of a Boolean
function is the size of the smallest binary circuit computing it. An easy counting argu-
ment shows that for large n the binary circuit complexity of almost all the functions of
n variables is at least (1 + o(1))2n∕n. This is because the number of binary circuits of
size s on n variables can be shown to be less than (c(s + n))s, whereas the total number
of Boolean functions on n variables is 22n

. On the other hand, there is no known non-
linear, not to mention exponential (in n), lower bound for the binary circuit complexity
of any “explicit” function. By “explicit” here we mean an NP-function, that is, one of
a family {fni

}i≥1 of Boolean functions, where fni
has ni variables, ni → ∞, and there is

a nondeterministic Turing machine which, given ni and x1,… , xni
, can decide in (non-

deterministic) polynomial time (in ni) if fni
(x1,… , xni

) = 1. (An example for such a

family is the n
2
-clique function; here ni =

(
i
2

)
, the ni variables x1,… , xni

represent
the edges of a graph on i vertices, and fni

(x1,… , xni
) = 1 iff the corresponding graph

contains a clique on at least i∕2 vertices). Any nonpolynomial lower bound for the
binary circuit complexity of an explicit function would imply (among other things)
that P ≠ NP and thus solve the arguably most important open problem in theoretical



RANDOM RESTRICTIONS AND BOUNDED-DEPTH CIRCUITS 225

computer science. Unfortunately, at the moment, the best known lower bound for the
binary circuit complexity of an explicit function of n variables is only 3n, (see Blum
(1984), Paul (1977)). However, several nontrivial lower bounds are known when we
impose certain restrictions on the structure of the circuits. Most of the known proofs of
these bounds rely heavily on probabilistic methods. In this chapter we describe some
of these results. We note that there are many additional beautiful known results about
circuit complexity ; see, for example, Wegener (1987) and Karchmer and Wigderson
(1990). Those included here are not only among the crucial ones but also represent the
elegant methods used in this field. Since most results in this chapter are asymptotic,
we assume, throughout the chapter, whenever needed, that the number of variables
we have is sufficiently large.

12.2 RANDOM RESTRICTIONS AND BOUNDED-DEPTH CIRCUITS

Let us call a Boolean function G a t-And-Or if it can be written as an And of an
arbitrary number of functions, each being an Or of at most t atoms, that is, G = G1 ∧
· · · ∧ G

𝑤
, where Gi = yi1 ∨ · · · ∨ yiai

, ai ≤ t and each yj is an atom. Similarly, we call
a Boolean function an s-Or-And, if it can be written as an Or of And gates, each
containing at most s atoms. A minterm of a function is a minimal assignment of
values to some of the variables that forces the function to be 1. Its size is the number
of variables whose values are set. Notice that if each of the minterms of a function
is of size at most s, then it is an s-Or-And (the converse is not true in general, but
will not be needed here). A restriction is a map 𝜌 of the set of indices {1,… , n} to
the set {0, 1, ∗ }. The restriction of the function G = G(x1,… , xn) by 𝜌, denoted by
G|

𝜌
, is the Boolean function obtained from G by setting the value of each xi for i ∈

𝜌
−1{0, 1} to 𝜌(i), and leaving each xj for j ∈ 𝜌

−1(∗) as a variable. Thus, for example,
if G(x1, x2, x3) = (x1 ∧ x2) ∨ x3 and 𝜌(1) = 0, 𝜌(2) = 𝜌(3) =∗, then G|

𝜌
= x3. For 0 ≤

p ≤ 1, a random p-restriction is a random restriction 𝜌 defined by choosing, for each
1 ≤ i ≤ n independently, the value of 𝜌(i) according to the following distribution:

Pr[𝜌(i) =∗] = p, Pr[𝜌(i) = 0] = Pr[𝜌(i) = 1] = (1 − p)∕2 . (12.1)

Improving results of Furst, Saxe and Sipser (1984), Ajtai (1983) and Yao (1985),
Håstad (1988) proved the following result, which is very useful in establishing lower
bounds for bounded-depth circuits.

Lemma 12.2.1 [The Switching Lemma] Let G = G(x1,… , xn) be a t-And-Or,
that is, G = G1 ∧ G2 ∧ · · · ∧ G

𝑤
, where each Gi is an Or of at most t atoms. Let 𝜌 be

the random restriction defined by (12.1). Then

Pr[G|
𝜌

is not an (s − 1)-Or-And]

≤ Pr[G|
𝜌

has a minterm of size ≥ s] ≤ (5pt)s .
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Proof. Let Es be the event that G|
𝜌

has a minterm of size at least s. To bound Pr[Es],
we prove a stronger result; for any Boolean function F

Pr[Es|F|𝜌 ≡ 1] ≤ (5pt)s . (12.2)

Here we agree that, if the condition is unsatisfied, then the conditional probability is 0.
Lemma 12.2.1 is obtained from (12.2) by taking F ≡ 1. We prove (12.2) by induction
on 𝑤. For 𝑤 = 0,G ≡ 1 and there is nothing to prove. Assuming (12.2) holds when-
ever the number of Gi is less than 𝑤, we prove it for 𝑤. Put G = G1 ∧ G∗, where
G∗ = G2 ∧ · · · ∧ G

𝑤
, and let E∗

s be the event where G∗|
𝜌

has a minterm of size at
least s. By interchanging, if necessary, some of the variables with their complements,
we may assume, for convenience, that G1 = ∨

i∈T
xi, where |T| ≤ t. Either G1|𝜌 ≡ 1 or

G1|𝜌 ≢ 1. In the former case, Es holds if and only if E∗
s holds and, hence, by induction

Pr[Es|F|𝜌 ≡ 1,G1|𝜌 ≡ 1] = Pr[E∗
s |( f ∧ G1)|𝜌 ≡ 1] ≤ (5 pt)s . (12.3)

The case G1|𝜌 ≢ 1 requires more work. In this case, any minterm of G|
𝜌

must
assign a value 1 to at least one xi, for i ∈ T. For a nonempty Y ⊆ T and for a function
𝜎 ∶ Y → {0, 1} which is not identically 0, let Es(Y, 𝜎) be the event where G|

𝜌
has a

minterm of size at least s which assigns the value 𝜎(i) to xi for each i ∈ Y and does
not assign any additional values to variables xj with j ∈ T. By the preceding remark

Pr[Es|F|𝜌 ≡ 1,G1|𝜌 ≢ 1] ≤
∑
Y ,𝜎

Pr[Es(Y, 𝜎)|F|𝜌 ≡ 1,G1|𝜌 ≢ 1] . (12.4)

Observe that the condition G1|𝜌 ≢ 1 means precisely that 𝜌(i) ∈ {0, ∗ } for all i ∈ T
and, hence, for each i ∈ T

Pr[𝜌(i) =∗ |G1|𝜌 ≢ 1] =
p

p + (1 − p)∕2
= 2p∕(1 + p) .

Thus, if |Y| = y,

Pr[𝜌(Y) =∗ |G1|𝜌 ≢ 1] ≤
(

2p

1 + p

)y

.

The further condition F|
𝜌
≡ 1 can only decrease this probability. This can be shown

using the FKG inequality (see Chapter 6). It can also be shown directly as follows:
For any fixed 𝜌

′ ∶ N − Y → {0, 1, ∗ }, where N = {1,… , n}, we claim that

Pr[𝜌(Y) =∗ |F|
𝜌
≡ 1,G1|𝜌 ≢ 1, 𝜌|N−Y = 𝜌

′] ≤
(

2p

1 + p

)y

.

Indeed, the given 𝜌
′ has a unique extension 𝜌 with 𝜌(Y) =∗. If that 𝜌 does not satisfy

the above conditions, then the conditional probability is zero. If it does, then so do
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all extensions 𝜌 with 𝜌(i) ∈ {0, ∗ } for i ∈ Y, and so the inequality holds in this case
too. As this holds for all fixed 𝜌

′, we conclude that indeed

Pr[𝜌(Y) =∗ |F|
𝜌
≡ 1,G1|𝜌 ≢ 1] ≤

(
2p

1 + p

)y

≤ (2p)y . (12.5)

Let 𝜌′ ∶ T → {0, ∗ } satisfy 𝜌(Y) =∗, and consider all possible restrictions 𝜌 sat-
isfying 𝜌|

T
= 𝜌

′. Under this condition, 𝜌 may be considered as a random restriction

on N − T. The event F|
𝜌
≡ 1 reduces to the event F |

𝜌|N−T
≡ 1, where F is the And

of all functions obtained from F by substituting the values of xi according to 𝜌
′ for

those i ∈ T with 𝜌
′(i) = 0, and by taking all possibilities for all the other variables xj

for j ∈ T. If the event Es(Y, 𝜎) occurs, then G∗|
𝜌𝜎

has a minterm of size at least s − y
that does not contain any variable xi with i ∈ T − Y. But this happens if and only if
G |

𝜌|N−T
has a minterm of size at least s − y, whereG is the function obtained from G∗

by substituting the values of xj for j ∈ Y according to 𝜎, the values of xi for i ∈ T − Y
and 𝜌

′(i) = 0 according to 𝜌
′ and by removing all the variables xk with k ∈ T − Y and

𝜌
′(k) =∗. Denoting this event by Ẽs−y, we can apply induction and obtain

Pr[Es(Y, 𝜎)|F|𝜌 ≡ 1,G1|𝜌 ≢ 1, 𝜌|T = 𝜌
′] ≤ Pr[ ̃Es−y|F |𝜌 ≡ 1] ≤ (5pt)s−y .

Since any 𝜌 with F|
𝜌
≡ 1, G1|𝜌 ≡ 1, 𝜌(Y) =∗ must have 𝜌|T = 𝜌

′ for some 𝜌
′ of this

form, and since the event Es(Y, 𝜎) may occur only if 𝜌(Y) =∗, we conclude that

Pr[Es(Y, 𝜎)|F|𝜌 ≡ 1,G1|𝜌 ≢ 1, 𝜌(Y) =∗] ≤ (5pt)s−y ,

and, by (12.5)

Pr[Es(Y, 𝜎)|F|𝜌 ≡ 1,G1|𝜌 ≢ 1]
= Pr[𝜌(Y) =∗ |F|

𝜌
≡ 1,G1|𝜌 ≢ 1]

⋅ Pr[Es(Y, 𝜎)|F|𝜌 ≡ 1,G1|𝜌 ≢ 1, 𝜌(Y) =∗]
≤ (2p)y(5pt)s−y

.

Substituting in (12.4) and using the fact that |T| ≤ t and that

t∑
y=1

(2y − 1)2y∕(5yy!) ≤ 2
5
+

∞∑
y=2

(4∕5)y

y!
= 2

5
+ e4∕5 − 1 − 4

5
< 1

we obtain

Pr[Es|F|𝜌 ≡ 1,G1|𝜌 ≢ 1]

≤

|T|∑
y=1

(|T|
y

)
(2y − 1)(2p)y(5pt)s−y

≤ (5pt)s
t∑

y=1

ty

y!
(2y − 1)

( 2
5t

)y

= (5pt)s
t∑

y=1

(2y − 1) ⋅ 2y

5y ⋅ y!
≤ (5pt)s .
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This, together with (12.3), gives

Pr[Es|F|𝜌 ≡ 1] ≤ (5pt)s

completing the induction and the proof. ◾

By taking the complement of the function G in Lemma 12.2.1 and applying De
Morgan’s rules, one clearly obtains its dual form: If G is a t-Or-And and 𝜌 is the
random restriction given by (12.1) then

Pr[G|
𝜌

is not an (s − 1)-And-Or] ≤ (5pt)s .

We now describe an application of the Switching Lemma, which supplies a lower
bound to the size of circuits of small depth that compute the parity function x1 ⊕

· · ·⊕ xn. We consider circuits in which the vertices are arranged in levels, namely
those in the first level are atoms (i.e., variables or their complements), and each other
gate is either an Or or an And of an arbitrary number of vertices from the previ-
ous level. We assume that the gates in each level are either all And gates or all Or
gates, and that the levels alternate between And levels and Or levels. A circuit of this
form is called a C(s, s′, d, t)-circuit if it contains at most s gates, at most s′ of which
are above the second level, its depth is at most d, and the fanin of each gate in its
second level is at most t. Thus, for example, the circuit that computes the comple-
ment of the parity function by computing an Or of the 2n−1 terms x𝜖1

1 ∧ · · · ∧ x𝜖n
n ,

where
(
𝜖1,… , 𝜖n

)
ranges over all even binary vectors and x𝜖i

i = xi ⊕ 𝜖i ⊕ 1, is a
C(2n−1 + 1, 1, 2, n)-circuit.

Theorem 12.2.2 Let f = f (x1,… , xn) be a function, and let C be a C(∞, s, d, t)-
circuit computing f , where s ⋅

(
1
2

)t
≤ 0.5. Then either f or its complement f

has a minterm of size at most n − n
2⋅(10t)d−2 + t.

Proof. Let us apply to C, repeatedly, d − 2 times a random 1∕(10t)-restriction. Each
of these random restrictions, when applied to any bottom subcircuit of depth 2, trans-

forms it by Lemma 12.2.1 with probability at least 1 −
(

1
2

)t
from a t-Or-And to a

t-And-Or (or conversely). If all these transformations succeed, we can merge the new
And gates with these from the level above them and obtain a circuit with a smaller

depth. As the total size of the circuit is at most s, and s
(

1
2

)t
≤ 0.5, we conclude

that with probability at least 1∕2, all transformations succeed and C is transformed
into a C(∞, 1, 2, t)-circuit. Each variable xi, independently, is still a variable (i.e., has
not been assigned a value) with probability 1

(10t)d−2 . Thus, the number of remaining

variables is a binomial random variable with expectation n
(10t)d−2 and a little smaller

variance. By the standard estimates for binomial distributions (see Appendix A) the
probability that at least n

2⋅(10t)d−2 variables are still variables is more than 1∕2. There-

fore, with positive probability, at most n − n
2⋅(10t)d−2 of the variables have been fixed
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and the resulting restriction of f has a C(∞, 1, 2, t)-circuit, that is, its value can be fixed
by assigning values to at most t additional variables. This completes the proof. ◾

Corollary 12.2.3 For any d ≥ 2, there is no

C
(
∞,

1
2
⋅ 2

1
10

n1∕(d−1)
, d,

1
10

n1∕(d−1)
)

-circuit

that computes the parity function f (x1,… , xn) = x1 ⊕ · · ·⊕ xn.

Proof. Assuming there is such a circuit, we obtain, by Theorem 12.2.2, that the value
of f can be fixed by assigning values to at most n − 1

2
n1∕(d−1) + 1

10
n1∕(d−1)

< n vari-
ables. This is false, and hence there is no such circuit. ◾

The estimate in Corollary 12.2.3 is, in fact, nearly best possible. Since every
C(s, s′, d, t)-circuit can be transformed into a C((t + 1)s, s, d + 1, 2)-circuit (by
replacing each atom by an Or or And of two copies of itself), Corollary 12.2.3 easily
implies that the depth d of any C(s, s′, d, t)-circuit of polynomial size that computes
the parity of n bits is at least Ω(log n∕ log log n). This lower bound is also optimal.

12.3 MORE ON BOUNDED-DEPTH CIRCUITS

In the previous section we saw that the parity function is hard to compute in small
depth using And,Or, and Not gates. It turns out that, even if we allow the use of
parity gates (in addition to the And, Or, and Not gates), there are still some relatively
simple functions that are hard to compute. Such a result was first proved by Razborov
(1987). His method was modified and strengthened by Smolensky (1987). For an
integer k ≥ 2, let Modk(x1, x2,… , xn) be the Boolean function whose value is 1 iff
Σxi ≢ 0 (mod k). Smolensky showed that, for every two powers p and q of distinct
primes, the function Modp cannot be computed in a bounded-depth polynomial-size
circuit that uses And,Or,Not, and Modq gates. Here we present the special case of
this result in which q = 3 and p = 2.

Let C be an arbitrary circuit of depth d and size s consisting of And,Or,Not, and
Mod3 gates. A crucial fact, due to Razborov, is the assertion that the output of C can
be approximated quite well (depending on d and s) by a polynomial of relatively small
degree over GF(3). This is proved by applying the probabilistic method as follows:
Let us replace each gate of the circuit C by an approximate polynomial operation,
according to the following rules that guarantee that in each vertex in the new circuit
we compute a polynomial over GF(3), whose values are all 0 or 1 (whenever the input
is a 0-1 input).

(i) Each Not gate y is replaced by the polynomial gate (1 − y).
(ii) Each Mod3 gate Mod3(y1,… , ym) is replaced by the polynomial gate (y1 + y2

+ · · · + ym)2.
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The rule for replacement of Or and And gates is a little more complicated. Observe
that in the two previous cases (i) and (ii) there was no approximation; the new gates
compute precisely what the old ones did, for all possible Boolean values of the vari-
ables. This can, in principle, be done here too. An And gate y1 ∧ · · · ∧ ym should
simply be replaced by the product y1 · · · ym. An Or gate y1 ∨ · · · ∨ ym can then be
computed by de Morgan’s rules. Since y1 ∨ · · · ∨ ym = (y1 ∧ · · · ∧ ym) and y is real-
ized by (1 − y), this would give

1 − (1 − y1)(1 − y2) · · · (1 − ym) . (12.6)

The trouble is that this procedure would increase the degree of our polynomials too
much. Hence, we need to be a little more tricky. Let 𝓁 be an integer, to be chosen later.
Given an Or gate y1 ∨ · · · ∨ ym, we choose 𝓁 random subsets I1,… , I𝓁 of {1,… ,m},
where for each 1 ≤ i ≤ 𝓁 and for each 1 ≤ j ≤ m independently Pr[j ∈ Ii] = 1∕2.
Observe that for each fixed i, 1 ≤ i ≤ 𝓁, the sum (

∑
j∈Ii

yj)2 over GF(3) is certainly 0 if
y1 ∨ · · · ∨ ym = 0, and is 1 with probability at least 1∕2 if y1 ∨ · · · ∨ ym = 1. Hence, if
we compute the Or function of the 𝓁 expressions (

∑
j∈Ii

yj)2, (1 ≤ i ≤ 𝓁), this function
is 0 if y1 ∨ · · · ∨ ym = 0 and is 1 with probability at least 1 − (1∕2)𝓁 if y1 ∨ · · · ∨ ym
= 1. We thus compute the Or and write it as a polynomial, in the way explained in
(12.6). This gives

1 −
𝓁∏

i=1

⎛⎜⎜⎝1 −

(∑
j∈Ii

yj

)2⎞⎟⎟⎠ . (12.7)

Therefore, in our new circuit we replace each Or gate by an approximation poly-
nomial gate of the form described in (12.7). Once we have an approximation to an Or
gate, we can obtain the corresponding one for an And gate by applying de Morgan
rules. Since y1 ∧ · · · ∧ ym = (y1 ∨ · · · ∨ ym), we replace each And gate of the form
y1 ∧ · · · ∧ ym by

𝓁∏
i=1

⎛⎜⎜⎝1 −

[∑
j∈Ii

(1 − yj)

]2⎞⎟⎟⎠ . (12.8)

Observe that the polynomials in (12.7) and (12.8) are both of degree at most 2𝓁.
Given the original circuit C of depth d and size s, we can now replace all its gates

by our approximating polynomial gates and get a new circuit CP, which depends
on all the random choices made in each replacement of each of the And∕Or gates.
The new circuit CP computes a polynomial P(x1,… , xn) of degree at most (2𝓁)d.
Moreover, for each fixed Boolean value of x1, x2,… , xn, the probability that all the
new gates compute exactly what the corresponding gates in C computed is at least
1 − s∕2𝓁 . Therefore, the expected number of inputs on which P(x1,… , xn) is equal
to the output of C is at least 2n(1 − s∕2𝓁). We have thus proved the following:

Lemma 12.3.1 For any circuit C of depth d and size s on n Boolean variables that
uses Not, Or, And, and Mod3 gates, and for any integer 𝓁, there is a polynomial
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P = P(x1,… , xn) of degree at most (2𝓁)d over GF(3) whose value is equal to the
output of C on at least 2n(1 − s∕2𝓁) inputs.

In order to apply this lemma for obtaining lower bounds for the size of any circuit
of the above type that computes the parity function, we need the following additional
combinatorial result.

Lemma 12.3.2 For n ≥ 20, there is no polynomial P(x1,… , xn) over GF(3) of degree
at most

√
n which is equal to the parity of x1,… , xn for a set S of at least 0.9 ⋅ 2n

distinct binary vectors (x1,… , xn).

Proof. Suppose this is false, and suppose S ⊂ {0, 1}n
, |S| ≥ 0.9 ⋅ 2n and P(x1,… , xn)

= x1 ⊕ · · ·⊕ xn for all (x1,… , xn) ∈ S. Define a polynomial Q = Q(y1,… , yn) by
Q = Q(y1,… , yn) = P(y1 + 2,… , yn + 2) − 2, and T = {(y1,… , yn) ∈ {1,−1}n ∶
(y1 + 2,… , yn + 2) ∈ S}, where all additions are in GF(3). Clearly, Q has

degree at most
√

n, and Q(y1,… , yn) =
n∏

i=1
yi for all (y1,… , yn) ∈ T. Let now

G = G(y1,… , yn) ∶ T → GF(3) be an arbitrary function. Extend it in an arbitrary
way to a function from (GF(3))n → GF(3), and write this function as a polynomial
in n variables. [Trivially, any function from (GF(3))n → GF(3) is a polynomial.
This follows from the fact that it is a linear combination of functions of the form
n∏

i=1
(yi − 𝜖i)(yi − 𝜖i − 1), where 𝜖i ∈ GF(3)]. Replace each occurrence of y2

i in this

polynomial by 1 to obtain a multilinear polynomial ̃G which agrees with G on T.

Now replace each monomial
∏
i∈U

yi, where |U| > n
2
+

√
n

2
by

∏
i∉U

yi ⋅ Q(y1,… , yn), and

replace this new polynomial by a multilinear one, ̃G′, again by replacing each y2
i by

1. Since for yi ∈ { ± 1},
∏
i∉U

yi ⋅
n∏

i=1
yi =

∏
i∈U

yi, G̃′ is equal to G on T and its degree

is at most n
2
+

√
n

2
. However, the number of possible G̃′ is 3

Σ
n
2 +

√
n

2
i=0

(
n
i

)
< 30.88⋅2n

,
whereas the number of possible G is 3|T| ≥ 30.9⋅2n

. This is impossible, and hence the
assertion of the lemma holds. ◾

Corollary 12.3.3 There is no circuit of depth d and size s ≤ 1
10

2
1
2

n1∕2d
computing the

parity of x1, x2,… , xn using Not,And,Or, and Mod3 gates.

Proof. Suppose this is false, and let C be such a circuit. Put 𝓁 = 1
2
⋅ n1∕2d. By Lemma

12.3.1, there is a polynomial P = P(x1,… , xn) over GF(3), whose degree is at most
(2𝓁)d =

√
n, which is equal to the parity of x1,… , xn on at least 2n(1 − s

2
1
2 n1∕2d

) ≥
0.9 ⋅ 2n inputs. This contradicts Lemma 12.3.2, and hence completes the proof. ◾
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12.4 MONOTONE CIRCUITS

A Boolean function f = f (x1,… , xn) is monotone if f (x1,… , xn) = 1 and xi ≤ yi
imply f (y1,… , yn) = 1. A binary monotone circuit is a binary circuit that contains
only binary And and Or gates. It is easy to see that a function is monotone if and only
if there is a binary monotone circuit that computes it. The monotone complexity of a
monotone function is the smallest size of a binary monotone circuit that computes it.
Until 1985, the largest known lower bound for the monotone complexity of a mono-
tone NP-function of n variables was 4n. This was considerably improved in the fun-
damental paper of Razborov (1985), where a bound of nΩ(log n) to the Cliquek-function
(which is 1 iff a given graph contains a clique of size k) was established. Shortly
afterwards, Andreev (1985) used similar methods to obtain an exponential lower
bound to a somewhat unnatural NP-function. Alon and Boppana (1987) strengthened
the combinatorial arguments of Razborov and proved an exponential lower bound for
the monotone circuit complexity of the clique function. In this section we describe
a special case of this bound by showing that there are no linear size monotone
circuits that decide whether a given graph contains a triangle. Although this result
is much weaker than the ones stated above, it illustrates nicely all the probabilistic
considerations in the more complicated proofs and avoids some of the combinatorial
subtleties, whose detailed proofs can be found in the above-mentioned papers.

Put n =
(

m
2

)
, and let x1, x2,… , xn be n Boolean variables representing the edges

of a graph on the set of vertices {1, 2,… ,m}. Let T = T(x1,… , xn) be the monotone
Boolean function whose value is 1 if the corresponding graph contains a triangle.
Clearly, there is a binary monotone circuit of size O(m3) computing T. Thus, the
following theorem is tight, up to a polylogarithmic factor:

Theorem 12.4.1 The monotone circuit complexity of T is at least Ω(m3∕log4m).

Before we present the proof of this theorem, we introduce some notations
and prove a simple lemma. For any Boolean function f = f (x1,… , xn), define
A( f ) = {(x1,… , xn) ∈ {0, 1}n ∶ f (x1,… , xn) = 1}. Clearly, A( f ∨ g) = A( f ) ∪ A(g)
and A( f ∧ g) = A( f ) ∩ A(g). Let C be a monotone circuit of size s computing the
function f = f (x1,… , xn). Clearly, C supplies a monotone straight-line program of
length s computing f , that is, a sequence of functions x1, x2,… , xn, f1,… , fs, where
fs = f and each fi, for 1 ≤ i ≤ s, is either an Or or an And of two of the previous
functions. By applying the operation A, we obtain a sequence A(C) of subsets
of {0, 1}n ∶ A−n = Axn

,… ,A−1 = Ax1
,A1,… ,As, where Axi

= A(xi),As = A( f ),
and each Ai, for 1 ≤ i ≤ s, is either a union or an intersection of two of the pre-
vious subsets. Let us replace the sequence A(C) by an approximating sequence
M(C) ∶ M−n = Mxn

= Axn
,… ,M−1 = Mx1

= Ax1
,M1,… ,Ms defined by replacing

the union and intersection operations in A(C) by the approximating operations ⊔ and
⊓, respectively. The exact definition of these two operations will be given later, in
such a way that, for all admissible M and L, the inclusions

M ⊔ L ⊇ M ∪ L and M ⊓ L ⊆ M ∩ L (12.9)
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will hold. Thus Mxi
= Axi

for all 1 ≤ i ≤ n, and if for some 1 ≤ j ≤ s we have Aj =
A𝓁 ∪ Ak, then Mj = M𝓁 ⊔ Mk, whereas if Aj = A𝓁 ∩ Ak, then Mj = M𝓁 ⊓ Mk. In the
former case, put 𝛿j

⊔
= Mj − (M𝓁 ∪ Mk) and 𝛿

j
⊓
= 𝜙, and in the latter case put 𝛿j

⊓
=

(M𝓁 ∩ Mk) − Mj and 𝛿
j
⊔
= 𝜙.

Lemma 12.4.2 For all members Mi of M(C)

Ai −

(⋃
j≤i

𝛿
j
⊓

)
⊆ Mi ⊆ Ai ∪

⋃
j≤i

𝛿
j
⊔

. (12.10)

Proof. We apply induction on i. For i < 0 Mi = Ai, and thus (12.10) holds. Assum-
ing (12.10) holds for all Mj with j < i, we prove it for i. If Ai = A𝓁 ∪ Ak, then, by the
induction hypothesis

Mi = M𝓁 ∪ Mk ∪ 𝛿
i
⊔
⊆ A𝓁 ∪ Ak ∪

⋃
j≤i

𝛿
j
⊔
= Ai ∪

⋃
j≤i

𝛿
j
⊔

and

Mi = M𝓁 ⊔ Mk ⊇ M𝓁 ∪ Mk ⊇

(
A𝓁 −

(⋃
j≤𝓁

𝛿
j
⊓

))
∪

(
Ak −

(⋃
j≤k

𝛿
j
⊓

))

⊇ Ai −

(⋃
j≤i

𝛿
j
⊓

)

as needed. If Ai = A𝓁 ∩ Ak, the proof is similar. ◾

Lemma 12.4.2 holds for any choice of the operations ⊔ and ⊓ that satisfies
(12.9). In order to prove Theorem 12.4.1, we define these operations as follows: Put
r = 100 log2m. For any set R of at most r edges on V = {1, 2,… ,m}, let ⌈R⌉ denote
the set of all graphs on V containing at least one edge of R. In particular, ⌈𝜙⌉ is the
empty set. We also let ⌈∗⌉ denote the set of all graphs. The elements of M(C) will
all have the form ⌈R⌉ or ⌈∗⌉. Note that Axi

= Mxi
is simply the set ⌈R⌉, where R is a

singleton containing the appropriate single edge. For two sets R1 and R2 of at most
r edges each, we define ⌈R1⌉ ⊓ ⌈R2⌉ = ⌈R1 ∩ R2⌉, ⌈R1⌉ ⊓ ⌈∗⌉ = ⌈R1⌉, and ⌈∗⌉ ⊓⌈∗⌉ = ⌈∗⌉. Similarly, if |R1 ∪ R2| ≤ r, we define ⌈R1⌉ ⊔ ⌈R2⌉ = ⌈R1 ∪ R2⌉,
whereas if |R1 ∪ R2| > r, then ⌈R1⌉ ⊔ ⌈R2⌉ = ⌈∗⌉. Finally ⌈∗⌉ ⊔ ⌈R1⌉ = ⌈∗⌉ ⊔⌈∗⌉ = ⌈∗⌉.

Proof [Theorem 12.4.1] We now prove Theorem 12.4.1 by showing that there is

no monotone circuit of size s <
(

m
3

)
∕2r2 computing the function T. Indeed, sup-

pose this is false, and let C be such a circuit. Let M(C) = Mxn
,… ,Mx1

,M1,… ,Ms
be an approximating sequence of length s obtained from C as described above. By
Lemma 12.4.2,

A(T) −

(⋃
j≤s

𝛿
j
⊓

)
⊆ Ms ⊆ A(T) ∪

⋃
j≤s

𝛿
j
⊔

. (12.11)

We consider two possible cases.
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Case 1 Ms = ⌈R⌉, where |R| ≤ r.
Let us choose a random triangle Δ on {1, 2,… ,m}. Clearly

Pr[Δ ∈ Ms] ≤
r ⋅ (m − 2)(

m
3

) <

1
2

.

Moreover, for each fixed j, j ≤ s

Pr[Δ ∈ 𝛿
j
⊓
] ≤ r2(

m
3

) .

This is because, if 𝛿j
⊓
≠ 𝜙, then 𝛿

j
⊓
= (⌈R1⌉ ∩ ⌈R2⌉) − ⌈R1 ∩ R2⌉ for some two sets

of edges R1,R2, each of cardinality at most r. The only triangles in this difference
are those containing an edge from R1 and another edge from R2 (and no edge of
both). Since there are at most r2 such triangles, the last inequality follows. Since

s <
(

m
3

)
∕2r2, the last two inequalities imply that Pr[Δ ∉ Ms and Δ ∉ ∪

j≤s
𝛿

j
⊓
] > 0

and thus there is such a triangleΔ. Since this triangle belongs to A(T), this contradicts
(12.11), showing that Case 1 is impossible.

Case 2 Ms = ⌈∗⌉.
Let B be a random spanning complete bipartite graph on V = {1, 2,… ,m}

obtained by coloring each vertex in V randomly and independently by 0 or 1 and
taking all edges connecting vertices with distinct colors. Since Ms is the set of all
graphs, B ∈ Ms. Also B ∉ A(T), as it contains no triangle. We claim that for every
fixed j, j ≤ s,

Pr[B ∈ 𝛿
j
⊔
] ≤ 2−

√
r∕2

<

1
m5

. (12.12)

Indeed, if 𝛿j
⊔
≠ 𝜙, then 𝛿j

⊔
= ⌈∗⌉ − (⌈R1⌉ ∪ ⌈R2⌉), where |R1 ∪ R2| > r. Consider the

graph whose set of edges is R1 ∪ R2. Let d be its maximum degree. By Vizing’s
Theorem, the set of its edges can be partitioned into at most d + 1 matchings. Thus

either d >

√
r

2
or the size of the maximum matching in this graph is at least

√
r∕2. It

follows that our graph contains a set of k =
√

r∕2 edges e1,… , ek, which form either
a star or a matching. In each of these two cases, Pr[ei ∈ B] = 1

2
and these events are

mutually independent. Hence

Pr[B ∉ ⌈R1⌉ ∪ ⌈R2⌉] ≤ 2−
√

r∕2

implying (12.12). Note that a similar estimate can be established without Vizing’s
Theorem by observing that B does not belong to (⌈R1⌉ ∪ ⌈R2⌉) if and only if the
vertices in any connected component of the graph whose edges are R1 ∪ R2 belong
to the same color class of B.

Since s <
(

m
3

)
∕2r2

< m5, Inequality (12.12) implies that there is a bipartite B

such that B ∈ Ms,B ∉ A(T), and B ∉ ∪
j≤s
𝛿

j
⊔

. This contradicts (12.11), and shows that

Case 2 is impossible and hence completes the proof of Theorem 12.4.1. ◾
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12.5 FORMULAE

Recall that a formula is a circuit in which every fanout is at most 1. Unlike in the case
of circuits, there are known superlinear lower bounds for the minimum size of formu-
lae computing various explicit NP-functions over the full binary basis. For a Boolean
function f = f (x1,… , xn), let us denote by L( f ) the minimum number of And and Or
gates in a formula that uses And,Or, and Not gates and computes f . By the de Morgan
rules, we may assume that all Not gates appear in the first level of this formula. We
conclude this chapter with a simple result of Subbotovskaya (1961), which implies
that for the parity function f = x1 ⊕ · · ·⊕ xn, L( f ) ≥ Ω(n3∕2). This bound has been
improved later by Khrapchenko (1971) to L( f ) = n2 − 1. However, we present here
only the weaker Ω(n3∕2) lower bound, not only because it demonstrates, once more,
the power of relatively simple probabilistic arguments but also because a modification
of this proof enabled Andreev (1987) to obtain an Ω(n5∕2∕(log n)O(1)) lower bound
for L(g) for another NP-function g = g(x1,… , xn). Håstad (1998), later improved this
lower bound to Ω(n3−o(1)). This is at present the largest known lower bound for the
formula complexity of an NP-function of n variables over a complete basis.

The method of Subbotovskaya (1961) is based on random restrictions similar to
the ones used in Section 12.2. The main lemma is the following:

Lemma 12.5.1 Let f = f (x1,… , xn) be a nonatom Boolean function of n vari-
ables. Then, there is an i, 1 ≤ i ≤ n, and an 𝜖 ∈ {0, 1} such that for the function
g = f (x1,… , xi−1, 𝜖, xi+1,… , xn) of n − 1variables obtained from f by substituting
xi = 𝜖 the following inequality holds:

(L(g) + 1) ≤
(

1 − 3
2n

)
(L( f ) + 1) ≤

(
1 − 1

n

)3∕2
(L( f ) + 1) .

Proof. Fix a formula F computing f with l = L( f ) And and Or gates. F can be rep-
resented by a binary tree each of whose l + 1 leaves is labeled by an atom xi or xi.
Let us choose, randomly, a variable xi, 1 ≤ i ≤ n according to a uniform distribution,
and assign to it a random binary value 𝜖 ∈ {0, 1}. When we substitute the values 𝜖
and 1 − 𝜖 to xi and xi, respectively, the number of leaves in F is reduced; the expected
number of leaves omitted in this manner is (l + 1)∕n. However, further reduction may
occur. Indeed, suppose a leaf is labeled xi and it feeds, say, an And gate xi ∧ H in F.
Observe that we may assume that the variable xi does not appear in the subformula
H, as otherwise F can be simplified by substituting xi = 1 in H. If xi = 𝜖 = 0, then H
can be deleted once we substitute the value for xi, thus further decreasing the number
of leaves. Since the behavior of this effect is similar for an Or gate (and also for xi
instead of xi), it follows that the expected number of additional leaves omitted is at
least (l + 1)∕2n. Hence the expected number of remaining leaves in the simplified
formula is at most (l + 1)[1 − 3

2n
], as claimed. ◾

By repeatedly applying Lemma 12.5.1, we obtain the following:

Corollary 12.5.2 If f = f (x1,… , xn) and L( f ) ≤ ( n
k
)3∕2 − 1, then one can assign val-

ues to n − k variables so that the resulting function g is an atom.
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Proof. Repeated application of Lemma 12.5.1 n − k times yields a g with

(L(g) + 1) ≤
n∏

i=k+1

(
1 − 1

i

)3∕2
(L( f ) + 1) = (k∕n)3∕2(L( f ) + 1) ≤ 1 .

Hence g is either xi or xi for some i. ◾

Corollary 12.5.3 For the parity function f = x1 ⊕ · · ·⊕ xn,

L( f ) >
(n

2

)3∕2
− 1 .

12.6 EXERCISES

1. Show that there exists a constant c such that the number of binary Boolean circuits
of size s on n variables is at most (c(s + n))s.

2. Let f be a Boolean formula in the n variables x1, x2,… , xn, where f is an And of
an arbitrary (finite) number of clauses, each clause is an Or of 10 literals, where
each literal is either a variable or its negation, and suppose each variable appears
(negated or unnegated) in at most 10 clauses. Prove that f is satisfiable.

3. (*) Prove that there is a bounded-depth, polynomial-size, monotone circuit of n
Boolean inputs x1, x2,… , xn, computing a function f whose value is 1 if

∑n
i=1 xi ≥

n∕2 + n∕ log n, and is 0 if
∑n

i=1 xi ≤ n∕2 − n∕ log n.



THE PROBABILISTIC LENS:
Maximal Antichains

A family  of subsets of {1,… , n} is called an antichain if no set of  is contained
in another.

Theorem 1 Let  be an antichain. Then∑
A∈

1(
n|A|
) ≤ 1 .

Proof. Let 𝜎 be a uniformly chosen permutation of {1,… , n}, and set


𝜎
= {{𝜎(j) ∶ 1 ≤ j ≤ i} ∶ 0 ≤ i ≤ n}.

(The cases i = 0, n give ∅, {1,… , n} ∈ , respectively.) Define a random variable

X = | ∩ 
𝜎
| .

We decompose
X =

∑
A∈

XA ,

where XA is the indicator random variable for A ∈ . Then

E[XA] = Pr[A ∈ 
𝜎
] = 1(

n|A|
) ,
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since 
𝜎

contains precisely one set of size |A|, which is distributed uniformly among
the |A|-sets. By Linearity of Expectation

E[X] =
∑
A∈

1(
n|A|
) .

For any 𝜎, 
𝜎

forms a chain –every pair of sets is comparable. Since is an antichain,
we must have X = | ∩ 

𝜎
| ≤ 1. Thus E[X] ≤ 1. ◾

Corollary 2 (Sperner’s Theorem) Let  be an antichain. Then

| | ≤ (
n⌊n∕2⌋

)
.

Proof. The function
(

n
x

)
is maximized at x = ⌊n∕2⌋ so that

1 ≥

∑
A∈

1(
n|A|
) ≥

| |(
n⌊n∕2⌋

) . ◾



13
Discrepancy

The mystery, as well as the glory, of mathematics lies not so much in the fact that abstract
theories do turn out to be useful in solving problems but in that wonder of wonders,
the fact that a theory meant for solving one type of problem is often the only way of
solving problems of entirely different kinds, problems for which the theory was not
intended. These coincidences occur so frequently that they must belong to the essence
of mathematics.
–Gian-Carlo Rota

13.1 BASICS

Suppose we are given a finite family of finite sets. Our object is to color the underlying
points red and blue so that all of the sets have nearly the same number of red and blue
points. It may be that our cause is hopeless – if the family consists of all subsets of a
given set Ω, then regardless of the coloring, some set, either the red or the blue points,
will have size at least half that of Ω and be monochromatic. In the other extreme,
should the sets of the family be disjoint, then it is trivial to color so that all sets have
the same number of red and blue points or, at worst if the cardinality is odd, the
number of red and blue points differs by only 1. The discrepancy will measure how
good a coloring we may find.

To be formal, let a family  of subsets of Ω be given. Rather than using red and
blue, we consider colorings as maps

𝜒 ∶ Ω → { − 1,+1} .

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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For any A ⊂ Ω, we set
𝜒(A) =

∑
a∈A

𝜒(a) .

Define the discrepancy of  with respect to 𝜒 by

disc(, 𝜒) = max
A∈

|𝜒(A)|
and the discrepancy of  by

disc() = min
𝜒∶Ω→{−1,+1}

disc(, 𝜒) .

Other equivalent definitions of discrepancy reveal its geometric aspects. Let  =
{S1,… , Sm}, Ω = {1,… , n}, and let B = [bij] be the m × n incidence matrix: bij =
1 if j ∈ Si, otherwise bij = 0. A coloring 𝜒 may be associated with the vector u =
(𝜒(1),… , 𝜒(n)) ∈ { − 1,+1}n so that BuT = (𝜒(S1),… , 𝜒(Sm)) and

disc() = min
u∈{−1,+1}n

|BuT|∞,
where |𝑣|∞ is the L∞-norm, the maximal absolute value of the coordinates. Similarly,
letting 𝑣j denote the jth column vector of B (the profile of point j),

disc() = min| ± 𝑣1 ± · · · ± 𝑣n|∞,
where the minimum ranges over all 2n choices of sign.

We will generally be concerned with upper bounds to the discrepancy. Unravelling
the definitions, disc() ≤ K if and only if there exists a coloring𝜒 for which |𝜒(A)| ≤
K for all A ∈ . Naturally, we try the random coloring.

Theorem 13.1.1 Let  be a family of n subsets of an m-set Ω. Then

disc() ≤
√

2m ln (2n) .

Proof. Let 𝜒 ∶ Ω → { − 1,+1} be random. For A ⊂ Ω, let XA be the indicator ran-
dom variable for |𝜒(A)| > 𝛼, where we set 𝛼 =

√
2m ln (2n). If |A| = a, then 𝜒(A)

has distribution Sa, so by Theorem A.1.1

E[XA] = Pr[|𝜒(A)| > 𝛼] < 2e−𝛼
2∕2a

≤ 2e−𝛼
2∕2m = 1∕n

by our propitious choice of 𝛼. Let X be the number of A ∈  with |𝜒(A)| > 𝛼, so that

X =
∑
A∈

XA
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and Linearity of Expectation gives

E[X] =
∑
A∈

E[XA] < ||(1∕n) = 1 .

Thus for some 𝜒 we must have X = 0. This means disc(, 𝜒) ≤ 𝛼 and, therefore,
disc() ≤ 𝛼. ◾

13.2 SIX STANDARD DEVIATIONS SUFFICE

When  has both n sets and n points, Theorem 13.1.1 gives

disc() = O(
√

n ln (n)). (13.1)

This was improved by the second author in Spencer (1985a).

Theorem 13.2.1 Let  be a family of n subsets of an n element set Ω. Then

disc() ≤ 6
√

n.

With 𝜒 ∶ Ω → { − 1,+1} random, A ∈ , 𝜒(A) has zero mean and standard devi-
ation at most

√
n. If |𝜒(A)| > 6

√
n, then 𝜒(A) is at least six standard deviations off

the mean. The probability of this occurring is a very small but fixed positive constant
and the number of sets A is going to infinity. In fact, a random 𝜒 almost always will
not work. The specific constant 6 (actually 5.32) was the result of detailed calcula-
tions that could certainly be further improved and will not concern us here. Rather,
we show Theorem 13.2.1 with some constant K replacing 6. The initial argument
(found in earlier editions of this work) did not yield an efficient algorithm for finding
the desired coloring 𝜒 . Indeed, for many years the second author conjectured that
no such algorithm would exist. Bansal (2010) gave the first algorithmic argument
for Theorem 13.2.1. Here we follow the approach of Lovett and Meka (2012). Their
argument is a virtual cornucopia of modern probabilistic methods, and we give the
basic ideas and leave many of the details to the exercises. We begin by generalizing
the problem to vectors.

Theorem 13.2.2 Let r⃗i ∈ Rn, 1 ≤ i ≤ n, with all |r⃗i|∞ ≤ 1. Let z⃗ = (z1,… , zn), with
all zj ∈ [−1,+1]. Then there exists x⃗ = (x1,… , xn) with all xj ∈ { − 1,+1} such that

|r⃗i ⋅ (x⃗ − z⃗)| ≤ K
√

n (13.2)

for all 1 ≤ i ≤ n. Here K is an absolute constant.

When  is a family of n subsets A1,… ,An of Ω = {1,… , n}, consider the n × n
incidence matrix A, aij = 1 if j ∈ Ai, else aij = 0. Let r⃗i be the ith row of A, and set
z⃗ = 0. The x⃗ = (x1,… , xn) given by Theorem 13.2.2 gives the coloring 𝜒(j) = xj with
the properties of Theorem 13.2.1.
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During the proof, the vector x⃗ shall move inside the cube [−1,+1]n. We refer to
this general technique as a floating colors method. It will initially have value x⃗ = z⃗
so that (13.2) is trivially satisfied. When a coordinate xi comes close to ±1, it will be
frozen. For definiteness, we set

𝜖 = n−1 (13.3)

and say xi is near the border if 1 − 𝜖 ≤ |xi| ≤ 1. We call such i frozen, and all other
i floating.

We reduce Theorem 13.2.2 to the following:

Theorem 13.2.3 Let r⃗i ∈ Rn, 1 ≤ i ≤ n with all |r⃗i|∞ ≤ 1. Let z⃗ = (z1,… , zn) with
all zj ∈ [−1,+1]. Then there exists x⃗ = (x1,… , xn) with all xj near the border such
that |r⃗i ⋅ (x⃗ − z⃗)| ≤ K

√
n (13.4)

for all 1 ≤ i ≤ n. Here K is an absolute constant.

With x⃗ given by Theorem 13.2.3, one can then simply round each xi to either −1
or +1, whichever is closer. The values r⃗i ⋅ (x⃗ − z⃗) are then changed by at most n𝜖 = 1,
which is o(

√
n), thus giving Theorem 13.2.2.

We find x⃗ in phases. Phase t ends when at most n2−t of the xi are not near the
border. As Phase 1 contains the basic ideas of the argument, we state it separately.

Theorem 13.2.4 Let r⃗i ∈ Rn, 1 ≤ i ≤ n with all |r⃗i|∞ ≤ 1. Let z⃗ = (z1,… , zn) with
all zj ∈ [−1,+1]. Then there exists x⃗ = (x1,… , xn) with at least n∕2 of the xj near the
border such that |r⃗i ⋅ (x⃗ − z⃗)| ≤ K1

√
n (13.5)

for all 1 ≤ i ≤ n. Here K1 is an absolute constant.

Set u⃗i = n−1∕2r⃗i. We will use (in Phase 1) only that the Euclidean norm of u⃗i is at
most 1. We initially set x⃗ = z⃗. We move x⃗ in steps until at least half the coordinates
are near the border. For 1 ≤ i ≤ n, set

Li = u⃗i ⋅ (x⃗ − z⃗). (13.6)

Call i dangerous if |Li| is one of the n
4

largest of the values |Ls|, 1 ≤ s ≤ n. In case
of ties, select precisely n

4
values i. We emphasize that, as x⃗ moves, the n

4
dangerous i

can and will change.
We define a vector space V ⊂ Rn, which will describe the allowable directions in

which x⃗ may move. V is y⃗ = (y1,… , yn) satisfying the following linear conditions:

1. If xi is near the border then yi = 0.

2. y⃗ ⋅ (x⃗ − z⃗) = 0.

3. y⃗ ⋅ u⃗i = 0 for all dangerous i.
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The number of linear conditions is less than n
2
+ 1 + n

4
. Let d denote the dimension

of V , d ≥
n
4
. We let y⃗ be a standard multidimensional Gaussian on V . That is, let

b⃗1,… , b⃗d be an orthonormal basis for V and set

y⃗ = d−1∕2[n1
⃗b1 + · · · + nd

⃗bd], (13.7)

where the nj are independent, each with the standard normal distribution.
We shall use the directionless property of the Gaussian. Let a⃗ ∈ V . Then y⃗ ⋅ a⃗

has a Gaussian distribution with mean 0 and variance d−1|a⃗|2. Suppose b⃗ ∈ Rn. We
can decompose b⃗ = a⃗ + c⃗ with a⃗ ∈ V , c⃗ ∈ V⊥. Then y⃗ ⋅ b⃗ = y⃗ ⋅ a⃗. Thus y⃗ ⋅ b⃗ has a
Gaussian distribution with mean 0 and variance at most d−1|b⃗|2.

We now move x⃗ a small distance in the direction y⃗. Set, for definiteness,

𝛿 = n−10
. (13.8)

A single step then consists of resetting

x⃗ ← x⃗ + 𝛿y⃗. (13.9)

While the Lovett–Meka algorithm is discrete, as the 𝛿 of (13.8) becomes small,
one may think of x⃗ as moving in a controlled Brownian motion, with the vector space
V of permissible directions always changing.

A step fails if some |xi| > 1. When xi is near the border, yi = 0 and so xi does not
change. If xi is not near the border, it would need to change by at least 𝜖 in one step. Let
U⃗i denote the vector with 1 in the ith position, zero elsewhere. In one step, the change
in xi is 𝛿y⃗ ⋅ U⃗i, which is Gaussian with mean zero and variance at most d−1

𝛿
2. With the

values 𝜖, 𝛿, the probability that the change in xi is more than 𝜖 is then exponentially
small. There are only n choices of i, and we shall see that there are only polynomially
many steps. Thus with probability 1 − o(1) no step fails. The chi-squared distribution
(see Exercises) n2

1 + · · · + n2
d is tightly concentrated around its mean d. Thus |𝛿y⃗|2 is

at least (1 − o(1))𝛿2 throughout Phase 1. At each step, |x⃗ − z⃗|2 is being increased by
this amount. As they both lie in [−1,+1]n, |x⃗ − z⃗|2 ≤ 4n. Letting T denote the number
of steps in Phase 1, we deduce T ≤ (1 + o(1))4n𝛿−2.

Fix 1 ≤ i ≤ n. Let Li(t) denote the value of Li given in (13.6) after the tth step,
with initial value Li(0) = 0. With y⃗, the Gaussian selected at the tth step is

Li(t) = Li(t − 1) + 𝛿u⃗i ⋅ y⃗. (13.10)

Hence Li will change by a Gaussian with variance 𝜏2 ≤ 𝛿
2. Li(t) then form a martin-

gale. We apply the martingale inequality (13.17) in the Exercises. Here

𝜎
2 = T𝛿2

≤ (1 + o(1))4n𝛿−2d−1
𝛿

2
≤ (1 + o(1))4n∕d ≤ 16 + o(1) (13.11)

so 𝜎 = 4 + o(1). Thus

Pr[max
0≤t≤T

|Li(t)| > K(1 + o(1))] < 2e−K2∕32(1 + o(1)). (13.12)
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Theorem 13.2.4 is shown by selecting K1 = K such that

2e−K2∕32
< 0.05. (13.13)

Each Li has probability less than 0.05 of ever becoming bigger than K in absolute
value. By Linearity of Expectation, the expected number of such i is less than 0.05n.
The randomized Phase 1 is a success if one never has |xi| > 1. It ends in at most (1 +
o(1))4n𝛿−2 steps and there are fewer than 0.1n values i such that |Li| ever becomes
bigger than K. The last occurs with probability at least 0.5 and so Phase 1 is a success
with probability at least 0.5 − o(1).

Suppose we have success. Have we improved the situation over a standard random-
ized selection of the xi? It seems that we still have a positive proportion of outliers to
deal with. But look again! At each step the dangerous i had their Li unchanged since
the move 𝑣, being in V , was orthogonal to u⃗i. As less than 0.1n of the Li ever have|Li| ≥ K, it must be that whenever an |Li| becomes at least K it will become, and
stay, dangerous and so |Li| will remain the same throughout the remainder of Phase
1. The single move in which |Li| exceeds K is miniscule, so that after it |Li| is only
K + o(1). Therefore, at the end of the process all of the |Li| ≤ K + o(1), completing
the argument.

We outline the remainder of the argument for Theorem 13.2.3. The x⃗ at the end
of Phase t − 1 becomes the initial z⃗ of Phase t. (When the number of floating vari-
ables reaches O(n ln−1∕2n), we can switch to a more standard random choice of the
xi. See the Exercises.) In Phase t, we begin with n2−t

≤ m ≤ n21−t floating variables
so that n ≤ m2t. Ignore the nonfloating variables so that we consider r⃗i ∈ Rm. As all
coefficients lie in [−1,+1], so we may bound |r⃗i|2 ≤ m. We set u⃗i = m−1∕2 r⃗i, so that|u⃗i| ≤ 1. We modify Theorem 13.2.4 as follows:

Theorem 13.2.5 Let n ≤ m2t. Let r⃗i ∈ Rm, 1 ≤ i ≤ n, with all |r⃗i|∞ ≤ 1. Let z⃗ =
(z1,… , zm), with all zj ∈ [−1,+1]. Then there exists x⃗ = (x1,… , xn)with at least m∕2
of the xj near the border such that

|r⃗i ⋅ (x⃗ − z⃗)| ≤ Kt

√
m (13.14)

for all 1 ≤ i ≤ n. Here Kt is an absolute constant.

We define Li = u⃗i ⋅ (x⃗ − z⃗) as in (13.6). Now i is dangerous if |Li| is one of the
n2−t−2 ≤

m
4

largest values. The large deviation bound (13.12) for the Li is still valid,
but now, instead of (13.13) we define K = Kt such that

2e−K2∕2
≤ 0.05 ⋅ 2−t

. (13.15)

Now the expected number of i, 1 ≤ i ≤ n, for which |Li(t)| ≥ K ever occurs is less
than 0.05n2−t ≤ 0.05m. The remainder of the argument is as before.

From (13.15) we may set Kt =
√

c1 + c2 ln t = O(
√

ln t). As m ≤ n2−t+1, in Phase

t all |Li| ≤ K∗
t

√
n with K∗

t = 2(1−t)∕2
√

c1 + c2 ln t = O(2−t∕2
√

ln t).
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Finally, we glue all the phases together. For each i, using the original definition
(13.6) of Li, the absolute value of the change in Li in Phase t is at most K∗

t . But∑∞
t=1 K∗

t converges to some K –basically the 2−t∕2 gain by having fewer variables
outweighs the

√
ln t loss by having more vectors than variables – and hence at the

end of the process all |Li| ≤ K.

13.3 LINEAR AND HEREDITARY DISCREPANCY

We now suppose that  has more points than sets. We write  = {A1,… ,An} and
Ω = {1,… ,m} and assume m > n. Note that disc() ≤ K is equivalent to the exis-
tence of a set S; namely S = {j ∶ 𝜒(j) = +1}, with |S ∩ A| within K∕2 of |A|∕2 for
all A ∈ . We define the linear discrepancy lindisc() by

lindisc() = max
p1 ,…,pm∈[0,1]

min
𝜖1,…,𝜖m∈{0,1}

max
A∈

|∑
i∈A

(𝜖i − pi)| .
The upper bound lindisc() ≤ K means that, given any p1,… , pm, there is a “si-
multaneous roundoff” 𝜖1,… , 𝜖m so that, with S = {j ∶ 𝜖j = 1}, |S ∩ A| is within K of
the weighted sum

∑
j∈Apj for all A ∈ . Taking all pj =

1
2
, the upper bound implies

disc() ≤ 2K. But lindisc() ≤ K is much stronger. It implies, taking all pj =
1
3
, the

existence of an S with all |S ∩ A| within K of |A|∕3, and much more. Linear discrep-
ancy and its companion hereditary discrepancy defined below have been developed in
Lovász, Spencer and Vesztergombi (1986). For X ⊂ Ω, let |X denote the restriction
of  to X, that is, the family {A ∩ X ∶ A ∈ }. The next result “reduces” the bound-
ing of disc() when there are more points than sets to the bounding of lindisc()
when the points do not outnumber the sets.

Theorem 13.3.1 Let  be a family of n sets on m points with m ≥ n. Suppose that
lindisc(|X) ≤ K for every subset X of at most n points. Then lindisc() ≤ K.

Proof. Let p1,… , pm ∈ [0, 1] be given. We define a reduction process. Call index
j fixed if pj ∈ {0, 1}, otherwise call it floating, and let F denote the set of floating
indices. If |F| ≤ n, then halt. Otherwise, let yj, j ∈ F, be a nonzero solution to the
homogeneous system ∑

j∈A∩F

yj = 0, A ∈ .

Such a solution exists since there are more variables (|F|) than equations (n) and may
be found by standard techniques of linear algebra. Now set

p′j = pj + 𝜆yj, j ∈ F,

p′j = pj, j ∉ F,
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where we let 𝜆 be the real number of the least absolute value so that for some j ∈ F
the value p′j becomes zero or 1. Critically

∑
j∈A

p′j =
∑
j∈A

pj + 𝜆

∑
j∈A∩F

yj =
∑
j∈A

pj (∗)

for all A ∈ . Now iterate this process with the new p′j . At each iteration, at least one
floating j becomes fixed and so the process eventually halts at some p∗1,… , p∗m. Let X
be the set of floating j at this point. Then |X| ≤ n. By assumption, there exist 𝜖j, j ∈ X
so that ||||||

∑
j∈A∩X

p∗j − 𝜖j

|||||| ≤ K, A ∈ .

For j ∉ X, set 𝜖j = p∗j . As (*) holds at each iteration,

∑
j∈A

p∗j =
∑
j∈A

pj

and hence ||||||
∑
j∈A

(pj − 𝜖j)
|||||| =

||||||
∑
j∈A

(pj − p∗j ) +
∑

j∈A∩X

(p∗j − 𝜖j)
|||||| ≤ K

for all A ∈ . ◾

We now define the hereditary discrepancy herdisc() by

herdisc() = max
X⊆Ω

disc(|X).
Example. Let Ω = {1,… , n}, and let  consist of all intervals [i, j] = {i, i +
1,… , j} with 1 ≤ i ≤ j ≤ n. Then disc() = 1, as we may color Ω alternately
+1 and −1. But also herdisc() = 1. For given any X ⊆ Ω, say with elements
x1 < x2 < · · · < xr, we may color X alternately by 𝜒(xk) = (−1)k. For any set
[i, j] ∈ , the elements of [i, j] ∩ X are alternately colored. ◾

Theorem 13.3.2 lindisc() ≤ herdisc().

Proof. Set K = herdisc(). Let  be defined on Ω = {1,… ,m}, and let
p1,… , pm ∈ [0, 1] be given. First let us assume that all pi have finite expansions
when written in base 2. Let T be the minimal integer so that all pi2

T ∈ Z. Let J be
the set of i for which pi has a 1 in the Tth digit of its binary expansion, that is, so that
pi2

T−1 ∉ Z. As disc(|J) ≤ K, there exist 𝜖j ∈ { − 1,+1}, so that

||||||
∑

j∈J∩A

𝜖j

|||||| ≤ K
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for all A ∈ . Write pj = p(T)j . Now set

p(T−1)
j =

{
p(T)j if j ∉ J,

p(T)j + 𝜖j2
−T if j ∈ J.

That is, the p(T−1)
j are the “roundoffs” of the p(T)j in the Tth place. Note that all

p(T−1)
j 2−(T−1) ∈ Z. For any A ∈ ,

||||||
∑
j∈A

p(T−1)
j − p(T)j

|||||| =
||||||
∑

j∈J∩A

2−T
𝜖j

|||||| ≤ 2−TK .

Iterate this procedure, finding p(T−2)
j ,… , p(1)j , p(0)j . All p(0)j 2−0 ∈ Z so all p(0)j ∈ {0, 1}

and ||||||
∑
j∈A

p(0)j − p(T)j

|||||| ≤
T∑

i=1

||||||
∑
j∈A

p(i−1)
j − p(i)j

|||||| ≤
T∑

i=1

2−iK ≤ K ,

as desired.
What about general p1,… , pm ∈ [0, 1]? We can flip and say that, at least to a com-

puter scientist, all real numbers have finite binary expansions. More rigorously, the
function

f (p1,… , pm) = min
𝜖1,…,𝜖m∈{0,1}

max
A∈

|∑
i∈A

(𝜖i − pi)|
is the finite minimum of finite maxima of continuous functions and thus is continuous.
The set of (p1,… , pm) ∈ [0, 1]m with all pi2

T ∈ Z for some T is a dense subset of
[0, 1]m. As f ≤ K on this dense set, f ≤ K for all (p1,… , pm) ∈ [0, 1]m. ◾

Corollary 13.3.3 Let  be a family of n sets on m points. Suppose disc(|X) ≤ K
for every subset X with at most n points. Then disc() ≤ 2K.

Proof. For every X ⊆ Ω with |X| ≤ n, herdisc(|X) ≤ K so by Theorem 13.3.2,
lindisc(|X) ≤ K. By Theorem 13.3.1, lindisc() ≤ K. But

disc() ≤ 2 lindisc() ≤ 2K. ◾

Corollary 13.3.4 For any family  of n sets of arbitrary size

disc() ≤ 12
√

n .

Proof. Apply Theorem 13.2.1 and Corollary 13.3.3. ◾
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13.4 LOWER BOUNDS

We now give two quite different proofs that, up to a constant factor, Corollary 13.3.4
is the best possible. A Hadamard matrix is a square matrix H = (hij) with all hij ∈
{ − 1,+1} and with row vectors mutually orthogonal (and hence with column vectors
mutually orthogonal).Let H be a Hadamard matrix of order n, and let 𝑣 = (𝑣1,… , 𝑣n),
𝑣i ∈ { − 1,+1}. Then

H𝑣 = 𝑣1c1 + · · · + 𝑣ncn,

where ci denotes the ith column vector of H. Writing H𝑣 = (L1,… , Ln) and letting|c| denote the usual Euclidean norm

L2
1 + · · · + L2

n = |H𝑣|2 = 𝑣
2
1|c1|2 + · · · + 𝑣

2
n|cn|2 = n + · · · + n = n2

since ci are mutually orthogonal. Hence some L2
i ≥ n and thus

|H𝑣|∞ = max(|L1|,… , |Ln|) ≥ √
n .

Now we transfer this result to one on families of sets. Let H be a Hadamard matrix
of order n with first row and first column all 1s. (Any Hadamard matrix can be so
“normalized” by multiplying appropriate rows and columns by −1.) Let J denote the
all-1s matrix of order n. Let 𝑣1,… , L1, · · · be as above. Then

L1 + · · · + Ln =
n∑

i,j=1

𝑣jhij =
n∑

j=1

𝑣j

n∑
i=1

hij = n𝑣1 = ±n,

since the first column sums to n but the other columns, being orthogonal to it, sum to
zero. Set 𝜆 = 𝑣1 + · · · + 𝑣n so that J𝑣 = (𝜆,… , 𝜆) and

(H + J)𝑣 = (L1 + 𝜆,… , Ln + 𝜆).

We calculate

|(H + J)𝑣|2 =
n∑

i=1

(Li + 𝜆)2 =
n∑

i=1

(L2
i + 2𝜆Li + 𝜆

2) = n2 ± 2n𝜆 + n𝜆2
.

Assume n is even. (Hadamard matrices do not exist for odd n, except for n = 1.)
Then 𝜆 is an even integer. The quadratic (in 𝜆) n2 ± 2n𝜆 + n𝜆2 has a minimum at ∓1
implying under the restriction of being an even integer, its minimum is at 𝜆 = 0,∓2,
implying |(H + J)𝑣|2 ≥ n2

.

Again, some coordinate must be at least
√

n. Setting H∗ = H+J
2

|H∗
𝑣|∞ ≥

√
n∕2.
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Let = {A1,… ,Am} be any family of subsets ofΩ = {1,… , n}, and let M denote
the corresponding m × n incidence matrix. A coloring 𝜒 ∶ Ω → { − 1,+1} corre-
sponds to a vector 𝑣 = (𝜒(1),… , 𝜒(n)) ∈ { − 1,+1}n. Then

disc(, 𝜒) = |M𝑣|∞
and

disc() = min
𝑣∈{−1,+1}n

|M𝑣|∞.
In our case, H∗ has entries 0, 1. Thus we have following:

Theorem 13.4.1 If a Hadamard matrix exists of order n > 1 then there exists a family
 consisting of n subsets of an n-set with

disc() ≥
√

n∕2.

While it is not known precisely for which n a Hadamard matrix exists (the
Hadamard conjecture is that they exist for n = 1, 2 and all multiples of 4; see, for
example, Hall (1986)), it is known that the orders of Hadamard matrices are dense
in the sense that, for all 𝜖 if n is sufficiently large, there will exist a Hadamard matrix
of order between n and n(1 − 𝜖). This result suffices to extend Theorem 13.4.1 to an
asymptotic result on all n.

Our second argument for the existence ofwith high discrepancy involves turning
the probabilistic argument “on its head.” Let 𝑣 = (𝑣1,… , 𝑣n), 𝑣j = ±1 be fixed. Let A
be the set of indices j with 𝑣j = +1 and B those with 𝑣j = −1. Set a = |A|, b = n − a =|B|. Let �⃗� = (𝑤1,… , 𝑤n) ∈ {0, 1}n. For any −b ≤ t ≤ a, �⃗� ⋅ 𝑣 = t if and only if the
number of j ∈ A with𝑤j = 1 plus the number of j ∈ B with𝑤j = 0 is b + t. Thus when
�⃗� is chosen uniformly, Pr[�⃗� ⋅ 𝑣 = t] = Pr[ BIN[n, 1

2
] = b + t]. Suppose n = 2k + 1,

the case n even being similar. Then Pr[|�⃗� ⋅ 𝑣| ≤ u] = Pr[b − u ≤ BIN[n, 1
2
] ≤ b + u].

As the binomial distribution is symmetric about k + 1 and decreasing as one moves
away from k, Pr[|�⃗� ⋅ 𝑣| ≤ u] ≤ Pr[| BIN[n, 1

2
] − (k + 1)| ≤ u]. Let 𝜆0 be positive real

so that Pr[|N| ≤ 𝜆0] =
1
2
, and N the standard Gaussian. Let 0 < 𝜆 < 𝜆0. For u ∼

𝜆

√
n∕2, the Central Limit Theorem gives lim

n→∞
Pr[| BIN[n, 1

2
] − n

2
| ≤ u] = Pr[|N| ≤

𝜆] < 1
2

so that Pr[| BIN[n, 1
2
] − n

2
| ≤ u] < 1

2
for sufficiently large n.

Now let M be a random 0, 1 matrix of order n. Let u ∼ 𝜆

√
n∕2 as above. Let

r⃗1,… , r⃗n denote the row vectors of M. For each 𝑣 ∈ { − 1,+1}n and each 1 ≤ i ≤ n,
Pr[|𝑣 ⋅ r⃗i| ≤ u] < 1

2
. As r⃗i are mutually independent, Pr[|𝑣 ⋅ r⃗i| ≤ u for all 1 ≤ i ≤

n] < 2−n. Hence the expected number of 𝑣 such that |𝑣 ⋅ r⃗i| ≤ u for all 1 ≤ i ≤ n is
less than 1. With positive probability, M has the property that there is no such 𝑣. Let
M be such a matrix. The corresponding family of sets  then has discrepancy greater
than u. As 𝜆 can be chosen arbitrarily close to 𝜆0, there are  with discrepancy at
least (𝜆0 + o(1))

√
n∕2.
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13.5 THE BECK–FIALA THEOREM

For any family , let deg() denote the maximal number of sets containing any
particular point. The following result due to Beck and Fiala (1981) uses only methods
from linear algebra and thus is technically outside the scope we have set for this book.
We include it both for the sheer beauty of the proof and because the result itself is
very much in the spirit of this chapter.

Theorem 13.5.1 Let  be a finite family of finite sets, with no restriction on either
the number of sets or on the cardinality of the sets, and with deg() ≤ t. Then

disc() ≤ 2t − 1.

Proof. For convenience, write  = {A1,… ,Am} with all Ai ⊆ Ω = {1,… , n}. To
each j ∈ Ω, there is assigned a value xj which will change as the proof progresses.
Initially all xj = 0. At the end, all xj = ±1. We will have −1 ≤ xj ≤ +1 at all times,
and once xj = ±1, it “sticks” there and that becomes its final value. A set Si has value∑

j∈Si
xj. At any time j is called fixed if xj = ±1; otherwise it is floating. A set Si is

safe if it has fewer than t floating points; otherwise it is active. Note, crucially, that
as points are in at most t sets and active sets contain more than t floating points, there
must be fewer active sets than floating points.

We insist at all times that all active sets have value zero. This holds initially since
all sets have value zero. Suppose this condition holds at some stage. Consider xj a
variable for each floating j and a constant for each fixed j. The condition that Si has
value zero then becomes a linear equation in these variables. This is an underdeter-
mined system, as there are fewer linear conditions (active sets) than variables (floating
points). Hence we may find a line, parameterized

x′j = xj + 𝜆yj, j floating

on which the active sets retain value zero. Let 𝜆 be the smallest value for which some
x′j becomes±1 and replace each xj by x′j . (Geometrically, follow the line until reaching
the boundary of the cube in the space over the floating variables.) This process has
left fixed variables fixed and so safe sets stayed safe sets (though active sets may
have become safe) and so the condition still holds. In addition, at least one previously
floating j has become fixed.

We iterate the above procedure until all j have become fixed. (Towards the end,
we may have no active sets, at which time we may simply set the floating xj to ±1
arbitrarily.) Now consider any set Si. Initially it had value zero, and it retained the
value zero while it contained at least t floating points. Consider the time when it first
becomes safe, say 1,… , l were its floating points. At this moment its value is zero.
The variables y1,… , yl can now change by less than 2 to their final value since all
values are in [−1,+1]. Thus, in total, they may change by less than 2t. Hence the final
value of Si is less than 2t and, as it is an integer, it is at most 2t − 1. ◾

Conjecture 13.5.2 If deg() ≤ t, then disc() ≤ K
√

t, with K an absolute
constant.
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This conjecture seems to call for a melding of probabilistic methods and linear
algebra. The constructions of t sets on t points, described in Section 13.4, show that,
if true, this conjecture would be the best possible.

13.6 EXERCISES

1. Let  be a family of n subsets ofΩ = {1,… ,m}with m even. Let 𝜒(i), 1 ≤ i ≤ m
2

,
be independent and uniform in { − 1,+1} and set 𝜒(i + m

2
) = −𝜒(i) for 1 ≤ i ≤ m

2
.

Using this notion of random coloring, improve Theorem 13.1.1 by showing

disc() ≤
√

m ln (2n) .

Show that this can be improved even further by splitting Ω randomly into m
2

dis-
joint pairs.

2. Let 𝑣1,… , 𝑣s ∈ Rn. Let x1,… , xs ∈ [−1,+1] such that
∑s

i=1 xi𝑣i = 0⃗ and such that
xi ∈ { − 1,+1} for all but at most n values of i. Let 𝑣s+1 ∈ Rn. Use the linear ideas
of Section 13.5 to find x′1,… , x′s, x

′
s+1 with the following properties:

•
∑s+1

i=1 x′i𝑣i = ⃗0.

• All x′i ∈ [−1,+1].
• x′i ∈ { − 1,+1} for all but at most n values of i.

• x′i = xi whenever xi ∈ { − 1,+1}.

Use the above to prove the following result of Bárány and Grinberg: Let | ⋅ | be
an arbitrary norm in Rn. Let 𝑣1,… , 𝑣s ∈ Rn with all |𝑣i| ≤ 1. Then there exist
x1,… , xs ∈ { − 1,+1} such that

|||||
t∑

i=1

xi𝑣i

||||| ≤ 2n

for all 1 ≤ t ≤ s.

3. Let n1,… , nd be mutually independent standard Gaussians, and set Y =
∑d

i=1 n2
i .

(Y is known as the chi-squared distribution.) Set 𝜇 = E[Y] = d. Show that for all
positive 𝜖 there exists a positive c = c(𝜖) so that Pr[Y ≤ 𝜇(1 − 𝜖)] < e−cd.

4. Let 𝜎, 𝜎1,… , 𝜎T > 0 with 𝜎
2 =

∑n
i=1 𝜎

2
i . Let 0 = X0,X1,… ,XT be a martingale

with Xi − Xi−1 having a Gaussian distribution with mean zero and variance 𝜏
2
i ,

with 𝜏
2
i ≤ 𝜎

2
i . (Note: 𝜏i can depend on the previous history. In particular, we allow

𝜏i = 0.) Let a > 0. Show that

Pr[XT > a𝜎] < e−a2∕2 (13.16)

and further that
Pr[max

0≤t≤T
Xt > a𝜎] < e−a2∕2

. (13.17)
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5. Let n > cm
√

ln m, c an appropriately large constant. For 1 ≤ i ≤ n, let
u⃗i ∈ Rm with |u⃗i| ≤ 1. Let z⃗ = (z1,… , zm) ∈ [−1,+1]m. Define a random
x⃗ = (x1,… , xm) ∈ { − 1,+1}m, with Pr[xi = +1] = (1 + zi)∕2, Pr[xi = −1] =
(1 − zi)∕2 and the xi mutually independent. Prove that, with probability 1 − o(1),|u⃗i ⋅ (x⃗ − z⃗)| ≤ √

n for all 1 ≤ i ≤ n. (This result allows us to apply randomized
rounding when m ≤ n21−t becomes small enough.)

6. Replace (13.3) with 𝜖 = ln −1∕2n. Show that Theorem 13.2.3 still implies Theorem
13.2.2 by appropriately randomly rounding the xi with |xi| ≥ 1 − 𝜖. Now show 𝛿 in
(13.8) can be increased to O(

√
n ln −1n). Show that the number of steps in Phase

1 can then be made O(ln 2n). (While this does not affect the mathematical proof,
it does increase the speed of the algorithm. However, the biggest time factor in the
implementation of the algorithm is the generation of the Gaussian g⃗, which in turn
depends on an orthonormal basis for V .)



THE PROBABILISTIC LENS:
Unbalancing Lights

For any m × n matrix B = (bij) with coefficients bij = ±1, set

F[B] = max
xi,yj=±1

m∑
i=1

n∑
j=1

xiyjbij .

As in Section 2.5, we may interpret B as an m × n array of lights, each either on
(bij = +1) or off (bij = −1). For each row and each column, there is a switch that,
when pulled, changes all lights in that line from on to off or from off to on. Then
F[B] gives the maximal achievable number of lights on minus lights off. In Section
2.5 we found a lower bound for F[B] when m = n. Here we set n = 2m and find the
precise best possible lower bound.

With n = 2m let A be an m × n matrix with coefficients ±1 containing every pos-
sible column vector precisely once. We claim F[A] is the minimal value of F[B] over
all m × n matrices B.

For any given B, let x1,… , xm = ±1 be independently and uniformly chosen and
set

Xj =
m∑

i=1

xibij,

X = |X1| + · · · + |Xn|,
so that

F[B] = max
yj=±1

max
xi=±1

n∑
j=1

yjXj = max
xi=±1

n∑
j=1

|Xj| = max X.
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Regardless of the bij, Xi has distribution Sm so that E[|Xi|] = E[|Sm|] and, by Lin-
earity of Expectation,

E[X] = n E[|Sm|] .
With B = A, any choices of x1,… , xm = ±1 have the effect of permuting the columns
– the matrix (xiaij) also has every column vector precisely once – so that X = |X1| +
· · · + |Xm| is a constant. Note that E[X] is independent of B. In general, fixing E[X] =
𝜇, the minimal possible value for maxX is achieved when X is the constant 𝜇. Thus
F[B] is minimized with B = A.
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Geometry

If creativity were anything but random, someone would have figured out the algorithm
by now.
–Dilbert (Scott Adams)

Suppose we choose randomly n points P1,… ,Pn on the unit circle, according to a uni-
form distribution. What is the probability that the origin lies in the convex hull of these
points? There is a surprisingly simple (yet clever) way to compute this probability.
Let us first choose n random pairs of antipodal points Q1,Qn+1 = −Q1, Q2,Qn+2 =
−Q2,… ,Qn,Q2n = −Qn according to a uniform distribution. Notice that with prob-
ability 1 these pairs are all distinct. Next we choose each Pi to be either Qi or its
antipodal Qn+i = −Qi, where each choice is equally likely. Clearly, this corresponds
to a random choice of the points Pi. The probability that the origin does not belong to
the convex hull of the points Pi, given the (distinct) points Qj, is precisely x

2n , where x
is the number of subsets of the points Qj contained in an open half plane determined
by a line through the origin, which does not pass through any of the points Qj. It is
easy to see that x = 2n. This is because, if we renumber the points Qj so that their
cyclic order on the circle is Q1,… ,Qn,Qn+1,… ,Q2n, and Qn+i = −Qi, then the sub-
sets contained in such half planes are precisely {Qi,… ,Qn+i−1}, where the indices
are reduced modulo 2n. Therefore, the probability that the origin is in the convex hull
of n randomly chosen points on the unit circle is precisely 1 − 2n

2n . Observe that the
same result holds if we replace the unit circle by any centrally symmetric bounded

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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planar domain with center 0, and the argument can be easily generalized to higher
dimensions.

This result, due to Wendel (1962), shows how in some cases a clever idea can
replace a tedious computation. It also demonstrates the connection between proba-
bility and geometry. The probabilistic method has been recently used extensively for
deriving results in discrete and computational geometry. Some of these results are
described in this chapter.

14.1 THE GREATEST ANGLE AMONG POINTS IN EUCLIDEAN
SPACES

There are several striking examples, in different areas of combinatorics, where the
probabilistic method supplies very simple counterexamples to long-standing conjec-
tures. Here is an example, due to Erdős and Füredi (1983).

Theorem 14.1.1 For every d ≥ 1, there is a set of at least

⌊
1
2

(
2√
3

)d
⌋

points in the

d-dimensional Euclidean space Rd, such that all angles determined by three points
from the set are strictly less than 𝜋∕2.

This theorem disproves an old conjecture of Danzer and Grünbaum (1962) that
the maximum cardinality of such a set is at most 2d − 1. We note that, as proved by
Danzer and Grunbaum, the maximum cardinality of a set of points in Rd in which all
angles are at most 𝜋∕2 is 2d.

Proof [Theorem 14.1.1] We select the points of a set X in Rd from the vertices
of the d-dimensional cube. As usual, we view the vertices of the cube, which are
0, 1-vectors of length d, as the characteristic vectors of subsets of a d-element set; that
is, each 0, 1-vector a of length d is associated with the set A = {i ∶ 1 ≤ i ≤ d, ai = 1}.
A simple consequence of Pythagoras’ theorem gives that the three vertices a, b, and
c of the d-cube, corresponding to the sets A,B, and C, respectively, determine a right
angle at c if and only if

A ∩ B ⊂ C ⊂ A ∪ B. (14.1)

As the angles determined by triples of points of the d-cube are always at most 𝜋∕2,
it suffices to construct a set X of cardinality at least the one stated in the theorem no
three distinct members of which satisfy (14.1).

Define m = ⌊(2∕√3)d∕2⌋, and choose, randomly and independently, 2m
d-dimensional {0, 1}-vectors a1,… , a2m, where each coordinate of each of the
vectors independently is chosen to be either 0 or 1 with equal probability. For every
fixed triple a, b, and c of the chosen points, the probability that the corresponding
sets satisfy (14.1) is precisely (3∕4)d. This is because (14.1) simply means that for
each i, 1 ≤ i ≤ d, neither ai = bi = 0, ci = 1 nor ai = bi = 1, ci = 0 hold. Therefore,
the probability that for three fixed indices i, j, and k, our chosen points, ai, aj, ak form
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a right angle at ak is (3∕4)d. Since there are
(

2m
3

)
3 possible triples that can produce

such angles, the expected number of right angles is(2m
3

)
3(3∕4)d ≤ m ,

where the last inequality follows from the choice of m. Thus there is a choice of a
set X of 2m points in which the number of right angles is at most m. By deleting one
point from each such angle, we obtain a set of at least 2m − m = m points in which
all angles are strictly less than 𝜋∕2. Notice that the remaining points are all distinct
since (14.1) is trivially satisfied if A = C. This completes the proof. ◾

It is worth noting that, as observed by Erdős and Füredi (1983), the proof above
can be easily modified to give the following:

Theorem 14.1.2 For every 𝜖 > 0, there is a 𝛿 > 0 such that for every d ≥ 1 there is a
set of at least (1 + 𝛿)d points in Rd so that all the angles determined by three distinct
points from the set are at most 𝜋∕3 + 𝜖.

We omit the detailed proof of this result.

14.2 EMPTY TRIANGLES DETERMINED BY POINTS IN THE PLANE

For a finite set X of points in a general position in the plane, let f (X) denote the
number of empty triangles determined by triples of points of X, that is, the number of
triangles determined by points of X that contain no other point of X. Katchalski and
Meir (1988) studied the minimum possible value of f (X) for a set X of n points. Define
f (n) = min{f (X)}, as X ranges over all planar sets of n points in general position (i.e.,
containing no three colinear points). They proved that(n − 1

2

)
≤ f (n) < 200n2

.

These bounds were improved by Bárány and Füredi (1987), who showed that as n
grows (1 + o(1))n2

≤ f (n) ≤ (1 + o(1))2n2
.

The construction that establishes the upper bound is probabilistic and is given in the
following theorem. See also Valtr (1995) for a slightly better result.

Theorem 14.2.1 Let I1, I2,… , In be parallel unit intervals in the plane, where

Ii = {(x, y) ∶ x = i, 0 ≤ y ≤ 1} .

For each i, let us choose a point pi randomly and independently from Ii according to
a uniform distribution. Let X be the set consisting of these n randomly chosen points.
Then the expected number of empty triangles in X is at most 2n2 + O(n log n).
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Clearly, with probability 1, X is a set of points in general position, and hence the
above theorem shows that f (n) ≤ 2n2 + O(n log n).

Proof. We first estimate the probability that the triangle determined by the points
pi, pi+a, and pi+k is empty, for some fixed i, a, and k = a + b ≥ 3. Let A = (i, x), B =
(i + a, y), and C = (i + k, z) be the points pi, pi+a, and pi+k, respectively. Let m be the
distance between B and the intersection point of the segment AC with the interval
Ii+a. Since each of the points pj for i < j < i + k is chosen randomly according to a
uniform distribution on Ij, it follows that the probability that the triangle determined
by A, B, and C is empty is precisely(

1 − m
a

)(
1 − 2

m
a

)
· · ·

(
1 − (a − 1)m

a

)(
1 − (b − 1)m

b

)
· · ·

(
1 − m

b

)
≤ exp

(
−m

a
− 2

m
a
· · · − (a − 1)m

a
− (b − 1)m

b
· · · − m

b

)
= exp

(
−
(a

2

) m
a
−
(b

2

) m
b

)
= exp

(
−(k − 2)m

2

)
.

For every fixed choice of A and C, when the point pi+a = B is chosen randomly,
the probability that its distance m from the intersection of the segment AC with the
interval Ii+a is at most d is clearly at most 2d, for all d ≥ 0. Therefore, the probability
that the triangle determined by pi, pi+a, and pi+k is empty is at most

2
∫m≥0

exp (−(k − 2)m∕2) dm = 4∕(k − 2) .

It follows that the expected value of the total number of empty triangles is at most

n − 2 +
∑

1≤i≤n−3

∑
3≤k≤n−i

∑
1≤a≤k−1

4∕(k − 2)

= n − 2 +
∑

3≤k≤n−1

(n − k)4(k − 1)
k − 2

= n − 2 +
∑

3≤k≤n−1

(n − k)4∕(k − 2) + 4
∑

3≤k≤n−1

(n − k)

= 2n2 + O(n log n) .

This completes the proof. ◾

The result above can be extended to higher dimensions by applying a similar prob-
abilistic construction. A set X of n points in the d-dimensional Euclidean space is
called independent if no d + 1 of the points lie on a hyperplane. A simplex deter-
mined by d + 1 of the points is called empty if it contains no other point of X. Let
fd(X) denote the number of empty simplices of X, and define fd(n) = minfd(X), as X
ranges over all independent sets of n points in Rd. Katchalski and Meir (1988) showed
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that fd(n) ≥
(

n−1
d

)
. The following theorem of Bárány and Füredi shows that, here

again, a probabilistic construction gives a matching upper bound, up to a constant
factor (which depends on the dimension). We omit the detailed proof.

Theorem 14.2.2 There exists a constant K = K(d), such that for every convex,
bounded set A ⊂ Rd with nonempty interior, if X is a random set of n points obtained
by n random and independent choices of points of A picked with uniform distribution,

then the expected number of empty simplices of X is at most K
(

n
d

)
.

14.3 GEOMETRICAL REALIZATIONS OF SIGN MATRICES

Let A = (ai,j) be an m by n matrix with +1,−1-entries. We say that A is realizable in
Rd if there are m hyperplanes H1,… ,Hm in Rd passing through the origin and n points
P1,… ,Pn in Rd , so that for all i and j, Pj lies in the positive side of Hi if ai,j = +1,
and in the negative side if ai,j = −1. Let d(A) denote the minimum dimension d such
that A is realizable in Rd, and define d(m, n) = max(d(A)), as A ranges over all m by n
matrices with +1,−1-entries. Since d(m, n) = d(n,m), we can consider only the case
m ≥ n.

The problem of determining or estimating d(m, n), and in particular d(n, n), was
raised by Paturi and Simon (1984). This problem was motivated by an attempt to
estimate the maximum possible “unbounded-errorprobabilistic communication com-
plexity” of Boolean functions. Alon, Frankl and Rödl (1985) proved that, as n grows,
n∕32 ≤ d(n, n) ≤ ( 1

2
+ o(1))n. Both the upper and the lower bounds are proved by

combining probabilistic arguments with certain other ideas. In the next theorem we
prove the upper bound, which is probably closer to the truth.

Theorem 14.3.1 For all m ≥ n,

d(m, n) ≤ (n + 1)∕2 +
√

n − 1
2

log m.

For the proof, we need a definition and two lemmas. For a vector a = (a1,… , an)
of +1,−1-entries, the number of sign changes in a is the number of indices i, 1 ≤

i ≤ n − 1 such that ai = −ai+1. For a matrix A of +1,−1-entries, denote by s(A) the
maximum number of sign changes in a row of A.

Lemma 14.3.2 For any matrix A of +1,−1-entries, d(A) ≤ s(A) + 1.

Proof. Let A = (ai,j) be an m × n matrix of +1,−1 entries, and suppose s = s(A).
Let t1 < t2 < · · · < tn be arbitrary reals, and define n points P1,P2,… ,Pn in Rs+1

by Pj = (1, tj, t2
j
,… , tsj ). These points, whose last s coordinates represent points on

the d-dimensional moment-curve, will be the points used in the realization of A. To
complete the proof we have to show that each row of A can be realized by a suit-
able hyperplane through the origin. This is proved by applying some of the known
properties of the moment-curve as follows: Consider the sign vector representing an
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arbitrary row of A. Suppose this vector has r sign changes, where, of course, r ≤ s.
Suppose the sign changes in this vector occur between the coordinates ij and ij + 1,
for 1 ≤ j ≤ r. Choose arbitrary reals y1,… , yr, where tij < yj < tij+1 for 1 ≤ j ≤ r.
Consider the polynomial P(t) =

∏r
j=1(t − yj). Since its degree is at most s, there are

real numbers aj such that P(t) =
∑s

j=0 ajt
j. Let H be the hyperplane in Rs+1 defined

by H = {(x0, x1,… , xs) ∈ Rs+1 ∶
∑s

j=0 ajxj = 0}. Clearly, the point Pj = (1, tj,… , ts
j )

is on the positive side of this hyperplane if P(tj) > 0, and is on its negative side if
P(tj) < 0. Since the polynomial P changes sign only in the values yj, it follows that
the hyperplane H separates the points P1,… ,Pn according to the sign pattern of the
corresponding row of A. Hence, by choosing the orientation of H appropriately, we
conclude that A is realizable in Rs+1, completing the proof of the lemma. ◾

Lemma 14.3.3 For every m × n matrix A of +1,−1-entries, there is a matrix
B obtained from A by multiplying some of the columns of A by −1, such that

s(B) ≤ (n − 1)∕2 +
√

n−1
2

log m.

Proof. For each column of A, randomly and independently, choose a number 𝜖 ∈
{ + 1,−1}, where each of the two choices is equally likely, and multiply this column
by 𝜖. Let B be the random sign-matrix obtained in this way. Consider an arbitrary
fixed row of B. One can easily check that the random variable describing the number
of sign changes in this row is a binomial random variable with parameters n − 1 and
p = 1∕2. This is because, no matter what the entries of A in this row are, the row
of B is a totally random row of −1, 1 entries. By the standard estimates for binomial
distributions, described in Appendix A, the probability that this number is greater than

(n − 1)∕2 +
√

n−1
2

log m is smaller than 1∕m. Therefore, with positive probability the
number of sign changes in each of the m rows is at most that large, completing the
proof. ◾

Proof [Theorem 14.3.1] Let A be an arbitrary m × n matrix of +1,−1-entries. By
Lemma 14.3.3, there is a matrix B obtained from A by replacing some of its columns

by their inverses, such that s(B) ≤ (n − 1)∕2 +
√

n−1
2

log m. Observe that d(A) =
d(B), since any realization of one of these matrices by points and hyperplanes through
the origin gives a realization of the other one by replacing the points corresponding
to the altered columns by their antipodal points. Therefore, by Lemma 14.3.2

d(A) = d(B) ≤ s(B) + 1 ≤ (n + 1)∕2 +
√

n − 1
2

log m.

This completes the proof. ◾

It is worth noting that by applying the (general) six-standard-deviations theorem
stated at the end of Section 13.2, the estimate in Lemma 14.3.3 (and hence in
Theorem 14.3.1) can be improved to n∕2 + O(

√
n log (m∕n)). It can be also shown

that if n and m grow so that m∕n2 tends to infinity and (log2 m)∕n tends to 0, then for
almost all m × n matrices A of +1,−1-entries d(A) = ( 1

2
+ o(1))n.
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14.4 𝝐-NETS AND VC-DIMENSIONS OF RANGE SPACES

What is the minimum number f = f (n, 𝜖) such that every set X of n points in the plane
contains a subset S of at most f points such that every triangle containing at least 𝜖n
points of X contains at least one point of S? As we shall see in this section, there
is an absolute constant c such that f (n, 𝜖) ≤ c

𝜖

log (1∕𝜖), and this estimate holds for
every n. This somewhat surprising result is a very special case of a general theorem
of Vapnik and Chervonenkis (1971), which has been extended by Haussler and Welzl
(1987), and which has many interesting applications in computational geometry and
in statistics. In order to describe this result, we need a few definitions. A range space
S is a pair (X,R), where X is a (finite or infinite) set and R is a (finite or infinite)
family of subsets of X. The members of X are called points and those of R are called
ranges. If A is a subset of X, then PR(A) = {r ∩ A ∶ r ∈ R} is the projection of R
on A. In case this projection contains all subsets of A, we say that A is shattered. The
Vapnik–Chervonenkis dimension (or VC-dimension) of S, denoted by VC(S), is the
maximum cardinality of a shattered subset of X. If there are arbitrarily large shattered
subsets, then VC(S) = ∞.

The number of ranges in any finite range space with a given number of points and
a given VC-dimension cannot be too large. For integers n ≥ 0 and d ≥ 0, define a
function g(d, n) by

g(d, n) =
d∑

i=0

(n
i

)
.

Observe that for all n, d ≥ 1, g(d, n) = g(d, n − 1) + g(d − 1, n − 1). The following
combinatorial lemma was proved, independently, by Sauer (1972) and Perles and
Shelah, and in a slightly weaker form by Vapnik and Chervonenkis (1971).

Lemma 14.4.1 If (X,R) is a range space of VC-dimension d with |X| = n points,
then |R| ≤ g(d, n).

Proof. We apply induction on n + d. The assertion is trivially true for d = 0 and
n = 0. Assuming it holds for n and d − 1 and for n − 1 and d − 1, we prove it for
n and d. Let S = (X,R) be a range space of VC-dimension d on n points. Suppose
x ∈ X, and consider the two range spaces S − x and S ⧵ x defined as follows. S − x =
(X − {x},R − x), where R − x = {r − {x} ∶ r ∈ R}. S ⧵ x = (X − {x},R ⧵ x), where
R ⧵ x = {r ∈ R ∶ x ∉ r, r ∪ {x} ∈ R}. Clearly, the VC-dimension of S − x is at most
d. It is also easy to see that the VC-dimension of S ⧵ x is at most d − 1. Therefore, by
the induction hypothesis

|R| = |R − x| + |R ⧵ x| ≤ g(d, n − 1) + g(d − 1, n − 1) = g(d, n),

completing the proof. ◾

It is easy to check that the estimate given in the above lemma is sharp for all
possible values of n and d. If (X,R) is a range space of VC-dimension d and A ⊂ X,
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then the VC-dimension of (A,PR(A)) is clearly at most d. Therefore, the last lemma
implies the following:

Corollary 14.4.2 If (X,R) is a range space of VC-dimension d, then for every finite
subset A of X, |PR(A)| ≤ g(d, |A|) .

There are many range spaces with finite VC-dimension that arise naturally in
discrete and computational geometry. One such example is the space S = (Rd

,H),
whose points are all the points in the d-dimensional Euclidean space, and whose set
of ranges is the set of all (open) half-spaces. Any set of d + 1 affinely independent
points is shattered in this space, and, by Radon’s theorem, no set of d + 2 points
is shattered. Therefore VC(S) = d + 1. As shown by Dudley (1978), if (X,R) has a
finite VC-dimension, so does (X,Rk), where Rk is the set of all Boolean combinations
formed from at most k ranges in R. In particular, the following statement is a simple
consequence of Corollary 14.4.2:

Corollary 14.4.3 Let (X,R) be a range space of VC-dimension d ≥ 2, and let
(X,Rh) be the range space on X in which Rh = {(r1 ∩ · · · ∩ rh) ∶ r1,… , rh ∈ R}.
Then VC(X,Rh) ≤ 2dh log (dh).

Proof. Let A be an arbitrary subset of cardinality n of X. By Corollary 14.4.2,|PR(A)| ≤ g(d, n) ≤ nd. Since each member of PRh
(A) is an intersection of h members

of PR(A), it follows that |PRh
(A)| ≤ (

g(d,n)
h

)
≤ ndh. Therefore, if ndh

< 2n, then A
cannot be shattered. But this inequality holds for n ≥ 2dh log (dh), since dh ≥ 4. ◾

As shown above, the range space whose set of points is Rd and whose set of ranges
is the set of all half spaces has VC-dimension d + 1. This and the last corollary imply
that the range space (Rd

,Ch), where Ch is the set of all convex d-polytopes with h
facets, has a VC-dimension which does not exceed 2(d + 1)h log ((d + 1)h).

An interesting property of range spaces with a finite VC-dimension is the fact that
each finite subset of such a set contains relatively small good samples in the sense
described below. Let (X,R) be a range space, and let A be a finite subset of X. For
0 ≤ 𝜖 ≤ 1, a subset B ⊂ A is an 𝜖-sample for A if for any range r ∈ R the inequality

‖A ∩ r|∕|A| − |B ∩ r|∕|B‖ ≤ 𝜖

holds. Similarly, a subset N ⊂ A is an 𝜖-net for A if any range r ∈ R satisfying |r ∩
A| > 𝜖|A| contains at least one point of N.

Notice that every 𝜖-sample for A is also an 𝜖-net and that the converse is not true.
However, both notions define subsets of A, which represent approximately some of
the behavior of A with respect to the ranges. Our objective is to show the existence of
small 𝜖-nets or 𝜖-samples for finite sets in some range spaces. Observe that, if (X,R)
is a range space with an infinite VC-dimension, then for every n there is a shattered
subset A of X of cardinality n. It is obvious that any 𝜖-net (and hence certainly any
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𝜖-sample) for such an A must contain at least (1 − 𝜖)n points, that is, it must contain
almost all points of A. Therefore, in infinite VC-dimension, there are no small nets or
samples. However, it turns out that in finite VC-dimension there are always very small
nets and samples. The following theorem was proved by Vapnik and Chervonenkis
(1971).

Theorem 14.4.4 There is a positive constant c such that, if (X,R) is any range space
of VC-dimension at most d, A ⊂ X is a finite subset and 𝜖, 𝛿 > 0, then a random subset
B of cardinality s of A where s is at least the minimum between |A| and

c
𝜖

2

(
d log

d
𝜖

+ log
1
𝛿

)
is an 𝜖-sample for A with probability at least 1 − 𝛿.

Using similar ideas, Haussler and Welzl (1987) proved the following Theorem:

Theorem 14.4.5 Let (X,R) be a range space of VC-dimension d, let A be a finite sub-
set of X, and suppose 0 < 𝜖, 𝛿 < 1. Let N be a set obtained by m random independent
draws from A, where

m ≥ max
(4
𝜖

log
2
𝛿

,

8d
𝜖

log
8d
𝜖

)
. (14.2)

Then N is an 𝜖-net for A with probability at least 1 − 𝛿.

Therefore, if A is a finite subset of a range space of finite VC-dimension d, then
for any 𝜖 > 0, A contains 𝜖-nets as well as 𝜖-samples whose size is at most some
function of 𝜖 and d, independent of the cardinality of A! The result about the triangles
mentioned in the first paragraph of this section thus follows from Theorem 14.4.5,
together with the observation following Corollary 14.4.3 which implies that the range
space whose ranges are all triangles in the plane has a finite VC-dimension. We note
that, as shown by Pach and Woeginger (1990), there are cases in which for fixed 𝛿,
the dependence of m in 1∕𝜖 cannot be linear. See also Komlós, Pach and Woeginger
(1992) for a tight form of the last theorem.

The proofs of Theorems 14.4.4 and 14.4.5 are very similar. Since the computation
in the proof of Theorem 14.4.5 is simpler, we describe here only the proof of this
theorem, and encourage the reader to try and make the required modifications that
yield a proof for Theorem 14.4.4.

Proof [Theorem 14.4.5] Let (X,R) be a range space with VC-dimension d, and
let A be a subset of X of cardinality |A| = n. Suppose m satisfies (14.2), and let N =
(x1,… , xm) be obtained by m independent random choices of elements of A. (The
elements in N are not necessarily distinct, of course). Let E1 be the following event:

E1 = {∃r ∈ R ∶ |r ∩ A| > 𝜖n, r ∩ N = ∅} .
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To complete the proof we must show that the probability of E1 is at most 𝛿. To this end,
we make an additional random choice and define another event as follows: Indepen-
dently of our previous choice, we let T = (y1,… , ym) be obtained by m independent
random choices of elements of A. Let E2 be the event defined by

E2 =
{
∃r ∈ R ∶ |r ∩ A| > 𝜖n, r ∩ N = ∅, |r ∩ T| ≥ 𝜖m

2

}
.

(Since the elements of T are not necessarily distinct, the notation |r ∩ T| means
here |{i ∶ 1 ≤ i ≤ m, yi ∈ r}|. The quantities |r ∩ N| and |r ∩ (N ∪ T)| are similarly
defined).

Claim 14.4.6 Pr[E2] ≥
1
2

Pr[E1].

Proof. It suffices to prove that the conditional probability Pr[E2|E1] is at least 1∕2.
Suppose that the event E1 occurs. Then there is an r ∈ R such that |r ∩ A| > 𝜖n and
r ∩ N = ∅. The conditional probability above is clearly at least the probability that
for this specific r, |r ∩ T| ≥ 𝜖m

2
. However, |r ∩ T| is a binomial random variable with

expectation pm, and variance (1 − p)pm ≤ pm, where p = |r ∩ A|∕|A| ≥ 𝜖. Hence, by
Chebyshev’s inequality,

Pr
[|r ∩ T| < 𝜖m

2

]
≤ Pr

[|r ∩ T| < pm

2

]
≤

pm

(pm∕2)2
≤

4
𝜖m

≤
1
2
,

where the last inequality follows from (14.2). Thus, the assertion of Claim 14.4.6 is
correct. ◾

Claim 14.4.7
Pr[E2] ≤ g(d, 2m)2−

𝜖m
2 .

Proof. The random choice of N and T can be described in the following way, which
is equivalent to the previous one. First one chooses N ∪ T = (z1,… , z2m) by making
2m random independent choices of elements of A, and then one chooses randomly
precisely m of the elements zi to be the set N (the remaining elements zj form the
set T, of course). For each range r ∈ R satisfying |r ∩ A| > 𝜖n, let Er be the event
where |r ∩ T| > 𝜖m

2
and r ∩ N = ∅. A crucial fact is that, if r, r′ ∈ R are two ranges,|r ∩ A| > 𝜖n and |r′ ∩ A| > 𝜖n and if r ∩ (N ∪ T) = r′ ∩ (N ∪ T), then the two events

Er and Er′ , when both are conditioned on the choice of N ∪ T, are identical. This is
because the occurrence of Er depends only on the intersection r ∩ (N ∪ T). Therefore,
for any fixed choice of N ∪ T, the number of distinct events Er does not exceed the
number of different sets in the projection PN∪T (R). Since the VC-dimension of X is
d, Corollary 14.4.2 implies that this number does not exceed g(d, 2m).

Let us now estimate the probability of a fixed event of the form Er, given the choice
of N ∪ T. This probability is at most

Pr
[
r ∩ N = ∅ | |r ∩ (N ∪ T)| > 𝜖m

2

]
.
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Define s = |r ∩ (N ∪ T)|. Since the choice of N among the elements of N ∪ T is
independent of the choice of N ∪ T, the last conditional probability is precisely

(2m − s)(2m − s − 1) · · · (m − s + 1)
2m(2m − 1) · · · (m + 1)

= m(m − 1) · · · (m − s + 1)
2m(2m − 1) · · · (2m − s + 1)

≤ 2−s
≤ 2−𝜖m∕2

.

Since there are at most g(d, 2m) potential distinct events Er, it follows that the
probability that at least one of them occurs given the choice of N ∪ T is at most
g(d, 2m)2−𝜖m∕2. Since this estimate holds conditioned on every possible choice of
N ∪ T, it follows that the probability of the event E2 is at most g(d, 2m)2−𝜖m∕2. This
establishes Claim 14.4.7. ◾

By Claims 14.4.6 and 14.4.7, Pr[E1] ≤ 2g(d, 2m)2−𝜖m∕2. To complete the proof of
the theorem it remains to show that, if m satisfies inequality (14.2), then

2g(d, 2m)2−
𝜖m
2 ≤ 𝛿 .

We describe the proof for d ≥ 2. The computation for d = 1 is easier. Since g(d, 2m) ≤
(2m)d, it suffices to show that

2(2m)d ≤ 𝛿2
𝜖m
2 ,

that is
𝜖m
2

≥ d log (2m) + log
2
𝛿

.

From (14.2) it follows that
𝜖m
4

≥ log
2
𝛿

,

and hence it suffices to show that

𝜖m
4

≥ d log (2m) .

The validity of the last inequality for some value of m implies its validity for any
bigger m, and hence it suffices to check that it is satisfied for m = 8d

𝜖

log 8d
𝜖

, that is

2d log
8d
𝜖

≥ d log
(16d

𝜖

log
8d
𝜖

)
.

The last inequality is equivalent to 4d
𝜖

≥ log 8d
𝜖

, which is certainly true. This com-
pletes the proof of the theorem. ◾

Theorems 14.4.4 and 14.4.5 have been used for constructing efficient data struc-
tures for various problems in computational geometry. A trivial example is just the
observation that Theorem 14.4.4 implies the following: for every 𝜖 > 0, there is a
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constant c = c(𝜖) such that for every n and every set A of n points in the plane there
is a data structure of size c(𝜖) that enables us to estimate, given any triangle in the
plane, the number of points of A in this triangle up to an additive error of 𝜖n. This is
done simply by storing the coordinates of a set of points that form an 𝜖-sample for A
considered as a subset of the range space whose ranges are all planar triangles. More
sophisticated data structures whose construction relies on the above two theorems
can be found in the paper by Haussler and Welzl (1987).

14.5 DUAL SHATTER FUNCTIONS AND DISCREPANCY

The dual shatter function h of a range space S = (X,R) is the function h mapping
integers to integers, defined by letting h(g) denote the maximum, over all possible
choices of g members of R, of the number of atoms in the Venn diagram of these
members. It is not too difficult to prove that, if the VC-dimension of S is d, then h(g) ≤
O(g2d+1−1), but in geometric applications it is usually better to bound this function
directly.

In Matoušek, Welzl and Wernisch (1993) it is proved that, if the dual shatter func-
tion of a range space S = (X,R) satisfies h(g) ≤ O(gt), A is any set of n points in
the range space, and  is the projection PR(A) of R on A, then the discrepancy of 
satisfies

disc( ) ≤ O(n
1
2
− 1

2t
√

log n). (14.3)

This supplies nontrivial estimates in various geometric situations, improving the triv-
ial bound that follows from Theorem 13.1.1 of Chapter 13. In most of these geomet-
ric applications, it is widely believed that the

√
log n factor can be omitted. In the

abstract setting, however, this factor cannot be omitted, as proved in Matoušek (1997)
(for t = 2, 3) and later in Alon, Rónyai and Szabó (1999) for all t.

The proof of (14.3) is based on a beautiful result of Chazelle and Welzl (1989)
and its improvement by Haussler (1995). It is somewhat simpler to prove the result
with an extra logarithmic factor, and this is the proof we present here. See Pach and
Agarwal (1995), for some additional information.

Let  be a family of subsets of a finite set A. In what follows, we consider graphs
whose edges are (unordered) pairs of points of A. For F ∈  and x, y ∈ A, the edge
xy stabs F if F contains exactly one of the two points x and y. The following theorem
is proved in Chazelle and Welzl (1989). An improvement by a logarithmic factor
appears in Haussler (1995).

Theorem 14.5.1 Let (A, ) be a finite range space, where |A| = n, and suppose that
its dual shatter function h satisfies h(g) ≤ cgt for some fixed c, t > 0. Then, there is a
C = C(c, t) and a Hamilton path on A, such that each member F of  is stabbed by
at most Cn1−1∕t log n edges of the path.

To prove the above theorem, we need the following lemma.
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Lemma 14.5.2 Let (A, ), n, h, t, and c be as above, let B be a finite subset of p >

1 points of A, and let  be a collection of m (not necessarily distinct) members of
 . Then there are two distinct points x, y in B, such that the edge xy stabs at most
bm log p

p1∕t members of , where b = b(c).

Proof. We may and will assume that p is larger than c + 1. Let g be the largest integer

such that cgt
≤ p − 1, that is, g =

⌊(
p−1

c
)
)1∕t

⌋
. Let L be a random collection of g

members of , each picked randomly and independently (with possible repetitions)
from among all m members of  with uniform distribution. The Venn diagram of all
members of L partitions B into at most h(g) ≤ cgt

< p atoms, and hence there are two
distinct points x, y of B that lie in the same atom. To complete the proof, it suffices to
show that with positive probability, for each pair of points of B that stabs more than
bm log p

p1∕t members of , at least one of these members lies in L (and hence the pair does

not lie in an atom of the corresponding Venn diagram.) There are
(

p
2

)
such pairs, and

for each of them the probability that L contains no member of  it stabs is at most(
1 −

b log p

p1∕t

)g

≤ e
− b log p

p1∕t

⌊
( p−1

c
)1∕t

⌋
,

which is less than 1∕p2 for an appropriately chosen constant b = b(c). This completes
the proof. ◾

Proof [Theorem 14.5.1] Note, first, that if d is the VC-dimension of the given
space, then there is a shattered set D of size d. It is not difficult to see that there are
g = ⌈log2 d⌉ sets among those shattering D, so that no two points of D lie in the same
atom of their Venn diagram. Therefore, d ≤ c(⌈log2 d⌉)t, implying that d ≤ 2c′t log t,
where c′ = c′(c). By Lemma 14.4.1, this implies that the total number of ranges in R
is at most n2c′t log t

.
We next prove that there is a spanning tree of A satisfying the assertion

of Theorem 14.5.1, and then show how to replace it by a Hamilton path. By
Lemma 14.5.2 with B0 = A, p0 = n, and 0 =  ,m0 = |0| (≤ n2c′t log t ), we con-
clude that there is a pair x0y0 of points in A such that the edge x0y0 does not stab more
than b log n

n1∕t m0 members of . Let 1 be the collection obtained from  by duplicating
all members of  that are stabbed by x0y0, and define B1 = B − x0, p1 = n − 1,
m1 = |1| ≤ m0(1 + b log n

n1∕t ). Applying Lemma 14.5.2 again, this time to B1 and 1,
we obtain another pair x1y1, define B2 = B1 − x1, p2 = p1 − 1 = n − 2, and let 2
be the collection obtained from 1 by duplicating all members of 1 stabbed by
x1y1, m2 = |2|. By the assertion of the lemma, m2 ≤ m1(1 + b log n

(n−1)1∕t ). Proceeding
in this manner, we get a sequence x0y0, x1y1,… , xn−1yn−1 of edges of a graph on A,
a sequence of subsets B0 = A,B1,… ,Bn−1, where each Bi is obtained from the pre-
vious one by omitting the point xi−1, and a sequence of collections 0,1,… ,n−1,
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where

|n−1| ≤ m0

n−1∏
i=0

(1 +
b log n

(n − i)1∕t
)

≤ n2c′t log t
eb log n

∑n−1
i=0 (n−i)−1∕t

≤ 2b′n1−1∕t log n

for an appropriate b′ = b′(c, t).
Note, now, that the edges xiyi form a spanning tree on the set A. The crucial

observation is the fact that, if a member of  is stabbed by s of the edges, then it
is being duplicated s times during the above process that generates n−1, implying
that 2s ≤ |n−1| and hence that s ≤ b′n1−1∕t log n. It remains to replace the spanning
tree by a Hamiltonian path. To do so, replace each edge of the tree by two parallel
edges, and take an Euler tour in the resulting graph (in which all degrees are even).
This is a sequence x0, x1, x2,… , x2n−2 = x0 of points of A such that each adjacent pair
of elements of the sequence is an edge of the tree, and each edge appears twice this
way. The subsequence of the above one obtained by keeping only the first appearance
of each point of A is a Hamilton path, and it is easy to check that each member of 
is stabbed by at most 2b′n1−1∕t log n of its edges, completing the proof.

The following result is a simple consequence of Theorem 14.5.1. As mentioned
above, its assertion can be improved by a factor of

√
log n.

Theorem 14.5.3 Let (A, ) be a finite range space, where |A| = n, and suppose that
its dual shatter function h satisfies h(g) ≤ cgt for some fixed c, t > 0. Then, there is a
C′ = C′(c, t) such that the discrepancy of  satisfies

disc( ) ≤ C′n
1
2
− 1

2t log n.

Proof. Without loss of generality, assume that the number of points of A is even
(otherwise, simply omit a point). By Theorem 14.5.1, there is a Hamiltonian
path x1x2 · · · xn on these points such that each member of  is stabbed by at
most Cn1−1∕t log n edges of the path. Let f ∶ A → { − 1, 1} be a random col-
oring of A, where for each i, 1 ≤ i ≤ n∕2, randomly and independently, either
f (x2i−1) = 1, f (x2i) = −1 or f (x2i−1) = −1, f (x2i) = 1, the two choices being equally
likely. Fix a member F ∈  , and note that the contribution of each pair x2i−1x2i
to the sum

∑
xj∈Ff (xj) is zero if the edge x2i−1x2i does not stab F, and it is either

+1 or −1 otherwise. It thus follows that this sum has, in the notation of Theorem
A.1.1, the distribution Sr for some r ≤ Cn1−1∕t log n. Thus, the probability that it
is, in absolute value, at least 𝛼 can be bounded by 2e−𝛼

2∕2r . As shown in the first
paragraph of the proof of Theorem 14.5.1, the total number of members of  does
not exceed n2c′t log t

, and thus the probability that there exists a member F ∈  for

which the sum
∑

xj∈Ff (xj) exceeds C′n
1
2
− 1

2t log n is less than 1 for an appropriately

chosen constant C′ = C′(c, t). ◾
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The range space whose set of points is an arbitrary set of points in the plane, and
whose ranges are all disks in the plane, has a dual shatter function O(g2). The above
theorem thus shows that it is possible to color any set of n points in the plane red and
blue, such that the absolute value of the difference between the number of red points
and the number of blue points inside any disk would not exceed n1∕4+o(1). Similar
results can be proved for many other geometric range spaces.

14.6 EXERCISES

1. Let A be a set of n points in the plane, and let  be the set of all intersections of A
with an open triangle in the plane. Prove that the discrepancy of does not exceed
n1∕4+o(1).

2. Prove that n distinct points in the plane determine at most O(n4∕3) unit distances.



THE PROBABILISTIC LENS:
Efficient Packing

Let C ⊂ Rn be bounded with Riemann measure 𝜇 = 𝜇(C) > 0. Let N(C, x) denote the
maximal number of disjoint translates of C that may be packed in a cube of side x,
and define the packing constant

𝛿(C) = 𝜇(C) lim
x→∞

N(C, x)x−n
,

the maximal proportion of space that may be packed by copies of C. The following
result improves the one described in Section 3.4.

Theorem 1 Let C be bounded, convex, and centrally symmetric about the origin.
Then,

𝛿(C) ≥ 2−(n−1)
.

Proof. Fix 𝜖 > 0. Normalize so that 𝜇 = 𝜇(C) = 2 − 𝜖. For any real z, let Cz denote
the “slab” of (z1,… , zn−1) ∈ Rn−1 such that (z1,… , zn−1, z) ∈ C, and let 𝜇(Cz) be the
usual n − 1-dimensional measure of Cz. Riemann measurability implies

lim
𝛾→0

∑
m∈Z

𝜇(Cm𝛾
)𝛾 = 𝜇(C) .

Let K be an integer sufficiently large so that∑
m∈Z

𝜇(CmK−(n−1) )K−(n−1)
< 2

and further that all points of C have all coordinates less than K∕2.
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For 1 ≤ i ≤ n − 1, let 𝑣i ∈ Rn be that vector with all coordinates zero except K as
the ith coordinate. Let

𝑣 = (z1,… , zn−1,K
−(n−1)) ,

where z1,… , zn−1, are chosen uniformly and independently from the real interval
[0,K). Let Λ

𝑣
denote the lattice generated by the 𝑣’s, that is

Λ
𝑣
= {m1𝑣1 + · · · + mn−1𝑣n−1 + m𝑣 ∶ m1,… ,mn−1,m ∈ Z}

= {(mz1 + m1K,… ,mzn−1 + mn−1K,mK−(n−1) ∶ m1,… ,mn−1,m ∈ Z}.

Let 𝜃(x) denote the unique x′ ∈ (−K
2
,

K
2
] so that x − mK = x′ for some m ∈ Z. For

m ∈ Z, let Am be the event where some m1𝑣1 + · · · + mn−1𝑣n−1 + m𝑣 ∈ C. Since all
coordinates of all points of C are less than K∕2, Am occurs if and only if

(𝜃(mz1),… , 𝜃(mzn−1),mK−(n−1)) ∈ C ,

which occurs if and only if (𝜃(mz1),… , 𝜃(mzn−1)) ∈ CmK−(n−1) . The independence and
uniformity of the zi over [0,K) implies the independence and uniformity of the 𝜃(zi)
over (−K

2
,

K
2
], and so

Pr[Am] = K−(n−1)
𝜇(CmK−(n−1) ) .

Summing over positive m and employing the central symmetry,

∑
m>0

Pr[Am] <
1
2

∑
m∈Z

K−(n−1)
𝜇(CmK−(n−1) ) < 1

2
2 = 1.

Hence there exists 𝑣 with all Am, m > 0 not holding. By the central symmetry, Am and
A−m are the same event so no Am, m ≠ 0 holds. When m = 0, the points m1𝑣1 + · · · +
mn−1𝑣n−1 = K(m1,… ,mn−1, 0) all lie outside C except the origin. For this 𝑣

Λ
𝑣
∩ C = {0} .

Consider the set of translates C + 2𝑤,𝑤 ∈ Λ
𝑣
. Suppose

z = c1 + 2𝑤1 = c2 + 2𝑤2 with c1, c2 ∈ C, 𝑤1, 𝑤2 ∈ Λ
𝑣
.

Then (c1 − c2)∕2 = 𝑤2 −𝑤1. From convexity and central symmetry, (c1 − c2)∕2 ∈
C. As 𝑤2 −𝑤1 ∈ Λ

𝑣
, it is zero and hence c1 = c2 and 𝑤1 = 𝑤2. That is, the trans-

lates form a packing of Rn. As det(2Λ
𝑣
) = 2n det(Λ

𝑣
) = 2n, this packing has density

2−n
𝜇 = 2−n(2 − 𝜖). As 𝜖 > 0 was arbitrary, 𝛿(C) ≥ 2−(n−1). ◾





15
Codes, Games, and Entropy

Mathematics was a natural gift, like the northern lights. It was not mixed up with any-
thing else in the world, not with papers, prizes, colleagues, and diplomas.

–from Too Much Happiness, by Alice Munro

15.1 CODES

Suppose we want to send a message, here considered a string of bits, across a noisy
channel. There is a probability p that any bit sent will be received incorrectly. The
value p is a parameter of the channel and cannot be changed. We assume that p is
both the probability that a sent zero is received as a one and that a sent one is received
as a zero. Sent bits are always received, but perhaps incorrectly. We further assume
that the events where the bits are received incorrectly are mutually independent. The
case p = 0.1 will provide a typical example.

How can we improve the reliability of the system? One simple way is to send each
bit three times. When the three bits are received, we use majority rule to decode. The
probability of incorrect decoding is then 3p2(1 − p) + p3 = 0.028 in our instance. We
have sacrificed speed – the rate of transmission of this method is 1∕3 – and gained
accuracy in return. If we send each bit five times and use majority rule to decode, the
probability of incorrect decoding drops to 0.00856 but the rate of transmission also
drops to 1∕5. Clearly, we may make the probability of incorrect decoding as low as
needed, but seemingly with the tradeoff that the rate of transmission tends to zero.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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It is the fundamental theorem of information theory – due to Claude Shannon – that
this tradeoff is not necessary: there are codes with rate of transmission approach-
ing a positive constant (dependent on p) with probability of incorrect transmission
approaching zero.

A Coding Scheme consists of positive integers m, n, a function f ∶ {0, 1}m →
{0, 1}n called the encoding function, and a function g ∶ {0, 1}n → {0, 1}m called
the decoding function. The notion is that a message (or segment of message)
x ∈ {0, 1}m will be encoded and sent as f (x) and a received message y ∈ {0, 1}n will
be decoded as g(y). The rate of transmission of such a scheme is defined as m∕n. Let
E = (e1,… , en) be a random string defined by Pr[ei = 1] = p, Pr[ei = 0] = 1 − p,
the values ei being mutually independent. We define the probability of correct
transmission as Pr[g(f (x) + E) = x]. Here, x is assumed to be uniformly distributed
over {0, 1}m and independent of E, and + is mod 2 vector addition.

A crucial role is played by the entropy function

H(p) = −p log2 p − (1 − p) log2 (1 − p)

defined for p ∈ (0, 1). For any fixed p, the entropy function appears in the asymptotic
formula(

n
pn

)
= nne−n

(pn)pne−pn((1 − p)n)(1−p)ne−(1−p)n
(1 + o(1))n = 2n(H(p)+o(1)).

For p ∈ (0, 0.5), we further bound

∑
i≤pn

(n
i

)
≤ (1 + pn)

(
n

pn

)
= 2n(H(p)+o(1)).

Theorem 15.1.1 [Shannon’s Theorem] Let p ∈ (0, 0.5) be fixed. For 𝜖 > 0 arbi-
trarily small, there exists a coding Scheme with rate of transmission greater than
1 − H(p) − 𝜖 and probability of incorrect transmission less than 𝜖.

Remark. It is not difficult to show that, for every such p, any coding scheme whose
rate of transmission exceeds 1 − H(p) + 𝜖 must have a significant error probability.
Indeed, if f (x), the image of x, is transmitted, then with high probability, the obtained
output y is of distance (1 + o(1))pn from f (x). Hence, if there are 2m input words, the
total size of all typical outputs is about 2m ⋅

(
n
pn

)
= 2m+(1+o(1))H(p)n

. If this quantity
is much bigger than 2n, then there must be significant overlaps between the output
sets of different input words, making the decoding likely to err.

Proof. Let 𝛿 > 0 be such that p + 𝛿 < 0.5, and H(p + 𝛿) < H(p) + 𝜖∕2. For n large,
set m = n(1 − H(p) − 𝜖), guaranteeing the rate of transmission. Let f ∶ {0, 1}m →
{0, 1}n be a random function – each f (x) uniformly and independently chosen. Given
f , define the decoding function g ∶ {0, 1}n → {0, 1}m by setting g(y) = x if x is the
unique vector in {0, 1}m whose image, f (x), is within n(p + 𝛿) of y. We measure



CODES 275

distance by the Hamming metric 𝜌: 𝜌(y, y′) is the number of coordinates in which
y, y′ differ. If there is no such x, or more than one such x, then we shall consider the
decoding to be incorrect.

There are two ways in which the decoding can be incorrect. Possibly, f (x) + E is
not within n(p + 𝛿) of f (x). The distance from f (x) + E to f (x) is simply the number
of 1’s in E which has binomial distribution B(n, p) and so this occurs with probability
o(1), in fact, with exponentially small probability. The only other possibility is that
there is some x′ ≠ x with f (x′) ∈ S where S is the set of y′ within n(p + 𝛿) of f (x) + E.
Conditioning on the values f (x),E, f (x′) is still uniformly distributed over {0, 1}n

and hence this occurs with probability |S|2−n for any particular x′ and thus with total
probability at most

2m|S|2−n
< 2−n( 𝜖

2
+o(1)) = o(1).

The total probability for incorrect decoding from both sources is thus o(1) and, in
fact, exponentially small. For n sufficiently large, this is less than 𝜖.

The average over all choices of f , x of the probability of incorrect decoding is
less than 𝜖. Therefore there exists a specific f (hence a specific coding scheme) with
probability of incorrect coding less than 𝜖. ◾

Shannon’s theorem, dealing with the intensely practical subject of communica-
tions, puts the shortcomings of the probabilistic approach in sharp contrast. Where is
the coding scheme? Supposing that a coding scheme may be found, how can encod-
ing and decoding be rapidly processed? A group code is a coding scheme in which
the map f ∶ {0, 1}m → {0, 1}n is linear, that is, f (0) = 0 and f (x + x′) = f (x) + f (x′),
all calculations modulo 2. Group codes are of particular interest, in part because of
the ease of encoding.

Theorem 15.1.2 Let p ∈ (0, 0.5) be fixed. For 𝜖 > 0 arbitrarily small, there exists a
group code with rate of transmission greater than 1 − H(p) − 𝜖 and probability of
incorrect transmission less than 𝜖.

Proof. For 1 ≤ i ≤ m, let ui ∈ {0, 1}m be that vector with a 1 in position i, all other
entries being zero. Let f (u1),… , f (um) be chosen randomly and independently, and
then extend f by setting

f (𝜖1u1 +…+ 𝜖mum) = 𝜖1f (u1) +… + 𝜖mum.

We follow the proof of Shannon’s theorem until bounding the probability that f (x) + E
lies within n(p + 𝛿) of f (x). Set z = x − x′ = 𝜖1u1 +…+ 𝜖mum, again all modulo 2.
As x ≠ x′, z ≠ 0. Reorder for convenience so that 𝜖m = 1. By linearity, f (z) = f (x) −
f (x′), so we bound Pr[f (z) ∈ S] where S is the set of vectors within n(p + 𝛿) of E.
Fixing E and the f (ui), i < m, f (z) still has an additive term f (um) that is uniform and
independent. Hence f (z) is distributed uniformly. Thus

Pr[f (z) ∈ S] = |S|2−n
,

and the remainder of the proof is as in Shannon’s theorem. ◾
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15.2 LIAR GAME

Paul is trying to find a number x ∈ {1,… , n} from a recalcitrant and mendacious
Carole. He may ask q questions of the form “Is x ∈ S?,” where S can be any subset
of the possibilities. The questions are asked sequentially, and Paul’s choice of his ith
question can depend on previous responses. Carole is allowed to lie – but she can lie
at most k times. For which n, q, k can Paul determine the number?

When k = 0, Paul can win exactly when n ≤ 2q. The values n = 100, q = 10, k = 1
make for an amusing parlor game. Carole is hardly a passive observer; she may play
an adversary strategy. By that we mean she does not select an x in advance but answers
consistently with at least one x. At the end of the game, if her answers were consistent
with more than one x, then she has won. The game, called the (n, q, k)-Liar Game, is
now a perfect information game with no hidden moves and no draws. Hence either
Paul or Carole has a perfect winning strategy. But who?

We describe an equivalent game, the ChipLiar game. There is a board with posi-
tions 0, 1,… , k. There are n chips labeled 1,… , n, which are initially at position k.
There are q rounds. On each round Paul selects a set S of the chips. Carole can either
move every chip not in S one position to the left or move every chip in S one position
to the left. (Here position i − 1 is one position to the left of position i. Chips moved
one position to the left from position 0 are removed from the board.) At the end of
the q rounds, Carole wins if there is more than one chip remaining on the board and
Paul wins if there is one or zero chip remaining on the board. Basically, chip i at posi-
tion j represents that the answer x = i has already received k − j lies; Paul selecting
S represents his asking if x ∈ S; Carole moving the chips not in S represents a Yes
answer, moving the chips in S represents a No answer. (In the ChipLiar game, Carole
can remove all chips from the board, while in the Liar game Carole must play con-
sistently with at least one x. But when Carole removes all chips from the board, she
automatically has lost and hence this difference does not affect the determination of
the winner.)

In the ChipLiar game, there is no reason to place all chips at position k at the
start. More generally, for x0,… , xk ≥ 0, we define the (x0,… , xk), q-ChipLiar Game
to be the above q round game with initial position consisting of xi chips at position i.
This, in turn, corresponds to a Liar Game in which there are xi possibilities for which
Carole is constrained to lie at most i times.

Let us define B(q, j) as the probability that in q flips of a fair coin there are at most
j heads. Of course, we have the exact formula

B(q, j) = 2−q
j∑

i=0

(q
i

)
.

Theorem 15.2.1 If
k∑

i=0

xiB(q, i) > 1,

then Carole wins the (x0,… , xk), q-ChipLiar Game.
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Corollary 15.2.2 If

n >

2q∑k
i=0

(
q
i

) ,

then Carole wins the (n, q, k)-Liar Game.

Proof [Theorem 15.2.1]. Fix a strategy for Paul. Now Carole plays randomly!
That is, at each round, after Paul has selected a set S of chips, Carole flips a coin – if it
comes up heads she moves every chip not in S one position to the left, and if it comes
up tails she moves every chip in S one position to the left. For each chip c, let Ic be
the indicator random variable for c remaining on the board at the end of the game.
Set X =

∑
Ic, the number of chips remaining on the board at the end of the game.

Consider a single chip c. Each round Paul may have chosen c ∈ S or c ∉ S, but in
either case c is moved to the left with probability 1∕2. Suppose c starts at position i.
It remains on the board at the end of the game if and only if in the q rounds it has
been moved to the left at most i times. Then E[Ic], the probability of this occurring, is
precisely B(q, i). By Linearity of Expectation, E[X] =

∑k
i=0 xiB(q, i). The assumption

of the theorem gives E[X] > 1. But then X > 1 must occur with positive probability.
That is, Carole must win with positive probability.

No strategy of Paul allows him to always win. But this is a perfect information
game with no draws, so someone has a perfect strategy that always wins. That some-
one isn’t Paul, so it must be Carole. ◾

The above proof certainly illustrated the magical element of the probabilistic
method. Carole has a winning strategy but what is it? The general notion of moving
from a probabilistic existence proof to an explicit construction is called derandomiza-
tion and will be dealt with in detail in the next chapter. Here we can give an explicit
strategy. With l moves remaining in the game and yi chips on position i, define
the weight of the position as

∑
iyiB(l, i) – note this is E[Y] where Y is the number

of chips that would remain on the board should Carole play the rest of the game
randomly. Carole’s explicit strategy is to always move so as to maximize the weight.

Consider any position with weight W and any move S by Paul. Let Wy
,Wn be the

new weights should Carole move all chips not in S or all chips in S, respectively. We
claim W = 1

2
(Wy + Wn). One argument is that, by linearity, this identity reduces to the

case of one chip and it then follows from the identity B(l, j) = 1
2
(B(l − 1, j) + B(l − 1,

j − 1)). But we need not actually do any calculation. Carole’s playing randomly can
be thought of as first flipping a coin to decide on her first move and then playing
randomly so that E[Y] is the average of the two conditional expectations.

At the start of the game, by assumption, the weight is bigger than 1. Carole’s
explicit strategy assures that the weight does not decrease so at the end of the game
the weight is bigger than 1. But at the end of the game the weight is the number of
chips remaining. Being bigger than 1, Carole has won the game.

The converse of the theorem, and even that of corollary, is false. Consider the Liar
Game with n = 5, q = 5 questions, and k = 1 possible lie. In the ChipLiar version
this is the (0, 5), 5-ChipLiargame. Here B(5, 1) = 6∕32 and 5(6∕32) ≤ 1. Still, Carole
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wins with perfect play. The problem is that Paul has no good first move. Suppose he
selects two chips as S (asks “Is x ≤ 2?” in the Liar Game). Then Carole moves the
two chips one to the left (responds Yes) leaving the position (2, 3)with four questions
remaining. As 2B(4, 0) + 3B(4, 1) = 17∕16 > 1, Carole will now win. It is easy to
check that all other moves of Paul fail. The difficulty here is that Paul was in a position
with weight W ≤ 1 but was unable to find a move such that Wy

≤ 1 and Wn
≤ 1.

15.3 TENURE GAME

Paul, Chair of Department, is trying to promote one of his faculty to tenure but
standing in his way is a recalcitrant and mean-spirited Carole, the Provost. There
are k pre-tenure levels, labeled 1,… , k, level 1 the highest, and a level 0 represent-
ing tenure. For our purposes, each faculty member is represented by a chip. The
(x1,… , xk)-Tenure Game begins with xi chips at level i for 1 ≤ i ≤ k and no chips
on level zero. Each year Paul presents a set S of chips to Carole. Carole may either

• promote all chips in S and fire the others or

• promote all chips not in S and fire those in S.

Promote, as used above, means to move from level i to level i − 1. Fired means just
that: removing the chip from the game. If a chip reaches level 0, then Paul is the win-
ner. The draconian promote or perish provision ensures that the game will end within
k years with either Paul winning or Carole having successfully eliminated all chips.

Theorem 15.3.1 If
∑

ixi2
−i

< 1, then Carole wins the (x1,… , xk)-Tenure Game.

Proof. Fix a strategy for Paul. Now Carole plays randomly! That is, at each round,
after Paul has selected a set S of chips, Carole flips a coin – if it comes up heads she
moves every chip not in S one position to the left, and if it comes up tails she moves
every chip in S one position to the left. For each chip c, let Ic be the indicator random
variable for c reaching level 0. Set X =

∑
Ic, the number of chips reaching level 0

at the end of the game. Consider a single chip c. Each round Paul may have chosen
c ∈ S or c ∉ S, but in either case c is moved to the left with probability 1∕2. Suppose
c starts at position i. It remains on the board at the end of the game if and only if
the first i coin flips of Carole led to promotions for c. Then E[Ic], the probability of
this occurring, is precisely 2−i. By Linearity of Expectation, E[X] =

∑k
i=1 xi2

−i. The
assumption of the theorem gives E[X] < 1. But then X < 1 must occur with positive
probability. That is, Carole must win with positive probability.

No strategy of Paul allows him to always win. But this is a perfect information
game with no draws, so someone has a perfect strategy that always wins. That some-
one isn’t Paul, so it must be Carole. ◾

As with the Liar Game, we may derandomize the above argument to give an
explicit strategy for Carole. With yi chips on position i, define the weight of the posi-
tion as

∑
iyi2

−i – note this is E[Y], where Y is the number of chips that would reach
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level 0 should Carole play the rest of the game randomly. Carole’s explicit strategy is
to always move so as to minimize the weight. Consider any position with weight W
and any move S by Paul. Let Wy

,Wn be the new weights should Carole move all chips
not in S or all chips in S, respectively. As in the Liar Game, W = 1

2
(Wy + Wn). At the

start of the game, by assumption, the weight is less than 1. Carole’s explicit strategy
ensures that the weight does not increase so at all times the weight is smaller than 1.
A chip at level 0 would add one to the weight by itself, so that this never occurs and
hence Carole wins.

In the Liar Game, the sufficient condition for Carole to win was not necessary
because Paul did not always have an appropriately splitting move. Here, however, we
have an amusing lemma.

Lemma 15.3.2 If a set of chips has weight at least 1, it may be split into two parts,
each of weight at least 1∕2.

Proof. There must be two chips at some position i, otherwise the weight is less than
1. If there are two chips at position 1, simply split them. If there are two chips at
position i > 1, glue them together and consider them as one superchip at position
i − 1. Then the proof follows by induction on the number of chips. ◾

Theorem 15.3.3 If
∑

xi2
−i ≥ 1, then Paul wins the (x1,… , xk)-Tenure Game.

Proof. The initial weight is at least 1. Applying the lemma, Paul splits the chips
into two parts, each of weight at least 1∕2, and sets S equal one of the parts. Carole
moves all chips in one part one position to the left, doubling their weight, leaving
a new position of weight at least 1. Thus the weight never goes below 1. Therefore
the game cannot end with all chips having been removed (which would have weight
zero) and so it must end with a win for Paul. ◾

15.4 BALANCING VECTOR GAME

The balancing vector game is a perfect information game with two players, Pusher and
Chooser. There is a parameter n ≥ 1, and we shall be concerned with asymptotics in
n. There are n rounds, each involving vectors in Rn. There is a position vector P ∈ Rn,
initially set at 0. Each round has two parts. First, Pusher picks 𝑣 ∈ { − 1,+1}n. Then
Chooser either resets P to P + 𝑣 or to P − 𝑣. At the end of the nth round, the payoff to
Pusher is |P|∞, the maximal absolute value of the coordinates of P. Let VAL(n)denote
the value of this game to Pusher, that is, the maximum payoff Pusher can ensure when
both players play optimally. Let Sn denote, as usual, the sum of n independent uniform
{1,−1} random variables.

Theorem 15.4.1 If Pr[|Sn| > 𝛼] < n−1, then VAL(n) ≤ 𝛼.

Proof. Consider the game a win for Pusher if the final |P|∞ > 𝛼. Suppose Chooser
announces that she will flip a fair coin each round to determine whether to reset P as
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P + 𝑣 or P − 𝑣. Let xi be the ith coordinate for the final value of the position vector P.
Let Wi be the event |xi| > 𝛼 and W = ∨Wi so that W is the event of Pusher winning.
Regardless of Pusher’s strategy, xi has distribution Sn so that

Pr[W] ≤
n∑

i=1

Pr[|Sn| > 𝛼] < 1.

Pusher cannot always win, so Chooser always wins. ◾

Corollary 15.4.2 VAL(n) = O(
√

n ln n).

To give a lower bound on VAL(n), one wants to find a strategy for Pusher that wins
against any Chooser. It is not sufficient to find a strategy that does well against a ran-
domly playing Chooser–the Chooser is an adversary. Still, the notion of a randomly
playing Chooser motivates the following result.

Theorem 15.4.3 If Pr[|Sn| > 𝛼] > cn−1∕2, where c is an absolute constant, then
VAL(n) > 𝛼.

Corollary 15.4.4 VAL(n) = Ω(
√

n ln n) and hence VAL(n) = Θ(
√

n ln n).

Proof [Theorem 15.4.3]. Define, for x ∈ Z, 0 ≤ i ≤ n,

𝑤i(x) = Pr
[|x + Sn−i| > 𝛼

]
.

For P = (x1,… , xn), set 𝑤i(P) =
∑

1≤j≤n𝑤i(xj). When P is the position vector at the
end of the ith round,𝑤i(P) may be interpreted as the expected number of coordinates
with absolute value greater than 𝛼 at the end of the game, assuming random play by
Chooser. At the beginning of the game,𝑤0(P) = 𝑤0(0) > c

√
n by assumption. Given

position P at the end of round i, Pusher’s strategy will be to select 𝑣 ∈ { − 1,+1}n so
that 𝑤i+1(P − 𝑣) and 𝑤i+1(P + 𝑣) are close together.

The distribution x + Sn−i splits into x + 1 + Sn−i−1 and x − 1 + Sn−i−1 depending
on the first coin flip so that for any i, x,

𝑤i(x) =
1
2

[
𝑤i+1(x + 1) +𝑤i+1(x − 1)

]
.

Set P = (x1,… , xn), 𝑣 = (𝑣1,… , 𝑣n). For 1 ≤ j ≤ n, set

Δj = 𝑤i+1(xj + 1) −𝑤i+1(xj − 1)

so that

𝑤i+1(P + 𝑣) −𝑤i+1(P − 𝑣) =
n∑

j=1

𝑣jΔj,
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and, for 𝜖 = ±1,

𝑤i+1(P + 𝜖𝑣) = 𝑤i(P) +
1
2
𝜖

n∑
j=1

𝑣jΔj.

Now we bound |Δj|. Observe that

Δj = Pr[Sn−i−1 = y] − Pr[Sn−i−1 = z],

where y is the unique integer of the same parity as n − i − 1 in the interval (𝛼 − (xj +
1), 𝛼 − (xj − 1)] and z the same in (−𝛼 − (xj + 1),−𝛼 − (xj − 1)). Let us set

g(m) = max
s

Pr[Sm = s] =
(

m⌊m∕2⌋
)

2−m ∼
√

2
𝜋m

,

so that |Δj| ≤ g(n − i − 1) for all j.
A simple strategy for Pusher is then to reorder the coordinates so that |Δ1| ≥ · · · ≥|Δn| and then select 𝑣1,… , 𝑣n ∈ { − 1,+1} sequentially, giving 𝑣iΔi the opposite

sign of 𝑣1Δ1 +…+ 𝑣i−1Δi−1. (When i = 1 or the sum is zero, choose 𝑣i arbitrarily.)
This ensures |𝑣1Δ1 +…+ 𝑣nΔn| ≤ |Δ1| ≤ g(n − i − 1) .

Let Pi denote the position vector at the end of the ith round and 𝑣 Pusher’s choice for
the (i + 1)th round. Then regardless of Chooser’s choice of 𝜖 = ±1,

𝑤i+1(Pi+1) = 𝑤i+1(Pi + 𝜖𝑣) ≥ 𝑤i(Pi) − 1
2

||||||
n∑

j=1

𝑣jΔj

|||||| ≥ 𝑤i(Pi) − 1
2

g(n − i − 1).

Thus

𝑤n(Pn) ≥ 𝑤0(P0) − 1
2

n−1∑
i=0

g(n − i − 1).

Simple asymptotics give that the above sum is asymptotic to (8n∕𝜋)1∕2. Choosing
c > (2∕𝜋)1∕2,𝑤n(Pn) > 0. But𝑤n(Pn) is simply the number of coordinates with abso-
lute value greater than 𝛼 in the final P = Pn. This Pusher strategy ensures that there
is more than zero, hence at least one such coordinate, and therefore Pusher wins. ◾

15.5 NONADAPTIVE ALGORITHMS

Let us modify the balancing game of Section 15.4 by requiring the vectors selected
by Pusher to have coordinates zero and 1 rather than plus and minus 1. Let VAL∗(n)
denote the value of the modified game. One can use the bounds on VAL(n) to show
VAL∗(n) = Θ(

√
n ln n).
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In Chapter 13 we showed that any family of n sets S1,… , Sn on n points 1,… , n
has discrepancy O(

√
n); that is, there is a coloring 𝜒 ∶ {1,… , n} → { − 1,+1} so

that all |𝜒(Si)| ≤ c
√

n. The proof of this result does not yield an effective algorithm
for finding such a coloring, and indeed it is not known if there is a polynomial time
algorithm to do so. Suppose one asks for a nonadaptive or online algorithm in the
following sense. Instead of being presented the entire data of S1,… , Sn at once, one
is presented with the points sequentially. At the jth “round”, the algorithm looks
at point j – more specifically, at which sets Si contain j or, equivalently, at the jth
column of the incidence matrix. At that stage, the algorithm must decide how to
color j, and, once colored, the coloring cannot be changed. How small can we assure
max|𝜒(Si)| with such an algorithm? We may think of the points as being presented
by an adversary. Thinking of the points as their associated column vectors, Pusher as
the Worst Case adversary and Chooser as the algorithm, the best such an algorithm
can do is precisely VAL∗(n).

The requirement that an algorithm be nonadaptive is both stronger and weaker
than the requirement that an algorithm take polynomial time. Still, this lends support
to the conjecture that there is no polynomial time algorithm for finding a coloring
with all |𝜒(Si)| ≤ c

√
n.

15.6 HALF LIAR GAME

We modify the Liar Game of Section 15.2 by limiting Carole’s mendacity. If the
correct answer is Yes, then Carole is now required to answer Yes. She may answer
Yes when the correct answer is No, and that would count as one of her k lies. Let
Ak(q) denote the maximal n for which Paul wins the Half Liar game with n values, q
queries, and a maximum of k lies.

Theorem 15.6.1 [Dumitriu and Spencer (2004)] For each fixed k ≥ 1,

Ak(q) ∼
2q+k(

q
k

) .

While the methods below extend to arbitrary k, we give the proof only for the case
k = 1. This case was first given by Cicalese and Mundici (2000). Let us fix a winning
strategy for Paul with n = A1(q). This may be described by a binary decision tree
of depth q. For each value i, 1 ≤ i ≤ n, let 𝜎i = (xi1,… , xiq) ∈ {Y,N}q be the string
of truthful responses to Paul’s queries with that value. Let Si be the set of possible
response strings given by Carole with that value. For each xij = N, Carole may lie on
the jth question, otherwise responding truthfully. Thus |Si| = W(𝜎i), where we define
the weight W(𝜎) to be 1 plus the number of N’s in the string 𝜎. We cannot have any
common 𝜎 ∈ Si ∩ Sj because then Carole could respond with 𝜎 and Paul would not
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be able to distinguish i, j. Thus

n∑
i=1

W(𝜎i) ≤ 2q
.

For a given u, call 𝜎 Carole-friendly if W(𝜎) ≤ 1 + q−u
2

, otherwise Paul-friendly.
There are at most 2qPr[Sq ≤ −u] Carole-friendly 𝜎. From the inequality, there are
at most 2q+1(q − u)−1 Paul-friendly 𝜎. Thus

n ≤ 2qPr[Sq ≤ −u] + 2q+1

q − u
.

The optimization of u is left as an exercise, but even taking a suboptimal u = ⌊q2∕3⌋
gives

A1(q) = n ≤ (1 + o(1))2q+1

q
.

For larger n, Paul cannot have a winning strategy and thus Carole must have a win-
ning adversary strategy. Intriguingly, this argument does not yield an explicit strategy
for Carole.

In the other direction, let 𝜖 > 0 be fixed and small and set n = ⌊(1 − 𝜖)2q+1q−1⌋.
We will give a strategy for Paul. For r ≥ 1, let Mr denote those 𝜎 ∈ {Y,N}r with at
least r−u

2
N’s. For definiteness, take u = ⌊r2∕3⌋. Then f (r) ∼ 2r. We first massage n.

Pick r with (say) 10𝜖−1 ≤ n∕f (r) ≤ 21𝜖−1, set A = ⌈n∕f (r)⌉, and boost n to n = Af (r).
As the boost (which makes things only harder for Paul) was by a factor less than
1 + (10∕𝜖)−1, the new n still has n ≤ (1 − 𝜖

2
)2q+1q−1.

Paul associates the n = f (r)A values with pairs (𝜎, j), 𝜎 ∈ Mr, 1 ≤ j ≤ A. For his
first r queries, he asks for the coordinates of 𝜎. Carole responds 𝜏 , which can differ
from the truthful 𝜎 in at most one coordinate. Thus 𝜏 has at most r+u

2
+ 1 Y’s. (Basi-

cally, these r queries are nearly even splits and force Carole to answer No nearly half
the time.) What does Paul know at this moment? If Carole has not lied, the answer
must be one of the A values (𝜏, j). If Carole has lied, the answer must be one of the at
most A( r+u+2

2
) values (𝜏+, j), where 𝜏+ is derived from 𝜏 by shifting a Y to an N.

Set s = q − r, the number of remaining queries. As A is bounded and
2rA ∼ f (r)A = n = Θ(2qq−1) we have r = q − log2 q − O(1). In particular, r ∼ q,
the first r queries were the preponderance of the queries. Then

A ≤ (1 + o(1))n2−r
≤ (1 − 𝜖

2
+ o(1))2q+1−rr

and
A

r + u + 2
2

∼ A
r
2
≤ (1 − 𝜖

2
+ o(1))2s

.

Paul may now give further ground and allows Carole to lie in either direction for
the remaining s questions. This is the (x0, x1), s-ChipLiar game with x0 = A and
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x1 ≤ (1 − 𝜖

2
+ o(1))2s. The endgame strategy required at this point is given in the

exercises.

15.7 ENTROPY

Let X be a random variable taking values in some range S, and let P(X = x) denote
the probability that the value of X is x. The binary entropy of X, denoted by H(X), is
defined by

H(X) =
∑
x∈S

P(X = x) log2

(
1

P(X = x)

)
.

If Y is another random variable, taking values in T, and (X, Y) is the random vari-
able taking values in S × T according to the joint distribution of X and Y, then the
conditional entropy of X given Y is

H(X|Y) = H(X, Y) − H(Y).

In this section we prove some simple properties of the entropy function, and describe
several surprising combinatorial and geometric applications. Intuitively, the entropy
of a random variable measures the amount of information it encodes. This provides
an intuitive explanation to the four parts of the next simple lemma. The formal proof,
given below, uses the properties of the functions log z and z log z, where – here and
in the rest of this section – all logarithms are to the base 2.

Lemma 15.7.1 Let X, Y, and Z be three random variables taking values in S, T, and
U, respectively. Then

(i) H(X) ≤ log2|S|.
(ii) H(X, Y) ≥ H(X).

(iii) H(X, Y) ≤ H(X) + H(Y).
(iv) H(X|Y, Z) ≤ H(X|Y).

Proof.
(i) Since the function log z is concave, it follows, by Jensen’s Inequality, that

H(X) =
∑
i∈S

P(X = i) log

(
1

P(X = i)

)

≤ log

(∑
i∈S

P(X = i) 1
P(X = i)

)
= log |S|.

(ii) By the monotonicity of log z for all z > 0,

H(X, Y) =
∑
i∈S

∑
j∈T

P(X = i, Y = j) log

(
1

P(X = i, Y = j)

)
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≥

∑
i∈S

∑
j∈T

P(X = i, Y = j) log

(
1

P(X = i)

)

=
∑
i∈S

P(X = i) log

(
1

P(X = i)

)
= H(X).

(iii) By definition

H(X) + H(Y) − H(X, Y)

=
∑
i∈S

∑
j∈T

P(X = i, Y = j) log

(
P(X = i, Y = j)

P(X = i)P(Y = j)

)

=
∑
i∈S

∑
j∈T

P(X = i)P(Y = j)f (zij) ,

where f (z) = z log z and zij =
P(X = i, Y = j)

P(X = i)P(Y = j)
. Since f (z) is convex, it follows, by

Jensen’s Inequality, that the last quantity is at least

f

(∑
i∈S

∑
j∈T

P(X = i)P(Y = j)zij

)
= f (1) = 0.

(iv) Note that

H(X|Y) = H(X, Y) − H(Y)

=
∑
i∈S

∑
j∈T

P(X = i, Y = j) log

(
P(Y = j)

P(X = i, Y = j)

)
.

Similarly

H(X|Y, Z)
=
∑
i∈S

∑
j∈T

∑
k∈U

P(X = i, Y = j, Z = k) log

(
P(Y = j, Z = k)

P(X = i, Y = j, Z = k)

)
.

Therefore,

H(X|Y) − H(X|Y, Z)
=
∑
i∈S

∑
j∈T

∑
k∈U

P(X = i, Y = j, Z = k)

⋅ log

(
P(Y = j)P(X = i, Y = j, Z = k)
P(X = i, Y = j)P(Y = j, Z = k)

)

=
∑
i∈S

∑
j∈T

∑
k∈U

P(X = i, Y = j)P(Y = j, Z = k)
P(Y = j)

f (zijk),
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where f (z) = z log z and

zijk =
P(Y = j)P(X = i, Y = j, Z = k)
P(X = i, Y = j)P(Y = j, Z = k)

.

By the convexity of f (z), and since∑
i∈S

∑
j∈T

∑
k∈U

P(X = i, Y = j)P(Y = j, Z = k)
P(Y = j)

= 1 ,

it follows that the above quantity is at least

f

(∑
i∈S

∑
j∈T

∑
k∈U

P(X = i, Y = j)P(Y = j, Z = k)
P(Y = j)

zijk

)
= f (1) = 0.

◾
The following simple but useful fact that the entropy is subadditive has already

been applied in Section 13.2.

Proposition 15.7.2 Let X = (X1,… ,Xn) be a random variable taking values in the
set S = S1 × S2 ×… × Sn, where each of the coordinates Xi of X is a random variable
taking values in Si. Then

H(X) ≤
n∑

i=1

H(Xi).

Proof. This follows by induction from Lemma 15.7.1, part (iii). ◾

The above proposition is used in Kleitman, Shearer and Sturtevant (1981) to derive
several interesting applications in extremal finite set theory, including an upper esti-
mate for the maximum possible cardinality of a family of k-sets in which the inter-
section of no two is contained in a third. The basic idea in Kleitman et al. (1981) can
be illustrated by the following very simple corollary of the last proposition.

Corollary 15.7.3 Let  be a family of subsets of {1, 2,… , n}, and let pi denote
the fraction of sets in  that contain i. Then

| | ≤ 2
∑n

i=1 H(pi) ,

where H(y) = −ylog2y − (1 − y)log2(1 − y).

Proof. Associate each set F ∈  with its characteristic vector 𝑣(F), which is a binary
vector of length n. Let X = (X1,… ,Xn) be the random variable taking values
in {0, 1}n, where P(X = 𝑣(F)) = 1∕| | for all F ∈  . Clearly, H(X) = | |( 1|| log| |) = log | |, and since here H(Xi) = H(pi) for all 1 ≤ i ≤ n, the result follows
from Proposition 15.7.2. ◾

The following interesting extension of Proposition 15.7.2 has been proved by
Shearer; see Chung et al. (1986). As in that proposition, let X = (X1,… ,Xn) be a
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random variable taking values in the set S = S1 × S2 ×…× Sn, where each Xi is
a random variable taking values in Si. For a subset I of {1, 2,… , n}, let X(I) denote
the random variable (Xi)i∈I .

Proposition 15.7.4 Let X = (X1,… ,Xn) and S be as above. If  is a family of subsets
of {1,… , n} and each i ∈ {1,… , n} belongs to at least k members of , then

kH(X) ≤
∑
G∈

H(X(G)).

Proof. We apply induction on k. For k = 1, replace each set G ∈  by a subset of
it to obtain a family ′ whose members form a partition of {1,… , n}. By Lemma
15.7.1, part (ii),

∑
G∈H(X(G)) ≥

∑
G′∈′H(X(G′)), and by Lemma 15.7.1, part (iii),∑

G′∈′H(X(G′)) ≥ H(X), supplying the desired result for k = 1.
Assuming the result holds for k − 1, we prove it for k (≥ 2). If there is a G ∈ 

with G = {1,… , n}, the result follows from the induction hypothesis. Otherwise, let
G1,G2 be two members of. By applying part (iv) of Lemma 15.7.1, we conclude that

H(X(G1 ⧵ G2)|X(G1 ∩ G2),X(G2 ⧵ G1)) ≤ H(X(G1 ⧵ G2)|X(G1 ∩ G2)),

implying that

H(X(G1 ∪ G2)) − H(X(G2)) ≤ H(X(G1)) − H(X(G1 ∩ G2)).

Therefore, H(X(G1 ∪ G2)) + H(X(G1 ∩ G2)) ≤ H(X(G1)) + H(X(G2)). It follows
that, if we modify  by replacing G1 and G2 by their union and intersection, then the
sum

∑
G∈H(X(G)) can only decrease. After a finite number of such modifications,

we can reach the case in which one of the sets in  is {1,… , n}, and as this case has
already been proved, this completes the proof. ◾

Corollary 15.7.5 Let  be a family of vectors in S1 × S2 …× Sn. Let  = {G1,G2,

… ,Gm} be a collection of subsets of N = {1, 2,… , n}, and suppose that each element
i ∈ N belongs to at least k members of . For each 1 ≤ i ≤ m, let i be the set of all
projections of the members of  on Gi. Then

| |k ≤ m∏
i=1

|i|.
Proof. Let X = (X1,… ,Xn) be the random variable taking values in  , where
P(X = F) = 1|| for all F ∈  . By Proposition 15.7.4

kH(X) ≤
m∑

i=1

H(X(Gi)).

But H(X) = log2| |, whereas by Lemma 15.7.1, part (i), H(X(Gi)) ≤ log2|i|, imply-
ing the desired result. ◾
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Since the volume of every d-dimensional measurable set in Rn can be approxi-
mated by the volume of an appropriate approximation of it by standard aligned boxes
in a fine enough grid, the last result has the following geometric application, proved
in Loomis and Whitney (1949) in a different manner:

Corollary 15.7.6 Let B be a measurable body in the n-dimensional Euclidean
space, let Vol(B) denote its (n-dimensional) volume, and let Vol(Bi) denote the
(n − 1)-dimensional volume of the projection of B on the hyperplane spanned by all
coordinates besides the ith one. Then

(Vol(B))n−1
≤

n∏
i=1

Vol(Bi).
◾

If Si = {0, 1} for all i in Corollary 15.7.5, we get the following statement about
set systems.

Corollary 15.7.7 [Chung et al. (1986)] Let N be a finite set, and let  be a family
of subsets of N. Let  = {G1,… ,Gm} be a collection of subsets of N, and suppose
that each element of N belongs to at least k members of . For each 1 ≤ i ≤ m, define
i = {F ∩ Gi ∶ F ∈ }. Then

| |k ≤ m∏
i=1

|i|.
◾

We close the section with the following application of the last result, given in
Chung et al. (1986).

Corollary 15.7.8 Let  be a family of graphs on the labeled set of vertices
{1, 2,… , t}, and suppose that for any two members of  there is a triangle
contained in both of them. Then

| | < 1
4

2

(
t
2

)
.

Proof. Let N be the set of all
(

t
2

)
unordered pairs of vertices in T = {1, 2… , t},

and consider  as a family of subsets of N. Let  be the family of all subsets of N
consisting of the edge sets of unions of two vertex-disjoint, nearly equal complete
graphs in T. Let

s =
(⌈t∕2⌉

2

)
+
(⌊t∕2⌋

2

)

denote the number of edges of such a union, and let m denote the total number of
members in . By symmetry, each edge in N lies in precisely k = sm(

t
2

) members of .

The crucial point is that every two graphs in  must have at least one common edge in
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each G ∈ , since their intersection contains a triangle (and there are no triangles in
the complement of G.) Therefore, in the notation of Corollary 15.7.7, the cardinality
of each i is at most 2s−1. We thus conclude that

| | sm

( t
2 ) ≤ (2s−1)m,

implying that | | ≤ 2

(
t
2

)
−
(

t
2

)
∕s

,

and the desired result follows, as s <
(

t
2

)
∕2. ◾

Simonovits and Sós conjectured that, if  satisfies the assumptions of the last
corollary, then, in fact, | | ≤ 1

8
2

(
t
2

)
,

which is tight. This, together with several extensions, has recently been proved in
Ellis, Filmus and Friedgut (2012) by a sophisticated combination of algebraic and
analytic tools. It seems plausible to conjecture that there is some absolute constant
𝜖 > 0, such that for any fixed graph H which is not a star-forest (i.e., a forest each
connected component of which is a star), the following holds: Let  be a family
of graphs on the labeled set of vertices {1, 2,… , t}, and suppose that for any two
members of  there is a copy of H contained in both of them. Then

| | < (1
2
− 𝜖

)
2

(
t
2

)
.

This question, suggested by the first author, remains open, though it is not difficult to
show that it is true for every H of chromatic number at least 3, and that the conclusion
fails for every star-forest H.

15.8 EXERCISES

1. Suppose that in the (x1,… , xk) tenure game of Section 15.3 the object of Paul
is to maximize the number of faculty receiving tenure while the object of Car-
ole is to minimize that number. Let 𝑣 be that number with perfect play. Prove
𝑣 =

⌊∑k
i=1 xi2

−i
⌋

.

2. Let A1,… ,An ⊆ {1,… ,m} with
∑n

i=1 2−|Ai| < 1. Paul and Carole alternately
select distinct vertices from {1,… ,m}, Paul having the first move, until all
vertices have been selected. Carole wins if she has selected all the vertices of
some Ai. Paul wins if Carole does not win. Give a winning strategy for Paul.
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3. Let be a family of graphs on the labeled set of vertices {1, 2,… , 2t}, and suppose
that for any two members of  there is a perfect matching of t edges contained in
both of them. Prove that | | ≤ 2

(
2t
2

)
−t

.

4. (Han’s inequality). Let X = (X1,… ,Xm) be a random variable, and let H(X) denote
its entropy. For a subset I of {1, 2,… ,m}, let X(I) denote the random variable
(Xi)i∈I . For 1 ≤ q ≤ m, define

Hq(X) =
1(

m−1
q−1

) ∑
Q⊂{1,…,m},|Q|=q

H(X(Q)).

Prove that
H1(X) ≥ H2(X) ≥ … ≥ Hm(X) = H(X).

5. Let Xi = ±1, 1 ≤ i ≤ n, be uniform and independent and let Sn =
∑n

i=1 Xi. Let
0 ≤ p ≤

1
2
. Prove

Pr[Sn ≥ (1 − 2p)n] ≤ 2H(p)n2−n

by computing precisely the Chernoff bound min
𝜆≥0

E[e𝜆Sn]e−𝜆(1−2p)n. (The case

p = 0 will require a slight adjustment in the method, though the end result is the
same.)

6. Find, asymptotically, that u = u(q) which minimizes 2qPr[Sq ≤ −u] +
2q+1(q − u)−1 and express the minimal value in the form 2q+1q−1 + (1 + o(1))g(q).

7. Show that for A fixed and r sufficiently large, Paul wins the (2r − (r + 1)
A,A), r-ChipLiar game.



THE PROBABILISTIC LENS:
An Extremal Graph

Let T (top) and B (bottom) be disjoint sets of size m, and let G be a bipartite graph,
with all edges between T and B. Suppose G contains no 4-cycle. How many edges
can G have? This is a question from extremal graph theory. Surprisingly, for some m
we may give the precise answer.

Suppose m = n2 + n + 1 and that a projective plane P of order n (and hence con-
taining m points) exists. Identify T with the points of P and B with the lines of P, and
define G = GP by letting t ∈ T be adjacent to b ∈ B if and only if point t is on line
b in P. As two points cannot lie on two lines, GP contains no 4-cycle. We claim that
such a GP has the largest number of edges of any G containing no 4-cycle and further
that any G containing no 4-cycle and having that many edges can be written in the
form G = GP.

Suppose G contains no 4-cycle. Let b1, b2 ∈ B be a uniformly selected pair of
distinct elements. For t ∈ T, let D(t) be the set of b ∈ B adjacent to t and d(t) = |D(t)|
the degree of t. Let It be the indicator random variable for t being adjacent to b1, b2.
Then

E[It] = Pr[b1, b2 ∈ D(t)] =
(

d(t)
2

)/(m
2

)
.

Now set
X =

∑
t∈T

It,

the number of t ∈ T adjacent to b1, b2. Then X ≤ 1; that is, all b1, b2 have at most one
common neighbor. (X ≤ 1 is actually equivalent to G containing no 4-cycle.)

Linearity of Expectation gives

E[X] =
∑
t∈T

E[It] =
∑
t∈T

(
d(t)
2

)/(m
2

)
.
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Let d = m−1∑
t∈Td(t) be the average degree. Convexity of the function

(
y
2

)
gives

∑
t∈T

(
d(t)
2

)/(m
2

)
≥ m

(
d
2

)/(m
2

)

with equality if and only if all t ∈ T have the same degree. Now

1 ≥ maxX ≥ E[X] ≥ m

(
d
2

)/(m
2

)
.

When G = GP, all d(x) = d (every line has n + 1 points) and X is identically 1 (two
points determine precisely one line) so that the above inequalities are all equalities
and

1 = m

(
d
2

)/(m
2

)
.

Any graph with more edges would have a strictly larger d so that 1 ≥ m
(

d
2

)/(
m
2

)
would fail and the graph would contain a 4-cycle.

Suppose further G has the same number of edges as GP and contains no 4-cycle.
The inequalities then must be equalities and so X = 1 always. Define a geometry
with points T and lines given by the neighbor sets of b ∈ B. As X = 1, any two points
determine a unique line. Reversing the roles of T,B, one also has that any two lines
must determine a unique point. Thus G is generated from a projective plane.



16
Derandomization

There are two ways of reading: one of them deepens and intensifies what one already
knows; the other one takes new facts, new views to weave into ones life.
–Doris Lessing

As mentioned in Chapter 1, the probabilistic method supplies, in many cases, effec-
tive randomized algorithms for various algorithmic problems. In some cases, these
algorithms can be derandomized and converted into deterministic ones. In this chapter
we discuss some examples.

16.1 THE METHOD OF CONDITIONAL PROBABILITIES

An easy application of the basic probabilistic method implies the following statement,
which is a special case of Theorem 2.3.1.

Proposition 16.1.1 For every integer n, there exists a coloring of the edges of the
complete graph Kn by two colors so that the total number of monochromatic copies

of K4 is at most
(

n
4

)
⋅ 2−5.

Indeed,
(

n
4

)
⋅ 2−5 is the expected number of monochromatic copies of K4 in a

random 2-edge-coloring of Kn, and hence a coloring as above exists.
Can we actually find deterministically such a coloring in time which is polyno-

mial in n? Let us describe a procedure that does it, and is a special case of a general
technique called the method of conditional probabilities.

We first need to define a weight function for any partially colored Kn. Given a
coloring of some of the edges of Kn by red and blue, we define, for each copy K of K4

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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in Kn, a weight 𝑤(K) as follows: If at least one edge of K is colored red and at least
one edge is colored blue, then𝑤(K) = 0. If no edge of K is colored, then𝑤(K) = 2−5,
and if r ≥ 1 edges of K are colored, all with the same color, then 𝑤(K) = 2r−6. Also
define the total weight W of the partially colored Kn as the sum

∑
𝑤(K), as K ranges

over all copies of K4 in Kn. Observe that the weight of each copy K of K4 is precisely
the probability that it will be monochromatic, if all the presently uncolored edges of
Kn will be assigned randomly and independently one of the two colors red or blue.
Hence, by Linearity of Expectation, the total weight W is simply the expected number
of monochromatic copies of K4 in such a random extension of the partial coloring of
Kn to a full coloring.

We can now describe the procedure for finding a coloring as in Proposition 16.1.1.
Order the

(
n
2

)
edges of Kn arbitrarily, and construct the desired two-coloring by

coloring each edge either red or blue in turn. Suppose e1,… , ei−1 have already been
colored, and we now have to color ei. Let W be the weight of Kn, as defined above,
with respect to the given partial coloring c of e1,… , ei−1. Similarly, let Wred be the
weight of Kn with respect to the partial coloring obtained from c by coloring ei red,
and let Wblue be the weight of Kn with respect to the partial coloring obtained from c
by coloring ei blue. By the definition of W (and as follows from its interpretation as
an expected value)

W =
Wred + Wblue

2
.

The color of ei is now chosen so as to minimize the resulting weight; that is, if Wred ≤

Wblue, then we color ei red, otherwise we color it blue. By the above inequality, the
weight function never increases during the algorithm. Since at the beginning its value

is exactly
(

n
4

)
2−5, its value at the end is at most this quantity. However, at the end all

edges are colored, and the weight is precisely the number of monochromatic copies
of K4. Thus the procedure above produces, deterministically and in polynomial time,
a 2-edge-coloring of Kn, satisfying the conclusion of Proposition 16.1.1.

Let us describe, now, the method of conditional probabilities in a more general
setting. An instance of this method is due, implicitly, to Erdős and Selfridge (1973),
and more explicit examples appear in Spencer (1987) and in Raghavan (1988). Sup-
pose we have a probability space, and assume, for simplicity, that it is symmetric and
contains 2l points, denoted by the binary vectors of length l. Let A1,… ,As be a col-
lection of events, and suppose that

∑s
i=1 Pr[Ai] = k. Thus, k is the expected value of

the number of events Ai that hold, and hence there is a point (𝜖1,… , 𝜖l) in the space
in which at most k events hold. Our objective is to find such a point deterministically.

For each choice of (𝜖1,… , 𝜖j−1), and for each event Ai, the conditional probability

Pr[Ai |𝜖1,… , 𝜖j−1]

of the event Ai given the values of 𝜖1,… , 𝜖j−1 is clearly the average of the two con-
ditional probabilities corresponding to the two possible choices for 𝜖j. That is

Pr[Ai |𝜖1,… , 𝜖j−1] =
Pr[Ai |𝜖1,… , 𝜖j−1, 0] + Pr[Ai |𝜖1,… , 𝜖j−1, 1]

2
.
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Consequently∑s

i=1
Pr

[
Ai | 𝜖1,… , 𝜖j−1

]
=

∑s
i=1 Pr

[
Ai | 𝜖1,… , 𝜖j−1, 0

]
+
∑s

i=1 Pr
[
Ai | 𝜖1,… , 𝜖j−1, 1

]
2

≥ min
{∑s

i=1
Pr

[
Ai | 𝜖1,… , 𝜖j−1, 0

]
,

∑s

i=1
Pr

[
Ai | 𝜖1,… , 𝜖j−1, 1

]}
.

Therefore, if the values of 𝜖j are chosen, each one in turn, so as to minimize the value
of

∑s
i=1 Pr[Ai |𝜖1,… , 𝜖j], then the value of this sum cannot increase. Since this sum

is k at the beginning, it follows that it is at most k at the end. But at the end each 𝜖j is
fixed, and hence the value of this sum is precisely the number of events Ai that hold
at the point (𝜖1,… , 𝜖l), showing that our procedure works.

Note that the assumptions that the probability space is symmetric and that it has
2l points can be relaxed. The procedure above is efficient provided l is not too large
(as is usually the case in combinatorial examples), and, more importantly, provided
the conditional probabilities Pr[Ai |𝜖1,… , 𝜖j] can be computed efficiently for each
of the events Ai and for each possible value of 𝜖1,… , 𝜖j. This is, indeed, the case in
the example considered in Proposition 16.1.1. However, there are many interesting
examples where this is not the case. A trick that can be useful in such cases is the
introduction of pessimistic estimators, introduced by Raghavan (1988). Consider,
again, the symmetric probability space with 2l points described above, and the events
A1,… ,As in it. Suppose that for each event Ai, and for each 0 ≤ j ≤ l, we have a
function f i

j (𝜖1,… , 𝜖j), which can be efficiently computed. Assume, also, that

f i
j−1(𝜖1,… , 𝜖j−1) ≥

f i
j (𝜖1,… , 𝜖j−1, 0) + f i

j (𝜖1,… , 𝜖j−1, 1)

2
, (16.1)

and that f i
j is an upper bound on the conditional probabilities for the event Ai, that is

f i
j (𝜖1,… , 𝜖j) ≥ Pr[Ai |𝜖1,… , 𝜖j] . (16.2)

Clearly, the same inequalities hold for the sums over i. In this case, if in the begin-
ning

∑s
i=1 f i

0 ≤ t, and we choose the values of the 𝜖j so as to minimize the sum∑s
i=1 f i

j (𝜖1,… , 𝜖j) in each step, we get in the end a point (𝜖1,… , 𝜖l) for which the

sum
∑s

i=1 f i
l (𝜖1,… , 𝜖l) ≤ t. The number of events Ai that hold in this point is at most t.

The functions f i
j in the argument above are called pessimistic estimators.

This enables us to obtain efficient algorithms in some cases where there is no
known efficient way of computing the required conditional probabilities. The fol-
lowing theorem is an example; it is related to some of the results in Chapters 13
and 15.

Theorem 16.1.2 Let (aij)ni,j=1 be an n × n matrix of reals, where −1 ≤ aij ≤ 1 for all
i, j. Then one can find, in polynomial time, 𝜖1,… , 𝜖n ∈ { − 1, 1}such that for every i,
1 ≤ i ≤ n, the inequality |∑n

j=1 𝜖jaij| ≤ √
2n ln(2n) holds.
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Proof. Consider the symmetric probability space on the 2n points corresponding to
the 2n possible vectors (𝜖1,… , 𝜖n) ∈ { − 1, 1}n. Define 𝛽 =

√
2n ln(2n), and let Ai be

the event |∑n
j=1 𝜖jaij| > 𝛽. We next show that the method of conditional probabilities

with appropriate pessimistic estimators enables us to find efficiently a point of the
space in which no event Ai holds.

Define 𝛼 = 𝛽∕n, and let G(x) be the function

G(x) = cosh(𝛼x) = e𝛼x + e−𝛼x

2
.

By comparing the terms of the corresponding Taylor series, it is easy to see that for
every real x

G(x) ≤ e
𝛼

2x2

2

with strict inequality if both x and 𝛼 are not 0. It is also simple to check that for every
real x and y

G(x)G(y) =
G(x + y) + G(x − y)

2
.

We can now define the functions f i
p which will form our pessimistic estimators. For

each 1 ≤ i ≤ n and for each 𝜖1,… , 𝜖p ∈ { − 1, 1}, we define

f i
p(𝜖1,… , 𝜖p) = 2e−𝛼𝛽G

(
p∑

j=1

𝜖jaij

)
n∏

j=p+1

G(aij).

Obviously, these functions can be efficiently computed. It remains to check that they
satisfy the conditions described in (16.1) and (16.2), and that the sum

∑n
i=1 f i

0 is less
than 1. This is proved in the following claims.

Claim 16.1.3 For every 1 ≤ i ≤ n and every 𝜖1,… , 𝜖p−1 ∈ { − 1, 1}

f i
p−1(𝜖1,… , 𝜖p−1) =

f i
p(𝜖1,… , 𝜖p−1,−1) + f i

p(𝜖1,… , 𝜖p−1, 1)
2

.

Proof. Put 𝑣 =
∑p−1

j=1 𝜖jaij. By the definition of f i
p and by the properties of G

f i
p−1(𝜖1,… , 𝜖p−1) = 2e−𝛼𝛽G(𝑣)G(aip)

n∏
j=p+1

G(aij)

= 2e−𝛼𝛽
G(𝑣 − aip) + G(𝑣 + aip)

2

n∏
j=p+1

G(aij)

=
f i
p(𝜖1,… , 𝜖p−1,−1) + f i

p(𝜖1,… , 𝜖p−1, 1)
2

,

completing the proof of the claim. ◾
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Claim 16.1.4 For every 1 ≤ i ≤ n and every 𝜖1,… , 𝜖p−1 ∈ { − 1, 1}

f i
p−1(𝜖1,… , 𝜖p−1) ≥ Pr[Ai |𝜖1,… , 𝜖p−1] .

Proof. Define 𝑣 as in the proof of Claim 16.1.3. Then

Pr[Ai |𝜖1,… , 𝜖p−1] = Pr

[
𝑣 +

∑
j≥p

𝜖jaij > 𝛽

]
+ Pr

[
−𝑣 −

∑
j≥p

𝜖jaij > 𝛽

]

= Pr
[
e𝛼(𝑣+

∑
j≥p𝜖jaij)

> e𝛼𝛽
]

+ Pr
[
e−𝛼(𝑣+

∑
j≥p𝜖jaij)

> e𝛼𝛽
]

≤ e𝛼𝑣e−𝛼𝛽 E
[
e𝛼(

∑
j≥p𝜖jaij)

]
+ e−𝛼𝑣e−𝛼𝛽 E

[
e−𝛼(

∑
j≥p𝜖jaij)

]
= 2e−𝛼𝛽G(𝑣)

∏
j≥p

G(aij) = f i
p−1(𝜖1,… , 𝜖p−1) .

This completes the proof of Claim 16.1.4. ◾

To establish the theorem, it remains to show that
∑n

i=1 f i
0 < 1. Indeed, by the

properties of G and by the choice of 𝛼 and 𝛽

n∑
i=1

f i
0 =

n∑
i=1

2e−𝛼𝛽
n∏

j=1

G(aij)

≤

n∑
i=1

2e−𝛼𝛽
n∏

j=1

e
𝛼

2a2
ij

2

≤

n∑
i=1

2e−𝛼𝛽e
𝛼

2n
2

= 2ne
𝛼

2n
2

−𝛼𝛽 = 2ne−
𝛼

2n
2 = 1 .

Moreover, the first inequality is strict unless aij = 0 for all i, j, whereas the second is
strict unless a2

ij = 1 for all i, j. This completes the proof of the theorem. ◾

16.2 d-WISE INDEPENDENT RANDOM VARIABLES IN SMALL
SAMPLE SPACES

The complexity class NC is, roughly speaking, the class of all problems that can be
solved in time which is polylogarithmic (in the size of the input) using a polynomial
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number of parallel processors. Several models of computation, which form the
theoretical abstraction of the parallel computer, have been used in considering this
class. The most common one is the EREW (=Exclusive Read, Exclusive Write)
PRAM, in which different processors are not allowed to read from or write into the
same memory cell simultaneously. See Karp and Ramachandran (1990) for more
details.

Let n denote the size of the input. There are several simple tasks that can be easily
performed in NC. For example, it is possible to copy the content of a cell c into m =
nO(1) cells in time O(log n), using, say, m processors. To do so, consider a complete
binary tree with m leaves, and associate each of its internal vertices with a processor.
At first, the processor corresponding to the root of the tree reads from c and writes
its content in two cells, corresponding to its two children. Next, each of these two, in
parallel, reads from its cell and writes its content in two cells corresponding to its two
children. In general, at the ith step all the processors whose distance from the root of
the tree is i − 1, in parallel, read the content of c previously stored in their cells and
write it twice. The procedure clearly ends in time O(log m), as claimed. [In fact, it
can be shown that O(m∕ log m) processors suffice for this task but we do not try to
optimize this number here.]

A similar technique can be used for computing the sum of m numbers with m
processors in time O(log m); we consider the numbers as if they lie on the leaves of
a complete binary tree with m leaves, and in the ith step each one of the processors
whose distance from the leaves is i computes, in parallel, the sum of the two numbers
previously computed by its children. The root will clearly have, in such a way, the
desired sum in time O(log m).

Let us now return to the edge-coloring problem of the complete graph Kn discussed
in Proposition 16.1.1. By the remarks above, the problem of checking whether in a

given edge-coloring there are at most
(

n
4

)
2−5 monochromatic copies of K4 is in NC,

that is, this checking can be done in time (log n)O(1) – (in fact, in time O(log n)) – using

nO(1) processors. Indeed, we can first copy the given coloring
(

n
4

)
times. Then we

assign a processor for each copy of K4 in Kn, and this processor checks whether its
copy is monochromatic or not (all these checkings can be done in parallel, since we
have enough copies of the coloring). Finally, we sum the number of processors whose
copies are monochromatic. Clearly, we can complete the work in time O(log n) using
nO(1) parallel processors.

Thus we can check, in NC, whether a given coloring of Kn satisfies the assertion of
Proposition 16.1.1. Can we find such a coloring deterministically in NC? The method
described in the previous section does not suffice, as the edges have been colored one
by one, so the procedure is sequential and requires time Ω(n2). However, it turns out
that in fact we can find, in NC, a coloring with the desired properties by applying a
method that relies on a technique first suggested by Joffe (1974), and later developed
by many researchers. This method is a general technique for converting randomized
algorithms whose analysis depends only on d-wise rather than fully independent ran-
dom choices (for some constant d) into deterministic (and in many cases also parallel)
ones. Our approach here follows that of Alon, Babai and Itai (1986), but for simplicity
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we only consider here the case of random variables that take the two values 0, 1 with
equal probability.

The basic idea is to replace an exponentially large sample space by one of poly-
nomial size. If a random variable on such a space takes a certain value with positive
probability, then we can find a point in the sample space in which this happens simply
by deterministically checking all the points. This can be done with no loss of time
by using a polynomial number of parallel processors. Note that for the edge-coloring
problem considered in Proposition 16.1.1, 6-wise independence of the random vari-
ables corresponding to the colors of the edges would suffice – since this already
gives a probability of 2−5 for each copy of K4 to be monochromatic, and hence gives
the required expected value of monochromatic copies. Therefore, for this specific
example it suffices to construct a sample space of size nO(1) and

(
n
2

)
random vari-

ables in it, each taking the values 0 and 1 with probability 1∕2, such that each 6 of
the random variables are independent.

Small sample spaces with many d-wise independent 0, 1-random variables in them
can be constructed from any linear error-correcting code with appropriate parame-
ters. The construction we describe here is based on the binary BCH codes (see, e.g.,
MacWilliams and Sloane (1977)).

Theorem 16.2.1 Suppose n = 2k − 1 and d = 2t + 1. Then there exists a symmet-
ric probability space Ω of size 2(n + 1)t and d-wise independent random variables
y1,… , yn over Ω each of which takes the values 0 and 1 with probability 1∕2.

The space and the variables are explicitly constructed, given a representation of
the field F = GF(2k) as a k-dimensional algebra over GF(2).

Proof. Let x1,… , xn be the n nonzero elements of F, represented as column vectors
of length k over GF(2). Let H be the following 1 + kt × n matrix over GF(2):

H =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

x1 x2 · · · xn

x3
1 x3

2 · · · x3
n

⋮ ⋮ ⋱ ⋮
x2t−1

1 x2t−1
2 · · · x2t−1

n

⎞⎟⎟⎟⎟⎟⎟⎠
This is the parity check matrix of the extended binary BCH code of length n and
designed distance 2t + 2. It is well known that any d = 2t + 1 columns of H are
linearly independent over GF(2). For completeness, we present the proof in the
next lemma.

Lemma 16.2.2 Any set of d = 2t + 1 columns of H is linearly independent over
GF(2).

Proof. Let J ⊂ {1, 2,… , n} be a subset of cardinality |J| = 2t + 1 of the set of
indices of the columns of H. Suppose that

∑
j∈JzjHj = 0, where Hj denotes the jth
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column of H and zj ∈ GF(2). To complete the proof we must show that zj = 0 for all
j ∈ J. By the assumption, ∑

j∈J

zjx
i
j = 0 (16.3)

for i = 0 and for every odd i satisfying 1 ≤ i ≤ 2t − 1. Suppose, now, that a = 2b ⋅ l,
where l ≤ 2t − 1 is an odd number. By squaring (16.3) for i = l b times, using
the fact that in characteristic 2, (u + 𝑣)2 = u2 + 𝑣

2, and the fact that since each zj
is either 0 or 1, the equality zj = z2

j holds for all j, we conclude that (16.3) holds
for i = a. Consequently, (16.3) holds for all i, 0 ≤ i ≤ 2t. This is a homogeneous
system of 2t + 1 linear equations in 2t + 1 variables. The matrix of the coefficients
is a Vandermonde matrix, which is nonsingular. Thus, the only solution is the trivial
one zj = 0 for all j ∈ J, completing the proof of the lemma. ◾

Returning to the proof of the theorem, we define Ω = {1, 2,… , 2(n+ 1)t}, and let
A = (aij), i ∈ Ω, 1 ≤ j ≤ n be the (0, 1)-matrix whose 2(n + 1)t = 2kt+1 rows are all
the linear combinations (over GF(2)) of the rows of H. The sample space Ω is now
endowed with the uniform probability measure, and the random variable yj is defined
by the formula yj(i) = aij for all i ∈ Ω, 1 ≤ j ≤ n.

It remains to show that the variables yj are d-wise independent, and that each of
them takes the values 0 or 1 with equal probability. For this we have to show that,
for every set J of up to d columns of A, the rows of the |Ω| by |J| submatrix AJ =
(aij), i ∈ Ω, j ∈ J take on each of the 2|J| (0, 1)-vectors of length |J| equally often.
However, by Lemma 16.2.2, the columns of the corresponding submatrix HJ of H
are linearly independent. The number of rows of AJ that are equal to any given vector
is precisely the number of linear combinations of the rows of HJ that are equal to this
vector. This number is the number of solutions of a system of |J| linearly independent
linear equations in kt + 1 variables, which is, of course, 2kt+1−|J|, independent of the
vector of free coefficients. This completes the proof of the theorem. ◾

Theorem 16.2.1 supplies an efficient way of constructing, for every fixed d and
every n, a sample space of size O(n⌊d∕2⌋) and n d-wise independent random variables
in it, each taking the values 0 or 1 with equal probability. In particular, we can use such

a space of size O

((
n
2

)3
)

= O(n6) for finding a coloring as in Proposition 16.1.1

in NC. Several other applications of Theorem 16.2.1 appear in the paper by Alon
et al. (1986).

It is natural to ask whether the size O(n⌊d∕2⌋) can be improved. We next show that
this size is optimal, up to a constant factor (depending on d).

Let us call a random variable almost constant if it attains a single value with prob-
ability 1. Let m(n, d) denote the function defined by

m(n, d) =
d∕2∑
j=0

(
n
j

)
if d is even.
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and

m(n, d) =
(d−1)∕2∑

j=0

(
n
j

)
+
(

n − 1
(d − 1)∕2

)
if d is odd.

Observe that for every fixed d, m(n, d) = Ω(n⌊d∕2⌋).
Proposition 16.2.3 If the random variables y1,… , yn over the sample space Ω are
d-wise independent and none of them is almost constant, then |Ω| ≥ m(n, d).

Note that we assume here neither that Ω is a symmetric space nor that the variables
yj are (0, 1)-variables.

Proof. Clearly, we may assume that the expected value of each yj is 0 (since oth-
erwise we can replace yj by yj − E[yj]). For each subset S of {1,… , n}, define 𝛼S =∏

j∈Syj. Observe that, since no yj is almost constant and since the variables are d-wise
independent,

E[𝛼S𝛼S] =
∏
j∈S

Var[yj] > 0 (16.4)

for all S satisfying |S| ≤ d. Similarly, for all S and T satisfying |S ∪ T| ≤ d and S ≠ T,
we have

E[𝛼s𝛼T] =
∏

j∈S∩T

Var[yj]
∏

j∈S∪T⧵(S∩T)
E[yj] = 0 . (16.5)

Let S1,… , Sm, where m = m(n, d), be subsets of {1,… , n} such that the union of each
two is of size at most d. [Take all subsets of size at most d∕2, and if d is odd, add all
the subsets of size (d + 1)∕2 containing 1.]

To complete the proof, we show that the m functions𝛼Sj
(considered as real vectors

of length |Ω|) are linearly independent. This implies that |Ω| ≥ m = m(n, d), as stated
in the proposition.

To prove linear independence, suppose
∑m

j=1 cj𝛼Sj
= 0. Multiplying by 𝛼Si

and
computing the expected values, we obtain, by (16.5),

0 =
m∑

j=1

cj E[𝛼Sj
𝛼Si

] = ci E[𝛼Si
𝛼Si

] .

This implies, by (16.4), that ci = 0 for all i. The required linear independence follows,
completing the proof. ◾

The last proposition shows that the size of a sample space with n d-wise
independent nontrivial random variables can be polynomial in n only when d is
fixed. However, as shown by Naor and Naor (1990), if we only require the random
variables to be almost d-wise independent, the size can be polynomial even when
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d = Ω(log n). Such sample spaces and random variables, which can be constructed
explicitly in several ways, have various interesting applications in which almost
d-wise independence suffices. More details appear in Naor and Naor (1990) and in
Alon et al. (1990).

16.3 EXERCISES

1. Let A1,… ,An ⊆ {1,… ,m}, with
∑n

i=1 21−|Ai| < 1. Prove there exists a two-
coloring 𝜒 ∶ {1,… ,m} → {0, 1} with no Ai monochromatic. With m = n, give a
deterministic algorithm to find such a 𝜒 in polynomial time.

2. Describe a deterministic algorithm that, given n, constructs, in time polynomial in
n, a family  of n10 subsets of the set N = {1, 2,… , n}, where each F ∈  is of
size at most 10 log n and for every family  of n subsets, each of cardinality n∕2
of N, there is an F ∈  that intersects all members of .



THE PROBABILISTIC LENS:
Crossing Numbers,
Incidences, Sums
and Products

In this lens we start with a simple result in graph theory, whose proof is probabilistic,
and then describe some of its fascinating consequences in combinatorial geometry
and combinatorial number theory. Some versions of most of these seemingly unre-
lated consequences have been proved earlier, in a far more complicated manner.
Before the discovery of the new proofs shown here, the only clue that there might
be a connection between all of them has been the fact that Endre Szemerédi is one of
the coauthors of each of the papers providing the first proofs.

An embedding of a graph G = (V ,E) in the plane is a planar representation of it,
where each vertex is represented by a point in the plane, and each edge u𝑣 is repre-
sented by a curve connecting the points corresponding to the vertices u and 𝑣. The
crossing number of such an embedding is the number of pairs of intersecting curves
that correspond to pairs of edges with no common endpoints. The crossing number
cr(G) of G is the minimum possible crossing number in an embedding of it in the

plane. The following theorem was proved by Ajtai et al. (1982) and, independently,
by Leighton. Here we describe a very short probabilistic proof.

Theorem 1 The crossing number of any simple graph G = (V ,E) with |E| ≥ 4|V| is
at least |E|3

64|V|2 .

Proof. By Euler’s formula, any simple planar graph with n ≥ 3 vertices has at most
3n − 6 edges, implying that any simple planar graph with n vertices has at most 3n
edges. Therefore, the crossing number of any simple graph with n vertices and m
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edges is at least m − 3n. Let G = (V ,E) be a graph with |E| ≥ 4|V| embedded in the
plane with t = cr(G) crossings. Let H be the random induced subgraph of G obtained
by picking each vertex of G, randomly and independently, to be a vertex of H with
probability p (where p will be chosen later). The expected number of vertices of H is
p|V|, the expected number of its edges is p2|E|, and the expected number of crossings
in its given embedding is p4t, implying that the expected value of its crossing number
is at most p4t. Therefore, p4t ≥ p2|E| − 3p|V|, implying that

cr(G) = t ≥
|E|
p2

− 3
|V|
p3

.

Without trying to optimize the constant factor, substitute p = 4|V|∕|E| (≤ 1), to get
the desired result. ◾

Székely (1997) noticed that this result can be applied to obtain a surprisingly sim-
ple proof of a result of Szemerédi and Trotter in combinatorial geometry. The original
proof is far more complicated.

Theorem 2 Let P be a set of n distinct points in the plane, and let L be a set of m
distinct lines. Then, the number of incidences between the members of P and those of
L (i.e., the number of pairs (p, l) with p ∈ P, l ∈ L and p ∈ l) is at most c(m2∕3n2∕3 +
m + n), for some absolute constant c.

Proof. We may and will assume that every line in L is incident with at least one of
the points of P. Denote the number of incidences by I. Let G = (V ,E) be the graph
whose vertices are all members of P, where two are adjacent if and only if they are
consecutive points of P on some line in L. Clearly, |V| = n and |E| = I − m. Note
that G is already given embedded in the plane, where the edges are represented by
segments of the corresponding lines in L. In this embedding, every crossing is an

intersection point of two members of L, implying that cr(G) ≤
(

m
2

)
≤ m2∕2. By

Theorem 1, either I − m = |E| < 4|V| = 4n, that is, I ≤ m + 4n, or

m2

2
≥ cr(G) ≥ (I − m)3

64n2
,

implying that I ≤ (32)1∕3m2∕3n2∕3 + m. In both cases, I ≤ 4(m2∕3n2∕3 + m + n), com-
pleting the proof. ◾

An analogous argument shows that the maximum possible number of incidences
between a set of n points and a set of m unit circles in the plane does not exceed
O(m2∕3n2∕3 + m + n), and this implies that the number of unit distances determined
by a set of n points in the plane is at most O(n4∕3). While the above upper bound
for the number of incidences of points and lines is sharp, up to a constant factor, an
old conjecture of Erdős asserts that the maximum possible number of unit distances
determined by a set of n points in the plane is at most c

𝜖
n1+𝜖 for any 𝜖 > 0. The O(n4∕3)
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estimate is, however, the best known upper bound, and was first proved by Spencer,
Szemerédi, and Trotter in a far more complicated way.

Elekes (1997) found several applications of Theorem 2 in additive number theory.
Here, too, the proofs are amazingly simple. Here is a representative result.

Theorem 3 For any three sets A,B, and C of s real numbers each,

|A ⋅ B + C| = |{ab + c ∶ a ∈ A, b ∈ B, c ∈ C}| ≥ Ω(s3∕2).

Proof. Put R = A ⋅ B + C, |R| = r and define

P = {(a, t) ∶ a ∈ A, t ∈ R}, L = {y = bx + c ∶ b ∈ B, c ∈ C}.

Thus P is a set of n = sr points in the plane, L is a set of m = s2 lines in the plane,
and each line y = bx + c in L is incident with s points of P, that is, with all the points
{(a, ab + c) ∶ a ∈ A}. Therefore, by Theorem 2, s3 ≤ 4(s4∕3(sr)2∕3 + sr + s2), imply-
ing that r ≥ Ω(s3∕2), as needed. ◾

The same method implies that, for every set A of n reals, either |A + A| ≥ Ω(n5∕4)
or |A ⋅ A| ≥ n5∕4, greatly improving and simplifying a result of Erdős and Szemerédi.





17
Graph Property Testing

‘Call the first witness,’ said the King; and the White Rabbit blew three blasts on the
trumpet, and called out, ‘First witness!’
–from Alice in Wonderland, by Lewis Carroll

17.1 PROPERTY TESTING

Property testers are fast randomized algorithms for distinguishing between combina-
torial structures that satisfy a certain property, and ones that are far from satisfying
it. The basic algorithmic task in this area is to design a randomized algorithm, which
given a combinatorial structure S, can distinguish with high probability between
the case that S satisfies a prescribed property  and the case that S is 𝜀-far from
satisfying  . Here, S is said to be 𝜀-far from satisfying  if an 𝜀-fraction of its
representation should be modified in order to turn it to a structure that satisfies  .
The main objective is to design randomized algorithms, which look at a very small
portion of the input, and using this information distinguish with high probability
between the above two cases. Such algorithms are called testers for the property  .

Preferably, a tester should look at a portion of the input whose size is a function of
𝜀 only. The general notion of property testing was first formulated by Rubinfeld and
Sudan (1996), who were motivated by the study of various algebraic properties such
as linearity of functions. Property testing is also motivated by questions in program
checking, computational learning, approximation algorithms, and probabilistically
checkable proofs, as well as by the need to access large datasets, like the graph of the
Internet. The investigation of the subject relies heavily on probabilistic methods.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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The main focus of this chapter is in testing properties of graphs. In this case, a
graph G on n vertices is said to be 𝜀-far from satisfying a property  if one needs to
add to or delete from G at least 𝜀n2 edges in order to turn it into a graph satisfying  .
Here we assume that the tester can query an oracle whether a pair of vertices, i and
j, are adjacent in the input graph G. If the graph satisfies the property, then the tester
has to accept with probability at least, say, 2∕3, and if it is 𝜀-far from satisfying it,
then the algorithm has to reject with probability at least 2∕3.

The study of the notion of testability for combinatorial structures, and mainly for
labeled graphs, was introduced by Goldreich, Goldwasser and Ron (1998). They
showed that many natural graph properties such as k-colorability, having a large
clique or having a large cut, admit a tester, whose query complexity (i.e., the number
of oracle queries of type “does (i, j) belong to E(G)”) as well as their total running
time can be upper-bounded by a function of 𝜀 that is independent of the size of the
input. We call properties having such efficient testers, that is, testers whose query
complexity is a function of 𝜀 only, testable. In general, a property tester may have a
small probability of accepting graphs that are 𝜀-far from satisfying the tested prop-
erty, as well as a small probability of rejecting graphs satisfying the property. In this
case, the tester is said to have two-sided error. If the tester accepts graphs satisfying
the property with probability 1, then the tester is said to have one-sided error.

It is worth noting that the model of graph property testing described here is often
referred to as the dense graph model. Other models of graph property testing have also
been investigated, see, for example, Goldreich and Ron (2002). For further reading
and pointers on testing properties of graphs and other combinatorial structures, the
reader is referred to the surveys Goldreich (1999), Fischer (2001), Ron (2001), Alon
and Shapira (2006), and references therein.

17.2 TESTING COLORABILITY

Although the computational problem of deciding whether a given graph is k-colorable
is NP-complete for every fixed k ≥ 3, it turns out that, somewhat surprisingly, for
every fixed 𝜀 > 0 there is an efficient algorithm for distinguishing between graphs
on n vertices that are k-colorable and graphs from which one has to delete at least
𝜀n2 edges to make them k-colorable. This result, mentioned already in Alon et al.
(1994), follows from the fact that the property of being k-colorable is testable, as
proved implicitly in Rödl and Duke (1985) and explicitly (with a far better depen-
dence on the parameter 𝜀) in Goldreich et al. (1998). Indeed, as we show in this
subsection, if a graph G = (V ,E) is 𝜀-far from being k-colorable, then an induced
subgraph of it on a randomly chosen set of c(k)∕𝜀2 vertices is not k-colorable with
high probability. This is proved in Alon and Krivelevich (2002), with c(k) = 36k ln k,
building on the work of Goldreich et al. (1998) who showed that a random set of
O(k2 ln k∕𝜀3) vertices suffices. Note that the above supplies a very simple tester with
one sided error for testing k-colorability; consider the induced subgraph on a ran-
domly chosen set of 36k ln k∕𝜀2 vertices, and accept iff this subgraph is k-colorable.
Obviously, every k-colorable graph is accepted by this procedure, and graphs that
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are 𝜀-far from being k-colorable are likely to be rejected. Note also that the validity
of this statement implies the nontrivial fact that every graph that is 𝜀-far from being
k-colorable contains a small witness (for being non-k-colorable), that is, a subgraph
on only c(𝜀, k) ≤ O(k ln k∕𝜀2) vertices which is not k-colorable. The existence of
some such function c(𝜀, k) has been conjectured by Erdős and first proved by Rödl
and Duke (for some extremely fast growing function c(𝜀, k) of 𝜀 and k – see Rödl and
Duke (1985)). In this section we describe the improved c(k)∕𝜀2 bound. For simplicity,
we present the proof only for k = 3, the proof for the general case being essentially
identical. Throughout the proof we omit all floor and ceiling signs whenever these
are not crucial.

Theorem 17.2.1 Suppose 0 < 𝜀 < 0.1, let G = (V ,E) be a graph on n >
400
𝜀

3 vertices,
and suppose that one has to delete from G at least 𝜀n2 edges to make it 3-colorable.
Then the probability that an induced subgraph of G on a randomly chosen set of
s = 40∕𝜀2 vertices is 3-colorable does not exceed 0.1.

Proof. We start with an outline of the proof. Given G = (V ,E) as in the theorem,
pick a random subset R ⊂ V of size |R| = s = 40∕𝜀2 in s rounds, each time choosing
uniformly at random a single vertex rj among the vertices not selected so far.

Suppose that some subset S ⊂ R has already been 3-colored by 𝜙 ∶ S → C, where
C = {1, 2, 3}. The objective is to show that with high probability there is a witness
showing that this partial coloring cannot be extended to a proper coloring of the
induced subgraph on R. If a proper 3-coloring c ∶ V → C of G is to coincide with 𝜙

on S, then for every vertex 𝑣 ∈ V ⧵ S, the colors of the neighbors of 𝑣 in S under𝜙 are
forbidden for 𝑣 in c. The rest of the colors are still feasible for 𝑣. It could be that 𝑣 has
no feasible colors left at all. Such a vertex will be called colorless with respect to S and
𝜙. If the number of colorless vertices is large, then there is a decent chance that among
the next few randomly chosen vertices of R there will be one such colorless vertex 𝑣

∗.
Obviously, adding 𝑣

∗ to S provides the desired witness for non-extendibility of 𝜙.
If the set of colorless vertices is small, then one can show that, as G is 𝜀-far from

being 3-colorable, there is a relatively large subset W of vertices (which will be called
restricting) such that adding any vertex 𝑣 ∈ W to S and coloring it by any feasible
color excludes this color from the lists of feasible colors of at least 𝜀n neighbors of 𝑣.
If such a vertex 𝑣 is found among the next few vertices of the random sample R, then
adding 𝑣 to S and coloring it by any of its feasible colors reduces substantially the
total size of the lists of feasible colors for the remaining vertices of V , which helps to
approach the first situation, that is, the case when there are many colorless vertices.
This process can be represented by a tree in which every internal node corresponds
to a restricting vertex 𝑣, and every edge from 𝑣 to a child corresponds to a feasible
color for 𝑣. The tree will not be very large. Indeed, each of its internal vertices has at
most three children, and its depth cannot exceed 3∕𝜀, as the total size of the lists of
feasible colors at the beginning is 3n, and this size is reduced by at least 𝜀n in each
step. It thus suffices to show that with high probability the construction of the whole
tree (until no feasible colors are left to any of its leaves) can be completed using the
vertices in our random set R.
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We proceed with the formal proof. For a subset S ⊆ V , a 3-coloring of it 𝜙 ∶
S → C, and a vertex 𝑣 ∈ V ⧵ S, let L

𝜙
(𝑣) be the set of all colors in C besides those

that appear already on some neighbor of 𝑣. This is the set of feasible colors for 𝑣.
Clearly, for S = ∅, L

𝜙
(𝑣) = C for every 𝑣 ∈ V . A vertex 𝑣 ∈ V ⧵ S is called colorless

if L
𝜙
(𝑣) = ∅. Let U denote the set of all colorless vertices under (S, 𝜙).

For every vertex 𝑣 ∈ V ⧵ (S ∪ U), define

𝛿
𝜙
(𝑣) = min

i∈L
𝜙
(𝑣)
|{u ∈ N(𝑣) ⧵ (S ∪ U) ∶ i ∈ L

𝜙
(u)}|.

Therefore, coloring 𝑣 by any one of the colors from L
𝜙
(𝑣) and then adding it to S will

result in deleting this color and thus shortening the lists of feasible colors of at least
𝛿
𝜙
(𝑣) neighbors of 𝑣 outside S.

Claim 17.2.2 For every set S ⊂ V and every 3-coloring𝜙 of S, the graph G is at most
(n − 1)|S ∪ U| + 1

2

∑
𝑣∈V⧵(S∪U)𝛿𝜙(𝑣) edges far from being k-colorable.

Proof. Consider the following coloring of G: every 𝑣 ∈ S is colored by 𝜙(𝑣), every
𝑣 ∈ U is colored by an arbitrary color, and every 𝑣 ∈ V ⧵ (S ∪ U) is colored by a
color i ∈ L

𝜙
(𝑣) for which 𝛿

𝜙
(𝑣) = |{u ∈ N(𝑣) ⧵ (S ∪ U) ∶ i ∈ L

𝜙
(u)}|. The number

of monochromatic edges incident with S ∪ U is at most (n − 1)|S ∪ U|. Every ver-
tex 𝑣 ∈ V ⧵ (S ∩ U) has exactly 𝛿

𝜙
(𝑣) neighbors u ∈ V ⧵ (S ∪ U), whose color list

L
𝜙
(𝑣) contains the color chosen for 𝑣. Therefore, 𝑣 will have at most 𝛿

𝜙
(𝑣) neigh-

bors in V ⧵ (S ∪ U) colored in the same color as 𝑣 itself. Hence the total number of
monochromatic edges is at most (n − 1)|S ∪ U| + 1

2

∑
𝑣∈V⧵(S∪U)𝛿𝜙(𝑣), as claimed. ◾

Given a pair (S, 𝜙), a vertex 𝑣 ∈ V ⧵ (S ∪ U) is called restricting if 𝛿
𝜙
(𝑣) ≥ 𝜀n. We

denote by W the set of all restricting vertices.

Claim 17.2.3 For every pair (S, 𝜙), where S ⊂ V and 𝜙 ∶ S → C, |U ∪ S ∪ W| ≥ 𝜀n
2

.

Proof. By the previous claim, and since G is 𝜀-far from being 3-colorable,

𝜀n2
< n(|S|+ |U|) + 1

2

∑
𝑣∈V⧵(S∪U)

𝛿
𝜙
(𝑣)

≤ n(|S|+|U|) + 1
2
|W|(n − 1) + 1

2

∑
𝑣∈V⧵(S∪U∪W)

𝛿
𝜙
(𝑣) < n(|S|+ |U| + |W|) + 1

2
𝜀n2

.

◾

Returning to our randomly chosen vertices r1,… , rs of R, construct an auxiliary
ternary tree T. To distinguish between the vertices of G and those of T, we call the
latter nodes. Each node of T is labeled either by a vertex of G or by the special symbol
#, whose meaning will be explained in what follows. If a node t of T is labeled by #,
then t is called a terminal node. The edges of T are labeled by integers from C.
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Let t be a node of T. Consider the path from the root of T to t, not including t
itself. The labels of the nodes along this path form a subset S(t) of V . The labels of
the edges along the path define a 3-coloring 𝜙(t) of S(t) in a natural way: the label
of the edge following a node t′ in the path determines the color of its label 𝑣(t′). The
labeling of the nodes and edges of T will have the following property: if t is labeled
by 𝑣 and 𝑣 has a neighbor in S(t) whose color in 𝜙(t) is i, then the son of 𝑣 along the
edge labeled by i is labeled by #. This label indicates the fact that in this case color i
is infeasible for 𝑣, given (S(t), 𝜙(t)).

At each step of the construction of T, we will maintain the following: all leafs of
T are either unlabeled or are labeled by #. Also, only leafs of T can be labeled by #.
We start the construction of T from an unlabeled single node, the root of T.

Suppose that j − 1 vertices of T have already been chosen, and we are about to
choose vertex rj of R. Consider a leaf t of T. If t is labeled by #, we do nothing for
this leaf. (That is the reason why such a t is called a terminal node; nothing will ever
grow out of it.) Assume now that t is unlabeled. Define the pair (S(t), 𝜙(t)) as described
above. Now, for the pair (S(t), 𝜙(t)), we define the set U(t) of colorless vertices and
the set W(t) of restricting vertices as described before. Round j is called successful
for the node t if the random vertex rj satisfies rj ∈ U(t) ∪ W(t). If round j is indeed
successful for t, then we label t by rj, create 3 sons of t, and label the corresponding
edges by 1, 2, 3. Now, if color i is infeasible for rj, given (S(t), 𝜙(t)), we label the son
of t along the edge with label i by #; otherwise we leave this son unlabeled. Note that
if rj ∈ U(t), then none of the colors from C is feasible for rj, and thus all the sons of t
will be labeled by #. This completes the description of the process of constructing T.
As each edge along a path from a root to a leaf of the tree corresponds to a restricting
vertex, and the total size of all lists starts with 3n and is reduced by at least 𝜀n with
each coloring of a restricting vertex, we have

Claim 17.2.4 The depth of T is at most 3
𝜀

. ◾

Our construction also implies that, if a leaf t∗ of T is labeled by #, then 𝜙(t∗) is
not a proper 3-coloring of S(t∗). We thus have:

Claim 17.2.5 If after round j all leafs of the tree T are terminal nodes, then the
induced subgraph of G on {r1,… , rj} is not 3-colorable. ◾

To complete the proof, it suffices to show that

Claim 17.2.6 After s = 40∕𝜀2 rounds, with probability at least 0.9, all leaves of T
are terminal nodes.

Proof. As every non-leaf node of T has at most three sons and by Claim 17.2.4 the
depth of T is at most 3∕𝜀, it can be embedded naturally in the ternary tree T3, 3

𝜀

of

depth 3∕𝜀. Moreover, this embedding can be prefixed even before exposing R and T.

Note that the number of vertices of T3, 3
𝜀

is 1 + 3 + · · · + 3
3
𝜀 < 3

3
𝜀

+1.
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Recall that, during the construction of the random sample R and the tree T, a
successful round for a leaf t of T resulted in creating three sons of t. Fix a node t
of T3, 3

𝜀

. If after 40∕𝜀2 rounds t is a leaf of T, then the total number of successful

rounds for the path from the root of T to t is equal to the depth of t. As S(t) ⊆ R and
thus |S(t)| ≤ 40

𝜀
2 ≤

𝜀n
10

, by Claim 17.2.3 each round has probability of success at least
0.4𝜀. Therefore, the probability that t is a nonterminal leaf of T after 40∕𝜀2 steps
can be bounded from above by the probability that the binomial random variable
B(40∕𝜀2

, 0.4𝜀) is at most 3∕𝜀. The latter probability is at most

e
− (16∕𝜀−3∕𝜀)2

2⋅16∕𝜀 = e−
169
32𝜀 .

Thus by the union bound we conclude that the probability that some node of Ts,3∕𝜀 is
a leaf of T, not labeled by ‘#’, is at most

|V(T3, 3
𝜀

)|e− 169
32𝜀 <

1
10

.
◾

The assertion of the theorem follows from Claims 17.2.5 and 17.2.6. ◾

17.3 TESTING TRIANGLE-FREENESS

The relevance of the Regularity Lemma discussed in Chapter 9 to property testing is
nicely illustrated in the proof that the property of containing no triangle is testable
with one-sided error. The required combinatorial lemma here is the (intuitive, yet
nontrivial) fact that, if one has to delete at least 𝜀n2 edges of an n-vertex graph to
destroy all triangles in it, then the graph must contain at least 𝛿n3 triangles, where
𝛿 = 𝛿(𝜀) > 0. As shown in Exercises, following Ruzsa and Szemerédi (1978), this
fact implies that any set of integers with positive upper density contains a three-term
arithmetic progression.

Lemma 17.3.1 For any positive 𝜀 < 1, there is a 𝛿 = 𝛿(𝜀) > 0 so that, if G = (V ,E)
is a graph on |V| = n vertices which is 𝜀-far from being triangle-free, then it contains
at least 𝛿n3 triangles.

Proof. We prove the lemma with

𝛿 = 𝜀
3

29T3(𝜀∕4, ⌈4∕𝜀⌉) ,

where T is as in Theorem 9.4.1. Let G = (V ,E) satisfy the assumption. Note, first,
that if n < T(𝜀∕4, ⌈4∕𝜀⌉), then the assertion is trivial, as in this case 𝛿n3 is less than 1,
and it is trivial that if G is 𝜀-far from being triangle-free then it contains a trian-
gle. We thus assume that n is at least T(𝜀, t), where t = ⌈4∕𝜀⌉. By Theorem 9.4.1,
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there is an𝜀∕4-regular partition (V0,V1,… ,Vk) of G, where t ≤ k ≤ T = T(𝜀, t). Put
c = |V1| = |V2| = · · · = |Vk|. Let G′ be the graph obtained from G by deleting the
following edges:

• All edges of G that are incident with a vertex of the exceptional set V0 (there
are less than 𝜀n2∕4 such edges);

• All edges of G that lie inside some set Vi (there are less than 𝜀n2∕8 such edges);

• All edges of G that lie in irregular pairs (the number of such edges is at most
𝜀

4
k2c2 ≤ 𝜀n2∕4);

• All edges of G that lie in regular pairs (Vi,Vj), where the density d(Vi,Vj) is

smaller than 𝜀∕2. (There are less than
(

k
2

)
𝜀

2
c2

< 𝜀n2∕4 such edges.)

Since G′ is obtained from G by deleting less than 𝜀n2 edges, it contains a triangle,
as G is 𝜀-far from being triangle-free. By the definition of G′, the vertices of this
triangle must lie in three distinct sets Vi, any two of which form a regular pair of
density at least 𝜀∕2. Without loss of generality, assume that these sets are V1,V2,V3.
Call a vertex 𝑣1 ∈ V1 typical if it has at least 𝜀c∕4 neighbors in V2 and at least 𝜀c∕4
neighbors in V3. We claim that all vertices of V1 but at most 2 𝜀

4
c < c∕2 are typical.

Indeed, if X1 is the set of all vertices of V1 that have less than 𝜀c∕4 neighbors in
V2, then its cardinality must be smaller than 𝜀c∕4, since otherwise the pair X1 and
X2 = V2, together with the fact that d(V1,V2) ≥ 𝜀∕2 would violate the 𝜀∕4-regularity
of this pair. Similarly, there are less than 𝜀c∕4 vertices of V1 that have less than 𝜀c∕4
neighbors in V3, proving the claim.

Fix a typical vertex 𝑣1 ∈ V1, and let N2,N3 denote the sets of all its neighbors in V2
and V3, respectively. Thus, |N2|, |N3| ≥ 𝜀c∕4, and hence, by the 𝜀

4
-regularity of the

pair (V2,V3) and the fact that its density is at least 𝜀∕2, there are at least 𝜀

4
|N2‖N3| ≥

(𝜀∕4)3c2 edges between N2 and N3. We conclude that 𝑣1 lies in at least (𝜀∕4)3c2

triangles. As there are at least c∕2 typical vertices in V1, and since

c3
≥ (1 − 𝜀∕4)3n3∕T3

>

n3

4T3
,

the desired result follows. ◾

Corollary 17.3.2 The property of being triangle-free is testable with one-sided error.

Proof. For 𝜀 > 0, let 𝛿 = 𝛿(𝜀) be as in Lemma 17.3.1. Given a graph G = (V ,E)
on n vertices, consider the following randomized algorithm for testing whether G is
triangle-free. Let s be a confidence parameter. Pick randomly and independently s∕𝛿
triples of vertices of the graph, and check whether at least one of them forms a triangle.
If so, then report that the graph is not triangle-free, otherwise, report that the graph is
triangle-free. Clearly, if G is triangle-free, the algorithm will decide so. If it is 𝜀-far
from being triangle-free, then, by Lemma 17.3.1, the probability that the algorithm
will err and report that G is triangle-free does not exceed (1 − 6𝛿)s∕𝛿 ≤ e−6s. This
completes the proof. ◾
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17.4 CHARACTERIZING THE TESTABLE GRAPH PROPERTIES

In this section we describe several more recent results on graph property testing. The
proofs of these results apply a strong variant of the Regularity Lemma, proved in Alon
et al. (2000). The detailed proofs are somewhat technical, and will not be given here.

A graph property is monotone if it closed under removing vertices and edges.
Thus, being k-colorable or triangle-free is a monotone property. A property is hered-
itary if it is closed under removal of vertices (and not necessarily under removal of
edges). Clearly, every monotone graph property is also hereditary, but there are also
many well-studied hereditary properties that are not monotone. Examples are being
a perfect graph, a chordal graph, an interval graph, and many more. The results dis-
cussed in the previous subsections deal with two special cases of hereditary properties
that are also monotone, namely being triangle-free and being k-colorable. Handling
hereditary non-monotone graph properties, such as being perfect or not containing an
induced cycle of length 4, is more involved than handling monotone properties.

For a (possibly infinite) family of graphs  , a graph G is said to be induced  -free
if it contains no F ∈  as an induced subgraph. The following lemma is not difficult.

Lemma 17.4.1 Let  be a (possibly infinite) family of graphs, and suppose there are
functions f (𝜀) and 𝛿 (𝜀) such that the following holds for every 𝜀 > 0: every graph
G on n vertices, which is 𝜀-far from being induced  -free, contains at least 𝛿 (𝜀)nf

induced copies of a graph F ∈  of size f ≤ f (𝜀). Then, being induced  -free is
testable with one-sided error.

The following general result is proved in Alon and Shapira (2005). A subsequent
different, elegant but noneffective, proof can be found in Lovász and Szegedy (2010).

Theorem 17.4.2 Alon and Shapira (2005) For any (possibly infinite) family
of graph  , there are functions f (𝜀) and 𝛿 (𝜀) satisfying the conditions of
Lemma 17.4.1.

It is easy to see that one can define for any hereditary property  a (possibly
infinite) family of graphs  such that satisfying  is equivalent to being induced
-free. Indeed, we simply put a graph F in  if and only if F does not satisfy
 . It thus follows that Theorem 17.4.2, combined with Lemma 17.4.1, implies the
following.

Theorem 17.4.3 Every hereditary graph property is testable with one-sided error.

An easy consequence of Theorem 17.4.2 is the following:

Corollary 17.4.4 For every hereditary graph property  , there is a function W (𝜀)
with the following property: If G is 𝜀-far from satisfying  , then G contains an
induced subgraph of size at most W (𝜀), which does not satisfy  .

Using Theorem 17.4.3, one can obtain a characterization of the “natural” graph
properties, which are testable with one-sided error.
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Definition (Oblivious Tester)

A tester (one-sided or two-sided) is said to be oblivious if it works as follows: given
𝜀, the tester computes an integer Q = Q(𝜀) and asks an oracle for a subgraph induced
by a set of vertices S of size Q, where the oracle chooses S randomly and uniformly
from the vertices of the input graph. If Q is larger than the size of the input graph,
then the oracle returns the entire graph. The tester then accepts or rejects according
to the graph induced by S.

In some sense, oblivious testers capture the essence of property testing, as essen-
tially all the testers that have been analyzed in the literature are in fact oblivious, or
could easily be turned into oblivious testers. Clearly, some properties cannot have
oblivious testers, but these properties are not natural. An example is the property of
not containing an induced cycle of length 4 if the number of vertices is even, and not
containing an induced cycle of length 5 if the number of vertices is odd.

Using Theorem 17.4.3, it can be shown that, if one considers only oblivious testers,
then it is possible to precisely characterize the graph properties that are testable with
one-sided error. To state this characterization, we need the following definition:

Definition (Semi-Hereditary)

A graph property  is semi-hereditary if there exists a hereditary graph property 

such that the following holds:

1. Any graph satisfying  also satisfies .

2. For any 𝜀 > 0, there is an M(𝜀), such that any graph of size at least M(𝜀), which
is 𝜀-far from satisfying  , does not satisfy .

Clearly, any hereditary graph property  is also semi-hereditary because we can
take  in the above definition to be  itself. In simple words, a semi-hereditary  is
obtained by taking a hereditary graph property  and removing from it a (possibly
infinite, carefully chosen) set of graphs. This means that the first item in the definition
above is satisfied. The only restriction, which is needed in order to get item 2 in the
definition, is that  will be such that for any 𝜀 > 0 there will be only finitely many
graphs that are 𝜀-far from satisfying it, and yet satisfy . We are now ready to state
the characterization.

Theorem 17.4.5 A graph property  has an oblivious one-sided tester if and only if
 is semi-hereditary.

The proof can be found in Alon and Shapira (2005). The Regularity Lemma and
its strong variant mentioned in the beginning of this subsection play a crucial role in
this proof. This is not a coincidence. In Alon et al. (2006), it is shown that the property
defined by having any given Szemerédi-partition is testable with a constant number
of queries. This leads to a combinatorial characterization of the graph properties that
are testable with a constant number of queries. This characterization (roughly) says
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that a graph property  can be tested by a two-sided error tester with a constant
number of queries if and only if testing  can be reduced to testing the property of
satisfying one of finitely many Szemerédi-partitions. See Alon et al. (2006) for the
precise formulation and detailed proof.

17.5 EXERCISES

1. (The removal lemma) Show that, for any fixed graph H on h vertices and for any
𝜀 > 0, there is a 𝛿 = 𝛿(𝜀,H) > 0 so that, if one has to delete at least 𝜀n2 edges
from an n-vertex graph G to destroy all copies of H, then G contains at least 𝛿nh

copies of H.

2. (∗) Using Lemma 17.3.1 prove that for any 𝜀 > 0 there is an n0 so that, if n > n0,
then every subset A ⊂ {1, 2,… , n} of size |A| ≥ 𝜀n contains a three-term arith-
metic progression.

3. A graph is chordal if any cycle of length at least 4 in it has a chord. Apply Corol-
lary 17.4.4 to show that, for every 𝜀 > 0, there is a k = k(𝜀) so that every graph on
n vertices in which every cycle of length at least 4 and at most k has a chord can
be transformed into a chordal graph by adding and/or deleting at most 𝜀n2 edges.

4. (∗)A construction of Behrend (1946) gives a subset A of {1, 2,… ,m}of size |A| ≥
m∕ec

√
log m with no three-term arithmetic progression. Show how to construct from

such an A a graph on n vertices, which is 𝜀-far from being triangle-free and yet
contains only 𝜀

b log (1∕𝜀)n3 triangles.

5. Prove that the property of being triangle-free is not testable with a one-sided error
tester whose query complexity is polynomial in 1∕𝜀.

6. A graph G is H-free if it contains no copy of H. Prove that, for every bipartite
graph H with h vertices, there is a c = c(h) > 0 so that any graph G on n vertices
that is 𝜀-far from being H-free contains at least 𝜀cnh copies of H.



THE PROBABILISTIC LENS:
Turán Numbers
and Dependent Random
Choice

For a graph H and an integer n, the Turán number ex(n,H) is the maximum pos-
sible number of edges in a simple graph on n vertices that contains no copy of H.
The asymptotic behavior of these numbers for graphs of chromatic number at least 3
is well known, see, for example, Exercise 6 in Chapter 9. For bipartite graphs H,
however, the situation is considerably more complicated, and there are relatively
few nontrivial bipartite graphs H for which the order of magnitude of ex(n,H) is
known. Here we prove that, for every fixed bipartite graph H in which the degrees
of all vertices in one color class are at most r, there is a constant c = c(H) so that
ex(n,H) ≤ cn2−1∕r. This is tight for all values of r, as it is known that for every r
and t > (r − 1)! there is a simple graph with n vertices and at least cr,tn

2−1∕r edges,
containing no copy of the complete bipartite graph Kr,t.

The basic tool in the proof is a simple and yet surprisingly powerful method, whose
probabilistic proof may be called “dependent random choice”, as it involves a random
selection of a set of vertices, where the choices are dependent in a way that increases
the probability that r-tuples of selected vertices will have many common neighbors.
An early variant of this lemma was first proved in Kostochka and Rödl (2004) and
Gowers (1998). The proof given here is from Alon, Krivelevich and Sudakov (2003).

Lemma 1 Let a, b, n, r be positive integers. Let G = (V ,E) be a graph on |V| = n
vertices with average degree d = 2|E|∕n. If

dr

nr−1
−
(n

r

)(b − 1
n

)r
> a − 1 , (1)
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then G contains a subset A0 of at least a vertices so that every r vertices of A0 have
at least b common neighbors.

Proof. Let T be a (multi)-set of r random vertices of G, chosen uniformly with
repetitions. Set

A = {𝑣 ∈ V ∶ T ⊆ N(𝑣)},

where N(𝑣) denotes the set of all neighbors of 𝑣. Denote by X the cardinality of A.
By Linearity of Expectation

E [X] =
∑
𝑣∈V

(|N(𝑣)|
n

)r

= 1
nr

∑
𝑣∈V

|N(𝑣)|r
≥

1
nr

n

(∑
𝑣∈V |N(𝑣)|

n

)r

= 1
nr−1

(
2|E|

n

)r

= dr

nr−1
,

where the inequality follows from the convexity of f (x) = xr.
Let Y denote the random variable counting the number of r-tuples in A with fewer

than b common neighbors. For a given r-tuple R ⊆ V , the probability that R will be

a subset of A is precisely
(|N∗(R)|

n

)r
, where N∗(R) denotes the set of all common

neighbors of the vertices in R. As there are at most
(

n
r

)
subsets R of cardinality|R| = r for which |N∗(R)| ≤ b − 1, it follows that

E[Y] ≤
(n

r

)(b − 1
n

)r
.

Applying Linearity of Expectation once again, we conclude, by (1), that

E[X − Y] ≥ dr

nr−1
−
(n

r

)(b − 1
n

)r
> a − 1.

Hence there exists a choice for T so that for the corresponding set A we get X − Y ≥ a.
Pick such a set, and omit a point from every r-tuple in it with fewer than b common
neighbors. This gives a set A0 of at least a vertices so that every r vertices in it have
at least b common neighbors. ◾

Theorem 2 Let H be a bipartite graph with maximum degree r on one side. Then
there exists a constant c = c(H) > 0 such that

ex(n,H) < cn2− 1
r .

Proof. Let A and B be the vertex classes of H, and suppose |A| = a, |A| + |B| = b,
where the degree of every vertex b ∈ B in H does not exceed r. Let G = (V ,E) be
a graph on |V| = n vertices with average degree d = 2|E|∕n ≥ cn1−1∕r, where c sat-
isfies cr

>
(b−1)r

r!
+ a − 1. It is easy to check that (1) holds. To complete the proof,
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it suffices to show that G must contain a copy of H. By Lemma 1, there is a subset
A0 ⊂ V of cardinality |A0| = a so that every r-subset of A0 has at least b common
neighbors in G. It is now an easy matter to embed H in G. To do so, start by embed-
ding the vertices of A by an arbitrary injective function from A to A0. Proceed by
embedding the vertices of B one by one in an arbitrary order, making sure that in
each step the image of the new embedded vertex is connected to the images of its
neighbors in H and is different from the images of all previously embedded vertices.
Since every set of (at most) r vertices of A0 has at least b common neighbors in G,
this process can be performed until the images of all b vertices of H are found. This
completes the proof. ◾





Appendix A

Bounding of Large
Deviations

A.1 CHERNOFF BOUNDS

We give here some basic bounds on large deviations that are useful when employing
the probabilistic method. Our treatment is self-contained. Most of the results may be
found in, or immediately derived from, the seminal paper of Chernoff (1952). While
we are guided by asymptotic considerations, the inequalities are proven for all values
of the parameters in the specified region. The first result, while specialized, contains
basic ideas found throughout the Appendix.

Theorem A.1.1 Let Xi, 1 ≤ i ≤ n, be mutually independent random variables with

Pr
[
Xi = +1

]
= Pr

[
Xi = −1

]
= 1

2

and set, following the usual convention,

Sn = X1 + · · · + Xn.

Let a > 0. Then
Pr

[
Sn > a

]
< e−a2∕2n

.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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We require Markov’s inequality, which is as follows: Suppose that Y is an arbitrary
nonnegative random variable, 𝛼 > 0. Then

Pr [Y > 𝛼E [Y]] < 1∕𝛼.

Proof [A.1.1] Fix n, a, and let, for the moment, 𝜆 > 0 be arbitrary. For 1 ≤ i ≤ n,

E
[
e𝜆Xi

]
= (e𝜆 + e−𝜆)∕2 = cosh(𝜆).

We require the inequality
cosh(𝜆) ≤ e𝜆

2∕2
,

valid for all 𝜆 > 0, the special case 𝛼 = 0 of Lemma A.1.5 below. (The inequality may
be more easily shown by comparing the Taylor series of the two functions termwise.)

e𝜆Sn =
n∏

i=1

e𝜆Xi .

Since the Xi are mutually independent, so are the e𝜆Xi , expectations multiply and

E
[
e𝜆Sn

]
=

n∏
i=1

E
[
e𝜆Xi

]
= [cosh(𝜆)]n < e𝜆

2n∕2
.

We note that Sn > a if and only if e𝜆Sn > e𝜆a, and apply Markov’s inequality so that

Pr
[
Sn > a

]
= Pr

[
e𝜆Sn > e𝜆a]

< E
[
e𝜆Sn

]
∕e𝜆a

≤ e𝜆
2n∕2−𝜆a

.

We set 𝜆 = a∕n to optimize the inequality Pr
[
Sn > a

]
< e−a2∕2n, as claimed. ◾

By symmetry, we immediately have:

Corollary A.1.2 Under the assumptions of Theorem A.1.1,

Pr
[||Sn

|| > a
]
< 2e−a2∕2n

.

The proof of Theorem A.1.1 illustrates the basic idea of the Chernoff bounds. We
wish to bound Pr [X > a] for some random variable X. For any positive 𝜆, we bound

Pr [X > a] = Pr
[
e𝜆X

> e𝜆a]
≤ E

[
e𝜆X] e−𝜆a

.

The core idea of the Chernoff bounds is to select the 𝜆 that minimizes E
[
e𝜆X

]
e−𝜆a.

The art to the Chernoff bounds is to select a 𝜆 that is reasonably close to optimal
and easy to work with, yielding upper bounds on Pr [X > a], which are, one hopes,
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good enough for our purposes. Bounds on Pr [X < a] are similar. For any positive 𝜆,
we bound

Pr [X < a] = Pr
[
e−𝜆X

> e−𝜆a
]
≤ E

[
e−𝜆X

]
e𝜆a

.

Chernoff-bound arguments tend to be cleaner when E [X] = 0. A simple translation,
replacing X by X − 𝜇 where 𝜇 = E [X], is often quite helpful.

It is instructive to examine the case when N is the standard normal distribution and
a is positive. In this instance, E

[
e𝜆N

]
= e𝜆

2∕2 and so

Pr [N > a] = Pr
[
e𝜆N

> e𝜆a
]
≤ E

[
e𝜆X

]
e−𝜆a = e𝜆

2∕2−𝜆a
.

Elementary calculus leads to the optimal choice 𝜆 = a, so that

Pr [N > a] < e−a2∕2
.

This compares well with the actual asymptotics

Pr [N > a] = (2𝜋)−1∕2
∫

∞

a
e−t2∕2dt ∼ (2𝜋a)−1∕2e−a2∕2

as a → ∞. Results with N being normal with mean 𝜇 and variance 𝜎
2 are similarly

good. This explains, to some extent, the efficacy of the Chernoff bounds. When a
random variable X is “roughly” normal, the Chernoff bounds on Pr [X > a] should be
quite close to the actual values for a large. In practice, however, precise calculations
of E

[
e𝜆X

]
can be difficult or impossible to achieve, and there can be considerable art

in finding approximations for E
[
e𝜆X

]
that will allow good bounds on Pr [X > a].

Many of our remaining results will deal with distributions X of the following pre-
scribed type:

Assumptions A.1.3

p1,… , pn ∈ [0, 1]

p = (p1 + · · · + pn)∕n

X1,… ,Xn mutually independent with

Pr
[
Xi = 1 − pi

]
= pi

Pr
[
Xi = −pi

]
= 1 − pi

X = X1 + · · · + Xn.

Remark. Clearly, E [X] = E
[
Xi

]
= 0. When all pi = 1∕2, X has distribution Sn∕2.

When all pi = p, X has distribution B(n, p) − np, where B(n, p) is the usual binomial
distribution.
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Theorem A.1.4 Under assumptions A.1.3 and with a > 0,

Pr [X > a] < e−2a2∕n
.

Lemma A.1.5 For all reals 𝛼, 𝛽 with |𝛼| ≤ 1,

cosh(𝛽) + 𝛼 sinh(𝛽) ≤ e𝛽
2∕2+𝛼𝛽

.

Proof. This is immediate if 𝛼 = +1 or 𝛼 = −1 or |𝛽| ≥ 100. If the Lemma were false,
the function

f (𝛼, 𝛽) = cosh(𝛽) + 𝛼 sinh(𝛽) − e𝛽
2∕2+𝛼𝛽

would assume a positive global maximum in the interior of the rectangle

R = {(𝛼, 𝛽) ∶ |𝛼| ≤ 1, |𝛽| ≤ 100}.

Setting partial derivatives equal to zero, we find

sinh(𝛽) + 𝛼 cosh(𝛽) = (𝛼 + 𝛽)e𝛽2∕2+𝛼𝛽
,

sinh(𝛽) = 𝛽e𝛽
2∕2+𝛼𝛽

,

and thus tanh(𝛽) = 𝛽 which implies 𝛽 = 0. But f (𝛼, 0) = 0 for all 𝛼, a contradiction.◾

Lemma A.1.6 For all 𝜃 ∈ [0, 1] and all 𝜆,

𝜃e𝜆(1−𝜃) + (1 − 𝜃)e−𝜆𝜃 ≤ e𝜆
2∕8

.

Proof. Setting 𝜃 = (1 + 𝛼)∕2 and 𝜆 = 2𝛽, Lemma A.1.6 reduces to Lemma A.5. ◾

Proof [Theorem A.1.4] Let, for the moment, 𝜆 > 0 be arbitrary.

E
[
e𝜆Xi

]
= pie

𝜆(1−pi) + (1 − pi)e−𝜆pi ≤ e𝜆
2∕8

by Lemma A.1.6. Then

E
[
e𝜆X

]
=

n∏
i=1

E
[
e𝜆Xi

]
≤ e𝜆

2n∕8
.

Applying Markov’s inequality,

Pr [X > a] = Pr
[
e𝜆X

> e𝜆a]
< E

[
e𝜆X] ∕e𝜆a

≤ e𝜆
2n∕8−𝜆a

.

We set 𝜆 = 4a∕n to optimize the inequality Pr [X > a] < e−2a2∕n, as claimed. ◾
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Again, by symmetry we immediately have the following:

Corollary A.1.7 Under assumptions A.1.3 and with a > 0,

Pr [|X| > a] < 2e−2a2∕n
.

Under assumptions A.1.3 with 𝜆 arbitrary,

E
[
e𝜆X

]
=

n∏
i=1

E
[
e𝜆Xi

]
=

n∏
i=1

[pie
𝜆(1−pi) + (1 − pi)e−𝜆pi]

= e−𝜆pn
n∏

i=1

[pie
𝜆 + (1 − pi)] .

With 𝜆 fixed, the function

f (x) = ln[xe𝜆 + 1 − x] = ln[Bx + 1] with B = e𝜆 − 1

is concave and hence (Jensen’s Inequality)

n∑
i=1

f (pi) ≤ nf (p).

Exponentiating both sides,

n∏
i=1

[pie
𝜆 + (1 − pi)] ≤ [pe𝜆 + (1 − p)]n ,

so that we have:

Lemma A.1.8 Under the assumptions A.1.3,

E
[
e𝜆X

]
< e−𝜆pn[pe𝜆 + (1 − p)]n.

Theorem A.1.9 Under the assumptions A.1.3 and with a > 0,

Pr [X ≥ a] < e−𝜆pn[pe𝜆 + (1 − p)]ne−𝜆a

for all 𝜆 > 0.

Proof. Pr [X > a] = Pr
[
e𝜆X

> e𝜆a
]
< E

[
e𝜆X

]
∕e𝜆a. Now apply Lemma A.1.8. ◾
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Remark. For given p, n, a, an optimal assignment of 𝜆 in Theorem A.1.9 is found by
elementary calculus to be

𝜆 = ln

[(
1 − p

p

)(
a + np

n − (a + np)

)]
.

This value is oftentimes too cumbersome to be useful. We employ suboptimal 𝜆 to
achieve more convenient results.

Setting 𝜆 = ln[1 + a∕pn] and using the fact that (1 + a∕n)n ≤ ea, Theorem A.1.9
implies:

Corollary A.1.10

Pr [X ≥ a] < ea−pn ln(1+a∕pn)−a ln(1+a∕pn)
.

Theorem A.1.11
Pr [X ≥ a] < e−a2∕2pn+a3∕2(pn)2

.

Proof. With u = a∕pn, apply the inequality

ln(1 + u) ≥ u − u2∕2,

valid for all u ≥ 0, to Corollary A.1.10. ◾

When all pi = p, X has variance np(1 − p). With p = o(1) and a = o(pn), this
bound reflects the approximation of X by a normal distribution with variance ∼ np.
The bound of Theorem A.1.11 hits a minimum at a = 2pn∕3. For a > 2pn∕3, we have
the simple bound

Pr [X > a] ≤ Pr
[
X > 2pn∕3

]
< e−2pn∕27

.

This is improved by the following.

Theorem A.1.12 For 𝛽 > 1,

Pr
[
X ≥ (𝛽 − 1)pn

]
< [e𝛽−1

𝛽
−𝛽]pn

.

Proof. Direct “plug in” to Corollary A.1.10. ◾

X + pn may be interpreted as the number of successes in n independent trials when
the probability of success in the ith trial is pi.

Theorem A.1.13 Under assumptions A.1.3 and with a > 0,

Pr [X < −a] < e−a2∕2pn
.

Note that one cannot simply employ “symmetry”, because then the roles of p and
1 − p are interchanged.
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Proof. Let 𝜆 > 0 be, for the moment, arbitrary. Then by the argument preceding
Lemma A.1.8,

E
[
e−𝜆X

]
≤ e𝜆pn[pe−𝜆 + (1 − p)]n .

Thus
Pr [X < −a] = Pr

[
e−𝜆X

> e𝜆a
]
< e𝜆pn[pe−𝜆 + (1 − p)]ne−𝜆a

,

analogous to Theorem A.1.9. We employ the inequality

1 + u ≤ eu
,

valid for all u, so that

pe−𝜆 + (1 − p) = 1 + (e−𝜆 − 1)p < ep(e−𝜆−1)

and
Pr [X < −a] ≤ e𝜆pn+np(e−𝜆−1)−𝜆a = enp(e−𝜆−1+𝜆)−𝜆a

.

We employ the inequality
e−𝜆 ≤ 1 − 𝜆 + 𝜆

2∕2 ,

valid for all 𝜆 > 0. (Note: The analogous inequality e𝜆 ≤ 1 + 𝜆 + 𝜆
2∕2 is not valid

for 𝜆 > 0 and so this method, when applied to Pr [X > a], requires an “error” term as
the one found in Theorem A.1.11.) Now

Pr [X < −a] ≤ enp𝜆2∕2−𝜆a
.

We set 𝜆 = a∕np to optimize the inequality Pr [X < −a] < e−a2∕2pn, as claimed. ◾

For clarity, the following result is often useful.

Corollary A.1.14 Let Y be the sum of mutually independent indicator random vari-
ables, 𝜇 = E [Y]. For all 𝜖 > 0,

Pr [|Y − 𝜇| > 𝜖𝜇] < 2e−c
𝜖
𝜇
,

where c
𝜖
> 0 depends only on 𝜖.

Proof. Apply Theorems A.1.12 and A.1.13 with Y = X + pn and

c
𝜖
= min{ − ln(e𝜖(1 + 𝜖)−(1+𝜖)), 𝜖2∕2}. ◾

The asymmetry between Pr [X < a] and Pr [X > a] given by Theorems A.1.12 and
A.1.13 is real. The estimation of X by a normal distribution with mean zero and
variance np is roughly valid for estimating Pr [X < a] for any a and for estimating



328 BOUNDING OF LARGE DEVIATIONS

Pr [X > a] while a = o(np). But when a and np are comparable, or when a ≫ np,
the Poisson behavior “takes over” and Pr [X > a] cannot be accurately estimated by
using the normal distribution.

We conclude with several large deviation results involving distributions other than
sums of indicator random variables.

Theorem A.1.15 Let P have Poisson distribution with mean 𝜇. For 𝜖 > 0,

Pr [P ≤ 𝜇(1 − 𝜖)] ≤ e−𝜖
2
𝜇∕2

,

Pr [P ≥ 𝜇(1 + 𝜖)] ≤
[
e𝜖(1 + 𝜖)−(1+𝜖)

]
𝜇

.

Proof. For any s

Pr [P = s] = lim
n→∞

Pr
[
B
(

n,
𝜇

n

)
= s

]
.

Apply Theorems A.1.12 and A.1.13. ◾

Theorem A.1.16 Let Xi, 1 ≤ i ≤ n, be mutually independent with all E
[
Xi

]
= 0 and

all |Xi| ≤ 1. Set S = X1 + · · · + Xn. Then

Pr [S > a] < e−a2∕2n
.

Proof. Set, as in the proof of Theorem A.1.1, 𝜆 = a∕n. Set

h(x) = e𝜆 + e−𝜆

2
+ e𝜆 − e−𝜆

2
x .

For x ∈ [−1, 1], e𝜆x ≤ h(x). (y = h(x) is the chord through the points x = ±1 of the
convex curve y = e𝜆x.) Thus

E
[
e𝜆Xi

]
≤ E

[
h(Xi)

]
= h(E

[
Xi

]
) = h(0) = cosh 𝜆.

The remainder of the proof follows as in Theorem A.1.1. ◾

Theorem A.1.17 Suppose E [X] = 0 and no two values of X are ever more than 1
apart. Then for all 𝜆 ≥ 0,

E
[
e𝜆X

]
≤ e𝜆

2∕8
.

Proof. Fix b ∈
[
− 1

2
,

1
2

]
with X ∈

[
−1+b

2
,
+1+b

2

]
. Let y = h(x) be the straight line

intersecting the curve y = e𝜆x at the points (±1 + b)∕2. As e𝜆x is a convex function,
e𝜆x ≤ h(x) for all x ∈ [−1+b

2
,
+1+b

2
]. Thus

E
[
e𝜆X

]
≤ E [h(X)] = h (E [X]) = h(0).

We calculate h(0) = e𝜆b∕2[cosh(𝜆∕2) − b sinh(𝜆∕2)], which is at most e𝜆
2∕8 by

Lemma A.1.5. ◾
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Theorem A.1.18 Let Xi, 1 ≤ i ≤ n, be independent random variables with each
E
[
Xi

]
= 0 and no two values of any Xi ever more than 1 apart. (We allow, however,

values of different Xi,Xj to be further apart.) Set S = X1 + · · · + Xn. Then

Pr [S > a] < e−2a2∕n
.

Proof. E
[
e𝜆S

]
=
∏n

i=1 E
[
e𝜆Xi

]
≤ en𝜆2∕8 by Theorem A.1.17. Then for 𝜆 ≥ 0,

Pr [S > a] = Pr
[
e𝜆S

≥ e𝜆a
]
≤ exp

[
n𝜆2

8
− 𝜆a

]

and we set 𝜆 = 4a∕n. ◾

We have been roughly guided by the notion that, if X has mean zero and variance
𝜎

2, then Pr [X ≥ a𝜎] should go like e−a2∕2. There are times when this idea is badly
wrong. Consider Assumptions A.3 with all pi = 1∕n, so that X = Pn − 1 where Pn has
the binomial distribution B(n, 1∕n) which is asymptotically P, the Poisson distribu-
tion with mean 1. Then E [X] = 0 and Var [X] ∼ 1. For a fixed, Pr [X = a] → 1

e(a+1)! ,

which is far bigger than e−a2∕2. With this cautionary preamble, we give a general
situation for which the notion is asymptotically correct when a is not too large.

Theorem A.1.19 For every C > 0 and 𝜖 > 0, there exists 𝛿 > 0 so that the following
holds: Let Xi, 1 ≤ i ≤ n, n arbitrary, be independent random variables with E[Xi] = 0,|Xi| ≤ C, and Var[Xi] = 𝜎

2
i . Set X =

∑n
i=1 Xi and 𝜎

2 =
∑n

i=1 𝜎
2
i so that Var[X] = 𝜎

2.
Then for 0 < a ≤ 𝛿𝜎,

Pr [X > a𝜎] < e−
a2

2
(1−𝜖)

.

Proof. We set 𝜆 = a∕𝜎 so that 0 ≤ 𝜆 ≤ 𝛿. Then

E
[
e𝜆Xi

]
=

∞∑
k=0

E

[
𝜆

k

k!
Xk

i

]
= 1 + 𝜆

2

2
𝜎

2
i +

∞∑
k=3

𝜆
k

k!
E
[
Xk

i

]
.

As |Xk
i | ≤ Ck−2X2

i , we bound

E
[
Xk

i

]
≤ E

[|Xk
i |] ≤ Ck−2E

[
X2

i

]
= Ck−2

𝜎
2
i .

For k ≥ 3, we bound 2
k! ≤

1
(k−2)! so that

E
[
e𝜆Xi

]
≤ 1 + 𝜆

2

2
𝜎

2
i

[
1 +

∞∑
k=3

(C𝜆)k−2

(k − 2)!

]
= 1 + 𝜆

2

2
𝜎

2
i e𝜆C

.
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We choose 𝛿 to satisfy eC𝛿 ≤ 1 + 𝜖. As 𝜆 ≤ 𝛿,

E
[
e𝜆Xi

]
≤ 1 + 𝜆

2

2
𝜎

2
i (1 + 𝜖) < exp

[
𝜆

2

2
𝜎

2
i (1 + 𝜖)

]
.

This inequality has held for all Xi so

E
[
e𝜆X

]
=

n∏
i=1

E
[
e𝜆Xi

]
< exp

[
𝜆

2

2
𝜎

2(1 + 𝜖)
]

and

Pr [X > a𝜎] ≤ E
[
e𝜆X

]
e−𝜆a𝜎

< e−
a2

2
(1−𝜖)

. ◾

A.2 LOWER BOUNDS

The Chernoff bounds of the previous section give upper bounds for Pr [X > a] by
examining one value (albeit, the right one!) of the Laplace transform E

[
e𝜆X

]
. Here

we use three values of the Laplace transform to give lower bounds for Pr [X > a]. We
shall set

f (𝜆) = E
[
e𝜆X

]
ga(𝜆) = f (𝜆)e−𝜆a

.

With this notation, Pr [X > a] ≤ ga(𝜆) and the Chernoff bound is achieved by taking
that 𝜆 minimizing ga(𝜆). For any positive u and 𝜖,

X ≥ a + u ⇒ 𝜆X ≤ (𝜆 + 𝜖)X − 𝜖a − 𝜖u

X ≤ a − u ⇒ 𝜆X ≤ (𝜆 − 𝜖)X + 𝜖a − 𝜖u,

so that

E
[
e𝜆X

𝜒(X ≥ a + u)
]
≤ f (𝜆 + 𝜖)e−𝜖ae−𝜖u

E
[
e𝜆X

𝜒(X ≤ a − u)
]
≤ f (𝜆 − 𝜖)e+𝜖ae−𝜖u

.

Subtracting these from E
[
e𝜆X

]
,

E
[
e𝜆X

𝜒(|X − a| < u)
]
≥ f (𝜆) − e−𝜖u[f (𝜆 + 𝜖)e−𝜖a + f (𝜆 − 𝜖)e+𝜖a].

When |X − a| < u, e𝜆X ≤ e𝜆ue𝜆a, so

Pr [|X − a| < u] ≥ e−𝜆ue−𝜆aE
[
e𝜆X

𝜒(|X − a| < u)
]

but Pr [X > a − u] ≥ Pr [|X − a| < u], giving our general result:
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Theorem A.2.1 For any a, u, 𝜆, 𝜖 with u, 𝜆, 𝜖, 𝜆− 𝜖 all positive

Pr [X > a − u] ≥ e−𝜆u
[
ga(𝜆) − e−𝜖u[ga(𝜆 + 𝜖) + ga(𝜆 − 𝜖)]

]
.

We note that this bound has used only three values of the Laplace transform, f (𝜆),
f (𝜆 − 𝜖), and f (𝜆 + 𝜖).

It is instructive to examine the case when N is the standard normal distribution.
We assume a is positive and are interested in the asymptotics as a → +∞. We set
𝜆 = a, so that ga(𝜆) = e−a2∕2. Now

ga(𝜆 ± 𝜖) = e(𝜆±𝜖)
2∕2−a(𝜆±𝜖) = ga(𝜆)e𝜖

2∕2
.

The cancellation of the linear (in 𝜖) terms was not serendipitous, but rather reflected
the critical choice of 𝜆 to minimize ln (ga(𝜆)). Now

Pr [N > a − u] ≥ ga(a)e−au
[
1 − 2e−𝜖ue𝜖

2∕2
]
.

Suppose we take 𝜖 = u = 2. This gives

Pr [N > a − 2] ≥ e−a2∕2e−2a
[
1 − 2e−2]

.

Recall Pr [N > a] = Ω(e−a2∕2e−4a). In contrast, we have the upper bound Pr
[N > a] ≤ e−a2∕2.

In many applications, one does not have the precise values of the Laplace transform
f (𝜆). Suppose, however, that we have reasonably good estimates in both directions
on f (𝜆). Then Theorem A.2.1 will give a lower bound for Pr [X > a − u] by using a
lower bound for ga(𝜆) and upper bounds for ga(𝜆 ± 𝜖). Our goal will be less ambitious
than the estimate achieved for the standard normal N. We shall be content to find the
asymptotics of the logarithm of Pr [X > a]. In the next result, Xn may be imagined
to be near the normal distribution. The interval for 𝜆 could easily be replaced by
[(1 − 𝛾)an, (1 + 𝛾)an] for any fixed positive 𝛾 .

Theorem A.2.2 Let Xn be a sequence of random variables, and let an be a sequence
of positive reals with limn→∞an = ∞. Assume

E
[
e𝜆Xn

]
= e

𝜆
2

2
(1+o(1))

uniformly for 1
2
an ≤ 𝜆 ≤

3
2
an. Then

ln
[
Pr

[
Xn > an

]]
∼ −

a2
n

2
.

Remark. For Xn = Snn−1∕2, E
[
e𝜆Xn

]
= coshn(𝜆n−1∕2). As u → 0, ln cosh(u) ∼ 1

2
u2.

The conditions of Theorem A.2.2 therefore hold when an = o(
√

n) and an → +∞.
That is, ln

[
Pr

[
Sn > bn

]]
∼ −b2

n∕2n when
√

n ≪ bn ≪ n.
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Proof. The upper bound is the Chernoff bound with 𝜆 = an.

Pr
[
Xn > an

]
≤ E

[
e𝜆Xn

]
e−an𝜆 = e−

a2
n
2
(1+o(1))

.

For the lower bound we first let 𝛿 ∈ (0, 0.01) be fixed. We set 𝜆 = a = an(1 + 𝛿),
u = an𝛿, 𝜖 = 𝜆𝛿∕10. Applying Theorem A.2.1

Pr
[
X > an

]
≥ e−𝜆uB

with
B = ga(a) − e−𝜖u[ga(a + 𝜖) + ga(a − 𝜖)]

but

ln[ga(a)] ∼ −a2

2

and, analogous to our result for the standard normal,

ln[ga(a ± 𝜖)] ∼ a2

2

(
1 ± 𝛿

10

)2
− a2

(
1 ± 𝛿

10

)
= a2

2

(
−1 + 𝛿

2

100

)
.

As 𝜖u = a2
𝛿

2∕10(1 + 𝛿), we have e−𝜖uga(a ± 𝜖) ≪ ga(a). Now B is dominated by its
initial term and

Pr
[
X > an

]
≥ e−𝜆uga(a)(1 − o(1)).

Taking logarithms

ln
[
Pr

[
X > an

]]
≥ −a2

n𝛿(1 + 𝛿) −
a2

n

2
(1 + 𝛿)2(1 + o(1)) − o(1).

As this holds for any fixed 𝛿 ∈ (0, 0.01),

ln
[
Pr

[
X > an

]]
≥ −

a2
n

2
(1 + o(1)) . ◾

We have seen that Pr[Sn > bn] can be well approximated by Pr[
√

nN > bn] as long
as

√
n ≪ bn ≪ n. For bn = Θ(n), this approximation by the normal distribution is no

longer valid. Still, we shall see that the Chernoff bounds continue to give the right
asymptotic value for ln[Pr[Sn > bn]]. We place this in a somewhat wider context. Ellis
(1984) has given far more general results.

Theorem A.2.3 Let Zn be a sequence of random variables. Let a be a fixed positive
real. Set

F(𝜆) = lim
n→∞

1
n

ln E
[
e𝜆Zn

]
.

Suppose that there exists 𝜆 > 0 and an open interval I containing 𝜆 such that

1. F(s) exists and has a first and a second derivative for all s ∈ I;

2. F′(𝜆) = a;
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3. F′ is a strictly increasing function in I;

4. There is a K so that |F′′(s)| ≤ K for all s ∈ I.

Then
lim

n→∞
1
n

Pr
[
Zn > an

]
= F(𝜆) − a𝜆 .

Remark. Let X be a random variable whose Laplace transform is well defined. Let
Zn denote the sum of n independent copies of X. Then F(𝜆) = ln E

[
e𝜆X

]
. In particular,

suppose Pr [X = 1] = Pr [X = −1] = 1∕2 so that Zn = Sn. Then F(𝜆) = ln cosh(𝜆).
For any a ∈ (0, 1), there is a positive 𝜆 for which a = F′(𝜆) = tanh(𝜆). The conditions
of Theorem A.2.3 hold and give the asymptotics of ln[Sn > an].

Proof. The upper bound is the Chernoff bound, as

Pr
[
Zn > an

]
≤ E

[
e𝜆Zn

]
e−a𝜆n = en(F(𝜆)−a𝜆+o(1))

.

For the lower bound we will apply Theorem A.2.1. First, note that since F′ is con-
tinuous and monotone over I, it has a continuous inverse H defined over some inter-
val J containing a. Note H(a) = 𝜆. Let u be positive and sufficiently small so that
H(a + u) ± u

K
∈ I. As limu→0,H(a + u) ± u

K
= H(a) = 𝜆, all sufficiently small u sat-

isfy this criterion.
Set a∗ = a + u and 𝜆

∗ = H(a∗) so that F′(𝜆∗) = a∗. We define

gn(s) = E
[
esZn

]
e−sa∗

.

Theorem A.2.1 (noting that an = a∗n − un) states

Pr
[
Zn > an

]
≥ e−𝜆

∗a∗n[gn(𝜆∗) − e−𝜖un[gn(𝜆∗ + 𝜖) + gn(𝜆∗ − 𝜖)].

We select 𝜖 = u
K

. Our selection of u assures us that 𝜆∗ ± 𝜖 belong to I. We have

lim
n→∞

1
n

ln

[
e−𝜖ungn(𝜆∗ + 𝜖)

gn(𝜆∗)

]
= −𝜖u + F(𝜆∗ + 𝜖) − F(𝜆∗) − 𝜖a∗.

We have selected 𝜆
∗ so that F′(𝜆∗) = a∗. Since |F′′(s)| ≤ K in the interval I, Taylor

series bounds |F(𝜆∗ + 𝜖) − F(𝜆∗) − 𝜖a∗| ≤ K
2
𝜖

2
.

Our choice of 𝜖 (chosen to minimize the quadratic though any sufficiently small 𝜖
would do) gives that

−𝜖u + F(𝜆∗ + 𝜖) − F(𝜆∗) − 𝜖a∗ ≤ − u2

2K
.

Thus e−𝜖ngn(𝜆∗ + 𝜖)∕gn(𝜆∗) drops exponentially quickly. We only use that, for n
sufficiently large, the ratio is less than 0.25. The same argument shows that for n
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sufficiently large, e−𝜖ngn(𝜆∗ − 𝜖)∕gn(𝜆∗) < 0.25. For such n, we then have

Pr
[
Zn > an

]
≥

1
2

e−𝜆
∗a∗ngn(𝜆∗).

This lower bound is exp[n(F(𝜆∗) − 𝜆
∗a∗ + o(1))]. Now consider F(𝜆∗) − 𝜆

∗a∗

as a function of u. As u → 0, 𝜆
∗ = H(a + u) → H(a) = 𝜆. As F is continuous,

F(𝜆∗) → F(𝜆). Clearly, a∗ = a + u → a and therefore 𝜆∗a∗ → 𝜆a. Thus

F(𝜆∗) − 𝜆
∗a∗ → F(𝜆) − 𝜆a

so
Pr

[
Zn > an

]
≥ exp[n(F(𝜆) − 𝜆a + o(1))]. ◾

Remark. Let Zn be a sequence of random variables with mean and variance 𝜇n, 𝜎
2
n ,

respectively. The analysis of Pr[Zn > 𝜇n + 𝜆n𝜎n] frequently (Sn being the premier
example) splits into three parts:

1. Small Deviations. 𝜆n → 𝜆, a positive constant. One hopes to prove asymptotic
normality so that Pr[Zn > 𝜇n + 𝜆n𝜎n] → Pr[N > 𝜆]. There is a huge literature
on asymptotic normality, but, for the most part, asymptotic normality is not
covered in this work.

2. Large Deviations. 𝜆n → +∞ and 𝜆n = o(𝜎n). One hopes to show that Zn is
approximately normal in the sense that ln [Pr[Zn > 𝜇n + 𝜆n𝜎n]] ∼ −𝜆2

n∕2.

3. Very Large Deviations. 𝜆n → +∞ and 𝜆n = Ω(𝜎n). Here the approximation of
Zn by the normal distribution generally fails, but one hopes that the asymptotics
of ln[Pr[Zn > 𝜇n + 𝜆n𝜎n]] may still be found by the methods we have given.

A.3 EXERCISES

1. The Hajós number of a graph G is the maximum number k such that there are
k vertices in G with a path between each pair so that all the ( k

2
) paths are inter-

nally pairwise vertex disjoint (and no vertex is an internal vertex of a path and an
endpoint of another). Is there a graph whose chromatic number exceeds twice its
Hajós number ?

2. For two subsets A and B of the set Zm of integers modulo m, and for a g ∈ Zm,
denote

s(A,B, g) = |{(a, b) ∶ a ∈ A, b ∈ B, a + b = g}|.
For a partition of Zm into two disjoint sets Zm = A ∪ B, A ∩ B = ∅, denote

c(A,B) = max
x∈Zm

|s(A,A, x) + s(B,B, x) − 2s(A,B, x)|.
Prove that for every odd m there is a partition of Zm into two disjoint sets A and B
such that c(A,B) = O(

√
m log m).



EXERCISES 335

3. For a ∈ (0, 1), apply Theorem A.2.3 to find limn
1
n

ln Pr[Sn > an] explicitly.
Express Pr[Sn > an] combinatorially as 2−n times the sum of binomial coeffi-
cients. Use Stirling’s formula to asymptotically evaluate this sum and show that
you get the same result for limn

1
n

ln Pr[Sn > an].
4. More generally, for p ∈ (0, 1) fixed, apply Theorem A.2.3 to find the asymptotics

of ln Pr[ BIN(n, p) > an] for p < a < 1 and of ln Pr[ BIN(n, p) < an] for 0 < a <

p. Show that an application of Stirling’s formula gives the same answer.

5. Let Xi, 1 ≤ i ≤ n, be independent, each taking the values +1,+2,−3 with proba-
bility 1∕3. Set Yn =

∑n
i=1 Xi. Let f (n) be the minimal value so that Pr[Yn > f (n)]

< n−1. Find the asymptotics of f (n). Redo with n−1 replaced by n−50. (Note that it
does not change the answer much!)



THE PROBABILISTIC LENS:
Triangle-Free Graphs Have
Large Independence
Numbers

Let 𝛼(G) denote the independence number of a graph G. It is easy to see and well
known that for every graph G on n vertices with maximum degree d, 𝛼(G) ≥ n∕
(d + 1). Ajtai, Komlós and Szemerédi (1980) showed that, in case G is triangle-free,
this can be improved by a logarithmic factor and in fact 𝛼(G) ≥ cn log d∕d, where
c is an absolute positive constant. Shearer (1983) simplified the proof and improved
the constant factor to its best possible value c = 1 + o(1). Here is a very short proof,
without any attempts to optimize c, which is based on a different technique of Shearer
(1985) and its modification in Alon (1996).

Proposition 1 Let G = (V ,E) be a triangle-free graph on n vertices with maximum
degree at most d ≥ 1. Then

𝛼(G) ≥
n log d

8d
,

where the logarithm here and in what follows is to the base 2.

Proof. If, say, d < 16, the result follows from the trivial bound 𝛼(G) ≥ n∕(d + 1)
and hence we may and will assume that d ≥ 16. Let W be a random, independent
set of vertices in G, chosen uniformly among all independent sets in G. For each
vertex 𝑣 ∈ V , define a random variable X

𝑣
= d|{𝑣} ∩ W| + |N(𝑣) ∩ W|, where N(𝑣)

denotes the set of all neighbors of 𝑣. We claim that the expectation of X
𝑣

satisfies
E[X

𝑣
] ≥ log d

4
.
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To prove this claim, let H denote the induced subgraph of G on V − (N(𝑣) ∪ {𝑣}),
fix an independent set S in H, and let X denote the set of all non-neighbors of S in the
set N(𝑣), |X| = x. It suffices to show that the conditional expectation

E
[
X
𝑣
|W ∩ V(H) = S

]
≥

log d

4
(1)

for each possible S. Conditioning on the intersection W ∩ V(H) = S, there are pre-
cisely 2x + 1 possibilities for W: one in which W = S ∪ {𝑣} and 2x in which 𝑣 ∉ W
and W is the union of S with a subset of X. It follows that the conditional expecta-
tion considered in (1) is precisely d

2x+1
+ x2x−1∕(2x + 1). To check whether the last

quantity is at least log d∕4, observe that the assumption that this is false implies
that x ≥ 1 and 2x(log d − 2x) > 4d − log d, showing that log d > 2x ≥ 2 and hence
4d − log d <

√
d(log d − 2), which is false for all d ≥ 16. Therefore,

E
[
X
𝑣
|W ∩ V(H) = S

]
≥

log d

4
,

establishing the claim.
By Linearity of Expectation, we conclude that the expected value of the sum∑
𝑣∈VX

𝑣
is at least n log d

4
. On the other hand, this sum is clearly at most 2d|W|, since

each vertex u ∈ W contributes d to the term Xu in this sum, and its degree in G, which
is at most d, to the sum of all other terms X

𝑣
. It follows that the expected size of W is

at least n log d
8d

, and hence there is an independent set of size at least this expectation,
completing the proof. ◾

The Ramsey number R(3, k) is the minimum number r such that any graph with at
least r vertices contains either a triangle or an independent set of size k. The asymp-
totic behavior of this function has been studied for over 50 years. It turns out that
R(3, k) = Θ(k2∕ log k). The lower bound is a result of Kim (1995), based on a del-
icate probabilistic construction together with some 30 pages of computation. There
is no known explicit construction of such a graph, and the largest known explicit
triangle-free graph with no independent set of size k, described in Alon (1994), has
only Θ(k3∕2) vertices. The tight upper bound for R(3, k), proved in Ajtai et al. (1980),
is a very easy consequence of the above proposition.

Theorem 2 Ajtai et al. (1980) There exists an absolute constant b such that
R(3, k) ≤ bk2∕ log k for every k > 1.

Proof. Let G = (V ,E) be a triangle-free graph on 8k2∕ log k vertices. If G has a vertex
of degree at least k, then its neighborhood contains an independent set of size k.
Otherwise, by Proposition 1 above, G contains an independent set of size at least
8k2

log k
log k
8k

= k. Therefore, in any case 𝛼(G) ≥ k, completing the proof. ◾





Appendix B

Paul Erdős

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought
that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill
and off we would go.
–Fan Chung

B.1 PAPERS

Paul Erdős was the most prolific mathematician of the twentieth century, with over
1500 written papers and more than 490 collaborators. This highly subjective list gives
only some of the papers that created and shaped the subject matter of this volume.
MR and Zbl. refer to reviews in Math Reviews and Zentralblatt, respectively. Chapter
and section reference are to the pertinent areas of this volume.

• A combinatorial problem in geometry, Compositio Math 2 (1935), 463–470
(with George Szekeres) Zbl. 12, 270.
Written when Erdős was still a teenager, this gem contains a rediscovery of
Ramsey’s Theorem and the Monotone Subsequence theorem. Many authors
have written that this paper played a key role in moving Erdős toward a more
combinatorial view of mathematics.

• Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947),
292–294, MR 8,479d; Zbl 32,192.
The three-page paper that “started” the probabilistic method gives an exponen-
tial lower bound on Ramsey R(k, k). Section 1.1.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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• The Gaussian law of errors in the theory of additive number theoretic functions,
Amer. J. Math. 62 (1940), 738–742 (with Mark Kac) MR 2,42c; Zbl. 24,102.
Shows that the number of prime factors of x chosen uniformly from 1 to n has
an asymptotically normal distribution. A connection between probability and
number theory that was extraordinary for its time. Section 4.2.

• Problems and results in additive number theory, Colloque sur la Théorie des
Nombres, Bruxelles, 1955, 127–137, George Thone, Liège; Masson and Cie,
Paris, 1956; MR 18,18a; Zbl. 73,31.
Uses random subsets to prove the existence of a set of integers such that every n
is represented n = x + y at least once but at most c ln n times. Resolves a prob-
lem Sidon posed to Erdős in the 1930s. This problem continued to fascinate
Erdős: see, for example, Erdős and Tetali (1990). Section 8.6.

• On a combinatorial problem, Nordisk. Mat. Tidskr. 11 (1963), 220–223 MR
28# 4068; Zbl. 122,248.
On a combinatorial problem II, Acta. Math. Acad. Sci. Hungar. 15 (1964),
445–447; MR 29# 4700; Zbl. 201,337.
Property B. Probabilistic proofs that any m < 2n−1 n-sets can be two-colored
with no set monochromatic yet there exist cn22n n-sets that cannot be so colored.
Section 1.3.

• On the evolution of random graphs, Magyar. Tud. Akad. Mat. Kutató Int. Közl.
5 (1960), 17–61 (with Alfred Renyi); MR 23# A2338; Zbl. 103,163.
Rarely in mathematics can an entire subject be traced to one paper. For random
graphs, this is the paper. Chapter 10.

• Graph theory and probability, Canad. J. Math. 11 (1959), 34–38; MR 21# 876;
Zbl. 84,396.
Proves by probabilistic methods the existence of graphs with arbitrarily high
girth and chromatic number. This paper convinced many of the power of the
methodology, as the problem had received much attention but no construction
had been found. Lens, following Chapter 3.

• Graph theory and probability II, Canad. J. Math. 13 (1961), 346–352 MR 22#
10925; Zbl. 97,391.
Shows the existence of a triangle-free graph on n vertices with no independent
set of size cn1∕2 ln n vertices, and hence that the Ramsey R(3, k) = Ω(k2ln−2k).
A technical tour de force that uses probabilistic methods in a very subtle way,
particularly considering the early date of publication.

• On circuits and subgraphs of chromatic graphs, Mathematika 9 (1962),
170–175; MR 25 # 3035; Zbl. 109,165.
Destroying the notion that chromatic number is necessarily a local property,
Erdős proves the existence of a graph on n vertices that cannot be k-colored but
for which every 𝜖n vertices can be three-colored. Lens, following Chapter 8.

• On a combinatorial game, J. Combinatorial Theory Ser. A 14 (1973), 298–301
(with John Selfridge) MR 48# 5655; Zbl. 293,05004.
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Players alternate turns selecting vertices and the second player tries to stop the
first from getting a winning set. The weight function method used was basically
probabilistic and was an early use of derandomization. Section 16.1.

B.2 CONJECTURES

Conjectures were always an essential part of the mathematical life of Paul Erdős.
Here are some of our favorites.

• Do sets of integers of positive density necessarily contain arithmetic progres-
sions of arbitrary length? In finite form, is there for all k and all 𝜖 > 0, an n0
so that if n ≥ n0 and S is a subset of the first n integers of size at least 𝜖n then
S necessarily contains an arithmetic progression of length k? This conjecture
was first made by Paul Erdős and Paul Turan in the 1930s. It was solved (posi-
tively) by Szemeredi in the 1970s. Let F(k, 𝜖) denote the minimal n0 that suffices
above. The growth rate of F remains an intriguing question, with results due to
Gowers.

• Call distinct S, T,U a Δ-system if S ∩ T = S ∩ U = T ∩ U. Let F(n) be the min-
imal m such that, given any m n-sets, some three form a Δ-system. Erdős and
Rado showed that F(n) exists and gave the upper bound F(n) ≤ 2nn!. Erdős
conjectured that F(n) < Cn for some constant C.

• What are the asymptotics of the Ramsey function R(k, k)? In particular, what is
the value c (if it exists) of limkR(k, k)1∕k? The classic 1947 paper of Erdős gives
c ≥

√
2, and c ≤ 4 follows from the proof of Ramsey’s theorem but seventy

years of strenuous efforts have seen no further improvements in c, though there
have been some results on lower order terms.

• Write rS(n) for the number of solutions to the equation n = x + y with x, y ∈ S.
Does there exist a set S of positive integers such that rS(n) > 0 for all but finitely
many n yet rS(n) is bounded by some constant K? The 1955 paper of Erdős
referenced above gives S with rS(n) = Θ(ln n).

• Let m(n), as defined in Section 1.3, denote the minimal size of a family of n-sets
that cannot be two-colored without forming a monochromatic set. What are
the asymptotics of m(n)? In 1963 and 1964, Erdős found the bounds Ω(2n) ≤
m(n) = O(2nn2), and the lower bound of Radhakrishnan and Srinivasan (2000)
(with the argument of Cherkashin and Kozik 2015), shown in Section 3.5, is
now Ω(2n(n∕ ln n)1∕2).

• Given 2n−2 + 1 points in the plane, no three on a line, must some n of them
form a convex set? This conjecture dates back to the 1935 paper of Erdős and
Szekeres referenced above.

• Let m(n, k, l) denote the size of the largest family of k-element subsets of an
n-set such that no l-set is contained in more than one of them. Simple counting
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gives m(n, k, l) ≤
(

n
l

)
∕
(

k
l

)
. Erdős and Hanani conjectured in 1963 that for

fixed l < k this bound is asymptotically correct – that is, the ratio of m(n, k, l)
to

(
n
l

)
∕
(

k
l

)
goes to 1 as n → ∞. Erdős had a remarkable ability to select

problems that were very difficult but not impossible. This conjecture was settled
affirmatively by Vojtech Rödl (1985), as discussed in Section 4.7.

B.3 ON ERDŐS

There have been numerous books and papers written about the life and mathematics
of Paul Erdős. Three deserving particular mention are the following:

• The Mathematics of Paul Erdős (Ron Graham and Jarik Nešetřil, eds.), Berlin:
Springer-Verlag, 1996. (Vols. I and II)

• Combinatorics, Paul Erdős is Eighty (D. Miklós, V. T. Sós, T. Szönyi, eds.),
Bolyai Soc. Math. Studies, Vol. I (1990) and Vol. II (1993).

• Erdős on Graphs – His Legacy of Unsolved Problems, Fan Chung and Ron
Graham, A.K. Peters, 1998.

Of the many papers by mathematicians, we note

• László Babai, In and out of Hungary: Paul Erdős, his friends, and times. In
Combinatorics, Paul Erdős is Eighty (listed above), Vol. II, 7–93.

• Béla Bollobás, Paul Erdős – Life and work, in The Mathematics of Paul Erdős
(listed above), Vol. II, 1–42.

• A. Hajnal, Paul Erdős’ Set theory, in The Mathematics of Paul Erdős (listed
above), Vol. II, 352–393.

• János Pach, Two places at once: a remembrance of Paul Erdős, Math Intelli-
gencer, Vol. 19 (1997), no. 2, 38–48.

Two popular biographies of Erdős have appeared:

• The Man Who Loved Only Numbers, Paul Hoffman, Hyperion (New York),
1998.

• My Brain is Open - The Mathematical Journeys of Paul Erdős, Bruce Schechter,
Simon & Schuster (New York), 1998.

Shortly before Paul Erdős death, George Csicsery created a documentary film N
is a Number, A Portrait of Paul Erdős. Our younger readers, naturally, never knew
Erdős personally. In this film one can see and hear Erdős in lecture and amongst
friends, proving and conjecturing. The film is widely available on the web, including
You Tube, for downloading.
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B.4 UNCLE PAUL

Paul Erdős died in September 1996 at the age of 83. His theorems and conjectures
permeate this volume. This tribute1, given by Joel Spencer at the National Meeting
of the American Mathematical Society in January 1997, attempts to convey some of
the special spirit that we and countless others took from this extraordinary man.

Paul Erdős was a searcher, a searcher for mathematical truth.
Paul’s place in the mathematical pantheon will be a matter of strong debate for in

that rarefied atmosphere he had a unique style. The late Ernst Straus said it best, in a
commemoration of Erdős’ seventieth birthday.

In our century, in which mathematics is so strongly dominated by “theory constructors”
he has remained the prince of problem solvers and the absolute monarch of problem
posers. One of my friends – a great mathematician in his own right – complained to
me that “Erdős only gives us corollaries of the great metatheorems which remain unfor-
mulated in the back of his mind.” I think there is much truth to that observation but I
don’t agree that it would have been either feasible or desirable for Erdős to stop produc-
ing corollaries and concentrate on the formulation of his metatheorems. In many ways
Paul Erdős is the Euler of our times. Just as the “special” problems that Euler solved
pointed the way to analytic and algebraic number theory, topology, combinatorics, func-
tion spaces, etc.; so the methods and results of Erdős’ work already let us see the outline
of great new disciplines, such as combinatorial and probabilistic number theory, combi-
natorial geometry, probabilistic and transfinite combinatorics and graph theory, as well
as many more yet to arise from his ideas.

Straus, who worked as an assistant to Albert Einstein, noted that Einstein chose
physics over mathematics because he feared that one would waste one’s powers in
pursuing the many beautiful and attractive questions of mathematics without finding
the central questions. Straus goes on,

Erdős has consistently and successfully violated every one of Einstein’s prescriptions.
He has succumbed to the seduction of every beautiful problem he has encountered – and
a great many have succumbed to him. This just proves to me that in the search for truth
there is room for Don Juans like Erdős and Sir Galahads like Einstein.

I believe, and I’m certainly most prejudiced on this score, that Paul’s legacy will be
strongest in Discrete Math. Paul’s interest in this area dates back to a marvellous paper
with George Szekeres in 1935 but it was after World War II that it really flourished.
The rise of the Discrete over the past half century has, I feel, two main causes. The first
was The Computer, how wonderful that this physical object has led to such intriguing
mathematical questions. The second, with due respect to the many others, was the
constant attention of Paul Erdős with his famous admonition “Prove and Conjecture!”
Ramsey Theory, Extremal Graph Theory, Random Graphs, how many turrets in our
mathematical castle were built one brick at a time with Paul’s theorems and, equally
important, his frequent and always penetrating conjectures.

1Reprinted with permission from the Bulletin of the American Mathematical Society.
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My own research specialty, The Probabilistic Method, could surely be called The
Erdős Method. It was begun in 1947 with a three-page paper in the Bulletin of the
American Mathematical Society. Paul proved the existence of a graph having certain
Ramsey property without actually constructing it. In modern language, he showed
that an appropriately defined random graph would have the property with positive
probability and hence there must exist a graph with the property. For the next 20 years
Paul was a “voice in the wilderness.” His colleagues admired his amazing results but
adaption of the methodology was slow. But Paul persevered – he was always driven
by his personal sense of mathematical aesthetics in which he had supreme confi-
dence – and today the method is widely used in both Discrete Math and in Theoretical
Computer Science.

There is no dispute over Paul’s contribution to the spirit of mathematics. Paul Erdős
was the most inspirational man I have ever met. I began working with Paul in the
late 1960s, a tumultuous time when “do your own thing” was the admonition that
resonated so powerfully. But while others spoke of it, this was Paul’s modus operandi.
He had no job; he worked constantly. He had no home; the world was his home.
Possessions were a nuisance, money a bore. He lived on a web of trust, traveling
ceaselessly from Center to Center, spreading his mathematical pollen.

What drew so many of us into his circle? What explains the joy we have in speak-
ing of this gentle man? Why do we love to tell Erdős stories? I’ve thought a great deal
about this and I think it comes down to a matter of belief, or faith. We mathematicians
know the beauties of our subject and we hold a belief in its transcendent quality. God
created the integers, the rest is the work of Man. Mathematical truth is immutable, it
lies outside physical reality. When we show, for example, that two nth powers never
add to an nth power for n ≥ 3, we have discovered a Truth. This is our belief, this is
our core motivating force. Yet our attempts to describe this belief to our nonmathe-
matical friends are akin to describing the Almighty to an atheist. Paul embodied this
belief in mathematical truth. His enormous talents and energies were given entirely to
the Temple of Mathematics. He harbored no doubts about the importance, the abso-
luteness, of his quest. To see his faith was to be given faith. The religious world might
better have understood Paul’s special personal qualities. We knew him as Uncle Paul.

I do hope that one cornerstone of Paul’s, if you will, theology will long survive. I
refer to The Book. The Book consists of all the theorems of mathematics. For each
theorem, there is in The Book just one proof. It is the most aesthetic proof, the most
insightful proof, what Paul called The Book Proof. And when one of Paul’s myriad
conjectures was resolved in an “ugly” way, Paul would be very happy in congratu-
lating the prover but would add, “Now, let’s look for The Book Proof.” This platonic
ideal spoke strongly to those of us in his circle. The mathematics was there, we had
only to discover it.

The intensity and the selflessness of the search for truth were described by the
writer Jorge Luis Borges in his story “The Library of Babel”. The narrator is a worker
in this library which contains on its infinite shelves all wisdom. He wanders its infinite
corridors in search of what Paul Erdős might have called The Book. He cries out,
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To me, it does not seem unlikely that on some shelf of the universe there lies a total
book. I pray the unknown gods that some man – even if only one man, and though
it have been thousands of years ago! – may have examined and read it. If honor and
wisdom and happiness are not for me, let them be for others. May heaven exist though
my place be in hell. Let me be outraged and annihilated but may Thy enormous Library
be justified, for one instant, in one being.

In the summer of 1985, I drove Paul to what many of us fondly remember as Yel-
low Pig Camp – a mathematics camp for talented high-school students at Hampshire
College. It was a beautiful day – the students loved Uncle Paul, and Paul enjoyed
nothing more than the company of eager young minds. In my introduction to his lec-
ture, I discussed The Book but I made the mistake of describing it as being “held by
God.” Paul began his lecture with a gentle correction that I shall never forget. “You
don’t have to believe in God,” he said, “but you should believe in The Book.”



THE PROBABILISTIC LENS:
The Rich Get Richer

Consider two bins, each of which initially has one ball. At each time u = 1, 2, · · ·,
we add one ball to one of the bins. The ball is placed randomly, in proportion to the
square of the number of balls already in the bin. (e.g., if the bins have 5 balls and
3 balls, respectively, the next ball is placed in the bin with 5 balls with probability

25
25+9

.)

Theorem 1 With probability 1, one of the bins will get all but a finite number of the
balls.

We move to a continuous time model. Let Xi be independent random variables, Xi
having the exponential distribution with mean i−2. (That is, Xi has density function
i2e−ti2 for t ≥ 0.) At time zero, the first bin has one ball. It receives its second ball
at time X1. In general, it receives its ith ball time Xi after receiving its (i − 1)st ball.
Let X′

i also be independent exponential distributions with mean i−2, independently
chosen from the Xi. The second bin receives its balls according to the X′

i . The process
ends when an infinite number of balls have been placed. The fictitious continuation,
of defining the Xi,X

′
i for all i ≥ 1, shall be helpful in the analysis.

We use two basic properties of exponential distributions. Both are easy calculus
exercises.

• Let X be exponential with mean 𝜇 and let a > 0. Then X − a, conditional on
X ≥ a, is also exponential with mean 𝜇. This is often called the forgetfulness property.

• Let X,X′ be independent exponentials with means 𝜇, 𝜈 respectively. Then
Pr[min(X,X′) = X] = 𝜇

−1

𝜇
−1+𝜈−1 .

The continuous time process mirrors the sequential process. Clearly, the first ball
is equally likely to go into either of the two bins. Suppose at some time t > 0 the first
(say) bin has just received its ith ball and the second bin last received its jth ball at
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time t′ < t. (When the second bin has not yet received its second ball, set j = 1 and
t′ = 0.) The waiting time for the first bin is then Xi. The waiting time for the second
was Xj at time t′. By the forgetfulness property, its conditional waiting time at time
t is X∗

j , exponential with mean j−2. The next ball goes into the first bin if and only if
min(Xi,X

∗
j ) = Xi, which occurs with probability i2∕(i2 + j2) as desired.

Let T =
∑∞

i=1 Xi, and T ′ =
∑∞

i=1 X′
i be the total times for the bins to receive (under

fictitious continuation) an infinite number of balls. As E[Xi] = E[X′
i ] = i−2 and (crit-

ically!),
∑∞

i=1 i−2 converges, both T, T′ have finite means and so are finite with prob-
ability 1. As sums of independent continuous distributions, Pr[T = T′] = 0. Suppose
T < T′, the other case being identical. At time T, the first bin has received an infinite
number of balls. The second bin has not. Therefore, the second bin has received only
a finite number of balls!





Appendix C

Hints to Selected
Exercises

If you want to have good ideas you must have many ideas. Most of them will be wrong,
and what you have to learn is which ones to throw away.
–Linus Pauling

CHAPTER 1
3. Let T = (x1, x2,… , xm) be a sequence of not necessarily distinct reals. For any
positive b, define

Tb = {(xi, xj) ∶ 1 ≤ i, j ≤ m, |xi − xj| ≤ b}.

Prove, by induction on |T|, that

|T3| < 3|T1|.
4. Let A be, initially, a random set of vertices obtained by picking each vertex of G,
randomly and independently, to be a member of A with probability p = ln 𝛿

𝛿

. As long
as there is a vertex in V − A with no neighbor in A, or no neighbor in V − A, add it
to A, until this process terminates. Note that, if a vertex 𝑣 is not in A in the initial
random selection, and it has two neighbors x, y where x is in A , y is not in A and y
has a neighbor in A, then 𝑣 (and y) will stay outside A during the whole process.

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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5. Apply Theorem 1.3.3.

6. Show that for every set W of at most k − 1 vertices of Tk, there are at least k + 1
vertices 𝑣 so that (𝑣,𝑤) is a directed edge for all 𝑤 ∈ W.

9. Let m be the maximum length of a string in F. Show that for every k (
∑

i
Ni

2i )k does
not exceed the probability that some prefix of length at most km of a random binary
sequence x1, x2,… is a concatenation of members of F.

CHAPTER 2

6. Assume n is even. By summing over all bipartitions of the complete graph, con-
clude that it suffices to prove the corresponding result for two-colored complete bipar-
tite graphs. For such graphs, the number of alternating Hamiltonian cycles is at most
the number of perfect red matchings times that of perfect blue matchings, and each
of these can be expressed as a permanent.

8. By Cauchy–Schwartz, the sum of squares of the projections of the vectors in X
on each fixed coordinate is at most 1, hence the expected value of the square of the
norm of the projection of a randomly chosen vector in the collection on the first k
coordinates is at most k∕|X|.
To show tightness, consider the normalized rows of a Hadamard matrix of
dimension 2r.

CHAPTER 3

2. Apply Theorem 3.1.3 with l = 4. As the precise constant is not called, we may
select p so that n4(1 − p)6 ∼ n∕2.

4. Put k = ⌊log2n − 1
10

log2log2n⌋, and let V be the set of vertices of a directed graph
satisfying the assumption. Let H be a k + 1-uniform hypergraph on the set of vertices
V , where for each 𝑣 ∈ V , H has an edge e

𝑣
consisting of 𝑣 together with k arbitrarily

chosen outneighbors of 𝑣. Show that H is 2-colorable.

CHAPTER 4

2. If no ai exceeds, say, 0.1, split the numbers into two disjoint parts with nearly equal
sums of squares, apply Chebyshev to lower bound the probability that each signed
sum over a part is in absolute value at most 1, and observe that with probability 1∕2
the two sums have opposite signs. If there are some large numbers ai, multiply by the
probability that their contribution will also keep the absolute value of the sum small.

3. This is similar to the previous exercise. If all ai are of small norm, partition to a
bounded number of pieces with nearly equal sums of squares of norms, apply Cheby-
shev to each signed piece separately, and show that they can be combined. If there
are some vectors with large norms, deal with them separately.

6. Partition Zp arbitrarily into 2k intervals Ij of nearly equal size. Choose a and b
randomly and independently in Zp, and let zx = ax + b( mod p). Show that the random
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variables zx for x ∈ X are pairwise independent, and apply Chebyshev to show that
with positive probability at least one of them falls into each of the intervals Ij.

CHAPTER 5

1. By König’s Theorem, the edges can be colored by d colors, so that every color class
forms a matching. Now use the Local Lemma to show that one can pick an edge from
each two-colored cycle so that no two edges picked are within distance 1 in the graph.

2. By compactness, it is enough to prove, for every length m, the existence of a finite
sequence of length m with the desired properties. Consider a random sequence of that
length and apply the Local Lemma (General Case).

5. Let S be a random set of half the elements in the interval of the first 2ck ln k integers.
Show that, with high probability, there is no subset of size at most 4c ln k of the first
4ck ln k integers that intersects every shift x + S for 0 ≤ x ≤ 2ck ln k.

CHAPTER 6

2. Apply induction on k using the fact that, without loss of generality, we may assume
that each family i is monotone increasing.

CHAPTER 7

2. Fix a proper coloring of G by 1000 color classes V1,V2,… ,V1000, and consider
the martingale X0,X1,… ,X1000, where Xi(H) is the expected value of the chromatic
number of H conditioned on the value of U ∩ Vj for all j ≤ i.

CHAPTER 8

8. Let G = G(n, 0.5) be the random graph on n vertices. For every fixed graph H on
k ≤ (2 − 𝜖)log2n vertices, apply the Janson inequalities to bound the probability that
H is not an induced subgraph of G.

CHAPTER 9

3. Let X be a set of vertices of maximum cardinality satisfying

(i) |X| ≤ 2a, and

(ii) |N(X) ∩ Y| < 2|X|.
Show that in fact |X| ≤ a.

11. Use martingales to get the stated inequality and apply the Borel–Cantelli Lemma
to deduce the conclusion.

CHAPTER 10

1. Show that the random graph G(n, 3∕4) has the required properties almost always
(one can give explicit constructions as well).
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2. Let p = p(n) be at the threshold for containing a complete graph on four vertices.
Show that for every four vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 there will be a fifth vertex 𝑣5 adjacent
to 𝑣1.

CHAPTER 11
1. Set x = n𝛼 and y = n − 1 − x ∼ n𝛽 with 𝛼 + 𝛽 = 1. Use the asymptotic equation
(11.6) to estimate Pr[X = x] Pr[Y = y]. The denominator Pr[X + Y = n − 1]
is dominated by min(X, Y) being small. Perhaps surprisingly, the conditional
distribution of X is highly skewed to the corners.

CHAPTER 12
3. Consider a depth-4 formula consisting of a tree in which the root (the output vertex,
at level zero) is the OR of n children, each node at level one is the AND of n2 children,
each node at level 2 is the OR of n log n children, and each node at level 3 is the AND
of log n randomly chosen variables among the n variables xi. Show that almost always
this computes a function with the required properties.

CHAPTER 13
1. As i, i + m∕2 cancel out, sets A effectively have at most size m∕2. When the split
is random, the effective size of A is even lower.

3. Truncate each Gaussian by redefining it to be b whenever its value exceeds b,
where b is chosen to ensure that its variance still exceeds 1 − 𝜖∕2, and use Azuma’s
Inequality for the sum of the squares of the truncated variables.

4. The second inequality follows from the first by adjusting the martingale so that,
when Xi > a𝜎, all future 𝜏j (those with j > i) are set to zero. (One may think of this as
the “go to sleep” martingale, representing a gambler whose strategy is to go to sleep
after winning a certain predetermined amount.)

CHAPTER 14
1. Show that n triangles partition the plane into at most O(n2) regions.

CHAPTER 15
3. Let Si denote the star consisting of all edges of the complete graph on {1, 2,… , 2t}
incident with i. Each two graphs in  must have at least one common edge in each
Si, implying that the cardinality of the set {F ∩ Si ∶ F ∈ } is at most 1

2
22t−1.

CHAPTER 16
2. Apply Corollary 9.2.8.

CHAPTER 17
2. Construct a 3-partite graph on the classes of vertices X = [n] = {1, 2,… , n}, Y =
[2n] and Z = [3n], where for each i ∈ X and a ∈ A the graph contains the triangle on
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the vertices i ∈ X, i + a ∈ Y and i + 2a ∈ Z. If A contains no three-term progression,
then the graph contains no triangles besides the ones above.

4. Consider the graph constructed from A as in Exercise 2, and the graph obtained
from it by replacing each vertex 𝑣 by an independent set I

𝑣
and each edge u𝑣 by a

complete bipartite graph on the classes of vertices Iu and I
𝑣
.

Appendix A
1. Consider the random graph G(n, 1∕2) for large n.
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Erdős, P., Rubin, A. L. and Taylor, H. (1980). Choosability in graphs, Proceedings of the
West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State
Univ., Arcata, Calif., 1979), Congress. Numer., XXVI, Utilitas Math., Winnipeg, Man., pp.
125–157.

Fagin, R. (1976). Probabilities in finite models, J. Symbolic Logic 41: 50–58.

Fischer, E. (2001). The art of uninformed decisions: a primer to property testing, Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS (75): 97–126.

Fishburn, P. (1992). Correlation in partially ordered sets, Discrete Appl. Math. 39: 173–191.

Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some par-
tially ordered sets, Commun. Math. Phys. 22: 89–103.

Füredi, Z. (1988). Matchings and covers in hypergraphs, Graphs Comb. 4: 115–206.

Frankl, P. and Wilson, R. M. (1981). Intersection theorems with geometric consequences, Com-
binatorica 1: 357–368.



360 REFERENCES

Frankl, P., Rödl, V. and Wilson, R. M. (1988). The number of submatrices of given type in a
Hadamard matrix and related results, J. Comb. Theory, Ser. B 44: 317–328.

Furst, M., Saxe, J. and Sipser, M. (1984). Parity, circuits and the polynomial hierarchy, Math.
Syst. Theory 17: 13–27.

Glebskii, Y. V., Kogan, D. I., Liagonkii, M. I. and Talanov, V. A. (1969). Range and degree of
realizability of formulas the restricted predicate calculus, Cybernetics 5: 142–154. (Russian
original: Kibernetica 5, 17–27).

Goldreich, O. (1999). Combinatorial property testing (a survey), Randomization Methods in
Algorithm Design (Princeton, NJ, 1997), DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol. 43, American Mathematical Society, Providence, RI,
pp. 45–59.

Goldreich, O. and Ron, D. (2002). Property testing in bounded degree graphs, Algorithmica
32(2): 302–343.

Goldreich, O., Goldwasser, S. and Ron, D. (1998). Property testing and its connection to learn-
ing and approximation, J. ACM 45(4): 653–750.

Gowers, W. T. (1997). Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom.
Funct. Anal. 7(2): 322–337.

Gowers, W. T. (1998). A new proof of Szemerédi’s theorem for arithmetic progressions of
length four, Geom. Funct. Anal. 8(3): 529–551.

Graham, R. L. and Spencer, J. H. (1971). A constructive solution to a tournament problem,
Can. Math. Bull. 14: 45–48.

Graham, R. L., Rothschild, B. L. and Spencer, J. H. (1990). Ramsey Theory, second edition,
John Wiley & Sons, Inc., New York.

Grimmett, G. (1999). Percolation, Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences], Vol. 321, second edition, Springer-Verlag,
Berlin.

Grytczuk, J., Kozik, J. and Micek, P. (2013). New approach to nonrepetitive sequences, Ran-
dom Struct. Algorithms 42(2): 214–225.

Halberstam, H. and Roth, K. F. (1983). Sequences, second edition, Springer-Verlag, Berlin.

Hall, M. (1986). Combinatorial Theory, second edition, John Wiley & Sons, Inc., New York.

Hara, T. and Slade, G. (1990). Mean-field critical behaviour for percolation in high dimensions,
Commun. Math. Phys. 128(2): 333–391.

Hara, T. and Slade, G. (1994). Mean-field behaviour and the lace expansion, Probability and
Phase Transition (Cambridge, 1993), NATO Advanced Science Institutes Series C, Math-
ematical and Physical Sciences, Vol. 420, Kluwer Academic Publishers, Dordrecht, pp.
87–122.

Hardy, G. H. and Ramanujan, S. (1917). The normal number of prime factors of a number n,
Quarterly Journal of Mathematics 48: 76–92.

Harper, L. (1966). Optimal numberings and isoperimetric problems on graphs, J. Comb. Theory
1: 385–394.

Harris, T. E. (1960). Lower bound for the critical probability in a certain percolation process,
Math. Proc. Cambridge Philos. Soc. 56: 13–20.

Haussler, D. (1995). Sphere packing numbers for subsets of the boolean n-cube with bounded
Vapnik-Chervonenkis dimension, J. Comb. Theory, Ser. A 69: 217–232.



REFERENCES 361

Haussler, D. and Welzl, E. (1987). 𝜖-nets and simplex range queries, Discrete Comput. Geom.
2: 127–151.

Håstad, J. (1988). Almost optimal lower bounds for small depth circuits, in Advances in Com-
puter Research (S. Micali ed.), JAI Press, Chapter 5: Randomness and Computation, pp.
143–170.

Håstad, J. (1998). The shrinkage exponent of De Morgan formulas is 2, SIAM J. Comput. 27:
48–64.

Janson, S. (1990). Poisson approximation for large deviations, Random Struct. Algorithms 1:
221–230.

Janson, S. (1998). New versions of Suen’s correlation inequality, Random Struct. Algorithms
13: 467–483.

Janson, S., Knuth, D., Łuczak, T. and Pittel, B. (1993). The birth of the giant component,
Random Struct. Algorithms 4: 233–358.
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