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Preface

The relative scarcity of results that guarantee the existence of solutions
for boundary value problems on unbounded domains, contrasts with the
high applicability on real problems with differential equations defined on
the half-line or on the whole real line. This gap is the main reason that led
to this work.

This book contains four parts with different problems composed
by differential equations, from second to higher orders, and integral
Hammerstein equations, several types of boundary conditions, for example,
Sturm-Liouville, Lidstone and functional conditions, and solutions with
diverse qualitative properties, such as impulsive, homoclinic, and hetero-
clinic solutions.

The noncompactness of the time interval and the possibility of studying
the unbounded functions will require the definition of adequate Banach
spaces. In fact, the space considered, the functional framework assumed
and the set of admissible solutions for each problem are defined under a
main goal: the functions must remain bounded for the space and the norm
in consideration. This is achieved by defining some weight functions (poly-
nomial or exponential) in the space or assuming some asymptotic behavior.

We underline some new features of the content:

e relation between some properties of the Green’s functions defined on
the real line, the existence of homoclinic solutions and the solvability of
Lidstone-type problems;

e existence of heteroclinic solutions for semi-linear problems without
growth or asymptotic assumptions on the nonlinearity;
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e solvability of Hammerstein integral equations on the whole line, with
discontinuous and sign-changing kernels and with nonlinear dependence
on several derivatives.

In addition to the existence, solutions will be localized in a strip. The
lower and upper solutions method will play an important role, and combined
with other tools like the one-sided Nagumo growth conditions, Green’s func-
tions or Schauder’s fixed-point theorem, provide the existence and location
results for differential equations with various boundary conditions.

Different applications to real phenomena will be presented, most of them
translated into classical equations as Duffing, Bernoulli-Euler—v. Karman,
Fisher-Kolmogorov, Swift-Hohenberg, Emden—Fowler or Falkner—Skan-
type equations.

All these applications have a common denominator: they are defined in
unbounded intervals and the existing results in the literature are scarce or
proven only numerically in discrete problems.

Feliz Manuel Minhos
Hugo Carrasco



Introduction

The leitmotiv of this book is related with higher order boundary value
problems (BVPs) defined on unbounded domains, more precisely on the
half-line or on the whole real line.

Roughly speaking, we can say that BVPs are rather different from ini-
tial (or final) value problems as they do not have a continuous dependence
on the boundary data. In fact, small perturbations on boundary values may
cause vital changes on the qualitative properties of the corresponding solu-
tions, and even on the existence, nonexistence or multiplicity of solutions.
The following example will illustrate this fact.

Consider the second-order homogeneous differential equation

y'+y=0. (1)

The initial value problem, known as Cauchy problem, composed by (1)

and the initial values

y(0) = k1, y'(0) = ko
has a unique solution given by y(z) = ki cosz + ko sinz, for every real
k1, ka.

However, the BVP with (1) and the Dirichlet boundary conditions

y(0) =0, y(m) =e(#0)
has no solution, but the Dirichlet BVP with (1) and
y(0)=0, y(B)=¢, with0<g<m,
has a unique solution, y(z) = 5;;“;7 and the BVP composed by (1) together
with the boundary conditions
y(0) =0, y(m) =0,
has infinite solutions of the type y(z) = ¢ sinz, with arbitrary ¢ € R.

xi
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In the past decades, the study of BVPs defined on compact intervals
has been considered by many authors with application of a huge variety of
methods and techniques. However, BVPs defined on unbounded intervals
are scarce, as they require other types of techniques to overcome the lack
of compactness.

Historically, these problems began at the end of nineteenth century
with A. Kneser. This pioneer work described monotone solutions of second-
order ordinary differential equations. Others followed his results and dif-
ferent techniques have been studied, namely the lower and upper solutions
method (see [13] and the references therein).

Several real problems were modeled by BVPs defined on infinite inter-
vals. As examples, we refer to the study of unsteady flow of a gas through a
semi-infinite porous medium; the discussion of electrostatic probe measure-
ments in solid-propellant rocket exhausts; the analysis of the mass transfer
on a rotating disk in a non-Newtonian fluid; the heat transfer in the radial
flow between parallel circular disks; the investigation of the temperature
distribution in the problem of phase change of solids with temperature-
dependent thermal conductivity, as well as numerous problems arising in
the study of draining flows, circular membranes, plasma physics, radially
symmetric solutions of semi-linear elliptic equations, nonlinear mechanics,
and non-Newtonian fluid flows; and the bending of infinite beams and its
applications in the railways and highways. More details and examples can
be seen in [5] and the references therein.

This book is divided into four parts, each one related to some type of
BVPs on unbounded intervals.

The first part, Boundary Value Problems on the Half-Line, is dedicated
to higher order BVPs, defined on the half-line, and it is composed of three
chapters:

e Chapter 1 — Third-Order Boundary Value Problems. Third-order differ-
ential equations on infinite intervals can describe the evolution of physical
phenomena like draining or coating fluid flow problems. The noncom-
pactness of the time interval and the possibility of studying unbounded
functions require the redefinition of the admissible Banach space and its
weighted norms. This chapter will prove the existence and localization
of, at least, one solution for a BVP with Sturm—Liouville-type bound-
ary conditions. The tools involved will be the one-sided Nagumo-type
growth condition, Green’s functions, lower and upper solutions method
and Schauder’s fixed-point theorem. An example will conclude the
chapter.
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e Chapter 2 — General nth-Order Problems. This chapter arises from an
attempt to generalize the previous one to order n. In a particular case,
fourth-order differential equations can model the bending of an elastic
beam. An example is shown to demonstrate the importance of the one-
sided Nagumo-type growth condition.

e Chapter 3 — Impulsive Problems on the Half-Line with Infinite Impulse
Moments. Some of the previous techniques are applied in a second-order
impulsive problem on the half-line, with generalized impulsive functions,
depending on the unknown function and its derivative, and allowing
an infinite number of impulse moments. The notion of Carathéodory
sequence is a key argument in the method.

The second part, Homoclinic Solutions and Lidstone Problems,
considers BVPs on the whole real line, looking for sufficient conditions on
the nonlinearity to guarantee the existence of homoclinic solutions, and its
relation to solutions for Lidstone-type problems. It contains three chapters:

e Chapter 4 — Homoclinic Solutions for Second-Order Problems. In this
chapter, the lower and upper solutions method will be used with
unordered functions. An existence and localization result will be settled.
Specific applications to Duffing-type equations and beam equations with
damping will conclude the chapter.

e Chapter 5 — Homoclinic Solutions to Fourth-Order Problems. Different
problems involving Bernoulli-Euler—v. Karman, Fisher—-Kolmogorov or
Swift-Hohenberg equations are strongly linked with fourth-order differ-
ential equations. This chapter will establish the existence results and
examples for each particular case.

e Chapter 6 — Lidstone Boundary Value Problems. The Lidstone theory,
initially applied to interpolation problems, is considered, in this chapter,
in the whole real line with a strong connection to the homoclinic solutions.
In this final chapter of this part, a problem of an infinite beam resting
on granular foundations with moving loads will be studied.

The third part, Heteroclinic Solutions and Hammerstein Equations,
contains four chapters:

e Chapters 7-9 provide sufficient conditions for the existence of hete-
roclinic solutions for three types of ¢-Laplacian equations, sometimes
named as semi-linear equations, on the real line. We point out that these
heteroclinic solutions are obtained without the usual monotone or growth
assumptions on the nonlinearity.
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e Chapter 10 studies integral equations, more precisely, Hammerstein
equations, defined on the whole real line, with discontinuous nonlineari-
ties, which may depend, not only on the unknown function, but also on
some derivatives, without monotone or asymptotic assumptions. More-
over, the kernels and their partial derivatives in order to the first variable,
are very general functions: they may be discontinuous and may change
the signal. A simple criterion is included to see if the existing solutions
are homoclinic or heteroclinic solutions, together with an application to
a fourth-order BVP.

In the last part, Functional Boundary Value Problems, we study BVPs
with functional boundary conditions, that is, with boundary data that can
depend globally on the correspondent variables. In this way, it contains and
generalizes many types of boundary conditions such as multipoint, advanced
or delayed, nonlocal, integro-differential, with maximum or minimum argu-
ments, among others. Part IV is divided into three chapters, each one with
a different type of problems:

e Chapter 11 — Second-Order Functional Problems. BVPs involving func-
tional boundary conditions can model thermal conduction, semiconduc-
tor and hydrodynamic problems. An application to a problem composed
by an Emden—Fowler-type equation and an infinite multipoint condition
will be formulated and solved.

e Chapter 12 — Third-Order Functional Problems. Falkner—Skan equa-
tions are obtained from partial differential equations. They can model
the behavior of a viscous flow over a plate. Until now, only numerical
techniques could deal with this type of problems, however, this chapter
will prove an existence and localization result by topological methods.

e Chapter 13 — Phi-Laplacian Equations with Functional Boundary Con-
ditions. This final chapter will deal with weighted norms, namely the
Bielecki norm. This will be a fundamental tool to manage unbounded
solutions. An important fact is that the homeomorphism ¢ does not need
to be surjective.

Throughout this work, the usual lemma of Arzela—Ascoli could not be
used due to lack of compactness, and this issue is overcome with some
methods, techniques and specific tools. We point out some of them:

e Weighted spaces and the corresponding weighted norms;
e Carathéodory functions admissible for the nonlinearities;
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e Green’s functions on unbounded domains;
e Equiconvergence at oc.

The space considered and the functional framework assumed define the
set of admissible solutions for each problem with a main goal: the functions
must remain bounded for the space and the norm in consideration. This
is achieved by defining some weight functions (polynomial or exponential)
in the space or assuming some asymptotic behavior. Therefore, for each
problem, the specific space and norm to be used are presented.

The type of nonlinearities in the different problems has a common fea-
ture: roughly, they must be measurable in the time variable, continuous
almost everywhere, on the space variables, and having a growth controlled
by an L!-function on [0, +oc[ or R. A function with such properties is
called in the literature as an L'-Carathéodory function. To avoid bor-
ing repetitions we define them for an general unbounded interval I (see
Definition 1.2.1), which will be the half-line, or the whole real line, accord-
ing to each problem.

The Green’s functions and their properties play a key role in some prob-
lems, for which we carry out more detailed considerations.

Basically, these functions are solutions of a linear BVP, irrespective of
whether they are homogeneous or not, and they will guarantee the exis-
tence of at least one solution, and, moreover, they can provide the explicit
expression of the solution for the studied BVP. In a broader sense, they can
be seen as a particular case of the so-called kernel functions, as they are
related with the kernel of linear operators.

When dealing with linear and homogeneous ordinary differential equa-
tions on the form

Lu(t) =0,

it is clear that any homogeneous solution is a linear combination of some
independent functions (in the same number as the degree of the ODE).
However, when the differential equation is nonhomogeneous

Lu(t) = e(t), (2)

it is fundamental to find a particular solution for each function e and then
add it to the linear combination referred.

The Green’s functions method is due to George Green (1793-1841), the
first mathematician to use such kind of kernels to solve BVPs.

If equation (2), coupled with homogeneous boundary conditions, has
only the trivial solution for e(t) = 0, then the associated linear operator is
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invertible and its inverse operator, L 'e, is characterized with an integral
kernel, G(t,s), called the Green’s function. The solution of this problem is
then given by

u(t) = L-Ye(t) = /b G(t, s)e(s)ds, Vi € [a,b)].

A remarkable characteristic of the explicit expression of the Green’s
functions is the fact that it is independent on the function e. After that, one
needs to calculate the integral expression and then it is possible to obtain
some additional qualitative information about solutions: sign, oscillation
properties, a priori bounds or their stability. All these issues transform the
theory of Green’s functions in a fundamental tool in the analysis of differ-
ential equations. It has been widely studied in the literature and reveals to
be very important in order to use monotone iterative techniques, lower and
upper solutions, fixed point theorems or variational methods (see [39] and
references therein).

The equiconvergence at oo, sometimes called as the stability at co, is a
crucial argument to recover the compacity of the operator on unbounded
domains. Indeed, with such concept, we can formulate a criterion that plays
the role of the Arzela—Ascoli theorem for bounded domains. More precisely,
if, in some subset M of the space, the functions are uniformly bounded,
equicontinuous on some subintervals of [0,00) or R, and equiconvergent at
00, or oo, then M is relatively compact.

As it can easily be seen, the above notion depends on the space con-
sidered, the weights defined, and on the order of the derivatives involved.
Therefore, for the reader’s convenience, we specify in each problem the
detailed criterion referred.

Finally, we point out that in all chapters there are examples to illustrate
each theorem or, even, concrete applications to real phenomena.



Part I

Boundary Value Problems
on the Half-Line
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Introduction

Sturm-Liouville theory was initiated by Jacques Charles Francois Sturm
(1803-1855) and Joseph Liouville (1809-1882) to study second-order linear
differential equations of the form

% <p(t)ill—‘z) + (Aw(t) —q(t))y =0,

where p, ¢ are positive functions, A is a constant and w is a known function
called either the density or weighting function.

The common approach to this equation deals with bounded intervals,
that is, t € [a,b], a,b € R, a < b, and with boundary conditions of the
form

cry(a) + c2y'(a) =0, csy(b) + cay’(b) =0, c1,ca,c3,¢4 € R.

This kind of boundary conditions will, in this first part, be generalized
to third and nth-order BVPs, defined on unbounded intervals. Thus, in
what follows, BVPs with Sturm-Liouville boundary conditions may also be
called simply as Sturm-Liouville problems.

The great novelty of this part is to assume a one-sided Nagumo condi-
tion. In fact, the usual bilateral Nagumo condition used in the literature
requires a subquadratic growth for the nonlinearities. As far as we know,
it is the first time where the unilateral Nagumo conditions are adapted to
unbounded domains. In this way, the nonlinearities may have an asymmet-
ric growth, being, for example, asymptotically unbounded on one side and
retaining the subquadratic growth on the other side.

This first part is separated into three chapters, dealing with problems
defined on the half-line.

In Chapter 1, the existence of at least one solution for a BVP involving
a third-order differential equation is proved, and it is based on [117]. Other
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properties are proved for such solutions like localization and asymptotic
properties.

Chapter 2 is assigned to a generic nth-order problem, where the main
result is an existence and localization result, meaning that it provides not
only the existence but also the localization of the unknown function and its
derivatives via lower and upper solutions method.

In Chapter 3, the previous techniques are applied to a second-order
impulsive problem in the half-line with a full nonlinearity and infinite
impulsive effects, on the unknown function and its first derivative, given
by generalized functions. The notion of Carathéodory sequences and the
equi-convergence at +o0o and at each impulsive moment are key arguments
to have a compact operator.

Lower and upper solutions method is a useful technique to deal with
BVPs as, from their localization part, some qualitative data about solution
variation and behavior can be obtained (see [32, 71, 99, 113, 120]). Another
important tool is the Nagumo condition, useful to obtain a prior: esti-
mates on some derivative of the solution, generalizing subquadratic growth
assumptions on the nonlinear part of the differential equation.

As it can be seen in the references above, the usual growth condition
of the Nagumo type is a bilateral one. However, the same estimation holds
with a similar one-sided assumption, allowing that the BVPs can include
unbounded nonlinearities. In this way, it generalizes the two-sided condi-
tion, as it is proved in [62, 75].

Finally, it is worth mentioning that, in both chapters, the nonlinearities
are L'-Carathéodory functions and, therefore, they may have discontinu-
ities in time.



Chapter 1

Third-Order Boundary
Value Problems

1.1. Introduction

Third-order differential equations arise in many areas, such as the deflection
of an elastic beam having a constant or varying cross-section, three-layer
beam, electromagnetic waves or gravity-driven flows (see [73] and the
references therein).

In infinite intervals, third-order BVPs can describe the evolution of
physical phenomena, for example, some draining or coating fluid-flow
problems (see [139)]).

Due to the noncompactness of the interval, the discussion about
sufficient conditions for the solvability of BVPs is more delicate. In the
literature, existence results to such problems are, mainly, due to the exten-
sion of continuous solutions on the corresponding finite intervals, under a
diagonalization process and fixed point theorems, in special Banach spaces
(see [4, 19, 98, 146] and the references therein).

The present chapter will study a general Sturm-Liouville-type BVP,
composed by a third-order differential equation defined on the half-line

u"(t) = ft,u(t),u/(t),u"(t)), ae t>0 (1.1.1)
together with boundary conditions

u(0) = A, au'(0)+bu"(0) =B, u'(+o00)=C, (1.1.2)
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with f: R xR3*—=R an L!-Carathéodory function (eventually discontinuous
on time), where u’(+00):=limy_ o u”(t), a,b,A, B,C € R and
a>0,b<0.

The setback of dealing with unbounded intervals and the possibility
of studying unbounded functions can be overcome with new definitions of
weighted spaces and norms.

1.2. Definitions and auxiliary results

As solutions can be unbounded, the functional framework must be defined
with some weight functions and the corresponding weighted norms.
Consider the space

(@)
X = {x € C2(R): tim T

€R, i=0,1,2
t—+00 wi(t)

with w;(t) = 14+ t?>7% i = 0,1,2 and the norm

]|, = max {[[zo, l'l|1, ="},

where
t
= |20 pori=0.1,2
>0 |wi(t)
By standard arguments, it can be proved that (Xi,] | x,) is a Banach
space.

Let us express the concept of L'-Carathéodory functions to be used
forward.

Definition 1.2.1. Let E be a normed space and I be an unbounded interval
(I =R§ or I =R).

A function f : I x R® — R is L'-Carathéodory if it verifies the following
conditions:

(i) for each £ € R™, t+— f(t,&) is measurable on [;
(ii) for almost every t € I, & — f(t,&) is continuous in R";
(iii) for each p > 0, there exists a positive function ¢, € L*(I) such that,
for [|€]|z < p,

[f O] < wp(t), aetel

For each particular structure of the space E, and the corresponding
norm, condition (iii) assumes different forms of inequalities.
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Let 7;, T € C(Ry), such that v;(t) < T';(t),Vt > 0,i = 0,1 and
= {(t7x07x1,x2) S Ra— x R? ’yi(t) <z < Fi(t),i = 0,1} .

The following one-sided Nagumo condition generalizes the usual
bilateral one.

Definition 1.2.2. A function f : E; — R is said to satisfy a one-sided
Nagumo-type growth condition in E; if, for some positive and continuous
functions 1, h and some v > 1, such that

—+o0 —+o0
(s)ds < +o0, supy(t)(1+1)” < +oo, / 2 _ds= +00,
0 t>0 0 h(s)

(1.2.1)

it verifies either
[t 2y, 2) <Y@)n(|2]l2), VYt z,y,2) € Ex (1.2.2)

or

f(t7x7yvz) > _w(t)h(|‘z||2)7 V(t7x7y,z) € El' (123)

An important goal of this condition is to give an a priori bound on the
second derivative of all existent solutions.

Lemma 1.2.3. Let f : Rf x R® — R be an L'-Carathéodory function
satisfying (1.2.1) and, either (1.2.2) or (1.2.3) in Ei. Then there exists
R > 0 (not depending on w) such that every solution u of (1.1.1),(1.1.2)
satisfying

V() <ult) <T(t),7'(t) <u'(t) <T'(t), ¥t>0 (1.2.4)
verifies ||u”||2 < R.

Proof. Let u be a solution of (1.1.1), (1.1.2) verifying (1.2.4). Consider
r > 0 such that

b

B — al"(0) ’
’ b

r >max{‘ B_W(O)',C}. (1.2.5)
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By the previous inequality, it is impossible that |u”(¢)| > r,Vt > 0 because

lu”(0)] = ‘B%U/(O)’ < max{‘B_C;F/(O)’7 B—ZW/(O)’} <r

If [u"(t)| < r,Vt >0, taking R > %, the proof is complete as

< - <R

N3

2

u” (t) ‘

[u" ||z = sup
>0

In the following, it will be proved that even when there exists ¢t > 0 such
that |u”(t)] > r, the norm ||u”||2 remains bounded, in all possible cases, f
verifies either (9.2.13) or (1.2.3).

Suppose there exists ¢ > 0 such that |u”/(¢)| > r, that is, u”(¢t) > r or
u”’(t) < —r. In the first case, by (1.2.1), one can take R > r such that

R / /
s I't) v () v
—d M M My — inf —
/T ns) ™" max{ R L L |

/

with M := sup; > ¥(t)(1 +t)”and M = sup;> (L(tt)) — infy>o 1+(tt))u.
If condition (1.2.2) holds, then, by (1.2.5), there are t,,t, € RT such
that ¢, < ty,u”(t.) =r and u”(t) > r,Vt € (t«,t4]. Therefore,

u(ty) g t (5)
—dS:/ ”/ d3</ w //
/u//(t*) h(s) .. u”(s .

ty u//(s)

<M d

- /t A+sy "

u'(s) )' vu'(s)

=M + d

. <<1+s>v s | @

F(t) +oo
<M |M —d —d
< (v [ )< e

Consequently, u”/(ty) < R and as t, and ty are arbitrary in R*, then
u”(t) < R,Vt > 0. Similarly, the case where there are t_,t, € RT can be
proved such that ¢t < t. and v’ (ts) = —r,u”(t) < —r,Vt € (t_,1.).

ty
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Therefore, ||u”|2 < & < R,Vt > 0.

Now, consider that f verifies (1.2.3). By (1.2.5), consider that there are
t_,t. € RY such that t— < t, and u”(¢t,) = r,u’(t) > r,Vt € (t_,t.).
Therefore, following similar steps as before,

vt o us)
J— — < //
/W*) ok / (s O / vis
ty Ty 1"
< wsu"sdng/ u'(s) ds
/t_ (s)u"(s) s
M( t>01+w_1> / —ds (1.2.6)

So, w’(t_) < R and by the arbitrariness of ¢ and #, in RT, then
u”(t) < R,Vt > 0. The case where there are t,,t, € RT, with ¢, < t,,
such that u”(t.) = —ru”(t) < —r,Vt € (t.,t4] is proved in the
same way. U

The exact solution for the associated linear problem can be obtained by
Green’s functions method.

Lemma 1.2.4. Ife € LY(R{), then the BVP

{ u"(t)+e(t) =0, t>0,

(1.2.7)
u(0) = A, av/(0) +bu"(0) = B, v (+0) =C

has a unique solution in X1. Moreover, this solution can be expressed as

—+o00
u(t) = g(t) + G(t, s)e(s)ds, (1.2.8)
0
where
Ct? - bC
g(t) = - o + A,
b 52
G(t,s) =
1 b

§t2——t, 0<t<s< +oo.
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Moreover, u'( )+ f G1(t, s)e(s)ds with

Gi(t,s) = Z (1.2.9)
_E+t’ 0<t<s < +o0.

The lack of compactness is overcome by the following lemma which gives
a general criterium for relative compactness (see [4]).

Lemma 1.2.5. A set M C X is relatively compact if the following condi-
tions hold:

(i) all functions from M are uniformly bounded;
(ii) all functions from M are equicontinuous on any compact interval of
+.
Ry
(iii) all functions from M are equiconvergent at infinity, that is, for any
given € > 0, there exists a te > 0 such that

ud () B u® (400)
w;(t) wi(400)

< €,

forallt >te, ue M andi=0,1,2.

The well-known Schauder’s fixed-point theorem will be the existence
tool.

Theorem 1.2.6 ([152]). Let Y be a nonempty, closed, bounded and con-
vex subset of a Banach space X, and suppose that P :Y — Y is a compact
operator. Then P is at least one fized point in Y .

An important tool to bound the solution and its derivatives is the
lower and upper solution method. Let us define the usual lower and upper
functions.

Definition 1.2.7. Given a > 0,b < 0, and A, B,C € R, a function a €
C3(R$) N X is a lower solution of problem (1.1.1),(1.1.2) if

a’'(t) = f(t,a(t), o' (t),a” (), t=0,

a(0) < A, ad/(0) +ba”(0) < B, o' (+00) < C.
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A function 8 € C3*(RJ) N X; is an upper solution if it satisfies the
reversed inequalities.

1.3. Existence and localization result

The main result of this chapter will be given by the following theorem.

Theorem 1.3.1. Let f : Rar x R3 — R be an L'-Carathéodory function.
Suppose there are o, € C’S(RS’) N X1 lower and upper solutions of the
problem (1.1.1),(1.1.2), respectively, such that

o (t) < B'(t), Vvt>0. (1.3.1)

If f verifies either the one-sided Nagumo condition (9.2.13) or (1.2.3)
in the set

E,={(t,z,y,2) € RJ x R at) <z < B(t),a (t) <y < B(t)},
and

fa(t),y,2) = f(tx,y,2) 2 f(E,8(1),y, 2), (1.3.2)

for (t,y,z) fized and «(t) < z < B(t), then the problem (1.1.1),(1.1.2)
has at least one solution u € C*(RY)N X1 and there exists R > 0 such that

a(t) < ult) < A1), o) <u'(t) < B(0), W'l < R, V>0,

Remark 1.3.2. By Theorem 1.3.1 and Definition 1.2.7, the following
inequality is valid

a(t) < B(t), V>0,
and, therefore, E, is well defined and inequalities (1.3.2) make sense.

Proof. Let a, 8 € C3(RJ)N X, be, respectively, lower and upper solutions
of (1.1.1),(1.1.2) verifying (1.3.1).
Consider the truncated and perturbed equation

1 W) -6t

u"' (t) = f(t,60(t), 01 (1), u" (t)) + 1121+ [t -0 t)]
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where functions d; : Ry xR — R,j = 0,1 are given by

BU(H), ud(t) > BU)(1),
0;(t) := 8t u(t)) = Ju(t), V() <u(t) <pD(),  (1.34)
a@D (1), ud(t) <ad(t).

Note that the relation «(t) < 5(¢) is obtained by integration from (1.3.1)
by the boundary conditions (1.1.2) and by Definition 1.2.7.
The proof will include three steps:

Step 1: If u is a solution of problem (1.3.3),(1.1.2), then

a(t) <wu(t) <), o (t) <u'(t) < F'(), VE>0.

Suppose, by contradiction, that there exists t € R with o/(¢) > u/(t) and
define

gg(u’(t) —a/(t)) = u'(t.) — a'(ts) < 0.

o If t, € RT, then u”(t,) = o (t.) and u"’(t,) — &' (t,) > 0. Therefore, by
(1.3.2) and Definition 1.2.7, the following contradiction holds:

0< u///(t*) —O/H(t*)

= F(ts, 00(ts), 01 () 1 (£2)) + 1;2 153"();&/;’“&*)' o (L)

< st (1), 0 (1)) + e ae)
1 w(t) — ot

= TH12 14 |u/(te) — o/(ts)] <0

e If t, =0, then

]ftnziél(u/(t) —d(t)) ==/ (0) —/(0) <0,
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and
u”(0) —a’’(0) > 0.
By Definition 1.2.7 and since a > 0,b < 0, it yields the contradiction
0> bu”(0) — ba”’ (0) > B — au/(0) — B + ad/(0)
= a(a’(0) —u/(0)) > 0.
e If t, = 400, then

tirzlg(u’(t) — /(1) = v (+00) — &/ (+0) < 0,

u”’(+00) — ' (+00) <0,
and the following contradiction holds:
0> v’ (+00) —a’(+0) > C - C =0.

So, &/(t) < u/(t),Vt > 0. In a similar way, it can be proved that 8'(t) >
w' (1), V¢ > 0.

Integrating o/(t) < «/(t) < p'(t) on [0,t] for t > 0, by (1.1.2) and
Definition 1.2.7, it can be proved that «(t) < u(t) < 8(t),Vt > 0.

Step 2: If u is a solution of the modified problem (1.3.3),(1.1.2), then there
exists R > 0, not depending on u, such that

"], < R. (1.3.5)

By the previous step, all solutions of equation (1.3.3) are solutions of
(1.1.1), and as f verifies either the one-sided Nagumo condition (9.2.13) or
(1.2.3), this claim is a direct application of Lemma 1.2.3.

Step 3: Problem (1.3.3),(1.1.2) has at least one solution.
Take p > max {||a|ly, |8y, |||y, [|18]l; , R} with R given by (1.3.5).
Define the operator T': X; — X given by

+oo

Tu(t) = g(t) + ; G(t,s)F(u(s))ds



14 Higher Order Boundary Value Problems on Unbounded Domains

with

_Cp By

and

1 u'(s) — 01(s)
14821+ |uw'(s) —d1(s)|

F(u(s)) = f(s,00(s),01(s),u"(s)) +

As f is a L'-Carathéodory function, for any u € X; with |jul|x, < p, then
F € L' because

o o L) = 6is)
| irwentas < [ o)+ i

o0 1
< ——ds < . 1.3.6
< [ ento)+ s <+ (1.3.6)

By Lemma 8.2.1, the fixed points of T are solutions of problem
(1.3.3),(1.1.2). So it is enough to prove that T has a fixed point.

Claim 1. T : X1 — Xyis well defined.
By the Lebesgue Dominated Theorem and Lemma 1.2.4,

(Tu)(t)
t—4oo 1+ t2

+oo
<S¢y 1/ Fu(s))ds < +o0.
2 "2,

Analogously, by (1.2.9),

totoo 14+t  to+oo 1+t totoo 14t

T _ yyy SO, 1y Gl
0

+oo
<C +/ F(u(s))ds < 400,
0

and

"
L ')
t—+oo

+oo
% + ! lim F(u(s))ds = ¢ < 400.

<
2t=+o0 J; 2

Therefore, Tu € X;.
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Claim 2. T s continuous.
Consider a convergent sequence u,, — u in Xj. Then there exists 1 > 0
such that ||u,||x, <71 and

G(t,s)
Yoo SUPi>0 | 7 T2 |
1 Tun, — Tul|x, < / max
0 G1 (t, S) 1
SuPy>q 1+t |’ 3

X|F(un(s)) = F(u(s))|ds

“+o0

< / |F(un(s)) — F(u(s))|ds — 0, (1.3.7)
0

as n — +00.

Claim 3. T is compact.
Let

|G(t, s)| G1(t, 5)]
M(s) :=max s ,S .
(s) =m X{gg [ERERb
Consider a bounded set B C X; defined by B := {u € X; : |ullx, <71}
for some r; > 0 such that

el [

1
r1 > max {p, 5 + ; M (s) ((pp(s) + 1—|——32) ds}

with p given by (1.3.6).
Claim 3.1. T'B is uniformly bounded.

For any u € B, as Ha”o < H50||0 < H/BHOa HO/H1 < ||51||1 < ||B/||17 by
(1.2.2), one has

u oo s
Il =sup PO < sup 220 [ s S o as

>0 1+¢2 >0 1+¢2 t>0 1+1¢2

G (wp(s)

<5+
/ / Foo S
(Twy'®)] _ |9 /Sup 1G] sy ds
0

sup ——— +
T+t —hoh 1+t S

+1+—s2>d3<7‘1,

[T'ul]; = sup
t>0

—+oo

<|C|+ ; M(s) (gap(s)—i— >d3<r17

1+ s2
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and

((Tw)"(1)] _

g<’/‘1
2 - 2 '

[T'ul|, = sup
>0
Thus, || Tu||x, < r1, TB is uniformly bounded, and, moreover, TB C B.

Claim 3.2. T'B is equicontinuous.
For T > 0 and t;,t5 € [0, T,

Tu(tl) Tu(tz)
1+t2 1+t

< |9t g(ta)
1+t 14143

+/+oo G(ths) G(tg,s)
o 1+1¢2 1+ t3

x |F(u(s))|ds — 0, as t1 — ta.

Analogously,
(Tw)(t) — (Tu)(t2)| _ |g'(t)  g'(t2)
1+t 1419 1+t 1+t
+/+OO 'Gl(tl,s) - Gl(tQ,S)
0 1+ 141,
X |F(u(s))|ds — 0, as t; — ta,
and
" " to
) ) | [ g,
2 2 .

to 1
< gp(s)+—>ds—>0,ast1—>t2.
/t1 (p 1+ 52

Claim 3.3. T B is equiconvergent at infinity. Indeed,

‘Tu_(t) i Tu(t) - ‘19422 B %‘

1+¢2 Hl+moc1+t2

+/+°°‘G(t,s) y G(t,s)
0

T+ ot 1422

x |F(u(s))|ds — 0, as t— o0,
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(Twy®) <Tu>'<t>‘ _ ‘g’@) _C'

14+¢  totoo 141 14+t
TGy (t t
+/ ‘ 1(t, 5) lim Gi(t,s)
0

1+t t—+oo 141t

X |F(u(s))|ds — 0,as t — +o0,

and

/t+00 F(u(s))ds

[ (22

xds — 0, as t— +o0.

So, by Lemma 1.2.5, T'B is relatively compact.
As T is completely continuous, then by Schauder’s fixed-point theorem
(Theorem 1.2.6), T has at least one fixed point u € X;. O

1.4. Example

Consider the next third-order BVP
1

W = G5y

(—arctan (u(t)) — 10[u”(t)|e*" M), ¢ >0,
(1.4.1)

w(0) = A, a'(0) + bu"(0) = B, u”(+00) = C,

with A € (—1,0], a > 0, b < 0 such that —2(a+b) < B <0and C € (—2,0).
Define

Eep1 = {(t,2,y,2) € R xR?*: —(t +1)* <2 <0,-2t —2< y <0}.
Function f : Rf x R® — R defined by

(— arctanx — 10|z|e?)

1
flt,x,y,2) = (=
< (tf—f)z = ,(t) for some
K, > 0 and psuch that max {2, ||z||,} < p. Therefore, f is L'-Carathéodory.

Functions a(t) = —(t + 1)? and B(t) = 0 are, respectively, lower and
upper solutions of problem (1.4.1) with «a(t) < B(¢) and o'(t) < B'(t),
Yt > 0, verifying (1.3.2).

verifies on F.,1 the inequality |f(t, z,y,2)| <
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As
f(t7x7y7z) S #z7
(t+1)22
the one-sided Nagumo-type growth condition (9.2.13) holds in E.,; with
1 T
P(t) = G v e (1,2), and h(|z]) := 5

Therefore, by Theorem 1.3.1, there is at least a solution u of (1.4.1)
with
—(t+1)?<u(t) <0, =2t —2 </ (t) <0, |2 <R, Vt >0.

Moreover, from the localization part of the theorem, one can express
some qualitative properties of this solution: it is nonpositive, nonincreasing
and, as C' # 0, this solution is unbounded.

Note that f does not satisfy the usual two-sided Nagumo-type condition.
In fact, if there exist 11, h; € C(Rg, RY) satisfying

[f(t 2y, 2)] < 9u(t) Ml2]), V(E2,y,2) € Bean,

with f0+°° (s ds = +0o0, then, in particular,
—f(t,x,y,z) < 1/)1(15) h1(|z|)7 v(tvxvyaz) € Eez.

So, for x =0, y,z € R, one has

10
—f(t,0,y,2) = zle® < t) hi(|z]).
f(t.0,y,2) (t+1)2|| P1(t) ha(|2])
Considering ¥ (t) := ﬁ , the following contradiction holds:

+oo +oo
—|—oo>/ Ld$>/ Lafs=—|—c>o.
o 10ses — Jo  hi(s)



Chapter 2

General nth-Order Problems

2.1. Introduction

As shown in Chapter 1, nth-Order BVPs on infinite intervals occur in
different areas. For example, fourth-order differential equations can model
the bending of an elastic beam and, in this sense, they are called beam equa-
tions. Other higher order problems are related with the study of radially
symmetric solutions of nonlinear elliptic equations, fluid dynamics, bound-
ary layer theory, semiconductor circuits and soil mechanics, either on the
bounded domains (see [12, 40, 62, 120]) or on the real line ( [3, 50, 86, 87,
100]).

The study of BVPs on bounded domains is vast, but focus on infinite
intervals is scarce. Different methods, such as fixed point theorems, shooting
methods, upper and lower technique, are used to prove the existence of
solutions. However, these solutions are usually bounded.

Lower and upper solutions method, coupled with the Nagumo-type con-
dition, guarantees the existence of at least one solution lying on the strip
defined by lower and upper solutions (see [100]) but, to the best of our
knowledge, there are no results when the nonlinearity satisfies only the
one-sided Nagumo-type condition on unbounded intervals.

This chapter concerns the study of a general Sturm-Liouville-type BVP
composed by the nth-order differential equation defined on the half-line

u™ () = f(tult), W (t),. .., u"V®), ae t>0, (2.1.1)

19
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and
u("=2(0) + au™1(0) = B, (2.1.2)
u™ V) (400) = C,
with f: Ry x R® — R an L!-Carathéodory function, a < 0, 4;, B, C €R
for i =0,1,...,n—3, and u™ " (+o00) := lim;_, oo u(*~1(t).
The functional setting will be adapted to the nth-order case, namely, the
weight space, the corresponding norms and the notion of L'-Carathéodory.

As an application of this result, we include a particular case of a fourth-
order problem with a beam equation, referred to in [46].

2.2. Preliminary results

A new admissible space will be needed.

For polynomial functions w;(t) = 1+t""17% i =0,1,...,n—1, let us define
the space
(@) (¢
Xo=32eC" RY): ac ()ER,izO,l,...,n—l ,
t—+oo w;(t)
with the norm ||z|| x, = max {||z[|o, [|z'||1, ..., [|[z" "D |ln=1}, Where
t
yi:sup‘y()’7 fori=0,1,...,n—1.
>0 |wi(t)
It is clear that (X, || - ||x,) is a Banach space.

Let v, I'; € C(RY),vi(t) < Ty(t),¥t >0, i =0,1,...,n — 2 and define
By, = {(t,xo7...7xn,1) S RE)‘— x R™: ’yi(t) <z < Fi(t)7i =0,1,...,n— 2}

Now, the one-sided growth condition can be formulated in the
following way.

Definition 2.2.1. A function f : Es — R is said to satisfy a one-sided
Nagumo-type growth condition in Fj if, for some positive and continuous
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functions 1, h and some v > 1, such that

—+o0

—+o0
(s)ds < +o0, supy(t)(1+1)” < +oo, / s = +00,
0 t20 0 h(s)

(2.2.1)
it verifies either
ft,zo, .. yxn_1) <YO)R(||Xn-1lln-1), VYt zo,...,2n_1) € Eo
(2.2.2)
or

[tz ... ,xn_1) > =(t)h(||Tn-1lln-1), Y(t,z0,...,T0n_1) € Eo.
(2.2.3)

Now, the a priori estimation is obtained on u("~1), given by the follow-
ing lemma, where the proof follows the same technique as in Lemma 1.2.3
and, for this reason, is omitted.

Lemma 2.2.2. Let f : Rf x R" — R be an L'-Carathéodory function
satisfying (2.2.1) and (2.2.2), or (2.2.3), in E5. Then there exists R > 0
(not depending on u) such that every u solution of (2.1.1), (2.1.2) satisfying

yi(t) <u(t) <Ty(t), Vt>0,i=0,1,...,n—2 (2.2.4)
verifies ||u("’1)||n71 < R.

The exact solution for the associated linear problem can be obtained by
a Green function.

Lemma 2.2.3. Ife € LY(R{), then the BVP
u™M(t) +e(t) =0, ae. t >0,
uD0)=4;, i=0,1,...,n—3,

(2.2.5)
u=2(0) + au™~Y(0) = B,

um =V (+o00) = C

has a unique solution in Xo. Moreover, this solution can be expressed as

+oo
u(t) = p(t) + G(t, s)e(s)ds, (2.2.6)
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where
n—3
t) = L tm tm
p(t) AT T e T
k=0
and
G(t, s)
n=2 (—1)* . at" >
tn—2-Fk _ 0<s<t
P s T A m_g (=FST S
B 1 a
tn—l =2 0<t< )
(n—l)' (n—2)' , <t<s< 4+

General nth-order definitions of lower and upper functions are presented
next.

Definition 2.2.4. Given ¢ < 0 and A4;,B,C € R;i = 0,1,...,n— 3, a
function v € C™(R§) N X3 is a lower solution of problem (2.1.1),(2.1.2) if

™ () > f(t,alt),a(t),...,a" " D(t), t>0,
al)(0) < 4,
a2 (0) + aa"~1(0) < B,

a1 (400) < C.

A function 8 € C™(RJ) N Xz is an upper solution if it satisfies the
reversed inequalities.

2.3. Existence and localization result

The existence theorem to the nth-order case follows similar arguments of
Theorem 1.3.1, and the proof is omitted.

Theorem 2.3.1. Let f : Rf x R — R be an L'-Carathéodory function.
Suppose there are o, 8 € C’"(]Rar) N Xo, lower and upper solutions of the
problem (2.1.1),(2.1.2), respectively, such that

a2 < gD (@), V> 0. (2.3.1)
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If f wverifies either the one-sided Nagumo condition (2.2.2) or (2.2.3) in
the set

E.={(t,x0,...,2n1) € RF xR": & (t) <z; < O (t),i=0,...,n—2},
and
ftat),...,aD @), ...ty o, tun_1)
>t ug, .oy Wiy ey Up—2, Up—1)
> f(tB8(), .., BD®), .. Un—z, Un_1), (2.3.2)

for (t,up—2,un—1) fized when a® (t) <wu; < £ (t),i =0,...,n— 3, then
problem (2.1.1),(2.1.2) has at least one solution u € C"(R)N X2 and there
exists R > 0 such that

D)y <uD@t) <), i=01,....n—2 and
[u™V|,—1 < R, ¥t >0.

Remark 2.3.2. Note that by integration on [0,¢] of (2.3.1) and Definition
2.2.4, lower and upper solutions and their derivatives (until order n — 3)
are well ordered, that is,

oDty <BI@®t), i=0,1,...,n—3, Vt >0,
and F, is well defined.

2.4. Example

Consider the next fourth-order BVP

w(®) [ () — 6l O — et (6t + 2 — u"(t))

wi(e) = - 1+ 82

; 120,

u(0)=A, ¥ (0)=0, «”’(0) + au”(0)=0, v (4+00) =C,
(2.4.1)

with A >0, —3 <a<0and 0 < C <6.
This BVP is a particular case of (2.1.1), (2.1.2) with Ag=A4, A; =0,

B =0 and

—x|w — 6le¥ — et (6t + 2 — 2)

. 2.4.2
14 ¢2 ( )

f(t7a:7y7 Z7w) =
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Moreover, functions a(t) = A and B(t) = t3 + t2 + A are, respectively,
lower and upper solutions for (10.3.1), and Nagumo condition with (2.2.2)
is verified with

1

1<v<2h(w]) =1,
on
A<z <t3+t*+ A
Eero =% (L, y,z,w) €RE xR : 0 <y < 3t2 42t
0<2<6t+2

Also, f verifies (2.3.2) and all assumptions of Theorem 2.3.1 are fulfilled,
therefore, there is at least a nontrivial solution u of (2.4.1) such that

A<u(t) <td+12 4+ A,

0 < /() <3t + 2t

0 <u"(t) <6t+2,
[u”]s <R, Vt>0.

Remark that this solution is unbounded and, from the location part, it
is nondecreasing and convex.

It is important to stress that the nonlinearity (2.4.2) does not satisfy
the usual two-sided Nagumo-type condition. Therefore, the existent results
in the literature cannot be applied to problem (2.4.1).

In fact, if there exist g, ha € C(R{, RY) satisfying

lf(t 2y, 2,w)| < aha(t)ha(lw]), V(E 2y, 2,w) € Eeqa,
with f0+oo ey ds = +00, then, in particular,
—f(t, 2y, 2, w) < ha(t)ha(w]),
and, for t >0, x =1, 0<y <3t>+2t, 2=06t+2, and w € R,
|w — 6le”
1412

For 15 (t) = ﬁ, one has |w — 6]e” < ha(Jw|) and the following contradic-
tion holds:

—f(t71,y76t+27UI) = SwQ(t)hQ(hU')

+oo +oo
+o00 > / ;ds > / Lds = +00.
o (s=6)es ~ Jo  hals)



Chapter 3

Impulsive Problems on the Half-Line
with Infinite Impulse Moments

3.1. Introduction

This chapter concerns the following boundary value problem composed by
the differential equation

u'(t) = f(tu(t),d(t), ae. tel0,+ool, t#t, (3.1.1)

where f : [0, +00[xR? — R is an L*-Carathéodory function, the two-point
boundary conditions on the half-line

u(0) = A,
o) — 1 (3.1.2)

with A, B € R, v/ (4+00) := limy_, 4 o, v/ (t), and the impulsive effects
Au(tk) = Ik (tk, u(tk), u’(tk))7
Au/(tk) = Ilk(tk,u(tk),u/(tk)), (3.1.3)

where k € N, Aul(ty) = u@D(tF) — u@D(ty), Lix € C([0, +oo[xR2 R),
1 =20,1, and Iox with ¢; fixed points such that 0 =ty < t1 < to < -+ <
t < --- and limg_ 4o tx = +00.

Impulsive boundary value problems (IBVP) of different types have been
the object of increasing attention (see, for example, [21, 34, 56, 66, 67, 104,
116, 129, 131]) as they are well adapted to describe real phenomena where
a sudden change of their state occurs at certain moments. These situations
often happen in physics, chemistry, population dynamics, biotechnology,
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economics and control theory, among others (see [20, 95] and the references
therein).

In the recent years, these problems had also been considered on
unbounded domains with finite or infinite impulsive instants, applying
different methods to deal with the lack of compactness: variational tech-
niques, lower and upper solutions, coincidence degree theory and fixed point
theorems on adequate Banach spaces (see, for instance, [54, 101, 145]).

Motivated by these works, we consider problem (3.1.1)—(3.1.3). To the
author’s best knowledge, it is the first time where the second-order IBVP
is considered in the half-line with general nonlinearity and with infinite
impulsive effects, on the unknown function and its first derivative, given by
generalized functions. Therefore, this problem can model cases where the
occurrence of infinite jumps depends not only on the instant, but also on
their amplitude and frequency.

The arguments are applied in an adequate Banach space defined with
weighted norms with Green’s functions to obtain an integral operator and
Schauder’s fixed-point theorem. We point out that the equiconvergence at
+oo and at each impulsive moment is a key point to have a compact oper-
ator. Moreover, the notion of Carathéodory sequences is useful to control
the behavior of the impulsive functions. In this way, no other assumptions,
such as sublinearity, superlinearity or monotone types, are needed.

3.2. Definitions and preliminary results
This section contains some definitions and auxiliary results used along the
chapter.

For u(tf) := lim, = u(t), consider the sets

u:u e C([0,+o0[,R)
PC ([0, +[) = continuous for ¢ # t, u(ty) = u(t,) 7,

u(t)) exists for k € N

PC* ([0, +00]) = {u : /(t) € PC ([0, +00[)}, and the space

t
X = {a: € PC' ([0,400]) : lim () eR, lim 2'(t) € R}.
t—+oo 1+t t——+o0
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Defining the norm ||z| y = max {||z||,, ||z’[|,}, where

w(t
lwllo:=sup —| ®)] and ||wll1:= sup |w(t)],
0<t<too 1L+t 0<t< 400
then (X, || - ||x) is a Banach space.

The function is a solution u of problem (3.1.1)-(3.1.3) if u(¢) € X and
verifies conditions (3.1.1)—(3.1.3).

Definition 3.2.1. A sequence (wy)nen: [0, +00[xR? =R is a Carathéo-
dory sequence if it verifies the following conditions:

(i) for each u,v € R, (u,v) = wy(t,u,v) is continuous for all n € N;
(ii) for each p > 0, there are nonnegative constants ¥, , > 0 with
W, , < +oo such that for [u| < p(1+1t), t € [0,+00], Jv| < p
we have

|wn (t,u,v)| <1y ,, for every n € N,t € [0, +o0l.

For a linear problem associated with the initial one, we have the
following uniqueness result obtained via Green’s functions by standard
techniques.

Lemma 3.2.2. Let h : [0,4+o00[— R be an L*-Carathéodory function and
Iy : [0, +00[xR? — R be a Carathéodory sequence. Then the problem com-
posed by the differential equation

u’'(t) = h(t), ae. te0,+00], (3.2.1)
and conditions (3.1.2), (3.1.3), has a unique solution defined by

ut)=A+Bt+ > [Tor(tr u(tr),u'(t))
O0<tp<t<+oo

+ L (e ulte) ' (8:)) (8 — tr)]
“+o0

+oo
—tZIlk(tk,u(tk),u'(tk)) + G(t,s) h(s) ds, (3.2.2)
k=1 0
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where

—s, 0<s<t,
G(t,s) =
—t, t<s<+o0.

The next lemma provides a general criterion for relative compactness
on X.

Lemma 3.2.3 ([3]). A set M C X s relatively compact if the following
conditions hold:

(i) all functions from M are uniformly bounded;
(ii) all functions from M are equicontinuous on any compact interval of
[0, +-o0[;
(iii) all functions from M are equiconvergent at infinity, that is, for any
given € > 0, there exists a te > 0 such that

o) el

_ <e,
T4+t totsoltt| oF

2'(t) — lim 2/(t)| <€ for allt >t.,x € M.

t——+oo

3.3. Main result

In this section, sufficient conditions are given for the solvability of problems
(3.1.1)—(3.1.3).

Theorem 3.3.1. Let f : [0, +0o[xR? — R be an L'-Carathéodory func-
tion. If Ik, ik : [0, —i—oo[><R2 — R are Carathéodory sequences with non-
negative constants o , > 0, ¥y, > 0 with Z;:.j Pr,p < +00, Z;:ol Vi,p <
400, such that

okt 2, Y)| < hps ik(tn, 2, 9)| < Vi, (3.3.1)
for x| < p(141t), t € [0,+00], |y| < p, then problem (3.1.1)—(3.1.3) has at
least a solution u € X.

Proof. Define the operator T: X — X
Tu(t)=A+Bt+ > [Tor(te, u(ts), v (tr))
0<tp<t<+oo
+ I1k(tk7 u(tk)7 u/(tk))(t — tk)]
+oo

+oo
—t Z Tk (b, w(te), o' (tr)) + ; G(t,s)f(s,u(s),u'(s))ds.
=1
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By Lemma 3.2.2, a fixed point of T is a solution of problem (3.1.1)—(3.1.3).
The proof that operator 71" has a fixed point will follow several steps.

Step 1. T is well defined and continuous on X.
As f is an L'-Carathéodory function, Tu € PC*([0, +oc[). Moreover,
by the Lebesgue Dominated Convergence Theorem,

(Cw@) A+ Bt
~— 272 = lim
t—+oo 14t t—+o00 141t
1
> [Tok (1, w(ty), u' ()

1+t
+ 0<tp<t<4oo

+ Lo (e, ulte), w' (b)) (t — ti)]

+oo

t /
- ;hk(tk,u(tk),u (tx))

e Gt s) /
—|—/0 lim f(s,u(s),u'(s))ds

t—+oo 1+t

=B+ Z I (b u(ty), w' ()

0<t<t<-4oo

+oo +00
=3 Dt uti), o/ (4)) —/ F(s. uls), ' (s))ds
k=1 0

+oo +oo
<B+2) trp +/ ©,(s)ds < +o0,
k=1 0

and
400
Jim (Tu)'(t) = B+§Ilk by u(ty), th by ulte), ' ()
400
= Qim t f (s u(s),u/(s)) ds
= B < +o0.

Therefore, Tu € X.
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Step 2. T'D is uniformly bounded for D any bounded set on X.
Let D C X be a bounded subset on X. So, there exists p; > 0 such that

lullx < p1, YueD. (3.3.2)

For w € D and M(s) := Supjcicyoo |G1(fr’f)|7 by (3.3.1) and
Definition 1.2.1,

Tul|lo = sup
1Tl 0<t<4oo 1+

0<t<too 1+¢ 1+¢ 0<ty <t<-+oo

A+ Bt 1
< sup <| |+ Z [Tow (tr, u(te), u' ()

1—|—L‘k:1

“+o0
Tt (), o/ (B)) (¢ — )] + —— > Iflk(tmu(tk%u/(tk))I)

e G(t, )
+ / sup LGS p o), (s))ds
0 0<t<too 1+t

1
< max{[A], [B[} +  sup —< 2 [@k,p1+¢k,p1t]>

1+t
St<too L+ \ L

+oo

+oo
t
+ sup — Ui, pr + M(s s)ds
e ; p1 o (5)ps (5)

+oo +o00
< max{[A], B} + Y @rp +2D Uk

k=1 k=1

“+o0

+ M(s) pp, (s)ds < +oo,
0

and

I(Tu)l, = sup  [(Tu(t))]
0<t<+00

<IBl+ Y [Ttk ulte), v/ (t)]
0<tr<t<4oo
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+oo +00
+Z [Tk (g, ulty), o (tr))] +/ |f (s,u(s),u'(s))|ds
k=1 t
+oo +00
< |B|+ 2Z¢k,p1 +/ ©py (8)ds < +oc.
k=1 0

Therefore, ||Tu|lx := max{||Tullo, ||(Tu)|1} < +oo, and TB is uni-
formly bounded in X.

Step 3. T'D is equicontinuous on each finite intervallty,tiy1], for k =
0,1,2,....

Consider an interval J Cltg, tg41] and 7,7 € J such that 7 < 7. For
u € D, the following limits hold uniformly as 7 — 72 :

lim Tu(Tl) _ TU(TQ)
o | 1+7 1+7m
. A+BT1 A+BT2 1
<1 - Tog (th, u(ty),w' (¢
—nl—>mrz 1+7 1+m 1+7m 0<;T1[0k(k’U( o) (tk)
+ L (te, ulty), o' (tr)) (11 — tx)] Zflk (th, u(ty), u'(tx))
- > Wonlte,ultn), o/ (tr)) + Tk (b, ulte), u' (b)) (72 — 1)
1+7_2 0 ) ’ 1 ) ’ 2

0<tp <12

u(ty), ' (tr))

/+°O'G(7'1,s) G(72,8)
_|_
0 14+7 14+ 7o

x| f(s,u(s),u'(s))|ds = 0
and

lim |(Tw)(11) — (Tu) (12)|

T1—T2

< lim | Y Dg(te, ulte), — Y T(te,ults),u'(t))

T1—>T2
0<trp <11 0<tp <72
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+o0 +oo
+ / f(s,u(s),u'(s))ds — / f(s,u(s),u'(s))ds

1 T2

T2

< lim Z |Ilk(tk,u(tk),u'(tk))|—|—/ |f (s,u(s),u/(s))|ds

T1—>T2
T1<tp<T2 1

T2

< I ds = 0.
<gim S vt [ en(s)ds

T1<tp<T2 1
So, T'D is equicontinuous on J Clty, t41].

Step 4. T'D is equiconvergent att = t;ﬂ 1=0,1,2,..., and at infinity.
In fact,

T
u(t) lim Tu(t)

14t 1+

- ’A—i—Bt A+ Bt;

1 /
T+1 Do owlte,ulte) v (t))
0<t) <t<-+00

—|—Ilk(tk,u(tk),u/(tk)) (t—tk 1+tzllk tr, U tk /(tk))

1
~“1rE D oty ulte),w' (t)) + Lk (b, u(tr), o/ (1) (8 — )]
! 0<tp<t;
+oo +00
ti G(t S) G(tl S)
I / ) _ )

X ¢,y (s)ds — 0, uniformly as ¢ — ¢,

and

(Tw) (t) — lim (Tu)'(t)

t—th

<> Ilteulte) o/ (t) — Y Tkt ulte), /' (tr))

0<tr<t<+oo 0<tk<tzr
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+oo +oo
/ o / d
FlL e = [ e s
< Z Ilk(tlm (tk Z Ilk: tlm tk (tk))
0<tp<t<4oo 0<tp<t;

t
+ / ©p, (8)ds — 0, uniformly as ¢ — ¢,

i

Therefore, T'D is equlconvergent at t = t ,1=0,1,2,....

Moreover, as Gl +7 is bounded in [0, +oo[ and f is bounded on D by an

L'-function, by Lebesgue’s Dominated Convergence Theorem, we have

T
ut) lim Tu(t)
1+t to+oo 1+t

= | (A + Bt + L Z Lok (tr, u(te), u' (tx))

1 +i 1 ¢ 0<tr<t<4oo

+ D (b, ute), o' (te)) (t — tr)] thhk tr, ulty), w (tr))

1 [t

Y G(t, s)f(s,u(S),U'(S))ds) - (BJ%ETOO 1+—t

x> ok (b w(te), u! (t) + Tu(ts ute), o/ (t:)) (£ = tr)]

0<t<t<-4oo

o0 +o00 s
— th(tk,u(tk),u’(tk)) —|—/0 lim Mf(s u(s),u’(s))ds)
k=1

t—+oo 14+t
A+ Bt ‘ 1
< ’ Bl == S Uonlteulte) v (1)
L+t L+t 0<t <t<+oo
+ Lt u(t), o/ (0)) (6 — )] = D> Tu(tw, u(ty), “/(tk))‘

O0<tp<t<4oo
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1) Dkt ulte), u' (t) 1+t Zflk (i, ulty), u' (tr))

Tt B T |Pe(s)ds

+/+°°|G(t,s) Cm G®9)
0

As each modulus tends to 0, uniformly on v € D, as t — 400, then

Tu(t)
1+t t—>+oo 1 + t

By similar arguments,

()~ tim (1))

t——+o0

+oo
<B+ > Ilk(tk,u(tk),u’(tk))—kZIlk(tk,u(tk)m’(tk))
=1

0<t<t<-4oo

- /tmf(S»U(S)»U’(S))d) (B+,1m s e ()i )|

t——+o0 t

<

+oo
Z L (b, u(te), o' (te)) — Z I (te, u(ty), U/(tk))‘
=1

0<ty <t<+oo

+oo
+ / (s, u(s), ! (5))] ds

<

+oo
Z L (b, u(ty), o' (tr)) — Z I (te, u(ty), U/(tk))‘
=1

0<ty <t<+oo

“+00
+/ ©p, (s)ds — 0, uniformly on u € D as t — +o0,
t

that is, T'D is equiconvergent at 4o0.
So, by Lemma 3.2.3 adapted to the impulsive case, T'D is relatively
compact and T is completely continuous.

Step 5. TQ) C Q, for  is a nonempty, bounded, closed and convexr subset
of X.
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Consider a subset Q C X defined as Q := {u € X : ||ul| y < p2} with

—+o0
p2 ‘= max {Pl,maX{AL |B[} + Z(@k,pl + 2¢%,p,)
k=1

—+oo

b [ e eas),
0

where p; is given by (3.3.2) and

t
M(s) == max{l, sup & 7s)|}
0<t<4oo 1+1

Remark that 0 < M;(s) <1, for s € [0, +00], and, therefore,

+oo +oo
Mi(s) 2 ()5 < [ i (s)ds < +ox.
0 0
For u € Q,
Tu(t
Tullo =  sup [Tu(t)|
0<t<too L+1
A+ Bt 1
< sup | T | + T 1 Z ok (tr, u(ty), v (tx))
0st<too 0<ty<t<-+oo
T (g, u(ty), v (t))(t — tg)] + —— T (te, u(ty), o' (t
+ T (e, ultn), u' (t))( k|+1+t2| 1 (t u(tr) o/ ()]

+oo s
+ / sup GG 1 sy (5))) ds

0<t<4+oo 1+1

< max {|A],|B|} + Sup L (Z%pl + Yrpy (E— k))

0<t<4o0o 1 +1 1
+o0
T et MO g0
+00 +oo 400
< max{|A|7 |B|} + ; Pk.pr t 2;wk701 + 0 Ml(s) Pp1 (s)ds

< p2;
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and

(Tw)lly = S |(Tu(t))']

IBl+ D (e u(t), o' (t))]

0<ty <t<+oo

IN

400 400
3 Ihultu(t) @)+ [ 1F (uls)u(s)]ds
k=1 t

+oo +oco
<IBI+2) Yk +/ ©pr (8)ds < pa.
k=1 0

Therefore, ||Tul|y < p2 and TQ C Q.

Then by Schauder’s fixed-point theorem, T" has at least one fixed point
u € X. So, the problem (9.1.1)-(3.1.3) has a solution u € X.

Moreover, u is bounded if B = 0, and unbounded if B # 0. O

3.4. Example

Consider the second-order two-point impulsive problem composed by the
fully differential equation in the half-line

(L+e ") ult) + (')’

u’(t) = T . ae t>0, (3.4.1)
the boundary conditions
, 1
u(0) =1, u'(+o0) =g, (3.4.2)
and the impulsive effects
1 1
Au(k) = — , (3.4.3)

u(k)] + |u'(F)|
ke ’

with k=1,2,3,..., € R, a > 2.

Au' (k) =



IBVP with Infinite Impulse Moments 37

We point out that problem (3.4.1)—(3.4.3) is a particular case of (3.1.1)—
(3.1.3) with

t J—
f(7x7y) 1+t4 )
A=1, B=1
2
tv =k, keN,

1
Tok (tk, 2, y) = @+ DE+1)

|+
I]_k(tk;7x7y) = ||]€T|y|

As f is an L'-Carathéodory function in [0, +-o0[, with

2p(1+t) + p?
Pp(t) = I R

for |z| < p(1+t) and |y| < p, the function

)

1
Iok;(k7.’L'7y) = ki3 (JZQ i 1) (yQ i 1)

is a Carathéodory sequence for every x,y € R, with ‘I’%p = %7 and

| +
it ) o= L
is also a Carathéodory sequence for p > 0 such that |z| < p(1 + k) and
ly| < p, with \I!,lc,p = p(z—jz) (> 2).

Therefore, by Theorem 3.3.1, problem (3.4.1)-(3.4.3) has at least an
unbounded solution.
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Introduction

Qualitative analysis of differential equations has had an increasingly
important role, especially the analytic study of their asymptotic behavior
and stability.

A homoclinic orbit is a trajectory of a flow of a dynamical system which
joins a saddle equilibrium point to itself. If a path in the phase space of
a dynamical system joins two different equilibrium points, it receives the
name of a heteroclinic orbit.

.

Homoclinic trajectory, heteroclinic connection and heteroclinic cycle

The interest in these trajectories goes far beyond mathematics itself as
homoclinic and heteroclinic solutions appear in a variety of mathematical
models born in mechanics, chemistry, or biology.

The history of these homoclinic and heteroclinic solutions is already
long. In addition to the phase portrait analysis, whose applicability is
restricted to autonomous differential equations of second order, the study
of these solutions started with a geometric approach. Poincaré, Melnikov,
and Smale were some of the first names to cover this topic in the nine-
teenth century. At the end of the last century, a more functional and ana-
lytical approach gave new tools like variational methods and the theory of
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critical points. It is worth highlighting Ambrosetti, Ekeland and Rabinowitz
(see [44] and references therein).

This part is separated into three chapters, and each one provides the
existence of homoclinic solutions for higher order nonlinear BVPs, not nec-
essarily autonomous.

Chapter 4 will be addressed to problems with second-order equations.
Three different applications will be presented to illustrate the main results
of the chapter: a problem with discontinuity in time, an application to a
Duffing equation, and another over a forced cantilever beam equation with
damping.

Chapter 5 confirms the existence of homoclinic solutions to some
fourth-order BVPs. A generic example and an application to a
Bernoulli-Euler—v. Karman BVP complete the chapter.

Finally, Chapter 6 focuses the attention on Lidstone’s BVPs, putting
a link between the solutions of Lidstone BVPs in the whole real line and
homoclinic solutions. The results of this chapter will be applied to an infinite
beam resting on granular foundations with moving loads.



Chapter 4

Homoclinic Solutions
for Second-Order Problems

4.1. Introduction

The existence of homoclinic solutions for autonomous and nonautonomous
differential equations and Hamiltonian systems is an important subject in
qualitative theory. It can be considered as a special case of the so-called
convergent solutions, i.e., solutions defined on the half-line (or the real line),
and having a finite limit to +oo (respectively +o00), see [16].

In this chapter, we consider the second-order discontinuous equation in
the real line,

u’(t) — ku(t) = f(t,u(t),u'(t)), aeteR, (4.1.1)

with & > 0 and f : R® — R an L!-Carathéodory function. The main
purpose is to find homoclinic orbits to 0, that is, nontrivial solutions of
(4.1.1) such that
. / . /
u(£o0) 1= t_l}gloou(t) =0,u'(£o0) := t_l}gloou (t) =0. (4.1.2)
Several works prove the existence of homoclinic and heteroclinic
solutions for small perturbations (see [48, 156]), or deal with some
superquadratic or subquadratic conditions at infinity (see [135, 140]) or
with asymptotically quadratic conditions (see [55]). Another point of view
is to obtain a homoclinic orbit as a limit of 2kT-periodic solutions of a cer-
tain sequence of periodic boundary value problems (see [10, 74, 85]). The
main arguments used in this method apply variational methods, upper and
lower solutions and fixed point theory (see [17, 28, 138, 146]).
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Equation (4.1.1) arises in several real phenomena, for instance, as the
study of traveling wave fronts for parabolic reaction—diffusion equations
with a local reaction term, and generalizes several classical equations such
as Duffing-type equations (see [76, 130]) or Liénard-like systems (see [154]).

In this chapter, we combine the method of lower and upper solutions,
not necessarily ordered, as suggested in [75, 113]. Moreover, our result
improves the literature as the existence and localization of homoclinic solu-
tions is proved without extra assumptions on the growth, sign or asymptotic
behavior of the nonlinear part.

4.2. Preliminaries
Define the space

Xpo = {x € CYR): lim z(t) € R} ,
|t]|—+o0
with the norm [2]|x,y; = max{[z]loc, 2"}, where [[y]loc = supe [y(2)]
In this way, (Xpgo, | - || x4.) is a Banach space (see [149, 153]).
An important property of functions on space Xpo is shown in the
following lemma.

Lemma 4.2.1. Let x € C*(R), n € N,n > 1. If z(+00) =1 € R then
(" (+00) = 0, forn > 1.

Proof. In the case where z(400) = [, for any dg > 0, there exists Ty > 0
such that for t > Ty, one has |z(t) — 1| < do.

Forn =1, take h > 0,0 = % and t > Ty, for some T7 > 0. Therefore,
for ¢ > max{Ty, T}, one has

|x(t+ h) — x(¢)] lx(t+h) —1+1—x(t)]

! . : — i
B h
_ _ h 51 h 51
o TR U@ 1
h—0 h h—0 h

for any 01 > 0, that is, 2’(+00) = 0.
For n > 1, the proof follows by the mathematical induction.
The case 2(—o0) = [ can be proved by using the same technique. O

The following result will play an important role in the proof of the main
result, giving a solution of some linear second-order problem via Green’s
functions.
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Lemma 4.2.2 ([3]). If h € L'(R), then problem

{u”(t) — ku(t) = h(t), ae.teR,

u(£00) = v/ (£00) =0 (4.2.1)

has a unique solution in Xgo. Moreover, this solution can be expressed as

u(t) = - G(t,s)h(s)ds, (4.2.2)

—00

where

G(t,s) = —ﬁeﬂ/ﬂs*ﬂ. (4.2.3)

Proof. The homogeneous solution of the linear equation is given by

Vit VEt

u(t) = c1e¥V"™ + coe™ V¥, for c1,c0 € R.

As the null function is the only solution of the homogeneous problem asso-
ciated to (4.2.1), its solution is given by

| ARa/:
- —VEls=tlp(s)d
e s)ds.
2\/E —00 ( )
For G(t,s) := —%e“/E|5_t|, one has

+oo
u(t) = G(t,s)h(s)ds.
— 0o 0

u(t) =

Some trivial properties can easily be proved for Green’s functions.

Remark 4.2.3. The above Green’s functions verify the following
properties:

e G(t,s) and % are continuous,

(] hm\t|a+oc G(t, S) = O,

. oG
o lim o 28005 —

To deal with the lack of compactness of set Xpo, next compactness
criterion plays a key role, following arguments suggested in [51, 128, 149].

Theorem 4.2.4. A set M C Xpo is compact if the following conditions
hold:
(i) both {t - z(t):x€ M} and {t—2'(t):xe€ M} are uniformly
bounded,
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(i) both {t — x(t):x € M} and {t — 2/(t) : ® € M} are equicontinuous
in any compact interval of R;

(iii) both {t — x(t):x € M} and {t — 2'(t) : ® € M} are equiconvergent
at +oo, that is, given € > 0, there exists T(e) > 0 such that
[f(t) = f(E£oo)| < € and |f'(t) — f'(£o0)| < € for all |t] > T(e) and
feM.

Proof. In order to prove that the subset M is relatively compact in Xy,
as we are in a Banach space, we only need to show that M is totally compact
or bounded in X9, that is, for € > 0, M has a finite e-net.

For any given € > 0, by (i)—(iii), there exist constants A > 0,4 > 0, and
an integer N > 0, such that

° |£L‘(t1) —x(t2)| < §7|{L'/(t1) —{IJ/(tg)| < % with t1,t0 < —N or t1,t5 > N
and x € M, ||z[ 5, < 4

° ‘.’L‘(tl) — .’I,'(tg)| < §7|{L'/(t1) — .’L'/(tg)| < % with t1,t5 € [—N,N] and
|t1 —t2| < (S,IL‘ € Xpyo.

Define X|_y n) = {x|[,N’N] tx € XHQ}. For x € X|_n,nj, define

]y = maX{ sup |z(t)[, sup Ix'(t)|}~
te[—N,N] te[—N,N]

It can be proved that X|_n N is a Banach space with the
norm |-

Let Mi_yn) = {t = 2(t),t €[-N,N]:2 € M}. Then M|_y n) is a
subset of X[_x n]. By the Arzeéla—Ascoli theorem, M|_y n is relatively
compact in X|_y nj. Thus, there exist x1,z2,...,7x € M such that
|z — iy < §, forany z € M and i =1,2,...,k.

Therefore, for x € M, we find that for j = 0,1,

Hx(j) — xz('j)HX = max {Sup |1:(j) (t) — Jil(-j) (t)|}
teR

sup |20 () — 27 (1)]

t<—N
— max d sup [z (1) — 27 ()]
[t|I<N
sup [20) (1) — 17 (1)]
t>N

< max{ sup |2V (t) — acgj)(t)|7 E, sup |z (t) — xgj)(t)|} .
t<—N 3 >N
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Moreover,

sup |2(t) — z(t)| < sup [z(t) — z(=N)|[ + [z2(=N) — zi(=N))|
t<—-N t<—-N

€ € €
(=N) =zt < s+ S+
—l—tzu_pr:( ) — x;(t)] 3+3+3 €

Similarly, we can prove that all sup. v |20 (t) — xl(-j) ) <e
So, for any € > 0, M has a finite e-net {Uy,,,Us,,,...,Us, }, that is, M
is totally bounded in Xo. Hence, M is relatively compact in Xyo. O

To provide the localization part of the main result, lower and upper
solutions technique is used, based on the following definition.

Definition 4.2.5. A function @ € Xpgo is said to be a lower solution of
problem (4.1.1),(4.1.2) if

a'(t) —ka(t) > f(t,at),d (t), ae teR, and a(+oo) <O0.

A function f € Xpo is an upper solution if the reversed inequalities
hold.

Usually, in the literature, these functions have some order relation: well
ordered or reversed ordered. However, next definition can be applied to «/(t)
and ((t) with no definite order.

Definition 4.2.6. Functions a, 5 € Xpgo are a pair of lower and upper
solutions of problem (4.1.1),(4.1.2), respectively, if

a’(t) —ka(t) > f(t,a(t), o' (1), teR,
Br(t) =k B(t) < (ﬁ() (1), teR,
a(+00) <0, f(+o0) >

)

where @(t) = a(t) — sup;ep |a(t) — (1)) .

4.3. Existence and localization of homoclinics

First result requires that lower and upper solutions are well ordered to
guarantee the existence of homoclinic solutions of problem (4.1.1),(4.1.2).

Theorem 4.3.1. Let f : R?> — R be an L'-Carathéodory function
and o, B € Xpo be lower and upper solutions of problem (4.1.1),(4.1.2),
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respectively, with
a(t) < pt), vteR. (4.3.1)

If f(t,x,y) is monotone in y (nonincreasing or nondecreasing) for
(t,z) € R? fived, then problem (4.1.1),(4.1.2) has a homoclinic solution
u € Xpa such that a(t) < u(t) < p(t),vt € R.

Proof. Consider the modified equation

u’(t) — ku(t) = f(t,0(t,u(t)),u'(t), ae teR, (4.3.2)
where function ¢ : R? — R is given by
B(t), u(t) > B(t),
6(t,u(t) = q ult), ot) <wu(t) < B(1),

alt), wu(t) < aft).

Step 1. The modified problem (4.3.2),(4.1.2) has a solution.
Define the operator T : Xgo — Xpo by

“+o0
Tu(t) = G(t,s)Fy,(s)ds,

— 0o

where

Fu(t) = f(t7 §(tvu(t))7u/(t))7

and G(t,s) is the Green Function given by Lemma 4.2.2. So, it is enough
to prove that T has a fixed point, which is done in the following claims.

Claim 1.1. T : Xpo — Xpo is well defined.
Let v € Xpo. If f is an L'-Carathéodory function, then T is continuous.
For rg > 0 such that

ro > max { ||, [|Blloc } (4.3.3)

there exists ., with |f(t,z,y)] < ¢, (t), for sup,er {|2(0)], |y(t)]} < 10
and a.e.t € R. As Tw and (T'u)" are continuous, passing to the limit, by the
Lebesgue Dominated Theorem and Remark 4.2.3,

+oo
lim (Tu)(t) :/ lim G(t,s)F,(s)ds =0,
|t] =00 oo |t|moo

lim (Tw)/ () = / " i 290 b a0,

[t|—oc0 o ltlmoo Ot

and, therefore, Tu € Xpo.
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Claim 1.2. T is compact.

Let

0G(t, s)
ot

M(s) := max {sup|G(t, )|, sup } .
teR teR

Consider a bounded set B C X2 defined by
B:={ue€ Xpga: ||ullxy <71},

for some 1 > 0, such that r; > max {ro, fj;: M(s)pr, (s)ds} with 7o given
by (4.3.3). Then, for t € R,

+o0 +oo
[Tu(t)] < M(s)|Fyu(s)|ds < M(s)pr(s)ds < 1,

— 00 — 00

and analogously |(Tu)’(t)| < r1. Therefore, T'B is bounded and T'B C B.
For a > 0 and t1,t2 € [—a,a], because of the continuity of the Green’s
functions and its derivative, one has

lim |Tu(ty) — Tu(tz))|

t1—t2

+oo
g/ lim [G(t1,5) — G(ta, 5)||Fu(s)|ds =0,

—o0 t1—t2

Jim |(Tu) (1) = (Tw) (t2)

—+oo
< lim
—0 t1—t2

So, T'B is equicontinuous.
To prove that T'B is equiconvergent at +c0, note that

oG oG

ot - (1, 8) = BN ——(t2,s)| [Fu(s)|ds = 0.

’Tu(t) - lirin (Tu(t))’ < /+OO |G (¢, s)||Fu(s)|ds

t—=*oo o

+oo
< / IG(t, )| pn(5)ds —> 0, ¢ — +00,

+oo
‘(Tu)'(t) — lim (Tu)’(t)‘ S/ %(t s)||Fu(s)|ds

t—too o

</+008_G(t)
=) e "

r(s)ds — 0,1 — +o0.
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Therefore, by Theorem 4.2.4, T' is compact, and by Theorem 1.2.6, 1" has
at least one fixed point u € Xpo.

Step 2. Every solution of the modified problem (4.3.2),(4.1.2) is a solution
of the initial problem (4.1.1),(4.1.2).

Let u be a solution of problem (4.3.2),(4.1.2). In order to obtain this step,
it is sufficient to prove that

at) < ut) < B(t), VteR.

Suppose, by contradiction, that there exists ¢t € R such that a(t) > u(t)
and define
inf — .
%gR(u(t) at)) <0
This infimum cannot be attained at +oo. Otherwise, by (4.1.2) and Defini-
tion 4.2.5, this contradiction holds:

0 > u(+o0) — a(+oo) > 0.
So, there is t, € R such that

Itrél]él(u(t) —a(t)) = u(ty) —alts) <0.
Then there exists an interval [t_,?y]| such that t. € [t_,t4] and
u(t) —a(t) <0, v’ (t) — o’ (t) > 0 ae. t € [t_,t4]. Also, v/(t) — o/(t) <0,
for t € [t_, ], and v/(t) — &/(¢t) > 0 for ¢ € [t., t+].

If f(t,x,y) is nonincreasing in y, for ¢ € [t.,t4] then the following contra-
diction is achieved

0< /75 u”’(s) — ' (s)ds = /t [f(s,0(s,u(s)),u'(s)) + ku(s) — ' (s)]ds

* *

< / [£(5, 0(s), 0/ () + ku(s) — o”(s)]ds

¢
<k [ u(s)—als)ds<0.
L
By the previous arguments, a similar contradiction holds if f is nonde-
creasing, but with an integration on [t_,¢.] C [t_,t4].
So, a(t) < u(t),Vt € R. In a similar way, it can be proved that 3(t) >
u(t),vt € R. O
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If the nonlinearity f verifies an anti-symmetric-type property, there is
also homoclinic solutions for the symmetric equation

—u"(t) + ku(t) = f(t,u(t),u'(t)), teR. (4.3.4)

Theorem 4.3.2. Let a, 8 € Xpgo be lower and upper solutions of prob-
lem (4.1.1),(4.1.2), respectively, verifying (4.3.1). If f : R® — R is an L'~
Carathéodory function, with f(t,z,y) monotone in y, for (t,x) € R? fized,
satisfying

f (tv -, _y) = _.f (taxay)7 V(t,l‘,y) € R37 (435)
then there is a pair of homoclinic solutions (u,—u) € X7, such that u
is a solution of problem (4.1.1),(4.1.2) and —u solution of (4.3.4),(4.1.2),
verifying

a(t) <ul(t) < B(t),
—B(t) < —u(t) < —a(t), VteR.

Proof. Let « € Xpgo be lower and upper solutions of problem
(4.1.1),(4.1.2). Then, by (4.3.5),

—a(t) + ka(t) = — [@"(t) — ko(t)]
< _f(t»a(t)va/(t)) = f(tv _O‘(t)v _O/(t))7 fort e R,

that is, —a(t) is an upper solution of problem (4.3.4),(4.1.2).

Analogously, it can be proved that —3(t) is a lower solution of problem
(4.3.4),(4.1.2).

So, by Theorem 4.3.1, there is a solution —u of problem (4.3.4),(4.1.2),
such that

A1) < —ult) < —a(t), VteR. -
The well-ordered relation (4.3.1) can be removed if lower and upper
functions are defined as a pair of functions, applying a translation technique
suggested in [63].
In this case, the main theorem can be formulated in the following way.

Theorem 4.3.3. Let f : R® — R be an L'-Carathéodory function and
a, B € Xpo a pair of lower and upper solutions of problem (4.1.1),(4.1.2),
respectively, according to Definition 4.2.6.

If f(t,x,y) is monotone in y (nonincreasing or nondecreasing) for
(t,x) € R? fized, then problem (4.1.1),(4.1.2) has a homoclinic solution
u € Xpgo such that a(t) < u(t) < S(t).
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The proof is similar to Theorem 4.3.1 replacing the truncature function
5 by 6 : R = R given as

Bt), wu(t) >
o(t,u(t)) = q u(t), a) <
alt), ult) <al).

Note that @ and 8 do not need to be well ordered or even ordered
at all.

4.4. Example of a discontinuous BVP

Consider the second-order, nonlinear and discontinuous BVP

sgn(t)ud(t) + 0.1 — 100w/ (t)
W(t) - u(t) = o tem

u(£o0) = u'(£o0) = 0.

where

1, t>0,
sgn(t) =

-1, t<0.

The nonlinear and discontinuous function f : R? — R defined by

sgn(t)z® + 0.1 — 100y

t =
f(7x7y) 1+t2

is monotone in y for (t,x) € R? fixed and for |z|,|y|] < p, and an

_ p®+40.14100p
- 1+t2 .

Functions a(t) = arctan(t) and 8(t) = 0 are, respectively, a pair of lower
and upper solutions of problem (4.4.1) according to Definition 4.2.6 with
@(t) = arctan(t) — 7/2.

Therefore, by Theorem 4.3.3, there is at least a nonpositive solution u
of (4.4.1) with arctan(t) — /2 < wu(t) <0,Vt € R.

Note that the null function is not a solution for the problem and f is
discontinuous on ¢ (Fig. 4.4.1).

L*-Carathéodory function with ¢, (t)
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Fig. 4.4.1. Admissible region for solution u.

4.5. Duffing equation

In [8], the authors consider equation
—u"(t) + u(t) = a@t) [u@®)]P " ut), teR, (4.5.1)

with p > 1, which models the forced vibrations of a cantilever beam in the
nonuniform field of two permanent magnets.

The structure and behavior of function @ : R — R is a key point for
the existence of homoclinic solutions. Applying the main result, it can be
proved that there exists at least one nontrivial solution in cases not covered,
as far as we know, by results in the existent literature.

For example, if a(t) = _H—%’ p = 3, k = 0.1, then let us seek a nontrivial
and homoclinic solution for

2
(1) — 0.tu) = OO

u(+o0) = u/(£o0) = 0.

, teR,
(4.5.2)
The nonlinear function f : R? — R defined by

X
1+1¢2

|

f(t,{L‘) =
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Fig. 4.5.1.  Admissible regions for both solutions u and —u, respectively.

is an L'-Carathéodory function with |z| < p and ¢,(t) = ﬁ%.

at) = ?)Jr#tg —0.3 and S(t) = 0.3 are lower and upper solutions, respectively,
of problem (4.5.2).

Therefore, by Theorem 4.3.2, there are at least two homoclinic solutions:
u of (4.5.2) and —u of problem

Functions

_ Ju(®)P u(t)

—u(t) + 0.1u(t) = e teR,

(4.5.3)
u(+o0) = v/ (£o0) =0
with 327 —0.3 < u(t) < 0.3, and —0.3 < —u(t) < =57z +0.3for t € R.
Note that the null function is not a solution, and therefore, u and —u
are nontrivial solutions (Fig. 4.5.1).

4.6. Forced cantilever beam equation with damping

The second-order differential equation
2" (t) + b2’ (t) — x + 23 = F cos(wt) (4.6.1)

can model the forced vibrations of a cantilever beam in a nonuniform field
of two magnets.

As illustrated in Fig. 4.6.1, a slender steel beam is clamped in a rigid
framework which supports the magnets. Their attractive forces overcome
the elastic ones, which would otherwise keep the beam straight. In the
absence of some external force, the beam settles with its tip close to one
or the other of the magnets. The variable x represents a measure of the
beam’s position, say its tip displacement.
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Fig. 4.6.1. Interaction between a cantilever beam, two magnets and an excitation force.

As an example, let us consider the following equation:

u” () + b(t)u' (t) + e(t)g(t,u) = 0, (4.6.2)

. 4
with b(t) = — 200 c(t) = 1,9(t,u) = —u — 3204,

This class of ODE arises in diffusion phenomena in biomathematics. For

more details, see [15, 92].
Note that in this case, the BVP

0.01u/() + 100u*()

u'(t) — ult) = — , teR,

(4.6.3)
u(£o0) = u/(£o0) =0
is not covered by any kind of existent results to the best of our knowledge.
The nonlinear function f : R® — R defined by

0.01y + 100z*
t = -
f( 7x7y) 1 +t2

is monotone in y for (t,z) € R? fixed, and for |z|,|y| < p, it is an
4
L!-Carathéodory function with ¢, (t) = 0'011th+2” :
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Functions «(t) = H—% and 5(t) = 0.5 are, respectively, lower and upper
solutions of problem (4.6.3), according to Definition 4.2.6, with @(t) =
== — 0.5,

Therefore, by Theorem 4.3.3, there is at least a homoclinic solution u

of (4.6.3) such that

1
1+ ¢2

—05<u(t) <05, VteR.



Chapter 5

Homoclinic Solutions
to Fourth-Order Problems

5.1. Introduction

This chapter provides sufficient conditions for the existence of homoclinic
solutions of fourth-order nonlinear ODEs. Different applications are pre-
sented to illustrate new results, such as the nonlinear Bernoulli-Euler—v.
Karman problem, Extended Fisher—Kolmogorov problem and the Swift—
Hohenberg problem. The method will use Green’s functions to formulate a
new modified integral equation which is equivalent to the original nonlin-
ear one. Moreover, in an adequate function space, the corresponding non-
linear integral operator is compact, and an existence result by Schauder’s
fixed-point theorem can be applied.

We study the existence of homoclinic solutions to the fourth-order non-
linear differential equation

W (8) + ku(t) = F(tult) (), 0" (D), 0" (1), teR,  (5.11)

with & > 0 and f : R® — R a continuous function, verifying an adequate
asymptotic condition.

Note that no further condition will be necessary on the nonlinearity
f(t,z,y,z,w) to obtain the existence of homoclinic orbits to 0, that is,
nontrivial solutions of (5.1.1) such that

u(£00) == limy 100 u(t) =0, v/ (+00) :=limy 400 v/ () =0.  (5.1.2)

In the last decades, the study of autonomous and nonautonomous
fourth-order differential equations attracted many researchers. To be more

57
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precise, equations of the type
ul™ (1) + ku” (t) + g(u(t)) =0, teR, (5.1.3)

with k£ € R, and ¢ a locally Lipschitz function, arise in several theoretical
cases and real phenomena such as:

e if k < 0, it is known as the Eztended Fisher—Kolmogorov equation and if
k> 0, it is referred to as Swift—-Hohenberg equation (see [126]);

e if g(u) = u — u?, it is applied in the dynamic phase-space analogy of a
nonlinearly supported elastic strut (see [83]);

o if g(u) = u® — u, it models the pattern formation in many physical,
chemical or biological systems (see [27]);

o if g(u) = u® —u? +u, it is used to study the localization and spreading of
deformation of a strut confined by an elastic foundation (see [11, 125]);

e if g(u) = (u+1)" —1, where (u+1)" = max {u + 1,0}, equation (5.1.3)
arises in the search of traveling waves solutions [132] in the study of
deflection in railway tracks [1] and undersea pipelines [26].

The existence of homoclinic solutions was proved by using several meth-
ods and techniques. Some examples, without pretending to be exhaustive,
are shown in [134], where the above nonlinearities by variational arguments
and the Palais—Smale condition are considered.

For equation

u(w) (t) + ku//(t) + a(t)u(t) _ b(t)uQ(t) — C(t)u3(t) =0,

the existence of one nontrivial homoclinic solution is proved in [138] with
a(t) and ¢(t) positive bounded and continuous functions, and b(¢) a bounded
continuous function, applying Mountain Pass Theorem, and the existence
of nontrivial homoclinic solutions in the nonperiodic case is proved in [97].
In [89], the authors show the existence of two homoclinic solutions for some
nonperiodic fourth-order equations with a perturbation.

This chapter emphasizes on a perturbation with an unknown function
where the nonlinearity is given by a generic continuous function with depen-
dence on u and all derivatives till order three.

As far as we know, it is the first time where such perturbation associated
to generic nonlinearity, which has to verify only an asymptotic condition,
is considered (see assumption (5.3.1)).

The arguments are based in the explicit form of the Green’s functions
associated to the linear perturbation of (5.1.1) in a compactness criterion
and fixed point theory.
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5.2. Definitions and auxiliary results
Let us define the space

XH4:{J;EC3(R): lim () =0, lim x“)(t)eR,i:l,Q,s}
[t|—+o0 |t]|—=+o0
with  the norm ||z x,, = max{[|z]lsc, |2’ [loc, [l2" [loc, | loc},  Where

[wlloo = supser |w ()]
In this way, (Xga4,[|*[|x,,) is a Banach space.

Remark 5.2.1. Note that if u € X, then

lim v (t) =0, j=1,2,3.
[t|—o0
By wu solution of problem (9.1.1),(10.3.2), we mean u € X such that u
verifies (9.1.1).
The following result will play an important role in the proof of the main
result, giving a solution of some linear fourth-order problem via Green’s
functions.

Lemma 5.2.2. If h € LY(R), then, for some k > 0, the problem
u) () + ku(t) = h(t), t € R,
(5.2.1)
u(+o0) = v/ (F£o0) =0

has a unique solution in Xi4. Moreover, this solution can be expressed as

+oo
u(t) = G(t, s)h(s)ds, (5.2.2)
where
% —%ls—t\ . %'3_“ T
G(t, S) = %6 V2 Sin T =+ Z . (523)

Proof. The homogeneous solution of the linear equation is given by
u(t) = e (1 cos(At) + cosin(At)) + e~ (5 cos(At) + ¢4 sin(At))

with A = f/% and cq,co,c3,c4 € R.
As the null function is the only solution of the homogeneous prob-
lem, Green’s functions can be defined and the general solution of (5.2.1) is
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given by
{4/% oo %/T \/E ™
I =V 3ls—tl g e — Z
u(t) ok /_OO e sin 4|5 t| + 1 h(s)ds.
For G(t,s) := %e““'s_” sin (A|s — t| + %), one can write
+oo
u(t) = G(t,s)h(s)ds.
e 0

The following properties of the Green function can easily be proved.

Remark 5.2.3. For 1 =0, 1, 2, 3, defining

VET 4w VE(s—t)  7(3i+1)
T L= V2 s1
G; (t,s): T sin 7 + 1 ,
VET —vmaen (VE(E-s)  w(Bi+1)
+ C = Vel i
G/ (t,s): on € sin 73 + 1 ,
then, for j =0,1,2,3,
) t ) —+o0
WO (1) = / G5 (6 s)h(s)ds + (—1Y [ GH(t, 5)h(s)ds, (5.2.4)
oo t
DIG(t,s)
Gt s) YRyt
o0 ‘ < B (5.2.6)

The following theorem is a key argument to deal with the lack of com-
pactness of the set Xpy.

Theorem 5.2.4 ([51]). Let M C (C},R) with
C = {Jc € C[0,400) : there exists lim x(t)}
t—+oo

Then M is compact if the following conditions hold:

(i) M is bounded in Cy;
(ii) functions f € M are equicontinuous on any compact interval of
[0, +00);
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(iii) functions from M are equiconvergent, that is, given ¢ > 0, there exists
T(e) > 0 such that | f(t) — f(+00)| <€ for allt >T(e) and f € M.

The proof of this result can easily be applied to compact intervals of
the form [—T,T], for some T > 0, as it is suggested in [128], to obtain a
similar result to the set Xpy4.

Theorem 5.2.5. A set M C Xpy is relatively compact if the following
conditions hold:

(i) M is bounded in Xpa;
(ii) the functions belonging to M are equicontinuous on any compact inter-
val of R;
(iii) the functions from M are equiconvergent at +o0o, that is, given € > 0,
there exists T(¢) > 0 such that |f®(t) — @) (£o0)| < ¢, for all |t| >
T(e),1=0,1,2,3 and f € M.

5.3. Existence results

This section contains an existent result for homoclinic solutions of
problem (5.1.1),(5.1.2) without monotone, periodic or extra assumptions
on the nonlinear part.

Theorem 5.3.1. Let f : R® — R be a continuous function. If for eachr > 0
with max{]|2| o, [|Ylloos [|1Z]lcos |W]lec} < T, there exists a positive function
ér € L*(R) such that

If(t,z,y, z,w)| < ¢r(t), (5.3.1)
then problem (5.1.1),(5.1.2) has a homoclinic solution u € Xpy.

Proof. Define
Fyu(t) = f(tu(t), u' (), u” (1), u" (1))

and consider the operator T : X4 — Xp4 given by
+oo
Tu(t) = G(t,s)Fy(s)ds
with G(t, s) defined by (5.2.3).
As f is a continuous function verifying (5.3.1) and v € X g4, it is obvious
that F, € L*(R) and, by Lemma 5.2.2, the fixed points of T" are solutions of
problem (5.1.1),(5.1.2). So, it is enough to prove that T has a fixed point.
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Clearly, Tu € C3(R) and by (5.2.5) and Lebesgue’s Dominated Conver-
gence Theorem,

+oo
lim (Tu)(t) :/ lim G(t,s)F,(s)ds =0
|t] =00 |t] =00
and, for i = 1,2, 3,
. Foo (1)
lim (Tu) (1) = / im 22C08) g as — o,
|t] =00 |t] =00 ott

Therefore, Tu € Xy, and T : X g4 — X g4 is well defined.
Now, for any bounded subset B C Xpgy4 and any u € B with
lullx s <71, by (5.2.6) and (5.3.1), one has

— 00

— 00

+o0 +oo
\Tu(t)\g/ IG(E, 8)||Fu(s )|ds<—/ 6 < 400, VEER,

— 00
and, therefore, {T'u(t) : Tu € B} is relatively compact in R.
For a > 0 and t;,t € [—a,a], one has, as t; — ¢,

—+oo
Tu(ty) — Tu(ts)| = / (G(t1,5) — Gtz 8)||Fu(s)|ds — 0,

— 00

and

(Tu)® (t1) = (Tu) D (t2)]

teo oG lel .
:/ ‘W(tl,s)—w(tg,s) W(8)|ds — 0, fori—0,1,2.3.

— 0o

So, the set {u : [a, —a] — R} C B is equicontinuous.
By the continuity of f for any € > 0, there exist {1 > 0 and § > 0 such
that when |u(t) — v(t)| <, for t > ¢4, then

|Fu(t+) - Fv(t+)| <.
So, for i = 1,2, 3, and by (5.2.6),

) ) too |1 9@
(0O - @O0l = [ |

as t — +o0.
Analogously, when |u(t) —v(t)| <, for t < —t,, then

w(s) — Fy(s)lds — 0,

|Fu(_t+) - Fv(_t+)| <o.
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So, T is equiconvergent at +oco, and by Theorem 5.2.5, T'B is relatively
compact.
Consider now a subset D C X4 defined as

D = {u € Xpya: HUHXH4 < 7‘2}

with
—+oo
ro > max {r,

M asr(s)ds} |

— 00

where 7 > 0 is given by (5.3.1) and

1 1 1
M :=max< 1, , ,
{ 2V 2vE 2Vk }
with G5 (t,s) and G7 (t, s) given by Remark 5.2.3.
For ¢t € R, by (5.2.6) and (5.3.1),

—+oo

G(t,s)Fy(s)ds

[Tu|| = supser

— 00

+oo
s/m 2\/—|f(s Ju(s), u(), 1" (s), u” (5))|ds

+oo 1
< / ——0,(s)ds < 12,

oo 2VE3
(i) +o0 8(1
1(Tw) D = sup,cp / ot (t s)Fyu(s)ds
i+1
+oo (%)
= / ~——— ¢, (s)ds <ry, fori=1,2,
Lo 2k
and
t +00
H(TU)W” = SUP¢er / G35 (t,5)Fu(s)ds — G;{(t, s)Fyu(s)ds
e g’

“+o0
< / suprex (IG5 (1, 9)] + G5 (1, 5)]) 6, (s)ds

— 0o

< /+OC or(s)ds < 1. (5.3.2)

Therefore, T'D C D and, by Theorem 1.2.6, T has at least a fixed point
u e XH4. O
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With more information on the asymptotic behavior of the nonlinearity,
it is possible to derive more data on solutions of (5.1.1).

Lemma 5.3.2. Let k > 0, u be a solution of (5.1.1),(5.1.2) and f be a
continuous function verifying

lim  f(t,z,y,z,w) =0. (5.3.3)
|t]| =400

(z,y)—(0,0)

Then u®(+o00) =0, i =0,1,2,3,4.

Proof. Let us rewrite equation (5.1.1) as

d
dt
with 61(t) = f(t,u(t), v (t),u” (t),u" (t)) — (k + L)u(t).
By (5.3.3), for any € > 0, there is o > 0 such that |;(t)| < e, for every
t> o, |u(t)| <o,and |u'(t)] < o.
Fix € > 0 and integrate (5.3.4) over |o, [, for any ¢ > o, to obtain

(et (W (t) — " (t) + /() — u(t)) = 61 (t)e" (5.3.4)

el(u"(t) —u"(t) +u'(t) —u(t) = C —|—/ d1(s)e’ds,

for some C € R, and, subsequently,

¢
[ () —u"(t) + ' (t) —u(t)] < |Cle™" + ee*t/ e’ds

o

<|Cle™t +e(1—e ),

fort > o.
By letting ¢ — 400 and by the arbitrariness of ¢, the following can be
defined:

Go(t) =" (t) — " (t) + ' (t) — u(t) (5.3.5)
for some continuous function J; vanishing as ¢ — +oo. Rewriting again
equation (5.3.4),

a
dt
with d3(t) = d2(¢) + 4u(t). Arguing as for (5.3.4), it may be defined that

(e'(u"(t) — 2u'(t) + 3u(t))) := d3(t)e’ (5.3.6)

Sa(t) =" (t) — 20/ () + 3u(t) (5.3.7)

for some continuous function d,(¢) vanishing as ¢t — +oc.
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Since both w(t), v (t) — 0, then u”(¢f) — 0. Similarly, from (5.3.5), it
can be demonstrated that u”(t) — 0, whereas from (5.1.1), u*)(¢) — 0.0

5.4. Example

Consider the fourth-order BVP

u(t) (' () — (u())*) + (W'(8)* (" ()" + 1

ul) () + u(t) = e

u(£o0) = u'(+o0) = 0.

, teR,

(5.4.1)
2 2 3
Function f(t,x,y,2,w) = % is continuous and verifies

(5.3.1) for max{|all . [¥llac 2]+ [0} < 1, (2 > 0) with

r%—kr%—kr‘;’—kl

by (t) = 1+ ¢2

Therefore, by Theorem 5.3.1 there exists a nonnegative homoclinic solu-
tion of problem (5.4.1) with the phase portrait and its graphic given by
Figs. 5.4.1 and 5.4.2.

0.15
010

0.05

0.1 0.2 0.3 0.4 0.5

—-0.05 |

-0.10 |

-0.15

Fig. 5.4.1. Phase portrait of the homoclinic solution u of (5.4.1).
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Fig. 5.4.2.  Graph of the homoclinic solution u of (5.4.1).

5.5. Bernoulli-Euler—v. Karman problem

In [87], the nonlinear Bernoulli-Euler—v. Karman BVP is considered:

Elu(”)(t) + ku(t) = %EA(U/(t))Qu”(t) +w(t), teR,
(5.5.1)
u(to0) = u/(+o0) =0,

which is related to the analysis of moderately large deflections of infinite
nonlinear beams resting on elastic foundations under localized external
loads. More precisely, E is the Young’s modulus, I the mass moment of
inertia, ku(t) the spring force upward, in which k is a spring constant (for
simplicity, the weight of the beam is neglected), A the cross-sectional area
of the beam and w(t) the applied loading downward (see Fig. 5.5.1).

An example of this family of problems is given by

1) 4 3u(r) = 1O CHC)

u(o0) = u/(£o0) = 0.



Homoclinic Solutions to Fourth-Order Problems 67

w(t)

A EI 2>

u(t)

Fig. 5.5.1. Infinite nonlinear beam resting on nonuniform elastic foundations.

Here, the loading force w(t)= 13;‘;4 and the nonlinear function
g : R* = R is defined by
3 2
x° — 2y
t =
g(t,z,y, 2) T
The function f(t,z,y,2) = g(t,z,y,2) + w(t) is continuous and verifies

(5.3.1) for max{||z|| ., |yl s |2]loc} < 72, (r2 > 0) with

3.4+ 2r3
o (t) i= ————=
rlt) = 2242

By Theorem 5.3.1, there is a nontrivial homoclinic solution u*. More-
over, as f verifies (5.3.3), by Corollary 5.3.2, this homoclinic solution u* of
(5.5.2) verifies (u*)®) (+o00) = 0 for i = 0,1,2,3,4.

5.6. Extended Fisher—Kolmogorov and
Swift—Hohenberg problems

In [89], the authors consider a fourth-order differential equation which can
be written as

u™) (1) 4+ u(t) = 2u(t) — au’(t) — u®(t), teR. (5.6.1)

In the literature, when a < 0, this equation corresponds to the well-
known Extended Fisher-Kolmogorov (EFK) equation, proposed in [52], to
study phase transitions. If ¢ > 0, equation (5.6.1) is related to Swift—
Hohenberg (SH) equation, which is a general model for pattern-forming
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Fig. 5.6.1. Phase portrait of the homoclinic solution of (5.6.2), (5.1.2).

u(x)

Fig. 5.6.2. Graph of the homoclinic solution of (5.6.2), (5.1.2).
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process, to describe random thermal fluctuations in the Boussinesq equation
(see [137]) and in the propagation of lasers (see [96]).
In this sense, equation

(T4 u(®)) (L4 u”(t) — u?(t))
1+t

can be seen as a generalized (EFK), or (SH), where the coefficient of v (t)

depends on the unknown function and it does not have a definite signal.

In both cases of the coefficient sign, the nonlinear function f : R3 — R
defined by

) (1) + u(t) = , teR (5.6.2)

(1+2z)(1+2—2?)

L+t4
is continuous and for max{||z|| ., |2| .} < rs, (rs > 0), f verifies (5.3.1)
with

flt,z, z) =

bty = L7802 rs )

Therefore, by Theorem 5.3.1, there is a homoclinic solution u* of prob-
lem (5.6.2),(5.1.2). As illustrated in Figs. 5.6.1 and 5.6.2, this homoclinic
solution is a sign-changing function.




Chapter 6

Lidstone Boundary Value Problems

6.1. Introduction

George James Lidstone (1870-1952) was an English mathematician who
worked, among other things, on the study of polynomial interpola-
tion. In 1929, he introduced a generalization of Taylor’s series, where
the innovation part was an approximation of a given function in the
neighborhood of two points instead of one.

Essentially, this interpolating polynomial is a solution of a BVP given
by an elementary even-order differential equation and boundary conditions
defined on a bounded interval

u™ () =0, t€[a,b],
u9 (a) :Aj,u(j)(b) =B, j=01,....,m—1.

In the field of approximation theory, the Lidstone interpolating polyno-
mial of degree (2m — 1) matches u(t) and its (m — 1) even derivatives at
both ends of the compact interval.

The homogeneous differential equation can be generalized and, coupled
with boundary conditions, generates the next BVP

uPm™(t) = f(t,ut), ' (t),...,um=D(t)),t € [0,1],
u(0) = A;,u(1) = Bj,j=0,1,...,m — 1.

This kind of BVP is known as Lidstone boundary value problems.

71
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The particular case m = 2 frequently occurs in engineering and other
branches of physical sciences. For instance, the deflection of a uniformly
loaded rectangular plate, supported over the entire surface by an elastic
foundation and rigidly supported along the edges, leads to this type of
problem, or modeling the deformations of an elastic beam where the type
of boundary conditions considered depends on how the beam is supported
at the two endpoints (see [77] and the references therein).

In this specific case, Lidstone boundary conditions,

u(a) = u"(a) = u(b) = u"(b) =0,

mean that both endpoints of the beam are simply supported.

Recently, it was introduced the so-called complementary Lidstone
boundary value problems (see [6, 7, 143]) with differential equations of odd
order together with odd boundary derivatives conditions only, of the fol-
lowing type, were introduced:

uPm=D(t) = f(t,u(t),u'(t),...,u?™=2(t)),t € [a,b)],
u(a) = Ag, vV (a) = A;,u® V() =B;,j=1,...,m.

These types of problems with full nonlinearities, that is, with depen-
dence on even and odd derivatives, are very scarce (see [62, 64, 119]). How-
ever, as far as we know, Lidstone or complementary Lidstone problems were
never applied to the whole real line.

This chapter is concerned with the study of a fully nonlinear differential
equation on the real line

W (0) + khu(t) = F(tut), o' (0, (1), 0" (1), teR,  (6.11)

where k € R, f : R® — R is a continuous function and two Lidstone-type
boundary conditions: the classical ones, with even derivatives,

u(£o0) = u” (+o0) =0, (6.1.2)

with () (£00) 1= lim;_,+00 u¥ (t),7 = 0,2 and the so-called complementary
Lidstone boundary conditions

u(£o0) = v (+o00) = 0. (6.1.3)

Note that solutions of problem (6.1.1),(6.1.3) are homoclinic solutions
and in this way, the results of this chapter complement and generalize the
ones achieved in Chapter 5.
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The main arguments are based on the explicit form of Green’s functions
associated to problem (6.1.1),(6.1.2) in a compactness criterion and fixed
point theory.

The problem (6.1.1),(6.1.2) can model several real phenomena in beam
theory (see [1, 16]), suspension bridges (see [13, 22]) and elasticity theory,
among others. Equation (6.1.1) is often referred to as a beam equation
because it describes the deflection of an elastic beam under a certain force.
The boundary conditions (6.1.2) mean that the beam is simply supported
at infinity.

6.2. Auxiliary definitions and Green’s functions

The space of admissible functions to be used forward will be

Xy = {x € C3R): lim z(t) = 0},
|t]|—+o0

equipped with the norm ||z([x, = max{[|z[lcc, [#'[[cc, 12" [loc, |2 [[oc }
where ||w||oo = sup,cp |w(t)].

In this way, (X1,| - ||x,) is a Banach space.

The following result will play an important role in the proof of the main
result, giving an explicit solution of some linear fourth-order problem via
Green’s functions.

Lemma 6.2.1. If h € LY(R), then for k € R, the linear problem

u(t) + ktu(t) = h(t),t € R,

(6.2.1)
u(£oo) = u'(+o0) =0
has a unique solution in X, which can be expressed as
+oo
u(t) = G(t,s)h(s)ds,
where
e—k*|s—t| T
G(t,s) = ——=——sin( ki|s —t| + — (6.2.2)
with k, = B2,
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Proof. The homogeneous solution of the linear equation is given by
u(t) = e®t (c1 cos(kat) + cosin(kat)) + e %t (c3 cos(kat) 4 ¢y sin(k.t))

with ¢1, ¢, ¢3, ¢4 € R and the general solution of the homogeneous problem
associated to (6.2.1) is given by

o[t T
_ L st LT
ult) = 53 [m e sin (k*ls t| + 4> h(s)ds.
For G(t,s) = G(t,s) = %;;—ﬂsin(k*b —t| 4 ), one can write
+oo
u(t) = G(t,s)h(s)ds.
. 0

Some properties of these Green’s functions are in the following remark.

Remark 6.2.2. For : =0, 1, 2, 3, defining

ky(s—t) .
G/ (t,s):= %Sin (k*(t— s) + M),
\/5 ki)f’b 4
ki (t—s) ;
GH(t,s):= %Sin (k*(s —t)+ M),
V2R 4

one has

uD(t) = /t G (t,s)h(s)ds + (—1)" - G (t,s)h(s)ds. (6.2.3)

t

The following properties of the Green function can easily be proved:

lim G(t,s) = tLieroc G; (t,s) = tiigloc Gi(t,s)=0, (6.2.4)

[t]|—+o0
1
\/55—1']{34’

The following theorem is a key argument to deal with the lack of com-
pactness.

|Gi(t,s)] <

i=0,1,2,3. (6.2.5)

Theorem 6.2.3. For a set D C X[, to be relatively compact, it is necessary
and sufficient that

(1) {z(t) : x € D} is relatively compact in R for any t € R;
(ii) for each a>0, the family Dq,:={x:[—a,a] >R} CD is equi-
continuous;
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(iii) D is stable at £oo, i.e., for arbitrary functions © and y in D, and any
€ > 0, there exist T > 0 and § > 0, such that if |2 (T) —yO(T)| < 6,
then |z (t) — y D (t)| < € for t > T, and if |2 (=T) —y(=T)| < 6,
then |2 (t) — y@(t)| < € for t < =T for eachi=0,1,2,3.

Proof. The proof is a direct application of [128, Theorem 1]. O

6.3. Existence result

The main result of this chapter is given by the following theorem.

Theorem 6.3.1. Let f : R®> — R be a continuous function. If for each
r > 0 with max{||z|lco; |Ullcos [|2]|ocs |W||leo} < 7, there exists a positive
function ¢, : R — [0, +00) such that

—+o0

|f(t, 2y, z,w)| < ¢n(t)  and / or(t)di < +o0, (6.3.1)
then problem (6.1.1),(6.1.2) has a solution u € X, which is also a homo-
clinic solution.

Proof. Define
Fu(t) == f(t,u(t),u'(t),u" (t),u"(t)),

and consider the operator T : X — X, given by

+oo
Tu(t) = G(t,s)Fy(s)ds
with G(t, s) defined by (6.2.2).

As f is a continuous function, u € X, and verifies (6.3.1), it is obvious
that F, € L'(R), and, by Lemma 6.2.1, fixed points of T are solutions of
problem (6.1.1),(6.1.2). So, it is enough to prove that 7" has a fixed point.

Clearly, Tu € C3(R) and, by Lebesgue’s Dominated Convergence The-
orem and (6.2.4),

lim (Tu)(t) = /—MO lim G(t,s)F,(s)ds =0,

|t|—=+oo 00 [t|—+o0

“+o0
lim (Tu)”(t) :/ lim  Ga(t,s)F,(s)ds =0,

[t|—+o0 0 [t|—+o0
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and

lim (Tu)’(t):/t lim Gy F()als—/t+Oo lim GY F,(s)ds =0,

|t| —=+o0 t——4o00 t——00

lim (Tu)”’():/t hmGF()als—/t+Oo lim Gy F,(s)ds = 0.

|[t]—=+o0 t—+ t——00

Therefore, Tu € Xy, and T : X, — X, is well defined.
Let B C X, be a bounded subset, that is, there is r; > 0 such that, for
any u € B, one has |lul|x, < ri. By (6.2.5) and (6.3.1), for i = 0,1, 2,3,

+oo
@ue) < [ jGies)IFus)lds

— 00

1 oo
< 7/ br, (8)ds < 400, VteER,

\/55 1k3 i o

and therefore, {T'u(t) : Tu € B} is relatively compact in R.
For some a > 0 and t,t3 € [—a,al, as t; — ta,

+oo
Tu(ts) - Tu(ts)| = / (G(t1,5) — Gtz 8)||Fu(s)|ds — 0,
+oo
(Tu)" (1) — (Tu)" (t2)] = / (Galt,5) — Ga(ta, 8)|[Fu(s)|ds —> 0,

and for i =1, 3,

/ GF (t1,5) — G (2, 9)|| Fu(s)|ds

“+o0
+/ |G;"(t17s)—G;r(t27s)||Fu(s)|ds—>0.
t

So, the set {u: [—a,a] — R} C B is equicontinuous.
As the stability at 4+ oo, by the continuity of f, for any ¢ > 0, there
exist t1 > 0 and ¢ > 0 such that when |u(t) — v(t)| <, for t > ¢4, then

[Fu(ty) = Fu(ty)] < 0.
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So, for i =0,1,2,3,
t

(Tu)@ () = (Tv) (1)) S/ Gi (t, 5)[[Fu(s) — Fu(s)lds

+oo
4 / (G (1, )| Fu(s) — Fo(s)lds — 0,
t

as t — +o0.
Analogously, when |u(t) —v(t)| <, for t < —t,, then

[Fu(—ty) = Fo(—t4)] < 0.

So, T is stable at 4+ 0o, and by Theorem 6.2.3, T'B is relatively compact.
Consider now a subset D C X, defined as

D:={ue Xy :|u|x, <r}

with

“+o0

M asr(s)ds} |

ro > max {r,

— 0o

where r > 0 is given by (6.3.1) and

1 1 1
M:=max{l,——, 55, — .
V2R3 2K 20k,

For ¢t € R, by (6.2.5) and (6.3.1),

+oo
ITullo = sup| [ G(t.)Fu(s)ds
teR — 00
< [T L s u(s) () (5), o () ds
+oo 1
S ¢T(s)d8 < T27
s \/§5k’§
+oo too q
(Tu)" | = sup Golt, 5)F(s)ds| < / b (s)ds < 7,
teR —00 —00 \/5 k*
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and
t “+o00
[|(Tw)']| 0o = sup / Gy (t,s)Fy(s)ds — G (t,s)F.(s)ds
teR —o0 t
+oo
g/ §u§(|Gf(t78)|+|Gf(t7s)|)¢r(s)ds
—00 €
1 [t
< ﬁ[m oOr(8)ds < 1,
t “+o00
|(Tu)"|| 0o = sup / G5 (t,s)F,(s)ds — G;’(t, $)F,(s)ds
teR |J —co t

+oo
S/ sup (|G (¢, s)| + |G5 (t,5)|) ¢ (s)ds

—o0o teR

“+o0
< / Or(8)ds < ra.

Therefore, T'D C D and, by Theorem 1.2.6, T" has at least a fixed point
ue Xy.

This fixed point is a solution of (6.1.1),(6.1.2) and, moreover, a homo-
clinic solution of (6.1.1),(6.1.2), by Lemma 4.2.1. O

Remark 6.3.2. By Lemma 4.2.1, the solution of problem (6.1.1),(6.1.2)
given by the previous theorem, is also a solution of the complementary
Lidstone problem (6.1.1),(6.1.3).

6.4. An infinite beam resting on granular foundations

Soil improvement via stone columns (filling a cylindrical cavity with
granular material) is achieved by accelerating the consolidation of the soft
soil due to the shortened drainage path with an increase in the load-carrying
capacity and/or a decrease in the settlement due to the inclusion of stronger
granular material.

Apart from improving the ground below the foundations of residential
as well as industrial buildings, stone columns are also installed in soft soils
or loose sand for railways and roadways due to the stringent settlement
restrictions.

Many studies are available on the analysis of rails, treated as infinite
beams on elastic foundations, subjected to concentrated moving loads as
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Fig. 6.4.1. Railway beam resting on reinforced granular fill-poor soil system.

well as dynamic loads, using different techniques. For details, see [107, 109,
122] and the references therein.

A longitudinal section of a rail idealized as an infinite beam resting on
a ballast layer of a granular fill-stone column-reinforced soft soil system is
sketched in Fig. 6.4.1.

The beam is founded on a granular fill layer of thickness H overlying
saturated soft soil. The shear modulus of the granular fill layer is G. The
diameter and the spacing of the stone columns are d and s, respectively.

In [107], the differential equation of an infinite beam with a uniform
cross-section and a moving load can be written as
d*w o d*w dw

+pv°—5 —c—+q=P(¢),

Bl e v e ~ e

where F1 is the flexural rigidity of the infinite beam, £ is the distance from
the point of action of load at time ¢ has been considered as £ = = — vt,
where v is the constant velocity at which the load is moving on the infinite
beam, w(§) is the transverse displacement of the beam at &, p is the mass
per unit length of the beam, c¢ is the coefficient of viscous damping per unit
length of the beam, P () is the applied load intensity and ¢ is the reaction
of the granular fill on the beam, a function that involves the shear modulus
G and the thickness of the granular fill layer H.
Suppose that, (see [107]),

1 d*w
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for some positive parameters a,b and d. Then an example of this type of
problems is given by the Lidstone boundary value problem in the whole
real line, composed by the differential equation

d*w a 1 1 o, d2w dw

(6.4.1)

together with the boundary conditions (6.1.2).
This problem (6.4.1),(6.1.2) is a particular case of the initial problem
(6.1.1),(6.1.2) with k* = 2 and

1 1
f(& 21, 20,23, 24) = e [(GH — pv®) 23 + cvxs + a 21 + P(€)]
is a continuous function.
If the applied load P(&) is bounded, that is, there is K > 0 such that

|P|| < K, and not identically to 0, then f verifies (6.3.1) with

1 1
or(§) == L& nl
By Theorem 6.3.1, there is a nontrivial solution w of problem
(6.4.1),(6.1.2), which is, by Lemma 4.2.1, a homoclinic solution.

[|GH — pv*Ir + (cv +a)r + K] .
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Introduction

This part combines several fields of differential and integral equations,
such as heteroclinic connections between two equilibrium points, semi-linear
problems, or problems with ¢-Laplacian equations, and integral equations
of Hammerstein type, all of them defined on the whole real line.

The interest in heteroclinic connections arises in part from the role they
play in some models for phase transitions, in particular time-dependent and
stationary solutions, that is why heteroclinic solutions are often referred as
transitional solutions. The study of sufficient conditions to guarantee the
existence of heteroclinic solutions for some boundary value problems has
increased in recent years, mainly due to the applications to non-Newtonian
fluid theory, diffusion of flows in porous media, nonlinear elasticity and
its relations to processes in which the variable transits from an unstable
equilibrium to a stable one.

Differential equations including nonlinear differential operators have
been widely studied. Perhaps, the most investigated operator is the classical
p-Laplacian, ¢,(y) := y|y[P~2 with p > 1, which, in the recent years, has
been generalized to other types of differential operators that preserve the
monotonicity of the p-Laplacian. These more general operators are usually
referred to as ¢-Laplacian or semi-linear operators. Therefore, the related
nonlinear differential equation has, for a second-order fully differential
equation, the form

(D(u' (1)) = f(t, u(t), (1),

where ¢ : R — R is an increasing homeomorphism such that ¢(0) = 0. More
recently, the case has been considered in which the increasing homeomor-
phism ¢ is defined on the whole real line but is not surjective (see, e.g., [23]),
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and the case in which ¢ is defined only on a bounded domain (see, e.g., [24]).
In this case, such an operator is also called singular ¢-Laplacian.

As it is known, the main difficulty to pass from p = 2 to p # 2 is the
fact that in the first case, when p = 2, the differential equation can be
written as an equivalent integral equation applying the Green’s function
technique. However, for p # 2, it is impossible to find such Green’s function
in the equivalent integral operator since the differential operator (¢(u’))’ is
nonlinear.

The first three chapters of this part present sufficient conditions for
three different semi-linear problems, involving general ¢-Laplacian equa-
tions defined on the whole real line, including for some of them, the singular
¢-Laplacian case. Let us point out that, in each case, the existence of het-
eroclinic solutions is obtained without asymptotic, growth or other extra
assumptions on the nonlinearities ¢ and f. Roughly speaking, our method
applies conditions on the inverse operator ¢!, rather than on ¢ and f, as
it is usual in the literature. Moreover, this technique remains useful, even
in the case where ¢(y) = y.

As it was mentioned in the case of the p-Laplacian, a key method to deal
with BVP is to write an equivalent integral equation. In this way, we can
see the integral equations as generalizations of BVPs. In fact, the nonlinear
Hammerstein integral equations have been one of the most important fields
of application of the methods and techniques of nonlinear functional anal-
ysis and they have been extensively studied since Hammerstein published
the seminal paper [80].

Chapter 10 contains a Hammerstein integral equation defined on the real
line, where the discontinuous nonlinearity can depend on the derivatives
too, without assuming monotone or asymptotic conditions. We point out
that the kernel functions, k(t, s), and their partial derivatives in order to
the first variable, may be discontinuous and may change signal. Our method
presents two features, among others:

e the value of the limit of k(¢, s), when |t| — oo, can be seen as a criterion
to classify the existent solutions as homoclinic or heteroclinic solutions;

e it can be applied to boundary value problems with differential equations
of any order n > m, m being the higher order of derivatives on the
nonlinearity.

The last section contains an application to a fourth-order nonlinear
boundary value problem, which models moderately large deflections of
infinite nonlinear beams resting on elastic foundations under localized
external loads.



Chapter 7

Heteroclinic Solutions
for Semi-linear Problems (i)

7.1. Introduction

In the recent years, a wide literature has been produced to study boundary
value problems (BVPs) composed by differential equations of the form

(B('()) = f(t,u(t), ' (t))
with ¢ an increasing homeomorphism, and different types of boundary
conditions. A classical operator of this family is the p-Laplacian ¢,(y) =
ly|P~2y, (p > 1), which arises in many models, such as non-Newtonian fluids
theory, diffusion of flows in porous media and nonlinear elasticity, among
others (see, for example, [14, 23, 42, 59, 108, 123, 127]).

More recently, BVPs on the half or the whole line have been considered
with surjective or nonsurjective (singular) homeomorphisms, and sufficient
conditions for the existence of homoclinic or heteroclinic solutions were
obtained (see, for instance, [9, 43, 85, 101, 111, 135, 138, 140] and the
references there in) or for the solvability of problems with integral boundary
conditions (see [102, 103]).

In [37], the problem is studied

(G (1)) = f(t,u(t),v'(t), onR,
u(—o0) = =1, wu(+o00) =1,

with the following assumptions on the nonlinearity f:

(f0) f:R3 — R is continuous and satisfies the symmetry condition
f(t,l‘,y) = _f(_t7 _xvy) for all (t,l‘,y) €R37
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(f1) f(t,1,y) =0= f(t,—1,y) for all t, y € R;

(f2) ft,z,y) < O0forallt > 0,—-1 <z <1 and y € R. Moreover, for
every compact set of the form K = [—r,r] X [—¢,¢], where 0 <r < 1
and 0 < ¢ < 1, there exist tx > 0 and a continuous function hg :
[tx,00) = R such that

flt,z,y) <hg(t) forallt >tx and (z,y)€ K,

/+0° hi(s)ds = —oo.

In [103], the problem is considered
(B(p(t)2' (1)) + f(t, x(t),2' () =0, on R,

+oo
Jdim o) = [ g(sa().0'(5) ds

and

+oo
tliinoox(t) :/OC h(s,z(s),2'(s))ds,

where

e p e C(R,[0,00)) with p(t) > 0 for all ¢ € R and satisfying fj—;o pc(li) <
+00;

e ¢ :R — R is a strictly increasing sup-multiplicative-like function;

o f,g,h defined on R3, are Carathéodory functions, verifying some growth
conditions, at most linear on the space variables.

In this chapter, we consider the second-order discontinuous equation in
the real line,

(p(a(t)u' (1)) = f(t,u(t),u'(t)), ae.teR, (7.1.1)
with ¢ an increasing homeomorphism such that ¢(0) = 0 and ¢(R) = R,
a € C(R) with a(t) > 0, for t € R, and f : R® — R an L!-Carathéodory
function.
We look for heteroclinic orbits, that is, nontrivial solutions of (7.1.1)
such that
u(—o0) 1= til{noo u(t) = A, u(+00) := tilgrnoou(t) = B, (7.1.2)
where A, B € R such that A < B.
Remark that the existence of heteroclinic solutions for (7.1.1) is obtained
without asymptotic, growth or extra assumptions on the nonlinearities ¢
and f, applying similar arguments as in [71, 72]. Moreover, this result still
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holds when ¢(y) = y, that is, for equation
(a(t)' () = f(t,u(t),u/(t)), ae.teR.

7.2. Definitions and preliminary results

In this section, we present the functional framework for our problem and
some auxiliary results.
Consider the space

X = {u e C*R): lim uP(t)eR, i= 0,1}
|t]|—+o0

with the norm [[z]|x = max{[|z[ls, [2'[[}, where [[ylloc := sup;ep [y(t)]-
It is clear that (X, || - ||x) is a Banach space.
By a solution of problem (7.1.1),(7.1.2), we mean a function v € X such
that ¢ o (a-u’) € WH1(R), which satisfies (7.1.1),(7.1.2).
The following will be assumed:

(H1) ¢ is an increasing homeomorphism with ¢(0) = 0 and ¢(R) = R such

that
|07 (@)| < o™ (J]); (7.2.1)
(Hs2) a € C(R) with a(t) > 0, Vt € R, such that lim;_, 4 ﬁ € R, and
oo ds
— . 2.2
[m a(s) < 400 (7.2.2)

The next result states the relation between the boundary value
problem (7.1.1),(7.1.2) and the correspondent integral form.

Lemma 7.2.1. Suppose that f is an L'-Carathéodory and assumptions
(Hy), (H2) hold. Then u € X is a solution of problem (7.1.1),(7.1.2) if and

only if

u(t) = A—i—/t (L B (’Tu / f(ryu(r (r))dr) ds, (7.2.3)

where T, is the unique solution of the equation

/+OO LQB (T“ / frulr (T))dr> ds=B—A.  (7.24)

— 00
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Moreover,
Ty € [ylunyu] (725)
with
+oo
Yl = —/ |f (ryu(r), o (r))] dr (7.2.6)

and ys,, to be defined forward.

Proof. Let u be a solution of problem (7.1.1),(7.1.2). So, for some constant

Ty € R,
¢ (a(t)u'(t)) =Tu+/_ f(ryu(r),d (r))dr, forteR,
and
! _LflT t r,u(r),u () dr
wt) = 2w ¢ (u+/mf(7 (r), ())d).
By (7.1.2),

u(t) = A+ /t ! ot (Tu + /; I (ryu(r),d'(r)) dr) ds

o als)
and
av [T bt (e [ s ar)as= 5
— u 5 5 ' T = .
e T, . r,u(r), u s
To show that 7, is the unique solution of (7.2.4), consider the function
—+o0 1 S
P = [ oo (ot [ sty ar) as

and remark that F(y) is strictly increasing on R,

yulinflooF(y“) = —o0 and yulgﬂoo F(y,) = +oo0. (7.2.7)
Moreover,
“+o0 1 s
Fy) = / @dfl (ym +/ I (ryu(r),u (r)) dr) ds <0,

for yi1,, given by (7.2.6), and, for

“+o0
You = / |f (ryu(r), ()] dr, (7.2.8)

— 0o
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we have

F(y2u) = /_J:O % <y2u / f(ru(r ’(r))dr) ds > 0.

y (7.2.7), there are k > 0 and
Y3u = You + K (7.2.9)
such that
F(ysu) > F(y2u) + B — A.

Therefore, the equation F(y) = B — A has a unique solution 7, and 7, €

[Y1u, Y3u)-
If u(t) verifies (7.2.3) and (9.2.5), then by standard arguments, it can

be shown that u(t) is a solution of problem (7.1.1),(7.1.2). O

To overcome the lack of compactness of set X, we apply the following
compactness criterion, suggested in [51].

Lemma 7.2.2. A set M C X is compact if the following conditions hold:

(1) M is uniformly bounded in X;

(2) the functions belonging to M are equicontinuous on any compact
interval of R;

(3) the functions from M are equiconvergent at +oo, that is, given
e > 0, there exists T(e) > 0 such that |f(t) — f(£o0)| < € and
If'(t) — f(£o0)| <€, for all [t| > T(e) and f € M.

7.3. Existence of heteroclinics

The main theorem gives sufficient conditions for the existence of heteroclinic
solutions of problem (7.1.1),(7.1.2), without asymptotic, growth or extra
conditions on the homeomorphism ¢ or on the nonlinearity f.

Theorem 7.3.1. Assume that f : R* — R is an L'-Carathéodory function
and assumptions (Hi), (Hz) hold. Then problem (7.1.1),(7.1.2) has at least
a solution uw € X, that is, a heteroclinic solution of (7.1.1).

Proof. Define the operator T': X — X given by

Tu(t):A+/_t —¢> (Tu / (ryulr (r))dr)ds

with 7, the unique solution of (7.2.4).
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To prove the theorem by Lemma 7.2.1, it is enough to show that T has
a fixed point.

Claim 1. T : X — X s well defined.

Let u € X. So, there is p > 0, such that ||u y < p.
As fis an L'-Carathéodory function then there exists a positive function
¢, € LY(R) such that |f (¢, u(t),u' ()] < ¢,(t), a.e. t € R, and

t —+o0
/ 1 (), o ()| dr < / 1 (ryu(r), o (7)) dr

— 00 — 00

< /+°° ©p(t)dt < 4o0. (7.3.1)

— 00

So, by (H1), (Hs), Tw is continuous on R.
In the same way, it is clear that

@0 0= =0 (ru+ [ ; F )l (1)

is continuous on R. Therefore Tu € C(R).
Moreover,

¢
lim Tu(t): hm A+/ L -1

t——o0

o [Lanirsrs)e

t
1
lim Tu(t) = t_l)iElOOA —|—/ —¢ !

TN o al5)

X (Tu + /; I (ryu(r),d'(r)) dr) ds = B,

and, by (Hy), (Hz) and (7.3.1),

by (7.2.4),

. P B

x (n —|—/_toof(r,u(r),u'(7‘))dr) ER.

Therefore Tu € X.
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Claim 2. T is compact.
Let B C X be a bounded subset and u € B. Then there is p; > 0 such that
lully < pr. that is, [lull, < pr and '], < pr.

To apply Lemma 7.2.2, we follow several steps:

Step 2.1. T'B is uniformly bounded, for B any bounded set in X.
By (7.2.1), (7.2.5) and (H;), we have

|Tull, = sup
teR

A+ /too %(ﬁfl (Tu + /; £ (ryu(r),u' (1)) dr) ds
i+ [ s

plal+ [ ot (inl+ [ 1o ds

ds

IN

o (m [ st ar)

IN

teER —oo a(8)

|4] +/:O $¢‘1 <|Tu| +/_; <pp1(r)dr> ds

+oo +oo 1
< |A|+ o7t (2/ ©p, (r)dr + k:) / ——ds < 400,

oo —oo als)

IN

and
)l = swp| o (rar [ u o )
<m0 (1nl+ [ 17 atr) o) ar)

1 Feo
<su—1<7'u+/ rdr)
teﬂ% a(t) | | e SOPI( )
+oo 1
< ¢t (2/ ©py (r)dr + k) sup — < +o00.
— 00 teR a(t)

Therefore, T'B is uniformly bounded in X.

Step 2.2. T'Bis equicontinuous on X.
For L > 0 consider ¢,ty € [—L, L]. Assume, without loss of generality,
that t1 < to.
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Then, by (7.2.1), (7.2.5) and (Hy),

-t = |[* i (s [ et )
_/”%@ / £ (rulr (r))dr)ds
[ o (o [ _stestniona)
[ e (mi+ [ et an ) as
o (2 ontrar ) [ o

— 0, uniformly in u € B, as t; — to,

IN

and
' ' = ! 17 ! U "(r)) dr
) @) - 0 )] = | o (s [ rmumnadionar)
! T, " r,u "(r)) dr
507 (e [ rrum e ar)

IN

(2 i) (2 L)

— 0, uniformly in u € B, as t; — to.
So, T'B is equicontinuous on X.

Step 2.3. T'Bis equiconvergent at +00.
Let u € B. Then, as previously,

Tu(t) — hm (Tu( ))’

‘/ —¢ <Tu / f(ryu(r (r))dr) ds
o e o) [

— 0, uniformly in v € B, as t — —o0,
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and

Tu(t) — lim (Tu(t))‘

t—+oo

-] [ e ([ f(r,um/(r))dr) s

T e (et [ttt ar) as
:/fi(ﬁ ( / F (rulr )ds
i)

— 0, uniformly in v € B, as t — +o0.

Moreover,

Tuy'(e) - gmm@u)’(t)’

-t (Tu +/t f(r,u(r),u’(r))dr)

—hm—¢ ! ()

t—— oca()

<o (ot [ ontr) = tim 67 )

— 0, uniformly in v € B, as t — —o0,

and

(@) - i (70 (0)

t—+4o0

(L—<Tu/fru )

— lim —¢ ( +/jf(r,u(r),u'(r))dr>

t—+o0 a( )

+oo 1 1
<¢” (2/_ @Pl(”d’"“f) \Tw 12&@\

— 0, uniformly in v € B, as t — +oo.
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Therefore, T'Bis equiconvergent at +oo, and, by Lemma 7.2.2, T is
compact.

Claim 3. TD C D for D C X a closed and bounded set.
Consider D C X defined by
D={reX:|ally < pa}

with ps given by

oo 1
p2>max{p1, |A\+K/ ——ds, Ksup—},
o a(s) ter a(t)

where

K:=¢! (2 /%o ©p, (T)dr + k:) .

— 00

Applying the same technique as in Step 2.1, we have

1Tull o = sup [Tu(t)|
teR

—+o0 1 S
< |A] -1-/_0O @Qb—l <|Tu| —i—/_oo ©or (r)dr) ds

+oo +oo 1
<|Al+ ¢t (2/ ©p, (r)dr + k:) / de < pa,

o —o a(s)

and

[Tl = sup|(Tw) ()]

teR
gﬁﬁigaﬂQmwgfguvwvxwmnw)

+oo
<gt (2/ ©p, (r)dr + k) sup % < p2.

—00 teR @

So, TD C D and, by Theorem 1.2.6, T has at least one fixed point
u € X, which, by Lemma.7.2.1, is a heteroclinic solution of (7.1.1). O

7.4. Example

Consider the second-order differential equation

[(u()” = (' ()" + 1]

o . ae teR, (74.1)

(2 +1)u'()*) =
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and the boundary conditions
u(—o0) = —1, wu(+o0)=1.

The above problem is a particular case of problem (7.1.1),(7.1.2), with

(w) = w?,
a(t) =1+ 2,
2-1) (v +1
sty = DL,
A=-1,B=1.

All assumptions of Theorem 7.3.1 are satisfied, namely f is an
L'-Carathéodory function with
(1) (PP +1)

QOP(LL) = 1 + t2 )

and therefore, there is a heteroclinic solution of (7.4.1) linking the two
equilibrium points —1 and 1.

We point out that, as far as we know, the existence of heteroclinic
solutions for (7.4.1) was not covered by the existent literature, namely,
because the nonlinearity f does not verify the asymptotic conditions in [9,
43, 112], or the growth assumptions of [102], for example.




Chapter 8

Heteroclinic Solutions for Semi-linear
Problems (ii

8.1. Introduction

This chapter considers the second-order nonlinear discontinuous equation
in the real line,

(@®)o(W' () = f(t,u(t), ' (t), ae. teR, (8.1.1)

where ¢ is an increasing homeomorphism with ¢(0) = 0 and ¢(R) = R,
a € C(R,R\ {0}) N CY(R,R) with a(t) > 0, or a(t) < 0, for t € R, and
f:R?® — R an L'-Carathéodory function.

We are looking for heteroclinic solutions, that is, nontrivial solutions of
(8.1.1) such that

u(—o00) := lim u(t) =v ,u(+00):= lim u(t)=vT, (8.1.2)

t——o0 t—+oo

with =, v € R such that v~ < v+.
In [53], the lower and upper solutions method is applied to study the
equation

(a(z(t))p(2' (1)) = f(t,2(t),2'(2)), ae. t,
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where a : R — R is a positive continuous function, and f : R® — R is a
Carathéodory function verifying, in short, the following assumptions on f:

e there exist a constant H > 0, a continuous function § : R™ — R* and a
function A € L([—L, L]), with 1 < ¢ < oo, such that

F(t,2, ) < AMBB(alt,2)|o(w))), for ae. |t] < L, (8.1.3)

every x € T : = [inficr ao(t), sup,cp 6(t)], and |y| > H;
e for every C' > 0, there exist functions no € L*(R), Ko € Wb ([0, +00)),

loc

null in [0, L] and positive in [L, +00), and N¢(t) € L' (R) such that

f(t2,y) < =Ko®)a(lyl),
f(=t,z,y) > K&(t)o(ly]), for ae. t > L, every z € I, |y| < Ne(t),
|f(t, 2z, y)| <ne(t) if x € T, [y| < Ne(t)
+ |/ ()| + |8 ()], for a.e. t € R. (8.1.4)

In [112], the author considers

(alt,w(t)$(a (1)) = F(t2(t), 7' (1)), ae. t,
r(—o00) =v7, z(+o0) = v,
with ¢ a general increasing homeomorphism on R, a : R2 — R a positive

continuous function and f : R®> — R a Carathéodory function verifying, in
short the following;:

e ¢ has a definite growth at infinity (sublinear, linear or superlinear);

o f(t,v™,0) <0< f(t,vT,0), for ae. t € R;

e there exist constants L, H > 0, a continuous function 6 : Rt — RT and
a function A € LY([—L, L]), with 1 < ¢ < oo, such that

[f(t,2,9)] < AB)O (alt, 2) [6(y)]),  for ace. [t < L,

every z € [v—,v], and |y| > H;
e for every C' > 0, there exist functions nc € L*(R), Ac € L ([0, +00)),

loc

null in [0, L] and positive in [L, +00), and N¢(t) € L' (R) such that

ft oz, y) < —Act)(|y]),
f(—=t,x,y) > Ac(t)(ly|), forae. t> L,
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for every z € [v™,v 7], |y| < Ne(t),

lf(t,z,y)| <nc(t) ifxev,vT], |yl < Ne(t), forae.teR.

Motivated by these two works, we consider Eq. (8.1.1) where the
function a(t) must have a definite sign, but can be positive or negative. This
information is important in some applications to traveling wave solutions
for reaction—diffusion equations: diffusion phenomena if a(t) is positive,
diffusion—aggregation processes if a(t) changes sign (see, for example, [25,
61, 70]).

We point out that, in this work, the existence of heteroclinic solutions for
(8.1.1) is obtained without asymptotic growth or other extra assumptions
on the nonlinearities ¢ and f, applying similar techniques suggested in

[71, 72]. On the other hand, our method remains valid for ¢ = I, that is,
for equation

(a(t)u' (1)) = f (t,u(t),u'(t)), ae. teR.

The study of boundary value problems on the whole real line, and the
existence of homoclinic or heteroclinic solutions, had an increasing inter-
est in the recent years due to the applications to non-Newtonian fluids
theory, diffusion of flows in porous media, nonlinear elasticity (see, for
instance, [9, 25, 43, 85, 101, 111, 135, 138, 140] and the references therein).
In particular, heteroclinic connections are related to processes in which the
variable transits from an unstable equilibrium to a stable one (see, for exam-
ple, [14, 23, 37, 42, 59, 61, 70, 108, 123, 127]). In this sense, heteroclinic
solutions are often referred as transitional solutions.

8.2. Auxiliary results

The functional set is defined as
X = {u ceC'R): lim uv9(t)eR, i= 0,1}
|t| —=+o0

with the norm
Joll = max {laln o'} where [yl 2= suplu(0)].

It can be proved, by standard arguments, that (X, ||-||y) is a Banach
space.

By a solution of problem (8.1.1),(8.1.2), we consider a function v € X
such that a - (¢ ou’) € WHH(R), satisfying (8.1.1),(8.1.2).
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The following assumptions will be considered forward:

(A1) ¢ is an increasing homeomorphism with ¢(0) = 0 and ¢(R) = R
such that

07 (w)| < o7 (Jwl); (8.2.1)
(A2) a € C(R,R\{0}) with a(t) > 0, or a(t) < 0, Vt € R, such that

lim J|a(t)] = +o0

[t]—+o0

and

+oo 9 [Hoo o(r)dr
/ ¢—1 (%) ds < +o0. (8‘2'2)

— 0o

The solvability of the integral equation associated to the problem
(8.1.1),(8.1.2) is studied in the next lemma.

Lemma 8.2.1. Consider that f is an L'-Carathéodory and assumptions
(A1), (A2) hold. Then u € X is a solution of problem (8.1.1),(8.1.2) if and

only if

u(t)y=v" + /t ¢! (T“ + Loo f ZE;L)(T)’M(T)) dr) ds (8.2.3)

— 00

with T, the unique solution of the equation

o (rt [ f ) e
/ ¢ ( e )ds- . (8.2.4)

Moreover,
Tu € (w1, we], if a(t) >0, Vi €R, (8.2.5)
or

Tu € [we, w1], if a(t) <0, Vt € R, (8.2.6)
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with
+oo
wy = —/_ |f (ryu(r), o' (r)) |dr (8.2.7)
and
+oo
wy 1= /7 If (ryu(r), o (1)) |dr. (8.2.8)

Proof. For u a solution of problem (8.1.1),(8.1.2), there is a constant
T» € R, such that

a(t) ¢ (u'(t)) = 7 +/_ f (ryu(r), ' (r))dr, forteR,

and
(t) = g <Tu + fsoof(;g(r)m/(r)) dr) |
By (8.1.2),
u(t) = v~ + /; - (ru + T :E;(r),U/(T>) dr) B
and

a(s)

To see that 7, is the unique solution of (8.2.4), define the function

/JroC o <y+f_soc f(T,U(T),U'(r))dr> n

— 00

s [T ( +f_oof(T,U(7")7“I(r>>dr> ds = v+,

F(y) == a(s)

As f is an L'-Carathéodory function, by (A4;) and (As), F is well defined.
If a(t) > 0, Vt € R, then F(y) is strictly increasing in R, and

— 00

+oo
. _ —1 .
yll}rfoo F(y) = [m ¢ (+00)ds = 400,

+oo
lim F(y) = / ¢! (—o00) ds = —oo.

Y—+—00 oo
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Otherwise, if a(t) < 0, Vt € R, then F(y) is strictly decreasing in R, and

+oo
lim F(y) = / ¢! (—o00) ds = —o0,

y—r+o00 0o
+oo
lim F(y) = / ¢t (+00) ds = +oo.
Yy——00 o

Therefore, the equation F(y) = v~ — v+ has a unique solution 7.
Moreover, F(w;) and F(ws) have opposite signs. For example, in the
case a(t) > 0, Vt € R, we have

Y wy + [° f (ryu(r),d/(r)) dr
F(wy) —/ ¢ ( o) )ds <0,

— 0o

for wq given by (8.2.7), and

Fluy) = /*W - (wz + f_oofmu(rxu/(r))dr) s>

a(s)

— 00

for wy given by (8.2.8). So 7, € [wy,ws], if a(t) > 0, Vt € R, and 7, €
[wa, wr], if a(t) < 0, Vt € R. O

8.3. Existence of heteroclinics solutions

The main result presents sufficient conditions for the existence of hetero-
clinic solutions of problem (8.1.1),(8.1.2) without the usual asymptotic or
growth assumptions on ¢ or on f.

Theorem 8.3.1. Suppose that f : R? — R is an L'-Carathéodory function
and hypothesis (A1), (Az) hold. Then problem (8.1.1),(8.1.2) has at least a
solution uw € X, that is, there is a heteroclinic solution for (8.1.1).

Proof. Define the operator T': X — X by

e ( t oo £ rum), () dr> ds,

Tu(t) = v~ + /

— 00

a(s)

where 7, is the unique solution of (8.2.4).
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From Lemma 8.2.1, it is enough to prove that 7" has a fixed point.
For clearance, we use several steps.

Step 1. T : X — X s well defined.
For each u € X, there is p > 0 such that |lul|y < p, and, as f is an
L*-Carathéodory function, a positive function ¢, € L'(R) such that

|f (tu(t), v/ (D) < ¢p(t), ae teR,

and

t “+o00
[ fryu(r),d (r)dr < / ©,(t)dt < 4o0. (8.3.1)

— 00

By (A1), (A2), Tu is continuous on R.
For the derivative of the operator,

o (e L] (), W) dr
(Tu) (6= ¢ ( o )

is continuous on R, and, therefore, Tu € C(R).

lim Tu(t) = tliznoc v+ /t 5! <Tu +/ f(T,u(T‘),u’(T))dr> ds— v,

t——00 a(s)

— 00

by (8.2.4),
t “ ° ryu(r),u (r))dr
tllinoo Tu(t) - tilinoc vt /700 ¢71 (T - f_oc f(a(:)( ) - ( )) )ds N V+.

From (A1), (A2), (8.2.5), or (8.2.6), and (8.3.1),

: / (T [ P ), () dr
tilznoo (Tu) (8) = tll{noctﬁ 1 ( a(t) )

_ -1 Tu _
=¢ <an_oo a(t)) =0
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and
. (e T )l ) dr,
tilgloo (Tu) () = ¢ ( limy— 4 o a(t) =0
So, Tu € X.

Step 2. T is compact.

Consider a bounded subset B C X, u € B, and py > 0 such that
lullx < po. Therefore, ||ulloco < po and ||t/]|c < po-

To verify the assumptions of Lemma 7.2.2, we consider some claims.

Claim 2.1. T'B is uniformly bounded, for B a bounded set in X.
By (8.2.1), (8.2.5), or (8.2.6), and (A1), we have

- +/t - (m + /7. f(r,u(rm/(r))dr) s

a(s)
t
Ssup\y_|—|—/ ot ( )ds
teR —00

o+ [2 o Flru(r), o (r))dr
< sup|v7| +/ ot <|TU| h ffoo i((nu(r),u )l dr) ds

[Tuljoc = sup
teR

a(s)

uplvl+ [ .
e ()
st (fu—”“) -

and, by (As),

naw/m=g£¢4<%+fmfasmuw»w>
<sup 7" (Im +/ faz ;L'( r),u (T))Idr>
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< sup ¢—1 <|Tu + f|a( )TPO )d )

teR
9 [to° r)dr
< sup (]S_l ‘L“’A < 400.
teR la(t)|

So, T'B is uniformly bounded in X.
Claim 2.2. T'B s equicontinuous on X.
For L > 0, consider t1,ty € [—L,L]. Assume, without loss of generality,

that t1 < to.
Then, by (8.2.1), (8.2.5) and (A4,),

/tl o1 (Tu + fjoo f(r,u(r),u’(r))dr) ds

I Tulty) = Tultz)l = | [ a(s)

(" T+ 7 flryu(r), o/ (r))dr .
[ ( a(s) )d

— 00

/ttg - (Tu + ffoo f(;"(,s)(r),u (r))dr) ds

/tz 7l + 2 1f (ryu(r), o/ (r))dr| s
la(s)|

2 [T gy (r)dr
/ ( as) )ds
.

0, uniformly as t; — to,

and

(Tw) (t1) — (Tw) (t2)| = ‘Qsl (Tu + [ f (ru(r), o' (r)) dr>
a(ty)

) (Tu + [ F(rule), () dr>

a(t2)

— 0, uniformly as t; — to.

Therefore, T'B is equicontinuous on X.
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Claim 2.3. T'B s equiconvergent at +00.
Let u € B. As in the previous claims

AR '/ (ﬂfhf“f“”“ﬁwwnw>ds

a(s)

Co (2 e
<[ ( a(s)] )d

— 0, ast— —o0,

C (et [ F ) ) dr
[ ( a(®) )“

B /_+°° o1 (Tu + ffoo f(ryu(r),u (r) dr) ds

and

t—+oo

Tu(t) — lim (Tu(t))’ =

a(s)

+oo (1, +ffocf(r,u(r),u’(r))d7‘ )
[ e ( ) )d

o0 +oo r)ar
<[ () e

— 0, ast— +oo.

Moreover,

Tu ' 7"7u7"7u/7" dr
”WW—JEJmﬂﬂ=%4< + [l £ ryulr), (1)) )

a(t)
o ()|

_ TU+f @Po )d
’ ( ) )

— 0, ast— —o0,

<
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and

(Tw)'(t) = lim (Tu)'(t)

t—+oo

’ (et It rou(r), o (r)) dr
a(t)

g1 (Tu +fj;of(7‘,u(7‘),u’(r))dr>

limt_H_oo a(t)

—» 0, ast— 4o0.

So, T'B is equiconvergent at +co. By Lemma 7.2.2, T is compact.

Step 3. Let D C X be a closed bounded set. Then T D C D.
Suppose D C X defined by

D={zeX:|z]x <p},

where p; is such that

B ) too K (K
p1 = max{ﬁm lv |+/_OO ¢ <@) ds’ilelngqs (@>}7

with
+oo
K := 2/ ©p, (r)dr.

— 0o

Let u € D. By the same arguments as in Claim 2.1,
[Tl = sup [Tu(t)]
teR

— oo |Tu|+f @Po )d
<pl+ [ o ( ) )ds

o0 oo r)dr
< |V}+/+ ¢! (—QI_M 2o (r)d >d8<p1,

oo la(s)|
and
1(Tw)'||oo = sup |(Tu)'(t)]
teR

<sup ¢~
teR

(I L L) () dr
la(?)]

teR la(t)]

2 [T d
< sup (]S_l ( ffoo @PO(T> T) < pr1.
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Therefore, T'D C D. By Theorem 1.2.6, T" has at least one fixed point
u € X. That is, by Lemma 8.2.1, u is a heteroclinic solution of (8.1.1). O

8.4. Examples

Example 1. Consider the boundary value problem composed by the dif-

ferential equation

[(u(t)® = 1] e¥'®
1+ t2

(2 +1) (@)% = , ae teR, (8.4.1)

and the boundary conditions
u(—o0) = -1, wu(4o00)=1. (8.4.2)
This problem is a particular case of problem (8.1.1),(8.4.1), with
P(w) = w’,
a(t) =1+12,

($2 — 1) eY

t =
f(t 2, y) T

)

vT=-1, v =1.

It can be seen that all assumptions of Theorem 8.3.1 are satisfied and
f is an L'-Carathéodory function with

2
(p*+1) e
)=
@P( ) 1 T t2
Therefore, there is a heteroclinic connection linking the two equilibrium
points —1 and 1.
Example 2. The differential equation
[(u(t))? = 1][(w'(1))° + K]

(=" + Dl (O~ (1) = T+

, ae teR,
(8.4.3)

where n € N, k>0, and (8.4.2), is a particular case of problem
(8.1.1),(8.1.2), with

o(y) = y[" >y,

a(t) = —(1+1*"),
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(22 = 1)(y° + k)

t =
f(»x»y) 1+t4

b

vT=—1, v =1.
The assumptions of Theorem 9.2.6 are verified with

2 6
(1) = %

)
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and there is a heteroclinic solution of (8.4.3) between the equilibrium points

—1 and 1.



Chapter 9

Heteroclinic Solutions for Semi-linear
Problems (iii

9.1. Introduction

In this chapter, we study the second-order nonautonomous half-linear equa-
tion on the whole real line,

(a(t,u(®) ¢ (W' (1) = f(t,u(t),u'(t), ae teR, (9.1.1)
with ¢ an increasing homeomorphism, ¢(0) = 0 and ¢(R) = R, a €
C(R2,R) such that a(t,z) > 0 for (t,z) € R? and f : R® — R an L!-
Carathéodory function, together with the boundary conditions

u(—00) := lim u(t)=v", wu(+oo):= lim wu(t)=rv", (9.1.2)

t——o0 t—+oo

with v7, v~ € R, such that v~ < vT. Moreover, an application to singular
¢-Laplacian equations will be shown.

The problem (9.1.1),(9.1.2) was studied in [53, 112]. This chapter con-
tains several results and criteria. For example, Theorem 2.1 guarantees
the existence of a heteroclinic solution under, in short, the following main
assumptions:

e ¢ grows at most linearly at infinity;

o f(t,v™,0) <0< f(t,vT,0) for a.e. t € R;

111
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e there exist constants L, H > 0, a continuous function 6 : Rt — RT and
a function A € LP([-L, L]), with 1 < p < oo, such that

|f(t,z,y)| < A(t) 0(a(t,z)|y|), forae. |t| <L, everyze [v,vF],

+oo Sl—%
> H, ds = ;
[l / gy s = e
e for every C > 0, there exist functions nc € L'(R), Ac € Li ([0, +0)),
null in [0, L] and positive in [L,+0o0), and N¢(t) € L' (R) such that

fltzy) < —Ac(t)o(lyl),
f(=t,z,y) > Ac()o(ly|), forae.t>L, everyz € [v,v1],
ly| < Ne(t),
(bl <ne® ifae [y v4],Jyl < No(t), forac. t €R.

Motivated by these works, we prove, in this paper, the existence of hete-
roclinic solutions for (9.1.1) assuming a Nagumo-type condition on the real
line, and without asymptotic assumptions on the nonlinearities ¢ and f. The
method follows arguments suggested in [71, 72, 115], applying the technique
of [115] to a more general function a, to an adequate functional problem and
to classical and singular ¢-Laplacian equations. The most common appli-
cation for ¢ is the so-called p-Laplacian, that is ¢(y) = |y[?~2p, p > 1, and
even in this particular case verifies (9.1.3), the new assumption on ¢. On
the other hand, to the best of our knowledge, the main result is even new
when ¢(y) =y, that is, for equation

(a(t,u(t)) ' () = flt,u(t),d'(t), ae. teR.

The study of differential equations and boundary value problems on the
half-line or the whole real line and the existence of homoclinic or heteroclinic
solutions have attracted increasing attention in the recent years due to the
applications to non-Newtonian fluids theory, diffusion of flows in porous
media, and nonlinear elasticity (see, for instance, [9, 25, 43, 85, 104, 110,
111, 135, 138, 140] and the references therein). In particular, heteroclinic
connections are related to the processes in which the variable transits from
an unstable equilibrium to a stable one (see, for example, [37, 42, 59, 61, 70,
108, 123, 127]), this is why heteroclinic solutions are often called transitional
solutions.
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Throughout this chapter, we consider the set X := BC'(R) of the C*(R)
bounded functions, equipped with the norm ||z = max {||z|_,||'||. .},
where [yl = sup,cg [y(t)].

By using standard procedures, it can be shown that (X,|[-||y) is a
Banach space.

As solution of problem (9.1.1),(9.1.2) we mean a function v € X such
that t — (a (t,u(t)) ¢ (v/(t))) € WHYHR), satisfying (9.1.1),(9.1.2).

The following hypotheses will be assumed:

(Hy) ¢ is an increasing homeomorphism with ¢(0) = 0 and ¢(R) = R
such that

67 (w)] < &7 (Jwl); (9.1.3)

(Hs) a € C(R? R) is a continuous and positive function with a(t, z) — +oo
as [t| — +oo.

9.2. Existence results

The first existence result for heteroclinic connections will be obtained for
an auxiliary functional problem without the usual asymptotic or growth
assumptions on ¢ or on the nonlinearity f.

Consider two continuous operators A : X — C(R), x — A,, with
Ay > 0,Vz € X,and F : X — L'YR), z — F,, and the functional
problem composed by

(Au(t) ¢ (W' (1)) = Fu(t), ae. teR, (9.2.1)

and the boundary conditions (9.1.2).
Define, for each bounded set 2 C X,

m(t) = min 4, (1 (9.2.2)

and, for the above operators, assume that

(F1) For each n > 0 there is 1, € L'(R), with ¢,,(t) > 0, a.e. t € R, such
that [F,(t)| < 1y (t), a.e. t € R, whenever ||z <.
(A1) Agy(t) = 400 as |t| — +oo and

o0 +oo r)ar
/+ ot <M> ds < +oo. (9.2.3)

m(s)

— 00
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Theorem 9.2.1. Assume that conditions (Hy), (F1) and (A1) hold. Then
there exists u € X such that A, - (¢pou’) € WHLL(R) wverifying (9.2.1) and
(9.1.2).

Moreover, this solution is given by

t Tu 5 F,(r)dr
u(t) = v~ +/m ¢t ( +f;1°:(8) ) )ds, (9.2.4)

where T, is the unique solution of

/+oc - (Tu + [ Fu(r) dr) ds — vt — - (9.2.5)

—00 A’U«(S)
with
Tu € w1, ws), (9.2.6)
for
+oo
wy 1= —/ |Fy ()| dr, (9.2.7)
+oo
wy = / |Fy (r)| dr, and ws = wa +k, (k> 0). (9.2.8)

Proof. For every x € X, define the operator T': X — X by

B b Tt ffoo F, (r)dr
T,(t)=v —|—/_OO¢ ( A.05) >ds,

where 7, € R the unique solution of

+o0 s
/ o1 (Tm—FfOOFz (r)dr) ds e ot

— 00 Am (3)

To show that 7, is the unique solution of (9.2.5), consider the strictly
increasing function in R

+oo S F,(r)dr
G(y) ::/ ot <y+f_22(s)() )ds,
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and

“+o0
lim G(y) = / ¢~ (+00) ds = +o0. (9.2.9)

Y—r—+00 o

Moreover, for wy given by (9.2.7) and ws given by (9.2.8), G(w;) and
G(ws) have opposite signs, such as

G(wl) N /+oo (b*l <w1 +f_oc F, (T) d’l‘) ds <0 < A -

. Az (s)
+oo w S F,(r)dr
Glus) = [ ¢>1< 2”;&3) ) >d3>0.

As G is strictly increasing in R, by (9.2.9), there is & > 0 such that w3 =
wy + k and G(w3z) > vT — v~. Therefore, the equation, G(y) = v~ — v,
has a unique solution 7., and by Bolzano’s theorem, 7, € [wy, ws3] .

It is clear that if T" has a fixed point u, then wu is a solution of problem
(9.2.1),(9.1.2).

To prove the existence of such fixed point, we consider several steps:

Step 1. T : X — X is well defined
with the positivity of A and the continuity of A and F', T,, and

R fioc F, (r)dr
T,(t)=¢" ( 00 )

are continuous on R, that is, T, € C*(R).
Moreover, by (Hi), (F1), (A1) and (9.2.5), T, and 7, are bounded.
Therefore, T, € X.

Step 2. T is compact.
Let B C X be a bounded subset, € B, and po > 0 such that [|z|/y < po.
Consider m(t) given by (9.2.2) with Q = B.

Claim. T'B is uniformly bounded in X.
By (9.1.3), (9.2.6) and (A;), we have

V_+/t - (Tm—Ffoo F, (r) dr) s

— 00 AI(S)
<o (il [ o )«)

[Tl o = sup
teR

ot [0 Fo(r)dr
Az (s)
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t Tol + [0 |Fe(r
<sup | |y~ |—|—/ ¢t I7el + )| m()|dr ds
teR —o0 Az (s)

_ oo L (mal + [T e (r)r

+o0 Foo r
< ’V_} +/ e <2f ¢P08) )d —|—/€> ds < +oo,

—oo m(

and
170 —wp¢1<“+f Pﬂ)d)‘
hd+f (r)|dr
S sup ¢ ( )
|n4+f*“w%<>
S sup ¢ ( )

2 [T, (r)dr + k
< sup gb_l( f Voolr 0 ><—|—oo.

teR m(

So, T'B is uniformly bounded in X.

Claim. T'B is equicontinuous on X.

For M > 0, consider, t1,ty € [—-M, M|, and, without loss of generality,
t < ta.

Then, by (9.1.3), (9.2.6) and (A4,),

" Ta ° F, (r)dr
|ﬂ@ﬂ—ﬂﬁg|:‘/ ¢1< +£§@f) )ds

— 00

2 (7, —|—f_soc F, (r)dr
—/Oo¢1< 4,05) )ds

21+ f_soc F, (r)dr
l;¢l< 4,5 )“
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2 |Tz\—|—ffoo\Fz(7‘)|dr
/¢ ( 4,9 )ds

t2 e r)dr
[ <2foo m)m +k>d3

— 0, uniformly as t; — to,

IN

IN

and
Ty h F, (r)dr
TL0) ~ Thfto)] = ‘¢( e )

e (Tm —|—figoc F, (1) dr)

Az (t2)

— 0, uniformly ast; — to.

Therefore, T'B is equicontinuous on X.
Claim. T'B is equiconvergent at 4o0.

Let w € B. As in the claims above,

. b (et [ Fe(r)dr
T.(t) — lim (Tm(t))‘ = ‘/_mgz) ( e )ds

t——o0
_ /t - (2 fj;o wpo(r)dr—i—k) i

—oo m(s)

— 0, as t — —o0,

and

7.(0) - lim (7.(0)] -

t—+oo

t (Tt [ Fe(r)dr
/700¢ ! ( A4.(5) >ds

_/+oo - (’TI —l—f_oc F, (r) dr) ds

Az(s)
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+oo . Tz+fjoon(’/‘)d’/‘
oo ( 4,5 )ds

o0 +OC
/+ - <2foo Uy (r)dr + k) s

IN

m(s)
— 0, ast — +o0.

Moreover, by (A1),

T,(t) — t_ljr_lloo T;(t)’ = ‘qs—l (Tw + f;o;(gx (r) dr)
< (mzwm)|

-1 Tz + fioo ’(/}PO (’I‘)d’l‘
i ( 2.0 )‘

IN

— 0, as t - —o0,

and

Ty i F, (r)dr
70 - Jim 70| - ‘¢< ”-Aj(t)“ )

] Tw""fjooj F, (T) dr
0N T o A4

— 0, as t — +o0.

So, TB is equiconvergent at +oo, and, by Lemma 7.2.2, T' is compact.

Step 3. Let D C X be a closed and bounded set. Then T'D C D.
Consider D C X defined as

D={zeX:|z|x <pm},

with p1, such that

+oo K K
o= bl [0 () o™ ()




Heteroclinic Solutions for Semi-linear Problems (i) 119

with

“+o0
K:=2 Yoo (r)dr + k,

and

m*(t) := min Ay (t).

Let € D. Following similar arguments as in previous claims, with m(t)
given by (9.2.2) and Q = D,

1Tzl = sup T2 (2)]
teR

_ oo Il [T (r)dr

- +00 2f+001/)p0 )dr + k
S’VH-/ o~ ( “(5) >d5<,01,

oo m

and

|Tw|+f ()] dr
T . = sup|T.(¢)| < sup ¢!
R R e v

“+o0
<sup ¢ <2f wpo(t) dr+k> < p1

teR m*

Therefore, TD C D. By Theorem 1.2.6, T, has a fixed point in X, that
is, there is a heteroclinic solution of problem (9.2.1),(9.1.2). O

To make the relation between the functional problem and the initial
one, we apply lower and upper solutions method, according to the following
definition.

Definition 9.2.2. A function o € X is a lower solution of problem
(9.1.1),(9.1.2) if t = (a (t, a(t)) p(/(t))) € WHL(R),

)
(a(t,a(t)) o/ (t ))) ft,alt),d (t), ae teR, (9.2.10)
and

a(—0) <v7, al+oo) <vt. (9.2.11)
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An upper solution 5 € X of problem (9.1.1),(9.1.2) satisfies t — (a(t, 5(t))
#(B'(t))) € WHL(R) and the reversed inequalities.

To have some control on the first derivative, we apply a Nagumo-type
condition.

Definition 9.2.3. An L!-Carathéodory function f : R® — R satisfies a
Nagumo-type growth condition relative to «, 8 € X, with «(t) < B(¢),
Vt € R, if there are positive and continuous functions 1,0 : R — R, such
that

, R e O P
:g}glﬁ(lﬁ) < 400, /0 7o (s)|)d8 = +o0, (9.2.12)

and

lf(t,z, )l <o) 0(lyl), forae teR and oft) <z < B(1)
(9.2.13)

Lemma 9.2.4. Let f : R? — R be an L'-Carathéodory function f : R® — R
satisfying a Nagumo-type growth condition relative to «, 8 € BC(R), with
a(t) < B(t), Vt € R. Then there exists N > 0 (not depending on u) such
that for every solution u of (9.1.1), (9.1.2) with

a(t) <u(t) < B(t), forteR, (9.2.14)
we have
/][ oc < N. (9.2.15)

Proof. Let u be a solution of (9.1.1),(9.1.2) verifying (9.2.14). Take r > 0
such that

r>max{{1/_{,|y+|}. (9.2.16)

If |u/(t)| < 7Vt € R, the proof would be complete by taking N > r.
Suppose there is tg € R such that |u/(tg)| > N.
In the case u'(t9) > N, by (9.2.12), we can take N > r such that

/a(t7u(t))¢(N) |¢_1(m)|

— S ds > M (supﬂ(t) — inf oz(t)), (9.2.17)
et 0197 Gy

teR teR

with M := sup,cp 1 (t), which is finite by (9.2.12).
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By (9.1.2), there are ¢1,t2 € R such that t; <o, v/(t1) = N, u/(t2) = r
and r < u/(t) < N,Vt € [t1,t2]. So, the following contradiction with (9.2.17)
holds by (9.2.12):

/a(t,u(t)) (N) ’qu (W)’ d
S
a(t,u(t))é(r) (‘(b (a(s u(s))> ’)

a(tu(t))d(u’(t1)) ‘¢71 a(s ‘
_ / ( (s, ( ))) ds
(tau()p(u (t2)) 0 (’525

t1 ul(s) , ,
Ty (O () ds

to

R )
- / By

21 f(s,uls), ' ()],
< /t1 P00 (5)) u'(s) ds

<M (u(tz) = u(tr))

< 01 (sup () ~ i (1))

teR teR

So, u/(t) < N,Vt € R.
By similar arguments, it can be shown that w/(t) > —N,V¢ € R.
Therefore, |[u/||cc < N,Vt € R. O

The following lemma, in [141], provides a technical tool to use forward.

Lemma 9.2.5. For v,w € C(I) such that v(x) < w(z), for every x € I,
define

q(z,u) = max{v, min{u, w}}.
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Then, for each u € C(I), the next two properties hold:

(a) Lg(z,u(z)) exists for a.e. z € 1.
(b) If u,upy, € CH(I) and wy, — u in C(I), then

%(](x»um(w)) — %q(&u(w)) for a.e. x € 1.

The main result will be given by the following theorem.

Theorem 9.2.6. Suppose that f : R® — R is an L*-Carathéodory function
verifying a Nagumo-type condition and hypothesis (Hy), (Hz). If there are
lower and upper solutions of problem (9.1.1),(9.1.2), « and (3, respectively,
such that

a(t) < B(t), VteR,

then there is a function u € X with t — (a (t,u(t)) ¢ (u'(t))) € WHLR),
solution of problem (9.1.1),(9.1.2) and

at) <u(t) < Blt), VteR.

Proof. Define the truncation operator @ : WH(R) — X < WLL(R)
given by

Q) == Qu(t) = § z(t), a(t) <x(t) < B(1),

Consider the modified equation

(a.0u) 6 (50u)) ) =1 (1Qu0 500

L u(t) — Qu(®)
L+ 2 1+ Ju(t) — Qu(t)]

for a.e. t € R, which is well defined by Lemma 9.2.5.

_|_

(9.2.18)

Claim 1. Every solution u(t) of problem (9.2.18),(9.1.2) verifies

alt) <ut) < B(t), VieR.
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Let u be a solution of problem (9.2.18),(9.1.2), and suppose, by contra-
diction, that there is tg such that a(to) > u(to). Remark that, by (9.2.11),
to # too as u(+oo) — a(+oo) > 0.

Define

Itréi]él(u(t) —a(t) =u(t1) —alt) <0.
So, there is an interval |t2, ¢1] such that u(t) — a(t) < 0, for a.e. t €]ta, t1],
and, by (9.2.10), this contradiction is achieved:

(alt, a(t)) d(a’ (1)) = (a(t»QuW i (%Q““)))/

L ult) — Qul®)
L+ 2 1+ Ju(t) — Qu(t)]

= 7 (1 Qu. Gaun ) +

< f(t,alt),a (1) < (a(a(t)) (o (1)))".

Therefore, a(t) < u(t), V¥t € R. Following similar arguments, it can be
proved that u(t) < 5(t), Vt € R.

Claim 2. Problem (9.2.18),(9.1.2) has a solution.
Let A: X — C(R) and F : X — LYR) be the operators given by
A = a(t, Q. (t)) and

L u(t) = Qu(t)
14621+ Ju(t) — Qu(t)]

d
If, for
p=max {[af o 1Bl 1ol 181 N},

with N given by (9.2.15),

1 Ju®) - Qu(t)]
1+ £2 1+ [u(t) — Qu(t)]

|Fy| < ‘f (t,Qz(t), %Qz(t))‘ +

d
<|r (re.. fau) | < ut0,
then F, verifies (F}). Moreover, from

a(t, Qx(t)) 2 min{a(t, a(t)), a(t, (1))} ,
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we obtain that A satisfies (A1) with 0<m(t) < miner{a(t, a(t)),

a(t, B(t))}-
So, by Theorem 9.2.1, problem (9.2.18),(9.1.2) has a solution, which, by
Claim 1, is a solution of problem (9.1.1),(9.1.2). O

9.3. Example

Consider the boundary value problem, defined on the whole real line, com-
posed by the differential equation

[((tu(®)? + 1) (u'(1)°) = [(u(t)) 1——’—175]2(1/(15))

coupled with the boundary conditions

u(—o0) = —1,u(+o00) = 1. (9.3.2)

. ae teR, (9.3.1)

Remark that the null function is not a solution of problem (9.3.1),(9.3.2),
which is a particular case of (9.1.1),(9.1.2), with

$(w) = w?,
alt,z) =1+ (ta)*,
(= - 1)y?
f(taxay) - Wa
v~ =-1, and v' =1

All hypotheses of Theorem 9.2.6 are satisfied. In fact,

e fis an L'-Carathéodory function with

ooty = U7
P 1+¢2 7
o ¢(w) verifies (H1) and function a(t, z) satisfies (Ha);
e the constant functions a(t) = —1 and S(t) = k, with k € [1, +oo[, are

lower and upper solutions of problem (9.3.1),(9.3.2), respectively.
e f(t,x,y) verifies a Nagumo-type condition for —1 < z < k with

P(t) and  0(y) = y*.

BEENE

So, by Theorem 9.2.6, there is a heteroclinic connection u between two
equilibrium points —1 and 1 of problem (9.3.1),(9.3.2), such that

“1<u(t)<k, VteR, k>1.
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9.4. Singular ¢-Laplacian equations

The previous theory can be easily adapted to singular ¢-Laplacian
equations, such that for equations

(a(t,u(t) ¢ (u' (1) = f(t,u(t),u' (), ae teR, (1s)

where ¢ verifies

(Hs) ¢ : (=b,b) — R, for some 0 < b < +o0, this is an increasing homeo-
morphism with ¢(0) = 0 and ¢(—b,b) = R such that

[~ (w)| < ¢~ (Jwl).

In this case, a heteroclinic solution of (1s), that is, a solution for problem
(15),(9.1.2), is a function u € X such that u/(t) € (—=b,b), for t € R, and
tes (a(tult) ¢ (W () € WHH(R), satisfying (1s),(9.1.2).

The theory for singular ¢-Laplacian equations is analogous to Theorems
9.2.1 and 9.2.6, replacing assumption (H;) with (Hy).

As an example, we can consider the problem, for n € N and k£ > 0,

/!

u'(t)

(tu(t)*" +1) :
L (w(t))

9.4.1
((w(®)® =1) (') + ¥) D
= T , ae teR,

u(—o0) = =1, wu(+o0) =1.

Clearly, problem (9.4.1) is a particularization of (9.1.1),(9.1.2), with

w
w) = —, forwe(-1,1),
o) = e (1.1
which models mechanical oscillations under relativistic effects,
a(t,z) = 1+ (tz)*", (9.4.2)
(2% = 1) (jyl + k)
t = 4.
1(t,2,v) e (9.4.3)
v~ =-1, and vT =1

)
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Moreover, the nonlinearity f given by (9.4.3) is an L!-Carathéodory
function with

oplt) = LD

Conditions of Theorem 9.2.6 are satisfied with (H;) replaced by (Hj),

such as

e the function a(¢, x), defined by (9.4.2), verifies (Hs);

e the constant functions a(t) = —1 and S(t) = 1 are lower and upper
solutions of problem (9.4.1), respectively;

e f(t,x,y) verifies a Nagumo-type condition for —1 < z < 1 with

Y(t)=1 and 6(y) =yl + k.

So, there is a heteroclinic connection u between two equilibrium
points —1 and 1, for the singular ¢-Laplacian problem (9.4.1), such that

—1<u(t)y <1, VteR.



Chapter 10

Hammerstein Integral Equations
with Sign-Changing Kernels

10.1. Introduction

In this chapter, we consider a Hammerstein generalized integral equation

+oo
u(t):/ k(t, ) f(s,u(s),u/(s),...,u™(s)) ds, (10.1.1)

— 00
where k : R? — R is a W™ (R?), m € N, kernel function and f : R™*2 —
R is an L'-Carathéodory function.

The existence of solutions of integral equations, in general, and
Hammerstein equations, in particular, has been widely studied (see [18,
22, 41, 49, 84, 90, 148, 150], and the references therein). However, such
equations where the nonlinearity can depend on the derivatives are scarce.
In fact, this chapter considers discontinuous nonlinearities with derivative
dependence, without monotone or asymptotic assumptions, on the whole
real line.

We point out that the kernels, and their partial derivatives in order to
the first variable, are very general functions: they may be discontinuous and
may change sign. Moreover, the value of the limit of k(¢, s), when [t| — co
provides an easy criterion to see if the existent solutions are homoclinic or
heteroclinic.

The main tool to deal with the lack of compactness of the opera-
tor is the concept of equiconvergence at +oo, suggested, for example,
in [51, 128] (see Lemma 10.1.1). Our method for integral equations can
be applied to boundary value problems which include differential equations
of any order n > m.

127



128 Higher Order Boundary Value Problems on Unbounded Domains

In this sense, the last section of this chapter contains an application to a
fourth-order nonlinear boundary value problem, which models moderately
large deflections of infinite nonlinear beams resting on elastic foundations
under localized external loads.

Along the chapter, F := BC™ (R) is considered, the space of bounded
and continuous functions on R, with bounded and continuous derivatives
on R, till order m, equipped with the norm

lull = max{uP o, 5 = 0,1,...,m},

where ||ylloc = supyep |y(t)]. For W™ (R?), the space of functions in
L>(R?), with derivatives, till order m, in L>(R?), we assume the following:

(A1) Function k : R? — R verifies k € W™ (R?),

(@)
ligl kE(t,s) € R, lim aatik(t,s)

t—+oo t—+oo

eR, fori=1,...,m, Vs € R,

and for all 7 € R,
W 9Dk
—(t,8) — -
ot oty
(A2) There are positive functions ¢; : R — R* such that

oW
(o

lim
t—1

(r,8)] =0, forae.seR and j=0,...,m.

<j(s) forteR, ae.seR and j=0,...,m

with
—+oo
Y;i(s)er(s)ds < 400, for j=0,...,m.
The following lemma (see [51, 128]) provides a compactness criterion to
deal with the lack of compactness:

Lemma 10.1.1. A set M C X is relatively compact if the following condi-
tions hold:

(i) M is bounded in X:
(ii) the functions belonging to M are equicontinuous on any compact
interval of R,
(i) the functions from M are equiconvergent at +o0o, that is, given € > 0,
there exists T'(¢) > 0 such that

97(t) — g (+00)| < e and g (t) — g (—o0)| <,
forall|t| >T(e),i=0,1,...,m,m N, and g € M.
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10.2. Main result

The main theorem is as follows.

Theorem 10.2.1. If f : R™™2 — R is an L*-Carathéodory function and
assumptions (A1)—(A2) hold, then problem (10.1.1) has at least one solution
u(t) € BC™(R).

Proof. Define the continuous integral operator T : E — E given by

+oo
Tu(t) := / k(t,s) f(s,u(s),u/(s), ..., ul™(s))ds. (10.2.1)

— 00

Take u € E. Then, there is p > 0 such that |u||g < p.

To prove that the operator T is compact, it is enough to show that the
assumptions of Lemma 10.1.1 hold. For clarity, we divide the proof into
several steps.

Step 1. T is well defined and uniformly bounded in E.

As f is L'-Carathéodory, by the Lebesgue Dominated Convergence Theo-
rem, (Al) and (A2), we have, for i =0,...,m,

| (Tu)? || = sup

+oo0 9(i)
/ g k(t7s)f(s,u(s),u’(s)7...7u(m)(s))ds

teR |J -0 ot
+oo
< [ wle) [fsuls)(9), . u ™ (s))] ds
+oo

< Vi (8)pr(s)ds < +00.

Therefore | Tul|g < +oo, and, therefore, TE C E and T is uniformly
bounded in E.

Step 2. T is equicontinuous in E.

Consider t1,t2 € [0, 1]. By (A1),

[Tu(t1) — Tu(ts)]

+oo
S/ |k(t1, ) — k(t2, s)]| f(s,u(s),u’(s),...,u(m)(s)) ds

— 00

—+o0
< / |k(t1,s) — k(te, s)| or(s)ds — 0, as t1 — ta,

— 00
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and fori=1,...,m,

|T0)® (1) = () (1)

oo 19 oW
< Zr _
*/,Oo ‘ g (18) — g (t2,9)

S/ ‘—4(751,3)— ta,s)

‘f (s,u(s),u'(s),...,u""Y(s))|ds

ati o7 E (12,5)| @r(s)ds = 0, as s — b,

Therefore, T' is equicontinuous in F.

Step 3. T is equiconvergent at +00.
For uw € E, and for i =0,1,...,m,

(Tu®)? — lim (Tu(t)?

t—too

‘/M (8(;; (t5) = %(imﬁ)) Fs,u(s),u'(s), ..., u™(s))ds

> [ (i) (i)
_ / Ok, OOk
=) |0t ot

Then, by Lemma 10.1.1, T" is compact in E.

(£o0, 8)|pr(s)ds = 0, ast— too.

[ee]

Step 4. T'D C D, for some D C X a closed and bounded set.
Consider a subset D C X defined as

D:={ueX:|ully <ri},

with

“+o0
71 = max {r, Yi(s)pr(s)ds, fori=1,.. .,m} ,

where 7 > 0 is given by the L'-bound of f.
Arguing as in Step 1, it can be shown that, for i =0,1,...,m

. o0
| (TU)(” floo < Vi (8)pr(s)ds < rq.

Therefore, TD C D and, by Schauder’s fixed-point theorem, T has at
least a fixed point w € X, which is the solution of equation (10.1.1). O

Corollary 10.2.2. If lim;, o k(t,8) = limy_, 1o k(¢, ), the solution of
(10.1.1) 4s a homoclinic solution. If not, this solution is a heteroclinic
solution.
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10.3. Application to fourth-order BVPs and infinite beams

The integral equation (10.1.1) can be applied to boundary value problems
of order n such that n > m, defined on the whole real line.

As an application, we consider the case n = 4 and m = 2 through the
study of infinite beams deflection.

Jany, in [87] considers the nonlinear Bernoulli-Euler—v. Karman prob-
lem composed by the fourth-order differential equation

EIu™(t) + ku(t) = gEA(u’(t))Qu”(t) +w(t), teR, (10.3.1)
and the boundary conditions

— T _ ! — 1 1) —
u(£o0) 1= til?oou(t) =0, u'(+o0) = 75Llrinocu (t) =0. (10.3.2)
This problem is related to the analysis of moderately large deflections of
infinite nonlinear beams resting on elastic foundations under localized exter-
nal loads. More precisely, E' is the Young’s modulus, I the mass moment of
inertia, ku(t) the spring force upward, in which k is a spring constant (for
simplicity, the weight of the beam is neglected), A the cross-sectional area
of the beam and w(t) the localized and applied loading downward.

As it was proved in [47], the above problem (10.3.1),(10.3.2) can be
written as an integral equation

+oo
u(t) = G(t,5)f(s,u(s), u'(s),u"(s))ds, (10.3.3)

where G(t,s) is the Green’s function associated to (10.3.1),(10.3.2),
defined by

Gt s) = ‘;/—56‘4”3'54 sin (% + %) (10.3.4)
with & = £

By standard calculus, the following properties of the Green’s function
(10.3.4) can easily be obtained:

Gt | (VO
ot | 26 7

9'G(t,s)

1m - =
[t} oo Ot ’

fori=0,1,2.




132 Higher Order Boundary Value Problems on Unbounded Domains

An example of this family of problems is given by the differential
equation

_ A4 i) — (1) (' (1)

u™® () + 3u(t) , teER, (10.3.5)

1+t4
and the boundary conditions (10.3.2).
Here, the loading force w(t) = 111'—;44 and the nonlinear function
g : R* = R is defined by
x3 — zy?
t =
g(t,z,y, 2) T
The function
[z, y, 2) = g(t,z,y,2) + w(t) (10.3.6)
is L1-Carathéodory and for max{||z|, ||y, ||z||} <, (r > 0), we have
3.4+ 273
r(t) i = ———.
el =

From the above, it is clear that (10.3.5) is a particular case of (10.1.1)
for k = 3, m = 2, and the nonlinearity is given by (10.3.6). Moreover, the
assumptions (Al) and (A2) are satisfied with

i1
(V%)

267

Therefore, by Theorem 10.2.1, the integral equation (10.3.3) is a solu-

tion u(t) € BC?[0, 1], which is a solution of the boundary value problem
(10.3.5),(10.3.2). Moreover, from Corollary 10.2.2, as in (10.3.4)

E(t,s) = G(t,s), ¥;(s) = for j =0,1,2.

t—I}I_noo Glt.s) = tlg}loo Gt s) =0,

this solution is a homoclinic solution of problem (10.3.5),(10.3.2).



Part IV

Functional Boundary
Value Problems
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Introduction

Many phenomena of real life have a retrospective effect, i.e., their status
in the future may depend not only on the present but also on what hap-
pened in the past. One of the mathematical processes appropriate to study
this effect distributed over time is given by Functional Differential Equa-
tions (FDEs). It should be noted that the concept of FDEs generalizes the
common differential equations into functions with a continuous argument.

Let us express the meaning of “functional” a little more. In Algebra, we
deal with algebraic equations involving one or more unknown real numbers.
Functional equations are much like algebraic equations, except that the
unknown quantities are functions rather than real numbers.

From a historic point a view, as far as we know, the first time when func-
tional equations were studied was in the fourteenth century in the work
of mathematician Nicole Oresme (1323-1382) who provided an indirect
definition of linear functions by means of a functional equation: in mod-
ern terminology, we have three distinct real numbers x, y, and z, and,
associated to each one, a variable (the “intensity” of the quality at each
point) which we can write as f(z), f(y), and f(z), respectively (for more
details, see [133]). The function f, considered as a linear function, is defined
by the relation

y—z _ fly) = fx)
2=y flz) = fly)

FDEs only appear, to the best of our knowledge, in the second half of
the last century (see, for example, [58, 79, 91]).

However, the word “functional” was restricted to delay, advanced
or neutral differential equations. This concept was adapted to a global
unknown functional variable in, for instance, [31, 36]. If the functional part

for all distinct values of z,y, z.
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appears in the differential equation, then it covers differential, integral or
integro-differential equations, delay, neutral or advanced equations, among
others. If the functional variation exists in the boundary conditions, then
these boundary value problems include the classical two-point or multipoint
conditions, and also nonlocal, integral boundary data, and cases where the
global behavior of the unknown variable and its derivatives are involved. As
an illustration of this type of functional problem with functional boundary
conditions, we refer the problem in [114], with a functional variation in u, v’
and u” in the differential equation,

_((b(ul/l(x)))/ — f({L‘,’U,H({L‘),um({L‘),u7u/,uH),

for a.e. x €la,b[, where ¢ is an increasing homeomorphism, I := [a,b],
and f: I xR?x (C(I))® — R? is an L'-Carathéodory function, and the
boundary conditions

0=1L1 (u(a),u, v, u"),
0= Lo (v (a),u,u, u"),
0= L3 (a),u” (b),u" (a),u" (b),u,v u"),
0= Ly (u"(a),u” (b)),

where L;,i = 1,2, 3, 4, are suitable functions with L; and Ly not necessarily
continuous, satisfying some monotonicity assumptions.

In all the above references, functional boundary value problems are con-
sidered on bounded intervals. On unbounded domains, the techniques are
more delicate due to the lack of compactness of the correspondent opera-
tors. For this reason, for example, the usual Arzela—Ascoli theorem cannot
be applied.

Part IV will present methods and techniques in order to consider some
of these types of functional problems to unbounded domains, namely, the
half-line or the whole real line.

In Chapter 11, an existence and localization result for a second-order
BVP with functional boundary conditions will be proved. An application
to an Emden—Fowler equation will be shown to illustrate the main result
of the chapter.

Chapter 12 deals with third-order BVPs with functional boundary con-
ditions. These types of problems can be observed, for example, in a Falkner—
Skan equation and may describe the behavior of a viscous flow over a flat



Introduction 137

plate. The localization of a solution and, moreover, some of its qualitative
properties will be presented in this chapter.

Chapter 13 covers the study of ¢-Laplacian equations. An existence
and localization result will be proved and, in order to demonstrate the
applicability of the main result, two examples will be shown.



Chapter 11

Second-Order Functional Problems

11.1. Introduction

Previous chapters have shown that some real phenomena are modeled by
differential equations of various orders with different types of boundary
conditions such as Sturm-Liouville, Homoclinic or Lidstone-type. There
are, however, other problems with functional conditions, that is, situations
where the boundary data do not depend on particular points but on the
global variation of the unknown function. These may, for example, be pro-
vided with integral, differential, maximum or minimum arguments.

In order to cover a wide range of applications, in this chapter, we study
the general second-order differential equation

u’(t) = f(t,u(t), ' (t), t>0, (11.1.1)
where f : R xR? — R is a continuous function, coupled with the functional
conditions

L(u,u(0),4'(0)) =0,
(11.1.2)
u'(+00) = B,
with L : C(R{) x R? = R a continuous function, verifying some monotone
assumption, B € R, and u/(400) := limy_, 4 o 0/ ().

Note that this functional dependence allows not only conditions on the
boundary but also multipoint conditions, that is, requirements on one or
more interior points.

BVP (11.1.1),(11.1.2) covers a huge variety of problems such as sepa-
rated, multipoint, nonlocal, integrodifferential, periodic, anti-periodic with

139



140 Higher Order Boundary Value Problems on Unbounded Domains

maximum or minimum arguments. For example, in the case of integral
conditions, it covers problems that arise naturally in the description of
physical phenomena, for instance, thermal conduction, semiconductor and
hydrodynamic problems (see [29, 71, 88, 98, 121, 136, 146, 151, 153] and
references therein).

In most cases, positive solutions are searched in compact intervals. How-
ever, results on the solvability of BVPs on unbounded intervals (half-line
or real line) are scarce.

The main technique relies on the lower and upper solutions. Rather than
the existence of bounded or unbounded solutions, their localization provides
some qualitative data, like, for example, signal variation and behavior (see
[33, 113]). Some results are concerned with the existence of bounded or
positive solutions, as in [105, 147] and the references therein. For problem
(11.1.1),(11.1.2), the existence of two types of solutions is proved, depending
on B: if B # 0, the solution is unbounded; if B = 0, the solution is bounded.

This chapter is organized as, follows. First, some auxiliary results are
defined such as the adequate space functions, some weighted norms, a cri-
terion to overcome the lack of compactness, and the definition of lower
and upper solutions. Section 11.3 contains the main result, an existence
and localization theorem, whose proof combines lower and upper solutions
technique with the fixed point theory. Finally, Sections 11.4 and 11.5 con-
tain one example and an application to some problem composed by an
Emden-Fowler-type equation with infinite multipoint conditions, which are
not covered by the existent literature.

11.2. Definitions and auxiliary results

Consider the space of admissible functions

XF:{xECl(RS'): lim ﬂeR, lim ac’(zf)E]R}7

t—+oo 1+t t——4o00

equipped with the norm ||z||x, = max {||zo, ||’||1}, where

lw®)]

w = su
el = sup 25

and [Jw'[|1 := sup |’ (¢)].
>0

In this way, (Xp, || - [|x-) is a Banach space.
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Solutions of the linear problem associated to (11.1.1) and usual bound-
ary conditions are defined with Green’s function, which can be obtained by
standard calculus.

Lemma 11.2.1. Let th,h € L*(R}) and A, B € R. Then the linear BVP

u”(t) = h(t), t>0,
u(0) = 4, (11.2.1)
u'(+00) = B
has a unique solution in Xp, given by
—+oo
u(t)=A+ Bt + G(t, s)h(s)ds, (11.2.2)
0
where
—s, 0<s<t,
G(t,s) = (11.2.3)

—t, t<s < 4o0.

Proof. If u is a solution of problem (11.2.1), then the general solution for
the differential equation is

u(t)=c1+co t+ /t(t — s)h(s)ds,
where c¢q, co € R. Since u should satisfyothe boundary conditions, one has
ca=A4, c©=B- /+00 h(s)ds.
The solution becomes i

u(t) = A+ Bt — t/0+00 h(s)ds + /Ot(t — s)h(s)ds,

and by computation,
+oo
u(t) = A+ Bt + G(t, s)h(s)ds
0

with G given by (11.2.3).
Conversely, if u is a solution of (11.2.2), it is easy to show that it satisfies
the differential equation in (11.2.1). Also, u(0) = A and v/(+o00) = B. O

The lack of compactness of X is overcome by the following lemma
which gives a general criterion for relative compactness, referred to in [3].

Lemma 11.2.2. A set M C Xp is relatively compact if the following
conditions hold:
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(i) all functions from M are uniformly bounded;
(ii) all functions from M are equicontinuous on any compact interval of
+.
Ry
(iii) all functions from M are equiconvergent at infinity, that is, for any
given € > 0, there exists a te > 0 such that

x(t) . x(t) . /
Tri tiinool—kt ") — lim 2'(t)| <e

t—+oo

<

forallt >t. and x € M.

The functions considered as lower and upper solutions for the initial
problem are defined as follows.

Definition 11.2.3. Given B € R, a function o € X is a lower solution of
problem (11.1.1),(11.1.2) if

a’(t) = f(t,aft), o/ (1), t=0,
L(a,(0),0/(0)) = 0,

o/ (+00) < B.

A function f € Xp is an upper solution if it satisfies the reverse
inequalities.

11.3. Existence and localization results

In this section, the existence of at least omne solution for the
problem (11.1.1),(11.1.2) is proved, and, moreover, some localization
data, following the arguments applied in [45] are given.

Theorem 11.3.1. Let f: Rf x R? — R be a continuous function, and for
each p > 0, there exists a positive function ¢, with ¢,,ty, € LY(R{) such

that for (x(), y(t)) € R? with sup,o { EOL, y(t)|} < p,

lf(t,z,y)] < ¢p(t), t>0. (11.3.1)

Moreover, if L(x1,z2,x3) is nondecreasing on x1 and x3 and there are «, 3,
lower and upper solutions of (11.1.1),(11.1.2), respectively, such that

a(t) < B(t), Vt>0, (11.3.2)
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then problem (11.1.1),(11.1.2) has at least one solution u € Xp with o(t) <
u(t) < p(t) fort > 0.

Proof. Let « and f3 be, respectively, lower and upper solutions of (11.1.1),
(11.1.2) verifying (11.3.2). Consider the modified problem

1 ut) = 5(tu(t)

W0 = 1630 u(0). ' 0) + g O s
u(0) = §(0,u(0) + L(u,u(0),u(0))),
u'(+00) = B,

(11.3.3)

where § : Rar x R — R is given by

B(t), x> p(t),
ot,z) =@, at) <a < B,
a(t), = <alt).
For clarity, the proof will follow several steps.

Step 1. If u is a solution of (11.3.3), then a(t) < u(t) < B(t), Vi > 0.

Let u be a solution of the modified problem (11.3.3) and suppose, by con-
tradiction, that there exists t > 0 such that a(t) > wu(t). Therefore,

gg(u(t) —a(t)) <0.

If there is ¢, > 0 such that

rtnzl(r)l(u(t) —a(t)) = u(ts) —alt.) <0,

one has u/(t.) = o/(tx) and u”(t.) — " (t+) > 0. By Definition 11.2.3, the
following contradiction holds:

0 <u’(ty) — ' (ts)

1 w(ts) — O(tw, u(ts))
L+ 8214 [u(te) = 6(ts, u(ts))]

1 u(t*) — a(t*) "
T+ 81+ |ulty) —alty)] (t)

= f(te; 0t u(ta)), u'(t)) + —a”(t)

= f(tu, a(ts), o/ (te)) +

u(ts) — a(ty)
= T Jults) — a(te)]
So, u(t) > a(t), vt > 0.

< 0.
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If the infimum is attained at ¢ = 0, then

rtnzl(r)l(u(t) —a(t)) :=u(0) —a(0) < 0.

As w is solution of (11.3.3), by the definition of §, the following contradiction
is achieved:
0 > u(0) — a(0) = 5(0,u(0) + L(u,u(0),4'(0))) — a(0) > a(0) — «(0)
=0.
If

tlrzl(f)(u(t) —a(t)) == u(+00) — a(+0) <0,

then u'(+00) — &/(4+00) < 0. As w is solution of (11.3.3), by Definition
11.2.3, the following contradiction holds:

0> v (+0) — a/(+) = B — o/ (+0) > 0.

Therefore, u(t) < a(t),Vt > 0.
In a similar way, it can be proved that u(t) > g(t), vVt > 0.

Step 2. Problem (11.3.3) has at least one solution.
Let u € X and define the operator T : Xrp — Xp

+oo
Tu(t) = A+ Bt + G(t,s)Fy(s)ds
0

with
1 u(s) — o(s,u(s))

Fuls) = f6,005, 00,0/ + T3 T3 1ofs) = Slee (o

A = §(0,u(0) + L(u,u(0),v(0))) and G is the Green function given by
(11.2.3).
Therefore, problem (11.3.3) becomes

u”’(t) = Fu(t),t >0,
u(0) = A, (11.3.4)
u'(+o0) = B,

and if tF,(t), F,(t) € LY(R{), by Lemma 11.2.1, it is enough to prove that
T has a fixed point.
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Step 2.1. T is well defined.

As f is a continuous function, Tu € CY(R{) and, by (11.3.1), for any
u € Xp with p > max {|lal|x,, [|8llx-},

+oo +oo 1
/0 |F.(s)| ds < /0 <¢p(s) + 1—|-—33> ds < +00,

that is, F,,(t) and tF,(t) € L}*(R{). By Lebesgue Dominated Convergence
Theorem,

hm G(t7 8)

F,
Jm = (s)ds

(Tu)(t) . A+DBt /+°°
im ——~ = lim +
t—4o00 1+t t—+oo 14t 0

+oo 1
§B+/O (qﬁp(s)—km) ds < +o0,

and analogously for

+oo
lim (Tu)'(t) = B — lim F,(s)ds = B < +o0.

t—+oo t—+oo ¢
Therefore, Tu € Xp.

Step 2.2. T is continuous.

Consider a convergent sequence u, — u in Xg, there exists p; > 0 such

that maX{Ha”XFv ”BHXF} < p1.

With M := sup,>, |G1(if)|7 one has

|1 Tun = Tulx,, = max {||Tun = Tulo, [ (Tun)" = (Tw)'[l1}
+oo

S M|Fun (8) - Fu(8)|d3
0

+oo
—|—/ |F., (s) — Fu(s)lds — 0,
t

as n — +o00.

Step 2.3. T is compact.

Let B C X be any bounded subset. Therefore, there is » > 0 such that
lullx, <7, Yu € B.
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For each u € B, and for max {r, ||a| x., |18l xr} <71

Tu(t A+ Bt
Tu(t) _ 1A+ B
T+t ~ 50 1+t

T |G(t,s)]
+ S " \F,(s)|d
/0 U |Fu(s)|ds

|Tullo = sup
>0

|A + Bt| /+°C 1
<sup — 1 M| ¢, —)d ,
_?2118 51 + ; ¢1(s)+1+s3 5 < +00

+oo
sup | (Tu)' (£)] < |B| + / |Fo(s)|ds
t>0 t

(7)1

IN

+oo 1
B - —_— .
| |+/t <¢1(5)+1+83)ds<+oo

So, |Tu|| x, = max{||Tullo, |(Tw)'||1} < 400, that is, TB is uniformly
bounded in Xp.

T B is equicontinuous because, for L > 0 and t1,t2 € (0, L], one has, as
t1 — ta,

Tu(tl) _ Tu(tg)
14+ tl 1+ t2

- ‘A+Bt1 A + Bty

T+t 14ty

+oo G(tl S) G(tg S)
+ ) _ ) F d
[ S i
_|A+Bu A+ B
14+ tl 14+ t2
oo G(tl S) G(tg S) 1
b _ b N d ,
+/0 ‘1+t1 1+t (¢1(8)+1+33> s0
“+o0 “+o0
[(Tu) (t1) — (Tu) (t2)] = F,(s)ds — F,(s)ds
t1 ta

to 2 1
< /t |F.(s)|ds < /t <¢r1 (s) + 1—|-—33> ds — 0.

1 1

So, T'B is equicontinuous.
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Moreover, T'B is equiconvergent at infinity because, as t — +00,

T
u) o Tu()
1+t to+oco 14+t

A+ Bt TGt s
< - B 1) |Fu(
_'1+t ‘+/0 ‘1+t+‘| )lds
A+ Bt oo G(ts) 1
< - B —|d
’ 1+t ‘+/0 ‘1+t oo T B0

and

o - i o) < | s ds

t—+o0
+oo 1
< —— |)d 0 t .
_/t (p1+<(1+83)>> s — 0, ast — 400

So, by Lemma 11.2.2, T'B is relatively compact.
Then by Schauder’s fixed-point theorem (Theorem 1.2.6), T" has at least
one fixed point u; € Xp.

Step 3. uy is a solution of problem (11.1.1),(11.1.2).

By Step 1, if uy is a solution of (11.3.3), then a(t) < uy(t) < B(t) for all
t > 0. So, the differential equation (11.1.1) is obtained. It remains to be
proved that a(0) < u1(0) + L(u1,u1(0),u}(0)) < 5(0).

Suppose, by contradiction, that a/(0) > u1(0)+ L(uy,u1(0),u}(0)). Then

u1(0) = 6(0,u1(0) + L(u1, u1(0), u1(0))) = a(0)

and by the monotony of L and Definition 11.2.3, the following contradiction
holds:
0 > u1(0) + L(u1,u1(0),u}(0)) — a(0)
= L(uy,a(0),u}(0)) > L(a, a(0),a’(0)) > 0.
So, a(0) < u1(0) + L(uhul(O),u (0)) and in a similar way, it can be

!

1
proved that u1(0) + L(uy,u1(0), 4} (0)) < 5(0).
Therefore, u; is a solution of (11.1.1), (11.1.2). O
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A similar result can be obtained if f is an L!-Carathéodory function
and equation (11.1.1) is replaced by

u’(t) = f(t,u(t),u'(t)), ae. t>0. (11.3.5)
However, in this case, an extra assumption on f must be assumed.

Theorem 11.3.2. Let f : RS’ x R?2 — R be an L'-Carathéodory function
such that f(t,z,y) is monotone on y. If there are v, 8, lower and upper solu-
tions of (11.3.5),(11.1.2), respectively, verifying (11.3.2) and L(x1,x2, x3) is
nondecreasing on x1 and x3, then problem (11.3.5),(11.1.2) has at least one
solution u € Xp with o(t) < wu(t) < p(t), Vt > 0.

Proof. The proof is similar to Theorem 11.3.1 except the first step.
Let u be a solution of the modified problem composed by

1 ut) — 8t u(t)

u'(t) = f(t,6(t,u(t)),u'(t)) + T 1T [u) = ot u®)]’ a.e. t >0,
and the boundary conditions
u(0) = 6(0,u(0) + L(u, u(0),u'(0))),
u'(+00) = B.
If, by contradiction, there is ¢, > 0 such that
min(u(t) — a(t)) = u(t:) — a(t.) <0,
then u/(t.) = o/(ts),u”(tx) — &’ (tx) > 0, and there exists an interval

I_ :=]t_,t.[ where u(t) < a(t), v'(t) < a/(t), Vt € I_.
By Definition 11.2.3 and if f(¢,x,y) is nondecreasing on y, this contra-
diction holds for t € I_:

0 <u"(t) —a"(t)
_ / L ut) =0, ud)
= f(t,6(t,u(®), ' O) + T E T lu(t) — 6(t, u(t))|

1 u(t) - a(t) "
61t @ —a@] W

_ a//(t)

< ft,a(t), /(1) +

u(t) — o)

ST () — a@)]

<0.
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The same remains valid if f is nonincreasing, considering an interval
I :=]t., t4] where u(t) < a(t), u'(t) > o/ (t), Vt € L.

So, in both cases, u(t) > «a(t), vt > 0.

The remaining steps are identical to the proof of Theorem 11.3.1, and
it will be omitted. (]

11.4. Example

Consider the second-order problem on the half-line with functional bound-
ary conditions

_ sin(u(t) +1) + (u'(£))° + u(t)e™

1
>
4u2(0)+1tn>igu(t) +4/(0)—2=0, (11.4.1)
u'(+00) =0, 5.

Remark that the above problem is a particular case of (11.1.1), (11.1.2)
with
sin(x + 1) + 3 + ze™!
1413

b

flt,zy) =
B=0,5,

L(a,b,c) = 4b* + mina(t) + ¢ — 2.
>0

If f is continuous in RJ, then for u € Xp, assumption (11.3.1) holds,
H%’ for some k£ > 0 and p > 1.

The function L(a, b, ¢) is not decreasing in a and ¢, and a(t) = —1 and
B(t) = t are lower and upper solutions for (11.4.1), respectively, then, by
Theorem 11.3.1, there is at least an unbounded solution w of (11.4.1) such

that

with ¢, =

—1<u(t)<t, Vt>0.

11.5. Emden—Fowler equation

Emden-Fowler-type equations (see [144]) can model the heat diffusion
perpendicular to parallel planes by
0%u(x,t) n a du(z,t)
Ox? x Oz

ou(x,t)
ot

+af(x,t)g(u) + h(z,t) =
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where f(x,t)g(u)+ h(z,t) means the nonlinear heat source and u(z,t) gives
the temperature at time ¢.
In the steady-state case, and with h(x,t) = 0, last equation becomes

u’(x) + %u'(x) +af(x)g(u) =0, z > 0. (11.5.1)

If f(x) =1 and g(u) = u™, then (11.5.1) is called the Lane-Emden
equation of the first kind, whereas in the second kind, one has g(u) = e*.
Both cases are used in the study of thermal explosions. For more details,
see [82].

In the literature, Emden—Fowler-type equations are associated to Dirich-
let or Neumann boundary conditions (see [78, 142]). To the best of author’s
knowledge, this is the first time when some Emden—Fowler-type equations
are considered together with functional boundary conditions on the half-
line.

Consider that one looks for nonnegative solutions for the problem com-
posed by the discontinuous differential equation

oy = W) @)
1+ a3 er

coupled with the infinite multipoint conditions

, ae. x>0, (11.5.2)

+oo
Z anu(n,) —u(0) +u'(0) = 0,

(11.5.3)
wW(+o0) =0 (0<d<1),
where a,, and 7,, are nonnegative sequences such that
—+oo +oo
am > ag > 2 agn, >, Y apu(n,) and > ani,
n=1 n=1

are convergent with Z:ﬁ an(n +k)<1—k(0<k<1).
This is a particular case of (11.3.5), (11.1.2), where
4

— v
f(xvywz)_l_'_xg €Z7

B =,

+oo
L(v,y.2) = > _anv(mm) —y+ 2.
n=1

k1 ks
— = p,(x), k1,ke >0, 1.
1+.’IJ3+6$ <p(ac) 1, ko > r>

|f(z,y,2)| <
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If o, (z), v, (x) € LY(RY), then f is L'-Carathéodory, and, moreover,
f is monotone on z (is nondecreasing).

If L(v,y, z) is not decreasing in v and z, and functions a(x) = 0 and
B(x) = x + k are lower and upper solutions of problem (11.5.2),(11.5.3),
respectively, then, by Theorem 11.3.2, there is at least an unbounded and
nonnegative solution u of (11.5.2),(11.5.3) such that

0<u(z)<xz+k, Vx>0



Chapter 12

Third-Order Functional Problems

12.1. Introduction

In this chapter, we consider a third-order BVP, composed by a fully differ-
ential equation

u(t) = ft,u(t),u (¢),u"(t)), t>0, (12.1.1)

where f : Rf x R® — R is an L!-Carathéodory function, and the functional
boundary conditions on the half-line

Lo(u,u(0)) = 0,
Lo (u, w/(0)) = 0, (12.1.2)
Ly (u,u"(+00)) = 0,

with L; : C(RJ) x R — R,i = 0,1,2 continuous functions, verifying some
monotone assumptions and

" T "
u” (400) 1= t_lgrnoou (t).

There is an extensive literature on BVP defined in bounded domains as
this type of problem is an adequate tool to describe countless phenomena of
real life, such as models on chemical engineering, heat conduction, thermo-
elasticity, plasma physics, fluids flow, etc. (see, for instance, [30, 60, 69, 81,
88, 93, 106, 124]). However, on the real line or half-line, the results are very
scarce (see, for example, [3, 151] and the references therein).

In some backgrounds, the models require different kinds of nonlocal or
integral boundary conditions. In this way, it is useful to consider generalized

153
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boundary data, which include usual and nonclassic boundary conditions. In
fact, if BVP contains a functional dependence on the unknown functions,
or in its derivatives, either in the differential equation, or in the boundary
data, these functional BVPs allow many more varieties of problems such
as separated, multipoint, nonlocal, integro-differential, with maximum or
minimum arguments, etc., as it can be seen, for instance, in [35, 38, 65, 71,
72, 121].

To the author’s best knowledge, it is the first time where these types
of functional boundary conditions are applied to third-order BVP on the
half-line. From the different arguments used, weighted norms, fixed point
theory and lower and upper solutions method can be highlighted. This
last technique provides a location result, which is particularly useful to get
some qualitative properties on the solution, such as positivity, monotony,
convexity, etc.

The chapter is organized as follows: in the first section, some auxiliary
results are defined such as the adequate space of admissible functions, the
weighted norms, an existence result for a linear BVP via Green’s functions,
an a priori bound for the second derivative from a Nagumo-type condi-
tion, a criterion to overcome the lack of compactness, and the definition
of lower and upper solutions. Section 12.3 contains the main result of the
chapter — an existence and localization theorem, whose proof combines
lower and upper solutions technique with the fixed point theory. Finally,
an application to a Falkner—Skan equation is shown to illustrate the main
result, which is not covered by previous works in the literature as far as
we know.

12.2. Definitions and a priori bounds

Consider the space of admissible functions

(t)

2m+Y) . 1
xeC (RO)'tLIE»nocl—FtQ eR,
Xr3 = )
(1) o
lim —= €R, lim 2"(t) eR
t—+oo 1+ ¢ t—+oo
with the norm ||z|| x,., = max {||z||o, ||'[|1, ||x” ||}, where
|w(2)] |w ()]
wl|p :=su ,[Jwll1 :=sup ——= and ||w||2 := sup |w(t)].
ol = sup 1215 ol = sup B0 and oo = sup o)

Defining in this way, (X3, || - || x,) is a Banach space.
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The solutions of the linear problem associated to (12.1.1), with the
two-point boundary conditions on the half line, can be defined with Green’s
function.

Lemma 12.2.1. Let t?h,th,h € L*(R{). Then the linear BVP
u”(t) = h(t), ae. t>0,

u(0) = A,
(12.2.1)
u'(0) = B,
u'(+00) = C,
with A, B,C' € R, has a unique solution given by
Ct2 +oo
u(t)=A+ Bt + - + G(t,s)h(s)ds, (12.2.2)
0
where
§2
CHE ts, 0<s<t,
G(t,s) = ) (12.2.3)
t
g 0<t<s<+o0.

Proof. If u is a solution of problem (12.2.1), then the general solution for
the differential equation is
2 2

t
t
u(t) = c1 + cot + c3t® + / (% —ts+ 5) h(s)ds,
0

where ¢1, ca, c3 are real constants. Since wu(t) should satisfy the boundary

conditions,
1 [tee
~3 /0 h(s)ds,

Ct2 t2 +oo t 2 t2
u(t)=A+Bt+ — — — h(s)ds —|—/ Sty h(s)ds,
2 2, o \ 2 2

which can be written as (12.2.2) with G(t, s) given by (12.2.3). O

| Q

61:A7 02:B7 C3 =

and, therefore,

Some trivial properties of (12.2.3) will play an important role forward.
Lemma 12.2.2. Function G(t,s) defined by (12.2.3) verifies

. G(t,s)
(i)

11m
t—+oo 142

eR, Vs>0;
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oG (+ —-s, 0<s<t,
(il) Gi(t,s):= (t,5) =
ot —t, 0<t<s< 400
i) 1m Y cr oy
t—+oco 14+t

Let v, € Xpg3 such that v(¢t) < T(t),7/(t) < TV(¢),Vt > 0 and
7" (+00) < T"(400). Consider the set

Eps = (t,2,y,2) € R xR?: ¥ (t) <y <T'(¢)
¥ (+00) < z(+00) < T (+00)

The following Nagumo condition allows some a priori bounds on the
second derivative of the solution.

Definition 12.2.3. A function f : Er3 — R is said to satisfy a Nagumo-
type growth condition in Fr3 if, for some positive continuous functions ¥, h
and some v > 1, such that

+oo
sup ¥ (t)(1 + )" < 400, / s = ~+00, (12.2.4)
0 h(s)
it verifies
lf(t,z,y,2)| < Y()h(z]), VY, z,y,2) € Eps. (12.2.5)
Lemma 12.2.4. Let f : RS’ x R3 — R be an L'-Carathéodory function

satisfying (12.2.4) and (12.2.5) in Eps. Then for every solution u of (12.1.1)
satisfying, fort >0,

Y(t) <u(t) <T(1),
(t) <u(t) <TV(t), (12.2.6)
7" (400) < v (+00) < T (+00),
there exists R > 0 (not depending on u) such that ||u”|2 < R.

Proof. Let u be a solution of (12.1.1) verifying (12.2.6). Consider r > 0
such that

r > max {|7"(+00)], I (+00)|} . (12.2.7)
By the previous inequality, |u”(¢)| > r,Vt > 0 cannot happen because

[u" (+00)| < 7.
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If o (t)| < r,¥t >0, taking R > r, the proof is complete as

[u"]|2 = sup () <7 < R.

In the following, it will be proved that even when there exists ¢ > 0 such
that |[u”(t)| > r, the norm [|u”||2 remains bounded.

Suppose there exists to > 0 such that |u”(to)| > r, that is, u”(tg) > r
or u’(tg) < —r.

In the first case, by (12.2.4), one can take R > r such that

R / /
s ') v () v
—d M M M; — inf
/T s ™" max{ R e L L |

with M := sup;>q 9 (t)(1 +1)” and M; := sup,> % —infy>g (L/_i))y
If condition (12.2.5) holds, then by (12.2.7), there are t,,t; > 0 such

that t, < ti,u”(t.) =r and v’ (t) > r,Vt € (ts,t+]. Therefore,

u' (ty) s B ty U//(S) » ty )
Loy =, Ty hie < [ vton s

"t (u"(s) ‘.

!
<<1U/+(?>">l+ <1V+U/s(;)+”] .

') [t~ v R
<o (nrawf [ ) < [ e
So, u”(ty) < R and as t, and t; are arbitrary in R, one has that
u'(t) < R,Vt > 0.
Similarly, the case where there are t_,¢, > 0 such that {_ < ¢, and
w’(t.) = —r, v (t) < —r,Vt € [t_,t.) can be proved.
Therefore, ||u”’||2 < R,Vt > 0. O

=M

The lack of compactness of Xp3 is overcome by the following lemma
which gives a general criterion for relative compactness, suggested in [3]
or [51].

Lemma 12.2.5. A set Z C Xps is relatively compact if the following
conditions hold:

(i) all functions from Z are uniformly bounded,
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(ii) all functions from Z are equicontinuous on any compact interval
of Ry;
(iii) all functions from Z are equiconvergent at infinity, that is, for any
given € > 0, there exists a te > 0 such that
t t
o) )

1+12  todoo 1+ t2

)

/ /
®) — lim 2 ®) <€,
1+t t=otool+t

8

2" (t) — lim ac”(t)’<e forallt >te,x € Z.

The functions considered as lower and upper solutions for the initial
problem are defined as follows with W*! (R) the usual Sobolev space.

Definition 12.2.6. A function a € Xpz3NW31 (Ra“) is a lower solution of
problem (12.1.1),(12.1.2) if

Lo(cr, @ (400)) > 0.

A function f € Xps N W3 (RY) is an upper solution if it satisfies the
reverse inequalities.

Remark 12.2.7. If &/(t) < f'(t), a.e. t > 0 and «(0) < 5(0), by integra-
tion on [0, ¢], one has «a(t) < B(¢),Vt > 0.

The following lemma, suggested by [141], will ensure the existence
and convergence of the derivative of some truncature function to be used
forward.

Lemma 12.2.8 ([141]). For y1,y2 € CYRY) such that yi(t) < ya(t),
Vvt > 0, define

y2(t), v > (),
p(t,v) = v, y1(t) < v < yalt),
yi(t), v <uwyi(t).
Then, for each v € C! (]Rar) , the next two properties hold:
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(i) %p(t,v(t)) exists for a.e. t > 0;
(ii) If v,om € C* (R{) and vy, — v in C* (RY), then

St om(t)) — Lot o) for ae. t20.

12.3. Existence and localization results

In this section, the existence and localization of at least one solution for
the problem (12.1.1),(12.1.2) is proved.
The following assumptions are needed:

(H1) There are a, 8 lower and upper solutions of (12.1.1),(12.1.2), respec-
tively, with o/(t) < B'(t), t > 0, «a(0) < B(0) and o (4+00) <
B (+00);

(Hz) f satisfies the Nagumo condition on Epg defined with v = « and
I'=p;

E.: = (t,z,y,2) € R{ x R3 : o

(Hs) f(t,z,y,z) verifies the growth condition

fta(t), o' (t),”(t) = f(t,z,d/(t), o
F(t,B(1), (1), B” (1) < f(t,2,B'(t), (1))
for t > 0 fixed and a(t) <z < S(t);
(H,) The continuous functions L; : C(R{) x R — R,i = 0,1,2 are such
that, for a < v < g,
Li(a,a(0)) < Li(v,a(0)) and
Li(8,89(0)) = Li(v, 9(0)), for i =0,1;
Lo(a, 0 (+00)) < La(v,a”(+00)) and
Ly(B, 8" (+00)) = L (v»ﬁ”(+00))7

lim; 4 o0 La(v,w) € and o/ (+00) < w < B (+00).

Theorem 12.3.1. Let f : Rj x R3 — R be an L'-Carathéodory function.
If hypotheses (H1)—-(Hy) are verified, then problem (12.1.1),(12.1.2) has at
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least a solution u € Xps N W31 (R0+) and there exists R > 0 such that
aft) <u(t) < B(t), o (t) <u'(t) <p'(t), —R<u"(t)<R, t>0,
and
o' (+00) < u’(4+00) < " (+00).

Proof. Let o, 3 € Xp3 N W3 (R]) verifying (H).
Consider the modified and perturbed problem composed by the third-
order differential equation

WWﬂ=f<u%wuw%&@WUM§%&wU@m) (12.3.1)
1 u'(t) — 01(t,u/(t))
T4t 1+ u/(t) — 01 (¢, w'(1))]
and the functional boundary equations
u(0) = 00(0,u(0) + Lo (0p(u), u(0))),
u'(0) = 61(0,4(0) + L1 (6r(u), ' (0))), (12.3.2)
u” (400) = doo (W’ (+00)) + Lo (6 (1), oo (' (+00))) ,

o~

+ t>0,

where functions §; : Rj x R — R are given by

BO(), = > A ),

0i(t,z) = < x, aD(t) <z <pO), i=0,1,
aD(t), x<ad(t),

B"(+00), a(+00) > B"(+00),

doo ((400)) = q 2(+00),  a(+00) < z(+00) < B”(+00),
a’(+00), z(+00) < a’(+00),

B, v>pB,

(;F(v): v, OZSUS,B,

a, v<o.
For clarity, the proof follows several steps:
Step 1. If u is a solution of (12.3.1),(12.3.2), then
o (t) <d(t) < B(), alt) <u(t) < B(t), —R<u"(t) <R, Vt >0,



Third-Order Functional Problems 161

and

Oé//(-i-OO) S ’U,//(—f—OO) S ﬂ//(—f—OO)

Let u be a solution of the modified problem (12.3.1),(12.3.2) and sup-
pose, by contradiction, that there exists ¢ > 0 such that o/(t) > u/(t).

Therefore,

tiIZlg(u/(t) —a/(t)) <0.

If the infimum is attained at ¢ = 0, then
min(u'(t) — o/ (1)) = w/(0) — a’(0) <0,
therefore, the cont;adiction holds
0> 4 (0) —a/(0) = 61 (0,4 (0) + L1 (6r(u),u’(0))) — a’(0)
> a’(0) — a/(0) = 0.
If the infimum occurs at t = +oo, then
2r>1£(u’(t) —ad/(t)) = u'(+0) — o/ (+0) < 0.

Therefore, u"(+00) — o’/ (+00) < 0 and by (H4) and Definition 12.2.6,
the contradiction holds:

0 > " (+00) = @(+00) = doo (u”(+00)) + L2 (67 (1), dos (' (+00)))
> Lo(0p(u),a” (+00)) > La(a,a” (+00)) > 0. (12.3.3)
If there is an interior point ¢, € R such that
min(u'(t) — o/ (1)) := '(t:) — o/ (t:) <0,
then there exists?) < t1 <ty where
u(t) —a'(t) <0, u"(t)—a"(t) <0, Vtet1,ts],
u(t) =" (t) >0, ae. t et t].

Therefore, for ¢t € [t1,t,] by (H3) and Definition 12.2.6, the contradiction
holds:

0< / [ (s) — " (s)] ds

- /t: [f ((3,50(3,u(s)),61(s,u'(s)), %(51(87?/(3))))

N 1 u'(s) — 01(s,u'(s))
L+ st 1+ [u/(s) — 61(s,1/(s))]

- a'"(s)] ds
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u'(s) — a/(s)

< /751 [f(s7a(s),a’(s)7a"(s)) + 1+ [/ (s) — a/(5)]

: / e et <

—a(s)| ds

So, u'(t) > o/(t) for ¢t > 0.
In a similar way, it can be proved that u/(t) < '(¢), and, therefore,
o (t) <u'(t) < B(t), Vt>0. (12.3.4)

Remark that «(0) < u(0), otherwise, by (Hy) and Definition 12.2.6, the
contradiction will happen:

0> u(0) — a(0) = (0, u(0) + Lo (6 p(u),u(0))) — a(0)
> Lo (0p(u),u(0))) = Lo (o, 2(0))) = 0.

Analogously, it can be proved that «(0) < 5(0). So, integrating (12.3.4)
in [0,¢], it is easily obtained that a(t) < u(t) < B(t),Vt > 0.

Arguing like in (12.3.3), one can prove that v (+00) > o''(4+00) and,
similarly, that u”(4+00) < 8" (400).

Therefore, (¢, u(t), v (t),u”(t)) € E. and the inequality —R < u”(t) < R
is a direct consequence of Lemma 12.2.4.

Step 2. The problem (12.3.1),(12.3.2) has at least one solution.

Define the operator T': Xp3z — Xp3
\I]t2 “+o0

Tu(t) =A+Tt+ =+ | Glt:9)Fu()ds,

where
A := 8o (0,u(0) + Lo(dr (u), u(0))),
I = 61(0,u/(0) + Lo (6 (u),u'(0))),
U = oo (U (400)) + Lo (05 (1), dos (u” (+0)))
G(t, s) is the Green function given by (12.2.3) associated with the problem
u”(t) = Fu(t), t>0,
u(0) = A,
w'(0) =T,
u" (+00) =V,

(12.3.5)
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and
Fu(t) = f (t,5o<t7u<t>>,61<t7u’<t>>7 %«w,u'(t))))
1 u/(t) — 81 (¢, u/ (1))
T4+ t4 1+ |u/(t) — 61 (¢, u/(t))]

By Lemma 12.2.1, the fixed points of T are solutions of (12.3.5) and,
therefore, of problem (12.3.1),(12.3.2).
So, it is enough to prove that T" has a fixed point.

+

Step 2.1. T is well defined and, for a compact D C Xp3, TD C D.
As f is an L'-Carathéodory function, Tu € C? (Ra“) and for any u € Xp3
with

p > max{llullx, . llallx,, |18l x,, &}

there exists a positive function ¢,(t) such that t2¢,(t),t¢,(t), p,(t) €
L' (R§) and

—+oo +oo 1

/0 |F.(s)|ds < /0 (gbp(s) + 1—|——s4) ds < +00,
—+o0 —+o0 s

/0 [sFu(s)]|ds < /0 (sgbp(s) + 1—|——s4> ds < 400,

+o0 ) +oo ) §2
/0 |s Fu(3)|ds§/0 (s ¢p(5)+1+—84) ds < 400,

that is, Fy,tF,, t°F, € L' (Rf).
By Lebesgue Dominated Convergence Theorem, Lemma 12.2.3 and
(Hy), setting

lim Ly (6p(u), 6o (u” (+00))) == L,

t—r+o0
and
Moo = max {|o" (+00)| + | LI, |8" (+00)| + L[},
one has
Tt 00
i PR = S [ SR e

My 1 [T 1
< Z> 4 - — \d
=73 +2/0 <¢”(S)+1+s4> s
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/ “+o00
Tw'(t) lim L+ ot +/ lim Gl(t’s)Fu(s)ds
0

t—+oo 1+t :tHJroc 1+t t—+oo 1+t

+oo 1
< My — )
< +/0 <¢p(s)+l+s4)ds<+oo

+oo
lim (Tu)"(t) = Moo +  lim F,(s)ds < +cc.

t——+oo t——+oo t

Therefore, Tu € Xps.

Consider now the subset D C X3 given by

D= {z € Xpz : |lullx,, <po},
with pg > 0, such that
po > max {|a(0)],[8(0)[} + max {|a’(0)] , [8"(0)[} + |ko|
o0 1

where

ko := max {|a” (+0)|, | 8" (+0)|} + sup La (v, w),
>0

for « <v < B and o’ (+00) <w < "’ (400), and

|G(t,s)] |G1(t, s)]
M = 15.
(s) max{ililo) T 7§12113 1+1

So, for t > 0,
|Tu(t)]
T = -
ITully = sup 5=
’A—i—l“t—!-\l’T752 +oo |G(t, )|
<q -1 5 ! F,(s)|d
<o (e | o ([ Gt ipuotas)
<|A|+\F|+M+ +OoM(s) Gpo(8) +—— | ds <
- 2 0 o 1+ st po.

/ |(Tw) L+ | /+°° |G1(t, )]
< I RSt
[Tyl =sup T s sup (o= + ) g Fule)lds

o0 1
<l 1e+ [ M) (o) + ) a5 <o
0 S
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and

+oo
|(Tu)"]l, = sup [(Tw)"] < sup (|@| s [ IRG) ds)
t>0 t>0 t

+oo
1
<su \Il—l—/ i (8) + ——=ds | < po.
t>g<|| ¢ o9 1+ s ) 7

So, TD C D.

Step 2.2. T is continuous.

Consider a convergent sequence u,, — w in Xp3, there exists p; > 0 such
that max{sup,, ||tn x|l xpss | Bl xpss B} < p1. By Lemma 12.2.8, one
has

[ Tun — T“Hx = max {||T'u, — TUHO ) H(Tun)l - (Tu)l||1 )
1(Tun)” = (Tw)"[|,}

+oo
< M(s)|Fy,(s) — Fu(s)|ds — 0, as n — +o0.
0

Step 2.3. T is compact.

Let B C Xp3 be any bounded subset. Therefore, there is r > 0 such that
ullx,, <7 Yu€ B.

For each u € B, and for max{r, R, ||| xps,|| 8] xps} < 71, similar argu-
ments to Step 2.1 can be applied to prove that [|[Tullo, ||(Tw)'||x and
Vert(Tu)"||2 are finite.

So, |Tu|| x s = max{||Tullo,|(Tw)’|1, [(Tw)"]|2} < +o0, that is, T'B is
uniformly bounded in X g3.

T B is equicontinuous because, for L > 0 and t1,t3 € [0, L], one has, as
t1 — ta,

Tu(tl) Tu(tz)
1L+t2 1+t

_ A+Tt + 2 ATt + 22
- 1+t3 1413

+oo G(tl S) G(tg S)
9 9 F
+A ‘L+ﬁ 1+ [F'(u(s))lds
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A+Tt +2r A4Tty+ 22
143 1+13

+/+°° ‘G(ths) G(tz, s)
0

1+1¢2 1+ t3

1
(¢T1 (S) + 1—|——54) ds — 0,

‘(TU)’(tl) _ (Tw)'(t2)
1+t 1+t

- ‘F+\Ilt1 I' + Wty

1+ 141,
+/+W‘G1(t1,8) - Gl(tQ,S)

0 L+t 1+t
<’F+\I/t1 '+ Wty

|[F'(u(s))| ds

1—|—t1 1—|—t2
/+°°‘G1(t1,$) G1(ta, s)
_l’_ —
0

1
<¢>T1(5) + 1+s4) ds — 0,

1+t 1415
“+o0 “+o0
[(Tu)"(t1) — (Tw)" (t2)| = F,(s)ds — F,(s)ds
t1 ta

< / [Fu(s)|ds

t1

to 1
< —_— .
/t1 <¢T1(s)+1+84)ds—>0

Moreover, T'B is equiconvergent at infinity because, as t — 400,

T
u(t) lim Tu(t)
14+12  totoo 1+ 2

A+Tt+ % g

1+¢2 2

T lG(ts) 1
) - Fu
—|—/0 ‘1+t2+2‘| (s)| ds

AvTt+ % g

141¢2 2
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T lG(t,s) 1 1
’ - —d
[ [E  5| (9n 4 ) 50

' (Tu)'(t) . Tu(t) ‘

— 11m
1+t t—+oo 1+t

- 1"+\Ift_
| 14+t
Foo G1(t, s)
— 2 4 1||F, d
—|—/0 ‘1+t+‘ (s)|ds
<‘F+\I’t_\ll‘
T 14t
oo G1(t, s) 1
—— 7 1 _—— \a
+A ‘1+t+‘(%ﬁd+§)s%a

and

[COLCE mn(TuV@ﬂ=1g+wua@ﬂds

t—+o0
+oo 1
< — ) ds — 0.
,/t <¢p1+1+84) s

So, by Lemma 12.2.5, T'B is relatively compact.
Then by Schauder’s fixed-point theorem (Theorem 1.2.6), T has at least
one fixed point u; € Xps.

Step 3. u; is a solution of (12.1.1), (12.1.2).
Suppose, by contradiction, that

a(0) > u1(0) + Lo(dr, u1(0)).

Then, by (12.3.2), u1(0) = «(0) and, by (Hy) and Definition 12.2.6, the
following contradiction holds:

u1(0) + Lo(dp(u1),u1(0)) = a(0) + Lo(dr (u1), (0))
> o(0) + Lo(cr, ®(0)) > «(0).

So, @(0) < u1(0)+ Lo(dp,u1(0)). In a similar way, it can be proved that
u1(0) + Lo(6r (u1), u1(0)) < 5(0).
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Assuming, by contradiction, that o/(0) > u}(0) + L1(dr(u1),u}(0)),
u}(0) = /(0) and, by (H4) and Definition 12.2.6, the following contradic-
tion is achieved:

u1(0) + L1 (0r (u1), w1 (0)) = o' (0) + L1(6r (u1), a'(0))

> a/(0) + Li(a, &' (0)) > /(0).

So, o/(0) < uj(0) + L1(dp(u1), v} (0)). By similar arguments, it can be
proved that v} (0) + L1(0p (u1),u}(0)) < 8(0).

By Step 1, a(0) < ui(0) < 5(0),'(0) < u4(0) < F(0) and —R <
u(4+00) < R, and therefore, u;(¢t) verifies the differential equation (12.1.1)
and boundary conditions (12.1.2), that is, uy is a solution of (12.1.1),
(12.1.2). 0

12.4. Falkner—Skan equation

A classical third-order differential equation, known as the Falkner—Skan
equation, is of the form

o (t) + au(t)u” (t) +b(1 — (v (t))?) =0, t>0. (12.4.1)

This general equation is obtained from partial differential equations by
using some transformation technique (see [155]).

When b = 0, equation (12.4.1) is known as the Blasius equation, and it
models the behavior of a viscous flow over a flat plate. A boundary layer
is created by a two-dimensional flow over a fixed impenetrable surface, and
particles move more slowly near the surface than near the free stream.
In this way, equation (12.4.1) can be subject to the following boundary
conditions on the half line:

w(0) =0, u'(0)=0, u(+o0)=1. (12.4.2)

In the literature, only numerical techniques are applied to deal with
these types of problems, (12.4.1),(12.4.2), with general a, b (see, for instance,
[157]).

To illustrate the main result, let us consider a boundary value problem
of this family, composed by the third-order fully differential equation

W®)* -1 u®)u"@®) v
— >
1416 s T 120

u"(t) = , (12.4.3)
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and the functional boundary conditions on the half-line:

U Ju)l B
/0 (t2+t+1)(t% + 1)dt —2u(0) =0,

W/(0) = 1, (12.4.4)

inf u(t)
t>0 1 + t2

— " (+00) = —0.5.

Remark that the above problem is a particular case of (12.1.1),(12.1.2)
with

2
y*—1 x|z z
t = -
f(7557y7z) 1+t6 €3t +1+t47
i la(®)]
Lo(a,b) = dt —2b
o(@,) /0 B+t 1) +1) ’
Li(a,c) = c—1, (12.4.5)

. .oa(t)
Ls(a,d) = %IZIE e d+0.5.

Functions B(t) = t2 +t + 1 and «(t) = t are, respectively, upper and
lower solutions of the problem (12.4.3),(12.4.4), verifying (Hy).

The nonlinear function f : Ry x R® — R verifies the assumptions of
Theorem 12.3.1. In fact,

e fis an L'-Carathéodory function as for |z| < p(1 +t2), |y| < p(1 +t)
and |z| < p, one has

PPL+t)2+1  p*(1+t%) P
1416 e3t 1+t4

|f(t 2y, 2)| < = ¢P(t)

with ¢, te,, t2¢, € L*(RY);
e f verifies the Nagumo condition on the set

t<z<t’4+t+1

B, =< (t,r,y,2) ERf xR3: 1<y <241
0<z(+o0) <2

with ¢(t) = # and h = 1, where k > 0 is a real constant;

e f(t,x,y,z) is nonincreasing in x, therefore, it satisfies (Hs);
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As the functions L;, i = 0,1,2, given by (12.4.5) verify (Hy), then,
by Theorem 12.3.1, there is at least a solution w of (12.4.3),(12.4.4)
such that

t<u(t) <t*+t+1, 1<d/(t)<2t+1, 0< " (t) <2, for t > 0.

This localization part shows that this solution is unbounded, nonnega-

tive, increasing and convex.



Chapter 13

¢-Laplacian Equations with
Functional Boundary Conditions

13.1. Introduction

This chapter is concerned with the study of ¢-Laplacian equations, some-
times called in the literature as half-linear equations. More precisely, we
consider a fully nonlinear equation on the half-line

(B (1)) + q(t) f(t,u(t), ' (t)) =0, t>0, (13.1.1)

where ¢ : R — R is an increasing homeomorphism with ¢(0) = 0, f : R x
R? 2 Randg:R* — ]Rar are both continuous functions, verifying adequate
assumptions, but ¢ is allowed to have a singularity when ¢ = 0, coupled with
the functional boundary conditions

L(u,u(0),4(0)) =0, u'(+00):= lim ()= B, (13.1.2)

t——+o0

where L : C (Ra“) x R? — R is a continuous function with properties to be
expressed later and B € R.

Boundary value problems, usually, are considered on compact domains.
However, problems on the half-line are becoming increasingly more popular
in the literature due to their applications in fields like engineering, chem-
istry and biology (see, for instance, [117, 147, 151]). Moreover, if equation
(13.1.1) is considered on the whole real line, some techniques to guarantee
the existence of homoclinic and heteroclinic solutions have been developed
in the recent years, as it can be seen in [110-112, 115].

Problems defined on unbounded domains require more delicate proce-
dures to deal with the lack of compactness. In this chapter, this is overcome

171
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by applying the so-called Bielecki norm and the equiconvergence at co, as
in [51].

It is important to note that, in this chapter, two types of new features
are introduced:

e The homeomorphism ¢ does not need to be surjective, that is ¢(R) can
be different from R. This is overcome by an auxiliary surjective homeo-
morphism that extends, eventually, ¢.

e A new and more general type of boundary conditions, given by a func-
tional that can depend globally on the unknown function.

Moreover, this method can be applied to classical or singular
¢-Laplacian, that is, even for homeomorphism ¢:(—a,a) — R, with
0 < a < +oo (for more details, see [24, 37]).

In general, the lower and upper solutions method is a very adequate
and useful technique to deal with functional boundary value problems as
it provides not only the existence of bounded or unbounded solutions, but
also their localization and, from that, some qualitative data about solutions,
their variation and behavior (see [35, 71, 72, 99, 100, 113]).

The technique used in this chapter follows the work [68], and applies
some arguments suggested in [57], combined with the upper and lower solu-
tions and a Nagumo condition to control the first derivative. The usage of
such tool allows to improve the existent solutions, namely the introduction
of functional boundary conditions in the problem. These boundary con-
ditions are very general in nature. Not only they generalize most of the
classical boundary conditions, but they also cover the separated and mul-
tipoint cases, nonlocal or integral conditions or other boundary conditions
with maximum/minimum arguments, that is, for example, of the type

= ! = minu’ i >
u(0) max u(t) or u'(7) minu (t), with 7 > 0,

provided that the assumptions on L are satisfied.

The chapter is organized as follows. In the first section, some auxiliary
result are defined such as the space, the weighted norms, lower and upper
solutions to be used and the necessary lemmas to proceed. The second sec-
tion contains new results of existence and localization of solutions. Finally,
two examples, which are not covered by the existent literature, show the
applicability of the main theorems. In the first one, the Nagumo conditions
are verified. On the other hand, in the second one, these assumptions are
replaced by a stronger condition on lower and upper solutions together with
a local monotone growth on f.
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13.2. Preliminary results

In this section, some definitions and auxiliary results needed for the proof
of the main result are presented. Consider the following space

Xy = {x € CY(Ry): lim 2t GR}

t—4oo eft
equipped with a Bielecki norm type in C1(R{),
2]l x, = max {||z[jo, "]},
where

[wllo =

w(t

| gt)l and ||w|[1 = sup |w(t)].
t>0

In this way, it is clear that (Xg,[|-||x,) is a Banach space.

In addition, the following conditions must hold:

(H1) ¢ :R — R is an increasing homeomorphism with ¢(0) = 0.

(H2) The function f : RT xR? — R is continuous and f (¢, z,y) is uniformly
bounded for £ > 0 when x and y are bounded.

(H3) The function ¢ : RT — R is integrable, not identically to 0 in a
subinterval of RT.

(H4) L: C(R") x R? — R is a continuous function, nondecreasing in the
first and third variables.

The approach to problem (13.1.1),(13.1.2) will be from the perspective
of a fixed point problem. In this order, the next lemmas will establish the
link between problem (13.1.1),(13.1.2) and its integral formulation.

Let v,I' € X4 be such that v(t) < I'(¢),¥t > 0. Consider the set, for
0 >0,

L'(t)
Eg:{(txy)eR+xR2 o ST SeT}'

The following Nagumo condition allows some a priori bounds on the
first derivative of the solution.

Definition 13.2.1. A function f : Fy — R is said to satisfy a Nagumo-
type growth condition in Fjy if, for some positive and continuous functions
1, h, such that

+oo —1 S)
sup ¥ (t) < 400, / ————~ds = 400, (13.2.1)
>0 ~Hs)D)
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it verifies

lq()f (& 2, 9)| < DOAy]), VYt z,y) € Ep. (13.2.2)

Lemma 13.2.2. Let f : Rf x R? — R be a continuous function satisfy-
ing a Nagumo-type growth condition in FEg. Then there exists N > 0 (not
depending on w) such that every solution u of (13.1.1),(13.1.2) with

y(t T'(t
e(et) <u(t) < g, fort >0, 6 >0,
has
o]l < NV (13.2.3)

Proof. Let u be a solution of (13.1.1),(13.1.2) with (t,u(t),u/(t)) € Ep.
Consider r > 0, such that

r> |B|. (13.2.4)
If |u/(t)] <7Vt >0, taking N > r the proof is complete as
|/||x = sup|u/(t)] <7 < N.
>0
Suppose there exists tg > 0 such that |u/(tg)] > N, that is, u/(tg) > N

or u/(tg) < —N.
In the first case, by (13.2.1), one can take N > r such that

/¢<N> 1), >M( L) .. M) (13.2.5)
@

(r) h(l¢=1(s)]) t>0 et >0 et

with M := sup,~q ¢(t).

Consider tl,zg € [to,+00) such that t; < ta, u/(t1) = N, u/(t2) = r
and r < u/(t) < N,Vt € [t1,12]. Therefore, the following contradiction with
(13.2.5) is achieved:

O] O
— 7 _ds= —— 7 d
/M hlo (s /¢(u/<t2>> o 1(s) "
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~ h(u/(s))
< N W(s)u'(s) ds < M : u'(s) ds
t1 t1

< M(u(te) —u(ty)) <M (sup L) _ inf V(t))

>0 eet t>0 eet

So u/(t) < N,¥t > 0.
Similarly, it can be proved that u/(¢t) > —N,Vt > 0, and, therefore,
lu'|l1 < N,Vt > 0. O

Define a surjective homeomorphism ¢ : R — R as

{ o(y) if [yl <R

_b(— _ (13.2.6)
OB —6CR), SR TOR) )

with R > 0 is to be defined later.

ely) =

Y+

Lemma 13.2.3. Let v € L' (RY). Then u € Xy such that (o(u'(t))) €
AC (]Ra“) is the unique solution of

(P (@) +o(t) =0, t=>0 (13.2.7)
u(0) =A4A
v (+00) = B,

with A, B € R, if and only if
t +o0
u(t) = A+/ ! (sa (B)+/ v (T) dT) ds (13.2.8)
0 s

Proof. Let u € X, be a solution of (13.2.7). Then
(/1)) = —v(t),

and by integration, one has

As ¢ is continuous and p(R) = R, then

u(t) = ¢! <¢(B) + /t - v(s)ds)
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and by integration again,

u(t) = A+ /Ot ot (@(B) + /5+OO v (1) dT) ds.

The lack of compactness is overcome by the following lemma, which will
provide a general criteria for relative compactness.

d

Lemma 13.2.4. ([51]). Let M C X,. The set M s said to be relatively
compact if the following conditions hold:

(a) M is uniformly bounded in X4;

(b) the functions belonging to M are equicontinuous on any compact
interval of RY;

(c) the functions f from M are equiconvergent at +oo, i.e., given € > 0,
there exists T'(e) > 0 such that || f(t) — f(+0)llx, <€ foranyt>T(e)
and f € M.

The adaptation of the Euclidean norm of R™ to the weighted norms of
Xy is a scholar exercise and, by this reason, was omitted.

To prove the main result, it is important to rely on the upper and
lower solutions method. The functions to be considered as upper and lower
solutions are defined as follows.

Definition 13.2.5. A function o € X, N C?(R*) such that ¢(o’) €
AC(R{) is said to be a lower solution of problem (13.1.1),(13.1.2) if

() (t) + q() f(t, a(t), o' () = O
and
L(a, a(0),a/(0)) >0, o (+00) < B, (13.2.9)

where B € R.
A function 8 € X4 N C? (RT) is an upper solution if it satisfies the
reversed inequalities.

The following condition is applied for well-ordered lower and upper solu-
tions of problem (13.1.1),(13.1.2).

(H5) There are « and f lower and upper solutions of (13.1.1),(13.1.2),
respectively, such that

a(t) < B(t), Vt=>0. (13.2.10)
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Throughout the proof of the main result, a modified and perturbed
problem will be considered. It is given by

(p(u' () + q(t) f(t, 60(t, u), 01(t,u")) =0,
u(0) = §p(0,u(0) + L(u, u(0),u(0))), (13.2.11)
u'(+o00) = B

with the truncature dp : Rf x R — R is given by
B(t), y>B(t),
do(t,y) = 4 v, alt) <y < B(t), (13.2.12)
at), y<alt),
and 61 : R = R by

N, w > N,
01(w) = S w, —N <w<N, (13.2.13)
—N, w<—N,

where N is defined in Lemma 13.2.2, for functions f satisfying Nagumo’s
condition.

Consider ¢ : R — R given by (13.2.6) where R := max{N, ||d/|,
16]]1}, with N given by (9.2.15).

The operator T : X4 — Xy associated to (13.2.11) can then be defined
as

(Tu)(t) = 80(0,u(0) + L(u,u(0),'(0)))

+/Ot v (sa(B) +/+Oo q(7) f (7, 80 (T, u), 61(7, u/))dT) ds.
S (13.2.14)

One of the essential steps is to prove that the operator T has a fixed
point. However, the function ¢ may, or may not, be singular at the origin.
In this way two results are presented: one for the regular case, where ¢ is
not singular when ¢ = 0, and another result for the singular case.

First, let us start by presenting some lemmas for the regular case.

Lemma 13.2.6. (Regular case). Assume that q : RS — R{ is continuous
and that conditions (H1)—~(H3) and (H5) hold. Then the operator T is well
defined.
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Proof. For any u € X there is K > 0 such that [jul|x, < K.
From (13.2.11) and (13.2.12)

. Tu)(t . 8(0
i 0 < i
li fot ¢ Hp(B) + f;oo q(7) f(7,00(T,u),01(T,0))dT)ds
" SE 0t
to-1 +oo /
< tLiTOO fo o (p(B) + fs q(T)éfza(tT7 So(T,u),01(T,u ))dT)ds'

As 0p(7,u) and 61 (7, u’) are bounded, by (H2), then
f(r,80(m,u), 61 (T,u'))
is uniformly bounded. Let us define
Sic = sup {f(tz,y),t =0, |z[ € (0, Ko), [yl € (0,N)}, (13.2.15)
with
Ko = max {[[allo, [|5llo} (13.2.16)

and N given by (13.2.3).
Remark that Sk does not depend on w.
From (H3), a real number k; can be defined such that

+oo
/ q(1)Skdr = k. (13.2.17)

As ¢ is nondecreasing, the previous inequality now becomes

t 1 +o0
lim M < lim fo ¢ (p(B) + Sk fs q(T)dr)ds
t—-+o0 eet t—+o00 e‘gt
bt
< lim 0% (w(i) +ki)ds
t——+o00 e
—1
< im CEBTRL_, (13.2.18)
t—-+oo e
For
“+00
tllin (Tu)'(t) = ¢~ <¢<B) +/ q(7) f(7,00(T,w), 61 (T, u’))d7->
> t
= B < 4o00.

Therefore, T is well defined. O
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Lemma 13.2.7. (Regular case). Assume that ¢ : Ry — R{ is con-
tinuous and that conditions (H1)-(H5) hold. Then the operator T is
continuous.

Proof. Consider a convergent sequence u, — u € Xy.

By the arguments used in the previous lemma, the upper bounds are
uniform and, therefore, do not depend on n.

Defining

“+o0
0= o(B) + / G(T) (7, 80 (7 un), 61 (7, 1))

and as ¢ is continuous, by (H2) and Lebesgue’s Dominated Convergence
Theorem, one has

1(Tun) = (Tu)llg

= sup e 0t

8 (0,up (0) + L (wn, un (0),ul, (
t>0 ,

t

- ¥
0

0)+ | ¢ (©)ds
/0 — 0,
=0 (0,4 (0) 4+ L (u,u(0),u(0))) “1(©)ds

as n — +o00, and
1(Tun) = (Tu)'|];

“+o0
o (o(B) + / G() (7, 607, n), 61 (7, 1) )dr)
< sup t — 0,

t> oo
2| o1 (o(B) + / 4(7) (7, b0, u), 61 (7, ') dr)

as n — +o0.
Therefore, T' is continuous in Xg. U

Lemma 13.2.8. The operator T is compact.

Proof. The idea in this proof is to apply Lemma 13.2.4. For that,
it is important to show that the operator T is equicontinuous and
equiconvergent at +00.

Let us consider ¢y, to € (0,Tp), where To > 0 and t1 < to.
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Defining © := go(B)—i—f:OO q(7)f(1,00(T,u), 61 (7, u"))dr, then, for 6 > 0,

‘(TU)(tl) _ (Tu)(ts)

69t1

< max {|a(0)[, |5(0 )|} Tef(titt)

e@tl eetz
Oty _ 0t [ eft [ o=1(0)ds
e e 1 n P

i ef(ti+tz2) /0 v (O)ds) + ef(t1+t2)

< max {|a(0)], |5(0 )I} Tt

P e G R N
69(t1+t2)

69t1 tt12 @_1(§0( _|_ S f+00 dT) O

+ 9(t1+t2) - ’

as t1 — to.
Also, as ¢~ is continuous, defining F := q(7)f(7, do(,u), 61(7,u)), by
(13.2.15) and (13.2.17),

(Tw) (t1) — (Tw) (t2)| = ‘cpl (/:OO FdT) — ! ( t:m FdT) ‘ -0,

as t; — to. Therefore, T is equicontinuous.
For the equiconvergence at +o0o of the operator T, one has, by (13.2.18),

L0 _ yy T | [ e
0

69t t—+o00 69t

— 0,

as t — +o00. For

(a0 - Jim (700 = ¢ (©) - 1im 7 (©)

t—+oo t——+oo

it tends to 0 as t — +o0, from (H3) and the continuity of p .
As T is equicontinuous and equiconvergent, then from Lemma 13.2.4,

T is compact. U

Now let us consider the singular case.

Lemma 13.2.9. (Singular case). Let g be singular at t = 0. Then the
operator T' given by (13.2.14) is completely continuous.
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Proof. For eachn > 1 and © := ¢(B)+ f;oo q(m) f(1,00(T,u), 01 (7, u))dr
let us define the approximating operator T}, : X, — Xy given by

(Tou) (t) == 50(o,u(0)+L(u7u(0),u'(0)))+Agfl(@)ds. (13.2.19)

n

In this case, it is sufficient to show that T;, tends to 7" on X,. In fact,
from (H1)-(H3), (13.2.15) and (13.2.17), one has

1
fon 8071

e@t

e@t e@t

(Tu)(t) <Tnu><t>’ B

e ) + Sk [ a(ryin)

o0t -0,
as n — +oo, and
[(Tw)'(t) = (Tow)' (2)]
»~H(p(B) + f+oo f(T do(T,u),01(T,u"))dr) 0
—o (B +f f (1, 60(T, 1), 61 (7, u'))dT) '
as n — +oo.
Hence, the operator T is completely continuous. O

13.3. Existence and localization result

In this section, the existence and location result for (13.1.1), (13.1.2) is
proved.

Theorem 13.3.1. Let f : RT x R? — R and q : Rf — R be both contin-
uous functions, where q can have a singularity when t = 0, and [ verifies
the Nagumo conditions (13.2.1) and (13.2.2). If conditions (H1)-(H5) are
satisfied, then problem (13.1.1),(13.1.2) has at least one solution u € X4
and there exists N > 0 such that

at) <u(t) <B(t) and — N <u/(t) <N, Vt>0.

Proof.

Claim 1. Every solution u of (13.2.11) werifies a(t) < u(t) < S(t) and
there is N > 0 such that —N < u/(t) < N,Vt > 0.
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Let u € X4 be a solution of the modified problem (13.2.11) and suppose,
by contradiction, that there exists ¢ > 0 such that «(t) > u(t). Therefore,

%Izlg(u(t) —a(t)) <O0.

Suppose that this infimum is attained as t — 4o00. Therefore,

lim (u'(t) — d/(t)) = v/ (+00) — o/ (+00) < 0.

t——+oo

By Definition 13.2.5, one gets the contradiction,
0> ' (+00) — &/ (+00) = B — a/(+0o0) > 0.

Analogously, the infimum does not happen at ¢ = 0, otherwise the fol-
lowing contradiction holds:

0> u(0) — a(0) = 6(0,u(0) + L(u,u(0),u'(0))) — a(0) > 0.
Therefore, there are t, > 0 and ty < ¢, such that

min(u(t) — o(t)) = u(t) — alt.) <0,

() = o (L),
u(t) < a(t), u'(t) <d(t), Vt e [to, tul,
and, by (H1),
o(u'(t) < @/ (t), Vt e [to,t]. (13.3.1)

So, for t € [to, t«[, by (13.2.11), (13.2.12), (13.2.6) and Definition 13.2.5,
one has

(e (1))

—q(t)f(t,00(t, u), 01 (¢, )
= —q(t)f(t,a(t), o'(1))
< (8 (1)) = (e('(1))"

Therefore, the function p(u/(t)) — ¢(a/(t)) is nonincreasing on [to, .|
and

)
)

p(u'(to)) — p(d/(to)) = (v (t.)) — (e (t.)) = 0,

which is a contradiction with (13.3.1).
So, u(t) > «a(t), vVt > 0.
Analogously, it can be shown that u(t) < 8(t),Vt > 0.
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The first derivative inequalities are an immediate consequence of Lemma,
13.2.2, taking

a(t) B(t)
y(t) = —ot and T'(t) = ot fort >0, 8> 0.

From the lemmas in the previous section, one has that the operator T
is completely continuous, both for the singular and regular cases.

Claim 2. The problem (13.2.11) has at least a solution u € X.

In order to apply Schauder’s fixed-point theorem, we consider a closed and
bounded set D defined as

D ={ueXy:|ulx <p},
with p such that

p:zmaX{K0+ sup (ap_ (@(ft)+k1)t),|@_1(<ﬂ(3)+k’1)|}7
te[0,400) e

where K is given by (13.2.16) and k; by (13.2.17).
For u € D, arguing as in the proof of Lemma 13.2.6, as ¢~
we have, for Sk given by (13.2.15),

!is increasing,

|(Tw) (2)]
[Tullg = sup 7
te[0,+00) €
t 1 [e'e]
B) + Sk)d
< s (K4 P (2B etfs q(7) Sk) ds
t€[0,+00) €

Jo o (@ (B) + k1) ds)
eet

—1
B,

and

t€[0,4+00)
¢~ (p(B)
< sup .
tefo+o0) |+ fo a(7) f (7, 00(7,u), 61 (7, u)) d)

< sup o ' (9(B) + k)| < p.
te[0,4+00)

Therefore, TD C D.
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Then by Schauder’s fixed-point theorem (Theorem 1.2.6), T has at least
one fixed point u € Xy, that is, the problem (13.2.11) has at least one
solution u € Xg.

Claim 3. Every solution u of the problem (13.2.11) is a solution of problem
(13.1.1),(13.1.2).

Let u be a solution of the modified problem (13.2.11). By the last claim,
function w verifies equation (13.1.1).
Then, it is enough to prove the inequalities

a(0) < u(0) + L(u, u(0),4'(0)) < B(0).
Suppose, by contradiction, that «(0) > w(0) + L(u, u(0),u’(0)).
By (13.2.11) and (13.2.12),
u(0) = d0(0,u(0) + L(u, u(0),u'(0))) = (0).
Therefore, by Claim 1, v’(0) > &/(0).
By (H4) and Definition 13.2.5, the following contradiction is obtained
0 > u(0) + L(u,u(0),4(0)) — a(0) > L(a, «(0),a’(0)) > 0.

In a similar way one can prove that u(0) + L(u, u(0),4'(0)) < 8(0). O
Remark 13.3.2. Theorem 13.3.1 still remains true for singular ¢-Laplacian
equations. Indeed, from Nagumo condition and Lemma 13.2.2, for every u

solution of problem (13.2.11), ||u/(¢)|l1 < N, and, therefore, considering in
(13.2.6), R > N, one has

¢:]—N,N[—=R and ¢u/'(t) =/ (t)), Vt € R].

The control on the first derivative given by Nagumo condition and
Lemma 13.2.2, which implies a subquadratic growth on the nonlinearity,
can be overcome assuming stronger conditions on lower and upper solu-
tions, as in the next theorem.

Theorem 13.3.3. Let f : Rf xR? — R and ¢ : RY — R be both continuous
functions, where q can have a singularity when t = 0. Assume that there
are a and B lower and upper solutions of (13.1.1),(13.1.2), respectively, such
that

o (t) < B(t), Vt>0, (13.3.2)
and

a(0) < B(0). (13.3.3)
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If conditions (H1)—(H4) are satisfied and

[t a(t),y) < f(tz,y) < Ft,5(1),y), (13.3.4)

for a(t) <x < B(t) and y € R fived, then problem (13.1.1),(13.1.2) has at
least a solution u € Xy such that

o (t) <u'(t) < B(t), Vt>0.
Remark 13.3.4. Condition (13.3.2) together with (13.3.3) imply (H5).

Proof. The proof follows analogous steps as in Claims 1 and 2 of Theorem
13.3.1, with ¢ defined by

R = max {18l } (13.3.5)

It remains to prove that o/(¢) < u/(t) < g'(t), V¢ > 0.
Assume that there is a ¢t > 0 such that u/(t) < /(t), and define ¢y > 0
as

t11>1£ (W'(t) —a'(t)) = (to) — ' (to) < 0. (13.3.6)

By (13.1.2), there is t; € (to, +00) such that u/(t1) = o/ (t1).
By (13.3.4), for ¢ € [to, 1],

(o (W' (1) (1) = =g (t) f (t, 80(t,u), 81(t,0')) = —q (£) f (£, 60(t,u), &' (¢))
< —q(t) f(ta(t).o(t) < (8(e/(1) = (0 (1)
Therefore, ¢ (/(t)) — ¢ (o/ (£)) is nonincreasing on [to, t1] and
@ (U (to)) — ¢ ((to)) = ¢ (U (t1)) — ¢ (&/(t1)) = 0.
So, ¢ (u'(to)) > ¢ (o (to)), and by (H1), u/(to) > o (to) which contra-

dicts (13.3.6). That is, o/(t) < u/(t), Vt > 0.
In the same way it can be shown that «'(t) < §'(t), vVt > 0. O

Remark 13.3.5. Theorem 13.3.3 holds for singular ¢-Laplacian equations.
If in (13.2.6). R is considered given by (13.3.5), one has

¢:]—R,R[—+R and ¢ (t)) =e'(t), Vt=>0.
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13.4. Examples

In order to demonstrate the applicability of the results in this chapter two
examples will follow. In the first one the nonlinearity f satisfies the Nagumo
conditions and, in the second one, this assumption is replaced by a mono-
tone behavior in f.

In both cases, the null function is not a solution of the referred problem.

Example A. Consider for some 6 > 0 the nonlinear problem composed by
the differential equation

u”(t) 1 u(t)(w'(t))?

- =0, t>0 13.4.1
Ty 172 1ren 0 120 (13.4.1)
and the functional boundary conditions
w3 _ / 1
nax 5t + (u'(0))° —u(0) =0, ' (+o0)= 7 (13.4.2)

Remark that this problem (13.4.1),(13.4.2) is a particular case of
(13.1.1)-(13.1.2) with

e ¢(v) = arctanv;

2

Yy

o f(t,x,y) = L
1

e q(t) = T

® L(u,x,y) = maXtERa’ ‘Z(Stt)‘ +y3 —

1
B=-
° 2

We point out that:

o f(t,z,y) and q(t) verify (H2), (H3) and the Nagumo conditions (13.2.1)
and (13.2.2) with ¢(¢) = 1 and h(|y|) = y?;

o L(u,x,y) satisfies (H4);

e the functions «a(t) = 0,5 and B(t) = t + 2 are, respectively, lower and
upper solutions of (13.4.1),(13.4.2) verifying (H5);

e as ¢ is a nonsurjective homeomorphism satisfying (H1), it can be
extended by a surjective homeomorphism ¢, like in (13.2.6), that is

arctan(y) if ly] <R,
¢ (y) = arctan (R)

7 if |y| > R,
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with
R .= max{HO/Hl ’ Hﬁ/Hl} =L

So, by Theorem 13.3.1, there is at least a solution u of (13.4.1),(13.4.2)
such that

0,5 <u(t)<t+2, ¥Yt>0.

Moreover, this solution is unbounded and, from the location part,
strictly positive in Ry .

Example B. The functional problem

u/ 5
300" () + 15 (arctan((u(t))3) - 2%) —0, t>0,
/01 %dt — 5u(0) + w/(0) = 1,
u'(+00) = B,

for some 6 > 0 and B > —1, is a particular case of (13.1.1),(13.1.2) with
* d(v) = v

y5

o f(t,z,y) = arctan (23) — 2———;
ft,z,y) (?) T
1

° q(t) = [REE

1
t
o L(u,z,y) :/0 %dt—5x—|—y—1.

Remark that, in this case, ¢ is a surjective homeomorphism and f does
not satisfy the Nagumo conditions but it verifies (13.3.4).
As the functions «(t) = —t — 1 and 5(t) = 0 are, respectively, lower

and upper solutions of (13.4), satisfying assumptions (13.3.2) and (13.3.3),
then, by Theorem 13.3.3, there is at least a solution u of (13.4) such that

—t—1<u(t)<0, Vt>0.

Indeed, this solution is unbounded if B # 0 and bounded if B = 0, and,
in any case, nonpositive in Ry
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