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- Preface to the Second Edition

We received a wealth of helpful feedback on the first edition of this book.
In crafting a new edition, our challenge was to try to produce a book that
incorporated as much of this feedback as possible, coupled with our ideas
for changes, while at the same time keeping the book at roughly the same
length. Our general goals in the second edition were to produce more exer-
cises at the end of the chapters, to make our explanations as clear and
accessible as possible, and to incorporate more examples from published
research.

We added substantially to the exercises available at the end of each
chapter. The second edition contains 101 exercises, compared to the 59
in the first edition. In addition, we also have added substantially to both
the general and instructor-only sections of the webpage for our book
( ). The general section now contains the
guides for conducting the analyses discussed in the book for the SPSS,
Stata, and R statistical programs, as well as many more data sets avail-
able in formats compatible with all three programs. The instructor-only
section contains several additional resources, including PowerPoint and
TEX/Beamer slides for each chapter, a test-bank, and answer keys for the
exercises.

In the new edition, at the end of each chapter we have added short
working definitions for each bolded term introduced in that chapter. The
trade-off here is one between making the materials in the book more accessi-
ble versus running the risk of offering over-simplified definitions that might
mislead students into thinking that they can master the book’s materials by
simply memorizing these definitions.

As outlined above, we made broad changes that permeate all of the
book, but we also made major changes to particular chapters as follows:

* We substantially revised Chapter 3. Among other changes, we altered
the language of the “four causal hurdles” and added what we call a

xix
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Preface to the Second Edition

“causal-hurdles scorecard” to help keep track of the progress of our
theories as we move through the various stages of testing them.
Chapter 4 was altered to make the running example throughout the
chapter one that is more familiar to political science undergraduates,
namely whether campaign advertising affects voting behavior. We have
also expanded the discussion of experimental methods to highlight
more examples of applied work, and also to include a discussion of
field experiments.

We combined Chapters 5 and 6 from the earlier edition of the book.
Like so many books in this genre, we had written our first edition of
chapters on these subjects as though students would be conceptualizing
and then measuring their own variables. While this may be true for
some students, we expect that many more will be downloading data
from the Internet or otherwise conducting their research with data that
they did not originally collect. We wrote the new Chapter 5 with such
students in mind, combining the critical concepts of measurement and
descriptive statistics into a single chapter where the focus is on getting
to know one’s data.

The combining of Chapters 5 and ¢ from the previous edition into the
new Chapter 5 allowed us to address one of the major concerns that
we heard from instructors — that the book didn’t get into the business
of data analysis soon enough. Chapters 7 through 11 from the first
edition became Chapters 6 through 11 in the second edition. We split
the old Chapter 11, which one reader described as a “methodolog-
ical behemoth,” into two more digestible chapters, each with some
new material. The new Chapter 10 focuses on a series of challenges in
terms of model specification and interpretation in OLS, while the new
Chapter 11 focuses on models of dummy dependent variables and time
series data.

We pulled elements out of the old Chapter 12, which was titled “Mul-
tiple Regression Models III: Applications,” and inserted them into the
second edition’s Chapters 9 through

Chapter 12 is a wholly new chapter that we ambitiously titled “Putting
It All Together to Produce Effective Research.” The goal of this chapter
is to provide a follow-up to Chapter 2 in which we give some specific
advice on how to pull together the lessons from the book to write an
original research manuscript, such as a senior honors thesis or indepen-
dent research project. We are very much looking forward to feedback
from instructors and students about what works and doesn’t work with
this new chapter.
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that persist in the book. We look forward to hearing about them from you
so that we can make future editions of this book better.

Throughout the process of writing this book, we have been mindful of
how our thinking has been shaped by our teachers at a variety of levels. We
are indebted to them in ways that are difficult to express. In particular, Guy
Whitten wishes to thank the following, all from his days at the University
of Rochester: Larry M. Bartels, Richard Niemi, G. Bingham Powell, Lynda
Powell, William H. Riker, and David Weimer. Paul Kellstedt thanks Al
Reynolds and Bob Terbog of Calvin College; Michael Lewis-Beck, Vicki
Hesli, and Jack Wright at the University of Towa; and Jim Stimson and
John Freeman at the University of Minnesota.

Though we have learned much from the aforementioned professors, we
owe our largest debt to our parents: Lyman A. “Bud” Kellstedt, Charmaine
C. Kellstedt, David G. Whitten, and Jo Wright-Whitten. We dedicate this
book to the four of them — the best teachers we ever had.
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Most political science students are interested in the substance of politics
and not in its methodology. We begin with a discussion of the goals of this
book and why a scientific approach to the study of politics is more interesting
and desirable than a “just-the-facts” approach. In this chapter we provide an
overview of what it means to study politics scientifically. We begin with an
introduction to how we move from causal theories to scientific knowledge,
and a key part of this process is thinking about the world in terms of models
in which the concepts of interest become variables that are causally linked
together by theories. We then introduce the goals and standards of political
science research that will be our rules of the road to keep in mind throughout
this book. The chapter concludes with a brief overview of the structure of
this book.

Doubt is the beginning, not the end, of wisdom.
— Chinese proverb

KR poLrTicAL SCIENCE?

“Which party do you support?” “When are you going to run for office?”
These are questions that students often hear after announcing that they
are taking courses in political science. Although many political scientists
are avid partisans, and some political scientists have even run for elected
offices or have advised elected officials, for the most part this is not the
focus of modern political science. Instead, political science is about the
scientific study of political phenomena. Perhaps like you, a great many of
today’s political scientists were attracted to this discipline as undergraduates
because of intense interests in a particular issue or candidate. Although we
are often drawn into political science based on political passions, the most

1
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respected political science research today is conducted in a fashion that
makes it impossible to tell the personal political views of the writer.

Many people taking their first political science research course are sur-
prised to find out how much science and, in particular, how much math are
involved. We would like to encourage the students who find themselves in
this position to hang in there with us — even if your answer to this encourage-
ment is “but ’'m only taking this class because they require it to graduate,
and Pll never use any of this stuff again.” Even if you never run a regression
model after you graduate, having made your way through these materials
should help you in a number of important ways. We have written this book
with the following three goals in mind:

» To help you consume academic political science research in your other
courses. One of the signs that a field of research is becoming scientific
is the development of a common technical language. We aim to make
the common technical language of political science accessible to you.

» To help you become a better consumer of information. In political
science and many other areas of scientific and popular communication,
claims about causal relationships are frequently made. We want you
to be better able to evaluate such claims critically.

» To start you on the road to becoming a producer of scientific research
on politics. This is obviously the most ambitious of our goals. In our
teaching we often have found that once skeptical students get comfort-
able with the basic tools of political science, their skepticism turns into
curiosity and enthusiasm.

To see the value of this approach, consider an alternative way of learn-
ing about politics, one in which political science courses would focus on
“just the facts” of politics. Under this alternative way, for example, a course
offered in 1995 on the politics of the European Union (EU) would have
taught students that there were 15 member nations who participated in
governing the EU through a particular set of institutional arrangements
that had a particular set of rules. An obvious problem with this alternative
way is that courses in which lists of facts are the only material would prob-
ably be pretty boring. An even bigger problem, though, is that the political
world is constantly changing. In 2011 the EU was made up of 27 member
nations and had some new governing institutions and rules that were dif-
ferent from what they were in 199S5. Students who took a facts-only course
on the EU back in 1995 would find themselves lost in trying to understand
the EU of 2011. By contrast, a theoretical approach to politics helps us to
better understand why changes have come about and their likely impact on
EU politics.
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In this chapter we provide an overview of what it means to study pol-
itics scientifically. We begin this discussion with an introduction to how
we move from causal theories to scientific knowledge. A key part of this
process is thinking about the world in terms of models in which the con-
cepts of interest become variables' that are causally linked together by
theories. We then introduce the goals and standards of political science
research that will be our rules of the road to keep in mind throughout this
book. We conclude this chapter with a brief overview of the structure of

this book.

APPROACHING POLITICS SCIENTIFICALLY: THE SEARCH FOR
CAUSAL EXPLANATIONS

I've said, 1 don’t know whether it’s addictive. I'm not a doctor. I'm not a

scientist.
— Bob Dole, in a conversation with Katie Couric about tobacco during

the 1996 U.S. presidential campaign

The question of “how do we know what we know” is, at its heart, a
philosophical question. Scientists are lumped into different disciplines that
develop standards for evaluating evidence. A core part of being a scientist
and taking a scientific approach to studying the phenomena that interest
you is always being willing to consider new evidence and, on the basis of
that new evidence, change what you thought you knew to be true. This
willingness to always consider new evidence is counterbalanced by a stern
approach to the evaluation of new evidence that permeates the scientific
approach. This is certainly true of the way that political scientists approach
politics.

So what do political scientists do and what makes them scientists? A
basic answer to this question is that, like other scientists, political scientists
develop and test theories. A theory is a tentative conjecture about the causes
of some phenomenon of interest. The development of causal theories about
the political world requires thinking in new ways about familiar phenom-
ena. As such, theory building is part art and part science. We discuss this
in greater detail in Chapter 2, “The Art of Theory Building.”

1 When we introduce an important new term in this book, that term appears in boldface
type. At the end of each chapter, we will provide short definitions of each bolded term that
was introduced in that chapter. We discuss variables at great length later in this and other
chapters. For now, a good working definition is that a variable is a definable quantity that
can take on two or more values. An example of a variable is voter turnout; researchers
usually measure it as the percentage of voting-eligible persons in a geographically defined
area who cast a vote in a particular election.
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Causal theory Once a theory has been developed, like all

ﬂ scientists, we turn to the business of testing our

theory. The first step in testing a particular theory
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scientific knowledge. logical reasoning and creative design. In Chapter

, “Evaluating Causal Relationships,” we focus on
the logical reason side of this process. In Chapter 4, “Research Design,” we
focus on the design part of this process. If a hypothesis survives rigorous
testing, scientists start to gain confidence in that hypothesis rather than in
the null hypothesis, and thus they also gain confidence in the theory from
which they generated their hypothesis.

Figure 1.1 presents a stylized schematic view of the path from theories
to hypotheses to scientific knowledge.” At the top of the figure, we begin
with a causal theory to explain our phenomenon of interest. We then derive
one or more hypotheses about what our theory leads us to expect when we
measure our concepts of interest (which we call variables —as was previously
discussed) in the real world. In the third step, we conduct empirical tests of
our hypotheses.” From what we find, we evaluate our hypotheses relative
to corresponding null hypotheses. Next, from the results of our hypothesis
tests, we evaluate our causal theory. In light of our evaluation of our theory,
we then think about how, if at all, we should revise what we consider to be
scientific knowledge concerning our phenomenon of interest.

A core part of the scientific process is skepticism. On hearing of a
new theory, other scientists will challenge this theory and devise further
tests. Although this process can occasionally become quite combative, it is
a necessary component in the development of scientific knowledge. Indeed,

2 In practice, the development of scientific knowledge is frequently much messier than this
step-by-step diagram. We show more of the complexity of this approach in later chapters.
3 By “empirical” we simply mean “based on observations of the real world.”
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a core component of scientific knowledge is that, as confident as we are in a
particular theory, we remain open to the possibility that there is still a test
out there that will provide evidence that makes us lose confidence in that
theory.

It is important to underscore here the nature of the testing that scien-
tists carry out. One way of explaining this is to say that scientists are not
like lawyers in the way that they approach evidence. Lawyers work for a
particular client, advocate a particular point of view (like “guilt” or “inno-
cence”), and then accumulate evidence with a goal of proving their case
to a judge or jury. This goal of proving a desired result determines their
approach to evidence. When faced with evidence that conflicts with their
case, lawyers attempt to ignore or discredit such evidence. When faced with
evidence that supports their case, lawyers try to emphasize the applicability
and quality of the supportive evidence. In many ways, the scientific and legal
approaches to evidence couldn’t be further apart. Scientific confidence in a
theory is achieved only after hypotheses derived from that theory have run a
gantlet of tough tests. At the beginning of a trial, lawyers develop a strategy
to prove their case. In contrast, at the beginning of a research project, sci-
entists will think long and hard about the most rigorous tests that they can
conduct. A scientist’s theory is never proven because scientists are always
willing to consider new evidence.

The process of hypothesis testing reflects how hard scientists are on
their own theories. As scientists evaluate systematically collected evidence to
make a judgment of whether the evidence favors their hypothesis or favors
the corresponding null hypothesis, they always favor the null hypothesis.
Statistical techniques allow scientists to make probability-based statements
about the empirical evidence that they have collected. You might think that,
if the evidence was 50-50 between their hypothesis and the corresponding
null hypothesis, the scientists would tend to give the nod to the hypothesis
(from their theory) over the null hypothesis. In practice, though, this is
not the case. Even when the hypothesis has an 80-20 edge over the null
hypothesis, most scientists will still favor the null hypothesis. Why? Because
scientists are very worried about the possibility of falsely rejecting the null
hypothesis and therefore making claims that others ultimately will show to
be wrong.

Once a theory has become established as a part of scientific knowl-
edge in a field of study, researchers can build upon the foundation that this
theory provides. Thomas Kuhn wrote about these processes in his famous
book The Structure of Scientific Revolutions. According to Kuhn, scien-
tific fields go through cycles of accumulating knowledge based on a set of
shared assumptions and commonly accepted theories about the way that
the world works. Together, these shared assumptions and accepted theories
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form what we call a paradigm. Once researchers in a scientific field have
widely accepted a paradigm, they can pursue increasingly technical ques-
tions that make sense only because of the work that has come beforehand.
This state of research under an accepted paradigm is referred to as nor-
mal science. When a major problem is found with the accepted theories
and assumptions of a scientific field, that field will go through a revolu-
tionary period during which new theories and assumptions replace the old
paradigm to establish a new paradigm. One of the more famous of these
scientific revolutions occurred during the 16th century when the field of
astronomy was forced to abandon its assumption that the Earth was the
center of the known universe. This was an assumption that had informed
theories about planetary movement for thousands of years. In the book
On Revolutions of the Heavenly Bodies, Nicolai Copernicus presented his
theory that the Sun was the center of the known universe. Although this
radical theory met many challenges, an increasing body of evidence con-
vinced astronomers that Coperinicus had it right. In the aftermath of this
paradigm shift, researchers developed new assumptions and theories that
established a new paradigm, and the affected fields of study entered into
new periods of normal scientific research.

It may seem hard to imagine that the field of political science has gone
through anything that can compare with the experiences of astronomers in
the 16th century. Indeed, Kuhn and other scholars who study the evolu-
tion of scientific fields of research have a lively and ongoing debate about
where the social sciences, like political science, are in terms of their devel-
opment. The more skeptical participants in this debate argue that political
science is not sufficiently mature to have a paradigm, much less a paradigm
shift. If we put aside this somewhat esoteric debate about paradigms and
paradigm shifts, we can see an important example of the evolution of sci-
entific knowledge about politics from the study of public opinion in the
United States.

In the 1940s the study of public opinion through mass surveys was in
its infancy. Prior to that time, political scientists and sociologists assumed
that U.S. voters were heavily influenced by presidential campaigns — and,
in particular, by campaign advertising — as they made up their minds about
the candidates. To better understand how these processes worked, a team
of researchers from Columbia University set up an in-depth study of public
opinion in Erie County, Ohio, during the 1944 presidential election. Their
study involved interviewing the same individuals at multiple time periods
across the course of the campaign. Much to the researchers’ surprise, they
found that voters were remarkably consistent from interview to interview
in terms of their vote intentions. Instead of being influenced by particular
events of the campaign, most of the voters surveyed had made up their minds
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about how they would cast their ballots long before the campaigning had
even begun. The resulting book by Paul Lazarsfeld, Bernard Berelson, and
Hazel Gaudet, titled The People’s Choice, changed the way that scholars
thought about public opinion and political behavior in the United States.
If political campaigns were not central to vote choice, scholars were forced
to ask themselves what was critical to determining how people voted.

At first other scholars were skeptical of the findings of the 1944 Erie
County study, but as the revised theories of politics of Lazarsfeld et al. were
evaluated in other studies, the field of public opinion underwent a change
that looks very much like what Thomas Kuhn calls a “paradigm shift.” In
the aftermath of this finding, new theories were developed to attempt to
explain the origins of voters’ long-lasting attachments to political parties in
the United States. An example of an influential study that was carried out
under this shifted paradigm is Richard Niemi and Kent Jenning’s seminal
book from 1974, The Political Character of Adolescence: The Influence
of Families and Schools. As the title indicates, Niemi and Jennings studied
the attachments of schoolchildren to political parties. Under the pre-Erie
County paradigm of public opinion, this study would not have made much
sense. But once researchers had found that voter’s partisan attachments
were quite stable over time, studying them at the early ages at which they
form became a reasonable scientific enterprise. You can see evidence of
this paradigm at work in current studies of party identification and debates
about its stability.

THINKING ABOUT THE WORLD IN TERMS OF VARIABLES AND
CAUSAL EXPLANATIONS

So how do political scientists develop theories about politics? A key element
of this is that they order their thoughts about the political world in terms of
concepts that scientists call variables and causal relationships between vari-
ables. This type of mental exercise is just a more rigorous way of expressing
ideas about politics that we hear on a daily basis. You should think of each
variable in terms of its label and its values. The variable label is a descrip-
tion of what the variable is, and the variable values are the denominations
in which the variable occurs. So, if we’re talking about the variable that
reflects an individual’s age, we could simply label this variable “Age” and
some of the denominations in which this variable occurs would be years,
days, or even hours.

It is easier to understand the process of turning concepts into variables
by using an example of an entire theory. For instance, if we’re thinking
about U.S. presidential elections, a commonly expressed idea is that the
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incumbent president will fare better when the economy is relatively healthy.
If we restate this in terms of a political science theory, the state of the
economy becomes the independent variable, and the outcome of presidential
elections becomes the dependent variable. One way of keeping the lingo of
theories straight is to remember that the value of the “dependent” variable
“depends” on the value of the “independent” variable. Recall that a theory
is a tentative conjecture about the causes of some phenomenon of interest.
In other words, a theory is a conjecture that the independent variable is
causally related to the dependent variable; according to our theory, change
in the value of the independent variable causes change in the value of the
dependent variable.

This is a good opportunity to pause and try to come up with your own
causal statement in terms of an independent and dependent variable; try
filling in the following blanks with some political variables:

causes

Sometimes it’s easier to phrase causal propositions more specifically in terms
of the values of the variables that you have in mind. For instance,

higher causes lower
or
higher causes higher

Once you learn to think about the world in terms of variables you will be
able to produce an almost endless slew of causal theories. In Chapter 4 we
will discuss at length how we design research to evaluate the causal claims
in theories, but one way to initially evaluate a particular theory is to think
about the causal explanation behind it. The causal explanation behind a
theory is the answer to the question, “why do you think that this indepen-
dent variable is causally related to this dependent variable?” If the answer
is reasonable, then the theory has possibilities. In addition, if the answer is
original and thought provoking, then you may really be on to something.
Let’s return now to our working example in which the state of the econ-
omy is the independent variable and the outcome of presidential elections
is our dependent variable. The causal explanation for this theory is that
we believe that the state of the economy is causally related to the outcome
of presidential elections because voters hold the president responsible for
management of the national economy. As a result, when the economy has
been performing well, more voters will vote for the incumbent. When the
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Independent variable Dependent variable
(concept) (concept)

Causal theory

(Operatiorﬁalization) (Operationalization)

dmmmmmmm—————
D

. Hypothesis
Independent variable Dependent variable

(measured) (measured)

Figure 1.2. From theory to hypothesis.

economy is performing poorly, fewer voters will support the incumbent
candidate. If we put this in terms of the preceding fill-in-the-blank exercise,
we could write

economic performance causes presidential election outcomes,

or, more specifically, we could write

higher economic performance causes higher incumbent vote.

For now we’ll refer to this theory, which has been widely advanced and
tested by political scientists, as “the theory of economic voting.”

To test the theory of economic voting in U.S. presidential elections, we
need to derive from it one or more testable hypotheses. Figure 1.2 provides
a schematic diagram of the relationship between a theory and one of its
hypotheses. At the top of this diagram are the components of the causal
theory. As we move from the top part of this diagram (Causal theory) to
the bottom part (Hypothesis), we are moving from a general statement
about how we think the world works to a more specific statement about a
relationship that we expect to find when we go out in the real world and
measure (or operationalize) our variables.

4 Throughout this book we will use the terms “measure” and “operationalize” interchange-
ably. It is fairly common practice in the current political science literature to use the term
“operationalize.”
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At the theory level at the top of Figure 1.2, our variables do not need to
be explicitly defined. With the economic voting example, the independent
variable, labeled “Economic Performance,” can be thought of as a concept
that ranges from values of very strong to very poor. The dependent vari-
able, labeled “Incumbent Vote,” can be thought of as a concept that ranges
from values of very high to very low. Our causal theory is that a stronger
economic performance causes the incumbent vote to be higher.

Because there are many ways in which we can measure each of our
two variables, there are many different hypotheses that we can test to find
out how well our theory holds up to real-world data. We can measure
economic performance in a variety of ways. These measures include infla-
tion, unemployment, real economic growth, and many others. “Incumbent
Vote” may seem pretty straightforward to measure, but here there are also
a number of choices that we need to make. For instance, what do we do in
the cases in which the incumbent president is not running again? Or what
about elections in which a third-party candidate runs? Measurement (or
operationalization) of concepts is an important part of the scientific pro-
cess. We will discuss this in greater detail in Chapter 5, which is devoted
entirely to evaluating different variable measurements and variation in vari-
ables. For now, imagine that we are operationalizing economic performance
with a variable that we will label “One Year Real Economic Growth Per
Capita.” This measure, which is available from official U.S. government
sources measures the one-year rate of inflation-adjusted (thus the term
“real”) economic growth per capita at the time of the election. The adjust-
ments for inflation and population (per capita) reflect an important part
of measurement — we want our measure of our variables to be comparable
across cases. The values for this variable range from negative values for
years in which the economy shrank to positive values for years in which
the economy expanded. We operationalize our dependent variable with a
variable that we label “Incumbent Party Percentage of Major Party Vote.”
This variable takes on values based on the percentage of the popular vote,
as reported in official election results, for the party that controlled the pres-
idency at the time of the election and thus has a possible range from 0 to
100. In order to make our measure of this dependent variable comparable
across cases, votes for third party candidates have been removed from this
measure.

S If you’re questioning the wisdom of removing votes for third party candidates, you are
thinking in the right way — any time you read about a measurement you should think about
different ways in which it might have been carried out. And, in particular, you should focus
on the likely consequences of different measurement choices on the results of hypothesis
tests. Evaluating measurement strategies is a major topic in Chapter
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10 20 30 40 50 60 70 80 90 100

Incumbent-Party Percentage of Major Party Vote

0
1

20 10 0 10 20
One-Year Real Economic Growth Per Capita

Figure 1.3. What would you expect to see based on the theory of economic voting?

Figure shows the axes of the graph that we could produce if we
collected the measures of these two variables. We could place each U.S.
presidential election on the graph in Figure by identifying the point
that corresponds to the value of both “One-Year Real Economic Growth”
(the horizontal, or x, axis) and “Incumbent-Party Vote Percentage” (the
vertical, or y, axis). For instance, if these values were (respectively) 0 and
50, the position for that election year would be exactly in the center of
the graph. Based on our theory, what would you expect to see if we col-
lected these measures for all elections? Remember that our theory is that
a stronger economic performance causes the incumbent vote to be higher.
And we can restate this theory in reverse such that a weaker economic
performance causes the incumbent vote to be lower. So, what would this
lead us to expect to see if we plotted real-world data onto Figure 1.3? To
get this answer right, let’s make sure that we know our way around this
graph. If we move from left to right on the horizontal axis, which is labeled
“One-Year Real Economic Growth,” what is going on in real-world terms?
We can see that, at the far left end of the horizontal axis, the value is =20.
This would mean that the U.S. economy had shrunk by 20% over the past
year, which would represent a very poor performance (to say the least). As
we move to the right on this axis, each point represents a better economic
performance up to the point where we see a value of +20, indicating that
the real economy has grown by 20% over the past year. The vertical axis
depicts values of “Incumbent-Party Vote Percentage.” Moving upward on
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this axis represents an increasing share of the popular vote for the incum-
bent party, whereas moving downward represents a decreasing share of the
popular vote.

Now think about these two axes together in terms of what we would
expect to see based on the theory of economic voting. In thinking through
these matters, we should always start with our independent variable. This is
because our theory states that the value of the independent variable exerts a
causal influence on the value of the dependent variable. So, if we start with
a very low value of economic performance — let’s say =15 on the horizontal
axis — what does our theory lead us to expect in terms of values for the
incumbent vote, the dependent variable? We would also expect the value of
the dependent variable to be very low. This case would then be expected to
be in the lower-left-hand corner of Figure 1.5. Now imagine a case in which
economic performance was quite strong at +15. Under these circumstances,
our theory would lead us to expect that the incumbent-vote percentage
would also be quite high. Such a case would be in the upper-right-hand cor-
ner of our graph. Figure 1.4 shows two such hypothetical points plotted on
the same graph as Figure 1.3. If we draw a line between these two points, this
line would slope upward from the lower left to the upper right. We describe
such a line as having a positive slope. We can therefore hypothesize that
the relationship between the variable labeled “One-Year Real Economic
Growth” and the variable labeled “Incumbent-Party Vote Percentage” will
be a positive relationship. A positive relationship is one for which higher

10 20 30 40 50 60 70 80 90 100

Incumbent-Party Percentage of Major Party Vote

0
1

T
-20 -10 0 10 20

One-Year Real Economic Growth Per Capita

Figure 1.4. What would you expect to see based on the theory of economic voting? Two
hypothetical cases.
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values of the independent variable tend to coincide with higher values of
the dependent variable.

Let’s consider a different operationalization of our independent vari-
able. Instead of economic growth, let’s use “Unemployment Percentage” as
our operationalization of economic performance. We haven’t changed our
theory, but we need to rethink our hypothesis with this new measurement or
operationalization. The best way to do so is to draw a picture like Figure
but with the changed independent variable on the horizontal axis. This is
what we have in Figure 1.5. As we move from left to right on the horizontal
axis in Figure 1.5, the percentage of the members of the workforce who are
unemployed goes up. What does this mean in terms of economic perfor-
mance? Rising unemployment is generally considered a poorer economic
performance whereas decreasing unemployment is considered a better eco-
nomic performance. Based on our theory, what should we expect to see
in terms of incumbent vote percentage when unemployment is high? What
about when unemployment is low?

Figure shows two such hypothetical points plotted on our graph
of unemployment and incumbent vote from Figure 1.5. The point in the
upper-left-hand corner represents our expected vote percentage when unem-
ployment equals zero. Under these circumstances, our theory of economic
voting leads us to expect that the incumbent party will do very well. The
point in the lower-right-hand corner represents our expected vote percent-
age when unemployment is very high. Under these circumstances our theory

10 20 30 40 50 60 70 80 90 100

Incumbent-Party Percentage of Major Party Vote
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0 10 20 30 40 50 60 70 80 90 100
Unemployment Percentage

Figure 1.5. What would you expect to see based on the theory of economic voting?
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Figure 1.6. What would you expect to see based on the theory of economic voting? Two
hypothetical cases.

of economic voting leads us to expect that the incumbent party will do very
poorly. If we draw a line between these two points, this line would slope
downward from the upper-left to the lower-right. We describe such a line as
having a negative slope. We can therefore hypothesize that the relationship
between the variable labeled “Unemployment Percentage” and the variable
labeled “Incumbent-Party Vote Percentage” will be a negative relationship.
A negative relationship is one for which higher values of the independent
variable tend to coincide with lower values of the dependent variable.

In this example we have seen that the same theory can lead to a hypoth-
esis of a positive or a negative relationship. The theory to be tested, together
with the operationalization of the independent and the dependent variables,
determines the direction of the hypothesized relationship. The best way to
translate our theories into hypotheses is to draw a picture like Figure
or 1.5. The first step is to label the vertical axis with the variable label for
the independent variable (as operationalized) and then label the low (left)
and high (right) ends of the axis with appropriate value labels. The second
step in this process is to label the vertical axis with the variable label for
the dependent variable and then label the low and high ends of that axis
with appropriate value labels. Once we have such a figure with the axes and
low and high values for each properly labeled, we can determine what our
expected value of our dependent variable should be if we observe both a
low and a high value of the independent variable. And, once we have placed
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the two resulting points on our figure, we can tell whether our hypothesized
relationship is positive or negative.

Once we have figured out our hypothesized relationship, we can collect
data from real-world cases and see how well these data reflect our expec-
tations of a positive or negative relationship. This is a very important step
that we can carry out fairly easily in the case of the theory of economic vot-
ing. Once we collect all of the data on economic performance and election
outcomes, we will, however, still be a long way from confirming the theory
that economic performance causes presidential election outcomes. Even if
a graph like Figure produces compelling visual evidence, we will need
to see more rigorous evidence than that. Chapters 7—11 focus on the use
of statistics to evaluate hypotheses. The basic logic of statistical hypothesis
testing is that we assess the probability that the relationship we find could
be due to random chance. The stronger the evidence that such a relationship
could not be due to random chance, the more confident we would be in our
hypothesis. The stronger the evidence that such a relationship could be due
to random chance, the more confident we would be in the corresponding
null hypothesis. This in turn reflects on our theory.

We also, at this point, need to be cautious about claiming that we
have “confirmed” our theory, because social scientific phenomena (such as
elections) are usually complex and cannot be explained completely with
a single independent variable. Take a minute or two to think about what
other variables, aside from economic performance, you believe might be
causally related to U.S. presidential election outcomes. If you can come up
with at least one, you are on your way to thinking like a political scientist.
Because there are usually other variables that matter, we can continue to
think about our theories two variables at a time, but we need to qualify our
expectations to account for other variables. We will spend Chapters 3 and

expanding on these important issues.

MODELS OF POLITICS

When we think about the phenomena that we want to better understand as
dependent variables and develop theories about the independent variables
that causally influence them, we are constructing theoretical models. Polit-
ical scientist James Rogers provides an excellent analogy between models
and maps to explain how these abstractions from reality are useful to us as
we try to understand the political world:

The very unrealism of a model, if properly constructed, is what makes it
useful. The models developed below are intended to serve much the same
function as a street map of a city. If one compares a map of a city to the real
topography of that city, it is certain that what is represented in the map
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is a highly unrealistic portrayal of what the city actually looks like. The
map utterly distorts what is really there and leaves out numerous details
about what a particular area looks like. But it is precisely because the map
distorts reality — because it abstracts away from a host of details about what
is really there — that it is a useful tool. A map that attempted to portray
the full details of a particular area would be too cluttered to be useful
in finding a particular location or would be too large to be conveniently
stored. (2006, p. 276, emphasis in original)

The essential point is that models are simplifications. Whether or not they
are useful to us depends on what we are trying to accomplish with the
particular model. One of the remarkable aspects of models is that they
are often more useful to us when they are inaccurate than when they are
accurate. The process of thinking about the failure of a model to explain
one or more cases can generate a new causal theory. Glaring inaccuracies
often point us in the direction of fruitful theoretical progress.

RULES OF THE ROAD TO SCIENTIFIC KNOWLEDGE
ABOUT POLITICS

In the chapters that follow, we will focus on particular tools of political sci-
ence research. As we do this, try to keep in mind our larger purpose — trying
to advance the state of scientific knowledge about politics. As scientists, we
have a number of basic rules that should never be far from our thinking:

* Make your theories causal.

* Don’t let data alone drive your theories.
* Consider only empirical evidence.

* Avoid normative statements.

* Pursue both generality and parsimony.

Make Your Theories Causal

All of Chapter 3 deals with the issue of causality and, specifically, how we
identify causal relationships. When political scientists construct theories, it
is critical that they always think in terms of the causal processes that drive
the phenomena in which they are interested. For us to develop a better
understanding of the political world, we need to think in terms of causes and
not mere covariation. The term covariation is used to describe a situation in
which two variables vary together (or covary). If we imagine two variables,
A and B, then we would say that A and B covary if it is the case that,
when we observe higher values of variable A, we generally also observe
higher values of variable B. We would also say that A and B covary if it
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is the case that, when we observe higher values of variable A, we generally
also observe lower values of variable B.” It is easy to assume that when we
observe covariation we are also observing causality, but it is important not
to fall into this trap.

Don’t Let Data Alone Drive Your Theories

This rule of the road is closely linked to the first. A longer way of stating
it is “try to develop theories before examining the data on which you will
perform your tests.” The importance of this rule is best illustrated by a silly
example. Suppose that we are looking at data on the murder rate (number
of murders per 1000 people) in the city of Houston, Texas, by months of
the year. This is our dependent variable, and we want to explain why it
is higher in some months and lower in others. If we were to take as many
different independent variables as possible and simply see whether they
had a relationship with our dependent variable, one variable that we might
find to strongly covary with the murder rate is the amount of money spent
per capita on ice cream. If we perform some verbal gymnastics, we might
develop a “theory” about how heightened blood sugar levels in people who
eat too much ice cream lead to murderous patterns of behavior. Of course, if
we think about it further, we might realize that both ice cream sales and the
number of murders committed go up when temperatures rise. Do we have
a plausible explanation for why temperatures and murder rates might be
causally related? It is pretty well known that people’s tempers tend to fray
when the temperature is higher. People also spend a lot more time outside
during hotter weather, and these two factors might combine to produce a
causally plausible relationship between temperatures and murder rates.
What this rather silly example illustrates is that we don’t want our
theories to be crafted based entirely on observations from real-world data.
We are likely to be somewhat familiar with empirical patterns relating to
the dependent variables for which we are developing causal theories. This
is normal; we wouldn’t be able to develop theories about phenomena about
which we know nothing. But we need to be careful about how much we let
what we see guide our development of our theories. One of the best ways to
do this is to think about the underlying causal process as we develop our the-
ories and to let this have much more influence on our thinking than patterns
that we might have observed. Chapter 2 is all about strategies for develop-
ing theories. One of these strategies is to identify interesting variation in our

6 A closely related term is correlation. For now we use these two terms interchangeably.
In Chapter 7, you will see that there are precise statistical measures of covariance and
correlation that are closely related to each other but produce different numbers for the
same data.
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dependent variable. Although this strategy for theory development relies on
data, it should not be done without thinking about the underlying causal
processes.

Consider Only Empirical Evidence

As we previously outlined, we need to always remain open to the possibility
that new evidence will come along that will decrease our confidence in
even a well-established theory. A closely related rule of the road is that, as
scientists, we want to base what we know on what we see from empirical
evidence, which, as we have said, is simply “evidence based on observing
the real world.” Strong logical arguments are a good start in favor of a
theory, but before we can be convinced, we need to see results from rigorous
hypothesis tests.

Avoid Normative Statements

Normative statements are statements about how the world ought to be.
Whereas politicians make and break their political careers with norma-
tive statements, political scientists need to avoid them at all costs. Most
political scientists care about political issues and have opinions about how
the world ought to be. On its own, this is not a problem. But when nor-
mative preferences about how the world “should” be structured creep into
their scientific work, the results can become highly problematic. The best
way to avoid such problems is to conduct research and report your findings
in such a fashion that it is impossible for the reader to tell what are your
normative preferences about the world.

This does not mean that good political science research cannot be used
to change the world. To the contrary, advances in our scientific knowledge
about phenomena enable policy makers to bring about changes in an effec-
tive manner. For instance, if we want to rid the world of wars (normative),
we need to understand the systematic dynamics of the international system
that produce wars in the first place (empirical and causal). If we want to rid
America of homelessness (normative), we need to understand the pathways

7 Tt is worth noting that some political scientists use data drawn from experimental settings to
test their hypotheses. There is some debate about whether such data are, strictly speaking,
empirical or not. We discuss political science experiments and their limitations in Chapter

. In recent years some political scientists have also made clever use of simulated data to
gain leverage on their phenomena of interest, and the empirical nature of such data can
certainly be debated. In the context of this textbook we are not interested in weighing in
on these debates about exactly what is and is not empirical data. Instead, we suggest that
one should always consider the overall quality of data on which hypothesis tests have been
performed when evaluating causal claims.
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into and out of being homeless (empirical and causal). If we want to help our
favored candidate win elections (normative), we need to understand what
characteristics make people vote the way they do (empirical and causal).

Pursue Both Generality and Parsimony

Our final rule of the road is that we should always pursue generality and
parsimony. These two goals can come into conflict. By “generality,” we
mean that we want our theories to be applied to as general a class of phe-
nomena as possible. For instance, a theory that explains the causes of a
phenomenon in only one country is less useful than a theory that explains
the same phenomenon across multiple countries. Additionally, the more
simple or parsimonious a theory is, the more appealing it becomes.

In the real world, however, we often face trade-offs between generality
and parsimony. This is the case because, to make a theory apply more
generally, we need to add caveats. The more caveats that we add to a theory,
the less parsimonious it becomes.

A QUICK LOOK AHEAD

You now know the rules of the road. As we go through the next 11 chapters,
you will acquire an increasingly complicated set of tools for developing and
testing scientific theories about politics, so it is crucial that, at every step
along the way, you keep these rules in the back of your mind. The rest of this
book can be divided into three different sections. The first section, which
includes this chapter through Chapter 4, is focused on the development of
theories and research designs to study causal relationships about politics. In
Chapter 2, “The Art of Theory Building,” we discuss a range of strategies
for developing theories about political phenomena. In Chapter 3, “Evalu-
ating Causal Relationships,” we provide a detailed explanation of the logic
for evaluating causal claims about relationships between an independent
variable, which we call “X,” and a dependent variable, which we call “Y.”

>

In Chapter 4, “Research Design,” we discuss the research strategies that
political scientists use to investigate causal relationships.

In the second section of this book, we expand on the basic tools that
political scientists need to test their theories. Chapter 5, “Getting to Know
Your Data: Evaluating Measurement and Variations,” is a detailed discus-

sion of how we measure (or operationalize) our variables, along with an

8 The term “parsimonious” is often used in a relative sense. So, if we are comparing two
theories, the theory that is simpler would be the more parsimonious. Indeed, this rule of
the road might be phrased “pursue both generality and simplicity.” We use the words
“parsimony” and “parsimonious” because they are widely used to describe theories.
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introduction to a set of tools that can be used to summarize the charac-
teristics of variables one at a time. Chapter 6, “Probability and Statistical
Inference,” introduces both the basics of probability theory as well as the
logic of statistical hypothesis testing. In Chapter 7, “Bivariate Hypothe-
sis Testing,” we begin to apply the lessons from Chapter 6 to a series of
empirical tests of the relationship between pairs of variables.

The third and final section of this book introduces the critical con-
cepts of the regression model. Chapter 8, “Bivariate Regression Models,”
introduces the two-variable regression model as an extension of the con-
cepts from Chapter 7. In Chapter 9, “Multiple Regression: The Basics,” we
introduce the multiple regression model, with which researchers are able
to look at the effects of independent variable X on dependent variable Y
while controlling for the effects of other independent variables. Chapter 10,
“Multiple Regression Model Specification,” and Chapter 11, “Limited
Dependent Variables and Time-Series Data,” provide in-depth discussions
of and advice for commonly encountered research scenarios involving mul-
tiple regression models. Lastly, in Chapter 12, “Putting It All Together to
Produce Effective Research,” we discuss how to apply the lessons learned
in this book to begin to produce original research of your own.

CONCEPTS INTRODUCED IN THIS CHAPTER?®

* causal — implying causality. A central focus of this book is on theories
about “causal” relationships.

* correlation — a statistical measure of covariation which summarizes the
direction (positive or negative) and strength of the linear relationship
between two variables.

* covary (or covariation) — when two variables vary together, they
are said to “covary.” The term “covariation” is used to describe
circumstances in which two variables covary.

* data — a collection of variable values for at least two observations.

* dependent variable — a variable for which at least some of the variation
is theorized to be caused by one or more independent variables.

* empirical — based on real-world observation.

* hypothesis — a theory-based statement about what we would expect
to observe if our theory is correct. A hypothesis is a more explicit
statement of a theory in terms of the expected relationship between a

9 At the end of each chapter, we will provide short definitions of each bolded term that was
introduced in that chapter. These short definitions are intended to help you get an initial
grasp of the term when it is introduced. A full understanding of these concepts, of course,
can only be gained through a thorough reading of the chapter.
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measure of the independent variable and a measure of the dependent
variable.

* hypothesis testing — the act of evaluating empirical evidence in order
to determine the level of support for the hypothesis versus the null
hypothesis.

* independent variable — a variable that is theorized to cause variation
in the dependent variable.

* measure — a process by which abstract concepts are turned into real-
world observations.

* negative relationship — higher values of the independent variable tend
to coincide with lower values of the dependent variable.

* normal science — scientific research that is carried out under the shared
set of assumptions and accepted theories of a paradigm.

* normative statements — statements about how the world ought to be.

* null hypothesis — a theory-based statement about what we would
observe if there were no relationship between an independent variable
and the dependent variable.

 operationalize — another word for measurement. When a variable
moves from the concept-level in a theory to the real-world measure
for a hypothesis test, it has been operationalized.

* paradigm — a shared set of assumptions and accepted theories in a
particular scientific field.

* paradigm shift — when new findings challenge the conventional wisdom
of a paradigm to the point where the set of shared assumptions and
accepted theories in a scientific field is redefined.

* parsimonious — synonym for simple or succinct.

* positive relationship — higher values of the independent variable tend
to coincide with higher values of the dependent variable.

* theoretical model - the combination of independent variables, the
dependent variable, and the causal relationships that are theorized to
exist between them.

* theory — a tentative conjecture about the causes of some phenomenon
of interest.

* variable — a definable quantity that can take on two or more values.

* variable label — the label used to describe a particular variable.

* variable values — the values that a particular variable can take on.

EXERCISES

Pick another subject in which you have taken a course and heard mention of
scientific theories. How is political science similar to and different from that
subject?
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Think about something in the political world that you would like to better
understand. Try to think about this as a variable with high and low values.
This is your dependent variable at the conceptual level. Now think about what
might cause the values of your dependent variable to be higher or lower. Try
to phrase this in terms of an independent variable, also at the conceptual level.
Werite a paragraph about these two variables and your theory about why they
are causally related to each other.

Identify something in the world that you would like to see happen (normative).
What scientific knowledge (empirical and causal) would help you to pursue this
goal?

The 1992 U.S. presidential election, in which challenger Bill Clinton defeated
incumbent George H. W. Bush, has often been remembered as the “It’s the
economy, stupid,” election. How can we restate the causal statement that
embodies this conventional wisdom — “Clinton beat Bush because the economy
had performed poorly” — into a more general theoretical statement?

For Exercises 5 and 6, consider the following statement about the world: “If you care
about economic success in a country, you should also care about the peoples’ political
rights in that country. In a society in which people have more political rights, the victims
of corrupt business practices will work through the system to get things corrected. As a
result, countries in which people have more political rights will have less corruption. In
countries in which there is less corruption, there will be more economic investment and
more economic success.”
Identify at least two causal claims that have been made in the preceding state-
ment. For each causal claim, identify which variable is the independent variable
and which variable is the dependent variable. These causal claims should be
stated in terms of one of the following types of phrases in which the first blank
should be filled by the independent variable and the second blank should be
filled by the dependent variable:

causes
higher causes lower
higher causes higher
Draw a graph like Figure 1.3 for each of the causal claims that you identified

in Exercise 5. For each of your figures, do the following: Start on the left-hand
side of the horizontal axis of the figure. This should represent a low value of the
independent variable. What value of the dependent variable would you expect
to find for such a case? Put a dot on your figure that represents this expected
location. Now do the same for a case with a high value of the independent
variable. Draw a line that connects these two points and write a couple of
sentences that describe this picture.
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Find an article in a political science journal that contains a model of politics.
Provide the citation to the article, and answer the following questions:

(a) What is the dependent variable?

(b) What is one of the independent variables?

(c) What is the causal theory that connects the independent variable to the
dependent variable?

(d) Does this seem reasonable?

For each of the following statements, identify which, if any, rule(s) of the road
to scientific knowledge about politics has been violated:

(a) This study of the relationship between economic development and the
level of autocracy is important because dictatorships are bad and we need
to understand how to get rid of them.

(b) Did the European financial crisis of 2012 cause Nicolas Sarkozy to lose
the subsequent French presidential election?

(c) It’s just logical that poverty causes crime.

(d) This correlation supports the theory that bad weather drives down voter
turnout.
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In this chapter we discuss the art of theory building. Unfortunately there is
no magical formula or cookbook for developing good theories about politics.
But there are strategies that will help you to develop good theories. We
discuss these strategies in this chapter.

GOOD THEORIES COME FROM GOOD THEORY-BUILDING
STRATEGIES

In Chapter | we discussed the role of theories in developing scientific knowl-
edge. From that discussion, it is clear that a “good” theory is one that, after
going through the rigors of the evaluation process, makes a contribution to
scientific knowledge. In other words, a good theory is one that changes the
way that we think about some aspect of the political world. We also know
from our discussion of the rules of the road that we want our theories to
be causal, not driven by data alone, empirical, non-normative, general, and
parsimonious. This is a tall order, and a logical question to ask at this point
is “How do I come up with such a theory?”

Unfortunately, there is neither an easy answer nor a single answer.
Instead, what we can offer you is a set of strategies. “Strategies?” you may
ask. Imagine that you were given the following assignment: “Go out and
get struck by lightning.”' There is no cut-and-dried formula that will show
you how to get struck by lightning, but certainly there are actions that you
can take that will make it more likely. The first step is to look at a weather
map and find an area where there is thunderstorm activity, and if you were
to go to such an area, you would increase your likelihood of getting struck.

L QOur lawyers have asked us to make clear that this is an illustrative analogy and that we are
in no way encouraging you to go out and try to get struck by lightning.
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You would be even more likely to get struck by lightning if, once in the
area of thunderstorms, you climbed to the top of a tall barren hill. But you
would be still more likely to get struck if you carried with you a nine iron
and, once on top of the barren hill, in the middle of a thunderstorm, you
held that nine iron up to the sky. The point here is that, although there
are no magical formulae that make the development of a good theory (or
getting hit by lightning) a certain event, there are strategies that you can
follow to increase the likelihood of it happening.

PROMISING THEORIES OFFER ANSWERS TO INTERESTING
RESEARCH QUESTIONS

In the sections that follow, we discuss a series of strategies for developing
theories. A reasonable question to ask before we depart on this tour of
theory-building strategies is, “How will I know when I have a good the-
ory?” Another way that we might think about this is to ask “What do
good theories do?” We know from Chapter | that theories get turned into
hypothesis tests, and then, if they are supported by empirical tests, they
contribute to our scientific knowledge about what causes what. So a rea-
sonable place to begin to answer the question of how one evaluates a new
theory is to think about how that theory, if supported in empirical testing,
would contribute to scientific knowledge. One of the main ways in which
theories can be evaluated is in terms of the questions that they answer. If
the question being answered by a theory is interesting and important, then
that theory has potential.

Most of the influential research in any scientific field can be distilled into
a soundbite-sized statement about the question to which it offers an answer,
or the puzzle for which it offers a solution. Consider, for example, the
10 most-cited articles published in the American Political Science Review
between 1945 and 2005.~ Table lists these articles together with their
research question. It is worth noting that, of these 10 articles, all but one has
as its main motivation the answer to a question or the solution to a puzzle
that is of interest to not just political science researchers.” This provides us
with a valuable clue about what we should aim to do with our theories. It
also provides a useful way of evaluating any theory that we are developing. If
our theory doesn’t propose an answer to an interesting question, it probably

2 This list comes from an article (Sigelman et al., 2006) published by the editor of the journal
in which well-known researchers and some of the original authors reflected on the influence
of the 20 most-cited articles published in the journal during that time period.

3 The Beck and Katz paper, which is one of the most influential technical papers in the history
of political science, is the exception to this.
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Table 2.1. Research Questions of the 10 most-cited papers in the

American Political Science Review, 1945-2005

Article Research Question

1) Bachrach & Baratz 1962 How is political power created?

2) Hibbs 1977 How do the interests of their core supporters
effect governments’ economic policies?

3) Walker 1969 How do innovations in governance spread
across U.S. states?

4) Kramer 1971 How do economic conditions impact U.S.
national elections?

5) Miller & Stokes 1963 How do constituent attitudes influence the
votes of U.S. representatives?

6) March & Olsen 1984 How do institutions shape politics?

7) Lipset 1959 What are the necessary conditions for stable
democratic politics?

8) Beck & Katz 1995 What models should researchers use when
they have pooled time-series data?

9) Cameron 1978 Why has the government share of economic

activity increased in some nations?
10) Deutsch 1961 How does social mobilization shape politics in
developing nations?

needs to be redeveloped. As we consider different strategies for developing
theories, we will refer back to this basic idea of answering questions.

IDENTIFYING INTERESTING VARIATION

A useful first step in theory building is to think about phenomena that vary
and to focus on general patterns. Because theories are designed to explain
variation in the dependent variable, identifying some variation that is of
interest to you is a good jumping-off point. In Chapter 4 we present a
discussion of two of the most common research designs — cross-sectional
and time-series observational studies — in some detail. For now it is useful
to give a brief description of each in terms of the types of variation in
the dependent variable. These should help clarify the types of variation to
consider as you begin to think about potential research ideas.

When we think about measuring our dependent variable, the first things
that we need to identify are the time and spatial dimensions over which we
would like to measure this variable. The time dimension identifies the point
or points in time at which we would like to measure our variable. Depending
on what we are measuring, typical time increments for political science data
are annual, quarterly, monthly, or weekly measures. The spatial dimension
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identifies the physical units that we want to measure. There is a lot of vari-
ability in terms of the spatial units in political science data. If we are looking
at survey data, the spatial unit will be the individual people who answered
the survey (known as survey respondents). If we are looking at data on U.S.
state governments, the typical spatial unit will be the 50 U.S. states. Data
from international relations and comparative politics often take nations as
their spatial units. Throughout this book, we think about measuring our
dependent variable such that one of these two dimensions will be static (or
constant). This means that our measures of our dependent variable will be
of one of two types. The first is a time-series measure, in which the spatial
dimension is the same for all cases and the dependent variable is measured
at multiple points in time. The second is a cross-sectional measure, in which
the time dimension is the same for all cases and the dependent variable is
measured for multiple spatial units. Although it is possible for us to mea-
sure the same variable across both time and space, we strongly recommend
thinking in terms of variation across only one of these two dimensions as
you attempt to develop a theory about what causes this variation.” Let’s
consider an example of each type of dependent variable.

Time-Series Example

In Figure 2.1 we see the average monthly level of U.S. presidential approval
displayed from 1995 to 2005. We can tell that this variable is measured as
a time series because the spatial unit is the same (the United States), but the
variable has been measured at multiple points in time (each month). This
measure is comparable across the cases; for each month we are looking at
the percentage of people who reported that they approved of the job that the
president was doing. Once we have a measure like this that is comparable
across cases, we can start to think about what independent variable might
cause the level of the dependent variable to be higher or lower. In other
words, we are looking for answers to the research question, “What causes
presidential approval to go up and down?”

If you just had a mental alarm bell go off telling you that we seemed
to be violating one of our rules of the road from Chapter 1, then congratu-
lations — you are doing a good job paying attention. Our second rule of the
road is “don’t let data alone drive your theories.” Remember that we also
can phrase this rule as “try to develop theories before examining the data
on which you will perform your tests.” Note, however, that in this example

4 As we mentioned in Chapter 1, we will eventually theorize about multiple independent vari-
ables simultaneously causing the same dependent variable to vary. Confining variation in
the dependent variable to a single dimension helps to make such multivariate considerations
tractable.
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Figure 2.1. Presidential approval, 1995-2005.

we are only examining variation in one of our variables, in this case the
dependent variable. We would start to get into real problems if we plot-
ted pairs of variables and then developed a theory only once we observed a
pair of variables that varied together. If this still seems like we are getting to
close to our data before developing our theory, we could develop a theory
about U.S. presidential approval using Figure 2.1, but then test that theory
with a different set of data that may or may not contain the data depicted
in Figure

Cross-Sectional Example

In Figure we see military spending as a percentage of gross domestic
product (GDP) in 2005 for 22 randomly selected nations. We can tell that
this variable is measured cross-sectionally, because it varies across spatial
units (nations) but does not vary across time (it is measured for the year
2005 for each case). When we measure variables across spatial units like
this, we have to be careful to choose appropriate measures that are compa-
rable across spatial units. To better understand this, imagine that we had
measured our dependent variable as the amount of money that each nation
spent on its military. The problem would be that country currencies — the
Albanian Lek, the Bangladeshi Taka, and Chilean Peso — do not take on
the same value. We would need to know the currency exchange rates in
order to make these comparable across nations. Using currency exchange
rates, we would be able to convert the absolute amounts of money that
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Figure 2.2. Military spending in 2005.

each nation had spent into a common measure. We could think of this par-
ticular measure as an operationalization of the concept of relative military
“might.” This would be a perfectly reasonable dependent variable for the-
ories about what makes one nation more powerful than another. Why, you
might ask, would we want to measure military spending as a percentage
of GDP? The answer is that this comparison is our attempt to measure the
percentage of the total budgetary effort available that a nation is putting
into its armed forces. Some nations have larger economies than others, and
this measure allows us to answer the question of how much of their total
economic activity each nation is putting toward its military. With this vari-
ation in mind, we develop a theory to answer the question “What causes
a nation to put more or less of its available economic resources toward
military spending?”

LEARNING TO USE YOUR KNOWLEDGE

One of the common problems that people have when trying to develop a
theory about a phenomenon of interest is that they can’t get past a particular
political event in time or a particular place about which they know a lot. It
is helpful to know some specifics about politics, but it is also important to
be able to distance yourself from the specifics of one case and to think more
broadly about the underlying causal process. To use an analogy, it’s fine
to know something about trees, but we want to theorize about the forest.
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Remember, one of our rules of the road is to try to make our theories
general.

Moving from a Specific Event to More General Theories

For an example of this, return to Figure 2.1. What is the first thing that
you think most people notice when they look at Figure 2.1? Once they
have figured out what the dimensions are in this figure (U.S. presidential
approval over time), many people look at the fall of 2001 and notice the
sharp increase in presidential approval that followed the terrorist attacks on
the United States on September 11, 2001. This is a period of recent history
about which many people have detailed memories. In particular, they might
remember how the nation rallied around President Bush in the aftermath
of these attacks. There are few people who would doubt that there was a
causal linkage between these terrorist attacks and the subsequent spike in
presidential approval.

At first glance, this particular incident might strike us as a unique event
from which general theoretical insights cannot be drawn. After all, terrorist
attacks on U.S. soil are rare events, and attacks of this magnitude are even
more rare. The challenge to the scientific mind when we have strong confi-
dence about a causal relationship in one specific incident is to push the core
concepts around in what we might call thought experiments: How might a
less-effective terrorist attack affect public opinion? How might other types
of international incidents shape public opinion? Do we think that terrorist
attacks lead to similar reactions in public opinion toward leaders in other
nations? Each of these questions is posed in general terms, taking the spe-
cific events of this one incident as a jumping-off point. The answers to these
more general questions should lead us to general theories about the causal
impact of international incidents on public opinion.

In the 1970s John Mueller moved from the specifics of particular inter-
national incidents and their influence on presidential approval toward a
general theory of what causes rallies (or short-term increases) in presiden-
tial approval.” Mueller developed a theory that presidential approval would
increase in the short term any time that there was international conflict.
Mueller thought that this would occur because, in the face of international
conflict, people would tend to put their partisan differences and other cri-
tiques that they may have of the president’s handling of his job aside and
support him as the commander in chief of the nation. In Mueller’s statisti-
cal analysis of time-series data on presidential approval, he found that there
was substantial support for his hypothesis that international conflicts would

5 See Mueller (1973).
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raise presidential approval rates, and this in turn gave him confidence in his
theory of public opinion rallies.

Know Local, Think Global: Can You Drop the Proper Nouns?

Physicists don’t have theories that apply only in France, and neither should
we. Yet many political scientists write articles with one particular geo-
graphic context in mind. Among these, the articles that have the greatest
impact are those that advance general theories from which the proper nouns
have been removed.” An excellent example of this is Michael Lewis-Beck’s
“Who’s the Chef?” Lewis-Beck, like many observers of French politics, had
observed the particularly colorful period from 1986 to 1988 during which
the president was a socialist named Francois Mitterand and the prime minis-
ter was Jacques Chirac, a right-wing politician from the Gaullist RPR party.
The height of this political melodrama occurred when both leaders showed
up to international summits of world leaders claiming to be the rightful
representative of the French Republic. This led to a famous photo of the
leaders of the G7 group of nations that contained eight people.” Although
many people saw this as just another colorful anecdote about the ever-
changing nature of the power relationship between presidents and prime
ministers in Fifth Republic France, Lewis-Beck moved from the specifics of
such events to develop and test a general theory about political control and
public opinion.

His theory was that changing the political control of the economy
would cause public opinion to shift in terms of who was held accountable
for the economy. In France, during times of unified political control of the
top offices, the president is dominant, and thus according to Lewis-Beck’s
theory the president should be held accountable for economic outcomes.
However, during periods of divided control, Lewis-Beck’s theory leads to
the expectation that the prime minister, because of his or her control of
economic management during such periods, should be held accountable
for economic outcomes. Through careful analysis of time-series data on
political control and economic accountability, Lewis-Beck found that his
theory was indeed supported.

Although the results of this study are important for advancing our
understanding of French politics, the theoretical contribution made by
Lewis-Beck was much greater because he couched it in general terms and

6 By “proper nouns,” we mean specific names of people or countries. But this logic can and
should be pushed further to include specific dates, as we subsequently argue.

7 The G7, now the G8 with the inclusion of Russia, is an annual summit meeting of the heads
of government from the world’s most powerful nations.
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without proper nouns. We also can use this logic to move from an under-
standing of a specific event to general theories that explain variation across
multiple events. For example, although it might be tempting to think that
every U.S. presidential election is entirely unique — with different candidates
(proper names) and different historical circumstances — the better scientific
theory does not explain only the outcome of the 2012 U.S. presidential elec-
tion, but of U.S. presidential elections in general. That is, instead of asking
“Why did Obama beat Romney in the 2012 election?” we should ask either
“What causes the incumbent party to win or lose in U.S. presidential elec-
tions?” or “What causes Republican candidates to fare better or worse than
Democratic candidates in U.S. presidential elections?”

EXAMINE PREVIOUS RESEARCH

Once you have identified an area in which you want to conduct research,
it is often useful to look at what other work has been done that is related
to your areas of interest. As we discussed in Chapter 1, part of taking a
scientific approach is to be skeptical of research findings, whether they are
our own or those of other researchers. By taking a skeptical look at the
research of others, we can develop new research ideas of our own and thus
develop new theories.

We therefore suggest looking at research that seems interesting to you
and, as you examine what has been done, keep the following list of questions
in mind:

* What (if any) other causes of the dependent variable did the previous
researchers miss?

* Can their theory be applied elsewhere?

* If we believe their findings, are there further implications?

* How might this theory work at different levels of aggregation
(micro<=>macro)?

What Did the Previous Researchers Miss?

Any time that we read the work of others, the first thing that we should do is
break down their theory or theories in terms of the independent and depen-
dent variables that they claim are causally related to each other. We cannot
overstate the importance of this endeavor. We understand that this can be a
difficult task for a beginning student, but it gets easier with practice. A good
way to start this process is to look at the figures or tables in an article and
ask yourself, “What is the dependent variable here?” Once we have done
this and also identified the key independent variable, we should think about
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whether the causal arguments that other researchers have advanced seem
reasonable. (In Chapter 3 we present a detailed four-step process for doing
this.) We should also be in the habit of coming up with other independent
variables that we think might be causally related to the same dependent vari-
able. Going through this type of mental exercise can lead to new theories
that are worth pursuing.

Can Their Theory Be Applied Elsewhere?

When we read about the empirical research that others have conducted, we
should be sure that we understand which specific cases they were study-
ing when they tested their theory. We should then proceed with a mental
exercise in which we think about what we might find if we tested the same
theory on other cases. In doing so, we will probably identify some cases for
which we expect to get the same results, as well as other cases for which we
might have different expectations. Of course, we would have to carry out
our own empirical research to know whether our speculation along these
lines is correct, but replicating research can lead to interesting findings. The
most useful theoretical development comes when we can identify system-
atic patterns in the types of cases that will fit and those that will not fit the
established theory. These systematic patterns are additional variables that
determine whether a theory will work across an expanded set of cases. In
this way we can think about developing new theories that will subsume the
original established theory.

If We Believe Their Findings, Are There Further Implications?

Beginning researchers often find themselves intimidated when they read con-
vincing accounts of the research carried out by more established scholars.
After all, how can we ever expect to produce such innovative theories and
find such convincingly supportive results from extensive empirical tests?
Instead of being intimidated by such works, we need to learn to view
them as opportunities — opportunities to carry their logic further and think
about what other implications might be out there. If, for example, another
researcher has produced a convincing theory about how voters behave, we
could ask how might this new understanding alter the behavior of strategic
politicians who understand that voters behave in this fashion?

One of the best examples of this type of research extension in polit-
ical science comes from our previous example of John Mueller’s research
on rallies in presidential popularity. Because Mueller had found such con-
vincingly supportive evidence of this “rally ’round the flag effect” in his
empirical testing, other researchers were able to think through the strategic
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consequences of this phenomenon. This led to a new body of research on
a phenomenon called “diversionary use of force” (Richards et al. ).
The idea of this new research is that, because strategic politicians will be
aware that international conflicts temporarily increase presidential popu-
larity, they will choose to generate international conflicts at times when they
need such a boost.

How Might This Theory Work at Different Levels of Aggregation
(Micro<— Macro)?

As a final way to use the research of others to generate new theories, we
suggest considering how a theory might work differently at varying levels of
aggregation. In political science research, the lowest level of aggregation is
usually at the level of individual people in studies of public opinion. As we
saw in Subsection , when we find a trend in terms of individual-level
behavior, we can develop new theoretical insights by thinking about how
strategic politicians might take advantage of such trends. Sometimes it is
possible to gain these insights by simply changing the level of aggregation.
As we have seen, political scientists have often studied trends in public opin-
ion by examining data measured at the national level over time. This type
of study is referred to as the study of macro politics. When we find trends in
public opinion at higher (macro) levels of aggregation, it is always an inter-
esting thought exercise to consider what types of patterns of individual-level
or “micro-" level behavior are driving these aggregate-level findings.

As an example of this, return to the rally ’round the flag example
and change the level of aggregation. We have evidence that, when there
are international conflicts, public opinion toward the president becomes
more positive. What types of individual-level forces might be driving this
observed aggregate-level trend? It might be the case that there is a uniform
shift across all types of individuals in their feelings about the president. It
might also be the case that the shift is less uniform. Perhaps individuals
who dislike the president’s policy positions on domestic events are willing
to put these differences aside in the face of international conflicts, whereas
the opinions of the people who were already supporters of the president
remain unchanged. Thinking about the individual-level dynamics that drive
aggregate observations can be a fruitful source of new causal theories.

THINK FORMALLY ABOUT THE CAUSES THAT LEAD TO
VARIATION IN YOUR DEPENDENT VARIABLE

Thus far in this book we have discussed thinking about the political world in
an organized, systematic fashion. By now, we hope that you are starting to
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think about politics in terms of independent variables and dependent vari-
ables and are developing theories about the causal relationships between
them. The theories that we have considered thus far have come from think-
ing rigorously about the phenomena that we want to explain and deducing
plausible causal explanations. One extension of this type of rigorous think-
ing is labeled “formal theory” or “rational choice.”” Researchers have used
this approach to develop answers to research questions about how people
make strategic decisions. Put another way, if politics is a game, how do we
explain the way that people play it?

To answer questions along these lines, the formal-theory approach to
social science phenomena starts out with a fairly basic set of assumptions
about human behavior and then uses game theory and other mathematical
tools to build models of phenomena of interest. We can summarize these
assumptions about human behavior by saying that formal theorists assume
that all individuals are rational utility maximizers — that they attempt to
maximize their self-interest. Individuals are faced with a variety of choices
in political interactions, and those choices carry with them different con-
sequences — some desirable, others undesirable. By thinking through the
incentives faced by individuals, users of this approach begin with the strate-
gic foundations of the decisions that individuals face. Formal theorists
then deduce theoretical expectations of what individuals will do given their
preferences and the strategic environment that they confront.

That sounds like a mouthful, we know. Let’s begin with a simple exam-
ple: If human beings are self-interested, then (by definition) members of a
legislature are self-interested. This assumption suggests that members will
place a high premium on reelection. Why is that? Because, first and fore-
most, a politician must be in office if she is going to achieve her political
goals. And from this simple deduction flows a whole set of hypotheses about
congressional organization and behavior.

This approach to studying politics is a mathematically rigorous attempt
to think through what it would be like to be in the place of different actors
involved in a situation in which they have to choose how to act. In essence,
formal theory is a lot like the saying that we should not judge a person
until we have walked a mile in his or her shoes. We use the tools of formal
theory to try to put ourselves in the position of imagining that we are in
someone else’s shoes and thinking about the different choices that he or she

8 The terms “formal theory” and “rational choice” have been used fairly interchangeably to
describe the application of game theory and other formal mathematical tools to puzzles of
human behavior. We have a slight preference for the term “formal theory” because it is
a more overarching term describing the enterprise of using these tools, whereas “rational

choice” describes the most critical assumption that this approach makes.
9 See Mayhew ( ) and Fiorina ( ).
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has to make. In the following subsections we introduce the basic tools for
doing this by using an expected utility approach and then provide a famous
example of how researchers used this framework to develop theories about
why people vote.

Utility and Expected Utility

Think about the choice that you have made to read this chapter of this
book. What are your expected benefits and what are the costs that you
expect to incur? One benefit may be that you are genuinely curious about
how we build theories of politics. Another expected benefit may be that
your professor is likely to test you on this material, and you expect that you
will perform better if you have read this chapter. There are, no doubt, also
costs to reading this book. What else might you be doing with your time?
This is the way that formal theorists approach the world.

Formal theorists think about the world in terms of the outcome of a
collection of individual-level decisions about what to do. In thinking about
an individual’s choices of actions, formal theorists put everything in terms
of utility. Utility is an intentionally vague quantity. The utility from a par-
ticular action is equal to the sum of all benefits minus the sum of all costs
from that action. If we consider an action Y, we can summarize the utility
from Y for individual 7 with the following formula:

Ui(Y)=> _Bi(Y)= > _ Ci(Y),

where U;(Y) is the utility for individual i from action Y, >~ B;(Y) is the sum
of the benefits B; from action Y for individual i, and )_ C;(Y) is the sum
of the costs C; from action Y for individual i. When choosing among a set
of possible actions (including the decision not to act), a rational individual
will choose that action that maximizes their utility. To put this formally,

given a set of choices Y = Y1, Y2,Y3,...,Y,,
individual 7 will choose Y, such that U;(Y,) > U;(Y) V b # a,

which translates into, “given a set of choices of action Y; through Y,
individual 7 will choose that action (Y,) such that the utility to individual
i from that action is greater than the utility to individual 7 from any action
(Yy,) for all (V) actions b not equal to a.” In more straightforward terms, we
could translate this into the individual choosing that action that he deems
best for himself.

At this point, it is reasonable to look around the real world and think
about exceptions. Is this really the way that the world works? What about
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altruism? During the summer of 2006, the world’s second-richest man,
Warren Buffet, agreed to donate more than 30 billion dollars to the Bill and
Melinda Gates Foundation. Could this possibly have been rational utility-
maximizing behavior? What about suicide bombers? The answers to these
types of questions show both the flexibility and a potential problem of the
concept of utility. Note that, in the preceding formulae, there is always a
subscripted 7 under each of the referenced utility components, (U;, B;, C;).
This is because different individuals have different evaluations of the bene-
fits (B;) and costs (C;) associated with a particular action. When the critic
of this approach says, “How can this possibly be utility-maximizing behav-
ior?” the formal theorist responds, “Because this is just an individual with
an unusual utility structure.”

Think of it another way. Criticizing formal theory because it takes
preferences as “given” — that is, as predetermined, rather than the focus
of inquiry — strikes us as beside the point. Other parts of political science
can and should study preference formation; think about political psychol-
ogy and the study of public opinion. What formal theory does, and does
well, is to say, “Okay, once an individual has her preferences — regardless
of where they came from — how do those preferences interact with strate-
gic opportunities and incentives to produce political outcomes?” Because
formal theory takes those preferences as given does not mean that the
preference-formation process is unimportant. It merely means that formal
theory is here to explain a different portion of social reality.

From a scientific perspective, this is fairly unsettling. As we discussed
in Chapter 1, we want to build scientific knowledge based on real-world
observation. How do we observe people’s utilities? Although we can ask
people questions about what they like and don’t like, and even their per-
ceptions of costs and benefits, we can never truly observe utilities. Instead,
the assumption of utility maximization is just that — an assumption. This
assumption is, however, a fairly robust assumption, and we can do a lot
if we are willing to make it and move forward while keeping the potential
problems in the back of our minds.

Another potentially troubling aspect of the rational-actor utility-
maximizing assumption that you may have thought of is the assumption of
complete information. In other words, what if we don’t know exactly what
the costs and benefits will be from a particular action? In the preceding for-
mulae, we were operating under the assumption of complete information,
for which we knew exactly what would be the costs, benefits, and thus the
utility from each possible action. When we relax this assumption, we move
our discussion from utility to expected utility. We represent this change in
the assumptions about information by putting an “E” and brackets around
each term to which it applies. This type of transformation is known as
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“putting expectations” in front of all utilities. For example, the term U;(Y),
which is read as “the utility for individual > from action Y,” becomes
E[U;(Y)] under incomplete information, which is read as “the expected
utility for individual ‘I’ from action Y.” So, returning to our rational actor
assumption, under incomplete information, for an individual action Y,

E[Ui(Y)]=)_EIBi(Y)]- Y EICi(Y)],
and a rational actor will maximize his expected utility thus:
given a set of choices Y = Y1, Y2,Y3,...,Y,,

individual i will choose Y, such that E[U;(Y,)] > E[U;(Y},)IVb # a.

The Puzzle of Turnout

One of the oldest and most enduring applications of formal theory to politics
is known as the “paradox of voting.” William Riker and Peter Ordeshook
set out the core arguments surrounding this application in their influential
1968 article in the American Political Science Review titled “A Theory of
the Calculus of Voting.” Their paper was written to weigh in on a lively
debate over the rationality of voting. In particular, Riker and Ordershook
presented a theory to answer the research question “Why do people vote?”
In Riker and Ordeshook’s notation (with subscripts added), the expected
utility of voting was summarized as

R;=(B;P;))—-C;,

where R; is the reward that an individual receives from voting, B; is the
differential benefit that an individual voter receives “from the success of his
more preferred candidate over his less preferred one” (Riker and Ordeshook

, p- 25), P; is the probability that that voter will cast the deciding vote
that makes his preferred candidate the winner, and C; is the sum of the costs
that the voter incurs from voting.'” If R; is positive, the individual votes;
otherwise, he abstains.

We’ll work our way through the right-hand side of this formula and
think about the likely values of each term in this equation for an individual
eligible voter in a U.S. presidential election. The term B; is likely to be greater
than zero for most eligible voters in most U.S. presidential elections. The
reasons for this vary widely from policy preferences to gut feelings about

10 For simplicity in this example, consider an election in which there are only two candidates
competing. Adding more candidates makes the calculation of B; more complicated, but
does not change the basic result of this model.

11 For clarity, we follow Riker and Ordeshook’s convention of using masculine pronouns.
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the relative character traits of the different candidates. Note, however, that
the B, term is multiplied by the P; term. What is the likely value of P;?
Most observers of elections would argue that P; is extremely small and
effectively equal to zero for every voter in most elections. In the case of
a U.S. presidential election, for one vote to be decisive, that voter must
live in a state in which the popular vote total would be exactly tied if that
individual did not vote, and this must be a presidential election for which
that particular state would swing the outcome in the Electoral College to
either candidate. Because P; is effectively equal to zero, the entire term (B, P;)
is effectively equal to zero.

What about the costs of voting, C;? Voting takes time for all voters.
Even if a voter lives right next door to the polling place, he has to take
some time to walk next door, perhaps stand in a line, and cast his ballot.
The well-worn phrase “time is money” certainly applies here. Even if the
voter in question is not working at the time that he votes, he could be doing
something other than voting. Thus it is pretty clear that C; is greater than
zero. If C; is greater than zero and (B;P;) is effectively equal to zero, then
R; must be negative. How then, do we explain the millions of people that
vote in U.S. presidential elections, or, indeed, elections around the world? Is
this evidence that people are truly not rational? Or, perhaps, is it evidence
that millions of people systematically overestimate P;? Influential political
economy scholars, including Anthony Downs and Gordon Tullock, posed
these questions in the early years of formal theoretical analyses of politics.

Riker and Ordeshook’s answer was that there must be some other
benefit to voting that is not captured by the term (B;P;). They proposed
that the voting equation should be

R;=B;P)) - C;+D,,

where D; is the satisfaction that individuals feel from participating in the
democratic process, regardless of the impact of their participation on the
final outcome of the election. Riker and Ordeshook argued that D; could
be made up of a variety of different efficacious feelings about the political
system, ranging from fulfilling one’s duties as a citizen to standing up and
being counted.

Think of the contribution that Riker and Ordeshook made to political
science, and that, more broadly, formal theory makes to political science, in
the following way: Riker and Ordeshook’s theory leads us to wonder why
any individual will vote. And yet, empirically, we notice that close to half
of the adult population votes in any given presidential election in recent
history. What formal theory accomplishes for us is that it helps us to focus
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in on exactly why people do bother, rather than to assert, normatively, that
people should.

THINK ABOUT THE INSTITUTIONS: THE RULES
USUALLY MATTER

In the previous section we thought about individuals and developing the-
oretical insights by thinking about their utility calculations. In this section
we extend this line of thinking to develop theories about how people will
interact with each other in political situations. One particularly rich source
for theoretical insights along these lines comes from formal thinking about
institutional arrangements and the influence that they have in shaping polit-
ical behavior and outcomes. In other words, researchers have developed
theories about politics by thinking about the rules under which the political
game is played. To fully understand these rules and their impact, we need
to think through some counterfactual scenarios in which we imagine how
outcomes would be altered if there were different rules in place. This type
of exercise can lead to some valuable theoretical insights. In the subsec-
tions that follow, we consider two examples of thinking about the impact
of institutions.

Legislative Rules

Considering the rules of the political game has yielded theoretical insights
into the study of legislatures and other governmental decision-making bod-
ies. This has typically involved thinking about the preference orderings of
expected utility-maximizing actors. For example, let’s imagine a legislature
made up of three individual members, X, Y, and Z.'” The task in front
of X, Y, and Z is to choose between three alternatives A, B, and C. The

12 Of course, Riker and Ordeshook did not have the final word in 1968. In fact, the debate
over the rationality of turnout has been at the core of the debate over the usefulness
of formal theory in general. In their 1994 book titled Pathologies of Rational Choice
Theory, Donald Green and Ian Shapiro made it the first point of attack in their critique
of the role that formal theory plays in political science. One of Green and Shapiro’s major
criticisms of this part of political science was that the linkages between formal theory
and empirical hypothesis tests were too weak. In reaction to these and other critics, the
National Science Foundation launched a new program titled “Empirical Implications of
Theoretical Models” (EITM) that was designed to strengthen the linkage between formal
theory and empirical hypothesis tests.

13 We know that, in practice, legislatures tend to have many more members. Starting with
this type of miniature-scaled legislature makes formal considerations much easier to carry
out. Once we have arrived at conclusions based on calculations made on such a small scale,
it is important to consider whether the conclusions that we have drawn would apply to
more realistically larger-scaled scenarios.
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preferences orderings for these three rational individuals are as follows:

X:ABC,
Y :BCA,
Z : CAB.

An additional assumption that is made under these circumstances is
that the preferences of rational individuals are transitive. This means that
if individual X likes A better than B and B better than C, then, for X’s
preferences to be transitive, he or she must also like A better than C. Why
is this an important assumption to make? Consider the alternative. What
if X liked A better than B and B better than C, but liked C better than
A? Under these circumstances, it would be impossible to discuss what X
wants in a meaningful fashion because X’s preferences would produce an
infinite cycle. To put this another way, no matter which of the three choices
X chose, there would always be some other choice that X prefers. Under
these circumstances, X could not make a rational choice.

In this scenario, what would the group prefer? This is not an easy
question to answer. If they each voted for their first choice, each alternative
would receive one vote. If these three individuals vote between pairs of
alternatives, and they vote according to their preferences, we would observe
the following results:

Avs. B, X&Z vs. Y, A wins;
B vs. C, X&Y vs. Z, B wins;
Cvs. A, Y&Z vs. X, C wins.

Which of these three alternatives does the group collectively prefer? This
is an impossible question to answer because the group’s preferences cycle
across the three alternatives. Another way of describing this group’s pref-
erences is to say that they are intransitive (despite the fact that, as you can
see, each individual’s preferences are transitive).

This result should be fairly troubling to people who are concerned with
the fairness of democratic elections. One of the often-stated goals of elec-
tions is to “let the people speak.” Yet, as we have just seen, it is possible that,
even when the people involved are all rational actors, their collective prefer-
ences may not be rational. Under such circumstances, a lot of the normative
concepts concerning the role of elections simply break down. This finding is
at the heart of Arrow’s theorem, which was developed by Kenneth Arrow in
his 1951 book titled Social Choice and Individual Values. At the time of its
publication, political scientists largely ignored this book. As formal theory
became more popular in political science, Arrow’s mathematical approach
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to these issues became increasingly recognized. In 1982 William Riker popu-
larized Arrow’s theorem in his book Liberalism Against Populism, in which
he presented a more accessible version of Arrow’s theorem and bolstered a
number of Arrow’s claims through mathematical expositions.

The Rules Matter!

Continuing to work with our example of three individuals, X, Y, and Z, with
the previously described preferences, now imagine that the three individuals
will choose among the alternatives in two different rounds of votes between
pairs of choices. In the first round of voting, two of the alternatives will be
pitted against each other. In the second round of voting, the alternative that
won the first vote will be pitted against the alternative that was not among
the choices in the first round. The winner of the second round of voting is
the overall winning choice.

In our initial consideration of this scenario, we will assume that X, Y,
and Z will vote according to their preferences. What if X got to decide on
the order in which the alternatives got chosen? We know that X’s preference
ordering is ABC. Can X set things up so that A will win? What if X made
the following rules:

1st round: B vs. C;

2nd round: 1st round winner vs. A.

What would happen under these rules? We know that both X and Y prefer
B to C, so B would win the first round and then would be paired against A in
the second round. We also know that X and Z prefer A to B, so alternative
A would win and X would be happy with this outcome.

Does voting like this occur in the real world? Actually, the answer
is “yes.” This form of pairwise voting among alternatives is the way that
legislatures typically conduct their voting. If we think of individuals X, Y,
and Z as being members of a legislature, we can see that whoever controls
the ordering of the voting (the rules) has substantial power. To explore these
issues further, let’s examine the situation of individual Y. Remember that
Y’s preference ordering is BCA. So Y would be particularly unhappy about
the outcome of the voting according to X’s rules, because it resulted in Y’s
least-favorite outcome. But remember that, for our initial consideration,
we assumed that X, Y, and Z will vote according to their preferences. If
we relax this assumption, what might Y do? In the first round of voting,
Y could cast a strategic vote for C against B.'" If both X and Z continued

14 The concept of a “strategic” vote is often confusing. For our purposes, we define a strategic
vote as a vote that is cast with the strategic context in mind. Note that for a particular
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to vote (sincerely) according to their preferences, then C would win the
first round. Because we know that both X and Z prefer C to A, C would
win the second round and would be the chosen alternative. Under these
circumstances, Y would be better off because Y prefers alternative C to A.

From the perspective of members of a legislature, it is clearly better
to control the rules than to vote strategically to try to obtain a better out-
come. When legislators face reelection, one of the common tactics of their
opponents is to point to specific votes in which the incumbent appears to
have voted contrary to the preferences of his constituents. It would seem
reasonable to expect that legislator Y comes from a district with the same
or similar preferences to those of Y. By casting a strategic vote for C over
B, Y was able to obtain a better outcome but created an opportunity for an
electoral challenger to tell voters that Y had voted against the preferences
of his district.

In Congressmen in Committees, Richard Fenno’s classic study of the
U.S. House of Representatives, one of the findings was that the Rules
Committee — along with the Ways and Means and the Appropriations
Committees — was one of the most requested committee assignments from
the individual members of Congress. At first glance, the latter two com-
mittees make sense as prominent committees and, indeed, receive much
attention in the popular media. By contrast, the Rules Committee very rarely
gets any media attention. Members of Congress certainly understand and
appreciate the fact that the rules matter, and formal theoretical thought
exercises like the preceding one help us to see why this is the case.

EXTENSIONS

These examples represent just the beginning of the uses of formal theory
in political science. We have not even introduced two of the more impor-
tant aspects of formal theory — spatial models and game theory — that are
beyond the scope of this discussion. In ways that mirror applications in
microeconomics, political scientists have used spatial models to study phe-
nomena such as the placement of political parties along the ideological
spectrum, much as economists have used spatial models to study the loca-
tion of firms in a market. Likewise, game theory utilizes a highly structured
sequence of moves by different players to show how any particular actor’s
utility depends not only on her own choices, but also on the choices made

individual in a particular circumstance, it might be the case that the best strategic decision
for them is to vote according to their preferences. The casting of a strategic vote becomes
particularly interesting, however, when the strategic context leads to the casting of a vote
that is different from the individual’s preferences.
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by the other actors. It is easy to see hints about how game theory works
in the preceding simple three-actor, two-stage voting examples: X’s best
vote in the first stage likely depends on which alternative Y and Z choose
to support, and vice versa. Game theory, then, highlights how the strategic
choices made in politics are interdependent.

HOW DO I KNOW IF I HAVE A "GOOD"” THEORY?

Once you have gone through some or all of the suggested courses of action
for building a theory, a reasonable question to ask is, “How do I know if
I have a ‘good’ theory?” Unfortunately there is not a single succinct way
of answering this question. Instead, we suggest that you answer a set of
questions about your theory and consider your honest answers to these
questions as you try to evaluate the overall quality of our theory. You will
notice that some of these questions come directly from the “rules of the
road” that we developed in Chapter

* Does your theory offer an answer to an interesting research question?
* Is your theory causal?

+ Can you test your theory on data that you have not yet observed?

* How general is your theory?

* How parsimonious is your theory?

* How new is your theory?

* How nonobvious is your theory?

Does Your Theory Offer an Answer to an Interesting
Research Question?

As we discussed at the beginning of this chapter, promising theories offer
answers to interesting research questions. Any time that you formulate a
theory, it’s worth turning it around and asking what is the research question
for which it offers an answer. If you can’t give a straightforward answer to
this question, you probably need to rethink your theory. A related question
that you should also ask is whether anyone would care if you found support
for your theory. If the answer to this question is “no,” then you probably
need to rethink your theory as well.

Is Your Theory Causal?

Remember that our first rule of the road to scientific knowledge about
politics is “Make your theories causal.” If your answer to the question “Is
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your theory causal?” is anything other than “yes,” then you need to go back
to the drawing board until the answer is an emphatic “yes.”

As scientists studying politics, we want to know why things happen
the way that they happen. As such, we will not be satisfied with mere cor-
relations and we demand causal explanations. We know from Chapter
that one way initially to evaluate a particular theory is to think about the
causal explanation behind it. The causal explanation behind a theory is the
answer to the question “Why do you think that this independent variable
is causally related to this dependent variable?” If the answer is reasonable,
then you can answer this first question with a “yes.”

Can You Test Your Theory on Data That You Have Not
Yet Observed?

Our second rule of the road is “Don’t let data alone drive your theories,”
which we restated in a slightly longer form as “Try to develop theories
before examining the data on which you will perform your tests.” If you
have derived your theory from considering a set of empirical data, you need
to be careful not to have observed all of the data on which you can test your
theory. This can be a somewhat gray area, and only you know whether your
theory is entirely data driven and whether you observed all of your testing
data before you developed your theory.

How General Is Your Theory?

We could rephrase this question for evaluating your theory as “How widely
does your theory apply?” To the extent that your theory is not limited to one
particular time period or to one particular spatial unit, it is more general.
Answers to this question vary along a continuum - it’s not the end of the
world to have a fairly specific theory, but, all else being equal, a more general
theory is more desirable.

How Parsimonious Is Your Theory?

As with the question in the preceding subsection, answers to this question
also vary along a continuum. In fact, it is often the case that we face a trade-
off between parsimony and generality. In other words, to make a theory
more general, we often have to give up parsimony, and to make a theory
more parsimonious, we often have to give up generality. The important
thing with both of these desirable aspects of a theory is that we have them
in mind as we evaluate our theory. If we can make our theory more general
or more parsimonious and without sacrifice, we should do so.
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How New Is Your Theory?

At first it might seem that this is a pretty straightforward question to answer.
The problem is that we cannot know about all of the work that has been
done before our own work in any particular area of research. It also is often
the case that we may think our theory is really new, and luckily we have not
been able to find any other work that has put forward the same theory on
the same political phenomenon. But then we discover a similar theory on
a related phenomenon. There is no simple answer to this question. Rather,
our scholarly peers usually answer this question of newness for us when
they evaluate our work.

How Nonobvious Is Your Theory?

As with the question “How new is your theory?” the question “How nonob-
vious is your theory?” is best answered by our scholarly peers. If, when they
are presented with your theory, they hit themselves in the head and say,
“Wow, I never thought about it like that, but it makes a lot of sense!” then
you have scored very well on this question.

Both of these last two questions illustrate an important part of the role
of theory development in any science. It makes sense to think about theories
as being like products and scientific fields as being very much like markets in
which these products are bought and sold. Like other entrepreneurs in the
marketplace, scientific entrepreneurs will succeed to the extent that their
theories (products) are new and exciting (nonobvious). But, what makes
a theory “new and exciting” is very much dependent on what has come
before it.

CONCLUSION

We have presented a series of different strategies for developing theories of
politics. Each of these strategies involves some type of thought exercise in
which we arrange and rearrange our knowledge about the political world
in hopes that doing so will lead to new causal theories. You have, we’re
certain, noticed that there is no simple formula for generating a new theory
and hopefully, as a result, appreciate our description of theory building as
an “art” in the chapter’s title. Theoretical developments come from many
places and being critically immersed in the ongoing literature that studies
your phenomenon of choice is a good place to start.



Exercises

CONCEPTS INTRODUCED IN THIS CHAPTER

» complete information — the situation in which each actor in a game
knows the exact payoffs from each possible outcome.

* cross-sectional measure — a measure for which the time dimension is
the same for all cases and the cases represent multiple spatial units.

+ expected utility — a calculation equal to the sum of all expected ben-
efits minus the sum of all expected costs from that action. Under this
calculation, the exact benefits and costs are not known with certainty.

* formal theory — the application of game theory and other formal math-
ematical tools to puzzles of human behavior. (Used interchangeably
with “rational choice.”)

* incomplete information — the situation in which each actor in a game
does not know the exact payoffs from each possible outcome.

* intransitive — an illogical mathematical relationship such that, despite
the fact that A is greater than B and B is greater than C, C is greater
than A.

* preference orderings — the ranking from greatest to least of an actor’s
preferred outcomes.

* rational choice - the application of game theory and other formal math-
ematical tools to puzzles of human behavior. (Used interchangeably
with “formal theory.”)

* rational utility maximizers —an assumption about human behavior that
stipulates that individuals attempt to maximize their self-interest.

* spatial dimension — the physical units on which a variable is measured.

* strategic vote — a vote cast with a strategic context in mind.

* time dimension — the point or points in time at which a variable is
measured.

* time-series measure — a measure for which the spatial dimension is the
same for all cases and the cases represent multiple time units.

* transitive — a mathematical relationship such that if A is greater than
B and B is greater than C, then A must also be greater than C.

* utility — a calculation equal to the sum of all benefits minus the sum of
all costs from that action.

EXERCISES

Table 2.2 contains the 11th through 20th most-cited papers from the American
Political Science Review. Obtain a copy of one of these articles and figure out
what is the research question.
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Table 2.2. The 11th through 20th most-cited papers in the American

Political Science Review, 1945-2005

Article Title

Riker & Ordeshook 1968 “A Theory of the Calculus of Voting”

Shapley & Shubik 1954 “A Method for Evaluating the Distribution of
Power in a Committee System”

McClosky 1964 “Consensus and Ideology in American Politics”

Miller 1974 “Political Issues and Trust in Government:
1964-1970"

Axelrod 1986 “An Evolutionary Approach to Norms”

Doyle 1986 “Liberalism and World Politics”

Polsby 1968 “The Institutionalization of the U.S. House of
Representatives”

Inglehart 1971 “The Silent Revolution in Europe:
Intergenerational Change in Post-Industrial
Societies”

Maoz & Russett 1993 “Normative and Structural Causes of Democratic
Peace, 1946-1986"

Tufte 1975 “Determinants of the Outcome of Midterm
Congressional Elections”

2. Figure 2.3 shows gross U.S. government debt as a percentage of GDP from
1960 to 2011. Can you think of a theory about what causes this variable to be
higher or lower?

3. Figure 2.4 shows the percentage of a nation’s members of parliament who were
women for 20 randomly selected nations in 2004. Can you think of a theory
about what causes this variable to be higher or lower?

4. Think about a political event with which you are familiar and follow these
instructions:

(a) Write a short description of the event.

(b) What is your understanding of why this event happened the way that it
happened?

(c) Moving from local to global: Reformulate your answer to part (b) into a
general causal theory without proper nouns.

5. Find a political science journal article of interest to you, and of which your
instructor approves, and answer the following items:

(a) What is the main dependent variable in the article?

(b) What is the main independent variable in the article?

(c) Briefly describe the causal theory that connects the independent and
dependent variables.

(d) Can you think of another independent variable that is not mentioned
in the article that might be causally related to the dependent variable?
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Figure 2.3. Gross U.S. government debt as a percentage of GDP, 1960-2011.
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Figure 2.4. Women as a percentage of members of parliament, 2004.

Briefly explain why that variable might be causally related to the dependent
variable.

Imagine that the way in which the U.S. House of Representatives is elected was
changed from the current single-member district system to a system of national
proportional representation in which any party that obtained at least 3% of
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the vote nationally would get a proportionate share of the seats in the House.
How many and what types of parties would you expect to see represented in the
House of Representatives under this different electoral system? What theories of
politics can you come up with from thinking about this hypothetical scenario?

Applying formal theory to something in which you are interested. Think about
something in the political world that you would like to better understand. Try
to think about the individual-level decisions that play a role in deciding the
outcome of this phenomenon. What are the expected benefits and costs that the
individual who is making this decision must weigh?

For exercises 8 through 11, read Robert Putnam’s 1995 article “Tuning In, Tuning Out:
The Strange Disappearance of Social Capital in America.”

What is the dependent variable in Putnam’s study?
What other possible causes of the dependent variable can you think of?
Can Putnam’s theory be applied in other countries? Why or why not?

If we believe Putnam’s findings, are there further implications?



E Evaluating Causal Relationships

Modern political science fundamentally revolves around establishing
whether there are causal relationships between important concepts. This is
rarely straightforward, and serves as the basis for almost all scientific con-
troversies. How do we know, for example, if economic development causes
democratization, or if democratization causes economic development, or
both, or neither? To speak more generally, if we wish to evaluate whether
or not some X causes some Y, we need to cross four causal hurdles: (1) Is
there a credible causal mechanism that connects X to Y? (2) Can we elimi-
nate the possibility that Y causes X? (3) Is there covariation between X and
Y? (4) Have we controlled for all confounding variables Z that might make
the association between X and Y spurious? Many people, especially those
in the media, make the mistake that crossing just the third causal hurdle —
observing that X and Y covary — is tantamount to crossing all four. In short,
finding a relationship is not the same as finding a causal relationship, and
causality is what we care about as political scientists.

I would rather discover one causal law than be King of Persia.
— Democritus (quoted in Pearl 2000)

X1 CAUSALITY AND EVERYDAY LANGUAGE

Like that of most sciences, the discipline of political science fundamentally
revolves around evaluating causal claims. Our theories — which may be right
or may be wrong — typically specify that some independent variable causes
some dependent variable. We then endeavor to find appropriate empirical
evidence to evaluate the degree to which this theory is or is not supported.
But how do we go about evaluating causal claims? In this chapter and the
next, we discuss some principles for doing this. We focus on the logic of

b1
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causality and on several criteria for establishing with some confidence the
degree to which a causal connection exists between two variables. Then,
in Chapter 4, we discuss various ways to design research that help us to
investigate causal claims. As we pursue answers to questions about causal
relationships, keep our “rules of the road” from Chapter | in your mind,
in particular the admonition to consider only empirical evidence along
the way.

It is important to recognize a distinction between the nature of most
scientific theories and the way the world seems to be ordered. Most of our
theories are limited to descriptions of relationships between a single cause
(the independent variable) and a single effect (the dependent variable). Such
theories, in this sense, are very simplistic representations of reality, and
necessarily so. In fact, as we noted at the end of Chapter 1, theories of this
sort are laudable in one respect: They are parsimonious, the equivalent of
bite-sized, digestible pieces of information. We cannot emphasize strongly
enough that almost all of our theories about social and political phenomena
are bivariate — that is, involving just two variables.

But social reality is not bivariate; it is multivariate, in the sense that any
interesting dependent variable is caused by more than one factor. (“Mul-
tivariate” simply means “many variables,” by which we mean involving
more than two variables.) So although our theories describe the proposed
relationship between some cause and some effect, we always have to keep
in the forefront of our minds that the phenomenon we are trying to explain
surely has many other possible causes. And when it comes time to design
research to test our theoretical ideas — which is the topic of Chapter 4 — we
have to try to account for, or “control for,” those other causes. If we don’t,
then our causal inferences about whether our pet theory is right — whether
X causes Y — may very well be wrong." In this chapter we lay out some prac-
tical principles for evaluating whether or not, indeed, some X does cause Y.
You also can apply these criteria when evaluating the causal claims made
by others — be they a journalist, a candidate for office, a political scientist,
a fellow classmate, a friend, or just about anyone else.

Nearly everyone, nearly every day, uses the language of causality —
some of the time formally, but far more often in a very informal manner.
Whenever we speak of how some event changes the course of subsequent
events, we invoke causal reasoning. Even the word “because” implies that a
causal process is in operation.” Yet, despite the ubiquitous use of the words

I Throughout this book, in the text as well as in the figures, we will use arrows as a shorthand
for “causality.” For example, the text “X — Y should be read as “X causes Y.” Oftentimes,
especially in figures, these arrows will have question marks over them, indicating that the
existence of a causal connection between the concepts is uncertain.

2 This use of terms was brought to our attention by Brady ( ).
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“because,” “affects, causes,” and “causality,” the meanings
of these words are not exactly clear. Philosophers of science have long had
vigorous debates over competing formulations of “causality.”

Although our goal here is not to wade too deeply into these debates,
there is one feature of the discussions about causality that deserves brief
mention. Most of the philosophy of science debates originate from the world
of the physical sciences. The notions of causality that come to mind in these
disciplines mostly involve deterministic relationships — that is, relationships
such that if some cause occurs, then the effect will occur with certainty. In
contrast, though, the world of human interactions consists of probabilistic
relationships — such that increases in X are associated with increases (or
decreases) in the probability of Y occurring, but those probabilities are not
certainties. Whereas physical laws like Newton’s laws of motion are deter-
ministic — think of the law of gravity here — the social sciences (including
political science) more closely resemble probabilistic causation like that in
Darwin’s theory of natural selection, in which random mutations make an
organism more or less fit to survive and reproduce.

What does it mean to say that, in political science, our conceptions
of causality must be probabilistic in nature? When we theorize, for exam-
ple, that an individual’s level of wealth causes her opinions on optimal tax
policy, we do not at all mean that every wealthy person will want lower
taxes, and every poor person will prefer higher taxes. Consider what would
happen if we found a single rich person who favors high taxes or a single
poor person who favors low taxes. (Perhaps you are, or know, such a per-
son.) One case alone does not decrease our confidence in the theory. In this
sense, the relationship is probabilistic, not deterministic. Instead of saying
deterministically that “wealthy people will prefer lower taxes, and poorer

»

people will prefer higher taxes,” we say, probabilistically, that “wealthy
people are more likely to prefer lower taxes, whereas poorer individuals
are more likely to prefer higher taxes.”

Take another example: Scholars of international conflict have noticed
that there is a statistical relationship between the type of regime a country
has and the likelihood of that country going to war. To be more precise, in

a series of studies widely referred to as the “democratic peace” literature,

3 You can find an excellent account of the vigor of these debates in a 2003 book by
David Edmonds and John Eidinow titled Wittgenstein’s Poker: The Story of a Ten Minute
Argument Between Two Great Philosophers.

4 Nevertheless, in reviewing three prominent attempts within the philosophy of science to
elaborate on the probabilistic nature of causality, the philosopher Wesley Salmon ( , p-
137) notes that “In the vast philosophical literature on causality [probabilistic notions of
causality] are largely ignored.” We borrow the helpful comparison of probabilistic social
science to Darwinian natural selection from Brady ( ).
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many researchers have noticed that wars are much less likely to break out
between two regimes that are democracies than pairs of countries where at
least one is a non-democracy. To be perfectly clear, the literature does not
suggest that democracies do not engage in warfare at all, but that democ-
racies don’t fight other democracies. A variety of mechanisms have been
suggested to explain this correlation, but the point here is that, if two
democracies start a war with one another next year, it would be a mistake
to discard the theory. A deterministic theory would say that “democracies
don’t go to war with one another,” but a more sensible probabilistic the-
ory would say that “democracies are highly unlikely to go to war with one
another.”

In political science there will always be exceptions because human
beings are not deterministic robots whose behaviors always conform to
lawlike statements. In other sciences in which the subjects of study do not
have free will, it may make more sense to speak of laws that describe behav-
ior. Consider the study of planetary orbits, in which scientists can precisely
predict the movement of celestial bodies hundreds of years in advance. The
political world, in contrast, is extremely difficult to predict. As a result, most
of the time we are happy to be able to make statements about probabilistic
causal relationships.

What all of this boils down to is that the entire notion of what it
means for something “to cause” something else is far from a settled matter.
In the face of this, should social scientists abandon the search for causal
connections? Not at all. What it means is that we should proceed cautiously
and with an open mind, rather than in some exceedingly rigid fashion.

FOUR HURDLES ALONG THE ROUTE TO ESTABLISHING
CAUSAL RELATIONSHIPS

If we wish to investigate whether some independent variable, which we
will call X, “causes” some dependent variable, which we will call Y, what
procedures must we follow before we can express our degree of confidence
that a causal relationship does or does not exist? Finding some sort of
covariation (or, equivalently, correlation) between X and Y is not sufficient
for such a conclusion.

We encourage you to bear in mind that establishing causal relationships
between variables is not at all akin to hunting for DNA evidence like some
episode from a television crime drama. Social reality does not lend itself
to such simple, cut-and-dried answers. In light of the preceding discussion
about the nature of causality itself, consider what follows to be guidelines
as to what constitutes “best practice” in political science. With any theory
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about a causal relationship between X and Y, we should carefully consider
the answers to the following four questions:

Is there a credible causal mechanism that connects X to Y?
Can we rule out the possibility that Y could cause X?
Is there covariation between X and Y?

i

Have we controlled for all confounding variables Z that might make
the association between X and Y spurious?

First, we must consider whether it is believable to claim that X could
cause Y. In effect, this hurdle represents an effort to answer the “how”
and “why” questions about causal relationships. To do this, we need to go
through a thought exercise in which we evaluate the mechanics of how X
would cause Y. What is the process or mechanism that, logically speaking,
suggests that X might be a cause of Y? In other words, what is it specifically
about having more (or less) of X that will in all probability lead to more
(or less) of Y? The more outlandish these mechanics would have to be, the
less confident we are that our theory has cleared this first hurdle. Failure to
clear this first hurdle is a very serious matter; the result being that either our
theory needs to be thrown out altogether, or we need to revise it after some
careful rethinking of the underlying mechanisms through which it works.
It is worth proceeding to the second question only once we have a “yes”
answer to this question.

Second, and perhaps with greater difficulty, we must ask whether we
can rule out the possibility that Y might cause X. As you will learn from
the discussion of the various strategies for assessing causal connections in
Chapter 4, this poses thorny problems for some forms of social science
research, but is less problematic for others. Occasionally, this causal hurdle
can be crossed logically. For example, when considering whether a person’s
gender (X) causes him or her to have particular attitudes about abortion
policy (Y), it is a rock-solid certainty that the reverse-causal scenario can
be dismissed: A person’s attitudes about abortion does not “cause” them
to be male or female. If our theory does not clear this particular hurdle, the
race is not lost. Under these circumstances, we should proceed to the next
question, while keeping in mind the possibility that our causal arrow might
be reversed.

Throughout our consideration of the first two causal hurdles, we were
concerned with only two variables, X and Y. The third causal hurdle can

5 A “confounding variable” is simply a variable that is both correlated with both the inde-
pendent and dependent variable and that somehow alters the relationship between those
two variables. “Spurious” means “not what it appears to be” or “false.”
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involve a third variable Z, and the fourth hurdle always does. Often it is
the case that there are several Z variables.

For the third causal hurdle, we must consider whether X and Y covary
(or, equivalently, whether they are correlated or associated). Generally
speaking, for X to cause Y, there must be some form of measurable associa-
tion between X and Y, such as “more of X is associated with more of Y,” or
“more of X is associated with less of Y.” Demonstrating a simple bivariate
connection between two variables is a straightforward matter, and we will
cover it in Chapters 7 and 8. Of course, you may be familiar with the dictum
“Correlation does not prove causality,” and we wholeheartedly agree. It is
worth noting, though, that correlation is normally an essential component
of causality. But be careful. It is possible for a causal relationship to exist
between X and Y even if there is no bivariate association between X and
Y. Thus, even if we fail to clear this hurdle, we should not throw out our
causal claim entirely. Instead, we should consider the possibility that there
exists some confounding variable Z that we need to “control for” before
we see a relationship between X and Y. Whether or not we find a bivariate
relationship between X and Y, we should proceed to our fourth and final
hurdle.

Fourth, in establishing causal connections between X and Y, we must
face up to the reality that, as we noted at the outset of this chapter, we live in
a world in which most of the interesting dependent variables are caused by
more than one — often many more than one — independent variable. What
problems does this pose for social science? It means that, when trying to
establish whether a particular X causes a particular Y, we need to “control
for” the effects of other causes of Y (and we call those other effects Z). If we
fail to control for the effects of Z, we are quite likely to misunderstand the
relationship between X and Y and make the wrong inference about whether
X causes Y. This is the most serious mistake a social scientist can make.
If we find that X and Y are correlated, but that, when we control for the
effects of Z on both X and Y, the association between X and Y disappears,
then the relationship between X and Y is said to be spurious.

Putting It All Together — Adding Up the Answers to Our
Four Questions

As we have just seen, the process for evaluating a theoretical claim that X
causes Y is complicated. Taken one at a time, each of the four questions
in the introduction to this section can be difficult to answer with great
clarity. But the challenge of evaluating a claim that X causes Y involves
summing the answers to all four of these questions to determine our overall
confidence about whether X causes Y. To understand this, think about the
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analogy that we have been using by calling these questions “hurdles.” In
track events that feature hurdles, runners must do their best to try to clear
each hurdle as they make their way toward the finish line. Occasionally even
the most experienced hurdler will knock over a hurdle. Although this slows
them down and diminishes their chances of winning the race, all is not lost.
If we think about putting a theory through the four hurdles posed by the
preceding questions, there is no doubt our confidence will be greatest when
we are able to answer all four questions the right way (“yes,” “yes,” “yes,”
“yes”) and without reservation. As we described in the introduction to this
section, failure to clear the first hurdle should make us stop and rethink our
theory. This is also the case if we find our relationship to be spurious. For
the second and third hurdles, however, failure to clear them completely does
not mean that we should discard the causal claim in question. Figure
provides a summary of this process. In the subsections that follow, we will
go through the process described in Figure with a series of examples.
As we go through this process of answering the four questions, we
will keep a causal hurdles scorecard as a shorthand for summarizing the
answers to these four questions in square brackets. For now, we will limit
and “¢” for “maybe.” If a

» <« S

our answers to “y” for “yes,” “n” for “no,’
theory has cleared all four hurdles, the scorecard would read [y y y y] and
the causal claim behind it would be strongly supported. As we described
above, these hurdles are not all the same in terms of their impact on our
assessments of causality. So, for instance, a causal claim for which the score-
card reads [# y y y] could be thrown out instantly. But, a claim for which

it reads [y 7 y y] would have a reasonable level of evidence in its favor.

Identifying Causal Claims Is an Essential Thinking Skill

We want to emphasize that the logic just presented does not apply merely to
political science research examples. Whenever you see a story in the news,
or hear a speech by a candidate for public office, or, yes, read a research
article in a political science class, it is almost always the case that some form
of causal claim is embedded in the story, speech, or article. Sometimes those
causal claims are explicit — indented and italicized so that you just can’t miss
them. Quite often, though, they are harder to spot, and most of the time
not because the speaker or writer is trying to confuse you. What we want to
emphasize is that spotting and identifying causal claims is a thinking skill.
It does not come naturally to most people, but it can be practiced.

In our daily lives, we are often presented with causal claims by people
trying to persuade us to adopt their point of view. Advocacy and attempts
at persuasion, of course, are healthy features of a vibrant democracy. The
health of public debate, though, will be further enhanced when citizens
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1. Is there a credible causal
mechanism that connects X'to Y?

Yes No
2. Can we eliminate Stop and reformulate your
the possibility that Y theory until the answer is
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Figure 3.1. The path to evaluating a causal relationship.

actively scrutinize the claims with which they are presented. Take, for exam-
ple, debates in the media about the merits of private school choice programs,
which have been implemented in several school districts. Among the argu-
ments in favor of such programs is that the programs will improve student
performance on standardized tests. Media reports about the successes and
failures of programs like this are quite common. For example, an article in
the Washington Post discusses a study that makes the argument that:

African American students in the District [of Columbia] and two other
cities have moved ahead of their public school classmates since they trans-
ferred to private schools with the help of vouchers, according to a new
study. ... The study showed that those moving to private schools scored
6 percentile points higher than those who stayed in public schools in New
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York City, Dayton, Ohio, and the District. The effect was biggest in the
District, where students with vouchers moved 9 percentile points ahead of
public school peers.

Notice the causal claim here, which is: Participation (or not) in the
school choice program (X) causes a child’s test scores (Y) to vary. Often,
the reader is presented with a bar chart of some sort in support of the
argument. The reader is encouraged to think, sometimes subtly, that the
differing heights of the bars, representing different average test scores for
school choice children and public school children, means that the program
caused the school choice children to earn higher scores. When we take such
information in, we might take that nugget of evidence and be tempted to
jump to the conclusion that a causal relationship exists. The key lesson here
is that this is a premature conclusion.

Let’s be clear: School choice programs may indeed cause students to
do better on standardized tests. Our objective here is not to wade into that
debate, but rather to sensitize you to the thinking skills required to evaluate
the causal claim made in public by advocates such as those who support
or oppose school choice programs. Evidence that students in school choice
programs score higher on tests than do public school students is one piece
of the causal puzzle — namely, it satisfies crossing hurdle three above, that
there is covariation between X and Y. At this point in our evaluation, our
score card reads [? ? y ?]. And thus, before we conclude that school choice
does (or does not) cause student performance, we need to subject that claim
to all four of the causal hurdles, not just the third one.

So let’s apply all four causal hurdles to the question at hand. First, is
there a mechanism that we can use to explain how and why attending a
particular type of school — public or a voucher-sponsored private school —
might affect a student’s test scores? Certainly. Many private schools that
participate in voucher programs have smaller class sizes (among other ben-
efits), and smaller class sizes can translate to more learning and higher test
scores. The answer to the first question is “yes”[y ? y ?]. Second, is it pos-
sible that the causal arrow might be reversed — that is, can we rule out
the possibility that test scores cause a person to participate or not partic-
ipate in a school choice program? Since the test scores occur months or
even years after the person chooses a school to attend, this is not possible.
The answer to the second question is “yes” [y y vy ?]. Third, is there a cor-
relation between participation in the program and test scores? The article
quoted above just noted that, in the three cities considered, there is — voucher

6 Mathews, Jay. “Scores Improve for D.C. Pupils With Vouchers” Washington Post, August
28,2000, Al.
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school students scored higher on standardized tests than their public school
peers. The answer to the third question is “yes” [y y y ?]. Finally, have we
controlled for all confounding variables that might make the association
between participation in the program and test scores spurious? Remember,
a potentially confounding variable is simply a variable that is related to the
independent variable and is also a cause of the dependent variable. So, can
we think of something that is both related to the type of school a child
attends and is also a likely cause of that child’s test scores? Sure. The vari-
able “parental involvement” is a natural candidate to be a Z variable in this
instance. Some children have highly involved parents — parents who read to
their children, help them with homework, and take an active role in their
education — while other children have parents who are much less involved.
Highly involved parents are more likely than their uninvolved counterparts
to learn about the existence of school choice programs in their cities, and
are more likely to apply for such programs. (So Z is almost surely related to
X.) And highly involved parents are more likely to create high expectations
among their children, and to instill in their children a sense that achieve-
ment in school is important, all of which probably translate into having
children who score better on standardized tests. (So Z is likely to be a cause
of Y.) The key question then becomes: Did the study in question manage
to control for those effects? We’re a little ahead of the game here, because
we haven’t yet talked about the strategies that researchers employ to con-
trol for the effects of potentially confounding variables. (That task comes
in Chapter 4.) But we hope you can see why controlling for the effects of
parental involvement is so key in this particular situation (and in general): If
our comparison of school choice children and public school children basi-
cally amounts to a comparison between the children of highly motivated
parents and the children of poorly motivated parents, then it becomes very
problematic to conclude that the difference between the groups’ test scores
was caused by the program. Without a control for parental involvement (Z),
in other words, the relationship between school type (X) and test scores (Y)
might be spurious. So, until we see evidence that this important Z has been
controlled for, our scorecard for this causal claim is [y y y #] and we should
be highly suspicious of the study’s findings. More informally, without such
a control, the comparison between those sets of test scores is an unfair one,
because the groups would be so different in the first place. As it happens, the
article from the Washington Post that we mentioned did include a control
for parental involvement, because the students were chosen for the program
by a random lottery. We’ll wait until Chapter 4 to describe exactly why this
makes such a big difference, but it does.

The same process can be applied to a wide variety of causal claims
and questions that we encounter in our daily lives. Does drinking red wine
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cause a reduction in heart disease? Does psychotherapy help people with
emotional and relational problems? Do increases in government spending
spur or retard economic growth? In each of these and many other examples,
we might be tempted to observe a correlation between two variables and
conclude that the relationship is causal. It is important for us to resist that
temptation, and subject each of these claims to the more rigorous criteria
that we are suggesting here. If we think about such evidence on its own
in terms of our causal hurdles scorecard, what we have is [? ? y ?]. This
is a reasonable start to the evaluation of a causal claim, but a pretty poor
place to stop and draw definitive conclusions. Thinking in terms of the
hurdles depicted in the scorecard, whenever someone presents us with a
causal claim but fails to address each of the hurdles, we will naturally ask
further questions and, when we do that, we will be much smarter consumers
of information in our everyday lives.

An important part of taking a scientific approach to the study of politics
is that we turn the same skeptical logic loose on scholarly claims about
causal relationships. Before we can evaluate a causal theory, we need to
consider how well the available evidence answers each of the four questions
about X, Y, and Z. Once we have answered each of these four questions,
one at a time, we then think about the overall level of confidence that we
have in the claim that X causes Y.

What Are the Consequences of Failing to Control for Other
Possible Causes?

When it comes to any causal claim, as we have just noted, the fourth causal
hurdle often trips us up, and not just for evaluating political rhetoric or
stories in the news media. This is true for scrutinizing scientific research as
well. In fact, a substantial portion of disagreements between scholars boils
down to this fourth causal hurdle. When one scholar is evaluating another’s
work, perhaps the most frequent objection is that the researcher “failed to
control for” some potentially important cause of the dependent variable.

What happens when we fail to control for some plausible other cause
of our dependent variable of interest? Quite simply, it means that we have
failed to cross our fourth causal hurdle. So long as a reasonable case can
be made that some uncontrolled-for Z might be related to both X and Y,
we cannot conclude with full confidence that X indeed causes Y. Because
the main goal of science is to establish whether causal connections between
variables exist, then failing to control for other causes of Y is a potentially
serious problem.

One of the themes of this book is that statistical analysis should not
be disconnected from issues of research design — such as controlling for
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as many causes of the dependent variable as possible. When we discuss
multiple regression (in Chapters 9, 10, and 11), which is the most com-
mon statistical technique that political scientists use in their research, the
entire point of those chapters is to learn how to control for other possible
causes of the dependent variable. We will see that failures of research design,
such as failing to control for all relevant causes of the dependent variable,
have statistical implications, and the implications are always bad. Failures
of research design produce problems for statistical analysis, but hold this
thought. What is important to realize for now is that good research design
will make statistical analysis more credible, whereas poor research design
will make it harder for any statistical analysis to be conclusive about causal
connections.

WHY IS STUDYING CAUSALITY SO IMPORTANT? THREE
EXAMPLES FROM POLITICAL SCIENCE

Our emphasis on causal connections should be clear. We turn now to several
active controversies within the discipline of political science, showing how
debates about causality lie at the heart of precisely the kinds of controversies
that got you (and most of us) interested in politics in the first place.

Life Satisfaction and Democratic Stability

One of the enduring controversies in political science is the relationship
between life satisfaction in the mass public and the stability of democratic
institutions. Life satisfaction, of course, can mean many different things,
but for the current discussion let us consider it as varying along a contin-
uum, from the public’s being highly unsatisfied with day-to-day life to being
highly satisfied. What, if anything, is the causal connection between the two
concepts?

Political scientist Ronald Inglehart ( ) argues that life satisfaction
(X) causes democratic system stability (Y). If we think through the first of
the four questions for establishing causal relationships, we can see that there
is a credible causal mechanism that connects X to Y —if people in a demo-
cratic nation are more satisfied with their lives, they will be less likely to want
to overthrow their government. The answer to our first question is “yes”
[y ? ? ?]. Moving on to our second question: Can we eliminate the possibil-
ity that democratic stability (Y) is what causes life satisfaction (X)? We can
not. It is very easy to conceive of a causal mechanism in which citizens liv-
ing in stable democracies are likely to be more satisfied with their lives than
citizens living in nations with a history of government instability and less-
than-democratic governance. The answer to our second question is “no”
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[y 7 ? ?]. We now turn to the third question. Using an impressive amount of
data from a wide variety of developed democracies, Inglehart and his col-
leagues have shown that there is, indeed, an association between average life
satisfaction in the public and the length of uninterrupted democratic gover-
nance. That is, countries with higher average levels of life satisfaction have
enjoyed longer uninterrupted periods of democratic stability. Conversely,
countries with lower levels of life satisfaction have had shorter periods of
democratic stability and more revolutionary upheaval. The answer to our
third question is “yes” [y n y ?]. With respect to the fourth question, it is
easy to imagine a myriad of other factors (Z’s) that lead to democratic
stability, and whether Inglehart has done an adequate job of controlling
for those other factors is the subject of considerable scholarly debate. The
answer to our fourth question is “maybe” [y n y ?]. Inglehart’s theory has
satisfactorily answered questions 1 and 3, but it is the answers to questions 2
and 4 that have given skeptics substantial reasons to doubt his causal claim.

Race and Political Participation in the United States

Political participation — the extent to which individual citizens engage in
voluntary political activity, such as voting, working for a campaign, or
making a campaign contribution — represents one of the most frequently
studied facets of mass political behavior, especially in the United States.
And with good reason: Participation in democratic societies is viewed by
some as one measure of the health of a democracy. After decades of study-
ing the variation in Americans’ rates of participation, several demographic
characteristics consistently stood out as being correlated with participation,
including an individual’s racial classification. Anglos, surveys consistently
showed, have participated in politics considerably more frequently than
either Latinos or African Americans. A comprehensive survey, for example,
shows that during a typical election cycle, Anglos engaged in 2.22 “partici-
patory acts” — such as voting, working for a campaign, making a campaign
contribution, attending a protest or demonstration, and similar such activ-
ities — whereas comparable rates for African Americans and Latino citizens
were 1.90 and 1.41 activities (see Verba et al. , Figure 1).

Is the relationship between an individual’s race (X) and the amount
that the individual participates in politics (Y) a causal one? Before we accept
the evidence above as conclusively demonstrating a causal relationship, we
need to subject it to the four causal hurdles. Is there a reasonable mech-
anism that answers the “how” and “why” questions connecting race and
political participation? There may be reason to think so. For long portions
of American history, after all, some formal and many informal barriers
existed prohibiting or discouraging the participation of non-Anglos. The
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notion that there might be residual effects of such barriers, even decades
after they have been eradicated, is entirely reasonable. The answer to our
first question is “yes” [y ? ? ?]. Can we eliminate the possibility that varying
rates of participation cause an individual’s racial classification? Obviously,
yes. The answer to our second question is “yes” [y y ? ?]. Is there a cor-
relation between an individual’s race and their level of participation in
the United States? The data above about the number of participatory acts
among Anglos, African Americans, and Latinos clearly shows that there is a
relationship; Anglos participate the most. The answer to our third question
is “yes” [y vy y ?]. Finally, have we controlled for all possible confounding
variables Z that are related to both race (X) and participation (Y) that might
make the relationship spurious? Verba and his colleagues suggest that there
might be just such a confounding variable: socio-economic status. Less so
today than in the past, socio-economic status (Z) is nevertheless still corre-
lated with race (X). And unsurprisingly, socio-economic status (Z) is also a
cause of political participation (Y); wealthy people donate more, volunteer
more, and the like, than their less wealthy counterparts. Once controlling
for socio-economic status, the aforementioned relationship between race
and political participation entirely vanishes (see Verba et al.’s Table 8). In
short, the correlation that we observe between race and political participa-
tion is spurious, or illusory; it is not a function of race, but instead a function
of the disparities in wealth between Anglos and other races. Once we con-
trol for those socio-economic differences, the connection between race and
participation goes away. The answer to our fourth question is “no.” In this
case, the effort to answer the fourth question actually changed our answer
to the third question, moving our scorecard from [y y y ?] to [y y n n]. This
is one of the important ways in which our conclusions about relationships
can change when we move from a bivariate analysis in which we measure
the relationship between one independent variable, X, and our dependent
variable, Y, to a multiple variable analysis in which we measure the rela-
tionship between X and Y controlling for a second independent variable,
Z. Tt is also possible for a lot of other things to happen when we move
to controlling for Z. For instance, it is also possible for our scorecard to
change from [y ynn]to [y yy yl.

Evaluating Whether Head Start Is Effective

In the 1960s, as part of the War on Poverty, President Lyndon Johnson
initiated the program Head Start to give economically underprivileged chil-
dren a preschool experience that — the program hoped — would increase the
chances that these poor children would succeed once they reached kinder-
garten and beyond. The program is clearly well intended, but, of course, that
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alone does not make it effective. Simply put: Does Head Start work? In this
case, “work” would mean that Head Start could increase the chances that
participants in the program would have better educational outcomes than
nonparticipants.

It would be tempting, in this case, to simply compare some standard-
ized test scores of the children who participated in Head Start with those
who did not. If Head Start participants scored higher, then — voila — case
closed; the program works. If not, then not. But, as before, we need to
stay focused on all four causal hurdles. First, is there some credible causal
mechanism that would answer the “how” and “why” questions that con-
nect Head Start participation (X) to educational outcomes (Y)? Yes. The
theory behind the program is that exposure to a preschool environment
that anticipates the actual school setting helps prepare children for what
they will encounter in kindergarten and beyond. Head Start, in this sense,
might help reduce discipline problems, and prepare students for reading
and counting, among other skills. The answer to our first question is “yes”
[y ? ? ?]. Is it possible, secondly, that the causal arrow might be reversed —
in other words, can we rule out the possibility that educational outcomes
(Y) could cause participation in Head Start (X)? Because testing would take
place years after participation in the program, yes. The answer to our sec-
ond question is “yes” [y y ? ?]. Is there an association between participation
in the program and learning outcomes? Study after study has shown that
Head Start participants fare better when tested, and have fewer instances
of repeating a grade, than those who have no preschool experience. For
example, a widely cited study shows that Head Start children do better on
a vocabulary test suitable for young children than do students who have no
preschool experience (Currie and Thomas ). The answer to our third
question is “yes” [y y y ?]. But, as was the case with the school-voucher
example discussed previously, a potentially confounding variable — parental
involvement (Z) — lurks nearby. Highly involved parents (Z) are more likely
to seek out, be aware of, and enroll their children (X) in programs like Head
Start that might benefit their children. Parents who are less involved in their
childrens’ lives are less likely to avail themselves of the potential opportuni-
ties that Head Start creates. And, as before, highly involved parents (Z) are
likely to have positive effects on their children’s educational outcomes. The
key question, then, becomes: Do parental effects (Z) make the relationship
between Head Start and later educational outcomes spurious? The afore-
mentioned study by Currie and Thomas uses both statistical controls as well
as controls in the design of their research to account for parental factors,
and they find that Head Start has lasting educational effects only for Anglo
children, but not for African American children (see their Table 4). Again,
that phrase “statistical controls” may not be quite as transparent as it will
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be later on in this book. For now, suffice it to say that these researchers
used all of the techniques available to them to show that Head Start does,
indeed, have positive effects for some, but not all, children. The answer to
our fourth question is a highly qualified “yes” [y y y y].

WRAPPING UP

Learning the thinking skills required to evaluate causal claims as conclu-
sively as possible requires practice. They are intellectual habits that, like a
good knife, will sharpen with use.

Translating these thinking skills into actively designing new research
that helps to address causal questions is the subject of Chapter 4. All of the
“research designs” that you will learn in that chapter are strongly linked
to issues of evaluating causal claims. Keeping the lessons of this chapter
in mind as we move forward is essential to making you a better consumer
of information, as well as edging you forward toward being a producer of
research.

CONCEPTS INTRODUCED IN THIS CHAPTER

* bivariate — involving just two variables.

* causal hurdles scorecard — a shorthand for summarizing evidence about
whether an independent variable causes a dependent variable.

» confounding variable — a variable that is correlated with both the
independent and dependent variables and that somehow alters the
relationship between those two variables.

* deterministic relationship — if some cause occurs, then the effect will
occur with certainty.

* multivariate — involving more than two variables.

* probabilistic relationship — increases in X are associated with increases
(or decreases) in the probability of Y occurring, but those probabilities
are not certainties.

* spurious — not what it appears to be, or false.

EXERCISES

Think back to a history class in which you learned about the “causes” of a
particular historical event (for instance, the Great Depression, the French Rev-
olution, or World War I). How well does each causal claim perform when you
try to answer the four questions for establishing causal relationships?
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Go to your local newspaper’s web site (if it has one; if not, pick the web site
of any media outlet you visit frequently). In the site’s “Search” box, type the
words “research cause” (without quotes). (Hint: You may need to limit the
search time frame, depending on the site you visit.) From the search results,
find two articles that make claims about causal relationships. Print them out,
and include a brief synopsis of the causal claim embedded in the article.

For each of the following examples, imagine that some researcher has found the
reported pattern of covariation between X and Y. Can you think of a variable
Z that might make the relationship between X and Y spurious?

(a) The more firefighters (X) that go to a house fire, the greater property
damage that occurs (Y).

(b) The more money spent by an incumbent member of Congress’s campaign
(X), the lower their percentage of vote (Y).

(c) Increased consumption of coffee (X) reduces the risk of depression among
women (Y).

(d) The higher the salaries of Presbyterian ministers (X), the higher the price
of rum in Havana (Y).

For each of the following pairs of independent and dependent variables, write
about both a probabilistic and a deterministic relationship to describe the likely
relationship:

(a) A person’s education (X) and voter turnout (Y).
(b) A nation’s economic health (X) and political revolution (Y).
(c) Candidate height (X) and election outcome (Y).

Take a look at the codebook for the data set “BES 2005 Subset” and write
about your answers to the following items:

(a) Develop a causal theory about the relationship between an independent
variable (X) and a dependent variable (Y) from this data set. Is it the
credible causal mechanism that connects X to Y? Explain your answer.

(b) Could Y cause X? Explain your answer.

(c) What other variables (Z) would you like to control for in your tests of this
theory?

Imagine causal claims for which the scorecards are listed below. Which of these
clams would you evaluate as most strongly supported? Explain your answer.

(@) [ynyyl
(b) yyynl
() Ryyyl

Researcher A and Researcher B are having a scientific debate. What are they
arguing about if their argument is focused on:

(a) causal hurdle 1

(b) causal hurdle 2

(¢) causal hurdle 3

(d) causal hurdle 4
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Find a political science journal article of interest to you, and of which your
instructor approves, and answer the following items (be sure to provide a full
citation to the chosen article with your answers):

(a) Briefly describe the causal theory that connects the independent and
dependent variables.

(b) Create a causal hurdles scorecard for this theory and write an explanation
for each of your entries in the scorecard.
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Given our focus on causality, what research strategies do political scientists
use to investigate causal relationships? Generally speaking, the controlled
experiment is the foundation for scientific research. And some political sci-
entists use experiments in their work. However, owing to the nature of our
subject matter, most political scientists adopt one of two types of “obser-
vational” research designs that are intended to mimic experiments. The
cross-sectional observational study focuses on variation across individual
units (like people or countries). The time-series observational study focuses
on variation in aggregate quantities (like presidential popularity) over time.
What is an “experiment” and why is it so useful? How do observational
studies try to mimic experimental designs? Most importantly, what are the
strengths and weaknesses of each of these three research designs in estab-
lishing whether or not causal relationships exist between concepts? That
is, how does each one help us to get across the four causal hurdles identi-
fied in Chapter 3?7 Relatedly, we introduce issues concerning the selection
of samples of cases to study in which we are not able to study the entire
population of cases to which our theory applies. This is a subject that will
feature prominently in many of the subsequent chapters.

7ET COMPARISON AS THE KEY TO ESTABLISHING
CAUSAL RELATIONSHIPS

So far, you have learned that political scientists care about causal rela-
tionships. You have learned that most phenomena we are interested in
explaining have multiple causes, but our theories typically deal with only
one of them while ignoring the others. In some of the research examples
in the previous chapters, we have noted that the multivariate nature of the
world can make our first glances at evidence misleading. In the example
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dealing with race and political participation, at first it appeared that race
might be causally related to participation rates, with Anglos participating
more than those of other races. But, we argued, in this particular case, the
first glance was potentially quite misleading.

Why? Because what appeared to be the straightforward comparisons
between three groups — participation rates between Anglos, Latinos, and
African Americans — ended up being far from simple. On some very impor-
tant factors, our different groupings for our independent variable X were
far from equal. That is, people of different racial groupings (X) had differing
socio-economic statuses (Z), which are correlated with race (X) and also
affected their levels of participation (Y). As convincing as those bivariate
comparisons might have been, they would likely be misleading.

Comparisons are at the heart of science. If we are evaluating a theory
about the relationship between some X and some Y, the scientist’s job is to
do everything possible to make sure that no other influences (Z) interfere
with the comparisons that we will rely on to make our inferences about a
possible causal relationship between X and Y.

The obstacles to causal inference that we described in Chapter 3 are
substantial, but surmountable. We don’t know whether, in reality, X causes
Y. We may be armed with a theory that suggests that X does, indeed, cause
Y, but theories can be (and often are) wrong or incomplete. So how do
scientists generally, and political scientists in particular, go about testing
whether X causes Y? There are several strategies, or research designs, that
researchers can use toward that end. The goal of all types of research designs
is to help us evaluate how well a theory fares as it makes its way over the
four causal hurdles — that is, to answer as conclusively as is possible the
question about whether X causes Y. In the next two sections we focus on the
two strategies that political scientists use most commonly and effectively:
experiments and observational studies.

EXPERIMENTAL RESEARCH DESIGNS

Suppose that you were a candidate for political office locked in what seems
to be a tight race. Your campaign budget has money for the end of the
campaign, and you’re deciding whether or not to make some television ad
buys for a spot that sharply contrast your record with your opponent’s —
what some will surely call a negative, attack ad. The campaign manager
has had a public relations firm craft the spot, and has shown it to you in

I Throughout this book, we will use the term “experiment” in the same way that researchers
in medical science use the term “randomized control trial.”
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your strategy meetings. You like it, but you look to your staff and ask the
bottom-line question: “Will the ad work with the voters?” In effect, you
have two choices: run the attack ad, or do nothing.

We hope that you’re becoming accustomed to spotting the causal ques-
tions embedded in this scenario: Exposure to a candidate’s negative ad (X)
may, or may not, affect a voter’s likelihood of voting for that candidate (Y).
And it is important to add here that the causal claim has a particular direc-
tional component to it; that is, exposure to the advertisement will increase
the chances that a voter will choose that candidate.

How might researchers in the social sciences evaluate such a causal
claim? Those of you who are campaign junkies are probably thinking that
your campaign would run a focus group to see how some voters react to
the ad. And that’s not a bad idea. Let’s informally define a focus group as a
group of subjects selected to expose to some idea (like a new kitchen knife
or a candidate’s TV ad), and to try to gather the subjects’ responses to the
idea. There’s a problem with the focus group, though, particularly in the
case at hand of the candidate’s TV ad: What would the subjects have said
about the candidate had they not been exposed to the ad? There’s nothing
to use as a basis for comparison.

It is very important, and not at all surprising, to realize that voters
may vote either for or against you for a variety of reasons (Z’s) that have
nothing to do with exposure to the advertisements — varying socio-economic
statuses, varying ideologies, and party identifications can all cause voters to
favor one candidate over another. So how can we establish whether, among
these other influences (Z), the advertisement (X) also causes voters to be
more likely to vote for you (Y)?

Can we do better than the focus group? What would a more scientific
approach look like? As the introduction to this chapter highlights, we will
need a comparison of some kind, and we will want that comparison to iso-
late any potentially different effects that the ad has on a person’s likelihood
of voting for you.

The standard approach to a situation like this in the physical and med-
ical sciences is that we would need to conduct an experiment. Because the
word “experiment” has such common usage, its scientific meaning is fre-
quently misunderstood. An experiment is zot simply any kind of analysis
that is quantitative in nature; neither is it exclusively the domain of labo-
ratories and white-coated scientists with pocket protectors. We define an

2 There is a substantial literature in political science about the effects that negative adver-
tisements have on both voter turnout and vote choice. For contrasting views on the effects
of negative ads, see Ansolabehere and Iyengar ( ), Wattenberg and Brian ( ), and
Geer ( ).
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experiment as follows: An experiment is a research design in which the
researcher both controls and randomly assigns values of the independent
variable to the participants.

Notice the twin components of the definition of the experiment: that
the researcher both controls values of the independent variable — or X, as we
have called it — as well as randomly assigns those values to the participants
in the experiment. Together, these two features form a complete definition
of an experiment, which means that there are no other essential features of
an experiment beside these two.

What does it mean to say that a researcher “controls” the value of the
independent variable that the participants receive? It means, most impor-
tantly, that the values of the independent variable that the participants
receive are not determined either by the participants themselves or by
nature. In our example of the campaign’s TV ad, this requirement means
that we cannot compare people who, by their own choice, already have
chosen to expose themselves to the TV ad (perhaps because they’re polit-
ical junkies and watch a lot of cable news programs, where such ads are
likely to air). It means that we, the researchers, have to decide which of our
experimental participants will see the ads and which ones will not.

But the definition of an experiment has one other essential compo-
nent as well: We, the researchers, must not only control the values of the
independent variable, but we must also assign those values to participants
randomly. In the context of our campaign ad example, this means that we
must toss coins, draw numbers out of a hat, use a random-number gen-
erator, or some other such mechanism to divide our participants into a
treatment group (who will see the negative ad) and a control group (who
will not see the ad, but will instead watch something innocuous, in a social
science parallel to a placebo).

What’s the big deal here? Why is randomly assigning subjects to treat-
ment groups important? What scientific benefits arise from the random
assignment of people to treatment groups? To see why this is so crucial,
recall that we have emphasized that all science is about comparisons and
also that every interesting phenomenon worth exploring — every interest-
ing dependent variable — is caused by many factors, not just one. Random
assignment to treatment groups ensures that the comparison we make
between the treatment group and the control group is as pure as possi-
ble and that some other cause (Z) of the dependent variable will not pollute
that comparison. By first taking a group of participants and then randomly
splitting them into two groups on the basis of a coin flip, what we have
ensured is that the participants will not be systematically different from one
another. Indeed, provided that the participant pool is reasonably large, ran-
domly assigning participants to treatment groups ensures that the groups,
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as a whole, are identical. If the two groups are identical, save for the coin
flip, then we can be certain that any differences we observe in the groups
must be because of the independent variable that we have assigned to them.

Return to our campaign advertising example. An experiment involving
our new ad would involve finding a group of people — however obtained —
and then randomly assigning them to view either our new ad or some-
thing that is not related to the campaign (like a cartoon or a public service
announcement). We fully realize that there are other causes of people’s
voting behaviors and that our experiment does not negate those factors.
In fact, our experiment will have nothing whatsoever to say about those
other causes. What it will do, and do well, is to determine whether our
advertisement had a positive or negative effect, or none at all, on voter
preferences.

Contrast the comparison that results from an experiment with a com-
parison that arises from a non-experiment. (We’ll discuss non-experimental
designs in the next section.) Suppose that we don’t do an experiment and
just run the ad, and then spend our campaign money conducting a survey
asking people if they’ve seen our ad, and for whom they plan to vote. Let’s
even assume that, in conducting our survey, we obtain a random sample
of citizens in the district where the election will take place. If we analyze
the results of the survey and discover that, as hoped, the people who say
that they have seen our ad are more likely to vote for us than people who
say they have not seen our ad, does that mean that the ad caused — see
that word again? — people’s opinions to shift in our favor? No. Why not?
Because people who saw our ad and people who did not see our ad might be
systematically different from one another. What does that mean? It means
that people who voluntarily watch a lot of politics on TV are (of course)
more interested in politics than those who watch the rest of what appears on
TV. In this case, a person’s level of interest in politics could be an important
Z variable. Interest in politics could very well be associated with a person’s
likelihood to vote for you. What this means is that the simple comparison in
a non-experiment between those who do and do not see the ad is potentially
misleading because it is confounded by other factors like interest in politics.
So is the higher support for you the result of the advertisement, or is it the
result of the fact that people likely to see the ad in the first place are people
with higher interest in politics? Because this particular non-experimental
research design does not answer that question, it does not clear our fourth
causal hurdle. It is impossible to know whether it was the ad that caused
the voters to support you. In this non-experimental design just described,
because there are other factors that influence support for a candidate —
and, critically, because these factors are also related to whether or not peo-
ple will see the advertisement — it is very difficult to say conclusively that
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Figure 4.1. The possibly confounding effects of political interest in the advertisement
viewing—vote intention relationship.

the independent variable (ad exposure) causes the dependent variable (vote
intention). Figure 4.1 shows this graphically.

Here is where experiments differ so drastically from any other kind
of research design. What experimental research designs accomplish by way
of random assignment to treatment groups, then, is to decontaminate the
comparison between the treatment and control group of all other influences.
Before any stimulus (like a treatment or placebo) is administered, all of the
participants are in the same pool. Researchers divide them by using some
random factor like a coin flip, and that difference is the only difference
between the two groups.

Think of it another way. The way that the confounding variables in
Figure 4.1 are correlated with the independent variable is highly improbable
in an experiment. Why? Because if X is determined by randomness, like
a coin flip, then (by the very definition of randomness) it is exceedingly
unlikely to be correlated with anything (including confounding variables Z).
When researchers control and assign values of X randomly, the comparison
between the different groups will not be affected by the fact that other
factors certainly do cause Y, the dependent variable. In an experiment,
then, because X is only caused by randomness, it means that we can erase
the connection between Z and X in Figure 4. 1. And, recalling our definition
of a confounding variable, if Z is not correlated with X, it cannot confound
the relationship between X and Y.

Connect this back to our discussion from Chapter 3 about how
researchers attempt to cross four hurdles in their efforts to establish whether
some X causes Y. As we will see, experiments are not the only method
that help researchers cross the four causal hurdles, but they are uniquely
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capable in accomplishing important parts of that task. Consider each hurdle
in turn. First, we should evaluate whether there is a credible causal mech-
anism before we decide to run the experiment. It is worth noting that the
crossing of this causal hurdle is neither easier nor harder in experiments
than in non-experiments. Coming up with a credible causal scenario that
links X to Y heightens our dependence on theory, not on data or research
design.

Second, in an experiment, it is impossible for Y to cause X — the second
causal hurdle - for two reasons. First, assigning X occurs in time before Y is
measured, which makes it impossible for Y to cause X. More importantly,
though, as previously noted, if X is generated by randomness alone, then
nothing (including Y) can cause it. So, in Figure 4.1, we could eliminate any
possible reverse-causal arrow flowing from Y to X.

Establishing, third, whether X and Y are correlated is similarly easy
regardless of chosen research design, experimental or non-experimental (as
we will see in Chapter 7). What about our fourth causal hurdle? Have we
controlled for all confounding variables Z that might make the association
between X and Y spurious? Experiments are uniquely well equipped to
help us answer this question definitively. An experiment does not, in any
way, eliminate the possibility that a variety of other variables (that we call
Z) might also affect Y (as well as X). What the experiment does, through
the process of randomly assigning subjects to different values of X, is to
equate the treatment and control groups on all possible factors. On every
possible variable, whether or not it is related to X, or to Y, or to both, or
to neither, the treatment and control groups should, in theory, be identical.
That makes the comparison between the two values of X unpolluted by any
possible Z variables because we expect the groups to be equivalent on all
values of Z.

Remarkably, the experimental ability to control for the effects of out-
side variables (Z) applies to all possible confounding variables, regardless
of whether we, the researchers, are aware of them. Let’s make the exam-
ple downright preposterous. Let’s say that, 20 years from now, another
team of scientists discovers that having attached (as opposed to detached)
earlobes causes people to have different voting behaviors. Does that possi-
bility threaten the inference that we draw from our experiment about our
campaign ad? No, not at all. Why not? Because, whether or not we are
aware of it, the random assignment of participants to treatment groups
means that, whether we are paying attention to it or not, we would expect
our treatment and control groups to have equal numbers of people with
attached earlobes, and for both groups to have equal numbers of people with
detached earlobes. The key element of an experimental research design —
randomly assigning subjects to different values of X, the independent
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variable — controls for every Z in the universe, whether or not we are aware
of that Z.

In summary, if we think back to the causal hurdles scorecard from the
previous chapter, all properly set-up experiments start out with a scorecard
reading [? y ? y]. The ability of experimental designs to cleanly and defini-
tively answer “yes” to the fourth hurdle question — Have we controlled for
all confounding variables Z that might make the association between X
and Y spurious? — is a massive advantage.’ All that remains for establish-
ing a causal relationship is the answers to clear the first hurdle — Is there
a credible causal mechanism that connects X to Y? — and hurdle three — Is
there covariation between X and Y? The difficulty of clearing hurdle one is
unchanged, but the third hurdle is much easier because we need only to make
a statistical evaluation of the relationship between X and Y. As we will see
in Chapter 7, such evaluations are pretty straightforward, especially when
compared to statistical tests that involve controlling for other variables (Z).

Together, all of this means that experiments bring with them a partic-
ularly strong confidence in the causal inferences drawn from the analysis.
In scientific parlance, this is called internal validity. If a research design
produces high levels of confidence in the conclusions about causality, it is
said to have high internal validity. Conversely, research designs that do not
allow for particularly definitive conclusions about whether X causes Y are
said to have low degrees of internal validity.

“Random Assignment” versus ‘“Random Sampling”

It is critical that you do not confuse the experimental process of randomly
assigning subjects to treatment groups, on the one hand, with the process
of randomly sampling subjects for participation, on the other hand. They
are entirely different, and in fact have nothing more in common than that
six-letter word “random.” They are, however, quite often confused for one
another. Random assignment to treatment and control groups occurs when
the participants for an experiment are assigned randomly to one of several
possible values of X, the independent variable. Importantly, this definition
says nothing at all about how the subjects were selected for participation.
But random sampling is, at its very heart, about how researchers select
cases for inclusion in a study — they are selected at random, which means
that every member of the underlying population has an equal probability
of being selected. (This is common in survey research, for example.)

3 After all, even the best designed and executed non-experimental designs must remain open
to the possibility that, somewhere out there, there is a Z variable that has not yet been
considered and controlled for.
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Mixing up these two critical concepts will produce a good bit of con-
fusion. In particular, confusing random sampling with random assignment
to treatment groups will mean that the distinction between experiments
and non-experiments has been lost, and this difference is among the more
important ones in all of science. To understand how science works, keep
these two very important concepts separate from one another.

Varieties of Experiments and Near-Experiments

Not all experiments take place in a laboratory with scientists wearing white
lab coats. Some experiments in the social sciences are conducted by surveys
that do use random samples (see above). Since 1990 or so, there has been a
growing movement in the field of survey research — which has traditionally
used random samples of the population — to use computers in the inter-
viewing process that includes experimental randomization of variations in
survey questions, in a technique called a survey experiment. Such designs
are intended to reap the benefits of both random assignment to treatment
groups, and hence have high internal validity, as well as the benefits of a
random sample, and hence have high external validity.” Survey experiments
may be conducted over the phone or, increasingly, over the internet.

Another setting for an experiment is out in the natural world. A field
experiment is one that occurs in the natural setting where the subjects nor-
mally lead their lives. Random assignment to treatment groups has enabled
researchers in the social sciences to study subjects that seemed beyond the
reach of experimentation. Economists have long sought conclusive evidence
about the effectiveness (or the lack thereof) of economic development poli-
cies. For example, do government fertilizer subsidies (X) affect agricultural
output (Y)? Duflo, Kremer, and Robinson ( ) report the results of
an experiment in a region in Western Kenya in which a subsidy of free
delivery of fertilizer was offered only to randomly chosen farmers, but not
to others.

Field experiments can also take place in public policy settings,
sometimes with understandable controversy. Does the police officer’s deci-
sion whether or not to arrest the male at a domestic violence call (X)
affect the incidence of repeat violence at the same address in the subse-
quent months (Y)? Sherman and Berk ( ) conducted a field experiment
in Minneapolis, randomizing whether or not the male in the household
would automatically (or not) be arrested when police arrived at the house.

On occasion, situations in nature that are not properly defined as exper-
iments — because the values of X have not been controlled and assigned

4 See Piazza, Sniderman, and Tetlock ( ) and Sniderman and Piazza ( ).
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by the researcher — nevertheless resemble experiments in key ways. In a
natural experiment — which, we emphasize, does not meet our definition of
an experiment — values of the independent variable arise naturally in such
a way as to make it seem as if true random assignment by a researcher has
occurred. For example, does the size of an ethnic group within a population
(X) affect inter-group conflict or cooperation (Y)? Posner ( ) investi-
gates why the Chewa and Tumbuka peoples are allies in Zambia but are
adversaries in Malawi. Because the sizes of the groups in the different coun-
tries seem to have arisen randomly, the comparison is treated as if the sizes
of the respective populations were assigned randomly by the researcher,
when (of course) they were not.

Are There Drawbacks to Experimental Research Designs?

Experiments, as we have seen, have a unique ability to get social scientists
across our hurdles needed to establish whether X causes Y. But that does
not mean they are without disadvantages. Many of these disadvantages are
related to the differences between medical and physical sciences, on the one
hand, and the social sciences, on the other. We now discuss four drawbacks
to experimentation.

First, especially in the social sciences, not every independent variable
(X) is controllable and subject to experimental manipulation. Suppose, for
example, that we wish to study the effects of gender on political partic-
ipation. Do men contribute more money, vote more, volunteer more in
campaigns, than women? There are a variety of non-experimental ways to
study this relationship, but it is impossible to experimentally manipulate
a subject’s gender. Recall that the definition of an experiment is that the
researcher both controls and randomly assigns the values of the indepen-
dent variable. In this case, the presumed cause (the independent variable) is
a person’s gender. Compared with drugs versus placebos, assigning a par-
ticipant’s gender is another matter entirely. It is, to put it mildly, impossible.
People show up at an experiment either male or female, and it is not within
the experimenter’s power to “randomly assign” a participant to be male or
female.

This is true in many, many political science examples. There are sim-
ply a myriad of substantive problems that are impossible to study in an
experimental fashion. How does a person’s partisanship (X) affect his issue
opinions (Y)? How does a person’s income level (X) affect her campaign
contributions (Y)? How does a country’s level of democratization (X) affect
its openness to international trade (Y)? How does the level of military spend-
ing in India (X) affect the level of military spending in Pakistan (Y) — and,
for that matter, vice versa? How does media coverage (X) in an election
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campaign influence voters’ priorities (Y)? Does serving in the UK parliament
(X) make members of parliament wealthy (Y)? In each of these examples
that intrigues social scientists, the independent variable is simply not subject
to experimental manipulation. Social scientists cannot, in any meaning-
ful sense, “assign” people a party identification or an income, “assign” a
country a level of democratization or level of military spending, “assign”
a campaign-specific, long-term amount of media coverage, or “assign” dif-
ferent candidates to win seats in parliament. These variables simply exist
in nature, and we cannot control exposure to them and randomly assign
different values to different cases (that is, individual people or countries).
And vyet, social scientists feel compelled to study these phenomena, which
means that, in those circumstances, we must turn to a non-experimental
research design.

A second potential disadvantage of experimental research designs is
that experiments often suffer from low degrees of external validity. We
have noted that the key strength of experiments is that they typically have
high levels of internal validity. That is, we can be quite confident that the
conclusions about causality reached in the analysis are not confounded by
other variables. External validity, in a sense, is the other side of the coin,
as it represents the degree to which we can be confident that the results of
our analysis apply not only to the participants in the study, but also to the
population more broadly construed.

There are actually two types of concerns with respect to external valid-
ity. The first is the external validity of the sample itself. Recall that there
is nothing whatsoever in our definition of an experiment that describes
how researchers recruit or select people to participate in the experiment.
To reiterate: It is absolutely not the case that experiments require a random
sample of the target population. Indeed, it is extremely rare for experiments
to draw a random sample from a population. In drug-trial experiments, for
example, it is common to place advertisements in newspapers or on the
radio to invite participation, usually involving some form of compensation
to the participants. Clearly, people who see and respond to advertisements
like this are not a random sample of the population of interest, which is
typically thought of as all potential recipients of the drug. Similarly, when
professors “recruit” people from their (or their colleagues’) classes, the par-
ticipants are not a random sample of any population.” The participant pool

5 Think about that for a moment. Experiments in undergraduate psychology or political
science classes are not a random sample of 18- to 22-year-olds, or even a random sample
of undergraduate students, or even a random sample of students from your college or
university. Your psychology class is populated with people more interested in the social
sciences than in the physical sciences or engineering or the humanities.
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in this case represents what we would call a sample of convenience, which is
to say, this is more or less the group of people we could beg, coerce, entice,
or cajole to participate.

With a sample of convenience, it is simply unclear how, if at all, the
results of the experiment generalize to a broader population. As we will
learn in Chapter 6, this is a critical issue in the social sciences. Because
most experiments make use of such samples of convenience, with any sin-
gle experiment, it is difficult to know whether the results of that analysis
are in any way typical of what we would find in a different sample. With
experimental designs, then, scientists learn about how their results apply to a
broader population through the process of replication, in which researchers
implement the same procedures repeatedly in identical form to see if the
relationships hold in a consistent fashion.

There is a second external validity concern with experiments that is
more subtle, but perhaps just as important. It concerns the external valid-
ity of the stimulus. To continue our example of whether the campaign ad
affects voter intentions, if we were to run an experiment to address this
question, what would we do? First, we would need to obtain a sample
of volunteer subjects somehow. (Remember, they need not be a random
sample.) Second, we would divide them, on a random basis, into experi-
mental and control groups. We would then sit them in a lab in front of
computers, and show the ad to the experimental group, and show some-
thing innocuous to the control group. Then we would ask the subjects
from both groups their vote intentions, and make a comparison between
our groups. Just as we might have concerns about how externally valid
our sample is, because they may not be representative of the underlying
population, we should also be concerned about how externally valid our
stimulus is. What do we mean here? The stimulus is the X variable. In
this case, it is the act of sitting the experimental and control subjects down
and having them watch (different) video messages on the computer screens.
How similar is that stimulus to one that a person experiences in his or
her home — that is, in their more natural environment? In some respects it
is quite different. In our hypothetical experiment, the individual does not
choose what he or she sees. The exposure to the ad is forced (once the
subject consents to participate in the experiment). At home? People who
don’t want to be exposed to political ads can avoid them rather easily if
they so choose, simply by not watching particular channels or programs,
or by not watching TV at all, or by flipping the channel when a political
ad starts up. But the comparison in our hypothetical experiment is entirely
insensitive to this key difference between the experimental environment
and the subject’s more natural environment. To the extent that an exper-
iment creates an entirely artificial environment, we might be concerned
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that the results of that experiment will be found in a more real-world
context.

Experimental research designs, at times, can be plagued with a third
disadvantage, namely that they carry special ethical dilemmas for the
researcher. Ethical issues about the treatment of human participants occur
frequently with medical experiments, of course. If we wished to study
experimentally the effects of different types of cancer treatments on sur-
vival rates, this would require obtaining a sample of patients with cancer
and then randomly assigning the patients to differing treatment regimens.
This is typically not considered acceptable medical practice. In such high-
stakes medical situations, most individuals value making these decisions
themselves, in consultation with their doctor, and would not relinquish the
important decisions about their treatment to a random-number generator.

Ethical situations arise less frequently, and typically less dramatically,
in social science experimentation, but they do arise on occasion. Dur-
ing the behavioral revolution in psychology in the 1960s, several famous
experiments conducted at universities produced vigorous ethical debates.
Psychologist Stanley Milgram (1974) conducted experiments on how easily
he could make individuals obey an authority figure. In this case, the depen-
dent variable was the willingness of the participant to administer what he
or she believed to be a shock to another participant, who was in fact an
employee of Milgram’s. (The ruse was that Milgram told the participant that
he was testing how negative reinforcement — electric shocks — affected the
“learning” of the “student.”) The independent variable was the degree to
which Milgram conveyed his status as an authority figure. In other words,
the X that Milgram manipulated was the degree to which he presented
himself as an authority who must be obeyed. For some participants, Mil-
gram wore a white lab coat and informed them that he was a professor at
Yale University. For others, he dressed more casually and never mentioned
his institutional affiliation. The dependent variable, then, was how strong
the (fake) shocks would be before the subject simply refused to go on. At
the highest extreme, the instrument that delivered the “shock” said “450
volts, XXX.” The results of the experiment were fascinating because, to
his surprise, Milgram found that the great majority of his participants were
willing to administer even these extreme shocks to the “learners.” But sci-
entific review boards consider such experiments unethical today, because

6 For a discussion of the external validity of experiments embedded in national surveys, see
Barabas and Jerit ( ). For a substantive application where the issues of external validity
of the stimulus are pivotal in determining the results of the experiment, see Arceneaux and
Johnson ( ). See also Morton and Williams ( , p- 264), who refer to this problem
as one of “ecological validity.”
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the experiment created a great degree of emotional distress among the true
participants.

A fourth potential drawback of experimental research designs is that,
when interpreting the results of an experiment, we sometimes make mis-
takes of emphasis. If an experiment produces a finding that some X does
indeed cause Y, that does not mean that that particular X is the most promi-
nent cause of Y. As we have emphasized repeatedly, a variety of independent
variables are causally related to every interesting dependent variable in the
social sciences. Experimental research designs often do not help to sort out
which causes of the dependent variable have the largest effects and which
ones have smaller effects.

OBSERVATIONAL STUDIES (IN TWO FLAVORS)

Taken together, the drawbacks of experiments mean that, for any given
political science research situation, implementing an experiment often
proves to be unworkable, and sometimes downright impossible. As a result,
experimentation is not the most common research design used by political
scientists. In some subfields, such as political psychology — which, as the
name implies, studies the cognitive and emotional underpinnings of politi-
cal decision making — experimentation is quite common. And it is becoming
more common in the study of public opinion and electoral competition. But
the experiment, for many researchers and for varying reasons, remains a tool
that is not applicable to many of the phenomena that we seek to study.
Does this mean that researchers have to shrug their shoulders and aban-
don their search for causal connections before they even begin? Not at
all. But what options do scholars have when they cannot control expo-
sure to different values of the independent variables? In such cases, the
only choice is to take the world as it already exists and make the com-
parison between either individual units — like people, political parties, or
countries — or between an aggregate quantity that varies over time. These
represent two variants of what is most commonly called an observational
study. Observational studies are not experiments, but they seek to emu-
late them. They are known as observational studies because, unlike the
controlled and somewhat artificial nature of most experiments, in these
research designs, researchers simply take reality as it is and “observe” it,
attempting to sort out causal connections without the benefit of randomly
assigning participants to treatment groups. Instead, different values of the
independent variable already exist in the world, and what scientists do is
observe them and then evaluate their theoretical claims by putting them
through the same four causal hurdles to discover whether X causes Y.
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This leads to the definition of an observational study: An observational
study is a research design in which the researcher does not have control
over values of the independent variable, which occur naturally. However,
it is necessary that there be some degree of variability in the independent
variable across cases, as well as variation in the dependent variable.

Because there is no random assignment to treatment groups, as in
experiments, some scholars claim that it is impossible to speak of causality
in observational studies, and therefore sometimes refer to them as correla-
tional studies. Along with most political scientists, we do not share this view.
Certainly experiments produce higher degrees of confidence about causal
matters than do observational studies. However, in observational studies, if
sufficient attention is paid to accounting for all of the other possible causes
of the dependent variable that are suggested by current understanding, then
we can make informed evaluations of our confidence that the independent
variable does cause the dependent variable.

Observational studies, as this discussion implies, face exactly the same
four causal hurdles as do experiments. (Recall that those hurdles are present
in any research design.) So how, in observational studies, do we cross these
hurdles? The first causal hurdle - Is there a credible mechanism connecting
X and Y? - is identical in experimental and observational studies.

In an observational study, however, crossing the second causal hur-
dle — Can we eliminate the possibility that Y causes X? — can sometimes
be problematic. For example, do countries with higher levels of economic
development (X) have, as a consequence, more stable democratic regimes
(Y)? Crossing the second causal hurdle, in this case, is a rather dicey mat-
ter. It is clearly plausible that having a stable democratic government makes
economic prosperity more likely, which is the reverse-causal scenario. After
all, investors are probably more comfortable taking risks with their money
in democratic regimes than in autocratic ones. Those risks, in turn, likely
produce greater degrees of economic prosperity. It is possible, of course,
that X and Y are mutually reinforcing — that is, X causes Y and Y causes X.

The third hurdle — Is there covariation between X and Y? —is, as we
mentioned, no more difficult for an observational study than for an exper-
iment. (The techniques for examining relationships between two variables
are straightforward, and you will learn them in Chapters 7 and 8.) But,
unlike in an experimental setting, if we fail to find covariation between X
and Y in an observational setting, we should still proceed to the fourth hur-
dle because the possibility remains that we will find covariation between
and X and Y once we control for some variable Z.

The most pointed comparison between experiments and observational
studies, though, occurs with respect to the fourth causal hurdle. The
near-magic that happens in experiments because of random assignment to
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treatment groups — which enables researchers to know that no other factors
interfere in the relationship between X and Y — is not present in an observa-
tional study. So, in an observational study, the comparison between groups
with different values of the independent variable may very well be polluted
by other factors, interfering with our ability to make conclusive statements
about whether X causes Y.

Within observational studies, there are two pure types — cross-sectional
observational studies, which focus on variation across spatial units at a sin-
gle time unit, and time-series observational studies, which focus on variation
within a single spatial unit over multiple time units. There are, in addition,
hybrid designs, but for the sake of simplicity we will focus on the pure
types.” Before we get into the two types of observational studies, we need
to provide a brief introduction to observational data.

Datum, Data, Data Set

The word “data” is one of the most grammatically misused words in the
English language. Why? Because most people use this word as though it
were a singular word when it is, in fact, plural. Any time you read “the data
is,” you have found a grammatical error. Instead, when describing data, the
phrasing should be “the data are.” Get used to it: You are now one of the
foot soldiers in the crusade to get people to use this word appropriately. It
will be a long and uphill battle.

The singular form of the word data is “datum.” Together, a collection
of datum produces data or a “data set.” We define observational data sets
by the variables that they contain and the spatial and time units over which
they are measured. Political scientists use data measured on a variety of
different spatial units. For instance, in survey research, the spatial unit is the
individual survey respondent. In comparative U.S. state government studies,
the spatial unit is the U.S. state. In international relations, the spatial unit is
often the nation. Commonly studied time units are months, quarters, and
years. It is also common to refer to the spatial and time units that define
data sets as the data set dimensions.

Two of the most common types of data sets correspond directly to the
two types of observational studies that we just introduced. For instance,
Table presents a cross-sectional data set in which the time unit is the
year 1972 and the spatial unit is nations. These data could be used to test
the theory that unemployment percentage (X) — government debt as a
percentage of gross national product (Y).

7 The classic statements of observational studies appeared in 1963 in Donald Campbell and
Julian Stanley’s seminal work Experimental and Quasi-experimental Designs for Research.
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Table 4.1. Example of cross-sectional data

Government debt as
Nation a percentage of GNP Unemployment rate
Finland 6.6 2.6
Denmark 5.7 1.6
United States 27.5 5.6
Spain 13.9 3.2
Sweden 15.9 2.7
Belgium 45.0 2.4
Japan 11.2 1.4
New Zealand 44.6 0.5
Ireland 63.8 5.9
Italy 42.5 4.7
Portugal 6.6 2.1
Norway 28.1 1.7
Netherlands 23.6 2.1
Germany 6.7 0.9
Canada 26.9 6.3
Greece 18.4 2.1
France 8.7 2.8
Switzerland 8.2 0.0
United Kingdom 53.6 3.1
Australia 23.8 2.6

Time-series observational studies contain measures of X and Y across
time for a single spatial unit. For instance, Table 4.2 displays a time-series
data set in which the spatial unit is the United States and the time unit is
months. We could use these data to test the theory that inflation (X) —
presidential approval (Y). In a data set, researchers analyze only those data
that contain measured values for both the independent variable (X) and the
dependent variable (Y) to determine whether the third causal hurdle has
been cleared.

Cross-Sectional Observational Studies

As the name implies, a cross-sectional observational study examines a cross
section of social reality, focusing on variation between individual spatial
units — again, like citizens, elected officials, voting districts, or countries —
and explaining the variation in the dependent variable across them.

For example, what, if anything, is the connection between the prefer-
ences of the voters from a district (X) and a representative’s voting behavior
(Y)? In a cross-sectional observational study, the strategy that a researcher
would pursue in answering this question involves comparing the aggregated
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Table 4.2. Example of time-series data

Month Presidential approval Inflation
2002.01 83.7 1.14
2002.02 82.0 1.14
2002.03 79.8 1.48
2002.04 76.2 1.64
2002.05 76.3 1.18
2002.06 73.4 1.07
2002.07 71.6 1.46
2002.08 66.5 1.80
2002.09 67.2 1.51
2002.10 65.3 2.03
2002.11 65.5 2.20
2002.12 62.8 2.38

preferences of voters from a variety of districts (X) with the voting records
of the representatives (Y). Such an analysis, of course, would have to be
observational, instead of experimental, because this particular X is not
subject to experimental manipulation. Such an analysis might take place
within the confines of a single legislative session, for a variety of practical
purposes (such as the absence of turnover in seats, which is an obviously
complicating factor).

Bear in mind, of course, that observational studies have to cross the
same four casual hurdles as do experiments. And we have noted that, unlike
experiments, with their random assignment to treatment groups, observa-
tional studies will often get stuck on our fourth hurdle. That might indeed
be the case here. Assuming the other three hurdles can be cleared, consider
the possibility that there are confounding variables that cause Y and are
also correlated with X, which make the X-Y connection spurious. (Can
you think of any such factors?) How do cross-sectional observational stud-
ies deal with this critical issue? The answer is that, in most cases, this can
be accomplished through a series of rather straightforward statistical con-
trols. In particular, beginning in Chapter 9, you will learn the most common
social science research tool for “controlling for” other possible causes of
Y, namely the multiple regression model. What you will learn there is that
multiple regression can allow researchers to see how, if at all, controlling
for another variable (like Z) affects the relationship between X and Y.

Time-Series Observational Studies

The other major variant of observational studies is the time-series observa-
tional study, which has, at its heart, a comparison over time within a single
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spatial unit. Unlike in the cross-sectional variety, which examines relation-
ships between variables across individual units typically at a single time
point, in the time-series observational study, political scientists typically
examine the variation within one spatial unit over time.

For example, how, if at all, do changes in media coverage about the
economy (X) affect public concern about the economy (Y)?” To be a bit
more specific, when the media spend more time talking about the potential
problem of inflation, does the public show more concern about inflation,
and when the media spend less time on the subject of inflation, does public
concern about inflation wane? We can measure these variables in aggregate
terms that vary over time. For example, how many stories about inflation
make it onto the nightly news in a given month? It is almost certain that
that quantity will not be the same each and every month. And how much
concern does the public show (through opinion polls, for example) about
inflation in a given month? Again, the percentage of people who identify
inflation as a pressing problem will almost certainly vary from month to
month.

Of course, as with its cross-sectional cousin, the time-series observa-
tional study will require us to focus hard on that fourth causal hurdle. Have
we controlled for all confounding variables (Z) that are related to the vary-
ing volume of news coverage about inflation (X) and public concern about
inflation (Y)? (The third exercise at the end of this chapter will ask for your
thoughts on this subject.) If we can identify any other possible causes of
why the public is sometimes more concerned about inflation, and why they
are sometimes less concerned about it, then we will need to control for those
factors in our analysis.

The Major Difficulty with Observational Studies

We noted that experimental research designs carry some drawbacks with
them. So, too, do observational studies. Here, we focus only on one, but
it is a big one. As the preceding examples demonstrate, when we need to
control for the other possible causes of Y to cross the fourth causal hurdle,
we need to control for all of them, not just one.'” But how do we know
whether we have controlled for all of the other possible causes of Y? In
many cases, we don’t know that for certain. We need to try, of course, to
control statistically for all other possible causes that we can, which involves

8 The spatial units analyzed in time-series observational studies are usually aggregated.
9 See Iyengar and Kinder ( ).
10 As we will see in Chapter 9, technically we need to control only for the factors that might
affect Y and are also related to X. In practice, though, that is a very difficult distinction to
make.
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carefully considering the previous research on the subject and gathering as
much data on those other causes as is possible. But in many cases, we will
simply be unable to do this perfectly.

What all of this means, in our view, is that observational analysis must
be a bit more tentative in its pronouncements about causality. Indeed, if we
have done the very best we can to control for as many causes of Y, then the
most sensible conclusion we can reach, in many cases, is that X causes Y. But
in practice, our conclusions are rarely definitive, and subsequent research
can modify them. That can be frustrating, we know, for students to come
to grips with — and it can be frustrating for researchers, too. But the fact
that conclusive answers are difficult to come by should only make us work
harder to identify other causes of Y. An important part of being a scientist
is that we very rarely can make definitive conclusions about causality; we
must remain open to the possibility that some previously unconsidered (Z)
variable will surface and render our previously found relationships to be
spurious.

SUMMARY

For almost every phenomenon of interest to political scientists, there is
more than one form of research design that they could implement to address
questions of causal relationships. Before starting a project, researchers need
to decide whether to use experimental or observational methods; and if
they opt for the latter, as is common, they have to decide what type of
observational study to use. And sometimes researchers choose more than
one type of design.

Different research designs help shed light on different questions. Focus,
for the moment, on a simple matter like the public’s preferences for a more
liberal or conservative government policy. Cross-sectional and time-series
approaches are both useful in this respect. They simply address different
types of substantive questions. Cross-sectional approaches look to see why
some individuals prefer more liberal government policies, and why some
other individuals prefer more conservative government policies. That is a
perfectly worthwhile undertaking for a political scientist: What causes some
people to be liberals and others to be conservatives? But consider the time-
series approach, which focuses on why the public as an aggregated whole
prefers a more liberal or a more conservative government at different points
in time. That is simply a different question. Neither approach is inherently
better or worse than the other, but they both shed light on different aspects
of social reality. Which design researchers should choose depends on what
type of question they intend to ask and answer.
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CONCEPTS INTRODUCED IN THIS CHAPTER

* aggregate — a quantity that is created by combining the values of many
individual cases.

* control group —in an experiment, the subset of cases that is not exposed
to the main causal stimulus under investigation.

* correlational studies — synonymous with “observational study.”

» cross-sectional observational studies — a research design that focuses
on variation across spatial units at a single time unit.

* data set — synonym for “data.” A collection of variable values for at
least two observations.

* data set dimensions — the spatial and time units that define a data set.

* datum - the singular form of the word data.

» experiments — research designs in which the researcher both con-
trols and randomly assigns values of the independent variable to the
participants.

* external validity — the degree to which we can be confident that the
results of our analysis apply not only to the participants and circum-
stances in the study, but also to the population more broadly construed.

* field experiment — an experimental study that occurs in the natural
setting where the subjects normally lead their lives.

* internal validity — the degree to which a study produces high lev-
els of confidence about whether the independent variable causes the
dependent variable.

* natural experiment — situations in nature that are not properly defined
as experiments but the values of the independent variable arise natu-
rally in such a way as to make it seem as if true random assignment by
a researcher has occurred.

* observational studies — research designs in which the researcher does
not have control over values of the independent variable, which occur
naturally; it is necessary that there be some degree of variability in the
independent variable across cases, as well as variation in the dependent
variable.

* placebo —in an experiment, an innocuous stimulus given to the control
group.

» population — the entire set of cases to which our theory applies.

* random assignment — when the participants for an experiment are
assigned randomly to one of several possible values of X, the inde-
pendent variable.

* random sampling — a method for selecting individual cases for a study
in which every member of the underlying population has an equal
probability of being selected.
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* replication — a scientific process in which researchers implement the
same procedures repeatedly in identical form to see if the relationships
hold in a consistent fashion.

* research designs — the strategies that a researcher employs to make
comparisons with the goal of evaluating causal claims.

* sample of convenience — a sample of cases from the underlying
population in which the mechanism for selecting cases is not random.

* spatial units — the physical unit that forms the basis for observation.

* survey experiment — a survey research technique in which the inter-
viewing process includes experimental randomization in the survey
stimulus.

* time units — the time-based unit that forms the basis for observation.

* time-series observational studies — a research design that focuses on
variation within a single spatial unit over multiple time units.

* treatment group — in an experiment, the subset of cases that is exposed
to the main causal stimulus under investigation.

EXERCISES

Consider the following proposed relationships between an independent and
a dependent variable. In each case, would it be realistic for a researcher to
perform an experiment to test the theory? If yes, briefly describe what would
be randomly assigned in the experiment; if not, briefly explain why not.

(a) An individual’s level of religiosity (X) and his or her preferences for
different political candidates (Y)

(b) Exposure to negative political news (X) and political apathy (Y)

(c) Military service (X) and attitudes toward foreign policy (Y)

(d) A speaker’s personal characteristics (X) and persuasiveness (Y)

Consider the relationship between education level (X) and voting turnout (Y).
How would the design of a cross-sectional observational study differ from that
of a time-series observational study?

In the section on time-series observational studies, we introduced the idea of
how varying levels of media coverage of inflation (X) might cause variation in
public concern about inflation (Y). Can you think of any relevant Z variables
that we will need to control for, statistically, in such an analysis, to be confident
that the relationship between X and Y is causal?

In the previous chapter (specifically, the section titled “Why Is Studying Causal-
ity So Important? Three Examples from Political Science”), we gave examples
of research problems. For each of these examples, identify the spatial unit(s)
and time unit(s). For each, say whether the study was an experiment, a
cross-sectional observational study, or a time-series observational study.
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Table 4.1 presents data for a test of a theory by use of a cross-sectional observa-
tional study. If this same theory were tested by use of a time-series observational
study, what would the data table look like?

Compare the two designs for testing the preceding theory. Across the two
forms of observational studies, what are the Z variables for which you want to
control?

Table 4.2 presents data for a test of a theory by use of a time-series observational
study. If this same theory were tested by use of a cross-sectional observational
study, what would the data table look like?

Compare the two designs for testing the preceding theory. Across the two
forms of observational studies, what are the Z variables for which you want to
control?

Use your library’s resources or Google Scholar ( ) to look
up the following articles and determine whether the research design used in
each is an experiment, a cross-sectional observational study, or a time-series
observational study. (Note: To access these articles, you might need to perform
the search from a location based on your campus.)

(a) Clarke, Harold D., William Mishler, and Paul Whiteley. 1990. “Recaptur-
ing the Falklands: Models of Conservative Popularity, 1979-83.” British
Journal of Political Science 20(1):63-81.

(b) Gibson, James L., Gregory A. Caldeira, and Vanessa A. Baird. 1998.
“On the Legitimacy of National High Courts.” American Political Science
Review 92(2):343-358.

(c) Druckman, James N. 2001. “The Implications of Framing Effects for
Citizen Competence.” Political Behavior 23(3).
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Measurement and Variations

Although what political scientists care about is discovering whether causal
relationships exist between concepts, what we actually examine is statis-
tical associations between variables. Therefore it is critical that we have a
clear understanding of the concepts that we care about so we can measure
them in a valid and reliable way. In this chapter we focus on two critical tasks
in the process of evaluating causal theories: measurement and descriptive
statistics. As we discuss the importance of measurement, we use several
examples from the political science literature, such as the concept of polit-
ical tolerance. We know that political tolerance and intolerance is a “real”
thing — that it exists to varying degrees in the hearts and minds of people.
But how do we go about measuring it? What are the implications of poor
measurement? Descriptive statistics and descriptive graphs, which repre-
sent the second focus of this chapter, are what they sound like — they are
tools that describe variables. These tools are valuable because they can
summarize a tremendous amount of information in a succinct fashion. In
this chapter we discuss some of the most commonly used descriptive statis-
tics and graphs, how we should interpret them, how we should use them,

and their limitations.

I know it when I see it.
— Associate Justice of the United States Supreme Court Potter Stewart,

in an attempt to define “obscenity” in a concurring opinion in

Jacobellis v. Ohio (1964)

These go to eleven.
— Nigel Tufnel (played by Christopher Guest), describing the volume
knob on his amplifier, in the movie This Is Spinal Tap
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GETTING TO KNOW YOUR DATA

We have emphasized the role of theory in political science. That is, we care
about causal relationships between concepts that interest us as political
scientists. At this point, you are hopefully starting to develop theories of
your own about politics. If these original theories are in line with the rules
of the road that we laid out in Chapter 1, they will be causal, general, and
parsimonious. They may even be elegant and clever.

But at this point, it is worth pausing and thinking about what a the-
ory really is and is not. To help us in this process, take a look back at
Figure 1.2. A theory, as we have said, is merely a conjecture about the
possible causal relationship between two or more concepts. As scientists,
we must always resist the temptation to view our theories as somehow
supported until we have evaluated evidence from the real world, and until
we have done everything we can with empirical evidence to evaluate how
well our theory clears the four causal hurdles we identified in Chapter
In other words, we cannot evaluate a theory until we have gone through
the rest of the process depicted in Figure 1.2. The first part of this chapter
deals with operationalization, or the movement of variables from the rather
abstract conceptual level to the very real measured level. We can conduct
hypothesis tests and make reasonable evaluations of our theories only after
we have gone carefully through this important process with all of our
variables.

If our theories are statements about relationships befween concepts,
when we look for evidence to test our theories, we are immediately con-
fronted with the reality that we do not actually observe those concepts.
Many of the concepts that we care about in political science, as we will
see shortly, are inherently elusive and downright impossible to observe
empirically in a direct way, and sometimes incredibly difficult to measure
quantitatively. For this reason, we need to think very carefully about the
data that we choose to evaluate our theories.

Until now, we have seen many examples of data, but we have not dis-
cussed the process of obtaining data and putting them to work. If we think
back to Figure 1.2, we are now at the stage where we want to move from
the theoretical-conceptual level to the empirical-measured level. For every
theoretical concept, there are multiple operationalization or measurement
strategies. As we discussed in the previous chapter, one of the first major
decisions that one needs to make is whether to conduct an experiment or
some form of observational test. In this chapter, we assume that you have
a theory and that you are going to conduct an observational test of your
theory.
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A useful exercise, once you have developed an original theory, is to
draw your version of Figure 1.2 and to think about what would be the ideal
setup for testing your theory. What would be the best setup, a cross-sectional
design or a time-series design? Once you have answered this question and
have your ideal time and spatial dimensions in hand, what would be the
ideal measure of your independent and dependent variables?

Having gone through the exercise of thinking about the ideal data, the
first instinct of most students is to collect their own data, perhaps even to
do so through a survey.' In our experience, beginning researchers almost
always underestimate the difficulties and the costs (in terms of both time
and money) of collecting one’s own data. We strongly recommend that you
look to see what data are already available for you to use.

For a political science researcher, one of the great things about the
era in which we live is that there is a nearly endless supply of data that
are available from web sites and other easily accessible resources.” But a
few words of caution: just because data are easily available on the web
does not mean that these data will be perfectly suitable to the particular
needs of your hypothesis test. What follows in the rest of this chapter is a
set of considerations that you should have in mind to help you determine
whether or not a particular set of data that you have found is appropriate
for your purposes and to help you to get to know your data once you have
loaded them into a statistical program. We begin with the all-important
topic of variable measurement. We describe the problems of measurement
and the importance of measuring the concepts in which we are interested
as precisely as possible. During this process, you will learn some thinking
skills for evaluating the measurement strategies of scholarship that you read,
as well as learn about evaluating the usefulness of measures that you are
considering using to test your hypotheses.

We begin the section on measurement in the social sciences generally.
We focus on examples from economics and psychology, two social sciences
that are at rather different levels of agreement about the measurement of
their major variables. In political science, we have a complete range of vari-
ables in terms of the levels of agreement about how they should be measured.
We discuss the core concepts of measurement and give some examples from
political science research. Throughout our discussion of these core concepts,
we focus on the measurements of variables that take on a numeric range of

L A survey is a particularly cumbersome choice because, at least at most universities, you
would need to have approval for conducting your survey from the Human Subjects Research
Committee.

2 One resource that is often overlooked is your school’s library. While libraries may seem old-
fashioned, your school’s library may have purchased access to data sources and librarians
are often experts in the location of data from the web.
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values we feel comfortable treating the way that we normally treat numeric
values. Toward the end of the chapter, when we discuss the basics of getting
to know your data with a software program, we will discuss this further and
focus on some variable types that can take different types of nonnumeric
values.

SOCIAL SCIENCE MEASUREMENT: THE VARYING
CHALLENGES OF QUANTIFYING HUMANITY

Measurement is a “problem” in all sciences — from the physical sciences
of physics and chemistry to the social sciences of economics, political sci-
ence, psychology, and the rest. But in the physical sciences, the problem of
measurement is often reduced to a problem of instrumentation, in which
scientists develop well-specified protocols for measuring, say, the amount
of gas released in a chemical reaction or the amount of light given off by
a star. The social sciences, by contrast, are younger sciences, and scientific
consensus on how to measure our important concepts is rare. Perhaps more
crucial, though, is the fact that the social sciences deal with an inherently
difficult-to-predict subject matter: human beings.

The problem of measurement exists in all of the social sciences. It would
be wrong, though, to say that it is equally problematic in all of the social sci-
ence disciplines. Some disciplines pay comparatively little heed to issues of
measurement, whereas others are mired nearly constantly in measurement
controversies and difficulties.

Consider the subject matter in much research in economics: dollars (or
euros, or yen, or what have you). If the concept of interest is “economic
output” (or “Gross Domestic Product”), which is commonly defined as
the total sum of goods and services produced by labor and property in a
given time period, then it is a relatively straightforward matter to obtain an
empirical observation that is consistent with the concept of interest.” Such
measures will not be controversial among the vast majority of scholars. To
the contrary, once economists agree on a measure of economic output, they
can move on to the next (and more interesting) step in the scientific process —
to argue about what forces cause greater or less growth in economic output.
(That’s where the agreement among economists ends.)

Not every concept in economics is measured with such ease, however.
Many economists are concerned with poverty: Why are some individuals
poor whereas others are not? What forces cause poverty to rise or fall over
time? Despite the fact that we all know that poverty is a very real thing,

3 For details about how the federal government measures GDP, see
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measuring who is poor and who is not poor turns out to be a bit tricky.
The federal government defines the concept of poverty as “a set of income
cutoffs adjusted for household size, the age of the head of the household,
and the number of children under age 18.”" The intent of the cutoffs is
to describe “minimally decent levels of consumption.”” There are difficul-
ties in obtaining empirical observations of poverty, though. Among them,
consider the reality that most Western democracies (including the United
States) have welfare states that provide transfer payments — in the form
of cash payments, food stamps, or services like subsidized health care — to
their citizens below some income threshold. Such programs, of course, are
designed to minimize or eliminate the problems that afflict the poor. When
economists seek to measure a person’s income level to determine whether
or not he is poor, should they use a “pretransfer” definition of income —
a person’s or family’s income level before receiving any transfer payments
from the government — or a “posttransfer” definition? Either choice carries
some negative consequences. Choosing a pretransfer definition of income
gives a sense of how much the private sector of the economy is failing. On
the other hand, a posttransfer definition gives a sense of how much wel-
fare state programs are falling short and how people are actually living.
As the Baby Boom generation in the United States continues to age more
and more people are retiring from work. Using a pretransfer measure of
poverty means that researchers will not consider Social Security payments —
the U.S.’s largest source of transfer payments by far —and therefore the (pre-
transfer) poverty rate should grow rather steadily over the next few decades,
regardless of the health of the overall economy. This might not accurately
represent what we mean by “poverty” (Danziger and Gottschalk ).
If, owing to their subject matter, economists rarely (but occasionally)
have measurement obstacles, the opposite end of the spectrum would be
the discipline of psychology. The subject matter of psychology — human
behavior, cognition, and emotion — is rife with concepts that are extremely
difficult to measure. Consider a few examples. We all know that the concept
of “depression” is a real thing; some individuals are depressed, and others
are not. Some individuals who are depressed today will not be depressed as
time passes, and some who are not depressed today will become depressed.
Yet how is it possible to assess scientifically whether a person is or is not

4 See

5 Note a problem right off the bat: What is “minimally decent”? Do you suspect that what
qualified as “minimally decent” in 1950 or 1985 would be considered “minimally decent”
today? This immediately raises issues of how sensible it is to compare the poverty rates from
the past with those of today. If the floor of what is considered minimally decent continues
to rise, then the comparison is problematic at best, and meaningless at worst.
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depressed?” Why does it matter if we measure depression accurately? Recall
the scientific stakes described at the beginning of this chapter: If we don’t
measure depression well, how can we know whether remedies like clinical
therapy or chemical antidepressants are effective?’ Psychology deals with
a variety of other concepts that are notoriously slippery, such as the clini-
cal focus on “anxiety,” or the social-psychological focus on concepts such
as “stereotyping” or “prejudice” (which are also of concern to political
scientists).

Political science, in our view, lies somewhere between the extremes
of economics and psychology in terms of how frequently we encounter
serious measurement problems. Some subfields in political science operate
relatively free of measurement problems. The study of political economy —
which examines the relationship between the economy and political forces
such as government policy, elections, and consumer confidence — has much
the same feel as economics, for obvious reasons. Other subfields encounter
measurement problems regularly. The subfield of political psychology —
which studies the way that individual citizens interact with the political
world — shares much of the same subject matter as social psychology, and
hence, because of its focus on the attitudes and feelings of people, it shares
much of social psychology’s measurement troubles.

Consider the following list of critically important concepts in the
discipline of political science that have sticky measurement issues:

* Judicial activism: In the United States, the role of the judiciary in the
policy-making process has always been controversial. Some view the
federal courts as the protectors of important civil liberties, whereas
others view the courts as a threat to democracy, because judges are not
elected. How is it possible to identify an “activist judge” or an “activist
decision”?

» Congressional roll-call liberalism: With each successive session of the
U.S. Congress, commentators often compare the level of liberalism and

6 Since 1952, the American Psychiatric Press, Inc., has published the Diagnostic and Statistical
Manual of Mental Disorders, now in its fifth edition (called DSM 5), which diagnoses
depression by focusing on four sets of symptoms that indicate depression: mood, behavioral
symptoms such as withdrawal, cognitive symptoms such as the inability to concentrate, and
somatic symptoms such as insomnia.

7 In fact, the effectiveness of clinical “talk” therapy is a matter of some contention among
psychologists. See “Married with Problems? Therapy May Not Help,” New York Times,
April 19, 2005.

8 In this particular case, there could even be a disagreement over the conceptual definition of
“activist.” What a conservative and a liberal would consider to be “activist” might produce
no agreement at all. See “Activist, Schmactivist,” New York Times, August 15, 2004, for
a journalistic account of this issue.
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conservatism of the present Congress with that of its most recent pre-
decessors. How do we know if the Congress is becoming more or less
liberal over time (Poole and Rosenthal )?

* Political legitimacy: How can analysts distinguish between a “legiti-
mate” and an “illegitimate” government? The key conceptual issue is
more or less “how citizens evaluate governmental authority” (Weath-
erford ). Some view it positively, others quite negatively. Is
legitimacy something that can objectively be determined, or is it an
inherently subjective property among citizens?

* Political sophistication: Some citizens know more about politics and
are better able to process political information than other citizens who
seem to know little and care less about political affairs. How do we
distinguish politically sophisticated citizens from the politically unso-
phisticated ones? Moreover, how can we tell if a society’s level of
political sophistication is rising or falling over time (Luskin )?

* Social capital: Some societies are characterized by relatively high levels
of interconnectedness, with dense networks of relationships that make
the population cohesive. Other societies, in contrast, are characterized
by high degrees of isolation and distrustfulness. How can we measure
what social scientists call social capital in a way that enables us to com-
pare one society’s level of connectedness with another’s or one society’s
level of connectedness at varying points in time (Putnam )?

In Sections and 5.5, we describe the measurement controversies
surrounding two other concepts that are important to political science —
democracy and political tolerance. But first, in the next section, we describe
some key issues that political scientists need to grapple with when measuring
their concepts of interest.

PROBLENMS IN MEASURING CONCEPTS OF INTEREST

We can summarize the problems of measuring concepts of interest in prepa-
ration for hypothesis testing as follows: First, you need to make sure that
you have conceptual clarity. Next, settle on a reasonable level of measure-
ment. Finally, ensure that your measure is both valid and reliable. After you
repeat this process for each variable in your theory, you are ready to test
your hypothesis.

Unfortunately, there is no clear map to follow as we go through these
steps with our variables. Some variables are very easy to measure, whereas
others, because of the nature of what we are trying to measure, will always
be elusive. As we will see, debates over issues of measurement are at the
core of many interesting fields of study in political science.
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5.3.1

5.3.2

5.3 Problems in Measuring Concepts of Interest

Conceptual Clarity

The first step in measuring any phenomenon of interest to political scientists
is to have a clear sense of what the concept is that we are trying to measure.
In some cases, like the ones we subsequently discuss, this is an exceedingly
revealing and difficult task. It requires considerably disciplined thought to
ferret out precisely what we mean by the concepts about which we are
theorizing. But even in some seemingly easy examples, this is more difficult
than might appear at first glance.

Consider a survey in which we needed to measure a person’s income.
That would seem easy enough. Once we draw our sample of adults, why
not just ask each respondent, “What is your income?” and offer a range of
values, perhaps in increments of $10,000 or so, on which respondents could
place themselves. What could be the problem with such a measure? Imagine
a 19-year-old college student whose parents are very wealthy, but who has
never worked herself, answering such a question. How much income has
that person earned in the last year? Zero. In such a circumstance, this is the
true answer to such a question. But it is not a particularly valid measure of
her income. We likely want a measure of income that reflects the fact that
her parents earn a good deal of money, which affords her the luxury of not
having to work her way through school as many other students do. That
measure should place the daughter of wealthy parents ahead of a relatively
poor student who carries a full load and works 40 hours a week just to pay
her tuition. Therefore, we might reconsider our seemingly simple question
and ask instead, “What is the total amount of income earned in the most
recently completed tax year by you and any other adults in your household,
including all sources of income?” This measure puts the nonworking child
of wealthy parents ahead of the student from the less-well-off family. And,
for most social science purposes, this is the measure of “income” that we
would find most theoretically useful.

At this point, it is worth highlighting that the best measure of income —
as well as that of most other concepts — depends on what our theoretical
objectives are. The best measure of something as simple as a respon-
dent’s income depends on what we intend to relate that measure to in our
hypothesis testing.

Reliability

An operational measure of a concept is said to be reliable to the extent
that it is repeatable or consistent; that is, applying the same measurement

9 The same issues would arise in assessing the income of retired people who no longer
participate in the workforce.
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rules to the same case or observation will produce identical results. An
unreliable measure, by contrast, would produce inconsistent results for the
same observation. For obvious reasons, all scientists want their measures
to be reliable.

Perhaps the most simple example to help you understand this is your
bathroom scale. Say you step up on the scale one morning and the scale
tells you that you weigh 150 pounds. You step down off the scale and
it returns to zero. But have you ever not trusted that scale reading, and
thought to yourself, “Maybe if I hop back up on the scale, I’ll get a number
I like better?” That is a reliability check. If you (immediately) step back on
the scale, and it tells you that you now weigh 146 pounds, your scale is
unreliable, because repeated measures of the same case — your body at that
particular point in time — produced different results.

To take our bathroom scale example to the extreme, we should not
confuse over-time variability with unreliability. If you wake up 1 week
later and weigh 157 instead of 150 that does not necessarily mean that
your scale is unreliable (though that might be true). Perhaps you substituted
french fries for salads at dinner in the intervening week, and perhaps you
exercised less vigorously or less often.

Reliability is often an important issue when scholars need to code
events or text for quantitative analysis. For example, if a researcher was
trying to code the text of news coverage that was favorable or unfavorable
toward a candidate for office, he would develop some specific coding rules
to apply to the text — in effect, to count certain references as either “pro”
or “con” with respect to the candidate. Suppose that, for the coding, the
researcher employs a group of students to code the text — a practice that
is common in political research. A reliable set of coding rules would imply
that, when one student applies the rules to the text, the results would be the
same as when another student takes the rules and applies them to the same
text. An unreliable set of coding rules would imply the opposite, namely,
that when two different coders try to apply the same rules to the same news
articles, they reach different conclusions.'” The same issues arise when one
codes things such as events by using newspaper coverage.

Measurement Bias and Reliability

One of the concerns that comes up with any measurement technique is mea-
surement bias, which is the systematic over-reporting or under-reporting of

10 Of course, it is possible that the coding scheme is perfectly reliable, but the coders
themselves are not.

11 There are a variety of tools for assessing reliability, many of which are beyond the scope
of this discussion.
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values for a variable. Although measurement bias is a serious problem for
anyone who wants to know the “true” values of variables for particular
cases, it is less of a problem than you might think for theory-testing pur-
poses. To better understand this, imagine that we have to choose between
two different operationalizations of the same variable. Operationalization
A is biased but reliable, and Operationalization B is unbiased but unreliable.
For theory-testing purposes we would greatly prefer the biased but reliable
Operationalization A!

You will be better able to see why this is the case once you have an
understanding of statistical hypothesis testing from Chapters 7 and beyond.
For now, though, keep in mind that as we test our theories we are looking
for general patterns between two variables. For instance, with higher values
of X do we tend to see higher values of Y, or with higher values of X do
we tend to see lower values of Y? If the measurement of X was biased
upward, the same general pattern of association with Y would be visible.
But if the measurement of X was unreliable, it would obscure the underlying
relationship between X and Y.

Validity

The most important feature of a measure is that it is valid. A valid measure
accurately represents the concept that it is supposed to measure, whereas
an invalid measure measures something other than what was originally
intended. All of this might sound a bit circular, we realize.

Perhaps it is useful to think of some important concepts that represent
thorny measurement examples in the social sciences. In both social psy-
chology and political science, the study of the concept of prejudice has been
particularly important. Among individuals, the level of prejudice can vary,
from vanishingly small amounts to very high levels. Measuring prejudice
can be important in social-psychological terms, so we can try to determine
what factors cause some people to be prejudiced whereas others do not. In
political science, in particular, we are often interested in the attitudinal and
behavioral consequences of prejudice. Assuming that some form of truth
serum is unavailable, how can we obtain a quantitative measure of prejudice
that can tell us who harbors large amounts of prejudice, who harbors some,
and who harbors none? It would be easy enough to ask respondents to a
survey if they were prejudiced or not. For example, we could ask respon-
dents: “With respect to people who have a different race or ethnicity than
you, would you say that you are extremely prejudiced, somewhat preju-
diced, mildly prejudiced, or not at all prejudiced toward them?” But we
would have clear reasons to doubt the validity of their answers — whether
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their measured responses accurately reflected their true levels of
prejudice.

There are a variety of ways to assess a measure’s validity, though it is
critical to note that all of them are theoretical and subject to large degrees of
disagreement. There is no simple formula to check for a measure’s validity
on a scale of 0 to 100, unfortunately. Instead, we rely on several overlap-
ping ways to determine a measure’s validity. First, and most simply, we can
examine a measure’s face validity. When examining a measurement strat-
egy, we can first ask whether or not, on its face, the measure appears to be
measuring what it purports to be measuring. This is face validity. Second,
and a bit more advanced, we can scrutinize a measure’s content validity.
What is the concept to be measured? What are all of the essential elements
to that concept and the features that define it? And have you excluded all
of the things that are not it? For example, the concept of democracy surely
contains the element of “elections,” but it also must incorporate more than
mere elections, because elections are held in places like North Korea, which
we know to be nondemocratic. What else must be in a valid measure of
democracy? (More on this notion later on.) Basically, content validation is
a rigorous process that forces the researcher to come up with a list of all of
the critical elements that, as a group, define the concept we wish to measure.
Finally, we can examine a measure’s construct validity: the degree to which
the measure is related to other measures that theory requires them to be
related to. That is, if we have a theory that connects democratization and
economic development, then a measure of democracy that is related to a
measure of economic development (as our theory requires) serves simultane-
ously to confirm the theory and also to validate the measure of democracy.
Of course, one difficulty with this approach is what happens when the
expected association is not present. Is it because our measure of democracy
is invalid or because the theory is misguided? There is no conclusive way
to tell.

The Relationship between Validity and Reliability

What is the connection between validity and reliability? Is it possible to
have a valid but unreliable measure? And is it possible to have a reliable but
invalid measure? With respect to the second question, some scientific debate
exists; there are some who believe that it is possible to have a reliable but
invalid measure. In our view, that is possible in abstract terms. But because
we are interested in measuring concepts in the interest of evaluating causal
theories, we believe that, in all practical terms, any conceivable measures
that are reliable but invalid will not be useful in evaluating causal theories.
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Figure 5.1. Reliability, validity, and hypothesis testing.

Similarly, it is theoretically possible to have valid but unreliable mea-
sures. But those measures also will be problematic for evaluating causal
theories, because we will have no confidence in the hypothesis tests that
we conduct. We present the relationship between reliability and validity in
Figure 5.1, where we show that, if a measure is unreliable, there is little
point in evaluating its validity. Once we have established that a measure is
reliable, we can assess its validity, and only reliable and valid measures are
useful for evaluating causal theories.

T CONTROVERSY 1: MEASURING DEMOCRACY

Although we might be tempted to think of democracy as being similar to
pregnancy — that is, a country either is or is not a democracy much the
same way that a woman either is or is not pregnant — on a bit of addi-
tional thought, we are probably better off thinking of democracy as a
continuum. = That is, there can be varying degrees to which a government
is democratic. Furthermore, within democracies, some countries are more
democratic than others, and a country can become more or less democratic
as time passes.

12 This position, though, is controversial within political science. For an interesting discussion
about whether researchers should measure democracy as a binary concept or a continuous
one, see Elkins ( ).
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But defining a continuum that ranges from democracy, on one end, to
totalitarianism, on the other end, is not at all easy. We might be tempted to
resort to the Potter Stewart “I know it when I see it” definition. As political
scientists, of course, this is not an option. We have to begin by asking
ourselves, what do we mean by democracy? What are the core elements
that make a government more or less democratic? Political philosopher
Robert Dahl ( ) persuasively argued that there are two core attributes
to a democracy: “contestation” and “participation.” That is, according to
Dahl, democracies have competitive elections to choose leaders and broadly
inclusive rules for and rates of participation.

Several groups of political scientists have attempted to measure democ-
racy systematically in recent decades.’” The best known — though by no
means universally accepted — of these is the Polity IV measure.'” The project
measures democracy with annual scores ranging from —10 (strongly auto-
cratic) to +10 (strongly democratic) for every country on Earth from 1800
to 2004." In these researchers’ operationalization, democracy has four
components:

Regulation of executive recruitment
Competitiveness of executive recruitment
Openness of executive recruitment

i S

Constraints on chief executive

For each of these dimensions, experts rate each country on a particular
scale. For example, the first criterion, “regulation of executive recruitment,”
allows for the following possible values:

* +3 = regular competition between recognized groups
* 42 = transitional competition

* +1 = factional or restricted patterns of competition

* 0= no competition

Countries that have regular elections between groups that are more than
ethnic rivals will have higher scores. By similar procedures, the scholars
associated with the project score the other dimensions that comprise their
democracy scale.

13 For a useful review and comparison of these various measures, see Munck and Verkuilen

14 The project’s web site, which provides access to a vast array of country-specific over-time
data, is

15 They derive the scores on this scale from two separate 10-point scales, one for democracy
and the other for autocracy. A country’s Polity score for that year is its democracy score
minus its autocracy score; thus, a country that received a 10 on the democracy scale and
a 0 on the autocracy scale would have a net Polity score of 10 for that year.
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Figure 5.2. Polity IV score for Brazil.

Figure presents the Polity score for Brazil from 1824 through
2010.'° Remember that higher scores represent points in time when Brazil
was more democratic, and lower scores represent times when Brazil was
more autocratic. There has been, as you can see, enormous variation in
the democratic experience in Brazil since its declaration of independence
from Portugal in 1822. If we make a rough comparison of these scores with
the timeline of Brazil’s political history, we can get an initial evaluation
of the face validity of the Polity scores as a measure of democracy. After
the declaration of independence from Portugal, Brazil was a constitutional
monarchy headed by an emperor. After a coup in 1889, Brazil became a
republic, but one in which politics was fairly strictly controlled by the elites
from the two dominant states. We can see that this regime shift resulted
in a move from a Polity score of —=6 to a score of —3. Starting in 1930,
Brazil went through a series of coups and counter-coups. Scholars writing
about this period (e.g., Skidmore ) generally agree that the nation’s
government became more and more autocratic during this era. The Polity
scores certainly reflect this movement. In 19435, after another military coup,
a relatively democratic government was put into place. This regime lasted
until the mid 1960s when another period of instability was ended by a mil-
itary dictatorship. This period is widely recognized as the most politically
repressive regime in Brazil’s independent political history. It lasted until

16 Source:


http://http://www.systemicpeace.org/inscr/inscr.htm
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1974 when the ruling military government began to allow limited political
elections and other political activities. In 1985, Brazil elected a civilian pres-
ident, a move widely seen as the start of the current democratic period. Each
of these major moves in Brazil’s political history is reflected in the Polity
scores. So, from this rough evaluation, Polity scores have face validity.
The Polity measure is rich in historical detail, as is obvious from
Figure 5.2. The coding rules are transparent and clear, and the amount
of raw information that goes into a country’s score for any given year is
impressive. And yet it is fair to criticize the Polity measure for including only
one part of Dahl’s definition of democracy. The Polity measure contains rich
information about what Dahl calls “contestation” — whether a country has
broadly open contests to decide on its leadership. But the measure is much
less rich when it comes to gauging a country’s level of what Dahl calls
“participation” — the degree to which citizens are engaged in political pro-
cesses and activities. This may be understandable, in part, because of the
impressive time scope of the study. After all, in 1800 (when the Polity
time series begins), very few countries had broad electoral participation.
Since the end of World War I, broadly democratic participation has spread
rapidly across the globe. But if the world is becoming a more democratic
place, owing to expansion of suffrage, our measures of democracy ought to
incorporate that reality. Because the Polity measure includes one part (“con-
testation”) of what it means, conceptually, to be democratic, but ignores
the other part (“participation”), the measure can be said to lack content
validity. The Polity IV measure, despite its considerable strengths, does not
fully encompass what it means, conceptually, to be more or less democratic.
This problem is nicely illustrated by examining the Polity score for the
United States presented in Figure 5.3, which shows its score for the time
period 1800-2010. The consistent score of 10 for almost every year after
the founding of the republic — the exception is during the Civil War, when
President Lincoln suspended the writ of habeas corpus — belies the fact
that the United States, in many important ways, has become a more demo-
cratic nation over its history, particularly on the participatory dimension
not captured in the Polity measure. Even considering something as basic
to democratic participation as the right to vote reveals this to be the case.
Slavery prevented African Americans from many things, voting included,
until after the Civil War, and Jim Crow laws in the South kept those pro-
hibitions in place for nearly a century afterward. Women, too, were not
allowed to vote until the 19th Amendment to the Constitution was ratified
in 1920. It would be difficult to argue that these changes did not make
the United States more democratic, but of course those changes are not
reflected in Figure 5.3. This is not to say that the Polity measure is useless,
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Figure 5.3. Polity IV score for the United States.

but merely that it lacks content validity because one of the key components
of democracy — participation — is nowhere to be found in the measure.

CONTROVERSY 2: MEASURING POLITICAL TOLERANCE

We know that some continuum exists in which, on the one end, some indi-
viduals are extremely “tolerant” and, on the other end, other individuals
are extremely “intolerant.” In other words, political tolerance and intoler-
ance, at the conceptual level, are real things. Some individuals have more
tolerance and others have less. It is easy to imagine why political scien-
tists would be interested in political tolerance and intolerance. Are there
systematic factors that cause some people to be tolerant and others to be
intolerant?

Measuring political tolerance, on the other hand, is far from easy. Tol-
erance is not like cholesterol, for which a simple blood test can tell us how
much of the good and how much of the bad we have inside of us. The naive
approach to measuring political tolerance — conducting a survey and asking
people directly “Are you tolerant or intolerant?” — seems silly right off the
bat. Any such survey question would surely produce extremely high rates of
“tolerance,” because presumably very few people — even intolerant people —
think of themselves as intolerant. Even those who are aware of their own
intolerance are unlikely to admit that fact to a pollster. Given this situation,
how have political scientists tackled this problem?
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During the 1950s, when the spread of Soviet communism represented
the biggest threat to America, Samuel Stouffer ( ) conducted a series of
opinion surveys to measure how people reacted to the Red Scare. He asked
national samples of Americans whether they would be willing to extend
certain civil liberties — like being allowed to teach in a public school, to be
free from having phones tapped, and the like — to certain unpopular groups
like communists, socialists, and atheists. He found that a variety of people
were, by these measures, intolerant; they were not willing to grant these civil
liberties to members of those groups. The precise amount of intolerance
varied, depending on the target group and the activity mentioned in the
scenarios, but intolerance was substantial — at least 70% of respondents
gave the intolerant response. Stouffer found that the best predictor of an
individual’s level of tolerance was how much formal education he or she had
received; people with more education emerged as more tolerant, and people
with less education were less tolerant. In the 1970s, when the Red Scare
was subsiding somewhat, a new group of researchers asked the identical
questions to a new sample of Americans. They found that the levels of
intolerance had dropped considerably over the 20-odd years — in only one
scenario did intolerance exceed 60% and in the majority of scenarios it
was below 50% - leading some to speculate that political intolerance was
waning.

However, also in the late 1970s, a different group of researchers led
by political scientist John Sullivan questioned the validity of the Stouffer
measures and hence questioned the conclusions that Stouffer reached. The
concept of political tolerance, wrote Sullivan, Pierson, and Marcus ( ),
“presupposes opposition.” That is, unless a survey respondent actively
opposed communists, socialists, and atheists, the issue of tolerance or intol-
erance simply does not arise. By way of example, consider asking such
questions of an atheist. Is an atheist who agrees that atheists should be
allowed to teach in public schools politically tolerant? Sullivan and his
colleagues thought not.

The authors proposed a new set of survey-based questions that were, in
their view, more consistent with a conceptual understanding of tolerance. If,
as they defined it, tolerance presupposes opposition, then researchers need
to find out who the survey respondent opposes; assuming that the respon-
dent might oppose a particular group is not a good idea. They identified
a variety of groups active in politics at the time — including racist groups,
both pro- and anti-abortion groups, and even the Symbionese Liberation
Army - and asked respondents which one they disliked the most. They fol-
lowed this up with questions that looked very much like the Stouffer items,
only directed at the respondent’s own disliked groups instead of the ones
Stouffer had picked out for them.
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Among other findings, two stood out. First, the levels of intolerance
were strikingly high. As many as 66% of Americans were willing to forbid
members of their least-liked group from holding rallies, and fully 71% were
willing to have the government ban the group altogether. Second, under this
new conceptualization and measurement of tolerance, the authors found
that an individual’s perception of the threatening nature of the target group,
and not their level of education, was the primary predictor of intolerance.
In other words, individuals who found their target group to be particularly
threatening were most likely to be intolerant, whereas those who found their
most-disliked group to be less threatening were more tolerant. Education
did not directly affect tolerance either way. In this sense, measuring an
important concept differently produced rather different substantive findings
about causes and effects.

It is important that you see the connection to valid measurement here.
Sullivan and his colleagues argued that Stouffer’s survey questions were not
valid measures of tolerance because the question wording did not accurately
capture what it meant, in the abstract, to be intolerant (specifically, opposi-
tion). Creating measures of tolerance and intolerance that more truthfully
mirrored the concept of interest produced significantly different findings
about the persistence of intolerance, as well as about the factors that cause
individuals to be tolerant or intolerant.

ARE THERE CONSEQUENCES TO POOR MEASUREMENT?

What happens when we fail to measure the key concepts in our theory in a
way that is both valid and reliable? Refer back to Figure 1.2, which high-
lights the distinction between the abstract concepts of theoretical interest
and the variables we observe in the real world. If the variables that we
observe in the real world do not do a good job of mirroring the abstract
concepts, then that affects our ability to evaluate conclusively a theory’s
empirical support. That is, how can we know if our theory is supported if
we have done a poor job measuring the key concepts that we observe? If
our empirical analysis is based on measures that do not capture the essence
of the abstract concepts in our theory, then we are unlikely to have any
confidence in the findings themselves.

GETTING TO KNOW YOUR DATA STATISTICALLY

Thus far we have discussed details of the measurement of variables. A lot
of thought and effort goes into the measurement of individual variables.

17 But see Gibson ( ).
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But once a researcher has collected data and become familiar and satisfied
with how it was measured, it is important for them to get a good idea of the
types of values that the individual variables take on before moving to testing
for causal connections between two or more variables. What do “typical”
values for a variable look like? How tightly clustered (or widely dispersed)
are the these values?

Before proceeding to test for theorized relationships between two or
more variables, it is essential to understand the properties and character-
istics of each variable. To put it differently, we want to learn something
about what the values of each variable “look like.” How do we accom-
plish this? One possibility is to list all of the observed values of a measured
variable. For example, the following are the percentages of popular votes
for major party candidates that went to the candidate of the party of the
sitting president during U.S. presidential elections from 1880 to 2008:
50.22, 49.846, 50.414, 48.268, 47.76, 53.171, 60.006, 54.483, 54.708,
51.682, 36.119, 58.244, 58.82, 40.841, 62.458, 54.999, 53.774, 52.37,
44.595, 57.764, 49.913, 61.344, 49.596, 61.789, 48.948, 44.697, 59.17,
53.902,46.545, 54.736, 50.265, 51.2,46.311. We can see from this exam-
ple that, once we get beyond a small number of observations, a listing of
values becomes unwieldy. We will get lost in the trees and have no idea
of the overall shape of the forest. For this reason, we turn to descriptive
statistics and descriptive graphs, to take what would be a large amount
of information and reduce it to bite-size chunks that summarize that
information.

Descriptive statistics and graphs are useful tools for helping researchers
to get to know their data before they move to testing causal hypotheses.
They are also sometimes helpful when writing about one’s research. You
have to make the decision of whether or not to present descriptive statistics
and/or graphs in the body of a paper on a case-by-case basis. It is scien-
tifically important, however, that this information be made available to
consumers of your research in some way.

One major way to distinguish among variables is the measurement
metric. A variable’s measurement metric is the type of values that the vari-
able takes on, and we discuss this in detail in the next section by describing

18 This measure is constructed so that it is comparable across time. Although independent or
third-party candidates have occasionally contested elections, we focus on only those votes
for the two major parties. Also, because we want to test the theory of economic voting,
we need to have a measure of support for incumbents. In elections in which the sitting
president is not running for reelection, there is still reason to expect that their party will
be held accountable for economic performances.

19 Many researchers will present this information in an appendix unless there is something
particularly noteworthy about the characteristics of one or more of their variables.
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three different variable types. We then explain that, despite the imperfect
nature of the distinctions among these three variable types, we are forced
to choose between two broad classifications of variables — categorical or
continuous — when we describe them. The rest of this chapter discusses
strategies for describing categorical and continuous variables.

WHAT IS THE VARIABLE'S MEASUREMENT METRIC?

There are no hard and fast rules for describing variables, but a major initial
juncture that we encounter involves the metric in which we measure each
variable. Remember from Chapter | that we can think of each variable in
terms of its label and its values. The label is the description of the variable —
such as “Gender of survey respondent” — and its values are the denomi-
nations in which the variable occurs — such as “Male” or “Female.” For
treatment in most statistical analyses, we are forced to divide our variables
into two types according to the metric in which the values of the variable
occur: categorical or continuous. In reality, variables come in at least three
different metric types, and there are a lot of variables that do not neatly
fit into just one of these classifications. To help you to better understand
each of these variable types, we will go through each with an example. All
of the examples that we are using in these initial descriptions come from
survey research, but the same basic principles of measurement metric hold
regardless of the type of data being analyzed.

Categorical Variables

Categorical variables are variables for which cases have values that are
either different or the same as the values for other cases, but about which
we cannot make any universally holding ranking distinctions. If we con-
sider a variable that we might label “Religious Identification,” some values

»

for this variable are “Catholic,” “Muslim,” “nonreligious,” and so on.
Although these values are clearly different from each other, we cannot make
universally holding ranking distinctions across them. More casually, with
categorical variables like this one, it is not possible to rank order the cate-
gories from least to greatest: The value “Muslim” is neither greater nor less
than “nonreligious” (and so on), for example. Instead, we are left knowing
that cases with the same value for this variable are the same, whereas those
cases with different values are different. The term “categorical” expresses
the essence of this variable type; we can put individual cases into categories
based on their values, but we cannot go any further in terms of ranking or

otherwise ordering these values.
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Ordinal Variables

Like categorical variables, ordinal variables are also variables for which
cases have values that are either different or the same as the values for
other cases. The distinction between ordinal and categorical variables is
that we can make universally holding ranking distinctions across the vari-
able values for ordinal variables. For instance, consider the variable labeled
“Retrospective Family Financial Situation” that has commonly been used as
an independent variable in individual-level economic voting studies. In the
2004 National Election Study (NES), researchers created this variable by
first asking respondents to answer the following question: “We are inter-
ested in how people are getting along financially these days. Would you
say that you (and your family living here) are better off or worse off than
you were a year ago?” Researchers then asked respondents who answered
“Better” or “Worse”: “Much [better/worse]| or somewhat [better/worse]?”
The resulting variable was then coded as follows:

much better
somewhat better
same

somewhat worse

bl A

much worse

This variable is pretty clearly an ordinal variable because as we go from the
top to the bottom of the list we are moving from better to worse evaluations
of how individuals (and their families with whom they live) have been faring
financially in the past year.

As another example, consider the variable labeled “Party Identifica-
tion.” In the 2004 NES researchers created this variable by using each
respondent’s answer to the question, “Generally speaking, do you usually
think of yourself as a Republican, a Democrat, an independent, or what?”
which we can code as taking on the following values:

1. Republican
2. Independent
3. Democrat

20 Almost all U.S. respondents put themselves into one of the first three categories. For
instance, in 2004, 1,128 of the 1,212 respondents (93.1%) to the postelection NES
responded that they were a Republican, Democrat, or an independent. For our purposes,
we will ignore the “or what” cases. Note that researchers usually present partisan iden-
tification across seven values ranging from “Strong Republican” to “Strong Democrat”
based on follow-up questions that ask respondents to further characterize their positions.
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If all cases that take on the value “Independent” represent individuals whose
views lie somewhere between “Republican” and “Democrat,” we can call
“Party Identification” an ordinal variable. If this is not the case, then this
variable is a categorial variable.

Continuous Variables

An important characteristic that ordinal variables do not have is equal-unit
differences. A variable has equal unit differences if a one-unit increase in
the value of that variable always means the same thing. If we return to the
examples from the previous section, we can rank order the five categories
of Retrospective Family Financial Situation from 1 for the best situation
to 5 for the worst situation. But we may not feel very confident working
with these assigned values the way that we typically work with numbers.
In other words, can we say that the difference between “somewhat worse”
and “same” (4-3) is the same as the difference between “much worse” and
“somewhat worse” (5-4)? What about saying that the difference between
“much worse” and “same” (5-3) is twice the difference between “some-
what better” and “much better” (2-1)? If the answer to both questions
is “yes,” then Retrospective Family Financial Situation is a continuous
variable.

If we ask the same questions about Party Identification, we should be
somewhat skeptical. We can rank order the three categories of Party Identi-
fication, but we cannot with great confidence assign “Republican” a value
of 1, “Independent” a value of 2, and “Democrat” a value of 3 and work
with these values in the way that we typically work with numbers. We can-
not say that the difference between an “Independent” and a “Republican”
(2-1) is the same as the difference between a “Democrat” and an “Inde-
pendent” (3-2) — despite the fact that both 3-2 and 2-1 = 1. Certainly, we
cannot say that the difference between a “Democrat” and a “Republican”
(3-1) is twice the difference between an “Independent” and a “Republican”
(2-1) — despite the fact that 2 is twice as big as 1.

The metric in which we measure a variable has equal unit differences if
a one-unit increase in the value of that variable indicates the same amount
of change across all values of that variable. Continuous variables are vari-
ables that do have equal unit differences.”' Imagine, for instance, a variable
labeled “Age in Years.” A one-unit increase in this variable always indicates
an individual who is 1 year older; this is true when we are talking about a

21 We sometimes call these variables “interval variables.” A further distinction you will
encounter with continuous variables is whether they have a substantively meaningful zero
point. We usually describe variables that have this characteristic as “ratio” variables.
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case with a value of 21 just as it is when we are talking about a case with
a value of 55.

Variable Types and Statistical Analyses

As we saw in the preceding subsections, variables do not always neatly fit
into the three categories. When we move to the vast majority of statistical
analyses, we must decide between treating each of our variables as though
it is categorical or as though it is continuous. For some variables, this is
a very straightforward choice. However, for others, this is a very difficult
choice. If we treat an ordinal variable as though it is categorical, we are
acting as though we know less about the values of this variable than we
really know. On the other hand, treating an ordinal variable as though it
is a continuous variable means that we are assuming that it has equal unit
differences. Either way, it is critical that we be aware of our decisions. We
can always repeat our analyses under a different assumption and see how
robust our conclusions are to our choices.

With all of this in mind, we present separate discussions of the process
of describing a variable’s variation for categorical and continuous variables.
A variable’s variation is the distribution of values that it takes across the
cases for which it is measured. It is important that we have a strong knowl-
edge of the variation in each of our variables before we can translate our
theory into hypotheses, assess whether there is covariation between two
variables (causal hurdle 3 from Chapter 3), and think about whether or
not there might exist a third variable that makes any observed covariation
between our independent and dependent variables spurious (hurdle 4). As
we just outlined, descriptive statistics and graphs are useful summaries of
the variation for individual variables. Another way in which we describe
distributions of variables is through measures of central tendency. Measures
of central tendency tell us about typical values for a particular variable at
the center of its distribution.

DESCRIBING CATEGORICAL VARIABLES

With categorical variables, we want to understand the frequency with
which each value of the variable occurs in our data. The simplest way of
seeing this is to produce a frequency table in which the values of the cat-
egorical variable are displayed down one column and the frequency with
which it occurs (in absolute number of cases and/or in percentage terms) is
displayed in another column(s). Table 5.1 shows such a table for the variable
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Table 5.1 Frequency table for

religious identification in the 2004
NES

Number

Category of cases Percent
Protestant 672 56.14
Catholic 292 24.39
Jewish 35 2.92
Other 17 1.42
None 181 15.12
Total 1197 99.9

“Religious Identification” from the
NES survey measured during the
2004 national elections in the United
States.

The only measure of central ten-
dency that is appropriate for a cate-
gorical variable is the mode, which is
defined as the most frequently occur-
ring value. In Table 5.1, the mode
of the distribution is “Protestant,”
because there are more Protestants
than there are members of any other
single category.

A typical way in which non-statisticians present frequency data is in

a pie graph such as Figure 5.4. Pie graphs are one way for visualizing

the percentage of cases that fall into particular categories. Many statisti-

cians argue strongly against their use and, instead, advocate the use of bar

graphs. Bar graphs, such as Figure 5.5, are another graphical way to illus-

trate frequencies of categorical variables. It is worth noting, however, that

most of the information that we are able to gather from these two figures

is very clearly and precisely presented in the columns of frequencies and

percentages displayed in Table 5.1.

I Protestant
I Jewish
I None

[ cCatholic
I Other

Figure 5.4. Pie graph of religious identification, NES 2004.
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Figure 5.5. Bar graph of religious identification, NES 2004.

DESCRIBING CONTINUOUS VARIABLES

The statistics and graphs for describing continuous variables are consider-
ably more complicated than those for categorical variables. This is because
continuous variables are more mathematically complex than categorical
variables. With continuous variables, we want to know about the central
tendency and the spread or variation of the values around the central ten-
dency. With continuous variables we also want to be on the lookout for
outliers. Outliers are cases for which the value of the variable is extremely
high or low relative to the rest of the values for that variable. When we
encounter an outlier, we want to make sure that such a case is real and not
created by some kind of error.

Most statistical software programs have a command for getting a bat-
tery of descriptive statistics on continuous variables. Figure 5.6 shows the
output from Stata’s “summarize” command with the “detail” option for the
percentage of the major party vote won by the incumbent party in every U.S.
presidential election between 1876 and 2008. The statistics on the left-hand
side (the first three columns on the left) of the computer printout are what we
call rank statistics, and the statistics on the right-hand side (the two columns
on the right-hand side) are known as the statistical moments. Although both
rank statistics and statistical moments are intended to describe the variation
of continuous variables, they do so in slightly different ways and are thus
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summarize inc_vote, det

inc_vote

Percentiles Smallest

13 36.148 36.148

5% 40.851 40.851
10% 44.842 44.71 Obs 34
25% 48.516 44.842 Sum of Wgt. 34
50% 51.4575 Mean 51.94718
Largest Std. Dev. 5.956539

75% 54.983 60.006
90% 60.006 61.203 Variance 35.48036
95% 61.791 61.791 Skewness -.3065283
99% 62.226 62.226 Kurtosis 3.100499

Figure 5.6. Example output from Stata’s “summarize” command with “detail” option.

quite useful together for getting a complete picture of the variation for a
single variable.

Rank Statistics

The calculation of rank statistics begins with the ranking of the values of
a continuous variable from smallest to largest, followed by the identifica-
tion of crucial junctures along the way. Once we have our cases ranked,
the midpoint as we count through our cases is known as the median case.
Remember that earlier in the chapter we defined the variable in Figure

as the percentage of popular votes for major-party candidates that went
to the candidate from the party of the sitting president during U.S. presi-
dential elections from 1876 to 2008. We will call this variable “Incumbent
Vote” for short. To calculate rank statistics for this variable, we need to
first put the cases in order from the smallest to the largest observed value.
This ordering is shown in Table 5.2. With rank statistics we measure the
central tendency as the median value of the variable. The median value
is the value of the case that sits at the exact center of our cases when
we rank them from the smallest to the largest observed values. When we
have an even number of cases, as we do in Table , we average the
value of the two centermost ranked cases to obtain the median value (in
our example we calculate the median as w = 51.4575). This
is also known as the value of the variable at the 50% rank. In a similar
way, we can talk about the value of the variable at any other percentage
rank in which we have an interest. Other ranks that are often of interest
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Table 5.2 Values of
incumbent vote ranked

from smallest to largest

Rank Year Value
1 1920 36.148
2 1932 40.851
3 1952 44,71
4 1980 44.842
5 2008 46.311
6 1992 46.379
7 1896 47.76
8 1892 48.268
9 1876 48.516

10 1976 48.951

11 1968 49.425

12 1884 49.846

13 1960 49.913

14 1880 50.22

15 2000 50.262

16 1888 50.414

17 2004 51.233

18 1916 51.682

19 1948 52.319

20 1900 53.171

21 1944 53.778

22 1988 53.832

23 1908 54.483

24 1912 54.708

25 1996 54.737

26 1940 54.983

27 1956 57.094

28 1924 58.263

29 1928 58.756

30 1984 59.123

31 1904 60.006

32 1964 61.203

33 1972 61.791

34 1936 62.226

are the 25% and 75% ranks, which are also
known as the first and third “quartile ranks”
for a distribution. The difference between
the variable value at the 25% and the 75%
ranks is known as the “interquartile range”
or “IQR” of the variable. In our example
variable, the 25% value is 48.516 and the
75% value is 54.983. This makes the IQR =
54.983 —48.516 = 6.467. In the language of
rank statistics, the median value for a variable
is a measure of its central tendency, whereas
the IQR is a measure of the dispersion, or
spread, of values.

With rank statistics, we also want to look
at the smallest and largest values to identify
outliers. Remember that we defined outliers
at the beginning of this section as “cases for
which the value of the variable is extremely
high or low relative to the rest of the values for
that variable.” If we look at the highest values
in Table 5.2, we can see that there aren’t really
any cases that fit this description. Although
there are certainly some values that are a lot
higher than the median value and the 75%
value, they aren’t “extremely” higher than the
rest of the values. Instead, there seems to be
a fairly even progression from the 75% value
up to the highest value. The story at the other
end of the range of values in Table 5.2 is a
little different. We can see that the two low-
est values are pretty far from each other and
from the rest of the low values. The value of
36.148 in 1920 seems to meet our definition
of an outlier. The value of 40.851 in 1932 is
also a borderline case. Whenever we see out-
liers, we should begin by checking whether
we have measured the values for these cases

accurately. Sometimes we find that outliers are the result of errors when

entering data. In this case, a check of our data set reveals that the outlier

case occurred in 1920 when the incumbent-party candidate received only

36.148% of the votes cast for the two major parties. A further check of
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Figure 5.7. Box-whisker plot of incumbent-party presidential vote percentage, 1876—
2008.

our data indicates that this was indeed a correct measure of this variable
for 1920.”"

Figure 5.7 presents a box-whisker plot of the rank statistics for our
presidential vote variable. This plot displays the distribution of the variable
along the vertical dimension. If we start at the center of the box in Figure 5.7,
we see the median value (or 50% rank value) of our variable represented as
the slight gap in the center of the box. The other two ends of the box show
the values of the 25% rank and the 75% rank of our variable. The ends of
the whiskers show the lowest and highest nonoutlier values of our variable.
Each statistical program has its own rules for dealing with outliers, so it
is important to know whether your box-whisker plot is or is not set up to
display outliers. These settings are usually adjustable within the statistical
program. The calculation of whether an individual case is or is not an outlier
in this box-whisker plot is fairly standard. This calculation starts with the
IQR for the variable. Any case is defined as an outlier if its value is either
1.5 times the IQR higher than the 75% value or if its value is 1.5 times
the IQR lower than the 25% value. For Figure 5.7 we have set things up

22 An obvious question is “Why was 1920 such a low value?” This was the first presidential
election in the aftermath of World War I, during a period when there was a lot of eco-
nomic and political turmoil. The election in 1932 was at the very beginning of the large
economic downturn known as “the Great Depression,” so it makes sense that the party of
the incumbent president would not have done very well during this election.
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so that the plot displays the outliers, and we can see one such value at the
bottom of our figure. As we already know from Table 5.2, this is the value
of 36.119 from the 1920 election.

Moments

The statistical moments of a variable are a set of statistics that describe
the central tendency for a single variable and the distribution of values
around it. The most familiar of these statistics is known as the mean value
or “average” value for the variable. For a variable Y, the mean value is
depicted and calculated as

Yy — Z?:l Y

n

bl

where Y, known as “Y-bar,” indicates the mean of Y, which is equal to the
sum of all values of Y across individual cases of Y, Y;, divided by the total
number of cases, 7.”” Although everyone is familiar with mean or average
values, not everyone is familiar with the two characteristics of the mean
value that make it particularly attractive to people who use statistics. The
first is known as the “zero-sum property”:

> _(Yi=Y)=0,
=1

which means the sum of the difference between each Y value, Y;, and the
mean value of Y, Y, is equal to zero. The second desirable characteristic of
the mean value is known as the “least-squares property”:

DW=V <D (Yi—c)* Ve #Y,

=1 =1

which means that the sum of the squared differences between each Y value,
Y;, and the mean value of Y, Y, is less than the sum of the squared differences
between each Y value, Y;, and some value ¢, for all (V) ¢’s not equal to (%) Y.
Because of these two properties, the mean value is also referred to as the
expected value of a variable. Think of it this way: If someone were to ask
you to guess what the value for an individual case is without giving you
any more information than the mean value, based on these two properties
of the mean, the mean value would be the best guess.

23 To understand formulae like this, it is helpful to read through each of the pieces of the
formula and translate them into words, as we have done here.
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The next statistical moment for a variable is the variance. We represent
and calculate the variance as follows:

2 _ Y (Y= Y)?

var(Y) =vary =sy 1 R
which means that the variance of Y is equal to the sum of the squared
differences between each Y value, Y}, and its mean divided by the number
of cases minus one.”" If we look through this formula, what would happen
if we had no variation on Y at all (Y; =Y V #)? In this case, variance would
be equal to zero. But as individual cases are spread further and further from
the mean, this calculation would increase. This is the logic of variance: It
conveys the spread of the data around the mean. A more intuitive measure
of variance is the standard deviation:

sd(Y) =sdy =sy =/var(Y) =

Roughly speaking, this is the average difference between values of Y

> (Yi— 1_/)2.

n—1

(Y;) and the mean of Y (Y). At first glance, this may not be apparent. But
the important thing to understand about this formula is that the purpose of
squaring each difference from the mean and then taking the square root of
the resulting sum of squared deviations is to keep the negative and positive
deviations from canceling each other out.

The variance and the standard deviation give us a numerical summary
of the distribution of cases around the mean value for a variable.”® We can
also visually depict distributions. The idea of visually depicting distributions
is to produce a two-dimensional figure in which the horizontal dimension (x
axis) displays the values of the variable and the vertical dimension (y axis)
displays the relative frequency of cases. One of the most popular visual
depictions of a variable’s distribution is the histogram, such as Figure

24 The “minus one” in this equation is an adjustment that is made to account for the number
of “degrees of freedom” with which this calculation was made. We will discuss degrees of
freedom in Chapter

25 An alternative method that would produce a very similar calculation would be to calculate
the average value of the absolute value of each difference from the mean: (w)

26 The skewness and the excess kurtosis of a variable convey the further aspects of 'the distri-
bution of a variable. The skewness calculation indicates the symmetry of the distribution
around the mean. If the data are symmetrically distributed around the mean, then this statis-
tic will equal zero. If skewness is negative, this indicates that there are more values below the
mean than there are above; if skewness is positive, this indicates that there are more values
above the mean than there are below. The kurtosis indicates the steepness of the statistical
distribution. Positive kurtosis values indicate very steep distributions, or a concentration
of values close to the mean value, whereas negative kurtosis values indicate a flatter distri-
bution, or more cases further from the mean value. Both skewness and excess kurtosis are
measures that equal zero for the normal distribution, which we will discuss in Chapter
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Figure 5.8. Histogram of incumbent-party presidential vote percentage, 1876-2008.

One problem with histograms is that we (or the computer program with
which we are working) must choose how many rectangular blocks (called
“bins”) are depicted in our histogram. Changing the number of blocks in
a histogram can change our impression of the distribution of the variable
being depicted. Figure 5.9 shows the same variable as in Figure 5.8 with 2
and then 10 blocks. Although we generate both of the graphs in Figure 5.9
from the same data, they are fairly different from each other.

Another option is the kernel density plot, as in Figure 5.10, which is
based on a smoothed calculation of the density of cases across the range of
values.

LIMITATIONS OF DESCRIPTIVE STATISTICS AND GRAPHS

The tools that we have presented in the last three sections of this chapter
are helpful for providing a first look at data, one variable at a time. Taking
a look at your data with these tools will help you to better know your
data and make fewer mistakes in the long run. It is important, however,
to note that we cannot test causal theories with a single variable. After
all, as we have noted, a theory is a tentative statement about the possible
causal relationship between two variables. Because we have discussed how
to describe only a single variable, we have not yet begun to subject our
causal theories to appropriate tests.
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Figure 5.9. Histograms of incumbent-party presidential vote percentage, 1876-2008,
depicted with 2 and then 10 blocks.
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kernel = epanechnikov, bandwidth = 2.1313

Figure 5.10. Kernel density plot of incumbent-party presidential vote percentage, 1876—
2008.
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CONCLUSIONS

How we measure the concepts that we care about matters. As we can see
from the preceding examples, different measurement strategies can and
sometimes do produce different conclusions about causal relationships.

One of the take-home points of this chapter should be that measure-
ment cannot take place in a theoretical vacuum. The theoretical purpose of
the scholarly enterprise must inform the process of how we measure what
we measure. For example, recall our previous discussion about the various
ways to measure poverty. How we want to measure this concept depends
on what our objective is. In the process of measuring poverty, if our theo-
retical aim is to evaluate the effectiveness of different policies at combating
poverty, we would have different measurement issues than would schol-
ars whose theoretical aim is to study how being poor influences a person’s
political attitudes. In the former case, we would give strong consideration to
pretransfer measures of poverty, whereas in the latter example, posttransfer
measures would likely be more applicable.

The tools that we have presented in this chapter for describing a vari-
able’s central tendency and variation are helpful for providing a first look at
data, one variable at a time. Taking a look at your data with these tools will
help you to better know your data and make less mistakes in the long run.
It is important, however, to note that we cannot test causal theories with a
single variable. After all, as we have noted, a theory is a tentative statement
about the possible causal relationship between two variables. Since we have
only discussed how to describe a single variable, we have not yet begun to
subject our causal theories to appropriate tests.

CONCEPTS INTRODUCED IN THIS CHAPTER

* categorical variables — variables for which cases have values that are
either different or the same as the values for other cases, but about
which we cannot make any universally holding ranking distinctions.

* central tendency - typical values for a particular variable at the center
of its distribution.

* construct validity — the degree to which the measure is related to other
measures that theory requires them to be related to.

* content validity — the degree to which a measure contains all of the
critical elements that, as a group, define the concept we wish to
measure.
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* continuous variable —a variable whose metric has equal unit differences
such that a one-unit increase in the value of the variable indicates the
same amount of change across all values of that variable.

* dispersion — the spread or range of values of a variable.

* equal-unit differences — a variable has equal unit differences if a one-
unit increase in the value of that variable always means the same thing.

* excess kurtosis — a statistical measure indicating the steepness of the
statistical distribution of a single variable.

+ expected value — a synonym for mean value.

* face validity — whether or not, on its face, the measure appears to be
measuring what it purports to be measuring.

* histogram — a visual depiction of the distribution of a single vari-
able that produces a two-dimensional figure in which the horizontal
dimension (x axis) displays the values of the variable and the vertical
dimension (y axis) displays the relative frequency of cases.

* kernel density plot — a visual depiction of the distribution of a single
variable based on a smoothed calculation of the density of cases across
the range of values.

* least-squares property — a property of the mean value for a single vari-
able Y, which means that the sum of the squared differences between
each Y value, Y;, and the mean value of Y, Y, is less than the sum of
the squared differences between each Y value, Y;, and some value c,
for all (V) ¢’s not equal to () Y.

* mean value — the arithmetical average of a variable equal to the sum
of all values of Y across individual cases of Y, Y;, divided by the total
number of cases.

* median value — the value of the case that sits at the exact center of our
cases when we rank the values of a single variable from the smallest to
the largest observed values.

* measurement bias — the systematic over-reporting or under-reporting
of values for a variable.

* measurement metric — the type of values that the variable takes on.

* mode - the most frequently occurring value of a variable.

* ordinal variable — a variable for which we can make universally holding
ranking distinctions across the variable values, but whose metric does
not have equal unit differences.

* outlier — a case for which the value of the variable is extremely high or
low relative to the rest of the values for that variable.

* rank statistics — a class of statistics used to describe the variation of
continuous variables based on their ranking from lowest to highest
observed values.
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* reliability — the extent to which applying the same measurement rules
to the same case or observation will produce identical results.

» skewness — a statistical measure indicating the symmetry of the
distribution around the mean.

+ standard deviation — a statistical measure of the dispersion of a variable
around its mean.

* statistical moments — a class of statistics used to describe the variation
of continuous variables based on numerical calculations.

+ validity — the degree to which a measure accurately represents the
concept that it is supposed to measure.

* variance — a statistical measure of the dispersion of a variable around
its mean.

* variation — the distribution of values that a variable takes across the
cases for which it is measured.

* zero-sum property — a property of the mean value for a single variable
Y, which means that the sum of the difference between each Y value,
Y;, and the mean value of Y, Y, is equal to zero.

EXERCISES

Suppose that a researcher wanted to measure the federal government’s efforts
to make the education of its citizens a priority. The researcher proposed to
count the government’s budget for education as a percentage of the total GDP
and use that as the measure of the government’s commitment to education. In
terms of validity, what are the strengths and weaknesses of such a measure?

Suppose that a researcher wanted to create a measure of media coverage of a
candidate for office, and therefore created a set of coding rules to code words
in newspaper articles as either “pro” or “con” toward the candidate. Instead
of hiring students to implement these rules, however, the researcher used a
computer to code the text, by counting the frequency with which certain words
were mentioned in a series of articles. What would be the reliability of such a
computer-driven measurement strategy, and why?

For each of the following concepts, identify whether there would, in measuring
the concept, likely be a problem of measurement bias, invalidity, unreliability,
or none of the above. Explain your answer.

(a) Measuring the concept of the public’s approval of the president by using
a series of survey results asking respondents whether they approve or
disapprove of the president’s job performance.

(b) Measuring the concept of political corruption as the percentage of
politicians in a country in a year who are convicted of corrupt practices.

(c) Measuring the concept of democracy in each nation of the world by
reading their constitution and seeing if it claims that the nation is
“democratic.”
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Exercises

State Income State Income
Alabama 37,502 Montana 36,202
Alaska 56,398 Nebraska 46,587
Arizona 45,279 Nevada 48,496
Arkansas 36,406 New Hampshire 57,850
California 51,312 New Jersey 60,246
Colorado 51,618 New Mexico 39,916
Connecticut 56,889 New York 46,659
Delaware 50,445 North Carolina 41,820
Florida 42,440 North Dakota 41,362
Georgia 44,140 Ohio 44,349
Hawaii 58,854 Oklahoma 39,292
Idaho 45,009 Oregon 43,262
Illinois 48,008 Pennsylvania 45,941
Indiana 43,091 Rhode Island 49,511
Iowa 45,671 South Carolina 40,107
Kansas 42,233 South Dakota 42,816
Kentucky 36,750 Tennessee 39,376
Louisiana 37,442 Texas 42,102
Maine 43,317 Utah 53,693
Maryland 59,762 Vermont 49,808
Massachusetts 54,888 Virginia 52,383
Michigan 44,801 Washington 51,119
Minnesota 56,098 West Virginia 35,467
Mississippi 34,396 Wisconsin 45,956
Missouri 43,266 Wyoming 45,817
Source: http: //www.census.gov/hhes/www/income/income05/statemhi2.html.
Accessed January 11, 2007.

4. Download a codebook for a political science data set in which you are

interested.

(a) Describe the data set and the purpose for which it was assembled.
(b) What are the time and space dimensions of the data set?

Read the details of how one of the variables in which you are interested was
coded. Write your answers to the following questions:

(c) Does this seem like a reliable method of operationalizing this variable?
How might the reliability of this operationalization be improved?

(d) Assess the various elements of the validity for this variable operational-
ization. How might the validity of this operationalization be improved?

If you did not yet do Exercise § in Chapter 3, do so now. For the theory that you
developed, evaluate the measurement of both the independent and dependent
variables. Write about the reliability, and the various aspects of validity for
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each measure. Can you think of a better way to operationalize these variables
to test your theory?

Collecting and describing a categorical variable. Find data for a categorical
variable in which you are interested. Get those data into a format that can be
read by the statistical software that you are using. Produce a frequency table
and describe what you see.

Collecting and describing a continuous variable. Find data for a continuous
variable in which you are interested. Get those data into a format that can be
read by the statistical software that you are using. Produce a table of descriptive
statistics and either a histogram or a kernel density plot. Describe what you have
found out from doing this.

In Table 5.1, why would it be problematic to calculate the mean value of the
variable “Religious Identification?”

Moving from mathematical formulae to textual statements. Write a sentence
that conveys what is going on in each of the following equations:

(a) Y=3VX;,=2,

(b) Yeoral = 20 Yi=nY.

Computing means and standard deviations. Table contains the median
income for each of the 50 U.S. states for the years 2004-2005. What is the
mean of this distribution, and what is its standard deviation? Show all of your
work.
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Researchers aspire to draw conclusions about the entire population of cases
that are relevant to a particular research question. However, in most cases,
they must rely on data from only a sample of those cases to do so. In this
chapter, we lay the foundation for how researchers make inferences about
a population of cases while only observing a sample of data. This founda-
tion rests on probability theory, which we introduce here with extensive
references to examples. We conclude the chapter with an example famil-
iar to political science students — namely, the “plus-or-minus” error figures
in presidential approval polls, showing where such figures come from and
how they illustrate the principles of building bridges from samples we know
about with certainty to the underlying population of interest.

How dare we speak of the laws of chance? Is not chance the antithesis of all law?
— Bertrand Russell

LT POPULATIONS AND SAMPLES

In Chapter 5, we learned how to measure our key concepts of interest, and
how to use descriptive statistics to summarize large amounts of information
about a single variable. In particular, you discovered how to characterize a
distribution by computing measures of central tendency (like the mean or
median) and measures of dispersion (like the standard deviation or IQR).
For example, you can implement these formulae to characterize the distri-
bution of income in the United States, or, for that matter, the scores of a
midterm examination your professor may have just handed back.

But it is time to draw a critical distinction between two types of
data sets that social scientists might use. The first type is data about the
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population — that is, data for every possible relevant case. In your experi-
ence, the example of population data that might come to mind first is that
of the U.S. Census, an attempt by the U.S. government to gather some crit-
ical bits of data about the entire U.S. population once every 10 years. It
is a relatively rare occurrence that social scientists will make use of data
pertaining to the entire population.

The second type of data is drawn from a sample — a subset of cases
that is drawn from an underlying population. Because of the proliferation
of public opinion polls today, many of you might assume that the word
“sample” implies a random sample.’ It does not. Researchers may draw a
sample of data on the basis of randomness — meaning that each member
of the population has an equal probability of being selected in the sam-
ple. But samples may also be nonrandom, which we refer to as samples of
convenience.

The vast majority of analyses undertaken by social scientists are done
on sample data, not population data. Why make this distinction? Even
though the overwhelming majority of social science data sets are comprised
of a sample, not the population, it is critical to note that we are not interested
in the properties of the sample per se; we are interested in the sample only
insofar as it helps us to learn about the underlying population. In effect,
we try to build a bridge from what we know about the sample to what
we believe, probabilistically, to be true about the broader population. That
process is called statistical inference, because we use what we know to be
true about one thing (the sample) to infer what is likely to be true about
another thing (the population).

There are implications for using sample data to learn about a popula-
tion. First and foremost is that this process of statistical inference involves,
by definition, some degree of uncertainty. That notion is relatively straight-
forward: Any time that we wish to learn something general based on
something specific, we are going to encounter some degree of uncertainty.
In this chapter, we discuss this process of statistical inference, including the
tools that social scientists use to learn about the population that they are
interested in by using samples of data. Our first step in this process is to

I The Bureau of the Census’s web site is .

2 But we try to make inferences about some population of interest, and it is up to the
researcher to define explicitly what that population of interest is. Sometimes, as in the
case of the U.S. Census, the relevant population — all U.S. residents — is easy to understand.
Other times, it is a bit less obvious. Consider a preelection survey, in which the researcher
needs to decide whether the population of interest is all adult citizens, or likely voters, or
something else.

3 When we discussed research design in Chapter 4, we distinguished between the experimental
notion of random assignment to treatment groups, on the one hand, and random sampling,
on the other. See Chapter 4 if you need a refresher on this difference.
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discuss the basics of probability theory, which, in turn, forms the basis for
all of statistical inference.

SOME BASICS OF PROBABILITY THEORY

Let’s start with an example.

Suppose that you take an empty pillowcase, and that, without anyone
else looking, you meticulously count out 550 small blue beads, and 450
small red beads, and place all 1000 of them into the pillowcase. You twist
the pillowcase opening a few times to close it up, and then give it a robust
shake to mix up the beads. Next, you have a friend reach her hand into
the pillowcase — no peeking! — and have her draw out 100 beads, and then
count the red and blue beads.

Obviously, your friend knows that she is taking just a small sample of
beads from the population that is in the pillowcase. And because you shook
that pillowcase vigorously, and forbade your friend from looking into the
pillowcase while selecting the 100 beads, her selection of 100 (more or less)
represents a random sample of that population. Your friend doesn’t know,
of course, how many red and blue beads are in the pillowcase. She only
knows how many red and blue beads she observed in the sample that she
plucked out of it.

Next, you ask her to count the number of red and blue beads. Let’s
imagine that she happened to draw 46 red beads and 54 blue ones. Once
she does this, you then ask her the key question: Based on her count, what
is her best guess about the percentage of red beads versus blue beads in the
entire pillowcase? The only way for your friend to know for sure how
many red and blue beads are in the pillowcase, of course, is to dump
out the entire pillowcase and count all 1000 beads. But, on the other
hand, you’re not exactly asking your friend to make some wild guess.
She has some information, after all, and she can use that information to
make a better guess than simply randomly picking a number between 0%
and 100%.

Sensibly, given the results of her sample, she guesses that 46% of the
beads in the entire pillowcase are red, and 54% are blue. (Think about it:
Even though you know that her guess is wrong, it’s the best guess she could
have made given what she observed, right?)

Before telling her the true answer, you have her dump all 100 beads
back into the pillowcase, re-mix the 1000 beads, and have her repeat the
process: reach into the pillowcase again, re-draw 100 beads, and count the
number of reds and blues drawn again. This time, she draws 43 red beads
and 57 blue ones.
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You ask your friend if she’d like to revise her guess, and, based on
some new information and some quick averaging on her part, she revises
her guess to say that she thinks that 44.5% of the beads are red, and 55.5%
of the beads are blue. (She does this by simply averaging the 46% of red
beads from the first sample and 43 % of red beads from the second sample.)

The laws of probability are useful in many ways — in calculating gam-
bling odds, for example — but in the above example, they are useful for
taking particular information about a characteristic of an observed sample
of data and attempting to generalize that information to the underlying and
unobserved population. The observed samples above, of course, are the two
samples of 100 that your friend drew from the pillowcase. The underlying
population is represented by the 1000 beads in the bag.

Of course, the example above has some limitations. In particular, in the
example, you knew the actual population characteristic — there were 450
red and 550 blue beads. In social reality, there is no comparable knowledge
of the value of the true characteristic of the underlying population.

Now, some definitions.

An outcome is the result of a random observation. Two or more out-
comes can be said to be independent outcomes if the realization of one
of the outcomes does not affect the realization of the other outcomes. For
example, the roll of two dice represents independent outcomes, because the
outcome of the first die does not affect the outcome of the second die.

Probability has several key properties. First, all outcomes have some
probability ranging from 0 to 1. A probability value of 0 for an outcome
means that the outcome is impossible, and a probability value of 1 for
an outcome means that the outcome is absolutely certain to happen. For
example, taking two fair dice, rolling them, and adding up the sides facing
up, and calculating the probability that the sum will equal 13 is 0, since the
highest possible roll is 12.

Second, the sum of all possible outcomes must be exactly 1. A different
way of putting this is that, once you undertake a random observation, you
must observe something. If you flip a fair coin, the probability of it landing
heads is 1/2, and the probability of it landing tails is 1/2, and the probability
of landing either a head or a tail is 1, because 1/2+1/2 =1.

Third, if (but only if!) two outcomes are independent, then the prob-
ability of those events both occurring is equal to the product of them
individually. So, if we have our fair coin, and toss it three times — and
be mindful that each toss is an independent outcome — the probability of
tossing three tails is 1/2 x1/2 x 1/2=1/8.

Of course, many of the outcomes in which we are interested are not
independent. And in these circumstances, more complex rules of probability
are required that are beyond the scope of this discussion.
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Why is probability relevant for scientific investigations, and in par-
ticular, for political science? For several reasons. First, because political
scientists typically work with samples (not populations) of data, the rules
of probability tell us how we can generalize from our sample to the broader
population. Second, and relatedly, the rules of probability are the key to
identifying which relationships are “statistically significant” (a concept that
we define in the next chapter). Put differently, we use probability theory to
decide whether the patterns of relationships we observe in a sample could
have occurred simply by chance.

LEARNING ABOUT THE POPULATION FROM A SAMPLE:
THE CENTRAL LIMIT THEOREM

The reasons that social scientists rely on sample data instead of on popula-
tion data — in spite of the fact that we care about the results in the population
instead of in the sample — are easy to understand. Consider an election cam-
paign, in which the media, the public, and the politicians involved all want a
sense of which candidates the public favors and by how much. Is it practical
to take a census in such circumstances? Of course not. The adult popula-
tion in the United States is approximately 200 million people, and it is an
understatement to say that we can’t interview each and every one of these
individuals. We simply don’t have the time or the money to do that. There
is a reason why the U.S. government conducts a census only once every
10 years.

Of course, anyone familiar with the ubiquitous public-opinion polls
knows that scholars and news organizations conduct surveys on a sample
of Americans routinely and use the results of these surveys to generalize
about the people as a whole. When you think about it, it seems a little
audacious to think that you can interview perhaps as few as 1000 people
and then use the results of those interviews to generalize to the beliefs and
opinions of the entire 200 million. How is that possible?

The answer lies in a fundamental result from statistics called the
central limit theorem, which Dutch statistician Henk Tijms ( ) calls
“the unofficial sovereign of probability theory.” Before diving into what
the theorem demonstrates, and how it applies to social science research, we
need to explore one of the most useful probability distributions in statistics,
the normal distribution.

4 You might not be aware that, even though the federal government conducts only one census
per 10 years, it conducts sample surveys with great frequency in an attempt to measure
population characteristics such as economic activity.
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Figure 6.1. The normal probability distribution.

The Normal Distribution

To say that a particular distribution is “normal” is not to say that it is
“typical” or “desirable” or “good.” A distribution that is not “normal”
is not something odd like the “deviant” or “abnormal” distribution. It is
worth emphasizing, as well, that normal distributions are not necessarily
common in the real world. Yet, as we will see, they are incredibly useful in
the world of statistics.

The normal distribution is often called a “bell curve” in common lan-
guage. It is shown in Figure and has several special properties. First,
it is symmetrical about its mean,” such that the mode, median, and mean
are the same. Second, the normal distribution has a predictable area under
the curve within specified distances of the mean. Starting from the mean
and going one standard deviation in each direction will capture 68% of
the area under the curve. Going one additional standard deviation in each
direction will capture a shade over 95% of the total area under the curve.

S Equivalently, but a bit more formally, we can characterize the distribution by its mean and
variance (or standard deviation) — which implies that its skewness and excess kurtosis are
both equal to zero.

6 To get exactly 95% of the area under the curve, we would actually go 1.96, not 2, standard
deviations in each direction from the mean. Nevertheless, the rule of two is a handy rule of
thumb for many statistical calculations.
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Figure 6.2. The 68-95-99 rule.

And going a third standard deviation in each direction will capture more
than 99% of the total area under the curve. This is commonly referred to as
the 68-95-99 rule and is illustrated in Figure 6.2. You should bear in mind
that this is a special feature of the normal distribution and does not apply
to any other-shaped distribution. What do the normal distribution and the
68-95-99 rule have to do with the process of learning about population
characteristics based on a sample?

A distribution of actual scores in a sample — called a frequency distri-
bution, to represent the frequency of each value of a particular variable —
on any variable might be shaped normally, or it might not be. Consider
the frequency distribution of 600 rolls of a six-sided (and unbiased) die,
presented in Figure 6.3. Note something about Figure 6.3 right off the bat:
that frequency distribution does not even remotely resemble a normal dis-
tribution.” If we roll a fair six-sided die 600 times, how many 1’s, 2’s, etc.,
should we see? On average, 100 of each, right? That’s pretty close to what
we see in the figure, but only pretty close. Purely because of chance, we
rolled a couple too many 1’s, for example, and a couple too few 6’s.

What can we say about this sample of 600 rolls of the die? And,
more to the point, from these 600 rolls of the die, what can we say
about the underlying population of all rolls of a fair six-sided die? Before
we answer the second question, which will require some inference, let’s
answer the first, which we can answer with certainty. We can calculate the
mean of these rolls of dice in the straightforward way that we learned in

7 In fact, the distribution in the figure very closely resembles a uniform or flat distribution.
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Figure 6.3. Frequency distribution of 600 rolls of a die.

Chapter 5: Add up all of the “scores” — that is, the 1’s, 2’s, and so on — and
divide by the total number of rolls, which in this case is 600. That will lead
to the following calculation:

vV — Zzﬂzl Y
n
31 x106)+(2x98)+(3x97)+ (4 x101)+ (5 x 104) + (6 x 94)

- 600 -
Following the formula for the mean, for our 600 rolls of the die, in the
numerator we must add up all of the 1’s (106 of them), all of the 2’s (98 of
them), and so on, and then divide by 600 to produce our result of 3.47.

We can also calculate the standard deviation of this distribution:

ST (Yi—Y):  [1753.40
= — = =1.71.
A — 599

Looking at the numerator for the formula for the standard deviation that
we learned in Chapter 5, we see that Y (Y; — Y)? indicates that, for each
observation (a 1, 2, 3,4, 5, or 6) we subtract its value from the mean (3.47),
then square that difference, then add up all 600 squared deviations from
the mean, which produces a numerator of 1753.40 beneath the square-root
sign. Dividing that amount by 599 (that is, n—1), then taking the square
root, produces a standard deviation of 1.71.

As we noted, the sample mean is 3.47, but what should we have
expected the mean to be? If we had exactly 100 rolls of each side of the die,
the mean would have been 3.50, so our sample mean is a bit lower than we

3.47.
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would have expected. But then again, we can see that we rolled a few “too
many” 1’s and a few “too few” 6’s, so the fact that our mean is a bit below
3.50 makes sense.

What would happen, though, if we rolled that same die another 600
times? What would the mean value of those rolls be? We can’t say for
certain, of course. Perhaps we would come up with another sample mean
of 3.47, or perhaps it would be a bit above 3.50, or perhaps the mean would
hit 3.50 on the nose. Suppose that we rolled the die 600 times like this not
once, and not twice, but an infinite number of times. Let’s be clear: We do
not mean an infinite number of rolls, we mean rolling the die 600 times for
an infinite number of times. That distinction is critical. We are imagining
that we are taking a sample of 600, not once, but an infinite number of
times. We can refer to a hypothetical distribution of sample means, such as
this, as a sampling distribution. It is hypothetical because scientists almost
never actually draw more than one sample from an underlying population
at one given point in time.

If we followed this procedure, we could take those sample means and
plot them. Some would be above 3.50, some below, some right on it. Here
is the key outcome, though: The sampling distribution would be normally
shaped, even though the underlying frequency distribution is clearly not
normally shaped.

That is the insight of the central limit theorem. If we can envision
an infinite number of random samples and plot our sample means to
each of these random samples, those sample means would be distributed
normally. Furthermore, the mean of the sampling distribution would be
equal to the true population mean. The standard deviation of the sampling

distribution is
Sy

OY = ﬁ’
where 7 is the sample size. The standard deviation of the sampling distribu-
tion of sample means, which is known as the standard error of the mean (or
simply “standard error”), is simply equal to the sample standard deviation
divided by the square root of the sample size. In the preceding die-rolling

example, the standard error of the mean is

1.71
oy = ——=0.07.
Y= 7600

Recall that our goal here is to learn what we can about the underlying
population based on what we know with certainty about our sample. We
know that the mean of our sample of 600 rolls of the die is 3.47 and its
standard deviation is 1.71. From those characteristics, we can imagine that,
if we rolled that die 600 times an infinite number of times, the resulting
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sampling distribution would have a standard deviation of 0.07. Our best
approximation of the population mean is 3.47, because that is the result
that our sample generated.” But we realize that our sample of 600 might
be different from the true population mean by a little bit, either too high
or too low. What we can do, then, is use our knowledge that the sampling
distribution is shaped normally and invoke the 68-95-99 rule to create a
confidence interval about the likely location of the population mean.

How do we do that? First, we choose a degree of confidence that we
want to have in our estimate. Although we can choose any confidence range
up from just above 0 to just below 100, social scientists traditionally rely
on the 95% confidence level. If we follow this tradition — and because our
sampling distribution is normal — we would merely start at our mean (3.47)
and move fwo standard errors of the mean in each direction to produce the
interval that we are approximately 95 % confident that the population mean
lies within. Why #wo standard errors? Because just over 95% of the area
under a normal curve lies within two standard errors of the mean. Again, to
be precisely 95% confident, we would move 1.96, not 2, standard errors in
each direction. But the rule of thumb of two is commonly used in practice.
In other words,

Y+2x0y=347+£(2x0.07)=3.47+£0.14.

That means, from our sample, we are 95% confident that the population
mean for our rolls of the die lies somewhere on the interval between 3.33
and 3.61.

Is it possible that we’re wrong and that the population mean lies outside
that interval? Absolutely. Moreover, we know exactly how likely. There is a
2.5% chance that the population mean is less than 3.33, and a 2.5% chance
that the population mean is greater than 3.61, for a total of a 5% chance
that the population mean is not in the interval from 3.33 to 3.61. For a
variety of reasons, we might like to have more confidence in our estimate.
Say that, instead of being 95% confident, we would be more comfortable
with a 99% level of confidence. In that case, we would simply move three
(instead of two) standard errors in each direction from our sample mean of
3.47, yielding an interval of 3.26-3.68.

Throughout this example we have been helped along by the fact that
we knew the underlying characteristics of the data-generating process (a fair
die). In the real world, social scientists almost never have this advantage.
In the next section we consider such a case.

8 One might imagine that our best guess should be 3.50 because, in theory, a fair die ought
to produce such a result.
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EXAMPLE: PRESIDENTIAL APPROVAL RATINGS

Between June 20 and 24, 2012, NBC News and the Wall Street Journal
sponsored a survey in which 1000 randomly selected Americans were inter-
viewed about their political beliefs. Among the questions they were asked
was the following item intended to tap into a respondent’s evaluation of
the president’s job performance:

In general, do you approve or disapprove of the job Barack Obama is
doing as president?

This question wording is the industry standard, used for over a half-century
by almost all polling organizations.” In June 2012, 47% of the sample
approved of Obama’s job performance, 48% disapproved, and 5% were
unsure.

These news organizations, of course, are not inherently interested in
the opinions of those 1000 Americans who happened to be in the sample,
except insofar as they tell us something about the adult population as a
whole. But we can use these 1000 responses to do precisely that, using the
logic of the central limit theorem and the tools previously described.

To reiterate, we know the properties of our randomly drawn sample
of 1000 people with absolute certainty. If we consider the 470 approving
responses to be 1’s and the remaining 530 responses to be 0’s, then we
calculate our sample mean, Y, as follows:

- YT Y Y (470 x 1)+ (530 x 0)
Y= = =0.47.
n 1000

We calculate the sample standard deviation, sy, in the following way:

oy 1(Y Y)2 470(1—0.47)%+530(0 — 0.47)2
1000 -1

249.1

999 = 0.50.

9 The only changes, of course, are for the name of the current president.

10 The source for the survey was

, accessed July 11, 2012.

11 There are a variety of different ways in which to handle mathematically the 5% of
“uncertain” responses. In this case, because we are interested in calculating the “approval”
rating for this example, it is reasonable to lump the disapproving and unsure answers
together. When we make decisions like this in our statistical work, it is very important
to communicate exactly what we have done so that the scientific audience can make a
reasoned evaluation of our work.
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But what can we say about the population as a whole? Obviously,
unlike the sample mean, the population mean cannot be known with cer-
tainty. But if we imagine that, instead of one sample of 1000 respondents,
we had an infinite number of samples of 1000, then the central limit theorem
tells us that those sample means would be distributed normally. Our best
guess of the population mean, of course, is 0.47, because it is our sample
mean. The standard error of the mean is

0.50
+/1000

which is our measure of uncertainty about the population mean. If we use

=0.016,

O‘Y/:

the rule of thumb and calculate the 95% confidence interval by using two
standard errors in either direction from the sample mean, we are left with
the following interval:

Y+2x0y=047£(2x0.016) =0.47£0.032,

or between 0.438 and 0.502, which translates into being 95 % confident that
the population value of Obama approval is between 43.8% and 50.2%.

And this is where the “plus-or-minus” figures that we always see in
public opinion polls come from.'~ The best guess for the population mean
value is the sample mean value, plus or minus two standard errors. So the
plus-or-minus figures we are accustomed to seeing are built, typically, on
the 95% interval.

What Kind of Sample Was That?

If you read the preceding example carefully, you will have noted that the
NBC-Wall Street Journal poll we described used a random sample of 1000
individuals. That means that they used some mechanism (like random-digit
telephone dialing) to ensure that all members of the population had an
equal probability of being selected for the survey. We want to reiterate the
importance of using random samples. The central limit theorem applies only
to samples that are selected randomly. With a sample of convenience, by
contrast, we cannot invoke the central limit theorem to construct a sampling
distribution and create a confidence interval.

This lesson is critical: A nonrandomly selected sample of convenience
does very little to help us build bridges between the sample and the pop-
ulation about which we want to learn. This has all sorts of implications
about “polls” that news organizations conduct on their web sites. What do

12 In practice, most polling firms have their own additional adjustments that they make to
these calculations, but they start with this basic logic.
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such “surveys” say about the population as a whole? Because their samples
are clearly not random samples of the underlying population, the answer is
“nothing.”

There is a related lesson involved here. The preceding example rep-
resents an entirely straightforward connection between a sample (the
1000 people in the survey) and the population (all adults in the United
States). Often the link between the sample and the population is less
straightforward. Consider, for example, an examination of votes in a coun-
try’s legislature during a given year. Assuming that it’s easy enough to get
all of the roll-call voting information for each member of the legislature
(which is our sample), we are left with a slightly perplexing question: What
is the population of interest? The answer is not obvious, and not all social
scientists would agree on the answer. Some might claim that the data don’t
represent a sample, but a population, because the data set contains the votes
of every member of the legislature. Others might claim that the sample is a
sample of one year’s worth of the legislature since its inception. Others still
might say that the sample is one realization of the infinite number of leg-
islatures that could have happened in that particular year. Suffice it to say
that there is no clear scientific consensus, in this example, of what would
constitute the “sample” and what would constitute the “population.”

A Note on the Effects of Sample Size

As the formula for the confidence interval indicates, the smaller the stan-
dard errors, the “tighter” our resulting confidence intervals will be; larger
standard errors will produce “wider” confidence intervals. If we are inter-
ested in estimating population values, based on our samples, with as much
precision as possible, then it is desirable to have tighter instead of wider
confidence intervals.

How can we achieve this? From the formula for the standard error
of the mean, it is clear through simple algebra that we can get a smaller
quotient either by having a smaller numerator or a larger denominator.
Because obtaining a smaller numerator — the sample standard deviation — is
not something we can do in practice, we can consider whether it is possible
to have a larger denominator — a larger sample size.

Larger sample sizes will reduce the size of the standard errors, and
smaller sample sizes will increase the size of the standard errors. This, we
hope, makes intuitive sense. If we have a large sample, then it should be
easier to make inferences about the population of interest; smaller samples
should produce less confidence about the population estimate.

In the preceding example, if instead of having our sample of 1000, we
had a much larger sample —say, 2500 — our standard errors would have been
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0.50
/2500

which is less than two-thirds the size of our actual standard errors of 0.016.

oy = —0.010,

You can do the math to see that going two standard errors of 0.010 in either
direction produces a narrower interval than going two standard errors of
0.016. But note that the cost of reducing our error by about 1.2% in either
direction is the addition of nearly another 1500 respondents, and in many
cases that reduction in error will not be worth the financial and time costs
involved in obtaining all of those extra interviews.

Consider the opposite case. If, instead of interviewing 1000 individuals,
we interviewed only 400, then our standard errors would have been

0.50
oy = 7700 0.025,
which, when doubled to get our 95% confidence interval, would leave a
plus-or-minus 0.050 (or 5%) in each direction.
We could be downright silly and obtain a random sample of only
64 people if we liked. That would generate some rather wide confidence
intervals. The standard error would be

0.50
oy == =0.082,

which, when doubled to get the 95% confidence interval, would leave a
rather hefty plus-or-minus 0.124 (or 12.4%) in each direction. In this cir-
cumstance, we would guess that Obama’s approval in the population was
47%, but we would be 95% confident that it was between 34.6% and
59.4% — and that alarmingly wide interval would be just too wide to be
particularly informative.

In short, the answer to the question, “How big does my sample need to
be?” is another question: “How tight do you want your confidence intervals
to be?”

A LOOK AHEAD: EXAMINING RELATIONSHIPS
BETWEEN VARIABLES

Let’s take stock for a moment. In this book, we have emphasized that polit-
ical science research involves evaluating causal explanations, which entails
examining the relationships between two or more variables. Yet, in this
chapter, all we have done is talk about the process of statistical inference
with a single variable. This was a necessary tangent, because we had to
teach you the logic of statistical inference — that is, how we use samples to
learn something about an underlying population.



Exercises

In Chapter 7, you will learn three different ways to move into the world
of bivariate hypothesis testing. We will examine relationships between two
variables, typically in a sample, and then make probabilistic assessments
of the likelihood that those relationships exist in the population. The logic
is identical to what you have just learned; we merely extend it to cover
relationships between two variables. After that, in Chapter 8, you will learn
one other way to conduct hypothesis tests involving two variables — the
bivariate regression model.

CONCEPTS INTRODUCED IN THIS CHAPTER

* 68-95-99 rule — a useful characteristic of the normal distribution which
states that moving +/— 1, 2, and 3 standard deviations from the mean
will leave 68, 95, and 99% of the distribution’s area under the curve.

* census — an accounting of a population.

* central limit theorem — a fundamental result from statistics indicat-
ing that if one were to collect an infinite number of random samples
and plot the resulting sample means, those sample means would be
distributed normally around the true population mean.

* confidence interval — a probabilistic statement about the likely value of
a population characteristic based on the observations in a sample.

* frequency distribution — a distribution of actual scores in a sample.

* independent outcomes — two or more outcomes such that the realiza-
tion of one of the outcomes does not affect the realization of the other
outcomes.

* normal distribution — a bell-shaped statistical distribution that can be
entirely characterized by its mean and standard deviation.

* outcome — the result of a random observation.

+ population — data for every possible relevant case.

* random sample — a sample such that each member of the underlying
population has an equal probability of being selected.

» sample —a subset of cases that is drawn from an underlying population.

* sampling distribution — a hypothetical distribution of sample means.

 standard error of the mean — the standard deviation of the sampling
distribution of sample means.

* statistical inference — the process of using what we know about a sample
to make probabilistic statements about the broader population.

EXERCISES

Go to and find a polling statistic that
interests you most. Be sure to click on the “full details” option, where available,
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to get the sample size for the survey item. Then calculate the 95% and 99%
confidence intervals for the population value of the statistic you have in mind,
showing all of your work. Print the page from the web site and turn it in with
your homework.

For the same survey item, what would happen to the confidence interval if the
sample size were cut in half? What would happen instead if it were doubled?
Assume that the sample standard deviation does not change and show your
work.

Are larger sample sizes always better than smaller sample sizes? Explain your
answer.

Refer back to Table 5.2, which shows the incumbent vote percentage in U.S.
presidential elections. Calculate the standard error of the mean for that dis-
tribution, and then construct the 95% confidence interval for the population
mean. Show your work. What does the 95% confidence interval tell us in this
particular case?

If we take a representative draw of 1000 respondents from the population of
the United States for a particular survey question and obtain a 95% confidence
margin, how many respondents would you need to draw from the population of
Maine to obtain the same interval, assuming that the distribution of responses
is the same for both populations?
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Once we have set up a hypothesis test and collected data, how do we eval-
uate what we have found? In this chapter we provide hands-on discussions
of the basic building blocks used to make statistical inferences about the
relationship between two variables. We deal with the often-misunderstood
topic of “statistical significance” — focusing both on what it is and what it
is not — as well as the nature of statistical uncertainty. We introduce three
ways to examine relationships between two variables: tabular analysis, dif-
ference of means tests, and correlation coefficients. (We will introduce a
fourth technique, bivariate regression analysis, in Chapter 8.)

AT BIVARIATE HYPOTHESIS TESTS AND ESTABLISHING
CAUSAL RELATIONSHIPS

In the preceding chapters we introduced the core concepts of hypothesis
testing. In this chapter we discuss the basic mechanics of hypothesis testing
with three different examples of bivariate hypothesis testing. It is worth
noting that, although this type of analysis was the main form of hypothesis
testing in the professional journals up through the 1970s, it is seldom used as
the primary means of hypothesis testing in the professional journals today.'
This is the case because these techniques are good at helping us with only
the first principle for establishing causal relationships. Namely, bivariate

I By definition, researchers conducting bivariate hypothesis tests are making one of two
assumptions about the state of the world. They are assuming either that there are no other
variables that are causally related to the dependent variable in question, or that, if there
are such omitted variables, they are unrelated to the independent variable in the model. We
will have much more to say about omitting independent variables from causal models in
Chapter 9. For now, bear in mind that, as we have discussed in previous chapters, these
assumptions rarely hold when we are describing the political world.
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hypothesis tests help us to answer the question, “Are X and Y related?”
By definition — “bivariate” means “two variables” — these tests cannot help
us with the important question, “Have we controlled for all confounding
variables Z that might make the observed association between X and Y
spurious?”

Despite their limitations, the techniques covered in this chapter are
important starting points for understanding the underlying logic of sta-
tistical hypothesis testing. In the sections that follow we discuss how one
chooses which bivariate test to conduct and then provide detailed discus-
sions of three such tests. Throughout this chapter, try to keep in mind the
main purpose of this exercise: We are attempting to apply the lessons of
the previous chapters to real-world data. We will eventually do this with
more appropriate and more sophisticated tools, but the lessons that we
learn in this chapter will be crucial to our understanding of these more
advanced methods. Put simply, we are trying to get up and walk in the
complicated world of hypothesis testing with real-world data. Once we
have mastered walking, we will then begin to work on running with more
advanced techniques.

CHOOSING THE RIGHT BIVARIATE HYPOTHESIS TEST

As we discussed in previous chapters, and especially in Chapters 5 and
6, researchers make a number of critical decisions before they test their
hypotheses. Once they have collected their data and want to conduct a
bivariate hypothesis test, they need to consider the nature of their depen-
dent and independent variables. As we discussed in Chapter 5, we can
classify variables in terms of the types of values that cases take on. Table 7.1
shows four different scenarios for testing a bivariate hypothesis; which one
is most appropriate depends on the variable type of the independent vari-
able and the dependent variable. For each case, we have listed one or more

Table 7.1. Variable types and appropriate bivariate hypothesis tests

Dependent Categorical Tabular analysis Probit/logit (Ch.11)
variable type Continuous Difference of means Correlation coefficient;

Independent variable type

Categorical Continuous

bivariate regression model (Ch. 8)

Note: Tests in italics are discussed in this chapter.
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appropriate type of bivariate hypothesis tests. In cases in which we can
describe both the independent and dependent variables as categorical, we
use a form of analysis referred to as tabular analysis to test our hypothesis.
When the dependent variable is continuous and the independent variable
is categorical, we use a difference of means test. When the independent
variable is continuous and the dependent variable is categorical, analysts
typically use either a probit or logit model. (These types of statistical models
are discussed in Chapter 11.) Finally, when both the dependent and inde-
pendent variables are continuous, we use a correlation coefficient in this
chapter, and, in Chapter 8, we will discuss the bivariate regression model.

ALL ROADS LEAD TO p

One common element across a wide range of statistical hypothesis tests is
the p-value (the p stands for “probability.”) This value, ranging between 0
and 1, is the closest thing that we have to a bottom line in statistics. But it is
often misunderstood and misused. In this section we discuss the basic logic
of the p-value and relate it back to our discussion in Chapter 6 of using
sample data to make inferences about an underlying population.

The Logic of p-Values

If we think back to the four principles for establishing causal relationships
that were discussed in Chapter 3, the third hurdle is the question “Is there
covariation between X and Y?” To answer this question, we need to apply
standards to real-world data for determining whether there appears to be
a relationship between our two variables, the independent variable X and
the dependent variable Y. The tests listed in the cells in Table are com-
monly accepted tests for each possible combination of data type. In each of
these tests, we follow a common logic: We compare the actual relationship
between X and Y in sample data with what we would expect to find if X
and Y were not related in the underlying population. The more different
the empirically observed relationship is from what we would expect to find
if there were not a relationship, the more confidence we have that X and
Y are related in the population. The logic of this inference from sample to
population is the same as what we used in Chapter 6 to make inferences
about the population mean from sample data.

The statistic that is most commonly associated with this type of logical
exercise is the p-value. The p-value, which ranges between 0 and 1, is the
probability that we would see the relationship that we are finding because
of random chance. Put another way, the p-value tells us the probability
that we would see the observed relationship between the two variables in
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our sample data if there were truly no relationship between them in the
unobserved population. Thus, the lower the p-value, the greater confidence
we have that there is a systematic relationship between the two variables
for which we estimated the particular p-value.

One common characteristic across most statistical techniques is that,
for a particular measured relationship, the more data on which the mea-
surement is based, the lower our p-value will be. This is consistent with one
of the lessons of Chapter 6 about sample size: The larger the sample size, the
more confident we can be that our sample will more accurately represent
the population.” (See Subsection 6.4.2 for a reminder.)

The Limitations of p-Values

Although p-values are powerful indicators of whether or not two variables
are related, they are limited. In this subsection we review those limitations.
It is important that we also understand what a p-value is not: The logic of a
p-value is not reversible. In other words, p =.001 does not mean that there
is 2 .999 chance that something systematic is going on. Also, it is important
to realize that, although a p-value tells us something about our confidence
that there is a relationship between two variables, it does not tell us whether
that relationship is causal.

In addition, it might be tempting to assume that, when a p-value is
very close to zero, this indicates that the relationship between X and Y is
very strong. This is not necessarily true (though it might be true). As we
previously noted, p-values represent our degree of confidence that there is
a relationship in the underlying population. So we should naturally expect
smaller p-values as our sample sizes increase. But a larger sample size does
not magically make a relationship stronger; it does increase our confidence
that the observed relationship in our sample accurately represents the under-
lying population. We saw a similar type of relationship in Chapter 6 when
we calculated standard errors. Because the number of cases is in the denom-
inator of the standard error formula, an increased number of cases leads
to a smaller standard error and a more narrow confidence interval for our
inferences about the population.

Another limitation of p-values is that they do not directly reflect the
quality of the measurement procedure for our variables. Thus, if we are
more confident in our measurement, we should be more confident in a
particular p-value. The flip side of this is that, if we are not very confident

2 Also, the smaller the sample size, the more likely it is that we will get a result that is not
very representative of the population.
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in our measurement of one or both of our variables, we should be less
confident in a particular p-value.

Finally, we should keep in mind that p-values are always based on
the assumption that you are drawing a perfectly random sample from the
underlying population. Mathematically, this is expressed as

pi=PVi.

This translates into “the probability of an individual case from our pop-
ulation ending up in our sample, p;, is assumed to equal P for all of the
individual cases 7.” If this assumption were valid, we would have a truly
random sample. Because this is a standard that is almost never met, we
should use this in our assessment of a particular p-value. The further we
are from a truly random sample, the less confidence we should have in our
p-value.

From p-Values to Statistical Significance

As we outlined in the preceding subsection, lower p-values increase our
confidence that there is indeed a relationship between the two variables in
question. A common way of referring to such a situation is to state that the
relationship between the two variables is statistically significant. Although
this type of statement has a ring of authoritative finality, it is always a
qualified statement. In other words, an assertion of statistical significance
depends on a number of other factors. One of these factors is the set of
assumptions from the previous section. “Statistical significance” is achieved
only to the extent that the assumptions underlying the calculation of the
p-value hold. In addition, there are a variety of different standards for what
is a statistically significant p-value. Most social scientists use the standard
of a p-value of .05. If p is less than .05, they consider a relationship to be
statistically significant. Others use a more stringent standard of .01, or a
more loose standard of .1.

We cannot emphasize strongly enough that finding that X and Y have
a statistically significant relationship does #ot¢ necessarily mean that the
relationship between X and Y is strong or especially that the relationship
is causal. To evaluate whether or not a relationship is strong, we need to
use our substantive knowledge about what it means for the value of Y to
change by a particular amount. We will discuss assessments of the strength
of relationships in greater detail in Chapter 9. To evaluate the case for a

3 More recently, there has been a trend toward reporting the estimated p-value and letting
readers make their own assessments of statistical significance.
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causal relationship, we need to evaluate how well our theory has performed
in terms of all four of the causal hurdles from Chapter

The Null Hypothesis and p-Values

In Chapter | we introduced the concept of the null hypothesis. Our defini-
tion was “A null hypothesis is also a theory-based statement but it is about
what we would expect to observe if our theory were incorrect.” Thus, fol-
lowing the logic that we previously outlined, if our theory-driven hypothesis
is that there is covariation between X and Y, then the corresponding null
hypothesis is that there is no covariation between X and Y. In this context,
another interpretation of the p-value is that it conveys the level of confidence
with which we can reject the null hypothesis.

THREE BIVARIATE HYPOTHESIS TESTS

We now turn to three specific bivariate hypothesis tests. In each case, we are
testing for whether there is a relationship between X and Y. We are doing
this with sample data, and then, based on what we find, making inferences
about the underlying population.

Example 1: Tabular Analysis

Tabular presentations of data on two variables are still used quite widely.
In the more recent political science literature, scholars use them as stepping-
stones on the way to multivariate analyses. It is worth noting at this point
in the process that, in tables, most of the time the dependent variable is
displayed in the rows whereas the independent variable is displayed in the
columns. Any time that you see a table, it is very important to take some
time to make sure that you understand what is being conveyed. We can
break this into the following three-step process:

1. Figure out what the variables are that define the rows and columns of
the table.

2. Figure out what the individual cell values represent. Sometimes they
will be the number of cases that take on the particular row and column
values; other times the cell values will be proportions (ranging from 0 to
1.0) or percentages (ranging from 0 to 100). If this is the case, it is critical
that you figure out whether the researcher calculated the percentages or
proportions for the entire table or for each column or row.

3. Figure out what, if any, general patterns you see in the table.
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Table 7.2. Union households and vote in the 2008 U.S.

presidential election

Not from a union From a union

Candidate household household Total
McCain 471 33.4 45.0
Obama 52.9 66.6 55.0
Total 100.0 100.0 100.0

Note: Cell entries are column percentages.

Let’s go through these steps with Table 7.2. In this table we are testing
the theory that affiliation with trade unions makes people more likely to
support left-leaning candidates.” We can tell from the title and the column
and row headings that this table is comparing the votes of people from union
households with those not from union households in the 2008 U.S. presiden-
tial election. We can use the information in this table to test the hypothesis
that voters from union households were more likely to support Democratic
Party presidential candidate Barack Obama.’ As the first step in reading this
table, we determine that the columns indicate values for the independent
variable (whether or not the individual was from a union household) and
that the rows indicate values for the dependent variable (presidential vote).
The second step is fairly straightforward; the table contains a footnote that
tells us that the “cell entries are column percentages.” This is the easiest
format for pursuing step 3, because the column percentages correspond to
the comparison that we want to make. We want to compare the presiden-
tial votes of people from union households with the presidential votes of
people not from union households. The pattern is fairly clear: People from
the union households overwhelmingly supported Obama (66.6 for Obama
and 33.4 for McCain), whereas people from the nonunion households only
marginally favored Obama (52.9 for Obama and 47.1 for McCain). If we
think in terms of independent (X) and dependent (Y) variables, the com-
parison that we have made is between the distribution of the dependent
variable (Y = Presidential Vote) across values of the independent variable
(X = Type of Household).

4 Take a moment to assess this theory in terms of the first two of the four hurdles that we
discussed in Chapter 3. The causal mechanism is that left-leaning candidates tend to support
policies favored by trade unions. Is this credible? What about hurdle 2? Can we rule out
the possibility that support for left-leaning candidates make one more likely to be affiliated
with a trade union?

5 What do you think about the operationalization of these two variables? How well does it
stand up to what we discussed in Chapter 5?2
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Table 7.3. Gender and vote in the 2008 U.S.

presidential election: Hypothetical scenario

Candidate Male Female Row total
McCain ? ? 45.0
Obama ? ? 55.0
Column total 100.0 100.0 100.0
Note: Cell entries are column percentages.

In Table 7.2, we follow the simple convention of placing the values of
the independent variable in the columns and the values of the dependent
variable in the rows. Then, by calculating column percentages for the cell
values, this makes comparing across the columns straightforward. It is wise
to adhere to these norms, because it is the easiest way to make the compar-
ison that we want, and because it is the way many readers will expect to
see the information.

In our next example we are going to go step-by-step through a bivariate
test of the hypothesis that gender (X) is related to vote (Y) in U.S. presiden-
tial elections. To test this hypothesis about gender and presidential vote, we
are going to use data from the 2008 National Annenberg Election Survey
(NAES from here on). This is an appropriate set of data for testing this
hypothesis because these data are from a randomly selected sample of cases
from the underlying population of interest (U.S. adults). Before we look at
results obtained by using actual data, think briefly about the measurement
of the variables of interest and what we would expect to find if there was
no relationship between the two variables.

Table 7.3 shows partial information from a hypothetical example in
which we know that 45.0% of our sample respondents report having voted
for John McCain and 55.0% of our sample respondents report having voted
for Barack Obama. But, as the question marks inside this table indicate, we
do not know how voting breaks down in terms of gender. If there were
no relationship between gender and presidential voting in 2008, consider
what we would expect to see given what we know from Table 7.3. In other
words, what values should replace the question marks in Table 7.3 if there
were no relationship between our independent variable (X) and dependent
variable (Y)?

If there is not a relationship between gender and presidential vote, then
we should expect to see no major differences between males and females in
terms of how they voted for John McCain and Barack Obama. Because we
know that 45.0% of our cases voted for McCain and 55.0% for Obama,
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Table 7.4. Gender and vote in the 2008 U.S.

presidential election: Expectations for hypothetical
scenario if there were no relationship

Candidate Male Female Row total
McCain 45.0 45.0 45.0
Obama 55.0 55.0 55.0
Column total 100.0 100.0 100.0

Note: Cell entries are column percentages.

Table 7.5. Gender and vote in the 2008 U.S.

presidential election

Candidate Male Female Row total
McCain ? ? 1,434
Obama ? ? 1,755
Column total 1,379 1,810 3,189

Note: Cell entries are number of respondents.

what should we expect to see for males and for females? We should expect
to see the same proportions of males and females voting for each candi-
date. In other words, we should expect to see the question marks replaced
with the values in Table 7.4. This table displays the expected cell values
for the null hypothesis that there is no relationship between gender and
presidential vote.

Table 7.5 shows the total number of respondents who fit into each
column and row from the 2008 NAES. If we do the calculations, we can
see that the numbers in the rightmost column of Table 7.5 correspond with
the percentages from Table 7.3. We can now combine the information from
Table 7.5 with our expectations from Table 7.4 to calculate the number of
respondents that we would expect to see in each cell if gender and presi-
dential vote were unrelated. We display these calculations in Table 7.6. In
Table 7.7, we see the actual number of respondents that fell into each of
the four cells.

Finally, in Table 7.8, we compare the observed number of cases in each
cell (O) with the number of cases that we would expect to see if there were
no relationship between our independent and dependent variables (E).

We can see a pattern. Among males, the proportion observed voting for
Obama is lower than what we would expect if there were no relationship
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Table 7.6. Gender and vote in the 2008 U.S. presidential

election: Calculating the expected cell values if gender and
presidential vote are unrelated

Candidate Male Female

McCain (45% of 1,379) (45% of 1,810)
=0.45x%x1,379=620.55 =0.45x1,810=2814.5

Obama (55% of 1,379) (65% of 1,810)

=0.55%x1,379=758.45 =0.55%x1,810=995.5

Note: Cell entries are expectation calculations if these two variables are
unrelated.

Table 7.7. Gender and vote in the 2008 U.S.

presidential election

Candidate Male Female Row total
McCain 682 752 1,434
Obama 697 1,058 1,755
Column total 1,379 1,810 3,189
Note: Cell entries are number of respondents.

Table 7.8. Gender and vote in the 2008 U.S.

presidential election

Candidate Male Female
McCain O =682;E=620.55 O=752;E=814.5
Obama O=697;E=758.45 O=1,058;E=995.5

Note: Cell entries are the number observed (O); the number expected
if there were no relationship (E).

between the two variables. Also, among men, the proportion voting for
McCain is higher than what we would expect if there were no relationship.
For females this pattern is reversed — the proportion voting for Obama
(McCain) is higher (lower) than we would expect if there were no rela-
tionship between gender and vote for U.S. president. The pattern of these
differences is in line with the theory that women support Democratic Party
candidates more than men do. Although these differences are present, we
have not yet determined that they are of such a magnitude that we should
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now have increased confidence in our theory. In other words, we want to
know whether or not these differences are statistically significant.

To answer this question, we turn to the chi-squared (x?2) test for tabular
association. Karl Pearson originally developed this test when he was testing
theories about the influence of nature versus nurture at the beginning of the
20th century. His formula for the x? statistic is

) (O—E)?
=)

The summation sign in this formula signifies that we sum over each
cell in the table; so a 2 x 2 table would have four cells to add up. If we
think about an individual cell’s contribution to this formula, we can see the
underlying logic of the x? test. If the value observed, O, is exactly equal to
the expected value if there were no relationship between the two variables,
E, then we would get a contribution of zero from that cell to the overall
formula (because O — E would be zero). Thus, if all observed values were
exactly equal to the values that we expect if there were no relationship
between the two variables, then x2 = 0. The more the O values differ from
the E values, the greater the value will be for x2. Because the numerator
on the right-hand side of the x? formula (O — E) is squared, any difference
between O and E will contribute positively to the overall x? value.

Here are the calculations for x? made with the values in Table

2 Z(O—E)2

E
_ (682—620.55)%  (752—814.5)* N (697 —758.45)2 (1,058 — 995.5)2
- 620.55 814.5 758.45 995.5

_ 37761, 3,90625  3,776.1  3906.25
T 620.55 ' 814.5 ' 758.45 ' 9955
—6.09+4.8+4.98+3.92=19.79.

So our calculated value of x2 is 19.79 based on the observed data.
What do we do with this? We need to compare that 19.79 with some pre-
determined standard, called a critical value, of x2. If our calculated value is
greater than the critical value, then we conclude that there is a relationship
between the two variables; and if the calculated value is less than the critical
value, we cannot make such a conclusion.

How do we obtain this critical value? First, we need a piece of informa-
tion known as the degrees of freedom (df) for our test.” In this case, the df
calculation is very simple: df = (r— 1)(c — 1), where r is the number of rows

6 We define degrees of freedom in the next section.
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in the table, and c is the number of columns in the table. In the example in
Table 7.8, there are two rows and two columns, so 2 —1)(2—1) =1.

You can find a table with critical values of x? in Appendix A. If we
adopt the standard p-value of .05, we see that the critical value of x? for
df =1 is 3.841. Therefore a calculated x?2 value of 19.79 is well over the
minimum value needed to achieve a p-value of .05. In fact, continuing out
in this table, we can see that we have exceeded the critical value needed to
achieve a p-value of .001.

At this point, we have established that the relationship between our
two variables meets a conventionally accepted standard of statistical signif-
icance (i.e., p < .05). Although this result is supportive of our hypothesis,
we have not yet established a causal relationship between gender and presi-
dential voting. To see this, think back to the four hurdles along the route to
establishing causal relationships that we discussed in Chapter 3. Thus far,
we have cleared the third hurdle, by demonstrating that X (gender) and Y
(vote) covary. From what we know about politics, we can easily cross hurdle
1, “Is there a credible causal mechanism that links X to Y?” Women might
be more likely to vote for candidates like Obama because, among other
things, women depend on the social safety net of the welfare state more than
men do. If we turn to hurdle 2, “Can we rule out the possibility that Y could
cause X?,” we can pretty easily see that we have met this standard through
basic logic. We know with confidence that changing one’s vote does not
lead to a change in one’s gender. We hit the most serious bump in the road
to establishing causality for this relationship when we encounter hurdle 4,
“Have we controlled for all confounding variables Z that might make the
association between X and Y spurious?” Unfortunately, our answer here is
that we do not yet know. In fact, with a bivariate analysis, we cannot know
whether some other variable Z is relevant because, by definition, there are
only two variables in such an analysis. So, until we see evidence that Z
variables have been controlled for, our scorecard for this causal claim is

lyyynl.

Example 2: Difference of Means

In our second example, we examine a situation in which we have a continu-
ous dependent variable and a categorical independent variable. In this type
of bivariate hypothesis test, we are looking to see if the means are different
across the values of the independent variable. We follow the basic logic
of hypothesis testing: comparing our real-world data with what we would
expect to find if there were no relationship between our independent and
dependent variables. We use the sample means and standard deviations to
make inferences about the unobserved population.
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Our theory in this section will come from the study of parliamentary
governments. When political scientists study phenomena across different
forms of government, one of the fundamental distinctions that they draw
between different types of democracies is whether the regime is parliamen-
tary or not. A democratic regime is labeled “parliamentary” when the lower
house of the legislature is the most powerful branch of government and
directly selects the head of the government.” One of the interesting features
of most parliamentary regimes is that a vote in the lower house of the legisla-
ture can remove the government from power. As a result, political scientists
have been very interested in the determinants of how long parliamentary
governments last when the possibility of such a vote exists.

One factor that is an important difference across parliamentary democ-
racies is whether the party or parties that are in government occupy a
majority of the seats in the legislature.” By definition, the opposition can
vote out of office a minority government, because it does not control a
majority of the seats in the legislature. Thus a pretty reasonable theory
about government duration is that majority governments will last longer
than minority governments.

We can move from this theory to a hypothesis test by using a data set
produced by Michael D. McDonald and Silvia M. Mendes titled “Govern-
ments, 1950-1995.” Their data set covers governments from 21 Western
countries. For the sake of comparability, we will limit our sample to those
governments that were formed after an election.” Our independent variable,
“Government Type,” takes on one of two values: “majority government” or

7 An important part of research design is determining which cases are and are not covered
by our theory. In this case, our theory, which we will introduce shortly, is going to apply
to only parliamentary democracies. As an example, consider whether or not the United
States and the United Kingdom fit this description at the beginning of 2007. In the United
States in 2007, the head of government was President George W. Bush. Because Bush was
selected by a presidential election and not by the lower branch of government, we can
already see that the United States at the beginning of 2007 is not covered by our theory.
In the United Kingdom, we might be tempted at first to say that the head of government
at the beginning of 2007 was Queen Elizabeth II. But, if we consider that British queens
and kings have been mostly ceremonial in UK politics for some time now, we then realize
that the head of government was the prime minister, Tony Blair, who was selected from the
lower house of the legislature, the House of Commons. If we further consider the relative
power of the House of Commons compared with the other branches of government at the
beginning of 2007, we can see that the United Kingdom met our criteria for being classified
as parliamentary.

Researchers usually define a party as being in government if its members occupy one or
more cabinet posts, whereas parties not in government are in opposition.

We have also limited the analyses to cases in which the governments had a legal maximum
of four years before they must call for new elections. These limitations mean that, strictly
speaking, we are only able to make inferences about the population of cases that also fit
these criteria.

®©

o
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Figure 7.1. Box-whisker plot of Government Duration for majority and minority
governments.

“minority government.” Our dependent variable, “Government Duration,”
is a continuous variable measuring the number of days that each govern-
ment lasted in office. Although this variable has a hypothetical range from
1 day to 1461 days, the actual data vary from an Italian government that
lasted for 31 days in 1953 to a Dutch government that lasted for 1749 days
in the late 1980s and early 1990s.

To get a better idea of the data that we are comparing, we can turn to
two graphs that we introduced in Chapter 5 for viewing the distribution of
continuous variables. Figure 7.1 presents a box-whisker plot of government
duration for minority and majority governments, and Figure 7.2 presents a
kernel density plot of government duration for minority and majority gov-
ernments. From both of these plots, it appears that majority governments
last longer than minority governments.

To determine whether the differences from these figures are statistically
significant, we turn to a difference of means test. In this test we compare
what we have seen in the two figures with what we would expect if there
were no relationship between Government Type and Government Duration.
If there were no relationship between these two variables, then the world
would be such that the duration of governments of both types were drawn
from the same underlying distribution. If this were the case, the mean or
average value of Government Duration would be the same for minority and
majority governments.
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Figure 7.2. Kernel density plot of Government Duration for majority and minority
governments.

To test the hypothesis that these means are drawn from the same under-
lying distribution, we use another test developed by Karl Pearson for these
purposes. The test statistic for this is known as a ¢-test because it follows
the ¢-distribution. The formula for this particular #-test is

h-T,
Cse(Yi—Yy)

where Y is the mean of the dependent variable for the first value of the
independent variable and Y is the mean of the dependent variable for the
second value of the independent variable. We can see from this formula that
the greater the difference between the mean value of the dependent variable
across the two values of the independent variable, the further the value of
¢t will be from zero.

In Chapter 6 we introduced the notion of a standard error, which
is a measure of uncertainty about a statistical estimate. The basic logic
of a standard error is that the larger it is, the more uncertainty (or less
confidence) we have in our ability to make precise statements. Similarly,
the smaller the standard error, the greater our confidence about our ability
to make precise statements.

To better understand the contribution of the top and bottom parts of
the #-calculation for a difference of means, look again at Figures 7.1 and
The further apart the two means are and the less dispersed the dlstrlbutlons
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Table 7.9. Government type and government

duration

Government Number of Mean Standard
type observations duration deviation
Majority 124 930.5 466.1
Minority 53 674.4 421.4
Combined 177 853.8 467.1

(as measured by the standard deviations s1 and s;), the greater confidence
we have that Y and Y, are different from each other.

Table 7.9 presents the descriptive statistics for government duration by
government type. From the values displayed in this table we can calculate
the ¢-test statistic for our hypothesis test. The standard error of the differ-
ence between two means (Y1 and Y>), se(Y1 — Y>), is calculated from the
following formula:

2 2
se(V1—¥2) = (““ e+ (% “52>X (5+2)

ni+mn—2 ny  n

where 721 and 71, are the sample sizes, and s% and s% are the sample variances.
If we label the number of days in government for majority governments Y1
and the number of days in government for minority governments Y3, then
we can calculate the standard error as

. (124 — 1)(466.1)% + (53 — 1)(421.4) 1 1
Se(Yl_YZ):\/( 124+77-2 )X\/<ﬁ+§>

se(Yq—Y3) =74.39.
Now that we have the standard error, we can calculate the #-statistic:

_ Yi-Y> _930.5-6744 _256.1 _
T se(Yi—Yy) 7439 74.39

Now that we have calculated this #-statistic, we need one more piece
of information before we can get to our p-value. This is called the degrees
of freedom (df). Degrees of freedom reflect the basic idea that we will gain
confidence in an observed pattern as the amount of data on which that
pattern is based increases. In other words, as our sample size increases, we
become more confident about our ability to say things about the underlying
population. If we turn to Appendix B, which is a table of critical values for
t, we can see that it reflects this logic. This table also follows the same basic
logic as the x? table. The way to read such a table is that the columns are
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defined by targeted p-values, and, to achieve a particular target p-value, you
need to obtain a particular value of ¢. The rows in the #-table indicate the
number of degrees of freedom. As the number of degrees of freedom goes
up, the #-statistic we need to obtain a particular p-value goes down. We
calculate the degrees of freedom for a difference of means #-statistic based
on the sum of total sample size minus two. Thus our degrees of freedom is

n+ny—2=124+53-2=175.

From the p-value, we can look across the row for which df =100 and see
the minimum ¢-value needed to achieve each targeted value of p.'"” In the
second column of the #-table, we can see that, to have a p-value of .10
(meaning that there is a 10%, or 1 in 10, chance that we would see this
relationship randomly in our sample if there were no relationship between
X and Y in the underlying population), we must have a #-statistic greater
than or equal to 1.29. Because 3.44 > 1.29, we can proceed to the next
column for p = .05 and see that 3.44 is also greater than 1.66. In fact, if
we go all the way to the end of the row for df = 100, we can see that our
t-statistic is greater than 3.174, which is the ¢-value needed to achieve p
=.001 (meaning that there is a 0.1%, or 1 in 1000, chance that we would
see this relationship randomly in our sample if there were no relationship
between X and Y in the underlying population). This indicates that we have
very confidently cleared the third hurdle in our assessment of whether or
not there is a causal relationship between majority status and government
duration.

Example 3: Correlation Coefficient

In our final example of bivariate hypothesis testing we look at a situa-
tion in which both the independent variable and the dependent variable
are continuous. We test the hypothesis that there is a positive relation-
ship between economic growth and incumbent-party fortunes in U.S.
presidential elections.

In Chapter 5 we discussed the variation (or variance) of a single vari-
able, and in Chapter 1 we introduced the concept of covariation. In the
three examples that we have looked at so far, we have found there to be
covariation between being from a union household and presidential vote,
gender and presidential vote, and government type and government dura-
tion. All of these examples used at least one categorical variable. When we

10 Although our degrees of freedom equal 175, we are using the row for df = 100 to get a
rough idea of the p-value. With a computer program, we can calculate an exact p-value.
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Figure 7.3. Scatter plot of change in GDP and incumbent-party vote share.

have an independent variable and a dependent variable that are both con-
tinuous, we can visually detect covariation pretty easily in graphs. Consider
the graph in Figure 7.3, which shows a scatter plot of incumbent vote and
economic growth. Scatter plots are useful for getting an initial look at the
relationship between two continuous variables. Any time that you examine
a scatter plot, you should figure out what are the axes and then what each
point in the scatter plot represents. In these plots, the dependent variable (in
this case incumbent vote) should be displayed on the vertical axis while the
independent variable (in this case economic growth) should be displayed
on the horizontal axis. Each point in the scatter plot should represent the
values for the two variables for an individual case. So, in Figure 7.3, we are
looking at the values of incumbent vote and economic growth for each U.S.
presidential election year on which we have data for both variables.

When we look at this graph, we want to assess whether or not we see
a pattern. Since our theory implies that the independent variable causes the
dependent variable, we should move from left to right on the horizontal axis
(representing increasing values of the independent variable) and see whether
there is a corresponding increase or decrease in the values of the dependent
variable. In the case of Figure 7.3, as we move from left to right, we generally
see a pattern of increasing values on the vertical axis. This indicates that,
as expected by our hypothesis, when the economy is doing better (more
rightward values on the horizontal axis), we also tend to see higher vote
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percentages for the incumbent party in U.S. presidential elections (higher
values on the vertical axis).

Covariance is a statistical way of summarizing the general pattern of
association (or the lack thereof) between two continuous variables. The
formula for covariance between two variables X and Y is

X —X)(Y — ?)-
n

covyy =

To better understand the intuition behind the covariance formula, it is
helpful to think of individual cases in terms of their values relative to the
mean of X (X) and the mean of Y (Y). If an individual case has a value for the
independent variable that is greater than the mean of X (X; — X > 0) and its
value for the dependent variable is greater than the mean of Y (Y; — Y > 0),
that case’s contribution to the numerator in the covariance equation will
be positive. If an individual case has a value for the independent variable
that is less than the mean of X (X; — X < 0) and a value of the dependent
variable that is less than the mean of Y (Y; — Y < 0), that case’s contribution
to the numerator in the covariance equation will also be positive, because
multiplying two negative numbers yields a positive product. If a case has
a combination of one value greater than the mean and one value less than
the mean, its contribution to the numerator in the covariance equation will
be negative because multiplying a positive number by a negative number

yields a negative product. Figure 7.4 illustrates this; we see the same plot of
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Figure 7.4. Scatter plot of change in GDP and incumbent-party vote share with mean-
delimited quadrants.
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growth versus incumbent vote, but with the addition of lines showing the
mean value of each variable. In each of these mean-delimited quadrants we
can see the contribution of the cases to the numerator. If a plot contains
cases in mostly the upper-right and lower-left quadrants, the covariance
will tend to be positive. On the other hand, if a plot contains cases in
mostly the lower-right and upper-left quadrants, the covariance will tend
to be negative. If a plot contains a balance of cases in all four quadrants,
the covariance calculation will be close to zero because the positive and
negative values will cancel out each other. When the covariance between
two variables is positive, we describe this situation as a positive relationship
between the variables, and when the covariation between two variables is
negative, we describe this situation as a negative relationship.

Table presents the calculations for each year in the covariance
formula for the data that we presented in Figure 7.4. For each year, we
have started out by calculating the difference between each X and X and
the difference between each Y and Y. If we begin with the year 1876, we can
see that the value for growth (X1g7¢) was 5.11 and the value for vote (Y1g7¢)
was 48.516. The value for growth is greater than the mean and the value
for vote is less than the mean, X376 — X = 5.11 — 0.7025294 = 4.407471
and Yig76 — Y =48.516 — 51.94718 = —3.431181. In Figure 7.4, the dot
for 1876 is in the lower-right quadrant. When we multiply these two mean
deviations together, we get (X157 — X) (Y1376 — Y) = —15.12283.

We repeat this same calculation for every case (presidential election
year). Each negative calculation like this contributes evidence that the
overall relationship between X and Y is negative, whereas each positive
calculation contributes evidence that the overall relationship between X
and Y is positive. The sum across all 34 years of data in Table is
616.59088, indicating that the positive values have outweighed the neg-
ative values. When we divide this by 34, we have the sample covariance,
which equals 18.6846. This tells us that we have a positive relationship, but
it does not tell us how confident we can be that this relationship is different
from what we would see if our independent and dependent variables were
not related in our underlying population of interest. To see this, we turn
to a third test developed by Karl Pearson, Pearson’s correlation coefficient.
This is also known as Pearson’s 7, the formula for which is

covxy

Jvarxvary

Table is a covariance table. In a covariance table, the cells across

the main diagonal (from upper-left to lower-right) are cells for which the
column and the row reference the same variable. In this case the cell entry
is the variance for the referenced variable. Each of the cells off of the main
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Year Growth (X;) Vote (Y;) X;i—X Yi-Y X -X)(Y;i-Y)
1876  5.11 48.516 4.407471  -3.431181 -15.12283
1880 3.879 50.22 3.176471  -1.727179 -5.486332
1884 1.589 49.846 8864706  —2.101179 -1.862634
1888 -5.553 50.414 —-6.255529 -1.533179 9.590843
1892 2.763 48.268 2.060471  -3.679178 -7.580839
1896 -10.024 47.76 -10.72653 -4.187181 44.91393
1900 -1.425 53.171 -2.127529 1.223821  -2.603716
1904 -2.421 60.006 -3.123529 8.058821  -25.17196
1908 -6.281 54.483 —-6.98353  2.535822  —17.70899
1912 4.164 54.708 3.461471  2.76082 9.556498
1916  2.229 51.682 1.526471  -.2651808 -—.4047907
1920 -11.463 36.148 -12.16553 -15.79918 192.2054
1924 -3.872 58.263 4574529 6.315821  -28.89191
1928 4.623 58.756 3.920471  6.808821  26.69378
1932 -14.586 40.851 -15.28853 -11.09618 169.6442
1936 11.836 62.226 11.13347  10.27882  114.439
1940 3.901 54.983 3.198471  3.035822  9.709987
1944 4.233 53.778 3.53047 1.83082 6.463655
1948 3.638 52.319 2.935471  .3718202  1.091467
1952  .726 44.71 .0234706  -7.237181 -.169861
1956 -1.451 57.094 -2.153529 5.146822  -11.08383
1960 .455 49.913 -.2475294 -2.034182 .5035198
1964 5.087 61.203 4.38447 9.255819  40.58187
1968  5.049 49.425 4.34647 -2.522181 -10.96258
1972 5.949 61.791 5.24647 9.843821  51.64531
1976  3.806 48.951 3.103471  -2.99618  -9.298556
1980 -3.659 44.842 -4.361529 -7.105181 30.98945
1984 5.424 59.123 4.72147 7.175821  33.88043
1988 2.21 53.832 1.507471  1.884821  2.841312
1992  2.949 46.379 2.24647 -5.568178 -12.50875
1996 3.258 54.737 2.55547 2.789819  7.129301
2000 2.014 50.262 1.311471  -1.685179 —2.210063
2004 1.989 51.233 1.286471  -.7141783 —.9187693
2008 -2.26 46.311 —2.962529 -5.636179 16.69735
X =0.7025294 Y =51.94718 Y (X; - X)(Y;—Y)
= 616.59088

diagonal displays the covariance for a pair of variables. In covariance tables,
the cells above the main diagonal are often left blank, because the values
in these cells are a mirror image of the values in the corresponding cells
below the main diagonal. For instance, in Table the covariance between
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Table 7.11 Covariance table for growth and vote is the same as
B T the covariance between vote and

TS sty growth, so the upper-right cell in
1880-2004 this table is left blank.

Using the entries in Table 7.11,
we can calculate the correlation
Vote 35.4804 coefficient:

Growth 18.6846 29.8997

Vote Growth

COvVxy
Jvarxvary’
B 18.6846
" /35.4804 x 29.8997
_ 18.6846
"= /1060853316
18.6846

"= 32.57074325°
r=0.57366207.

There are a couple of points worth noting about the correlation coeffi-
cient. If all of the points in the plot line up perfectly on a straight, positively
sloping line, the correlation coefficient will equal 1. If all of the points in the
plot line up perfectly on a straight, negatively sloping line, the correlation
coefficient will equal —1. Otherwise, the values will lie between positive
one and negative one. This standardization of correlation coefficient val-
ues is a particularly useful improvement over the covariance calculation.
Additionally, we can calculate a #-statistic for a correlation coefficient as

[\

rn—
J1—72

with 7 — 2 degrees of freedom, where 7 is the number of cases. In this case,
our degrees of freedom equal 34 —2 = 32.

ty =

For the current example,

[\

1 —
. 0.57366207/34—2 ,
V1—=(0.57366207)2
- 0.57366207 x 5.656854249,
V1—(0.329088171)

t, =




Concepts Introduced in This Chapter

3245122719

"= J0.670911829°

3.245122719
= 0.819092076
t, =3.961853391.

With the degrees of freedom equal to 34 (# = 34) minus two, or 32, we can
now turn to the ¢-table in Appendix B. Looking across the row for df = 30,
we can see that our calculated # of 3.96 is greater even than the critical ¢
at the p-value of .001 (which is 3.385). This tells us that the probability of
seeing this relationship due to random chance is less than .001 or 1 in 1000.
When we estimate our correlation coefficient with a computer program, we
get a more precise p-value of .0004. Thus we can be quite confident that
there is covariation between economic growth and incumbent-party vote
share and that our theory has successfully cleared our third causal hurdle.

WRAPPING UP

We have introduced three methods to conduct bivariate hypothesis tests —
tabular analysis, difference of means tests, and correlation coefficients.
Which test is most appropriate in any given situation depends on the mea-
surement metric of your independent and dependent variables. Table
should serve as a helpful reference for you on this front.

We have yet to introduce the final method for conducting bivariate
hypothesis tests covered in this book, namely bivariate regression analysis.
That is the topic of our next chapter, and it serves as the initial building
block for multiple regression (which we will cover in Chapter 9).

CONCEPTS INTRODUCED IN THIS CHAPTER

+ chi-squared (x?) test for tabular association — a statistical test for a
relationship between two categorical variables.

* correlation coefficient — a measure of linear association between two
continuous variables.

* covariance — an unstandardized statistical measure summarizing the
general pattern of association (or the lack thereof) between two
continuous variables.

1T The first causal hurdle is pretty well cleared if we refer back to the discussion of the theory
of economic voting in earlier chapters. The second causal hurdle also can be pretty well
cleared logically by the timing of the measurement of each variable. Because economic
growth is measured prior to incumbent vote, it is difficult to imagine that Y caused X.
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critical value — a predetermined standard for a statistical test such that
if the calculated value is greater than the critical value, then we con-
clude that there is a relationship between the two variables; and if the
calculated value is less than the critical value, we cannot make such a
conclusion.

degrees of freedom — the number of pieces of information we have
beyond the minimum that we would need to make a particular
inference.

difference of means test —a method of bivariate hypothesis testing that
is appropriate for a categorical independent variable and a continuous
dependent variable.

Pearson’s ¥ — the most commonly employed correlation coefficient.
p-value — the probability that we would see the relationship that we
are finding because of random chance.

statistically significant relationship — a conclusion, based on the
observed data, that the relationship between two variables is not due
to random chance, and therefore exists in the broader population.
tabular analysis — a type of bivariate analysis that is appropriate for
two categorical variables.

EXERCISES

What form of bivariate hypothesis test would be appropriate for the following
research questions:

You want to test the theory that being female causes lower salaries.

You want to test the theory that a state’s percentage of college graduates
is positively related to its turnout percentage.

You want to test the theory that individuals with higher incomes are more
likely to vote.

Explain why each of the following statements is either true or false:

The computer program gave me a p-value of .000, so I know that my
theory has been verified.

The computer program gave me a p-value of .02, so I know that I have
found a very strong relationship.

The computer program gave me a p-value of .07, so I know that this
relationship is due to random chance.

The computer program gave me a p-value of .50, so I know that there is
only a 50% chance of this relationship being systematic.

Take a look at Figure 7.5. What is the dependent variable? What are the
independent variables? What does this table tell us about politics?

What makes the table in Figure so confusing?
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MORAL VALUES - THE TRANSATLANTIC GULF

riv How often do you go to church?

Al Labour Tory Lib Dem Bush Ky
Voters voters voters voters wvoters  volers

Mare than weekly 2% 2% 3% 1% 63% 35%

Weekly 10% 10% 13% 7% 58% 41%
Monthly 5% 6% 4% 6% 50% 50%
Afewtimes ayear 36% 36% 38% 40%  44% 55%
Never O 4T% 46% 43% 44% 34%  64%

4T Which of the following is closest to your view of

e what the law should say about abortion?

Always legal: absalute

right to choose 38% 45% 34% 46% 24% T4%
Masily legal: some

restrictions 36% 35% 40% 32% 3T%  62%

'Nlurstly i'IFegaI:'nnli- Ir-\'é:'u.;.epilunal
circumstances 19% 14% 1B% 1T% 72% 2T%
Always illegal 4% 4% % 3% TTw  22%

(67 Which of the following Is closest to your view of
s, What the law should be towards same-sex couples?

Legal right to marry 28% 33% 18% 31% 22% T7%

Legally civil union
butnotmarriage  37% 37% 39% 47% 51%  48%

No legal recagnludh of
same sex couples 29% 23% 39% 20% 69%  30%

Figure 7.5. What is wrong with this table?

Conduct a tabular analysis from the information presented in the following
hypothetical discussion of polling results: “We did a survey of 800 respon-
dents who were likely Democratic primary voters in the state. Among these
respondents, 45% favored Obama whereas 55% favored Clinton. When we
split the respondents in half at the median age of 40, we found some stark differ-
ences: Among the younger half of the sample respondents, we found that 72.2%
favored Obama to be the nominee and among the older sample respondents,
we found that 68.2% favored Clinton.”

For the example in Exercise 5, test the theory that age is related to preference
for a Democratic nominee.

A lot of people in the United States think that the Watergate scandal in 1972
caused a sea change in terms of U.S. citizens’ views toward incumbent politi-
cians. Use the data in Table to produce a difference of means test of the
null hypothesis that average reelection rates were the same before and after the
Watergate scandal. Because of the timing of the elections and the scandal, 1972
should be coded as a pre-scandal case. Do this test once each for the House and
the Senate. Show all of your work.
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Table 7.12. Incumbent
reelection rates in U.S.

congressional elections,

1964-2006

Year House Senate
1964 87 85
1966 88 88
1968 97 71
1970 85 77
1972 94 74
1974 88 85
1976 96 64
1978 94 60
1980 91 55
1982 920 93
1984 95 20
1986 98 75
1988 98 85
1990 96 96
1992 88 83
1994 920 92
1996 94 91
1998 98 20
2000 98 79
2002 96 86
2004 98 96
2006 94 79

Using the data set “BES2005 Subset,” produce a table that shows the combina-
tion values for the variables “LabourVote” (Y) and “IraqWarApprovalDich”
(X). Read the descriptions of these two variables and write about what this
table tells you about politics in the United Kingdom in 2005. Compute a x>
hypothesis test for these two variables. Write about what this tells you about
politics in the United Kingdom in 2005.

Using the data set “BES2005 Subset,” test the hypothesis that values for
“BlairFeelings” (Y) are different across different values of “IraqWarAp-
provalDich” (X). Read the descriptions of these two variables and write about
what this table tells you about politics in the United Kingdom in 20035.

Using the data set “BES2005 Subset,” produce a scatter plot of the values for
“BlairFeelings” (Y) and “SelfLR” (X). Calculate a correlation coefficient and
p-value for the hypothesis that these two variables are related to each other.
Read the descriptions of these two variables and write about what this table
tells you about politics in the United Kingdom in 2005.
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Regression models are the workhorses of data analysts in a wide range
of fields in the social sciences. We begin this chapter with a discussion of
fitting a line to a scatter plot of data, and then we discuss the additional
inferences that can be made when we move from a correlation coefficient
to a two-variable regression model. We include discussions of measures of
goodness-of-fit and on the nature of hypothesis testing and statistical signifi-
cance in regression models. Throughout this chapter, we present important
concepts in text, mathematical formulae, and graphical illustrations. This
chapter concludes with a discussion of the assumptions of the regression
model and minimal mathematical requirements for estimation.

I ET TWO-VARIABLE REGRESSION

In Chapter 7 we introduced three different bivariate hypothesis tests. In
this chapter we add a fourth, two-variable regression. This is an impor-
tant first step toward the multiple regression model — which is the topic of
Chapter 9 —in which we are able to “control for” another variable (Z) as we
measure the relationship between our independent variable of interest (X)
and our dependent variable (Y). It is crucial to develop an in-depth under-
standing of two-variable regression before moving to multiple regression.
In the sections that follow, we begin with an overview of the two-variable
regression model, in which a line is fit to a scatter plot of data. We then
discuss the uncertainty associated with the line and how we use various
measures of this uncertainty to make inferences about the underlying pop-
ulation. This chapter concludes with a discussion of the assumptions of the
regression model and the minimal mathematical requirements for model
estimation.
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FITTING A LINE: POPULATION < SAMPLE

The basic idea of two-variable regression is that we are fitting the “best” line
through a scatter plot of data. This line, which is defined by its slope and y-
intercept, serves as a statistical model of reality. In this sense, two-variable
regression is very different from the three hypothesis-testing techniques that
we introduced in Chapter 7; although those techniques allow hypothesis
testing, they do not produce a statistical model. You may remember from
a geometry course the formula for a line expressed as

Y=mX+b,

where b is the y-intercept and m is the slope — often explained as the “rise-
over-run” component of the line formula. For a one-unit increase (run)
in X, m is the corresponding amount of rise in Y (or fall in Y, if m is
negative). Together these two elements (72 and b) are described as the line’s
parameters. You may remember exercises from junior high or high school
math classes in which you were given the values of 72 and b and then asked to
draw the resulting line on graph paper. Once we know these two parameters
for a line, we can draw that line across any range of X values.

In a two-variable regression model, we represent the y-intercept param-
eter by the Greek letter alpha («) and the slope parameter by the Greek letter
beta (B).” As foreshadowed by all of our other discussions of variables, Y
is the dependent variable and X is the independent variable. Our theory
about the underlying population in which we are interested is expressed in
the population regression model:

Yi=a+BX;+u;.

Note that in this model there is one additional component, #;, which does
not correspond with what we are used to seeing in line formulae from
geometry classes. This term is the stochastic or “random” component of our
dependent variable. We have this term because we do not expect all of our
data points to line up perfectly on a straight line. This corresponds directly
with our discussion in earlier chapters about the probabilistic (as opposed to

1 The term “parameter” is a synonym for “boundary” with a more mathematical connota-
tion. In the description of a line, the parameters (72 and b in this case) are fixed whereas the
variables (X and Y in this case) vary.

2 If this is not familiar to you, or if you merely want to refresh your memory, you may want
to complete Exercise 1 at the end of this chapter before you continue reading.

3 Different textbooks on regression use slightly different notation for these parameters, so it
is important not to assume that all textbooks use the same notation when comparing across
them.
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deterministic) nature of causal theories about political phenomena. We are,
after all, trying to explain processes that involve human behavior. Because
human beings are complex, there is bound to be a fair amount of random
noise in our measures of their behavior. Thus we think about the values of
our dependent variable Y; as having a systematic component, o + 8X;, and
a stochastic component, #;.

As we have discussed, we rarely work with population data. Instead,
we use sample data to make inferences about the underlying population
of interest. In two-variable regression, we use information from the sample
regression model to make inferences about the unseen population regression
model. To distinguish between these two, we place hats (") over terms in
the sample regression model that are estimates of terms from the unseen
population regression model. Because they have hats, we can describe &
and B as being parameter estimates. These terms are our best guesses of the
unseen population parameters « and S:

sample regression model: Y; = & + BX; + ;.

Note that, in the sample regression model, «, B, and u; get hats, but
Y;, and X; do not. This is because Y; and X; are values for cases in the pop-
ulation that ended up in the sample. As such, Y; and X; are values that are
measured rather than estimated. We use them to estimate «, B, and the «;
values. The values that define the line are the estimated systematic compo-
nents of Y. For each X; value, we use & and § to calculate the predicted
value of Y;, which we call lA/,', where

i},‘ =a+ BX,‘.
This can also be written in terms of expectations,
E(Y|X) = Y; =&+ BX,,

which means that the expected value of Y given X; (or Y;) is equal to our
formula for the two-variable regression line. So we can now talk about
each Y; as having an estimated systematic component, Y, and an estimated
stochastic component, #;. We can thus write our model as

Yi =Y+,

and we can rewrite this in terms of #; to get a better understanding of the
estimated stochastic component:

A

=Y -Y;

From this formula, we can see that the estimated stochastic component
(#;) is equal to the difference between the actual value of the dependent
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Figure 8.1. Scatter plot of change in GDP and incumbent-party vote share.

variable (Y;) and the predicted value of the dependent variable from our
two-variable regression model. Another name for the estimated stochastic
component is the residual. “Residual” is another word for “leftover,” and
this is appropriate, because #; is the leftover part of Y; after we have drawn
the line defined by Y; =&+ BX;. Another way to refer to #;, which follows
from the formula #; = Y; — Y, is to call it the sample error term. Because #;
is an estimate of #;, a corresponding way of referring to #; is to call it the
population error term.

WHICH LINE FITS BEST? ESTIMATING THE REGRESSION LINE

Consider the scatter plot of data in Figure 8.1. Our task is to draw a straight
line that describes the relationship between our independent variable X and
our dependent variable Y.” How do we draw our line? We clearly want to
draw a line that comes as close as possible to the cases in our scatter plot of
data. Because the data have a general pattern from lower-left to upper-right,
we know that our slope will be positive.

In Figure 8.2, we have drawn three lines with positive slopes — labeled
A, B, and C - through the scatter plot of growth and vote and written the
corresponding parametric formula above each line on the right-hand side

4 By “straight line,” we mean a line with a single slope that does not change as we move
from left to right in our figure.



175

8.3 Which Line Fits Best?

A:Y=50.21+1.15Xi
°
:Y=51.51+.62Xi

C:Y=52.01+.25Xi

Incumbent-Party Vote Percentage

15 10 5 0 5 10 15
Percentage Change in Real GDP Per Capita

Figure 8.2. Three possible lines.

of the figure. So, how do we decide which line “best” fits the data that we
see in our scatter plot of X; and Y; values? Because we are interested in
explaining our dependent variable, we want our residual values, #;, which
are vertical distances between each Y; and the corresponding Y;, to be as
small as possible. But, because these vertical distances come in both positive
and negative values, we cannot just add them up for each line and have a
good summary of the “fit” between each line and our data.

So we need a method of assessing the fit of each line in which the
positive and negative residuals do not cancel each other out. One possibility
is to add together the absolute value of the residuals for each line:

n
> 1.
=1

Another possibility is to add together the squared value of each the residuals
for each line:

n
~2
>
i=1

With either choice, we want to choose the line that has the smallest total
value. Table 8.1 presents these calculations for the three lines in Figure

5 Initially, we might think that we would want to minimize the sum of our residuals. But the
line that minimizes the sum of the residuals is actually a flat line parallel to the x-axis. Such
a line does not help us to explain the relationship between X and Y.
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Table 8.1. Measures of total residuals for three

different lines

Line Parametric formula Y1 ,|4;] Y &o,d?
A Y=50.21+1.15X; 149.91 1086.95
B Y=51.51+0.62X; 137.60 785.56
C Y =52.0140.25X; 146.50 926.16

From both calculations, we can see that line B does a better job of fit-
ting the data than lines A and C. Although the absolute-value calculation is
just as valid as the squared residual calculation, statisticians have tended to
prefer the latter (both methods identify the same line as being “best”). Thus
we draw a line that minimizes the sum of the squared residuals Y7 47
This technique for estimating the parameters of a regression model is known
as ordinary least-squares (OLS) regression. For a two-variable OLS regres-
sion, the formulae for the parameter estimates of the line that meet this
criterion are”

YL X=X (Y= Y)
Y (Xi=X)?
a=Y-BX.

B

3

If we examine the formula for B, we can see that the numerator is the
same as the numerator for calculating the covariance between X and Y.
Thus the logic of how each case contributes to this formula, as displayed
in Figure 8.2, is the same. The denominator in the formula for § is the sum
of squared deviations of the X; values from the mean value of X (X). Thus,
for a given covariance between X and Y, the more (less) spread out X is,
the less (more) steep the estimated slope of the regression line.

One of the mathematical properties of OLS regression is that the line
produced by the parameter estimates goes through the sample mean values
of X and Y. This makes the estimation of & fairly simple. If we start out at
the point defined by the mean value of X and the mean value of Y and then
use the estimated slope () to draw a line, the value of X where Y equals
zero is &. Figure 8.3 shows the OLS regression line through the scatter plot
of data. We can see from this figure that the OLS regression line passes
through the point where the line depicting the mean value of X meets the
line depicting the mean value of Y.

6 The formulae for OLS parameter estimates come from setting the sum of squared residuals
equal to zero and using differential calculus to solve for the values of B and &.
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Incumbent-Party Vote Percentage
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Figure 8.3. OLS regression line through scatter plot with mean-delimited quadrants.

Using the data presented in Table 7.10 in the preceding formulae, we
have calculated @ = 51.51 and B = 0.62, making our sample regression
line formula Y = 51.51+0.62X. If we think about what this tells us about
politics, we first need to remember that Y is the incumbent party’s share of
the major-party vote and X is the real per capita growth in GDP. So, if our
measure of growth equals zero, we would expect the incumbent party to
obtain 51.51% of the vote. If growth is not equal to zero, we multiply the
value of growth by 0.62 and add (or subtract, if growth is negative) the result
to 51.51 to obtain our best guess of the value of vote. Moving to the right
or the left along our sample regression line in Figure .3 means that we are
increasing or decreasing the value of growth. For each right-left movement,
we see a corresponding rise or decline in the value of the expected level of
incumbent vote. If we go back to the logic of rise-over-run, our estimated
slope parameter answers the question of how much change in Y we expect
to see from a one-unit increase in X. In other words, a one unit increase in
our independent variable, growth, is expected to lead to a 0.62 increase in
our dependent variable, incumbent vote.

7 Be sure not to invert the independent and dependent variables in describing results. It is ot
correct to interpret these results to say “for every 0.62-point change in growth rate in the
U.S. economy, we should expect to see, on average, an extra 1% in vote percentage for the
incumbent party in presidential elections.” Be sure that you can see the difference in those
descriptions.
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We can tell from Figure that there are points that lie above and
below our regression line. We therefore know that our model does not
perfectly fit the real world. In the next section we discuss a series of infer-
ences that we can make about the uncertainty associated with our sample
regression model.

MEASURING OUR UNCERTAINTY ABOUT THE OLS
REGRESSION LINE

As we have seen in Chapters 6 and 7, inferences about the underlying
population of interest from sample data are made with varying degrees of
uncertainty. In Chapter 7 we discussed the role of p-values in expressing this
uncertainty. With an OLS regression model, we have several different ways
in which to measure our uncertainty. We discuss these measures in terms
of the overall fit between X and Y first and then discuss the uncertainty
about individual parameters. Our uncertainty about individual parameters
is used in the testing of our hypotheses. Throughout this discussion, we
refer to our example of fitting a regression line to our data on U.S. presi-
dential elections in order to test the theory of economic voting. Numerical
results from Stata for this model are displayed in Figure 8.4. These numer-
ical results can be partitioned into three separate areas. The table in the
upper-left corner of Figure gives us measures of the variation in our
model. The set of statistics listed in the upper-right corner of Figure

gives us a set summary statistics about the entire model. Across the bottom
of Figure we get a table of statistics on the model’s parameter esti-
mates. The name of the dependent variable, “VOTE,” is displayed at the
top of this table. Underneath we see the name of our independent variable,
“GROWTH,” and “_cons,” which is short for “constant” (another name

. reg VOTE GROWTH

Source Ss df MS
Number of obs = 34
F 1, 32) = 15.70
Model 385.31241 1 385.312461 Px('ob >F ) = 0.0004
Residual 785.539343 32 24.5481045 R-squared - 0.3201
Adj R-squared = 0.3081
Total 1170.8518 33 35.4803577 Root MSE = 4.9546
VOTE Coef. Std. Err. t p>|t] [95% Conf. Intervall]
GROWTH .6249078 .1577315 3.96 0.000 .3036193 .941963
_cons 51.50816 .8569026 60.11 0.000 49.76271 53.25361

Figure 8.4. Stata results for two-variable regression model of VOTE = o + 8 x
GROWTH.
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for the y-intercept term), which we also know as &. Moving to the right in
the table at the bottom of Figure 8.4, we see that the next column heading
here is “Coef.,” which is short for “coefficient,” which is another name for
parameter estimate. In this column we see the values of 8 and &, which are
0.62 and 51.51 when we round these results to the second decimal place.

Goodness-of-Fit: Root Mean-Squared Error

Measures of the overall fit between a regression model and the dependent
variable are called goodness-of-fit measures. One of the most intuitive of
these measures (despite its name) is root mean-squared error (root MSE).
This statistic is sometimes referred to as the standard error of the regression
model. It provides a measure of the average accuracy of the model in the
metric of the dependent variable. This statistic (“Root MSE” in Figure 8.4)
is calculated as

root MSE =

The squaring and then taking the square root of the quantities in this for-
mula are done to adjust for the fact that some of our residuals will be
positive (points for which Y; is above the regression line) and some will be
negative (points for which Y; is below the regression line). Once we realize
this, we can see that this statistic is basically the average distance between
the data points and the regression line.

From the numeric results depicted in Figure 8.4, we can see that the root
MSE for our two-variable model of incumbent-party vote is 4.95. This value
is found on the sixth line of the column of results on the right-hand side of
Figure 8.4. It indicates that, on average, our model is off by 4.95 points in
predicting the percentage of the incumbent party’s share of the major-party
vote. It is worth emphasizing that the root MSE is always expressed in terms
of the metric in which the dependent variable is measured. The only reason
why this particular value corresponds to a percentage is because the metric
of the dependent variable is vote percentage.

Goodness-of-Fit: R-Squared Statistic

Another popular indicator of the model’s goodness-of-fit is the R-squared
statistic (typically written as R?). The R? statistic ranges between zero and

8 The choice of how many decimal places to report should be decided based on the value of
the dependent variable. In this case, because our dependent variable is a vote percentage,
we have chosen the second decimal place. Political scientists usually do not report election
results beyond the first two decimal places.
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Figure 8.5. Venn diagram of variance and covariance for X and Y.

one, indicating the proportion of the variation in the dependent variable
that is accounted for by the model. The basic idea of the R? statistic is
shown in Figure 8.5, which is a Venn diagram depiction of variation in
X and Y as well as covariation between X and Y. The idea behind this
diagram is that we are depicting variation in each variable with a circle.
The larger the circle, the larger the variation. In this figure, the variation
in Y consists of two areas, a and b, and variation in X consists of areas b
and c. Area a represents variation in Y that is not related to variation in
X, and area b represents covariation between X and Y. In a two-variable
regression model, area  is the residual or stochastic variation in Y. The R?
statistic is equal to area b over the total variation in Y, which is equal to
the sum of areas a and b. Thus smaller values of area a and larger values
of area b lead to a larger R? statistic. The formula for total variation in
Y (areas a and b in Figure 8.5), also known as the total sum of squares
(TSS), is

n
TSS=) (Y;i—Y)%
i=1

The formula for the residual variation in Y, area a that is not accounted for
by X, called the residual sum of squares (RSS), is

n
RSS = "a;.
i=1

Once we have these two quantities, we can calculate the R? statistic as

RSS

RE=1-—".
TSS
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The formula for the other part of TSS that is not the RSS, called the model
sum of squares (MSS), is

n
MSS=> (¥, - ¥)%.
i=1

This can also be used to calculate R? as

MSS
R?=——".
TSS
From the numeric results depicted in Figure 8.4, we can see that

the R? statistic for our two-variable model of incumbent-party vote
is .329. This number appears on the fourth line of the column of
results on the right-hand side of Figure 8.4. It indicates that our model
accounts for about 33% of the variation in the dependent variable.
We can also see in Figure the values for the MSS, RSS, and
TSS under the column labeled “SS” in the table in the upper-left-hand
corner.

Is That a “Good” Goodness-of-Fit?

A logical question to ask when we see a measure of a model’s goodness-of-
fit is “What is a good or bad value for the root MSE and/or R2?” This is not
an easy question to answer. In part, the answer depends on what you are
trying to do with the model. If you are trying to predict election outcomes,
saying that you can predict the outcome with a typical error of 4.95 may
not seem very good. After all, most presidential elections are fairly close
and, in the scheme of things, 4.95% is a lot of votes. In fact, we can see
that in 13 of the 34 elections that we are looking at, the winning margin
was less than 4.95%, making over one-third of our sample of elections too
close to call with this model. On the other hand, looking at this another
way, we can say that we are able to come this close and, in terms of R2,
explain almost 33% of the variation in incumbent vote from 1876 to 2008
with just one measure of the economy. When we start to think of all of
the different campaign strategies, personalities, scandals, wars, and every-
thing else that is not in this simple model, this level of accuracy is rather
impressive. In fact, we would suggest that this tells us something pretty
remarkable about politics in the United States — the economy is massively
important.
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Uncertainty about Individual Components of the Sample
Regression Model

Before we go through this subsection, we want to warn you that there are
a lot of formulae in it. To use a familiar metaphor, as you go through the
formulae in this subsection it is important to focus on the contours of the
forest and not to get caught up in the details of the many trees that we will see
along the way. Instead of memorizing each formula, concentrate on what
makes the overall values generated by these equations larger or smaller.

A crucial part of the uncertainty in OLS regression models is the degree
of uncertainty about individual estimates of population parameter values
from the sample regression model. We can use the same logic that we
discussed in Chapter 6 for making inferences from sample values about pop-
ulation values for each of the individual parameters in a sample regression
model.

One estimate that factors into the calculations of our uncertainty about
each of the population parameters is the estimated variance of the popula-
tion stochastic component, #;. This unseen variance, o2, is estimated from
the residuals (#;) after the parameters for the sample regression model have
been estimated by the following formula:

6’2 — Z?:l 1212 .
n—2

Looking at this formula, we can see two components that play a role in
determining the magnitude of this estimate. The first component comes from
the individual residual values (i;). Remember that these values (calculated
as ;= Y; — Y;) are the vertical distance between each observed Y; value and
the regression line. The larger these values are, the further the individual
cases are from the regression line. The second component of this formula
comes from 7, the sample size. By now, you should be familiar with the
idea that the larger the sample size, the smaller the variance of the estimate.
This is the case with our formula for 62.

Once we have estimated 62, the variance and standard errors for
the slope parameter estimate (8) are then estimated from the following
formulae:

6.2

S X=X

se(B) = y/var(B) = -
Y Y (Xi— X)*

Both of these formulae can be broken into two components that determine

var(f) =

their magnitude. In the numerator, we find ¢ values. So the larger these
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values are, the larger will be the variance and standard error of the slope
parameter estimate. This makes sense, because the farther the points rep-
resenting our data are from the regression line, the less confidence we will
have in the value of the slope. If we look at the denominator in this equation,
we see the term ) 7, (X; — X)2, which is a measure of the variation of the
X; values around their mean (X). The greater this variation, the smaller will
be the variance and standard error of the slope parameter estimate. This is
an important property; in real-world terms it means that the more variation
we have in X, the more precisely we will be able to estimate the relationship
between X and Y.

The variance and standard errors for the intercept parameter estimate
(&) are then estimated from the following formulae:

&2y X2
nY 1 (Xi—X)2

623" X?
se(@) = +/var(@) = \/ Liz1X;
n

S (X = X)2

var(a) =

The logic for taking apart the components of these formulae is slightly
more complicated because we can see that the sum of the X; values squared
appears in the numerator. We can see, however, that the denominator con-
tains the measure of the variation of the X; values around their mean (X)
multiplied by 7, the number of cases. Thus the same basic logic holds for
these terms: The larger the #; values are, the larger will be the variance and
standard error of the intercept parameter estimate; and the larger the vari-
ation of the X; values around their mean, the smaller will be the variance
and standard error of the intercept parameter estimate.

Less obvious — but nevertheless true — from the preceding formulae is
the fact that larger sample sizes will also produce smaller standard errors.
So, just as we learned about the effects of sample size when calculating the
standard error of the mean in Chapter 6, there is an identical effect here.
Larger sample sizes will, other things being equal, produce smaller standard
errors of our estimated regression coefficients.

Confidence Intervals about Parameter Estimates

In Chapter 6 we discussed how we use the normal distribution (supported
by the central limit theorem) to estimate confidence intervals for the unseen
population mean from sample data. We go through the same logical steps to

9 Tt is true because the numerator of the expression contains &, which, as seen previously,
has the sample size # in its denominator.
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estimate confidence intervals for the unseen parameters from the population
regression model by using the results from the sample regression model. The
formulae for estimating confidence intervals are

B[t xse(B)],
a [t x se(a)],

where the value for ¢ is determined from the ¢-table in Appendix B. So, for
instance, if we want to calculate a 95% confidence interval, this means that
we are looking down the column for 0.025."Y Once we have determined
the appropriate column, we select our row based on the number of degrees
of freedom. The number of degrees of freedom for this z-test is equal to the
number of observations () minus the number of parameters estimated (k).
In the case of the regression model presented in Figure 8.4, 7 =34 and k =2,
so our degrees of freedom equal 32. Looking down the column for 0.025
and across the row for 30, we can see that ¢ = 2.042. However, because
we have 32 degrees of freedom, the ¢-values that leave 0.025 in each tail is
2.037."" Thus our 95% confidence intervals are

B+t x se(f)] = 0.6249078 + (2.037 x 0.1577315) = 0.30 to 0.94,
&+t x se(@)] = 51.50816 = (2.037 x 0.8569026) = 49.76 to 53.25.

These values are displayed in the lower right-hand corner of the table at the
bottom of Figure

The traditional approach to hypothesis testing with OLS regression is
that we specify a null hypothesis and an alternative hypothesis and then
compare the two. Although we can test hypotheses about either the slope
or the intercept parameter, we are usually more concerned with tests about
the slope parameter. In particular, we are usually concerned with testing
the hypothesis that the population slope parameter is equal to zero. The
logic of this hypothesis test corresponds closely with the logic of the bivari-
ate hypothesis tests introduced in Chapter 7. We observe a sample slope
parameter, which is an estimate of the population slope. Then, from the
value of this parameter estimate, the confidence interval around it, and the
size of our sample, we evaluate how likely it is that we observe this sample
slope if the true but unobserved population slope is equal to zero. If the

10 To understand this, think back to Chapter 6, where we introduced confidence intervals. A
95% confidence interval would mean that would leave a total of 5% in the tails. Because
there are two tails, we are going to use the 0.025 column.

11 The exact value of ¢ is calculated automatically by statistical packages. For an online tool
that gives exact values of #, go to


http://http://www.stat.tamu.edu/$sim $west/applets/tcal.html
http://http://www.stat.tamu.edu/$sim $west/applets/tcal.html
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answer is “very likely,” then we conclude that the population slope is equal
to zero.

To understand why we so often focus on a slope value of zero, think
about what this corresponds to in the formula for a line. Remember that
the slope is the change in Y from a one-unit increase in X. If that change is
equal to zero, then there is no covariation between X and Y, and we have
failed to clear our third causal hurdle.

These types of tests are either one or two tailed. Most statistical com-
puter programs report the results from two-tailed hypothesis tests that the
parameter in question is not equal to zero. Despite this, many political sci-
ence theories are more appropriately translated into one-tailed hypothesis
tests, which are sometimes referred to as “directional” hypothesis tests.
We review both types of hypothesis tests with the example regression from
Figure

Two-Tailed Hypothesis Tests

The most common form of statistical hypothesis tests about the parameters
from an OLS regression model is a two-tailed hypothesis test that the slope
parameter is equal to zero. It is expressed as

Hy:8=0,
leﬂ 7503

where Hj is the null hypothesis and Hj is the alternative hypothesis. Note
that these two rival hypotheses are expressed in terms of the slope parameter
from the population regression model. To test which of these two hypothe-
ses is supported, we calculate a #-ratio in which B is set equal to the value
specified in the null hypothesis (in this case zero because Hy: 8 = 0), which
we represent as §*:

B—B*

T )

For the slope parameter in the two-variable regression model presented

Lok

in Figure 8.4, we can calculate this as

_ B—p* 0.6249078 -0

P =3.96.
se(B) 0.1577315

From what we have seen in previous chapters, we can tell that this ¢-ratio is
quite large. Remember that a typical standard for statistical significance in
the social sciences is when the p-value is less than .05. If we look across the
row for degrees of freedom equal to 30 in Appendix B, we can see that, to
have a p-value of less than .05, we would need a #-ratio of 2.042 or larger
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(2.037 if we use the exact degrees of freedom). We clearly have exceeded
this standard. '~ In fact, if we look at the far-right-hand column in Appendix
B for 30 degrees of freedom, we can see that this ¢-ratio exceeds the value
for ¢ needed for p to be less than .002 (we get this by looking down the
column labeled “.001” and seeing a required #-value of at least 3.385 for
30 degrees of freedom). This means that it is extremely unlikely that Hy is
the case, which in turn greatly increases our confidence in Hy. If we look
at the table at the bottom of Figure 8.4, we can see that the #-ratio and
resulting p-value for this hypothesis test are presented in the fourth and
fifth columns of the GROWTH row. It is worth noting that although the
reported p-value is .000, this does not mean that the probability of the null
hypothesis being the case is actually equal to zero. Instead, this means that
it is a very small number that gets rounded to zero when we report it to
three decimal places.

The exact same logic is used to test hypotheses about the y-intercept
parameter. The formula for this #-ratio is

. a—aof
k= @)
In Figure we see the calculation for the following null hypothesis and
alternative:
Hpy:a =0,
Hi:ax #0.

The resulting ¢-ratio is a whopping 60.11! This makes sense when we think
about this quantity in real-world terms. Remember that the y-intercept is the
expected value of the dependent variable Y when the independent variable
X is equal to zero. In our model, this means we want to know the expected
value of incumbent-party vote when growth equals zero. Even when the
economy is shrinking, there are always going to be some diehard partisans
who will vote for the incumbent party. Thus it makes sense that the null
hypothesis Hy: @ = 0 would be pretty easy to reject.

Perhaps a more interesting null hypothesis is that the incumbents would
still obtain 50% of the vote if growth were equal to zero. In this case,

Hy:a = 50,
Hi:a #50.

12 Because this is a two-tailed hypothesis test, for the standard of p < .05 we need to look
down the column labeled “.025.” This is the case because we are going to leave .025 in
each tail.
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The corresponding #-ratio is calculated as

&—o*  51.50816—50
se(@  0.8569026

t3p = =1.76.

Looking at the row for degrees of freedom equal to 30, we can see that this
t-ratio is smaller than 2.042, which is the value for p < .05 (from the column
labeled “.025”) but is larger than the 1.697 value for p < .10 (from the
column labeled “.05”). With a more detailed ¢-table or a computer, we could
calculate the exact p-value for this hypothesis test, which is .09. Thus from
these results, we are in a bit of a gray area. We can be pretty confident that
the intercept is not equal to fifty, but we can only reject the null hypothesis
(Ho:a = 50) at the .10 level instead of the widely accepted standard for
statistical significance of .05. Let’s think for a second, however, about our
interest in the value of 50 for the intercept. While the hypothesis test for
the alternative hypothesis that we just tested (Hp : @ # 50) is of interest
to us, might we be more interested in whether or not incumbents would
“win” the popular vote if the growth equaled zero? Before we approach
this question, we will explain the relationship between confidence intervals
and two-tailed hypothesis tests.

The Relationship between Confidence Intervals and
Two-Tailed Hypothesis Tests

In the previous three subsections, we introduced confidence intervals and
hypothesis tests as two of the ways for making inferences about the parame-
ters of the population regression model from our sample regression model.
These two methods for making inferences are mathematically related to
each other. We can tell this because they each rely on the ¢-table. The rela-
tionship between the two is such that, if the 95% confidence interval does
not include a particular value, then the null hypothesis that the popula-
tion parameter equals that value (a two-tailed hypothesis test) will have a
p-value smaller than .05. We can see this for each of the three hypothesis
tests that we discussed in the section on two-tailed hypothesis tests:

* Because the 95% confidence interval for our slope parameter does not
include 0, the p-value for the hypothesis test that 8 =0 is less than .05.

* Because the 95% confidence interval for our intercept parameter does
not include 0, the p-value for the hypothesis test that o = 0 is less
than .05.

* Because the 95% confidence interval for our intercept parameter does
include 50, the p-value for the hypothesis test that @ = 50 is greater
than .05.
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One-Tailed Hypothesis Tests

As we pointed out in previous sections, the most common form of statis-
tical hypothesis tests about the parameters from an OLS regression model
is a two-tailed hypothesis test that the slope parameter is equal to zero.
That this is the most common test is somewhat of a fluke. By default, most
statistical computer programs report the results of this hypothesis test. In
reality, though, most political science hypotheses are that a parameter is
either positive or negative and not just that the parameter is different from
zero. This is what we call a directional hypothesis. Consider, for instance,
the theory of economic voting and how we would translate it into a hypoth-
esis about the slope parameter in our current example. Our theory is that
the better the economy is performing, the higher will be the vote percentage
for the incumbent-party candidate. In other words, we expect to see a pos-
itive relationship between economic growth and the incumbent-party vote
percentage, meaning that we expect 8 to be greater than zero.

When our theory leads to such a directional hypothesis, it is
expressed as

HO:IB < O,
Hq:8 >0,

where Hy is the null hypothesis and Hj is the alternative hypothesis. As was
the case with the two-tailed test, these two rival hypotheses are expressed in
terms of the slope parameter from the population regression model. To test
which of these two hypotheses is supported, we calculate a ¢-ratio where
is set equal to the value specified in the null hypothesis'~ (in this case zero
because Hy: B < 0), which we represent as 8*:

_B-p
se(f)

For the slope parameter in the two-variable regression model presented in

Figure 8.4, we can calculate this as

_B—p*_ 062490780
©ose(f) 04577315 7T

132

Do these calculations look familiar to you? They should, because this
t-ratio is calculated exactly the same way that the ¢-ratio for the two-sided

13 We choose 0 when the null hypothesis is Hy: 8 < 0 because this is the critical value for
the null hypothesis. Under this null hypothesis, zero is the threshold, and evidence that 8
is equal to any value less than or equal to zero is supportive of this null hypothesis.
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hypothesis about this parameter was calculated. The difference comes in
how we use the #-table in Appendix B to arrive at the appropriate p-value
for this hypothesis test. Because this is a one-tailed hypothesis test, we use
the column labeled “.05” instead of the column labeled “.025” to assess
whether we have achieved a #-ratio such that p < .05. In other words, we
would need a #-ratio of only 1.697 for 30 degrees of freedom (1.694 for
32 degrees of freedom) to achieve this level of significance for a one-tailed
hypothesis test. For a two-tailed hypothesis test, we needed a ¢-ratio of
2.047 (2.042).

Now, returning to our hypothesis test about the intercept and the value
of 50, if we change from a two-tailed to a one-tailed hypothesis test,

Hpy:a < 50,
Hi:x > 50,

we still get
a—a*  51.50816 —50

= =1.76.
se(@) 0.8569026

132 =

But, with 32 degrees of freedom, this one-tailed hypothesis test yields a
p-value of .04. In other words, this is a case where the formulation of
our hypothesis test as one-tailed versus two-tailed makes a pretty major
difference, especially since many scholars judge .05 to be the standard for
statistical significance.

We can see from these examples and from the #-table that, when we
have a directional hypothesis, we can more easily reject a null hypothesis.
One of the quirks of political science research is that, even when they have
directional hypotheses, researchers often report the results of two-tailed
hypothesis tests. We’ll discuss the issue of how to present regression results
in greater detail in Chapter

ASSUNMPTIONS, MORE ASSUMPTIONS, AND MINIMAL
MATHEMATICAL REQUIREMENTS

If assumptions were water, you’d need an umbrella right now. Any time that
you estimate a regression model, you are implicitly making a large set of
assumptions about the unseen population model. In this section, we break
these assumptions into assumptions about the population stochastic compo-
nent and assumptions about our model specification. In addition, there are
some minimal mathematical requirements that must be met before a regres-
sion model can be estimated. In this final section we list these assumptions
and requirements and briefly discuss them as they apply to our working
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example of a two-variable regression model of the impact of economic
growth on incumbent-party vote.

Assumptions about the Population Stochastic Component

The most important assumptions about the population stochastic compo-
nent u; are about its distribution. These can be summarized as

u; ~ N(0,072),

which means that we assume that #; is distributed normally (~ N) with the
mean equal to zero and the variance equal to o2.'* This compact mathemat-
ical statement contains three of the five assumptions that we make about the
population stochastic component any time we estimate a regression model.

We now go over each one separately.

u; Is Normally Distributed

The assumption that #; is normally distributed allows us to use the #-table to
make probabilistic inferences about the population regression model from
the sample regression model. The main justification for this assumption is
the central limit theorem that we discussed in Chapter

E(u;)=0: No Bias

The assumption that #; has a mean or expected value equal to zero is also
known as the assumption of zero bias. Consider what it would mean if there
was a case for which E(u;) # 0. In other words, this would be a case for
which we would expect our regression model to be off. If we have cases
like this, we would essentially be ignoring some theoretical insight that we
have about the underlying causes of Y. Remember, this term is supposed to
be random. If E(u;) # 0, then there must be some nonrandom component
to this term. It is important to note here that we do not expect all of our
u; values to equal zero because we know that some of our cases will fall
above and below the regression line. But this assumption means that our
best guess or expected value for each individual #; value is zero.

If we think about the example in this chapter, this assumption means
that we do not have any particular cases for which we expect our model,
with economic growth as the independent variable, to overpredict or under-
predict the value of the incumbent-party vote percentage in any particular
election. If, on the other hand, we had some expectation along these lines,

14 Strictly speaking we do not need to make all of these assumptions to estimate the param-
eters of an OLS model. But we do need to make all of these assumptions to interpret the
results from an OLS model in the standard fashion.
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we would not be able to make this assumption. Say, for instance, that we
expected that during times of war the incumbent party would fare better
than we would expect them to fare based on the economy. Under these cir-
cumstances, we would not be able to make this assumption. The solution
to this problem would be to include another independent variable in our
model that measured whether or not the nation was at war at the time of
each election. Once we control for all such potential sources of bias, we
can feel comfortable making this assumption. The inclusion of additional
independent variables is the main subject covered in Chapter

u; Has Variance o Homoscedasticity

2 seems pretty straight-

The assumption that #; has variance equal to o
forward. But, because this notation for variance does not contain an i
subscript, it means that the variance for every case in the underlying popu-
lation is assumed to be the same. The word for describing this situation is
“homoscedasticity,” which means “uniform error variance.” If this assump-
tion does not hold, we have a situation in which the variance of #; is aiz
known as “heteroscedasticity,” which means “unequal error variance.”
When we have heteroscedasticity, our regression model fits some of the cases
in the population better than others. This can potentially cause us problems
when we are estimating confidence intervals and testing hypotheses.

In our example for this chapter, this assumption would be violated
if, for some reason, some elections were harder than others for our model
to predict. In this case, our model would be heteroscedastic. It could, for
instance, be the case that elections that were held after political debates
became televised are harder to predict with our model in which the only
independent variable is economic performance. Under these circumstances,

the assumption of homoscedasticity would not be reasonable.

No Autocorrelation

We also assume that there is no autocorrelation. Autocorrelation occurs
when the stochastic terms for any two or more cases are systematically
related to each other. This clearly cuts against the grain of the idea that these
terms are stochastic or random. Formally, we express this assumption as

COViyyu; = OViz#j;

in words, this means that the covariance between the population error terms
u; and u; is equal to zero for all 7 not equal to j (for any two unique cases).

The most common form of autocorrelation occurs in regression models
of time-series data. As we discussed in Chapter 4, time-series data involve
measurement of the relevant variables across time for a single spatial unit.
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In our example for this chapter, we are using measures of economic growth
and incumbent-party vote percentage measured every four years for the
United States. If, for some reason, the error terms for adjacent pairs of
elections were correlated, we would have autocorrelation.

X Values Are Measured Without Error

At first, the assumption that X values are measured without error may seem
to be out of place in a listing of assumptions about the population stochastic
component. But this assumption is made to greatly simplify inferences that
we make about our population regression model from our sample regression
model. By assuming that X is measured without error, we are assuming that
any variability from our regression line is due to the stochastic component
u; and not to measurement problems in X. To put it another way, if X also
had a stochastic component, we would need to model X before we could
model Y, and that would substantially complicate matters.

With just about any regression model that we estimate with real-world
data, we will likely be pretty uncomfortable with this assumption. In the
example for this chapter, we are assuming that we have exactly correct
measures of the percentage change in real GDP per capita from 1876 to
2008. If we think a little more about this measure, we can think of all kinds
of potential errors in measurement. What about illegal economic activities
that are hard for the government to measure? Because this is per capita,
how confident are we that the denominator in this calculation, population,
is measured exactly correctly?

Despite the obvious problems with this assumption, we make it every
time that we estimate an OLS model. Unless we move to considerably more
complicated statistical techniques, this is an assumption that we have to
live with and keep in the back of our minds as we evaluate our overall
confidence in what our models tell us.

Recall from Chapter 5, when we discussed measuring our concepts
of interest, that we argued that measurement is important because if we
mismeasure our variables we may make incorrect causal inferences about
the real world. This assumption should make the important lessons of that
chapter crystal clear.

Assumptions about Our Model Specification

The assumptions about our model specification can be summarized as a
single assumption that we have the correct model specification. We break
this into two separate assumptions to highlight the range of ways in which
this assumption might be violated.
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No Causal Variables Left Out; No Noncausal Variables Included

This assumption means that if we specify our two-variable regression model
of the relationship between X and Y there cannot be some other variable
Z that also causes Y.’ It also means that X must cause Y. In other words,
this is just another way of saying that the sample regression model that we
have specified is the true underlying population regression model.

As we have gone through the example in this chapter, we have already
begun to come up with additional variables that we theorize to be causally
related to our dependent variable. To comfortably make this assumption,
we will need to include all such variables in our model. Adding additional
independent variables to our model is the subject of Chapter

Parametric Linearity

The assumption of parametric linearity is a fancy way of saying that our
population parameter B for the relationship between X and Y does not
vary. In other words, the relationship between X and Y is the same across
all values of X.

In the context of our current example, this means that we are assuming
that the impact of a one-unit increase in change in real GDP per capita is
always the same. So moving from a value of —10 to —9 has the same effect
as moving from a value of 1 to 2. In Chapter 10 we discuss some techniques
for relaxing this assumption.

Minimal Mathematical Requirements

For a two-variable regression model, we have two minimal requirements
that must be met by our sample data before we can estimate our parameters.
We will add to these requirements when we expand to multiple regression
models.

X Must Vary

Think about what the scatter plot of our sample data would look like if X
did not vary. Basically, we would have a stack of Y values at the same point
on the x-axis. The only reasonable line that we could draw through this set
of points would be a straight line parallel to the y-axis. Remember that our
goal is to explain our dependent variable Y. Under these circumstances we
would have failed miserably because any Y value would be just as good as

15 One exception to this is the very special case in which there is a Z variable that is causally
related to Y but Z is uncorrelated with X and #;. In this case, we would still be able to get
a reasonable estimate of the relationship between X and Y despite leaving Z out of our
model. More on this in Chapter
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any other given our single value of X. Thus we need some variation in X in
order to estimate an OLS regression model.

n>k

To estimate a regression model, the number of cases (7) must exceed the
number of parameters to be estimated (k). Thus, as a minimum, when we
estimate a two-variable regression model with two parameters (@ and B)
we must have at least three cases.

How Can We Make All of These Assumptions?

The mathematical requirements to estimate a regression model aren’t too
severe, but a sensible question to ask at this point is, “How we can rea-
sonably make all of the assumptions just listed every time that we run a
regression model?” To answer this question, we refer back to the discus-
sion in Chapter | of the analogy between models and maps. We know that
all of our assumptions cannot possibly be met. We also know that we are
trying to simplify complex realities. The only way that we can do this is
to make a large set of unrealistic assumptions about the world. It is cru-
cial, though, that we never lose sight of the fact that we are making these
assumptions. In the next chapter we relax one of these most unrealistic
assumptions made in the two-variable regression model by controlling for
a second variable, Z.

CONCEPTS INTRODUCED IN THIS CHAPTER

* alternative hypothesis — the theory-based expectation that is the
opposite of the null hypothesis.

* directional hypothesis —an alternative hypothesis in which the expected
relationship is either positive or negative.

* ordinary least-squares — aka “OLS,” the most popular method for
computing sample regression models.

* parameter — a synonym for “boundary” with a more mathematical
connotation. In the context of statistics, the value of an unknown
population characteristic.

* parameter estimate — a sample-based calculation of a population
characteristic.

* population error term — in the population regression model, the dif-
ference between the model-based predicted value of the dependent
variable and the true value of the dependent variable.
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* population regression model — a theoretical formulation of the pro-
posed linear relationship between at least one independent variable
and a dependent variable.

* residual — same as population error term.

* root mean-squared error — a calculation of goodness-of-fit made by
squaring each sample error term, summing them up, dividing by the
number of cases, and then taking the square root. Also known as the
“model standard error.”

* R-squared statistic — a goodness-of-fit measure that varies between 0
and 1 representing the proportion of variation in the dependent variable
that is accounted for by the model.

* sample error term — in the sample regression model, the sample-based
estimate of the residual.

* sample regression model — a sample-based estimate of the population
regression model.

* statistical model —a numerical representation of a relationship between
at least one independent variable and a dependent variable.

* stochastic — random.

* t-ratio — the ratio of an estimated parameter to its estimated standard
error.

EXERCISES

Draw an X-Y axis through the middle of a 10 x 10 grid. The point where the
X and Y lines intersect is known as the “origin” and is defined as the point
at which both X and Y are equal to zero. Draw each of the following lines
across the values of X from —5 to 5 and write the corresponding regression
equation:

(a) y-intercept = 2, slope = 2;

(b) y-intercept = -2, slope = 2;

(c) y-intercept = 0, slope = —1;

(d) y-intercept = 2, slope = -2.

Solve each of the following mathematical expressions to yield a single compo-
nent of the bivariate sample regression model:

(a) &+ BX;+i

(b) Yi—E(Y|X;)

(c) BXi+u—Y,

Using the data set “state_data.dta,” we estimated a bivariate regression model
using data from each U.S. state and the District of Columbia with per capita
income (“pcinc” in our data set) as our dependent variable and the percentage of
state residents with a college degree (“pctba” in our data set) as the independent
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variable. The estimated equation was:
pcinc; =11519.78 + 1028.96pctba;.

Interpret the parameter estimate for the effect of a state’s level of education on
average income levels.

In the data set described in Exercise 3, the value of pctba for Illinois equals
29.9. What is the model’s predicted per capita income for Illinois?

The estimated standard error for the slope parameter in the model described
in Exercise 3 was 95.7. Construct a 95% confidence interval for this param-
eter estimate. Show your work. What does this tell you about the estimated
relationship?

Test the hypothesis that the parameter for pctba is not equal to zero. Show your
work. What does this tell you about the estimated relationship?

Test the hypothesis that the parameter for pctba is greater than zero. Show your
work. What does this tell you about the estimated relationship?

The R-squared statistic for the model described in Exercise 3 is 0.70 and the
root MSE =3773.8. What do these numbers tell us about our model?

Estimate and interpret the results from a two-variable regression model different
from the model in Exercise 3 using the data set “state_data.dta.”

Think through the assumptions that you made when you carried out Exercise
Which do you feel least and most comfortable making? Explain your answers.

In Exercise 10 for Chapter 7, you calculated a correlation coefficient for the
relationship between two continuous variables. Now, estimate a two-variable
regression model for these same two variables. Produce a table of the results
and write about what this table tells you about politics in the United Kingdom
in 2005.
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Despite what we have learned in the preceding chapters on hypothesis
testing and statistical significance, we have not yet crossed all four of our
hurdles for establishing causal relationships. Recall that all of the techniques
we have learned in Chapters 8 and 9 are simply bivariate, X- and Y-type anal-
yses. But, to fully assess whether X causes Y, we need to control for other
possible causes of Y, which we have not yet done. In this chapter, we show
how multiple regression — which is an extension of the two-variable model
we covered in Chapter 9 — does exactly that. We explicitly connect the for-
mulae that we include to the key issues of research design that tie the entire
book together. We also discuss some of the problems in multiple regression
models when key causes of the dependent variable are omitted, which ties
this chapter to the fundamental principles presented in Chapters 3 and 4.
Lastly, we will incorporate an example from the political science literature
that uses multiple regression to evaluate causal relationships.

“F} MODELING MULTIVARIATE REALITY

From the very outset of this book, we have emphasized that almost all
interesting phenomena in social reality have more than one cause. And yet
most of our theories are simply bivariate in nature.

We have shown you (in Chapter 4) that there are distinct methods for
dealing with the nature of reality in our designs for social research. If we are
fortunate enough to be able to conduct an experiment, then the process of
randomly assigning our participants to treatment groups will automatically
“control for” those other possible causes that are not a part of our theory.

But in observational research — which represents the vast majority
of political science research — there is no automatic control for the other
possible causes of our dependent variable; we have to control for them

197
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statistically. The main way that social scientists accomplish this is through
multiple regression. The math in this model is an extension of the math
involved in the two-variable regression model you just learned in Chapter

THE POPULATION REGRESSION FUNCTION

We can generalize the population regression model that we learned in
Chapter 9,

bivariate population regression model: Y; = a + BX; +u;,

to include more than one systematic cause of Y, which we have been calling
Z throughout this book:

multiple population regression model: Y; = a + 81 X; + 2. Z; + u;.

The interpretation of the slope coefficients in the three-variable model is
similar to interpreting bivariate coefficients, with one very important differ-
ence. In both, the coefficient in front of the variable X (8 in the two-variable
model, B1 in the multiple regression model) represents the “rise-over-run”
effect of X on Y. In the multiple regression case, though, 1 actually rep-
resents the effect of X on Y while holding constant the effects of Z. If this
distinction sounds important, it is. We show how these differences arise in
the next section.

FROM TWO-VARIABLE TO MULTIPLE REGRESSION

Recall from Chapter 9 that the formula for a two-variable regression line
(in a sample) is

Y; =&+3X,’+ﬁ,u
And recall that, to understand the nature of the effect that X has on Y, the
estimated coefficient § tells us, on average, how many units of change in Y
we should expect given a one-unit increase in X. The formula for 8 in the
two-variable model, as we learned in Chapter 9, is

YL Xi = X)(Yi - V)
Y (X = X)?

Given that our goal is to control for the effects of some third variable,

B:

Z,how exactly is that accomplished in regression equations? If a scatter plot
in two dimensions (X and Y) suggests the formula for a line, then adding a
third dimension suggests the formula for a plane. And the formula for that
plane is

Yi=a+B1Xi+ B2Z;.
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That might seem deceptively simple. A formula representing a plane simply
adds the additional 8, Z; term to the formula for a line.

Pay attention to how the notation has changed. In the two-variable
formula for a line, there were no numeric subscripts for the 8 coefficient —
because, well, there was only one of them. But now we have two inde-
pendent variables, X and Z, that help to explain the variation in Y, and
therefore we have two different coefficients B, and so we subscript them B
and B, to be clear that the values of these two effects are different from one
another.

The key message from this chapter is that, in the preceding formula,
the coefficient 81 represents more than the effect of X on Y; in the multiple
regression formula, it represents the effect of X on Y while controlling for
the effect of Z. Simultaneously, the coefficient B, represents the effect of Z
on Y while controlling for the effect of X. And in observational research,
this is the key to crossing our fourth causal hurdle that we introduced all
the way back in Chapter

How is it the case that the coefficient for g1 actually controls for Z?
After all, B1 is not connected to Z in the formula; it is, quite obviously,
connected to X. The first thing to realize here is that the preceding multiple
regression formula for By is different from the two-variable formula for
from Chapter 9. (We’ll get to the formula shortly.) The key consequence
of this is that the value of 8 derived from the two-variable formula, rep-
resenting the effect of X on Y, will almost always be different — perhaps
only trivially different, or perhaps wildly different — from the value of 81
derived from the multiple regression formula, representing the effect of X
on Y while controlling for the effects of Z.

But how does B1 control for the effects of Z? Let’s assume that X and
Z are correlated. They need not be related in a causal sense, and they need
not be related strongly. They simply have to be related to one another —
that is, for this example, their covariance is not exactly equal to zero. Now,
assuming that they are related somehow, we can write their relationship
just like that of a two-variable regression model:

X;=a'+ ,é/Z,' +e;.

L All of the subsequent math about adding one more independent variable, Z, generalizes
quite easily to adding still more independent variables. We use the three-variable case for
ease of illustration.

2 In many other textbooks on regression analysis, just as we distinguish between g; and
Ba, the authors choose to label their independent variables X1, X3, and so forth. We have
consistently used the notation of X, Y, and Z to emphasize the concept of controlling for
other variables while examining the relationship between an independent and a dependent
variable of theoretical interest. Therefore we will stick with this notation throughout this
chapter.
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Note some notational differences here. Instead of the parameters & and S,
we are calling the estimated parameters & and B’ just so you are aware
that their values will be different from the & and B estimates in previous
equations. And note also that the residuals, which we labeled #; in previous
equations, are now labeled ¢; here.

If we use Z to predict X, then the predicted value of X (or X) based
on Z is simply

Xi=d'+pz,

which is just the preceding equation, but without the error term, because it
is expected (on average) to be zero. Now, we can just substitute the left-hand
side of the preceding equation into the previous equation and get

X;= X,’ +eé;
or, equivalently,

e =X;— )2,‘.
These ¢&;, then, are the exact equivalents of the residuals from the two-
variable regression of Y on X that you learned from Chapter 9. So their
interpretation is identical, too. That being the case, the &; are the portion
of the variation in X that Z cannot explain. (The portion of X that Z can
explain is the predicted portion — the X;.)

So what have we done here? We have just documented the relationship
between Z and X and partitioned the variation in X into two parts — the
portion that Z can explain (the X;) and the portion that Z cannot explain
(the ¢;). Hold this thought.

We can do the exact same thing for the relationship between Z and Y
that we just did for the relationship between Z and X. The process will look
quite similar, with a bit of different notation to distinguish the processes.
So we can model Y as a function of Z in the following way:

Y, =a*+ B*Z,‘ + ;.

Here, the estimated slope is 8* and the error term is represented by ;.
Just as we did with Z and X, if we use Z to predict Y, then the predicted
value of Y (or Y) (which we will label Y*) based on Z is simply

Vi =&+ B2,

which, as before, is identical to the preceding equation, but without the error
term, because the residuals are expected (on average) to be zero. And again,
as before, we can substitute the left-hand side of the preceding equation into
the previous equation, and get
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or, equivalently,
~ K

v,=Y;—-Y;.
These 7;, then, are interpreted in an identical way to that of the preceding
e;. They represent the portion of the variation in Y that Z cannot explain.
(The portion of Y that Z can explain is the predicted portion — the l?i*.)

Now what has this accomplished? We have just documented the rela-
tionship between Z and Y and partitioned the variation in Y into two parts —
the portion that Z can explain and the portion that Z cannot explain.

So we have now let Z try to explain X and found the residuals (the &;
values); similarly, we have also now let Z try to explain Y, and found those
residuals as well (the 7; values). Now back to our three-variable regression
model that we have seen before, with Y as the dependent variable, and X
and Z as the independent variables:

Yi=a+ B Xi+hZi+i.
The formula for 1, representing the effect of X on Y while controlling for
Z,1s
> i Cibi
Yiag
Now, we know what ¢; and #; are from the previous equations. So,
substituting, we get

B =

b= S (X=X (Y — 17,*)
(X —X)?

Pay careful attention to this formula. The “hatted” components in

these expressions are from the two-variable regressions involving Z that
we previously learned about. The key components of the formula for the
effect of X on Y, while controlling for Z, are the ; and #;, which, as we just
learned, are the portions of X and Y (respectively) that Z cannot account
for. And that is how, in the multiple regression model, the parameter 81,
which represents the effects of X on Y, controls for the effects of Z. How?
Because the only components of X and Y that it uses are components that
Z cannot account for — that is, the &; and ;.

Comparing this formula for estimating 81 with the two-variable for-
mula for estimating g is very revealing. Instead of using the factors (X; — X)
and (Y; — Y) in the numerator, which were the components of the two-
variable regression of Y on X from Chapter ¢, in the multiple regression
formula that controls for Z the factors in the numerator are (X; — X;) and
(Y; — 1?,-*), where, again, the hatted portions represent X as predicted by Z
and Y as predicted by Z.
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Note something else in the comparison of the two-variable formula
for estimating B and the multiple regression formula for estimating fi.
The result of 8 in the two-variable regression of Y and X and B in the
three-variable regression of Y on X while controlling for Z will be different
almost all the time. In fact, it is quite rare — though mathematically possible
in theory — that those two values will be identical.

And the formula for estimating B,, likewise, represents the effects of Z
on Y while controlling for the effects of X. These processes, in fact, happen
simultaneously.

It’s been a good number of chapters — five of them, to be precise —
between the first moment when we discussed the importance of controlling
for Z and the point, just above, when we showed you precisely how to do
it. The fourth causal hurdle has never been too far from front-and-center
since Chapter 3, and now you know the process of crossing it.

Don’t get too optimistic too quickly, though. As we noted, the three-
variable setup we just mentioned can easily be generalized to more than
three variables. But the formula for estimating 81 controls only for the
effects of the Z variable that are included in the regression equation. It does
not control for other variables that are not measured and not included in
the model. And what happens when we fail to include a relevant cause of Y
in our regression model? Bad things. Those bad things will come into focus
a bit later in this chapter. Next, we turn to the issues of how to interpret
regression tables using our running example of U.S. presidential elections.

INTERPRETING MULTIPLE REGRESSION

For an illustration of how to interpret multiple regression coefficients, let’s
return to our example from Chapter 8, in which we showed you the results
of a regression of U.S. presidential election results on the previous year’s
growth rate in the U.S. economy (see Figure 8.4). The model we estimated,
you will recall, was Vote = a4 (B x Growth), and the estimated coefficients
there were @ = 51.51 and B = 0.62. For the purposes of this example, we
need to drop the observation from the presidential election of 1876. Doing
this changes our estimates slightly so that & = 51.67 and g = 0.65." Those
results are in column A of Table

3 Later in this chapter, you will see that there are two situations in which the two-variable
and multiple regression parameter estimates of 8 will be the same.

4 We had to drop 1876 because Fair’s data do not include a measure for the new variable that
we are adding in this example, “Good News,” for that year. As we discuss in more detail
in Section , when making comparisons across different models of the same data, it is
extremely important to have exactly the same cases.
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Table 9.1. Three regression models of U.S.

presidential elections

Growth 0.65* — 0.57*
(0.16) — (0.15)

Good News — 0.92* 0.67*
— (0.33) (0.28)

Intercept 51.67* 47.29* 48.24*
(0.86) (1.94) (1.64)

R? 0.36 0.20 0.46

n 33 33 33

Notes: The dependent variable is the percentage of the two
major parties’ vote for the incumbent party’s candidate.
Standard errors are in parentheses.

*=p < 0.05 (two-tailed #-test).

In column A, you see the parameter estimates for the annual growth
rate in the U.S. economy (in the row labeled “Growth”), and the stan-
dard error of that estimated slope, 0.16. In the row labeled “Intercept,”
you see the estimated y-intercept for that regression, 51.67, and its asso-
ciated standard error, 0.86. Both parameter estimates are statistically
significant, as indicated by the asterisk and the note at the bottom of the
table.

Recall that the interpretation of the slope coefficient in a two-variable
regression indicates that, for every one-unit increase in the independent
variable, we expect to see B units of change in the dependent variable. In
the current context, # = 0.65 means that for every extra one percentage
point in growth rate in the U.S. economy, we expect to see, on average, an
extra 0.65% in the vote percentage for the incumbent party in presidential
elections.

But recall our admonition, throughout this book, about being too quick
to interpret any bivariate analysis as evidence of a causal relationship. We
have not shown, in column A of Table 9.1, that higher growth rates in the
economy cause incumbent-party vote totals to be higher. To be sure, the
evidence in column A is consistent with a causal connection, but it does
not prove it. Why not? Because we have not controlled for other possible
causes of election outcomes. Surely there are other causes, in addition to
how the economy has (or has not) grown in the last year, of how well
the incumbent party will fare in a presidential election. Indeed, we can even
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imagine other economic causes that might bolster our statistical explanation
of presidential elections.

Consider the fact that the growth variable accounts for economic
growth over the past year. But perhaps the public rewards or punishes
the incumbent party for sustained economic growth over the long run. In
particular, it does not necessarily make sense for the public to reelect a party
that has presided over three years of subpar growth in the economy but a
fourth year with solid growth. And yet, with our single measure of growth,
we are assuming — rather unrealistically — that the public would pay atten-
tion to the growth rate only in the past year. Surely the public does pay
attention to recent growth, but the public might also pay heed to growth
over the long run.

In column B of Table 9.1, we estimate another two-variable regression
model, this time using the number of consecutive quarters of strong eco-
nomic growth leading up to the presidential election — the variable is labeled
“Good News” —as our independent variable.” (Incumbent-Party Vote Share
remains our dependent variable.) In the row labeled “Good News,” we see
that the parameter estimate is 0.92, which means that, on average, for every
additional consecutive quarter of good economic news, we expect to see a
0.92% increase in incumbent-party vote share. The coefficient is statistically
significant.

Our separate two-variable regressions each show a relationship
between the independent variable in the particular model and incumbent-
party vote shares. But none of the parameter estimates in columns A or
B controls for the other independent variable. We rectify that situation in
column C, in which we estimate the effects of both the Growth and Good
News variables on vote shares simultaneously.

Compare column C with columns A and B. In the row labeled “Good
News,” we see that the estimated parameter of 8 = 0.67 indicates that, for
every extra quarter of a year with strong growth rates, the incumbent party
should expect to see an additional 0.67% of the national vote share, while
controlling for the effects of Growth. Note the additional clause in the inter-
pretation as well as the emphasis that we place on it. Multiple regression
coefficients always represent the effects of a one-point increase in that par-
ticular independent variable on the dependent variable, while controlling
for the effects of all other independent variables in the model. The higher the

5 And, of course, we can imagine variables relating to success or failure in foreign policy, for
example, as other, noneconomic causes of election outcomes.

6 Fair’s operationalization of this variable is “the number of quarters in the first 15 quarters
of the administration in which the growth rate of real per capita GDP is greater than 3.2
percent.”
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number of quarters of continuous strong growth in the economy, the higher
the incumbent-party vote share should be in the next election, controlling
for the previous year’s growth rate.

But, critical to this chapter’s focus on multiple regression, notice in
column C how including the “Good News” variable changes the estimated
effect of the “Growth” variable from an estimated 0.65 in column A to
0.57 in column C. The effect in column C is different because it controls
for the effects of Good News. That is, when the effects of long-running
economic expansions are controlled for, the effects of short-term growth
falls a bit. The effect is still quite strong and is still statistically significant,
but it is more modest once the effects of long-term growth are taken into
account.” Note also that the R? statistic rises from .36 in column A to
46 in column C, which means that adding the “Good News” variable
increased the proportion of the variance of our dependent variable that we
have explained by 10%.

In this particular example, the whole emphasis on controlling for other
causes might seem like much ado about nothing. After all, comparing the
three columns in Table did not change our interpretation of whether
short-term growth rates affect incumbent-party fortunes at the polls. But
we didn’t know this until we tested for the effects of long-term growth.
And later in this chapter, we will see an example in which controlling for
new causes of the dependent variable substantially changes our interpreta-
tions about causal relationships. We should be clear about one other thing
regarding Table 9.1: Despite controlling for another variable, we still have
a ways to go before we can say that we’ve controlled for all other possible
causes of the dependent variable. As a result, we should be cautious about

7 And we can likewise compare the bivariate effect of Good News on Vote shares in column
B with the multivariate results in column C, noting that the effect of Good News, in the
multivariate context, appears to have fallen by approximately one-fourth.

8 It is important to be cautious when reporting contributions to R? statistics by individual
independent variables, and this table provides a good example of why this is the case. If
we were to estimate Model A first and C second, we might be tempted to conclude that
Growth explains 36% of Vote and Good News explains 10%. But if we estimated Model
B and then C, we might be tempted to conclude that Growth explains 26% of Vote and
Good News explains 20%. Actually, both of these sets of conclusions are faulty. The R?
is always a measure of the overall fit of the model to the dependent variable. So, all that
we can say about the R? for Model C is that Growth, Good News, and the intercept term
together explain 46% of the variation in Vote. So, although we can talk about how the
addition or subtraction of a particular variable to a model increases or decreases the model’s
R2, we should not be tempted to attribute particular values of R? to specific independent

variables. If we examine Figure 9.1, we can get some intuition on why this is the case.
The R? statistic for the model represented in this figure is %. It is the presence of

area d that confounds our ability to make definitive statements about the contribution of
individual variables to R?.
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interpreting those results as proof of causality. However, as we continue
to add independent variables to our regression model, we inch closer and
closer to saying that we’ve controlled for every other possible cause that
comes to mind. Recall that, all the way back in Chapter 1, we noted that
one of the “rules of the road” of the scientific enterprise is to always be
willing to consider new evidence. New evidence — in the form of controlling
for other independent variables — can change our inferences about whether
any particular independent variable is causally related to the dependent
variable.

WHICH EFFECT IS “BIGGEST"?

In the preceding analysis, we might be tempted to look at the coefficients in
column C of Table for Growth (0.57) and for Good News (0.67) and
conclude that the effect for Good News is roughly one-third larger than the
effect for Growth. As tempting as such a conclusion might be, it must be
avoided for one critical reason: The two independent variables are measured
in different metrics, which makes that comparison misleading. Short-run
growth rates are measured in a different metric — ranging from negative
numbers for times during which the economy shrunk, all the way through
stronger periods during which growth exceeded 5% per year — than are the
number of quarters of consecutive strong growth — which ranges from 0 in
the data set through 10. That makes comparing the coefficients misleading.

Because the coefficients in Table each exist in the native metric of
each variable, they are referred to as unstandardized coefficients. Although
they are normally not comparable, there is a rather simple method to remove
the metric of each variable to make them comparable with one another.
As you might imagine, such coefficients, because they are on a standard-
ized metric, are referred to as standardized coefficients. We compute them,
quite simply, by taking the unstandardized coefficients and taking out the
metrics — in the forms of the standard deviations — of both the independent
and dependent variables:

~ ~ASX
IBStd = ﬂ b)
Sy

where B is the standardized regression coefficient, 8 is the unstandard-
ized coefficient (as in Table 9.1), and sx and sy are the standard deviations
of X and Y, respectively. The interpretation of the standardized coeffi-
cients changes, not surprisingly. Whereas the unstandardized coefficients
represent the expected change in Y given a one-unit increase in X, the stan-
dardized coefficients represent the expected standard deviation change in
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Y given a one-standard-deviation increase in X. Now, because all parame-
ter estimates are in the same units — that is, the standard deviations — they
become comparable.

Implementing this formula for the unstandardized coefficients in
column C of Table produces the following results. First, for Growth,

. 5.496239
Bseq = 0.5704788 (m) =0.52.

Next, for Good News,

A 2.952272
Bstd :0.673269( ) =0.33.

6.01748

These coefficients would be interpreted as follows: For a one-standard-
deviation increase in Growth, on average, we expect a 0.52-standard-
deviation increase in the incumbent-party vote share, controlling for the
effect of Good News. And for a one-standard-deviation increase in Good
News, we expect to see, on average, a 0.33-standard-deviation increase in
the incumbent-party vote shares, controlling for the effect of Growth. Note
how, when looking at the unstandardized coefficients, we might have mis-
takenly thought that the effect of Good News was larger than the effect of
Growth. But the standardized coefficients (correctly) tell the opposite story:
The estimated effect of Growth is just over 150% of the size of the effect
of Good News.

STATISTICAL AND SUBSTANTIVE SIGNIFICANCE

Related to the admonition about which effect is “biggest,” consider the
following, seemingly simpler, question: Are the effects found in column C
of Table “big”? A tempting answer to that question is “Well of course
they’re big. Both coefficients are statistically significant. Therefore, they’re
big.”

That logic, although perhaps appealing, is faulty. Recall the discussion
from Chapter 6 (specifically, Subsection ) on the effects of sample size

on the magnitude of the standard error of the mean. And we noted the same

9 Some objections have been raised about the use of standardized coefficients (King 1986).
From a technical perspective, because standard deviations can differ across samples, this
makes the results of standardized coefficients particularly sample specific. Additionally, and
from a broader perspective, one-unit or one-standard-deviation shifts in different indepen-
dent variables have different substantive meanings regardless of the metrics in which the
variables are measured. We might therefore logically conclude that there isn’t much use in
trying to figure out which effect is biggest.



208

Multiple Regression: The Basics

effects of sample size on the magnitude of the standard error of our regres-
sion coefficients (specifically, Section 8.4). What this means is that, even if
the strength of the relationship (as measured by our coefficient estimates)
remains constant, by merely increasing our sample size we can affect the
statistical significance of those coefficients. Why? Because statistical signifi-
cance is determined by a #-test (see Subsection ) in which the standard
error is in the denominator of that quotient. What you can remember is that
larger sample sizes will shrink standard errors and therefore make finding
statistically significant relationships more likely.'" It is also apparent from
Appendix B that, when the number of degrees of freedom is greater, it is
easier to achieve statistical significance.

We hope that you can see that arbitrarily increasing the size of a sample,
and therefore finding statistically significant relationships, does not in any
way make an effect “bigger” or even “big.” Recall, such changes to the
standard errors have no bearing on the rise-over-run nature of the slope
coefficients themselves.

How, then, should you judge whether an effect of one variable on
another is “big?” One way is to use the method just described - using
standardized coefficients. By placing the variances of X and Y on the same
metric, it is possible to come to a judgment about how big an effect is.
This is particularly helpful when the independent variables X and Z, or the
dependent variable Y, or both, are measured in metrics that are unfamiliar
or artificial.

When the metrics of the variables in a regression analysis are intu-
itive and well known, however, rendering a judgment about whether an
effect is large or small becomes something of a matter of interpretation.
For example, in Chapter 11, we will see an example relating the effects of
changes in the unemployment rate (X) on a president’s approval rating (Y).
It is very simple to interpret that a slope coefficient of, say, —1.51, means
that, for every additional point of unemployment, we expect approval to
go down by 1.51 points, controlling for other factors in the model. Is that
effect large, small, or moderate? There is something of a judgment call
to be made here, but at least in this case, the metrics of both X and Y
are quite familiar; most people with even an elementary familiarity with
politics will need no explanation as to what unemployment rates mean or
what approval polls mean. Independent of the statistical significance of that
estimate —which, you should note, we have not mentioned here — discussions
of this sort represent attempts to judge the substantive significance of a

10 To be certain, it’s not always possible to increase sample sizes, and, even when possible,
it is nearly always costly to do so. The research situations in which increasing sample size
is most likely, albeit still expensive, is in mass-based survey research.
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coefficient estimate. Substantive significance is more difficult to judge than
statistical significance because there are no numeric formulae for making
such judgments. Instead, substantive significance is a judgment call about
whether or not statistically significant relationships are “large” or “small”
in terms of their real-world impact.

From time to time we will see a “large” parameter estimate that is
not statistically significant. Although it is tempting to describe such a result
as substantively significant, it is not. We can understand this by thinking
about what it means for a particular result to be statistically significant. As
we discussed in Chapter 8, in most cases we are testing the null hypothesis
that the population parameter is equal to zero. In such cases, even when we
have a large parameter estimate, if it is statistically insignificant this means
that it is not statistically distinguishable from zero. Therefore a parameter
estimate can be substantively significant only when it is also statistically
significant.

WHAT HAPPENS WHEN WE FAIL TO CONTROL FOR Z?

Controlling for the effects of other possible causes of our dependent variable
Y, we have maintained, is critical to making the correct causal inferences.
Some of you might be wondering something like the following: “How does
omitting Z from a regression model affect my inference of whether X causes
Y? Zisn’t X, and Z isn’t Y, so why should omitting Z matter?”

Consider the following three-variable regression model involving our
now-familiar trio of X, Y, and Z:

Yi=a+p1 X+ poZi+u,.

And assume, for the moment, that this is the correct model of reality.
That is, the only systematic causes of Y are X and Z; and, to some degree,
Y is also influenced by some random error component, u.

Now let’s assume that, instead of estimating this correct model, we fail
to estimate the effects of Z. That is, we estimate

Y,'=0l+,3TX,'+M;-k.

As we previously hinted, the value of B1 in the correct, three-variable
equation and the value of B} will not be identical under most circum-
stances. (We’ll see the exceptions in a moment.) And that, right there,
should be enough to raise red flags. For, if we know that the three-variable
model is the correct model — and what that means, of course, is that the
estimated value of 1 that we obtain from the data will be equal to the
true population value — and if we know that g will not be equal to f7,
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then there is a problem with the estimated value of g}. That problem is a
statistical problem called bias, which means that the expected value of the
parameter estimate that we obtain from a sample will not be equal to the
true population parameter. The specific type of bias that results from the
failure to include a variable that belongs in our regression model is called
omitted-variables bias.

Let’s get specific about the nature of omitted-variables bias. If, instead
of estimating the true three-variable model, we estimate the incorrect two-
variable model, the formula for the slope g} will be

YL Xi=X) (Y= Y)
Y (Xi=X)?

B =

Notice that this is simply the bivariate formula for the effect of X on Y. (Of
course, the model we just estimated is a bivariate model, in spite of the fact
that we know that Z, as well as X, affects Y.) But because we know that Z
should be in the model, and we know from Chapter & that regression lines
travel through the mean values of each variable, we can figure out that the
following is true:

(Y, = Y) = B1(X; — X) + Bo(Zi = Z) + (u; — ).

We can do this because we know that the plane will travel through each
variable’s mean.

Now notice that the left-hand side of the preceding equation — the
(Y; — Y) —is identical to one portion of the numerator of the slope for ﬁAi‘
Therefore we can substitute the right-hand side of the preceding equation —
yes, that entire mess — into the numerator of the formula for BT

The resulting math isn’t anything that is beyond your skills in alge-
bra, but it is cumbersome, so we won’t derive it here. After a few lines of
multiplying and reducing, though, the formula for Bi“ will reduce to

S Xi=X)(Zi—2Z)

E(B) = .
BD=h1+h =5 3

This might seem like a mouthful — a fact that’s rather hard to deny — but
there is a very important message in it. What the equation says is that the
estimated effect of X on Y, ,éi“, in which we do not include the effects of Z
on Y (but should have), will be equal to the true 1 — that is, the effect with
Z taken into account — plus a bundle of other stuff. That other stuff, strictly
speaking, is bias. And because this bias came about as a result of omitting a
variable (Z) that should have been in the model, this type of bias is known
as omitted-variables bias.
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Obviously, we’d like the expected value of our ﬁi‘ (estimated without
Z) to equal the true B (as if we had estimated the equation with Z). And if
the product on the right-hand side of the “+” sign in the preceding equation
equals zero, it will. When will that happen?'' In two circumstances, neither
of which is particularly likely. First, Bi" = B if B2 = 0. Second, ,3ik =py if
YLX=XZi=D) _

Z?:I(X,'—X)z

equal to zero. What is that quotient? It should look familiar; in fact, it is

the large quotient at the end of the equation — the

the bivariate slope parameter of a regression of Z on X.

In the first of these two special circumstances, the bias term will equal
zero if and only if the effect of Z on Y — that is, the parameter 8, — is zero.
Okay, so it’s safe to omit an independent variable from a regression equation
if it has no effect on the dependent variable. (If that seems obvious to you,
good.) The second circumstance is a bit more interesting: It’s safe to omit
an independent variable Z from an equation if it is entirely unrelated to the
other independent variable X. Of course, if we omit Z in such circumstances,
we’ll still be deprived of understanding how Z affects Y; but at least, so long
as Z and X are absolutely unrelated, omitting Z will not adversely affect
our estimate of the effect of X on Y.

We emphasize that this second condition is unlikely to occur in practice.
Therefore, if Z affects Y, and Z and X are related, then if we omit Z from
our model, our bias term will not equal zero. In the end, omitting Z will
cause us to misestimate the effect of X on Y.

This result has many practical implications. Foremost among them is
the fact that, even if you aren’t interested theoretically in the connection
between Z and Y, you need to control for it, statistically, in order to get an
unbiased estimate of the impact of X, which is the focus of the theoretical
investigation.

That might seem unfair, but it’s true. If we estimate a regression model
that omits an independent variable (Z) that belongs in the model, then the
effects of that Z will somehow work their way into the parameter esti-
mates for the independent variable that we do estimate (X) and pollute our
estimate of the effect of X on Y.

The preceding equation also suggests when the magnitude of the bias
is likely to be large and when it is likely to be small. If either or both of the

ts of d Zi:i;'fli&ﬁ.%;b] a're close to zero,
then the bias is likely to be small (because the bias term is the product of

components of the bias term [8; an

both components); but if both are likely to be large, then the bias is likely
to be quite large.

11 To be very clear, for a mathematical product to equal zero, either one or both of the
components must be zero.
12 Omitting Z f; i del also drives d he R? statisti
mitting Z from our regression model also drives down the R* statistic.
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1% Moreover, the equation also sug-
gests the likely direction of the bias. All
we have said thus far is that the coeffi-
cient Bf will be biased — that is, it will
not equal its true value. But will it be

‘ A X too large or too small? If we have good
guesses about the values of B, and the
correlation between X and Z - that is,
whether or not they are positive or neg-

Figure 9.1. Venn diagram in which ative — then we can suspect the direction

X, Y, and Z are correlated. of the bias. For example, suppose that
B1, B2, and the correlation between X

and Z are all positive. That means that our estimated coefficient Bik will
be larger than it is supposed to be, because a positive number plus the
product of two positive numbers will be a still-larger positive number.

And so on.

To better understand the importance of controlling for other possible
causes of the dependent variable and the importance of the relationship
(or the lack of one) between X and Z, consider the following graphical
illustrations. In Figure 9.1, we represent the total variation of Y, X, and Z
each with a circle.”” The covariation between any of these two variables —
or among all three — is represented by the places where the circles overlap.
Thus, in the figure, the total variation in Y is represented as the sum of the
area a+b+d +{. The covariation between Y and X is represented by the
area b+d.

Note in the figure, though, that the variable Z is related to both Y and
X (because the circle for Z overlaps with both Y and X). In particular, the
relationship between Y and Z is accounted for by the area f + d, and the
relationship between Z and X is accounted for by the area d +e. As we
have already seen, d is also a portion of the relationship between Y and
X. If, hypothetically, we erased the circle for Z from the figure, we would
(incorrectly) attribute all of the area b +d to X, when in fact the d portion
of the variation in Y is shared by both X and Z. This is why, when Z is
related to both X and Y, if we fail to control for Z, we will end up with a
biased estimate of X’s effect on Y.

Consider the alternative scenario, in which both X and Z affect Y, but
X and Z are completely unrelated to one another. That scenario is portrayed

13 With more than two independent variables, it becomes more complex to figure out the
direction of the bias.

14 Recall from Chapter 8 how we introduced Venn diagrams to represent variation (the
circles) and covariation (the overlapping portion of the circles).
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Y graphically in Figure 9.2. There, the cir-
cles for both X and Z overlap with the
circle for Y, but they do not overlap at all

z x  with one another. In that case — which,
\ ’ we have noted, is unlikely in applied
research — we can safely omit considera-

tion of Z when considering the effects of

. ‘ - X on Y. In that figure, the relationship
Figure 9.2. Venn diagram in which

X and Z are correlated with Y, but i
not with each other. fected by the presence (or absence) of Z in

the model.

between X and Y — the area b — is unaf-

An Additional Minimal Mathematical Requirement in
Multiple Regression

We outlined a set of assumptions and minimal mathematical requirements
for the two-variable regression model in Chapter 9. In multiple regression,
all of these assumptions are made and all of the same minimal mathematical
requirements remain in place. In addition to those, however, we need to
add one more minimal mathematical requirement to be able to estimate
our multiple regression models: It must be the case that there is no exact
linear relationship between any two or more of our independent variables
(which we have called X and Z). This is also called the assumption of
no perfect multicollinearity (by which we mean that X and Z cannot be
perfectly collinear, with a correlation coefficient of » =1.0).

What does it mean to say that X and Z cannot exist in an exact linear
relationship? Refer back to Figure 9.1. If X and Z had an exact linear rela-
tionship, instead of having some degree of overlap — that is, some imperfect
degree of correlation — the circles would be exactly on top of one another.
In such cases, it is literally impossible to estimate the regression model,
as separating out the effects of X on Y from the effects of Z on Y is
impossible.

This is not to say that we must assume that X and Z are entirely
uncorrelated with one another (as in Figure ). In fact, in almost all
applications, X and Z will have some degree of correlation between them.
Things become complicated only as that correlation approaches 1.0; and
when it hits 1.0, the regression model will fail to be estimable with both X
and Z as independent variables. In Chapter 10 we will discuss these issues
further.

15 For identical reasons, we could safely estimate the effect of Z on Y — the area f — without
considering the effect of X.
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AN EXAMPLE FROM THE LITERATURE: COMPETING THEORIES OF
HOW POLITICS AFFECTS INTERNATIONAL TRADE

What are the forces that affect international trade? Economists have long
noted that there are economic forces that shape the extent to which two
nations trade with one another.'® The size of each nation’s economy, the
physical distance between them, and the overall level of development have
all been investigated as economic causes of trade.'” But in addition to
economic forces, does politics help to shape international trade?

Morrow, Siverson, and Tabares ( ) investigate three competing
(and perhaps complementary) political explanations for the extent to which
two nations engage in international trade. The first theory is that states with
friendly relations are more likely to trade with one another than are states
engaged in conflict. Conflict, in this sense, need not be militarized disputes
(though it may be).'® Conflict, they argue, can dampen trade in several ways.
First, interstate conflict can sometimes produce embargoes (or prohibitions
on trade). Second, conflict can reduce trade by raising the risks for firms
that wish to engage in cross-border trading.

The second theory is that trade will be higher when both nations are
democracies and lower when one (or both) is an autocracy.'” Because
democracies have more open political and judicial systems, trade should
be higher between democracies because firms in one country will have
greater assurance that any trade disputes will be resolved openly and
fairly in courts to which they have access. In contrast, firms in a demo-
cratic state may be more reluctant to trade with nondemocratic countries,
because it is less certain how any disagreements will be resolved. In addi-
tion, firms may be wary of trading with nondemocracies for fear of having
their assets seized by the foreign government. In short, trading with an
autocratic government should raise the perceived risks of international
trade.

The third theory is that states that are in an alliance with one another
are more likely to trade with one another than are states that are not in

16 Theories of trade and, indeed, many theories about other aspects of international trade
are usually developed with pairs of nations in mind. Thus all of the relevant variables, like
trade, are measured in terms of pairs of nations, which are often referred to as “dyads” by
international relations scholars. The resulting dyadic data sets are often quite large because
they encompass each relevant pair of nations.

17 Such models are charmingly referred to as “gravity models,” because, according to these
theories, the forces driving trade resemble the forces that determine gravitational attraction

between two physical objects.
18 See Pollins ( ) for an extended discussion of this theory.
19 See Dixon and Moon ( ) for an elaboration of this theory.
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Table 9.2. Excerpts from Morrow, Siverson, and
Tabares’s table on the political causes of international

trade

Peaceful relations 1.12* = = 1.45*
(0.22) — = (0.37)

Democratic partners — 1.18* — 1.22*
— (0.12) — (0.13)

Alliance partners — — 0.29* —0.50*

= = (0.03) (0.16)

GNP of exporter 0.67* 0.57* 0.68* 0.56*
(0.07) (0.07) (0.07) (0.08)

R? 0.77 0.78 0.77 0.78

n 2631 2631 2631 2631

Note: Standard errors are in parentheses.

*=p<0.0S.

Other variables were estimated as a part of the regression model but
were excluded from this table for ease of presentation.

such an alliance.”” For states that are not in an alliance, one nation may
be reluctant to trade with another nation if the first thinks that the gains
from trade may be used to arm itself for future conflict. In contrast, states
in an alliance stand to gain from each other’s increased wealth as a result
of trade.

To test these theories, Morrow, Siverson, and Tabares look at trade
among all of the major powers in the international system — the United
States, Britain, France, Germany, Russia, and Italy — during most of the
twentieth century. They consider each pair of states — called dyads — sep-
arately and examine exports to each country on an annual basis.”' Their
dependent variable is the amount of exports in every dyadic relationship in
each year.

Table 9.2 shows excerpts from the analysis of Morrow, Siverson,
and Tabares.”” In column A, they show that, as the first theory predicts,

20 See Gowa (1989) and Gowa and Mansfield (1993) for an extended discussion, including
distinctions between bipolar and multipolar organizations of the international system.

21 This research design is often referred to as a time-series cross-section design, because it
contains both variation between units and variation across time. In this sense, it is a hybrid
of the two types of quasi-experiments discussed in Chapter 3.

22 Interpreting the precise magnitudes of the parameter estimates is a bit tricky in this case,
because the independent variables were all transformed by use of natural logarithms.



Multiple Regression: The Basics

increases in interstate peace are associated with higher amounts of trade
between countries, controlling for economic factors. In addition, the larger
the economy in general, the more trade there is. (This finding is consistent
across all estimation equations.) The results in column B indicate that pairs
of democracies trade at higher rates than do pairs involving at least one
nondemocracy. Finally, the results in column C show that trade is higher
between alliance partners than between states that are not in an alliance
with one another. All of these effects are statistically significant.

So far, each of the theories received at least some support. But, as
you can tell from looking at the table, the results in columns A through
C do not control for the other explanations. That is, we have yet to see
results of a fully multivariate model, in which the theories can compete
for explanatory power. That situation is rectified in column D, in which all
three political variables are entered in the same regression model. There, we
see that the effects of reduced hostility between states is actually enhanced
in the multivariate context — compare the coefficient of 1.12 with the mul-
tivariate 1.45. Similarly, the effects of democratic trading partners remains
almost unchanged in the fully multivariate framework. However, the effect
of alliances changes. Before controlling for conflict and democracy, the
effect of alliances was (as expected) positive and statistically significant.
However, in column D, in which we control for conflict and democracy,
the effect flips signs and is now negative (and statistically significant), which
means that, when we control for these factors, states in an alliance are less
(not more) likely to trade with one another.

The article by Morrow, Siverson, and Tabares represents a case
in which synthesizing several competing explanations for the same phe-
nomenon - international trade — produces surprising findings. By using a
data set that allowed them to test all three theories simultaneously, Mor-
row, Siverson, and Tabares were able to sort out which theories received
support and which did not.

IMPLICATIONS

What are the implications of this chapter? The key take-home point of this
chapter — that failing to control for all relevant independent variables will
often lead to mistaken causal inferences for the variables that do make it into
our models — applies in several contexts. If you are reading a research article
in one of your other classes, and it shows a regression analysis between two
variables, but fails to control for the effects of some other possible cause of
the dependent variable, then you have some reason to be skeptical about
the reported findings. In particular, if you can think of another independent
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variable that is likely to be related to both the independent variable and the
dependent variable, then the relationship that the article does show that fails
to control for that variable is likely to be plagued with bias. And if that’s
the case, then there is substantial reason to doubt the findings. The findings
might be right, but you can’t know that from the evidence presented in the
article; in particular, you’d need to control for the omitted variable to know
for sure.

But this critical issue isn’t just encountered in research articles. When
you read a news article from your favorite media web site that reports a
relationship between some presumed cause and some presumed effect —
news articles don’t usually talk about “independent variables” or “depen-
dent variables” — but fails to account for some other cause that you can
imagine might be related to both the independent and dependent variables,
then you have reason to doubt the conclusions.

It might be tempting to react to omitted-variables bias by saying,
“Omitted-variables bias is such a potentially serious problem that I don’t
want to use regression analysis.” That would be a mistake. In fact, the logic
of omitted-variables bias applies to any type of research, no matter what
type of statistical technique used - in fact, no matter whether the research
is qualitative or quantitative.

Sometimes, as we have seen, controlling for other causes of the depen-
dent variable changes the discovered effects only at the margins. That
happens on occasion in applied research. At other times, however, failure
to control for a relevant cause of the dependent variable can have serious
consequences for our causal inferences about the real world.

In Chapters 10 and 11, we present you with some crucial extensions
of the multiple regression model that you are likely to encounter when
consuming or conducting research.

CONCEPTS INTRODUCED IN THIS CHAPTER

* bias — a statistical problem that occurs when the expected value of the
parameter estimate that we obtain from a sample will not be equal to
the true population parameter.

* dyadic data — data that reflect the characteristics of pairs of spatial
units and/or the relationships between them.

* omitted-variables bias — the specific type of bias that results from the
failure to include a variable that belongs in our regression model.

» perfect multicollinearity — when there is an exact linear relation-
ship between any two or more of a regression model’s independent
variables.
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Table 9.3. Bias in ﬁ1 when the true popu-

lation model is Y; = a + B1X; + B2Z; + u; but
we leave out Z

N (Xi—-X)(Zi-2) . -
Zi=1 T AL~ L)
B2 ST x %) Resulting bias in
0 + ?
0 - ?
+ 0 ?
- 0 ?
+ + ?
= - ?
+ - ?
- + ?

* standardized coefficients — regression coefficients such that the rise-
over-run interpretation is expressed in standard-deviation units of each
variable.

* substantive significance — a judgment call about whether or not statis-
tically significant relationships are “large” or “small” in terms of their
real-world impact.

+ unstandardized coefficients — regression coefficients such that the rise-
over-run interpretation is expressed in the original metric of each
variable.

EXERCISES

Identify an article from a prominent web site that reports a causal relationship
between two variables. Can you think of another variable that is related to both
the independent variable and the dependent variable? Print and turn in a copy
of the article with your answers.

In Exercise 1, estimate the direction of the bias resulting from omitting the third
variable.

Fill in the values in the third column of Table 9.3.

In your own research you have found evidence from a bivariate regression model
that supports your theory that your independent variable X; is positively related
to your dependent variable Y; (the slope parameter for X; was statistically
significant and positive when you estimated a bivariate regression model). You
go to a research presentation in which other researchers present a theory that
their independent variable Z; is negatively related to their dependent variable
Y;. They report the results from a bivariate regression model in which the slope
parameter for Z; was statistically significant and negative. Your Y; and their
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Table 9.4. Three regression models of teacher salaries in the U.S. states and the

District of Columbia

A B C

Percentage of state residents with a college degree 704.02* — 24.56
(140.22) — (231.72)

Per capita income — 0.68* 0.66*

= (0.11) (0.19)

Intercept 28768.01* 21168.11* 21161.07*
(3913.27) (4102.40) (4144.96)

R? 0.34 0.47 0.47

n 51 51 51

Notes: The dependent variable is the average salary of public elementary and secondary school teachers.
Standard errors are in parentheses.
* =p < 0.05 (two-tailed #-test)

Y; are the same variable. What would be your reaction to these findings under
each of the following circumstances?

(a) You are confident that the correlation between Z; and X; is equal to zero.
(b) You think that the correlation between Z; and X; is positive.
() You think that the correlation between Z; and X; is negative.

5. Using the results depicted in Table 9.4, interpret the results of the bivariate
models displayed in columns A and B.

6. Using the results depicted in Table 9.4, interpret the results of the multiple
regression model displayed in column C. Compare the results in column C with
those in both columns A and B.

7. Draw a Venn diagram that depicts what is going on between the three variables
based on the results in table Table 9.4.
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In this chapter we provide introductory discussions of and advice for
commonly encountered research scenarios involving multiple regression
models. Issues covered include dummy independent variables, interactive
specifications, influential cases, and multicollinearity.

EXTENSIONS OF OLS

In the previous two chapters we discussed in detail various aspects of the
estimation and interpretation of OLS regression models. In this chapter we
go through a series of research scenarios commonly encountered by political
science researchers as they attempt to test their hypotheses within the OLS
framework. The purpose of this chapter is twofold — first, to help you to
identify when you encounter these issues and, second, to help you to figure
out what to do to continue on your way.

We begin with a discussion of “dummy” independent variables and
how to properly use them to make inferences. We then discuss how to test
interactive hypotheses with dummy variables. We next turn our attention to
two frequently encountered problems in OLS — outliers and multicollinear-
ity. With both of these topics, at least half of the battle is identifying that
you have the problem.

BEING SMART WITH DUMMY INDEPENDENT VARIABLES IN OLS

In Chapter 5 we discussed how an important part of knowing your data
involves knowing the metric in which each of your variables is measured.
Throughout the examples that we have examined thus far, almost all of
the variables, both the independent and dependent variables, have been
continuous. This is not by accident. We chose examples with continuous
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variables because they are, in many cases, easier to interpret than models in
which the variables are noncontinuous. In this section, though, we con-
sider a series of scenarios involving independent variables that are not
continuous. We begin with a relatively simple case in which we have a
categorical independent variable that takes on one of two possible val-
ues for all cases. Categorical variables like this are commonly referred to
as dummy variables. Although any two values will do, the most common
form of dummy variable is one that takes on values of one or zero. These
variables are also sometimes referred to as “indicator variables” when a
value of one indicates the presence of a particular characteristic and a
value of zero indicates the absence of that characteristic. After consider-
ing dummy variables that reflect two possible values, we then consider
more complicated examples in which we have an independent variable
that is categorical with more than two values. We conclude this section
with an examination of how to handle models in which we have multi-
ple dummy variables representing multiple and overlapping classifications
of cases.

Using Dummy Variables to Test Hypotheses about a Categorical
Independent Variable with Only Two Values

During the 1996 U.S. presidential election between incumbent Democrat
Bill Clinton and Republican challenger Robert Dole, Clinton’s wife Hillary
was a prominent and polarizing figure. Throughout the next couple of
examples, we will use her “thermometer ratings” by individual respon-
dents to the NES survey as our dependent variable. A thermometer rating is
a survey respondent’s answer to a question about how they feel (as opposed
to how they think) toward particular individuals or groups on a scale that
typically runs from 0 to 100. Scores of 50 indicate that the individual feels
neither warm nor cold about the individual or group in question. Scores
from 50 to 100 represent increasingly warm (or favorable) feelings feel-
ings, and scores from 50 to 0 represent increasingly cold (or unfavorable)
feelings.

During the 1996 campaign, Ms. Clinton was identified as being a left-
wing feminist. Given this, we theorize that there may have been a causal
relationship between a respondent’s family income and their thermometer
rating of Ms. Clinton — with wealthier individuals, holding all else constant,
liking her less — as well as a relationship between a respondent’s gender
and their thermometer rating of Ms. Clinton — with women, holding all
else constant, liking her more. For the sake of this example, we are going
to assume that both our dependent variable and our income independent
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.reg hillary_thermo income male female

Number of obs = 1542
Source SS o MS F( 2, 1539) = 49.17
Model 80916.663 2 40458.3315 Prob > F = 0.0000
Residual 1266234.71 1539 822.764595 R-Squared = 0.0601
Total 1347151.37 1541 874.205954 Adj R-Squared = 0.0588
Root MSE = 28.684

hillary_th~o Coef.  Std. Err. t P>t | [95% Conf. Interval]

income —-.8407732 .117856 -7.13 0.000 —1.071948 —.6095978
male (dropped)

female 8.081448  1.495216 540  0.000 5.148572 11.01432
_cons 61.1804  2.220402 27.55  0.000 56.82507 65.53573

Figure 10.1. Stata output when we include both gender dummy variables in our model.

variable are continuous.' Each respondent’s gender was coded as equaling
either 1 for “male” or 2 for “female.” Although we could leave this gender
variable as it is and run our analyses, we chose to use this variable to create
two new dummy variables, “male” equaling 1 for “yes” and 0 for “no,”
and “female” equaling 1 for “yes” and 0 for “no.”

Our first inclination is to estimate an OLS model in which the
specification is the following:

Hillary Thermometer; = « + B1Income; + B2 Male; + 3Female; + u;.

But if we try to estimate this model, our statistical computer program
will revolt and give us an error message.~ Figure shows a screen shot
of what this output looks like in Stata. We can see that Stata has reported
the results from the following model instead of what we asked for:

Hillary Thermometer; = « + B1Income; + B3 Female; + u;.

Instead of the estimates for B, on the second row of parameter esti-
mates, we get a note that this variable was “dropped.” This is the case
because we have failed to meet the additional minimal mathematical crite-
ria that we introduced when we moved from two-variable OLS to multiple
OLS in Chapter 9 — “no perfect multicollinearity.” The reason that we have
failed to meet this is that, for two of the independent variables in our model,
Male; and Female;, it is the case that

Male; +Female; =1V i.

! In this survey, a respondent’s family income was measured on a scale ranging from 1 to 24
according to which category of income ranges they chose as best describing their family’s
income during 1995.

2 Most programs will throw one of the two variables out of the model and report the results
from the resulting model along with an error message.
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Table 10.1. Two models of the effects of gender

and income on Hillary Clinton Thermometer

scores
Independent variable Model 1 Model 2
Male — —8.08***
(1.50)
Female 8.08™** —
(1.50)
Income —0.84*** —0.84***
(0.12) (0.12)
Intercept 61.18%** 69.26™**
(2.22) (1.92)
R? .06 .06
n 1542 1542
Notes: The dependent variable in both models is the
respondent’s thermometer score for Hillary Clinton.
Standard errors in parentheses.
Two-sided #-tests: **indicates p < .01; **indicates p < .05;
*indicates p < .10.

In other words, our variables “Male” and “Female” are perfectly cor-
related: If we know a respondent’s value on the “Male” variable, then we
know their value on the “Female” variable with perfect certainty.

When this happens with dummy variables, we call this situation the
dummy-variable trap. To avoid the dummy-variable trap, we have to omit
one of our dummy variables. But we want to be able to compare the effects of
being male with the effects of being female to test our hypothesis. How can
we do this if we have to omit one of our two variables that measures gender?
Before we answer this question, let’s look at the results in Table 10.1 from
the two different models in which we omit one of these two variables. We
can learn a lot by looking at what is and what is not the same across these
two models. In both models, the parameter estimate and standard error
for income are identical. The R? statistic is also identical. The parameter
estimate and the standard error for the intercept are different across the two
models. The parameter estimate for male is —8.08, whereas that for female
is 8.08, although the standard error for each of these parameter estimates
is 0.12. If you’re starting to think that all of these similarities cannot have
happened by coincidence, you are correct. In fact, these two models are,
mathematically speaking, the same model. All of the Y values and residuals
for the individual cases are exactly the same. With income held constant, the
estimated difference between being male and being female is 8.08. The sign
on this parameter estimate switches from positive to negative when we go
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from Model 1 to Model 2 because we are phrasing the question differently
across the two models:

* For Model 1: “What is the estimated difference for a female compared
with a male?”

* For Model 2: “What is the estimated difference for a male compared
with a female?”

So why are the intercepts different? Think back to our discussions in
Chapters 8 and 9 about the interpretation of the intercept —it is the estimated
value of the dependent variable when the independent variables are all equal
to zero. In Model 1 this means the estimated value of the dependent variable
for a low-income man. In Model 2 this means the estimated value of the
dependent variable for a low-income woman. And the difference between
these two values — you guessed it —is 61.18 —69.26 = —8.08!

What does the regression line from Model 1 or Model 2 look like? The
answer is that it depends on the gender of the individual for which we are
plotting the line, but that it does not depend on which of these two models
we use. For men, where Female; = 0 and Male; = 1, the predicted values
are calculated as follows:

Model 1 for Men: Y; =61.18 4+ (8.08 x Female;) — (0.84 x Income;),

=61.18+(8.08 x 0) — (0.84 x Income;),

=61.18 — (0.84 x Income;);

Model 2 for Men: Y; = 69.26 — (8.08 x Male;) — (0.84 x Income;),
1? = 69.26 — (8.08 x 1) — (0.84 x Income;),
Y;=61.18 — (0.84 x Income;).

’"<>
| |

So we can see that, for men, regardless of whether we use the results
from Model 1 or Model 2, the formula for predicted values is the same.
For women, where Female; = 1 and Male; = 0, the predicted values are
calculated as follows:

Model 1 for Women: Y; =61.18 4+ (8.08 x Female;) — (0.84 x Income;),
1? 61.18 +(8.08 x 1) — (0.84 x Income;),

69.26 — (0.84 x Income;);

Model 2 for Women: lA/ 69.26 — (8.08 x Male;) — (0.84 x Income;),
Y/ =69.26 — (8.08 x 0) — (0.84 x Income;),

=69.26 — (0.84 x Income;).

’~<>
| || Il ||
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Women: Y= 69.26 - (0.84 x Income))
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Figure 10.2. Regression lines from the model with a dummy variable for gender.

Again, the formula from Model 1 is the same as the formula from Model 2
for women. To illustrate these two sets of predictions, we have plotted them
in Figure . Given that the two predictive formulae have the same slope,
it is not surprising to see that the two lines in this figure are parallel to each
other with the intercept difference determining the space between them.

Using Dummy Variables to Test Hypotheses about a Categorical
Independent Variable with More Than Two Values

As you might imagine, when we have a categorical variable with more than
two categories and we want to include it in an OLS model, things get more
complicated. We’ll keep with our running example of modeling Hillary
Clinton Thermometer scores as a function of individuals’ characteristics and
opinions. In this section we work with a respondent’s religious affiliation as
an independent variable. The frequency of different responses to this item
in the 1996 NES is displayed in Table

Could we use the Religious Identification variable as it is in our regres-
sion models? That would be a bad idea. Remember, this is a categorical
variable, in which the values of the variable are not ordered from lowest
to highest. Indeed, there is no such thing as “lowest” or “highest” on this
variable. So running a regression model with these data as they are would
be meaningless. But beware: Your statistics package does not know that this
is a categorical variable. It will be more than happy to run the regression
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Table 10.2. Religious identification in
the 1996 NES

Value Category Frequency Percent

0 Protestant 683 39.85

1 Catholic 346 20.19

2 Jewish 22 1.28

3 Other 153 8.93

4 None 510 29.75
Totals 1714 100

and report parameter estimates to you, even though these estimates will be
nonsensical.

In the previous subsection, in which we had a categorical variable (Gen-
der) with only two possible values, we saw that, when we switched which
value was represented by “1” and “0,” the estimated parameter switched
signs. This was the case because we were asking a different question. With
a categorical independent variable that has more than two values, we have
more than two possible questions that we can ask. Because using the vari-
able as is is not an option, the best strategy for modeling the effects of such
an independent variable is to include a dummy variable for all values of that
independent variable except one.” The value of the independent variable for
which we do not include a dummy variable is known as the reference cate-
gory. This is the case because the parameter estimates for all of the dummy
variables representing the other values of the independent variable are esti-
mated in reference to that value of the independent variable. So let’s say
that we choose to estimate the following model:

Hillary Thermometer; = & + B1Income; + B> Protestant; + B3 Catholic;

+ B4 Jewish; + BsOther; + u;.

For this model we would be using “None” as our reference category
for religious identification. This would mean that 8> would be the esti-
mated effect of being Protestant relative to being nonreligious, and we could
use this value along with its standard error to test the hypothesis that this
effect was statistically significant, controlling for the effects of income. The
remaining parameter estimates (£33, B4, and Bs) would all also be inter-
preted as the estimated effect of being in each of the remaining categories

3 If our theory was that only one category, such as Catholics, was different from all of the
others, then we would collapse the remaining categories of the variable in question together
and we would have a two-category independent variable. We should do this only if we have
a theoretical justification for doing so.
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Table 10.3. The same model of religion and income on Hillary Clinton

Thermometer scores with different reference categories

Independent

variable Model 1 Model 2 Model 3 Model 4 Model 5

Income —0.97*** —0.97*** —0.97*** —0.97*** —-0.97***
(0.12) (0.12) (0.12) (0.12) (0.12)

Protestant —-4.24* —6.66* —24.82%*  —6.30** —
(1.77) (2.68) (6.70) (2.02) =

Catholic 2.07 -0.35 -18.51** — 6.30**
(2.12) (2.93) (6.80) — (2.02)

Jewish 20.58** 18.16** — 18.51** 24.82%**
(6.73) (7.02) — (6.80) (6.70)

Other 2.42 — -18.16** 0.35 6.66*
(2.75) — (7.02) (2.93) (2.68)

None — -2.42 —20.58** -2.07 4.24*
— (2.75) (6.73) (2.12) (1.77)

Intercept 68.40™** 70.83*** 88.98™** 70.47*%* 64.17***
(2.19) (2.88) (6.83) (2.53) (2.10)

R? .06 .06 .06 .06 .06

n 1542 1542 1542 1542 1542

Notes: The dependent variable in both models is the respondent’s thermometer score for

Hillary Clinton.

Standard errors in parentheses.

Two-sided #-tests: **indicates p < .01; *indicates p < .05; *indicates p < .10.

relative to “None.” The value that we choose to use as our reference cat-
egory does not matter, as long as we interpret our results appropriately.
But we can use the choice of the reference category to focus on the rela-
tionships in which we are particularly interested. For each possible pair of
categories of the independent variable, we can conduct a separate hypothe-
sis test. The easiest way to get all of the p-values in which we are interested
is to estimate the model multiple times with different reference categories.
Table 10.3 displays a model of Hillary Clinton Thermometer scores with
the five different choices of reference categories. It is worth emphasizing
that this is #ot a table with five different models, but that this is a table with
the same model displayed five different ways. From this table we can see
that, when we control for the effects of income, some of the categories of
religious affiliation are statistically different from each other in their evalu-
ations of Hillary Clinton whereas others are not. This raises an interesting
question: Can we say that the effect of religion affiliation, controlling for
income, is statistically significant? The answer is that it depends on which
categories of religious affiliation we want to compare.
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Table 10.4. Model of bargaining duration

Independent variable Parameter estimate
Ideological Range of the Government 2.57*
(1.95)
Number of Parties in the Government -165.44***
(2.30)
Post-Election 5.87**
(2.99)
Continuation Rule -6.34**
(3.34)
Intercept 19.63***
(3.82)
R? .62
n 203
Notes: The dependent variable is the number of days before each
government was formed.
Standard errors in parentheses.
One-sided #-tests: ***indicates p < .01; **indicates p < .05; *indicates p < .10.

Using Dummy Variables to Test Hypotheses about Multiple
Independent Variables

It is often the case that we will want to use multiple dummy independent
variables in the same model. Consider the model presented in Table 10.4
which was estimated from data from a paper by Lanny Martin and Georg
Vanberg (2003) on the length of time that it takes for coalition govern-
ments to form in Western Europe.” The dependent variable is the number
of days that a government took to form. The model has two continu-
ous independent variables (“Ideological Range of the Government” and
“Number of Parties in the Government”) measuring characteristics of the
government that eventually formed and two dummy independent vari-
ables reflecting the circumstances under which bargaining took place. The
variable “Post-Election” identifies governments that were formed in the
immediate aftermath of an election while “Continuation Rule” identifies
bargaining that took place in settings where the political parties from the

4 The model that we present in Table 10.4 has been changed from what Martin and Vanberg
present in their paper. This model contains fewer variables than the main model of interest
in that paper. This model was also estimated using OLS regression whereas the models
presented by the original authors were estimated as proportional hazard models. And, we
have not reported the results for a technical variable (labeled “Number of Government
Parties * In(T)” by the authors) from the original specification. All of these modifications
were made to make this example more tractable.
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Table 10.5. Two overlapping dummy

variables in models by Martin and Vanberg

Continuation rule?

No (0) Yes (1)
Post- No (0) 61 25
Election? Yes (1) 76 41

Note: Numbers in cells represent the number of cases.

outgoing government had the first opportunity to form a new government.
As Table 10.5 indicates, all four possible combinations of these two dummy
variables occurred in the sample of cases on which the model presented in
Table 10.4 was estimated.

So, how do we interpret these results? It’s actually not as hard as it
might first appear. Remember from Chapter 9 that when we moved from a
bivariate regression model to a multiple regression model, we had to inter-
pret each parameter estimate as the estimated effect of a one-point increase
in that particular independent variable on the dependent variable, while
controlling for the effects of all other independent variables in the model.
This has not changed. Instead, what is a little different from the examples
that we have considered before is that we have two dummy independent
variables that can vary independently of each other. So, when we interpret
the estimated effect of each continuous independent variable, we interpret
the parameter estimate as the estimated effect of a one-point increase in that
particular independent variable on the dependent variable, while control-
ling for the effects of all other independent variables in the model, including
the two dummy variables. And, when we interpret the estimated effect of
each dummy independent variable, we interpret the parameter estimate as
the estimated effect of that variable having a value of one versus zero on
the dependent variable, while controlling for the effects of all other inde-
pendent variables in the model, including the other dummy variable. For
instance, the estimated effect of a one-unit increase in the ideological range
of the government, holding everything else constant, is a 2.57 day increase
in the amount of bargaining time. And, the estimated effect of bargaining in
the aftermath of an election (versus at a different time), holding everything
else constant, is a 5.87 day increase in the amount of bargaining time.

TESTING INTERACTIVE HYPOTHESES WITH DUMMY VARIABLES

All of the OLS models that we have examined so far have been what we
could call “additive models.” To calculate the Y value for a particular
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case from an additive model, we simply multiply each independent vari-
able value for that case by the appropriate parameter estimate and add
these values together. In this section we explore some interactive models.
Interactive models contain at least one independent variable that we cre-
ate by multiplying together two or more independent variables. When we
specify interactive models, we are testing theories about how the effects
of one independent variable on our dependent variable may be contin-
gent on the value of another independent variable. We will continue with
our running example of modeling a respondent’s thermometer score for
Hillary Clinton. We begin with an additive model with the following
specification:

Hillary Thermometer; = & + f1 Women’s Movement Thermometer;

+ BFemale; + u;.

In this model we are testing theories that a respondent’s feelings toward
Hillary Clinton are a function of their feelings toward the women’s move-
ment and their own gender. This specification seems pretty reasonable, but
we also want to test an additional theory that the effect of feelings toward
the women’s movement have a stronger effect on feelings toward Hillary
Clinton among women than they do among men. Notice the difference in
phrasing there. In essence, we want to test the hypothesis that the slope of
the line representing the relationship between Women’s Movement Ther-
mometer and Hillary Clinton Thermometer is steeper for women than it is
for men. To test this hypothesis, we need to create a new variable that is
the product of the two independent variables in our model and include this
new variable in our model:

Hillary Thermometer; = « + 81 Women’s Movement Thermometer;

+pB>Female; + B3(Women’s Movement Thermometer; x Female;) + ;.

By specifying our model as such, we have essentially created two
different models for women and men. So we can rewrite our model as

for Men (Female = 0) : Hillary Thermometer; = «
+ B1Women’s Movement Thermometer; + u;;

for Women (Female = 1) : Hillary Thermometer; = «
+ B1Women’s Movement Thermometer;

+ (B2 + B3)(Women’s Movement Thermometer;) + u;.
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Table 10.6. The effects of gender and feelings toward the women’s movement on

Hillary Clinton Thermometer scores
Independent variable Additive model Interactive model
Women's Movement Thermometer 0.68™** 0.75%**
(0.03) (0.05)
Female 7.13%** 15.21%*
(1.37) (4.19)
Women's Movement Thermometer x Female — —0.13**
(0.06)
Intercept 5.98** 1.56
(2.13) (3.04)
R? 27 27
n 1466 1466
Notes: The dependent variable in both models is the respondent’s thermometer score for Hillary Clinton.
Standard errors in parentheses.
Two-sided #-tests: **indicates p < .01; *indicates p < .05; *indicates p < .10.

And we can rewrite the formula for women as

for Women (Female = 1) : Hillary Thermometer; = (« + B2)
+ (B1 + B3)(Women’s Movement Thermometer;) + u;.

What this all boils down to is that we are allowing our regression line
to be different for men and women. For men, the intercept is « and the slope
is B1. For women, the intercept is « + 8> and the slope is 81 + 83. However,
if B2 =0 and B3 =0, then the regression lines for men and women will be the
same. Table 10.6 shows the results for our additive and interactive models of
the effects of gender and feelings toward the women’s movement on Hillary
Clinton Thermometer scores. We can see from the interactive model that we
can reject the null hypothesis that 8 = 0 and the null hypothesis that 83 =0,
so our regression lines for men and women are different. We can also see
that the intercept for the line for women (o + ;) is higher than the intercept
for men («). But, perhaps contrary to our expectations, the estimated effect
of the Women’s Movement Thermometer for men is greater than the effect
of the Women’s Movement Thermometer for women.

The best way to see the combined effect of all of the results from the
interactive model in Table 10.6 is to look at them graphically in a figure
such as Figure 10.3. From this figure we can see the regression lines for
men and for women across the range of the independent variable. It is clear
from this figure that, although women are generally more favorably inclined
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Figure 10.3. Regression lines from the interactive model.

toward Hillary Clinton, this gender gap narrows when we compare those
individuals who feel more positively toward the feminist movement.

OUTLIERS AND INFLUENTIAL CASES IN OLS

In Section we advocated using descriptive statistics to identify outlier
values for each continuous variable. In the context of a single variable, an
outlier is an extreme value relative to the other values for that variable. But
in the context of an OLS model, when we say that a single case is an outlier,
we could mean several different things.

We should always strive to know our data well. This means looking
at individual variables and identifying univariate outliers. But just because
a case is an outlier in the univariate sense does not necessarily imply that
it will be an outlier in all senses of this concept in the multivariate world.
Nonetheless, we should look for outliers in the single-variable sense before
we run our models and make sure that when we identify such cases that they
are actual values and not values created by some type of data management
mistake.

In the regression setting, individual cases can be outliers in several
different ways:

1. They can have unusual independent variable values. This is known as a
case having large leverage. This can be the result of a single case having
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an unusual value for a single variable. A single case can also have large
leverage because it has an unusual combination of values across two or
more variables. There are a variety of different measures of leverage, but
they all make calculations across the values of independent variables in
order to identify individual cases that are particularly different.

2. They can have large residual values (usually we look at squared residuals
to identify outliers of this variety).

3. They can have both large leverage and large residual values.

The relationship among these different concepts of outliers for a single
case in OLS is often summarized as separate contributions to “influence”
in the following formula:

influence; = leverage; x residual;.

As this formula indicates, the influence of a particular case is determined
by the combination of its leverage and residual values. There are a variety
of different ways to measure these different factors. We explore a couple of
them in the following subsections with a controversial real-world example.

Identifying Influential Cases

One of the most famous cases of outliers/influential cases in political data
comes from the 2000 U.S. presidential election in Florida. In an attempt
to measure the extent to which ballot irregularities may have influenced
election results, a variety of models were estimated in which the raw
vote numbers for candidates across different counties were the dependent
variables of interest. These models were fairly unusual because the param-
eter estimates and other quantities that are most often the focus of our
model interpretations were of little interest. Instead, these were models for
which the most interesting quantities were the diagnostics of outliers. As an
example of such a model, we will work with the following:

Buchanan; = a + BGore; + u;.

In this model the cases are individual counties in Florida, the dependent
variable (Buchanan;) is the number of votes in each Florida county for
the independent candidate Patrick Buchanan, and the independent variable
is the number of votes in each Florida county for the Democratic Party’s
nominee Al Gore (Gore;). Such models are unusual in the sense that there
is no claim of an underlying causal relationship between the independent
and dependent variables. Instead, the theory behind this type of model is
that there should be a strong systematic relationship between the number of
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Table 10.7. Votes for Gore and Buchanan in

Florida counties in the 2000 U.S. presidential

election
Independent variable Parameter estimate
Votes for Gore 0.004***
(0.0005)
Intercept 80.63*
(46.4)
R? 48
n 67

Notes: The dependent variable is the number of votes for
Patrick Buchanan.

Standard errors in parentheses.

Two-sided #-tests: **indicates p < .01; **indicates p < .05;
*indicates p < .10.

votes cast for Gore and those cast for Buchanan across the Florida counties.’
There was a suspicion that the ballot structure used in some counties —
especially the infamous “butterfly ballot” — was such that it confused some
voters who intended to vote for Gore into voting for Buchanan. If this was
the case, we should see these counties appearing as highly influential after
we estimate our model.

We can see from Table 10.7 that there was indeed a statistically signif-
icant positive relationship between Gore and Buchanan votes, and that this
simple model accounts for 48% of the variation in Buchanan votes across
the Florida counties. But, as we said before, the more interesting inferences
from this particular OLS model are about the influence of particular cases.
Figure 10.4 presents a Stata Ivr2plot (short for “leverage-versus-residual-
squared plot”) that displays Stata’s measure of leverage on the vertical
dimension and a normalized measure of the squared residuals on the hor-
izontal dimension. The logic of this figure is that, as we move to the right
of the vertical line through this figure, we are seeing cases with unusually
large residual values, and that, as we move above the horizontal line through
this figure, we are seeing cases with unusually large leverage values. Cases
with both unusually large residual and leverage values are highly influen-
tial. From this figure it is apparent that Pinellas, Hillsborough, and Orange

5 Most of the models of this sort make adjustments to the variables (for example, logging
the values of both the independent and dependent variables) to account for possibilities
of nonlinear relationships. In the present example we avoided doing this for the sake of
simplicity.
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Figure 10.5. OLS line with scatter plot for Florida 2000.

counties had large leverage values but not particularly large squared resid-

ual values, whereas Dade, Broward, and Palm Beach counties were highly

influential with both large leverage values and large squared residual values.
We can get a better idea of the correspondence between Figure

and Table from Figure , in which we plot the OLS regression line
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Table 10.8 The five largest through a scatter plot of the data.
Vg s g om e e 4| From this figure it is clear that Palm
B from the model presented in Beach was well above the regression
Table line whereas Broward and Dade
County DFBETA | counties were well below the regres-
sion line. By any measure, these
Palm Beach 6.993 L cq.
S 5514 three cases were quite influential in
Dade —1.772 | our model.
Orange —0.109 A more specific method for
Pinellas 0.085 detecting the influence of an indi-

vidual case involves estimating our
model with and without particular
cases to see how much this changes specific parameter estimates. The
resulting calculation is known as the DFBETA score (Belsley, Kuh, and
Welsch 1980). DFBETA scores are calculated as the difference in the
parameter estimate without each case divided by the standard error of the
original parameter estimate. Table 10.8 displays the five largest absolute
values of DFBETA for the slope parameter (8) from the model pre-
sented in Table 10.7. Not surprisingly, we see that omitting Palm Beach,
Broward, or Dade has the largest impact on our estimate of the slope
parameter.

Dealing with Influential Cases

Now that we have discussed the identification of particularly influential
cases on our models, we turn to the subject of what to do once we have
identified such cases. The first thing to do when we identify a case with
substantial influence is to double-check the values of all variables for such
a case. We want to be certain that we have not “created” an influential
case through some error in our data management procedures. Once we
have corrected for any errors of data management and determined that
we still have some particularly influential case(s), it is important that we
report our findings about such cases along with our other findings. There
are a variety of strategies for doing so. Table 10.9 shows five different
models that reflect various approaches to reporting results with highly
influential cases. In Model 1 we have the original results as reported in
Table 10.7. In Model 2 we have added a dummy variable that identifies
and isolates the effect of Palm Beach County. This approach is sometimes
referred to as dummying out influential cases. We can see why this is called
dummying out from the results in Model 3, which is the original model
with the observation for Palm Beach County dropped from the analysis.
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Table 10.9. Votes for Gore and Buchanan in Florida counties in the 2000

U.S. presidential election

Independent

variable Model 1  Model 2 Model 3  Model 4 Model 5

Gore 0.004*** 0.003*** 0.003*** 0.005*** 0.005***
(0.0005) (0.0002) (0.0002) (0.0003) (0.0003)

Palm Beach — 2606.3**  — 2095.5%** —

dummy (150.4) (110.6)

Broward — — — —1066.0"**  —

dummy (131.5)

Dade dummy — — — —1025.6*  —

(120.6)

Intercept 80.6* 110.8*** 110.8*** 59.0%** 59.0%**
(46.4) (19.7) (19.7) (13.8) (13.8)

R? 48 91 .63 .96 .82

n 67 67 66 67 64

Notes: The dependent variable is the number of votes for Patrick Buchanan.

Standard errors in parentheses.

Two-sided #-tests: **indicates p < .01; **indicates p < .05; *indicates p < .10.

The parameter estimates and standard errors for the intercept and slope
parameters are identical from Models 2 and 3. The only differences are
the model R? statistic, the number of cases, and the additional parameter
estimate reported in Model 2 for the Palm Beach County dummy vari-
able.” In Model 4 and Model 5, we see the results from dummying out
the three most influential cases and then from dropping them out of the
analysis.

Across all five of the models shown in Table 10.9, the slope parameter
estimate remains positive and statistically significant. In most models, this
would be the quantity in which we are most interested (testing hypotheses
about the relationship between X and Y). Thus the relative robustness of
this parameter across model specifications would be comforting. Regardless
of the effects of highly influential cases, it is important first to know that
they exist and, second, to report accurately what their influence is and what
we have done about them.

6 This parameter estimate was viewed by some as an estimate of how many votes the ballot
irregularities cost Al Gore in Palm Beach County. But if we look at Model 4, where we
include dummy variables for Broward and Dade counties, we can see the basis for an
argument that in these two counties there is evidence of bias in the opposite direction.
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MULTICOLLINEARITY

When we specify and estimate a multiple OLS model, what is the inter-
pretation of each individual parameter estimate? It is our best guess of the
causal impact of a one-unit increase in the relevant independent variable
on the dependent variable, controlling for all of the other variables in the
model. Another way of saying this is that we are looking at the impact of
a one-unit increase in one independent variable on the dependent variable
when we “hold all other variables constant.” We know from Chapter 9 that
a minimal mathematical property for estimating a multiple OLS model is
that there is no perfect multicollinearity. Perfect multicollinearity, you will
recall, occurs when one independent variable is an exact linear function of
one or more other independent variables in a model.

In practice, perfect multicollinearity is usually the result of a small
number of cases relative to the number of parameters we are estimating,
limited independent variable values, or model misspecification. As we have
noted, if there exists perfect multicollinearity, OLS parameters cannot be
estimated. A much more common and vexing issue is high multicollinear-
ity. As a result, when people refer to multicollinearity, they almost always
mean “high multicollinearity.” From here on, when we refer to “multi-
collinearity,” we will mean “high, but less-than-perfect, multicollinearity.”
This means that two or more of the independent variables in the model are
extremely highly correlated with one another.

How Does Multicollinearity Happen?

Multicollinearity is induced by a small number of degrees of freedom and/or
high correlation between independent variables. Figure provides a
Venn diagram illustration that is useful for thinking about the effects of
multicollinearity in the context of an OLS
Y regression model. As you can see from this
figure, X and Z are fairly highly correlated.

Our regression model is

(\ Yi=a+piXi+prZi+u;.

Looking at the figure, we can see that the

z X R? from our regression model will be fairly
high (R? = %). But we can see from

this figure that the areas for the estimation

Figure 10.6. Venn diagram with of our two slope parameters — area [ for 1

multicollinearity. and area b for B, — are pretty small. Because
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of this, our standard errors for our slope parameters will tend to be fairly
large, which makes discovering statistically significant relationships more
difficult, and we will have difficulty making precise inferences about the
impacts of both X and Z on Y. It is possible that because of this problem
we would conclude neither X nor Z has much of an impact on Y. But
clearly this is not the case. As we can see from the diagram, both X and Z
are related to Y. The problem is that much of the covariation between X
and Y and X and Z is also covariation between X and Z. In other words,
it is the size of area d that is causing us problems. We have precious little
area in which to examine the effect of X on Y while holding Z constant,
and likewise, there is little leverage to understand the effect of Z on Y while
controlling for X.

It is worth emphasizing at this point that multicollinearity is not a sta-
tistical problem (examples of statistical problems include autocorrelation,
bias, and heteroscedasticity). Rather, multicollinearity is a data problem.
It is possible to have multicollinearity even when all of the assumptions
of OLS from Chapter 8 are valid and all of the the minimal mathemati-
cal requirements for OLS from Chapters 8 and 9 have been met. So, you
might ask, what’s the big deal about multicollinearity? To underscore the
notion of multicollinearity as a data problem instead of a statistical problem,
Christopher Achen (1982) has suggested that the word “multicollinearity”
should be used interchangeably with micronumerosity. Imagine what would
happen if we could double or triple the size of the diagram in Figure
without changing the relative sizes of any of the areas. As we expanded all
of the areas, areas f/ and b would eventually become large enough for us to
precisely estimate the relationships of interest.

Detecting Multicollinearity

It is very important to know when you have multicollinearity. In particular,
it is important to distinguish situations in which estimates are statistically
insignificant because the relationships just aren’t there from situations in
which estimates are statistically insignificant because of multicollinearity.
The diagram in Figure shows us one way in which we might be able
to detect multicollinearity: If we have a high R? statistic, but none (or very
few) of our parameter estimates is statistically significant, we should be sus-
picious of multicollinerity. We should also be suspicious of multicollinearity
if we see that, when we add and remove independent variables from our
model, the parameter estimates for other independent variables (and espe-
cially their standard errors) change substantially. If we estimated the model
represented in Figure with just one of the two independent variables,
we would get a statistically significant relationship. But, as we know from
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the discussions in Chapter 9, this would be problematic. Presumably we
have a theory about the relationship between each of these independent
variables (X and Z) and our dependent variable (Y). So, although the esti-
mates from a model with just X or just Z as the independent variable would
help us to detect multicollinearity, they would suffer from bias. And, as we
argued in Chapter 9, omitted-variables bias is a severe problem.

A more formal way to diagnose multicollinearity is to calculate the
variance inflation factor (VIF) for each of our independent variables. This
calculation is based on an auxiliary regression model in which one inde-
pendent variable, which we will call Xj, is the dependent variable and all of
the other independent variables are independent variables.” The R? statistic
from this auxiliary model, RIZ, is then used to calculate the VIF for variable
j as follows:

1

VIF; = ——-.
TTa-RY

Many statistical programs report the VIF and its inverse (%) by default.
The inverse of the VIF is sometimes referred to as the tolerance index
measure. The higher the VIF; value, or the lower the tolerance index,
the higher will be the estimated variance of X; in our theoretically spec-
ified model. Another useful statistic to examine is the square root of the
VIF. Why? Because the VIF is measured in terms of variance, but most
of our hypothesis-testing inferences are made with standard errors. Thus
the square root of the VIF provides a useful indicator of the impact the
multicollinearity is going to have on hypothesis-testing inferences.

Multicollinearity: A Simulated Example

Thus far we have made a few scattered references to simulation. In this sub-
section we make use of simulation to better understand multicollinearity.
Almost every statistical computer program has a set of tools for simulat-
ing data. When we use these tools, we have an advantage that we do not
ever have with real-world data: we can know the underlying “population”
characteristics (because we create them). When we know the population

7 Students facing OLS diagnostic procedures are often surprised that the first thing that we
do after we estimate our theoretically specified model of interest is to estimate a large set
of atheoretical auxiliary models to test the properties of our main model. We will see that,
although these auxiliary models lead to the same types of output that we get from our main
model, we are often interested in only one particular part of the results from the auxiliary
model. With our “main” model of interest, we have learned that we should include every
variable that our theories tell us should be included and exclude all other variables. In
auxiliary models, we do not follow this rule. Instead, we are running these models to test
whether certain properties have or have not been met in our original model.
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parameters for a regression model and draw sample data from this
population, we gain insights into the ways in which statistical models work.

So, to simulate multicollinearity, we are going to create a population
with the following characteristics:

1. Two variables X1; and X»; such that the correlation rx,; x,, = 0.9.

2. A variable #; randomly drawn from a normal distribution, centered
around O with variance equal to 1 [#; ~ N(0,1)].

3. A variable Y; such that Y; = 0.5+ 1X4;, + 1X3; +u;.

We can see from the description of our simulated population that we
have met all of the OLS assumptions, but that we have a high correlation
between our two independent variables. Now we will conduct a series of
random draws (samples) from this population and look at the results from
the following regression models:

Model 1: Y; = o + 81 X1; + B2 X2i +u;,
Model 2: Y; = o + g1 X1; + u;,
Model 3: Y; =a + B X5, +u;.

In each of these random draws, we increase the size of our sample start-
ing with 5, then 10, and finally 25 cases. Results from models estimated
with each sample of data are displayed in Table . In the first column
of results (m = 5), we can see that both slope parameters are positive, as
would be expected, but that the parameter estimate for X is statistically
insignificant and the parameter estimate for X is on the borderline of sta-
tistical significance. The VIF statistics for both variables are equal to 5.26,
indicating that the variance for each parameter estimate is substantially
inflated by multicollinearity. The model’s intercept is statistically significant
and positive, but pretty far from what we know to be the true population
value for this parameter. In Models 2 and 3 we get statistically significant
positive parameter estimates for each variable, but both of these estimated
slopes are almost twice as high as what we know to be the true population
parameters. The 95% confidence interval for 8, does not include the true
population parameter. This is a clear case of omitted-variables bias. When
we draw a sample of 10 cases, we get closer to the true population param-
eters with 1 and & in Model 1. The VIF statistics remain the same because
we have not changed the underlying relationship between X1 and X». This
increase in sample size does not help us with the omitted-variables bias in
Models 2 and 3. In fact, we can now reject the true population slope param-
eter for both models with substantial confidence. In our third sample with
25 cases, Model 1 is now very close to our true population model, in the
sense of both the parameter values and that all of these parameter estimates
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Table 10.10. Random draws of increasing size from a

population with substantial multicollinearity

Sample: Sample: Sample:

Estimate n=>5 n=10 n=25

Model 1:

b1 0.546 0.882 1.012**
(0.375) (0.557) (0.394)

B 1.422* 1.450** 1.324%**
(0.375) (0.557) (0.394)

a 1.160** 0.912%** 0.579%**
(0.146) (0.230) (0.168)

R? .99 .93 .89

VIF; 5.26 5.26 5.26

VIF, 5.26 5.26 5.26

Model 2:

Bi 1.827** 2.187%+* 2.204%%*
(0.382) (0.319) (0.207))

a 1.160** 0.912** 0.579***
(0.342) (0.302) (0.202)

R? .88 .85 .83

Model 3:

B 1.914%%* 2.244%%* 2.235%%*
(0.192) (0.264) (0.192)

a 1.160*** 0.912%** 0.579***
(0.171) (0.251) (0.188)

R? .97 .90 .86

Notes: The dependent variable is Y; =.5 + 1X1; + 1X5; + u;.

Standard errors in parentheses.

Two-sided ¢-tests: **indicates p < .01; **indicates p < .05; *indicates p < .10.

are statistically significant. In Models 2 and 3, the omitted-variables bias is
even more pronounced.

The findings in this simulation exercise mirror more general findings
in the theoretical literature on OLS models. Adding more data will allevi-
ate multicollinearity, but not omitted-variables bias. We now turn to an
example of multicollinearity with real-world data.

Multicollinearity: A Real-World Example

In this subsection, we estimate a model of the thermometer scores for U.S.
voters for George W. Bush in 2004. Our model specification is the following:

Bush Thermometer; = o + B1Income; + f21deology; + B3Education;
+ B4Party ID; 4+ u;.
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Table 10.11. Pairwise correlations between independent variables

Bush Therm. Income Ideology Education Party ID

Bush Therm. 1.00 — — — —
Income 0.09*** 1.00 — — —
Ideology 0.56™** 0.13%** 1.00 — —
Education —0.07*** 0.44%** —-0.06* 1.00 —
Party ID 0.69*** 0.15*** 0.60*** 0.06* 1.00

Notes: Cell entries are correlation coefficients.
Two-sided #-tests: **indicates p < .01; **indicates p < .05; *indicates p < .10.

Table 10.12. Model results from random draws of increasing
size from the 2004 NES

Independent variable Model 1 Model 2 Model 3

Income 0.77 0.72 0.11
(0.90) (0.51) (0.15)
{1.63} {1.16} {1.24}

Ideology 7.02 4.57* 4.26™**
(5.53) (2.22) (0.67)
{3.50} {1.78} {1.58}

Education —6.29 —-2.50 —1.88%**
(3.32) (1.83) (0.55)
{1.42} {1.23} {1.22}

Party ID 6.83 8.44%** 10.00™**
(3.98) (1.58) (0.46)
{3.05} {1.70} {1.56}

Intercept 21.92 12.03 13.73***
(23.45) (13.03) (3.56)

R? 71 .56 57

n 20 74 821

Notes: The dependent variable is the respondent’s thermometer score for

George W. Bush.

Standard errors in parentheses; VIF statistics in braces.

Two-sided t-tests: *** indicates p < .01; ** indicates p < .05; * indicates p < .10.

Although we have distinct theories about the causal impact of each
independent variable on people’s feelings toward Bush, Table 10.11 indi-
cates that some of these independent variables are substantially correlated
with each other.

In Table 10.12, we present estimates of our model using three dif-
ferent samples from the NES 2004 data. In Model 1, estimated with data
from 20 randomly chosen respondents, we see that none of our independent
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variables are statistically significant despite the rather high R? statistic. The
VIF statistics for Ideology and Party ID indicate that multicollinearity might
be a problem. In Model 2, estimated with data from 74 randomly chosen
respondents, Party ID is highly significant in the expected (positive) direc-
tion whereas Ideology is near the threshold of statistical significance. None
of the VIF statistics for this model are stunningly high, though they are
greater than 1.5 for Ideology, Education, and Party ID.° Finally, in Model
3, estimated with all 820 respondents for whom data on all of the variables
were available, we see that Ideology, Party ID, and Education are all signif-
icant predictors of people’s feelings toward Bush. The sample size is more
than sufficient to overcome the VIF statistics for Party ID and Ideology. Of
our independent variables, only Income remains statistically insignificant.
Is this due to multicollinearity? After all, when we look at Table 10.11,
we see that income has a highly significant positive correlation with Bush
Thermometer scores. For the answer to this question, we need to go back to
the lessons that we learned in Chapter 9: Once we control for the effects of
Ideology, Party ID, and Education, the effect of income on people’s feelings
toward George W. Bush goes away.

Multicollinearity: What Should I Do?

In the introduction to this section on multicollinearity, we described it as a
“common and vexing issue.” The reason why multicollinearity is “vexing”
is that there is no magical statistical cure for it. What is the best thing to do
when you have multicollinearity? Easy (in theory): collect more data. But
data are expensive to collect. If we had more data, we would use them and
we wouldn’t have hit this problem in the first place. So, if you do not have an
easy way to increase your sample size, then multicollinearity ends up being
something that you just have to live with. It is important to know that you
have multicollinearity and to present your multicollinearity by reporting
the results of VIF statistics or what happens to your model when you add
and drop the “guilty” variables.

WRAPPING UP

The key to developing good models is having a good theory and then
doing a lot of diagnostics to figure out what we have after estimating the
model. What we’ve seen in this chapter is that there are additional (but not
insurmountable!) obstacles to overcome when we consider that some of our

8 When we work with real-world data, there tend to be many more changes as we move from
sample to sample.



Exercises

theories involve noncontinuous independent variables. In the next chapter,
we examine the research situations in which we encounter dummy depen-
dent variables and a set of special circumstances that can arise when our
data have been collected across time.

CONCEPTS INTRODUCED IN THIS CHAPTER

* auxiliary regression model — a regression model separate from the orig-
inal theoretical model that is used to detect one or more statistical
properties of the original model.

* DFBETA score —a statistical measure for the calculation of the influence
of an individual case on the value of a single parameter estimate.

* dummying out — adding a dummy variable to a regression model to
measure and isolate the effect of an influential observation.

* dummy variable — a variable that takes on one of two values (usually
one or zero).

* dummy-variable trap — perfect multicollinearity that results from the
inclusion of dummy variables representing each possible value of a
categorical variable.

* high multicollinearity — in a multiple regression model, when two or
more of the independent variables in the model are extremely highly
correlated with one another, making it difficult to isolate the distinct
effects of each variable.

* interactive models — multiple regression models that contain at least
one independent variable that we create by multiplying together two
or more independent variables.

* leverage — in a multiple regression model, the degree to which an
individual case is unusual in terms of its value for a single indepen-
dent variable, or its particular combination of values for two or more
independent variables.

* micronumerosity — a suggested synonym for multicollinearity.

* reference category — in a multiple regression model, the value of a
categorical independent variable for which we do not include a dummy
variable.

* variance inflation factor — a statistical measure to detect the contri-
bution of each independent variable in a multiple regression model to
overall multicollinearity.

EXERCISES

Using the model presented in Table , how many days would you predict
that it would take for a government to form if the government was made up
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of 2 different political parties with an ideological range of 2, if bargaining was
taking place in the immediate aftermath of an election, and there was not a
continuation rule? Show your work.

Using the model presented in Table , interpret the parameter estimate for
the variable “Continuation Rule.”

Using the model presented in Table , interpret the parameter estimate for
the variable “Number of Parties in the Government.”

Using the data set “nes2008.dta,” investigate two possible causes of a respon-
dent’s attitudes toward abortion (which you will, for the purposes of this
exercise, need to treat as a continuous variable), using the respondent’s gender
and the respondent’s level of education as your two key independent variables.
First, construct an additive multiple regression model investigating the effects
of gender and education on abortion attitudes. Next, construct an interactive
multiple regression model that adds an interaction term for gender and edu-
cation. Present the results of both models in a single table. Interpret, first, the
additive regression model, and then interpret the interactive model. Does edu-
cation have the same, a smaller, or larger effect on abortion attitudes for women
than it does for men?

Using the data set “state_data.dta,” estimate Model C in Table 9.4. Test for
influential observations in the model using a leverage versus squared residual
plot. Write about what this diagnostic test tells you.

Test for influential observations in the model that you estimated for Exercise
using DFBETA scores. Write about what this diagnostic test tells you.

Based on what you found in Exercises 5 and 6, how would you adjust the
original model?

Test for multicollinearity in the model that you estimated for Exercise 5. Write
about what you have found.



m Limited Dependent Variables
and Time-Series Data

In this chapter we provide an introduction to two common extensions of
multiple regression models. The first deals with cross-sectional models
where the dependent variable is categorical rather than continuous. The
second involves time-series models, where the variables of interest are mea-
sured repeatedly over time. Throughout the chapter, we use examples from
a variety of research situations to illustrate the important issues that must
be addressed in each research situation.

IET EXTENSIONS OF OLS

We have come a long way in the understanding and use of regression
analysis in political science. We have learned, mathematically, where OLS
coefficients come from; we have learned how to interpret those coefficients
substantively; and we have learned how to use OLS to control for other
possible causes of the dependent variable. In Chapter 10, we introduced
dummy variables, having used them as independent variables in our regres-
sion models. In this chapter, we extend this focus to research situations
in which the dependent variable is a dummy variable. Such situations are
common in political science, as many of the dependent variables that we
find ourselves interested in — such as, whether or not an individual voted in
a particular election, or whether or not two countries engaged in a dispute
escalate the situation to open warfare — are dummy variables.

We also introduce some unique issues pertaining to using OLS to ana-
lyze time-series research questions. Recall that one of the major types of
research design, the aptly named time-series observational study, involves
data that are collected over time. The analysis of time-series data presents
particular opportunities for political science researchers, but it also has a
few unique pitfalls. In this chapter, we’ll give you some tips about how to
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identify and avoid those pitfalls. We turn, first, to the analysis of so-called
“dummy” dependent variables.

DUMMY DEPENDENT VARIABLES

Thus far, our discussion of dummy variables has been limited to situations
in which the variable in question is one of the independent variables in our
model. The obstacles in those models are relatively straightforward. Things
get a bit more complicated, however, when our dependent variable is a
dummy variable.

Certainly, many of the dependent variables of theoretical interest to
political scientists are not continuous. Very often, this means that we need
to move to a statistical model other than OLS if we want to get reasonable
estimates for our hypothesis testing. One exception to this is the linear
probability model (LPM). The LPM is an OLS model in which the dependent
variable is a dummy variable. It is called a “probability” model because
we can interpret the Y values as “predicted probabilities.” But, as we will
see, it is not without problems. Because of these problems, most political
scientists do not use the LPM. We provide a brief discussion of the popular
alternatives to the LPM and then conclude this section with a discussion of
goodness-of-fit measures when the dependent variable is a dummy variable.

The Linear Probability Model

As an example of a dummy dependent variable, we use the choice that
most U.S. voters in the 2004 presidential election made between voting
for the incumbent George W. Bush and his Democratic challenger John
Kerry." Our dependent variable, which we will call “Bush,” is equal to
one for respondents who reported voting for Bush and equal to zero for
respondents who reported voting for Kerry. For our model we theorize that
the decision to vote for Bush or Kerry is a function of an individual’s partisan
identification (ranging from -3 for strong Democrats, to O for independents,
to +3 for strong Republican identifiers) and their evaluation of the job that
Bush did in handling the war on terror and the health of the economy

! There was only a handful of respondents to the NES who refused to reveal their vote to the
interviewers or voted for a different candidate. But there were a large number of respondents
who reported that they did not vote. By excluding all of these categories, we are defining the
population about which we want to make inferences as those who voted for Kerry or Bush.
Including respondents who voted for other candidates, refused to report their vote, or those
who did not vote would amount to changing from a dichotomous categorical dependent
variable to a multichotomous categorical dependent variable. The types of models used for
this type of dependent variable are substantially more complicated.
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Table 11.1. The effects of partisanship and performance
evaluations on votes for Bush in 2004

Independent variable Parameter estimate
Party Identification 0.09***

(0.01)
Evaluation: War on Terror 0.08***

(0.01)
Evaluation: Health of the Economy 0.08***

(0.01)
Intercept 0.60***

(0.01)
RZ .73
n 780
Notes: The dependent variable is equal to one if the respondent voted for Bush
and equal to zero if they voted for Kerry.
Standard errors in parentheses.
Two-sided z-tests: *** indicates p < .01; ** indicates p < .05; * indicates p < .10

(both of these evaluations range from +2 for “approve strongly” to -2 for
“disapprove strongly”). The formula for this model is:

Bush; = « + 1 Party ID; + 2 War Evaluation;

+ BszEconomic Evaluation; + ;.

Table 11.1 presents the OLS results from this model. We can see from
the table that all of the parameter estimates are statistically significant in
the expected (positive) direction. Not surprisingly, we see that people who
identified with the Republican Party and who had more approving evalu-
ations of the president’s handling of the war and the economy were more
likely to vote for him.

To examine how the interpretation of this model is different from that
of a regular OLS model, let’s calculate some individual Y values. We know
from Table 11.1 that the formula for ¥ is

Y;=0.6+0.09 x Party ID; 4+ 0.08 x War Evaluation;

+ 0.08 x Economic Evaluation;.

For a respondent who reported being a pure independent (Party ID = 0)
with a somewhat approving evaluation of Bush’s handling of the war on
terror (War Evaluation = 1) and a somewhat disapproving evaluation of
Bush’s handling of the health of the economy (Economic Evaluation = -1),
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we would calculate ¥; as follows:

A

Y; =0.64(0.09 x 0) 4+ (0.08 x 1) + (0.08 x -1) =0.6.

One way to interpret this predicted value is to think of it as a predicted
probability that the dummy dependent variable is equal to one, or, in other
words, the predicted probability of this respondent voting for Bush. Using
the example for which we just calculated Y;, we would predict that such
an individual would have a 0.6 probability (or 60% chance) of voting for
Bush in 2004. As you can imagine, if we change the values of our three
independent variables around, the predicted probability of the individual
voting for Bush changes correspondingly. This means that the LPM is a
special case of OLS for which we can think of the predicted values of the
dependent variable as predicted probabilities. From here on, we represent
predicted probabilities for a particular case as “P;” or “P(Y; = 1)” and we
can summarize this special property of the LPM as Pi=P(Y;=1)=Y,.

One of the problems with the LPM comes when we arrive at extreme
values of the predicted probabilities. Consider, for instance, a respondent
who reported being a strong Republican (Party ID = 3) with a strongly
approving evaluation of Bush’s handling of the war on terror (War Evalu-
ation = 2) and a strongly approving evaluation of Bush’s handling of the
health of the economy (Economic Evaluation = 2). For this individual, we
would calculate P; as follows:

Pi=Yi=0.6+(0.09 x 3)+ (0.08 x 2) + (0.08 x 2) = 1.19.

This means that we would predict that such an individual would have a
119% chance of voting for Bush in 2004. Such a predicted probability is,
of course, nonsensical because probabilities cannot be smaller than zero
or greater than one. So, one of the problems with the LPM is that it can
produce such values. In the greater scheme of things, though, this problem
is not so severe, as we can make sensible interpretations of predicted values
higher than one or lower than zero — these are cases for which we are very
confident that probability is close to one (for P; > 1) or close to zero (for
IA)i < O)

To the extent that the LPM has potentially more serious problems,
they come in two forms — heteroscedasticity and functional form. We dis-
cussed heteroscedasticity in Chapter 8§ when we noted that any time that we
estimate an OLS model we assume that there is homoscedasticity (or equal
error variance). We can see that this assumption is particularly problematic
with the LPM because the values of the dependent variable are all equal to
zero or one, but the Y or predicted values range anywhere between zero and
one (or even beyond these values). This means that the errors (or residual
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values) will tend to be largest for cases for which the predicted value is close
to .5. Any nonuniform pattern of model error variance such as this is called
heteroscedasticity, which means that the estimated standard errors may be
too high or too low. We care about this because standard errors that are
too high or too low will have bad effects on our hypothesis testing and thus
ultimately on our conclusions about causal relationships.

The problem of functional form is related to the assumption of para-
metric linearity that we also discussed in Chapter . In the context of the
LPM, this assumption amounts to saying that the impact of a one-unit
increase in an independent variable X is equal to the corresponding parame-
ter estimate B regardless of the value of X or any other independent variable.
This assumption may be particularly problematic for LPMs because the
effect of a change in an independent variable may be greater for cases that
would otherwise be at 0.5 than for those cases for which the predicted
probability would otherwise be close to zero or one. Obviously the extent
of both of these problems will vary across different models.

For these reasons, the typical political science solution to having a
dummy dependent variable is to avoid using the LPM. Most applications
that you will come across in political science research will use a binomial
logit (BNL) or binomial probit (BNP) model instead of the LPM for mod-
els in which the dependent variable is a dummy variable. BNL and BNP
models are similar to regression models in many ways, but they involve an
additional step in interpreting them. In the next subsection we provide a
brief overview of these types of models.

Binomial Logit and Binomial Probit

In cases in which their dependent variable is dichotomous, most political
scientists use a BNL or a BNP model instead of a LPM. In this subsection we
provide a brief introduction to these two models, using the same example
that we used for our LPM in the previous subsection. To understand these
models, let’s first rewrite our LPM from our preceding example in terms of
a probability statement:

P;=P(Y;=1) =a+ By x Party ID, + B2 x War Evaluation; + 3

x Economic Evaluation; + ;.

This is just a way of expressing the probability part of the LPM in a for-
mula in which “P(Y; =1)” translates to “the probability that Y; is equal to
one,” which in the case of our running example is the probability that the
individual cast a vote for Bush. We then further collapse this to

Pi=P(Y;=1)=a+ 1 X1; + 2 X2 + B3 X3i +u,
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and yet further to
Pi=P(Y;=1)=X;B+u,

where we define X;8 as the systematic component of Y such that X;8 =+
B1X1; + B2 X2 + B3X3i.~ The term u; continues to represent the stochastic
or random component of Y. So if we think about our predicted probability
for a given case, we can write this as

Vi=Pi=P(Y;=1)=X;B =+ p1 X1i + foXai + B3X5i.
A BNL model with the same variables would be written as
Pi=P(Yi=1) = Ala+ p1X1i + B2 Xoi + B3 X3i +ui) = AXiB +uy).
The predicted probabilities from this model would be written as
Pi=P(Yi=1) = A@+ b1 X1 + PoXoi + B3 X3i = AXiB).
A BNP with the same variables would be written as
Pi=P(Y;i=1) = P(a+ p1X1; + f2X2i + B3X3i +1;) = P(Xif +uj).
The predicted probabilities from this model would be written as
Pi=P(Y;=1)= @@+ p1X1; + b Xai + B3 X3: = (X ).

The difference between the BNL model and the LPM is the A, and
the difference between the BNP model and the LPM is the ®. A and ® are
known as link functions. A link function links the linear component of a
logit or probit model, X;B, to the quantity in which we are interested, the
predicted probability that the dummy dependent variable equals one P(Y; =
1) or P;. A major result of using these link functions is that the relationship
between our independent and dependent variables is no longer assumed to
be linear. In the case of a logit model, the link function, abbreviated as
A, uses the cumulative logistic distribution function (and thus the name
“logit”) to link the linear component to the probability that Y; = 1. In
the case of the probit function, the link function abbreviated as ® uses the
cumulative normal distribution function to link the linear component to the
predicted probability that Y; = 1. Appendices C (for the BNL) and D (for the
BNP) provide tables for converting X;8 values into predicted probabilities.

The best way to understand how the LPM, BNL, and BNP work sim-
ilarly to and differently from each other is to look at them all with the
same model and data. An example of this is presented in Table . From

2 This shorthand comes from matrix algebra. Although matrix algebra is a very useful tool
in statistics, it is not needed to master the material in this text.
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Table 11.2. The effects of partisanship and performance evaluations on

votes for Bush in 2004: Three different types of models

LPM BNL BNP
Party Identification 0.09*** 0.82*** 0.45***
(0.01) (0.09) (0.04)
Evaluation: War on Terror 0.08*** 0.60*** 0.32***
(0.01) (0.09) (0.05)
Evaluation: Health of the Economy 0.08*** 0.59*** 0.32***
(0.01) (0.10) (0.06)
Intercept 0.60*** 1.11%** 0.68***
(0.01) (0.20) (0.10)
Notes: The dependent variable is equal to one if the respondent voted for Bush and equal to
zero if they voted for Kerry.
Standard errors in parentheses.
Two-sided significance tests: ***indicates p < .01; ** indicates p < .05; * indicates p < .10
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Figure 11.1. Three different models of Bush vote.

this table it is apparent that across the three models the parameter esti-
mate for each independent variable has the same sign and significance level.
But it is also apparent that the magnitude of these parameter estimates is
different across the three models. This is mainly due to the difference of
link functions. To better illustrate the differences between the three mod-
els presented in Table 11.2, we plotted the predicted probabilities from
them in Figure 11.1. These predicted probabilities are for an individual



254

11.2.3

Limited Dependent Variables and Time-Series Data

who strongly approved of the Bush administration’s handling of the war
on terror but who strongly disapproved of the Bush administration’s han-
dling of the economy.” The horizontal axis in this figure is this individual’s
party identification ranging from strong Democratic Party identifiers on the
left end to strong Republican Party identifiers on the right end. The verti-
cal axis is the predicted probability of voting for Bush. We can see from
this figure that the three models make very similar predictions. The main
differences come as we move away from a predicted probability of 0.5.

The LPM line has, by definition, a constant slope across the entire range
of X. The BNL and BNP lines of predicted probabilities change their slope
such that they slope more and more gently as we move farther from pre-
dicted probabilities of 0.5. The differences between the BNL and BNP lines
are trivial. This means that the effect of a movement in Party Identification
on the predicted probability is constant for the LPM. But for the BNL
and BNP, the effect of a movement in Party Identification depends on the
value of the other variables in the model. It is important to realize that
the differences between the LPM and the other two types of model are by
construction instead of some novel finding. In other words, our choice of
model determines the shape of our predicted probability line.

Goodness-of-Fit with Dummy Dependent Variables

Although we can calculate an R? statistic when we estimate a linear prob-
ability model, R? doesn’t quite capture what we are doing when we want
to assess the fit of such a model. What we are trying to assess is the ability
of our model to separate our cases into those in which Y =1 and those in
which Y = 0. So it is helpful to think about this in terms of a 2 x 2 table
of model-based expectations and actual values. To figure out the model’s
expected values, we need to choose a cutoff point at which we interpret the
model as predicting that Y = 1. An obvious value to use for this cutoff point
is Y > 0.5. Table shows the results of this in what we call a classifi-
cation table. Classification tables compare model-based expectations with
actual values of the dependent variable.

In this table, we can see the differences between the LPM’s predictions
and the actual votes reported by survey respondents to the 2004 NES. One
fairly straightforward measure of the fit of this model is to look at the
percentage of cases that were correctly classified through use of the model.

3 These were the modal answers to the two evaluative questions that were included in the
model presented in Table . It is fairly common practice to illustrate the estimated impact
of a variable of interest from this type of model by holding all other variables constant at
their mean or modal values and then varying that one variable to see how the predicted
probabilities change.
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Table 11.3. Classification table from LPM of the

effects of partisanship and performance
evaluations on votes for Bush in 2004

Model-based expectations

Actual vote Bush Kerry
Bush 361 36
Kerry 28 355

Notes: Cell entries are the number of cases.
Predictions are based on a cutoff of Y > .5

So if we add up the cases correctly classified and divide by the total number
of cases we get

3614355 716

correctly classified LPM, s =

So our LPM managed to correctly classify 0.918 or 91.8% of the respon-
dents and to erroneously classify the remaining 0.082 or 8.2%.

Although this seems like a pretty high classification rate, we don’t really
know what we should be comparing it with. One option is to compare our
model’s classification rate with the classification rate for a naive model
(NM) that predicts that all cases will be in the modal category. In this
case, the NM would predict that all respondents voted for Bush. So, if we
calculate the correctly classified for the NM,

. 361+36 397
correctly classified NM = =80~ 780 0.509

This means that the NM correctly classified 0.509 or 50.9% of the
respondents and erroneously classified the remaining 0.491 or 49.1%.

Turning now to the business of comparing the performance of our
model with that of the NM, we can calculate the proportionate reduction
of error when we move from the NM to our LPM with party identification
and two performance evaluations as independent variables. The percent-
age erroneously classified in the naive model was 49.1 and the percentage
erroneously classified in our LPM was 8.2. So we have reduced the error
proportion by 49.1 — 8.2 = 40.9. If we now divide this by the total error
percentage of the naive model, we get % = 0.833. This means that we
have a proportionate reduction of error equal to 0.833. Another way of
saying this is that when we moved from the NM to our LPM we reduced
the classification errors by 83.3%.
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BEING CAREFUL WITH TIME SERIES

In recent years there has been a massive proliferation of valuable time-
series data in political science. Although this growth has led to exciting
new research opportunities, it has also been the source of a fair amount
of controversy. Swirling at the center of this controversy is the danger of
spurious regressions that are due to trends in time-series data. As we will
see, a failure to recognize this problem can lead to mistakes about inferring
causality. In the remainder of this section we first introduce time-series
notation, discuss the problems of spurious regressions, and then discuss
the trade-offs involved with two possible solutions: the lagged dependent
variable and the differenced dependent variable.

Time-Series Notation

In Chapter 4 we introduced the concept of a time-series observational study.
Although we have seen some time-series data (such as the Ray Fair data set
used in Chapters 8—10), we have not been using the mathematical notation
specific to time-series data. Instead, we have been using a generic notation in
which the subscript i represents an individual case. In time-series notation,
individual cases are represented with the subscript ¢, and the numeric value
of t represents the temporal order in which the cases occurred, and this
ordering is very likely to matter.” Consider the following OLS population
model written in the notation that we have worked with thus far:

Yi=a+ 1 Xui+ B2 X2 +u;.
If the data of interest were time-series data, we would rewrite this model as
Y=o+ B1 X1 + B2 Xor +us.

In most political science applications, time-series data occur at regular
intervals. Common intervals for political science data are weeks, months,
quarters, and years. In fact, these time intervals are important enough
that they are usually front-and-center in the description of a data set. For
instance, the data presented in Figure 2.1 would be described as a “monthly
time series of presidential popularity.”

Using this notation, we talk about the observations in the order in
which they came. As such, it is often useful to talk about values of variables
relative to their lagged values or lead values. Both lagged and lead values

4 In cross-sectional data sets, it is almost always the case that the ordering of the cases is
irrelevant to the analyses being conducted.
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are expressions of values relative to a current time, which we call time .
A lagged value of a variable is the value of the variable from a previous
time period. For instance, a lagged value from one period previous to the
current time is referenced as being from time ¢—1. A lead value of a variable
is the value of the variable from a future time period. For instance, a lead
value from one period into the future from the current time is referenced as
being from time t+1. Note that we would not want to specify a model with
a leading value for an independent variable because this would amount to
a theory that the future value of the independent variable exerted a causal
influence on the past.

Memory and Lags in Time-Series Analysis

You might be wondering what, aside from changing a subscript from an i
to a t, is so different about time-series modeling. We would like to bring
special attention to one particular feature of time-series analysis that sets it
apart from modeling cross-sectional data.

Consider the following simple model of presidential popularity, and
assume that the data are in monthly form:

Popularity, = « + f1Economy, + BaPeace; + u;,

where Economy and Peace refer to some measures of the health of the
national economy and international peace, respectively. Now look at what
the model assumes, quite explicitly. A president’s popularity in any given
month 7 is a function of that month’s economy and that month’s level
of international peace (plus some random error term), and nothing else,
at any points in time. What about last month’s economic shocks, or the
war that ended three months ago? They are nowhere to be found in this
equation, which means quite literally that they can have no effect on a
president’s popularity ratings in this month. Every month —according to this
model — the public starts from scratch evaluating the president, as if to say,
on the first of the month: “Okay, let’s just forget about last month. Instead,
let’s check this month’s economic data, and also this month’s international
conflicts, and render a verdict on whether the president is doing a good
job or not.” There is no memory from month to month whatsoever. Every
independent variable has an immediate impact, and that impact lasts exactly
one month, after which the effect immediately dies out entirely.

This is preposterous, of course. The public does not erase its collective
memory every month. Shifts in independent variables from many months in
the past can have lingering effects into current evaluations of the president.
In most cases, we imagine that the effects of shifts in independent variables
eventually die out over a period of time, as new events become more salient
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in the minds of the public, and, indeed, some collective “forgetting” occurs.
But surely this does not happen in a single month.

And let’s be clear what the problems are with a model like the preced-
ing simple model of approval. If we are convinced that at least some past
values of the economy still have effects today, and if at least some past val-
ues of international peace still have effects today, but we instead estimate
only the contemporary effects (from period ¢), then we have committed
omitted-variables bias — which, as we have emphasized over the last two
chapters, is one of the most serious mistakes a social scientist can make.
Failing to account for how past values of our independent variables might
affect current values of our dependent variable is a serious issue in time-
series observational studies, and nothing quite like this issue exists in the
cross-sectional world. In time-series analysis, even if we know that Y is
caused by X and Z, we still have to worry about how many past lags of X
and Z might affect Y.

The clever reader might have a ready response to such a situation:
Specify additional lags of our independent variables in our regression
models:

Popularity, = « 4+ g1Economy, + g2Economy,_; + B3Economy,_,
+pBsEconomy,_3 + BsPeace; 4 BgPeace;—_1 4 B7Peace;_)
+pBgPeace;_3 + u;.

This is, indeed, one possible solution to the question of how to incorporate
the lingering effects of the past on the present. But the model is getting a bit
unwieldy, with lots of parameters to estimate. More important, though, it
leaves several questions unanswered:

1. How many lags of the independent variables should we include in our
model? We have included lags from period ¢ though #-3 in the preceding
specification, but how do we know that this is the correct choice? From
the outset of the book, we have emphasized that you should have the-
oretical reasons for including variables in your statistical models. But
what theory tells with any specificity that we should include 3, 4, or 6
periods’ worth of lags of our independent variables in our models?

2. If we do include several lags of all of our independent variables in our
models, we will almost surely induce multicollinearity into them. That
is, Xy, X;_1,and X;_; are likely to be highly correlated with one another.
(Such is the nature of time series.) Those models, then, would have all of
the problems associated with high multicollinearity that we identified
in Chapter — in particular, large standard errors and the adverse
consequences on hypothesis testing.
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Before showing two alternatives to saturating our models with lots of
lags of our independent variables, we need to confront a different problem
in time-series analysis. Later in this chapter, we will see an example of real-
world research into the causes of presidential approval that deals with this
problem.

Trends and the Spurious Regression Problem

When discussing presidential popularity data, it’s easy to see how a time
series might have a “memory” — by which we mean that the current values
of a series seem to be highly dependent of its past values.” Some series
have memories of their pasts that are sufficiently long to induce statistical
problems. In particular, we mention one, called the spurious regression
problem.

By way of example, consider the following facts: In post—-World War II
America, golf became an increasingly popular sport. As its popularity grew,
perhaps predictably the number of golf courses in America grew to accom-
modate the demand for places to play. That growth continued steadily into
the early 21st century. We can think of the number of golf courses in Amer-
ica as a time series, of course, presumably one on an annual metric. Over
the same period of time, divorce rates in America grew and grew. Whereas
divorce was formerly an uncommon practice, today it is commonplace in
American society. We can think of family structure as a time series, too —
in this case, the percentage of households in which a married couple is
present.

And both of these time series — likely for different reasons — have long
memories. In the case of golf courses, the number of courses in year ¢ obvi-
ously depends heavily on the number of courses in the previous year. In
the case of divorce rates, the dependence on the past presumably stems
from the lingering, multiperiod influence of the social forces that lead to
divorce in the first place. Both the number of golf facilities in America and
the percentage of families in which a married couple is present are shown

5 In any time series representing some form of public opinion, the word “memory” is a
particularly apt term, though its use applies to all other time series as well.

6 The problem of spurious regressions was something that economists like John Maynard
Keynes worried about long before it had been demonstrated by Granger and Newbold
(1974) using simulated data. Their main source of concern was the existence of general
trends in a variable over time. To be clear, the word “trend” obviously has several popular
meanings. In time-series analysis, though, we generally use the word trend to refer to a
long-lasting movement in the history of a variable, not a temporary shift in one direction
or another.

7 For the purposes of this illustration, we are obscuring the difference between divorce and
unmarried cohabitation.
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Figure 11.2. The growth of golf and the demise of marriage in the United States, 1947-

2002.

in Figure 11.2.° And it’s clear that, consistent with our description, both
variables have trends. In the case of golf facilities, that trend is upward; for

marriage, the trend is down.

What’s the problem here? Any time one time series with a long memory
is placed in a regression model with another series that also has a long mem-
ory, it can lead to falsely finding evidence of a causal connection between

Table 11.4 Golf and the demise of

marriage in the United States,

1947-2002
Variable Coefficient
(std. err.)

Golf facilities -2.63*
(0.09)

Constant 91.36*
(1.00)

R? 0.93

n 56

Note: * indicates p < .05

the two variables. This is known as
the “spurious regression problem.”
If we take the demise of marriage as
our dependent variable and use golf
facilities as our independent vari-
able, we would surely see that these
two variables are related, statisti-
cally. In substantive terms, we might
be tempted to jump to the conclu-
sion that the growth of golf in Amer-
ica has led to the breakdown of the
nuclear family. We show the results
of that regression in Table 11.4.
The dependent variable there is the

8 The National Golf Foundation kindly gave us the data on golf facilities. Data on family
structure are from the Current Population Reports from the United States Census Bureau.



11.3 Being Careful with Time Series

85

10,000 4
/ 80 _
/ 5
5 8,000 Tteell.l , 175 3
=1 - 4 =4
3 ’ =
o / 170 <
2 S £}
3 6,000 / 2
g s ‘.‘ /‘ | %
8 Vs 65 £
S T /// :E‘__,
o teee 160 =
@ 4000 b 5
2 = ‘il 5
p . ©
/// —___. 55 K
2,000 S el
/
T 150
_,_,—///
T
0 45

A OANDODADNDIODADANDONONDDADNDHOHN D] G
D oD 9" 9 0”2 2 0 0 0° ' O AT AT AP R R R R DD DD D DD
A N R N I O I I N I I N N I I N N N N I AR SIS

Year

| —— GDP - - - - Married as Percentage of Households |

Figure 11.3. The growth of the U.S. economy and the decline of marriage, 1947-2002.

percentage of households with a married couple, and the independent vari-
able is the number of golf courses (in thousands). The results are exactly
as feared. For every thousand golf facilities built in the United States, there
are 2.53% fewer families with a married couple present. The R? statistic is
quite high, suggesting that roughly 93% of the variance in divorce rates is
explained by the growth of the golf industry.

We’re quite sure that some of you — presumably nongolfers — are nod-
ding your heads and thinking, “But maybe golf does cause divorce rates
to rise! Does the phrase ‘golf widow’ ring a bell?” But here’s the problem
with trending variables, and why it’s such a potentially nasty problem in the
social sciences. We could substitute any variable with a trend in it and come
to the same “conclusion.” To prove the point, let’s take another example.
Instead of examining the growth of golf, let’s look at a different kind of
growth — economic growth. In postwar America, GDP has grown steadily,
with few interruptions in its upward trajectory. Figure shows GDP,
in annual terms, along with the now-familiar time series of the decline in
marriage. Obviously, GDP is a long-memoried series, with a sharp upward
trend, in which current values of the series depend extremely heavily on
past values.

The spurious regression problem has some bite here, as well. Using
Marriage as our dependent variable and GDP as our independent variable,
the regression results in Table 11.5 show a strong, negative, and statistically
significant relationship between the two. This is not occurring because
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Table 11.5 GDP and the demise of higher rates of economic output
marriage, 1947-2002 have led to the destruction of the

American family. It is occurring
Variable Coefficient .
(std. orr) because both variables have trends
in them, and a regression involv-
GDP (in trillions) -2.71* ing two variables with trends — even
(0.16) if they are not truly associated —
Constant 74.00* . . .
(0.69) will produce spurious evidence of a
. relationship.
R? 0.84 The two issues just mentioned —
n 56 how to deal with lagged effects in a
o time series and whether or not the
Note: * indicates p < .05 . . .
spurious regression problem is rele-

vant — are tractable ones. Moreover,
new solutions to these issues arise as the study of time-series analy-
sis becomes more sophisticated. We subsequently present two potential
solutions to both problems.

The Differenced Dependent Variable

One way to avoid the problems of spurious regressions is to use a differenced
dependent variable. We calculate a differenced (or, equivalently, “first dif-
ferenced”) variable by subtracting the first lag of the variable (Y;_1) from
the current value Y;. The resulting time series is typically represented as
AY; =Y =Y 1.

In fact, when time series have long memories, taking first differences of
both independent and dependent variables can be done. In effect, instead of
Y, representing the levels of a variable, AY; represents the period-to-period
changes in the level of the variable. For many (but not all) variables with
such long memories, taking first differences will eliminate the visual pattern
of a variable that just seems to keep going up (or down).

Figure 11.4 presents the first differences of the number of golf courses
in the United States, as well as the first differences of the U.S. annual married
percentage. You will notice, of course, that the time series in these figures
look drastically different from their counterparts in levels from Figure 11.2.
In fact, the visual “evidence” of an association between the two variables
that appeared in Figure 11.2 has now vanished. The misleading culprit?
Trends in both time series.

Because, in these cases, taking first differences of the series removes
the long memories from the series, these transformed time series will not be
subject to the spurious regression problem. But we caution against thought-
less differencing of time series. In particular, taking first differences of time
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Figure 11.4. First differences of the number of golf courses and percentage of married
families, 1947-2002.

series can eliminate some (true) evidence of an association between time
series in certain circumstances.

We recommend that, wherever possible, you use theoretical reasons
to either difference a time series or to analyze it in levels. In effect, you
should ask yourself if your theory about a causal connection between X
and Y makes more sense in levels or in first differences. For example, if
you are analyzing budgetary data from a government agency, does your
theory specify particular things about the sheer amount of agency spending
(in which case, you would analyze the data in levels), or does it specify
particular things about what causes budgets to shift from year to year (in
which case, you would analyze the data in first differences)?

It is also worth noting that taking first differences of your time
series does not directly address the issue of the number of lags of inde-
pendent variables to include in your models. For that, we turn to the
lagged-dependent-variable specification.

The Lagged Dependent Variable

Consider for a moment a simple two-variable system with our familiar
variables Y and X, except where, to allow for the possibility that previous
lags of X might affect current levels of Y, we include a large number of lags
of X in our model:

Y=o+ BoX:+ 1 Xe—1+ -+ BpXs_p + 14z
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This model is known as a distributed lag model. Notice the slight shift in
notation here, in which we are subscripting our B coefficients by the number
of periods that that variable is lagged from the current value; hence, the B
for X; is Bg (because t — 0 = t). Under such a setup, the cumulative impact
Bof XonYis

k
B=PBo+Bi+Br+ +B=) Bi
=0
It is worth emphasizing that we are interested in that cumulative impact of
X on Y, not merely the instantaneous effect of X; on Y; represented by the
coefficient By.
But how can we capture the effects of X on Y without estimating such
a cumbersome model like the preceding one? We have noted that a model
like this would surely suffer from multicollinearity.
If we are willing to assume that the effect of X on Y is greatest initially
and decays geometrically each period (eventually, after enough periods,
becoming effectively 0), then a few steps of algebra would yield the fol-

lowing model that is mathematically identical to the preceding one.” That
model looks like

Y =AY 1 +a+BoX: +ur.

This is known as the Koyck transformation, and is commonly referred to
as the lagged-dependent-variable model, for reasons we hope are obvi-
ous. Compare the Koyck transformation with the preceding equivalent
distributed lag model. Both have the same dependent variable, Y;. Both have
a variable representing the immediate impact of X; on Y;. But whereas the
distributed lag model also has a slew of coefficients for variables represent-
ing all of the lags of 1 through & of X on Y, the lagged-dependent-variable
model instead contains a single variable and coefficient, AY;_1. Because,
as we said, the two setups are equivalent, then this means that the lagged
dependent variable does not represent how Y;_1 somehow causes Y;, but
instead Y;_1 is a stand-in for the cumulative effects of all past lags of X
(that is, lags 1 through k) on Y;. We achieve all of that through estimating
a single coefficient instead of a very large number of them.

The coefficient A, then, represents the ways in which past values of X
affect current values of Y, which nicely solves the problem outlined at the
start of this section. Normally, the values of A will range between 0 and 1.
You can readily see that if A = 0 then there is literally no effect of past values

9 We realize that the model does not look mathematically identical, but it is. For ease of
presentation, we skip the algebra necessary to demonstrate the equivalence.

10 In fact, values close to 1, and especially those greater than 1, indicate that there are
problems with the model, most likely related to trends in the data.
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of X on Y;. Such values are uncommon in practice. As A gets larger, that
indicates that the effects of past lags of X on Y; persist longer and longer
into the future.

In these models, the cumulative effect of X on Y is conveniently
described as

_ bo
S

Examining the formula, we easily see that, when A = 0, the denominator is

B

equal to 1 and the cumulative impact is exactly equal to the instantaneous
impact. There is no lagged effect at all. When A = 1, however, we run into
problems; the denominator equals 0, so the quotient is undefined. But as
) approaches 1, you can see that the cumulative effect grows. Thus, as
the values of the coefficient on the lagged dependent variable move from 0
toward 1, the cumulative impact of changes in X on Y grows.

This brief foray into time-series analysis obviously just scratches the
surface. When reading research that uses time-series techniques, or espe-
cially when embarking on your own time-series analysis, it is important to
be aware of both the issues of how the effects of shifts in independent vari-
ables can persist over several time periods, and also of the potential pitfalls
of long-memoried trends. We turn now to a prominent example from the
literature on American public opinion that uses time-series analysis.

EXAMPLE: THE ECONOMY AND PRESIDENTIAL POPULARITY

All of you, we suspect, are familiar with presidential popularity (or presi-
dential approval) polls. Presidential popularity, in fact, is one of the great
resources that presidents have at their disposal; they use approval as leverage
in bargaining situations. It is not easy, after all, to say “no” to a popu-
lar president. In contrast, unpopular presidents are often not influential
presidents. Hence all presidents care about their approval ratings.

But why do approval ratings fluctuate, both in the short term and the
long term? What systematic forces cause presidents to be popular or unpop-
ular over time? Since the early 1970s, the reigning conventional wisdom held
that economic reality — usually measured by inflation and unemployment
rates — drove approval ratings up and down. When the economy was doing
well — that is, when inflation and unemployment were both low — the presi-
dent enjoyed high approval ratings; and when the economy was performing
poorly, the opposite was true.'' That conventional wisdom is represented

11 Tt has always been the case that scholars have recognized other systematic causes of pres-
idential approval ratings, including scandals, international crises, and battle fatalities. We
focus, in this example, exclusively on the economy for simplicity of presentation.
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Figure 11.5. A simple causal model of the relationship between the economy and
presidential popularity.
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Figure 11.6. A revised model of presidential popularity.

graphically in Figure . Considerable amounts of research over many
years supported that wisdom.

In the early 1990s, however, a group of three political scientists ques-
tioned the traditional understanding of approval dynamics, suggesting that
it was not actual economic reality that influenced approval ratings, but the
public’s perceptions of the economy — which we usually call consumer con-
fidence (see MacKuen, Erikson, and Stimson 1992). Their logic was that it
doesn’t matter for a president’s approval ratings if inflation and unemploy-
ment are low if people don’t perceive the economy to be doing well. Their
revised causal model is presented in Figure

What these researchers needed to do, then, was to test the conventional
wisdom about an established relationship between an independent variable
(X) and a dependent variable (Y) by controlling for a new variable (Z)
based on their theoretical expectations. By use of quarterly survey data
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Table 11.6. Excerpts from MacKuen, Erikson,
and Stimson'’s table on the relationship between

the economy and presidential popularity

Approval; 0.87* 0.82*
(0.04) (0.04)
Inflation -0.39* -0.17
(0.13) (0.13)
Change in unemployment -1.51* 0.62
(0.74) (0.91)
Consumer confidence = 0.21*
— (.05)
R? 0.93 0.94
n 126 117
Note: Standard errors are in parentheses.
*=p<0.0S.
Other variables were estimated as a part of the regression
model but were excluded from this table for ease of
presentation.

from 1954:2 through 1988:2, this is what they did. Table 11.6 re-creates a
portion of MacKuen, Erikson, and Stimson’s Table 2. In column A, we see a
confirmation of the conventional wisdom. (Can you think why the authors
might include a column in their tables like this?) You should think of this
column of results as testing the causal model in Figure 11.5. The coefficient
for the inflation rate, —0.39, indicates that, for every 1-point increase in the
inflation rate, presidential approval will immediately fall by 0.39 points, on
average, controlling for the effects of unemployment (and other variables in
their model, which we do not show). According to the table, the ratio of the
coefficient to the standard error places this effect easily past the threshold
of statistical significance.

Similarly, column A presents the results for the effects of changes in
the unemployment rate on presidential approval. The slope of —1.51 indi-
cates that, for every 1-point increase in the unemployment rate, presidential
approval falls by 1.51 points, on average, controlling for the effects of
inflation (and other variables that we do not show). This parameter estimate
is also statistically significant.

Because of our focus in this chapter on some of the basics of time-
series analysis, notice also the presence of a lagged dependent variable in
the model, labeled Approval;_1. Recalling our earlier discussion, we find
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that the coefficient of 0.87, which is statistically significant, indicates that
87% of the effects of a shift in one of the independent variables persists
into the following period. Thus the effects of shifts in X do not die out
instantly; rather, a large portion of those effects persist into the future.
What this means is that, for example, the coefficient for Inflation of —0.39
represents only the immediate effects of inflation, not the cumulative effects
of Inflation. The cumulative effect for Inflation, as we learned earlier, is
equal to the immediate impact divided by one minus the coefficient for the
lagged dependent variable, or,

Bo ~0.39

=1 7" 1208~ >

B

The immediate impact of —0.39, then, considerably understates the total
impact of a shift in the Inflation rate, which, because of the strong dynamics
in the model - the value of the lagged dependent variable, 0.87, is a lot closer
to 1 than it is to 0 — is considerably more impressive in substantive terms.
A 1-point shift in the Inflation rate eventually costs a president 3 points of
approval.

In short, the first column of data in Table provides some confir-
mation for the conventional wisdom. But the results in column A do not
control for the effects of Consumer Confidence. The results from when
MacKuen, Erikson, and Stimson did control for Consumer Confidence are
provided in column B of Table . Notice first that Consumer Confidence
has a coefficient of 0.21. That is, for every 1-point increase in Consumer
Confidence, we expect to see an immediate increase in presidential approval
of 0.21 points, controlling for the effects of Inflation and Unemployment.
This effect is statistically significant.

Notice also, however, what happens to the coefficients for Inflation
and Unemployment. Comparing the estimated effects in column A with
those in column B reveals some substantial differences. When there was no
control for Consumer Confidence in column A, it appeared that Inflation
and Unemployment had modestly strong and statistically significant effects.
But in column B, the coefficients change because of the control for Consumer
Confidence. The effect of Inflation shrinks from —0.39 to —0.17, which
reflects the control for Consumer Confidence. The effect is not close to
being statistically significant. We can no longer reject the null hypothesis
that there is no relationship between inflation and presidential approval.

12 Indeed, in the second period, 0.872 of the effect of a shift in X at time ¢ remains, and 0.873
remains in the third period, and so forth.

13 Again, notice that the cumulative effect of a 1-point shift in Consumer Confidence will be
larger, because of the strong dynamics in the model represented by the lagged value of the
dependent variable.
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The same thing happens to the effect for the Change in the Unem-
ployment rate. In column B, when Consumer Confidence is controlled for,
the effect for the Change in Unemployment changes from —1.51 to 0.62,
a substantial reduction in magnitude, but also a change in the direction of
the relationship. No matter, because the coefficient is no longer statistically
significant, which means we cannot reject the null hypothesis that it is truly
zero.

The second column of Table , then, is consistent with Figure ,
which shows no direct connection between economic reality and presiden-
tial approval. There is, however, a direct connection between consumer
confidence and approval ratings. In this case, introducing a new variable
(Consumer Confidence) produced very different findings about a concept
(Economic Reality) that scholars had thought for decades exerted a direct
causal influence on approval.

WRAPPING UP

In this chapter, we discussed two commonly encountered research situa-
tions — dummy dependent variables and data collected across time. We
have provided an introductory presentation of the problems associated with
each of these situations and some of the approaches commonly taken by
researchers. In the final chapter, we zoom out from such technical issues
and discuss strategies for pulling together what you have learned thus far
throughout the book in order to produce an original research project.

CONCEPTS INTRODUCED IN THIS CHAPTER

* binomial logit — a model of a dummy dependent variable that uses
the logistic distribution to convert predicted values into predicted
probabilities.

* binomial probit — a model of a dummy dependent variable that uses
the cumulative normal distribution to convert predicted values into
predicted probabilities.

* classification table — tables that compare model-based expectations
with actual values of the dependent variable.

* consumer confidence — a subjective assessment by members of the mass
public that registers the public’s optimism or pessimism about the state
of the economy.

* cumulative impact — in a lagged dependent variable model, the impact
of a one-unit increase in an independent variable at all times ¢ and after.
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+ differenced (or “first differenced”) dependent variable — a transforma-
tion of the dependent variable in which the lagged value is subtracted
from the current value.

* distributed lag model — a time-series model in which the cumulative
impact of an independent variable is measured by including many lags
of that variable.

* instantaneous effect —in a lagged dependent variable model, the impact
of a one-unit increase in an independent variable at time ¢.

* Koyck transformation — a theoretical justification of the lagged depen-
dent variable model.

* lagged-dependent-variable model — a time-series model in which the
lagged value of the dependent variable is included as an independent
variable in the model.

* lagged values — in a time series, values of a variable that occur before
the current time period.

* lead values — in a time series, values of a variable that occur after the
current time period.

* linear probability model — an OLS model in which the dependent
variable is a dummy variable.

* link functions — functions that convert the linear component of a
nonlinear model to a quantity of interest.

* predicted probability — in models with a dummy dependent variable,
the expected value of the dependent variable conditioned on the values
of the independent variable(s).

* presidential popularity (or approval) — the degree to which members
of the mass public approve or disapprove of the way a president is
performing in their job as president.

* proportionate reduction of error — a calculation used to asses the use-
fulness of a model by comparing its predictive accuracy with that of a
naive model that always predicts the modal category of the dependent
variable.

* spurious regression problem — a situation in which long-lasting trends
in variables produce false evidence of a statistical relationship between
those variables when none truly exists.

EXERCISES

Imagine a respondent who reported being a strong Republican (Party
ID = 3) with a strongly disapproving evaluation of Bush’s handling of the war
on terror (War Evaluation = —2) and a strongly disapproving evaluation of
Bush’s handling of the health of the economy (Economic Evaluation = —2).
Using the results from the Linear Probability Model in Table , calculate
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Table 11.7. Classification table from a BNP of

the effects of partisanship and prospective
expectations on votes for Obama in 2008

Model-based expectations

Actual vote Obama McCain
Obama 1575 233
McCain 180 1201

Notes: Cell entries are the number of cases.
Predictions are based on a cutoff of Y > .5

the predicted probability of this individual voting for Bush. Show all of your
work.

2. Using the Binomial Logit Model in Table 11.2, calculate the predicted proba-
bility of the individual described in Exercise | voting for Bush. Show all of your
work.

3. Using the Binomial Probit Model in Table 11.2, calculate the predicted prob-
ability of the individual described in Exercise 1 voting for Bush. Show all of
your work.

4. Table 11.7 is the classification table from a Binomial Probit Model in which
the dependent variable was a dummy variable equal to one if the respondent
reported voting for Obama and equal to zero if the respondent reported voting
for McCain. The independent variables in this model were measures of party
identification and respondents’ expectations about economic and foreign policy
performances with each of the two major party candidates as the president.
Calculate the percentage of respondents classified correctly by this model. Show
all of your work.

5. Using Table 11.7, calculate the percentage of respondents that would be cor-
rectly classified by a naive model that predicts that all respondents choose the
modal category of the dependent variable. Show all of your work.

6. Using the calculations that you made in Exercises 4 and 5, calculate the pro-
portionate reduction of error when we move from the NM to the BNP model.
Show all of your work.

7. For column B in Table 11.6, calculate the long-run effects of a one-point shift in
consumer confidence on a president’s approval ratings. Show all of your work.

8. Find and read the article “Recapturing the Falklands: Models of Conservative
Popularity, 1979-1983” (Clarke, Mishler, & Whiteley, British Journal of Polit-
ical Science, 1990). What is the key dependent variable in their model? From
what you’ve learned in this chapter, does that variable appear to have long-term
trends in it that could pose problems in their analysis? Do the authors of the
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article adequately describe how they dealt with this issue? Explain your answer
to each of these questions.

Collect a time series from a government source (such as

), produce a graph of that series, and examine it for evidence
of long-memory trends. Write about what you think is going on in this series.
Turn in the graph with your answer.

Create a first difference of the series you used in Exercise 9. Produce a graph of
the differenced series. What is the substantive interpretation of this new series,
and how is that different from the original series?


http://{http://www.fedstats.gov/}
http://http://www.fedstats.gov/

m Putting It All Together to Produce
Effective Research

In Chapter 2 we discussed the art of theory building. In this chapter we
discuss the art of putting it all together to produce effective research. As is
the case with theory building, there is no magic formula for putting together
an effective research manuscript, but there certainly are good manuscript-
assembling strategies. We will begin this chapter with an elaboration on
some of the themes discussed in Chapter 2. We then turn to a more in-depth
discussion of how to examine published research, which takes advantage of
the fact that you have now absorbed the lessons and strategies presented in
this book. As such, we can now discuss the dissection of previous research
at a higher level, and prepare you to start producing research of your own.

Amat victoria curam. (Victory loves preparation.)
— Latin proverb

If I have seen further, it is by standing on the shoulders of giants.
— Isaac Newton

PET TWO ROUTES TOWARD A NEW SCIENTIFIC PROJECT

We began this book with three goals. First, to make you a better consumer of
information. Second, to enable you to understand theoretical debates more
easily in your other political science classes. And third, to motivate and
equip you to begin to do your own research. This last chapter is dedicated
to this third objective.

As we said at the beginning of this book, the twin goals of all science,
including political science, are to generate new causal theories about the
world, and then to test those theories. You have learned throughout this
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book that one of the keys to testing a theory is to control for other possible
explanations of the dependent variable.

And if we’ve been successful in these pages, some of you are feeling
anxious to start research projects of your own — perhaps as an independent
study, or a summer research project, or a senior honors thesis. But how
can you get started on a big new project like the ones just mentioned?
In this section, we will suggest two major strategies (and one offshoot)
for starting new research agendas. These strategies, to be sure, represent a
simplification of the ways in which political scientists generate their own
research programs. But sometimes simplifying things is helpful, especially
when faced with a possibly daunting task.

Consistent with the way we have been describing dependent variables
as Y and a key independent variable as X, the two routes to formulating a
new project are:

1. A new Y (and some X)
2. An existing Y and a new X

We take them in turn.

Project Type 1: A New Y (and Some X)

The first type of project involves the creation of, invention of, or discovery
of some new type of dependent variable, and then theorizing about some
independent variable that might cause the dependent variable to vary. What
makes projects like this distinctive — and difficult! — is the word “new.” A
research project of this type is exceedingly creative, and also rather rare.
Political scientists don’t just arrive in their offices in the morning, take that
first swig of coffee, and confront the day with the thought, “Okay, here we
go. Today I’'m going to create another new dependent variable to analyze.”
If only it were that simple!

The burden of creating a new concept to represent a brand-new depen-
dent variable is considerable. Moreover, because research never occurs in
a metaphorical vacuum, it has to be a concept that other scholars will find
interesting. Otherwise, your work is unfortunately quite likely to be ignored.

If you can conceptualize something genuinely new, and then proceed
to measure it, then the next (and critical) step is to theorize about some X
that might cause this new Y to vary. Again, this is sometimes a formidable
task, but, on the other hand, it’s likely that, if you are able to imagine a
new dependent variable, you might already have a clue about what force
or forces might cause it to vary.

Projects of this type can break new paths toward scientific knowledge —
paths that other scholars can follow, and that can lead to new theories and
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findings about how the world works. An example of a project like this
is shown in Nelson Polsby’s article “The Institutionalization of the U.S.
House of Representatives,” which appeared in the American Political Sci-
ence Review in 1968. Polsby developed a new variable, which he referred to
as the “institutionalization” of an organization. As an organization becomes
increasingly institutionalized, three things happen, he claimed. First, the
organization becomes more clearly separated from the environment around
it. Second, the organization becomes increasingly complex, with functions
and roles that cannot simply be interchanged. Finally, the organization
develops increasingly complex rules and procedures for handling its inter-
nal business. On all three levels, Polsby was able to show that, since the
founding of the republic, the U.S. Congress has become increasingly insti-
tutionalized. That is, his newly introduced concept became an interesting
over-time variable that begged for scientific explanation — in other words:
Why has the House become more institutionalized? In his article, Polsby
offers some theoretical speculation about the causes of this phenomenon.
The article exemplifies this type of project since no previous scholars had
thought of this as a possible dependent variable that needed explaining. And
the article has been cited nearly one thousand times by subsequent scholars.

So how do you find a new Y? First, you have to know that it is, indeed,
new, by which we mean that no previous scholar has already conducted
research on this particular dependent variable. This requires conducting a
thorough research of the existing literature, likely using Google Scholar and
some variations on keywords."' Beyond that, there is no magical formula, no
recipe to follow that will lead to a new dependent variable that begs expla-
nation. What we can say, to hearken back to our analogy in Chapter 2, is
that the best way to get struck by metaphorical lightning is to read academic
works. Read with a hunger that points toward questions like, “What don’t
we know yet?” This is a theme we’ll return to later in this chapter.

Project Type 2: An Existing Y and a New X

Perhaps you will find that creating a new dependent variable from scratch is
too challenging for your project. If so, you’re in very good company. Many
researchers come to the conclusion that all of the good dependent variables
are already taken. And if you find yourself in this position, perhaps it’s time
to consider our second type of research project: taking an existing Y and
theorizing how a new X might cause it.

I Google Scholar is found at , and is distinct from the main Google
search engine, found at . Be careful not to confuse the two.


http://scholar.google.com
http://www.google.com
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You’ll note that projects like these also have the word “new” in them —
though this time, what’s new isn’t the dependent variable, but the indepen-
dent variable. The burden of producing something new — by which we
mean, a relationship between X and Y that some other scholar has not
already examined in the same way that you’re proposing — is still consid-
erable. But in projects like this, the sense that a new scholar is “standing
on the shoulders of giants” is far more evident. Previous scholars may have
already examined a particular dependent variable, proposing several causes
that might explain its variation. Those causes, to be sure, might be compet-
ing with one another, or they might complement one another. The heart of
projects of this type is identifying some other possible cause of Y that has
not been adequately examined.

The burden of novelty requires thorough canvassing of the existing lit-
erature on the particular phenomenon that interests you. For example, if
you are interested in explaining cross-national variation in why citizens in
some countries seem more trusting of government, whereas others seem less
trusting of government, this means that you will have to consume that liter-
ature, systematically noting what independent variables — or categories of
independent variables (like “the economy”) — have already been examined
by previous researchers.

A project becomes an original project once you propose a new X
that has not been tested to see if it relates to Y. Controlling for a new
variable, as we have seen time and again in this book — but especially in
Chapter 9 — sometimes alters the patterns of findings that have been pre-
viously accepted. That is, controlling for your new independent variable
might change how some of the previously investigated independent vari-
ables relate to the dependent variable once the effects of your variable are
controlled for. This is how science often moves forward.

Therefore, when embarking on a project of this type, it is absolutely
critical to be sure that you do, indeed, control for these previous expla-
nations. This can happen by way of research design — especially if you’re
able to conduct an experiment — or by statistical controls, in the event that
you’re using an observational research design. If you’ll be using an obser-
vational design, then of course you’ll need to be sure to gather data for the
established independent variables so that you’ll be able to control for their
effects statistically.

Variants on the Two Project Types

We have emphasized that there are two major types of new projects. In real-
ity, that is something of an oversimplification. In this section, we consider
a third type of new project that can help create scientific knowledge.
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A third path to an original project can be to examine a previously
examined X-Y relationship in a new context. Again, notice the word “new”
here; in order for your work to make an original contribution, something
has to be new. In this variant, sometimes the new-ness comes from testing
an established X-Y relationship in a new time period — either an earlier
one or a later one. Perhaps more commonly, the new-ness can come from
testing an established X-Y relationship in a new geographic context. Or
alternatively, we might think of a theoretically interesting comparison of
an established X-Y relationship across different groups of cases within a
sample in which the X-Y relationship has already been established.

The hope with a project like this is that, when the existing relationship
is tested in a new context, interesting patterns will emerge that can create
further opportunities for research. A useful way to think about this move-
ment to a new context is to think about it as moving from an examination
of an established X-Y in one particular sample of cases to a comparison of
this same X-Y relationship across different subsamples of cases. As we have
emphasized throughout the book, we continue to use these sample findings
to make inferences about unobservable populations. In the context of this
type of design, we can think about theoretically interesting ways to divide
our cases into different subpopulations.

To take an example where the new-ness comes from a new time, con-
sider that, at least since the work of Converse (1964), it has been noticed
that among members of the American public there was not a particularly
strong relationship between an individual’s party identification (X) and
their policy attitudes (Y). That is, there was a correlation between being
a Republican and espousing more conservative policy attitudes, but the
correlations were always very modest. More recent research, though, par-
ticularly by Levendusky (2009), that investigates this same X-Y connection
in a newer time period has shown that the correlations have become quite a
bit stronger in recent years. That is, in what Levendusky calls “the partisan
sort,” something has happened to make the correlation between an indi-
vidual’s partisanship and their policy preferences much more strong. This
led Levendusky, of course, to ask what made this happen, and opened up
considerable space for additional research in the study of American public
opinion.

Other projects investigate an existing X—Y connection in different geo-
graphic contexts. Throughout this book we have used the example of the
relationship between the U.S. economy and incumbent-party electoral for-
tunes as one of our running examples. Indeed, much of the pioneering
work on what is called economic voting took place in the U.S. context.
Those findings, as you have seen, show that a strong economy clearly ben-
efits the candidate of the incumbent party, and a weak economy hurts the
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incumbent party’s electoral fortunes. Scholars naturally wondered if these
patterns would also be found in other democracies. Fascinatingly, in some
countries, an X-Y connection existed similar to that in the United States, but
in others, no such connection could be found. Naturally, that led scholars
to wonder why evidence of economic voting was strong in some countries,
and absent in others. Powell and Whitten ( ) show that the strength
of the economic vote is driven by, among other things, what they call the
“clarity of responsibility” of the governing party’s handling of the econ-
omy. In countries with coalition governments where multiple parties share
power, for example, it’s much less clear who deserves credit or blame for
the health of the economy than it is in a country where control over the
economic policy is concentrated in the hands of a single party.

USING THE LITERATURE WITHOUT GETTING BURIED IN IT

If you are going to embark on an original research project, you first have
to be aware of what scholarly work has already been done in that area of
inquiry. How do you go about doing that? This section is devoted to how
to identify the giants whose shoulders you would like to stand upon.

Identifying the Important Work on a Subject — Using
Citation Counts

One of the most daunting tasks faced by a researcher starting out is to
identify what has been done before. Most keyword searches will yield a
phone book-sized return of articles and other publications. Even the most
avid reader will be overwhelmed. Thankfully citations provide a powerful
shortcut for sorting out which of the many published works on a topic are
the most important.

By now you have probably had some experience with having to pro-
duce a written work with citations of sources. Citations are one of the most
valued currencies in which scientific researchers conduct their business. To
be cited is to be relevant; to be uncited is to be ignored. For this reason, cita-
tions have formed the basis for a wide range of indices by which individual
scientists, scientific journals, academic departments, and even entire uni-
versities are ranked relative to each other. We can safely say that academia
today is obsessed with citations.

As such, we recommend taking advantage of the fact that citations are
a powerful tool for distinguishing among the many articles any time that
you do a search using Google Scholar or similar tools. So, an obvious next
question is how many citations does a publication need for it be regarded as
having a substantial impact? As a rough rule of thumb, we suggest that you
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use 20 citations. Of course, as you might imagine, the number of citations
that a publication has is, in part, a function of time. Thus, an article that
was published in 2011 that already has 10 citations in 2013 is probably
going to have a substantial influence.

Oh No! Someone Else Has Already Done What I Was Planning to
Do. What Do I Do Now?

One of the most frustrating things that can happen during a search of the
literature is that you find that someone else has already done what you had
in mind and published an article or book testing your theory or something
close to it. As frustrating as this may be at first, it is actually a good sign
because it means that what you had in mind was in fact a good idea. If this
happens to you, you should read the work and think about how it can be
improved upon.

Dissecting the Research by Other Scholars

Once you have identified the influential work in your topic area, it is
important to take it apart in order to be able to put it to work for your
purposes. We recommend making notes on the answers to the following
questions:

* What was the research question/puzzle?

* What was their theory?

» What was their research design?

* How did they do with the four hurdles?

* What did they conclude?

* Can their theory be applied elsewhere in an interesting fashion?

For example, in the article about consumer confidence and presi-
dential approval by MacKuen, Erikson, and Stimson (1992) described
in Chapter 11, a paragraph-long synopsis of that article might take the
following form:

In their article, MacKuen, Erikson, and Stimson (1992) address the ques-
tion of how changes in the economy translate into shifts in presidential
approval ratings. Whereas the conventional wisdom held that objective
economic reality — usually in the form of inflation and unemployment —
drives approval ratings, their theory argues that the more subjective con-
sumer confidence is what causes approval to rise and fall over time. To
test their theory, they conducted a time-series observational study over the
period 1954-1988, controlling for a number of noneconomic factors that
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also shape approval. They found that, once controlling for consumer sen-
timent, inflation and unemployment no longer were statistically significant
predictors of approval ratings, whereas consumer confidence was.

By systematically going through previous research, as we’ve done here, and
summarizing it compactly, it becomes possible to see what the literature, as
a collection, teaches us about what we do know, and what we don’t know,
about a particular phenomenon.

Read Effectively to Write Effectively

One of the best ways to learn strategies for effectively communicating your
research ideas is to examine the ways in which other researchers communi-
cate their ideas. Pay attention to how others write: You can learn a lot from
both good and bad writing. When you are reading, be particularly conscious
of the way in which causal arguments are presented. Make notes about those
arguments that you find immediately persuasive and those arguments that
are less so. What did the authors do to enhance or hurt their arguments?

To be clear, we are not recommending that you copy the writing of
someone else; that would be plagiarism. Instead, what we are recommend-
ing is that you think consciously about the strategic decisions that the
authors whose work you are reading have made. What is it about a partic-
ular turn of phrase or style of argument that convinces you that they are
right or leaves you unconvinced?

As an example of effective writing, consider Robert Franzese’s
article “Partially Independent Central Banks, Politically Responsive Gov-
ernments, and Inflation.” Franzese’s opening paragraph begins:

Political scientists and economists generally agree that central bank inde-
pendence lowers inflation. Both also define central bank independence as
the degree of autonomy of the conservative central bank from the political
authority in making monetary policy. From the political scientist’s view,
central banks are bureaucratic institutions, populated by financial experts
who are usually hawkish on inflation, whether socialized to that view or
coming from population-groups with those interests.

Notice the fashion in which Franzese writes about the literature that is
relevant to his paper. The paragraph opens with an authoritative gen-
eral statement about a causal relationship that is acknowledged by two
broad fields of research. This is followed by a more specific and nuanced
accounting of what each particular field believes. Franzese begins his sec-
ond paragraph with the following sentence: “This paper stresses the simple
point that the monetary-policy-making autonomy of central banks is, by
definition, a matter of degree.” This very to-the-point sentence is followed
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by a series of sentences that elaborate on the dynamics that shape the main
causal process examined in the paper. Franzese concludes the second para-
graph with this summary statement: “Therefore, monetary policy and thus
inflation are always partially controlled by central banks and partially by
current governments.” He then begins the third paragraph with: “Four con-
clusions follow.” This three-word sentence is very effective at calling readers
to attention before the author lists the theoretical propositions that will be
tested in the paper. Franzese concludes the introduction to his paper with a
fourth paragraph in which he provides a road map of the rest of the paper.

The authoritative yet accessible tone with which Franzese wrote the
introduction to this paper makes readers want to read more. In just four
short paragraphs, he has introduced the subject and established himself as
an authority. He has presented the essential elements of his theoretical ideas
about the causal processes at work and he has told readers what to expect
in the following sections.

WRITING EFFECTIVELY ABOUT YOUR RESEARCH

Writing is thinking.
— Diedre McCloskey

In this section we discuss a set of strategies for writing effectively about
your research. We can not overstate the importance of writing in political
science research. Writing is an extremely important part of the research
process. Even the most exciting statistical results can be buried by bad writ-
ing. Good scientific writing is achieved through clarity — clear thinking and
clear writing.

Write Early, Write Often because Writing Is Thinking

“Writing is thinking.” This simple phrase is the title of a chapter in Diedre
McCloskey’s classic book Economical Writing (1999, p. 6). We could not
agree more. Whenever you have an idea about research, we strongly encour-
age you to start writing. We can tell you from experience that it is simply
amazing how often taking some time to write about an idea helps you to
clarify your thinking. Sometimes you will find that writing helps you to
cut through the fog of a collection of loosely thrown-together ideas. Other
times, writing will expose logical problems in a theory that seemed to be very
solid when it was just a thought in your head. In either situation, it is best
to know sooner rather than later where you stand with a particular idea.
So why do people wait to write? An easy answer is that writing is
hard and other activities may seem more fun and immediately rewarding.
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With modern political science research, one frequent occurrence is that
researchers get excited about their data and do a lot of analysis before
writing. Sometimes this works just fine, but other times when they start
writing they realize that they have been missing something major and have
to go back to the drawing board in terms of their analyses. Our suggestion is
to think of writing and conducting analyses as an integrated process rather
than as step one and step two in a research project. One way to effectively
integrate writing and analyses is to document your code.

Document Your Code — Writing and Thinking while You Compute

On the web site for this book, we provide guides for how to conduct the
statistical analyses discussed in Chapters 5 through 11 in three different
statistical programs (SPSS, Stata, and R). Although analyses in all three
of these programs can be conducted using pull-down menus, we highly
recommend that researchers write programs to conduct their analyses. An
important part of this programming is what is known as “documenting”
your code. What this involves is making notes about what you are doing and
why you are doing it. While this way of working may seem slow and perhaps
even a bit tedious, we have found that it serves at least two important
purposes. First, when you force yourself to slow down and write about
what you are doing, you are forced to think more deeply about it. And
second, when you document your code, you produce work that can be
replicated. In an excellent article written as a guide to programming for
political science researchers, Jonathan Nagler ( ) outlines the goals as
“First, the researcher should be able to replicate his or her own work six
hours later, six months later, and even six years later. Second, others should
be able to look at the code and understand what was being done (and
preferably why it was being done).”

Divide and Conquer — a Section-by-Section Strategy for Building
Your Project

Thinking about writing an entire manuscript can be pretty intimidating.
For this reason, we recommend an initial approach in which you divide
your project into the following six sections: “Introduction,” “Literature
Review,” “Theory,” “Research Design and Data,” “Findings/Results,” and
“Implications and Conclusions.” More advanced writers may want to work
with a different set of section headings, but this basic list of six has, in our
experience, been a good structure to start working with.

We recommend putting these section headings into your document,
choosing one section, and starting to write. Yes, that’s right, there is no need
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to start at the beginning. You will find that even if you start writing your
introduction, you will likely change it down the line. So pick the section that
you feel most comfortable writing and have at it. We will now discuss briefly
the essential components that should be contained within each section.

Introduction

The introduction section should answer the question “What is the contri-
bution of this work?” As such, the introduction should provide an overview
of the theory that is going to be tested. You don’t have to provide all of the
details of the causal mechanism behind your theory; that’s what the theory
section of the project is for. But you should at least give a broad overview
of the theoretical contribution that you intend to make. If the importance
of the subject matter being covered is not obviously clear, it needs to be
made so early in the introduction.

Beginning researchers will often be tempted to load their introduction
up with citations of published research. We strongly advise against this.
Instead, we suggest selecting at most three major works to cite in this section.
The point of this section is to introduce readers to what you are going to
do and to make them want to read on. Many authors end the introduction
of their projects with a road map-style brief discussion of the sections that
are coming.

In our experience, shorter introductions are more effective. You want
to use this section to set up the rest of the project and move on.

Literature Review

The literature review section is where you describe the relevant literature for
your purposes. You don’t need to reference every work that has ever been
carried out on your topic. Instead, you should write authoritatively about
the parts of the literature that are most relevant to what you are going to
do in your manuscript. It is important to be strategic in your crafting of this
section. You want readers to be able to anticipate what your contribution
to the literature will be.

This section of your project should answer, for the reader, the twin
questions that are likely to be on their mind. First, what does the literature
teach us about the causes of the dependent variable of interest? Second, what
do we still not know about those causes? These two questions provide the
basis for the section, the essential subtext beneath your actual sentences and
paragraphs.

While it is certainly reasonable to be critical of published research,
we recommend that any criticism be carefully and tactfully phrased. As we
discussed in Chapter 1, part of taking a scientific approach to the study of
politics is being skeptical and challenging when we consider the research of
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other scientists. This can lead to a tendency to want to tear into research
conducted by other scholars. But it’s important to keep in mind that, by
harshly criticizing the work of other researchers, you may be criticizing
work that your readers like. And this, in turn, may make them read your
work with a more negative eye. It’s important to keep in mind that flaws
in the research of other scholars provide us with opportunities to make
improvements. And, at the end of the day, if a work is completely useless,
why are you citing it?

Theory

The theory section is where you need to definitively answer the first causal
hurdle question, “Is there a credible causal mechanism that connects X to
Y?” This can be done in a variety of ways, but it needs to be done well.
As we discussed in Section , we highly recommend taking some time
to analyze what does and doesn’t work in the writing of other researchers.
This is particularly helpful in terms of the presentation of theories.

You may also want to use this section of the project to answer the
question “Can we rule out the possibility that Y could cause X?” However,
if you think that you have answered this question in the way that you set
up your research design, you should address this question in the “Research
Design and Data” section of your project.

Writing theory sections is hard. There’s just no way around that fact.
One of the benefits, though, of structuring research projects in the way we
have suggested is that, by seeing a separate “Theory” section, and realiz-
ing that it has to contain new causal ideas, it helps us to realize just how
important theoretical ideas are. By requiring the summary and critique of
the previous literature to be in a separate section, the Theory section must
then contain new causal claims, complete with new mechanisms linking
your independent variable to your dependent variable, the originality of
your project is showcased. In other words, a Theory section is not where
you would insert other scholars’ causal ideas; those belong in the Litera-
ture Review section. Sometimes, this leaves nearly empty Theory sections,
or perhaps just very short ones. What this should signal to you is that the
theoretical contribution of your project needs some clarifying.

Research Design and Data

In the research design and data section, you need to write clearly about how
you operationalized your variables and how the cases studied were chosen.
Did you conduct an experimental or an observational study? Why? Was
observational study a cross-sectional or a time-series study? Why? Where
did your data come from? How were your variables measured? What is the
sample of cases, and what is the population to which you will make your
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inferences from this sample? All of these questions need to be answered in
this section.

Findings/Results

In Section we discuss preparing and presenting tables and figures. This
type of work will make up the bulk of what you will do in this section
of your project. In addition to walking readers through your results, it is
important that in this section you weigh in on the degree to which your
hypotheses have been supported from the analyses that you are presenting.

Implications and Conclusions

In this final section, you should come back to your original theory and
discuss the degree to which it has been supported from the analyses that
you have presented. This section should be one in which you write more
broadly about the implications of what you have found. This is also a section
where you should discuss how what you have found in this work leads to
other ideas about work in the future, and how your project fits in with the
literature that you reviewed in Section

Proofread, Proofread, and Then Proofread Again

Once you’ve written a draft of your project, there’s a tendency to feel very
satisfied. You should. However, for the serious scholar, there is still a lot of
work to be done. Proofreading is critically important to writing effectively
about any subject, but especially so when you are writing about a technical
undertaking such as theory testing. The more technical the subject on which
you are writing, the more important proofreading becomes. You want your
readers to be able to glide seamlessly through your writing so that they can
clearly understand what you are trying to communicate. This can only be
achieved through the hard work of proofreading.

Beginning students will often equate proofreading with running a spell-
checking program. Spell checking is important, but even the best programs
can’t tell when you use a word that is actually a word, but clearly not
the word you intended. (Consider the phrase “pubic opinion,” which both
authors of this book have seen in final course projects submitted by their
students. If this doesn’t convince you that a spell-checker is not enough,
then perhaps nothing will.) There is simply no substitute for reading your
work carefully.

There are multiple ways in which you can and should proofread each
project that you write. If you have time — and you will if you are writ-
ing early and often — you should proofread multiple times with a different
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focus. We also recommend thinking about proofreading at different lev-
els — micro-level to macro-level proofreading. By micro-proofreading, we
mean proofreading your project sentence by sentence making sure that each
sentence is grammatically correct and that each sentence flows well on its
own. At a middle level of proofreading focus, read your project with a focus
on the flow and rhythm of each paragraph. At this level you should also
proofread once with a focus on cutting unnecessary words and phrases. Ata
more macro-level, go through your project and write above each paragraph
a single sentence that explains the point of that paragraph. We recommend
doing this in italics so that it stands out from the rest of the text. If you
cannot write a single sentence that explains the point of the paragraph, you
probably need to restructure your paragraphs until this can be done. At this
point, we recommend looking at the last sentence of each paragraph and
the first sentence of the following paragraph. Your goal should be that these
two sentences are written in such a fashion that they enhance the overall
flow of your project.

Although it can be a rather painful exercise, we highly recommend
asking someone else to read your writing out loud to you. Perhaps you can
dull the pain of this exercise by agreeing to do the same for a colleague in
your class. When someone else reads your prose out loud to you, it will
usually be quite obvious where your prose does and does not flow well.

MAKING EFFECTIVE USE OF TABLES AND FIGURES

We strongly recommend that you spend a lot of time constructing the
tables and figures that you include in your projects. When they first pick
up your written work (or open it electronically), many readers will take
a quick look at the title and introduction and then go directly to your
tables and figures. This is certainly a reasonable thing to do when some-
one is trying to evaluate whether or not they should invest further time
reviewing your work. Thus, although they may appear at the back of your
project, tables and figures often determine the first impression that poten-
tial readers have. As such, we recommend that you construct your tables
and figures so they stand on their own and draw readers in. With these
two goals in mind, we have a set of recommendations for what you should
and should not do as you put your tables and figures together. We also
recommend that you tell readers in the text of your project what they
should see in your tables and figures. This is another part of the craft
where we echo the lessons of Section — take time to analyze what
works and what doesn’t work in terms of other scholars’ use of tables
and figures.
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Constructing Regression Tables

As we have made clear in earlier chapters, multiple regression analyses are
the main tool that researchers in political science use to test their causal
claims. Consumers of political science research are well trained to read
regression tables and make assessments based on what they see in them.
In addition to making assessments about the specific results presented in a
table, readers will also use what they see and don’t see in regression tables
to make assessments about the technical competence of the person who has
constructed the table. Since this will have a major impact on the overall
assessment of your project, you will want to be careful and thorough in
your construction of regression tables.

The construction of regression tables involves moving back and forth
between results in a statistics program and the table-making facilities in
whatever word-processing program you are using. The easiest and worst
way to do this is to simply copy and paste your statistical output into your
word-processing program. This is a bad way to proceed for at least six rea-
sons. First of all, it just doesn’t look good. Second, statistical programs tend
to give you a lot of information when you estimate a regression model. This
information is often way more than what you will need to report in your
regression table. Third, the default reporting of results from the statistical
program may be different from what is appropriate for your purposes. For
instance, as we discussed in Chapter 8, almost all statistical programs report
the results from two-tailed hypothesis tests when most of our hypotheses
in political science are directional (and thus should be assessed with one-
tailed tests). Fourth, statistical programs report the names of your variables
as they appear in your data sets. While the abbreviations that you have
chosen for your variables probably make sense to you, they will almost
surely be confusing to your readers. Fifth, computer programs usually report
statistics in fractions that go way beyond what you need to report. We rec-
ommend rounding to two decimal places. And sixth, computer programs
report model results with variables in a particular order, but that order may
not be the best for emphasizing the important aspects of your results.

Having established what you should not do in constructing your tables,
let’s now talk about what you should do. Remember that your goals are to
make your table of results stand on its own and draw potential readers in.
As such, you want your tables to transmit to other researchers what you
have done. Your regression table should include:

* a title that communicates the purpose of the model and/or the most
important implications,
* names for the independent variables that are as clear as possible,
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* your independent variables in an order that fits your purposes (usually
with your main theoretical variable(s) at the top and control variables
listed below),

* the estimated effect of each independent variable (usually the estimated
parameter),

* some indication of the uncertainty/statistical significance of each esti-
mated effect (standard errors or ¢-statistics in parentheses underneath
a parameter estimate),

* some indication of which results have been found to be statistically
significant according to a particular standard (e.g., putting asterisks
next to results for which p <.05),

* some indication of what is the dependent variable,

* some overall diagnostics to communicate the model’s fit and the
number of cases on which the model was estimated,

* aset of notes to help readers decode anything they need to decode (e.g.,
that “**” means “p <.01,”

* any other information that needs to be communicated in order to
convey the importance of the findings.

As an example of a table of regression results, consider Table
If we go through the list of what a table should contain, we can evaluate
how well this table does with each item. The title is fairly informative about
what is going on in the model depicted in the table, but it certainly conveys
the most important implications. The names of the independent variables
could certainly be more clear. For instance, we don’t know exactly what
“Growth” or “Unemployment” represent, though we could probably make
a good guess. We also don’t know from the table alone what “Government
Change” is, and it would be hard to make a good guess. The table clearly
contains parameter estimates and an indication (in the form of standard
errors) of the uncertainty about them. In addition, we can tell from the
note beneath the table that the asterisks in the table convey different levels
of statistical significance. The notes beneath the table also make it fairly
clear what the dependent variable is, though we would have to figure out
on our own that these data are from monthly surveys. So, overall, while
this table is fairly clear, it could certainly be improved upon.

As we have seen in Chapters 9 through 11, it is often the case that we
will want to report the results from several regression models in the same
table. When we do this, it is important to make sure that we are setting up
our comparisons across models in a fashion that conveys exactly what we

2 Tables and are based on tables contained in Palmer, Whitten, and Williams

(2012).
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Table 12.1. Economic models of monthly United

Kingdom government support, 2004-2011 objective
economic measures only

Independent Parameter estimate
variable (standard error)
Growth 0.25**
(0.11)
Unemployment 0.07
(0.20)
A Inflation —2.72%**
(0.75)
Government Change 12.46***
(2.27)
Support; 1 0.78***
(0.06)
constant 6.37%**
(2.13)
R? .81
n 89
Notes: ** =p < .01, *=p<.05,*=p<.1
(Two-tailed tests, despite directional hypotheses.)
The dependent variable is the percentage of each sample that
reported that they would vote for the government if an election
was held at the time of the survey.

want. There are two types of comparison that we typically make when we
are presenting multiple regression models in the same table: comparisons of
different model specifications with the same sample of data or comparisons
of the same model specification across different samples of data. It is very
important not to use both of these two types of model comparisons in the
same table without a compelling reason.

Consider, for instance, Tables 9.1 and 9.2. In these tables we present
different model specifications across the same sample. What we can see
very well as we move across the columns in these tables is the changes
in the estimated effects of our variables as we change our model. But, it
is important to note that if the sample in Table 9.1 or Table 9.2 was not
exactly the same across the columns, we would not know why the estimated
effects were changing. In such a case, changes could be due to a change in
the sample or a change in the model.

As an example of the second type of comparison, where we look at the
same model specification but across different samples, consider Tables 12.2
12.3. Both of these tables are examples of the type of research design
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Table 12.2. Alternative presentation of the effects of gender and

feelings toward the women’s movement on Hillary Clinton
Thermometer scores

Sample
Independent variable All Male Female
Women's Movement Thermometer 0.70*** 0.75*** 0.62%**
(0.03) (0.05) (0.04)
Intercept 8.52 1.56 16.77***
(2.10) (3.03) (2.89)
R? 25 27 21
n 1466 656 810
Notes: The dependent variable in both models is the respondent’s thermometer score for
Hillary Clinton.
Standard errors in parentheses.
Two-sided #-tests: ***indicates p < .01; **indicates p < .05; *indicates p < .10

discussed in Section 12.1.3, where we are interested in differences across
subpopulations of cases in terms of the relationship between X and Y.
Table 12.2 shows such a comparison using the example that we presented
in Chapter 10 of looking at the relationship between Women’s Movement
thermometer scores across men and women. In Chapter 10, we discussed
how we can make this comparison by creating an interaction term. But here
we show this difference in the relationship between X and Y by presenting
the bivariate regression model with thermometer scores for Hillary Clinton
as the dependent variable and Women’s Movement Thermometer scores as
the independent variable on the entire sample and then subsamples of cases
defined by the gender of the respondent. We can see from this table that,
although the sample changes across the columns, the model specification is
the same. And we can tell from this comparison that there are differences
across the columns in terms of the estimated relationships. As we illustrated
with this same example in Chapter 10, we can also get leverage on this type
of difference in the relationship between X and Y across subpopulations
through the use of an interactive model specification. Table 12.3 shows
that when we estimate the model presented in Table 12.1 for three different
subpopulations defined by their income levels, we also see substantial dif-
ferences in the ways in which the economic variables, the main Xs in this
model, impact support for the government.

Writing about Regression Tables

Although our goal in constructing tables is to make them stand well on their
own, when writing about regression tables, it is important to do a little bit of
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Table 12.3. Economic models of monthly United Kingdom government support

across groups of voters, 2004-2011 objective economic measures only

Independent Sample

Variable All Upper income Middle income Low income

Growth 0.25** 0.61*** 0.35** 0.33*
(0.11) (0.21) (0.15) (.20)

Unemployment 0.07 1.18** -0.24 -1.76***
(0.20) (0.47) (0.31) (0.51)

A Inflation —2.72%** -3.40** —4.21*** -3.38**
(0.75) (1.46) (1.12) (1.59)

Government Change 12.46*** 19.60*** 6.28* -5.11
(2.27) (4.56) (3.42) (4.84)

Support; 1 0.78*** 0.68*** 0.56*** 0.28***
(0.06) (0.09) (0.08) (0.10)

constant 6.37*** 5.30** 15.95*** 34.61***
(2.13) (2.65) (3.66) (5.74)

R? .81 .66 .58 48

n 89 89 89 89

Notes: ** =p < .01, *=p<.05,*=p<.1.

(Two-tailed tests, despite directional hypotheses.)

The dependent variable is the percentage of each sample that reported that they would vote for the

government if an election was held at the time of the survey.

hand-holding. In other words, tell your readers what they should take away
from each table. Consider the way in which we just ended Section 12.4.1.
Although this table is competently constructed, we don’t know for sure
which parts of the table are going to catch the eye of our readers. All that
we have told readers is that there are substantial differences across groups.
Instead of leaving this up to chance, we should tell them what they should
see from this table — for instance, that the largest effect of growth appears
to happen among the high income group. We should also point out that the
effect of unemployment is in the opposite direction of our theoretical expec-
tations for the highest income group, statistically insignificant for the middle
income group, and statistically significant in the expected direction for the
lowest income group. We should point out that the effects of inflation are
roughly the same across the three groups, all statistically significant in the
expected (negative) direction, while for only the high income group is there
a statistically significant and positive effect for the switch in government
from the Labour Party to the Conservative/Liberal Democratic coalition
represented by the variable named “Government Change.” Finally, as we
learned in Chapter 11, we should point out that these effects that we just
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discussed are only the short-term effects and that all of these variables have
long-term effects as well, because these models include a lagged dependent
in the table. We could then launch into a
discussion of the estimated long-term effects using the formula g = 1‘%

bl

variable, labeled “Support;_1’

The bottom line with writing about regression tables is that you want
to tell your readers what they should see. This will help you to maximize
the impact of what you have found and to keep your audience focused on
what you are trying to communicate.

Other Types of Tables and Figures

We have emphasized the creation of and writing about regression tables,
and for good reason: Regression analysis is the workhorse of social science
research. But there might be other types of tables or figures that you might
find useful, largely depending on what type of research design you use, and
what new project type you’re adopting. These decisions should be guided,
we emphasize, by an anticipation of what you expect your readers will be
most interested in seeing.

For example, if your new project type is the first variant — that is, you’ve
created a new Y and are exploring whether it is caused by some X — then in
general it is incumbent upon you to somehow describe your new dependent
variable. This can be done in a table or a figure, or both, depending on the
circumstances. In his work on the causes of the U.S. public’s preferences for
liberal or conservative racial policies, for example, Kellstedt ( ) created
an index that represented the public’s aggregate preferences for liberal or
conservative racial policies over a 50-year period. Because his dependent
variable was new, Kellstedt included a figure showing the variable that
would become his dependent variable of interest. In fact, because his key
independent variables — media coverage about race in the United States —
were also new, he also included figures showing the over-time movement of
those series. The point is to give the reader a mental picture (which may, of
course, also be a literal picture) of what the dependent variable “looks like.”

Though figures like this might also be useful in cross-sectional research,
they are particularly valuable in time-series observational studies. In a cross-
sectional study, it’s perhaps more typical to show a frequency table with
the values for a new dependent variable. The intent in these circumstances
is to give the reader a sense of both the central tendency and the variability
in the new dependent variable.

Showing a figure or creating a frequency table for the dependent vari-
able is less useful when your project is of our second type — ones with an
existing Y and a new X. Instead, in those circumstances, it is generally
wise to showcase what is zew — and in this case, it’s a new X. If this is a
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time-series design, then a figure is perhaps most appropriate. If the design
is cross-sectional, it would likely be a frequency table.

In general, the strategy we recommend is to showcase what is new —
and therefore, both intriguing and unfamiliar — to your readers.

EXERCISES

For the following concepts, go to both Google Scholar (at

) and the main Google search engine (at ), and enter
the following search terms into the engines (using quotation marks where we
use them, and not using them where we do not). On the first page of search
results, record how many of the “regular” Google search results are also found
on Google Scholar:

(a) “government duration”

(b) congressional rule making

(c) “presidential approval”

(d) international political economy

In three words or less, write the phrase that best describes your current research
project interest. Conduct a citations search for this phrase using Google Scholar
or some other citation search engine. Write about what you find.

Read a paper published in a journal approved by your instructor. Provide
answers to each of the following questions about that paper.

(a) What was the research question/puzzle?

(b) What was their theory?

(c) What was their research design?

(d) How did they do with the four hurdles?

(e) What did they conclude?

(f) Can their theory be applied elsewhere in an interesting fashion?

Table 2.2 contains the 11th through 20th most cited papers from the American
Political Science Review. Search one of these articles on Google Scholar. What
is the most recently published paper that cites the article you have chosen?
Obtain a copy of this article and figure out what is the research question. Write
about what you have learned from doing this.


http://scholar.google.com
http://scholar.google.com
http://www.google.com




APPENDIX A

Critical Values of Chi-Square

Level of significance

df 0.10 0.05 0.025 0.01 0.001

1 2.706 3.841 5.024 6.635 10.828

2 4.605 5.991 7.378 9.210 13.816

3 6.251 7.815 9.348 11.345 16.266

4 7.779 9.488 11.143 13.277 18.467

5 9.236 11.070 12.833 15.086 20.515

6 10.645 12.592 14.449 16.812 22.458

7 12.017 14.067 16.013 18.475 24.322

8 13.362 15.507 17.535 20.090 26.125
9 14.684 16.919 19.023 21.666 27.877
10 15.987 18.307 20.483 23.209 29.588
11 17.275 19.675 21.920 24.725 31.264
12 18.549 21.026 23.337 26.217 32.910
13 19.812 22.362 24.736 27.688 34.528
14 21.064 23.685 26.119 29.141 36.123
15 22.307 24.996 27.488 30.578 37.697
20 28.412 31.410 34.170 37.566 45.315
25 34.382 37.652 40.646 44.314 52.620
30 40.256 43.773 46.979 50.892 59.703
35 46.059 49.802 53.203 57.342 66.619
40 51.805 55.758 59.342 63.691 73.402
50 63.167 67.505 71.420 76.154 86.661
60 74.397 79.082 83.298 88.379 99.607
70 85.527 90.531 95.023 100.425 112.317
75 91.061 96.217 100.839 106.393 118.599
80 96.578 101.879 106.629 112.329 124.839
90 107.565 113.145 118.136 124.116 137.208
100 118.498 124.342 129.561 135.807 149.449
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Critical Values of ¢

Level of significance

df 0.10 0.05 0.025 0.01 .005 0.001
1 3.078 6.314 12.706 31.821 63.657 318.313
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.3563 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.782
8 1.397 1.860 2.306 2.896 3.355 4.499
9 1.383 1.833 2.262 2.821 3.250 4.296
10 1.372 1.812 2.228 2.764 3.169 4.143
11 1.363 1.796 2.201 2.718 3.106 4.024
12 1.356 1.782 2.179 2.681 3.055 3.929
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733
20 1.325 1.725 2.086 2.528 2.845 3.5652
25 1.316 1.708 2.060 2.485 2.787 3.450
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
50 1.299 1.676 2.009 2.403 2.678 3.261
60 1.296 1.671 2.000 2.390 2.660 3.232
70 1.294 1.667 1.994 2.381 2.648 3.211
75 1.293 1.665 1.992 2.377 2.643 3.202
80 1.292 1.664 1.990 2.374 2.639 3.195
90 1.291 1.662 1.987 2.368 2.632 3.183
100 1.290 1.660 1.984 2.364 2.626 3.174
00 1.282 1.645 1.960 2.326 2.576 3.090
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The A Link Function for Binomial

Logit Models

Translating negative X; ,3 values into predicted probabilities (13,-)

Xlﬁ -.00 -.01 -.02 -.03 -.04 -.05 -.06 -.07 -.08 -.09
-4.5 .0110 .0109 .0108 .0107 .0106 .0105 .0104 .0103 .0102 .0101
-4.0 .0180 .0178 .0176 .0175 .0173 .0171 .0170 .0168 .0166 .0165
-3.6 .0293 .0290 .0287 .0285 .0282 .0279 .0277 .0274 .0271 .0269
-3.0 .0474 .0470 .0465 .0461 .0457 .0452 .0448 .0444 .0439 .0435
-2.56 .0759 .0752 .0745 .0738 .0731 .0724 .0718 .0711 .0704 .0698
-2.0 .1192 .1182 .1171 .1161 .1151 .1141 .1130 .1120 .1111 .1101
-1.9 .1301 .1290 .1279 .1268 .1256 .1246 .1235 .1224 .1213 .1203
-1.8 .1419 .1406 .1394 .1382 .1371 .1359 .1347 .1335 .1324 .1312
-1.7 .1545 .1532 .1519 .1506 .1493 .1480 .1468 .1455 .1443 .1431
-1.6 .1680 .1666 .1652 .1638 .1625 .1611 .1598 .1584 .15671 .1558
-1.5 .1824 .1809 .1795 .1780 .1765 .1751 .1736 .1722 .1708 .1694
-1.4 1978 .1962 .1947 .1931 .1915 .1900 .1885 .1869 .18b4 .1839
-1.3 .2142 2125 .2108 .2092 .2075 .2059 .2042 .2026 .2010 .1994
-1.2 .2315 .2297 .2279 .2262 .2244 2227 .2210 .2193 .2176 .2159
-1.1 .2497 .2479 .2460 .2442 .2423 .2405 .2387 .2369 .23561 .2333
-1.0 .2689 .2670 .2650 .2631 .2611 .2692 .2573 .2554 2635 .2516
-9 .2891 .2870 .2850 .2829 .2809 .2789 .2769 .2749 .2729 .2709
-8 .3100 .3079 .3058 .3036 .3015 .2994 .2973 .2953 .2932 .2911
-7 .3318 .3296 .3274 .3252 .3230 .3208 .3186 .3165 .3143 .3112
-6 .3543 .3521 .3498 .3475 .3452 .3430 .3407 .3385 .3363 .3340
-5 3775 3752 .3729 .3705 .3682 .3659 .3635 .3612 .3689 .3566
-4 4013 .3989 .3965 .3941 .3917 .3894 .3870 .3846 .3823 .3799
-3 4256 .4231 4207 .4182 .4158 .4134 4110 .4085 .4061 .4037
-2 .4502 .4477 .4452 4428 4403 .4378 .4354 4329 .4305 .4280
-1 4750 .4725 4700 .4675 .4651 .4626 .4601 .4576 .4bb1 .4526
-0 .5000 .4975 .4950 .4925 .4900 .4875 .4850 .4825 .4800 .4775

(continued)
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Appendix C (continued)

Translating positive X; ﬁ values into predicted probabilities (15,-)

Xiﬁ +.00 +.01 +02 +.03 +.04 +.05 +.06 +.07 +.08 +.09
.0 .6000 .5025 .5050 .5075 .5100 .5125 5160 .5175 .5200 .5225
.1 .6250 .6275 .5300 .5326 .6349 6374 6399 .b424 5449 .5474
.2 .5498 65523 .5b48 6672 .bb97 .b622 6646 6671 .5695 .5720
.3 .b744 5769 5793 5818 .6842 6866 .5890 .5915 .5939 .5963
4 .5987 .6011 .6035 .6059 .6083 .6106 .6130 .6154 .6177 .6201
.5 6225 .6248 .6271 .6295 .6318 .6341 .6365 .6388 .6411 .6434
.6 .6457 .6479 .6502 .6525 .6548 .6570 .6593 .6615 .6637 .6660
.7 .6682 .6704 .6726 .6748 .6770 .6792 .6814 .6835 .6857 .6878
.8 .6900 .6921 .6942 .6964 .6985 .7006 .7027 .7047 .7068 .7089
.9 .7109 .7130 .7150 .7171 .7191 7211 7231 7251 .7271 .7291

1.0 .7311 .7330 .7350 .7369 .7389 .7408 .7427 .7446 .7465 .7484
1.1 .7503 .7521 .7540 .7558 .7577 .7595 .7613 .7631 .7649 .7667
1.2 .7685 .7703 .7721 .7738 .7756 .7773 .7790 .7807 .7824 .7841
1.3 .7858 .7875 .7892 .7908 .7925 .7941 .7958 .7974 .7990 .8006
1.4 .8022 .8038 .8053 .8069 .8085 .8100 .8115 .8131 .8146 .8161
1.5 .8176 .8191 .8205 .8220 .823b .8249 .8264 .8278 .8292 .8306
1.6 .8320 .8334 .8348 .8362 .8375 .8389 .8402 .8416 .8429 .8442
1.7 .845b .8468 .8481 .8494 .8507 .8520 .8532 .8545 .8b657 .8569
1.8 .8581 .8594 .8606 .8618 .8629 .8641 .8653 .8665 .8676 .8688
1.9 .8699 .8710 .8721 .8732 .8744 .8754 .8765 .8776 .8787 .8797
2.0 .8808 .8818 .8829 .8839 .8849 .8859 .8870 .8880 .8889 .8899
25 .9241 .9248 9255 9262 .9269 .9276 .9282 .9289 .9296 .9302
3.0 .9526 .9530 .9535 9539 .9543 .9548 9552 9556 .9561 .9565
3.5 .9707 9710 9713 9715 .9718 .9721 .9723 .9726 .9729 .9731
4.0 .9820 .9822 .9824 .9825 .9827 .9829 .9830 .9832 .9834 .9835
45 .9890 .9891 .9892 .9893 .9894 .9895 .9896 .9897 .9898 .9899
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The ® Link Function for Binomial

Probit Models

Translating negative X; ﬁ values into predicted probabilities (lsi)

X,ﬁ -.00 -.01 -.02 -.03 -.04 -.05 -.06 -.07 -.08 -.09
-3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
-2.56 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
-2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
-1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
-1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
-1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
-1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
-1.6 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0671 .0559
-1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
-1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
-1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
-1.1 .1357 .1336 .1314 .1292 .1271 .12561 .1230 .1210 .1190 .1170
-1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
-9 .1841 .1814 1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
-8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
-7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
-6 .2743 .2709 .2676 .2643 .2611 .25678 .2546 .2514 .2483 .2451
-5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
-4 3446 .3409 3372 .3336 .3300 .3264 .3228 .3192 .3166 .3121
-3 .3821 .3783 .3745 3707 .3669 .3632 .3594 3557 .3520 .3483
-2 4207 .4168 .4129 4090 .4052 .4013 .3974 .3936 .3897 .3859
-1 .4602 .4562 .4522 4483 .4443 .4404 4364 .4325 .4286 .4247
-0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

(continued)
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Appendix D (continued)

Translating positive X; ﬁ values into predicted probabilities (15,-)

Xiﬁ +.00 +.01 +.02 +.03 +.04 +.05 +.06 +.07 +.08 +.09
+.0 .5000 .5040 .5080 .5120 .5160 .5199 .56239 .5279 6319 .5359
+.1 6398 .56438 .5478 6517 .6667 6696 6636 .5675 .5714 5753
+.2 6793 .5832 .6871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
+.3 .6179 .6217 .6265 .6293 .6331 .6368 .6406 .6443 .6480 .6517
+.4 6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
+5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 7190 .7224
+.6 .7267 .7291 .7324 7357 .7389 .7422 .7454 7486 .7517 .7549
+.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 7794 .7823 .7852
+.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
+.9 .81569 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
+1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8b6b4 .8577 .8599 .8621
+1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
+1.2 .8849 .8869 .8888 .8907 .892b .8944 .8962 .8980 .8997 .9015
+1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
+1.4 .9192 .9207 .9222 .9236 .92b1 .9265 .9279 .9292 .9306 .9319
+1.56 .9332 .9345 9357 9370 .9382 .9394 .9406 .9418 .9429 .9441
+1.6 .9452 9463 .9474 9484 9495 9505 9515 9525 .9535 .954bH
+1.7 .9554 9664 9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
+1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
+1.9 .9713 .9719 .9726 9732 .9738 .9744 9750 .9756 .9761 .9767
+2.0 .9772 9778 .9783 9788 .9793 .9798 .9803 .9808 .9812 .9817
+2.56  .9938 .9940 .9941 .9943 9945 9946 .9948 9949 9951 .9952
+3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
+3.4 .9997 .9997 .9997 9997 .9997 .9997 .9997 .9997 .9997 .9998
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