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Preface

It is the aim of this book 1o describe in concise form our present
theoretical understanding of the nuclear many-body problem. The presen-
tation of the enormous amount of material that has accumulated in this
field over the last few decades may be divided into two broad categories:
One can either concentrate on the physical phenomena, such as the
single-particle excitations, rotations, vibrations, or large-amplitude collec-
tive motion, and treat each of them using a variety of theoretical methods;
or one may stress the methodology and technical aspects of the different
theories that have been used to describe the nucleus. We have chosen the
second avenue. The structure of this book is thus dictated by the different
methods used—Hartree-Fock theory, time-dependent Hartree-Fock the-
ory, generator coordinates, boson expansions, et¢c.—rather than by the
physical subjects.

Many of the presenlt theories have, of course, already been presented in
other textbooks. In order to be able to give a more rounded picture, we
shall either briefly review such topics (as in the case of the liquid drop or
the shell model) or try to give more updated versions (as in the cases of
rotations or the random phase approximation). Our essential aim, however,
is to present the more modem theories—such as boson expansions, genera-
tor coordinates, time-dependent Hartree-Fock, semiclassical theories, etc.
—which have cither never been seen, or at best had little detailed treat-
ment in, book form.

The book is essentially directed towards students who have had a
conventional course in quantum mechanics and have some basic under-
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standing of nuclear phenomena. Our intention has been to close the gap
between the usual graduate lecture course and the literature presented in
scientific journals. We have therefore put as much emphasis as possible on
clarity, and to this end often go into quite extensive mathematical detail.
We hope that the reader will thus be able to rederive many of the formulas
presented without too much difficulty.

Originally our idea was to make an updated translation of an existing
book on Nuclear Models by G. Baumgirtner and P. Schuck [BS 68a).
However, we soon found that theoretical nuclear physics had evolved so
rapidly over the last decade that a completely new book was called for.
Nevertheless, the reader will find some remnants of the original book, for
example, in Chapters 2 and 6. The editing of the present work has been
undertaken by Springer-Verlag, to whom we are grateful for their very
constructive collaboration.

We are indebted to many of our colleagues for innumerable discussions
and helpful remarks. In the first place, we wish to express our thanks to R.
R. Hilton for his most careful reading of the entire manuscript, and for
pointing out along the way many conceptual and countless linguistic
€ITors.

Specifically, we are particularly grateful to the following people for
clanifying discussions on a number of topics: for the rotational problem in
nuclear physics—R. Arvieu, L. Egido, R. M. Lieder, H. J. Mang, E.
Marshalek, J. Meyer-ter-Vehn, J. O. Rasmussen, and F. S. Stephens; for
the theory of finite Fermi liquids and its applications to collective nuclear
excitations—V. Klemnt, J. Speth, E. Werner, and W. Wild; for the descrip-
tion of anharmonicities in nuclear spectra using boson expansion
techniques--S. T. Belyaev, G. Holzwarth, S. Iwasaki, E. Marshalek, T.
Marumori, K. Matsuyanagi. R. Piepenbring, F. Sakata, M. Yamamura,
and V. G. Zelevinskii; for the generator coordinate method—T. Fliess-
bach, K. Goeke, G. Holzwarth and P. G. Reinhard; for the time-
dependent Hartree-Fock approach—K. Dietrich, J. J. Griffin, S. E.
Koonin; and for semiclassical methods in nuclear physics—J. Bartel, R.
Bengtsson, R. K. Bhadun, M. Brack, M. Durand. H. Grif, G. Holzwarth,
and B. Jennings.

Thanks are also due to L. Egido for a careful reading of several chapters,
to S. Iwasaki for a reading of the chapter on boson expansions, and to R.
K. Bhadun, M. Brack, M. Durand, and G. Holzwarth for a careful reading
of the chapter on semiclassical methods.

Our nuclear physics education has taken place within the Munich group,
and we are happy to be able to take this opportunity to thank W. Brenig,
K. Dietrich, H. J. Mang, H. Schmidt, and W. Wild for the patience and
understanding they have shown in the numerous discussions we have had
over the years.

Many aspects of the book were clarified during several stays by one of
us (P. R.) at the Institute Lave-Langevin in Grenoble, for whose support



Preface vii

we are most thankful. Both of us have also had occasion to discuss many
subjects with our French colleagues at the Institut de Sciences Nucléaires,
-Grenoble; the Insttut de Physique Nucléaire, Orsay; and the Centre
d'Etudes Nucléaires, Saclay. We hope they will not mind if we thank them
here in such a “pauschal” fashion.

In spite of all this help and collaboration it is almost inevitable in a book
of this kind that some misconceptions will still remain; naturally, they are
our own responsibility, However, suggestions and criticisms from our
readers would be welcomed for some possible future edition.

Various hands have assisted in the task of typing the manuscript and we
should like finally to thank our many secretaries for their valuable contrn-
bution.

Munich P. Ring
Grenoble P. Schuck
February 1980
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'CHAPTER 1

The Liquid Drop Model

1.1 Introduction

The liquid drop model (LDM) of the nucleus was historically the first
- model to be proposed as an explanation of the different properties of the
_nucleus. Since it has regained interest in recent times, we begin with a
_short outline of this phenomenological model. Some aspects of this model
will be taken up in the course of the book and explained from a more
mucroscopic point of view. In this chapter we follow to a large extent the
standard representation as given in the texts of, for example, J. A.
Eisenberg and W. Greiner [EG 70}, A. de Shalit and H. Feshbach [SF 74},
and A. Bohr and B. R. Mottelson [BM 75].

The idea of considering the nucleus as a liquid drop originally came
from considerations about its saturation properties (see below) and from
the fact that the nucleus has a very low compressibility and a well defined
- surface. However, as we shall see, it is misleading to take this point of view

loo seriously, since in other respects a nucleus does not bear very much

resemblance to an ordinary liquid. For instance, the mean distance of two

particles in a liquid is roughly given by the value at which the interparticle
force has its minimum value, which for nuclei would be ~0.7 fm. How-
_ever, nucleons in nuclei are, on the average, ~2.4 fm apart. One reason for
 this big difference as compared with an ordinary liquid is that the nucleons
obey Fermi statistics and a nucleus is thus a quantum fluid. The Pauli
_principle prevents the nucleons from coming too close to one another.
~Thus scattering events are very scarce in a quantum fuid, whereas in an
_ordinary fluid they are predominant.




2 The Liquid Drop Model

Consequently, the mean free path of the nucleons inside a ground-state
(or moderately excited state) nucleus is of the order of the nuclear
dimension and resembles, therefore, apart from the statistics, a non-
interacting gas. This fact has some drastic consequences that are absent in
droplets of ordinary fluids. For instance, we want to mention that in a
vibrating nuclear drop [e.g., (dynamical) quadrupole deformations] the
momentum distribution of the nucleons may be influenced by the defor-
mations; i.e., it can be anisotropic, whereas the velocity distribution in an
ordinary fluid drop is always isotropic. These peculiarities of a quantum
drop will be treated in more detail in Chapter 13. Here, instead, we shall
follow the historical development of the LDM idea, since it is very useful
in describing overall properties of the nucleus and in introducing many
concepts of collective phenomena in nuclear physics in a simple way. This
is the main purpose of the first chapter, where we will not bother about the
specific differences between an ordinary liquid drop and a quantum drop.

1.2 The Semi-empirical Mass Formula

One quantity that should, according to the discussions above, vary only
smoothly with mass number is the binding energy per particle. In fact, the
total binding energy B(Z, N), where N and Z are the number of neutrons
and protons, respectively, grows with the number of nucleons, 4, in such a
way that the binding energy per particle B(N, Z)/A stays fairly constant
for nuclei with more than twelve nucleons:

B(N.Z)
A

The explanation for the binding energy per nucleon being approximately
constant can be given in the following qualitative way: If the binding of a
system of A particles comes from the interaction energy of all possible
two-particle pair combinations, then the total binding energy should grow
roughly like the number of all possible pairs, namely as 4-A4-(4 —1). The
binding energy per particle should then be proportional to 4. This is the
case, for example, for the binding energies of the electrons in an atom.
The completely different behavior of the nuclear binding energy can be
attributed to the saturation property of the nuclear forces: one nucleon in
the nucleus interacts with only a limited number of nucleons. This has its
origin in the short-range nuclear force and the combined effect of the Pauti
and uncertainty principles: The total binding energy is a subtle difference
effect between the total kinetic energy and the total potential energy;
whereas due to the Pauli and uncertainty principles and the hard core [Br
65a), the kinetic energy rises steeply to positive values at decreasing
nucleon distances (BM 69, p. 252] (see Fig. 1.1), and the potential energy is
lowered to more and more negative energies. For small enough (452 fm)
internucleon distances the kinetic energy takes over so that the total

=~ —8.5 [MeV/nucleon]. (1.1)

A>12
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binding energy becomes positive, whereas for large distances (4<<3 fm),
there is hardly any potential energy because of the short-range nucleon-
nucleon force. Finally, a shallow minimum develops at around 2.4 fm,
which is, compared to the strength of the nuclear forees, quite small. From
these considerations it becomes clear why there can be only a limited
number of nucleons within the interaction range of one nucleon. In this
argument we have not taken into account surface effects and the Coulomb
force. They have to be treated separately, as we shall see. Neglecting these
effects, we expect that the total binding energy rises linearly with 4, as in
Eq. (1.1).

The saturation property also explains qualitatively the features found
experimentally (by, for instance, electron scattering, u-mesonic x-rays, etc.
[FN 76), that is, the roughly constant density of nucleons inside the
nucleus and the nucleus’s relatively sharp surface. Describing the nucleus
as a sphere with a constant density and a sharp surface, we get for its
radius

Rm=rgAl7, (1.2)
where the parameter r, has empirically the value
ro=12 [fm]. (1.3)

In Fig. 1.2, we see the dependence of the binding energy per nucleon on
the mass number A in more detail. '

Up to about A = 12, we get a steep rise until B/ 4 =8 MeV; at 4 =60, we
obtain the maximum of a little less than 9 MeV. The binding energy per

f [Me V]

J e

Figure 1.1. Qualitative explanation of nuclear saturation as a subtle difference
effect of Ey;, and E,.
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-90
B/A

| i | 1

20 50 00 150 200 250 A

Figure 1.2. Experimental values of B/A for B-stable odd-A (o) nuclei and the
calculated curve using a mass formula similar to Eq. (1.4). (From [Ho 75].)

nucleon then drops slightly until at 4 =250 it is about 7.5 [MeV]. This is
due to the increasing influence of the Coulomb repulsion of the protons.
There have been many attempts to reproduce the behavior of B/ A4 as a
function of ¥ and Z. The best known formula of this kind is the
semi-empirical mass formula of Bethe and Weizsacker [We 35, BB 36)

2 N-Z)
B(N,Z)-aVA+aSA2/3+aC%—+a,( A)

where one obtains by a fit (see also [MS 66, My 69, MS 69)):
a,=—1568; ag=18.56; ar=0717; a;=281 [MeV]

—8(4),  (1.4)

34-47%*  for even—even
8(A)=¢ 0 for even-odd  nuclei. (1.5)
—34-473%*  for odd-odd

In Fig. 1.2 we see that one obtains quite good overall agreement with the
experimental curve with these kinds of semi-empirical mass [ormulae.
The physical meaning of formula (1.4) is the following. The first term is
usually called the vofume ferm, because it is proportional to 4 [« R? with
Eq. (1.2)]. The reason that the value of a, is not —8.5 [MeV] as in Eq. (1.1)
is the following. In order to get the value —8.5, one has 10 average over a
wide range of A, and the other terms (ag, a., and g;) are positive and not
The second term is proportional to 42/* (< R?%), and is therefore called
the surface term. It results from the fact that the nucleons close to the
surface contribute less to the total binding energy. One can calculate from



Deformation Parameters §

the parameter ag a surface tension coefficient ¢ defined as the surface
energy per unit area, and get with Eq. (1.3):
as

o

= |, -fm~?]. 1.6
pym 1.03 [MeV-fm~?] (1.6)
The third term takes into account the Coulomb repulsion of the protons. It
can be calculated approximately by assuming the charges to be uniformly
distributed over a sphere. The Coulomb energy of such a system is propor-
tional to the number of proton pairs (<« Z?) and inversely proportional to
the radius.

Since the protons repel one another, it would be energetically more
favorable for a nucleus to have only neutrons—if there were no Pauli
principle. A proton decaying into a neutron must enter a state above the
neutron Fermi level (see Chap. 2), which is energetically unfavored. The
energy balance of the neutron excess N — Z is taken care of in the fourth
term of Eq. (1.4), the so-called symmetry energy. It cannot depend on the
sign of N —Z. In the Fermi gas model {SF 74, p. 127 ], one can show that
it is proportional to (N — Z)?/ A. The quadratic dependence of the binding
energy on the proton-neutron mass difference is experimentally very well
confirmed. Only the base of the experimental parabola is different accord-
ing to whether we are considering an even-even, even-odd or odd-odd
nucleus. This s due to the so-called pairing effect, as we shall see in
Chapter 6, and is taken care of by the last term in Eq. (1.4).

Some aspects of the semi-empirical mass formula will be discussed again
in Chapter 13 in the context of the Thomas—Fermi approach o nuclear
physics.

It should be noted that Eq. (1.4) gives only an overall smooth fit to the
binding energy as a function of A4, and that locally there are strong
deviations from it (see Fig. 2.2), mostly due to shell effects, which will be
discussed in Section 2.9.

13 Deformation Parameters

Up to now, we have only studied static properties of the liquid drop model.
In the following, we will assume that the nucleus has a sharp surface®
which must not necessarily be spherical, and we imagine it to undergo
dynamical shape or surface oscillations.

Before we can investigate these oscillations, we have to parametrize the
surface in some way. One possibility is to describe it by the length of the
radius vector pointing from the origin to the surface

00 A

R=R(0,$)= Ro(l togt 3 3 al b, ¢)) (17)
Am] p=—

where R, is the radius of the sphere with the same volume. Such a surface

* Myers and Swiatecki [MS 69, 73] have given up this assumption and introduced a refined
liquid drop model with a diffuse surface, the so-called “droplet model” [Ni 72].
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is certainly not the most general one® but it is widely used and extremely
useful for problems of nuclear structure.

The constant ag, describes changes of the nuclear volume. Since we know that
the incompressibility of the nuclear fluid is rather high, we require that the volume
be kept fixed for all deformalions as

Ve 3RS, (1.8)
This defines the constant ag. Up to second order, we get [EG 70]
1
== . (1.9)
4x I\;‘:‘ . An

The term A= | describes mainty (at least for small deformations) a translation of
the whole system. The three parameters a,, can be fixed by the condition that the
origin coincides with the center of mass

frd’r=o. (1.10)
1 4

If the expansion (1.7) contains only even values of A, this is fulfilled automatically.
Otherwise a,, starts with second order in the ay, (A>>2). Therefore, in the following
we omit both ag and a,,, since we shall restrict our discussion to small deforma-
tions.

It is instruclive to look at the shapes of lowest multipolarity in the
expansion (1.7), as displayed in Fig. (1.3). The deformations corresponding

* For instance, shapes of two separaled fragments in the fision process cannot be
represented by (1.7), since R s then multivalued.

- —

-

> m——

A=d nm>0 A=¢ Qg <

Figere 1.3. Nuclesr shapes with quadrupole (A =2), octupole (A=3), and hexa-
decupole (A =4) deformations.
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to A=2 look like ellipsoidal deformations. It should be noticed, however,
that this is true only up to first order. A pure ellipsoid has non-vanishing
a,, forall A5 2.

Another condition on R, and therefore on the parameters ay,. is the fact
that R should be invariant under a reflection of the coordinate system and
under a rotation of the coordinate system. In order for this to be the case,
the a,, must be multiplied by a factor (—)* under a parity transformation,
and must behave like Y, (4, ¢) under a rotation of the coordinate system
(characterized by the Euler angles Q=(a, 8,v) [Ed 57, Eq. (5.2.1))), ie,

( Y’\' )ncw - z D:F(g)( YM')cld’ (] 1 1)
B
dy, ™= E D:,ﬂ(ﬁ)ah,-,
N
where D2, () are the Wigner functions of the rotation and a,, are the

deformation parameters in the new system.
To make sure that the radius R in Eq. (1.7} is real, we have to use the
property Y =(~)*-Y, . and get

at,=(—)a,_,. (1.12)

This will turn out to be the time reversal behavior of the a,’s.
Before discussing the surface oscillations of general multipolarity, we
mention two special cases:

(1) First are the axially symmetric deformations. Choosing the z-axis as
symmetry axis, we find that a,, vanishes except when u=0. The
deformation parameters a,, are usually called §,.

(it) In the case of quadrupole deformations (A = 2), we have five parame-
ters a,,. Not all of them describe the shape of the drop. Three
determine only the orientation of the drop in space. and correspond
to the three Euler angles. By a suitable rotation, we can trapsform to
the body-fixed system charucterized by three axes I, 2, 3, which
coincide with the principal axes of the mass distribution of the drop.
The five coefficients a,, reduce 10 two real independent variables ay,
and a;;=a,_, (a3 =a,.,=0), which, together with the three Euler
angles, give a complete description of the system. It is convenient to
introduce instead of a,, and a,, the so-called Hill-Wheeler [HW 53]
coordinates B,y (B8 >0) through the relation

A= f3-cosy,
an-ﬁi-ﬁ-smy, (1.13)
from which we have

> oy, 2= a3y + 243, = B2 (1.14)
B
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Figure 1.4. Nuclear shapes in the 8, y plane. The projections onto the three axes
are proportional to the increments of §R, (1.16).

and

R(O,qb)-Ro{ 1+ 8y/72- (cosy(3cosB-1)

+3 sin ysin¥cos 2¢) ] : (1.15)

In Fig. (1.4) the A=2 shapes are represented in the polar coordinates
B,vy- We see that

(1) y values of 0°, 120°, and 240° yield prolate spheroids with the 3, |
and 2 axes as axes of symmetry;
(1) y=180°, 300°, and 60° lead to the corresponding oblate shapes
(iii) when y is not a multiple of 60° it corresponds to a triaxial shape;
(iv) there are discrete symmetries, namely, one can interchange all three
axes without changing the shape, which means an invariance under
the point group D,. The interval 0 <y <60° is sufficient to describe
all the A=2 shapes. All other points in Fig. 1.4 are obtained by
suitable exchanges of the different axes.
{v) We can calculate the increments of the three semi-axes in the
body-fixed frame as functions of 8 and y:

,0)- Ro=Roy[ = Boos(y-3F),

6R2=R(%,-g-)— Ro-Ro\f% Bcos(7+ ZT"),

8Ry= R(0,0)= Ry= Ry\[ 2= Bcosy,

8R,= R(

R
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or

SR‘=R0-\/% Bcos(y—z:-;-’-x), xm1,2,3. (1.16)

We have to remember, however, that the parameters 8 and y (with
(1.7)) only describe exactly ellipsoidal shapes in the limit of small
B-values (see also Eq. 1.88).

1.4 Surface Oscillations About a Spherical Shape

The first kind of exciations are dynamical shape, or surface, oscillations.
The dynamical variables are in this case the parameters which describe the
surface, ie., the surface coordinates a,, (A>2) of Eq. (1.7). They are
considered to be functions of time: a,,(f). For the low-lying excitations
one can expect that they produce small oscillations around the spherical
equilibrium shape with a, =0, and that the classical Hamilton function
H_; that describes this process is of a harmonic oscillator form [Bo 52]:

| .
Hmu-r'*' V-‘j'? {Bh|ah|2+ CA|GM|Z}, (1.17)
X

Here the parameters of inertia B, and of stiffness C, are real constants.
This is, in fact, the only quadratic formn which is invanant under rotation
and time reversal.*

Following the usual rules of canonical quantization (see for instance,
[EG 70, p. 40]), we obtain the quantized form' (see also Appendix C)

A= %hQA(B,J‘BM+ -:'!-) (1.18)
with the frequencies
C, |2
9*-(7,‘) : (1.19)
The operators B,, obey Bose commutation rules
(B Byy]=0;  [By,.B]=6,8, (1.20)

and have a corresponding Bose vacuum [0) such that B, |0)=0. The Boson
operators B, are related to the coordinates &,, and corresponding mo-
menta f,, by

1/2

&“'(ﬁfiﬁ;) (B +(~)'By,), (1.21)
,

ﬁw-i(%ﬁkﬂx)l (-)B.-B,,).

*The time reversal operation is discussed in great detail by Messiah [Me 61] and il is
shown that in & system withoul spin, as we have here, time reversal corresponds 1o complex
conjugation.

! One should not mix up the boson operators B,, with the inertia parameters B,.
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3?10.)2_—0‘.2 .3‘.‘ 6 211(1)3 0’.2‘.“.6’
2hw, ——0°.2°%¢*
hwy —— 37
ﬁwz T — 2’
0 — —20° ¢ —0° |
A=2 A=3

Figwre 1.5. Harmonic energy spectra for the quadrupple (A=2) and octupole
(A=3) surface oscillations.

From the above considerations, it follows that for each A we have a
harmonic spectrum of surface vibrations as illustrated in Fig. 1.5.

From the fact that a,, and B,; behave like spherical tensors under
rotations of the coordinate system (Eq. (1.11), [Ed 57, Eq. (5.2.1)]) we know
the commutation relations of the angular momentum operators with B,
and find that the one-boson states

Pp)= B,%10) (1.22)

have angular momentum /=X and z-component M =y with parity (- )"

To construct multi-boson states we have to use the rules of angular
momentum coupling [Ed 57] and also have to take into account that states
with more than two bosons are symmetric under the exchange of any two
of them. For instance, we get, for the superposition of two quadrupole
bosons (A =12), the three combinations /" =(Q*, 2% 4*

] + p+
|IM)= —JZT ’; C} ;;Bmazh|0). (1.23)
The states with /=1,3 vanish identically because of the behavior of the
Clebsch—Gordan coeflicients® [Ed 57, Eq. (3.5.14)]

C221_( )lCzll

Mg M s M

under an exchange of p, and p,.

Indeed, many sphenical nuclei show in their spectrum a low-lying 2*
state and, at roughly double the excitation energy, a so-called two-boson
triplet (0%, 2%, 4%) which is, however, usually split up 4 little (see Fig. 9.4).

The constants B, and C, can be calculated within the fluid picture; they
depend on the flow associated with the surface oscillations. Therefore, it is
necessary to postulate the nature of the fluid motion within the drop. At
this point we should again discuss what the concept of a nuclear fluid

* We use the symbol L4343 which is the same as (j,m jymz |/, jojsmy).
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implies. In Chapter 13 we will investigate this point in detail and show that
the fact that the nucleus is a Fermi liquid and not an ordinary liquid plays
an important role. The simplest assumption about the flow pattern of the
fluid we can make is that it is irrotational, i.e., rot v(r)=0, where v is the
velocity field. We shall also study the justification of this point in Chapter
- 13, but for the moment let us take it for granted and thus have:

v(t) = — V(). (124)
The next assumption is that of incompressibility, which is quite well

justified for nuclei. It means that the density inside the nucleus is constant
(p=0), and we get from the equation of continuity

Vys=( (1.25)
- and, from (1.24),

AD =0. (1.26)

The most general solution of Eq. (1.26) regular at the origin can be
written in the form

O(r)= > dy,r Y, (0, ¢). (127)
Ap

E:N:Por small deformations we have the boundary condition that the radial
_component of the velocity is, in lowest order, given by:

3 . .
v, 3 ®d=R at r=R,,
which, with Eq. (1.7), yields the following relation between the coefficients
dy, and a,,.
| pa-a-
dM=-9-XR§ Ay, - (1.28)
The kinetic energy of the surface vibrations is given by

- 20y g% 243, = . ‘
T 2va(r)dr zpfylv¢|d 2p£¢ v ds,

where p is the constant density of nucleons with the mass m. Using the
gradient formula for sphencal harmonics [Ed 57, Eq. (5.9.17)] and [Ed 57,
Eqgs. (5.9.13) and (5.9.16)] we arrive in the approximation of small defor-
mations (integrating over a sphere). in the following expression for the
kinetic energy.

Rimp _ lay,[?
T D , (1.29)
- Comparison with (1.17) yields the mass parameter
pmRy 3
By=——= 4MA-ng. (1.30)

For oscillations about a spherical equilibrium shape the mass parameter is
not a function of p; this would not be so for a deformed nuclear drop.
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The potential energy of a liquid drop with a surface deformation
characterized by the parameters a,, can be obtained from the coefficients
of the Bethe-Weizsicker formula (1.4) if we neglect changes of the symme-
try and pairing energy with deformation.

Because of the assumption of incompressibility, it is tempting to say that
the volume term does not depend on the deformation. This is, however,
only true for ordinary fluids, and we will see in Chapter 13 how in
quantum fluids the volume terrm can depend on a in a quite subtle fashion.
In the usual treatment of the liquid drop model [BM 53, EG 70], however,
the volume term is not taken into account, and therefore the deformation
energy has only two parts, resulting from the surface and Coulomb terms
in Eq. (1.4). As we will discuss in more detail in Chapter 13 this will be
sufficient for the monopole and the dipole resonance but not for reso-
nances of other multipolarities.

The deformation energy is defined as the dlﬁercnce between the energy
of the deformed and spherical drop:

V({a)= Es(a)~ Es(0)+ Ec(a) - Ec(0). (1.31)

The surface energy is given by the product of the surface with the surface
tension ¢ [Eq. (1.6)]. With techniques similar to those used in the deriva-
tion of Eq. (1.29), we find up 10 second order in a,, [Wi 64, Chap. 2].

Eg(a)= a§S¢s= E(0)+ % %;(A— (A+2)RZay, 2. (1.32)

The Coulomb energy E. is the sum of interactions between pairs of
volume elements d*, and d’r, [Wi 64]

d,d’r JA—-1XZe )
= 2 1—2 . 2
Ec()=(2e [ [ -33 S sr@anr; ol (139
v
From (1.32), (1.33), and (1.17), we thus get the stiffness coefficients (A > 2):
3A-1) (Ze)?
2e(2A+1) R,

In principle, we are now able to calculate nuclear spectra from Eq. (1.19)
and the coefficients B, and C,. It turns out, however, that the reproduction
of spectra is not the most sensitive test for a nuclear model. A quantum
mechanical state is represented by a wave function. Electromagnetic mo-
ments and transition probabilities depend strongly on the wave functions
and provide a much better test. We therefore first discuss such quantities
before comparing the theory with experimental data.

In Appendix B the calculation of the electromagnetic properties of a
nucleus is shown. The essential quantities are the electric and magnetic
multipole operators.

The electric multipole operators are in the limit of long wavelengths (low
transition energies) given by [Eq. (B.18)]

On=c| B, V(0. 4)a

Cr=(A-1)A+2)Rfo— (1.34)
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We can express them by the cordinates taking in the integral a
constant proton density p, for a shape defmea.by Eq (1.7) and get

Or=pye [ deostds Yy, (6, D15 R 0.9),
which is up 1o second order in a,, (with [Ed 57, Eq. (4.63))

PaEEY

O = R@{‘u 2(’”‘2)2 E“A,-. 50— )

Ay Azpsr

| \/(u.ﬂ)(zzz:lxml) (A h N b Aﬁ)} (135)

‘The magnetic multpole operators are given by [Eq. (B. 22)]
- | .
JMA“ = 'C—"("x'+—]) J-V(r X](l‘))(VrA YAF) dJr.

As in the case of the mass parameters, we could again use the a.:.sumption
of irrotational flow to define the current density j and express M,, by a,,
and 4,, (see [Da 68, Chap. 6]). However, we will restrict ourselves to the
case of M | operators, which form a vector

v 3 3
Since we have no spins in the system, we get for the magnetic dipole

moment

3= -Z_£ AN B
f=— J’(rx,)dr f(rxmv)d & o i=galun (1.36)
with the gyromagnetic ratio of the rotor
Z
Br™ (1.37)

The calculation of lifetimes and transition probabilities requires the knowl-
edge of BEA- and BM A-values [see Eq. (B. 73)] defined by

s{( £ 10 e § oo

Since the M l-operator (1.36) conserves angular momentum, M-
transitions are forbidden in this model. The most important transitions are
E2-transitions.

As an example, we calculate the BE2-value for the transition from the
one-boson state B;7|0) to the ground state |0). Expressing &, by the
operators B,, and B,; (1.21), and using the wave function (1.22), we get to
first order in the a,,’s

(1.38)

3

2
B(E2.2,+—>0"')-(Z;ZeR§) A

28,2,

(1.39)
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Before we compare these theoretical results of our model with experi-
mental data, we must discuss which levels in the excitation spectra of
nuclei would be appropriate candidates for such surface vibrations. We
restrict the following discussion to 2% states. For other angular momenta
similar considerations apply.

Figure 1.6 shows schematically the structure of the 2* spectra. They
have a discrete part and a continuum with resonances. Among the discrete
lines one 2* level is usually very low in energy. With a few exceptions it is
the lowest excited state in each nucleus and, as shown in Fig. 1.6, it carries
a large BE2 value, i.e., it has a high transition probability to the ground
state (see Appendix B). The measured BE2 values are for spherical nuclei
roughly ten to twenty times larger than one would expect from a pure
single-particle transition [Weisskopf unit, see Eq. (B. 85)].

@

o

BE2-1<2°NQ, 00 >1?

I lllllli -
E

Figure 1.6. Schematic representation of the 2% spectra in nuclei. The ordinate
gives the BE2 values for the discrete levels and the density of the BE2 strength in
the resonance region. These quantities measure the transition probability to the
ground state. The units are arbitrary.

The low-lying 2% states therefore have collective character, i.e., many
particles contribute and they have very often been interpreted as surface
quadrupole vibrations. Figure (1.7) shows the energy E,. for the lowest 2*
state 1n even—even nuclei. One observes large shell effects (see Chap. 2).
Only the average trend is given by the liquid drop model with irrotational
flow [Eqs. (1.19) (1.30) and (1.34)]. The absolute value is off by a factor of
five. The reason for this failure will become clear below.

Experimentally, it has been found that there is a strong correlation
between the BE2 value of the first 27 state and its energy E,. =, [Gr 62]:

. 2
EyB(E2,27 >0 )~(25£8) 2~ [MeV ¢ Im*], (1.40)

This empirical relation holds for all the nuclei throughout the nuclear
table. Equation (1.39) shows the same energy dependence, but the A
dependence is different. The strong shell effects in the low-lying 2* states
indicate that they cannot be pure quadrupole surface oscillations and that
there are other states which also have the character of such collective
vibrations. From Eqs. (1.22), (1.21), and (1.35) we see that the quadrupole



Surface Oscillations About a Spherical Shape 15
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Figure 1.7. The energy of the first 2* stale in even-even nuclei. The nuclei with
closed neutron or proton shells are marked by open circles. (From [NN 65].)

surface vibration can be represented in linear order in a as:
120) = B [0)ox &y, |0) x 0,10). (141)

The overlap of an arbitrary state |p) with the quadrupole surface vibration
is therefore proportional to its BE2 value:

1<p | 200 P e [<¥] 0,100 | & B(E2, »—0), (1.42)

and the probability that it can be interpreted as such a vibration is given
by the percentage to which it exhausts the sum rule

S2= 3 [<¢|0,,I00. (1.43)
vy

Only if one state exhausts this sum rule to a large extent is it meaningful to
call it a quadrupole surface vibration.

In Section 8.7 we will discuss in great detail the sum rules and how they
can be cvaluated. It is evident that in a model where the state 0, |0 is an
eigenstate of the system, like the model we are now investigating, this state
exhausts the sum rules completely, because all the other states are orthogo-
nal to it.

Experimentally, it has been found that the low-lying 2% state usually
exhausts about 10-20% of the sum rule. The major part is exhausted by the
resonances in the continuum [see Fig. (1.6)], the so-called giant resonances.

Such giant resonances for different / values have been observed. The
most famous is the giant dipole resonance (1) which has been well known
since more than 30 years and lies at an energy (see Fig. 1.8) (for more
details see Chap. 13):

QR~77- 41371/ [MeV]. (1.44)
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As we shall see in Chapters 8 and 13, it corresponds to a vibration of the
neutron and proton sphere against one another and cannot be described in
the present simple model.

In the last ten years, further giant resonances have been observed. The
most important example is the isoscalar giant quadrupole resonance. It lies
at (see Fig. 1.8)

QR =62-47'7 [MeV] (1.45)

and exhausts in most cases a major part of the §;. sum rule.

It seems, therefore, to be more reasonable to interpret this resonance as
the quadrupole surface vibration mode discussed so far. The liquid drop
model in this form is, however, not able to give the proper 4-dependence.
From Egs. (1.19), (1.30), and (1.34) we get

QZCIA ‘-I/Z’

which does not agree with the experimental value (1.45). In Chapter 13 we
will see that the reason for this deviation comes from the fact that the
potential energy coefficients C, correspond to the total binding energy of
the liquid drop [(1.31), (1.34)]. This total binding energy is, however, a sum
of intrinsic kinetic and potential energy. The fact that (at least, for small
deformations) the intrinsic kinetic energy depends on the deformation has
been neglected in (1.34). This can be understood simply as an effect of the
long mean free path of the nucleons and the uncertainty principle, which
states that in an ellipsoidal shape the nucleons along the short axis have
higher momenta than those along the long axis. An ellipsoidal momentum
distribution, however, yields a larger kinetic energy than a spherical one.
Since all particles are affected, it 15 a volume effect which dominates in
general over the surface dependence given in (1.34). In Chapter 13 we will
give a detailed discussion of this point.

Exl Mev

4
30 -

25{
2.0-
154
77, A

103 e2:A"
Y g .2 T Y - i
0o 50 00 150 200 250 A

Figure 1.8. The energy of the giant dipole and the isoscalar giant quadrupole
resonance as a function of mass number [Wa 73).
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In spite of these deficiencies, the boson model presented so far has been
extensively used over the years and has proved quite successful in explain-
ing many features of the nuclear spectra [EG 70]. The reason for this is
‘that many low-lying nuclear excitations have a rather collective character
.and can be represented 1o a good approximation as bosons. The parame-
ters B, and C, may not be given very well in the liquid drop model, but, as
we will shown in Chapters 8 and 9, there are microscopic theories for
fermions which allow more reliable calculations of B, and C,; therefore,
we should consider B, and C, more as open adjustable parameters than as
determined by the LDM.

The microscopic theories also will show that the harmonic approxima-
tons (1.17) have only a very rough validity in the limit of very small
vibrations. For collective motions with larger amplitudes, one has to take
into account anharmonic terms such as

o a?-a al,....

Again the corresponding parameters can be adjusted to experiment or
calculated from a microscopic many-body theory (see Chap. 9).

1.5 Rotations and Vibrations for Deformed Shapes

1.5.1 The Bohr Hamiltonian

The pure liquid drop model has a stable equilibrium only for spherical
surfaces. As we shall see later (Sec. 2.8) it can happen as a consequence of
quantum mechanics—i.¢., shell effects—that the potential V(a) in the
collective Hamiltonian has minima at finite non-vanishing values of a = a,.
In such cases the nucleus can have a stable ground state deformation.

In this case, the nucleus can exhibit retations which can be described by
ime-dependent surface parameters a,, in the laboratory [rame. We shall
call these rotations collective ones: This kind of rotation will not be
possible around an axis of symmetry, because we cannot distinguish the
rotated system from the original one in our vanables a,,.

In a quantum mechanical description, a system with an axis of symme-
try (for example, the z-axis) is given by a wave function which is an
eigenfunction of the angular momentum operator J,, and any rotation
about this axis produces only a phase. The rotating system has, therefore,
the same wave function as the ground state, and the same energy.

This does not mean that there are no other degrees of freedom in the
system that can be excited (for instance, single-particle degrees of freedom)
and carry angular momentum parallel to the symmetry axis. Such a
“rotation,” however, we do not call collective rotation.

Since in almost all nuclei the quadrupole degree of freedom plays a
fundamental role, we will restrict the following considerations to the case
A=2,
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Assuming that the nucleus has a stable ground state deformation, it is
preferable to transform to the body-fixed system, defined by the principal
axes of the mass distribution (as discussed in Sec. 1.3).

After this transformation, we have five dynamical variables &, 8, y*
instead of the variables a;, (p= -2, — 1,0, + I, +2). We start again from
the Hamiltonian (1.17). Only the potential in (1.17) is changed. It now has
the form:

V(B 7)=14 Caolazol B.Y) — a%) + Cp @ B.¥) ~ %) (1.46)

This corresponds to a quadratic approximation in the vicinity of a de-
formed minimum fB,,v,. The idea is that the nucleus has this deformation
in its ground state, and the excitations are rotations and small oscillations
around this equilibrium deformation.

Microscopic calculations of potential landscapes show, for certain nu-
clei, well pronounced minima of V for finite values 8,=~0.2-0.3 and
Yo=0. These axially symmetric shapes are, therefore, the most important
ones, and we will restrict a large part of our discussion to them.

The next step is the transformation of the kinetic energy in Eq. (1.17) to
the body-fixed system. Applying Eq. (1.11), we have to differentiate the
variables ay, a,,, and £ with respect to the time. Since the derivation is
quite lengthy, and the intention in this chapter is not to be complete, we
simply give the result (for the derivation, see, for example, [EG 70 Vol. |,
Chap. 5]) for the so<alled Bohr Hamiltonian [Bo 52]:

Tm Tt 1B,(B7+ 85 (1.47)
with

3
T=1 2 %0,
=l
where w_ is the angular velocity around the body-fixed x-axis and 9§, are
functions of # and y given by
1, =48, p%in{y— ZTx). =123, (148)

In case we have fixed deformations B,y, T, is the kinetic energy of a
rotor with the moment of inertia 4, . As soon as we allow for changes of g
and v, the rotational and vibrational degrees of freedom are coupled by
the deformation dependence of the moments of inertia. In this case, we no
longer have a pure rotor. In fact, we see that in the case of 8,=0 the
system can be transformed back to a harmonic vibrator (1.17) which has a
harmonic spectrum.

However, even in the well deformed case with large stiffness parameters
C and finite 8, (where a constant 8= f, is a rather good approximation),

* Unfortunately, the set of Euler angles Q= (a. 8. v) also containa the letters 8 and v.
However, we do not want to change this nomenclature [Ed 57] and we, as far as possibie, use
the abbreviation L.
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§_ are not the moments of inertia of a rigid rotor. Using (1.30), we get from
Eq. (1.48) the so-called irrotational moment of inertia:

i 3 R282% 2( _2n ) -

$i7 = s mARIBsin’| Y~ S|, x=1,2,3.
It differs from the moment of inertia of a rigid body with the same
deformation

9§!=%mARg(1- & ﬁcos(y—z—;’x)) (1.49)

in the following ways.

(i) In the y-dependence (Fig. 1.9), §™ vanishes about the symmetry
axes.

(ii) $'" shows a strong dependence on the deformation (~ 87), whereas
478 changes much less with 8 (its main part is the moment of inertia
of a ngid sphere).

(iti) The experimental moment of inertia ¥ can be found from the
energy of the first 2% state of a rotational band [see Eq. (1.64)]
4% =3/E,. (MeV~']. Applying the empirical rule (1.40) and the
formula (1.74) for the BE2 value, we get a connection between the
deformation parameter 8 and the moment of inertia

27 4A.s,fs,ﬁz_ Z 22 _ 27(1.2)*- B4/

gexP= I 4 ~
80m2 ° E;.-BE2 807225
ZA'U)
~ 3400 [Mev']. (1.50)

In the case of well deformed nuclei (8~0.2-0.4), 4™ is usually
smaller by a factor of 2-3 than the experimental values. On the
other side, the values of 3™ are a factor of 2 too large:

$T < gR L g, (1.51)

This shows that the flow structure within the nuclei is certainly not
irrotational. On the other hand, it is not a rigid rotor, either.

- The next step is again a quantization of the classical Hamiltonian (1.47).
It is well known that there is no unique prescription for the quantization of
a classical Hamiltonian in the general case [Me 61]. The ambiguity comes
from the freedom in ordering noncommutable operators.* Commonly one
adopts the Pauli prescription [Pa 33], which calculates the Laplace opera-
tor in curvilinear coordinates. If the classical kinetic energy has the form

f .

* A discussion with a list of references on the quantization problem is found in [MD 73).



20 The Liquid Drop Model

"t
vy §) £y)
1144 r
LOI ilo

H H
0 30° 60* o - Xx* 60*

Figure 1.9. The y-dependence of the irrotational (37) and the rigid (57%) moments
ol nertia for fixed values of B.

then the corresponding quantized form is*

. e 2 i
H n™ = = /e Y /2 1 1.53
. 2%33 g 8(s )yaf (1.53)

where g is the determinant and g "' is the inverse of the matrix
Applying this prescription to the Bohr Hamiltonians (1.46) and (1.47),
we obtain:

. 0 d
e TN AT
col ™ [B B ﬁ ﬁ’sty 87 L ')Fa
+ Tm(+ V(B 1) (1.54)
where the rotational energy is found to be
N 1‘z i}
T =
24, 29 29,

The operators l: are the projections of the total angular momentum i
represented in the Euler angles onto the body-fixed axes (for details, see
Appendix A). Figure (1.10) shows the total angular momentum and its
components I = M and 1 = K. The eigenfunctions of P, 1, I are given by

[IMK Y= \/2;:1' DL®). (1.56)

Since H,. f? and /, commute, the eigenfunctions of the collective Hamil-

(1.55)

*To see that the Hamiltonian (1.53) is Hermitian, one has to take into account the volume
clement G dg,...d§,.



Rotations and Vibrations for Deformed Shapes 21

z
i

Figure 1.10. The relation between the total angular momentum I and its projec-
tion M onto the laboratory z axis and its projection K onto the body-fixed 3-axis.

tonian (1.54) have the general form
¥heo= ; Ex (B, IMKD.

The triaxial rotor has certain discrete symmetries. }?w“ is invariant under
the point group D, [Bo 52). Therefore, one classifies the eigenstates
according to the irreducible representations of this group, and one can
denive from this some properties of the spectra [Da 68].

One example is the rotation of 180° around the )-axis,

R, = e, (1.57)
which is equivalent to a reflection with respect to the 2,3-plane together

with a panty transformation. It commutes with H_; and we require our
eigenfunctions to have eigenvalue +1°*:

R, ¥> =¥, (1.58)
Using relation (A.24) of Appendix A, we find that this is only possible with
gx(B.Y)=(—)g_x(B.7) (1.59)
If we require, in the same way, symmetry with respect o
Ry= e, (1.60)
we get
g (B ) =(=)""g_x(B7). (1.61)

® As we shall see in Eq. (11.123), the microscopic intrinsic wave function of the system is
an cigenstate of this operation with eigenvalue + 1 (sce also [Bo 76 b)).
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1.5.2 The Axially Symmetric Case

The Hamiltonian flwu (1.54) is still very general. We shall restrict ourselves
1o cases of very pronounced minima in the potential surface at axial-
ly symmetric deformations 8= f, and y=0. We expect rotations and
small vibrations of the nuclear surface. Expanding T, 11/293 (1.55)
around the point 8= f,, y=0, we obtain in zeroth order the Hamiltonian
of an axially symmetric rotor with the moment of inertia §,=9,{(f,, 0)=

92( ﬁO! 0))

Bed
7-;0| - 2g0

First-order terms are proportional to the deviations ( 8— B, and y. They
mix rotational and vibrational degrees of freedom (rotational-vibrational
coupling terms) and will be neglected here. The only remaining term in
H_, that still couples rotations and vibrations is 132/233 It cannot be
expanded, since 4, vanishes for y=0. However (as T,), it commutes with
i, and K is therefore a good quantum number.

We now have to distinguish

(1.62)

() K=0 bands (I;=0). In this case, the rotational and vibrational motions
decouple. The wave function 1s of the type

[¥heo)= 8ol B, 1)ITMO>. (1.63)

They are eigenfunctions of the rotational part of the Hamiltonian (1.54).
].,-symmetry (1.59) requires the spin sequence /=0,2,4,... . A detailed
investigation of the vibrational part of H_; [EG 70, Vol. I, Chap. 6] shows
that it is easier to handle in the variables a,, and a,; (1.13). In the first step
one neglects terms in the potential F(ay,ad,,). which couple these two
degrees of freedom. In this case, the motion in the coordinate a,, (usually
called B-vibration) decouples from the motion in the coordinate a,, (usu-
ally called y-vibration). Axial symmetry with respect to the 3-axis is
preserved by the B-vibration (quantum number 7g), but violated by the
y-vibration (quantum number n, ). Both types of motion are shown qualita-
tively in Fig. 1.11.

Superimposed on each vibrational state (ng, n,) is a rotational band. The
spectrum is given by (see [EG 70, Vol. I, Chap 6D

E .(I)=E,. (0)+ 1 (I+1) (1.64)
with the band head
- (0)=hwg(ng+1/2)+hw (20 +1),
ng=01,2,..., n=012,..., (1.65)
where wy; and w, are the frequencies of 8- and y-vibrations.
wﬂ=(czo/82)1/2 w, "(sz/Bz)l/2



Rotations and Vibrations for Deformed Shapes 23

In fact, such bands have been observed in many even-even nuclei, in
particular the ground state band (ng=n,=0) and the “f-band” (ny=1,
n, =0). However, as we have already discussed, the constants 45 and w,, w,
of the hydrodynamical model do not agree with the experimental data.

() K0 bands. Together with ®,-symmetry [Eq. (1.58)], we see that the
wave function now has the form

|‘1’Lx>=3x(ﬁ.7)-flz:{IIMK>+(—)'|1M-K>}- (1:66)

The &, and &, symmetries ((1.59) and (1.61)) give the selection rule: K
must be even. Such K#0 bands have, therefore, the spin sequence /=|X]|,
|K|+1, |K[+2,... . The motion in ay, (f-vibration) can again be sepa-
rated from the rest. However, the term /,/29,= K?/16B,a2, couples the
y-vibration with the rotation around the 3-axis. We can easily understand
this fact if we realize that a y-vibration can be represented as a superposi-
tion of two rotations of a lriaxial nucleus around the 3-axis, but with
opposite K-values [BM 75, p. 656].
The following spectrum is obtained [EG 70, Vol. I, Chap. 6]
hZ
(

Ey o n(I)=Ex,, ~(°)+ 11+ 1)-K?) (1.67)

$3 ts

B - vibration ¥ -vitvation

Figure 1.11. Schematical representation of 8- and y-vibrations by a cut along the
(1,3) and (!, 2) planes.
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with the bandheads

Er. ., 0)=hg 5+ %)+nw,(2n,+ I+ L‘;—I) (168)

In fact, such bands have also been observed, especially the so-called
“y-band” in many deformed nuclei, which has the quantum numbers
K=2, ng=0, n,=0. This y-band has the vibrational quantum number
n, =0, however, one is not allowed to apply the classical picture of no
vibration in this case. It would correspond to y=0 and imply 9,=0, which
would forbid a rotation with K0. Ouly the quantum mechanical zero
point vibration in the y-direction makes this possible.

Figure 1.12 shows the qualitative structure of the collective (A=2)
excitation in deformed and spherical nuclei.

The spherical nuclei have a harmonic spectrum. In the deformed nuclei
we observe several rotational bands built on the ground state, on the
S-vibrational state K=0, ny=1, n, =0, and on the y-vibrational state
K=2, ng=n,=0. However, these pure cases are not exactly realized in
nature. In fact, we already observe in spherical nulcei a splitting of the
two-boson triplet (0*,2% 4%) and in the deformed nuclei deviations from
the /(J/+ 1) law. There is also a wide range of transitional nuclei in
between these two limits. Going from isotope to isotope, one can some-
times observe a gradual transition from a vibrational to a rotational
spectrum (for instance, in the Os region [SDG 76]). This is indicated by
dashed lines in Fig. 1.12.
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Figure 1.12. Schematic level schemes of spherical and deformed nuclei. (me'}
[SDG 76])
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For a theoretical description of deviations from the /-(/+1) law, one
has taken into account the rotational-vibrational coupling terms in A,
which one gets by expanding 9, in powers of the deviations ( f— Sy and
1[FG 62, FG 64, FGS 65, 66, ABP 68]. This rotation-vibration interaction
causes changes in the moment of inertia of a band and corresponds to a
change of the nuclear shape under the influence of the rotation (stretching
effect). However, there also exist quite different excitations of nuclei in this
energy region, for instance, two quasi-particle states and pairing vibrations
{sce Chap. 8), which have a much stronger influence on the rotational
bands, and which are not taken into account in this simple model of a
liquid drop with surface oscillations.

Before we leave this section, we want to discuss very briefly how to
calculate electromagnetic moments and transition probabilities. In Egs.
{1.35) and (1.36) we defined the electric multipole and the magnetic
moment operator in the coordinates a,,. They are obviously written down
in the laboratory system. In a deformed nucleus it is usually very easy to
calculate the moments in the intrinsic system. To get the moments in the
laboratory frame—the experimental values—one has to apply the transfor-
mation (1.11) of sphencal tensors:

giav = =30, gre. (1.69)

Since Q™ does not depend on the Euler angles, we get from [Ed 57, Eqs.
4.6.2 and 5.4.1] the reduced matrix elements with respect to [IMK):

1, N1,
<HKNQX®IT, Kar= 2,00 )"“"((21.+l)(2lz+I))"’(_ X, K,)'

(1.70)

We restrict ourselves now to pure K-bands and calculate only intraband
E2-transitions (n, =n, .ng =ng). For the reduced matrix element we find

{ngn 1, Kij| Q"b|| ngn 1,K )

(1, 21
Ter mmper+nELA ) (Y o2,

(1.71)

where Qy(ng, n,) is the intrinsic quadrupole moment of this band. In the
ground state band with fixed B-value, and y=0 we have [Eqgs. (1.13) and

(1.39)]

Qo= 2L 22ze-R3B (1.72)

From (B.73) and (1.71) we obtain, for example, for the so-called stretched
BE2-values in a rotational band,
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which, for K=0 bands, gives

, 5 3 (+1)(1+2)
O%6w 2 (21+3)(21+5)

B(E2,1+2-1)mQ (1.74)

For the spectroscopic quadrupole moments Q= y167/5 (JIK|Q%% IIK>
[Eq. (B.32)], we get
3KI-I-(I+1)
Q=0 .
QRI+3)(1+1)

The quotient of Q: Q, is the expectation value of D2, = Pycos 8) in the
state M = ], This means that one cannot measure the internal quadrupole
moment Q,, but only the value averaged over the rotational motion. In
fact, Q, is not a physical observable. Iis definition depends on the
introduction of a body-fixed system which moves with the nucleus and has
a model character. For the band head we usually have /= K. That means
the spectroscopic quadrupole moment Q of ground states with /=0
vanishes and we can get information about Q, only for the excited states
(for instance, by the reorientation effect in Coulomb excitation [BE 68],
which gives the sign and the absolute value of Qg). Another way to
determine the absolute value of Q, is the measurement of the B(E 2)-values
(1.73) in the transitions within a band. Recent measurements up to high
spin states [WCL 76, HJE 78] have shown that in many deformed nuclei
the value of @, stays fairly constant within these bands, even in cases
where the spectrum shows deviations from the /(/+ 1) character. This is a
hint that these dewviations are not caused by the change of deformation
(stretching effect).

(1.75)

1.5.3 The Asymmetric Rotor

The rotational-vibrational interaction mode] discussed so far has been on the basis
of a symmetric rotor. Further attempts to explain the deviations from the /(J+ 1)
law and the low-ying second 2* states in many nuclei have been undertaken by
Davydov et al. using the picture of a pure triaxial rotor {DF 58, DR 59, Da 59, Da
65b). As a lirst step they do not consider the vibrational excitations and diagonalize
only the rotational energy (1.55). With the moments of inertia (1.48), this operator
is proportional to 8 ~2 and one can diagonalize it for all values of y. The constant
factor can afterwards be adjusted so as to reproduce the first 2% state. Using the
symmetries K, and A, (1.59 and 1.61), the wave functions have the form

Vo= 3 gx {|IMKY+(=)")IM - K)). (1.76)
Figure (1.13) shows the corresponding energy eigenvalues. For y=0° and y=60°
one gets the I(/+ 1) spectrum. Even for strong triaxial deformations one gets only
slight deviations of this form. However, additional 2*,3%,4* levels come down in
energy. It is a characteristic of this structure to have a low-lying second 2% state.
Although one can, with such a model, reproduce quite reasonably the experimental
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data in some regions of the periodic table (for instance, for the Os-isotopes), strong
objections can be raised to it:

(i) It is impossible to describe B-vibrations. In this case, one has to include
additional vibrational degrees of freedom [DC 60]

(ii) Well pronounced minima in the energy surface that could justify a stable
y-deformation have not been found. Microscopic calculations for such
transitional nuclei usually show only very shallow valleys in the y direction
[KB 68, ASS 69, GPA 72, GG 78].*

In recent years, stable y-deformations have found new interest, because:

(i) Experimental data in odd-even transitional nuclei can be very well repro-
duced by a model of a particle coupled to an asymmetric rotor (see Chap. 5
and [MSD 74, Me 75, TF 75)).

(1) Theoretical calculations for very high spin states (sec Sec. 1.7 and [ALL 76])
show that nuclei can become tnaxial in certain spin regions.

One can get a rough estimate of the level structure of tnaxial nuclei by assuming
a maximal triaxiality (y =30°). In this case, 4,=9,=14,= 14, (4, is the moment of
inertia at y =0), and we have symmetry about the 1-axis (in the kinelic energy). The
projection « of / on to this axis is a good quantum number and one finds

E()a X 411+ 1)=3a? 7
. "‘8—5';( (I+1)=3a%). (1.77)

* Wilets and Jean [W)] 56] proposed a model which is completely y-soft, i.c, Cp;=0in Eq.
(1.46).
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Figure 1.13. The energy cigenvalues of a deformed, asymmetric rotor with the
hydrodynamic moments of inertia, (From [Me 75].)
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4, and 4, symmetry requires / and a Lo be even. For each / the level with the
lowesl energy (the so-called “yrast™ level) has a = J. Next in energy comes the band
with a=17—2, then a=/—4, and so on. Therefore, we have & sequence of bands
characterized by the “wobbling” quantum number nm f—a [BM 75]. One can
calculate that the states with the same n are connected by large E2-transition
probabilities. We get their spectrum From (1.77):

E(I)= %%E(l(l+4)+3n(21—n)). (1.78)

However, one has 10 keep in mind that the structure of the spectrum (Fig. 1.13)
depends drastically on the y-dependence of the moments of inertia. There the
hydrodynamical values have been used. For the rigid body values the spectrum
would certainly look quite different.

1.6 Nuclear Fisslon

Up to now we have studied only small vibrations around the equilibrium
shape in the liquid drop model. Shortly after the discovery of nuclear
fission, attempts were made to understand this phenomenon using the
concept of the nuclear drop [MF 39, Fr 39, BW 39].

In fact, a uniformly charged classical drop is only stable against fission
(and spherical) if the Coulomb energy does not exceed a certain critical
value. The Coulomb repulsion wants to deform the drop, the particles then
being, on the average, further apart. The surface energy, on the contrary,
being proportional to the surface of the drop, wants to keep it spherical. It
is thus a subtle process of balance between these two effects (each being
several hundred MeV in magnitude), which tells us whether there will be
fission or not, according to a classical calculation. Of course, for such
fission process, involving large deformations, one must go beyond the
harmonic approximation discussed in the foregoing sections [BW 39].

The first step in describing the fission process [HW 53] is the choice of a
suitable set of deformation parameters, which we call a. It has to be
general enough to describe all the deformations that can occur. Cohen and
Swiatecks [CS 62, 63], for instance, took as many as 18 multipolarities into
account for the calculation of symmetric shapes of the form

R-Ro(l+ Izsa,P,(coso)). (1.79)
=}

This allows one to describe very general shapes. On the other hand, if one
knows qualitatively the behavior of the droplet in the fission process, one is
interested in introducing as few parameters as possible. Since one also
wants to describe separated fragments, the set (1.79) is certainly not the
most suitable one. For a realistic description of the fission process one
needs at least three parameters [NS 65, Ni 72):

(i) a parameter ¢, which describes in some way the length of the major
semi-axis at the beginning of the fission process, and goes over into
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Figare 1.14. Some shapes in a suitable parameterization {c, h}. Solid lines show
symmetric shapes. Dotted lines have a non-vanishing asymmetry parameter a,.
(Taken from [BDJ 72].)

the distance between the separated fragments (elongation coordi-
nate);

(i) a parameter h which characterizes the thickness of the neck between
the fragments in formation (neck coordinate);

(iii) an asymmetry parameter a, which measures the deviation from
symmetry in the mass distribution of the separating fragments (in
the case of asymmetric fission) ( fragmentation coordinate).

Figure 1.14 shows an example for such a parameterization [BDJ 72].

In the next step, one has to calculate the Hamiltonian in the parameters
a. The first part is the potenrial energy V(a). One usually measures it in
units of the surface energy* of the corresponding sphere and gets

V(a)=(Bs(a)~1)+2x-(Bc(a)-1), (1.80)

where B and B, are the surface energy [in units of Eg(0)] and Coulomb
energy [in units of E~(0)=2(eZ)?/R,]. They are calculated as in Eqs.
(1.32) and (1.33). However, now one can no longer suppose small deforma-
tions and must carry out the integrals explicitly. Bg and B, depend only on
the geometry. The only parameter that characterizes the nucleus is the
so-called fissibility parameter x. We find

- E-(0) _ Z*/A
50 (Z4),

(1.81)

®*As we have discussed carlier, the potental energy can have a volume dependence
corresponding (o the intrinsic kinetic energy. For the large deformations implied in the fission
process the dynamics can, however, have ap important effect on V(a): Usually one assumes
that the process of spontancous fission is s0 slow that the nucleons have time to adjust thewr
momentum distribution in such a way that it gives minimal total energy 8t cach deformation.
This momentum distribution is. of course, the spherical one. (For a more detailed discussion
of this potn(, see Chap. 13.)
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where

z? 40w o0
( y )cnt- Ry 2 50. (1.82)
The calculations of Cohen and Swiatecki [CS 62, 63] show that the easiest
way to deform the nucleus is the quadrupole deformation, and that the
nuclear drop in general either stays spherical or fissions. Therefore, we can
already decide, at zero deformation, whether or not fission occurs accord-
ing to whether the curvature of the potential surface V(a) at the origin in
the quadrupole direction is positive or negative. This, however, we have
already calculated in considering the Bohr Hamiltonian [Eq. (1.17)] up to
quadratic terms. Indeed, we see that the stiffness coefficient C, [Eq. (1.34)]
is given by the difference of the surface and the Coulomb part of the
deformation energy and C, starts to go negative for [Wi 64)

AR VA
y -(T)cﬁl or x=], (1.83)
This means that the classical droplet stays stable and spherical for Z?/ 4
<50 or x< 1. For x>1, it fissions immediately. This can be verified
experimentally in giving increasing charge on a mercury drop.

For 2*U the mass formula (1.4) gives a Coulomb energy E(0)=830
MeV and a surface energy E(0)=520 MeV; for the fissibility parameter,
we therefore obtain x==0.8, which is a typical value for the mass region
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Figure 1.15. Perspective plot of the liquid drop model energy surface of 2°Pu. 4
describes the elongation and ¢ the necking degree of freedom. (From [BDJ 72])
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230 < A <240. Therefore, the classical liquid drop model cannot describe
spontaneous fission. Observed spontaneous [ission is thus due to the
quantum mechanical tunnelling effect

The potential energy surface (1.80) of the liquid drop has, in general, a
complicated structure. For x < |, we expect a minimum corresponding to a
sphere, and for large distances outgoing valleys corresponding to different
fragmentations [NS 65, Ni 69, MN 76].

Considering, for instance, only symmetric fission, we get for the two
parameters ¢ and A a surface as shown in Fig. 1.15. We see that it develops
a well-defined saddle. Outside the saddle, the deformation energy falls off
very steeply.

Cohen and Swiatecki [CS 63] have calculated the saddle-point shapes for
many x-values with the ansatz (1.79). Some of them are shown in Fig. 1.16.

The meaning of these saddle-point shapes is that for a given x the drop
would inevitably undergo fission if one, roughly speaking, elongates it a
little bit more; conversely, it would fall back into its spherical shape if it
was shortened a little bit. Going over the saddle along a line of steepest
descent, the “bottom™ of the fission valley defines a one-dimensional path.
The length along this path is usually called the fission coordinate s. Figure
1.17 shows schematically the potential energy along this coordinate.

The fission barrier E, is typically only a few, say, 5-7 MeV high. (This
should be compared to several thousand MeV of total binding energy). Far
out, the slope of the curve is due purely to Coulomb repulsion of the two
droplets and thus falls off quite steeply for large Z.
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Figure 1.16. Saddle-point shapes for various values of the fissibility parameter x.
(From [CS 63].)
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Figure 1.17. Schematic representation of the liquid drop fission bamer.

The next step in a dynamical description of fission would be the
calculation of the kineric energy (i.e., of mass parameters, which certainly
depend on the deformation [HD 71, Gr 71]. Since the hydrodynamic
model has not given good mass parameters for small oscillations, we
cannot expect that it would work here either. We shall see in Section 12.3.7
how one usually calculates such quantities.

The final step would be a proper quantization and solution of the
resulting Schrodinger equation. It goes far beyond the scope of this chapter
to discuss such problems in detail. We only wish to mention that one
usually calculates the lifetime for spontaneous fission from a WKB for-
mula for a one-dimensional barrier penetration [Wi 64]. An essential
ingredient of this formula is the shape of the potential ¥ (s), as shown in
Fig. 1.17.

Unfortunately, the liquid drop model can in no way quantitatively
describe fission, one of the major deficiencies being that the drop always
fissions into two equally heavy fragments, whereas in fact nuclei quite
often fission into unequal masses (asymmetric fission). From the fact that
the fission barrier is a small number obtained from the difference of two
huge numbers, we see that nuclear fission is an extremely subtle process,
and we can casily imagine that, for example, quantum effects, like shell
effects in the single particle motion (see Sec. 2.9), may very much affect it.

1.7 Stability of Rotating Liquid Drops

We have seen in Section 1.5 that among the vibrations of a liquid drop about a
spherical surface there are rotation-like motions. In order to decouple them from
the vibrations, however, we required stable finite deformations, which can only be
explained by quantum mechanical shell effects. In fact, one finds rotational spectra
in the experiment that justify such an assumption.

Heavy ion experimenis allow the transfer of very large amounts of angular
momentum (up to 80-1004) to a nucleus. At such high excitations, one should
expect that quantum effects no longer play any role, and one can then ask how 2
classical liquid drop having such angular velocities behaves.
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In this section, we are therefore only interestied in the purely classical problem of
how a charged and incompressible liquid drop with a sharp surface and a certain
surface energy behaves under rotation around a fixed axis in space. We are not
interested in surface vibrations and therefore look for the stable shapes in this

Again we have to say something about the flow structure in this drop, and we
shail assume rigid rotation; i.c., the moment of inertia is given by

4 -s"'-fyripodlr, (1.84)

where r, is the distance of the volume 47 from (he rolational axis. As we shall see
in Section 3.4, this assumption is very reasonable, because one expects the nuclear
moment of inertia to approach the rigid value for high angular momenta.

The problem is very similar to the old astronomical problem of gravitating and
incompressible homogeneous rotating masses. There the attractive force is the
gravitation, which has the same structure (but the opposite sign) as the Coulomb
force, and a surface force is neglected. Beginning with Newton, this problem has
been studied by many famous mathematicians (for a historical review, see [Ch 69,
Chap. 1]

One of the results is that a gravitating droplet without surface tension has, for
vanishing angular velocity w, a spherical shape. With « >0, it assumes first exact
oblate spheroidal shapes where the rotational axis is an axis of symmetry
(Maclaurin shapes). For increasing o it flattens more and more, up to a certain
angular velocity ;. For w-values larger than w,;, a new type of stable shape
develops®*—triaxial ellipsoids (Jacobi shapes)—and the drop rotates around the
shortest principal axis. This point, w,, is called a bifurcation point, because for
w>w; the Maclaurin shapes are still stationary, but they are no longer minima in
all degrees of freedom [Ro 67]. One calls this secularly unstable. However, in
uniformly rotating systems (gyrostatic systems) without friction forces, they can
represent a stable motion (ordirary stability) [Ly 58]. Following the Jacobi shapes
for higher w-values, one reaches further bifurcation points. New shapes of stability
develop and finally the droplet disintegrates.

Cohen, Plasil, and Swiatecki [CPS 74] investigated the problem of stability for
the rotating nuclear liquid drop. They looked for the stationary surfaces of the
energy

E(ﬂ)= Es(a) + Ec(a)"" ER (G)
= Ec(0)(Bs(a) +2x- Bc(a) + yBg(a)). (1.85)

In addition to the surface (Eg) and the Coulomb (E) energies (see Eq. (1.32) £.),
we now have the rotational energy at an angular momentum /:

Ex(a)= = yEg (0)Bg(a). (1.86)

25( )
The moment of inertia is given by Eq. (1.84): 3(0)=3MR3J. In addition to the
fissibility parameter x, which measures the relation of Coulomb and surface
energy, there is now the parameter

Ex(0) 5 a2
- - 213477, 1.87
4 Eg(0) 167 omsd A (187)

* This corresponds (o a second-order phase transition [BR 76].
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which measures the relation of rotation and surface energy. The parameters x and
y are determnined by the properties of the nucleus and by the angular momentum
onc is interested in; again, the rest is pure geometry.

The result of these investigations [CPS 74] is that the nucleus behaves similarly
to the gravitating droplet. Al low angular momenta (low y-values), one gets
flattened shapes with axial symmetry around the rotational axis. They are called
Hiskes shapes and look similar to exact spheroids (Maclaurin shapes). They remain
stable up to a critical value y;, which corresponds to the Jacobi point. The value of
y; depends on x. For very heavy nuclei x >>0.81 the system fissions for y > y;. For
the rest of the nuclei a new kind of stable shape develops. These are called
Beringer- Knox shapes [BK 61] and are similar to the Jacobi shapes. For very large
angular momenta, these shapes get nearly axially symmetric around an axis
perpendicular 1o the symmetry axis and finally become unstable against fission
(-

These calculations involve a large number of deformation parameters. One can
describe the same features under the restriction of pure ellipsoidal shapes, whose
half-axes a,.4a,, a; are given by the two parameters B and y*:

a,-Roexp[\/% Boos(y-zT'x)} (x=1,213). (1.88)

This definition guarantees volume conservation.

*We have used the Hill-Wheeler coordinates 8 and vy already for the description of small
quadrupole deformations [Eq. (1.13)] of the nuclear surface. Here we define the nuclear
surface as an exact ellipsoid by its balf axis. This was the original definition of Hill and
Wheeler [HW 53]. It agrees with Eq. (1.7) only for small S-values.

B Prolate
? 02 a4 06 08 L0

Figwre 1.18. The equilibrium shapes (in terms of 8 and y) of a rotating liquid drop
as a function of angular momentum I. Since the 1-axis is the axis of rotation, we
need negative y-values, in contrast to the usual case where the three axes are
equivalent. The nucleus '**Yb has a value of x =0.618. (From [ALL 76].)



Stability of Rotating Liquid Drops 35

It is relatively easy to calculate the rigid moment of inertia, and the surface and
the Coulomb energies for these ellipsoids® as a function of 8 and y and to look for
the minimum of the energy surface for each value of /. Connecting these stable
shapes, one gets a trajectory in the 8-y plane, as in Fig. 1.18.

For each /, we have an energy surface whose local minima are investigated. As
in the case of /=0 (Sec. 1.6), there also exists, besides the minimum, a fission valley
with a saddle point. Because of the centrifugal force, the barrier height gets smaller
for increasing angular momentum and a family of shapes becomes unstable against
fission if the barrier disappears. As an example, we take the nucleus '¥’La {CPS 74).
Al angular momentum /=0 its LDM fission barrier is 40.0 MeV high. Its Jacobi
point ( y;) corresponds to /= 67.84. At this angular momentum it has an excilation
energy of 44.3]1 MeV [E(0)=49.5 MeV] and the barner height is only 7.8 MeV.

From this consideration it becomes clear that no nucleus can support more than
a limiting angular momentum, otherwise it becomes unstable against fission. Figure
1.19 shows the angular momenta /,, at which the fission barrier vanishes as a
functon of the mass number A in the valley of beta stability [approximated by
N=A/2+02-42/(200+ A)]. Light nuclei cannot support many units of angular
momentum, because of their small size. Heavy nuclei have a reduced stability
caused by the Coulomb energy. Nuclei with A=2130 can reach the highest angular
momenta of~ |00A. Experiments with heavy ions [BES 76] seem to be consistent
with these limiting values of the liquid drop model.

* Sce, for instance, [Ca 61, CM 63].

Figuwre 1.19. Maximal angular momentum /;; that a 8-stable nucleus with mass
number 4 can support, and the cnitical angular momentum /, (Jacobi-bifurcation
point). The dashed line corresponds to fission barner heights of 8 MeV, which
guarantiees a reasonable lifetime against fission. (From [CPS 74].)



CHAPTER 2 -

The Shell Model

2.1 Introduction and General Considerations

In the last chapter we considered the bulk properties of the nucleus, that is,
we discussed (static or dynamic) properties for which at least a good
fraction of all the nucleons in a nucleus participate. In this chapter we are
going to talk about a completely different aspect of the nucleus. Indeed,
many nuclear properties seem to be describable in terms of the idea that
the nucleons in a nucleus are to be considered as independent particles
moving on almost unperturbed single particle orbits. The reasons for this,
as we stated at the beginning of the first chapter, is the fact that, mostly
due to the action of the Pauli and uncertainty principles, the nucleus is not
a very dense system. [t is now quite well established that the nucleon-
nucleon force has an almost infinitely repulsive core (see [Vi 78]) at a
radius ¢ of about c=0.4 fm. Therefore, the ratio of the closest packed
volume ¥_ to the actual volume ¥V of a nucleus is [BM 69, Sec. 2.5]

Vc c 3 1

vV '(z_r;) T 100
Thus the known “strong™ character of the nucleon-nucleon forces is
considerably reduced by the fact that the nucleons are, on the average,
quite far apart, and therefore “feel” only the tail of the attractive part of
the nuclear force. In other words, the violent interactions due to the
singular force occur only quite seldom and the system can be described, at
least in a first approximation, in terms of independent particle motion. The
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fact that despite these considerations the nucleus develops a very well-
defined surface, contrary to a gas, is due 1o a very subtle interplay of the
nuclear forces and the Pauli principle [BP 77a]. For a further, more
elaborate discussion of these considerations, see also [BM 69, Sec. 2.5]. The
mean free path of the nucleons in a nucleus, as can be estimated from
scattering experiments, seems to be at least of the order of the dimension
of the nucleus [BM 69, Sec. 2.1; KK 68] and is mentioned as the first piece
of experimental evidence for the unperturbed particle motion in a nucleus.

The idea of independent particles accepted, it is quite natural to envis-
age that this single particle motion is governed by some average potential
created by all the nucleons in the nucleus. Of course, the motion of the
nucleons will be considerably different in the interior of the nucleus, where
it is more or less force free, [rom the one at the surface where the Pauli
principle ceases to act and the particles feel a force confining them to the
interior of the nucleus.

In this chapter we will briefly describe further experimental evidence for,
and the phenomenological description and consequences of, such an
average potental.

2.2 Experimental Evidence for Shell Effects

If the validity of an average potential in which the nucleons can move
independently can be assumed. this inmediately has some obvious conse-
quences similar to those with which we are familiar from atomic physics.

The occurrence of the so-called magic numbers 2, 8, 20, 28, 50, 82, and
126 has, from the experimental point of view, been one of the strongest
motivations for the formulation of a nuclear shell model. At these proton
or neutron numbers, effects analogous to shell closure of electron shells in
atoms are observed. Here we will mention just a few of them.

The single-particle separation energy is defined as the energy required to
remove the least bound particle from the nucleus. In Fig. 2.1 the observed
separation energies for protons and neutrons are shown.

For most nuclei the separation energy is about 8 MeV, although there
arc quite prominent cxceptions at the magic numbers. The separation
energy i8 largest for doubly magic nuclel. Similar exceptions for the
separation energy are found for the electrons in noble gases.

The magic numbers can be seen in Fig. 2.2, which shows that the magic
and doubly magic nuclei are exceptionally strongly bound. Strong binding
means that the nucleus is very stable against excitations, and in Fig. 1.7 we
have already shown the variation of the first 2% state in nuclel as a
function of nucleon number. We can see especially pronounced shell
effects at the magic numbers, the excitation energy rising sharply in the
neighborhood of shell closures. Other collective excitations show the same
variation. These examples should be sufficient as a demonstration of the
occurrence of magic numbers in nuclei and of the shells corresponding to
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Figure 2.1. Neutron and proton separation energies as a function of neutron and

proton number, respectively. (From [Ir 72].)

an average potential analogous to the ones observed in atoms. (More
details may be found in [MJ 55].)

2.3 The Average Potentlal of the Nucleus

As mentioned above, the exceptional role of the magic numbers reveals a
strong analogy to the situation of the electrons in an atom. There the
strong central Coulomb potential of the nucleus imposes sphericity. As a
consequence, there exist groups of degenerate levels with quite large energy
differences in between the electron shells.
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Figure 2.2. Deviations of nuclear masses from their mean values plotted as a
function of neutron and proton number. (From [MS 66].)

For the nucleons of a nucleus, there exists a priori no such central field.
As we have already discussed in the introduction, however, we can imagine
such a potential as being built up by the action of all the nucleons. (Such
an average potential also exists in the case of the electrons in an atom;
there it makes an extra contribution and has to be added to the nuclear
Coulomb potential. The whole is then well known as the Hartree or
Hartree—Fock potential of the atom.) A model which describes the dynam-
ics of the nucleons only with such an average potential treats the nucleons
as completely independent of one another (the nucleon-nucleon interac-
tion nevertheless comes into it in an indirect way, since it gives rise to the
average potential in the first place). In the following, we will call such a
model the shell model or independent particle model.

In Chapter 5 we will discuss, in great detail, how one can derive the
form of this average field from a microscopic two-body force. In this
chapter, we will assume that we have such a one-body potential which
describes, to a good approximation, the effects of the mutual interaction
between the nucleons, and investigate their consequences.

For further consideration, we have to discuss first the shape of the ad
hoc introduced shell model potential. A nucleon close to the center of the
nucleus will feel the nuclear forces uniformly, that is, there will be no net

force |
(a‘;fr) ) =0 Q.0
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The nuclear binding forces get stronger going from the surface (r= R, t0
the interior of the nucleus:

14
(57). >0 22
Because of the finite range of the nuclear forces, we have:
V(r)=0, r> R, {2.3)

An analytic ansatz which represents these conditions quite well, and also
yields quite reasonable density distributions, is the Fermi function or
Woods- Saxon potential [WS 54] (Fig. 2.3):

-1

,—

Vw‘s'(r)-on{l+cxp( aRo)} (2.4)
with
Ry=rod'"*;  Vy=50[MeV]; a=05[fm]: ry=1.2[fm].

vird
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Figure 2.3. Shape of the Woods—Saxon potential.

(The Woods-Saxon potential actually has a finite but negligible slope at
r=0.) Since the eigenfunctions for this potential cannot be given in closed
form, one often uses the following two approximations for qualitative
considerations, and also for calculations:

(i) harmonic oscillator
2
V(r)-—Vo[l—(RLO) ]-—;—rwg(rz-Rg) (2.5)

(1) square well

+ 00 for r> R,. (2:6)

V(r)= [

Before we discuss the solutions of Eqgs. (2.4), (2.5), and (2.6) in more detail,
we should perhaps note that all three potentials are spherically symmetric.
For the moment, we will restrict our considerations to this case; the
discussion of deformed potentials will be taken up in Section 2.8. Further-
more, it should be pointed out that (2.5) and (2.6) represent somewhat
unphysical potentials, since they are infinite. However as long as we are
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only interested in bound single-particle states, this is not too serious a
drawback, as only the exponential tails of the wave functions are affected.
If one considers excitations in these potentials, however, one easily gets
into regions in which the states in the realistic potential (2.4) would be in
the continuum. The use of infinite potentials in such cases is then to be
considered with extreme care.
After these preliminary remarks. we want to discuss the energy levels
obtained from the solution of the eigenvalue problem
: 2
BT SR OILTOERENG @)
for the case of the potentials (2.5) and (2.6).
As is well known, the harmonic oscillator gives equidistant energy levels

c,,,-mo(~+ %) —v, (2.8)

with
N=2(n=-1)+/, wheren=1,2,..., and /=0, 1,2,.... (2.9)

These levels are D(N )-fold degenerate:
D(N)"-%(N+l)(N+2), (2.10)

where N is the number of quanta in the oscillator, n is the radial quantum
number, / is the angular momentum, and w, is the oscillator frequency.
The oscillator constant w, is usually determined from the mean square
radius of a sphere

A
Wt fenmdozentey @

im

For oscillator states we can calculate {r’),- and get

ey 3
m 2,2 .0 32
7 “olr, z(”‘+2)‘

Together with Eq. (2.10), we find [Mo 57, p. 469]

5(3V" W - §
hwozz(i) —=A4"'2=41.47"7[MeV] (2.12)

mrg

and for the oscillator length

I B S . 41/6

b= — =1.010-4"¢ [fm]. (2.13)
The levels with a definite N we call an oscillator shell. Because of Eq. (2.9),
the oscillator shells only contain either even or odd /-values, that is one
oscillator shell contains only states with the same parity. It aiso follows
from (2.9) that levels with the same N and with different n and / are
degenerate. This accidental degeneracy of the harmonic oscillator is re-
moved in the square-well potential (Fig. 2.4). The true energies lie between
the two limits given by the potentials of Egs. (2.5) and (2.6).
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Figure 2.4, Level scheme of the isotropic harmonic oscillator (Lh.s.) and of the
infinite square well (r.h.s.). (From{MJ 55]).

Filling up the level scheme with nucleons (by analogy with the periodic
system of the atoms), we see that according to the Pauli principle, D(¥)
protons and D(N) neutrons can be put into each oscillator shell. This
means that both potentials reproduce the magic numbers 2, 8, and 20. This
model can therefore account for the unusual stability of 3He,, ;°O4, and
33Ca,. On the other hand, Fig. 2.4 contains no indications for the higher
magic numbers. We will see in the next section how this deficiency of this
simple model can be removed. Later, we will also discuss how the Cou-
lomb interaction of the protons influences the average potential (Sec. 2.5).

2.4 Spin Orbit Coupling

Up to now, we have not taken into account the spin of the nucleons (apart
from a factor of 2 in determining the magic numbers), that is, we consid-
ered the nuclear forces as spin independent. Treating the electrons in



Spin Orbit Coupling 43

atoms relativistically yields a spin dependent force in the form of a spin
orbit coupling

f(r)ts. (2.14)
This gives a splitting of the otherwise degenerate levels with j=/+ 1. In the
nucleus such a splitting has also been [ound experimentally. Scattering of
protons or neutrons on a particles yields for the lowest resonance the
(unbound) ground state of ’Li or *He. According to Fig. 2.4 these lowest
resonances should have the quantum numbers /=1, j=1,4, as the Is-shell
in *He is closed. One observes resonances at 1.25 and 2.4 MeV for the
scattering of neutrons and protons, respectively. At these energies the
angular distributions show that the resonances are predominantly j=2,
whereas the j=1 resonances lie a few MeV higher in energy.

It was a decisive idea (Haxel, Jensen, and Suess [HJS 49); Goeppert-
Mayer [Ma 49]) to incorporate a strong spin orbit term into the single-
particle Hamilton operator of Eq. (2.7). It was only then that the success of
the shell model was confirmed. Mathematically this yields a jj-coupling
scheme, since 1-s commutes with %, E,J?, j but not with /, and s,. The
levels are characterized in this coupling scheme by the quantum numbers
nl, j(ep, (2d3)&(n=2,/=2, j=2+1)), and a single particle wave func-
tion takes the following form®:

1) g <HIASlmy =6, (1) 3 3, L LY (B 0)im).  (215)

With the relations
2ssijmy = (j* — F — &%) |sljm

=[JU+ D=1+ )= ]|slim) (2.16)

we are able to give the spin orbit splitting of the doubly degenerate levels
|slj=1% 1) for f(r)=const.:

AE(NY~[1=(=1~1)]=21+1. (2.17)

An attractive spin orbit potential will assure the experimentally observed
fact that the /+1 levels are energetically always below the /—1 levels.
Equation (2.17) shows furthermore that the splitting increases with growing
values of /.

Inclusion of the spin orbit interaction to the interpolated level scheme of
Fig. 2.4 yields the modified level scheme of Fig. 2.5, The model now
reproduces all magic numbers correctly. The sequence of the levels within
the different shells depends on the choice of f(r).

The value of f(r) which one could derive by analogy with the theory of
clectrons in an atom using a Lorentz invanant treatment of the electro-
magnetic interactions of the nucleons (Thomas term: cf. [MJ 55, p. 60] and
(EG 70, Chap. 8]) turns out to be about an order of magnitude too small

* For calculations one has to pay particular attention to the coupling order of the angular
moments, since a different order introduces a phase which is the source of frequent errors.
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Figare 2.5. Schematic nuclear levels of the shell model with spin orbit term.
(From [M3 55].)

As we will discuss in Chapter 4, the nucleon—nucleon forces exhibit strong
spin orbit parts, and it is thus not very surprising that the average single
particle potential also has a spin orbit part with a strength compatible with
the strong nuclear forces.*

* Recent investigations have shown that one obtains the proper spin orbit term in the

single-particle potential by a relativistic Hartree-Fock treatment of one-boson-exchange-
potentials (Br 78},
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One can show [Ho 75] that f(r) is peaked at the nuclear surface. By
analogy with the electronic case, one quite often chooses f(r) related to the
spin independent part of the average potential in the following way—

- _1. ﬂ . ~ 2
flry=A— =1 A=-05 [fm?] (2.18)
—but also other surface-peaked radial dependences of f(r) can be envis-
aged. It is interesting to note that the use of the Skyrme force (see Chap. 5)
yields a spin orbit dependence for the average potential with f(r)~(1/r).
(dp/ dr), where p is the single particle density. Since V(r) roughly follows
the form of p, this is consistent with Eq. (2.18).

2.5 The Shell Model Approach to the Many-Body Probiem

The single-particle model takes into account the individual nucleons. It
therefore provides a microscopic description of the nucleus. This is cer-
tainly only an approximation of the exact many-body problem. We will
see, however, in the following, that the shell model can be used as a basis
for more elaborate many-body theories, so before we talk about further
details of the model, we want to discuss some general properites of the
single particle model.

The microscopic theory of the nucleus is usually based on the following
three properties.

(i) The nucleus is a quantum mechanical many-body system.
(i) The velocities in the nucleus are small enough so that one can
neglect relativistic effects [(o/c)?~1/10].
(iii) The interaction between the nucleons has a two-body character.

A full microscopic theory of the nucleus would then be given by the
solution of the many-body Schrédinger equation

H\P-[ f; —E%A,+ év(z’,j)]\P(l,...,A)aE\P(I..,..A), (2.19)

oy i<j
where i represents all coordinates of the ith nucleon, for instance,
(D)=(r s, 1), (2.20)

where 7. will be 1 for neutrons and — 3 for protons. With the assumption
of the nuclear shell model, the above equation reduces to the much simpler
equation
A A 2
Hoi'={ Eh;]‘i’- >, [—;—m-A,+ V(i)}\l/-E\P. (2.21)
i=}] iwm]

The solutions ¥ of Eq. (2.21) are anti-symmetrized products of single-
particle functions, which are eigenfunctions to the single-particle Hamilto-



nian A;:

hioy (V)= & (D). (2.22)
The functions ¢, provide an orthogonal basis for an occupation number
representation within the framework of second quantization (see Appendix
C). To each level k corresponds a pair of creation and annihilation
operators a," , a, which create or annihilate particles with wave function
¢, . Since nucleons are Fermions, each level can be occupied only ence,
and the operators a,, a,” obey Fermi commutation relations (C. 23).

‘The shell model Hamiltonian H, has the form

Hy= > qaa,.
Using the bare vacuum |— its eigenfunctions can be represented as
+ +
|¢k,...k,>"ak. '--ak,.l -

They are Slater determinants

¢ (D) o B (4)
Oy, s (L A)=1 (2.23)
¢, (1) i, (4)
with eigenvalues
E, =&+ te¢. (2.24)

In the ground state the levels are filled successively according to their
energy (see Fig. 2.6)

[®P>=al...a] |- (2.25)

Thus we have for closed shells the following unique prescription for the
construction of the A4 particle ground state as well as for the A particle
excitation spectrum: Starting with the (1s, ;) level, one has to occupy each
level |asijm} with just one particle until all 4 particles are used up. We
thus obtain an 4 nucleon ground state where all dilferent quantum states
are occupied with just one particle up to the Fermi level (the highest
occupied level); above the Fermi level all levels are unoccupied.

The independent particle picture of the nucleus is different from that in
an atom in the sense that in a nucleus there are rwo different kinds of
particles, the proton and the neutron, whereas in an atom there is only the

E
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Figure 2.6. Shell model potential and Fermi level.




electron. Protons and neutrons feel different average potentials for two
reasons.

(i) Protons also interact via the Cowlomb force. One therefore usually
adds the potential of a homogeneously charged sphere

) 2
2a6-(R))  r<m
Ve®=y - (2.26)
'—;— r> R.

Sometimes (see Sec. 2.8), this feature is approximated by using
different potential parameters for protons and neutrons.

(ii) The symmetry energy [see Eq. (1.4)] favors a configuration with an
equal number of protons and neutrons. Because of the Coulomb
repulsion for heavier nuclei, one has a neutron excess: If, in the
nucleus, we replace a neutron by a proton, we gain symmetry energy
and lose Coulomb energy. Since the Coulomb energy is already
taken into account by Eq. (2.26), there must be an additional
difference between the single-particle potential for protons and
neutrons, which is caused by the symmetry energy. The nuclear part
of the proton potential is therefore deeper (see Fig. 2.7, dashed line).

These two effects go in opposite directions, but they do not cancel. In the
end, the Fermi surfaces for protons and neutrons must be equal, otherwise
protons would turn into neutrons by S-decay or vice versa, whichever is
energetically favored.

In N+ Z nuclei, energy levels with the same quantum numbers for
protons and neutrons are therefore shifted with respect to one¢ another by
an amount A_ resulting from a positive contribution A from the Coulomb
force and a negative contribution — Ag from the symmetry energy

&) -y =A, = Ac—As. (2.27)
In heavy nuclei, this difference is such that the protons and neutrons at the
Fermi surface belong to different major shells.
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Figure 2.7. Comparison of the shell model potential for neutrons and protons in &
nucleus with neutron excess.
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Strong support of the independent particle idea comes from the experi-
mental fact that magic numbers are the same for protons and neutrons (see
Fig. 2.2, the magic number 126 exists only for neutrons, since for the
heaviest nucleus known so far we only have Z=103). If correlations
played a major role, then, for example, the neutron excess in heavier nuclei
would eventually influence the proton magic numbers in these nuclei (the
nuclear force is almost charge independent; see Chap. 4) to be different
from the corresponding neutron numbers. However, as we have said, this is
not the case. The subshells of a major shell have, in some cases, a different
order.

In the shell model, the excitations of the system are given by analogy with
the free Fermi gas by a transfer of nucleons from below the Fermi level to
levels above it. In the case of only a single nucleon transfer, we talk of an
1p— LA state with excitation energy of ~hw,. For 30Ca,, such a state is, for
example, given by

2sH)7'(173).

The Fermi level coincides in this case with the 14, , level (see Fig. 2.5).
If we use the indices /, j for the levels below the Fermi surface (¢ < ¢,),

and the indices m,n for the levels above the Fermi surface (¢, > ¢,), the

lowest excitations in the shell model are then ph excitations of the form

P> i=ana|P=tatal...q%a,...af|-> (2.28)

with excitation energy ¢,,=¢, —¢,.

In fact one has observed such states in magic nulcei. They are, however,
not the lowest states. As we have already seen in Chapter |, there are
low-lying collective states which cannot be explained in the independent
particle model.

The Slater determinants (2.23) form a complete set of states for the A4
nulceon system [L6 S5]. Each state of the system is characterized by the
distribution of the nucleons among the levels of the single particle poten-
tial, that is, by the “occupation numbers™ of the levels. [t is usual to
classify all excited states by taking the ground state as a reference state.
The nucleons that are missing in the ground state are denoted by holes,
those above the Fermi levels by particles. A typical multiparticle-multihole
configuration is shown in Fig. 2.8

Starting from a magic nucleus with the mass number 4, we can add a
particle and obtain a nucleus with the mass number 4 4+ 1. If we put the

N\
N

Figure 2.8. Schematic representation of a typical five-particle (crosses), five-hole
(open circles) state.
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particle into the level m, the wavefunction is

0,0 = a2 180> (2.29)
and we get the energy difference
€, =E_(A+1)—=EyA). (2.30)

In this way one is able to measure the single-particle energies (see Sec. 2.7).
These are the simplest states in 4 + 1 nuclei. More compljcated states have
a 2p— 1A structure, and so on. [n complete analogy, there are |A, lp—2A,
etc., states in 4 — | nuclei.
1t often turms out to be very convenient to define quasiparticles by the
operators
ay =a}, a,=d,. fore, > €p;

m m

.31

a*=a, a,=a, for ¢ < ¢,.

1

These quasiparticles are again fermions. They are particles for states
above, and holes for states below, the Fermi surface, so that we have

@, | P> =0, (2.32)

that is, the ground state of the magic nucleus is a “vacuum” with respect to
these quasi-particles; ph states are two-quasi-particle states, and so on. The

multi-quasi-particle states
1Dy, x> = s - [ o> (2.33)

form a complete orthogonal set in the many-body Hilbert space.
This basis is often used for further investigation of the many-body
Hamiltonian H (2.19). In the shell model, one decomposes H,

Hw=T+ > o(i, jy= Hy+ Vg, (2.34)
) I<y
with the residual interaction
Ve= 3 o(i, j)= 2 V() (235)
i<y i

in such a way that V¥, is as small as possible and can be neglected. More
elaborate theories investigate ¥, in the basis in which X, is diagonal, the
shell model basis (see Chap. 8).

The exact ground state wave function of a magic nucleus has the form

1¥o) = Col®od + X Coittma” (B + 4 3 Criri @ e a [Bpd 4 -+
mi mi
my
(2.36)
If the shell model is a good approximation to the nucleus, the coefficients
Cuiv Coumr» €tc. should be small (see Fig. 10.3).

At this point we would hke to again stress the fact that we have always
been talking about a spherical shell model potential. Since, as we shall see,
spherical nuclei exist only in the neighborhood of magic nuciei, by the
same token this means that we have restricted our discussion to such
nuclei. As this spherical average potential is created by the nucleons
themselves, it may depend (though not abruptly) on the nucleon number A4
in quite a subtle way, in contrast to the atomic case. [t is such that we
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cannot take a once-and-for-all fixed single-particle potential and hope to
find the corresponding single-particle states realized very accurately, be it
even over a very limited range of neighboring nuclei.

We should keep these precautions in mind when talking about the shell
model. As we said, the filling of the shells is without ambiguity, if we have
closed shells. When we start filling neutrons and protons in unfilled shells
these states will be degenerate, because the j-shells have a (2/+ 1)-fold
degeneracy. The configuration of the nucleus can then be characterized by
two numbers, x and A, which stand for the proton and neutron numbers,
respectively, in the partially filled j-shell. Let the partially filled neutron
shell be characterized by the quantum numbers (n / /), and the partially
filled proton shell by (n’ {’ j*). One then denotes the configuration by

(omljy (a1
Because of the 2+ 1-fold degeneracy of each j-shell, all possible shell
model states corresponding to this configuration are also degenerate. The
number of antisymmetric, linearly independent products is given by the
product of the binomial coefficients

(2j+|)(2j'+l)' (2.37)
K A
The degeneracy of all these states will, of course, be removed in reality due
to the action of the residual interaction V, (2.35), which is neglected in the
shell model. Taking one of the phenomenological nucleon-nucleon forces,
as discussed in Chapter 4, one can diagonalize ¥V, in the subspace (2.37).
Usually one takes not only this subspace into account, but also the one
which corresponds to the nearly degenerate levels of a whole major shell.
The s, 3, ds /2, dy, levels of the s—d shell is such a case, covering nuclei
from '®O up to “Ca. One can easily be convinced that the dimension of
the matrices to be diagonalized becomes exceedingly large for more than
two particles in open shells. Special procedures have been developed to
diagonalize such huge matrices [Wh 72, SZ 72, WWC 77].

To reduce the size of these matrices, symmetries such as isospin or
angular momentum (see Sec. 2.6) can be of great help (see, for instance,
[FHM 69, WMH 71, HMW 71, GED 71, VGB 72, Wi 76]).

2.6 Symmetry Properties

2.6.1 Translational Symmetry

For any solution of the eigenvalue problem (2.19) we must require that a
series of symmetry or invariance properties are fulfilled. Among these are,
for example, translational and rotational invariance.* In the shell model

* Besides these exact symmetries, in some regions of the periodic table one often zlso has
approximate symmetries, as, for instance, the isospin (see Sec. 2.6.3), which can be used for a
classification of spectra (see [He 73a)).
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one of these invariances is always violated: the rranslational invariance.
This comes from the fact that we have to fix the potential in space in
contradiction to the homogeneity of space. The most serious consequence
of this violation is the appearance of spurious states in the excitation
spectrum of the system. This occurs because we have introduced redun-
dant degrees of freedom. If we fix the nucleus in space, it has only 34 =3
spatial degrees of freedom left. The shell model, however, contains 34
variables. These spurious states are therefore not true excitations of the
system, but correspond to motions of the nucleus as a whole. Almost all
approximation schemes in nuclear physics have inherent symmetry viola-
tons. In Chapter 11 we will, therefore, show in fair detail how such
violations can be removed.

2.6.2 Rotational Symmetry

The spherical shell model Hamiltonian H, (Is term included) conserves
rotational symmetry. Therelore, it is possible to construct eigenstates of the
total angular momentum

A 4
J= > and J =3 O (2.38)
i ] 1m |
by a linear combination of the Slater determinants (2.23). The closed shell
ground state is not degenerate; the only nondegenerate angular momen-
lum eigenslate has /=0, which is therefore identified with the ground state.
This consequence is experimentally confirmed with no exception. [t is then
clear that, having only one nucleon outside closed shells, the ground state
angular momentum of such even-odd nuclei will correspond to the j-value
of the odd nucleon, The same, of course, is true if there is one nucleon
missing (a hole) in a filled shell. This rule is also experimentally confirmed
with only very few exceptions.

If we fill (remove) more than one particle into (from) an unfilled (filled)
J-level, the situation gets more complicaled, because different I-values will
be degenerate. Again, we can remove this degeneracy by diagonalizing the
residual interaction. The matrices are now much smaller as we get one for
each 7 value.

The constsuction of eigenfunctions of J? will be shown explicitly for a very
simple example (for more complicated situations, see [ST 63]). Suppose that in a
J-shell there are only two protons, the configuration of which is then (=)?. Out of
the degenerate two-particle states (which we want to denote by |m,;m,;), m being
the magnetic quantum number), we construct, according to the rules of angular
momenlum coupling, an eigenstate |/M) of J? and J, with

FPe(,+L) (2.39)
We obtain
[IM > = -vé_u S Gl e helmyma). (2.40)

mymy
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Using the symmetry properties of the Clebsch~Gordan coefficients, (see [Ed 57,
Eg. (3.5.19)]), we have with proper normalization

(IM = # m%(c;, L et VL 4 L) immy (2.41)
which, upon noting the antisymmetry |m,m,) = —|m,m;>yields
|IM) = _‘é__ _5_‘_,‘1 Ch, 4y W1+ (=YY Ymymy). (2.42)

We see from Eq. (2.42) that |IM ) is only different from zero for
2j—J/+1=2n or I=m2n; n=0,12.., (2.43)

that is , for even angular momenta. Taking as a definite example j=3/2, we see
that the six independent components

lmem) @3 - DR =D =D =D -4-D

have been transformed by a unitary transformation to the six angular momentum
coupled components, which are degenerate among themselves:

|1M>:100), (225, 213, [20), ]2 1D, [2-2).
In the general case these considerations are a little tedious. In Table 2.1 the
possible total angular momenta for & pure proton configuration are presented.

The factor 1/y2 in Eq. (2.40) is a normalization in the case in which both
particles are in the same shell. In general, we have for the coupling of two particles:

1 )
2' CJM £! '.lila:;}na:ljn’ (244)

(959n'rr) s ™
Mo v a8,

Special care has to be applied in coupling hole states. The operator ag,,
ransforms like the eigenfunction ¢y, that is cogredient, under a rotation of the
coordinate system and therefore like a spherical tensor of rank j (i.e., with D/ .;
se¢c Appendix A). On the other hand, the annihilation operator 4, transforms
with D/, that is, contragredient. The normal coupling rules (2.44) apply only for
tensors, which are both cogredient or both contragredient. We can therefore only
couple a.,, with the time reversed operator (see [Me 61]),

G = T T * -(_)’*f""aﬁ",, (2.45)
which is, of course, cogredient. The ph coupling rule is therefore
(a:&’an’!"f)l”' Z (_)I-H'Cd{ —f’ :lant}mafl:fn'v (2.46)

where we have left out the unimportant phase (- Y *°.

From pure angular momentum coupling one cannot as yet decide which
of the degenerate states corresponds to the ground state. For that we have,
as we have said, to diagonalize ¥, in a certain subspace. This confirms, in
general, the experimentally observed rule that even—even groundstates
have /=0.

Another experimentally found coupling rule which the pure shell model
cannot explain without configuration mixing is the fact that even odd
nuclei far from closed shells have ground state spins equal to the j-value of
the odd particle. We will see in Chapter 6 how this finds a natural
explanation by taking correlations of the nucleons into account.
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Table 2.1 List of possible total angular momenta / for the configuration (/)"
([MJ 535, p. 64)
—

J=1

o 2
J™3

~o

LV S

D WA e

3 (twice), 1,8, 2.4

0( wwc), 2 (lwice), 3, 4 (3 times), 5, 6 (3 times), 7, 8 (twice), 9, 10, 12
4 § (twice),§ (twice).2 (3 times). ¥ (twice), & (twice), i (1wice),

u (twwe),*i a

P N N
~
....“u..

j=%
14
2 0,2,4,6,8,10
3 1,413 (twice) Y (twice), Y 4 (twice).§ ‘Lz’ A8 »252
4 0 (twice), 2 (3 times), 3,4 (4 urnes), 5 (twice), 6 (4 times), 8 (4 times),

9 (twice), 10 (3 times), 11, 12 (twice), 13, 14, 16

5 1.1 (twice).? (3 times).} (4 times),? (4 times), it (5 times), 4 (4 times),
1 (5 times), 4’ (4 times), ¥ (4 times), & (3 times), & (3 umes). & (1wice),
¥ (wice). ¥ .3 %

6 0 (3 times), 2 (4 times), 3 (3 limes), 4 (6 times), 5 (3 times), 6 (7 times),
7 (4 times), 8 (6 tumes), 9 (4 times), 10 (5 times), 11 (twice), 12 (4 times),
13 (twice), 14 (twice), 15, 16, 18

2.6.3 The Isotopic Spin

Up to now we have always considered the neutrons and protons sepa-
rately. As a consequence we bave, for example, in Eq. (2.23), a product of
two Slater determinants—one for protons and one for neutrons. Apart
from their electromagnetic interactions, protons and neutrons have practi-
cally the same physical properties. We will see, for instance, in Chapter 4,
that nuclear forces are to a large extent independent of whether we
consider protons or neutrons—that is, they are charge independent. As
long as the influence of the Coulomb force on the nuclear properties can
be neglected, we can consider the proton and the neutron as just two
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different manifestations of the same particle: the nucleon. Mathematically
we say that the nucleon can be in two different states, the basis vectors of
which may be written as « =(?) and » = ({), thus forming a two-dimensional
space. This then is very similar to what we have in the spin case. Instead of
a quantum number indicating whether the nucleon spin is up or down, we
now have an additional quantum number, indicating whether the nucleon
is a proton or a neutron, called the isotopic spin because of its formal
analogy to ordinary spin.* With this additional quantum number we can
write the nuclear shell model wave function as a single determinant.
However one should realize that, contrary to the ordinary spin, the isospin
has nothing to do with rotations in the coordinate space. Therefore, the
treatment of isopsin is much simpler than that of ordinary spin which,
unlike the isospin, has to be coupled to the orbital angular momentum.

As in the case of ordinary spin, one can set up the usual spin algebra:

typmiv, (2.47)
with

ST aa

The lowering and raising operators {_ and 7, change the neutron into a
proton and vice versa, respectively,

{_yv=q, t y=mQ,
t.w=0. t,7=p, (2.49)
with
(0 l), _(0 0)
', (0 o =( ) (2.50)

Like ordinary spin, the isospin vector operator is formed out of its three
cartesian components

t={1,15,45). (2.51)
We can therefore define the total isospin of a system of A nucleons
Tm ‘Z‘,lt"" (2.52)
-
and its 3-component
Tym= é 5, (2.53)

i)
Since we have the same algebra for isotopic spin as for ordinary spin, the
same coupling rules can be applied.

The 3-component of the total tsospin is & measure of the total neutron

* The concept of isospin was introduced onginally by Heisenberg {He 32]. Later on it was
much developed by Wigner [Wi 37}
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excess of the nucleus:
T,‘F(l...A)-{—i—im-§+§+§--- +4)¥(1...4)
= (N Z)¥(1...4). (2.54)

The eigenvalue is therefore equal to half the neutron excess. For systems
where T commutes with the nuclear Hamiltonian, the eigenvalue T
corresponding to T? can take on the values

HH<T<%. (2.55)

Each nuclear state then has a good total isospin quantum number T as
long as Coulomb forces, which do not commute with T2, can be neglected.

As a simple example, we will show how to atlribute total isotopic spin to
certain nuclear states. For the three isobar nuclei

Bes By
the 3-component of the total isospin is, according to Eq. (2.54),
T =-1, Ti®=0, TO=| (2.56)

The total i1sospin can therefore be either T= 1 or T=0 [Eq. (2.55)].

In the first case we speak of an isospin triplet, states of which should be
found in all three nuclei at the same energy (slight differences will
nevertheless occur because of the Coulomb energy): the second case is an
isospin singlet, which can only be attributed to boron. In Fig. 2.9 we show
the low-lying states of the three isobars and their identification with isospin
quantum numbers.

—_z: ---- __2'- """ r T=1
L T:0
0‘_____[______1. T=1
Oge — e 1e0
B
‘)l-] T!IO I]l!

Figure 2.9. Isospin triplets and singlets in the excitation spectrum of isobars.

From these considerations it may seem that the concept of isospin can only be
applied to light nuclei, where the Coulomb energy is negligible. However it turns
out in Aeavy muclei also, that the low-lying states have almost good isospin. This can
be understood qualitatively using the following arguments.

We first consider a pure shell mode]l and assume that the wave functions for
protons and neutrons with the same quantum numbers are identical, that is that the
proton and the neutron wells are identical to within a constant shift A, (2.27). This
is a rather good approximation for the bound states.

In Fig, 2.10 we have side by side the levels with the same quantum numbers.
This is a bit misleading for energy arguments, but useful in the following discus-
sion.
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Flgure 2.10. Schematic representation of shell model configurations.

From Fig. 2.10a we see¢ that a shell model state where ail occupied proton levels
are also occupied by neutrons has 7= T, because operating with 7, =3, 1) onto
this state gives 0, that is, this state has the maximal value of T, for a fixed value of
T. This shows in particular that the shell model ground state for ¥= Z nuclei has
T=0.

For non-magic heavy nuclei the shell model ground state is certainly not a good
approximation to the exact ground state. There are admixtures of 1p-1h, 2p-2h
states. As we will show in Chapter 5, the construction of a self-consistent,
one-particle potential assures that there are no 1p-14 admixtures. Since the shell
model potential is a good approximation to such a potential, we neglect these
contributions here and argue about 2p-2A4 admixtures. Furthermore, we assume
that A,2rAwg, which is the case for heavy nuclei like 2®Pb, and neglect 2p-24h
configurations with an unperturbed energy larger than 2Aw,. As we see from Fig.
2.10b, ¢, d there are three types of configurations. Only type b contains configura-
tions which violate the isospin, namely, those where the proton particle sits in the
same level as the neutron hole. The ratio of the number of these configurations to
the number of all configurations of type b is 1/(N¥N~Z), where (N—2Z) is the
neutron excess. 1f we make the statistical assumption that all these configurations
are admixed with the same weight, we find that the isospin impurity in the ground
state of heavy nuclei is roughly 1 /(N — Z). Similar considerations apply for excited
states, and we find that heavy nuclei with large neutron excesses have rather pure
isospin. This result has also been found in more detailed investigations [LS 62, SK
65, KW 69, So 69, LM 74].

2.7 Comparison with Experiment
2.7.1 Experimental Evidence for Single-Particle (Hole) States

Besides the success of the shell model as an explanation of the magic
numbers and angular momenta of the ground state, one would like to have
direct experimental evidence for the nuclear shells. It turns out that direct
stripping [e.g., (d, p)} and pickup (p, d) reactions, as well as direct (p, 2p)
and (e, ¢'p) reactions, are well suited for this purpose. For example, a
direct (p,2p) process is ideally one where the energy of the incoming
proton is so high that it interacts only once with another proton in the
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E'p

E%p”
Figure 2.11. Schematic representation of the (p, 2p) reaction,

nucleus, both protons leaving the nucleus without further interactions (Fig.

2.11).
Suppose that the knocked-oul nucleon has been in a shell model state

(Fig. 2.12). For its binding energy we have
Eym=E-E'-E".

The cross section according to the shell model should have, as a function
of the energy, resonances only at discrete values of Eg.

In reality, these resonances are broadened because of the influence of
the residual interaction, as shown in Fig. 2.13 for the experimental cross
section of '®O (p,2p) ’N. Nevertheless, one can clearly identify the

E |
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Figure 2.12, (p, 2p) reaction in Lhe shell model.
qi tpd)  (1pd)
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Figure 2.13. Experimental 'O (p, 2p) N cross section [MHT 58],
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(wls, ;) level and the spin orbit split levels (z1p, ;) and (71p, ;). Theoreti-
cal calculations for these reactions have been done by R. Lipperheide et al.
[FLW 75].

In a similar manner, one can use stripping or pickup reactions like (d, p)
and (p,d) to create neutron particle or neutron hole states, but the
kinematical analysis has to be corrected [or the binding of the deuteron. A
nice example for neutron particle states in °Pb obtained with a (d, p)
stripping reaction is presented in Fig. 2.14. It should be compared with
Fig. 2.15, where experimentally determined proton and neutron single-
particle energies for *®Pb are shown in comparison with calculated levels,
using a Woods-Saxon potential [BW 60].
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f‘onge 2.18. Comparison of experimental and calculated single-particle levels in
Pb.

One can show (see, for instance, [GL 70, Au 70, Ho 71b, EW 72]) that
the absolute values of the cross sections of these reactions are proportional
to the so-called spectroscopic factor

Sy = |<‘]’A+||ak+|‘!'4>lz» (2.57)

where |¥ ), |¥,,,» are the exact wave functions of the initial and final
nucleus, and k stands for the quantum numbers of the observed single-
particle state. If for the wave functions we use the pure shell model
approximation, the spectroscopic factor is clearly equal to one.* However,
if the wave functions contain admixtures of more complicated particle and
hole configurations, which are introduced by the diagonalization of the
residual interaction (2.35), the spectroscopic factor differs from one. There-
fore, it is a measure of the purity of the single-particle states. The
spectroscopic factors of the levels shown in Fig. 2.14 are in the range
0.8-0.9 (see, for instance, [RW 73].

"ﬂxi’s slatement applies only for pure product states without angular momentum coupling.

With angular momentum coupling, the different levels with different m values are partially
[illed and one has to ke mto account the Pauli principle.
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2.7.2 Electromagnetic Moments and Transitions

Other important quantities ready for comparison with experiments are the
electromagnetic moments and transition probabilities in odd mass nuclei.
In a first approximation, onc assumes that they are described by one
external particle sitling on an inert core with even mass:

P> = ap D), (2.58)

where 4} creates a particle in the level m and |®,) represents the wave
function of the core (2.25).

The electromagnetic multipole operators le and M (as defined in
Appendix B), are one-particle operators. As shown in Appcndlx C, they
can be represented as

Q= 2, Qk,k,a:,ak, (2.59)

kiky
in the shell model basis. Using the Fermi commutation relations (C.23) for
the operators a,,a;" and the fact that the levels m, m’ are empty in the core

(%) = a,,{ @) = 0), we get
<¢m|Q|¢m'> = <¢o| Q |¢o>8m' + Qm.m (260)

The picture becomes especially simple if we assume that the core is a
closed shell nucleus. In this case, all the electromagnetic matrix elements of
the core (/=0) vanish. The single-particle states are characterized by the
quantum numbers |k > =|nlim> and the electromagentic properties can
be calculated from the matrix elements

Qu={nljm|Q |n'I'f' m", (2.61)
which are given in Eqs. (B.81) and (B.82) of Appendix B.

For instance, we get the clectromagnetic moments [(B.31) and (B.32)] as
expectation values in the states |nljm=;> and the electromagnetic transi-
tion probabilities (B.72) from the reduced matrix elements of these opera-
tors.

Special care has to be taken in the case of single hole states (one particle
less than a closed shell). As we have seen, they can be described in the

same simple way as the single-particle states. Their wave function can be
expressed by analogy with Eq. (2.58):

|® > = a,|Dy>. (2.62)
where |®,> is again the wave function of the core and g, annihilates a
particle in a level i occupied in |®,). By analogy with (2.60), we get

(B,]019,>=<(P| 0108, — Q. (2.63)

Smce the electromagnetic multipole operators are self-adjoint in the sense
of [Ed 57, Eq. (5.5.2)), the difference between (2.63) and (2.60) does not
enter into the electromagnetic transition probabilities. However, in the case
of electromagnetic moments, one has to take care of the sign in (2.63) and
an additional phase. Since one is interested in the expectation value of a
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state with angular momentum quantum numbers j, m=j, one has to create
a hole in the level | jm= — 5 which is proportional to the time-reversed
level T|jm=j> [Eq. (2.45)). Together with the minus sign in Eq. (2.63), one
finds that hole states have the same magnetic moments as the correspond-
ing particle states (the magnetic multipole operators are lime odd), whereas
the electric multipole moments of particle and hole states have different
signs (the electric multipole operators are time even).

One example is the magnetic dipole moment (B.31)

=l iG> = A <l M, (2.64)

where the magnetic vector g is given by
=y {g'1+g's), (2:65)
where u, = eh/2mc is the nuclear magneton and g’ and g* are the gyro-
magnetic rations for orbital angular momentum and spin (g'=I. £2F=135.586

for protons and g’'=0, g’ = — 3.826 for neutrons).
The magnetic moment u can easily be calculated with the projection
theorem for vector operators A, ' '

ALY
> <ﬂ—-—!|!m - (2.66)
JjG+1
which can be derived from the Wigner—Eckart theorem [Ed 57, Eq. (5.4.1)).
Applying it to the yector u, we get
|

mlAljm"5 = jmll} jm

- N T x ..
w7 <alg i+ gsllp
1 . o
= 37T [£'GUHD+HIE+ D=+ GG+ N+ 1= 10+1Y)].
(2.67)
For j=/* 1 we get
g'U-D+ig’ j=i+3
e T _ g for _ . (2.68)
[zi:’(ﬂr‘%)—%g]———j+l j=1-1

The functions p())/uy for j=/=1/2 are called Schmidt lines (Figs. 2.16
and 2.17) (j can only take on discrete values u(/)/py, though it is shown
here as a continuous function of j). The experimental values are given for
comparison.

If the theory were exact, all u-values would lie on the Schmidt lines and
all orbital angular momenta /= j+ 1 would be determined. The experimen-
tal values, almost without exception, lie in between the two lines, most of
them being grouped closer to one of the two lines. The /-values determined
in this way almost always agree with those predicted by the shell model.
The shell model should work best near magic numbers. Indeed, one finds
close agreement, for example, for >N, "0, ¥*K, *'K, and 2’Pb. The
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agreement is also not too bad for many nuclei far from closed shells. One
can qualitatively understand this, because the magnetic moment in time-
reversed levels is always of opposite sign. Since, as we shall see in Chapter
6, Lime-reversed levels are always occupied pair-wise, the most important
contribution comes from the last odd particle. This is, however, only a

:

Figure 2.16. Magnetic moments for Z-odd nuclei as a function of angular
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Figure 2.17. Magnetic moments of N-odd nuclei as a function of angular momen-
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qualitative argument and one also finds many deviations, especially for
heavier nuclei, even in cases of rather pure one-particle or one-hole
configurations.

There are two main reasons for these deviations:

(i) As we see in Appendix B, we have used the g-factors of bare
nucleons in the calculation of the magnetic multipole operators.

Within the nucleus however, there exist pionic currents between the
nucleons that change these values, and effective g-factors, g, should
be used.

(ii) The core usually does not stay inert in an external electromagnetic
field. This can excite virtual vibrations which interact with the
external particle. This effect is called a polarization of the core. To a
large extent, it can be taken into account again by effective g-values.
We will see in Section 9.3 how this polarization effect can be
calculated microscopically.

The most important magnetic transitions are M1-transitions. In the pure
single-particle model, the Ml-operator (2.65) commutes with 2. This
means that Ml-transitions between levels with different /-quantum num-
bers are forbidden (/-forbidden transitions). In fact, such transitions are
observed experimentally, but with a very small BM1-value. They cannot be
understood by using only effective g-values, because one does not change
the selection rules in this case. This clearly shows that mesonic effects (i)
and polarizations (ii) produce not only vector components ~I and ~s, but
also more complicated effects. The simplest one is a “tensor component”

Sp=rxrl[ ¥;8],15. (2.69)

By adjusting the constant « in a reasonable way, one is able to describe
these /-forbidden transitions quantitatively (see [BM 69, WB 69, and BSK
73D.

Let us come now to the electric properties. There are two important
differences to the magnetic case:

(1) The electric operators are time-even, There are no cancellations of
the contributions of time-reversed levels, but on the contrary they
add up. This means that one cannot expect that the spherical
single-particle model works outside the region of closed shells.

(1) Since one can, in the long wavelength limit, (see Appendix B)
neglect the contributions of currents to the electric multipole opera-
tors, we can use the conservauion law for the electric charge and
show that exchange effects do not play any role in the electric
multipole operators. This means that apart from polarization effects,
we can use the bare electric charge (Sieger? theorem [Si 37)).

By analogy with the magnetic moment, one obtains for the electric
quadrupole moment (B.81) of a single-particle state [EL 57, p. 255]

-1
2j+2°

161r

0= ALY = = e¢rt> 2 (2.70)
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where {r?) is the average square radius of a particle in the state |aljm). For
j>1/2, the quadrupole moments turn out to be negative, that is, the
probability distribution looks like a pancake in Lhe plane perpendicular to
the z-axis. For holes we have the opposite (i.e., prolate probability distribu-
tions). In Fig. 2.18, we see that this picture is qualitatively right in the
neighborhood of magic numbers. However, as one fills the next shell with
more and more nucleons, we soon find experimentally a transition to
positive quadrupole moments with very large values. We shall see in the
next chapter that in this case the average field of the nucleons is no longer
spherical and we obtain a deformed density distribution. Only at the end
of the shell, when nearly all levels are occupied, does one again get the
picture of one or a few holes in a spherical core.

Even for one-particle or one-hole states with a magic core, this picture
only gives qualitative agreement, Quantitatively, the measured quadrupole
moments for proton states are roughly a factor of two larger than one
would expect from (2.70) and values for neutron states do not vanish as
they should according to Eq. (2.70), but behave as if the neutron had a
‘charge. One usually expresses this fact by an effective charge e"". These
effective charges can be explained by the polarization effect (see Sec. 9.3).
Experimentally, it is observed that e®'=1 for neutrons and e“"=2 for
protons.

The electric transitions behave very much like the corresponding mo-
ments. Only for the single-particle and single-hole nuclei near closed shells
do they have values predicted by the single-particle shell model, with
roughly the same effective charge as determined from the quadrupole
moments.

Levels with high angular momenta near closed shell nuclei are often a
mixture of only very few configurations (often there is only one configura-
tion possible in a wide energy range). Sometimes—because of the selection
rules of spin and parity—they can decay only by radiation with a high
multipolarity. From Appendix B we learn that such transitions are highly
suppressed because of kinematical factors. We therefore expect a very long
lifetime for such nuclei. In fact, quite a few such “isomeric” slates have
been found in spherical nuclei (islands of isomers; see also Sec. 3.4.7).

2.8 Deformed Shell Model
2.8.1 Experimental Evidence

The assumption of approximately independent motion of nucleons in an
average field is the basis of the shell model and of all microscopic theories
of finite nuclei. This container potential is produced by the nucleons
themselves and their mutual interaction. In Chapter 5 we shall see how to
calculate this average potential. In its most simple form the potential well
is spherical. This is true for nuclei with closed or nearly closed shells and,
as we have seen in the last section, for such nuclei the spherical shell model
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is very successful. Far from closed shells—that is, for mass numbers 4 =25
(Al, Mg), 150< 4 <190 (nuclei of the rare earths) and for 4 >220 (the
actinides)—the independent particle picture again works quite well. How-
ever, in these regions one has to assume a deformed single particle
potential. [Ra 50, 76, Bo 51].

The assumption of a deformation is able to explain many experimental
facts, of which the most important are:

)

(i

(i)

)

)

\2)

The existence of rotational bands. In the mass regions mentioned
above, the nuclear excitation spectra show pronounced rotational
bands with an 7(f+ 1) spectrum, as in Eq. (1.64) (see, for instance,
[BM 75]). As discussed in Chapter 1.5, such collective rotational
bands are closely related to stable nuclear deformations.

Very large quadrupole moments. We have already seen in Section
2.7 that the sphencal single-particle mode] with an inert core is by
no means able to explain the large quadrupole moments in the
regions far from closed shells (Fig. 2.18). This experimental fact is a
hint about stable nuclear deformations, where the core also contrib-
utes to the quadrupole moment. Using the Bohr model [Eq. (1.75)]
we can determine from the experimental (spectroscopic) quadrupole
moment Q an intrinsic value @,, and derive a deformation parame-
ter B [Eqs. (1.13) and (1.72)]. The “experimental” values of S,
determined in this way, are for axial symmetric nuclei (y=0) in the
rare earth region around

B~=02-03. (2.71)

The sign is positive. This means that we have cigar-shaped or
prolate deformations. In other regions (for instance, A ~25, A ~150
or A~185-190) there also exist pancake-shaped or oblate nuclei.
Whether there also exist triaxial nuclei is still open to question (see
Secs. 1.5.3 and 3.3.3).

Strongly enhanced quadrupole transition probabilities. In the rota-
tional model, the quadrupole transition probabilities are directly
connected to the intrinsic quadrupole moment Q, [see Eq. (1.73)].
The strongly enhanced BE2-values within the rotational bands are,
therefore, another indication of stable quadrupole deformations.
Hexadecupole matrix elements. In (a, a’) scattering [HGH 68] and
Coulomb excitation, extremely large hexadecupole matrix elements
have been found. This is a hint about stable hexadecupole deforma-
tions B,. They are positive (diamond shaped figures; see Fig. 1.3) at
the beginning, go to zero in the middle, and turn slightly negative at
the end of the rare earth region.

Single particle structure. A very sensitive experimental test for the
deformation comes about from the experimentally observed single-
particle energies, which depend very much on the details of the
deformation (see Fig. 2.21).

Fission lsomers. In some of the heaviest nuclei are found long
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lived states (shape isomers 751 msec) that have extremely large
deformations ( ~0.6) [PDK 62, St 66, Va 77]. The corresponding
rolational specira have been measured [SWK 72, Sp 74] and we can
deduce the corresponding moments of inertia. [t is clear that such
large deformations play an important role in nuclear fission, and
the deformed shell model will therefore also be of importance for
this process.

Microscopic Hartree-Fock calculations in this region result in a de-
formed average potential and are indeed able to explain quantitatively. the
experimental findings (see Chap. 7). Conceptually, the deformed shell
model is more involved than the spherical one, since in the formulation of
the former we have to accept another symmetry violation—that of rota-
tional invariance.

2.8.2 General Deformed Potential

If we accept the arguments given in Section 2.8.1 about stable nuclear
deformation, we are naturally led to the assumption that the average
nuclear potential is also deformed. Since the nuclear forces have a small
range (~1 fm) compared to the nuclear diameter, one expects that the
shape of this potential will be similar to the shape of the nuclear density
distribution (which can be determined at least in principle from experimen-
tal data, e.g.. the quadrupole or higher multipole moments). As we have
already seen in the case of the sphencal shell model, the Woods-Saxon
potential (Eq. (2.4)) represents quite a good average potential. It is thus
natural to generalize it to the deformed case® [FS 66, DPP 69, GPA 71]

r—R‘(8,¢)) -
a(8.¢) '

In the spherical case, the parameter a describes the surface diffuseness and
is approximately constant over all spherical nuclei, and therefore does not
depend on the curvature of the surface. To get such a constant surface
diffuseness for deformed nuclei also, one has to allow for a small depen-
dence of a(#8, ¢) on the angles 8, ¢ (for more details, see [BM 75] and [BDJ
72)).

As we have seen in Section 2.4, the spin orbit term plays a very
important role for the explanation of the level structure of spherical nuclei.
In the deformed region, we also have to take it into account and a
straightforward generalization of Eq. (2.18) is given by

Vis=AMVV(r.8.¢)Ap)s. (2.73)
This definition coincides with the one for the spherical case.

V(r.8,¢)=— Vo[ 1+ exp( (2.72)

*For single-particle energies and wave functions of rare earth nuclei in a deformed
Woods- Saxon potential, see [GIS 73]
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As in the case of the spherical Woods-Saxon potential, another useful
approximation to the general potential (2.72) and (2.73) is the harmonic
oscillator, which has then, of course, 1o be deformed. This study, which we
shall discuss now, was orginally carried out by §. G. Nilsson [Ni 55].

2.8.3 The Anisotropic Harmonic Oscillator

If we suppose for the moment that the density of a deformed nucleus can
be ideally represented by an ellipsoidal distribution, then it follows from
what has been said above that the average potential should also be
ellipsoidal. In the harmonic oscillator approximation to the potential
(2.72), this is most easily achieved by using the anisotropic harmonic
oscillator as average field:

ho= ~ 2—A+ w(wzx’+wb'2+w z%). (2.74)

The three frequencies w,,w,,w, have to be chosen proportional to the
inverse of the half axes a,,a,.q, of the ellipsoid:
. Ro
o=dy—",  (r=x,2). (2.75)

The condition for volume conservation is, therefore,

W, 6, W, = COonsl. = 9 (2.76)

The Hamiltonian (2.74) is separable in x, y, z. The eigenstates are charac-
terized by the quantum numbers n,, n,.n,, and the eigenvalues are:
eo(ner 1y 1) =hw, (0, + 1) +ha (n,+ %)+ hew,(n,+ 1), (2.77)

In the case of axially symmetric shapes, one usually chooses the z-axis as
symmetry axis and introduces a deformation parameter § by the following
definition:

wl =wlmwl=:w}(8)(1+46),

¥

w?=:wd(8)(1 - $5) (2.78)
where § is the only deformation parameter in this case, since wy(8) is

determined in such a way that volume conservation is guaranteed. Up to
quadratic terms in §, we get from Eq. (2.76),

w8 )= (1 +36?). (2.79)
Nilsson therefore introduced a deformation-dependent oscillator length
b(8)=(A/ mwy(8))'/* and dimensionless coordinates r =r/b. In these co-
ordinates the Hamiltonian (2.74) has the form

ho(8)-=huo(8)(— FA+ 22— 3 \/";” 8r2Y (0", & )) (2.80)
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The equipotential surfaces are ellipsoids. In first order in the deformation §
they can be represented by Eq. (1.7).

Fe(1+ BY (8, &), (2.81)

ﬁ-%w/_'gi B4 - =10576+ . (2.82)

The deformation parameter 8 of Eq. (2.78) is therefore roughly equal to 8
[Eq. (1.13)].

In the case of axial symmetry, it is convenient to use cylinder coordi-
nates [Fl 71]. The ecigenstates are characterized by quantum numbers n,,
n,, m;, where m, is the projection of the orbital angular momentum on to
the symmetry axis. With

with

N=n+2n,+m=n+n+n,, (2.83)
we get from Eq. (2.77)
co(n,,np,m,)=hw‘(n‘+%)+hml_(2np+ m;+ 1) (2.84)
. 3 N
'Zfrwo{(N-l- 5)4-8(?—"!)}. (285)

The axial symmetry causes m, to be a good quantum number. The same is
true for the spin component s, and the z-component j, of the total angular
momentum, which has the eigenvalue

Qum+meam=+1. (2.86)

1t is usual to characterize the eigenstates of A, in the cylindrical basis by
the set of “Nilsson” quantum numbers

Qnf Nn,m,], (2.87)

where « is the parity of the states [w=(— 1)/ =(—1)"; see Eq. (2.9)]
To discuss the level structure for a definite example, we use N =3. From
Eq. (2.85), we obtain in this case

' (mm, Y= 3 A+ g (1 = ). (2.88)

Table 2.2 Construction of the Nilsson quantum numbers

for Nm3
n, m n, a degeneracy
1 1 1/2 3/2
0 i 1/2
‘ 2 0 /2 5/2 3-fold
2 1 0 1/2 3/2 2-fold
3 0 0 1/2 I-fold
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Using Eqs. (2.83) and (2.86), we get the following possjbilities for the
different quantum numbers, which are displayed in Table 2.2.

According to Egs. (2.85) and (2.88), the levels with different values of n,
are split for small deformations proportionally to 8. This is shown in Fig.
2.19.

elngnpm

\ -
= n, =2
\ni:-3

>
)

Figure 2.19. Levels of the anisotropic harmonic oscillator as a function of 4.

2.8.4 Nilsson Hamiltonian

As we have seen in Sec. 2.3, the pure harmonic oscillator has two essential
drawbacks concerning the agreement with experimental single-particle

spectra:

(i) A strong spin orbit term must be added in order to reproduce the
right magic numbers

(ii) For heavy nuclei, the realistic average potential is rather flat in the
interior of the nucleus. Compared to the harmonic oscillator, nucle-
ons at the surface (i.e., nucleons with higher /-values) feel a deeper
potential in the realistic case.

In order to include these effects, Nilsson [Ni 55] added two terms to the
deformed harmonic oscillator (2.74) and (2.80) and used the Hamiltonian:

2
hm= -;—mA+ %wi(xz-ﬁ-_yz)-ﬁ- -’2%3;% Cls+ DP? (2.89)
=hwo(8)( — a4+ «%r’z - ﬁr-lym) — khag(s+pP).  (2.90)

The constants C and D are given in the form:
Com —2Migx, D= —Mogxp, 291)
where C gives the strength of the spin orbit force and D-P shifts the levels

with higher /-values downward (Fig. 2.20; notice that different g-values are
taken for different shells, as explained below).
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Figwre 2.20. Comparison of experimentally determined level scheme [K1 52] with
calculations [Ni 55] using the Nilsson Hamiltonian for zero deformation.
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In the original version, Nilsson used the term D-I*: Later on one
observed that for states with large N quantum numbers, the corresponding
shift is too strong and the following replacement was made [GLN 67]

D-(B=(P,), (292)

where (1%), = 1- N(N +3) is the expectation value of §? averaged over one
major shell with quantum number N. In this case, only the states within
the shells are shifted. The center of gravity between different major shells
remains unaffected.

Of course, the I-s and the I* term are no longer diagonal in the
representation 5, n, my, nor in the representation n,, n,, n,. The only quan-
tum numbers that remain conserved are the parity = and the eigenvalue 2
of j,. In fact, it is easily shown that k& of Eq. (2.90) does not commute with
J?; therefore the Slater determinant for a deformed shell model has no
good guantum number for the total angular momentum. This means that
the picture of a deformed nucleus, that is, a deformed shell model, is
inevitably linked to the abandonment of rotational invariance. In nature,
however, rotational invariance is never violated and one should therefore,
at least in principle, re-establish this invariance before drawing any conclu-
sions. How this can be done will be shown in Sec. 11.4. Approximate
treatments of these so-called projection methods show that the main
features of the deformed shell model are correct.

For large deformations, the Is and I? terms in Eq. (2.90) can be neglected
in comparison with 8Y,,. In this limit, the quantum numbers (2.87) of the
anisotropic harmonic oscillator become good quantum numbers. They are
then also termed asymptrotic quantum numbers.

In order to obtain the eigenvalues of the Nilsson Hamiltonian as a
function of §, it must be diagonalized in a suitable basis. The isotropic or
anisotropic harmonic oscillator [BP 71] can be used as a basis set. In his
onginal paper, Nilsson [Ni 55] worked in a spherical basis. In this case, the
12 and Is terms are diagonal and only the term 8Y,, mixes states with the
same principal quantum number ¥ (AN =0) with those with AN =2 By
using stretched coordinates Nilsson could show [Ni 55] that the AN=2
admixtures are only of higher order in the deformation parameter and can
therefore be neglected to a good approximation. The deformation parame-
ters in the stretched coordinates are usually called ¢,. Because of the Is and
12 terms, the levels with the same n, in Fig. 2.19 split up and oaly the
degeneracy * 1l is conserved. Nevertheless, the levels with the same n, are,
in the asymptotic region, nearly parallel. This effect can be seen in the
so-called Nilsson diagram of Fig. 2.21a, for instance, for the levels with
N=3. In Figs. 2.21b and 2.21¢ the Nilsson diagrams for higher shells are
given for ncutrons and protons, respectively. Again, we can see that levels
with the same n, are parallel in the asymptotic region. For the correct
attribution of the n, quantum number, one should also notice that accord-
ing to Eq. (2.85), levels with higher (lower) n, values are lower than those
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Figure 2.21a. Level scheme of the Nilsson Model for light nuclei. The figure
shows the single-particle energies e [the eigenvalues of the Nilsson Hamiltonian
(2.90)] in units of the oscillator energy Awol€) at the corresponding deformations
e=¢, (stretched coordinate; see text). The full lines correspond to levels with
positive parity, the dashed lines to those with negative parity. The numbers on the
lines correspond to the quantum numbers N, n,, m,, €. Also indicated are the magic
numbers in the spherical case and for finite deformations. (We are grateful to Dr.
S. Aberg for the preparation ol the figure.)

with lower (higher) n,-values for positive (negative) §. Knowing ¥. n,, and
{Q one can also determine the m, value, and hence the complete set of
asymptotic quantum numbers, from tables analogous to Table 2.2.

The Nilsson Hamiltonian (2.90) contains no Coulomb term. The effect
of that term is incorporated into an appropriate choice of the constants x
and u. They are actually fitted such that the observed levels in deformed
nuclei are reproduced. The spherical single-particle energies that one
obtains with these parameters agree qualitatively with the single-particle or
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single-hole spectra of near magic nuclei. However, sometimes there are
quantitative discrepancies. For a discussion of this point, see [RL 76].

To get a good fit, different values of x and u for different shells are used.
In his original paper, Nilsson used x=0.05 for all shells and u=0 for
N=0,1,2; pm035for ¥=3; u=045 for n=4,5,6; and p=0.4 for Nm7.
Later these parameters were more carefully adjusted. Table 2.3 gives values
that are now widely used. There the same values of u and x are used for all
the shells, but they depend on the nucleus (N, Z) one is interested in.

Table 2.3 Parameters of the Nilsson Hamil-
tonian (from [GLN 67])

Region X B
N,Z<50 0.08 0
50<Z<82 0.0637 0.60
82« N<126 0.0637 042
82< 2 0.0577 0.65
I126< N 0.0635 0.325

There are many characteristic features in the Nilsson diagram, some of
which we want to mention here (however, for a more complete discussion,
we refer the reader to Nilsson’s original paper [Ni 55]):

(1) The shells which are determined by the single particle angular
momentum j at zero deformation, split up into (2j+1)/2 levels for
59 0. Each of these is twofold degenerate with eigenvalues +Q
(A, j,]=0) and can therefore be characterized by [Q2| and its panty.
The quantum numbers [ Nn, m,] are not conserved for small deforma-
tions, nevertheless they are used to classify the levels.

(i) The quadrupole field r?Y,, causes the levels with lower § values to
be shifted downwards for positive deformations (prolate shapes)
and to be shifted upwards for negative deformations (oblate
shapes). One can understand this effect, realizing that the states
with low Q-values have a relatively higher probability of being close
to the z-axis. This corresponds to a positive quadrupole moment
{r'*Y,,>. Because of the minus sign in Eq. (2.90), their energy is
shifted downwards. The nucleons with a prolate density distribution
{¢,(r)}? lie deeper in the deformed well.

(iti) For larger deformations, it can happen that the levels change their
slope, for example, there are two 1 /2-states in the N =] shell. This
results from the interaction of two levels with the same quantum
numbers {l7 coming from different j-shells. As a rule, levels of this
kind can never cross (Neamann-Wigner no crossing rule; Fig. 2.22)
[NW 29, LL 59. Vol. 3, Chap. 11; HW 53].

The repulsion Ae at the crossing point is proportional to the
interaction strength. Properties of the levels become interchanged at
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Figure 2.22. No crossing rule for two levels with the same symmetry.

the crossing point and the wave functions corresponding to the two
levels far from the crossing point are the same as if there had been
no interaction at all.

[f one diagonalizes the Nilsson Hamiltonian using the basis [N/
of the isotropic harmonic oscillator, the Nilsson wave functions are
given by a superposition of sphenical harmonic oscillator functions:

(k> 2 D_la), (2.93)
where
a={NIjRl}.

For small values of 8, there is only small mixing, that ig, one of
the coefficients D,, is nearly equal to one, and the others are close
to zero. For larger deformations, the situation depends very much
on the specific levels. For example, the lg; , state in Fig. 2.21¢
splits up into five levels @=1/2,...,9/2. Since for §=0 the g, ,, is
rather far away from the other levels with the same N (it is lowered
by the spin orbit term), there is only a small amount of mixing, and
the corresponding levels are almost eigenstates of j?, even for quite
large values of 8. The same effect is even more pronounced for
heavier nuclei. For instance, the i;;,, state is of this type and plays
an important role in the rare earth region and contains almost no
mixing for relevant deformation values.

The slope of the Nilsson levels ¢ [measured in unils of Awy(€)] is
given by the single-particle matrix element of the quadrupole opera-
tor ¢ =r"tY,, in the corresponding single-particle state |k

de,

—_— - — 12 Y.
B k| rY otk

To prove this relation, we use the fact that the eigenvalues
&= Ck|h( B=0)— Bglk>

of the diagonalization problem (2.90) are stationary with respect to
small variations of the functions [k} (see Sect. 5.2), that is, » '

8<k|h( B=0)|k> — B 8kiglk>=0. ‘
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We thus obtain

de,
—(i-~9'~<klh(ﬁ~0)lk>—ﬁj%

dg  dp Ck|glk)—<kigiky =0—Ck|gqlk).

2.8.5 Quantum Numbers of the Ground State in Odd Nuclei

The spherical shell model fails in its prediction for the angular momenta
and parities of the ground state for nuclei in the deformed region. How-
ever, the Nilsson model is able to explain the experimental data in the
following way [MN 59].

For a specific nucleus, one determines the deformation parameter §
from the measured quadrupole moment Q,, as discussed in Section 2.8.].
For this value of 8 one successively fills two protons and two neutrons in
each leve] starting from the bottom. Because of the degeneracy of each
Niisson level (= Q), every nucleon pair has, qualitatively speaking, spin
zero. Therefore spin and parity of odd nucleons are determined by the last
odd nucleon. Since © i1s not a directly measurable quantity, we must
determine it indirectly by using a model. We will see in Section 3.3.1.1 that
the appropriate concept here is the particle-plus-rotor model. There it will
turn out that the angular momentum /, of the band head of a rotational
band coincides with @ (/,=£2). The lowest band head is, therefore, the
ground state spin of the odd nucleus. Often in the region of the experimen-
lally determined value of § several possibilities for the Q of the last particle
exist. In fact, the observed value of the ground state spin for many
deformed nuclei is among the possible 2 values indicated in Table 2.4. In
Fig. 2.23 this method is explained for '3;W .. The other possible Q values

Table 2.4 Comparison of theoretically and experimentally determined ground state
spins [He 61, p. 648]

3 ’oM Ioup s ’onno ’ou.p

oEu'®' | 0.16 1 3/2%,5/2%, | /2 1 Gdd® | 031 |5/2%,3/2° 1 3/2
1/2-

oEu® 1030 |5/2*%,3/2" | 5/2 | Gdi" (031 [3/27.5/2* 3/2

TH'® | 031 [3/72%.5/2% | 3/2 | Dy$! [03115/2~
oHo'® 1030 [ 7727, 172% | 772 | Bl |029f1/27.7/2%. 11727 | 12
oTm'® 028 11/2%,7/2- | 172 |volll 1028 |7/2%. 17271172 | 1)2

Lot | 028 [ 7/72%.5/2¢ | 7/2 | voill | 029 | 5/2- 5/2
»Ta™ 023 | s/2*.772¢ | 172 | ut'E |o26 | 7/2- 1/2
sRe'® | 019 |9/2-,(8/2%) ] 572 | HE'DR | 027 |9/2* 9/2

sReW (009 [9/2-.(5/2%) | 572 [ WIS |e21 [1/2-.7/27,3/2 | 172
nlr®t 1014 [3/2%,1/2%, | 3/2 | O] | 0.18 | 1/27.3/27.9/2" | I)2
11/2°
nlr”’ 0.12 | 3/2%.1/2*, 3/2 Os},': 018 |V /27.3/27,11/2*%. ] 3/2
1172 (8/27)
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Figure 223. Determination of the ground state spin in the Nilsson model.
(From[He 61, p. 647])

are usually seen in the spectra as band heads of excited rotational bands,
which is a nice success of the Nilsson model. Single-particle energies in this
scheme can be found in [Ch 66, BR 71a, OWP 71, GIS 73, GSK 75, CAF
77].

2.8.6 Calculation of Deformation Energies

In order to obtain the ground state energy of the nucleus in the (spherical
or deformed) shell model, we cannot simply sum the single-particle ener-
gies from the bottom of the potential up to the Fermi level, because the
effect of the nucleon-nucleon interaction would be counted twice (see also
Sec. 5.3). To account for this, we proceed with the following qualitative
considerations.

We assume that the average potential which is felt by the ¢th nucleon is
given by the sum of all two-body potentials acting on this particle:

Vi= 2 Cij - (2.94)

i
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The Hamilton operator

A
He= Y 1+43> o, (2.95)
im i J
w{i
is then given by
A A
H=} 2 h+{2 1t  h=i+¥, (2.96)

o | i ]

If ¥, bas the form of a harmonic oscillator, we have, because of the virial
theorem [Da 65a, Chap. II},

= (Vi=3<h) (2.97)

and we get as the ground state energy

A A
15},(8)-(H>--}{§_‘,l DOLF: “21 (). (2.98)
- =
In practice we determine the equilibrium deformation §,, in calculating £,
as a function of §; the absolute minimum then determines §.. This
procedure does not, of course, include any residual interaction and, in fact,
fails to reproduce the absolute value of the binding energies. Only the
resulting equilibrium deformations are approximately right (see Fig. 2.24).
Further investigations on these lines (BS 61, Sz 61, So 67, and GLN 67]
bave taken into account the following additional points.

(1) A residual interaction of the pairing type (see Chap. 6)
(1) The expeclation value of the Coulomb force

2
Ecou=( 3 =7~ KhooAn 3 (F=<Pp)), (299)
prot 1"/ f prot
1 T T
X
' _
WG -
Os

o exp deforrmations of even A nicler
X oxp detorrmatons of odd A nucie

Gl - -
— ol detormgtlions of odd A nucles
[ -
1 ] } | | ] | |
K0 B0 70 180 B0 A

Figure 2.24. Comparison of theoretically and experimentally determined deforma-
tions. (From [MN 55].)
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where Ap=p, . ~ p,,, corrects for the Coulomb effect already
taken into account by the difference between the proton and
neutron parameters p. It turns out that the effect of the Coulomb
repulsion Favors larger deformations. whereas the effect of the
pairing correlations is the converse. On the whole, the results of the
old Nilsson model are reproduced, because Coulomb and pairing
forces counteract one another at the equilibrium point.

() Higher shapes. 1t 13 evident that quadrupole deformations alone are
not able to describe for instance the fission process. On the cther
hand, there exists evidence for hexadecupole deformations in the
ground state of some nuclei [HGH 68]. It is possible to describe
such effects within the Nilsson model by including, besides Y,
higher terms such as Y,, and Y [NTS 69, M6 72, MN 73, RNS
78].

For the fission process it is often useful to introduce deformed potentials
that allow us to describe two separated fragments at large distances. In
contrast to the Nilsson model, such potentials have the nght asymptotic
behavior. Several versions of such potentials have been used:

(1) Two-center models [DR 66, HMG 69, ADD 70, GMG 71, SGM 71,
MG 72, MMS 73], which are based on two oscillators with sepa-
rated centers.

(i1) The Folded Yukawa Potential [Ni 69, BEN 72, Ni 72, MN 73] which
starts with a density of sharp surface but arbitrary shape. To get the
corresponding potential, 1t is folded with a short-range Yukawa
force.

(i) Generalized Wood-Saxon potentials with a deformation-dependent
surface thickness [DPP 69, BDJ 72, Pa 73, BLP 74, JH 77].

The method of simply summing up the single-particle energies fails to
reproduce the absolute binding energies and to describe the energy surface
at very large distortions. The reason for this i1s that the binding energy is a
bulk property. In fact, rather small shifts in the single-particle energies
produce large errors in the binding energy. To get the proper values for the
binding energy together with shell effects, we must use a combination of
the liquid drop and the shell model, as proposed by Strutinski (see Sec.
2.9). Calculations within this method show that the pure shell model as
described in this chapter allows us to determine only ground state defor-
mations.

The fact that the absolute energy minimum occurs at finite values of §
for nuclei between closed shells, can be understood qualitatively by consid-
ering the level density as a function of deformation. It turns out that for
quite general average potentials the level density develops shell effects for
certain definite values of the deformation; that 1s, at these deformations
the levels are not randomly distnbuted as a first glance on the Nilsson



82 The Shell Model

Solkride Rotio of axes, c/a N

B

&

Energy [units aof ﬁuo(d]

P

&

£ . 3 i 1 1 1 . L } P I
a5 B3 Q4 % oT) 0
Deformation ¢

Figure 2.25. Energy levels of an harmonic-oscillator potential for prolate spheroi-
dal deformations ¢. (From [MN 73].)

diagram would indicate, but are, for instance, grouped in bunches at larger
deformations.® This is shown in Fig. (2.25) for the harmonic oscillator.

If one plots the energy as a function of the deformation, one finds that
whenever the Fermi level is situated in a low density region, the nucleus is
more bound, whereas it 15 less bound when the Fermi level is in a high
density region. This, in turn, means that the occupied levels are, on the
average, more bound if the Fermi level is in a low density region than if it
is in a high density region. Since for nuclei between closed shells the Fermi
level for 8=0 is in a region of high level density, it becomes qualitatively
understandable that these nuclel want to deform into a region where the
Fermi energy is in a lower level density region. From this it also becomes
clear that in any nucleus more than one minimum, as a function of
deformation, can eventually develop. As we discussed in Section 2.8.2, in
very heavy nuclei we find second minima at about §2=0.6, somewhat

*One can understand from semiclassical arguments, at which deformations such shell
closures bave 1o occur {BM 75, St 75b, SM 76, SMO 77].
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;

Figure 2.26. Schematic variation of the energy with deformation for a nucleus
with a second minimum. The dashed line corresponds to the liquid drop barrier.

higher than the first minimum, which gives rise to the so-called shape
isomeric states [St 66]. Qualitatively, the energy as a function of deforma-
tion is shown in Fig. 2.26.

2.9 Shell Corrections to the Liquid Drop Model and the
Strutinski Method

2.9.1 Introduction

Up to now we have studied two quite different descriptions of the atomic
nucleus. The liguid drop mode!/ (LDM) assumes that the nucleons produce a
spatially uniform density distribution in the nucleus with a sharp edge at
the surface. It is able to reproduce the overall features of the nucleus, that
is, most properties that depend only in a smooth way on the nucleon
number, as, for example, in Chapter 1, the A dependence of the nuclear
binding energy (Fig. 1.2). On the other hand, there is the shell model. It
assumes a quantized independent particle motion in an average potential
to be valid, and we have seen in Section 2.3 and 2.8 that this model
reproduces nicely those particular nuclear properties in which only the
nucleons in the vicinity of the Fermi surface are involved.
Phenomenological shell models (in contrast to Hartree-Fock calcula-
tions; see Chap. 5), however, fail to correctly reproduce properties of the
nucleus in which a// nucleons contribute (the so-called bulk properties),
like, for instance, the total binding energy. Strutinski [St 67, 68} invented a
very elegant method® to reconcile both phenomenological descriptions of
the nucleus which eliminates their defects but keeps their qualities. This 1s
the Strutinski shell correction procedure. 1t is able to reproduce not only the

* [nvestigations on & similar line have been carried out by Myers and Swiatecki [MS 66}
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experimental ground state energies of nuclei, but also their dependence on
deformation parameters. This method was used extensively for the calcula-
tion of energy surfaces in the fission process.

2.9.2 Basic Ideas of the Strutinski Averaging Method

As we discussed in Chapter 1, the nuclear binding energies £ as a function
of A have a smooth part E| ,,, well represented by the Bethe-Weizicker
mass formula (1.4) (Fig. 1.2) and, in addition, an oscillatory part £
defined by

E=E_+Eou- (2.100)

Similar oscillations would occur if we could calculate the exact energy of
the many-body system as a function of the deformation and compare it
with the corresponding LDM value. These oscillations are due to the
occurrence of shell closures, that is, they have maxima at the magic
numbers, as we mentioned at the beginning of Section 2.2 (Fig. 2.2).
Therefore, their origin is entirely of a quantum mechanical nature. As a
matter of fact, if we calculate the binding energies in the shell model [for
example, in the Nilsson model; see Eq. (2.90)], one finds such oscillations.
Only the corresponding average part is wrong. Furthermore, as we ex-
plained at the end of the last chapter, these oscillations are due to a
grouping of levels into bunches—the shells. In fact, it is clear that for a
smooth distribution of levels, the binding energy per particle depends in a
smooth way on the position of the Fermi level, whereas for a shell-like
distribution of the levels there is also an oscillatory behavior superimposed
on top of it. We demonstrate this in Fig, 2.27, where we compare two such
level densities whose average densities are equal.

1

L

(a} (b)

Figure 2.27. Comparison of an equally spaced level density to a schematic shell
model level density. For the Fermi level (1), the binding in (b) is stronger than in
{a), whereas for (2) the opposile is true.

We see that if the Fermi level is situated just above a shell we get more
binding than on the average, whereas if it is placed just below we get less
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binding than on the average. This picture is certainly very schematic, since,
for example, the real average level density is not a constant; this however,
is a smooth effect and should not influence the previous conclusions. The
binding energies corresponding to the shell distribution (b) oscillate around
the ones given by the “average™ level density (a). Therefore, the average
level density is responsible for the average behavior of the binding ener-
gies. It is this average part which has the wrong value in the phenomeno-
logical shell model. It was the decisive idea of Strutinski to calculate only
the fluctuating part £, of the total energy E in Eq. (2.100) within the shell
model and to take the rest, £y, from the liquid drop model. This
procedure contains the assumption that the fluctating part £ is well
approximated by the fluctuating part of the shell model energy. At the end
of this chapter we will discuss the way we can justify this assumption.
There then remains only the problem of how to divide up the shell model
energy into an oscillating part, E__, and a smoothly varying part, E, .

A
En=3 ¢=E, +E,. (2.101)
iw |
[Expression (2.101) does not take into account any effect coming from the
two-body interaction as, for example, in Eq. (2.98). We will see that in the
end this is of no importance.]

The decomposition (2.101) is a problem which has to be solved com-
pletely within the shell model. Therefore, it is useful to introduce the
concept of the level density g(¢) by delining g(e)-de as the number of
levels in the energy interval between ¢ and ¢+ de. In the shell model the
level density is given by

gle)= zﬁ(c—c,). (2.102)
If we know g(¢), we can calculate the particle number
A
a=[" gl (2.103)
- o0

with a properly chosen Fermi energy A.

In the shell model, A is not defined uniquely by Eq. (2.103). It can be
arbitrarily chosen to be between the last filled and the first unfilled level.
For the shell model energy, we get

E,= f :otg(() de. (2.104)

The shell model levels are grouped into bunches with an average distance
of Mwy~41A~'> (MeV) [see Eq. (2.12)]. Therefore, the level density g
shows oscillations with roughly this frequency.

Since, as we have seen in Fig. 2.27, the fluctuations in the shell model
energy E,, are due to these oscillations, it is obvious that we can calculate
the smooth part £ in Eq. (2.101) by introducing a continuous function
£(¢), which represents the smooth part of the level density g(e). It should
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have the mean functional behavior of g, but must not contain oscillations
with a frequency =~~Aw,. In a real nucleus the level density is by far more
complex than in our simple picture of Fig. 2.27. Its increase, for instance,
with increasing energy is in general nonlinear and certainly far from being
a constant. Therefore, one has to give a well-defined mathematical pre-
scription of how one can extract from a given level density its mean part.
This will be explained in the next section. For the moment, we shall
assume that we are given the average part g(e) of the shell model level
density g(¢). Then we can again calculate a corresponding Fermi energy A
by the condition

a=| Aw 7€) de. (2.105)

Since g is continuous, X is well defined by this implicit equation and is
usually different from A. For the smooth part of the energy we finally get

. R
E,= f €3 (¢) de. (2.106)
The total energy E of the system is therefore given by
EmE o+ Eqe=Epu+En— Ey,- (2.107)

As we have seen in Chapter 1, stable liquid drops are always spherical.
Because of the additional term £ ., it can happen that in some region of
the periodic table the *'Strutinski averaged energy” (2.107) has its mini-
mum at finite values of the deformation. However, before we go on to the
general discussion of the Strutinski method, let us show how one can
define appropriately the average part of the level density.

2.9.3 Determination of the Average Level Density

In this section we have to deal with the problem of how to define in an
appropriate mathematical way an average level density, if we are given a
shell model density in an infinite three-dimensional well (the restriction to
infinite potentials is not essential and the following considerations can be
generalized for finite potentials [SI 75]).

o0

8= 3 8(c=¢) (2.108)
The difficulty comes from the fact that for a three-dimensional potential
the level density increases with energy in a nonlincar way. This rise,
however, does not go smoothly, but the levels are grouped in bunches
roughly Aw, aparl. If we imagine, for convenience of presentation, the level
density smeared out with a2 Gaussian of width «Aw,, then we get, schemat-
ically, the picture in Fig. 2.28. In which way, then, can the average part,
and the oscillating part of such a density distribution, be separated?



Shell Corrections 1o the Liquid Drop Model and the Strutinski Method 87

>

Figure 228. Schemalic representalion of the level density in an infinile three-
dimensional potential.

As usual, we will think of the average density as given by a folding
procedure

® €€,

g(e )f( ; )d( , (2.109)
and as a straightforward possiblity we could think of f as being a Gaussian
with y=~hw,. However, this is not sufficient, because an approprate
averaging procedure should leave the averaged level density g(e) un-
changed if averaged again with the same procedure, that is,

=1 [Ty ) a .10

For f a Gaussian and g not a constant, condition (2.110) is clearly not
fulfilled. In general, it will be difficult to do this for a given g exactly, and
it is not our intention to fulfill Eq. (2.110) for an arbitrary g, since then f
would have to be a §-function. Equation (2.110) will only be required to be
fulfilled for smooth functions g. Since the essential contributions to the
integral (2.110) come from the vicinity of the point ¢’ = ¢, we suppose that
£(¢) can be represented locally by a polynomial of degree 2M (usually
2M =2,4,0r 6). The condition (2.110) can then be fulfilled if one con-
structs f in the following way:

f(x)= P(x)w(x), @2.111)
where P(x) is an even polynomial of degree 2M and w(x) is a weighting
function like a Gaussian or a Lorentzian, for example.

We can check that Eq. (2.110) is satisfied in this approximation by [AS
65])

go=2/"

A
P(x)= 2 0,,(x)Q,,(0). (2.112)

n={}
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where the set of orthogonal polynomials Q. (x) is determined by the
condition

L Zw(x)Q..(x)Q,,,(x) dx=8__.. 2.113)
If we take for w a Gaussian
W(X)-'Jl‘,—‘-x" (2.114)

then P(x) is given by a generalized Laguerre Polynomial [AS 65, Chap. 22}

P(x)= % (21"-(2n)!)"-H2,(x)H2,(0)-Lg,/z(xz), (2.115)
Aw(

where H,,(x) are the Hermite Polynomials. Thus we have explicitly
constructed an averaging function f satisfying condition (2.110) for g(e)
which is locally approximated by a polynomial of degree 2Af. For practical
applications, we give the coefficients of the polynomials L,’/’(x’) for
M=0,24 6 (Table 2.5):

4
LA (x)= 3 a,x™ (2.116)

A=(

Table 2.5 Coefficients of the four lowest Laguerre Polynomials

M dq a; O4 Qy
0 1 — — —
I 1/2 - — _
2 15/8 -5/2 1/2 -
3 35/16 ~35/8 7/4 ~1/6

There remains now the question of how to determine the precise values
of ¥ and M. In general, the results will depend on these parameters. Since
we want to take out of g(e) the oscillation with the approximate frequency
huw,, our method will only be meaningful if we can find a certain interval
of reasonable y-values (y=~1-1.5 Aw,) and corresponding M-values within
which this dependence is practically negligible. We can say, then, that our
results are independent of the averaging procedure (as should of course be
the case). More precisely, this means that the averaged energy must show a
“plateau” as a function of y for fixed M within which the “plateau
condition” [BP 73]

dE,,
3y =-( (2.117)
is valid. Certainly for an arbitrary distribution of single-particle levels there
will be no such plateau. But for the physically interesting distributions
there always exists a certain bunching of levels with a frequency of roughly
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Awy,, sO that we can expect that there is a plateau. (In practical calculations
with finite potentials of the Woods--Saxon type, there are sometimes
difficulties in finding a plateau. However, special methods have been
developed to deal with such problems {BP 73, SI 75]).

In Chapter 13, we will show that there is a close connection between the
Strutinski smoothing procedure and the semiclassical (Thomas-Fermi)
method. This is not surprising, since it is known from the Thomas—Fermi
theory of atoms that this method gives the relevant average quantities. We
therefore urge the reader to consult Chapter 13 for a deeper understanding
of this subject.

2.9.4 Strutinski’s Shell Correction Energy

Having defined y and the averaging function f(x), we get the smooth level
density from Eqgs. (2.108) and (2.109).

-~y l ('—ci
O= > — fl— 2.118
£(¢) E . f( . ) (2.118)
and the smooth part of the ground state energy in the shell model:
- A
E,m f (e de. (2.119)
—
The chemical potential A is determined by the condition (2.105)
A= f=72 f" f(x)dx; 1, - ”s . (2.120)
: i v =00 Y

The 7, can be considered as generalized occupation numbers. Therefore,
for fixed A, Eq. (2.120) allows the determination of A through an iteration
procedure. [t is convenient to rearrange Eq. (2.119) a little:

Egp=>¢i+F, 2.121)
where F is then given by

F-=2f (L 2 Jdemr D [ sy @)

With this equation and Eq. (2.121), we get for the plateau condition (2.117)

%ET'—E“"* F+72—-—t,f(t,)

Lo, 5.8
F+Aav > A
=lriil4=1F (2.123)
Y ay Y
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The last equality follows because the particle number 4 is a constant.
Therefore, we find that the plateau condition (2.117) is equivalent to the
vanishing of F.
Introducing the shell model occupation numbers
n=0 for ¢> e

n=1 for ¢<e¢. (2.124)

we find for the total shell correction:
E = 2 ¢(n— )= 2 ¢ 8n,. (2.125)
i 7

Figure 2.29 shows the quantities 8n, for the actual case of a deformed
Woods-Saxon potential and a Gaussian average with M =2 and a width of
v=6.6 MeV.

8n. T ] T Y I T T
'} WOODS - SAXON POTENTIAL Z =94

Q5 |- =148 (hsQ. a=0) -

o-.,,_l?_u,‘fﬂrﬂ A = =

-05 7 —
I ] I 1 ! 1
-0 -5 0 E(Mev)

Figure 2.29. Deviations from the shell model occupation numbers resulting from
a Strutinski averaging procedure for a Woods-Saxon potential. (From [BP 73])

It is important to notice that the quantities 7; are not actually occupation
probabilities, as they can in fact have negative values. On the other hand,
the 5i; behave like real occupation numbers and they indicate, for instance,
how far we have to smear out the sharp Fermi surface of the shell model to
get the smooth part of the ground state energy.

Having calculated the values 8n, we are able to calculate the shell
corrections to the density in configuration space [Di 71}:

A
B0, ) = X 9,(F)0 () O, (2.126)
t
This expression allows the calculation of averaged expectation values for
all single-particle operators.

To give a definite example we will present the results of such a Strutinski
calculation for the harmonic oscillator, which is naturally an over-idealized
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Figure 2.30. Shell correction energy for the harmonic oscillator as a function of y
and M. (From [BP 73].)

system, but which has the advantage of being rather instructive. In Fig,.
2.30. the shell correction E_ is shown calculated with a Gaussian weight-
ing as a function of y and M. We see that for M >2 a well pronounced
plateau develops at E,, = — 891 MeV.

It can also be shown that a plateau develops at precisely the same energy
if we had taken w=1/2cosh’x instead of a Gaussian for the weight
function.

From the behavior of the values §n, shown in Fig. 2.29 we conclude that
only the shells in the neighborhood of the Fermi surface are important for
the calculation of the shell correction. It is therefore usually sufficient to
include three major shells in the averaging procedure. Only energies in the
neighborhood of the Fermi surface are described well by the shell model,
and it is exactly these which go into the shell corrected liquid drop energy.
This is quite gratifying, since the phenomenological models are adjusted so
as to reproduce the single-particle levels close to the Fermi level.

For the sake of completeness we have to mention that pairing correla-
tions play an important role in heavy nuclei. They are usually treated in
the BCS-model (sce Chaps. 6 and 7). Since they are closely connected with
the level density at the Fermi surface, one also observes oscillations in the
pairing energy P. The liquid drop energy is adjusted to experimental
masses. Therefore, it already contains the smooth part of the exact pairing
energy, and we have to add only the oscillating part P__. It is obtained
uging the same philosphy as the difference between the pairing energy Py
in the BSC-model and its smooth part Py. The total energy then has the
form

EmE ot En— En+ Pocs— Pacs. (2.127)
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The smooth part of the pairing energy Pucs can be calculated with similar
methods as presented here. For details the reader is referred to the
literature (BDJ 72]. Another way 1o obtain the average properties for
pairing correlations would be the extension of the Thomas—-Fermi method
to superfluid systems (see Sec. 13.2.6)

2.9.5 Shell Corrections and the Hartree-Fock Method

As we will explain in Chapter S, there exists & theory which allows one to calculate
the shell model potential microscopically. This theory is the Hartree—-Fock method
and its generalizations [HFB; see Chapter 7). Modern calculations of this Lype give
quite good and detailed agreement of the binding energies over the whole mass
region, indicating that in those calculations the bulk properties are also well
described. Nevertheless, one can still try to separate the smooth part and the
oscillating part of the quantities calculated in this theory. The smnooth part should
correspond exactly to the liquid drop results, and it has been shown that this is in
fact the case [BQ 75a. b]. As an example, Fig. 2.31 shows the deformation energy of
the nucleus '*YD as a function of the quadrupole moment Q.

-1310 r T ] T T T T r

MoV} |- Skyrme IlI —Eu 168Yb

-1320

-1330

| | | | | l 1 1

Figure 231. Deformation energies of the nucleus '*YDb calculated wnth the force
Skyrme [Il (se¢c Chap. 4). Eyyp is the exact HF-emergy, £ the corresponding
averaged part [Eq. (2.132)] and E | p,, 15 the liquid drop cnergy on the same path in
the deformation coordinales Q; (quadrupole moment) and Q, (hexadecupole
moment). (From {BQ 75b).)

To show that the Strutinski procedure based on a shell model potential gives, to
a high degree of accuracy, the same results as a complicated Hartree—-Fock
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calculation, we now have only to prove that the oscillating part of the ground state
energy in the Hartree—Fock theory is actually the same as the one derived in Eq.
(2.125) from & shell model calculation. This we will do in the following, and we
advise the reader who is not familiar with Hartree—-Fock theory to return to the
following somewhat subtle considerations after having progressed lo the micro-
scopic theories and, in particular, after having studied Chapter 5.
The Hartree—Fock ground state energy is, in a representation-independent way,
given by® [see Eq. (5.28)]:
EOHF -Tr(!p) + ,LTI'| Tr| pt_:p. (2 128)

where p it the seif-consisient single-particle density and Hw 4+ ¥ is the tolal
Hamiltonian of the system with ¢ and V the kineltic and potential energies,
respectively. The Hartree-Fock part 4" of (he Hamiltonian is a one-particle
operator, and is defined by

ANF =+ Tr, 8p. (2.129)
Now we can divide the density of p in thé sense of Strulinski (Sec. 2.9.3) into a
smooth and an oscillating part:
p=p+8p. (2.130)
where 8p is defined by analogy with Eq. (2.126) for HF-single-particle energies.
Inserting this into Eq. (2.128) and collecting terms of different order in §p, we
get

EF'Fm E4Tr A 8p+0(8p%). (2.131)
where
E=Tr(15)+ {Tr, Tr, p&p (2.132)
and
MMF =+ Tr E5. (2.133)

Therefore, if the phenomenological shell model potential gives the same single-
particle spectrum in the vicinity of the Fermi surface as the averaged Hartree-Fock
potential, AMF, then the definitions of the oscillating part of the ground state
energy. as given by the second term on the r.hs. of Eq. (2.131) and by Eq. (2.125),
agree if second-order terms in 8p can be neglected. These have been checked
numerically and indeed turn out to be small corrections [BKS 72, BDJ 72, BQ 75a).

If the phenomenological single-particle spectrum does not give exaclly the same
single-particle spectrum a3 the operator #"'F, the above statement nevertheless stays
true, because small deviations again give contributions of second order in Egq.
(2.131). Equation (2.131) is also called the Strutinski energy theorem [St 68, St 74). It
states that all shell effects of first order in §p are taken into account by summing up
single-particle energies of an averaged single-particle Hamiltonian.

In this sense, the Strutinski procedure provides a method which reproduces
microscopic results in an oplimal way using phenomenological models. Needless to
say, the latter are much easier to handle for realistic calculations.

* The definition of Tr, is given in Eq. (E-19).
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2.9.6 Some Applications

The combination of the shell mode! with the liquid drop model as provided
by Strutinski's theory has, for instance, been applied to the calculation of
nuclear masses [NTT 69]. Figure 2.32 shows the theoretical mass correc-
tions to the liquid drop model and compares them with the experimental
data. The overall agreement 15 very good; the oscillating structure in the
vicinity of the double magic nucleus *®Pb is especially well reproduced.
However, we must realize that these shell corrections were calculated with
Nilsson’s single-particle energies, which do not reproduce the experimental
single-particle level scheme of *®Pb (see Fig. 2.15) very well. In fact, the
shell correction calculated with these experimental levels is 5 MeV off in
2%Pb. For a discussion of this discrepancy, see [BDJ 72].

Another application of the Strutinski method is the calculation of energy
versus deformation curves. As we mentioned briefly at the end of Section
2.8, the calculation of the energy as a function of not only the quadrupole
deformations but also octupole, hexadecupole, and higher deformations
gives rise to multidimensional energy surfaces. As in the shell model, we
find deformed minima in the rare earth nuclei as well as in the actinides,
and sometimes second minima for very large deformations (fission iso-
mers). It turns out that the ground state minima are reproduced roughly at
the same deformations as in the pure Nilsson model. However, at large
deformations, the deformation surfaces look different (for a detailed inves-
tigation, see [BDJ 72]). In these surfaces one looks for the path which goes
from the equilibrium deformation past the lowest barrier and out to the
region of deformation in which fission occurs. The knowledge of this path
and its actual shape for a nucleus then allows an estimate of its fission
lifetimes [ADD 70, NS 70, BFN 72, Ni 72, BDJ 72, Pa 73, LP 73, MN 73,
RNS 78]. In particular the stabilities of superheavy nuclei have also been
investigated in this way (see [N1 72, NN 74, BN 77] and references given
there).



CHAPTER 3

Rotation and Single-Particle Motion
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3.1 Introduction

The experimental level schemes of nuclei show an enormous complexity.
On the way to understanding at least the basic features of their structure,
we have introduced in the first part of this book two rather contrasting
models: On the one hand the liquid drop model describes collective
phenomena, such as vibrations and rotations, where many nucleons are
involved. On the other hand the shell mode] treats the individual nucleons
as independent particles and provides an understanding of single-particle
excitations. However, these two models are only limiting cases that are
never realized exactly in nature. We always have some deviations and we
usually find all kinds of transitions between these extreme models.

For a deeper understanding of the underlying structures, we have to
solve, in principle, the nuclear many-body problem and investigate in
which limits solutions are provided corresponding to the above simple
phenomenological pictures, and in which cases new models must be
introduced to obtain a simple description. In the following chapters of this
book, we will treat such microscopic methods in much detail, and will
reproduce many of the results of the phenomenological models. Although
such theories are extremely useful for an understanding of principal
questions, they usually involve a terrible amount of numerical effort and
are not very useful for a fast and qualitative interpretation of experimental
data.
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Therefore, it seems to be worthwhile going further on the phenomeno-
logical path in this chapter and trying to describe more complicated
spectra by a combination of the collective model and the single-partcle
model. In the last chapter, we saw that such a combination is very useful in
describing bulk properities such as nuclear binding energies and deforma-
tions. In that case, we had to deal with fluctuations of the level density,
and we did not have to take into account the individual degrees of freedom
in detail. Now we want to describe individual spectra. For this we have to
again try a combination of the single-particle and collective models. We
can, for instance, couple one or a few particles to a collective rotor or
vibrator. This so-called “‘unified model” was introduced by Bohr and
Mottelson [Bo 52, BM 53], and has been descnbed in great detail in many
textbooks (see, for instance, [Da 68, EG 70, Ro 70, SF 74, or BM 75]). In
the case of colleclive vibrations, we will deduce the corresponding Hamil-
tonian and discuss the model of a particle coupled to a vibrator in Chapter
9. In the case of rotations, such a derivation from first principles has been
missing Ull now. Methods have been developed to describe rotations
microscopically (see Chap. 11), but they turn out to be extremely compli-
cated. Only in the limit of strong deformations is it possible to deduce a
simple rotational model, the cranking model.

In the last few years considerable experimental effort has been made to
investigate rolations, and a great variety of new phenomena has been
observed. Since these phenomena can be understood to a large extent by
the interplay between single-particle motion and collective rotational mo-
tion, we think it is necessary to introduce in this chapter two theoretical
but phenomenological models which deal with these effects.

In Section 3.2 we give a general survey of the features one expects in
rotating nuclei. In Section 3.3 we discuss the rotational part of the unified
model, the so-called particle-plus-rotor model (PRM), and in Section 3.4
we present the microscopic cranking model,

We want t0 emphasize, however, that we do not give a complete
description of nuclear rotation in this chapter. The residual interactions in
the form of pairing correlations play an important role in this context.
They will be treated in Chapter 7.

3.2 General Survey
3.2.1 Experimental Observation of High Spin States -

New experimental techniques, namely, heavy ion fusion reactions [MG 63,
SLD 65], Coulomb excitation with heavy projectiles [HZ 53, AW 66, 74,
WCL 76], and pion capture reactions [EAD 75) have made it possible to
excite nuclear states with angular momenta large enough to generate major
modifications in the nuclear structure {for a review, see [JS 73, St 76, LR
78D.
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The most important such reactions are of the (H/, xn) type. where one
bombards the target with heavy ions (a, Ne, Ar, eic.) carrying a large
amount of orbital angular momentum. After fusion, the combined system
evaporates some neutrons and ends up in highly excited states with very
large spin (depending on the projectile and the incoming energy up to
~100 A). This highly excited final nucleus then de-excites in a cascade of
y-radiation. The fastest transitions are statistical E!-transitions. They carry
away much energy, but only a few units of angular momentum. In a plot
of the energy versus the angular momentum (Fig. 3.1), these statistical
cascades correspond to nearly vertical lines. They end up at the so-called
yrast line,* the line which connects the levels of lowest energy to each
angular momentum (or the levels with highest angular momentum at a
given energy). The rest of the cascade has to follow this line. For deformed
nuclei these are collective E2-transitions (Al=2), which finally go over into
the well-known ground state rotational band (see Sec. 1.5).

Until now, only the last part of these cascades could be resolved into
discrete lines (see Fig. 3.5). The highest angular momenta observed in this
way lic between 30 and 40 A. The rest of the cascade is measured as a
y-continuum, and one can draw only indirect conclusions from these data
[GG 67, BSC 75, SBC 76, Di 76, HLM 78, ABH 78, WF 78b]. There are,
however, indications that collective transitions along lines paralle] to the
yrast line (see Fig. 3.1) play an important role, and that there is a

*The Swedish word yrasr means “fastest rotating™ {Gr 67]. One also uses the name yrare
for the level with the second lowest energy at each f-value.
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Figwre 3).1. Excitation energy as a function of angular momentum 7/ for the
reaction (*Ar, 4n). After the evaporation of four neutrons, the nucleus decays by a
y-cascade of statistical E1- and collective E2-trangitions down to the yrast hine,
and then to the ground state by a series of E 2-transitions along this line. The yrast
band shows an increasing intensity, because it collects all the statistical transitions
(“side feeding’). (From {SBD 77].)



General Survey 99

competition between collective and statistical effects in the region of a few
MeV above the yrast line [SBD 77].

3.2.2 The Structure of the Yrast Line

In Section |.7 we saw that a classical liguid drop [CPS 74] rotates at low
angular frequencies around the symmetry axis of its oblate shape (Hiskes
regime, Fig. 3.2a). Only for very high angular velocities does it undergo a
phase transition to the Beringer~Knox regime, where it has a triaxial, but
nearly prolate, shape and the rotational axis is perpendicular to the
approximate symmetry axis (Fig 3.2b). For still higher frequencies it finally
fissions (Fig. 3.2¢).

e ool

¢
Figure 3.2. ‘The behavior of a classical liquid drop for increasing angular velocity.

The real nucleus, however, is a quantum mechanical system. It shows
shell effects (see Chap. 2.9), which cause stable deformations already in the
ground state for some regions of the periodic table. The yrast line corre-
sponds to the lowest energy for each angular momentum; all the excitation
energy of several tens of MeV with respect to the ground state 1s rotational
energy and used to generate angular momentum. Consequently, the level
density along this line is low, much lower than the level density of the /=0
states at the corresponding energy. It resembles that of the ground state,
though we will see that there are characteristic deviations from it. Since the
nucleus is cold in the yrast region, we can expecl & high degree of order.
Shell effects play an important role.

The prolate deformations caused by the shell effects are of the same
order of magnitude as the oblate deformations of a classical drop at high
angular velocities (see Sec. 1.7). We therefore expect a delicate interplay
between macroscopic centrifugal effects and microscopic shell structure
when we study the nuclear shapes as a function of the angular momentum.

Let us first study the case of well-deformed heavy nuclei (for instance, in
the rare earth region). In the ground state they show a prolate axial
symmetric quadrupole deformation caused by shell effects. The levels in
the corresponding deformed potential are occupied pairwise by nucleons
with the opposite single-particle angular momentum (*+ ). We will see in
Chapter 6 that the two nucleons in such a pair do not move independently,
as was assumed in the last chapter, but are coupled by a paining force to
the so-called Cooper pairs with spin zero; that is, these delormed nuclei
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show a superfluid behavior and their ground state energy is Jowered by a
few MeV.

With increasing angular momentum, we can distinguish several regimes
where the yrast states show quite a different structure [BM 74]:

(8) For low angular momenta /=0,2.4,..., the yrast line follows the
ground siate rotational band, as discussed in Section L.5. The rotation
is collective, that is, it has to be perpendicular to the symmetry axis
(see Fig. 3.3a, where we have indicated the coupled pairs of nucieons
oriented along the symmetry axis).

) >
a) ground state band blalignment of a pasr c) triaxial
P> 9)
d) complete alignment  ¢) triaxial Jacobi) t) fission

Figure 33, Possible structures along the yrast line of a deformed nucleus.

The nucleus feels a slowly rotating deformed potential (for a more
detailed discussion, see Sec. 3.4). The Coriolis forces act on both
spins of a pair with opposite angular momenta *{l in opposite
directions and try to align them parallel {o the rotational axis, that is,
they try to break the Cooper pairs [Coriolis anti-pairing (CAP)
effect]. However, for low angular momenta the Coriolis forces are
weak and unable to break pairs: The nucleus rotates more or less
with the same structure as the ground state.

We have to emphasize, however, that in a microscopic picture the
total angular momentum has to be generated by the angular mo-
menta of single nucleons. In a collective rotation this is achieved by
aligning all the particles a little bit in the direction of the rotational
axis. For each pair this effect is very small; the spins of the pairs are
still oriented nearly anti-parallel along the symmeitry axis of the
potential. By summing up all the small contributions we obtain the
total angular momentum /=24,...,.
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Going to higher and higher angular momenta, the Corolis force,
increases more and more and at a certain angular momentum it will
be able to break pairs. Therefore, at some critical angular momen-
tum /. we expect that all pairs are broken. The pairing correlations
break down completely and a phase rransition from the superfluid
phase to the normal phase is observed. This effect was predicted by
Mottelson and Valatin in 1960 [MV 60]. More detailed investiga-
tions, however, have shown that the Coriolis force is proportional to
the size of the single-particle angular momentum j of the nucleon
under consideration. We have seen in Section 2.8 that the nucleons
in the vicinity of the Fermi surface belong to subshells with rather
different j-values, and we expect those nucleons with large j-values
to align first along the rotational axis. These are usually the levels
with high spin and opposite parity, shifted downwards by the spin
orbit term, as for instance the ij, , shell for neutrons in the rare
earth region (Stephens-Simon effect [SS 72a]).

In the second regime of the yrast line (Fig. 3.3b), we therefore
expect alignment processes of one or the other broken pairs, whereas
the rest of the nucleus stays more or less unchanged. The yrast band
can then no longer be identified with the ground state band, but
rather with a band of two aligning particles sitting on the rotating
core. Two i ,,, particles can contribute 12 units of angular momen-
tum (o the rotation. Such an alignment is therefore connected with a
rapid increase of the angular momentum / as a function of the
collective angular velocity and leads to a series of anomalies in the
spectra [JRS 71, JRH 72], for example, the “back-bending phenome-
non” (see below).

Each alignment process is connected with a certain change in the
collective properties by its influence on the mean field: Broken pairs
no longer contribute to the pairing correlations; because of the
blocking effect (see Sec. 6.3.4.) these correlations will disappear
completely after a few alignments. Particles aligned to the rotational
axis have an oblate density distribution, with the rotational axis as
the symmetry axis. We therefore get triaxial admixtures to the
prolate density distribution of the core.

In a third regime (Fig. 3.3¢) which should correspond roughly to
angular momenta 30<</<50, we expect the Coriolis and centrifugal
forces to produce effects comparable in strength to the shell struc-
ture effects, namely, changes in the shapes to rriaxial deformations.
Such a system without a symmetry axis shows more collective states
than the axial symmetric rotor (sce Sec. 1.5.3): We expect a sequence
of rotational states parallel to the yrast line corresponding to a
wobbling motion.

If an essential part of the nucleons are aligned parallel to the
rotational axis, we finally expect an axially symmetric oblate shape.
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The nuclear wave function is symmetric with respect to rotations
around this axis. The rotation 18 no longer collective. Instead, the
total angular momentum is made up by reoccupation of distinct
particles in the deformed well.

This kind of motion is called “single-particle” rotation. The energy
of the states along the yrast line in this region is determined by the
single-particle energies in the rotating oblate well. The energy differ-
ences between adjacent states vary statistically. Only on the average
do they follow an /-(/+ 1) law with the moment of inertia of a rigid
rotor (see Sec. 3.4.6.). The transition from one siate to the next
corresponds to a reoccupation, and the matrix elements should
adopt single-particle values, that is, the transition probability should
be drastically reduced.

Because of the statistical nature of the levels in that region of the
yrast line, one also expects long lived high spin isomeric states,
so-called yrast traps [BM 74] which could eventually produce a
delayed decay such that we could observe the whole yrast cascade of
discrete lines without the background of all statistical transitions.

(e) For very large angular momenta we finally expect only the macro-
scopic properties to be essential, that is, the nucleus should again
undergo a transition from oblate to triaxial and prolate shapes
before it fissions (Fig. 3.3¢, f).

So far, only discrete levels in the regimes (a) and (b) have been
observed; the rest of these consideralions is to a large extent speculation.
We will see in Sec. 3.4.5 the kind of models one has used to obtain
theoretical predictions. In facl, in the calculations one has found all the
different regimes discussed above.

1t seems to be possible, however, that many nuclei do not pass through
all these stages. In particular, weakly deformed or spherical nuclei adopt
from the beginning the regime (d), namely, a rotation of an oblate shape
around the symmetry axis before going triaxial and fissioning. On the
other hand, in many well-deformed nuclei the change in deformation
produced by the alignment processes is not strong enough to compensate
the shell effect of a prolate deformation. They only become triaxial (Fig.
3.3¢,d), not oblate, before fissioning. Experimentaily, one has observed
longliving high spin isomers (yrast traps) only for weakly deformed nuclei
(see Sec. 3.4.6). This seems to be in agreement with theoretical calculations.

Besides the yrast band, one has observed many other rotational bands in
the low and medium spin region. They are based on more complex configu-
rations, such as quasi-particle excitations or vibrational states.

Depending on the size of the / shell orbitals, which are involved in such
configurations, one can jmagine a large variety of alignment processes. For
example, in an odd mass nucleus the alignment of the odd neutron in the
i13/2 shell, which leads to so-called decowpled bands. Another example is the
rotational band in an odd-odd nucleus, where only the neutron in the i}, ,
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shell aligns, whereas the proton stays oriented along the symmetry axis.
Such a band has a semidecoupled structure [NVR 75].

The particle-plus-rotor model discussed in Section 3.3 provides a phe-
nomenological method to describe such processes. In that section we will
come back to some examples of this type in more detail.

3.2.3 Phenomenological Classification of the Yrast Band

Over the years some phenomenological models have been introduced to charac-
terize the properties of rotational bands. In the low spin region (Fig. 3.3a), the
spectra often follow exactly the /-(/+ 1) law, but for higher /-values there occur
deviations 10 a greater or lesser extent*. In order to describe the deviations from
the ideal rotational spectrum, one often applies the following parametrization:

E(D)=A-1-(I+ 1)+ B-(IU+ 1)V +C-UU+DP+---. G.1)

It turns out that in many cases the convergence of this expansion is rather poor and
an expansion in the angular frequency w is more appropriate.

In principle, @ is not a measurable quantity. We can define it, however,
semiclassically as

- dE

dJ’
Replacing the differential quotient by a quotient of finite differences,! we obtain a
definition of an “experimental” value for the angular velocity*

- E(1)—-E(1-2) (3.3)

AE
RN TTEY) I,',_, VIG+1) ——2x1-1)

The moment of inertia is defined by

w

with JeyI{(I+1) . (3.2)

J _1{dE\"'_ 2/-1
3 w 5(:2‘1’) ==AEJ,:—: l (3.4)
With these definitions, we can calculate values of w and § for each level of the
yrast band.
Harms [Ha 65a] proposed the following parametrization of the spectrum:
E(l])=aw?+ B+ yol+ . (3.5)

Odd powers in w do not occur, since E cannot change by reversing the angular
velocity. For w as a function of 7 we can either choose the experimental value (3.3)
or avoid the ambiguity of its definition by using a similar expansion of J. From
dE _dE dJ dJ
we obtain
J()=I{(I+1) =2aw+ % B’ + -g-w’+

* For a compilation of such dala, see [SHT 73, SSM 75).

Y This replacement is not unique, however, and some groups use different prescriplions (sce
[JS 73, So 73, LR 78]

¥ Within this chapter we always use the units A= |,
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Of course, this expansion is valid only as long as J is not & multivalued function of
w, that i3, it is of no use in the backbending region (see Sec. 3.2.4.).

Another model which is widely used for the classification of rotational and even
transitional nuclei is the variable moment of inertia (VMI) model [MSB 69, SDG
76). The moment of inertia § is considered as a variable on which the intrinsic
energy V depends:

E(L5)= 2—'41(1+ 1)+ V(9). 3.7

According to the variation principle (discussed in Sec. 5.2), the total energy £ haa
to be minimized for a fixed value of / with respect to 4. This determines the
functional dependence (/). Assuming we know V(4), $(/) is implicity given by

1 HI+1) . dv _
§ 24 ds

Usually one expands on V= § C(5 — 4% where 4, is the value of § at /=0. The
coefficients C and 9, are adjusted to the experimental spectrum E(/). With the

identification J=¢ -3 this corresponds to the Harris model to order w* but the
ansatz (3.7) is certainly more general (DB 73, SDG 76].

dE
ﬁ'l_ 0.

3.2.4 The Backbending Phenomenon

In the region between 10 and 20 units of angular momentum, an anomaly
is observed in the yrast band of many nuclei. It can be most easily
demonstrated if one plots the moment of inertia 9 as a function of w?. In
lowest order in the VMI model (3§ =9,+bw?+ --) this should give a
straight line. The deviation from a constant is then a measure of the
validity of the 7-(7 + 1) law. Figure 3.4 gives two examples for such curves,
measured by the Jilich group [LR 78].

{MeV')
150
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Figere 3.4. Moment of inertia § as a function of the rotational frequency squared
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For low spin values one indeed finds straight lines. In the nucleus '™Hf
the deviations are, in fact, smooth. In "®Er, however, a very steep increase
occurs for certain / values, the curve even bending backwards, (“back-
bending” phenomenon [JRH 72]). This means experimentally that the
lransition energy AE, ; ,, which should increase linearly with J for the
comstant rotor as

)\
AE, , ;= 5(41"2)’ (3.8)

does not increase, but decreases for certain / values. Figure 3.5 shows the
experimental data that correspond to Figure 3.4.
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reaction shows the anomaly called backbending in the I region 10*-14*. This is



Such a phenomenon can easily be reproduced as an effect due to the
crossing of two bands (in some cases one has even observed the second
band experimentally, see Fig. 7.6 and [KSM 78]). To see this, let us assume
that the two bands have different moments of inertia (Fig. 3.6) correspond-
ing to two parabolas in an E versus [ plot. If 4,> ¢, the bands cross in a
certain region of /. Because of the residual interaction, such a crossing
does not take place (the no-crossing rule; see Sec. 2.8.4), and we can get a
region in which the second derivative is negative:

dE _ dw

0> YL =7 (3.9)
This means we have an increasing J with decreasing w, while at the same
time the properties of the bands are exchanged. In fact, it is easy to [it such
backbending curves by a band mixing calculation with few parameters,
one of which is the interaction V between the bands. For small values of
¥, one obtains a sudden transition which produces backbending, whereas
for large values of V the transition region is very broad and no backbend-
ing occurs [MR 72, GG 74b).

E4

3 5 el
Figure 3.6. Schematic picture of two intersecting bands with different moments of
inerita 4, and 4,, and the corresponding backbending plot. (From [LR 78].)

On the other hand, it is also clear that the strange backbending behavior
in the plot of the moment of inertia § against w? has its origin in the fact
that we follow the yrast line in the critical region. that is, we switch over to
the crossing band with a different internal structure. [f we would stay in
the ground state band, which is no longer the yrast band for the large
I-values, we would obtain a very smooth behavior for the w-dependence of
the moment of inertia (dashed-line in Fig. 3.6). The reason that one usually
follows the yrast band is that these levels are experimentally the most
casily accessible.

In all of these considerations, one should, however, keep in mind that
these kinds of phenomenological descriptions only give a classilication of
the spectra and do not say anything about their physical origin. In the case
of backbending there is, for instance, the question concerning the nature of
the second band. Three types of theoretical interpretations have been
given:

(i) In the second band the nucleus has a different deformation, for
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instance, a triaxial one. This means that backbending is caused by a
sudden change of deformation [Th 73, SV 73).

(if) The second band is not superfluid, as in the ground state band. This
would interpret backbending as a phase transition from a superfluid
to a normal-fluid state (Mottelson—Valatin effect [MV 60)).

(i) The second band is a two quasi-particle band of particles which are
rotationally aligned along the axis of rotation (see Sec. 3.3). Then
backbending would correspond to a sudden alignment of a pair of
nucleons (as proposed by Stephens and Simon [SS 72a)).

The general result of theoretical investigations, which include all these
degrees of freedom (see Sec. 7.7), is that for the well deformed nuclei (the
classical rotors) the reduction of the pairing correlations is only responsible
for the slow change of the moment of inertia at low spin values, but that
sudden effects such as backbending are due to alignment of a single high /
pair of nucleons. There is also a large number of experimental indications
[GSD 73, RSS 74, WBB 75, NLM 76, Si 76] for this interpretation of the
backbending phenomenon.

In the rare earth nuclei, the i|;,, neutrons play an essential role. There
15, however, expenimental evidence for a second irregulanty at spins of ~
26-30 A [LAD 77, BBB 79a] a so-called second backbending, which has
been interpreted as the alignment of an A,,,, proton pair [FP 78]. Other
high j-orbitals may play similar roles in different regions of the periodic
table.

3.3 The Particle-plus-Rotor Model

To describe the interplay between the motion of particles and the collec-
tive rotation, Bohr and Mottelson [BM 53] proposed to take into account
only a few so-called valence particles, which move more or less indepen-
dently in the deformed well of the core, and to couple them to a collective
rotor which stands for the rest of the particles. The division mnto core and
valence particles is not always unique. It is, however, reasonable to use the
unpaired nucleon in an odd mass nucleus as a valence nucleon on an
even—even core. One also can attribute the particle and the hole of a
particle-hole excitation to the valence particles. More generally, one
divides the Hamiltonian into two parts: an intrinsic part M., which
describes microscopically a valence particle or a whole subgroup of parti-
cles near the Fermi level; and a phenomenological part H_, which
describes the inert core:

H-Hiuu"'ku. (3.‘0)
The intrinsic part has the form

H,, = 2 ©a, a.+ 1 2 Cktmn i 81" 2,0, (3.11)
k 4 imn



where ¢, are single-particle energies in the deformed potential (e.g., Nilsson
energies) and © is the interaction between the valence particles which is, or
can be, neglected in many cases.*
The collective part describes the rotations of the inert core:
2 2 2
- Ri B & '
28, 2%, 24,
where the R, are the body-fixed components of the collective angular
momentum of the core. Together with the angular momentum of the

valence particles | (which is the sum over the single-particle angular
momenta) it forms the total angular momentum I (see Appendix A):

H

(3.12)

I=R+j. (3.13)
Eliminating R, H__, can be decomposed inlo three parts:
Hgy=H_ +H +H,, (3.14)
where
nonon

M= 29, 25, 7 2, (3.13)
is the pure rotational operator of the rotor [Eq. (1.55)], which acts only on
the degrees of freedom of the rotor, that is, the Euler angles. The term

L0
H,.=2 == (3.16)
/= 28,
is usually called the recoil term. It represents a recoil energy of the rotor.
This operator acts in the coordinates of the valence particles only. For
more than one valence particle, it contains a two-body interaction.
Finally, the coriolis interaction

He=— 2 5, (3.17)

couples the degrees of freedom of the valence particles o the degrees of
freedom of the rotor. This purely kinematic coupling is the only coupling
in the model.

It should be noticed that the total angular momentum operators in the
laboratory system /.. [, I, commute with the Hamiltonian (3.10). Although
the rotational symmetry is violated in the intrinsic frame (e.g., in the
Nilsson Hamiltonian), the model conserves angular momentum for the
total system, because the operators /,./, and / act only on the Euler
angles and commute with the intrdnsic components /,, /, and I, (see
Appendix A). However, it must be emphasized that this rotational invari-

ance 15 achieved only through the introduction of a phenomenological

*We will see in Chapler 6 that pawring correlations play an important role in deformed
nuclei and we should therefore talk about quasi-particles rather than particies. This only
yields simple occupation factors to the [ormulae shown below, which we give sometimes for
the sake of completeness, however. For a deeper understanding. the reader is referred 0
Chapter 6.
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core. If one wants to treat all particles microscopically (the limit of
vanishing core), the Euler angles are redundant variables (see Sec. 11.3).
The wave function of the system may be written as

WL, = %)q»xumc), (3.18)

where ¢, depends on the coordinates of the valence particles and the
|IMK> depend on the Euler angles and are defined in Eq. (A.21). In the
simplest case, there is only one valence particle and an axially symmetric
rotor. Using this model a large number of the experimental spectra of odd
nuclei has been reproduced very accurately, and from this point of view it
is certainly one of the most powerful models in nuclear physics. However,
until now a clear-cut midroscopic derivation has been missing. Such a
derivation should start from a many-body Hamiltonian (2.19). The set of
34 particle coordinates should be transformed in a proper way into a set
of 34 -3 internal coordinates and 3 Euler angles which describe the
collective motion. To this transformation should correspond a decomposi-
tion of the Hamiltonian into an internal and a collective part, as in Eq.
(3.10). Finally, one could hope to describe the internal motion by a
deformed shell model.

Many attempts have been made in this direction and we give a short
discussion of them in Section 11.3, but up to the present time the problem
has still not been completely solved. In the case of well deformed nuclei
the model can be backed by the following arguments.

(i) Microscopic Hartree—Fock calculations show very pronounced min-
ima in the energy surface at axial symmetric deformations, which
justifies the notion of a rotating core.

(1) The model is to some extent equivalent to the cranking model (see
Sec. 3.4), which is microscopically founded at least in the limit of
strong nearly axial symmetric deformations.

(iii) Villars and Cooper [VC 70] have shown that, in introducing redun-
dant coordinates, a Hamiltonian of a form similar to that in Eq.
(3.10) can be found with, however, additional coupling terms. In the
limit of strong deformation and with further assumptions, they
obtained the correct expression for the moment of inertia.

The particle-plus-rotor model has, however, also been applied with great
success to nuclei in the region of small deformations and to transitional
nuclei. It is not clear at the present time how this can be explained
microscopically.

3.3.1 The Case of Axial Symmetry

Assuming that the rotor has the 3-axis as axis of symmetry, that is,
§,=9,=4, there can be no collective rotation around this axis and the
3-component of R has to vanish (see Sec. 1.5). From Eq. (3.13) it follows



110 Rotation and Single-Particle Motion

immediately that K, the 3-component of the total angular momentum 1,
has to be equal to @, the 3-component of J:

K=9. (3.19)

For the different terms of the Hamiltonian (3.10), (3.14), we obtain in this
case

Hlnu= zn‘-c‘z"fx“m.- (3'20)
i,
k-1
He= =35 (3.21)
Hopem 55 (42, (3:22)
Hoem = g(hiiH )= = 95U jo+1_j.).  (323)

In (3.20) we have neglected the residual interaction. The single-particle
levels in the axially symmetric well are labeled by £=(i,{) and the
corresponding eigenfunctions will be denoted by &y;.

The recoil term acts only in the intrinsic coordinates. It is often ne-
glected, because the intrinsic single-particle energies ¢) are adjusted to
experimental data. We follow this argument in the following discussion
and omit H__ for the moment. Only in Section 3.3.2.] will we take it up
again. The Hamiltonian (3.20-3.23) has eigenfunctions of the type (3.18),
which can be found by a numerical diagonalization of the Hamiltonian
(3.10). However, the different terms in (3.20-3.23) are of different impor-
lance, depending on the physical situation. Therefore, it is useful to
consider three limits in which one of the terms becomes predominant and
which as a consequence can be solved analytically (for a review, see [St
75a)):

In the strong coupling limit, the odd particle adiabatically follows the
rotations of the even mass core. It is realized if the coupling to the
deformation is much stronger than the perturbation of the single particle
motion by the Coriolis interaction.

In the weak coupling limit, which is realized for very small deformations,
the odd particle essentially moves on spherical shell model levels only
slightly disturbed by, for example, the quadrupole vibrations (see Sec.
9.3.3).

In the decoupling limit, the Coriolis force is so strong that the coupling to
the deformation of the core may be neglected. The total angular momen-
tum and the single-particle angular momentum are then parallel to one
another.

33.1.1 The Stroug Cowuwpling Limit (Deformation Alignment). The strong
coupling limit is realized when the Coriolis interaction matrix elements are
small compared with the level splitting of the single-particle energies in the
deformed shell model for different values of £2. We should expect that this
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18 the case

(i) for large deformations 3, because the level splitting in the Nilsson
Hamiltonian is o 8, whereas the rotational constant A*/29 is, ac-
cording to a simple empirical rule (Eq. (1.50), < 8~ %; and

(ii} for small Coriolis matrix-clements. As we shall see in Eq. (3.33), they
are x[(J(J+ 1)~ KD+ )—02H]'/% that is, they are small either
for low spins 7 or for nucleons in orbitals with small particle angular
momenta j. For large j-values they can only be neglected for high 2
values.

It is called the strong coupling or deformation aligned limit because in this
case K is a good quantum number. The angular momentum } of the
valence particles is strongly coupled to the motion of the core. In a
semiclassical picture, ] precesses around the 3-axis, which is shown in the
coupling scheme of Fig. 3.7a. Since H_, is the only term in the Hamilto-
nian which couples the particle and rotor degrees of freedom, the eigen-
functions are in this limit products of the functions ¢, (eigenfunctions of
H,,., eg., the single-particle Nilsson functions) and the eigenfunctions of
the symmetric rotor |IMK ) (see Appendix A).

a) b)

Figure 3.7. Coupling schemes in the particule-plus-rotor model: (&) strong cou-
pling; (b) rotational alignment.
We have seen in Section 1.5.1 that the Hamiltonian (3.10) has an

additional symmetry, &,, which describes a rotation of the core by 180°
around the l-axis of the body-fixed system

G, = e Fim g =M, (3.24)

We therefore have to symmetrize the wave function (3.18) and get together
with Eq. (A.24) the following set of eigenfunctions [Ke 56]

L) ——be (R IMK ) + (= ) e i IM - KD}, (3.25)
(1+8x0)
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If we know the decomposition of @ into eigenstates of

(D g™ E C;jl"]ﬂ>v (3.26)
nj
we find
A ST D Wl E I LIRS 1) (327
nj

The energy spectrum which corresponds to (3.25) 1s given by
Prrye wi g
Ex(I)=¢+ -2—9(1-(l+l)—K’) (3.28)

[usually, instead of ¢} in (3.28), we have quasi-particle energies E; as they
are defined in Eq. (6.72)]. This is the spectrum of a rotational band. The
lowest possible spin is /;= K. The bandhead E} (/) is not precisely ¢,, but
shifted a little, especially if we take into account the recoil term and the
residual interaction. The spectrum has a spacing A/=1 and its moment of
inertia is that of the rotor.

In this strong coupling limit we have neglected the Coriolis interaction
completely. Taking it into account at least in first order perturbation
theory, we get a contribution only for K =1/2 bands

S 1 L, oyl
EK_,/Z(I)-e,'(_,/-2+i{l(l+l)—z+a(l+i)(—)“l/z}, (3.29)

where the so-called decoupling factor 1s given by

a'm i@, | je” @) ) (3:30)
or if @' is of the form (3.26),
a'=—=ZICH =)+ 1) (331)
nj

This means, for example, that for a positive decoupling factor (major
components with j+1 odd) theé levels with odd values of 7+ 4 (/=1, 3,
{,.--) are shifted downwards. This explains very nicely the rather distorted
bands for K= 1 in many nuclei [ABH 56] where there are, in fact, two
bands having A/=2 each (even and odd values of /+ 1) shifted against
one another. The reason for this decoupling comes from the symmetniza-
tion Eq. (3.25) with respect to !, mixing states with K=1 and K= — 1 via
the Coriolis matrix elements. The strength of the decoupling factor a’
depends on the j-components which contnibute to the single-particle wave
function @, ,. If levels with large single-particle angular momenta are
involved, it 18 very strong. However, perturbation theory is no longer valid
in such cases. and also other matrix elements of the Coriolis operator come
into play. Therefore, the strong coupling limit is no longer realized and we
have to consider a different limit.

33.1.2 The Weak Coupling Limit (No Alignment). As we have said, the
strong coupling approximation breaks down if the Coriolis matrix elements
are no longer negligible compared to the energy splitting of the single-
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particie levels belonging to different K values. Let us therefore study the
Coriolis matrix elements in more detail.

Wl ol Hoal¥iad) = = VI +1) = K(K+1) (@, |00, (332)
If @, is of the form shown in Eq. (3.26), we oblain
Fien s | Hood Vi)
- -2‘? % C,RYI(I+ 1)= K(K+1) G+ D) ~-a+1) . (3.33)

We see that these matrix elements are large for large values of //K and
j/9. That is, if, for example, levels with large j and small 2 values are
involved. Particles in such levels have high angular momentum and a
density distribution close to the 3-axis. Therefore, it is clear that a rotation
of the core perpendicular to this axis has a great influence on the motion
of these particles.

A well known example is the neutron lij,, level, which lies in the
vincinity of the Fermi level for light rare earth nuclei such as Dy and Er.
One can estimate the Coriolis matrix element for the Q=1 case to be
0.1 x I [MeV], which is in fact quite large compared with the level spacing
of H,,,. Since such levels with high j-values are drastically shifted down-
wards by the spin orbit term of the shell model (see Sec. 2.4) into a shell
with a different ¥-quantum number, these levels are rather pure confligura-
tions, that is, C_}-:l {intruder state). It is therefore sufficient in the
following to consider only one such single j-shell. The 1i,,,, shell is not the
only such case. The energy of the largest j-value in each major shell is
lowered drastically and has an important role in many rotational spectra.

Vogel [Vo 70] proposed a hmit (usually called weak coupling or no
alignment limit) in which the K-splitting of A, . is totally neglected. (This,
of course, can only be a valid approximation for small deformation.) Now
}J* and R? commute with H,_ . and we can construct eigenfunctions of R?
and R, (the eigenvalue of the latter is, of course, zero). A proper angular
momentum coupling gives*

Wi o= Ex:(—)ijcli' x o PxlIMK. (3.34)
These wave functions diagonalize R?, and the corresponding spectrum is of
the form
E(I)=E,. + Z—IgR(R+ 1), (3.3%)
with
|j—R|<I<j+R; R=0,2,4,--- (8, symmetry). (3.36)

This means that for each rotational quantum number R. ] can have
2j+1 orientations without changing the energy of the system (zero cou-

* Since we couple the angular momenta T and =) to R=1~|, we have to apply a coupling
rule as in the pA-case of Eq. (2.46).
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pling). The splitting of the 2j+1 levels can be taken into account in
first-order perturbation theory (we will take a Nilsson term ~gr’Y,, as
perturbation).

E(I)=E,+ %R(R+ 1) = Bhag{ ¥R F2Y o[ ¥R, (3.37)

To each orientation of | there is a whole rotational band of the core with
AR=2. The levels with the highest ] values /= R+ for a given energy
(i.e., for a given R) correspond to the yrast levels. These levels are
connected by strong E2 transitions [Re 75a] and are experimentally the
most easily accessible. They are called favored states® [St 75a] and their
energy is given by

E(I)= Evut 55 (I=jX(1=j+1). (3.38)

This means that these states lic on & parabola with a minimum at /=,
which is experimentally widely confirmed, an example of which ts shown
in Fig. 3.8.

* Levels with a lesser degree of alignment (e.g. /= j+ R — 1) are called unfavored siates.
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Figure 3.8. Relative excitation energies as a [unction of spin for the i)y, bands in
some N =89 nuclei. (The experimentally observed band members are plotted such
that the 13/2% states are equally spaced (300 keV).) (From [LR 76].)
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On the right branch of this parabola j and R are aligned (} {{ R),
Jmj+R=jj+2,j+4,...,

and on the left branch j and R are anti-aligned (j || —R); the core rotates
in the opposite direction as J*:

[=j—R=j-2,j—4,..., 3 (or4).

As an empirical rule one can say that the weak coupling limit is strictly
valid only for very small deformations | 84%/%| < 4. We shall see in the next
section, however, that the states with I || j are energetically favoured even
in the case of stronger deformations, where neglecting the 2-dependence of
H .. is no longer justified. Therefore, the formula (3.38) is also valid for
many levels in more deformed nuclei (see for instance Fig. 3.8) in the
so-called rotation aligned coupling scheme.

33.1.3 The Decoupling Limlt (Rotatlonal Alignment). In the case of inter-
mediate deformations, the energy splitting in the intrinsic part of the
Hamiltonian can no longer be neglected. In this case, the orientation of the
external large j-particle is no longer independent of the motion of the core.
Stephens et al. [SDN 73] realized that the requirement of maximal overlap
of the single-particle density distribution (which is concentrated mostly in
a plane perpendicular to j) with the core can be fulfilled if the external
particle is aligned along the rotational axis of a prolate nucleus (see also
Sec. 2.8.4).

Mathematically, we can understand this in the model of a single j-shell
(C,=1, like, for example, in the i,y,, case). Neglecting 1? and ls-term, the
Nilsson energies are simply given by the diagonal matrix element

€q= € — B- Rl nljQr2Y 40| nljQ>
307 j(j+1)
4+

where k and C do not depend on 2. Also, the recoil term (3.22) can be
calculated as a diagonal matnix element and yields

Hm=—2%{j(j+ -2, (3.40)

Therefore, the Hamiltonian (3.10) in this approximation is:

-+ Bk -, % Bk + CR (3.39)

H=eg— 3 Bk+ oo (I(1+ 1) +j(j+ 1)+ (c— § )i+ Hee (341)

In a certain region of deformation, where C~1/9, there is thus a
cancellation of the X dependence coming from the intrinsic and rotational
parts of the Hamiltonian. This turns out to apply for a rather broad
domain of intermediate deformations. Unfortunately, the eigenfunctions of
H_,, which we needed to solve (3.41) cannot be given analytically in the
general case. Thus, we wish to give a qualitative discussion. Writing the

*In principle, there are also anti-aligned states with R > [PO 78],
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Coriolis term in the form*

1, _
He =~ ?lJ_lJ,,? . (3.42)
we sec that it has its lowest expectation value l’cy((m:rumtiom with

R {Y). Since R is perpendicular to the 3-axis, one gets the lowest
eigenvalue for wave functions with a single-particle angular momentum
aligned along a rotational axis perpendicular to the symmetry axis. For this
purpose, we choose the l-axis and accordingly construct eigenfunctions
{®,> of j, with eigenvalues a by rotating the eigenfunctions |®)) of j,
through 90° about the 2-axis:

B.>= Sk (- 7 )10 (3.43)

where df, is the Wigner function of this rotation [Ed 57].
For the total wave function it is, however, not so easy to make such a
construction in which a is a2 good quanium number. The ansatz

¥ D= T dh (- F)eamx> (3.44)

is an eigenfunction of H,, at least for I » K. With

I_|IMK)m= \/I(I-f- D=K(K+1) |[IMK+1=I[IMK+1) (345)
we then easily get
Hol¥i == 31-al¥ > (I>K) (3.46)

which shows that a is the projection of j onto L.
From Eq. (A24) and [Ed 57, Eq. (4.2.4)] we obtain
Ry Lo = (=) "G D (3.47)

which means that /—a has to be even in order to {ulfill the symmetry
condition S, = 1.

In the case of C=>=1/9, we find for the spectrum of the Hamiltonian
(3.41):

E(1,a)=const.+ 35 (I(1+1)+j(j+ 1)~ 2/e)
= consl. + %(1— a)({—a+1) (3.48)

= const. + 2—15- R(R+1) (3.49)

where R= /- =0,2,4,... has to be even because of the symmelry condi-
tioa (3.47).

The lowest lying states are therefore the omes which are maximally
aligned (a=j, favored siates). This corresponds exactly to the picture of a
valence particle whose spin is oriented perpendicular to the 3-axis while

*1, and |, are the components of I and | perpendicular to the symmetry axis.
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the core is completely decoupled and rotates with R= J - a, giving rise 10 a
spectrum A/ =2, but which is otherwise equivalent to that of the neighbor-
ing even nucleus. Such bands have been seen, for example, in weakly
deformed nuclei (see Figs. 1.8 and 3.9).
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Figure 3.9, Comparison of ground band levels in some Ba isotopes with negative
parnity bands in the neighboring La nuclei. In most cases the La 11/2 level is not
the ground state, and its energy has been subtracted from all levels shown for that
isotope. (From {SDL 72])

Lesser aligned states (unfavored states) have a=j— 1. They often lie at
higher energies and are then not populated in (H/, xn) reactions.

Figure 3.10 shows the exact solution of the axially symmetric particle-
plus-rotor model for one valence nucleon in a 14, ,, shell as a function of
the deformation S8. For very small B-values, one has the weak coupling
scheme of several nearly degenerate multiplets. On the oblate side ( 8 <0)
the strong coupling is realized. In this case, the lowest level in the Nilsson
scheme (see Fig. 2.21.) is the {2=11/2 level. Its Coriolis matrix element is
very small and a strongly coupled band with Af=1 is observed. On the
prolate side the opposite is true: The lowest level has 2=1 and a very
large Coriolis matrix element. The yrast band (the levels with the highest
I-values) is now formed by a decoupled band /=11/2,15/2,19/2,... with
AlI=2 and a level spacing, which is more or less that of the rotor (as seen
at f=0). We see also that for these completely rligned yrast levels the
rotation aligned coupling scheme is very well realized over a wide range of
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Figmre 3.10. The cigenvalues of an axially symmetric particle-plus-rotor model,
with one particle sitting in the 1h;,,, shell, as & function of the deformation §.
Plotted are the excitation energies over the I=11/2 level. The Fermi surface A is
below the entire A, ,; orbital. (From [St 75a].)

intermediate fA-values: 0.13~8<0.23. Only at very large deformations
does one find deviations.

The structure of the bands also depends, of course, on the position of
the Fermi level. We had here the simplest case of only one particle in the
shell. The complete analogue is one hole in the high j-shell. There the
situation is reversed: On the prolate side are the levels with large Q-values
—that is, one observes a strongly coupled scheme—and on the oblate side
are the levels with small 2-values and a decoupled scheme.

These considerations show that the structure of the rotational bands
built on such high ; levels provides an excellent tool to distinguish
experimentally between prolate and oblate deformations in the transition
region.

Summarizing the results of this section, we can say that

(1) In many cases, the Coriolis interaction can be neglected. Then the
valence nucleons rotate around the symmetry axis of the core and
change their orientation with it (strong coupling Al/=1).

(i1) In cases of small deformation and strong Coriolis interaction, the
valence nucleons orient their angular momentum more or less
independently of the orientation of the core. The core rotates with
Al=2 (weak coupling).

(iii) For intermediate deformations it can happen by a cancellation
effect that a rotational alignment takes place. The valence particles
orient their angular momentum parallel to the collective angular
momentum (perpendicular to the symmetry axis of the core) and
again we have Afm=2,
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3.3.2 Some Applications of the Particle-plus-Rotor Model

The model of a few valence particles coupled lo a8 symmetric rotor has been used
in a very large number of cases Lo fit the experimental rotational bands. In general,
it has been very successful. We do not want here to go into the many different
versions which have been used but wish to discuss a few characteristic examples.

33.2.1 Stroagly Mixed Bands in Well-Deformed Odd Mass Nuclel. The spectra of
odd mass nuclei in the deformed region show many rotational bands which reveal
very nicely the strong coupling picture. Only in cases where the particle sits in a
single-particle shell with a high j-value (e.g., the 1i};,, shell in the Er region), one
also observes very distorted bands.® For small 7 values they start out like strongly
coupled bands with A/ = 1, but soon we observe staggening: The levels with 7+ 1/2
cven are shiflted more and more against the levels with /+ 1 /2 odd, so that in the
end we have two separate bands with A/=2 (see the positive parity band in Fig
3.11 and [BDL 75).

* For a comparison of (bese distorted bands with the backbending behavior in neighboring
even nuclei, see [SKS 74).
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Figure 3.11. Three rotational bands in the nucleus '*Dy. The 3/2" and the
11/2~ bands are strongly coupled (Al = 1). The positive panity band with the band
head /=5/2 is strongly perturbed, as discussed in the text. It is compared with
three calculations: (s) a particle-plus-rotor fit without attenuation p, (b) a particle-
plus-rotor fit with attenuation p=0.5, and (c) a self-consistently determined attenu-
ation according to Eq. (3.56). (From [Ri 77])
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To describe these bands one usually diagonalizes the Hamiltonian (3.10) in the
strong coupling basis (3.25). The single (quasi-) particle energies are taken from a
Nilsson model and the parameters like the deformation 8 (and the gap 4, see Chap.
6) are used Lo fit the spectrum. It thereby turns out that one can only reproduce the
experimental spectrum if one introduces an additiona! parameter p—ithe attenuarion
factor—which weakens the Coriolis interactions, that is, if we use p- H,, instead of
H_. [HRH 70, LRB 72, HK 77]. The original Coriolis {orce turns out to be much
too strong and it has to be reduced by a factor p~04—0.8. With this ad hoc
attenuation and the other parameters of the model reasonably chosen, we are able
to reproduce the distorted bands and find that for low I-values, that is, for small
Coriolis interaction, one is in the strong coupling limit with A/=1. For higher
I-values, however, the Coriolis force gets stronger and aligns the odd particle with
the large j-value parallel to the rotational axis. For /-values /2, we have a
rotational aligned motion, that is, large K-mixing and a splitting of the band in
favored states with maximal alignment a = for (/ ~ ) even, and unfavored states
with lesser alignment a=j—1 for (/—/) odd. For the same value of angular
momentum R of the core, which is given by R= ] —a, these two bands are almost
degenerate (see Fig. 3.11).

Several attempts have been made to explain the afrenuarion factors as a kind of
¢ffective charge in the linear response approach [BPC 72, HK 75]. It turns out that
this problem is closely connected with a proper treatment of the recoil term (3.22).
The argument, that it is already taken into account in the fit of the band head
energies, does not apply because in the one-particle case it is proportional to
j*— K? and therefore has a strong K-dependence which shifts the band heads
[ORG 75},

To understand qualitatively the elfect of the recoil term we restrict ourselves to
the case of only one particle and rewrite the particle-plus-rotor Hamiltonian
(3.201f) in the following way [Kr 79].

H=H,,+ flé-(l(l+l)—jz)+ H., (3.50)
with the new Cornolis term
Héar“—“%(l—l)Ji-—]gR]——wj, (3.51)
where the collective angular velocity is given by
w=—R/4. (3.52)

The Coriolis term H/,, in Eq. (3.51) is attenuated compared to M, (3.23). To see
this we go into the limit, where the odd particle is nearly aligned 10 the collective
rotation R. We then have

R:li,(l -7) (3.53)
and find that /. is in this case proportional to H,:
4 - — E - .
How=(1~ 7 MHoo=p Heoy (3.59)
with an /-dependent attenuation factor
p=1-— -‘;— . (3.55)

Only for very high I-values does the attenuation disappear.
So far, the discussion of the influence of the recoll term has been restricted (o
the pure single-particle part of this operator. In fact, it also contains a two-body
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term )y ' Jina:ta a8, , which produces an interaction with the particles of the core.
We can treat it in the mean field approximation [Ri 77) and end up with a
self-consistent attenuation factor '

v

VIU+ D=
At the limit of alignment it goes over into the form (3.55). We can also show that
this approximalion is equivalent to the cranking model (see Sec. 3.4). In a
microscopic treatment of rotational bands in odd mass nuclei within the sell-
consistent cranking model (see Sec. 7.7), the attenuation of the Coriolis interaction
is sutomatically incorporated [RMB 74, RM 74].

p=1-— (356)

33.2.2 Backbending in Even Nuclel. The backbending phenomenon (see Sec. 3.2.4.)
has been explained by Stephens and Simon [SS 72a] as an alignment of two
peutrons in the Liy,y,; shell. If these two peutrons, instead of rotating around the
3-axis, align along the rotation axis of the nucleus, this adds an additional 13/2 +
11/2=12 units of angular momentum. Therefore, the nucleus can decrease its
collective rotation while increasing its total angular momentum through the addi-
tion of single-particle angular momentum.

To describe this idea mathematically, Stephens and Simon diagonalized the
Hamiltonian (3.10) (with attenuation of the Coriolis term) taking as the basis the
Slater determinant of the unperturbed core

(o> = [IMK =0
and two quasi-particle excitations (see Chap. 7)
x> =Bx, Bx,|[ IMK = K, + K, (3.57)

where B, is a crealion operator for a quasi-particle in the state Q= K of the 1iy;,,
shell.

For low I values, the yrast states are given mainly in the zero quasi-particle state
|®,> of the pure rotor. The excited bands are two quasi-particle bands. For higher
I-values, the particles align their angular momenta along the axis of rotation, one
of them to a=;=13/2, the second to a=;~— 1=11/2. Thus, we find a mixing of
the states ®; and &, (K=0,1,...) and arrive, at the limit of full alignment, at a
two-quasi-particle state of the form [se¢ Eq. (3.44)]:

|©)2 = K%ﬁdin,(— 3 )ky-1( - 3 )R BEUMK, + K. (3.58)

[t can be written schematicaily as §;* - 7 ,|®,>, where the A% are the quasi-
particle operators quantized along the 1-axis.

Stephens and Simon [SS 72a] were able to reproduce the experimental backbend-
ing spectra reasonably well with this method. Since they did not take into account,
however, the gradual change in the pairing correlations caused by the Coriolis—
anti-pairing effect, they could not obtain the deviations from the /-(/+1) law at
low spin values.

In spite of the fact that this model describes the important eflfect of two aligning
particles properly, it does not allow us to decide whether there is any other
mechanism which could be the origin of the observed backbending phenomenon.
To decide whether it is caused by a change in shape, by a phase transition to a
normal fluid state, or by an alignment process, one has to carry out a microscopic
calculation which allows for all these degrees of freedom. Such investigations have
been done (see Sec. 7.7). They show that the rotational alignment of two particles is
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the most important effect. These processes are found in all nuclei in which a high
J-shell exists in the vicinity of the Fermi surface. However, it is another question as
to whether they produce backbending. This depends finally on the strength of the
interaction between the two crossing bands: Only for rather small coupling matrix
elements do we observe a sudden transition, that is backbending.®

3.3.3 The Traxial Particle-plus-Rotor Model

We have already seen in Section 1.5.3 that Davydov et. al. [DF 58] used a
triaxial rotor to explain the low lying 2* states in some transitional nuclei. The
mode! can also be extended to odd mass nuclei by the coupling of an external
particle to a triaxial rotor [Pa 61, HS 62, PR 62, PS 65, MSD 74, Me 75, FT 75, TF
75, Le 76, DF 77, LLR 78]. It has been applied to cases where the external particle
sits in a high j-shell, and has turned out to be very powerful as a description of
energy levels and decay schemes of many transitional nuclei.' However, at present
the microscopic foundation is missing. Using microscopic theories, the calculations
of static energy surfaces in these mass regions show no pronounced minima at
triaxial deformations, which would justify this simple picture. In fact, there exist
other models based on a vibrational picture [AP 76, PYD 77, YNN 76] that are also
able to reproduce such spectra. It is not clear at present whether there is any
connection between these two pictures of transitional nucles,

We restrict ourselves in the following discussion to one external particle in a high
j-shell (e.g., h 11/2) and couple it to a triaxial rotor. In this case, the Hamiltonian
has the form [MSD 74):

3 R? I
h= 3 % + hy+ krif {cosy)’m+sin7-ﬂ&7( Yu+ Y,_,,)}. (3.59)
im|

The B, y-dependence of the moment of inerlia 4; is that for irrotational MNow [eq.
(1.48)] and only the overall constant is adjusted. The constant & is given by the
splitting of the j-ghell in the Nilsson scheme. A, is the spherical harmonic oscillator.
Usually a single-particle pairing field with constant gap A is also taken into
account,

Figure 3.12 shows the spectrum of the Hamillonian (3.59) as a function of y ata
typical deformation 8=54 ~3/3. On the prolate side (y =0) and on the oblate side
(y=060°) we sec again the same spectra as in Fig. 3.10. However, these two limits
are now connected through a circle in the B8,y plane (Fig. 1.4) with constant
deformation B. We no longer pass through the weak coupling limit at S=0. On
both sides the spectra do not depend very drastically on (he triaxiality y. The
essential transition from the strongly coupled 10 the decoupled scheme takes place
in a relatively small y region around y=30°, There are¢ many spectra in weakly
deformed transitional nuclei that can be nicely reproduced with y-values between
20° and 40°. This agreement can be improved even more by incorporating the
change of the moment of inertia in a8 VMI-model type calculation [FT 75}

* Recently, Bengtsson et al. [BHM 78] have found an oscillating behavior of this interac-
tion as & function of the chemical potential A. For an interpretation of this fact see [FPS 80]
and the references given there.

fFor extension of the triaxial rolor model to mulliparticle configurations, see |[TNV 77,
YTF 77, TYF 77, YTF 78}
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Figure 3.12. Spectrum of a j=11/2 particle coupled 1o an asymmelric rotor with
all yrast levels 7 <23/2 as function of y. (From [MSD 74].)

The dynamical behavior of a system of an odd high-j particle coupled to a
rotating trixial core is determined by three physical effects (see [Me 75]):

(i) The core prefers to rotate around the axis with the maximal moment of
inertia in order to minimize the rotational energy.
(ii) The particle moving in the deformed well prefers maximal mass overlap
with Lhe core, because in this case its potential energy is minimal.
(13) The Coriolis interaction tries to align the angular momenta of the particle |
and the core R.

For high j-values the alignment dominates as long as we have only one particle in
the j-shell. Since the density distribution of an aligned particle is oblate with j as
symmetry axis, condition (1) is optimaily satisflied il the core is oblate (y=60°),
which corresponds to the 2-axis as the symmetry axis. However, in this case 9;=0
and condition (i) is violated. Therefore, R will be perpendicular to the 2-axis and
we no longer have alignment. In the tnaxial case, 3, no longer vanishes and
conditions (i), (ii), and (iii) can all be satisfied together. There is an alignment of |
and I along the 2-axis. In fact, the calculations show that the odd particle tends to
align along the 2-axis of the core. This axis serves 8s an approximate symmetry axis
in the sense that the approximate quantum numbers K and {I (representing the
projections of I and j onto the 2-axis) are meaningful for a classification. The result
is a new level scheme charactenstic for a triaxial rotor.

The yrast levels are given by fl=/ and K=, j+2, j+ 4, as in the rotation aligned
coupling scheme of Stephens. For these levels, I, ], R, and the 2-axis are parallel.
They lie on the usual parabola with A/ =2 (see Fig. 3.13). Contrary to the axial
symmetric case, where the direction of the alignment was arbitrary in the 1,2 plane
(usually one chooses the l-axis), we have the asymmetric case with no such
symmetry. Alignment favors the 2-axis. This has the consequence that on each
yrast level there exists a rotational band with the spin order A/w= 1, In fact, such
levels have been experimentally observed [ABR 75].
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3.3.4 Electromagnetic Properties

According to the separation of the system into valence particles and a core, we
aiso have two contributions for the electromagnetic multipole operators:

Qn = O + Q4P (3.60)

The core part is given by Eq. (1.35) and Q{#? is defined in Eqs. (B.23, B.24) where
the sum over { however is restricted to the number of valence particles.

In the following we shall restrict ourselves to the axially symmetric case without
peiring. It i3 then relatively simple o generalize the formulae to more complicated
cases.

The magnetic dipole moment of the rotor is given by Eq. (1.36) as g = p, -gzR.
We therefore gain for the M ) operator:

M= Ve mwe gl =D+ MIP, (3.61)

The magnetic dipole moment is defined in Eq. (B.31). With the wave function of
Eq. (3.25) we obtain lor K+ 1/2, using the projection theorem (2.66),

/4.,, H{I+1)~K? K2
p= kY <?5R|Mu|‘l’;x>" 28 [ 8a T+1 +Sx,+ 1 } (3.62)

where we have introduced the gryomagnetic ratio g in the following way.

1 4
g K==\ T @M LI00

L C TN AR S AN Py

=g K- +(g—8) (Prlss|Pp. (3.63)
The matrix element {(®x|s;|® x> can be calculated with a Nilsson wave function.
For K=1/2 one gets an additional contribution to the magnetic moment which
contains the decoupling factor @ of Eq. (3.30).

The magnelic moments obtained from Eq. (3.62) have been calculated for a
large range of nuclei [MIN 59, NN 65 p. 653] and one has found that agreement
with experimental data is usually better for protons than for neutrons. A detailed
'mvestgation shows, however, that one again needs polarization charges for g,:
g25=0.7g/™ (sec [BM 75 p. 302ff]).

Sumlariy, we can calculate the reduced matrix elements for M |-iransitions. The
operator { does not cause any transitions. For the rest we use Eq. (1.70) and get for
K#1/2and I, I

] 2
B(M1,I,>1)= U+ l(*k““:ﬂ*;}ﬂ - 33; i (gx "83)1K1|C" ; lfl (3.64)

These M |-transitions are only possible for rotational bands in odd nuclei. Also,
reasonable agreement with experiment has been found [SBP 67).

Again using Eq. (1.70) we can also derive the B(E2) values for electric quadru-
pole transitions. For transitions between states with the same X value the core
contribution is much larger than the particle contribution because of the large @,
values. Therefare, the latter can be neglecled, and we obtain

B(E2 I~ 1 )= 0 —— |6 [T (3.65)



This equation is used 1o determine the experimental vaiues for the deformations
appearing in Q. In Sec. 2.8.6 we saw that they agree with the theoretically
determined deformations. Therefore, the particle-plus-rotor model gives the proper
E2 tranzition probabilities for transitions with the same K-value.

For transitions with different K-values, the collective part vanishes. Such transi-
tions are, in fact, very weak (K-forbidden) because the single-particle part contains
only the single-particle matrix element of rlY,, in the intrinsic frame. We have
already seen in Section 2.7.2 thal they are small compared to the collective values.
On the other hand, 8 pure single-particie model cannot explain the effective
charges in spherical nuclei (see Sec. 2.7.2). The same difficulties occur here again.
For a detailed discussion, sce the paper of Lobner and Malinskog [LM 66], which
contains much expenimental data together with possible ways to improve the simple
Nilsson estimate.

Finally, we have Lo mention that the above considerations apply only (o pure
K-bands. For transition probabilities and electromagnetic moments in K-mixed
bands, like rotational aligned bands or bands in an asymmetric rotor, we have to
take into acoount the mixing coeflicients.

3.4 The Cranking Model*

We have seen in the last section how the motion of particies in a deformed
well can be connected with the idea of a rigid rotor. This model is very
successful in the description of the level structure of rotational and even
transitional nuclei. However there exists no straightforward microscopic
derivation; in particular, one cannot calculate the inertial parameters in
this model.

On the other hand, nearly all fully microscopic theories of nuclear
rotation are based on or related in some way to the cranking model, which
was introduced by Inglis [In 54, 56} in a semiclassical way, but as we shall
see in Section 11.4, it can be derived fully quantum mechanically, at least
in the limit of large deformations, and not too strong K-admixtures
(Kx]).

The cranking model has the following advantages.

(1) In principle, it provides a fully microscopic description of the
rotating nucleus. There is no introduction of redundant vanables,
therefore, we are able to calculate the rotational inertial parameters
microscopically within this model and get a deeper insight into the
dynamics of rotational motion.

(i) It describes the collective angular momentum as a sum of single-
particle angular momenta. Therefore, collective rotation as well as
single-particle rotation, and all transitions in between such as de-
coupling processes, are handled on the same footing.

(iii) It is correct for very large angular momenta, where classical argu-
ments apply (even if the quantum mechanical derivation does not
work in thig limit {[BMR 70)).

*1n this chapter, we Lreat oaly cranking theory for rotations. We can, however, also apply
a similar theory for general collective motions, as discussed in Section 12.3.7.
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The shortcomings of the model are:

(i) As we shall see, it is basically a nonlinear theory. Only in the limit of
small angular momenta can one linearize {t using perturbation
theory (cranking formula for the moment of inertia). In general, the
calculations are therefore complicated, especially in cases where one
has several solutions.

(ii) The resulting wave fungctions are not eigenstates of the angular
momentum operators. It is therefore not clear a priori how one has
to calculate, for example, electromagnetic transition probabilities. In
fact, we shall see in Section |1.4 that cranking model wave functions
are in a sense only internal wave functions and that one has to use
projection techniques to get the wave functions in the laboratory
system.

In the following we shall give the usual semiclassical derivation (see, for
instance, [Vi1 57b, So 73]) and discuss the cranking model in connection
with a pure single-particle Hamiltonian. Many of the arguments in the next
sections can, however, also be applied to a general two-body Hamiltonian
(see Sec. 7.7).

3.4.1 Semiclassical Denvation of the Cranking Model

The basic idea of the cranking model is the following classical assumption:
1f one introduces a coordinate system which rotates with constant angular
velocily « around a fixed axis in space, the motion of the nucleons in the
rotating frame is rather simple if the angular frequency is properly chosen;
in particular, the nucleons can be thought of as independent particles
moving in an average potential well which is rotating with the coordinate
frame.

In Section 11.4, we will see how the consequences of this picture can also
be derived from quantum mechanics using projection techniques. For the
moment, however, we want to stay with the classical description because of
ils intuitive character. Also, we do not want to lake into account any
residual interaction. Therefore, we assume a single-particle potental V of
fixed shape, which rotates in space, and accordingly we must consider the
time-dependent single-particle Hamiltonian

p2
h(t)=5— +V(r.1) (3.66)

and the corresponding Schrddinger equation

h(OW (1) = m%w). (3.67)

Introducing spherical coordinates r, 8, ¢ with respect to the axis w, we can
represent the time-dependence of V(1) in the following way. If V(r, 0) is the
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potential at time /=0, then we have at time /:
Vir,)=V(r.6,p—uw,0). (3.68)

Again we realize that V is only time dependent if it depends on ¢. In other
words, V should not have axial symmetry around the rotational axis,
because then there can be no collective rotation possible around an axis of
symmetry for a quantum mechanical system (see Sec. 1.5.1). Because of the
very simple time dependence of V (/) in Eq. (3.68), a unitary transforma-
tion exists which eliminates this time dependence. It is

U=e"" (3.69)

with @-1=(%/i)-3/3¢. U produces a rotation of an angle wr around the
rotational axis .
We find the time-dependent operator

Uh(1)U ="' = h(0) (3.70)
and define
i=uy, (3.71)
with
i = iAUY+ iRUY = (h(0)— ). (3.72)

Equation (3.72) is a time-dependent Schrodinger equation with an explic-
itly time-independent effective Hamiltonian 4_. It thus can be solved as an
cigenvalue problem in the standard way:

by = (h(0) - @) = €y, (373)

where ¢, are eigenvalues of the effective Hamiltonian. To get the energies
of the original Hamiltonian, we have to calculate

€= U (D> = CHLA(O) D = €, + (). (3.74)

The term «! is usually called the Coriolis term.

We have now solved the time-dependent Schrodinger equation in a
rotating potential and found that we must diagonalize an effective time-
independent Hamiltonian. We want to emphasize that we have not derived
a priori the Hamiltonian as it is seen from the rotating coordinate system,
since we transformed only the coordinates and not the momenta. In fact,
in the case of pure translational motion, we would get a similar result
[h, = A(0) —v-p], but from Galilean invariance we require that the Hamilto-
nian seen from the moving coordinate system is the same as in the rest
frame. Nevertheless, it turns out that in the special case of rotations, A, in
Eq. (3.73) is identical with the Hamiltonian as scen from the rotating
system {Va 56; Br 64, p. 69]. From the term wl, we can derive the Coriolis
force as well as the centrifugal force.

For systems with spin the operator which generates rotations is j=1+s.
The orientation of the rotational axis is usually chosen as parallel to the
x-axis because it is understood to be perpendicular to the axis of symme-
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try, which for w=0 is the z-axis. For higher angular momenta, one also
investigates nonsymmetric single-particle potentials. Nevertheless, we re-
quire that w is parallel to a principal axis of the potential. Therefore, the
many-body Hamiltonian of the cranking model is given by (J, =37, j¢):

H,=H-w, = Zh“’ (3.75)
=
where H is a sum of deformed single-particle Hamiltonians,

Within the cranking model we must now diagonalize H_, and the
resulting ground state wave function & is a Slater determinant. As in the
normal shell model (with w=0) the question arises how the levels in the
single-particle potential should be filled to obtain the lowest energy siate
for any given angular momentum (the yrast level). The answer to this
question (given in Sec. 11.4) is that we have 1o minimize the energy
E’'=(®|H —wJ |®), that is, we have to fill up the potential in the usual
way in the rotating frame,

For the energy in the laboratory system, from Eq. (3.74) we get

E(w)= (D |H|® )= (P |H,|®0+uw(DJ,[P.. (3.76)
Since E(w) cannot depend on the sign of w, one finds

E(@)= E(0)+ 59 0%+ - (.77
and. since for w=0 {(Py|/ {®,>=0,
J(w)={P |/ | >=%0+ . (3.78)
We can show that the constants 9, and 4, are equal [Sch 61],
4,=14,, (3.79)

using the fact that E(w) is the lowest eigenvalue of H . According to the
variation principle of Ritz, we get @_ as a solution of the equation

S¢OLH —w/ [®) =0, (3.80)

where |$) is any one from the family of all possible Slater determinants.
The condition is also fulfilled if we take |®) to be taken out of the set
{®,}, where ®_. is an eigenfunction of H —«'/,, and ' runs through all
real numbers. Then we find from Eq (3.80):

or
-32'
We also derive from Eq. (3.80);
wm .‘% (3.82)

To have a comparison with experiment, we have to determine the value of



130 Rotation and Single-Particle Motion

the angular velocity. Inglis [In 54] proposed to include the zero-point
oscillations at least semiclassically by requiring

J=(D 1= I(I+]1) . (3.83)
In first order we get
\11 I+1
w= —'g—g“—)- (3.84)
|
and, from (3.77),
E(1)= E(0)+ %1-(”1). (3.85)
I

For higher w-values there are deviations from this 7(J + 1) law. In general,

the moment of inertia is defined as
gL, (3.86)

w

Up to now we have investigated only completely independent particle
motion, by which we mean that we have even neglected the influence of
the rotation on the average field. In Section 7.7 we will show how this can
be taken into account.

3.4.2 The Cranking Formula

In the case of a pure /(J+1) spectrum, we need calculate only one
constant, the moment of inertia. It is already determined by the 2% state
and therefore it seems meaningful to apply perturbation theory for such
small /-values.

We start with the unperturbed system of a deformed potential, which is
filled up to the Fermi level. Levels below will be called holes (indices
i,i’,...); levels above will be called particles (indices m, m’,...). The shell
model basis consists of the ground state |®y>, ph-states |mi)>=aa,|®,,
2p-2h states, and 50 on. The perturbation w-J, is a one-particle operator
and can therefore excite only one ph pair at a time. Therefore, we get for
the perturbed wave function up to first order

<mﬂ',x|¢0>

. atal|®,), (3.87)
1

|®) = Id-’o)"’wz‘m:

where ¢, and ¢, are the single-particle energies of the Hamiltonian H. The
expectation value of J, up to first order in w is then

{milZ |0
J= (D D) =20 Kmil7,9o) , (3.88)
mi ¢
which, together with (3.78) gives for the moment of inertia®
[Kml|J,|i)|°
Inglis % 6.~ ¢ ( )

* In molecular physics a similar formula has been derived by Wick [Wi 48].
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This is the well known /nglis formula for the moment of inertia [In 54, BM
55}

The moments of inertia that result from this formula are usually very
close to the rigid body value of the moment of inertia [Eq. (1.49)]. In fact,
we shall see in Section 3.43 that, in the case of a pure anisotropic
oscillator, this will be an exact result. Liiders [Lii 60] showed that this is the
result for any independent particle model in the limit of large particle
numbers (see also [AB 59, Ro 59, SB 64, Da 75, KG 78)).

We can understand this result qualitatively, if we realize that the velocity
distribution of the ground state in a deformed static potential is nearly
isotropic (see Sec. 13.3), and that this fact is not changed in the rotating
system by Coriolis or centrifugal forces (see [BJ 76b]). Then there is no net
flow in the intrinsic system and from the laboratory frame we observe a
rigid-rotation velocity distribution.

As we have seen in Section 1.5.1, the experimental moments of inertia
are a factor of 2 to 3 smaller than their rigid body values. Bohr and
Mottelson {BM 55, Mo 56] already indicated that residual two-body
interactions would lower these values. The most important influences in
this respect are the correlations of the pairing type. Since they can be
included very easily within the BCS-formalism (see Chap. 6) in a single-
particle description, we give here the derivation of the so-called Belyaev
formula [Be 59. 61], which is the extension of the Inglis formula (3.89) that
includes pairing correlations. (Readers not familiar with this formalism are
referred to Chapter 6.)

In this case, |BCS) represents the BCS-ground state (6.31) and excitations are
given by the two-quasi-particle states oy’ a,* |BCS), four-quasi-particle states, etc.
By analogy with Eq. (3.87), we obtain the perturbed wave function

(BCS|ay-ay J,|BCS)

[@y=[BCS)+0 3 E+E

k<k’
where E, + E,. is the excilation energy of the quasi-particle pair &, &’. The quasi-

particle energies are given by
Ep= (e =N +23 . (3.91)

Proceeding as in Eqs. (3.88) and (3.89), we find for the moment of inertia

ot o [BCS), (3.90)

2 (392)
§ peivare =2 —_ 392
Bely Et. E,+E,
From Eq. (E.16), we find J}” and get
AL
Su,m-2k kz o —'E*".i—i:—(ukﬁto-‘ u,v,‘)z. (393)
>

This formula for the moment of inertia indeed yields lower values as compared
o expression (3.89). Two eflects are responsible for this:

(i) The energy denominator is much larger than the particle-hole energies in Eq.
(3.89). The parameter A [Eq. (3.91)] produces a gap of at least 2422 MeVY
for the important levels in the neighborhood of the Fermi surface

(ii) The factor (u, vy — 40, ) is usually somewhat smaller than unity.
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The lowering of the moment of inertia in the BCS-theory, as compared to
the rigid body value, corresponds 10 & superfluid slippage of some nucleons
as the nucleus rotates [Mi 59, 60].

Extended numerical calculations [GR 60, NP 61, MT 75} for realistic
nuclei show a remarkable agreement with the experimental values. As we
shall see in the next section, it is very imporiant to apply the Inglis or the
Belyaev formula to self-consistent wave functions, that is, those calculated
at deformations that correspond to the energy minimum. In most of these
calculations, this is achieved by using Nilsson wave functions and energies
at the experimentally observed deformations as well as the experimentally
determined values of the gap A (see also [MN 59)).

The success of these calculations, which produce roughly correct mo-
ments of inertia lying between the (too small) irrotational values and the
(too large) rigid body value gives us great confidence that the picture of
rotational nuclei as a deformed superfluid many-body system 1s correct.

Of course, we can investigate the influence of the residual interaction on
the moment of inertia. This can be done within the framework of linear
response theory (see Sec. 8.5.3 and [MSV 72)). In this kind of theory, the
external field represented by the Coriolis operator J, can excite virtual
vibrations of the core which, in turn, have an influence on the moment of
inertia. There are two types of such vibrations: surface oscillations (ph
vibrations), which correspond to the stretching effect, and oscillations in
the paining correlations (pp-vibrations; see Sec. 8.3.5). The net result of
such calculations is that both effects more or less cancel, and we get
roughly the same values for the moments of inertia (Fig. 3.14) as given by
the BCS theory.

We have now discussed the application of perturbation theory to the calculation
of the expectation value of J,, that is, the moment of inertia. In a similar fashion,
we can calculate other properties of the rotating nucleus, for example, the gyromag-
netic ratio gg or the magnetic moment of the first 2% state. Since the magnetic
moment pu is defined as the expectation value of u, in the state |/, M= /) |Eq.
(B.31)] and the cranking model wave functions are not eigenfunctions of angular
momentum, it is not clear at this point how to calculate y. In Sec. 11.4, we will see
that a projection technique has to be applied. In lowest order, we get a very simple
result, which can be understood easily within the semiclassical picture of the
cranking mode):

TEIC MW (3.94)
We can therefore define the gyromagnetic ratio (1.37) by
p=gnJ=gn <O, (3.95)

From (3.90), in first order perturbation theory, we get

K|J kYK | etk +
&= i > (ki ;.'< J:‘ 2tec) (4 04— uk'ok)z- (3.96)
k, k>0 k [ 4

The values calculated with these formulae are smaller than the liquid drop value
gx=Z/A [Eq. (137)] and agree quite well with the experimental data [MSV 72].
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Figure 3.14. Momeants of inertia in rare earth nuclei. The squares indicate experi-
mental values [NP 61]; the crosses are obtained from the Belyaev formula (3.93).
The open circles take into account only the stretching effect (ph interaction); in
addition (o that, the closed circles also take into account the antipairing effect
(pp-interaction). (From [MSV 72].)

As we have seen in Section 3.2, deviations from the 7(/+ 1) law occur as
we go to higher angular momenta. To calculate the B and C coefficients
[Eq. (3.1)] connected with these deviations, one has used perturbation
theory in higher order, including the effects of a residual interaction [Ma
65, Ma 67a, MR 70}, so that the most important effect is the so-called
Coriolis-antipairing effect, which we will discuss in Section 7.7. As we shall
see, it is only at the very high spin states with 7 > 30 or 40 that one can
expect the pairing correlations to vanish.

3.4.3 The Rotating Anisotropic Harmonic Oscillator

We have seen in Section 2.8.3 that the anisotropic harmonic oscillator can be
solved analytically and that it provides at least a qualitative model for a deformed
nucleus. It turns out that it can also be solved analytically in the rotating frame (see
[Va 56, Ze 75, RBK 75, GMZ 78]), because I, = yp, — zp, is a quadractic form in the
coordinates x, y, z and momenta p,, p,, p,-

We can forget about the spin, since the potential does not depend on it (the term
—ws, in the Coriolis operator can be diagonalized separately in the spin space and
gives only a diagonal contribution). The Hamiltonian then has the form

h!

1 2
h, = - mA+ im(wfx2+u’5'z+w,zz)—w()p, —1p,). 3.97)

We introduce the creation and annihilation operators for the harmonic oscillator
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bosons in x, y, and z directions a,,4a,, and a,:

x-(_,_,’ij)*(ana:) pem 252V 0,
|

}--;( ) (a,- ") p.,-h(m—;:!) (a,+a). (3.98)

z-(ﬁ:)i(a,+a,") p,-—h-(TzT) (a,—al).

1

In these operators, A, is of the form

ho=ha,(ata, + ;)+My(a;a).+-;-)+hw,(a,‘a,+-;—)

4 o {(0,—w,)a e, +a,a,)+(w,+w,)(a,a,+aa,)}). (3.99)
ZJw’w,

The Coriolis operator in (3.99) has two contributions. The first one creates or

annihilates two oscillator quanta. Therefore, it couples shells with major quantum

numbers ¥ and N ¥ 2.* The second part conserves the total number of quanta, but
shifts quanta from the y-direction into the z-direction and vice versa.

3431 The Inglis Formula. First we want to treat the Coriolis term in perturbation
theory. In the inglis formula (3.89), the AN = =2 part has the energy denominator
*Mw, +w,) and the AN =0 part has the denominator *Xw, —w,). The matrix
elements of q,a™ are given in Eg. (C. 120),

(n—lajnd =, {n+lla*in>=dn+T,
and we get, from (3.89)

A (w,—w ) (o, +(.u,)2
fllu;h," 2“’!”' w,-l-w (N +N, )+ —;***;:-(N,-‘Ny) . (3.100)
where the
- |
N, ¥ f§| ("x. » Pl 'i)‘ (3.]0])
satisly the relations
:?l <x >‘ A m")j ,gl ("_. + 2 ); Amwx Nx' (3102)

Very important for the following discussion is the self-consistency condition, [BM
75], namely, that the potential (g;vcn by w,,w,,w,) has the same shape as the
density distribution (given by %2, p? and 7).

1

1.1 .1
N2 NPN TR ’F'F'«{,'a’,' (3.103)
Together with Eq. (3.102), we find
N, mo N =N, =C. (3.104)

* It vanishes for small deformations (w, =xw, ) and is therefore often neglected [ALL 76].
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With this condilion we can rewrite Eq. (3.100):

N, N,
glagli=h w—y+‘s: - (3'05)

The value of the moment of inertia so obtained is identical 1o the rigid body value.
From Eq. (3.102) we get

N,
476 m m 2(@5 +<z1>)-n(_+—) (3.106)
(=] w_‘r o,

Once again, we would like to stress the point that the selfconsistency condition
(3.104) is crucial for this result. If we occupied the y- and z-direction with the same
number of oscillater quanta (N, = N,), we would get from Eqs. (3.100) and (3.102)
a value '

(N,/u’*-N,/ﬁ),): (_;’2"""‘!1)2

ROy A R C1em

which is proportional to the irrotational flow value [BM 75].

3.432 Exact Solwtion. In the next step, we go beyond perturbation theory and
diagonalize the single-particle Hamiltonian (3.99) exactly.* It is a quadratic form in
the boson operators a,a* and can therefore be diagonalized [RBK 75) in the same
way a3 one diagonalizes quadratic forms of the RPA-type (see Chap. 8).

To diagonalize the singie-particle Hamiltonian, we introduce a canonical trans-
formation among (he momenta p,, p, and the coordinates y, z [Va 56):

Qz' az(,}""ﬁP,);
ymay(z + BP))
Py=ai ' (1-88)"'(p, + 82),
Py=a; '(1-88)""'(p,+ &), (3.108)

which guarantees that the 0,, P, fulfill the commutation relations of momenta and
coordinates. The constants # and & are determined by the requirement that the
Hamiltonian (3.97) contains no mixed terms P,Q; or P40, in the new representsa-
tion. The constants a,; and a, normalize the new coordinates in such a way that the
mass parameter is again m. In the new variables, the Hamiltonian has the form [Va
56]

2 2 2
o - 2+ Lmalet -fm _ﬁ 1 2
o ( 2m+z""“)+( s + gm0 |+ - 5 + g 0] ) (109)

The coordinates x, Q,, @, are the normal coordinates of the problem, and the
frequencies Q; are given by

ﬂ%.,-wz+w +«u +4ut0? (3.110)

ug--;-(u,_u,) G.11)

with

* For the calculation of matrix elements in this rotating oscillator basis, see |[LR 77].
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We can now define rotating bosons B;*, B, in analogy to Eq. (3.98):
By =(2Am0) P+ im,0)), (3.112)
By = = i(2am2;)” Y(py+ 1m0, 0,),

and obtain for the Hamiltonian

h“-hux(a:a,+ l) +20y{ BBy + l)+m,(3,+a,+ l) (3.113)

2 2 p1
The corresponding eigenstates
Iy, 1, mydax (2 )™ (BF)(B)7 = (3.114)

are characterized by the numbers of rotating bosons.
Their single-particle energies are

’ l l ]
ornpny =P (me ¥ 3 } AR my+ 3 ) 440y (ms+ 3 ). (3.115)

Assuming again 8 fixed occupation in a Slater determinant | ), that is, a fixed set
of numbers N,, N;, N, defined in analogy to Eq. (3.101) for rotating bosons, we
find for the total energy in the rotating frame,

E'(0)=CH)> = N o, + NoA, + NoAR,. (3.116)

Remembering that {H ) is stationary with respect to vanations of the eigenfunc-
tions, we can calculate the expectation value of the angular momentum [RBK 75].

8H, 3 40, (N; N, Ny N
Ly=— e L a2 (22 [ 22+ 2 Ga
NG R “{ng-ng(h? g,) (92 93) G
and the shape parameters 22, §2, 17,

1 OHe, 1 3E
mw, * dw, mw, ow,

and so on. The moment of inertia is given by

X2-<x'z>-

,  Pr=e (3.118)

§ - ——‘fl-m(yz-i-zz)dk (N2, — N8, (3.119)

2 -03

For the final construction of the many-body Slater determinant, however, we
have to fix the occupation numbers ¥,, N;, N,.

In the nonrotating case, the numbers N, , N, N, were determined by the self-
consistency condition (3.104). [t can be motivated by different arguments, which all
give the same results at w=0. For w30 this is no lopger the casc. Several methods
bave been proposed:

(1) Minimizing the expectation value E’'(w) in Eq. (3.116) lor fixed occupation as
a function of the deformation parameters w,, w, and w,. and the frequency «
under the constraint of constant volume (%%-p?-7'= const) and fixed
angular momentum (L) {St 78, TA 79].

(ii) Requinng an isotropic velocity distribution in the rotating f[rame [RBK 75},
This is reasonable for heavy nuclei, where there are many level crossings and
one has always filled up the lowest levels in the potential (see Sec. 13.3). We
then get the modified self-consistency condition

wax- Nzgz- N,ﬂ,. (3.'20)
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It can be shown that under this condition the shape of the mass distnibution (given
by %3, 7%, 1% is proportional to the shape of the potential if one includes the
centrifugal potential im (e xr)%.

From Eq. (3.119) we see that the self-consistency condition (3.120) yields the
rigid-body value for the moment of inertia® at the actual deformation, which may
change for large /-values.

3.4.4 The Rotating Nilsson Scheme

For realistic heavy nuclei, the pure harmonic oscillator is only of a limited
importance, because it does not contain the drastic energy shift of high j
shell orbitals due to the 1-s terrn. As we have seen in Section 3.3, they play
a crucial role in the interpretation of rotational spectra in all heavy nuclei.
One therefure has extended the Nilsson model and added a Coriolis
term — wj, to the single-particle Hamiltonian (2.89) [ALL 76, RNS 78];

K(w)=h -, (3.121)

Figure 3.15 shows the qualitative behavior of some of the single-particle
levels thus obtained as a function of w. It shows the following features.

(i) At w=0 are the usual Nilsson levels. They are twofold degenerate
with respect to time reversal symmetry (={2). For w+#0, this sym-
metry is broken by the Coriolis term, and a split into two single
levels is observed.

(i) The cranked Nilsson Hamiltonian is still invariant under a rotation
of 180° around the x-axis, that is, the two levels belong to eigen-
states of the operator

G - (3.122)

with the eigenvalues r, = i (“signature” [Bo 76a, b]).

(1) Some levels show an extremely strong level splitting with increasing
w. They belong to orbits with large j- and small f-values (e.g,
lijy 6604, 6513, 6423). They show strong R-mixing and align-
ment along the x-axis (decoupled bands).

(iv) For even nuclei at moderate angular vejocities, however, pairing
correlations, as discussed in Section 3.2.2. and 7.7, should be taken
into account. They counteract the rotational alignment and try to
keep the particles in pairwise occupied orbits. In 2 full microscopic
description of the backbending effect, the pair correlations must be
taken into account self-consistently (see Sec. 7.7).

(v) For large frequencies, the alignment effect brings levels from higher
major shells down into the neighborhood of the Fermi surface,

* It has recently been shown {FR 76b] that electrons confined by a harmonic potenual and
submitted to 8 constant magnetic field are rotating uniformly around the axis formed by the
field; this is the analogous effect to the ngid body value of the moment of inertia discussed
here.
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Figwre 3.15. Qualitative behavior of the single-particle levels in a cranked Nilsson
model at a prolate deformation (5= 0.25) as a function of the ¢ranking [requency w
in units of Awy. Dashed lines correspond to levels with different r.-quantum
numbers. (We are grateful to Dr. R. Bengisson for the preparation of this figure.)
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(vi) Eventually, new shell closures with new magic numbers develop at
high angular momenta, which can influence the energy surface for
the fission process (see Sec. 3.4.5).

3.4.5 The Deformation Energy Surface at High Angular
Momenta

As we already discussed in Section 2.9, the pure Nilsson model cannot be
used for the calculation of total energies nor for the calculation of the
shape of the energy surfaces at large deformations, because the average
part of the energy is not reproduced in a proper way within this model.
Therefore, we calculate only the oscillating part of the deformation energy
within this model and replace the smooth part by the liquid drop energy at
the same deformation.

In the same way, we can calculate energy surfaces at a fixed angular
momentum / as a function of the deformation. For an ellipsoidal shape
[characterized by the parameters 8 and v (Eq. 1.88)], the total energy is
then given by

E(B’Y-‘I)-ELDM( B‘7'1)+ E;h(BtY!I)—E:h(ﬁr Y. I)- (3123)

Here E,,, 15 the deformation energy at a rotating ellipsoid with the
rigid-body moment of inertia 3,,( B, v), because one assumes that at high
angular momenta pairing correlations can be neglected.* E,, is the shell
model energy and i1s obtained by summing up the single-particle energies.
E,, is the averaged part of it, and is calculated by an approprnate smooth-
ing procedure (see Sec. 2.9).

There are (wo ways to derive these quantities from the diagonalization
of a deformed single-particle potential in the rotating frame: Work either
at constant frequency w [NPF 76] or at constant angular momentum /
[ALL 76]. Both methods agree, if one uses a deformed Wood-Saxon
potential, where the averaged moment of inertia is very close to the
rigid-body value'! [BJ 76b, NTP 77].

Several groups have carried out investigations along this line [BLL 75,
NP 75, NPF 76, ALL 76, FDG 76, NTP 77] in many regions of the periodic
table. Qualitatively they have found similar results:

(i) For spherical or weakly deformed nuclei at the beginning of the rare
earth region, the nuclei behave similarly to the classical liquid drop
(Fig. 1.18): Up to angular momentum /=50-70% they are oblate
and rotate around the symmetry axis. In this region, the rotation is

*In fact, multiplicity measurement of the y-cascade indicates the nuckus reaches the
rigid-body moment of inertia at high spin values [SBC 76].

YThe /? term in the Nilsson potential (2.89) is non-local and gives contribution to the
effective mass. It produces an averaged moment of inertia which is ~30—40% larger Lhan the
rigid body value [Ty 70, 71, BR 71b, Je 73] One has used scaling procedures (o compensate
for this eHect [NTP 77)
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not collective and one expects yrasl traps (sce Sec. 3.4.7). For higher
I-values they rapidly change the shape to triaxial and prolate defor-
mations (Jacobi-shapes; see Sec. 1.7). This transition corresponds to
a drastic increase of the angular momentum (“giant backbending™) as
shown in Fig. 3.16. Finally, the nucleus fissions.
(ii) Nuclei in the middle of the rare earth region start at low J-values at
prolate shapes and rotate around an axis perpendicular to the
symmetry axis. With increasing rotation the Coriolis force aligns
more and more particles parallel to this axis, and at /~40-50 we
find a transition to triaxial and sometimes even oblate shapes,® as
in Fig. 3.17. At very high angular momenta the nucleus again

becomes triaxial and finally fission takes place.
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Figure 3.16. Backbending plot for the yrast spectrum of '**Sm in terms of the
rotating liquid drop model. (From {ALL 76].)

We want 1o conclude this section with the remark that such calculations
can only give a qualitative impression of the behavior of the nuclear
many-body system at such high angular momenta. Only for very low
excitations and for energy surfaces with deep minima can we expect the
nucleus to have a fixed deformation. In general, it will carry out quantum
mechanical zeropoint fluctuations around these minima which ought to be
described by a dynamical theory (see, for instance, Chap. 10).

* In calculations based on 8 Wood-Saxon potential [NTP 77), the nucleus does not reach
such drastic y-deformatione, and fissions without having obtained an oblate shape.
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Figure 3.17. Potential energy surfaces in the (8, y) plane with inclusion of shell
corrections for '®Yb as a function of angular momentum. (From {AH 76). Notice
that these authors replace the Hill-Wheeler coordinate y by —v.)
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3.4.6 Rotation about a Symmetry Axis

As we have seen in the last sections, there are regions in the periodic table
where we find nuclei “rotating™ around the symmetry axis. This happens in
particular at the beginning and end of each major shell. At the beginning
of each shell are a few particles sitling on a more or less spherical core. To
create a large amount of angular momentum they all must align along the
rotationtal axis (the x-axis), that is, classically speaking these particles have
to run in the equatonial plane around the nucleus and produce an oblate
density distribution.*

Such a configuration is certainly not collective rotation. since there are
only a few particles involved. Each single particle wavefunction is an
eigenfunction of j, with the eigenvalue a,. The component of the total
angular momentum in the direction of the symmetry axis is given by

o= z a; (3.124)
fo i
To increase the angular momentum we have to change the occupation in
the deformed well and to put particles from levels with lower (for instance
negative) a-values into those with higher (positive) a-values.
Formally, this can be done again by a cranking procedure around the
symmetry axis. Since the operator j, commutes with A. we get the single-
particle energies in the “rotating frame.”

(;nei—m" (3]25)

where ¢ are the eigenvalues of & in the nonrotating frame. These are
straight lines as a function of w (Fig. 3.18a) whose slope is given by
de,

2-‘;-—01 (3.126)

The condition to minimize the energy in the rotating frame

A
E'= > (¢-wa) (3.127)

=1
guarantees that one always occupies the lowest levels ¢/. With increasing
frequency « we thus obtain a stepwise increasing of the angular momen-
tum (Fig. 3.18b). The distance between two steps and the size of the steps
is given by the distances of the levels ¢ and the angular momentum values
a;. Therefore there is a statistical increase of the angular momentum with
the [requency w. The moment of inertia 4 is defined only on the average

(dashed line in Fig. 3.18b).

To get an estimate for the size of this moment of inertia [Bo 76b], we
realize that each line in Fig. 3.18a has the slope —a, (increasing or

* At the end of a major shell similar arguments can be applied lor holes. We then end up
with a rolation about the symmelry axis of & prolate density distnbution. In the middle of &
shell there are many valence particles lorming a prolate deformed shape. It in easy to generate
large angular momeptum from a few alignment processes, without oo drastic changes in
deformation.
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Figare 3.18. (a) Schemalic representation of the cigenvalues ¢ in Eq. (3.125) as a
function of the cranking [requency. (b) The angular momentum {/_> obtained by
increasing values of w and by always occupying the lowest levels in (a).

decreasing, depending on the sign of a). For w=0 the levels *+q, are all
occupied pairwise. The resultant angular momentum vanishes. For finite w
some of these levels with negative a are no longer occupied, but other
downward-coming levels with positive a-values are occupied anew. For a
fixed value of a (for instance « = 1) the number of newly occupied levels is
cn the average wag(a), where g(a) is the density of levels with the
quantum number a. Therefore, we obtain for the angular momentum on
the average

Jow™= 2 a,-Za-w-a-g(a)-wE az-g(a), (3.128)

iCep o o

and for the average moment of inertia
0= O a’g(a). (3.129)

An evaluation of this quantity within the Thomas-Fermi approximation
gives exactly the rigid-body value for the moment of inertia [Bo 76b]. On
the average, “single-particle” rotation around the symmetry axis therefore
shows quite a similar behavior to collective rotation, although the internal
structure is completely different.

3.4.7 Yrast Traps

Since the level spacing in the case of a rotation around the symmetry axis
has a statistical character, one expects yrast traps (high spin isomeric
states). They are defined as yrast states which cannot undergo a rapid
y-transition and have been predicted by Bohr and Mottelson [BM 74].
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Filling the levels in the rotating well always from the bottom, we
eventually obtain, with increasing angular velocity, jumps in the angular
momentum by several units (see Fig. 3.18b). This can be visualized most
easily in a representation of the eigenvalues ¢ in the nonrotating oblate
deformed Nilsson well as a function of the components a of the angular
momentum along the symmetry axis (Fig. 3.19). For small deformations
we have rather pure j-configurations. The eigenvalues ¢ for levels in the
same j-shell liec on approximate parabolas [see Eq. (3.39); we have only to
replace by a]. At oblate deformations ( 8 <0) the highest a-values, that
is, the most aligned states, have the deepest energy, because their oblate
density distribution in the equatorial plane has the maximal overlap with
the oblate density of the core.

E'ﬁ j=5t‘z/0-
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Figure 3.19. Schematic representation of the single-particle energies ¢, in an oblate

deformed Nilsson well as a function of a (the cigenvalue of j) with the Fermi
surface at /=0 (full line) and at /=6 (dashed line).

Al w=(, the Ferma surface is a horizontal line and all levels below it are
occupied. At finite w-values, according to Eq. (3.125), the Fermi level in
the rotational frame has a slope w. As the value of w increases, levels with
negative a-values are vacated and those with positive a-values are newly
occupied. In Fig. 3.19 we show a situation where a jump of 6 units of
angular momentum occurs. The remaining /-values on the yrast line can
be obtained by constructing ph-configurations with respect to the rotated
energy surface. This is usually connected with an increase in energy.

Therefore, it may happen that the yrast line is no longer a monotonically
increasing function of /, and a certain level with /= [, can have a deeper
energy than the neighboring levels with /=/—1,/,-2,... . A fast y
transition of E'l-, E2-, M 1- or M2-character (i.e., with low multipolarity;
sec Appendix B) is then not allowed (so-called energy spin traps).

L=
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Even if this is not the case, the internal structure of the states with
I,—1,1,—2 might be rather different from the structure of the state /.
Then the transition matrix elements can be very small and the lifetime of
the state /, is very large (structure spin traps). Examples are cases where the
states with Jo— | or J,—2 cap only be reached from the state /, by a 2p-2h
excitation, or cases where the y-transition matrix element is hindered by
the intrinsic seiection rules of the single-particle wave functions (for
instance, /-forbidden M |-transitions; see Sec. 2.7.2.).

Several groups have investigated the theoretical possibility of yrast lraps
by searching for cases of rotation around the symmetry axis in the energy
surfaces at high angular momenta and by investigating the detailed single-
particle structure in these cases [ALL 76, CDS 77, AK 77, DNM 77, PFL
78, PTF 78, AHL 78, Ab 78, MDN 78]. Some regions in the periodic table
have been found in which they should be expected. These are mostly
weakly deformed nuclei such as Te, Ba, Ce, Sm, neutron deficient rare
carth isotopes, and nuclei in the Pb-region.

On the experimental side we have known for a long time about states with
large angular momenta and very long lifetimes for spherical nuclei. These
are states with rather pure high j-shell conligurations, which have no
allowed y-transition matrix elements of low multipolarity to other states at
deeper energy. The most famous example [PAG 62] is the 18* isomer in
212Po with a lifetime of 45 sec, which consists of an aligned (whg,,)’(¥i), ,2)*
configuration.

Another group of high spin isomers, usually called K-isomers, were
observed in well deformed nuclei, such as the 4s and the 31y isomers in
'Hf, which can be interpreted as a K" =8 and a K"=16* band head,
whose y-decay is K-forbidden [HR 68, KL 77].

Finally, in recent years an island of about 20 adjacent nuclei in the light
rare earth region with long lived isomers has been found [PBB 77]. They
are probably associated with oblate deformation and *'single-particle”
rotation {AHL 78].

The properties of nuclei in the vicinity of ?®Pb have usually been
studied in terms of the spherical shell model with residual interaction and a
proper angular momentum coupling. Since these configurations are rather
pure, some calculations of this type could explain measured excitation
energies with extraordinary accuracy [BBH 77].

The physical reason for the aligned high spin configurations having such
a long lifetime is the same in this picture as we have explained in the
mode] of rotations around a symmetry axis: Two nucleons with aligned
spins gain energy because their residual interaction is largest for wave
functions with a large spacial overlap® (see Sec. 4.4.8.). Therefore, these
high spin levels are lower in energy than the neighboring states with
smaller /-values, and last y-transitions are forbidden. In the description of

*This effect has been called the MONA-effect (Maximal Overlap of the Nuclear wave
functon by Alignment [FPD 76]).
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these nuclei by the mean field approach in a rotation about & symmetry
axis, the same effect shows up in the fact that (as discussed in Fig. 3.18)
aligned levels with maximal a-values and oblate density distribution are
shifted downwards in energy because of their large overlap with the oblate
core.

Both methods—shell model calculations in a spherical basis based on
angular momentum coupling techniques and cranking calculations in a
slightly deformed well—are certainly hard to compare. The spherical shell
model is certainly much better (though it takes more effort) as long as one
can assume the spherical core 1o be inert, otherwise one has to take into
account multiparticle-multihole configurations. It is therefore limited to
the very close vicinity of magic nuclei. On the other side, the cranking
model treats the residual interaction by a deformed well and is therefore
much easier to handle over a wide range of nuclei. It allows, however, only
very qualitative predictions, since it violates conservation of angular mo-
mentum and is microscopically derived only in the regions of well de-
formed nuclei with rotations perpendicular to the symmetry axis (see Sec..
11.4).



CHAPTER 4

Nuclear Forces

4.1 Introduction

Up to now we have only taken into account the forces acting between
nucleons in a very qualitative way. We have used some of their properties
—such as their short range and saturation character—to explain the
volume and surface terms in the liquid drop model. We have also assumed
that they give rise to an average single-particle potential. By adjusting a
few parameters, we are able to reproduce a large quantity of experimental
data. The success of these phenomenological models gives us the confi-
dence to go a step further and investigate the nuclear many-body problem
from a more microscopic point of view. In particular, we wish to apply the
techniques of modern many-body theory.

The starling point for all these considerations is obviously the two-body
inleraction between nucleons. There are three basic assumptions in this
concept:

(i) Dynamical mesonic degrees of freedom can be neglected and the
nucleus can be described as a system of A nucleons whose interac-
tion can be represented by a potential.

(1)) Relativistic effects are negligible.

(iif) Only two-body forces are important.

Even with these rather drastic assumptions, we immediately run into two
difficulties when we try to proceed in the way we have discussed:
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these nuclei by the mean field approach in & rotation about a symmetry
axis, the same effect shows up in the fact that (as discussed in Fig. 3.18)
aligned levels with maximal a-values and oblate density distribution are
shifted downwards in energy because of their large overlap with the oblate
core.

Both methods—shell model calculations in a spherical basis based on
angular momentum coupling techniques and cranking calculations in a
slightly deformed well—are certainly hard to compare. The spherical shell
model is certainly much better (though it takes more effort) as long as one
can assume the spherical core to be inert, otherwise one has to take into
account multiparticle-multihole configurations. It is therefore limited to
the very close vicinity of magic nuclei. On the other side, the cranking
model treats the residual interaction by a deformed well and is therefore
much easier to handle over a wide range of nuclei. It allows, however, only
very qualitative predictions, since it violates conservation of angular mo-
mentum and is microscopically derived only in the regions of well de-
formed nuclet with rotations perpendicular to the symmetry axis (see Sec. .
11.4).




CHAPTER 4

Nuclear Forces

4.1 Introduction

Up to now we have only taken into account the forces acting between
nucleons in a very qualitative way. We have used some of their properties
—such as their short range and saturation character—to explain the
volume and surface terms in the liquid drop model. We have also assumed
that they give rise to an average single-particle potential. By adjusting a
few parameters, we are able to reproduce a large quantity of experimental
data. The success of these phenomenological models gives us the confi-
dence to go a step further and investigate the nuclear many-body problem
from a more microscopic point of view. In particular, we wish to apply the
techniques of modern many-body theory.

The starting point for all these considerations is obviously the two-body
interaction between nucleons. There are three basic assumptions in this
concepl:

(1) Dynamical mesonic degrees of freedom can be neglected and the
nucleus can be described as a system of 4 nucleons whose interac-
tion can be represented by a potential.

(i1) Relativistic effects are negligible.

(iif) Only two-body forces are important.

Even with these rather drastic assumptions, we immediately run into two
difficulties when we try to proceed in the way we have discussed:
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(I). There exists no derivation of the nucleon—nucleon force from first
principles. Though this should be possible in principle with the modemn
theory of gauge fields for quarks and gluons, attempts in thiz direction are
only in their infancy [De 78). On the other hand, theories that start out
from an effective Lagrangian for interacting mesons and nucleons have
recently proved quite successful (see, for example, [CLL 73, LLR 75, DSB
71, Vi 78, Ho 80]). The basic ingredient is the pion-nucleon coupling
constant, which is known from experiment. The nucleon—nucleon force is
obtained without a free parameter for particle distances greater than 0.8
fm. The part from 0 10 0.8 fm is represented by a phenomenological
potential containing six parameters in each isospin channel. Excellent fits
to the measured nucleon-nucleon phase shifts are achieved.

The potentials used until now have been almost entirely phenomeno-
logical (besides the Yukawa part resulting from the one-pion exchange; see
below) and contain up to about 50 parameters. The experimental phase
shifts are also very well reproduced with these potentials. On the basis of
these forces, which we shall discuss very briefly in Section 4.2.2, we should
be able to apply the method of many-body theory and to derive the
phenomenological properties discussed in the preceding chapters in a
quantitative way.

(i). There is, however, a second difficulty in nuclear theory. These bare
nuclear forces are, from a numencal point of view, very ill behaved. They
show strong repulsion at short distances (hard core) and cannot be treated
straightforwardly by the usual many-body techniques. For instance, they
are too strong to be treated by perturbation theory and the hard core
makes a direct self-consistent field approach (see Chap. 5), for example,
impossible. In fact, the nucleons within a nucleus do not feel the bare
nucleon-nucleon interaction. Taking into account that they interact with
one another in the presence of many other nucleons permits one to
introduce an effective nucleon—nucleon interaction, which is rather well
behaved and allows application of the usual many-body methods, such as
Hartree—Fock theory (Chap. 5). Much work has been done to derive this
effective interaction from the bare nucleon-nucleon force. We will in Sec.
4.3 discuss the basic ideas that have been used to achieve this goal. As a
result, a great deal has been learned about the properties and the structure
of these effective forces. However, in order to reproduce experimental data
quantitatively one still needs phenomenological repormalization parame-
ters, and from this point of view the theory is not yet very satisfying.

In most of the so-called microscopic descriptions of the nucleus one uses
phenomenological effective forces, which are constructed on the basis of
these considerations, but depend on some parameters that are adjusted to
fit experimental data.

In this chapter we do not want to go into such attempts to derive the
bare nucleon—nucieon force [BJ 76a). In the second section we will discuss
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some invariance principles that should be obeyed by the bare forces and
which already allow one to draw some conclusions about their analytical
structure. In the third section, we briefly present the microscopic descrip-
tion of effective interactions and discuss their properties and their field of
application. The fourth section presents a number of phenomenological
potentials that have been used to represent the residual interaction be-
tween the nucleons moving in a given average potential.

We wish to emphasize that in this chapter we are only dealing with the
nuclear interaction. The Coulomb interaction has to be treated separately.
When a comparison with experimental data is required one has always to
subtract Coulomb effects first.

4,2 The Bare Nucleon-Nucleon Force

4.2.1 General Properties of a Two-Body Force

The most general quantum mechanical two-body potential V' is completely
specified by its matrix elements between two-body states (in a coordinate
representation [ry, s, #;; F3, 53, 8503 where 5;= * 1 and ;= =} are spin and
isospin coordinates) as:

NSNS0

VRS0 Ta8,00. (4.1)

The space of two-particle states |r;,s,,7; r;, 5;, £;) is a product space of the
coordinate wave functions |r,> and |r,> and the spin and isospin vectors
|s,>, |s,> and |¢,D, [£3). Since any operator in the spin space of one particle
can be represented as a linear combination of the spin matrices o, 0,, 0,
and the unity matrix o,= |, the most general form of the operator ¥ is

3
V= 3 Viollal®, (4.2)
i, k=0
The function ¥, also depends analogously on the isospin operators 7("
and 72, In addition to this isospin dependence, the ¥, are, in general,
integral operators in coordinate space

Vinry = [ V(R r.n, e)inn d'r 7. (4.3)
In the special case in which ¥ (r}, r5,r, r,) has the form
V.o, r,n)=6(t,-r)8(r,—r)V(r,r) (4.4)
V is called a local potential, and we have
Ving = V(r, np)inry). (4.5)

In this case the interaction between the two particles depends only on the
points r, and r, (and eventually on the spin and isospin). It does not, for
instance, depend on the velocity of the particles.
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We shall show that, in general, nonlocal potentials correspond to a
velocity dependence. We therefore expand*®

: d
Ir T =) +(r —r) o= ) + (1 —1y) 3 frr+ -
or, dar,

= exp{(F—r) g + (G r) 3 | e (46)

and get, from (4.3),

i

Vi = [ ¥ (v mexp{ £ (1 - 1By + 3 (- ro)py | Ine> 4% 4%,

= V(r, P 2. PN T2 (4.7
This means that the most general potential can be represented by Eq. (4.2)

where the V,, are operators in coordinate space of the form (4.7) (for
reasons of simplicity we neglected the isospin dependence).

In the following we investigate the symmetry properties of such potentials
V(L= V(r, p. o', v r, p, @', 12). The form of this general function can,
however, be restricted by requiring the imposition of a number of symmetries.

In parucular, we require the following eight symmetries:

(I) Hermeticlty

(i) Invariance under an exchange of the coordinstes

V(l,2)= V(2. 1). (4.8)
This property is strongly connected with the symmetry of the two-particle wave
function |1 2). Since nucleons are fermions, they have 10 be totally antisymmetric.

For example, if we take a product wave function built out of ordinary space, a spin
and an isospin part

Kyt 0oty | 12) = @ rdx(sy, 5208 (e, 1) (4.9)
we have four combinations compatible with the Pauli principle, which are charac-
terized by the symmetry of the coordinate space and spin part (Table 4.1). The

isozpin component is determined in each case by requiring the antisymmetry of the
total wave function (4.9).

*:: rocans aormal ordering, i.c., the derivatives 3/3v; should not act on the coordinates r,
in the expansion of the exponenl.

Table 4.1 Characterization of the symmetries of the
» two-particle state (4.9)

) X abbreviation '
even singlet es +
cven triplet et -
odd singlet o8 -
odd triplet ot +
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(i) Tramsistional Iavarlamce. The potential depends on the relalive coordinate
r=r,~-F; only

V(I! 2)‘ V(r; ph a(l) ] f(” 4 Pz. 6(2)3 1.(2))- (4.'0)

{lv) Galliean invariamce. The potential 15 not changed by a transformation to a
system which moves with constant velocity, that i3, it depends only on the relative
momentum p= 1(p, —p,):

V(1,2)= V(r.p.o", rtD g{B o1, (4:.11)

(v) Imvarlamce under space reflection. Contrary to the weak interaction, there is no
parity violation for strong interactions:

Vir,p, o', 1" oD 1N m y(~r, ~p, o'V, ¢, o2, D). (4.12)

(vl) Time reversal Invariamce guarantees that the equations of motion do not
depend on the direction in which the time evolves (for details, see [Me 61])

V(ri pPs a(’l)‘f(l),,(z)’,(?))_ V(I', =P -U“). 'r“). "0(2),1'(2)). (4.]3)

(vil) Rotational invarlance In coordinate space. Rotations in three-dimensional
coordinale space act not only on the vectors r and p but also on the spin matrices
o=2-3. Wilh respect to spin, the operator ¥ has the form (4.2). It has to be a scalar
under a rotation in coordinale space, which means in particular that Vg, has to be
a scalar. There exist three independent scalars which we can coastruct from the two
vectors r and p, namely r’. p? and r-p+p-r. However, the latier expression can
only appear quadratically because of time reversal invariance (vi). It is more
convenient to express (rp+pr)’ through r? p? and Li=(rxp)®. ¥ can then be
written as & function of r?, p? and L2. Because of invariance (ii) and (v) we find

V(r.poV, e )= ¥(r,p o' o)) (4.14)
The terms in (4.2) that are linear in o' therefore depend only on
S=1(a'" +0?). (4.15)

To form a scalar, S has to be multiplied by a vector, which is invariant under space
refllection. Only L fulfils this requirement

L-S=iL{o™ + ot?) (4.16)

The quadratic terms in o in Eq. (4.2) form a tensor. 1t can be decomposed into a
scalar (V- o'? g vector oY X 6P, and a symmetric tensor with vanishing trace
(0! "afP + af af3(1 — 18,). Because of (4.14), o' X 0P cannot appear. As shown
by Okubo end Marshak (OM 58], the only possible independent combinations are

oVe(D, (ra ") (ro'?), (pot ") (po™),
(L) (Lo'®@) + (Lo (Lot").
Each of these terms can be multiplied by an arbitrary function of r?, p? and L2

(4.17)

(viil) Rotational invariance in ksospln space. Within the isospin formalism, protons
and neutrons are considered as quantum states of one elementary particle that
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form a doublet (see Sec. 2.6.3) with isospin §. The two-dimensional representation
of the rotational group reproduces all their transformation properties. Rotations
within the isospin space (as long as they are not around the 3-axis) produce
mixtures of protons and ncutrons. Rotational invariance of the nuclear force
therefore means the same as charge independence, that is, the proton—proton
interaction has the same sirength as the neutron-neutron interaction. This has been
confirmed by nucleon-nuclcon scattering experiments as well as by the symmetry
properties of mirror nuclei (¢.g., He? and H*). Mathematically speaking, this means
that the nucleon-nucleon interaction ¥(l,2) commutes with the operators of the
total isospin
Twt, +1t,. (4.18)

Eigenstates can then be constructed of T2, T, with eigenvalues T=0, Ty=0 and
T=1, Ty=—1,0, + | (is0spin singlet and isospin triplet). Charge invariance means
that T2 commutes with the operator of the nuclear force. Therefore, the interac-
tions in T= | staies have 10 be the same (pp. nn, or symmetric pa states). However,
they may be different in the 7= 0 slate (anusymmetric pn system).

The formalism of isospin matrices r=(r,, 7;, 7y} i3 identical to that of regular
spin. Since there is no olther vector in isospin space, the only isospin invanant
combination of the isospin matrices corresponding to particle 1 and 2 is

Vo+ V, 212, (4.19)
The functions V, and V, depend on the remaining coordinates such as r, p, 0,, 0,
as we have already discussed.

Not all of the combinations possible from the symmetric point of view
have been used to describe the nuclear force. We will mention here only
the most important terms:

(). Among the local forces, which do not depend on the velocity, the
central force is the most important. It depends only on the distance -
between the nucleons:

Ve(1,2) = Vy(r)+ V,(r)o“’a‘” + V(A 4 v () et el gD
(4.20)

(ii). The only remaining local part is the Tensor force
Vr(L.2)=[ Vi (N + Vo (nr?].s, (4.21)
with
Si= %(a“’r)(o(”r)— e,

The term —o''0‘? is added to make sure that an average of Vi(1,2)
taken over all directions of r vanishes:

f Vr(1,2)dR2=0 where r=(r,Q). (4.22)

An expenmental hint of the existence of a tensor component in the
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nucleon—nucleon potential is given by the quadrupole moment of the
deuteron, which cannot be explained by pure central forces.

(if). The most important nonlocal term is the two-body spin orbit interaction
V,s=V,s(r)L-S. (4.23)

As we shall see in Chap. 5, such a two-body spin orbit potential causes the
one-body spin orbit term in the average single-particle nuclear potential,
used 10 explain the magic numbers in nuclei.

(Iv). One sometimes also uses a second-order spin orbit interaction:
v, = VLL(r){(o‘ Yo D)L~ 2 [(s L)@ D L) + (VLYo )] }
(4.24)

4.2.2 The Structure of the Nucleon-Nucleon Interaction

The central force (4.20) is the most important part of the nucleon—nucleon
interaction. It can also be represented in terms of exchange or projection
operators.

The operators

Pt= %(l +alo®),  Pre 2 (l+10) (4.25)

exchange the spin and isospin coordinates, respectively, in a wave function.
For instance, we can apply P° to the wave function (4.9) and obtain

Po(rr)x(s): 82)8(11: 12) = @(Ty F2)x (52, )8 (7). 12)- (4.26)
This is easy to understand by using the operator of the total spin S (4.15).
The cigenstates of S? are singlet and triplet states and we find:

1 for triplet
—1 for singlet.

(4:27)

We can also define an operator P” which exchanges the spacial coordi-
nates r, and r, of the particles.® Since the wave function has to be
antisymmetric under the exchange of all coordinates of the particles 1 and
2, the Pauli principle may be written in the form

P PP = —1. (4.28)

We can therefore express the operator P'= — P'P° and eliminate the
products o'%? and !'%? in Eq. (4.20).

P°= %(1 +2ST-sV - D) =§(S+1)— |={

* The operator P” can be represented by & nonlocal operator in coordinate space, viz:
V() PY(r, 1) = f V(r, =) 80, — 1) 8(ry -1, o (r), vy) d%) d%;.

In this sense only Wigner forces (4.30) are local.
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Finally, we obtain
Vem Va(r)+ Vu(r)P + V(PP + Vi (r)P'P*® (4.29)
with the following relations
Vu=Vo—V,—V,+V_ (Wigner force)

Vy=—4V_ (Majorana force)

(4.30)
V=2V, -2V, (Bartlett force)
Vu= -2V, +2V, (Heisenberg force).

The names of these different components of the nuclear force go back to
the years following 1930, when the first models of the nucleus were
introduced and the saturation property of nuclear forces was explained by
exchange terms without introducing a hard core (for a historical review of
this work see [Br 65al).

A third way of representing the central force uses projection operators

) l a [} l -]

m=la-pe) M=i+pe)

M= (1-P"), M= (1+P°), (4.31)
r l _ r r__l_ r

M=2(1-P7). M=2(1+P")

These are projection operators (P2= P, P* = P), which project onto the
singlet (s) and triplet (t), and onto the even (¢) and odd (o) part of the
nuclear two-body wave function (4.9) in the sense of Table 4.1. We can
express the exchange operators P° P’ by these projection operators and
obtain

V(1L D)=V (NITII+ V  (NDITTIE + V (AT + V  (NDITIE.  (4.32)

This representation is especially useful in practical applications; for in-
stance, in p-p scattering experiments we have only isospin triplet states,
(i.e., only es and ot are important). Table 4.2 shows those functions
obtained if one operates with the different representations on wave func-
tions with different symmetry.

Table 42 Connections between the different representations of a central force

olilg(2) H(1(D) V(a-“)v(?)‘,(llr(l)) V(P’, P% V(T I1°) “2)
1 -3 Vw"‘ Vm-3VW-3V0" Vw+ Vm"' Va+ VH Vﬂ ,e‘>

The radial dependence of the functions V cannot be deduced from
invariance principles. In 1937, Yukawa proposed an explanation of the
nuclear force using a meson field theory. The nucleons influence each
other by the exchange of one or several mesons. The simplest form is the
one-pion exchange potential (OPEP). [t has the radial dependence of the
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Yukawa potential [Yu 35)
-
V,(r)= ‘7 . (4.33)

where 1 /p=h/m_c is the Compton wavelength of the pion. The asymp-
totic form of this potential is uniquely determined by the properties of the
pion and its coupling strength to the nucleonic field g?/Ac=~0.081:

y OPEF g

2
2677 (2| (gD ( 1 (L))
m,c o +[1+3— +3 S,
3he w (- )){ wr wr 12

(4.34)

A phase shift analysis of the nucleon—nucleon scatlering data shows that
the OPEP-potential (4.34) is well able to reproduce the phase shifts for
large orbital angular momenta L > 6 [Br 67b]. Since these high partial
waves only feel the tail of the nuclear force at large distances (r » 2 fm), we
can assume that the OPEP potential describes the nuclear force properly at
such large distances. For smaller distances we must, in addition, also
introduce the two-pion exchange and the p- and w-meson exchange in
order to obtain the medium-range part of the force. This has been achieved
very successfully [BJ 76a, CLL 73, LLR 75, DSB 77, Vi 78, Ho 80], so thal
only the short-range part of the force still has to be fitted by a phenomeno-
logical ansatz. Only six parameters are needed for each isospin state. As we
mentioned in the introduction, this potential is not used very much as yet,
therefore phenomenological counterparts have been employed until now.
These phenomenological parametrizations consist of combinations of cen-
tral, tensor, spin orbit, and higher terms, and more or less arbitrary radial
functions containing up to 50 parameters, which are fitted to the experi-
mental scattering phase shifts and to the deuteron data, There are attrac-
tive and repulsive components. At large distances they go over into the
OPEP-potential, whereas at short distances they have an extremely repul-
sive core. Several authors have therefore used a Aard core [V (r)= o0 for
r<r,~0.4 fm]. Others use a very repulsive core which goes to infinity only
for r—0. Such potentials are called soft core potentials.

Examples of such realistic nucleon—-nucleon potentials using a hard core
are the Hamada Johnston potential [HJ) 62] and the Yale potential [LHR
62]. The Tabakin potential [Ta 64] is a nonlocal potential, separable in
momentum space.

The Reid soft core potential [Re 68] is also widely used. It has the

structure
Va=Ve(w)+ Ve (w)Sp+ Vis(w)LS. (4.35)
Vc(x) and ¥, 4(x) bave the simple form

V@)= 85—, V=3, (4.36)

nm ]

and V,(x) is given by

By 1 0N (kT ckm], g, e
V.,.(x):—x—{(§+;+—1-)e —(—+—2)e x ]+ zb" o

X




156 Nuclear Forces

The constants are different for all values of T, S and 7 <2. Only q,, b,, and
¢, are fixed in such a way that we obtain the OPEP-potential for large
distances. For / > 2, Reid uses the OPEP-potential.

4.3 Microscopic Effective Interactions

The bare nucleon-nucleon force has—as we have already seen in the
preceding seclion—certain features that are rather difficult to handle in
practice.

There 1s. for instance, the hard core (or at least the very repulsive core),
which would make some of the usual concepts of nuclear many-body
physics extremely complicated if not inapplicable (as in the Hartree-Fock
case; se¢ Chap. 5).* This comes from the infiniteness of the matnx
elements of a force with a hard core. In these theories, a way out of this
situation is to use, in place of the bare interaction, a so-called effective
interaction, which is itself an infinite sum of scattening processes of two
nucleons in the nuclear medivm. The bare interaction is then simply the
Born term of this series. The object of this procedure is twofold: First, in
re-summing the series one gets rid of the hard core problem, since the new
interaction is well-behaved at short distances. Second, we can show that in
replacing the bare interaction by its effective counterpart we have at the
same time consistently summed up more of the many-body effects than if
one had taken just the bare interaction.

The main fields of application are: (i) the ground state properties of
nuclei, where the scattering of two nucleons within the nuclear medium has
to be considered; (ii) the forces between the so-called valence nucleons;
and (iii) effective forces between “particles” and *‘holes.” There are also
effective three-body forces which we will ignore in this section.

4.3.1 Briickner’s G-Matrix and Bethe Goldstone Equation®

One of the most important effective interactions in nuclear physics is the
so-called Briickner G-matnx [Br 55, Da 67, and references therein]. It is,
for two nucleons in the nuclear medium—in a sense yet to be specified—
the analogue of the scattering matrix for two nucleons in free space.,

We therefore start our considerations with the Lippmann-Schwinger
equation for the scattering matrix (7-matrix; see Fig. 4.1) of two particles

*In this section, we must quile often anticipate theories and methods which are only
treated later in this book. This is contrary to our usual strategy, which is to avoid this
sitvation as much as possible. As the reader will notice, however, the micrascopic theory of
effective intevactions is oot in a very satisfactory state, $0 we prefer o give a short survey here
together with the description of phenomenological forces, rather than devote an extra chapter
to it later. (See also Appendix F.)

' The discussion in this section is partially based on Gomes, Walecka, and Weisskopl
[OWW 58] and the textbook of Fetler and Walecka [FW 71).
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(Messiah [Me 61] Chap. XIX, Sec. 14):

- < - 1 .
TE e ™ L3 e + ~ U T enty
Ik, KikS l\hlz- Kik; 2 %z kX3 PP2 E- (pﬁ/zm) — (pg/zm) + !-n PiPp MKy

(4.38)

where k,.k;, and k{.k; are the momenta of the incoming and outgoing
particles, respectively, and E is the total scattering energy.

If we consider the scattering of two nucleons within a nuclear medium
we can show (this is derived in Sec. F.4) that it makes sense to define a
scattering matrix G © analogous to that for free particles. The changes to be
made for nucleons in a nucleus are almost obvious: the plane wave indices
have to be changed to shell model indices, the kinetic single-particle
energies figuring in the denominator of the r.h.s. of Eq. (4.38) have to be
replaced by the corresponding shell model energies, and the sum over the
intermediate states has to be restricted so that it does not include states
below the Fermi surface. This latter feature comes from the fact that two
nucleons below the Fermi surface can only scatter into states above the
Fermi surface, because all other levels are occupied and are thus excluded
by the Pauli pninciple. Therefore, we get the following equation for the
G-matrix, which is usvally known under the name Bethe-Goldstone equa-
tion [BG 57] (for its mathematical derivation, see Sec. F 4).

1 E
Gob of t"cnb cd+ 2 E l’ab - €, — ¢, +m Gmu.cd' (4‘39)
>¢[

where ab,...,mn are shell-model indices and e, is the Fermi energy. This
equation is usually represented graphically in an obvious way, as shown in
Fig. 4.2. Two lines connecting two interactions represent the “propagator”
I/(E-¢,—¢,). (More will be explained about graphs in Chap. 8 and
Appendix F.) For E<¢,, we can ignore the in in the denominator of
(4.39), and in this case the G-matnx is obviously Hermitian as can be
checked immediately by iterating Eq. (4.39). Equation (4.39) is also often

ky : Ky
ko Ky

Figwre 4.1. Graphical representation of the T-matrix.

B 2
B IR e

Figure 4.2. Graphical representation of the Bethe-Goldstone equation.
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written in the operator form:

_ . @s
G-o+oE_HoG. (4.40)
where H, is the shell model Hamiltonian and
Qr= 2 |mn){mn| (4.41)
YR

is a projection operator excluding all occupied states.

In a very qualitative way, we can see from Eq. (4.40) how it can happen
that G stays finite for points where © is infinite. Solving Eq. (4.40) formally
yields '

B
1-8Q,/(E-H,)

If © tends to infinity, G may stay finite. This is, of course, only a very
crude argument and we shall in a definite example show in detail how this
occurs, Before this, we have to discuss, however, some general features of
Eq. (4.39). Despite the fact that Eq. (4.39) is formally very similar to Eq.
(4.38), there are certain essential differences concerning. for instance, the
boundary condition in the case of E <e¢, of the wave function defined in
analogy to the scattered wave of two free particles by [Me 61, Chap. XIX
10]:

G (4.42)

Qr
—==-| =
[V » =07 'Glad) (l+ E—HOG)Iab>
. Qr
=lab)+ £ T Tl (4.43)
with
ryrylaby= -‘f;:-(%(n)%(rz)- Fa(r2)®s(r,)) (4.44)
and
Holab) = (¢, + ¢,)|ab). (4.45)

The wave equation (4.43) formally resembles an equation for a scattered
wave. However, contrary to the real scattering case, where the second term
on the r.h.s. of (4.43) gives the outgoing scattered part of the wave function
and thus does not vanish as the relative distance of the two particles
[r, — 7,] goes to infinity, in the present case of E < ¢, this term vanishes as
|r; — 14y} goes to infinity. This comes from the facl that for a real scattenng
process the T matnix of Eq. (4.38) enters Eq. (4.43) “on the ¢nergy shell,”
that is, the absolute value of the relative momenta of the two particles
before and after the scattering process have to be the same; also, £ must
correspond to this value of the relative momentum. As a consequence, the
corresponding energy denominator of Eq. (4.43) for a real scattering
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process can be zero and introduce a singularnity. In the present case this
can never happen, since we suppose E<e¢, and therefore the second
expression on the r.h.s. of Eq. (4.39) is never “on the energy shell,” which is
why it vanishes for large values of |r, —~r,|. A derivation is presented in a
review article by Day [Da 67} which, however, would be too much of a
digression to be repeated here. We have thus:
oy =rai-s 0

Vag) —— |ab). (4.46)
From Eqgs. (4.43) and (4.41) we also immediately get the normalization
condition for a, b <!

Glgp=1 i j<er (4.47)

It is also instructive to expand the correlated pair function |y, in an
uncorrelated basis. From (4.43) we have:

[y > =1ij>+ % ,..2,. C% . |mn), (4.48)

that is, the correlated function contains, in addition to |ij}, components
above the Fermi level. It turns out that in the most important applications
of the G-matrix E lies below the Fermi level. For instance, in the Briickner
Hartree~-Fock theory (see Chap. 5) we must calculate G7%*9 with i, j
< €p. We will therefore treat the hard core for this case in a very simplified
but explicitly solvable model which, however, shows the essential features.

Let us consider a large nucleus, the interior of which will be presumed to be not
very much different from the sijtuation where we consider an ipfinitely large
nucleus, usually termed nuclear matter. In addition, we will make a further ¢crude
assumption, namely, that the interaction consists of a hard core only:

V(r)=0forr»c and V{(r)= oo [or r<c.

Furthermore, we assume that we have two distinguishable particles, for example, a
proton and a neutron, which will be sufficient as a demonstration of the principle.
Let us now write Eq. (4.43) in the form:

(E= Ho)l¥us ) =(E— Hog+ QG )| ab), (4.49)
which in our case (E = ¢+ ¢) specializes to
(¢ +¢— Ho)ldy) = QrGij>® QrOlyyD, (4.50)

where for the last equality use has been made of (4.43). The general solution of
(4.50) is much harder than the solution of an ordinary Schrodinger equation
because of the operator O, which is a nonlocal integral operator. This is best seen
in the r-representation

NN = 3 (nry | ma)(mn (fry). (4.51)

5%
In nuclear matter it is clear that the single-particle wave functions that appear in
(4.50) are plane waves. For simplicity we will also assume that the single-particle
cnergies are purely kinetic energies (in a surrounding medium this will not gener-
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ally be the case). Because of translational invariance. for nuclear matter the center
of mass motion is trivial, and we have:

nrg gy Gp,p(Tir2) = e TR Yp(r). (4.52)

1
Here the following transformations to relative and center of mass coordinales have
been made:

1
P=p +p, k=3P -p),
| (4.53)
R-i(r,+rz), r=r,—r,.

With all these assumptions, Eq. (4.50) acquires the form

h!
m { pi+pi+d,+ Ay} g, (1iT2)

J. dpap [’ dre T (I — 1), (iry).
PPk

|
2n)®
(4.54)

Transforming this equation to relative and center of mass coordinates according (o
(4.53) we obtain

P (k2 48,) e P yn(®)

J" d)ay d%J’J‘dJRt dJrr el[’l-k,(r—-r’)]e-i’l't.(,.')e"FI'¢,n(r/)-
—2p >kl

]
g

(4.55)
Since #2=p?+ 2pp’ cos §+ p2, we see that even under the restriction p, p’ > ke, 9
can take on all values from 0 o0 o0. The integration over R’ gives §(P— %) and we
can therefore also perform the # integral. We are thus left with the [ollowing
equation.

g {k2+ﬁ,}¢n(r)' “ai““)*gji_ ol x e""fd e Pe(riym(r). (4.56)

This equation is not only more complicated than a usual two-particle equation
because of its integrodifferential structure, but also because the wave function has
a nontrivial dependence on the center of mass momentum P. For our purpose, it
will be sufficient to evaluate it at P =0. Furthermore, we can decompose Eq. (4.56)
into partial waves [Me 6] Chap. X, Sec. 8]

(D)= > i (r) Yy, (6, ¢). (4.57)
m

Considering the equation for the s-wave and splitling the integral in (4.56) into two
parts, f° = [3*— &#, we obtain:

M. & .23
m(k + — ar1 ey )\h() o

2
= 0(r ) (r) - (4x)? fokr_(i% jolpr) fo 2 dr il pr' Yo (P )(r),
”
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where j, is the lowest-order spherical Bessel function. With yWy(r)=(1/r)u(r). we
finally get:

B2+ =)= ke [ “arxtr, ol yu(?),  (459)

m ar? 0
with

N ra ‘ L | [sinke(r=r) sinkp(r+7r)
x(f.f)*;‘;; o’¢P60(P’)jO(P’)-"kF{ r—r r+r ]
(4.60)
It is now convenient to introduce the following dimensionless quantities:
k mg
x=ker; X'k K — -y, 4.61

This leads to

A kN (x)m (e (x) = [ Pdx xx, x )WY ug (x).  (4.62)
(d.xz )uK,x X)up(x L x(x, X Jug X ) :

For a square well barrier of finite height, the wave function and its first derivative
are continuous at the edge of the barrier. We can be easily convinced that the first
derivative of the wave function becomes discontinuous at the edge as the barrier
height goes to infinity, that is:

up(c+e)m A, (4.63)

where A is & constant, r = ¢ is the radius of the hard core, and ¢ is an infinitesimally
small positive quantty. In order to produce such a discontinuity for u of Eq. (4.62),
the product w-u must be proportional to a § function for r=c. Since for r > ¢ the
potential w is zero and w finite, the product w-u vanishes outside the hard core
radius. The wave function u cannot penetrate inside the infinite hard core (u=0),
since there w = oo, the product w-u may be finite and we can write, with ¢’ = ck,:

w(x)ug (x)m A§(x—¢)+ {(x)(c’ — x). (4.64)
The function /(x) can be determined from the requirement that for x < ¢’ the left
hand side of Eq. (4.62) must be zero, since ¥ =0 for x < ¢’. We therefore have from

Eq. (4.62) with Eq. (4.64)
[(x)=Ax{x, c')+_g'dx' x(x, x)(x") for x<c' (4.65)

Since the hard core is usually rather small (¢’ =0.57 at the nuclear matter density
for c=0.4 fm), we can develop the kernel in Eq. (4.65) and obtain from Eq. (4.60)

x(x, X')—*% x<e x'<cl (4.66)

With Eqgs. (4.66) and (4.65), we see that /(x) is of order ¢’?, whereas any integral
over /(x) will be of order ¢>. In (4.62) we can therelore neglect the second term in
(4.64) to obtain a result which is correct to first order 1n ¢’. We obtain

(5 + KJu ()18 =€) = xtx )]+ Ax(x, (e =)

-A 2% fl “ dpp¥ol px)jok pe’) + Ax(x, ¢Y(c'~ x)
- F(x), (4.67)
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where we have made use of the identity
j‘;w 4P (P pr)= = 8(r=1). (4.68)

We remark that since the r.h.s. of Eq. (4.67) is only correct to first order in ¢, it is
somewhat arbitrary whether o include the second term ol the r.hs. of Eq. (4.67),
which is of second order. The general solution of Eq. (4.67),

sinKKx f dy F(y)cos Ky w'KKx L"ay F(yyinKy,  (4.69)

is obviously zero for x=c¢’. Equation (4.69) is the solution to Eq. (4.67), as can be
easily verified by direct insertion.

The only unknown in the solution (4.67, 4.69) is the constant A, which we are
going to determine by the requirement (4.46) that u, has to approach asympioti-
cally the unperturbed value. To this end we will first show that the second integral
on the rhs. of Eq. (4.69) i3 zero in the limit x—o0. Since we considered our
solution in the limit of very small ¢’, we can (ake the integral from 0 t0 o0 instead
of from ¢’ to0 o0, and thus have

% [ " FOymin Ky= 24€ [ <dp phipe) [ “dy y5ul k)il )
225 [ dp ol pe) g5 8K —p)
-0, (4.70)

The last integral vanishes because p is outside the Fermu sphere, whereas K is
inside. For r— 00 we therefore find the result that the wave function approaches the
unperturbed result (y—/,) [se¢ Eq. (4.46)] only if

ug(x)=

fo “dy F(y)cos Ky= |, @71
and we therefore get, using Eq. (4.67):
Am {oos Ke'— J;md)v cos(Ky)x( y,¢) } ) l, (4.72)

which completes the determination of the wave function ux(x) of Egs. (4.67) and
(4.69) for a hard sphere potential.

In Fig. 4.3 we show the solution , (r) for k=0, which reveals several
interesting features. The wave function vanishes inside the hard core. With
(4.69) and (4.72) it can easily be seen that it approaches rapidly (by

P o gt o - -

Healing distance {n,)

.l | | | |
N 3 ‘ S ot

Figure 4.3. S-wave solution of the Bethe—Goldstone equation for a pure hard core
potential in nuclear matter. For details of the figure, see text. (From [FW 71])
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damped oscillations) the value of the wave function for the noninteracting
pair (which is itself equal to 1 for k=0 and all values of r). The r value at
which the wave function first attains the unperturbed value is called the
healing distance r,, because it is only for distances smaller than this value
that the hard core wave function differs appreciably from the unperturbed
wave function. For the values chosen in our example, the healing distance
is:

ker,=~1.9. (4.73)

(This value is more or less independent of P and k, as a more general study
of Eq. (4.59) shows [WG 67a]). It is important to note that this value is
appreciably smaller than the average interparticle distance 4 in nuclear
matter defined by the expression 1/d>=N/V=(4],p dp[dr)/V(2nh)y
=2k} /372, which would yield for the interparticle distance:

3‘”2 1/3

kpd= (T) =2.46. (4.74)

On the average, therefore, the nucleons return after a collision to their
independent parlicle wave function before the next collision takes place. A
great portion of the nuclear wave function therefore consists of a determi-
nant built out of independent particle wave functions. This can be consid-
ered as a justification of the independent particle model—the Pauli princi-
ple suppressing the low momentum components of the scattering process,
that is, suppressing the long range correlations. The nucleons thus move
through the nucieus most of the time as independent particles because of
the exclusion principle. That this can happen in a strongly interacting but
dilute Fermi gas was first pointed out by Weisskopf [We 50].

We have seen that the solution of the Bethe-Goldstone Equation (4.39)
is far from trivial, and one can easily imagine that the task can become
tremendously difficult for finite nuclei, where the wave functions are no
longer plane waves and translational invariance is also lost. Several ap-
proximation schemes have therefore been currently applied. As we have
seen in our example, it is the projection operator Q@ which makes things so
difficult. 1t has been proposed, that the Pauli principle should be treated
only perturbatively in the separation method of Moszkowski and Scott [MS
60] and in the reference spectrum method of Bethe, Brandow, and Petschek
[BBP 63]. We do not wish to go into details of these approximation
methods and refer the reader to the text books of Brown [Br 64}, de Shalit
and Feshbach [SF 74], and the review article by Bethe [Be 71], in which
these and further methods, like the use of the oscillator basis for the
solution of the Bethe~Goldstone equation in finite nuclei, are explained in
detail. Here we want to mention only one other approximation scheme
which has recently bexome very successful in connection with the Brick-
ner—Hartree—Fock theory (see Chap. 5). This is the focal density approxima-
tion by Negele [Ne 70, 75], originally introduced by Briickner, Gammel,
and Weitzner [BGW 58] and Briickner, Lockett, and Rotenberg [BLR 61].
The assumption is that the G-matrix at any place in a finite nucleus is the
same as that for nuclear matter at the same density, so that locally one can
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calculate the G-matrix as in a nuclear matter calculation [Be 71, Ne 75}
We shall come back to this approximation in Chapter 5.

4.3.2 Effective Interactions between Valence Nucleons

Another field to which the Briickner G-matrix has important applications
is the effective forces between the so-called valence nucleons (for a review,
see [Ku 74b) and references therein). As a definite example, let us take '*O
or ''F, where we have two nucleons (the “valence nucleons™) on top of a
doubly magic nucleus '®O. In the pure shell model approximation the two
nucleons will be in the 1d5/2 level. We may hope to get a good descrip-
tion of the low-lying states of '*O by making a configuration mixing
calculation using the states 1d5/2, 251/2, 143 /2 which just form the first
shell above the '*O core. Such shell model calculations have been de-
scribed 1o some extent in Chapter 2 and will be treated in grealer detail in
Chapter 8, where we will show, for instance, that such two-valence nucle-
ons may be well described by the particle—particle Tamm-Dancoff secular
equation [see Chap. 8, Eq. (8.10)]:

(BP0~ ¢ )RE=3 5 B i REs 4.75)

mn

Here the ¢'s are the single-particle energies of the phenomenological or
sclf-consistent (see Chap. 5) single-particle Hamiltonian H,; and all the
indices in Eq. (4.75) are in the model space above the Fermi level of the
core (e.g.. the d5/2, 2s1/2, and 43/2 states in our example). For the
two-particle interaction in Eq. (4.75), we cannot take the bare interaction,
since this force has to simulate and correct at least approximately the
omission of (a) the rest of the two-particle configuration above the Fermi
level, and (b) contributions from higher configurations of the shell model
basis like 3p-1h, 4p-2h, etc.

In the following we will derive an exact equation, formally almost
identical to Eq. (4.75), with, however, ¢ replaced by an effective (energy
dependent) interaction, calculable at least in principle, from the bare
interaction (such as, e.g., the Hamada-Johnston potential). We start out
with the observation of Chapter 2 that the shell model provides a complete
set of states; therefore, any exact wave function can be expanded in this
basis. A convenient way to do this is given by the formalism of second
quantization, in which the expaasion of, for example, an 4 +2 nucleon
state can be written in the following way (see also Chap. 8). (In the
following, the indices m, n, r, p, and i, j shall be states above and below the
Fermi level, respectively.)

[4+2,7>= 3 Rlatal(HFY+ X R, .ara‘a‘a|HF)
[

m<nR m<na<r,

+ X R, ,a.d'a'a’aa|HF). (4.76)
m<ndr<p
i<y
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Here we assume that the ground state |HF) of the 4 nucleus in the shell
model is ideally given by a Hartree—Fock calculation (see Chap. 5), but
our considerations hold equally for any phenomenological shell model.
The indices m,n,r, p and i, j in Eq. (4.76), of course, correspond to the
shell model potential in question. The expansion consists of multiparticle-
multihole components ranging from 2p—0hA up to, in principle, (4 +2)p-Ah
components. We now introduce two projectors P and Q. The projector P
projects on those 2p-0h states which lie within the given model space and
Q projects onto the rest, that is, on those 2p-04 components which do not
lie in the model space and on all 3p-lh, 4p-2h, ¢tc. components. There-
fore, | =P+ Q and

P= > ata’|HF)(HF|a,a,, (4.77)
m<n
where the prime on the sum indicates that it goes over the model space
only. We also have the usual relations for projectors, viz:
Q¥=Q; P!=P;, P*mP; Q*=Q; PQ=QP=0. (478)
With the aid of these projectors we can write for Eq. (4.76):
[r>=Pled+ Q|t)=PR|HF)+ QS|HF), (4.79)

where R=3"_ . R; a~a', the prime having the same meaning as in Eq.
(4.77); the operator S is then defined in an obvious way by Egs. (4.76) and
(4.79). The Schrodinger equation (Hy+ V)|r) = E |1), where H,, is the shell
model Hamiltonian and V the residual interaction (see Chaps. 2 and 8) can
now be written in the following form [Fe 62].

(— E,+ Ho+ PVP)P|t)=— PVQ|1), (4.80)

(—E,+ Hy+ QVQ)Qlr)= — QVP|r). (4.81)
Here we have multiplied the Schrédinger equation from the left once with
P and once with @ and observed that P and Q commute with H,. Solving
Eq. (4.81) for Q|7) and substituting into Eq. (4.80) yields

(Ho+ PVGP)P|td=E P|7) (4.82)
with
1

V.
E,—H,-0vQ°
Multiplying Eq. (4.82) from the left with (M4 F|a,a,,, where n,m are in the
model space, we can write:

(CHF|[ a,a,,, H,]| +(HFla,8,PV.yP} 3 atal|HF)R].,,

m<n

VE=V+VQ (4.83)

=(E. - E¢")R,, (484
with
HHF )= E(,'”]HF).

The commutator in Eq. (4.84) is easily evaluated, and we finally obtain an
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equation which is formally very similar to the two-particle Tamm-Dancoff
Eq. (4.75) but is, in fact, rigorously exact;
[(E, —EfN) -« - c,]x,:,,, - ' <mn|VEIm'n R, (485)
—

We see that the difference between Eqgs. (4.85) and (4.75) is simply that
the matrix elements of the phenomenological two-body interaction have
been replaced by those of an effective energy dependent interaction which
(at least in principle) can be calculated from the bare interaction.®* The
expression (4.83) can be rewritten as an integral equation for ¥ .

Verm V+ VQ 5 HOQV,,,. (4.86)

This can be verified either by expanding both (4.86) and (4.83) in powers
of V, or by direct substitution of (4.83) in (4.86) and using decomposition
into partial fractions. In order to investigate the simplest contributions to
Ve, we have to look at the structure of the projection operator Q. We can
distinguish three different contributions: (i) 2p—0h excited states, where
only one particle i5 outside the model space; (ii) two-particle excited states,
where both particles of the 2p-0h components are outside the model
space; (iii) those components which involve holes (3p-14, etc.) The excited
states of type (i) probably do not contribute very much, since it has been
shown that their contribution vanishes exactly in nuclear matter [Ma 69],
and are thus expected to be small in finite (but heavy) nuclei. Their
contribution is thus omitted in practical calculations. The two-particle
excited states give the most important contribution, as practical calcula-
tions have shown, therefore we want to study how they can be treated and
what their relation to the Briickner G-matrix will be.

We shall call that part of Q which corresponds to the two-particle
excited states (ii) Q,,. Retaining in (4.86) only the Q,, part and expanding
in powers of V, we oblain up to second order

1 3
Cmn|Voglm'n' =5 0+ ’gq am:‘iL(-"""‘P"-’ (4.87)

where ¢,,, is the upper limit of the model space and @, = E/**— Ef in
accordance with the footnote on this page (no problems wuh linked or
unlinked terms appear at this level). This shows that this part of the

*The effective interaction defined by Eqs. (4.83) and (4.85) contains so-called unlinked
contributions [Ma 69]. By reordering these termua in Eq. (485)wem:howthnoneobm
an equation strocturally equal to Eq. (4.85), where, however, Ef*" is replaced by the exact
pmmdmwmugyx‘oltheeore The argument Ef*2- H in the denominator of Eq.
(4.83) is changed o EX*2= E} —(Hy— EN?) and only the linked contributions of Eqg. (4.83)
have to be taken into account. However, no integral equation for this quantty is known
[compare Eq. (4.86)]. More details of this procedure can be found in the review articles by
MauacFarlane (Ma 69] and Barrett and Kirson {BK 73]. Brandow [Br 67a] has shown that we
can also gel rid of the energy dependence of the effective interaction by introducing the
so—called “folded diagram” (see also [JB 71, EQ 77]). The discussion of these rather involved
techniques would go beyond the scope of this book, thus we reler the interested reader 1o the
original literature.
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effective interaction is ecqual to the Brickper G-matrix (4.39) with e,
replaced by €., that is,

(Vi) o= Gt B (e ). (4.88)

The whole intention and philosophy of rewriting the exact Schrodinger
equation in the form (4.85) is based on the hope that V, is an operator
which for the physical problem of two valence nucleons can be calculated
to a good approximation in some perturbative way. One must therefore
assume that V, is well behaved in the sense that it has, for instance, no
strong energy dependence. The energy dependence of G in Eq. (4.88) is
thus usually neglected and replaced by

Q ~ % (ente, +e,.+e,) (4.89)

Also, all the other approximations commonly applied to solve the Bethe-
Goldstone equation should not influence the result too much (see, for
example, [Ma 69] and [SF 74]). Kuo and Brown [KB 66] have solved the
Bethe-Goldstone equation in the harmonic oscillator approximation [SF
74] for '*O and "F using as bare interaction the Hamada-Johnston force.
This force was subsequently used in Eq. (4.85) for a diagonalization in the
model space where the experimental values found in 'O have been used
for the single particle energies. In Fig. 4.4 we show a comparison of the
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Figure 4.4. The spectrum of 'O, The first column shows the experimental values.
The second one was calculated with the pure G-matnx. The third also includes the
polarization terru (4.90). (From [HK 72].)
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low-lying spectrum of '*0 as calculated by these authors, with the spec-
trum of the experiment; in Fig. 4.5 we show the same for the case of 2'°Pb,
The latter calculations were performed by Herling and Kuo [HK 72] using
in principle the same method as Kuo and Brown. Their model space
consisted of the following single-particle states:

neutrons: 2g9/2 1ill/2 1j15/2 3d5/2 4sl/2 2g7/2 3d3/2
protons: 1h9/2 2f7/2 1i13/2 2f5/2 3p3/2 3pl1/2

As can be seen from Fig. 44 and Fig. 4.5, the comparison of these two
calculations with experiment is not very satisfying and the agreement can
be considered as qualitative only. The disagreement is probably not due to
the various approximations which entered the solution of the Bethe-
Goldstone equation, but rather to the omission of other configurations like
3p-1h, etc. In both of the calculations mentioned it has been shown that at
least perturbative inclusion of 3p-1k configurations improves agreement
with experiment very much. The procedure was to calculate the contribu-
tion to V,q from Q,,_,, in Eqgs. (4.83) and (4.85) in second order perturba-
tion theory (omitting the unlinked terms. see footnote on page 166). This is

E —dinz2 997 2me
{MeV) —1 )
i 1
S -
—4a 2
5 —l8y,} _g g 8
80 —y é 4 4
—2 — =2
-85 0
-801 0
— ]
—0
g Exp A ‘m «£p2h
.95 -

Figure 45. The spectrum of 2!°Pb. The first three spectra have the same meaning
as those of Fig. 4.4. In the fourth spectrum also, 4p-2h polarization terms were
taken into account. Also indicated is the free two-particle energy. (From [HK 72].)
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not too hard to carry out using our definition [(4.83) and (4.85)] and the
resull is:

(Vz‘”‘ )M m'a’ = 2 Q
pi e

Omi, mp Upn. in’

_(m‘_cn-(p-"cl’

—(nem))—-(mon).

(4.90)

In this expression we neglected all terms which give a renormalization of
the single-particle energies, that is, terms of the structure (V e war
=4 B —(m e n’) because it is believed that these terms are already
included in the experimental single-particle energies used in the specific
calculations. Usually one represents the term (4.90) graphically, as dis-
played in Fig. 4.6 (more about graphs is explained in Chap. 8 and
Appendix F). The second order part however cannot be used as it stands
because of the hard core potential. Tt can be shown [BK 67a] that it is a
consistent re-summation of higher order terms to replace the bare interac-
tions by their corresponding G-matrices in the second order contribution
of the 3p-1h states to V4 (c.g.. (4.90)). We do not wish to go into the
details of such arguments here because they would lead us outside the
scope of this book. In Figs. 4.4 and 4.5 are also shown results with the
inclusion of these “renormalized” second order 3p-1A contributions (the
“core polarizalion’™) and, as can be seen, the agreement with experiment
proves in both cases almost perfect. If this were the whole story, the results
would be very satisfying, since we would have explained the low-lying part
of the spectrum of these nuclei using essentially no free parameter. Unfor-
tunately, things are far from being settled, since further studies have shown
that inclusion of higher order terms will again worsen the results. This
effect is shown in Fig. 4.5, where not only 3p~1h but also 4p-25h terms are
included. More systematic but complicated studies in this direction have
been performed by Barrett and Kirson [BK 73] and Kirson and Zamick
[KZ 70], which show that great fluctuations of the results as a function of
different higher order terms are observed and, therefore, no definite
conclusions can be drawn; in particular, it remains unexplained why the
second order 3p-1k inclusion gives such good agreement with expenment.
One may, therefore, draw the conclusion that the microscopic theory of
effective interactions is still not at a very satisfying stage.

Nevertheless, we want to come back to two formal points in the theory.
The first concerns the energy dependence of the effective interaction V.
In all calculations this energy dependence has been more or less neglected.
As we have already stated, this is, of course, only true as long as the energy

k'3

Figure 4.6. Graphical representation of a core polarization term.
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dependence is really weak. However, it can happen that V£ has poles, as a
function of E, which lie close or even in the region of the low-lying states
of interest; for example, this is the case for '*O, where a collective dp-2h
pole comes very low in energy [Sch 75]. In this case, such a pole has to be
treated separately, since it gives rise to a strong energy dependence in the
region of interest. The states also cause difficulties in the case of the folded
diagram formalism (see footnote on page 166). where they have been
called intruder states [SW 72, 73]. There, it turns out that the perturbation
series of the corresponding effective interaction in powers of the G-matrix
very likely diverge in such cases. Special techniques have been developed
to handle this problem [SW 72, 73, HLR 74].

Up to now we have considered only two-particle systems, however, the
same considerations can be made for the case of more than two valence
nucleons [Ma 69], although we do not want to go into these details.

. 4.3.3 Effective Interactions between Particles and Holes

The problem ol effective interaclions between particles and holes arises mainly
in the study of vibrationsl states of closed shell nuclei (see Chap. 8). However, from
a microscopic point of view this case has been much less investigated than the
interaction between valence nucleons (see, for example, [BK 69, KBB 70]). One can
argue that it would be desirable to express also the effective ph force by a
microscopic G-matrix with perhaps some higher order corrections, like the polariza-
tion diagrams for the valence nucleons. This can, in fact, be achieved. The
discussion is complicated by the fact that, for the most part, the random phase
approximation, (see Chap. 8) is considered the appropriate theory and not the
Tamm-Dancofl approximation, for the ph case. However, in order not 1o compli-
cate things too much we shall restrict ourselves to the Tamm-Dancolf case.

The Tamm-Dancoff equation (see Chap. 8) has the (ollowing form.

(E:D"=¢m+¢i)C;,‘,- 2 Omy 1a Clf (4.91)
n

This equation, where m, n (i, ;) are indices above (below) the Fermi level, is usually
solved in a model space with, say, one shell below and one above the Fermi level.
[n analogy to the case of two valence nucleons, the phenomenological interaction
entering Eq. (4.91) has to simulate the effect of the 1p- 14 states not included in the
model space, and also 2p-2h, 3p-3h, elc. effects.

In gencral, for a closed shell nucleus we can make the following expansion of
such a vibrational state (sec Chap. 8):

|p>= 3 ChaltaHF)+ 3 CA, jatataa|HF)+---. (4.92)
mt m<hn
r<y

However, the procedure for arriving at an effective interaction starting from Egq.
(4.92) has 10 be somewhat different from the valence nucleon case. First we
introduce the projector P which projects onto the whole 1p—1hk subspace, that is:

Pe= za.-:ﬂ'IHFXHF]a,’d,”
Q=1- P,

(4.93)
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with no restriction on the sum. Using the same formalism as for arriving at Eq.
(4.85), we obtain in the ph case

[E“_EOHF_%...(‘}C:"- z('mi) L:f;[nj}C;,. (4.94)
ny

where ¥V, is formally given by the same expression as in Eq. (4.83) with, however,
the projection operators P and @ given by Eq. (4.93). The first contribution to Q
comes from the 2p-2h components, that is, from Q,,_ ;. Calculating the contribu-
tion of this term to second order perturbation theory in V, we obtain:

(2e-2h)y i -
(Vtﬂmj.m) g‘Bn!,f.ufﬂ’ﬂ'+q+¢j__q"_(mjun'n’.m

1
- By (¥
,.%. R T L

1
-5 6, &
5‘7 L Gttt MY
— 2 B i '
oo R B T =

where ), = E/ — EJ'F and terms which renormalize single-particle energies are not
included. The [irst term on the r.h.s. of Eq. (4.95) together with the first order term
of ¥V just gives the first two terms of the G-matrix:

Gt iy, (4.96)

Indeed, we can verify that to each order in V there exists in V,, a term which
corresponds to the corresponding order in Eq. (4.96). Therefore, V4 consists of a
first term which is the G-matrix (4.96). The second term on the rh.s. of Eq. (4.95)
represents hole-hole correlations which numerically are found to be small and
ther¢fore may be neglected. The third and fourth term are analogous to the
polarization diagram (Fig. 4.6) for the case of two valence nucleons. Again, these
terms cannot be used as they stand, but we can show that it is a consistent
re-summation of higher order terms to replace the bare matrix elements by their
corresponding G-matrix elements. The polarization diagram in the ph case is
displayed in Fig. 4.7. The fact that we already have a G-matnx in the full ph space
1o lowest order is the essential difference between the ph and pp cases. In
recognizing this, we may now convert Eq. (4.94) to one in a model ph space. For
this purpose we split the projector P into a part Py, which projects onto the model
ph space and into a part Py which projects onto the rest of the ph space:

Pwm PM + PR‘
Eliminating the compognents in Eq. (4.94) that are outside the model space with the
aid of the Feshbach projection operator formalism [Fe 62}, which we have already
used (see, for example, Eqs. (4.80) and (4.81)] leads to a TDA equation in the
mode| space. The effective interaction appearing there can be expanded up to

Conm. a0 (4.95)

Figure 4.7. Polarization diagram in the particle-hole case.
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second order in the G-matrix. The term which comes from Eq. (4.96) is shown in
Fig. 4.8, where it should be appreciated that the summation over the intermediate
lines goes only over slates that are not in the modelspace. Realistic calculations
[BK 69, KBB 70] show that the inclusion of the polarization diagram Fig. 4.7 has
an important effect: Whereas RPA calculations (see Chap. 8) without it give
imaginary solutions, the polarization contribution stabilizes the solutions. The
reason for this-—as discussed in more detail in Chap. 8—is that the RPA overesti-
mates ground state correlations and polanzation or screening terms have to be
introduced to reduce them,

A
! !

Figure 48. Second order contribution to V4, in the model ph space. The broken
intermediate lines shall indicate that one has to sum only over states not contained
in the model space.

With these remarks we wish to finish our consideration of the microscopic
cffective interaction and, in the next section, turn (0 their phenomenological

counterparts.

4.4 Phenomenological Effective Interactions

4.4.1 General Remarks

In Section 4.3 we saw how effective forces can be defined microscopically
and how difficult it 15 in practice to calculate them and get quantitative
agreement with experiment. Consequently, from the early days of nuclear
physics the use of phenomenological forces, which contain a certain
number of fit parameters adjusted to reproduce the experimental data has
been adopled. In many cases this procedure has turned out to be extremely
successful and, using only a few parameters chosen once and for all, much
experimental data covering quite a large range of nuclear masses can be
explained. Therefore, it is all the more disconcerting that a really satisfying
microscopic theory able 10 explain the success of these phenomenological
forces is somehow still missing.

There exists, of course, an enormous number of different phenomeno-
logical interactions that have been applied to problems in nuclear physics.
Each of them has been used for a specific problem and their range of
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validity and success varies very much, It lies outside the scope of this book
to give a complete picture, and we will restrict our discussion to certain
essential properties and the presentation of only the most successful
examples. Most of them are only constructed for a special purpose, as, for
example, for Hartree—Fock calculations (see Chap. 5), which calculate the
nuclear self-consistent field, and bulk properties of nuclei such as binding
energies and saturation densities. Others serve as effective forces between
valence nucieons or between particles and holes (see Sec. 4.3). Therefore,
we must be very careful in comparing these different types of interaction,
even if, as we shall see, they look very similar in mathematical structure.

As we discussed in the last section, the effective interactions are used in
a certain shell model configuration space: the model space. We therefore
have to expect a certain dependence of the effective interaction on the
space, that is, different interactions have to be taken for different sizes of
the model space. As we have seen, the microscopically defined effective
interaction is always energy dependent, while most of the time there is no
explicit energy dependence in the phenomenological forces. It is usually
sufficient to put all these dependences in a varying strength parameter.

It is evident that we prefer to choose the analytical form of the effective
interaction to be as simple as possible. For example, it 18 often assumed
that the effective interaclion obeys the same invariance principles as the
bare nucleon-nucleon interaction (see Sec. 4.2). This is certainly not
always true. For instance, we should expect the renormalization procedure
which describes the transition from the bare nucleon-nucleon interaction
to the effective one to depend on the actual density of the system, that is,
we get a different force in the interior of the system than in the surface and
outer regions. For a shell model calculation in a fixed well, we should
therefore not expect a translationally invariant residual interaction.

We know Lhat the range of the nuclear force is rather short. We have seen
in Section 4.3 that this is true even for the range of the effective G-matrix.
The simplest ansatz therefore consists in using a zero range force whose
radial dependence is described by a §-function. In fact, such forces turn
out to be rather useful because they are simple to handie and they describe
many nuclear properties quite well. More realistic forces, however, need (o
have a finite non-vanishing range (see [AS 71, Sch 72b]). A finite range can
be simulated by a momentum dependence. To show this we transform a
function ¥ (r) of the relative distance r=r —r, into momentum space

GBIV = [e ARV () d. (4.97)

(2=h)’

We see that a §-force is a constant and that any range represents a
p-dependence in momentum space. The simplest rotationally invariant one
is of the form

TR VP )= Vo+ Vip2+ VP + Vopp, (4.98)
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which in coordinate space corresponds to the momentum dependent
operaltor

V(r)= Ve(r)+ V (B8 (r) + 8(n)p*) + V PS5 (r)p. (4.99)

Effective forces usually depend on the density p(r). Such density depen-
dence is easy to understand if, for example, we consider expression (4.39)
for the G-matrix: The range of the summation depends on the Fermi
energy, which is itself a function of the density. It is also quite easy to see
that the different projection operators Q entering the definition of the
effecuve interactions [see Eqgs. (4.40) and (4.77)] can be expressed as a
nonlocal density which is therefore another source of density dependence,

Other simple forms that work surprisingly well are separable two-body
forces, that is, forces which can be represented as products (or as a sum of
products), in which each factor acts on only one of the two particles.

44.2 Simple Central Forces
There exists a large number of forces which use only the central part

(4.20), but differ in their radial dependence ¥(r). Some simple potentials
that have been used are, for example, the Yukawa potential (4.33) or

V(r)ym — Ve~ "/% (Gauss potential), (4.100)
—r/r

V(ry=— Voi—;:/: (Hulthen potential), (4.101)

V(r)=— V8 ( ;r;) (contact potential). (4.102)

The potential depth V,; and the range r, are adjusted to fit experimental
data. One finds V;=50 MeV and ry=1—2 fm (the Compton wavelength of
the pion is 1.4 fm).

For the r-dependent coefficients V(r) in Eq. (4.20) the same radial
dependence is usually assumed; only their strength and sign are adjusted
to fit empirical data. Here we do not wish to discuss which one of the

Table 4.3 Coefficients for the exchange mixtures

Mixture a,, a, dy a,,
Wigner 1 ] 1 |
Kurath [Ku 56, SW 66) 1 0.6 -0.6 -1
Serber [HS 57 1 ] 0 0
Rosenfeld [EF 57] | 0.6 -0.34 —1.78
Ferrel-Visscher [VF 57) | 0.634 —0.366 0
Soper (So 57] i 0.46 0.14 -04
Gillet [GGS 66) 1 1 0.6 -0.6 0.6
I | 04 -0.2 0.2




Phenomenological Effective Interactions 175

different exchange mixtures is to be preferred; we wish only to give some
of the most commonly used values of the coefficients (Table 4.3).

V(1,2)= ¥, f(i)(a,,ﬂﬂl'[f +a TITI +a, [T T1¢ + o, IT,IT°),

(4.103)

Other forces of a similar type have been used by Kallio and Koltveit [KK
64] and by Elliott and Clark [CE 65). The latter authors also include a
tensor term and a two-body spin orbit force.

4.4.3 The Skyrme Interaction

In 1956 Skyrme [Sk 56, 59] proposed an effective interaction with a
three-body term viz:
Ve DS V(@i )+ 2 V(. k). (4.104)
i<y i<j<k

To simplify the calculations, he used a short-range expansion in the form
of Eq. (4.99) for the two-body part:

V(1,2)= to(1 + x,P°)8(r, —13)
+ 10, [ 8(r — )k +KB(r 1) | + 1k 8(r, — 1)k
+iWy(a" + oDk % §(r, - 1,)k, (4.105)

where k=(1/A)p is the operator of the relative momentum
k= %;(v, -v,). (4.106)

For the three-body force Skyrme also assumed a zero range force of the
form

V(L 2.3)y=08(r, —r)b(ry—r,). (4.107)

The five constants—1,, £,. 13, t;, xo—and W, were adjusted to the experi-
mental binding energies and radii. There are several sets of parameters
called Skyrme 1, 11, etc. (see Sec. 5.6) resulting from different fits. We
present here Skyrme II1 [BFG 75}

fo=—1128.75 MeV fm®;, , =395.0 MeV fm’;
t,= —95.0 MeV fm*; ty= 14000.0 MeV fm®; (4.108)
Wom= 120 MeV Im’; Xom0.45.

The parameter 1, describes a pure §-force with a spin-exchange; ¢, and 1,
simulate an effective range, as in Eq. (4.99). The fourth term in Eq. (4.105)
represents a two-body spin orbit interaction. It can be obtained [BS 56]
from a normal spin orbit term [see Eq. (4.23)] in the short range limit.

In Chapter 5, we shall see that this force has been used extensively in
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Hartree-Fock calculations. For spin saturated even—even nuclei, the three-
body term (4.104) turns out to be equivalent to a density dependent
two-body interaction®:

V,(1.2)= 1501+ P*5(r, = m)p(4(r, + 1), (4.109)

Such a density dependent term can also be regarded as the phenomeno-
logical representation of the p-dependence of the microscopic effective
interaction. This interpretation is preferrable to the view that the Skyrme
force contains a three-body interaction, since we know that three-body
interactions are rather weak in nuclei.

There are essentially three reasons why this force has gained so much
importance over lhe last ten years:

(i) Vautherin and Brink [VB 72] (see Chap. 5) were able to reproduce
the nuclear binding energies over the whole periodic table with a
reasonable set of parameters and, at the same time, the nuclear
radii. This had not been possible with the usual non-density depen-
dent forces.

(i) Negele and Vautherin [NV 72] gave the connection between this
force and the more fundamental G-matrix discussed in the last
sections.

(ii) The mathematical form of the force is extremely simple. The
8-functions simplify all types of calculations enormously.

There are similar types of interactions originally proposed by Mosz-
kowski [Mo 70], the so-called modified 8-interactions (MDI). They differ
from the Skyrme interaction by the absence of the 7,-terrn and the spin
orbit force and also by a different p-dependence (~p® with 0 < 1).!

4.44 The Gogny Interaction

Despite the great success of the Skyrme interaction, it has been argued that
zero range forces might not be able to simulate the long range or even the
intermediate range parts of the realistic effective interaction. In particular,
the present versions of the Skyrme force are not able to properly describe
pairing correlations in nuclei (see Chap. 6), therefore Gogny [Go 75b]
replaced the ¢, 1, and 1, parts of the Skyrme force by a sum of two

* This is no lonper true for systems without spin saturation. [n such cases, the three-body
term (4.107) in the Skyrme lorce, which is purely local and repulsive, favors parsallel spin
ulignment, that is, nuclear ferromagnetism. This contradicts the observed spin saturation and
the pairing properties in puclei. This difficulty can be avoided by using either a density
dependent two-body interaction [BJS 75] of the form (4.109) or a2 nonlocality in the
three-body term [ON 78]

! There is a strong correlation between the nuclear compressibility and the exponent ¢ in
the density dependence {CS T2}
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Gaussians* with spin-isospin exchange mixtures (a force which was ongi-
nally used by Brink and Booker [BB 67]) and got

2
V([“z)- .Ele_(rl-u),/“z(“’i*‘B,—P"H,Pf— MIPOP‘T)
+ iWy(o,+ o)k X 8(r, —r )k
+ 1,(1+ P*)Y8(r, =1 )p ' P(4(r, +1y)). (4.110)

The parameters were adjusted to the properties of finite nuclei, and for
nuclear matter (Table 4.4).

Table 44 Force parameters of the Gogny force (D1)

i [fm) W, B, H, M, [MeV] | Wo= +115[MeV fm?]

I 07 —4024 -—100. —4962  -23.56 | 1,= 1350 [MeV fm*]
2 12 =2130 —11.77 3727  -68.81

4.4.5 The Migdal Force

This force was proposed by Migdal [Mi 67] in his theory of finite Fermi
systems. Based on the interacting quasi-particle concept of Landau’s
theory of a Fermi liquid [La 59], Migdal introduces this force to describe
the collective excitations in nuclei.

Starting from the ground stale of an even-even system, the quasi-
particles are defined as the low-lying excitations in the neighboring odd
mass nuclei. The ground state of the even system contains no quasi-
particles, and excited states are characterized by the quasi-particle occupa-
tion numbers n,. A change of these occupation numbers by the amount
8n, causes a change in the lotal energy E, of the system by the amount

8E,= S %8m + ~ 3 Fy,.8n,0n,.,
A 2 AN

where ¢ are the energies of a quasi-particle X in the absence of any other
quasiparticle and F;,. is the so-called quasi-particle interaction. Migdal
introduces an effective particle-hole interaction F“ and an effective par-
ticle-particle (or hole-hole) interaction F¥,

In an infinite system with translational invariance, the quasi-particles are
characterized by the momentum k, and Landau could show that the
ph-interaction F(k, k') is given by the second derivative of the total energy

* Similar density dependent effective interactions have been used in [Kr 70, ZR 71, RPS
72, LMV 73, RBP 77).

1t would be beyond the scope of this book to go into the details of this theory. The reader
may, however, find some basic ingredients in Section F.7.



Eg with respect to the quasi-particle densities n(k):

8E,
PP e

At the Fermi surface this is an exact relation,

In a finite system the quasi-particle density p,,. is no longer completely
determined by its diagonal elements (the occupation numbers n,), but it
also contains information about the form of the single-particle wave
functions ¢,. The effective interaction then depends on four indices, and it
has been proposed to derive this quantity, in analogy to Eq. (4.111), from
the exact ground state epergy [Br 71]

(4.111)

FF* = O, .
SRR

(4.112)

So far it has not been shown that this is an exact relation. However, a
very similar expression is obtained in a quite different (appraximate)
theory: the time dependent Hartree—Fock theory in the limit of a motion
with small amplitudes (see Sec. 8.5). Starting from the assumption that the
wave function is a Slater determinant (i.c., p*=p; see Sec. 5.3.3) and that
the total energy can be expressed by a functional Ej[p], we obtain in this
case the effective pk-interaction as the second denvative of Egyp] with
respect to p [Eq. (8.124)], just as in Eq. (4.112).

It is clear from the above that, for instance, the Skyrme force (Sec. 4.4.3)
cannot be compared with the Migdal force directly, even though, as we
shall see, it looks very similar. Within the approximation p?~p, however,
an indirect relation may be established by differentiating the ground state
energy calculated with the Skyrme interaction twice with respect to the
density.

Like the Skyrme force, the Migdal force is an expansion in momentum
space. However, contrary to potentials suitable for Hartree-Fock calcula-
tions (such as the Skyrme force), the p>-terms do not play an essential role,
as the Migdal forces do not have to guarantee saturation (they are
constructed to describe different physical situations anyway). In most
calculations 1t 1s therefore sufficient to take into account only the constanti
in momentum space which gives a pure §-force in coordinate space. On the
other hand, spin and isospin exchange mixtures are now very important.
They are different for the particle-particle and particle-hole forces:

V(1,2)= Vo (r, —1,)(f+ 7P 4 got VgD 4 g g2t 1iD)  (4,113)

V, is a strength parameter which has to be adjusted to the configuration
space (e.g., in the ®*Pb region V=380 MeV [m®). Guman and Birbrair
[GB 65] proposed to take into account the different interaction strengths
inside and outside the nucleus and the diffuseness of the nuclear surface
by a linear density dependence of the constants f, f'.

=17+ P)e(r), (4.114)
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where p(r) has the form of a Fermi distribulion

|

P 1+exp[(r—R)/a]
The additional parameters R and a represent the radius and the diffuse-
ness, respectively, of the nucleus. Contrary to a Hartree-Fock calculation
with a density dependent interaction (see Chap. 5), the density (4.114) is
not adjusted self-consistently. Therefore, the Migdal force violates transla-
tional invariance. Of course, this is no drawback, since the renormalization
procedure is closely connected with the underlying single-particle poten-
tial, which also violates translational invanance. In fact, a proper choice of
the effective residual interaction should restore this invariance (see Mi-
keska and Brenig {[MB 69]). From this condition one can deduce additional
relations among the parameters f, ', g, g' [NW 72, 74].

The Migdal force has been widely used to calculate low-lying collective
vibrations in nuclei within the framework of the random phase approxima-
tion (see Chap. 8). The effective charges caused by such vibrations (see
Chap. 9) provide an enormous amount of experimental data with which to
adjust the six parameters [, f* " f** and g, g’ for the particle-hole
and particle-particle forces (for details, see [RBS 73, BSK 73, BER 75]).
For the particle-hole force Ring and Speth [RS 74a] found:

f"=0.0685;  f"=03315; f"=—2.165;
[ =0.465; g=0.575; g =0725. (4.116)

It is important to note that this is an effective ph-force which does not have
to be antisymmetrized [KMS 76). It shows strong attraction outside the
nucleus and is close to zero inside the nucleus.

(4.115)

4.4.6 The Surface-Delta Interaction (SDI)

Like the Migdal interaction, this force is thought of as an effective residual
interaction among the particles near the Fermi surface. The main physical
idea is that the nucleons move almost independently in the nuclear
interior. In fact, the residual interaction of Migdal is rather weak inside the
nucleus. Most of the collisions occur at the nuclear surface where the Pauli
principle loses its importance and the nucleons feel the strong attractive
interaction [GM 65]. The behavior of the force outside the surface is again
not very important because there the wave functions have exponentially
decaying tails, that is, the probability of finding a nucleon there goes
rapidly to zero. Therefore, it is a meaningful approximation to restrict the
whole interaction to the nuclear surface and to define the so-called surface
delta interaction:

V(1,2)= = VoS(r, — )8 (Ir\| = Ry). (4.117)
Vo can still depend on the spin and isospin coordinates in the usual way
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(4.20). This force has very simple geometrical properties. Using the expan-
sion of the §-function in Legendre polynomials—

8(ri=r) « 2141
S Al sy

where #,, is the angle between the vectors r, and r,—and the addition
theorem of the spherical harmonics {Ed 57, Eq. 4.6.6], we get:
6(r,= Ro) §(r;— Ry) o
V(1L,2)= = VoS = Y (00) —— Ym(8i92). (4119)

im i

é(r—r)=

This is an infinite sum over separable terms. In a spherical basis, the
matrix elements coupled to a good angular momentum become extremely
simple because only one term of the sum in (4.119) survives. This model
force has been applied [KS 63, PAM 66, FP 67, Fa 68, VPK 69] in many
calculations. It has been used—like the Migdal force—as an effective force
among the valence particles. It is, however, not meaningful 10 extend the
underlying configuration space over more than two major shells, because
in that case we have levels with the same angular momentum quantum
numbers. Since the radial integrals are approximated by the value of the
wave function at r= R,, there is no cancellation for wave functions with
different numbers of radial nodes. Consequently, the particles in such
levels feel an unphysical strong interaction.

4.4.7 Separable Forces and Multipole Expansions

In the last section we saw that the surface-delta interaction is extremely
simple to handle because of its separability in a shell model basis.

We call a force separable in pariicle hole direction if it can be written in
second quantization in the form {: : means normal ordering in the sense of
Eq. (C.50)]

Va: Q0% 0, (4.120)
where

Q= 2 ‘Ik,k,aktak, (4.121)
kyky

18 a one-particle operator. Acting on a Slater determinant, it creates &
superposition of ph-pairs. A force is called separable in pp-direction if it has
the form

V=P*.P, (4.122)

where

2’( k9%, 9, (4.123)

NI—

is a pair creation operator. Acting on a Slater determinant, it creates a
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superposition of pp-pairs. [t seems very unlikely that a realistic force can
be represented by so simple an ansatz as Eqs. (4.120) and (4.122), however,
it has been shown that the matrix elements of these schematic forces with a
suitably chosen strength are of the same magnitude as those calculated
from 2 microscopic G-matrix with polarization terms (see Sec. 4.3 and F.5)
{BK 67b].

We wish here to study the question of separability somewhat further and
investigate a general phenomenslogical effective force without spin and
isospin dependence. The force shall depend only on the relative distance
between the nucleons, therefore we can expand in the following way [La
64].

V(r, —ryf)= 2{ Vi(ri.ra) Z’: Yi(8191) Yim (8:92), (4.124)
with

I
V,(r,,r2)=2ﬂfnlV(]r,—r2|)P,(cos 8,,)dcos8,,. (4.125)

For a §-force, V= —~ V,8(r), we {ind that ¥, does not depend on /:

rH—r
V,(ryr;)= - VOM. (4.126)
Fira
In Eq. (4.124) we have written a general force as an infinite sum of terms,
each of which are separable in the angular coordinates. As we see from the
8-force, we cannot expect this expansion to converge rapidly for a short
range force. In fact, we obtain an estimate for the effective range of each
component in the expansion (4.124) if we restrict ourselves to a small
region in space where r,=~r,~r. The function P,(cos#,,) has its major
contributions only in the region 0< 8,,<1// (Fig. 4.9), that is, V, (4.125) is
small, if the range of the potential ¥(r,,) is large compared to r//, that is,

4 P (cosBy,)

Figure 4.9. Legendre polynomial of degree / as a function of the angle 8,
between r, and r,.
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the Jarger the strength of the high /-components ¥, the shorter the range of
the force. In a force with zero range (8-force), all I-components have the
same relative weight.

We now come back to the question of separability. The general force
(4.124) and the 8-force (4.126) are not separable because of the radial
dependence in V,(r,, 7). On the other hand, if one assumes that the
interaction is surface peaked as the SDI-interaction (4.117), it then be-
comes a sum of separable terms because of Lhe additional factor §(r — Ry).

Vo

stol(’l’z)' r

8(r,— R{,)r—'za(r,— R). (4.127)

A more general separable ansatz of this kind is
Virira)=fi(r) fi(r2)- (4.128)

One often chooses f~r/ and obtains the multipole-multipole forces
| l
V-—-Z.EXI:Q;an:-—EZXI:QI+'QI P (4.129)
im {
where x, are constants and Q,, is the multipole operator

Om= ;E Cholr'Y o (8. @)k 0y . (4.130)

If we take into account only the components with small /-values, we obtain
long range forces. The most well known is the quadruple—quadruple force
[El 58, KS 63]. We shall see in Chapter 7 that it can be used to describe the
quadrupole deformations of nuclei self-consistently.

Again we must emphasize that these multipole forces are only to be
considered as an effective force between valence particles within a re-
stricted configuration space. If there are many such valence particles we
can apply a Hartree—-Fock approximation for them* (see Chap. 5). How-
ever, such HF-calculations with multipole forces for valence nucleons
should not be mixed up with the basic HF<alculations for the binding
encrgies.

The expansion (4.124) turns oul to be very useful for the long range part
of the effective interaction, because in this case the functions V, become
small for higher /-values. To obtain a similar description of the short range
part one uses a different kind of expansion. We shall restrict outselves to
interactions between nucleons of the same type (for the treatment of short
range correlations between protons and neutrons, see Sec. 7.5).

We now consider the general expression (4.3) of a not necessarily local
force V(r,.r;, 1}, 1y). In the case of a local force, we have ry=r; and ry=r3,
and the expansion (4.124) is made in the variables r,,r,. Now we require

*In such calculations, the exchange term (5.43) to the HF potential is usually neglected
becuuse it is amall [BK 63, Ma 74],
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instead r,=r, and r,=r;. We expand in r,r, and obtain expressions

8(ry —r)8(r, —r)V(r.1)
= 8(r,—r)é(r —ry) 2 Viri r) Yo, (819) Y i (8191)- (4.131)

b

- 'The requirements r,=r, and r;=r, already restrict us to a short range
- because it is only true if the two nucleons are at the same place. (This does
_not necessarily mean a 8-force, because we are allowing for nonlocal
- forces). At a [irst glance, the expansion (4.131) seems to be as poor as Eq.
{4.124) for a short range force. However, we have to calculate matrix
~ elements between two-particle wave functions. As we shall demonstrate in
_a moment, the /th term in (4.131) gives a contribution only to the matrix
. element when the two particles are coupled to spin /= /. For two particles
_in a single j-shell, for instance, we find that their wave functions have
_ maximal spatial overlap for 7=0. In this case, the angular part of their
_ wave function takes the form:

/
Q| ji=0M=0)x 2 ’( - )m Y ()Y, (2, P,(cos 8,,).

(4.132)

(Because of the short range force, we assume only the spin singlet to be
important.) Therefore, we find maximal interaction for /=0, where the
angular momenta |, and }, are antiparailel, and we can thus understand
that the expansion (4.131) 1s meaningful for short range interactions.

Again, if we replace the non-separable radial term in (4.131) by a
separable ansatz as in (4.129), we obtain

Vi(ry r))=—Gri r. (4.133)
V= —> G PrP.=—> GP"*-P, (4.139)
with "
P = %E kil Yol kydagtag,, (4.135)
k2

where |k) is the time-reversed state to |k). In deriving Eq. (4.134) from
(4.131) we must take care in handling the spin coordinate s, because the
operator (4.133) is not separable in spin space a prion. Because of the
8-force character, however, we always have s,= —35,, s;= =5}, which
makes it possible to derive (4.134).
We are now able to calculate the matnx elements of a §-force in a single
J-shell, where the single-particle wave functions are given by {r|nijm)
= R, (r){8{jm>. We construct pair operators A, with angular momentum
1LM:
A,I,zL 2 Gl vaman, (4.136)

myma My,
mymy
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and use Egs. (4.124) and (4.126) to obtain

- 2 v, (I)ZAIMAIH
=0, 2....
with*
(2j+ 1)
Ve(1)= Ve R‘z 2I+1 IR AT - R‘chm 12 oI

(4.137)

where R, is the radial integral

=J-°°dr rPRA(n).
0

From (4.137) we see that only the /th term in the expansion (4.131) goes
into the matrix element coupled to spin 7= /. In the case of a §-force, V,(I)
is maximal for /=0 and drops off rapidly with increasing / (Table 4.5).*
The most imporlant part of the force (4.134) is therefore the /= /=0 part.

Table 4.5 The relative magnitude of the matrix elements V;(/)
(4.137) 0 a single j-shell

Vo(1)/Vs(0) I=0 2 4 6 8§ 10 12

j=7/2 1 0238 0117 0058 — — @ —
9/2 1 0242 0126 0075 0040 — —
11/2 1 0245 0.13] 0082 0053 0025 —
13/2 1 0246 0.33 0087 0060 0038 0.019

To avoid complicated formulas, one usually introduces a slight modifi-
cation of the Condon-Shortley phases (see [Ed 57]), the so-called BCS
phases, and defines for m > 0:

(rljm ) pcs =[nlim) .,
Inj = mYacs = (—)'*/~"|nlj — mdcs. (4.138)

The time reversal operator T [Eq. (2.45)] has a very simple form in this
case. For m >0, we find

| nljm )= T|nljm}y = |nlj — m); Tinlj— m)= —|nlim)>. (4.139)
The /=0 part of Eq. (4.134), the so-called pure pairing force, has the form
VP —~ G-— E aataga,, (4.140)

§ 0

where k is again the time reversed state to k and the sum runs over all

*In the limit of large /- and j-values we find, by a semiclassical expansion [MJB 75],

] 4 12 2 I\
[Cinz =120 = \/"‘(‘2’;)
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values of k, k'. This force has been widely used to describe short range

- correlations in nuclei within the BCS-formalism (see Chap. 6). It is again

- important to notice that it should only be applied in a restricted configura-
_tion space. The value of the force constant is connected with the size of
 this space. It is easy to generalize this simple model force and to take into
_sccount higher /-values in the expansion (4.131). They are called multipole
- pairing forces. They are separable in particle-particle direction and play an
_important role in the description of pairing vibrations (see Chap. 8 and [BB
71, BBN 74b)).

A very simple model force for heavy nuclei has been obtained by

écombining a quadrupole—quadrupole force and a pure pairing force to the
_pairing-plusquadrupole force [KS 63, BK 68]:

VoFm—1x:0,0,:—GP Py, (4.141)

~ which takes into account the most important long-range correlations and
--the most important short-range correlations, and is very easy to handle (see
8ec. 7.4). It contains basically three constants: x and two different con-

. stants G, and G, for protons and neutrons. It should only be applied in a

configuration not larger than one major shell. For actual values of x and
. see [KS 60] or [BK 68].

44.8 Expenimentally Determined Effective Interactions

Since the denvation of the effective interaction from a bare nucleon-nucleon

?“!orec is rather complicated, some authors have tried to determine the matrix
- elements of the nucleon-nucleon force in a certain basis directly from the experi-
" mental data (for a review, see [ST 76] and [BPO 76)).

Elliott et al. [EJM 68] used the experimental phase shifts of nucleon-nucleon
scattering to derive the matrix elements of an elfective interaction directly in an
oscillator basis (Sussex force). In this way, the problem of the hard core is avoided
completely.

Less ambitious are attempls to derive special matrix elements from the spectra of
“simple” nuclei. These are nuclei in which one has good reason to believe that their
structure is determined only by a few matrix elements whose number does not
exceed the number of the observed levels [Ta 62]. We may lake, for example, the
1f7/2 shell nuclei, where the f7/2 shell is well separated in the simple particle
spectrum. One assumes in this case that there exist many pure 7/2 configurations
in nuclei close to the double magic core ““Ca with N > 20 and Z » 20. These levels
are completely determined by the eight matrix elements {(f7/2IT|V|(f1/2PIT>
for I=0,1,...,7 (T=1 for ] even, TmO0 for I odd).

McCullen et al. [MBZ 64] have determined these matrix elements from the
spectrum of the nucleus **Sc. It contains one neutron and one proton cutside the
“Ca core. Coupling to angular momentum / gives the interaction energy

V()= jld VI fil>
= B(1,**8c)— B(1,'Sc)— B(I,*'Ca)+ B(1, *Ca), (4.142)
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where B are the experimental binding encrgies of the level with spin 7 in “Sc and
of the ground state of the other nuclei. Using these matrix elements, many energy
levels and electromagnetic properties of the other f7/2 nuclei with more valence
nucleons can be reproduced quite well. However, levels with a more complicated
structure (e.g., holes in the “)Ca core) are also encountered and it is not known how
much they mix with the pure f7/2 configurations.

Schiffer [Sch 7ib, 72b] and Molinari et al. [MJB 75] have made a more general
investigation of many such simple nuclei with pure configurations where ane
nucleon is in a shell j, and the other in a shell j,. The coupling of angular
momentum yields multiplets with |j; —j;| € I € j,+j,. The interaction produces «
spliting of the multiplets. It is convenient to plot not ¥ (/) (Eq. 4.137) versus 1 but
rather the dimensionless ratio V(/)/ ¥ as a function of the “overlap angle™ 8
where ¥ is the average two-body interaction energy

Ve SQI+1D)V)/ T @I+1). (4.143)
! I

This angle is the angle between the classical orbits of the two valence nucleons
508 B, m Jirh - IU+1)=j(Hi+ D=z +1)

2 Py T
il 2[./1(.’]'*‘])]'/2‘[]‘:(}'2*'I)]Vz
and it measures the spacial overlap of the two wave functions. In this plot (Fig.
4.10), the points for many different nuclei hie nearly on the same curves. As an
example we show the plots for nuclei where the two valence nucleons are in the

same orbit (Fig. 4.10) and compare them with the corresponding values for a pure
3-force. For identical particles (7= 1) we again find that the absolute interaction .

(4.144)
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Figure 4.10. The relative interaction matrix elements ¥'(/)/ P as a function of the
overlap angle #,,. Experimental values for (a) four nuclei, (b) a pure 8-force
spectrum and j=41/2. (From [AS 71].)
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matrix elements are strongest for §,,=180°, that is, for antiparallel spins (/=0)
and they drop off rapidly. For nonidentical particles in the case 7=0 they also
raise for 8, =0, that is, for paraliel spins. For identical particles this configuration
is prevented by the Pauli principle. This expresses the fact that a short-range force
requires a large spacial overlap of the wave functions and it seems that an effective
interaction of the 8-type can reproduce qualitatively the “experimentally” deter-
mined matrix elements. However, a quantitative companison [Sch 72b, GSZ 74,
AEE 78] shows that a long-range part is also needed to reproduce properties of
odd-odd nuclei. The origin of this long-range part is as yet not completely
understood. For a discussion of this point see [Mo 76<]. ;

4.5 Concluding Remarks

In the second section of this chapter we discussed the bare forces acting
between nucleons. We first restricted their analytical form, observing that
they have to obey a certain number of invariance principles. It is well
known that the long-range part of the nucleon-nucleon interaction is given
by the one-pion exchange; at shorter distances, exchanges of two pions
and heavier mesons become important. We have not presented recent
results of such investigations because the bare nucleon-nucleon forces
within nuclear physics represent a discipline all its own involving interme-
diate and high energy physics [BJ 76a]. We have discussed some of the
more conventional phenomenological ansitze (which usually involve be-
tween 40 and 50 fit parameters), but which achieve perfect reproduction of
the nucleon—nucleon scattering data. However, this fit gives us information
only about the on-shell behavior of the nuclear force, the off-shell part
which enters into many-nucleon systems remaining indeterminate (see, for
instance, [SS 76]). Three-body calculations show, however, that the cur-
rently used two-body interactions like the Hamada-Johnston potential or
the Reid soft core potential in their off-shell behavior should not be very
different from one another. We thus have phenomenological bare
nucleon—nucieon potentials which are, in fact, quite reliable.

These potentials have, however, the inconvenient feature of being very
repulsive at short distances and they can thus not be directly applied in
nuclear structure calculations. Many-body theory teaches us to use effec-
tive forces instead of bare ones, the former being already an infinite sum of
the latter. This procedure pot only sums up higher order many-body
effects in a consistent manner, but at the same time gets rid of the hard
core problem, since it turns out that the effective forces are well-behaved.
We shall see in the next chapter that the application of the concept of
effective forces is quite successful for the calculation of ground state
properties of nuclei, although the most advanced purely microscopic
calculations in this field (consistently taking three-body correlations into
account [KLZ 78]) are still not able to get quantitative agreement with
experimental binding energies. 1n all other calculations, some phenomenol-



188 Nuclear Foroes

oy cnters at s certain step. Nevertheless, we can say that for the ground
state properties the theory gives very good results.

Far less satisfying is the gituation {or the case of effective forces between
valence nucleons. For example, shell model calculations within a two-
particle model space and with a phenomenological two-body force are able
to reproduce the low-lying spectrum of, [or example, '*O very well, and we
may suppose that this success can be microscopically justified by calculat-
ing the effective force between the two valence nucleons. Unfortunately,
these attempts have met with only partial success and show that at a
certain stage in the perturbative expansion of the interaction, good agree-
ment with experiment is achieved; but going further with the expansion
worsens the results again. Until now, the reasons for this agreement at an
intermediate step have not been explained.

After these numerically very involved theories of effective interactions
with their moderate success, in Section 4.4 we passed to the treatment of
the phenomenological effective forces. There the situation is quite satisfy-
ing. A number of phenomenological ansdtze exist which have been very
successful in explaining much more nuclear data than there are fit parame-
ters. One of these forces is the Skyrme force, whose success for the ground
state properties of nuclei will be discussed in more detail in the next
chaper. For nuclear structure calculations we have to mention the very
simple but highly successful pairing-plus-quadrupole force. In the lead
region the quasi-particle concept seems to work well, as shown by the quite
impressive success of calculations using the Migdal force. But other very
simple forces, like the surface-delta force, also do surprisingly well. In view
of their successes, it appears to be a difficult but challenging task to give
an explanation from a microscopic point of view.

i
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CHAPTER 5

The Hartree-Fock Method

5.1 Introduction

The success of the phenomenologically introduced shell model justifies the
assumption that nucleons move independently in an average polental
produced by all of the nucleons. The question now is how to extract such a
single-particle potential out of the sum of two-body interactions

V(l..A)= 3 V(i )= V(). (5.1)

i< jml] i= |

and how well this single-particle potential will agree with those used up to
now, for example, the harmonic oscillator, the square well, or the Woods-
Saxon potential. It will be shown that we can derive a single-particle
potential from the two-body interaction by a variational principle using
Slater determinants as trial wave functions.

In Section 5.2 we will discuss in general the variational method, which
will be important in many of the following chapters. In Section 5.3, we
describe the Hartree—Fock method in detail and in Section 5.4 we give an
application to a very simple model. In Section 5.5 we treat symmetries in
connection with the Hartree—-Fock method, and in Section 5.6 we present
the Hartree-Fock theory with density dependent forces.
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5.2 The General Variational Principle

We [irst want to show that the exact Schrédinger equation

H|¥)=E|¥) (5.2)
is equivalent to the variational equation
SE[¥]=0, (5.3)
with
(¥ H ¥
ElV¥|=—7——. 54
Y]~ S7% (54)
The variation (5.3) can be obtained from (5.4):
(SY|H-—E|¥Y)+(¥Y|H—-E|86¥,;=0. (5.5)

Since |¥) is, in general, a complex function, we can carry out the variation
over the real and imaginary part independently, which is equivalent to
carrying out the variation over [§%¥) and (§¥| independently. To see this
we use the fact that Eq. (5.5) is valid for arbitrary infinitesimal |8 ¥)>. We
can replace |[§¥) by i|8 ¥) and get

—i(BVY|H - E|¥)+i{¥|H-E|8¥). (5.6)
Together with Eqg. (5.5). we find
{(SY|H—-E|¥)>=0 (5.7)

and the complex conjugate equation. Since |8¥) is arbitrary, Eq. (5.7) is
equivalent to the eigenvalue problem (5.2).

The approximation of such variational methods consists of the fact that
|¥> is usually restricted to a set of mathematically simple trial wave
functions. As soon as the true function is not in this set, the munimal
solution is no longer the exact eigenfunction, but only an approximation.
The variational method is especially well suited for determining the ground
state, since for any trial wave function |¥) we can show that

E[¥]> E,, (5:8)

and thus E, will always be the lower bound of a variational calculation. To
prove this, we develop the trial wave function in terms of the exact
eigenfunctions of the Hamiltonian:

oc

Vo= 2 al¥,> (5.9)

n=Q
with

H|¥ >=E,¥>. (5.10)
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This yields
2 a:anEnsm’ 2 lﬂ.leU
’ L]

aed >
Z": |a,}? 2 |a,}?

E[¥] = Ey. (5.11)

which is precisely Eq. (5.8). In cases where the ground state energy is not
degenerate, the equality sign in (5.11) is valid, if and only if all the
coeflicients a, with n:0 vanish, that is, |¥) 1s proportional to |¥)>. If we
are interested in the first excited state, we then have to carry out the
variation within the subspace entirely orthogonal to |¥,>, that is, over all
the wave functions [¥) with a,=0. Within this subspace |¥,> has the
minimal expectation value of H. To find |¥,), we must carry out the
variation with the subsidiary condition (¥, | ¥,>=0. In principle we can
continue and calculate the whole spectrum using this method.

In practice, however, we do not know |¥,> exactly. From a variation in
a restricted subset of the Hilbert space, we find only an approximation
i®,>. For the calculation of an approximation |®,) to the first excited slate
[¥,>. we have to solve the variational equation (5.3) with the supplemen-
tary condition that |®,) is orthogonal to |®,):

(®, | ®g>=0. (5.12)

For the second excited state, we must have two supplementary conditions,
namely:

(D,|®,>=0; and {(®,|D,>=0. (5.13)

These supplementary conditions are coupled to the problem via Lagrange
parameters. We thus see that for higher excited states this method quickly
gets rather complicated, therefore it has been applied mainly for the
calculation of the ground state. Sometimes, however, these conditions are
simply fulfilled because of symmetry properties, as, for example, is the case
for states with different angular momentum quantum numbers. We will see
in Chapter 7 how to calculate a whole rotational band where the determi-
nation of each level is no more complicated than thal of the ground state.

So far we have shown that for a certain trial wave function, the ground
state energy is always larger than or equal to the exact ground state energy
and corresponds to an extremum. In actual calculations, we have to make
sure that this extremum actually corresponds to a minimum, that is, we
must calculate the second derivative of the energy functional, for example,
with respect to certain parameters. In the case of the Hartree-Fock or
Hartree-Fock—Bogoliubov theory, we will come back to this point (in
Chapter 7).

In order to decide which of two variational approaches (i.¢.. two sets of
trial wave functions) is the better one, we have two criteria;
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() If one set of the trial wave functions is a subset of the other, the
larger set is usually the better one, because it contains the first's set
minimum.

(ii) Since the exact E, is a lower bound, we may hope that out of two
trial wave functions, the one for which the corresponding energy is
closest to E, is better.

Both criteria are, however, nol exact statements. Pathological examples can
be found which contradict them.

We finish this section with the remark that the variation principle is only
valid in this form for a linear eigenvalue problem of the type (5.2). In cases
where the Hamiitonian itself depends on the wave function we want to
determine, we have (o be very careful in applying this principle.

5.3 The Derivation of the Hartree-Fock Equation

5.3.1 The Choice of the Set of Trial Wave Functions

Using the fact that the shell model has provided a suitable approximation
for the qualitative explanation of many nuclear properties, we shall assume
that there is an average single-particle potential (later to be called the
Hartree- Fock potential)

A
HYF =3 h(i) (5.14)
=y
whose eigenfunction having the lowest eigenvalue EHF is an approxima-
tion to the exact ground state function. This eigenfunction ®(l...A4) 1s, as
we have seen in Chapter 2, a Slater determinant

A
[HF) = |&(1... 4 =[] a*|-> (5.15)
=1
in which the Fermion operators g, a, correspond to the single-particle
wave functions ¢,, which are themselves eigenfunctions of the single-
particle Hamiltonian A, viz:

Ao (=@ (i), i={r,s,.1}. (3.16)
As we have seen in Section 2.5, we obtain the lowest cigenvalue of H HF if
one occupies the 4 lowest levels in the state |[HF) (Eq. 5.15). In the
following, we will characterize the occupied levels in |[HF) by the letters
i, j (hole states) and the empty levels by m, n (particle states). 1f we do not
distinguish, we use the letters &,/, p,g.

The wave functions ¢, (r, s, 1) are a coordinate space representation of
the eigenstates |k> of the single-particle Hamiltonian h. Very often, we
work in a configuration space based on some arbitrary complete and
orthogonal set of single-particle wave functions {x,} (an example is the set
of spherical harmonic oscillator wave functions). The function ¢, can be
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_expanded on this basis:
E F = 2’ Dyx.- (5.17)

', for each wave function x,. we define corresponding fermion creation
d annihilation operators ¢;*, ¢, (see Section C.|), we can similarly express
¢ operators a,” by the operators ¢,”:

at =S Dyct. (5.18)
i

Sance both sets {¢, )} and (x,} are complete and orthogonal, the transfor-
mation D has to be unitary:

D*D=DD*ml. (5.19)

~This fact also guarantees that the operators (g%, a,) and (¢;*, ¢,) both obey
_separate Fermi commutation relations.

~ As discussed in Section D.2. there is no one-to-one correspondence
between a Slater determinant ¢ of the form (5.15) and the set of single-
_ particle states @, . Any unitary transformation which does not mix particle
_and hole states leaves & unchanged (at least up 10 an unimportant phase).
It is therefore more convenient to represent a Slater determinant [®) by
its single-particle density matrix (D.9):

| b= (Blee| 0. (5-20)
'From Eqs. (5.18) and (5.19), we get

A
pu= 2, Dy DA ®laa,|®y= 3 DD, (5:21)
kk’ i
because p is diagonal in the basis a,", a, with the eigenvalues (occupation
~numbers) | for i < A4 (holes) and O for i > A4 (particles). The trace of p is
" equal to the particle number.

As we show in Appendix D.2, there is a one-to-one correspondence
between the Slater determinant @ and its single-particle density p. Single-
particle densities p of Slater determinants are characterized by the fact that
they have only eigenvalues 0 or |, that is,

ple=p. (5.22)

p is therefore a projector in the space of single-particle wave functions onto
the subspace spanned by the hole states g,.
In the same way, we can define a projector o

o=1-p (5.23)

onto the subspace spanned by the particle states ¢,,.

The Hartree- Fock method [Ha 28, Fo 30] is now defined in the following
way. We use the set of Slater determinants {®} of the form (5.15)
consisting of A arbitrary but orthogonal single-particle wave functions g,
as trial wave functions and minimize the energy within this set. An
equivalent statement would be that we use the set of all wave functions
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{®) whose single particle density (5.20) has the property p’=p and
Trp=A.

As we will see in the following sections, this variation will give us the
possibility of determining the single-particle operator H HF,

5.3.2 The Hartree-Fock Energy

Before we are able to carry out the vanation which allows us to determine
the HF-wave function &, we have to calculate the HF-energy

ENF = (Q|H D). (5.24)

We start with the many-body Hamiltonian H and represent it in second
quantization by the basis operators ¢;*, ¢, (see Section C.1):

I
H - 2 "lllcll CI:+ Z 2 l},',,_ ,J.C,' C,I CI‘CI’, (5.25)
,l ’l I]’)”"
where
u’ilb l}h* vl.l,l,l. = Ulll,.f.!,‘ (526)

Wick's theorem (Sec. C.4) allows us to calculate the energy (5.24) as a
functional of the single-particle density

1 -
ENF[p]= 301, < ®lete, |@>+ 1 > By 2 8Pletere, i@

h, higlyly

] -
= 2 Py, t 3 > Piy1,B1 1t Plity (5-27)
hiy hhhi,

= Tr (10)+ %Tr,Trl(pEp), (5.28)

where Tr,Tr,... is an obvious shorthand notation. Eq. (5.28) does not
depend on the basis. We can therefore use it to give an expression for the
HF-energy in the HF-basis (g, } in which p is diagonal with the eigenval-
ues 0 and 1|

A 1 A
EHF = Tty X Gy (5.29)

=y tj=

5.3.3 Variation of the Energy

To determine the HF-basis, we have to minimize the energy (5.28) for all
product wave functions |®) or for all densities p with the property p?=p.
Since a small variation p+ §p has to be a projeclor again, we get
(p+8p)' =p+8p
or, up to linear terms in 8p,
Sp=pbp+ 8pp.
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In the HF-basis, where p is diagonal, this means that the particle—particle
( pp) and hole-hole (hh) matrix clements of 8p have to vanish, that is,

pSpp=odpa=0. (5.30)

To make sure that we stay within the set of Slater determinants, therefore,
we can only allow for variations 8p,, and 8p,, of the ph and Ap matrix
elements of p in the HF-basis.

The variation of the energy (5.27) is then given by

S8E=E[p+6p]—E[p]= Zh,‘kSp“ th,sp‘,,ﬂc (5.31)

where the Hermitian matrix & 1s defined as

_3E" ()
- = 5.32
=g (532)

From Eq. (5.27). we obtain
hw 4T (5.33)

with the self-consistent field
Fpr= ? CxrkiPrr - (5-34)

Since arbitrary values of §p_, are allowed, we see from Eq. (5.31), that the
condition §E =0 for the HF-solution means that the ph matrix elements of
A have to vanish,

A

b=t + 2 oy =0 (fori<A4,m> 4), (5.35)

i=1
in the basis where p is diagonal, that is, A does not mix particle and hole
states of p and Eq. (5.35) is equivalent to

[hp]=[r+T[p].0]=0. (5.36)

This is a nonlinear equation, and not easy to solve. [t also states that 4 and
p can be diagonalized simulltaneously. Since the basis in which p is
diagonal is determined only up to unitary transformations among the
occupied levels or among the empty levels, we use this freedom and require
that h shall be diagonal. This defines the Hartree— Fock basis and converts
{5.36) into an eigenvalue problem.

A
e = e+ 25 Briaer ™ & (5.37)

=y
Considering the fact that this basis is given by the transformation D (5.18),
we obtain the set of Hartree—Fock equations

zhn D= 2(‘14 + 2 2%:; - pa)Drk"fA-D:k- (5.38)

i=1 pp’

which represent a Hermitian eigenvalue problem. It is nonlinear because
the matrix A depends on the density p, that is, on the solution of the
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problem. The coefficients D, found by the solution of these equations
determine the single-particle wave functions ¢, [Eq. (5.17)].
We have thus derived a single-particle Hamiltonian

H" = S hata,. = § (¢+T),,.a'a,
ki s

A
-3 (t“‘+ > Bmy)a[ak-- > ealta (5.39)
kk’ J=1 k
with the properties required in Section (5.3.1): The Slater determinant
|HF), where the lowest A4 levels are occupied, corresponds to an energy E
which is stationary against small variations of the wave function.

The single-particle Hamiltonian A contains, besides the kinetic energy ¢,
a self-consistent field I' (Eq. (5.34)), which depends on the density of the
nucleus. 1t is a one-body field and averages over all two-body interactions.
This point will become even clearer in the coordinate representation (Sec,
5.3.4). The energy expectation value of the HF-wave function [HF) is
given by Eqgs. (5.29) and (5.37):

A A
| -
J- U-

It is therefore not equal to the sum of single-particle energies [compare the
discussion of this point in Sec. (2.8.6)).

5.3.4 The Hartree—Fock Equations in Coordinate Space

To give a better interpretation of the structure of Eq. (5.38), we write it
down in the coordinate space. Assuming a local two-body potential which
does not depend on spin or isospin, that is, a pure Wigner force (see Sec.
4.2), we find instead of Eq. (5.38):

2 4
- ;—maw(rﬁ > f dr e (1) 9 (V) {9,(F)e: (1) — g (Mo (7))
j=1

= 6 P (1) (5.41)
Defining the local Hartree potential

Tp(r) = f dr o(r.r) Y [¢,(r)= f dr o(r, ¥)p(r’) (5.42)

j=1
and the nonlocal or exchange potential

A
Fer.r)==vu(rr) El @ (F)p (1) = — c(r.¥)p(r. 7). (5.43)
l-
we find that g, (r) is the solution of a nonlocal Schrédinger equation

K ) :
[ = 57"—.-54— FH(r)]¢k(r)+ fdr N (r Yo () =¢q,(r). (5.44)
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Equations (5.38) and (5.44) contain a self-consistency problem, since the
potentials T, T, and I'y, depend on the local and nonlocal density p(r)
and p(r.r) of the solution. The equations can be solved by iteration, *
starting with a set of phenomenological shell model wave [unctions to
calculate I',, and [';, as a first step. Another convenient first guess is the
Thomas~Fermi expression for the density (see Sec. 13.2.1). From (5.44) we
then get new single-particle wave functions, and so on. This procedure is
continued until convergence is obtained, that is, the potentials stay con-
stant in two consecutive steps. In this case, I' is the self-consistent average
potential felt by one particle through interactions with all the other
particles.

It should be noticed that, starting with a local two-body interaction, the
Fock potential I'_(5.43) is nonlocal. This is caused by the Pauli principle
and the antisymmetnization of the matrix element (5.26). A vanation of
simple product wave functions without antisymmetrization yields only the
local Hartree potential. Of course, nonlocal two-body interactions give a
nonlocal Hartree term, too. On the other hand, if we use a 8-force, then the
Fock term is also local® [see Eq. (5.99)).

Since many of the more formal discussions on HF theory will be taken
up in Chapter 7, we will not go into more detail here; we wish only to
mention that we will treat there the stability of the Hartree-Fock equa-
tions, that is, the question of whether the Hartree—Fock solutions corre-
spond to a minimum or a maximum in the energy. We will also present the
so-called gradient method for the solution of the HF equations.

In order to familiarize the reader with the concept of the theory
presented in this chapter, we will now present a simple model in which all
equations can be solved analytically.

5.4 The Hartree—Fock Method in a Simple Solvable Model

As we will discuss in the last section of this chapter, all realistic HF calculations are
very difficult numerical problems. In order to get some feeling about how this
method works, we want to apply it to a very simple, exactly solvable mode! first
proposed by Lipkin, Meshkov, and Glick [LMG 65], and which has been widely
used to test all kinds ol many-body theories (as we shall see later on). Let us
imagine two levels in a fixed shell model potential having the same j-value, one
situated just below the Fermi level, the other just above. The level below the Fermi
level is filled with 2+ | nucleons (of one kind, for simplicity). The lixed single-
particle potential can be thought of as being produced by an especially stable core
formed out of the rest of the nucleons. It is then conceivable to calculate solely that
part of the average potential coming from the nucleons in the last j-shell, in a
self-consistent manner, such that the mutual influence of the core and the last
j-shell is neglected. Of course, the idea that there is only one level with the same
above the Fermi level is very unrealistic and serves only lo schematize the problem.

* For numerical methods 1o solve the HF-equalions (5.38) or (5.41), see also |[QF 78).
'In this case, however, we also have to lake into accoun! spin degrees of freedom,
otherwise the exchange term cancels the direct term.
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Furthermore, it is assumed that in the basis produced by the fixed potential of the
core, the residual interaction of the nucleons in the two shells is of a very special
form, being of the monopole~monopole type (see Chap. 4) and having cssentially
only one matrix element different from zero (a particle—hole matrix element of the
RPA type (seec Chap. 8)). The mode! Hamiltonian is then of the form

HmKg— V(K K, +K_K_), (5.45)
with
12 o *
K0=E 2 (C:mc-o-m—c:mc-m); K+‘ 2 C:.C__; K—G(K-#) v
m=] = |
(5.46)

where R=2j+1 and c3,.ct,, create a particle in the upper and lower levels,

respectively, and e is the energy difference between the two levels (see Fig. 5.1).
The operators K, K, fulfill the commutation relations of angular momenta.

(k.. K_I=2Ks [Kp K. ]=2kK,. (5.47)
Eiz « v e —Q fold
_ Fermitevt . . _ _
-& ce e ——Qfold

Figure 5.1. Level scheme in the schematic model.

However, it must be emphasized that the operators K, K, have nothing to do with
rotations in coordinate space. They are often referred to as quasi-spin operators. [n
order to apply the Hartree~-Fock method, we have to construct the general Slater
determinant [©). The Hamiltonian (5.45) is invariant under a permutation of the {
levels below and corresponding levels above the Fermi surface. Therefore, in the
following, we restrict ourselves to those solutions of the problem which are
completely symmetric under such a permutation. In this case, there is only one
possibility of exciting ph-pairs, and the most general Slater determinant [®) is
characterized by the complex number z:

7]
D) =R exp{zK, }®o>= T] agul—> (5.48)
-]
with
Q
[®os= [ ¢2al—> (5.49)
me=]
and
Ao =D _o¢2 0+ Dy ocl (5.50a)
a =mD_ict +D_ct,., (5.50b)

where we denote the new lower and upper levels by 0 and 1. With the aid of
relations (5.50a) and (5.50b), we can express the Hamiltonian (5.45) in the new
OPETRIOLS dgn. diw. Then, varying (®|H |®) with respect to D%y and D%, yields*
the Hartree-Fock equations in the Lipkin model (this is, in fact, just another way

* Under the subsidiary condition that the Ds are normalized [see Eq. (5.96)].
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to derive the HF eqs.):
-1 -Q\(D_o € ({D_o -
- , 5.51
('Q' %‘)(DW) ‘(Dw) (5D

x=—@-1).  @=xD.oD%.

which is of the usual nonlinear type and can be solved by iteration. The new
single-particle energies are given by

- 1
fo.|‘+¢JE+|Q|z
-:5. 2
24l+)( sin 2a , (5.52)

where we put D_g=cosa and D g=sina-e™ . Solving Eq. (5.51) for D_4 and
D .o and inserting these into the expression for Q yields, with (5.52) in the case
@ #0, the following equation for the “deformation” potential Q:

X 1
I P ir———t (5.53)

l 2
a*e
This equation has only real solutions for x > | corresponding to the deformed HF
solution given below. (The fact that Eq. (5.53) is very similar (o the gap equation of
BCS theory [Eq. (6.60)] is not accidental, as will be discussed in more detail in Sec.
11.2 and Appendix F.5.)

In the coordinates a, ¢, we then obuain for the ground state energy

where

EfFem — iﬂ(cos 2a+ lx sin*2a-cos le) (5.54)
2 2
and the self-consistency condition
AE;'F .
30 = = ¢Sl sin 2a(1 — x cos 2a - cos 2¢), (5.55)
055 b= e sin2a-sin2
P =0=¢0> sin 2a sin 2¢.

From Eq. (5.55), we see that we have to distinguish two cases, depending on
whether x is greater than or smaller than one. In the latter case, we have only one
solution:

Pue =0, ays=0, x<l. (5.56)
For x >» 1 we have a second solution,

QHF--O, X €COos 2aHF- l, x> l. (5.57)
which tums out 10 correspond to the minimum in the energy. the [lirst solution
having been a maximum. This can be seen from the curvature of the energy at this
point:

alEoﬂF

da?t

=z¢n(x—%)>o for x> 1. (5.58)

Ll PV T

In Fig. 5.2 we show a cut (¢ =0) through the two-dimensional energy surface (5.54)
forx S I.
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Figure 52. EJ'F as a function of a for x § | (full lines). The other four curves
correspond to quantities calculated within the generator coordinate method (see
Sec. 10.7.5). (From [Ho 73])

From the critical value
Vc(n - l) |

p (5.59)

on, the solution at a=0, ¢ =0 becomes unstable and then we have to use a
different single-particle basis. In Fig. 5.3, we show for x=6 how the iterative
solution of equation (5.51) works. Starting with a, = 80°, ¢, =30° we find in the
subsequent steps (full lines in Fig. 5.3): a,=32.01°, g,= —30°; a,=139.75° ¢,
=30°; a,=40.19°, @,= —30°;... . With respect to a we get a rapid convergence to
the solution ayr=4020 [Eq. (5.57)]; with respect to the variable ¢, however, we do
nol get convergence, the solution jumping back and forth between +30° and

o —
$ -
0° - 1
5 ”
o' |- b - -
=3
2
-60° I | /I/’;’—r\ I |

0 200 X W0 S 0 W 80, W

Figare 53. Numerical comparnson of solution of the HF equations by iterative
diagonalization (solid line) and the gradient method (dashed line).



The Hartree—Fock Method and Symmetries 201

—30°. Our model is certainly & very special case in the sense that in the general
case the iterative diagonalization converges to a minimum in the energy surface.
However, one sometimes also encounters in realistic calculations cases where,
within a certain degree of freedom, the solution oscillates back and forth, as in our
model. It is therefore preferable to use another method to find the minimum which
can, in general, also give faster convergence. This is the gradient method, which
will be explained in Section 7.3.3. The way in which the gradient method would
converge to the minimum in our model is also indicated in Fig. 5.3 by the dashed
line.

5.5 The Hartree-Fock Method and Symmetries

The HF equations (5.38) are nonlinear, which means that the self-
consistent potential I' [Eq. (5.34)] depends not only on the original Hamil-
tonian, but also on the solution [which is represented by its density matrix
p (521)]. Therefore, this potential does not necessarily show the same
symmetries &s the Hamiltonian. We then say that the solution has a broken
symmelry. The loss of translational invariance is one which we have
already encountered, but, as we shall see, there are others—such as, for
example, the rotational invariance and particle number conservation (see
Chs. 6 and 7). Usually one calls a transition from a symmetry-conserving
solution to a symmetry-broken solution a phase transition. The great
advantage of this symmetry breaking is the fact that it allows us to take
into account, in an approximate way, many-body correlations without
losing the simple picture of independent particles. A more detailed discus-
sion of this point will be given in Chapters 7 and || and in Appendix F,
but let us give here the following argument: Let us suppose that we have a
Slater determinant [®) which consists of deformed single-particle wave
functions {a,”}. We express them in a spherical basis {c;’} through the
linear transformation

;= % Dy (5.60)

We thus obtain a sum of Slater determinants in the spherical basis which
differs in the occupation numbers of the level ¢:

a.»f...a,»;’l—>- 2 dyret ek =) (5.61)

Here the coefficients d" "' are the corresponding minors of the matnix
D, . They are of a spcc:al form had we allowed them to be of the most
general form, the ansatz (5.61) would contain the exact answer; however,
this can never be the case in an independent particle (HF) description.
Nevertheless, we see that a Slater determinant in one basis can be a
complicated superposition of Slater determinants in another.

Of course, the exact wave function should have the symmetries of the
Hamiltonian, and their violation is a matter of convenience in order to
maintain the independent particle picture for as long as possible. Neverthe-
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less, we should try at a later stage to restore the symmetries. How this can
be achieved will be discussed in Chapter 1{. However, certain symmetries
are conserved in the HF theory, the so-called self-consistent symmerries.

They depend on the symmetries of the initial density p'® of the iteration,
and are based on the property of the HF field I" viz:

ST[p]S*=I[SpS™] (5.62)
for any matrix S of a unitary* symmetry operator
S=S St (5.63)
=
which commutes with the many-body Hamiltonian (5.25)
[H.S]=0.
The property (5.62) is easy to show for the definition (5.34) of I':
(STS*)m S SySt<prIVIP DuSiS (oS ), (564)
"eqpw
= 3 Ck'|SVS ¥ p'90u(SoS ), (5.65)
v
From the invariance of the two-body interaction
Sv$*=v (5.66)
we finally get (5.62) and
Ship]|S*=h[SpS™*]. (5.67)

This means that if the initial density p‘® has a certain symmetry S of the
Hamiltonian H, then the field A[p*®] for the first step of the iteration has it
also. The density p'" is found by a diagonalization of h[p‘"’]. It therefore
has to have the same symmetry again, and so on. In each step of the
iteration, the symmetry S is conserved.

The existence of these self-consistent symmetries has the following
implications for practical calculations [Ri 68).

(i) If we expect a certain symmetry for the solution, we can start with
an initial density p'® which has this symmetry and therefore reduce
the computational effort by working in a basis consisting of eigen-
states of this symmetry.

(i) If we start with a certain symmetry, we will always stay within this
symmetry, and the minimum of energy can only be found among
the wave functions that have this symmetry. If, for instance, the
deepest minimum is a deformed Slater determinant, we will never
get to it starting with a spherically symmetric density matrix, though
it may happen that small numerical errors cause smail deviations,
from the initial symmetry, which grow during the iteration.

*The following considerations also apply, with small modifications, for antilinear unitary
symmetries [Me 61).
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(iii) If we have a solution with a broken symmetry S
SpS* =p #p, (5.68)

then from Eq. (5.67) we obtain the HF-Hamiltonian Afp,], which
belongs to the transformed density and has the form

hp ] =S *h[p]s. (5.69)
This shows that p, is also a solution of the HF-equation (5.36)
(4[]0 ]=0. (570

In the case of a continuous symmetry, like that of translation or
rotation, we therefore have, to each symmelry-breaking solution, an
infinite number of degenerate solutions.

In the next section, we shall see that it is useful to do HF calculations
with density dependent two-body forces. In this case, the force does not
pecessarily exhibit the same symmetry properties as the bare nucleon-
siucleon force. Nevertheless, it is clear that the usual properties of HF
solutions with respect to symmelry transformations, as previously dis-
ussed, are also retained for density dependent forces, if we require that
the interaction satisfies the very plausible condition [BG 77]

Sv[p)S ‘=¥ Sps~']. (5.71)

“This means, for instance, that in the case of rotations the two-body
. interaction in a rotated system is the same as the interaction calculated
with a rotated density. This condition is fulfilled for the Skyrme force
(4.109).

5.6 Hartree—Fock with Density Dependent Forces

5.6.1 Approach with Microscopic Effective Interactions

- 5.6.1.1. Brickner-Hartree-Fock. One of the main obstacles to a direct
. application of the Hartree-Fock method, outlined in the preceding sec-
. tions, is the fact that most bare nucleon-nucleon forces have an infinite or
_ at least very repulsive core (see Chap. 4). As is easily verified, the two-body
~ matrix elements entering the Hartree—Fock potential (5.34) all become

infinite for a hard core potential. The way to solve this problem is to

replace the bare interaction in (5.34) by the Briickner G-matrix discussed
. in Section 4.3.1. This, as a matter of fact, is not only convenient because it
- solves the hard core problem, but it can also be shown that it is a
consistent resummation of certain higher order terms of the full many
body problem. Since we do not have the technical many-body apparatus at
hand here, we leave the demonstration to Appendix F.4.

The Briickner Hartree—Fock equations are given in analogy to Eq. (5.38)
by (see also the review articles on the subject treated in this section by H.
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S. Kéhler [Ké 75) and W. Wild [Wi 77]):

{t,, + 2 > ,;%7;D’,D' }D,-,,=¢,D,,,. (5.72y
{m} pp'

Here G is the Briickner G-matrix as defined in Eq. (4.39), written in terms

of the basis of a definite single-particle potential. The corresponding

ground state energies given in the basis, which are solutions of (5.72), are

A
EPF= Z t,+ ,2 Gy (5.73)
2 ¢— 3 2 Gsy (5.74)

im] !jl

For the ground state energy, it seems that we need only the hole solutions
of (5.72). The particle solutions of (5.72), however, enter the Bethe-
Goldstone equation (4.39) through the intermediate particle energies ¢, €,,
The Briickner Hartree-Fock solution then consists of a complicated dou-
bly self-consistent procedure. It can be solved, for example, by the follow-
ing iteration cycle: (i) Calculate the G-matrix via (4.39) in a suitable basis
of first choice (e.g., harmonic oscillator); (ii) diagonalize once (5.72) in this
basis, which gives a new basis; (iii) calculate in this new basis a new
G-matrix; and so on until the convergence is achieved. In this iteration
cycle there arises, however, a small ambiguily concerning the energy
dependence of the G-matrix in (5.72). Since we do not know the solution &
priori, we have to include the energy dependence of Gl% into the
iteration cycle. We thus have to take for ¢, the energy corresponding to the
basis in which we have actually written Eq. (5.72) for each step of the
iteration, that s, we can take ¢, equal to ¢, or ¢,.. No ambiguity arises for ¢
because the D . are taken to be diagonal in the iteration process. The
conventional cﬁmcc for the BHF potential energy matrix [see Eq. (5.34)] is
(see e.g. [Ba 69a]) (of course, the final answer does not depend on any
specific convention):

A
%Z (Gars+Gurs) for k.k'<ep,

[BHF m ﬁj Guls for k,< . (5.75)
P k > (F
A k'<e
S Gary for £
S k> €

The particle-particle matrix elements of I'®"F are a somewhat controver-

sial matter. For a fixed G-matrix, the particle—particle matrix elements of
I'®F do not influence the hole solutions of Eq. (5.72): they do influence,
however, the particle solutions, and via (4.39) in the doubly self-consistent
cycle, indirectly also the hole solutions. We can argue (see discussions in
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{Ba 69a, Ne 70]) that if the particle—particle matrix elements of ®"F are
gqual to zero,

TBHF_0,  for k,k'>e¢, (5.76)

three-body correlations are effectively summed, which were originally not
present in our formulation (5.72) and (4.39).

~ Equation (5.72) is not only different from the ordinary HF equation
(5.38) because the two body operator is more complicated, but also
because I'®HF now depends on the energy which we want to calculate.
Therefore, it is & nonlinear problem in which the solutions to different
energies are, in general, no longer orthogonal (solutions with different
angular momentum are, though, still orthogonal for the spherically sym-
metric case). However, for the iterative solution this is of no special
importance.*

As we discussed in Section 4.3.1, the G-matrix sums up two-particle
scattering processes in the nuclear medium. One can show that (5.74)
contains all contributions of this type to the ground state energy [Ma 67b].
In Table 5.1 we show the results of Briickner—Hartree—Fock calculations
for the rms radius and the binding energy per particle in the case of {0,
£Ca. and Z3Pb; the bare force was the Reid soft core potential (4.35).

Table 5.1 Results of BHF calculations with the Reid soft core
potential compared with experiment (from [DMS 73])

BHF Experiment
%0 —Eo/A (MeV) 3.91 7.98
rms (fm) 2.50 2.73
BCa —Eo/A 3.88 8.55
rms 3.04 348
2BPb —Eq/A 2.52 7.87
rms 4.51 5.50

The results in Table 5.1 are deceiving. The calculations do not give even
half the experimental binding energy and the rms radii are about 10-20%
off. The bad result for the binding energy is not too surprising, however, in
view of the fact that it is a difference between two very large numbers, that
for kinetic and that for potential energy.

Nevertheless, in view of the unsatisfying result, one has to envisage
taking into account more complicated processes.” Next in the hierarchy
are three-particle scattening terms whose importance should depend on the
density of the system. As we have seen in Section 4.3, the healing distance,
which characterizes the range of the two-particle correlations, is apprecia-
bly smaller than the average interparticle distance. Thus the probability

* One should nevertheless make sure that the energy dependence of ['®HF is not too strong,
otherwise the independent particle picture may no longer be vahd.

"In this context, see also the hyperneited chain formalism [PB 73, FR 75, 76a. LS 77, Ri
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Figere 54. Comhparison of BHF calculations with different nucieon-nuclmi
potentials (dots on full lins) with calculations including 3-body correlations (bwo-
ken line) and with experiment (from [Wi 77).

that three particles are simultaneously within the range of the healing
distance should be quite small. This is, however, a rather qualitative
argument [Be 71, p. 161]. In fact, Kiimmel and co-workers have been able
to include three-body correlations in a completely self-consistent manner
into the calculations for the gound state energy (see, e.g., [KLZ 75, 78] and
further references cited therein). They also give strong arguments that
four-body correlations should be negligible. Their results are very interest-
ing in the sense that agreement with experiment is improved, though not
very dramatically. For different nucleon—nucleon potentials, the results lie
roughly on a smooth hne in the — E,/ A versus rms-radius plane, as shown
in Fig. 5.4. This line is called the Coester /ine. The results of the Reid soft
core potential are located approximately at the point where the curve is
closest to the experimental value. In view of the claim [KLZ 75] that the
resuits have converged, the remaining difference must be attributed to
relativistic effects or to mesonic degrees of freedom.

5.6.1.2. The Local Density Approxtmation and the Variational Principle. In Section
4.3 we saw that the influence of a hard core potential on a two-nucleon wave
function is effective over relative distances of the two nucleons ranging from 0 to
about 1 fm, that is, only over very short distances, compared to the nuclear radius
of about 10 fm. This means that the Brickner G-matrix is only different from the
bare interaction o(r) within the same range of r-values. However, in general,
variations of about | fm in the relative variable r=|r, —r;| of the two nucleons
imply a similar variation in the center of mass coordinate. The nuclear density
p(R) = p(1(r, +r,)) does not (at Igast, not in the interior of the nucleus) change very
much over such & range of R-values. It therefore seems a reasonable assumption to
calculate the nuclear G-matrix at each value of p(R) as if the nucleus locally around
R were a piece of nuclear matter* with the density p(R). Actually, this reasoning is

®* For the theory of nuclear matter, see the reviews [Be 71, Sp 72, JLM 76},
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very close 1o the Thomas-Fermi approximation (see Chap. 13). More explicitly,
this means that in the Bethe—-Goldstone equation (4.39), which can be written using
(5.76) as

Qr P
W—0,TQr '
we replace the projector Oy by its expression O™ in nuclear matter of density
p(R). Since Oy (4.41) can be expressed by the nonlocal single-particle density
or. )= i (e (r),

Nt Qelrivy) = [8(r, = 1y) = o(ry, )M 8(r, — 1) — p{rs, ), (5.78)

GYwp+ (5.77)

thit means that in (5.78) p has to be replaced by its nuciear matter value [see Eq.
320

"™, r)= 2 (R

where s=r—r, R=i(r+r), and j, is a Bessel function. The R-dependence of (5.79)

_comes from the fact that we have only treated the nucleus locally around R as

_.muclear matter. The relationship between k, and p is given, as usual, by [see Eqs,
(5.91), (13.22), and (13.23)]

¥ ——— ji(ks(R)s)p(R), (5.79)

o(R) = %k;m (5.80)

' Numerical comparison with exact density matrices of finite nuclei have shown [Ne

© 75] that the nonlocal behavior of p is very well approximated by (5.79) in the
nuclear interior, and reasonably well represented throughout the nuclear surface.
We can therefore conclude that the local density approximation to the G-matrix as
descnibed here is quite good.

[n principle, the G-matrix thus calculated depends on the three variables
rer, —r; rer—r; and on R=4(r,+r,—r,—r): G=G, ., x. It turns out, how-
ever, that the dependence of G on the total momentum P (the conjugate variable to
R) is weak, and we usually put it equal to some average value [BGW 58]:

G, . r=0G,r r.

Negele [Ne 70] further simplifies the expression for G. He replaces the starting
energy W=¢ +¢ appearing in the G-matrix of Eq. (5.73) by an average value
obtained as twice the average hole energy in nuclear matter. In this way, we get rid
of the state dependence of the single-particle potential in Eq. (5.72) and the
corresponding eigenfunctions form a complete orthonormal set. The next step
consists of representing G, , by an effective local operator v*(r); (we omit the
details of how this is achieved and refer to [Ne 70]*). Furthermore, this effective
interaction is renormalized phenomenologically to give the correct volume of
nuclear matter [see the Bethe—Weizsicker formula (1.4)). In this sense. the “density
dependent HF” (DDHF) method of Negele is still a semi-phenomenological
procedure.

One further very umportant ingredient of Negele’s theory we have not spoken of
untl now: 1n Table 5.1, we have seen that a pure BHF calculation does not give
very good results; therclore, something better has to be invented. [t turns out that

* Other applications of the ‘local’ density approximation can be found in [Ko 65, NV 70,
CS 72, NR 72].
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the intuitively appealing idea to vary the ground state energy (5.73) with G replaced
by the local density approximation, with respect to the single-particle wave func.
tions, as in the pure HF case (Eq. 5.29), yields very good results. The Hartree—-Fock
Hamiltonian becomes, in this case, [see Eq. (5.32)]

8E[p]
8pis

where |®) is a Slater determinant oorrespondmg o the density p. For density
independent forces, (5.81) just reduces to the usual HF-Hamiltonian. For density
dependent forces, however, we have an additional term 8c*"/ 8p, usually called the
rearrangemen! Ot saturation pofential. Tt results from the density dependence in
o*(p) and plays a very important role in practical calculations. It has to be
emphasized, however, that the variational method just described is not equivalent
to the variation of a trial wave function minimizing the expectation value of the
original many-body Hamiltonian (5.25). This implies that, at least in principle, the
ground state energy calculated with (5.81) could be lower than the exact one. The
method is justified in the first place by its success; theoretically, we can say that the
additional term 80*"/3p somehow takes into account three-body scattering terms
[Ne 75] (3v*'/8p has six indices in the shell model space). In Table 5.2, we show
the big improvement over BHF which is obtained when using the DDHF method
[Ne 70, NV 75].

AHE =

-+ 2 Elq [ o qLP” + <¢' '°> (5-81}

Table 52 Binding energies (in MeV) and rms radii (in fm) with
the density dependent Hartree-Fock method (DDHF)

BHF DDHF Exp.

%0 —Ey/A 391 1.59 7.98
rms 2.50 2.75 2.73

#Ca —Eo/A 388 7.99 8.55
rms 3.04 3.46 3.48

2%Pb - E /A 2.52 7.83 7.87
rms 4.51 5.49 5.50

The solution of the DDHF equations is a very complicated task because of the
fact that the exchange term (5.43) implies that an integrodifferential equation must
be solved. The fact that the nuclear force is of rather short range can, however, be
exploited to simplify the problem so that the nonlocal exchange term can be
expanded in powers of the nonlocality around its local value. This procedure leads
in a rather natural way to & justification of the very successful HF scheme using the
phenomenological Skyrme foroes, which we will study next [Ne 75].

5.6.2 Hartree—Fock Calculations with the Skyrme Force

5.6.2.1. General Remarks. There have been many applications of the
Hartree-Fock method over the years using different forces. It lies beyond
the scope of this book to give a review of them (for a recent review, see
[QF 78]). Many of them—in particular, those that do not use density
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dependent forces—have the shortcoming that they are not able to simulta-
neously produce the binding energies, the radii, and the proper single-
particle spectrum for light and heavy nuclei (see, for instance, [Vo 65, MB
&5, BB 67, NDK 68, PS 68, SFW 69, SP 70]).

The use of the Skyrme force (4.104) as a phenomenological interaction
in HF calculations has the important merit of being able to very well
reproduce binding energies and nuclear radii over the enlire periodic
table.* Like the Negele force, obtained from the local density approxima-
tion, the Skyrme force is density dependent and, as discussed in the last
section, cannot simply be used in the variation principle (5.3), which is
- based on a linear Hamiltonian. Formally, this difficulty can be overcome
" by considering the Skyrme force as a three-particle force (4.104).

5.6.22. The Energy Calculated with the Skyrme Force. We start with the
Skyrme force as given in Eq. (4.104) and calculate the expectation value of
the corresponding Hamiltonian with respect to a Slater determinant |®)
containing the single-particle wave functions ¢,(r,s,r). For the sake of
simplicity we require time reversal invariance. This is not essential [Pa 76],
but simplifies the equations considerably. Furthermore, we regard only
nuclei with ¥ =2 and neglect the Coulomb field.' (For the case N Z
with Coulomb interaction, and for more details of the following derivation,
see the paper of Yautherin and Brink [VB 72)).
The energy is given by:

Egm(®|T+V?®+ VD D)

A 2 A A
4 Pro 1 = (2) ] tep (= .
= Sdlyalvty 3 <GEPlp+¢ D GREDIR. (582)
m i Jj=l ik =

e

Because of the §-function character of the Skyrme force (4.104), it is
possible to express E by an integral over an energy density H(r)

Eom f H(r)d’, (5.83)
in which H(r) is an algebraic function of three quantities:

(1) the nucleon density

p(r)= 2 lgi(r.s. ) (5.84)

3.1

(i1) the kinetic energy density

= X Ve, (505 (5.85)

i, 9.1

* There 1 a large number of timilar phenomenological density dependent forces with zero
range [Mo 70, LY 71, La 72, EM 72, BJS 75, Ko 76, LB 76, TK 76, KKS 77, SM 78) or finite
range | Kr 70, ZR 71, RPS 72, LMYV 73, Go 75b, RBP 77] which show properties similar to the
Skyrme force in HF calculations.

'For the treatment of the Coulomb lield, soe [Qu 72, GVL 73, SI §i, Go 52, KS 72, TQ
74).
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(iii) the so-called spin orbit densities

3O == T ot @5 NI )X 0] (5.86)

The sums are taken over all occupied single-particle states. A lengthy but
straightforward calculation [VB 72] for N = Z nuclei gives

A 3 1 1
H(r)= -i-;'r(r)+ §I°p2+ -1—6-r3p3+ ]—6—(31, +30,)p7

1 3 I
+ 5 O —-56,)(Vp) - T WeeVI+ (1 - L2 (5.87)

Besides the kinetic energy 7, we also have contributions from the two-body
§-force ~p? and the three-body 8-force ~p>. The nonlocal p’-terms give
contributions ~pr and ~Vp2. The latter has its largest contributions at the
nuclear surface. The term (7, — 1,)J? is usually neglected because it is
difficult to handle in deformed nuclei and its contribution to the spin orbit
part does not reproduce the experimental spin-orbit splitting.

We could also have derived the three-body term ~p* from a density
dependent two-body interaction

=2 S il 8 —re(r)( + POi= iy (5.88)
i jeA

In Section (5.6.1.1) we saw that when using density dependent interactions

we have [irst 10 calculate the energy and only afterwards vary with respect

to the density. In that sense, the three-body contact force of Skyrme is

equivalent to the two-body interaction (5.88). This equivalence, however, is

only valid in even—even nuclei with time reversal symmetry.

Using (5.87), we are able to calculate the binding energy per particle in
nuclear matter without Coulomb interaction. In this case we have transla-
tional invariance and the single-particle wave functions are given by plane
waves normalized to a §-function

— I e 1/2 4/2
e = T L€ X X, 5.89
P (2‘”)331 ( )
and in Eqgs. (5.84)-(5.86) we have to replace
. 3
b dk..., 5.90
o';l d J|‘k| <kr ( )

where all the levels with |k| smaller than the Fermi momentum &, are
occupied. From (5.84), we get the usual relation between p and & [see also
Eqs. (13.22) and (13.23))

-3 47 s 2 s
p Gy 3 ki= 22k (591)
and from (5.85),
2 3., 3 3 {302\
T=§§k:—=§ k;--s-(%) ps/:’. (592)
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Because of translational invariance, we have Vp=VJ=0 and obtain for
the binding energy per particle in nuclear matter

_-._..___kg+; op+% 2+—(3: +51,)pk.  (5.93)

The saturation property means that there is an equilibrium density p, for

which
d EO 2 A? 2 -1 1 2
—| = =-0= T — Slo+ oo+ — . (5.
ap( y )pw° 0 5 ka"p +3lht St,p l6(3:,+512)k,r (5.94)
The incompressibility of nuclear matter K is defined as the curvature of
the binding energy E,/ A with respect to the Fermi momentum k, at this
minimum:

3 ]

az(4“30/ A)
dk:

2
- h—k},-&- -9-:0p+ Et}p2+ %(3:,+51,)pk}..

=k 5 2m 4 8

(5.95)

Equations (5.93)-(5.95) allow us to express the two constants ¢, and /4 and
the combination 3¢, + 5¢, by the nuclear matter constants E,/ 4, p,, and K.
From Eq. (5.95), we see that ¢, is strongly correlated with the incompress-
ibility K.* From the Bethe-Weizsicker Formula (1.4). we know that the
value of E;/A=a, =159 MeV. Less well determined is the equilibrium
density p,=3/47r3=0.14 [m~>. Therefore, it is not possible to adjust the
force parameters of a phenomenological force to nuclear matter data
alone. We first have to carry out the calculation for finite nuclet.

5.6.2.3. The Derivation of the Density Dependent Hartree-Fock Equations.
According to the concept of Section 5.6.], we have to vary the functional
EJp] with respect to the density in order to gain the Hartree-Fock
Hamiltonian. Unfortunately, (5.95) does not have the form of a functional
of p. It also depends on 7 and J, and it is very hard to express 7 and J in
terms of p. In our case, however, this is no real problem, since the
HF-density is uniquely defined by the single-particle wave functions ¢,
(5.84), and we can also carry out the variation with respect to ¢, under the
condition that they are normalized to unity. We use Lagrange multipliers ¢,
for these subsidiary conditions and find

5q, (Eole ]~ S dvig o) =0 (596)

The variation of the energy (5.83), after integrating by parts, can be written

SE= fa"r[ TG U(r)b‘p(r)+W(r)8J(r)] (597

*Nuclear matter caleulations give values between 150 and 250 McV and. from recent
measurements of the breathing mode in ®Pb, we deduce the value K==200 MeV [or the
incompressibility of heavy. finite nuclei.
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with an effective mass

m‘(r)=m(l + —-—(3:,+5:,)p) (5.98)

an average [ield

3 3 1
U(r)= i AT Lol + —16(31l +50,)r
b, 3 i
+ 3‘5(5&—911)72‘0-— 1 W,VJ, (5.99)

and a one-body spin-orbit potential [we neglect the term (¢, — 1,)J?
W(r)= % W,Vp. (5.100)

We now have to insert into Eq. (5.96) the vanations &r, 8p, and 8J with
respect o @, . From definitions (5.84)-(5.86) we get

8E=22fd3r6<p, l 2m

ja |

V4 U+WL (¥ XO)}qJ, (5.101)

and, using Eq. (5.96), we finally find the HF-equation in coordinate space
viz:

{ —v 2"‘",(') V+ U@+ w%(v x a)}.p,(r)- ¢o,(r).  (5.102)

The exchange term in the HF-equation (5.44) is now local and is included
in the potential U(r), so that (5.102) is a pure differential equation. The
nonlocality is expressed only in the r-dependence of the effective mass
m*(r). In the case of spherical symmetry, we end up with a one-
dimensional differential equation of second order in the radial coordinate
r. In particular, the spin-orbit term (5.100) takes the form

ol 4l o1

and, as we have already discussed in Section 2.4, this is concentrated
mainly at the nuclear surface.

5.6.2.4. Discussion of the Results. Vautherin and Brink [VB 72] originally
solved the HF equation (5.102) for the spherical closed shell nuclei '*0O,
“Ca, “*Ca, Zr, and **Pb, and were able to adjust the six parameters /,,
t,, &3, {3, Wy, and x; so as to reproduce the radii and binding energies of
these nuclei. They presented two sets of force constants (Skyrme I and If)
which gave a good description of these closed shell nuclei. Both have large
values of 7,, which means a strong density dependence. This is a vcry
crucial point, because for density dependent forces the binding energy E
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is given by (5.28) and (5.81)

_EOHF =Trip+ %Tr,Tr,pﬁp

= 3Te((r+ 90} - 3T GHFI K ) (5100

ich, in the case of the Skyrme force (5.88), 18

1< I
EgFm> 3 (L+e)= §I3J‘d3r93. (5.105)

jm ]

-galled the rearrangement term. For a density independent force it vanishes,
and it is pot possible o simultaneously reproduce the binding energy E,,
the radii, and the experimental single-particle energies ¢, of a nucleus, as
-the last two quantities already determine (more or less) the first part of Eq.
£5.105). Only the rearrangement term makes it possible to reproduce the
binding energy so well. This term is always negative because of the
replusion of the nuclear forces at short distances or large densities.

Later, the density dependence in many other spherical nuclei was
investigated [BFG 75] and other sets of [orce parameters were determined
(Skyrme II1-VI). They differ in their density dependence, and it turns out
that ¢, is not determined by the radii and binding energies alone. With
rather different values of ¢y, we can, in fact, reproduce these values.
However, the single-particle energies ¢ do depend dramatically on 1,.
Skyrme 111 [Eq. (4.108)] gives reasonable values for all these quantities.

Table 5.3 lists binding energies and root mean square radii r, for several
spherical closed-shell nuclei as calculated by the most sophisticated

Table 5.3 Experimental and calculated root mean square radii (in fm) and binding
energies (in MeV) per nucleon

Experiment Negele Campiand  Nemethetal. Skyrme [l
[Ne 70] Sprung [CS72] [NMH 73] [BFG 75]

0 E -7.98 -6.75 -7.68 ~798 -7.96
r, 2.73 2.80 2.75 2.77 2.69
®Ca E —8.55 -17.49 —833 - 8.47 —8.54
r. 3.49 3.49 3.49 340 348
*Ca E —~8.67 ~7.48 ~8.40 -8.55 -8.71
s, 3.48 3.52 3.51 3.44 3.53
wzZr E -8.71 —7.85 —8.63 -8.70 -8.71
r. 423 4.25 427 4.13 432
MMp, E -7.87 -1753 ~7.87 -7.87 -17.87
. 5.50 5.44 5.45 522 5.57
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Hartree-Fock calculations with effective interactions derived from the
bare nucleon-nucleon force and also with Skyrme III.

One has also calculated angular distributions for electron scattering and
found good agreement with the experimental data. This shows that the
calculations produce the proper charge distributions. For example, in Fig.
5.5(a) we show the charge distribution of **Pb compared with a phenome-
nological curve determined from electron scattering. Figure 5.5(b) gives the.
corresponding average potential U, and U, for protons and neutrons and
the effective mass m*/m. The ng-chargc density is not completely con--
stant in the nuclear interior, but shows some oscillations which have their
origin in the shell effects. They are smaller than the oscillations that would
be oblained for a shell model charge density in a phenomenological
Wood-Saxon potential, but are still larger than the experimentally ob-
served wiggles. The corresponding self-consistent fields also show devia-
tions from a Wood-Saxon shape. For lighter nuclei, they are more impor-
tant. Figure 5.5(b) also gives the ratio m*/m, which measures the nonlocal-
ity of the Skyrme potential. It is given by the parameter combination
31, + 51, [see Eq. (5.98)]. For Skyrme I1, the nonlocality is well pronounced.

The effective mass has a strong influence on the single particle energies
¢,. If we assume the single-particle wave functions of the A and the 4 -]
system to be identical, that is, if we neglect the polanization of the core by
the hole in the level i, then we get for the energy difference

E(A)~E(A—)=1,+ > u”’+— S T (5.106)
J<A 2 3
The evaluation of the right-hand side shows [VB 72] that (5.106) is exactly
the single-particle energy ¢, the eigenvalue of the HF-Hamiltonian. In Fig.
5.6, therefore, we compare the experimental single-particle levels in *®Pb
with the calculated single-particle energies ¢,. Essentially, we obtain the

4
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Figure 55. Hartree-Fock results for *Pb with the interaction Skyrme Il
(a) Charge distribution. (b) Elfective mass m*/m and HF-potential U(r) (the
proton single-particle potential does not include the Coulomb term). (From [VB
72])
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Figare 5.6. Experimental and calculated single-particle energies in the lead region.
The calculated values were obtained with two different versions of the Skyrme
force. With increasing effeclive mass, we recognize a compression of the spectrum
{(m®/m=0.6 for SII and =0.7S for SIII). (From [BFG 75].)

correct ordering of the single-particle levels, although quantitatively the
different sets of parameters show rather different spectra. However, it
should be emphasized that we cannot expect a priori complete agreement,
because polanzation effects play a certain role that have not yet been
taken into account [RW 73].

5.7 Concluding Remarks

Summarizing the results of this chapter, we can say that there is a
microscopic foundation of the spherical shell model as discussed in Chap-
ter 2. The Hartree-Fock method provides a tool for calculating the
average potential from an effective nucleon interaction. It becomes very
important to use density dependent effective interactions to get quantita-
tive agreement. In this case, we are able to reproduce the ground state
properties of spherical nuclei very well. In most cases, the calculated
single-particle levels show the correct ordering; however, they deviate in
detail from the experimental single-particle excitations of neighboring odd
mass nuclei.

So far we discussed only applications of the HF method o nuclei with
closed shells. In fact, these are the only cases where the self-consistent field
can have spherical symmelry. As soon as one or several particles are put in
an unfilled j-shell (gpen shell HF [Ke 63]) we have to decide which one of
the orginally degenerate magnetic quantum numbers m needs to be occu-
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pied and we get a slightly deformed density distribution (oblate with
respect to the quantization axis for large values of || and prolate for small
values of |mj). This deformed density produces a deformed mean field in
the next step of the iteration, which also changes the single-particle wave
functions in the core. In this way, we take into account the correlations
caused by the interaction of the external particle with the other nucieons.
We call this effect a polarization of the core.

As long as we have only one or a few external particles, we can also treat
this interaction in the spherical basis by a shell model configuration mixing
calculation allowing for ph excitations. In this picture, the valence nucleons
excite virtual vibrations in the core and we treat the polarization effects by
a particle vibrational coupling technique (sce Sec. 9.3).

In many practical applications, this effect has been taken into account
only in an averaged way by distributing the external particle over all the
m-quantum numbers of the next higher j-shell with equal probability
vl =1/(2j+1). The wave function is then, in a sense, a HFB state (sce
Chap. 7) with a spherical density distribution.

In principle, the mean field approach is only justified if there is a well
pronounced energy gap between the highest occupied level and the first
empty level. If that is not the case (subshell closures), it is easy lo excite
virtual ph-pairs, and we can expect a more complicated wave function than
a Slater determinant [see Eq. (2.36)]. From these arguments, we expect that
the HF method yields a better approximation to the exact ground state for
magic nuclei than for nuclei with a few particles away from the closed shell
configuration. These nuclei show a small deformation in HF and have
many nearly degenerate levels in the vicinity of the Fermi surface.

We call such nuclei transitional nuclei, and in the Chapters 9 and 10 we
will discuss some methods for investigating their structure. For nuclei far
from closed magic configurations, however, the correlation among the
quasi-particles becomes so strong that they can again be treated in an
extended mean field approach. Depending on the kind of correlations, we
have to use a deformed HF potential—which is again & very good approxi-
mation for cases where new magic numbers develop in the deformed
region (see Fig. 2.25). We will discuss these methods together with the
nuclear pairing phenomenon in more detail in Chapters 6 and 7, and we
will see then that nuclear deformations with density dependent forces can
be explained rather nicely.



CHAPTER 6

?'-pairi'ngCorrelations and Superfluid
Nuclei*

6.1 Introduction and Experimental Survey

[n Chapter 5 we looked for a wave function describing the ground state of
the nucleus. Restricting ourselves to a product ansatz and minimizing the
total energy of the system has led us to the Hartree-Fock method. As we
have seen, the solution of the corresponding equation yields & transforma-
tion from a given single-particle basis to a new, better one. The vanational
principle is equivalent to the requirement that there are no matrix elements
between the ground state and the most simple excitations. the particle-hole
excitations. Therefore, the Hartree-Fock method partially takes into ac-
count the particle-hole part of the interaction, that is, the long-range part
of the force, as we have seen in Chapter 4. Before we turn to the
excitations caused by these correlations, we want to consider the short-
range part of the force which causes particle-particle correlations (cf.
Chap. 4). Tt will turn out that this can be done formally very similarly to
the particle-hole part of the force by introducing generalized product wave
functions consisting of “quasi-particles.”

Of course we usually have to take into account both correlations at the
same time. This will be done in the next chapter within the framework of
Hartree-Fock-Bogoliubov theory. Here we restrict ourselves to pure

* We are glad 1o see that the origingl version of this chapter (in the book by Baumgartner
and Schuck) [BS 68a} has partly been adopted by other authors [EG 70]. We have also
incorporated some of their changes.
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Figure &1. Excitation specira of the Sn isotopes.

short-range (particle-particle or pairing) correlations. This allows us to.
understand many important effects which cannot be explained within &
pure Hartree—Fock picture.

Let us briefly summarize the essential experimental facts which lead to
the idea of pairing correlations:

®

(1)

(ii1)

The energy gap. The spectra of deformed nuclei show a characteris-
tic difference between even and odd nucleon number. Even-even
nuclei have only few (collective) levels up to 1.5 MeV excitation
energy. They can be nicely interpreted as rotational and vibrational
bands. The situation is very different for even~odd nuclei, which
have many collective and single-particle states in the same energy
interval. Figure 6.1 shows the spectra of some tin isotopes as an
example.

The level density. [f we assume that there are only a few nucleons in
a shell of given j, many slates can be constructed which are alt
energetically degenerate corresponding to the various possibilities of
coupling angular momentum. The number of states per energy unit
can easily be estimaled, and it is found that in the low-lying
excitation region the level density exceeds that found experimen-
tally by roughly a factor of two.

Odd-even effect. The total binding energy of an odd-even nucleus
1s found to be smaller than the anithmetic mean of the binding
energies of the two neighboring even—even nuclei. Therefore, we
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have the following relation for the masses of neighboring nuclei:
MA ) + MA +1
3 .

M(A odd) >

This is called the odd-even effect.

(iv) The moments of inertia of deformed nuclei can be measured from
the level structure of rotational bands. Calculations based on the
pure single-particle model (see Sec. 3.4.2) deviate by a Factor of two
from the experimental values. If pairing is included, theory and
experiment are in much better agreement.

(v) Deformations. If, in the pure shell model, we calculate the density
distribution of the nucleons as a function of the nuclear mass
number, we find that there is a steady transition from spherically
symmetric shapes for closed shell nuclei to strong deformations for
nuclei with half-filled shells. Nuclei whose mass numbers do not
deviate very much from the closed shell configuration, however,
stay at least in their ground state. spherically symmetric. Filling
more nucleons into the shell, one enters a region in which nuclei
undergo rapid changes in deformation, reaching its maximum value
in the middle of the shell.

(Vi) Low-lying 2 * states. We find in even nuclei, in the neighborhood of
closed shell nucled, a low-lying level with angular momentum 2 and
positive parity (Fig. 6.1). These levels can be interpreted neither as
rotations nor as single-particle excitations. In fact, they are vibra-
tional in character (see Chap. 8), having a strong interplay with
pairing correlations.

To understand all these phenomena we have to take into account the
correlations due to the short-range part of the nucleon-nucleon interaction
(see Chap. 4). As indicated in Chapter 2, even-even nuclei have ground
state spin /;=0, and the spin of odd—even nuclei is determined by the
angular momentum of the odd nucleon. These observations led Goppert-
Mayer [Ma 50] to a very early calculation showing that for shori-ranged,
atiractive, nwo-nucleon forces, the coupling of two nucleons in a shell of
given j to a (/=0)-pair is energetically favored over all other possible
couplings. This can be understood very easily by neglecting the spin for a
moment and by considering the density distribution of states |/m) and
|/~ m), as shown schematically in Fig. 6.2 (sce also the discussion on this
point in Section 4.4.7). From these density distributions, it is clear that the
spatial overlap of two-nucleon densities is maximal if the two nucleons
have the same |m|. For a short-range force the configuration in which the
two pucleons orbit the nucleus with equal |m| but in an opposite sense is
therefore energetically very much favored (the case where they turn around
in equal sense is obviously unfavored by the Pauli principle; see. however,
the case of angular alignment in Chap. 3). Here, orbiting in opposite sense
means coupling to /=0. The angular part of a pair coupled to /=0, M =0
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Figure 6.2. Density distributions for a nucleon in a given magnetic subsiale.

is, to within some factors, given by (4.132):

I
(8,9,.8,%, | nljjl =0. M =0)x E (- |)m Yim (8190 Vi m(8:92)

¥ - f

2{+1 v

where §,; is the angle between the two nucleons. From (6.1), we see that
the pair wave function depends only on the relative angle 8,,. For a fixed
#,,, the pair wave function is therefore uniformly distributed around a
(spherical) nucleus. Since the radial functions of the two nucleons are the
same, the position of the pair in space cannot, in general, be given in more
detail, the radial dependence being very much a question of the nodal
structure of the nucleon wave functions. As we have already seen in Fig.
4.9, P/(cos8,,) is peaked at #,,=0 with a width of | //. Therefore, the two
nucleons have a tendency lo stay close in angle. which is necessary for
their sparial overlap (0 be maximal imposed by the short range of the force.
On the other hand, the two nucleons cannot get too close because this is
forbidden by the uncertainty principle [it can be easily verified that the
kinetic energy would be infinite for the pair wave function y(r,. r,)~8(r, —
r,)l. We can therefore say that the nucleons want to stay as close as
possible according to their short-range interaction, but that the pair has to
make a compromise with its kinetic energy, which would like to keep the
nucleons apart.

If there is more than one pair in the j-shell, the formation of (/ =0)-pairs
is somewhat hindered by the Pauli principle. Some m-states necessary to
achieve the coupling (6.1) of one pair are already occupied by another pair.
This mutual interaction of pairs gives rise to certain special features which
we will study later on but which do not desiroy the pair-state character of
a j-shell. On the other hand, some typical features, like transition probabil-
ities, are proportional 1o the number of pairs we have in a given j-shell. If
we take account of the symmetry between particles and holes, that is, of
the fact that we have particle—particle as well as hole-hole pairs, we see
that the effect of collectivity is largest for half-filled j-shells. On the other
hand, for closed shell nuclei, no formation of pairs like (6.1) is possible.

For nuclei between closed shells, the energetically most favored configu-
ration will be the one in which all nucleons (except the last one in the case



The Seniority Scheme 22}

of odd-even nuclei) are paired off. To excite even—even nuclei. therefore,
we have to break at least one pair, whereas for odd-even nuclei an
_excitation can be achieved by putting the odd nucleon in a very low energy
_Jevel. Since the binding energy of a pair is of the order 1-2 MeV, the
different energy spacing between the ground and first excited state in
_gven—even and odd-even nuclei is thus qualitatively explained (see Fig.
6.1).

Other features mentioned above can also be understood with the pairing
model. Because of the energy gap in the low-lying part of the spectrum of
even-even nuclei, the level density agrees much better with the experimen-
tal one. Also the odd-even effect becomes obvious. The existence of
{I=0)-pairs favors—as we have seen (6.1)—a spherical nuclear shape (no
_direction is preferred). Nuclei in the neighborhood of closed shells will
therefore still have spherical symmetry, since the influence of the pairing
force overcomes the tendency to deform. Further away from the closed
_shells we will have the opposite situation. However, this depends very
_sensitively on the strength of the pairing force versus the long-range (p-h)
force; nevertheless, in this way the rather sudden change from sphericity to
_deformation can be understood.

Closely connected is the existence of low-lying 2 * levels for open shell
even—-even nuclei. Nuclei in the neighborhood of closed shells that are still
spherical can easily be excited to shape vibrations around their spherical
equilibrium position, since the restoring force, which is the difference
between pairing and deformation effects, is rather small. The nucleus will
therefore become deformed into an ellipsoid and vibrate about its spherical
shape with a low frequency (quadrupole oscillations, 2*-levels).

The diagonalization of the pair interaction cannot be interpreted as a
contribution to the average static potential of the Hartree-Fock type. It is
a completely new effect which gives rise to Lhe so-called pairing potential.
[t is analogous to superconductivity in metals. This is the reason why Bohr,
Mottelson, and Pines [BMP 58) and Belyaev [Be 59] successfully applied
the methods of the theory of superconductivity by Barden, Cooper, and
Schrieffer [BCS 57] to nuclei.

6.2 The Seniority Scheme

As we said in the introduction, pairing correlations are due to the short-
range part of the nucleon-nucleon interaction, and this interaction is most
effective between (/=0)-coupled pairs. In Section 4.4.7 we studied this
problem to some length; to investigate the pairing phenomena in more
detail we reconsider the model force derived in (4.140) and consider N
particles in a single (2j+ 1)-fold degenerate j-shell interacting through this
pairing force. If we place this j-shell at zero energy, the corresponding
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Hamiltonian is of the form*:

m.m" >0 ‘ i

with
S,= Xatal: S =(5)" 6.3y
m>0 5

We introduced the operators of Eq. (6.3) because it turns out that they can
be considered as the raising and lowering operators of a fictitious angular
momentum, which we will call (as in the case of the Lipkin model: see
Chap. 5) quasi-spin, which has nothing to do with real spin, but itx
introduction greatly facilitates the solution of (6.2) [Ke 61]. For this
purpose we introduce the following three quantities for each substate m
{m>0):

{m) “ 4+
Se -ama_,m.

siW=g__a_:

(6.4)
s H(ata,+ata 1),

Using the commutation rules of the operators a,, and 4,, . we can derive
the corresponding commutation rules:

[:(:l)' 5(__'")] - 23({]1-);
[ 547, 54 ] = 5 (6.5)
[s(‘,'"‘, s‘j"’] - g

Therefore, we see that the triad of operators s s, s{™ has the
commutation properties of angular momentum operators [Ed 57). The
sU™, 5™ are, respectively, the raising and lowering operators analogous to
the angular momentum operators j, and j .. Similarly, s§™ corresponds to
the z-component of the angular momentum j,. We thus see the reason why
we call s the quasi-spin operator corresponding o the level m.

Furthermore, we can see from the definition of s§{™ that it has eigenval-
ues *+1 depending on whether the pair (m. —m) is full or empty. The
vector $™ | therefore, has a spin of i angular momentum for 0, or two
particles in the j-level. [Il only one particle is present, all the components
of '™ are zero, so that s has spin zero in this subspace.]

The total spin vector S is defined by

S= > ™. (6.6)
m>0
This, of course, is also an angular momentum, and the pairing Hamilto-
nian (6.2) i1s conveniently written in the form:
He=-G(S-S-S53+ So)- 6.7

* Note that we use BCS-phases (4.138) in the following.
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‘We noie also that
l [, -
So= 7 X (andn+aiaa_,-1)=3(N-2) (6:8)

m>0

ere 1=;+1 is the number of pairs. Thus the eigenvalues of §, are
ntegers or half integers, depending on whether S; is an integer or a half
integer. Furthermore, it follows from the properties of angular momentum

operators that

S >|So| =4[V -9, (6.9)

Since, according to Eq. (6.6), the maximum value of S is S=Q/2, we see
that § can take on all values R/2, (/2)— 1, (2/2)—2.....[(R/D—(N/2).
‘The states will then be labeled by S and S, and the energy eigenvalues of
“H (6.6) are given by

E(S)=-G{S(S+1)—i{(N-9)Y'+ }(N-D)}. (6.10)

As an alternative quantum number to the total quasi-spin S, we can
introduce the so-called seniority quanium number s [Ra 43] given by the
‘relation

Sm=i(@-19), (6.11)
where

s=0,2,4,...N for N even,
s=] 35,.. N for N odd.

The total energy (6.10) as a function of seniority is then given by

E(N.s)= = Z(N=$)2Q=s5-N+2)

-—g(shzs(ﬂ+1)+z~(sz+1)—N’). (6.12)

The characteristic feature of the force is that the energy is labeled only by
the seniority and is degenerate in all other quantum numbers except MN.
Although the absolute value of the energy depends strongly on the number
of particles, the spectrum does not. Since the total quasi-spin changes by
units of one, we have [from (6.10)] for the energy dilference of two
neighboring levels

E(S-1)—-E(S)=2G-S. (6.13)
The binding energy increases for a given N with §; the ground state is
therefore obtained when all quasi-spins are aligned, that is, S= {{ or s=0.

For an even system, the [irst excited state has s=2; and from (6.12) or
{6.13) we have, for the excitation energy of the first excited state,

E(N,sm2)— E(N,s=0)=G-. (6.14)

The excitation energies are thus independent of the number of particles in
the j-shell.
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Figure 6.3. (a) Two-particie spectrum of a pure pairing force. (b) Specrum of
119pg (2p in the 1A9/2 shell).

If we have only two particles in the j-shell, the seniority can take on only
the values s=0,2. The two (identical) nucleons can couple to /=0,2,
4,....2j— 1. Only the state with /=0 is affected—that is, lowered—by the
pairing interaction (6.2). The other states are unaffected and therefore
degenerate. Thus we see that the ground state (s=0) has /=0 and the
excited states (s=2) have /=2,4,6,..., that is, in the ground state the two
nucleons are “paired,” whereas in the excited states the pair is “broken.”
This fact is represented schematically in Fig. 6.3, where we also show for
comparison the low-lying spectrum of ?'®Po (two protons in a 149/2 shell).
In the general case, the binding energy of the ground state as a function of
N can be written as:

T

E(N,s=N)—E(N,s=0)= - E(N,s=0)= GQ%’-(I - %B—z) (6.15)
We see that for cases in which the particle number i1s much smaller than
the degeneracy of the shell (¥« ), the binding increases linearly with the
number (n= N/2) of pairs, that is, the total energy is just the binding
energy of one pair (6.14) multiplied by the number of pairs. If we draw the
ground state energies as a function of n, we obtain a “harmonic spectrum”
(Fig. 6.4). This is the pair vibrational spectrum, which is found, for example,
in the lead region and which we will consider in more detail in Section
8.3.5. All the states of the spectrum in Fig. 6.4 have maximal quasi-spin
(s=0), that is, they are ground states. We speak then of the s=0 band;
there are, of course, s=2 bands, etc. It has been found that two-particle
transfers between two states of a given band are enhanced with respect to
those between two states belonging to different bands. If the number of
pairs increases, the mutual disturbance of /=0 pairs due to the Pauli
principle (see introduction) becomes important and the spectrum (6.15)
becomes anharmonie.

We see that the excitation energy of the first excited state (6.14) is equal
to the binding energy of one pair (6.15). Alternatively, we can say that in

nz3
Ldl na2
GR

nszl

n=0

Figure 6.4. Harmonic spectrum of pair vibrations.
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the [irst excited state (s =2) two nucleons are unpaired. (The possibility of
creating the first excited state by putting the bound pair into a higher level
s excluded in our model, since there is only one level.) This classification
cheme straightforwardly generalizes to the statement that a state of
geniority s has s unpaired particles (s even and odd).

The ground state is apparently never degenerate, since there is only one
way 10 make a total quasi-spin of S=Q/2 out of  spins 4. There are §— |

wiys for the s=2 state:
12-9—1-(?)-—(3). (6.16)

This can be easily checked by considering a definite example, say 2= 4;

the s =2 state can then be represented as: 433 & . There are 4~ =3
possibilities of grouping a with one of the quasi-spins, namely al, a2,a3.
It can be verified that for an arbitrary, even s the degree of degeneracy
given by [BS 68a]:

"'(ss/zz)'(s/zg—l)’ S<N. (6.17)

The wave function corresponding to Eq. (6.2) can also be obtained easily
using the quasi-spin formalism. For N =0 (a completely empty shell) and
20 (a completely full shell), the third component of each of the
uasi-spins is — 4 or + 14, respectively. Therefore, the vacuum is the state
§$=1Q, §,=-1Q,

[= =139 =3, (6.18)

and the full shell is the state S=1Q; So= 1Q:1Q/2,.2/2). If we represent a
general quasi-spin state by |SS,). where Sy= (N —Q), the ground states
(S=8/2) [or dilferent even N can be written as
N —
2
The application of the raising operator S, (6.3) increases the number of
particles by two. The ground states are eigenstates of S, S,, and 4 and
are just the products of n= N /2 pair states. Therefore, we also say that the
ground state is a pair condensate.
For odd N-systems, the last particle cannot be paired and one of the
quasi-spins will necessarily be zero. The largest possible value of § will
_ therefore be 4(§2— 1) and the ground states are given by:

19, Sy =140, X0y 57—, (6.19)

!% , S STM =g *| -, (6.20)

_ Since m can take on the 2Q different values —j < m < j, the ground slate
¢ of an N-odd system is 2Q-fold degenerate (in contrast to the nondegenerate
ground state of even systems). This is the explanation of why the level
density for odd systems close to the ground state is high, whereas for even
. systems there is always an energy gap.
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As we have seen, the seniority 2 states (Sw= 482 I) are the first excited
states for even N systems. They can also be easily constructed within the
quast-spin formalism.

We first consider the case N=2 and construct eigenstates with good
angular momentum by applying the operators

Aum— 3 Clibatal (621)
e
on the vacuum
[IM > = A, —>. (6.22)

Since A5« S, [we use BCS phases, Eq. (4.138)]. they are eigenstates of the
quasi-spin with S=Q/2 for /=0 and with S=1Q—1 for /0. To sec this,
we calculate

SYIMY = [S% A% ]I= >+ 3938+ 1) 1M, (6.23)
The first term on the r.h.s. is:
[S% A8 )l =>=[S.S_, A I=>+[ S5 S0 AL ]I ->
-5, [S- 'AlTu]l">+ [Soz' SgM,L]l")- (6.24)

Since S_ is proportional to A, it follows from the orthogonality relations
for the Clebsch-Gordon coefficients [ Ed 57] that for /#0,

[S_.4%]I->=0. (6.25)
Using (6.8), we finally find for /+0:

SHIM Y= —Q|IM>+ %(% + 1)|1M>
(3 =

Therefore, the two-particle states (6.22) are, for /30, eigenstates of S? with
S=(Q/2)—1 or s=2, that is, the two particles are unpaired in the /%0
states.

Since the operator S, cannot change S and only serves to add two
particles, it is easy to construct the first excited states for an even N system
with ¥ > 2;

191, S S§F =DA% | ->. (6.27)

Since S, is a spherical tensor operator of rank zero, these states have the
angular momentum quantum numbers /, M and seniority two for /0.
The states (6.27) are, of course, eigenstates of the Hamiltonian (6.2) with
the energy (6.12), and we see that il does not depend on 7, M. As we have
previously stated, the higher excited states are characterized by the number
of unpaired particles, that is, the seniority number s. Such states can be
constructed using multiple application of the A;,, operators, but the
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* orthogonality to lower states as well as the construction of states with good

angular momentum is then nontrivial.

 In many cases, the explicit construction of the wave function. however,
is not needed (e.g., many matrix elements can be obtained using angular
'momentum coupling techniques). which is one of the advantages of the

Let us calculate for example, the matrix elements of the quadrupole

operator:

= uu)
E Gnlm G = D, S

- —jf m>0
=L jm|rtY o jm). (6.28)

From (6.28) we see Lhat Q20 is a vector in quasi-spin space. This [act
'implies that the dependence of any quadrupole matrix element on So=
H(N-Q), that is, on the particle number, is given by the Wigner-Eckart
ftheorcm [Ed 57):

<SSD!leS’So>=(—)S‘“‘°( —ss',, (') g )/SNQ,HS) (6.29)

Since quadrupole transitions go from the ground state with seniority zero
to an excited state with s=2 [selection rule given by (6.29)]. we get for the
quadrupole transition probability

emtouis=0r( 20§ V) «(§-5)($ +s)

- i:-(sz— %) (6.30)

From (6.30) we see the collective effect for transition probabilities which we
mentioned in the introduction: It is proportional to the product of the
number of particle pairs ¥ /2 and the number of hole pairs (= N /2). The
collective effect is therefore most pronounced in the middle of closed shells
and due to the aforementioned condensation of pairs in the ground state.
This is in agreement with the experimental finding that the quadrupole
transition probabilities for nuclei in the middle of closed shells are en-
hanced with respect to their pure shell model values.

The model we presented in this section is indeed very simple and in
reality things will be much more complicated. We will have to consider, for
instance, more levels and more realistic forces. Nevertheless, we wish to
stress the point that many features of the seniority model remain valid in
more realistic cases, and in a certain sense the mathematical and physical
transparency of this model reflects reality better than the quite abstract
formalism of quasi-particles, which we introduce in the next section, used
to handle more complex situations.
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6.3 The BCS Model
6.3.1 The Wave Function

The applicability of the seniority model is not limited to j¥ configurations,.
If there exist several almost degenerate j-shells above the closed core, the
model can be generalized [Ta 71,76, LA 74, Lo 75]. Far away from closed
shells, however, where nuclei are deformed and the levels more or less
uniformly separated, the seniority model breaks down completely.

However, the results of the seniority model show that pairing correla.’
tions are very important in nuclei with open shells, and there is no reason
to believe that this is no longer true still further from closed shells. In the
following we therefore present a method which allows us to treat all the
nucleons in the nucleus and which can easily be generalized for different
types of interactions. This method no longer provides an exact solution of
the eigenvalue problem, but, like the Hartree-Fock method, it can be
derived from a varnational principle. Therefore, it will be important to
make the right ansatz for the ground state wave function. In analogy to
Bardeen, Cooper, and Schrieffer [BCS 57], who determined the ground
state of a superconductor, we try to represent the wave function for
even-even nuclei in the following way.

|IBCS)> = T] (u+via’ai ) =), (6.31)
k>0
where u, and v, represent variational parameters. The product runs only
over half the configuration space, as indicated by k >0. For each state
k>0 there exists a “conjugate™ state kK <0 and the states {k, k) generate
the whole single-particle space.

The v} and u? represent the probability that a certain pair state (k, k) is
or is not occupied, which has to be determined in such a way that the
corresponding energy has a minimum. They are not, however, indepen-
dent, as the norm of the state (6.31) requires

| + o 2= 1. (6.32)

Since the BCS wave function is only fixed to within a phase factor, it is
always possible to choose the coefficients u, real and positive. In principle,
the phase of v, has to be determined by the variation of the energy
expectation value, It can be shown, however (see Sec. 6.3.4), that for
certain reasonable assumptions for the interaction, real positive values o,
yield the deepest energy. The ansatz (6.31) contains the coefficients v, and
¢, only for £>0. In the following it is sometimes convenient to also use
coefficients ug : = u, and vg:= — o, for the values k <O.

In many cases, especially if the Hamiltonian is invariant under time
reversel, the conjugate state can be chosen as the time-reversed state [Me
61 Ch. XVI:

&> = T|k>. (6.33)
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An example is a spherical basis [in BCS phases, Eq. (4.138)]:
|k>=|nljim>,  |ky=|ali—-m), m>0, (6.34)

The following formulae, however, apply also for cases of Hamiltonians
without time reversal symmetry (see Sect. 7.7).

At this point in the discussion, the variarional ansatz (6.31) for the wave
function seems rather arbitrary. It will become clear in the next chapter
that it emerges quite naturally by a slight modification of the Hartree-
Fock ansatz. Let us simply make the observation that the particles appear
in mutually conjugate pairs similar to the ground state (6.19) of the
seniority model, but with the important difference that |BCS) is a superpo-
sition of different numbers of pairs. that is, (6.31) no longer has a sharp
particle number. This is actually a great disadvantage of (6.31) in nuclear
physics.

The product can be written as

%) ;0
BCS)x|->+ T falat|-d+3 3 Ealafalat|->+ .
k>0 Sk Lk >0 A%k

(6.35)

In solid state physics, where ¥ = 0%, the violation of particle number has
ho influence on any physical quantity. In nuclei. however, the violation of
the invariance corresponding to the particle number in many cases gives
rise to serious errors. One then has 10 use improved methods to deal with
such problems (PBCS, FBCS; see Sec. 11.4.3).

To give an impression of the flexibility ol the ansatz (6.31), we rewrite it
in a different way: It can be expressed by a generalized pair creation
operalor (6.3)

At = AZO u—ka,:'a,;+ (6.36)
>
As
; - | ’
BCS)xexp(4 %)l =5 = 3 J7(47Y1-, (6.37)

The component having the particle number N is therefore (A *)Y/2. This
corresponds to the seniority zero state (s=0) of Eq. (6.19); in fact, this
component is exactly the ground state wave function of the seniority
model, since in this case all v;’s and u,’s are equal, as we shall see later on.
In that sense, the BCS-ansalz contains the s =0 staie of independent pairs,
that is, it is a condensate of bound pairs (boson-like entities; see Chap. 9),
which are in the same quantum state (/=0, 7=1). In infinite matter this
leads to a Bose—Einstein condensation of the pairs (superconductivity). In
finite systems like nuclei there exists no real phase transition. Nevertheless,
it can come quite close to it and in any case (6.37) should be a good ansatz.
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6.3.2 The BCS Equations
We assume that a many-body system is described by the Hamilionian

l

H= 3 4,a'% +~— 5 atata, a; . 6.33
kiky §0 Pokath T 4 hkg’kg FekaoksThy h kW ( 8}

0

The parameters u and o of the (rial wave function (6.31) are determined by
vaniation of the energy. However, this variation is restricted by the subsid
iary condition that the expectation value of the particle number has t
desired value ¥
(BCS|N|BCS)=2 3 of=N. (6.39)

k>0

nisn
H'=H-AN. (6.40).

The Lagrange multiplier A is fixed by the condition (6.39). It is called the
chemical potential or the Fermi energy because it represents the increase of
the energy E=(BCS|H|BCS) for a change in the particle number
A= N’ (6.41)

To see this, we use the fact that the expectation value of M’ is a minimunt
with respect to an arbitrary variation of the BCS wave function (6.31). One
special variation is a change of the parameter A. Therefore, we get [see also

Eq. (3.81)]

4. {(BCS(V)| HBCS(V)> - A(BCS(N)| N [BCSAD ), L, =0 (6.42)
or
dE daN
o =A I, (6.43)

In the following we will always use H’ instead of H. For the calculation of
actual energy, however, we have to remember that we have to add the term
AN at the end.
Another inleresting quantity in this connection is the particle-number
uncertainty
(AN Y:=(BCS|N}BCS)- N1=4 3 ulc}, (6.44)
k>0

which we will discuss later on.
From (6.31) and (6.38), we gain for the BCS expectation value of H':

, 1 -
BCSIH'BCS = 5 { (e =Noi+ 3 T fucuuciol
kZO k20

+ 2 Ek&'i'u‘ Uk ut-Dk» . (6-45)
kk' >0
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Smca the BCS wave function is completely determined by the parameters
v, and the condition (6.32), the variation

8(BCS|H'[BCS) =0 (6.46)
3 , % o {BCS|H'|BCS)=0 (6:47)
5 a Uk a uk a uk . |

After differentiating, we finally obtain the set of BCS equations

26 U0+, (vi—u)=0, k>0, (6.48)
with
G= g (matrat 5 (w5 £e)uE) = (6.49)
m the gap parameters (for real m<atnx elements)
Ay = - k§ Bik My Oy - (6.50)

fPor fixed values g, and Ak, (6:32) and (6 48) yield two quadratic equations

<+ A7 )
(6.51)

r g
1+ £

1
"2‘ _ - .
[ y&+a? )

In the case of no interaction one has A=0 and v} =1, u?=0 for occupied
orbits (€ <0). The only possible solutions of (6.51) are therefore:

2 1|, ___ &
R .I €2+ A2 )
kR (6.52)
u,f==-1- |+ =
2 €+4A%

Thus the variational principle (6.46) yields the set of equations (6.49),
(6.50), and (6.52). Together with the particle-number condition

2> ol=N (6.53)
k>0
they allow calculation of the BCS parameters u,.v,. In general, these

equations are nonlinear and have to be soived by iteration.
For discussion of the properties of these equations it is often useful to
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insert (6.52) into (6.50) and obtain the so-called gap equation:

[ - A
By=-3 2 B
>0 2eal

(6.54)

6.3.3 The Special Case of a Pure Pairing Force

As we have seen in Section 6.2, the pure pairing force provides a ver

simple and powerful model for the description of pairing properties i

nuclei. It is therefore widely used in the BCS description of nuclei. In the

following, we therefare present the most important formulae of this theory

for this special case.
The Hamiltonian here has the form,

He= 2 a(a’a,+afa))=G 3 aafaza. (6.55)
k>0 kK> 0

The expectation value of H' [Eq. (6.45)] is

2
BCS|HBCH =2 T (4t +3Guf)- L. I (636)
A0 2 G ;

In this case the gap parameter A does not depend on &:
8=G 2y (6.57)

A>0
€, is given by

=g —A-G-u. (6.58)

The term Go; 1n (6.56) and Gr} in (6.58) is often neglected. because it is
not very important and its only effect is a renormalization of the single-
particle energies. These are, in fact, influenced far more by particle-hole
. correlations, which are in any case not described in the proper way by the
pairing force. In this case we have

(6.59)

“ } =1 {1 P, i

o) 2 \/((,‘ ~A) +A?
The vl = (BCS|a,*a,|BCS) are the occupalion probabilities for the different
single-particle stales.

Again, from (6.59) we sce that in the limit G—0, that is. A—0, the u}m I
for occupied levels and ¢ =0 for unoccupied ones. In this case, ¢} is a step
function (Fig. 6.5), whereas in the interacting case (A+0) the step function
is somewhat smeared out. Due to the interaction, particles are scattered
from below to above the Fermi surface. This yields a partial depletion of
the states below and a partial filling of the states above (the Fermi level
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Figwre 6.5. The occupation probabilities v? in the noninteracting case (A=0) and
in the interacting case (& »0).

‘(Fig. 6.5). The gap equation (6.54) takes the simple form

A=g 3 a . (6.60)
2 5o 24 A2
(g, —~A)' +4A
In the special case of a single j-shell, all ¢, are equal. From (6.58). (6.59), and

(6.52) we see that in this case (even taking into account the term G- ¢?) all
v} are equal. From the particle-number condition (6.39), we find

/N / N
Uy = ?ﬁ N u,‘- I_E . (661)

The corresponding energy is (¢, =0):

| N N
(M — G- N - I
Efd=~5G N 9(1 +3 2). (6.62)

20
‘This expression agrees for large N up to order 1 /Q with the exact formula
of Eq. (6.15). Therefore, we see that the BCS ansatz is a good approxima-
tion, well suited to treat the nuclear pairing correlations.

The uncerlainty in the particle number can also be obtained according
to (6.44) and (6.61):

AN 1 N
e~ g (6.63)

The gap in this model is given using (6.57) and (6.61) as

A-G-\/%(Q—%/-) . (6.64)

The gap thus has a parabolic dependence on the number of particles in the
shell and is zero for empty or filled shells. For ¥ =8, (half-filled shells), we
find

24=G-Q. (6.65)
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As we will see later (Sect. 6.3.4), it 1s not by accident that 2A is equal to the
excitation energy (6.14) of the first excited state and it will become clear
why A is called the (energy) gap.

6.3.4 Bogoliubov Quasi-particles—Excited States and
Blocking

The main advantage of wriling the ground state in the form (6.31) or (6.35)
is that despite being very similar o the exact ground state of the seniority
model (condensate of pairs). and therefore containing correlations between
pairs of particles, |BCS) can at the same time be written as a product state
of a new type of fermions: the Bogoliubov quasi-particles. The concept of.
quasi-particles as a general concept in many-body physics will be discussed
in Chapter 7. In fact, it is easily verified that

IBCS)>« H al—> (6.66)
k20
with -, %j% 0
Aord Lo
af = wea — vz, T
af =u.a +o.q,, (6.67)
and the following fermion commutation relations hold:
{ay. 0, } =0: {a.a } =8, (6.68)
where we have used (6.34) and the usual phase convention
up =y, >0; vyw -y <0, k>0 (6.69)

The ansatz (6.67) for quasi-particles is very similar to the ansatz for
HF-quasi-particles in the Lipkin model (5.50) and we could therefore have
used the same techniques for their solution. In the latter case, we can show
that real coefficients (¢=0) give the lowest energy. The same is also
possible here if the force has only matrix elements &,z <0. Since this
condition is very reasonable, we shall use only real coefficients 4, and ¢,.

From Eqs. (6.67) and (6.52) we see that a quasi-particle has some:
properties of a bare particle and some of a bare hole: Above the Fermi
surface (v small) it is nearly a particle, while below the Fermi surface (}
small) it is nearly a hole.

We see from Eq. (6.67) that by using this very useful trick of a linear
* Bogoliubov” transformation we have achieved a representation of the
ground state of pairwise inieracting particles in terms of a gas of non-
interacting quasi-particles. This is, of course, in many practical cases a very
helpful feature. The price we have to pay is that the transformation (6.67)
clearly does not conserve particle number because we mix creation and
annihilation operators. If we assume that not only the ground state is well
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represented by a product state of quasi-particles, but also excited states,
then the Hamiltonian Hv‘ which corresponds to this gas of non-interacting

gas of quasi-particles, is given by
Hy= (BCS|H|BCS) + z Ea'la, (6.70)
k20
where the constant {(H’) takes account of the fact that we have

a,|BCS)=0 forall k20, 6.71)

therefore H_, has the right ground state expectation value. The quasi-
sparticle energies E, are a straightforward generalization of the definition of
those for real particles (for details of the calculations see Chap. 7)

E, = (BCS|a, H’a,*|BCS) — (BCS|H’|BCS)

-\/:(}+Ai : (6.72)

The one-quasi-particle states

as|BCS>=a; [T (u+vealaf )l->, (6.73)
ke k)

af [BCS)=af ] (m+ova’af)-> (6.74)
ko k,

obviously have the energy {H ')+ E,. They are a superposition of states
with odd particle number and describe a nucleus with an odd number of
nucleons. According to the quantum number &, this state can be either the
ground state or an excited state.

The two-quasi-particle states

o' e |BCSY =g ar J[ (w+oualal)l-)  k# k.
kwky.ky (6.75)

tl:;af;lBCS)‘-('—Bkl+ukla:;ai’;) H (uk'l'vka:df)'—}, kz-l:l,
Kwk,

have the energy (H'>+ E, + E,,. They describe excited states in the even
system. In this case one pair is broken and the excitation energy is

E, +E, 224 (6.76)
The first excited state in the even system thus lies at least 2A higher than

the ground state.
In the special case of a single j-shell, the excitation energy is given by

E +E, =2y?+A% . (6.77)
With (6.58), (6.41), and (6.62) we find (¢, =0)
fmGEZN (6.78)
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Figure 6.6. Dependence of the proton gap on the proton number. (From [BM:
69].)

which, together with (6.64), gives
E,+E,=G-Q,

in accordance with the result (6.14) of the seniority model, From (6.78) w
see that only in the mlddle of the shell is the cxcnanon energy 2A

is
E,— E, = Y& +48? - A, (6.80)

For small excitation energy (€, «A) we therefore find a high level density
in these odd systems.

We also can explain the odd-even mass difference by the following
consideration: The ground state energies EC® are given for any N by

EN = ENS +2X: ElgflsE§S+)‘+Ek,‘
and therefore the odd-even mass difference is given by:

1
2

Equation (6.81) is often exploited to determine the gap empirically from
the measured binding energies. It has been found that on the average the
gap follows the relation A=12-4 /2 a5 a function of nucleon number A
[NA 62, ZGS 67] (Fig. 6.6).

The above considerations give a qualitative understanding of the struc-
ture of many states in superfluid nuclei. There remain, however, a few
important points to take into account in a more detailed investigation:

(ENS:— EGS | ~(ENS =~ EX° )) = - E ~=-A (6.81)

(D The Chemical Potential. As we have seen in (6.53). the chemical
potential A is determined in such a way that the average particle number in
the BCS ground state has the correct value. With the same A, we find for a
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. one-quasi-particle state [k> = o [BCS)
Ck|N k)= N +u? =0 (6.82)

is is N = 1 only for levels & which are far away from the Fermi surface.
For the levels in the vicinity of the Fermi surface the average particle
pumber is wrong. Since the energy depends strongly on the average
particle number, one should readjust the chemical potential A for the
different levels in odd nuclei and also for the excited levels in even nuclei,
As long as we have not done this, we should use the operator H’= H —AN
© instead of H for the calculalion of excitation energies (as we have done so
_ far). This can, for instance, be seen if we correct for the wrong particle
- pumber in the state |k} of Eq. (6.82):

Ep o =Ck|H|K>+ AN (N +1=<k|N[kD)
=(k|H=AN|k)+A(N+1)

=EXS+A+ E,.

() The Blocking Effect. The occupation probabilities of of the BCS
ground state [Eq. (6.52)] were determined by the variational principle. The
ground state of an odd system is described by the wave function

a,,"; |BCS) = a:: &E[k (u, + o0} ad )| —>. (6.83)

The unpaired particle sits in the level &, and blocks this level. The Pauli
principle prevents this level from participating in the scatiering process of
nucleons caused by the pairing correlations. The level k, always stays
occupied and the level & always stays empty. Only for k# k, do we have
o} = vf (Fig. 6.7). Using the blocked wave function (6.83) as a trial wave
function in the variational principle, we find the same equations for v} as
before. The only difference is that in the calculation of the gap one level is

2 4

Figure 6.7. Blocking of the state k.
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“blocked™:

A=G 3 uu,.
kﬁﬁ]

The level &, has to be excluded from the sum because it cannotl conlnbnw
to the pairing energy. The chemical potential is determined by

Nmi+2 S o2, (6.85y
Kok,

Similar equations hold for the case of a higher number of blocked levels,
in the case of two-qunsi-particlc states.
The chahge ih & and i the s and 08 is called the blockmg eff

can happcn partncularly for deformed nuclei where, although there may be
20 levels in the spectrum, only 4 or 5 contribute appreciably to the sum ot
Eq. (6.50). Clearly the blocking of one or two such levels in such a case has
a big effect so that one cannot simply equate the excilation energies ta
quasi-particle energies, but must evaluate the total energy of the cxctmf
state and subtract it from the vacuum energy. For iwo-quasi-particle states
the corrected energy (==1.4 MeV) is always smaller than the quasi-particie
energy (==1.7 MeV), but much larger than the free-particle energy (=0.1§
MeV). One problem that arises in this corrected theory, in which the v, can
be appreciably different in the ground state and the excited states, is that
these states are no longer automatically orthogonal, although sometimes &
different quantum number, such as the spin or the parity, guarantees the
orthogonality. In particular, two-quasi-particle states of spin 0* are not
orthogonal to the ground state in such cases.

6.3.5 Discussion of the Gap Equation

For all practical cases, the BCS-equations have to be solved on a computer
and the question arises of how many levels one should include for such
calculations, that is, we have 1o investigate which states contribute most to
the sum appearing in the gap equation (6.54). For this purpose, let us first
consider the gap 4, for a state close 10 the Fermi level. In this case the
main contributions 10 the sum come from states in the vicinity of the
Fermi level. The reason for this is that (i) in this case the expression
Ay /(& +A2) 1=} (§,.~0), and (ii) the matrix elements v,z ¢ for k'==k
(strongly overlapping wave functions) are larger than the other matrix
elements. '

Conversely, if k is far from the Fermi surface, all the terms in the sum of
Eq. (6.54) are small. For k'=k, the overlap of the wave functions is still
large, but the factor 4,./(€2 +A})'/? is now small because of &»A2. For
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states k” at the Fermi surface it is just the other way around, since there the
matrix elements are very small (k and k' usually belonging to different
principal quantum numbers).

The effect of the pairing force is therefore restricted to the neighborhood

.pow understand why it might be a valid approximation to take a constant
pairing force in the vicinity of the Fermi surface and have zero matrix
elements elsewhere. On the other hand, if we had taken a constant matnix

For spherical, only weakly deformed nuclei the single-particle levels
‘exhibit a pronounced shell structure. The main contribution to the sum in
‘the gap equation comes from transitions within the same shell. We can
therefore more or less treat each shell separately. From our discussion
above we expect for inner shells A, =~0. The pairing force will therefore
only be effective in the partially filled shell, which is often called the

‘A-shell. This leads back to the seniority model. For strongly deformed
‘nuclei the shell structure is completely washed out, nevertheless, the sum
only runs over a group of levels in the neighborhood of the Fermi surface,
also called the A-shell.

The restriction of the pairing to the vicinity of the Fermi level is also the
reason that neutrons and protons can be treated separately (at least for
heavy nuclei). For nuclei with 4 ~150, the neutron excess is (N — Z)» 20.
The neutron and proton levels close to the Fermi energy. therefore, have
very small overlap compared to that of protons or neutrons alone. There-
fore, neglecting the proton-neutron pairing, the total wave function may
be represented as a product of the proton and neutron functions:

|IBCS) = kHO (u{ P4 of PafP +ax) +) ,,Ho (u,f:) + t;-,f;‘)a,f:) +a(E:) +)| ->.
1> (12>

(6.86)

In spite of these simplifying assumptions, the BCS equations can only be
solved numerically. In order to study the influence of the interaction
between pairs of nucleons in a qualitative manner we restnict ourselves to a
pure pairing force (6.55) within the A-shell. In the following consider-
ations, we therefore neglect the other shells. The gap equation is then of
the form

A
Amiey 8B (6.87)

2 k>o‘ﬁ€k+A2 ’

where the sum runs over the A-shell only. Equation (6.87) always has the
trivial solution A=0, that is, u, - v, =0, which for no or sufficiently weak
pairing force is the only solution. However, for

I .& ]

=G> = >I (6.88)

2,50 14l
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there exists a second nontrivial solution A>0. This always happens if the
pamng forcc is sufflcwntly strong or if thc A-shell is sufﬁc:entjy larg
tion and it is wmewhat smeared out in & more extended theory [MPR 65;,
For an infinite system, particle number violation is negligible, and tlmi

transition i8 always sharp.

On the other hand, (6.87) can also be used to determine the strength G
of the pairing force since, and, as we have already said, A can be
determined empirically from the odd—even effect. It still, however, depends
on the “cutoff™ A. :

6.3.6 Schematic Solution of the Gap Equation

It is very instructive 1o have an analytic solution of the gap equation [Be
59). This can only be achieved in a very schematic model. We image a well
deformed nucleus for whzch the level density is almost uniform and tlw;
nuclei in the rare earth region A==1 MeV and Ae~0.1-0.2 MeV), We caxxff'
then replace the sum in Eq. (6.87) approximatively by an integration over:
the A shell: ¢ <e<e"; a=e'—A; bwme” —A,

1 b 1
l=m =G| ——p(e) de, 6.89
10), e PO (6.89)
where p(e¢) is the level density. We furthermore assume that p{¢) is

approximately constant within the A-Shell (p=~p). We introduce the di-
mensionless quantity

]

- 6.90
=G (6.90)

and obtain after integration
2= arsinh -g— —arsinh % : (6.91)

Solving for A yields

) - ——— | o
A smh r Vb2 +a®— 2ab cosh 27 (6.92)

The average particle number in the BCS model is given by Eq. (6.39) and
determines the chemical potential A. The number of particles in the A shell
is given by (again we replace the sum in (6.39) by an integral):

N= zf ( <+A2 )pdz. (6.93)

The number of levels in the A-shell is given by
Qwmp(b—a). (6.94)
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Introducing the occupation factor

N
we get, after a lengthy but straightforward calculation using (6.92).
A_e*;c - ;c X~ 'Cighn. (6.96)
Inserting (6.96) in (6.92), we get:
cfl — el 2
= - . A ‘7
A= Jsinhy ¥ TXN (6:97)

In the limit of weak coupling, that is, for G-p<« |, we find:

Acce~ (M0, (6.98)

We therefore have from (6.98) the important result that the gap cannol be
developed as a power senes in the interaction strength.

Equation (6.97) has been derived under the condition that 4 is not
smaller than the level distance, that is,

Ap>1 (6.99)

1
2smhn\lxv(m-~) >1. (6.100)

For n <1 (strong pairing correlations), this inequality is always [ulfilled.
For n:» 1, Eq. (6.100) is only satisfied for large enough values of N(202—
N).

The ground state energy in the BCS-theory is given by (6.56). Its
contribution to the ground state expectation value of H' is

<BCS|H'|BCS}-2I6%(1 - ;)cﬁd:— %2- . (6.101)
a 1’(2+A2

Since H’ differs from H by A- N, using (6.96) and performing the integral
in (6.101) we get for the ground state energy:

Egcs™= (BCS|H{BCS) = 4(€” + )N — 1Q(e” — €)(1 —x3 Jctghn.  (6.102)

We are interested in that part of the ground state energy which comes from
the pairing force alone. For this purpose, we first calculate the energy for
G =0 which corresponds to the limit n—o0:

E°mL(e+e”)-N= iR —€)(1—x2) (6.103)

The contribution Ef of the pairing force to the ground state energy is
therefore given by:

Ef=Eg— E° (6.104)
In the case of a half-filled shell where N =4, we find, using Egs. (6.102),
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(6.103), (6.94), and (6.97),
E"= - 30 -1 -xE)(ctghn— )=~ 2 4%(1-e~™). (6.108

This is the pairing energy for neutrons or protons. For heavy nuclei i
possible to estimate G and A from the odd-even effect. Nilsson and Pric
[NP 61] found for protons G,==17/4 MeV and for neutrons G,=<25/,
MeV. The energy gap A is roughly 1 MeV. Assuming a characteristic feve}
density |/p=20.5 MeV, we get n=<A4/100. In this case we can neglect the:
term e ~ " in (6.105) and obtain for the total pairing energy, which is more
or less the same for protons and neutrons,

=El + Efy~—pA’~-2[MeV]. (6.106)

The total pairing energy is therefore extremely small compared to the total:
binding energy. This is a gencral feature of all kinds of correlalion--:

lolal

valid if |BCS) is well locahzed a:ound the actual particle number. In ordef:
to get an estimate, we therefore calculate the mean square deviation of the
particle number (6.44).

2
k

(AN )= k}))O Feal (6.107)
Within the schematic model it follows that
(AN )Z-M(arc tan % —arc tan %) {6.108)
In the limit of weak pairing correlations or small level density we get
(ANY'=5-A m. (6.109)

This approximation is roughly fulfilled for strongly deformed nuclei.
Taking characteristic values for p and G, we obtain n=4,...,5 and for the
mean deviation AN=6 .

In the other limit of strong pairing (n<«1), we take only the leading
terms of (6.108) with respect to ¢

2 Of1 — v\ _N ~
(AN)=0(1 —x3) =2N(1- 3 ). (6.110)

Consequently, for a half-filled shell (N =) one finds AN =N , whereas
for only one pair (N=2) we obtain AN=2. A typical example for a
half-filled shell with n<1 is *2Pb. Its BCS wave function contains large
amounts of *Pb and *Pb and also of **Pb and '"Pb. We have to keep
in mind, however, that the Fermi surfaces A and the gap A are quite the
same for all these nuclei, and therefore the uncertainty in the particle
number is not as bad as it appears.
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 As we have seen, the very simpie BCS model allows us to explain many
features in nuclei arising from the short-range correlations of nucleons. We
have only tmmd the pa.iring of neutrons and protons separately, neglect-

ﬁ{?pnnmpd qmtum numbers and the pairing matrix elements are small. For
Jight nuclei (s—d sheli!), however, this is no longer true, and we also have
to include neutron-proton pairing. Before we mention very briefly some of
those calculations, we want to reconsider Hartree-Fock theory and defor-
mations and pairing from the more general Hartree-Fock—Bogoliubov
theory which, as we will see, embraces all the models we have treated so
far.



CHAPTER 7

The Generalized Single-Particle Model
(HFB Theory)

3% 7 #

7.1 Introduction

As we have seen in the last two chapters, many properties of nuclei can be
described in terms of a model of independent particles moving in an
average potential whose space dependence closely follows the matter.
distribution. With unfilled shells, we find additional correlations between
these particles. In the BCS mode]l we have learned to treat these correla-
tions in a generalized single-particle picture by introducing quasi-particles:
and a new type of field, the “pairing potential.”

The Hartree—-Fock-Bogoliubov (HFB) theory generalizes and unifies
both methods. Within this theory we look for the most general product
wave functions consisting of independently moving quasi-particles. They
are determined by a vanational principle and take into account as many
correlations as possible staying within a static single-particle picture. It
turns out that within this approximation, the Hamiltonian reduces to two
average potentials, the seif-consistent field I', which we already know from
the Hartree-Fock theory, and an additional pairing field A, known from
the BCS theory. The field T contains all the long range ph-correlations
which eventually lead to a deformed ground state (phase transition). On
the other hand, 4 sums up the short-range pairing correlations that can
lead to a phase transition and a superfluid state. HFB theory now mixes
both descriptions and handles their interdependence. It is therefore capa-
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ble of simultaneously describing all kinds of phase transition within the
mean field approximation.

 Since the HFB theory is a combination of both Hartree—Fock and BCS
‘theory, many of the relevant problems have already been discussed in the
‘foregoing chapters. We can therefore stay rather formal in deriving the
‘necessary formulae appearing at the beginning of this chapter. In Section
7.2 we introduce a general quasi-particle picture. The nuclear wave func-
‘tion }®) under consideration is defined as a vacuum of suitable quasi-
particle operators, and its formal properties are discussed. Many of the
formulae and some important theorems in this context are proved in
_Appendix E. In Section 7.3 we derive the HFB equations that determine
‘the wave function |®) and present several methods for solving them. The
pairing-plus-quadrupole model is introduced in Section 7.4 as an example,
which shows many important features of realistic calculations. Several
applications of the theory are discussed in the last sections, namely,
calculations of the ground state properties of deformed nuclei constrained
Hartree—Fock theory (CHF) for the investigation of energy surfaces in the
context of fission and the calculation of rotational spectra within the
self-consistent cranking (SCC) model.

7.2 The General Bogoliubov Transformation

7.2.1 Quasi-particle Operators

The basic idea of any quasi-particle concept is to represent the ground
state of a nucleus as a vacuum with respect to quasi-parricles, which are
defined by the low-lying excitations of neighboring nuclei. This is precisely
the concept of Landau and Migdal [La 59, Mi 67], who defined the
vacuum and the quasi-particles in terms of exact eigenstates of the many-
body system. This theory of Fermi liquids is therefore, in principle, an
exact one; however, it has the disadvantage that there is no simple
mathematical relationship between these Landau-Migdal quasi-particles
and the “bare” particles of the system (given by some basic operators ¢, ¢,
which may, for instance, be plane waves or harmonic oscillator states).

In this chapter, we use the so-called Bogoliubov quasi-particles [Bo 58,
Bo 59a+b, BS 59, Va 61] which have a linear connection to the bare
particles. They are easy to handle, but the corresponding vacuum [®) and
the one-quasi-particle states are now only approximations of the exact
cigenfunctions of the many-body Hamiltonian.

We have already defined quasi-particles of a very special type within the
BCS model (Eq. 6.67). In the limit of vanishing pairing corrclations
(u,. v, =0), they are either particles (¢, > ¢;) or holes (¢, < ¢;). A very
natural extension of these BCS quasi-particles is given by the most general
linear transformation from the particle operators ¢,*, ¢, to the quasi-particle
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operators B.*, 8, of the form:

ﬁk-Q- - 21 UlkC1+ + Vlkc" (7.’)

The indices & and / both run over the whole configuration space (k
= 1,...,M). The Hermitian conjugation of Eq. (7.1) gives us the operator

B.. We therefore have a transformation of the operators (€) v Cags

(B L)) o

and which is represented by the matrix 9 :

w=(Y 1) (73)

The coelficients U, V are not completely arbitrary. We require the new-
operators 8,, 8,* to obey the same fermion commutalion relations as the
old ones. This restricts the matrix U to being unitary.

W 3 - | and YWY =1, (1.4)
or
UtU+V* Ve, VU +V*VT =], (1.5)
UTV+VTU=0, UV*+ VU =0, '
and allows us to invert Eq. (7.1):

ot = % U&Bf + Vi By (7-6)

There is a famous rheorem of Bloch and Messiah [Zu 62. BM 62] which
states that a unitary matrix 9§ of the form (7.3) can always be decomposed
into three matrices of very special form:

-(P 0)[U Vic 0) 7
v (o D‘)(;‘; L—,)‘o c* 77
or

U=DUC, V=D*VC. (7.8)

*The definitign of the matrix ¥ in Eq. (7.2) seems somewhat unusual; it is, however,
consistent with the definition (7.1) and has the advantage that we can use the rules of matrix
multiplication in the following.
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D and C are unitary matrices and U, ¥ are real matrices of the general
form

0
0
0
¥ 0
0 u,
u, 0
0 u,
1
0
L 1
(7.9)
f \
0
]
0 y
- 0
Ve
0 o,
-0, 0
0
0
0.

The proof of this theorem is given in Section E.1. Its meaning is that the
transformation (7.1) can be decomposed into three parts

PRGN B G (110)

D vV C

() a unitary transformation of the particle operators ¢ among themselves



248 The Generalized Single-Particle Model (HFB Theory)

as in the HF case [Eq. (5.18)]
a; =2 Dyct. (7-11)
!

It defines a new basis, called the ‘“canonical™ basis,* which i
explained in more detail in Appendix E. It is convenient {0 use
because, as we shall see, the density matrix p is diagonal in this basis; _

(ii) a special Bogoliubov transformation, which distinguishes between
“paired” levels (4,>0,v,>0)

+ + _ ..
a, =U,d, —r,ay,

* + 4.
aF upap + bPaP'

(1.12)

where (p, p) are defined by the 2X2 boxes in Eq. (7.9) (sce also
Chap. 6), and “blocked™ levels, which are either occupied (v;=1;
u,=0) or empty (t,, =0; u,, =)

+ + .+

{ -al9 C!m=d

m !’

al' = ai+ A aﬂl - aﬂl * (7- l3)

«

(7.12) corresponds to the BCS-transformation (6.67). The orthogonal-
ity relations (7.5) guarantee that the real occupation numbers ¢, and
u, are normalized;

(iii) a wunitary transformation of the quasi-particle operators a among
themselves

B = 2 Cier 0y - (7.14)
=

From this theorem we sece that a general Bogoliubov transformation (7.1)
is nothing but a BCS transformation in an appropriate basis, the canonical
basis, defined by the transformation D in Eq. (7.11). In particular, the
decomposition (7.7) defines fully occupied levels (i), completely empty
levels (m), and paired levels (p) with canonical conjugate states p, p. In
many problems with time reversal symmetry it turns out that one can
choose the time reversal operation as canonical conjugation. However,
there are cases (for example, the HFB-theory in a rotating frame; see Sec.
1.7) where we do not know a priori what the canonical conjugation is. First
we have to determine the full HFB transformatiom (7.1) and afterwards we
can apply the Bloch-Messiah theorem (7.7) for the calculation of the
canonical basis. We will see in Sec. 7.2.2, how this decomposition can be
achieved in practical cases, which will be useful for a deeper insight into
the physical content of the wave function.

*It bas this name because the skew symmetric pairing tensor x (7.24) is in the canonical
form in this basis.
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7 2.2 The Quasi-particle Vacuum

The definition of quasi-particle operators in the last section has up to now
_been highly mathematical. To get physical information from the transfor-
mation, we have to calculate a wave function. As discussed above, the
ground state of the many-body system {®)> shall be represented as the
yacuum with respect to these quasi-particles:

B |B>=0  forall k=l,... M. (7.15)

ave functions which fulfill this condition for a corresponding set of
quasi-particle operators (7.1) will, in the following, be called HFB wave

Before we can study the structure of such wave functions in more detail,
“we want to show that this definition is always possible and unique: It is
easy to construct a wave function which fulfills Eq. (7.15). We start with
e bare vacuum |—) and multiply it by a product of annihilation

‘operators B, .
| = I;I Bl =>. (7.16)

If kK runs over all values k=1,.... M, the condition (7.15) is certainly
fulfilled. In many cases, however, such a function vanishes identically. In a
HF state, for instance, the product can run only over the annihilation
operators of all hole states

[®ue>= [Tal—>= ITa*|->. (7.17)

‘Any annihilation operator of a particle state a_=ga, would make |
vanish identically. Therefore, in Eq. (7.16) we define [] as the product of
. the maximal number of k-values, such that the multiplication of any
_additional operator 8, would annihilate [®). This maximal number turns
- out to depend on the physical situation. It is determined, as we shall see
later on, by the blocking structure (7.18). It may happen that this number
i8 even; then the wave function |®) describes an even nucleus (ground
state or excited state; see below). If this number is odd, one deals with an
-odd nucleus. From this definition, we can always construct a function [$)
 which fulfills Eq. (7.15). Since the basis sets ¢,"....,c,7| =) (N=0,..., M)
and B, ,...,Bk:'|¢> (N=0,...,M) are both orthogonal complete sets in the
-many-body Hilbert space, the definition of |®) by the operators 8, (k=
1,...,M) in Eq. (7.15) is certainly unique.

. The opposite is not true: |®> does not uniquely define the quasi-particle
operators ;. Any transformation of these operators amongst themselves
. [as in the C-transformation in Egq. (7.14)] leaves [®) invariant. This means,
in particular, that we could have also used the quasi-particle operators a,
[Eqs. (7.12) and (7.13)] in the canonical basis for the definition of |®).
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Therefore, |®) is fully determined by the single-particle operators g, in the
canonical basis, and the occupation probabilities o}. |
In particular, we can now use the prescription (7.16) to construct 2 more
explicit form of |®). It is clear that we have to leave out any operator a of
unoccupied levels in Eq. (7.13). Afier proper normalization, we find

[©>=alal->= [Ta’ [0+ 9875 -, (1.18)

where, by definition, none of the numbers u, vanishes. Depending on
whether the number of occupied levels i is even or odd, the function (7.18)
is a superposition of states with an even or odd particle number. We cali
this quantum number the number parity [BMR 73). It is evident that a wa
function |®) with even number parity can only describe a system with even
particle number, and vice versa.

We usually assume that |®) describes the ground state of an ev
system, but we have not used this fact in the derivation. We now see tha
dependent on the coefficients I/ and V in the Bogoliubov transformation
(7.1) which completely determine our wave function, we get even or odd
number parity. These coefficients are determined by a variation of the
energy expectation value and we will derive the corresponding (HFB)
equations in Section 7.3.1. They are nounlinear and can have several
solutions. Usually, the solution of these equations with the decpest energy *
will provide us with such coefficients U and V that the corresponding -
vacuum |®) describes the ground state of an even nucleus, that is, the state
(7.18) can be represented as a BCS state (6.31) in the canonical basis. -
Sometimes, however, we want to calculate the ground state of an odd mass
nucleus. In such a case, we have to make sure that we use coefficients /
and V which guarantee odd number parity for the wave function |®,); that
is, {®,) can be written as a one quasi-particle state based on a properly
chosen ground state |®,> with even number parity.

In practice, this is very simple to accomplish [BMR 73, Ma 75a]. We
start, for instance, with a fully paired vacuum [®) =, 8,...8,]~> with
even number parity. The one-quasi-particle stale

|®>=8,"|® (7.19)
is a vacuum to the operators (5,. B;.....8,,) with
§l=.81+- Ez’ﬁz’---sg.u=ﬂu' (7.20)

The exchange of a quasi-particle creation operator 8,* with the corre-
sponding annihilation operator 8, means that we have replaced columns |

in the matrices U and V by the corresponding columns in the matrices
Ve, U*:

(Un Vi) & (V.U (7.21)

Thus by making such a replacement we change the number parity of the
corresponding vacuum and go over to a one-quasi-particle state, This can
be continued—starting from the fully paired ground state we can come to
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many- quasi-particle states by simply interchanging the corresponding
columns in the HF B coefficients. With this trick we represent quasi-particle
excitations as HFB vacua for properly defined new quasi-particle operators.

Of course, the transformations C, U, ¥, and D of Eq. (7.7) are changed
by the replacement (7.20). In particular, the canonical basis for (®) is, in
general, different from that for |®;> in Eq. (7.18). Only in cases where the
'C transformation is equal to unity (i.e., if |®,) = a,|(®,)) do the iwo wave
functions have the same canonical basis.

7.2.3 The Density Matrix and the Pairing Tensor

As we saw in the last section, the general Bogoliubov transformation (7.1)
or the coefficients U, and V,, are not uniquely defined by the HFB wave
function |®) to within a C transformation (7.14).

We now define two quantities which contain no redundant information
and which determine the wave function |®) uniquely. They are called the
normal and abnormal density (or densily matnx and pairing tensor), and
are given by their matrix elements in the particle basis

py- =D Cr+cf|¢.>- Ky = {®le,;c|P, (7.22)
or in malnx notation
p=V*¥T, x=V'UT=-UV"™. (7.23)

p is hermitian (p* = p) and «x is skew symmetric (x 7 = — «).
Using the decomposition of the Bloch—Messiah theorem [Eq. (7.9)] and
the unitarity of C, we find

p=DVD*  «=DUVDT. (7.24)

This means that p is diagonal in the canonical basis. The eigenvalues of p
are the occupation probabilities v and the eigenvectors are the coefficients
D, of the wave functions g, (7.11) in the canonical basis.* At the same
time, « is in its canonical form: it decomposes into 2 X2 matrices:

( 0 ""0"" ) (7.25)

— Up Oy

Two important relations hold for p and «. They follow from Egs. (7.5)
and (7.23):

pl—pm —xx*, pK=Kp*, (7.26)
Sometimes it is useful to define 8 2M-dimensional generalized density
* Equation (724) shows that p behaves under a unitary transformation like a linear

operator and « behaves like the matrix part of an antilinear operator. For the connection
between HFB theory and the theory of antlinear operators, see [HY 68, YH 70].
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matnx [Sch 61, Va 61}

(B 1@ (Dlecled) o p .
? (<°|Cr+‘—':+|¢> (‘Plc,.c,*M)) (-." I-p® ) oy

which is Hermitian and idempotent;
Ri=S. (7.28)

Its eigenvectors are the HFB coefficients (¥) for quasi-particle creation
operators with eigenvalue 0, and (}.) for quasi-particle annihilation opers-
tors with eigenvalue 1:

(D|BTB 19> <@ BB !‘:’))_(o o)
(DB B9 (D|B-B7 P o 1/

Both sets of eigenvectors are determined only up to a unitary transfor-
mation in the corresponding eigenspace, that is, up to the C transformation
(7.14), and this shows that p and « uniquely determine |®).

In the following chapters we will see that many theories developed
originaily in the HF picture of pure Slater determinants (p>=p) can be
immediately generalized to the HFB case with pairing correlations simply
by working in the 2 M-dimensional formalism with the matrix &.

sm*aﬁur-( (7.29)

7.3 The Hartree-Fock-~Bogoliuboy: Equations
7.3.1 Derivation of the HFB Equation

Until now we have investigated only the formal structure of the HFB
transformation (7.1) and the corresponding vacuum |®). In this section we
derive an equation for the coefficients U, and V¥, which defines the
quasi-particles and the wave function |®).

We assume that |®) is an approximation for the exact ground state of
the Hamiltonian

] -

H- 2 t,.,,C,:C,"i' z 2 U,JI;J‘C,TC,:CI‘CI’ (7.30)
L hhhyle

and use the variation principle of Ritz (see Sec. 5.2). In our case, the trial

wave functions are the set of all generalized product states |@) of the HFB

type.

As in the BCS model these wave functions violate the symmetry con-
nected with the particle number (see Sec. 6.3). Again we have to use a
constraint on the particle number N and vary the Hamiltonian H'= H -
AN. To simplify the notation, we neglect the prime in the following and
come back to the problem of a variation with constraint in Section 7.6.

Starting from the variational principle

(BIH[®) _

@) (7.31)
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we have to investigate small variations |8®) in the vicinity of the solulion

[#). Since we consider only wave functions of the HFB type, we can use a

theoremm of Thouless (see Appendix E) and express the function |®)
= |®) +|3P), which is not orthogonal to [®) [MW 68, Ma 75a] by:

|<b’>-exp(k§‘ 'z, ,:ﬁ;)|¢>. (132)

In contrast to the coefficients U, and V,, which obey orthogonality
relations (7.5), the variables Z,,. (with k < k") are independent variables.
The solution |®) of variational equation (7.31) &arresponds to Z,,.=0. For
infinitesimal variations, we can expand up to second order. Using quasi-
particle representation (E.18) for the Hamiltonian

=H+ 2 Hy BBy, + Z (HZL, B B, +he)+ Hy  (733)

k kg k) <ky
we get
O AR PR AR
where the index of the vectors and matrices runs over all pairs (k < k') and
° =(OIH|®), Aer= <O BeBe [H, BB ]]10;
Hi2 = (O] B B H]I®D, Bucy-= —<®I[ By i [ H, - B,]]19).

Equation (7.34) gives a quadratic approximation of the multidimensional
energy surface in the vicinity of |®). The varation with respect to ZJ,
yields* [Be 59]

(735)

3 (®IHI®
325, (¥ |0y

= HX =0, (7.36)

Z=0

which means that the linear terms in Eq. (7.34) vanish at the stationary
point. To see if it is a minimum or a saddle point, the quadratic terms in
Eq. (7.34) must be investigated. The matrix

5=(5 ) 37
is called the stability matrix (or curvature tensor). At a minimum it has to
be positive definite,

The vaniational equations (7.36) are not affected by a C-transformation
of the quasi-particles among themselves [Eq. (7.14)]. The requirement
H®=0 determines, therefore, only the first two of the Bloch-Messiah
transformations. The third transformation can be used to diagonalize the
H'' part in Eq. (7.33). Together with (7.36), this corresponds to the

* Vanation with respect to Z,,. gives tho compiex conjugate equation.
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diagonalization of the supermatrix

( H" H*")_(@l{[ﬂmﬁ],ﬁi}l@) <°I([ﬁmH].ﬁr}I¢>)

—H  —H") @B H] B2)®  (BI{[ B H] B>
(7.38)

In the space of the basis operators ¢, ¢,* this matrix has the form
Lo H" H® .o h A _ s
m‘( o H”,)% (A 2. (1.39)

with
hy=<@{{c, H], ¢ @D,  Ap=(®|{[c, H].c,}|®). (7.40)
Applying Wick's theorem (Sec. C.4), we get*

| _ | <=
hme+T=X;  Tpm D Tippys Sy 3 D Tggher: (741)
L2 9

We therefore end up with a diagonalization problem for the matrix X, the
so-called HFB equations [Ba 61, 63a+b]:

(A Sell)=() = o

where the columns U,, ¥V, of the matrices U/ and V determine the
quasi-particle operator 8,% (7.1). In the basis corresponding to the opera-
tors B,. both matrices K and 4 [see Eq. (7.29)] are diagonal. We therefore
get as an equivalent condition to Eq. (7.36) [BS 59]:

[H, 9] =0 (7.43)

which corresponds exactly to the formulation (5.36) of the HF equation.
The Hamiltonian (7.33) now takes the form

H=H®+ S EBYB.+ H,,. (7.44)
k

H,,, (E.18) contains the terms H*, H*, and H*. They are neglected in
the HFB approach. In this case, H 1s diagonal. Its cigenstates are the
quasi-particle vacuum |®) (with the eigenvalue H°), one-quasi-particle
states

1®,>= 8,718, (7.45)

with the quasi-particle energies E,, two-quasi-particles states, and so on.
The excited states to |®) are states with an even number of quasi-particles.
The states with an odd number of quasi-particles describe the neighboring
nuclei (4 =1).

These considerations, however, give only a rough overview of the struc-
ture of excited states. In particular, the one-quasi-particle states (7.45) are
not determined selfconsistently. We will see in the next section how this
point can be improved.

* The chemical potential A is determined by the particle number: Trp= N,
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Before we discuss the properties of the HFB equations (7.42), let us give a
different derivation which shows some interesting aspects of the theory and
requires less calculation [Bl 62].

Using the theorem of Wick (see Sec. C.4), we expand the Hamiltonian in normal
arder (: :) with respect to the ground state [@). We then get for the one-particle

operator
o= (Olete [+ ¢,

w-pticten s, (7.46)
and for the two-particle operator
€1y Cry C1Cr, ™ Pryt Prdy ~ PryPra, + Kl Krg,
oy, tene, Yoy et (e l)
SRR AR TR A A
+ieqeyes, - (7.47)

Using the definitions (7.41) for ' and A, we immediately find

Hm= H°+% :(c*c)( _g. _‘2.)(5_,, ):+ % IE! Cryigtols * €1 iy €16ty o - (7.48)
rals

The last term contains only products of four-quasi-particle operators. It corre-
sponds to H®, H?', and H*® in the quasi-particle representation (E.18). In the
generalized single-particle model, this interaction between the quasi-particles is
neglected. The rest is a quadratic form in the operators ¢, ¢*, which can be
diagonalized exactly by the general Bogoliubov transformation (7.1). Again we find
the HFB equations (7.42) with the solution (7.44).

7.3.2 Properties of the HFB Equations

The HFB-equations (7.42) are a 2M-dimensional set of nonlinear equations. They
show more or less the same properties as the HF equations (5.38). Many points of
the discussion in Chapter 5 are therefore also valid for the HFB equations. In
particular, we can also denive them for density dependent forces by a vanation with
respect to both densities, p and x (see Sec. 7.5). The theorem of self-consistent
symmetries (Chap. 5) applies here also (Sa 68, Go 79]. They can be solved either by
iterative diagonalization of the matrix K in Eq. (7.39) or by the gradient method,
which will be described in the next section.

There are, however, some basic differences 1o the HF case, which we will discuss
in the following.

The equations contain a chemical potential A which has to be determined by the
particle number subsidiary condition. Therefore, we must always constrain HF B-
equations; for the method of treating such problems, see Sections (7.3.3) and (7.6)

In addition, the HFB equations contain two potentials, I' and A. The T
corresponds to the HF potential, which descnbes the shape of the nucleus (spheri-
cal or deformed), whereas A determines the pairing correlations. In contrast to the
BCS-theory, A is now no longer given by one number A, [Eq. (6.50)], but is a
matnx which muxes different levels. Since we have seen that the HFB wave
functions |®) have the structure of BCS wave functions in the canonical basis
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(7.11), it is inleresting to investigate the HFB equations (7.42) in this basis. We
therefore use the matrices U and V¥ (7.9), for example, in a fully paired case, and
obtain from Eq. (E.22), for the diagonal matrix elements of H® in the canonical
basis (for real matrix elements A,f),

Uy O (hkk'+ h‘[) + A‘[( uz - Ukz) - (), (7.49)
which has a similar solution to Eq. (6.52) viz:
w\_ | |+ $her + hgr) (7.50)
Ukz 2 - 1 2 ‘ '
Jﬁ(hu +hep) + Ak

We see that the important quantities, which determine the occupation numbers, are
the diagonal matrix elements A,,, Agx, and Az in the canonical basis. This does
not, however, mean that the other matrix elements of 4 and A in general vanish,
and a nontrivial C-transformation is needed (o diagonalize H''.

There is a special case whep H''! is already diagonal in the canonical basis. As
we see from Eq. (E.22) for H %, this happens in cases of time reversal symmetry,
whenever the only non-vanishing matrix elements of A in the canonical basis are
the ¢lements A,;. In such cases, the off-diagonal matrix elements of A in the
cancnical basis also vanish, and we gel for the quasi-particle energies

E = \/h}* +4%; . (7.51)

This happens, for instance, in all cases where there is time reversal invariance
together with & monopole pairing force for the calculation of the pair field A (see
Sec. 7.4). In such cases, the [ull HFB equations (7.42) can be solved by a solution
of HF equations (5.39), including the appropriate occupation factors v?, which
themselves are determined by the BCS equations in each step of the ileration. In
the general case this is, however, not true: The Bloch—Messiah theorem (Sec. 7.2.1.)
does not imply that HFB can be replaced by coupled HF-BCS equations (see also
[Go 79D.

We want to stress that for the derivation of the HFB equations we have only
used the general product structure of the function |®) and the stationarity condi-
tion (7.31). Whether the solution corresponds to the absolute minimum in the
multidimensional energy surface (see Sec. 7.3.3) or only to a local one, or perhaps
only to a saddle point, depends on how we solve these equations and, in particular,
on the initial conditions of the iterative solution. For instance, if we use a
self-consistent symmetry (s¢c Sec. 5.5), we can never gel an eventual absolute
minimum which breaks this symmetry. In such a case, the solution of the HFB
equations will therefore be a local minimum or a saddle point.

This fact is often used to approximate functions other than the ground state
wave function of the system. If there is a symmetry operator (for instance, angular
momentum or the K-quantum number), the many-body Hamiltonian 4 can be
diagonalized in each eigenspace of this symmmetry separately, and we can apply the
HFB approximation in each case. In such cases, the separate solution of the HFB
equations in each subspace provides us with approximations for the lowest eigen-
states with the corresponding symmetry.

An example is the number parity (see Sec. 7.2.2). If we run the iteration in such a
way that |®) has at each step an odd number parity, we get an approximation to
the wave function for an odd mass nucleus. This corresponds to the self-consistent
solution of the HFB equations for odd mass nuclei [RBM 70, RMB 74]. It includes,
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in particular, the blocking effect (see Sec. 6.3.4) and the change of the average
= motential due to Lhe odd particle (polarization). How such calculations are acheived
_in practice will be discussed later in this section.
Another example is two-quasi-particle states in the even system wilth axial
symmetry. 1f the K-value of such a state does not vanish, it is automatcally
orthogonal to the ground slate with K= 0. For the calculation of K =0, (wo-quasi-
icle states, we have to realize Lhat such states correspond to different stationary
i points in the energy surface of the ground state. They can be found by a variation
under the constraint that the wave function is orthogonal Lo the ground state wave
function [MSR 76, EMR 80a]. Only in cases where Lhey lie in the minimum of a
well separated valley with approximately orthogonal wave [functions, can we
peglect this constraint.

We see that the HFB equations (7.42), in principle, ¢an be used for the

self-consistent approximalion of all eigenstates of H whose wave functions have the
-structure of generalized products.
- In an actual solution by iterative diagonalization of Eq. (7.42), we encounter the
_problem that the equations are 2A-dimensional and have 2M eigenvalues and
“gigenvectors. To construct a set of quasi-particle operators { 8,*...84 ), and for
~the calculation of p and « in Eq. (7.23), we have to choose M of them. However, as
i easily recognized, to each eigenvector (¥, U,) with eigenvalue E, there corre-
_sponds an eigenvector (V¥ UP) with eigenvalue — £,. We saw in Section 7.2.2 that
- an exchange of these two eigenvectors corresponds lo a replacement of one
- operator 8,* by B, and vice versa. It is forbidden to choose E, and ~ E, at the
- same lime (otherwise it is impossible to fulfill the Fermi commulation relations for
 the operators 8, B *). Therefore, we have 1o decide for each k (k= 1...M) whether
‘ one takes the ecigenvalue E, with the ecigenvector (U, ¥;) or —E, with the
_ eigenvector (V2, UD).

In the pure HF case, this choice corresponds to the freedom of keeping a level
occupied or empty in the calculation of the density matrix p. Of course, in such a
calculation the levels are usually filled according to their energy to get the lowest
total energy. This corresponds to the case where all the excitation ¢nergies of the
system are positive.

In the same way, we usually choose the M positive eigenvalues £, in the HFB
case for even particle number. Then the excited states of the system, whose lowest
are the two-quasi-particle states, have a positive energy. With this choice at each
step of the iteration we usually find a fully paired state which corresponds to the
deepest minimum in the energy surface.

If we want to solve the HFB equations for an add nucleus, we can start with the
solution of the neighboring even system and a pure quasi-particle state as the input
for the iteration. As we have already seen in Section 7.2.2, such a stale can be
interpreted as a “vacuum” (0 a new set of quasi-particle operators § [see Eq. (7.20)]
by interchanging one of the eigenvectors (U,, ¥,) by (V2. U?). We therefore have,
in the solution of the HFB equation of an odd system after each diagonalization, to
choose one of the negative energies — £, with the corresponding eigenvector
(Vr, U2) 1o get a blocked HFB function. Which value of k we take depends on the
quasi-particle state we want to describe. They represent different local minima in
the energy surface. By such an exchange we therefore jump from one valley to
another.

In cases where such valleys are no longer well separated (for instance, in band
Crossing phenomena in even nuclei), it may happen that one of the quasi-particle
energies becomes very small and even negative (see Fig. 7.8d). In such cases we
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must even use a negative quasi-particle energy for the even system. We are not.
allowed o choose only positive ones, because the latter would correspond to
jump into & different valley with odd number parity. Consequently, we must
investigate the blocking structure of the system in each step of the iteration [BM
73]. In the next section we will study a method that avoids such problema.

7.3.3 The Gradient Method

The HFB equations (7.42) are often solved by iterative diagonalization. In the last |
subsection we discussed the problems that can arise in such a method. The :
procedure is often rather lime-consuming and convergence is not always guaran-
teed (see, for instance, Sec. 5.4), and it gets particularly complicated in cases wi
one or several subsidiary conditions.

In the following we will present the gradient method for the solution of the H
or the HFB eguations [MSR 76, EMR 80a] It is based on the fact that we are
interested in a local minimum of the multidimensional energy surface.® Starting
from an arbitrary initial wave function |®,), which corresponds to one point on
this surface, it searches for the direction of steepest descent and follows it i .
iterative steps uniil the minimum is reached.

What we need, therefore, is a suitable and unique parametrization of the energy
surfece, at least in the vicinity of the point |®,>. We use the theorem of Thouless
(see Sec. E.3), which states that each wave function of the HFB type which is not
orthogonal to |®,) can be represented as

|¢(Z>><xexp( S Zu BB )90, (1.52)

k< i

where the operators 8, annihilate |®,> and there is a one-to-one correspondence
between the M(M-1)/2 parameters Z,,- (k < k") and the HFB functions {€(Z)). As
discussed in Sec. E.3, functions |®) orthogonal to {®,> have, in a sense, the
structure of quasi-particle excitations with a diverging matrix Z. They are therefore
“far away” from |®,) on the energy surface and cannot be reached using a finite Z.
Within this method it is therefore impossible to jump in one step to a state which is
orthogonal to |®,), as is sometimes done in the diagonalization method. Neverthe-
less it ig possible to reach all HFB wave functions in several steps, because at each
point of the iteration the Thouless theorem is again applied. This corresponds to a
new parametrization of the energy surface at each step.

Starting from |®,) (given, for instance, by the HFB coefficients Uy, V), we go as
a first step to & function |®,> which corresponds to the parameters Z, chosen in the
direction of the stecpest descent, that is, paralie! to the gradient of the energy [see

Eq. (7.36))

9

"ﬂms(Z) -"T]Hg. (753)

Z=0

Zy=

The parameter n determines the size of the step. It is somewhal arbitrary at the
beginning and reduced or increased in the following iterations, depending on the
actual values of the energies E(Z)). To get the new coeflicients U,, ¥, that

* See also [Mc 56, 60, BTR 771
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gorrespond 10 the function [@) = |®(Z,)), we use Eq. (E.30) and calculate
U= U+ V321,
VI = Vo+ UEZI‘ .

or general values of Z,,,. the coefficients U/, and V, correspond (o quasi-particle
operators v, which annihilate {®(Z,)) but do not fulfil Fermi commutation

relations

(7.54)

e} =0 (v w =8 (2204 (7.55)
“Therelore, we have to orthogonalize the vectors (_‘,ﬁ:) by a C-transformation (7.14) in
.each step of the iteration.

This procedure is continued until convergence is achieved, that is, until the
gradient H * vanishes identically, which corresponds to the condition (7.36).
*  The method is extremely useful in cases where we must f{ulfill a subsidiary
‘condition—for instance, the particle number condition {N)=N. Starting from
19, with arbitrary particle number ¥y, we do not proceed in the direction of the
-gradient H ™ alone, but we admix the gradient of the particle number ¥ 2

Z = -q(H®-AN), (7.56)
“The parameter A is determined in such a way that &(Z,) has the right particle
pumber ¥ up to linear order in Z,. This gives

N-Nom 3 Z3,N2+ccmZ NPa—n(HE-NOAND.NT) (757)
k<K

H?O, NZO . N- NO

NO ND n_Nm,Nm’
where Z- N is the scalar product of the veclors (Z, Z*) and (¥, ¥*). In cases where
|®o, already has the right particle number ¥, we get
w_ H¥- N N2

NB.NB S

that is, we choose the direction of the gradient projected onto the hypersurface
orthogonal to the gradient of ¥, which means that it has constant particle number.
If convergence is achieved, we find, as in a variation with a Lagrange parameter A,
(H=AN)" =0. - (7.60)

It is easy to extend the method to several subsidiary conditions.
The path on the energy surface to choose in the gradient method can be quite
different from that of the diagonalization method. An example is given in Fig. 5.3.

A

(7.58)

Z,=—'q(H (7.59)

7.4 The Palring-plus-Quadrupole Model

In deriving the HFB equation (7.42) we started from the Hamiltonian
(7.30) and obtained the two potentials I' and A [Eq. (7.41)]. Both potentials
are calculated from the same nuclear interaction v(l,2). We saw in
Chapter S that the bare nucleon—nucleon force cannot be used for the
calculation of the HF potential I'. The Briickner formalismm (Chap. 4)
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shows that we have 1o apply an effective interaction, that is, the G-matrix,
which sums up part of the higher order processes. It is evident that similay
arguments hold for the pairing field. Green’s function techniques (see
Appendix F) allow the derivation of the HFB equations, too [Go 58, AGD
63, Mi 67], and from there we see that the effective interactions for the
calculation of the self-consistent field T and the pairing field A may be
different. Therefore, it seems to be meaningful to also use different
effective forces for both polentials in phenomenological models.

The pairing-plus-quadrupole model! was first suggested by Bohr and Mot-
telson and afterwards widely used by Kisslinger and Sorenson [KS 60},
Baranger and Kumar [BK 65, 68], and many other authors (for a review,
see [BS 69]). It distinguishes three important effects in any mean field
theory of the nuclear many-body system.

(1) The interaction between the particles can be summed up, as a first
approach, by an average spherical single-particle potential which is
localized in space and breaks the translational invariance.

(i1) In open shell nuclei, there are two types of additional correlations:
long-range ph-correlations can be taken into account by a deforma-
tion of the mean field. At this point the rotational symmetry is lost.

(it) Short-range pp-correlations are treated by a self-consistent paining
potential A which violates particle number symmetry.

These three effects are included most simply in the pairing-plus-
quadrupole model. The average spherical potential is approximated by a
spherical harmonic oscillator with I's and 1? term, that is, by a Nilsson
potential (Chap. 2) at zero deformation with corresponding single-particle
energies ¢, . Only nucleons within one major shell of each parity feel the
residual interaction. The residual interaction has two parts, one contribut-
ing to I' (which here is only that part of the field going beyond the
spherical part already contained in the single-particle energies ¢,), and the
second which contributes to A.

Both parts of the interaction are chosen to be separable in the appropri-
ate indices. Since the most import deformations are of a quadrupole
nature, and since the most important pairing correlations are the ones for
I=0 pairs, the most simple Hamiltonian of this kind has the form (see also
Sec. 4.4.7):

2
H-Ek:qc:ck—ix 2 :Q0,:—-GP*P, (7.61)

pm—2

with the quadrupole operator
Q= 2 CkIPY [k Det ey, (7.62)
ul

and the creation operator for a Cooper pair

Pr= % ot (7.63)
k>0
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ere k is the time reversed state of k. BCS phases are used [see (Eq.
4.138)). The actual values of the force constants x and G depend on the
_configuration space under consideration (see, for instance, [BK 68]) and
are adjusted from experimental data.

- In the following, we neglect (by definition of the model) the single-
yamc!c part of Q% -0, the contributions of the pairing force to the
_potential T, and those parts of the QQ-force which contribute to the
“potential A and the Fock term in T'. The latter terms are usually rather

mmll From (7.41) and (7 48) we then obtain the HFB single-particle

Hypp= E(kck Cx— 2 q,(Q, +Q,)~pPT+P)  (7.64)

p. -
with
-x<¢|Q |®> and o™ G{P|P|®) (7.65)

here we have assumed that the paramelers ¢, and p, are real. The HFB
Hamiltonian operator is a particle-number and rotation symmetry violat-
ing single-particle operator. With fixed “deformation™ parameters g, and
_ Po it is similar to a Nilsson Hamiltonian. In Eq. (7.65), ¢, and p,, however,
- depend on the solution |®), that is, on p and x. They have to be
~ determined by iteration, or by what is equivalent in the case of separable
forces—minimizing the energy £(g,. py) with respect to those parameters.
It becomes convenient t0 choose the principal axis of the density
distribution as the axis of our coordinate frame (this implies g, =¢g_, =0
and g,= ¢ _,) and to work in a basis which is symmetrized with respect to
& rotation of I180° around the x-axis ((RBM 70, Go 74]; see also Eq.

(1.57)):

k)= é(lnljm)— ie™s\nim>): |k =TIk, (7.66)

Assuming R_=e "™’ as a self-consistent symmelry in the sense of Section
5.5 and arranging the levels in the order (k,.k,...., k. k,,...) we find in
general for the densities p and x and for the potentials I" and A, the form:

p_p,O, K=0 xz’ r_rlo’ A-O Az'
0 p k, 0 0 T A, O
(7.67)
with p*=p, I'" =T ; x,= —«/, and A,= —AT. The diagonalization of p
gives the first transformation of the Bloch Messiah theorem (7.7):

D, 0
D’(o D;)' (7.68)

The Hamiltonian (7.6]) is time reversal invariant, which implies
py=pl: k= =TT

7.69
D,=D?; Af=a,. (7.69)



For a pure pairing force, since A, = p,- I is a multiple of unity, we find i
the canonical basis A—D*AD® or A;=DJA,Df=p,- 1, that is, A i
invariant under the first Bloch—Messiah transformation.

To determine the transformation D it is therefore sufficient to diagonal-
ize the self-consistent field:
hme=A+Tme—A~q,06~g:(0z+ Q). (1.170)

This is exactly a Nilsson Hamiltonian (2.89) for fixed deformation parame.
ters g4, g,- The canonical basis in this case is therefore the Nilsson basis
with the eigenvalues ¢,. In this basis the HFB equations (7.42) split into

(2 X2) matrices:
& A\fu e\
(_A ‘Ek)(”k) (Uk) B 7

with the gap parameter (7.75) A= p, which have the BCS solutions (6.59).

To summarize, then, the complete solution of the HFB equations in the
pairing-plus-quadrupole model corresponds to a Nilsson diagonalization
with variable deformation parameters g, and ¢,, a subsequent BCS calcu-
lation with constant gap parameter A=p,. and a minimization of the total
cnergy

- ] A?
E(qo 93, 8)=(PIH|®>= 3§+ Z(q(’,+2q§)— L)
k

with respect to paramelers ¢, q,. and A. The term (1/2x)(¢5 +243) has to
be added, since in summing up single-particle energies we have counted
the (negative) interaction energy twice [Eq. (5.40)].

This force explains the Nilsson model with BCS occupation probabilities
very nicely and by a suitable choice of the constants G and x one can
therefore reproduce all its results. We have to emphasize, however, that it
is only a model constructed for certain phenomena, namely quadrupole
deformations and /=0 pairing correlations and the interplay between
these degrees of freedom. For these phenomena it contains all the gross
features of a more realistic approach.

7.5 Applications of the HFB Theory for Ground State
Properties

There are many HFB studies on light nuclei (see, for instance, [WFS 71, BKD 73]).
A variety of interactions have been used. In many cases it is necessary to use
projection of angular momenium and particle number (for instance (GGF 73] or
[GGA 74]; see also Chap. 11). We will not go into the details, bul mention here the
so-called proton—neutron pairing (for a review, see [Go 79).

In light nuclei protons and neutrons occupy the same levels. We can therefore
construct not only pp- and nn-pairs with a large spacial overlap of their density
distnbutions, but also pn-pairs [Go 64]. We thus have two types of pairing
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_gorrelations: T=0 pairing for pmn-pairs only and 7T=1 pairing for pp-, nn- and
_pn-pairs. In heavy nuclei, only T= | pairing is important. The full HFB equations
(742) with a general force include all these types of pairing at the same time. This,
. however, requires complex potentials I' and A and complex HFB coeflicients U
_snd ¥ [GSB 70]. In N = Z nuclei, not only is there time reversal, but also charge
 conjugation invariance. In this case it can be shown analytically [Go 72] that there
are three possibilities for each particle. The proton can be paired with (i) a particle
of the same kind in the time reversed state (pp). (ii) & particle of Jdifferent kind in
the time reversed state (pA), and (iii) a different particle in the same state (pn). The
iast possibility is not excluded by the Pauli principle; it does, however, violate the
axial symmetry because it mixes states with different K-values (+ K and — X). The
different modes have three different gap parameters, whose absolute squares add
up to the square of the total gap.

Several authors have investigated different types of such pairing correlations in
Yight nuclei, with many different kinds of forces (GK 65, CCJ 65 + 66, CG 67, GSG
68, BGG 69. WFS 70, WFS 71]. These calculations have demonstrated that 7=0
pairing is significant in determining the equilibrium shapes. We find that f