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Editor's Foreword

The problem of communicating in a coherent fashion recent developments
in the most exciting and active fields of physics seems particularly pressing
today. The enormous growth in the number of physicists has tended to make
the familiar channels of communication considerably less effective. It has be-
come increasingly difficult for experts in a given field to keep up with the
current literature; the novice can only be confused. What is needed is both a
consistent account of a field and the presentation of a definite “point of view”
concerning it. Formal monographs cannot meet such a need in a rapidly de-
veloping field, and, perhaps more important, the review article seems to have
fallen into disfavor. Indeed, it would seem that the people most actively en-
gaged in developing a given field are the people least likely to write at length
about it.

FRONTIERS IN PHYSICS has been conceived in an effort to improve
the situation in several ways. Leading physicists today frequently give a series
of lectures, a graduate seminar, or a graduate course in their special fields
of interest. Such lectures serve to summarize the present status of a rapidly
developing field and may well constitute the only coherent account available at
the time. Often, notes on lectures exist (prepared by lecturers themselves, by
graduate students, or by postdoctoral fellows) and are distributed on a limited
basis. One of the principle purposes of the FRONTIERS IN PHYSICS Series
1s to make such notes available to a wider audience of physicists. A second
principal purpose which has emerged is the concept of an informal monograph,
in which authors would feel free to describe the present status of a rapidly
developing field of research, in full knowledge, shared with the reader, that
further developments might change aspects of that field in unexpected ways.

The physics of strongly correlated electron systems is arguably the most
rapidly developing field of research in condensed matter physics, and quite
possibly, in all of physics. It includes not only the recently discovered high
temperature superconductors, but also heavy electron systems and quantum
antiferromagnetism. The underlying mathematical description of many of the
phenomenon of interest is closely related to that required for the integral and
fractional quantum Hall effect, and is closely related to much current research
in field theory, most notably Chern-Simons theories. Eduardo Fradkin is a
leading researcher in this interface between statistical physics and elementary
particle physics.

ix



X Editor’s Foreword

The present informal monograph on the field-theoretic description of strongly
correlated electron systems provides graduate students and senior researchers
alike with the first detailed account of this important sub-field of physics. It
is a pleasure to welcome him to “Frontiers in Physics”.

David Pines
Urbana, Illinois
February 1991



: Preface

This volume is an outgrowth of the course “Physics of Strongly Correlated
Systems” which I taught at the University of Illinois at Urbana-Champaign
during the Fall of 1989. The goal of my course was to present the field-theoretic
picture of the most interesting problems in Condensed Matter Physics, in
particular those relevant to High Temperature Superconductors. The contents
of the first six chapters is roughly what I covered in that class. The remaining
four chapters were developped after January 1, 1990. Thus, that material is
largely the culprit for this book being one year late! During 1990 I had to
constantly struggle between finalizing the book and doing research that I just
could not pass on. The result is that the book is one year late and I was late
on every single paper that I thought was important! Thus, I have to agree
with the opinion voiced so many times by other people who made the same
mistake I did and say, don’t ever write a book! Nevertheless, although the
experience had its moments of satisfaction, none was like today’s when I am
finally done with it.

This book exists because of the physics I learned from so many people,
but it is only a pale reflection of what I learned from them. I must thank
my colleage Michael Stone, from whom I have learned so much. I am also
indebted with Steven Kivelson, Fidel Schaposnik and Xiao-Gang Wen who
not only informed me on many of the subjects which are discussed here but,
more importantly, did not get too angry with me for not writing the papers I
still owe thern.

This book would not have existed either without the extraordinary help of
Christopher Mudry, Carlos Cassanelo and Ana Lopez who took time off their
research to help me with this crazy project. They have done an incredible job
in reading the manuscript, finding my many mistakes (not just typos!), making
very useful comments and helping me with the editing of the final version. I
am particularly indebted to Christopher who made very important remarks
and comments concerning the presentation of very many subjects discussed
here. He also generated the figures. Mrs. Phyllis Shelton-Ball typeset the first
six chapters. My wife, Claudia, made this project possible by learning TEX
at great speed and typesetting the last four chapters, correcting some of my
very boring and awkward writing style.

This book was also made possible by the love and help of my children
Ana, Andres and Alejandro, who had to live with a father who became a
ghost for a while. Ana and Andres helped in the proofreading, took care of

xi
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their little brother, who helped by keeping everybody happy.

Finally, I must acknowledge the support of the Department of Physics and
the Center for the Advanced Study of the University of Illinois. The help and
understanding of the staff at Addison Wesley is also gratefully acknowleged.

Eduardo Fradkin
Urbana, llinois
January 1991
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.
CHAPTER 1

Introdﬁction

1.1 Field Theory and Condensed Matter
Physics

Condensed Matter Physics is a very rich and diverse field. If we are to define
it as being “whatever gets published in the Condensed Matter section of a
physics journal”, we would conclude that it ranges from problems typical of
material science to subjects which are as fundamental as particle physics or
cosmology. Because of its diversity, it is sometimes hard to figure out where
the field is going, particularly if you do not work in this field. Unfortunately,
this is the case for people who have to make decisions about funding, grants,
tenure and other unpleasant aspects in the life of a physicist. They have a hard
time figuring-out where to put this subject which is neither applied science
nor dealing with the smallest length scales or the highest energies. However,
the richness of the field comes precisely from its diversity.

The past two decades have witnessed the development of two areas of
Condensed Matter Physics which best illustrate the strengths of this field:
Critical Phenomena and the Quantum Hall Effect. In both cases, it was the
ability to produce extremely pure samples which allowed the discovery and
the experimental study of the phenomenon. Its physical explanation required
the use of concepts and the development of new theoretical tools, such as the
renormalization group, conformal invariance and fractional statistics.

While the concept of conformal invariance was well known in field the-
ory before Critical Phenomena was recognized as a field, its importance to
the complete structure of the field theory was not understood. The situa-
tion changed with the development of the Renormalization Group (RQG). For
Condensed Matter Physics, the RG is the main tool for the interpretation
of the experimental data, the conceptual framework and the computational
algorithm which has allowed the theory to make powerful predictions. In Par-
ticle Physics, the RG is also a tool for the interpretation of the data. But,
more importantly, the concept of infrared unstable fixed point has become
the definition of the field theory itself.

Simularly, the Chern-Simons theories, which are field theories which de-
scribe systems exhibiting fractional statistics were known before the Quantum
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Hall Effect (QHE) was discovered (actually they were discovered at about the
same time) but. were regarded as a curiosity of field theories below four dimen-
sions: in other words, a beautiful piece of Mathemetical Physics but without
relevance to “the world”. We have come to recognize that Chern-Simons the-
ories are the natural theoretical framework to describe the Quantum Hall
Effect.

Another case to this point is superconductivity. Viable mechanisms for
superconductivity have been known for the thirty-some years that have passed
since the theory of Bardeen, Cooper and Schrieffer (BCS). This theory has
successfully explained superconductivity, and a variety of related phenomena,
in very diverse areas of Physics. This theory has been applied to such diverse
areas of physics ranging from superconductivity in metals and superfluidity of
liquid Hez in condensed matter physics, to neutron stars and nuclear matter
in nuclear physics, to dynamical symmetry breaking and grand unification
mechanisms (such as technicolor) in elementary particle physics.

The origin of this constant interplay between Field Theory and Condensed
Matter (or Statistical) Physics is that, despite their superficial differences,
both fields deal with problems which involve a large number (macroscopic)
of degrees of freedom which interact with each other. Thus, it should be of
no surprise that the same techniques be used in both fields. The traditional
trend was that field theory provided the tools ( and the “sexy” terms) which
were later adapted to a condensed matter problem. In turn, condensed matter
models were used as “toy models” in which to try new techniques. For the most
part, this is still the case. However, as the examples of the RG and the QHE
show, the “toy models” can provide a framework for the understanding of
much more general phenomenon. The ezperimental accessibility of condensed
matter systems is just as important. The MOSFETS and heterojunctions, in
which the Quantum Hall Effect is studied, have given us the surprisingly exact
quantization of the Hall conductance whose understanding has required the
use of Topology and Fiber Bundles.

The importance of Condensed Matter Physics to Field Theory, and vicev-
ersa, has been recognized at least since the 1950’s. Landau and Feynman are
perhaps the two theorists who best understood this deep connection. They
worked in both fields and used their ideas and experience from one field in
the other and then back.

1.2 What Has Been Included In This Book

This volume is an outgrowth of the course “Physics of Strongly Correlated
Systems” which I taught at the University of Illinois at Urbana-Champaign
during the Fall of 1989. Much of the material covered here has been the subject
of intense research by a lot of people during the past four years. Most of what
I discuss here has never been presented in a book, with the possible exception
of some reprint volumes. While the choice of the material is motivated by
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current work on High Temperature Superconductors, the methods and ideas
have a wide range of applicability.

This book is not a textbook. Many of the problems, ideas and methods
which are discussed here have become essential to our current understanding
of Condensed Matter Physics. I have made a considerable effort to make the
material largely self-contained. Many powerful methods, which are necessary
for the study of condensed matter systems in the strong fluctuation limit, are
discussed and explained in some detail within the context of the applications.
Thus, although the theoretical apparatus is not developed systematically and
in its full glory, this material may be useful to many graduate students, to
learn both the subject and the methods. For the most part I have refrained
myself from just quoting results without explaining where they come from. So,
if a particular method happens to be appropriate to the study of a particular
subject, I present a more or less detailed description of the method itself.
Thus, a number of essential theoretical tools are discussed and explained.
Unfortunately, I only was able to cover part of the material that I wanted
to include. Perhaps the biggest omission is a description of Conformal Field
Theory. This will have to wait for a second edition, if and when I ever get
crazy enough to come back to this nightmare.

The material covered in this book deals with the theories of the three most
fundamental problems in contemporary Condensed Matter Physics: Quantum
Antiferromagnetism, the Quantum Hall Effect and High Temperature Super-
conducivity. The reader will find a detailed presntation of the modern theories
of quantum magnetism and of the Quantum Hall effect but not an explicit
treatment of the theories of High Temperature Superconductors.

In chapter 2 the symmetries of the Hubbard model are studied. The rela-
tion between the Hubbard model and quantum magnetism is also discussed.
In chapter 3 I develop the theory of the magnetic instability of Fermi systems
. As in the rest of the book, I move back and forth between the path integral
and the Hamiltonian appoaches. The non-linear sigma model for the antifer-
romagnetic state is derived directly from the Hubbard model. In chapter 4 I
give a detailed discussion of the physics of one-dimensional antiferromagnets.
In chapter 5 I give a derivation of the path integral method for spin systems.
The main applications here are quantum ferromagnets and antiferromagnets.
The non-linear sigma model is derived within the semiclassical limit. I also
present a detailed diuscussion of the role of topological excitations and of
topological terms in the effective action for both one and two dimensional
systems. In chapter 6 the reader will find the (so far) most current theories
of disordered spin states. It includes the Resonating Valence Bond theories,
flux phases, dimer or column states and the chiral spin liquid. The language
of gauge theories is used throughout this chapter.

Theories of Anyons with applications in chiral spin liquids and Anyon
Superconductivity, are presnted in chapters 7 and 8. The reader will find here
a pedagogical presentation of the Chern-Simons theory of Fractional Statistics.
Special attention is given to the connections between this problem and the
topological theory of knots. A two dimensional version of the Jordan-Wigner
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transformation is also derived.

Chapters 9 and 10 are devoted to the study of the Quantum Hall effect.
In chapter 9 I discuss the topological theory of the quantization of the Hall
conductance and its relation to fiber bundles. In chapter 10 the Fractiona
Quantum Hall Effect is studied. The theory of the Laughlin wave function is
presented in some detail as is the construction of the elementary excitations,
their charge and statistics. The physics of the edge states is studied for a simple
system. The methods of field theory are used to derive many of the results
of Laughlin’s theory but from a different persepctive. A careful discussion
of the Landau-Ginzburg approach to the FQHE is given, including the issue
of the existence of off-diagonal long range order. The chapter ends with an
application of the Chern-Simons theory to the problem of the FQHE. The
incompressibility is demonstrated by a direct computation of the spectrum of
collective excitations. The fractional statistics of the elemntary excitations is
also made explicit.

1.3 What Has Been Left Out

The course that I taught had for a subtitle “High Temperature Superconduc-
tors and Quantum Antiferromagnets”. As the reader will soon find out, in the
material that I have covered there is plenty of Quantum Antiferromagnetism
but little superconductivity. This is not an oversight on my part. Rather, it is
a reflection of what we understand today on this subject which is still a wide
open field. Thus I chose not to include the very latest fashion on the subject
but only what appears to be rather well established. This is a field that has
produced a large number of very exciting ideas. However the gedanken theories
still dominate. To an extent, this book reflects my own efforts in transforming
several fascinating gedanken theories into something more or less concrete.

Still, the tantalizing properties of the High Temperature Superconductors
seem to demand from us novel mechanisms such as Phil Anderson’s RVB.
But, of course, this is far from being universally accepted. After all, with
theories like BCS being around, with so many successes in its bag, it seems
strange that anybody would look for any other mechanism to explain the
superconductivity of a set of rather complex materials. After all, who would
believe that in order to understand the superconductivity produced by stuff
made with copper and oxygen, mixed and cooked just right, would require
the development of fundamentally new ideas. Right? Well, maybe yes, maybe
not.



CHAPTER 2

The Hubbard Model

2.1 Introduction

All theories of strongly correlated electron systems begin with the Hubbard
Model because of its simplicity. This is a model in which band electrons inter-
act via a two-body repulsive Coulomb interaction. No phonons are present and
in general no explicitly attractive interactions are included. For this reason,
the Hubbard model has traditionally been associated with magnetism. Su-
perconductivity, on the other hand, has traditionally (i.e. after BCS) been
interpreted as an instability of the ground state resulting from effectively
attractive interactions (say, electron-phonon as in BCS or other ). A novel
situation has arisen with Anderson’s suggestion [Anderson 87] that the su-
perconductivity of the new high 7. materials may arise from purely repulsive
interactions. This suggestion was motivated by the fact that the superconduc-
tivity seems to originate from doping (i.e. extracting or adding charges) an
otherwise insulating state.

The Hubbard model is a very simple model in which one imagines that,
out of the many different bands which may exist in a solid, only very few states
per unit cell do contribute significantly to the ground state properties. Thus,
if a Bloch state of energy ¢,, momentum g, and index « has a wavefunction
¥ o, one can construct Wannier states

1 s
Vo) = —— P TI (F 2.1.1
«(7%) r_NﬁeEB.Z. 7o) (2.1.1)

where 7; is the location of the i-th atom. The assumption here will be that
only one (or a few) band indices matter, so I will drop the index a. The
Coulomb interaction matrix elements are

Usjirgr = / Prid®ry U (M)} (F) V(7L — 72) Wi (71) T (72) (2.1.2)

(in three dimensions) where V is the (screened) Coulomb interaction. Since V
is expected to decay as the separation increases, the largest term will be the
“on site” term: Uj;i; = U. Next will come nearest neighbors, etc. Moreover,

5
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since the Wannier functions have exponentially decreasing overlaps, Uij ;- is
expected to decrease rather rapidly with the separation |{ — j|.
The second quantized Hamiltonian (in the Wannier functions basis) is

=— 3 (dEtics(75) + el (7tises (7)) +

(2.1.3)

where cI (7)) creates an electron at site ¥ with spin o (or more precisely, at
the unit cell 7 in the band responsible for the Fermi surface) and satisfies

{eo(F),eh (1)} = 6018221, (2.1.4)
{ca("—" )7 ca’(F I)} =0.

The Hubbard model is an approximation to the more general Hamiltonian,
Eq. (2.1.3), in which the hopping is restricted to nearest neighboring sites:

t if 7, j are nearest neighbors,
ti; = { (2.1.5)

0 otherwise,

and the Coulomb interaction is assumed to be screened. If only the “on-site”
term is kept
Uij,i’j’ = U&g&;g:&;y, (2.1.6)

the resulting model Hamiltonian

H=—tY ((7F)es(F) +he) +U Y ny(7)ny(F) (2.1.7)
= ,.
is known as the one band Hubbard model. In Eq. (2.1.7), we have dropped the
lattice sites labelling and (,) means nearest neighbor sites. This is the tight-
binding approximation and represents the one-band Hubbard model. We have
introduced

ne(7) = b (7 )eo (7) (2.18)
From the Pauli principle we get n, = 0,1 or n2 = n, at every sites.

The Hilbert space of this system is the tensor product of only four states
per site, representing |0) as nothing, | T) as an electron with spin up, | |) as
an electron with spin down and | 1|} as an up-down pair. The states |0) and
| T1) are spin singlets (i.e. s = 0).

It is convenient to define the following operators. The spin operator S (7)
is defined by (summation convention is assumed)

S-:(F) = ch(F)Faa’ca’(F)y (219)
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where 7 are the (three) Pauli matrices

01 0 —: 1 0
7'1:(1 0), Tz:(’i 01), 7'3:(0 _1> (2110)

The particle number operator at site 7 (or charge) is
n(F) =Y n,(F) =3 ch(7)eo(F) = e (F ) loorcor (7) (2.1.11)
and the associated total charge @
Q=¢)> n(7)=eN.. (2.1.12)

2.2 Symmetries of the Hubbard model

2.2.1 SU(2) Spin

Suppose we rotate the local spin basis (i.e. the quantization axis)

¢y (F) = Usgrcor(7) (2.2.1)

where U is an SU(2) matrix. Under such a unitary transformation, the spin
S transforms as follows

§(F) = RUS7)
= gC’T(F)T“C’(F) (2:22)
= gcT(f") (U=1r°U) o(7),

where R? is a rotation matrix induced by the SU(2) transformation of the
fermions:
U~1r*U = R*7%. (2.2.3)

In other words, we have a rotation of the quantization axis.

The axis of quantization can be chosen arbitrarily. Thus, the Hubbard
Model Hamiltonian should not change its form under a rotation of the spin
quantization axis. This is not apparent in the standard form of the interaction

Hy = UZnT(F)nl(F). (2.2.4)

But we can write this in a somewhat different form in which the SU(2) sym-
metry becomes explicit. Consider the operator

S (30) = T 5@, (225)

E
¢=1,2,3
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By expanding the components and making use of the SU(2) identity
> TeTls = 264685y — bapbys (2.2.6)
a=1,2,3
one gets
= . \\2 1 . 3 . o

> (5M) =% 77(F) = s (P (7)) (2.2.7)

Thus, we can write
N.U
6

H = Uzr;nT(F)nl(F) = —%§Z(F)+ (2.2.8)
The last term is a constant which can be dropped. The Hamiltonian now has
the form

H=-t3Y" (dF)eF)+he) - % > (8¢ ))2 + MU (909
(

#, ) 7 6

o=1,]

which is manifestly SU(2) invariant.

For U > 0, the intearction energy is lowered if the total spin at each site
s mazimized. Thus, one should expect some sort of magnetic ground state, at
least if each site has one particle (on the average). This state requires that the
system somehow should pick a global (i.e. the same for all sites) quantization
axis. In other words, the global SU(2) spin symmetry may be spontaneously
broken. This has important consequences which we will discuss later.

2.2.2 U(1) (Charge)

We are free to change the phase of the one-particle wavefunction

el (7F) = ee, (7). (2.2.10)
Here, e is an element of the group U(1), and group elements satisfy
et — (i(0+0), (2.2.11)

The Hamiltonian is invariant under this U(1) transformation. This is noth-
ing but charge conservation. For example, if we had terms which would not
conserve charge, like

d@)el 7y = el (7)el (7, (2.2.12)
we would not have this invariance.
Suppose now that we couple this system to the electromagnetic field

(Ao, A). We expect three effects.
1) A Zeeman coupling given by

Hzeeman 2925(7_:) E(F) (2213)



2.2 Symmetries of the Hubbard model 9

which couples the spin S(7*) with the local magnetic field B(7) so as to align
it along the B(7") direction.

2) An orbital coupling for electrons in a crystal with one-particle Hamil-
tonian

H(p) = 1 (p - —A) + periodic potential. (2.2.14)

In the tight-binding approximation, we must therefore modify the kinetic
energy term according to

Ho= -t Y (ch(F)eo(F ) +hoc.)

(7,7}
o=1, l

; LY e 7 -
——t 3 ()t S B O e g e b ST O 7)),

(r.r')
hl
(2.2.15)
We should now check the gauge invariance under the transformation
A=A+ VA (2.2.16)
where A is an arbitrary function. We get the change
7 .
Iz 2! = =, 1y =
A7 )_/r_ dz - A7) .
= A7 7)+AF") = A(F).
Thus the kinetic energy term is gauge invariant
H{=—t Z (cf,T(F )e):—ecA’(F'Fl)cf,(F') + h.c.)
(7,7}
o= Tl
- ¢ Z ( Ye— 0 )e s (AFF)+AGF ) =A(F ))e+i0(F’)ca(F 1 +h.c.),
(r ')
e
(2.2.18)
provided that the local change of phase be given by
e
O(F)=-—A(F). 2.2.1
(F) = == A7) (2:2.19)
3) An electrostatic coupling given by
Hetectrostatic = 3 ¢ Ao(7 )e} (7 Yoo (F) (2.2.20)

which couples the particle density to Ag(7 ).

2.2.3 Particle-Hole Transformations

In the case of a bipartite lattice (i.e. a lattice which is the union of two inter-
penetrating sublattices A and B) we get additional symmetries.
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i) First, the sign of ¢ can be changed. Consider the transformation

co () = . (7) if reA,

2.2.21
co(7) = —¢c,(7) if 7eB, ( )

under which the kinetic energy changes sign:
1} (7 )eo(F') = —tel (F )eo(F'), FeA 7'eB, (2.2.22)

while the potential energy is left unchanged. This transformation leaves the
canonical commutation relations unchanged and therefore leaves the spectrum
unchanged.

ii) Now consider the particle-hole transformation

r(F) = di(F),

. +dI(‘r_" ), 7€ A (2'2'23)
c(f)=
~d|(7), FeB.

The Hamiltonian H(¢,U), Eq. (2.1.7), changes into H(¢,—U) + UNjy, where
N7 is the total number of up spin (which is conserved), since under this
transformation we get

n+ny =clep+eley = dldy +dydf = dldy —dfd, +1 (2.2.24)

and
ny—ny=cley—cle; =dldy —dyd] =dldy +afa, 1. (2.2.95)
Similarly, the charge Q and the component S, of the total spin transform as
Q—S5.+1, S, —= Q-1 (2.2.26)

Thus the attractive and the repulsive cases map into each other and, at the
same time, spin maps into charge and vice versa. Note that for negative U
the Hamiltonian favors local singlets (s = 0), i.e. empty and doubly occupied
sites.

2.3 The Strong Coupling Limit

We consider now the strong coupling limit of the Hubbard model, i.e. U — oo.
The half-filled case is special but important. We will consider it first.

2.3.1 Half-Filled System (U > 0)

Recall that the interaction term

f&mz—gUZ;(ﬂFg2 (2.3.1)
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forces the spin S to be largest if U becomes infinitely large, i.e. doubly oc-
cupied sites are forbidden. Only | T) and | |} states are kept in this large
U limit at half-filling. The interaction part of the Hamiltonian has infinitely
many eigenstates. Any spin configuration is an eigenstate. In order to lift this
massive degeneracy we will keep the effects of fluctuations induced by the ki-
netic energy term to leading order in an expansion in % We have to solve a
problem in degenerate perturbation theory.

Suppose we begin with any configuration which can be labeled by the
local z-component of the spin |{o (7)}) (see Fig. 2.1(a)). In an expansion in
powers of %, we have intermediate states in which one site will become doubly
occupied and, at the same time, another site becomes empty (see Fig.2.1(b)).
This state has an energy U above that of the degenerate ground states. The
matrix element (squared) is 2. There is also a multiplicity factor of 2 since
this process can occur in two different ways. Hence we expect that the relevant
parameter of the effective Hamiltonian should be 2:]—2 Also, the final state has
to be either the same one as the initial state or it can differ at most by a spin
exchange (see Fig.2.1(c)). The natural candidate for the effective Hamiltonian
is the Quantum Heisenberg Antiferromagnet.

We can obtain this result by carrying out this expansion explicitly [Emery
79]. Let Hy and H; denote the kinetic and interaction terms of the Hubbard
Hamiltonian H, Eq. (2.1.7),

Ho = —t (cI(F)co(F ) +h.c.) ,
(.7

e=1.1 (2.3.2)
H=U ZnT(F Yy (7).

Let |a) be any of the 2V states with every sites occupied by a spin either up
or down. Here, |a) is an eigenstate of Hy with eigenvalue E; = 0.

OO0
. OO0
OO0
OO0

<)

Figure 2.1 (a) and (c) are two configurations of spins corresponding to orthogonal
groundstates of Hy. They differ by the exchange of two neighboring spins. Configu-
ration (b) corresponds to a virtual state. The circles represent the unit cells of the
cristal and the arrows are the components of the spin along the quantization axis.
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We will use Brillouin-Wigner perturbation theory [Baym 74]. Consider
the Schrodinger’s Equation

H|¥) = E|T) (2.3.3)
where |¥) is any eigenstate. We can write
(E - Hy)|¥) = Ho|T). (2.3.4)
Formally, we get
¥) = E_lH Ho|¥)
= g Tl + chlHo!E\rlz | (2:35)
where
Hyla) = Ey|a) (2.3.6)
and
P = 1—Z|a)(a| (2.3.7)

projects out of the unperturbed states. Clearly P commutes with H;. Define
|¥,) as the solution of the equation :

10D = + H L Hy|T.). (2.3.8)
Let ao be given by
(a|Ho|¥)
o= —1 2.39
a E_ B, (2.3.9)
Then we can write
= Zaal‘l’a)- (2.3.10)
If we iterate Eq. (2.3.8) to first order in powers of E_L;{IHO, we find
W)~ Ja) + oo Holo) ) = HHola) (2311
o) N E—Hl 0 ~ | U 0 0.

since {B|Hg|a) = 0 at half-filling. Thus, if we insert Eq. (2.3.11) into Eq.
(2.3.10) and in turn insert this into Eq. (2.3.9), we get

1
(E - Er)aa = Gl D (alHEo")aw. (2.3.12)

2
This is the same as the Schrodinger equation for the Hamiltonian Hj = %ﬂ[

where Hj, at half filling, is given by

H{ = IUI Z SF)-SEFE". (2.3.13)

--,
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In other words we find the spin one-half Quantum Heisenberg Antiferromagnet
with the exchange coupling J = i‘%} This result is valid for the half-filled
system in any dimension and lattice.

2.3.2 Away from half-filling

Clearly other processes are now allowed. If U > ¢, doubly occupied sites
are energetically very expensive. Thus the restricted Hilbert space now con-
sists of configurations made of empty sites (holes), and up and down spins.

The kinetic energy term will allow for charge motion since empty sites
(holes) will be able to move. These holes carry electric charge but they have
no spin. The effective Hamiltonian now has the form of the “-J” model.

H=—tY (CI(F)% 7') + h.c.) +7 3 5(7)- 85" (2.3.14)
() (7,7}
o=1,1

where J = f—lt;r with the constraint

3 (7)) =n(F) = 0,1 (2.3.15)

o=T1,l
which eliminates doubly occupied sites. Now we have two separately con-
served quantities: the charge @ which equals the number of holes and the
spin component S; = 3 .S,(7 ). It is clear that as the holes move they can
induce spin-flip processes. The spin configurations get disrupted by the mo-
tion of holes and the long-range order (antiferromagnetic) may be destroyed.
Presumably it should take a finite density of holes to destroy the long-range
order. We will discuss this strong coupling limit at great length. Let us first
consider the opposite case.

2.4 Weak Coupling Limit

In the weak-coupling limit U <« t we may think of the interaction as a weak
perturbation. One therefore expects that the states of a weakly coupled electron
gas may be qualitatively similar to the states of a free-electron gas. This
picture is usually called a Fermi liguid [Pines 66]. The main assumption is
that there is a one-to-one correspondence between the states of a free fermion
system and those in a weakly interacting one.

For free fermions, the Hamiltonian reduces to the kinetic energy term.
For the Hubbard model we have

Ho =~ Z (cI(F W(F = 7 Veo (7 ') + b (7 (7 - F’)co(f‘)) . (240)

It is convenient to go to Fourier space (momentum). Assume that we are
in d space dimensions and that the lattice has N¢ sites with N even (for
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simplicity). With V = N9, we define

co(F) = %Zei’:;co(g) (2.4.2)
k
where 0
k:—ﬂ-(nl,...,nd)—(w,...,w) (2.4.3)

and 1 < n; < N. Thus the momenta k; vary over the range %" —r <k <m.
In the thermodynamic limit N — oo, %" — 0 and the k’s become uniformly
distributed in the interval —m < k; < 7 (the Brillouin zone).

Remember the following properties of Fourier transforms. Let k == 2—1\’,’71

m,n=1,...,N and f(k) some function of k. We have the Riemann sums

S F(k) = o S ARF(E)
k k

N (2.4.4)
—ﬂ_/ dkf(k) as N — o0
where Ak = %" The extension to the d-dimensinal case is
fnd d 4 d k
> flk)— N (27r)df(k) as N — co. (2.4.5)
E
In particular, as N — oo
1§ i) / SR _
Nd ZE: € = 67 L (27l')d = 67‘,7"7
Z ei(l:—]:’)-F — Nd&]:’]:l N (27l')d6(d)(E _ E/)’ (246)
= Td%k e o
CU(T')—> . (2—”)76 Co(k).
The canonical commutation relations
(7)), cor(F )} = 80,0165, (2.1.4)
become in the same limit
(b (B), cor(F)} = 80,0167 21 — (27)%65, 016D (k — k). (2.4.7)

The kinetic energy then takes the form

Ho=— Y (cf(F)F—7")eo(F') + L (F (7= 7 )eo (7))

o,
e=1,1

7l d’k AR Rrif A N, (T
. )/(2,,)4 (2—707(6 B o} (B)e, (F') + hic.)

L
e=1,1

(2.4.8)
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If by t(l_é) we denote the Fourier transform of t(f):

1(k) = Y (e T,
T
we can write
Zt(F_ F/)e—iE'F+iE’-F’ — t(E)(27r)d6(d) (E _ E/) .

For the case
. t for nearest neighbors,
t(r—r") Et(l):{
0 otherwise,
we get
. d
t(k) =2t Z cos k;
i=1
and a free Hamiltonian of the form
Ho= Y [ &b cbrel Be B
0= (2m)4 €o\F)Ca
o=T1,l
with

d
e(k) = —2t(k) = —4t Zcos kj.
i=1

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

(2.4.13)

(2.4.14)

The ground state is found by filling up the Fermi sea. Thus, if we have
N particles, the total number of momentum states with energy smaller than
E is (assuming that ¢; has its minimum at k£ = (0...0)) determined by the

constant energy curves C(E) = ¢ (see Fig. 2.2 and Fig. 2.3). For instance, in

the one-dimensional case we find

e(k) = —4tcosk.

e(k) = —4t cos(k)
j\
4+

Figure 2.2 One particle spectrum of Hy.

Y

(2.4.15)
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-/ N

N
Y

Figure 2.3 Constant energy curves for Hy on a square lattice.

\j
&

If M is the number of particles and N the number of sites, we get

kF
N =N dk_?NkF

— = 24.
kg 2T T (2:4.16)
and
N
= =2 24.1
kr 2 2P (2.4.17)

Figure 2.4 Fermi sea for free electrons on a square lattice at half filling (the lattice
spacing is unity).
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where p is the linear density. At half filling kr = % and ¢(kr) vanishes. In
higher dimensions we determine the constant energy curves in the same way.
For a half-filled system we just fill up the negative energy states to obtain the
Fermi sea. This is so because this band has E «— —FE symmetry (“particle-
hole”) and there are as many states with positive energy as there are with
negative energy. The Fermi surface is defined by ¢ = 0 and for a square
lattice is rectangular (square) (see Fig. 2.4).

The occupation number
ng= Y. cl(B)e, (k) (2.4.18)
o=1,1

has a jump at the Fermi surface in both the free and interacting cases (see
Fig.2.5).

2.5 Correlation Functions

The fermion Green’s function (or propagator) plays an important role
in the theory. We can define it in terms of field operators in the Heisenberg
representation

co (7,1) = e e, (7 )e HHY, (2.5.1)
The fermion propagator is defined by
Goo (7 1;7 ") = —i(Gnd|Te, (7, t)el (7 *, )|Gnd) (2.5.2)
A n(k)

)

> c(k)

€

Figure 2.5 Occupancy of energy levels of the non-interacting case (straight line)
and interacting (curved line) cases.
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where |Gnd) stands for the ground state of the system and 7" means a time
ordered product of operators

TA@#)B(t') = A@)B(t)6(t —t') £ B )A@R)0(t' — 1) (2.5.3)

with a +(-) sign for bosons (fermions) and

1 ift > 0.
6(t) = { (2.5.4)
0 ift < 0.

For a translationally invariant and time independent system, we can write
Gooi (7, ;7 7, 1') in terms of its Fourier transform [Abrikosov 63], [Fetter 71],
[Doniach 74]

d t t -
Goo (7 1;77,8) = / (;iw’)“d o (ko7 )=w=-)G, ok w).  (2.5.5)

In principle GM:(E,w) 1s a 2x2 spin matrix. In the case of the non—interacting

system (and for any spin isotropic ground states, for this matter), G( ) (k w)
is very simple to compute [Fetter 71]. The result is

3 0 (cB)—er) 6 (er —e(k))
Gwz(k,w) = b,0 lim = + =
v=0t \w—e(k)+iv w—elk)—iv

(2.5.6)

The poles of G° ﬂ(k w) exhibit the physical one-particle excitation spectrum

w = (k). (2.5.7)

A weakly interacting system (a Ferm: liguid) resembles a non-interacting
one in the sense that the physical low-energy excitations look like weakly
interacting fermions. Thus the fermion propagator retalns its pole structure
albeit with a renormalized dispersion relation w = eren(k) and a non-trivial
residue for energies close to the Fermi energy. In other words, for w ~ ¢p the
propagator should look like

Jim G(k,w) ~ lim # + Greg (2.5.8)
u—.o+ :—.;i W= Cren(k) + i

where Z is the residue and Greg does not have any singularities close to ep.
The wave function renormalization Z measures the strength of the jump of the
fermion occupation number n; at the Fermi surface. These excitations are the
fermion quasiparticles or electrons of the Fermi liquid. These quasiparticles
are assumed to be stable in the sense that the poles lie on the real energy
axis. Any imaginary part would imply a decay amplitude (“damping”).

In addition to one-particle states, a Fermi liquid has a large class of many-
particle excitations. These include particle-hole excitations (i.e. density fluctu-
ations), spin excitations, paramagnons and others. These collective modes are
bound states which exist only in an interacting system. Many of these modes
are damped. Others are not. We can study the collective modes by means of
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the many-particle Green functions. Several correlation functions are going to
be important to us. They are:
1) Density correlation functions

Koo(7,8;7,¢") = (Gnd|Ta(7, t)a(7 ', ')|Gnd), (2.5.9)

where 7(7,t) is the local normal-ordered density operator

Aty = 3 (7 t)e.(F ) - p (2.5.10)
o=T,l
and p is the average density.
2) Current correlation functions

Ky (7,1, 7 I,tl) = <Gnd|TJ,'(F, HJu (7 I,tl)lGnd), (2.5.11)

where J;(7,1) is the current operator, which, in the case of the Hubbard model
in the absence of external electromagnetic fields, is

Lt =—it 3 (dFeo(F+8,1) +he.). (2.5.12)

o=T,l

There is no need for normal-ordering here since the ground state is not ex-
pected to spontaneously carry a non-zero current.
3) Spin correlation functions

K%' (7,t;7',t') = (Gnd|TS*(7,£)S* (7', #')|Gnd). (2.5.13)

We will see below that if the spin symmetry is broken spontaneously (i.e.
magnetism), K%' can be non-zero as (7,t) and (7/,#) are infinitely separated
from each other. In fact, the limit (at equal time!)

aa — 2
o lim 2 ZK (Ft7F ) =M (2.5.14)
represents the amplitude of the order parameter M. In the case of Neel states
the limit has to be taken on a given sublattice. A non-zero M is a signal of a
spontaneously broken symmetry.

All of these two-particle operators have the common feature that they con-
serve particle numbers locally and the excitations are electrically neutral. In
the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity local par-
ticle number conservation is lost locally (but not globally) since one could
break a Cooper pair at one location and form it again somewhere else. In
BCS theory [Schrleffer 64], a Cooper pair is a bound state of an electron with
momentum k and spin up and another electron with momentum —k and spin
down, with k on the Fermi surface. This state has charge 2e and is a spin sin-
glet. Other bound states are also possible, as in 3He and in heavy fermion
systems. We can now define a Cooper pair correlation function.

4) Cooper pair correlation function

C(k,t; B, 1) = (Gnd|Tel (B, t)e] (—F, t)er (K, #)ey (=F',#)|Gnd)  (2.5.15)
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for the s-wave case, and its generalizations for the p-wave and other cases.

From an experimental point of view, what one can measure are suscep-
tibilities. In other words, one couples the system to a weak external field.
From Linear Response Theory [Fetter 71]we know how to relate the response
functions (i.e. causal propagators) to the time-ordered functions. The suscep-
tibilities are the Fourier tra.nsformed causal propagators. For instance, the
magnetic susceptibility X%’ (k w) is defined as follows

X (k,w) = Z / dteiFF-wnyaa' (0.7 1), (2.5.16)

where x““’(F,t;F ;') is the causal (or retarded) propagator
X% (7,t;7 ', ') = (' — £){Gnd|S°(F,1)S® (', t')|Gnd). (2.5.17)

In particular the static susceptibility x““l(l_é,O) measures the response of the
system to a weak external magnetic field. In the uniform limit k — 0, we are
measuring the response to a weak uniform magnetic field. Thus this is the
static ferromagnetic susceptibility. If we want to probe a Neel state we must
couple to the staggered magnetization and hence use a staggered field. This is
difficult to achieve. However, usmg neutron scattering we can measure x(k 0)
for all k, in particular the case k= (m,m, m) which is the staggered or Neel
susceptibility.
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CHAPTER 3

The Magnetic
Instability of
the Fermi System

The Hubbard model was originally introduced as the simplest system which
may exhibit an insulating (Mott) state. This state is the result of strong
electron-electron interactions. In this chapter we consider the Hubbard model
at half-filling. The main goal here is the study of the magnetic properties of its
ground state. Apart from an exact solution in one-dimension, no exact results
are available for this problem. This leads to the use of several approximations.
The most popular one, and the oldest, is the Mean-Field-Theory (MFT). In
the MFT one has the bias that the ground state does have some sort of mag-
netic order (i.e. ferromagnet, Néel antiferromagnet, etc.). The problem is then
usually solved by means of a variational ansatz. However, one is usually inter-
ested in more than just the ground state energy which, after all, is not directly
measurable and depends very sensitively on the properties at short distances.
Most often we wish to know what are the long distance, low frequency, prop-
erties of the correlation and response functions of this theory. Moreover, in
some cases, such as in one-dimension, the fluctuations overwhelm the MFT
predictions.

In this chapter we will consider the standard MFT (i.e. Hartree-Fock)
which is expected to become accurate at weak coupling. We will consider
both ferromagnetic and antiferromagnetic states. We will also rederive these
results using path-integrals. As a byproduct, we will also have a theory of the
fluctuations: the non-linear sigma model.

3.1 Mean-Field Theory

Let us consider now the effects of interactions on the unperturbed ground
state. It is convenient to consider the Fourier transform of the interaction
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22 Chapter 3 magnetic instability

term of the Hubbard Hamiltonian, Eq. (2.1.6),
H =U Y m(F)m(F)

=U / _(2m)48%(—ky + kp — k3 + 134)4(131)cT(EQ)cI(Es)cl(a)
P
(3.1.1)
where 3 is a shorthand for f BZ (‘12—1’%5-. Notice that on a lattice momentum is

conserved, modulo a reciprocal lattice vector G.

Let us discuss first the simpler one-dimensional case. There are two Fermi
points (at +kp). Thus we can classify the excitations as left or right moving
particles and holes with either spin orientation. We have the following scatter-
ing processes (see Fig. 3.1 ): (a) Forward scattering, (b) Backward scattering
and (¢) Umklapp scattering.

In case (a) two particles scatter with a small momentum transfer and do
not change the direction of their individual motion. In case (b) a right mover
becomes a left mover and vice-versa. In case (c) two right movers become
left movers. This process violates momentum conservation but if the total
momentum violation equals a reciprocal lattice vector, the (Umklapp) process
is allowed. This occurs for kp = %, which is the half-filled case (see Fig. 3.1c).

Case (b), backward scattering, implies a scattering process involving two
degenerate states: exchanging a right mover with a left mover and vice-versa
(see Fig. 3.1b). Since the energy denominator is zero we may have an instabil-
ity of the perturbation theory. This is an antiferromagnetic instability since
the momentum transfer is w. Conversely, instability in the forward scattering
channel is a symptom of ferromagnetism.

In dimensions higher than one, the situation is more complex due to the
intricacies of the Fermi surface. For instance, in the case of a half-filled square
lattice the Fermi surface is a square (see Fig. 2.5). A scattering process of

(b)

Figure 3.1 Forward (a), Backward (b) and Umklapp (c) scattering of right (R)
and left (L) movers.
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the type shown in Fig. 3.2 may induce an antiferromagnetic instability. That
is, we ezxchange particles with opposite spin from opposite sides of the Fermi
surface. Once again this involves a momentum exchange of (r, ) or (m,—),
depending the case.

However, for a nearly empty band, only quasiforward scattering should
matter, and the relevant momentum exchange should be zero (ferromag-
netism). Other cases, involving other momentum exchanges, are possible.
These instabilities generally give rise to a spin-density-wave of wave vector
k. The ferromagnetic state occurs when k = 0 and the Néel antiferromagnetic
state occurs when k = (r, 7).

We want to develop a theory of these instabilities. As we see, we need to
find bound states of a certain wave vector k and the ground state will have to
be rebuilt in the form of a coherent superposition of these bound states. Since
we do not know how to solve this problem exactly, some sort of Mean-Field
theory is necesary. There are several ways of achieving this goal: (a) Hartree-
Fock and random phase approximation (RPA), (b) variational wavefunctions
and (c) & expansions.

These three approaches are, to some extent, physically equivalent. While
(a) and (b) (and mostly (a)) are commonly discussed in textbooks, the %
expansion is a rather novel technique and, for that reason, is not usually
available to students (although it has become pervasive throughout the current

Figure 3.2 Nesting vectors for the Brillouin zone of a square lattice at half filling.
This nesting property is responsible for an antiferromagnetic instability.
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literature).

The Hartree-Fock-RPA approach involves choosing a particular set of the
Feynman diagrams which one can argue gives the “most important” contri-
butions. While in one dimension it is possible to select diagrams according
to their degree of divergence in the infrared, the situation is far less clear in
two or more dimensions. Typically, one has to choose a particular process and
sum all the leading contributions which contribute to the process and, at the
same time, do not violate any conservation laws, a “conserving approxima-
tion”, in the terminology of Baym and Kadanoff [Kadanoff 62]. Such is the
spirit of Hartree-Fock-RPA theories. Similarly in the variational wavefunc-
tion approach, one chooses variational states which are essentially inspired by
RPA-like calculations.

Let us first discuss a simple form of Mean-Field theory. We start from the
Hubbard Hamiltonian

H=-tY c}(7)ea(F') + he. ——UZ(S )2 (3.1.2)

(F,7)
which is quartic in the fermionic operators, since

-

() = %cl(f')?”,ca,(f'). (3.1.3)

(From now on, I will be using the summation convention on repeated spin
indices.)

The interaction term of the Hubbard Hamiltonian, Eq. (3.1.2), is quartic
in fermion operators. In general a non-linear problem of this sort is not solvable
except in some very special cases, such as one-dimensional systems. A standard
approach is the Mean-Field-Approximation (or Hartree-Fock approzimation)
in which the quartic term is factorized in terms of a fermion bilinear times
a Bose field, which is usually treated classically. In other words one simply

ignores the dynamics of the Bose field. Consider, for instance, the Hamiltonian
HI

'=—1¢ Z T(r)cg(r Y+ h.c. + ZM( )+ZM(7’) S(7). (3.1.4)

(7,7 )

which can be regarded as a linearized version of H in terms of a Bose field
M (7) which, as we will see below, represents the local magnetization.

However, there is something in this expression that isn’t quite right, since
the field M (r ) does not have any dynamics. It looks like a variational param-
eter. Indeed, in the Hartree-Fock approximation, one assumes that a certain
operator, say g(f" ), picks up an expectation value. One then has to shift the
operator by its expectation value and neglect fluctuations (this is the Mean-
Field-Approximation). Therefore, one writes

$) = SN+ (567) - 6. (3.1.5)
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The term in brackets clearly represents fluctuations. Thus

5 =32+ (5-@) +29)- (5-9). (3.1.6)
To neglect fluctuations means to drop the second term. Thus we write
H = Hur + Hip (3.1.7)
where
Hyp =—1t Z Jr(7')0(,(7' Y+ h.c. ——UZ 5_"
e (3.1.8)

- U SN - (56 - (5 )

and the fluctuation part Hp is the rest. We can also write

- 4U - -
tie = =t 32 cl)en(7) 4 b + 5 LN - ) - 56)

' (3.1.9)
which is just H', Eq. (3.1.4), if we identify M(7) = ——(5’( ).

We can give dynamics to M (7) by using the following device. Consider

first the simple classical oscillator problem with a degree of freedom M and
Lagrangian

1 =2 g-, L o
L= EmM — EM -M.5. (3.1.10)
The equations of motion of this oscillator are
4oL _ oL (3.1.11)
which imply R
mM=—gM - S. (3.1.12)

At the quantum level these equations become the equation of motion of the
operator M (t) in the Heisenberg representation.

Consider now the limit m — 0. The only smooth trajectories, i.e. with M
finite, which are possible in this limit satisfy

gM + 5 =0. (3.1.13)

The Hamiltonian H’ has to be regarded in precisely the same way. We have
D2z —
to add a kinetic energy term at each site of the form } . %ﬂi—l, where P and

M obey canonical commutation relations, and consider the limit m — 0. One
should not panic at the apparent divergence in the kinetic energy term: the
equations of motion are taking care of it. We are going to come back to this
later on, when we discuss the path-integral form. There everything is simpler.

Thus we see that the Lagrange multiplier field M is dynamical in the sense
that it follows the configurations of fermions in detail. In Mean-Field theory
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(i.e. the Hartree-Fock approximation), one replaces M by some static configu-
ration (time-independent) which, in turn, is determined by the condition that
the ground state energy should be lowest.

_ Let us now look at Hmr in Fourier space. The Lagrange multiplier field
M (7) has the Fourier transform

-~ 1 AT / %k g
1 N —oco. (3.1.14
M(7) NdZ:e M(k) (21r)de M(k) for N—ooo. (3 )
E
We can now write Hpr 1n the form

Humr = N*¢ /k (Z e(k)no (K) + %W(E)P + M*(k) - S‘(ic‘)) (3.1.15)

since

M(k) = M*(—k) (3.1.16)
and where

S(k) = /’!cl(ic");‘;—"c,,(k" +K). (3.1.17)

while e(k) = —4t E;'i=1 cosk;j.

The second term on the right hand side of Eq. (3.1.15) implies that a
configuration with the Fourier component M (k) induces scattering processes
which mix one-particle states differing by E.

3.1.1 Ferromagnetic State

Let us consider first the ferromagnetic solution in which M (7 ) is a constant
My. In Fourier space, we have

M (k) = Mo(2r)%6%(k). (3.1.18)
Then Hyr is ( with the volume V = N¢)

8U 2

Hyp = —-VHE2 +V / (c(ic‘)cl(ic‘)ca(k‘) +eb () e e (B - 1\20) . (3.1.19)
E
Since the direction of My is arbitrary, one can choose the z-axis (i.e. the

quantization axis) to be parallel to My without any loss of generality. One
then finds

Hyr = %VMS + v/’; ((c(k) + %|M0|) ny(F) + (c(k) - %|M0|) nl(k)) .

(3.1.20)
The result is that if |M0| is non-zero, we can lower the electronic energy by
filling up a number of down spin states and, at the same time, emptying the
same number of up spin states. Since the first term penalizes a non-zero value
of |[My| we must search for a balance. We also need to keep track of the fact
that there is a total of N electrons (both with up and down spins). As usual,

this is taken care of by shifting Hyp by uN = u 3 - cl (7 )eo (7).
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Consider now a state with N; electrons with spin up and N| with spin
down. Let €1(¢;) be the one-particle energy of the top of the filled up(down)

states. The total energy of such a state E is a function of |My|, u,er and €]
(or, equivalently Ny and N|).

The energy is (|M0| = Mo)

Eo(Mo, i, €1, €)) =%VM§ + V/; (c(l’c’) + %Mo) 0 (CT - c("c')) +
+V /k (c(ic‘) _ %Mo,) 0 (e — () + (3.1.21)

+ /.LV/’_C_ (6 (CT - C(E)) +4 (Cl - C(E))) .

By introducing the one-particle band density of state (DOS) (i.e. the DOS
of the unperturbed system without spin), p(¢), we get
TV

3, [a 1 g 1
=g+ [ delet 5Mp+ [ dele— SN+ (3122

+p ( /E :' dep(e) + /f :1 dfp(f))

where ¢ is the energy of the bottom of the band.

Since the ground state energy must be an extremum (actually a minimum)
we have to find the values of u, My, ¢ and €| which make the energy density
have a minimum at fized density. That is

06 N o€ o8 o6

o2 ¢ . o0 X oo 3.1.23
op V d| M| Oet Oe| ( )

An explicit calculation gives

N €1 €
v ::/ dcp(c)+/ dep(e),

1]

0= o+ 1 fidc()—l/qd ©
Tag Ty RO T g ) Gepe)

L ° (3.1.24)
0= (er+ 5Mo ) pler) + moter),

1
0= (61 - §Mo) pley) + pp(ey).
Provided that p(er,|) # 0, we see that the polarization Mj is given by

M() = (Cl - CT) (3125)

and the chemical potential p is equal to

1
p=—gle +er). (3.1.26)
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Clearly, since My is positive, €; < €| and there are more occupied down
spin states than up spin states. We can also write

€
€ —€r = %/ dep(e) (3.1.27)
€1

and

N €1 (1
N2 / dep(e) + / dep(e). (3.1.28)
€o €1

Equations (3.1.27) and (3.1.28) determine ¢; and €| and, thus, the solution to
the problem. In general these equations need to be solved numerically.

Equation (3.1.27) has two solutions: €; = ¢ (i.e. My = 0, the paramag-
netic state) and €; # € (Mo # 0, the ferromagnetic state). The analysis of
these equations follows closely the solution of the Curie-Weiss equation in the
theory of phase transitions. We can write Eq. (3.1.27) in the form

2 T
s= TU/ dep(e + ¢1) (3.1.29)
0
where £ = €| — €7. Also, we get
N € 3
= —. 1.
i 2/‘0 dep() + - (3.1.30)

For €; given, the integral in Eq. (3.1.29) is a monotonically increasing function
of 2 (see Fig. 3.3). For values of U > U, there are two solutions o = 0 and
29 # 0 whereas for U < U, there is only one solution, g = 0. The critical
Hubbard coupling U, is determined by the condition

20
1= () (3.1.31)

where p(€;) is determined by Eq. (3.1.30) at z =0

N &
— = 2/ dep(€). (3.1.32)
14 €
Equation (3.1.31) is known as the Stoner criterion. The statement is that for
U > U, the ferromagnetic solution appears and has a lower energy than the
paramagnetic state, |My| = 0.

If the DOS is a smooth function near the Fermi energy of the paramagnetic
state, we can find the solution close to U, by using a power series expansion.
The result, to leading order in Qr;cl{, is

U
_ 20 (U.-U
T /7’( U. )+ (3139
and 3 U _U
b=t — 6 ———— ¢ 1.
€ — & .5 ( 7. ) + (3.1.34)

where €; satisfies Eq. (3.1.32) and p and p’ are the DOS and its derivative
at €. There are a number of important cases in which the DOS p(¢) has
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singularities at certain energies, the Van Hove singularities. This happens at
half-filling for systems like a square lattice, for which the Fermi surface has
the property of nesting.

3.1.2 Néel State

We now will look for solutions of the Mean-Field equations in which M (7)
is not a constant. Ultimately the problem boils down to a comparison of the
energies for different solutions. However, for situations in which nesting takes
place we can argue that a Néel state, or, more generally, a spin-density-wave
(SDW) is the ground state.

Let us consider the Mean-Field Hamiltonian of Eq. (3.1.15) and assume
that M (7 ) has the form

M(7) = Mg cos(Q - 7) (3.1.35)

where Q = (m,m). We saw before that, at half-filling, the Fermi surface has
the shape shown in Fig. 2.4. The states across the Fermi surface differ by
a wave vector Q = (m, ) which is at the Brillouin Zone (BZ) edge (this
is the nesting property). Furthermore, for a square lattice, we have c(g) =
—~4t(cos ki + cos ka). Thus we get

(k) = —e(k + §). (3.1.36)
The Mean-Field Hamiltonian can now be written in the form
3 - o
Hyp =g | Mo’V +V / e(B)el (B)eq (B)+
E

-1 Loa 1
+V[CI(k)§Faﬁ0ﬁ(k+Q) -5 Mo+ (3.1.37)
k

—

-1 -~ - 1
+V / e} (B)=apep(k — §) - = Mo.
P 2 2

U>Uc

U< Uc

Y
8

Zo=0 zo #0

Figure 3.3 Solution of the Mean-Field equation.
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Consider the spinor ¥, (k)
- k)
v,(B)=( ) ) 3.1.38
®= (o0 (139

If we restrict ourselves to the two dimensional case we can now write
Hyp = oo 1oV 4+ V / U}, (FYHag,aror ()W aror (F) (3.1.39)

where the integral now ranges over the upper half of the Brillouin Zone (it
has been “folded”) and a = 1,2,0 =T,], indicating the upper and lower
components of ¥ with either spin. The one-particle Hamiltonian H is a 4 x 4
matrix which has the block form

e(k) 1?-1\20) ( e(k) 1%21\20)
H = Z 2, 7S ) = L2 . 3.1.40
(%F-MO e(k + Q) $7-My —e(k) ( )

This matrix can be diagonalized very easily (see, for instance, the diagonal-
ization of the Dirac Hamiltonian). It has two doubly-degenerate (spin) eigen-

values E4 (k) with
— 1 -
Ey = %y[e2(k) + Z|M0|2. (3.1.41)

Thus, we see that the system has now acquired a gap A with
= |Mo| (3.1.42)

at the “Fermi surface”. The energy-momentum relations, say along a main
diagonal of the Brillouin Zone varies as shown in Fig. 3.4.

The ground state is obtained by filling up the negative energy modes with
both spins up and down. This state has a vanishing z-component of the total
spin: S, = 0. The energy density is

3 - "
E= 8—U|M0|2—/_ E, (k) (3.1.43)

where the integral ranges over the upper half of the Brillouin Zone. We can
now use the symmetries of E(k) = E,. (k) to write this expression in terms of
an integral over the upper right quadrant of the Brillouin Zone

3 72,
£ = o I¥o| /M . (%)2 EGR). (3.1.44)

We must now determine the value of My for which £ is lowest. The condition
for an extremum is

o
9f _ 347y - / dk 0E(k) _,, (3.1.45)

3M Sk'.s.”. (27r)2 3M0
Clearly we get
3., 1 / d2k | M|
— |Mo| - = — =0. 3.1.46
Ul o 2 Jock,<r (2m)2 E(k) ( )
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One solution is |M0| = 0 (i.e. no long-range order). This is the paramagnetic
state. The other solution obeys

3 d%k 1
_— = 2 — . °
20 Jogkier @M Ry 4+ L2

(3.1.47)

In the case of the square lattice (this result is true for any other case with
nesting) the integral on the right hand side of Eq. (3.1.47) is logarithmically
divergent (for My — 0). In fact, the integral is dominated by contributions
with momenta around ki + k2 = w. With this intuition in mind, we use

ki + ko Oskl—kQ

cos k; + cosky = 2cos 5 ¢ 5 (3.1.48)
to write E2(E) in the form
-~ ki +k ky — 1 -
E%(k) = 16t2 cos? (ks ;L 2) (o2 (1 . k2) o 71Mol*. (3.1.49)

Now we make the approximation of neglecting the dependence in k; — ky
(i.e. setting cosg%2 & 1) and approximating cos (k‘;’”) ~ T=K1=F2 Qne
then finds

Mo|?

E%(k) ~ 4% (7 — k1 — k2)% + | 2 (3.1.50)

MEL(K)

| -
0 | k

(33)

Figure 3.4 Energy-momentum relation F.y (E) of the one-particle states around a
Néel ground state. The horizontal axis scans the main diagonal of the Brillouin Zone
for the square lattice.
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Thus the integral in Eq. (3.1.47) can be evaluated. The result is

U P e (3.1.51)
3~ o \ % A

This expression is accurate in the weak coupling limit % — 0. Here D is a
cutoff approximately equal to x. The solution is
(o] & — 20D
sinh (37(%))
We conclude that the order parameter (S(7 )) is also non-zero: (S(F)) =
%—Mg cos(é - 7). Thus an antiferromagnetic solution is found even for arbi-
trarily weak Hubbard coupling U. Please keep in mind that the ferromagnetic
solution requires a finite value of U to exist. It is also easy to see that this
Néel state has less energy than the paramagnetic state |My| = 0. Thus, at
least at half-filling, the ground state appears to be a Néel antiferromagnet.
This solution is also remarkable for other reasons. First, the dependence
of |Mp| on U is highly non-analytic: we get an essential singularity. This is
exactly analogous to what one finds in BCS theory and in the case of the
Peierls instability of one-dimensional electron-phonon systems. Secondly, the
electronic spectrum has a gap A which is equal to |M0|~ Thus the gap also has
an essential singularity in the coupling constant. But, is the spectrum truly
massive? Are there any gapless (or massless) excitations present. What this
calculation says is that the one-particle spectrum is massive. What about the
two-particle spectrum? We will see below that there are massless spin-waves
in agreement with Goldstone’s theorem.

w (4tD)e3"(#), (3.1.52)

3.2 Path Integral Representation of the
Hubbard Model

So far we have discussed some features of these systems within a Mean-Field
theory based on the canonical Hamiltonian formalism. It is possible to gain
further insight by going to the path-integral form. Truly, both representa-
tions are equivalent and certainly whatever one can do in one form can be
reproduced in the other picture. However, certain aspects of the problem can
be dealt with in a more natural and concise way in the path-integral picture.
The issue of the symmetry, and its breaking, effective theories for the low-lying
modes, etc., are more answerable in path-integral form. And, of course, the
semi-classical treatment, including non-perturbative features such as solitons
and the like, are very simple to picture in terms of path-integrals.

Typically we are interested in studying both zero-temperature and finite-
temperature properties of the system. At finite temperature, the equlibrium
properties are determined by the partition function

Z="Tr e PH (3.2.1)
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where 8 = —:}—, (in units in which kg = 1). Usually, one would also like to know
the behavior of the correlation functions.
At zero temperature one is interested in the “vacuum persistence ampli-
tude” [Coleman 85]
Z = lim Tr et (3.2.2)

which is just the trace of the evolution operator at long times. Feynman
showed [Feynman 65] that Eq. (3.2.2) can be written as a sum over histories.
Also, it is apparent that Eq. (3.2.1) is related to Eq. (3.2.2) by an analytic
continuation procedure known as “Wick rotation”

it=—r (3.2.3)

which amounts to going to imaginary time [Abrikosov 63]. I will use both
forms more or less simultaneously.

I do not intend to give a thorough description of the path-integral method.
Qualitatively, the path integral is derived as follows. Let H be the Hamiltonian
of the system and {|a)} be a set of states. In most cases we will demand that
{|a}} be a complete set of states. However, it will also be convenient to work
with a system of coherent states which are overcomplete. In either case, what
matters is the existence of an identity of the form (“resolution of unity”)

= N/da|a)(a| (3.2.4)

where N is a normalization constant and do is an integration measure, It is
worthwhile to comment that the states {|a)} need not be position eigenstates.
In the usual derivation (“sum over histories ”) the position space (or coor-
dinate) representation is used. On the other hand, in many problems, such
as the quantization of spin systems, there isn’t a natural separation between
canonical coordinates and momenta. Thus the space of states {|a)} can be
quite general and abstract. In fact the coherent state representation is in some
sense more primitive (or fundamental).

The standard strategy that one takes is the following. First one defines
the states {|a)}. In the case of a many-body system such as the Hubbard
model, these states should be antisymmetrized many-fermion states. I will
work in the grand canonical ensemble and, hence, use second quantization.
The need to antisymmetrize the states will bring some complications, which
will be taken care of by using Grassmann variables.

The second step is to split up the time interval ¢ into N; segments of
infinitesimal length A; such that N;A; = t. The same prescription applies to
the imaginary time (Euclidean) formalism. The vacuum persistence amplitude
is

. (oo
7= 7 22 4H0 (3.2.5)

where 7 is the time ordering operator. For a time-independent Hamiltonian,
Eq. (3.2.5) reduces to Eq. (3.2.2). For infinitesimal intervals A; — 0 we can
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write

. ¢ N,
Z = Tr Te 2oimn 2410 oy | G (3.2.6)
i=1
Now we proceed by inserting the resolution of unity, Eq. (3.2.4), at each
intermediate time t;. Let {|a;)} be a set of states at each time t;. We get

N,
Z = Z H(ajle—iAtH(tj)laj+1) (3.2.7)
{aj}i=1
with |any41) = |e1) and where ;) = |a(2;)) are the states at time ;.

We can regard the «(t;) as a set of parameters spanning a manifold defin-
ing the states ;). Thus what we actually have is a sum over configurations
{«(t)}. Notice that this procedure is absolutely general. We are supposed to
take the limit A; — 0, N; — oo at the end. That this limit exists is a highly
non-trivial issue and certainly not a formal matter. This procedure applies
for both single-particle problems or states of a many-body second quantized
system, i.e. a field theory.

Let us first review the particle-in-a-potential problem. In this case the
Hamiltonian is

132
H = % + V(q) (328)
where p and § obey canonical commutation relations (h = 1)
[4,5] = i. (3.2.9)

Thus the states |a) can be the complete set of position eigenstates |¢). The
resolution of the identity is

1= [ dalaal. (3.2.10)

Conversely, we could also use momentum eigenstates. The momentum
operator p is not diagonal in this basis. Thus the amplitude

(a(t;)le*** |g(tj41)) (3.2.11)

can be written in the form
(a(t)le? 2 F7 |q(2j41)) €?4eY @C5+2) (3.2.12)

where we have used the fact that V is diagonal in the coordinate represen-
tation. Now we use a complete set of momentum eigenstates {|p(¢;))} and
write

s _ [T dp a0

e'tem = 2. ¢ P p(t)]- (3.2.13)
Collecting these various contributions we get
2= [ D0 H e T + V) (1 ot 1) ol la(4)*

(3.2.14)
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where I used the definition of the measure

N,
T dp(t;)dq(t;
Dppg = [ 22)404) ’2):( i), (3.2.15)
i=1

Thus, we can write Eq. (3.2.14) in the form
Z= / DpDq ¢~ [ APi-H (0] (3.2.16)

by making use of the fact that
(plg) = 779 (3.2.17)

Equation (3.3.16) is nothing but a sum over the configurations in the
phase space of the action S

S= / dt(pj — H) (3.2.18)

of each configuration. Since we are computing a trace the field ¢(t) obeys
periodic boundary conditions in time. Note that p and § do not commute.
The phase space integral is actually a coherent state path integral [Faddeev
75]. Equation (3.2.16) is generally valid even for Hamiltonians for which it is
not possible to clearly separate coordinates and momenta. I will adopt the
phase-space (or coherent state) path integral as the definition.
This procedure can be trivially generalized to second quantized systems.
In the case of bosons we have second quantized field operators ¥(7 ) and gt (7)
and a Hamiltonian H. The field operators obey the equal-time commutation
relations
[6(7), ¥ (71)] = 87— 7). (3.2.19)

Consider the classical Lagrangian L

L=) ¥i5¥—H. (3.2.20)

The commutation relations in Eq. (3.2.19) follow from canonically quantizing
L. The canonical momentum II(7 ) is given by

fir) = —L = it (3.2.21)

661\1’(7' )

Thus the canonical commutation relations
[b(7), Ti(7 ")) = i6(7— ) (3.2.22)

are equivalent to Eq. (3.2.19) after II is identified with it
A discussion analogous to what we did for the particle case yields a phase
space path integral

Z = / DYDY ¢ [ HL, ¥ i -H(¥ 9] (3.2.23)
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where ¥ and ¥* are complex c-number fields which parametrize the coherent
states [Faddeev 75]. Since we are dealing with bosons, the fields ¥ are c-
numbers and commute. The boundary conditions in turn are periodic. The
case of fermions can also be dealt with provided that one takes care of the
anticommuting nature of fermion operators.

It is convenient to introduce coherent states for fermions. Let ¥1 and ¥
be Fermi creation and annihilation operators which satisfy

9,9t =1 (3.2.24)

and A A
I ) (3.2.25)

In the occupation number representation we have two states, |0} and |1} with
the properties:

b0y =0, ¥toy=1p), ¥djo)=o,

. : L (3.2.26)
¥ty =0, ¥y =10), ¥ty =1).

We introduce the two Grassmann numbers ¥ and ¥ that we will associate
to the Fermi operators ¥ and ¥, Their defining property is the (Grassmann)
Algebra

{9, ¥} ={¥, ¥} ={¥, ¥} =0 (3.2.27)

that they satisfy. It is natural to extend these anticommutation relations by
imposing [Negele 88]

{(0,9}=0 and (¥ =¥tT. (3.2.28)
We define the coherent state |¥) in terms of the Grassmann number ¥
[¥) = |0) — ¥1) = [0y — Wi t)o). (3.2.29)
With the help of Eqgs. (3.2.27) and (3.2.28) we obtain
o) = (1 - qnirT) 0y = e~ ¥%1 0y, (3.2.30)
ey = §j0) — $wdt|0) = wj0) = ¥|¥) (3.2.31)
and
it o) = 10y — lwd i) = 1y = =9
¥lw) = ¥tjo) — ¥t witlo) = 1) = | ¥). (3.2.32)

As usual the exponential on the right hand side of Eq. (3.2.30) is defined as
a power expansion in vt and Eq. (3.2.32) defines operationaly the “left”
Grassmann derivative.

The adjoint coherent state (¥| is defined in terms of the Grassmann num-
ber ¥

(¥] = (0] — (1|¥ = (0] — (0] ¥®. (3.2.33)
As before

(¥] = (0] (1 - \II\II) (0]e~%¥, (3.2.34)
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¥t = o)¥f — (0§ TEt = (0% = (¥|F (3.2.35)

and 5
(T = (0|¥ — (0|¥T¥ = (1| = —(¥lz- (3.2.36)

The right hand side of Eq. (3.2.36) defines the “right” Grassmann derivative
in complete analogy to Eq. (3.2.32). It is natural to require that the “left”
(“right”) derivative ;% anticommutes with ¥ so that ¥ = —0

From Egs. (3.2.34), (3.2.30) and (3.2.28) the inner product (¥|¥’}) is equal
to

(W) = ¥ (3.2.37)
This together with Egs. (3.2.31) and (3.2.35) gives for the matrix elements of

a normal ordered operator : U (\ilT, ¥) -
(¥ :u (\IrTw) WYy = U(E, )T (3.2.38)

where U(¥, ¥’) is obtained by replacing, inside the normal ordered operator
(U ¥ - ¥ and ¥ — ¥.
The resolution of unity in this representation is just

| = /d\ffd\If =¥ gy (W), (3.2.39)

This identity can be checked by computing the inner product (¥'| ¥’} where ¥’
and ¥" are the Grassmann variables ¥ or ¥. The integrals in Eq. (3.2.39) are
understood to be linear functionals on the space of functions of the Grassmann
variables with

/dw =1, /d\It = 0. (3.2.40)

We can now repeat the procedure outlined at the begining of this section
for a second quantized system of fermions except that now we will use fermion
coherent states |[{¥,(7)}) at each site and for each spin degrees of freedom

(¥, (7)}) = exp (—Z ¥, (7 ) U (7 )) 10) (3.2.41)

where |0) is the empty state (not quite the “vacuum” as we will see in
chapter 4). Following our noses we find

N¢ N! _
Z= Jim, (H / dwaj)dwaj)) [T ¥ E (2] (1 — iAH) |91 41))
Ly —O j:l j:l

(3.2.42)
where, for the sake of simplicity, I have dropped the space and spin labels. In
the limit N; — oo and A; — 0, one finds

Z = /D\irm ot 4L (3.2.43)
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where L is given by

L= Z W, (7 )i U, (F ) — H(U,(7), ¥o(7)). (3.2.44)

For the case of the Hubbard model or any other one, for that matter, and
in the presence of a non-zero chemical potential u, we get (see Eq. (2.2.9))

L= W, (F )i+ )W (F)+2t > Wo(F)U(F') — Hine(¥, ¥). (3.2.45)
# (7.7)

From Eq. (2.2.8) the interaction for the Hubbard model is
u = \-G = ~\,.G =
Hing = -5 ch(r YTapcs(T )c,];(r YTyscs () (3.2.46)
Normal ordering relative to the empty state |0) gives
Hp = -2 3 el () (7 )es(7)ep (F)repms U 3 el (7)eal). (3.2.47)
. int - 6 - o 5 ﬁ aﬁ ‘76 2 . o a . L.
Thus Hin (¥, ¥) is given by

Hiot(,9) = =2 3 0ol ) by (P )W) Uo (7 )i — 5 3 WalF)WalF ).

(3.2.48)
The last term on the right hand side can obviously be canceled by means of
a shift of the chemical potential u.
The final property of Grassmann integrals which will be useful for us is
the integral for actions which are quadratic in the fields

S= W(F)M(F 7)) (3.2.49)

-

where M(7,7 ') is an antisymmetric matrix (operator). We get the gaussian
integral
Z = /D\TID\II e~ JIMY _ Dot (3.2.50)

This expression should be contrasted with the analogous result for bosonic
fields ¢

Z= /D¢>‘D¢ e~ J Mo — (Det)1. (3.2.51)

Both results can be derived quite easily by expanding ¥ and ¥ in a basis of
eigenstates of M [Faddeev 75] or [Negele 88].
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3.3 Path—Integral Picture of the Mean-Field
Theory of the Hubbard Model

We now turn to the Mean-Field theory for the Hubbard model in path-integral
form. The advantage of this description is that we will be able to extract an
effective field theory for the low-lying modes in the Néel state: spin waves.

The Lagrangian density for the Hubbard model in two dimensions, in real
time and at zero temperature is, from Eqs. (3.2.45) and (3.2.48),

L :\ifa(f:)t)(iat + ”)\I’(I(F)t)+

+1 ) (UalF 1)U (F+ &,1) + Uo7 1) Vo (F— €,1) + cc)+
j=12

+ 2 (FalF ) Tap U (7 1))
(3.3.1)
The associated path-integral contains quartic terms, the interaction, and
hence we do not know how to compute the partition function. The strategy is
to write another theory which is quadratic in Grassmann fields and which is
equivalent to Eq. (3.3.1). We will make extensive use of the gaussian identity
for bosonic fields (or Hubbard-Stratonovich transformation)

/d(f; eTiGFRETTE) _ opgt x f3VEITD? (3.3.2)

Thus at any point in space time (7,t), we introduce a three-component real
bose field ¢(7,t) coupled bilinearly to the fermions as in Eq. (3.3.2). If one

chooses the coupling constant A to be equal to \/%, one finds the interaction

term of Eq. (3.2.48). Thus the Lagrangian density £’

L' =¥, (7, 1) (i + p)¥ o(F, 1)+

+1 ) [Wa(FO)Ta(F+&,1) + Uo(F 1) ¥a(F— €,1) + cc. ]+
j=1,2

- - 1
3 FEN) Wl )T Up (1) — 58 (750)

(3.3.3)
is equivalent to the Lagrangian of the Hubbard model. Equation (3.3.3) has
the advantage of being bilinear in Fermi fields (compare Eqgs. (3.3.3) and
(3.1.3)). Thus, using Eq. (3.2.50) we can now integrate out the fermions. The

result is an effective action for the bose fields $ We will see that the $ fields
represent the collective modes associated with spin fluctuations. The result is

Z= / D 'Se:(9) (3.3.4)



40 Chapter 3 magnetic instability

where the effective action Ser(¢) is given by
- 1o, ‘ _ .
Ser(¢) = — / dt Z: Ed’ (7,t) — iln Det (z@; +pu— M(¢)) . (3.3.5)

The operator M(4) in Eq.(3.3.5) has the matrix elements

(FtalM(P)|7 't'B) = — bapb(t — )2t > (b¢ 1e; + 67 rg;) +
j=1,2

+4/ %5@ — Y67 7 13(Fr 1) Toup-

The Mean-Field theory for this problem is just the evaluation of the path-
integral Eq. (3.3.4) by means of the saddle-point (or stationary phase) approx-
imation. For this problem, this approximation is equivalent to a Hartree-Fock
decoupling. The stationary condition is

_ 6Seq _afm
0=fawmn - (0

Using the identity

(3.3.6)

iwf—f,t) InDet(id; + p— M(9).  (3.3.7)

InDetA=Tr InA

and Eq. (3.3.6), one finds

¢°(F,t) = —iﬁﬁ’l‘r (m[ia, +u—M (5)])

= +i 1 6M(4)
= (i@, +p— M(9) 6¢“(F,t)) (3.3.8)

U 1
= i/ 2 (ftal——_|F18)rs,.
7 ( |i6,+u—M(¢)| )78

The expression in angular brackets is just the (in space and time diagonal)
matrix element of the fermion one-particle Green’s function in a background

field ¢(7,1)

1
Gop(Ft; 7't @) = —i(Fla| ——————|F 't'B). 3.3.9
(7 36) = —ilflal gl ). (339)
Hence we can write Eq. (3.3.9) in the form
a(z /v .
¢ (Ft) = — gGQp(rt;T’t;(ﬁ)Tga. (3.3.10)
On the other hand, the local magnetic moment (S*(#t)) is equal to
(S°(7)) = +Gap(F; 715 ¢) Tg". (3.3.11)

Thus, the saddle-point approximation, Eq. (3.3.7), is the same as the Hartree-

Fock condition
87 = =[-8 0). (3.3.12)
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At the level of a one-band Hubbard model, there is no quantitative jus-
tification for the validity of this approach, since there is no small parameter
other than % to control this expansion. Thus, this is essentially a semi-classical
approximation.

We also know that an angular momentum degree of freedom, such as spin
itself, becomes semi-classical if the angular momentum becomes large. The
main assumption of the Mean-Field-Theory is that the order parameter thus
obtained, in this case the staggered magnetization, is close to its saturation
value and hence it is large.

We can formally introduce a small parameter to control this expansion by
means of the following device. Let us imagine that the band electrons have an
orbital degeneracy labelled by an index a = 1, ..., Ny, where N} is the number
of degenerate bands. The total band spin at a given site ¥ is now given by
(1=1,2,3)

. N,
SIFY= > Y WL (7T a(F). (3.3.13)

a,p=1,| a=1

The generalized Hubbard model is then given by the Hamiltonian

LY W (P + e, — gUZ(S‘(F))Q, (3.3.14)

()
o,a

where 5(7) is the total band spin at 7. This system still has the global SU(2)
invariance of spin rotations. For large values of U, i.e. % — 00, the local spin
gets to be as large as possible. The equivalent Heisenberg model has a total
spin quantum number s at each site equal to s = %"— or equivalently, Ny = 2s.
The limit Ny — oo 1s then the same as the semi-classical limit s — oco. This
limit is usually treated by spin-wave theory [Bloch 30], [Holstein 40], [Dyson
55], [Maleev 57] (for a review see the book of Mattis [Mattis 65]).

The path-integral approach is particularly well suited to deal with this
limit. As a matter of fact, all the formulas derived above carry over to this
case. The Hubbard—Stratonowch transformation works with the only change
that ¢> couples now to the total band spin. Since all N} orbital species couple
exactly in the same way to the Hubbard-Stratonovich field ¢>, the only change
that occurs is that the fermion determinant factorizes and is given by the
Np-th power of the determinant of a single species. After a trivial rescaling
of the field ¢ by /N3, the effective action S% for the theory with orbital

degeneracy is simply given by
SEH($) = NySert(9). (3.3.15)

In the large Np-limit (i.e. large s-limit), the saddle-point approximation
becomes exact. For the rest of this section, we will carry on with this expansion
assuming that it is valid. We should keep in mind, however, that the results
will only become accurate in the s — oo limit.
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It is apparent that if ¢®(7,¢) is a solution, any uniform rotation of it is
also a solution

¢; = Rapds (3.3.16)

where Ryp is a constant rotation matrix. This implies that the global spin
symmetry has been preserved. We will see now that this implies the existence
of Goldstone modes, spin-waves, if this symmetry is spontaneously broken.

Let us consider the half-filled case. Here, we expect an antiferromagnetic
Néel state. The classical solution is (for the case of a square lattice)

¢%(7,1) = |g|n®(—1)"2+72, (3.3.17)

This solution is (a) static, and (b) staggered (i.e. a Néel state). It really
represents an infinite number of solutions parameterized by the unit vector 7@
(in spin space). The amplitude |$| is determined by solving the saddle-point
Eq. (3.3.12). In the notation of Eq. (3.1.9), we can write

M= ,/%é‘. (3.3.18)

In Section 3.1 we determined that the Néel state was energetically preferred
to both a paramagnetic state and a ferromagnetic state. Notice that this
argument does not rule out other solutions. However, the existent numerical
evidence seems to indicate that a Néel state is the ground state at half-filling
except for one-dimensional systems.

In Section 3.1 we showed that (a) the amplitude || is always non-zero
at zero temperature and (b) the single-particle excitation spectrum has a gap
A = |Mp|. This last result can be seen to follow by computing the one-particle
Green function Gug(7t;7 't’; ¢) and writing it as a 4 x 4 matrix in spin and
sublattice space.

Equation (3.3.9) is equivalent to the statement

_lé(t - tl)éF,F’éaﬁ :(z@, + ,Lt)Gaﬁ (Ft, ' ,t,; (g) +

+2t D [Gop(F+ Et;7 "5 ) + Gop(F — 1,7 't'; §)1+
j=1,2

a V %|$|ﬁ Fa'y(_l)zl+zzG7ﬁ(Ft;F,t’;d_")'

v (3.3.19)
If we Fourier transform Eq. (3.3.19) we find

—tbap = (w — C(E))Gaﬁ(lg’w) - \/gld_"lﬁ : Fa'yG‘rﬁ(E_ Q,w) (3-3.20)

where Q = (m,7) is the Brillouin corner vector. This equation can be solved
in terms of the “spinor” operator G(k,w) defined componentwise by

=~ ( Gaplk,w)
gaﬁ(k)w) = (Gap(lg— Q,w)) . (3.3.21)
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Equation (3.3.20) now takes the matrix form

—€(k))bay  —/ %187 - T B}
_iéaﬁ(l): (= e(k))Bay sl o Fw).  (3322)
V=41 7y (w4 e(B))bary

The solution of this equation is

. i @+e®) /318-7\ (1
) T @+ 50 v \ VB 7 (o ) ()

(3.3.23)
with v — 0%, This solution clearly shows the gap

- - o 712
A=ofa®) + S197 = 2/ @) + % (3.3.24)

in the excitation spectrum and we recover Eq. (3.1.42) as k— g

3.4 Fluctuations Around the Néel State: The
Non-Linear Sigma Model

In the previous secticn we obtained an effective action for the order-parameter
field 5 and solved the saddle-point equations. We now wish to estimate the
role and size of the quantum mechanical fluctuations about this classical Néel
state.

When solving the saddle-point equations, we observed that if a non-trivial
solution $c with broken symmetry could be found, then any configuration
obtained by means of a rigid rotation in spin space from J;c is also a solution.
This reflects the fact that the spin sector has continuous symmetry group, in
this case O(3).

Imagine now not a solution of the saddle-point equation but a slowly
varying configuration $(F,t) not far from a solution. The fluctuation part
65(7"’,75) is small and slowly varying. By slowly varying I mean slow on time
scales being compared with 7 = % and on length scales being compared with
&= %’ (where vp is the Fermi velocity of the unperturbed system). This last
length £ is the (Mean-Field) correlation length of the system. It will turn out
that £ and 7 determine the scales on which the magnitude |$| of the order
parameter flcutuates, at least in Mean-Field theory.

The existence of an infinite number of solutions of the saddle-point equa-
tion indicates that there are configurations &Z; with arbitrarily low action.
These are the Goldstone bosons of this problems and are spin-waves. We wish
to find an effective theory for these spin waves.
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Our first step will be to study the (gaussian) fluctuations around the
Mean-Field solution. Thus, we will expand the effective action Seg(¢) in pow-

ers of 6¢(7,t). Since M(@) of Eq. (3.3.6) is linear in ¢ we can write
M(d) = M(¢.) + M(5¢) (3.4.1)

where the matrix elements of M(66) are equal to

(Fta|M(6¢)|F 't'a’) = \/g&;(f’,t) Tyt b 1 6(t — 1), (3.4.2)
By expanding in powers of M(éd_;) we find that the effective action
Set( / dt Z ¢ ( —iTr In (0, + p— M(3)) (3.4.3)
can be written in the form
Sert(@) = — /dt 3 @ — Tt In (ia, tu— M(é;)) +

—4iTr In (1 - z‘G($c)M(5¢;))

(3.4.4)

with the Mean-Field Green function G($c) defined componentwise by
- 1
Goo' (7t 7't 00) = —i(Fia] — |7 't'a’). (3.4.5)
o ‘ i0y + p— M(8e)

By expanding the logarithm, we get

Sun(P) = — / > @ —iTx In (10, + p— M(G.)) +

(3.4.6)
+1 o LA\N
T (G()M(54))
Equation (3.4.6) can be organized as follows
Sen(d) = > 5™ (¢, 89) (3.4.7)

n=0

where the classical action (i.e. the action of the Mean-Field solution) S((4.)
is

o
~ i -

5O, = — / dt > iﬁch) — iTr In[id; + 1 — M(.)]. (3.4.8)

Since the Mean-Field solution is static (i.e. time independent), we can write

SO(ge) = TES)($.) (3.4.9)

where T is the time-span (not the temperature!) and Eéogd () is the Mean-
Field theory of ground state energy. The first order term in §¢ cancels out
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since J;c is a solution of the saddle point equation

8Sew

= 0. 3.4.10
53 ( )
Thus we can write Se in the form
Sea(§) = TES)(8e) + 3 S™(&., 56). (3.4.11)
n=2

The gaussian theory, i.e. the quadratic terms in Eq. (3.4.11), has the action
S®)(64) where

= §Q2(Ft) i . N2
(@ S S AV
S (58) = / dt Z: - STr (G(¢C)M(6¢)) . (3.4.12)
This expression can be expanded out in components to yield
; 68°(7,1)
(2) =_ 2 pean
S29)(84) /dt 4 2 +

— z% / didt’ ) (Ga,a:(Ft;F't';$C)T§:ﬁGpp:(F’t';Ft;$c)T§,a)

1‘,1‘
x 6¢% (7', 1")6%(7,1).
(3.4.13)
We will see now that fluctuations 6$(F, t) with wave-vector § close to
the Brillouin Zone corner Q = (m,7) are gapless, i.e. have vanishingly small
energy. These are the antiferromagnetic spin waves. Conversely, the excitations
with 7 close to the zone center (7=~ 0), which describe uniform ferromagnetic
fluctuations, have large energies.
In Fourier components, Eq. (3.4.13) has the form

SOEd) = [ FEEERITEDRHED (410

P,

where the kernel K% (p,Q) is given by
-ab/—~ ab U I a 7. —~ b
K®(F,Q) = -8 iz [ Tr (G(k,w)T Gk +Fw+)r ) (3.4.15)
kw

According to Eq. (3.3.23) and with E2(k) = €2(k) + Y|8|? the fermion Green
function is

(@ + €(B))bact +/S1B(7 - Faer)
w? — B2(k) + v

iGoor (k,w) = (3.4.16)
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on the full Brillouin Zone. The trace identities for the Pauli matrices will be
useful to compute the kernel
Tl =2, Tr ¢ =0,
Tr r°7% = 26%,  Tr rr'r° = 24, (3.4.17)
Tr Ta,rb,rc,rd =9 (6abécd _ 6ac6bd + 6ad§bc) .
We can now write the kernel K (5, 2) in the form
K®(5,Q) = Ko(5,Q)6% + K,(F,Q2)e***n, + Ko(5, Qn’n® (3.4.18)

after inserting Eq. (3.4.16) into Eq. (3.4.15 ) and using the trace identities.
One obtains for Ky, K; and K,

Ko(p,Q) = —1+i-2£ ((w+‘(g))(w+9+c(5+@)_ %AQ)

3 Jke (w2 - B2(B) +0) (0 +9)2 - B2(E+7) +iv)

) U e(k) — Q= e(k + )
1 ;Q = zA ,
BeO=+34 ) (w2 = B2(B) + iv) ((w +9)2 — B2(F +5) +iv)

U 1
K»2(5,Q) = +i—A2l - - ,
37 Jrkw (oﬂ — E2(R) + z'u) ((w +0)2 — E2(E + ) + z'u)

' (3.4.19)
where the integrals range over the full Brillouin Zone and A = 24/ %|$| (see
Eq. (3.3.24)).

We are interested in studying the low-energy limit (2A <« 1) of this
system. It will be convenient to decompose the fluctuations §¢(p,2) into a
longitudinal component o(7, ) parallel to 7 and two transverse components

m;(P, ) perpendicular to 7i. In terms of o and #, the gaussian action S®) Eq.
(3.4.14), has the form

SOEH = [ (a7 + Kalf ) o7, )+

i

+ ‘n[Ko(ﬁ, D5, Q) - 7 (7,9) + K1 (5, Qe nam (5, )7 (5, Q)].

" (3.4.20)
_ I will now show that for wavevectors p’ close to the ordering wavevector
@ = (m,m) the transverse components ¥ become gapless. In contrast, the
longitudinal component o, remains massive (i.e. with a non-zero gap) over
the entire Brillouin Zone. Thus, in a Néel state, the Hubbard Model has two
gapless transverse spin waves # and a massive longitudinal amplitude mode
o.
We can check this statement by considering the limit £ — 0 and p’'= Q—d’
where |7] is small, i.e. |§]é < 1. Thus, the relevant limit is

QA < 1, |q"|UKF <1 (3.4.21)
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We wish to expand the kernels of Eq. (3.4.19) in powers of ¢ and Q, i.e. we
are performing a gradient expansion. -
Let us first compute Ko, K1 and K, for 2 = 0 and p = Q. The result, for
Ko (Q,0), is zero
2U 1

Ko(G,0)= —14i2 [ ——
o(@.0) = 3 Jiww?—E2(k)+iv

0. (3.4.22)

This result follows from the gap equation. Similarly, the two other kernels K,
and K, have the limit, after integrating over w,

K:(§,0) = +——A / 2(k) jr(E)Az) 7 =0 (3.4.23)

which is a consequence of the symmetry of c(l?), and
L, = i UA? 1 2o UA?
IXQ(Q,O) = +Z 3 . - 372 = +3?l—t3— (3424)
E(ex(®) + ja2)

where « is a numerical positive constant (of the order 1) which results from
the evaluation of the integral.

These results imply the presence of a mass term for the longitudinal o
mode for &~ @ and  — 0 but the absence of such a mass term for both
transverse @ modes (see Fig. 3.5). The mass of the ¢ mode can be used to
define a spin correlation length &spin.

We can also estimate the spin-wave stiffness from these results. However,
we need to go to leading order in both Q and § to get these results. By
expanding in powers of both Q and ¢ we find for I{O(Q -4,

Ko(@ —§,Q) ~aQ? — b7 2 + hoo.t. (3.4.25)

o-mode

o-mode gap

m-modes

(0, 0) (7I', 7r)

Figure 3.5 Spin-wave spectrum along the main diagonal of the Brillouin Zone
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where
1
a= —z’2—3[£ ] . , (3.4.26)
kw (oﬂ — E?(k) + iu)
and Lo o
=V k
b= +id Ve (k) (3.4.27)

3 Jiw (w2 - E2(k) + iu)2

Thus, the transverse ¥ modes have the effective action (for p = Q and low

frequencies)
SO =1 [ @GP - 7Y (3.4.28)
7.0

where we have defined p, the spin-wave stiffness, and v,, the spin-wave velocity,
to be given by

p=a and vi= % (3.4.29)

These results show that the transverse ¥ modes are massless and have a linear
dispersion relation

Q = v,/ (3.4.30)

3.5 The Néel State and the Non-linear Sigma
Model

I will now show that these results can be embodied in a very simple effective
Lagrangian which includes all the relevant non-linear effects. The key to the
argument is the observation that the Néel state breaks, on each sublattice,
the spin rotation symmetry. This is a continuous symmetry. The transverse
spin waves are gapless excitations because they only involve tilting the spins
relative to the classical Mean-Field pattern. But they do not change the am-
plitude. Thus, it is natural to ask for the effective Lagrangian in which the
amplitude fluctuations are frozen but the transverse ones are not. In mathe-
matical terms this means that, in position space, the staggered order parameter
i1(7,t) will be slowly varying and its length will be constrained to be equal to
a fixed value ||, the classical minimum. Thus, the fields o(k,w) and #(k,w)
need to be scaled by a factor of |$c|‘1. The net effect is that the spin-wave
stiffness p, Eq. (3.4.28), gets multiplied by |62, the solution of Eq. (3.3.7).

This calculation can in fact be carried out because the transverse spin
waves remain massless to all orders in an expansion around the Mean-Field
solution. This is guaranteed by a Ward Identitiy, which is a consequence of
the symmetry. We shall derive this identity below.
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_Let us consider the Hubbard model coupled to an external magnetic field
H(7,1)
Hzeoman = > B(71) - L (7, 1)Tapes(71). (3.5.1)

If we retrace the steps that led to the path-integral for the Hubbard-
Stratonovich field ¢(7,t), we find a new effective action of the form

eﬁ(¢H /dtsz’(rt) z’I‘rln(161+/,L M(8) — H(7 1) - 7-)

(3.5.2)
where the magnetic field H (7,t) is a c-number operator with matrix elements

(Fta|H(7,0)|7 ') = b 06776t —t')H(F,1). (3.5.3)

In principle, we will want to study the Néel state. Hence we will choose ﬁ(f", 1)
to be staggered and time-independent, i.e.

A,(7) = g, 97 (3.5.4)

with
= (m, 7). (3.5.5)

We can prove the existence of gapless excitations by deriving a Ward
Identity. This identity can be derived by standard methods [Amit 78]. Let us
first shift the ¢ field

&'(7,1) = (7, t)+\/7 HF ). (3.5.6)

We can write

Sefr (&H) =Seﬁ($',0)+\/g/dt2¢(r t)-H(7, t)——/dt H (r HX(71)

(3 5.7)
Next, we can make use of the invariance of the integration measure ’D(f; under
the rotation ¢! = Rg¢) (where Rgp is a rotation matrix) to shift the coor-
dinates of the functional integral. The rotation matrix R,; can be written in
terms of Euler angles §° and rotation generators L¢ in the form

Rap = (e-"”‘”)ab (3.5.8)

where

(Lc)ab = _ifabc' (3.5.9)

Thus, for an infinitesimal rotation (8¢ < 1)

@ = ¢l — €apePile. (3.5.10)
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Using the invariance of the measure, we can now write for the vacuum persis-
tence amplitude in the presence of the “source” H

Z[H] = eiF[H]-if,fdt ¥, 2
_ [0d o0 F AT - 3 [T, 5

_ [0 o + VE T, - g [E )

— /'D(E’ ei(sexx(ﬁz’,O) + \/—f;f dtzfqi?"ﬁ - gfdtz’%?) + i65.4(4' H,6)

(3.5.11)
where

6Ser(¢', H,0) = —\/g / dtgcabcm(f‘,t)wb(m)ee (3.5.12)
By expanding Eq. (3.5.11) in powers of ¢ we obtain to leading order
ZIH = Z[H] (1 + 68 + ...) (3.5.13)
and thus since the 6° are arbitrary

0= /dtzc“bCH“(F,t)&b(F,t). (3.5.14)

Here ¢ is the exact expectation value of ¢’® in the presence of ﬁ
Define now the generating functional of vertex functions I'[¢'] by means
of the Legendre transform

I¢] = \/g / dtZ&’a(F,t)Ha(F,t) — F[H] (3.5.15)
with

§F /3 -,
——— =/ =¢"°(F1). 5.1
SH(7, 1) 7 (7t) (3:5.16)
It follows [Amit 78] that

6T /3
—— =/ =H4%(F1). 3.5.17
The one-particle irreducible vertex functions can be defined in terms of func-
tional derivatives of I' relative to ¢. For instance, the two point-function
8°T
@@ 1,7/ 1) = — - 3.5.18
ab (T', ,T' bl ) 6¢2(F,t)6¢2(7-",,t,) ( )

is the inverse of the & / two-point Green function

> T o°F = Bacbrrnb(t —t"). (3.5.19)
P RAG R GRAN: E IR L GERZ) Rt
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With those definitions, Eq. (3.5.14) can be brought to the form

0= /dtZ (c“ P t)da’b(r t)) (3.5.20)

To avoid cumbersome notations we denote from now on (7,¢) = (21, 22, Z0) =
z and é776(t —t') = 6(z — z). By taking a further derivative with respect to
¢'%(z"), one gets the Ward identity

§°T - 6T
0= [ dt L . G — ——_6bs ’). 3.5.21
/ 2 (emsan®® * w0 =) - @320
In particular, for the Néel state

¢ (z) = |ln’ (1) F= (3.5.22)
and the corresponding staggered field of Eq. (3.5.4), we get the Ward Identity

\/7Ha(-'v)— abcl‘f’l" /dt ¢/d(zl)6¢la(z)( 1)"*2. (3.5.23)

In momentum space, Eq. (3.5.23) simply becomes
eoed /%Hf(c}) = lim e*¢|g|n*TP(@ + 7). (3.5.24)
F—0

The spontaneous breaking of symmetry means that as the external field is
switched off, the order parameter remains finite. In this case, for the right
hand side of Eq. (3.5.24) to vanish, the contraction of the vertex two-point
function with the Levi-Cevita tensor and with 7 must vanish in this limit.
Thus if |¢| # 0, the transverse components of ¢ must have a pole at w = 0
and § = @ in their correlation function (see Eq. (3.5.18)). We found before
that this was indeed the case in the leading order of an expansion around
Mean-Field theory.

Since now we know that this leading-order-pole must persist to all orders,
we can look for an effective Lagrangian with the following properties: (a) the
amplitude fluctuations are suppressed, (b) a massless pole for each transverse
component and (c) a minimum number of gradients.

The simplest expression satisfying these properties is the non-linear o-
model with a Lagrangian density given by

Lot = % ((6,&‘)2 — o2 (wz)Q) F.. (3.5.25)
where 71 satisfies the constraint
7| = 1. (3.5.26)

Here 71 represents the slow fluctuations of the order parameter field. The spin-
wave stiffeness p and velocity v, appearing in Eq. (3.5.25) are not generally
identical to the values we calculated above (see Eq. (3.4.29)). The reason for
that is that the non-linear o-model is the effective theory at low frequencies
and for wavevectors close to Q. It is the result of integrating out all fluctuations
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at high energies. This process significantly renormalizes the values of p and
vy. In addition, I have ignored the possible existence of topological terms. We
will see in chapters 5 and 6 that in one dimension these terms are generated
but not in two or higher dimensions.

It is a simple matter to see that if one solves for the constraint |7Z| = 1 in
terms of a ¢ and a 7 field

- o
= (7?) (3.5.27)
and expands in powers of 7, one finds to the leading quadratic order in #, the
effective action Eq. (3.5.2).

We conclude that the quantum fluctuations around a Néel state are de-
scribed by a non-linear o-model. One key assumption that we have made
here is that p was assumed to be large. Otherwise this expansion does not
make sense. In fact for p sufficiently small, the non-linear o-model has wild
fluctuations which destroy the Néel state. The system becomes a (quantum)
paramagnet and the spin symmetry is unbroken. We will see below that frus-
trating interactions will generally produce this effect. On the other hand, given
the large renormalizations in p and v,, it is not possible to be sure whether
the half-filled Hubbard model is in a Néel state (i.e. an antiferromagnet) or in
a disordered state. In practice only numerical calculations (i.e. fermion Monte
Carlo or finite size exact diagonalizations) can yield more reliable answers for
a specific Hubbard model. So far the evidence strongly favors a Néel state.

Finally we should consider the connection between the collective excita-
tions $(E,t) and the susceptibilities of the Hubbard model. From Eq. (3.5.1)

we see that the field H(z) couples to the local moment cl(:v)?aﬁcﬁ (z). Thus

by functionally differentiating with respect to ﬁ(m) we should be able to com-
pute expectation values related to the spin degrees of freedom. Indeed the spin
correlation function

K%' (z,2') = (Gnd|T'S%(2')S* (2")|Gnd)

is equivalent to

K%' (2,2') = —g(z m’)——62F—— = GO (2,2 (3.5.28)
5 ) 6Hf(.'l})6Hfl(z,) - aa’ ) .
where g(z,2’) is a sign
g(z,2") = (—1)FrHeateiten, (3.5.29)

Since Gﬁ),(:v,:v’) is the inverse of I‘fzi),(:v,:c’), we conclude that a zero in
Fg?,(ﬁ,w) at (@,0) implies a divergence of Ga?,(:c,:c’) also at (@,0). Thus
the staggered static susceptibility x; (Q,0), which is the Fourier transform of
Kaq(z,2") must have a delta-function peak at (Q,0) if the ground state is
a Néel State (é, 0). This peak only appears in the transverse components of

K44 since the longitudinal components are connected to excitations with a
non-zero gap.
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CHAPTER 4

One-Dimensional
Quantum
Antiferromagnets

In this chapter we will discuss the physical behavior of one-dimensional quan-
tum antiferromagnets. Although these systems are not connected in a direct
way with the physics of problems of current interest, such as high-temperature
superconductors, it is worthwhile to study them for several reasons: (a) in
many cases we have exact solutions (which are lacking in higher dimensions),
(b) they exhibit a wealth of ground states, including disordered phases, and
(c¢) they are a natural testing ground for methods and approximations. We
shall first discuss the spin one-half Heisenberg chain and later discuss its gen-
eralization to (a) higher spin-S and (b) other symmetry groups.

4.1 The Spin-One-Half Heisenberg Chain

Consider the Heisenberg model on a one-dimensional chain of N sites. The
Hamiltonian is

N
H=7> 3(n)-S(n+1) (4.1.1)

n=1
where J > 0. I will asumme that N is an even integer and that we have
periodic boundary conditions. Much of what we know about this system comes
from (a) Bethe-Ansatz solution for the ground state [Bethe 31] and excitation
spectrum [Yang 69], (b) mapping to the Sine-Gordon theory [Luther 75], (c)
non-Abelian bosonization [Affleck 85], and (d) mapping to the sigma model

[Haldane 83].

The exact solution via Bethe-Ansatz is very peculiar to one-dimensional
integrable systems and hence is not generalizable. The other methods are also
very specific to one dimension but they are more generally applicable, and
higher dimensional versions of them are currently being developed. Thus we
shall concentrate mainly on them. The mapping to the Sine-Gordon system
is based on the Abelian bosonization transformation ( [Bloch 34], [Lieb 65],

53
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[Luther 75], [Coleman 75], and [Mandelstam 75]). In a deep sense, it is a par-
ticular case of the non-Abelian bosonization developed by Witten [Witten 84],
Polyakov and Wiegmann [Polyakov 84], and applied to spin systems by Af-
fleck [Affleck 85]. The main advantage of all these approaches is that they are
non-perturbative; they yield the exact behavior of the ground state properties
at long distances, and that, in principle, one can find the low energy spectrum.
One important feature is the existence, in addition to spin-waves, of soliton
states. These states are highly extended configurations of spins which cannot
be created locally and that comprise the lowest portion of the spectrum of
these systems.

4.1.1 The Bethe-Ansatz Solution

I will not attempt to give a detailed description of the Bethe- Ansatz solution,
which is fairly technical. A good, reasonably recent summary can be found in
the Les Houches Lectures of 1981, in particular the articles by Faddeev and
Lowenstein [Faddeev 81] [Lowenstein 81].

Here I will review very quickly the method as given by Lowenstein. The
main idea is to consider the wave function for a pure state of N spins one-
half, each labeled by an index s(n) = :i:%, (n = 1,...,N). The total spin
of the system is S = EnNzl S(n). We will consider states ¥(s(1),...,s(n)) in
which (N — M) spins are up (+3) and M are down (—3). Thus, the total
z-component of the spin is

N
S, ¥(s(1),...,s(N)) = (Zs(n)) W(s(1),...,s(N)) (4.1.2)
with N
> s(n) = % - M. (4.1.3)

We shall denote with

U(s(1),...,8(N)) = ¢(z1,...,2m) (4.14)

a state with the j-th down spin located at the site z; (1<z; <...<z; <
... < zpr < N). Thus, if ¥q is the ferromagnetic state

Ug=|[7...7) (4.1.5)
the most general state with M spins down has the form
U=>" ¢(z1,...,2)S (1) ... S (zar)¥o (4.1.6)

{z;}

where S™(n) is the lowering operator at site n.

The Heisenberg model is translationally invariant and on a chain with
periodic boundary conditions has the translation symmetry in which the n-th
site is identified with the (N + n)-th site. Thus we can look for a basis in
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which not only S? and S, are diagonal but the cyclic permutation operator
P where

PU(s(1),...,s(N)) = ¥(s(N),s(1),...,s(N — 1)), (4.1.7)

is also diagonal.

4.1.2 The Basis Functions

Bethe’s method begins by first writing the Hamiltonian in terms of a spin-
exchange operator P, ,, where

Pn m¥(s(1),...,5(n),...,s(m),...,s(N)) =

¥(s(1),...,s(m),...,s(n),...,s(N)), (4.1.8)
in the form .,
H=J Z (Pn,n+1 - 1) (4'1'9)

with periodic boundary conditions. Consider first a state with one-spin down

N
U(sy,...,sn) =D é@)IT...1...1) (4.1.10)
r=1

where the spin at site p is down. _

By using the cyclic translation operator P we see that its main effect is
just to shift the location of the down spin by one. Thus an eigenstate of P
with eigenvalue 4 should satisfy

Po(p) = d(p+1) = ué(p) for p=1,...,N—1 (4.1.11)
and
P(N) = ¢(1) = up(N). (41.12)
Hence
¢(p) = w1 ¢(1) (4.1.13)

and if we set ¢(1) = 1, we get
#(p) = p~1 (4.1.14)
and in particular g must satisfy
1=¢(1)=¢(N+1)=p" (4.1.15)

i.e., it is an N-th root of unity.

Now, a state with one spin down can either be a member of the multiplet
with highest total spin—% or of the multiplet with total spin- % —1). In this
last case the state is the highest weight state in the multiplet and satisfies

St¥ =0 (4.1.16)

where

N
St=3"5%@n). (4.1.17)
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Thus we get
N
STE =) "4(@St1...1...1)

p=1

N
Y e@STEIT.. L. 1) (4.1.18)

Ty
(Z ¢(P)) ¥o.

Using Eqs. (4.1.16) and (4.1.14), we obtain

N

N N 1—
0=S¢(p =S w'= 1_” . (4.1.19)
p=1 p=1

1

Thus ¥ = 1 and g # 1. Hence we found N — 1 spin (% — 1) multiplets
(the other members of the multiplet can be found by applying S~). The case
g = 1 represents the state S = %’— which belongs to the multiplet of the
ferromagnetic state.

If we now consider the case of M spins down we can still find states with
S = S,. They satisfy

Po(p1,...,pm) =1 +1,...,pm +1) = A(p1,...,pu)  (pm < N)

(4.1.20)
and
Po(pry. . spm-1, N)=¢(L,p1 + 1,...,ps—1+ 1) = Aé(p1, . .., Pr-1, N).
(4.1.21)

We look for wave functions which are products of single down-spin wave func-
tions

é(p1,.-.,PM) zu’l"_l...uﬁ}‘_l. (4.1.22)
By choosing
M
=TT u (4.1.23)
j=1
we can satisfy Eq. (4.1.20). As it stands, this ansatz does not satisfy Eq.
(4.1.21), but if we permute the order of the parameters p;,..., s we can
find a solution. Thus, Bethe introduced the Bethe-Ansatz
é(p1,...,PM) = Z AppB .. uBY (4.1.24)
PeSpr

where P belongs to the permutation group S (i.e. (P1,...,PM) is a permu-
tation of (1,...,M)). Now everything is consistent provided that the identity

Apg-r EApmp1,. P(M-1) = AppByr (4.1.25)
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where (QI,Q2,Q3, e ,QM) = (2,3,4,...,M,1) holds. The demand that ¢
be a highest weight state with S = % — M = S, yields the constraint [Lowen-
stein 81]

Ap: 20p(k+1) — HPEMP(R4+1) — 1

- _ 4.1.26
Ap 2ppr — pPEEP(R+1) — 1 ( )

for all k and for all pairs of permutations P and P’ such that (P'1... P'kP'(k+
1)...P'M)=(Pl...P(k+1)Pk...PM).
Define yx;

= X (4.1.27)
Xi — 13

Then one finds
Apt _ Xxpij — Xpj tim

4.1.28
Ap  xpij —Xpj —iT ( )
By combining Eqs. (4.1.27) and (4.1.25) we get
N\ N
(XPM + 17) ApMP1..P(M- n (4.1.29)
XPM — i Api1p2..PM o

Using Eq. (4.1.28) repeatedly we obtain

x\N  M-1 s
(M) =TI (XPM XP’J”,"). (4.1.30)

XpM — 3y j=1 \XPM — Xpj — T

Since this equation should be valid for all permutations P, we get the Bethe
Ansatz equations

N
(M) 11 ( —x +”’) . (4.1.31)
Xj =13 1 \Xi T Xxi—am

Also we see that

AN

11 (M)N =1. (4.1.32)

p.s
. Y ]
; Xj 2

Thus, for all M, the eigenvalue of P is an N-th root of unit. For a given
value of § = % — M, the Hilbert space with given S and P has a huge
size. It is thus generally unlikely that this basis will diagonalize a randomly
chosen Hamiltonian. It is now known that systems that can be diagonalized
in this basis, like the nearest neighbor Heisenberg chain, do so because they

are completely integrable, i.e. have an infinite number of conservation laws
[Faddeev 81].
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4.1.3 The Spectrum

Let us now act with the Heisenberg Hamiltonian on a Bethe-Ansatz wave
function. The result is

M
H¢(p1;;pM):J Z ¢(p1;’p_1+1;;pM)+

Pj#FPj41—1

M
+J Z ¢(p1,...,pj——1,...,pM)+
Pj#;?_l'*'l

+2J Z ¢’(P1;;PJ,;PM)_NJ¢(P1;;PM)
Pj#EPi41—1
(4.1.33)
The first and second terms come from acting with ) Pn n41 on 17| and [T
pairs. The third and fourth terms come from acting with 3~ Py 41 on 11
and || pairs. Using the Bethe-Ansatz, Eq. (4.1.31), we can put Eq. (4.1.33)
in the form

M
Hé(pr,- - o) =T Y [0(xs) + p7 1 (x5) — 216(p1s - -, par)+
i=1
(4.1.34)
<P+ Lp+ 1)+ ¢ pips )+

M:

- 2¢( P Pi+1--.)].

This last term (in brackets) is found to vanish. Thus the Bethe-Ansatz state,

Eq. (4.1.24), is an eigenstate of the Heisenberg model with eigenvalue E given
by

M
E=7) [u(x;)+nr ' (x;)—2] = Z 7T ( 7 (4.1.35)

i=1

We must now find solutions to the Bethe-Ansatz equation, Eq. (4.1.31).
Intuitively, if J > 0 (antiferromagnet), we expect the ground state to have
S, = 0 (“Néel ”) and thus % = %— Let us assume that the solutions of the
Bethe-Ansatz equations are real roots x;. By taking logarithms we can write
the Bethe-Ansatz equations in the form

M
2N tan~? (XTJ) ~23 tan™! (XL;—X) = 2r1; (4.1.36)
2

i=1

for j = 1,...,M and where I; are integers (half-integers) for N — M odd
(even).
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Let us now assume that {x;} is a set of real roots with N — M odd. The
function J(x)

J(x) = <2Ntan (j)—22t (X X)) (4.1.37)

is a monotonically increasing function of x. If J happens to take the value of
one of the integers I;, J~1(I;) = x will be equal to the corresponding root x;.
However, it may happen that for some integers the value of xy may not be in
the set {x;}. Such a x is called a hole (not to be confused with the “holes” of
a more general context). If the roots are closely spaced (i.e. their separation
vanishes in the thermodynamic N — oo limit), we should be able to define a
distribution of roots and holes p(x)

dJ (x)
=— 4.1.
p(x) ax (4.1.38)
or, equivalently, y

J(x) = J(—o0) +/ dx’' p(x')- (4.1.39)

Now 4Z is given by differentiating Eq. (4.1.37)

dJ N/2 A 1

= - . 4.1.40
=r00) = 2+(%)2 Z(x—x;)2+7r? ( )

Let {#;};=1..n denote the positions of the holes. In the N — oo limit the
following approximation is valid

M 400 n
S fa= [ dx00f60 - Y £0) (4.1.41)

where n is the number of holes. By using these results we find the integral
equation

+o0 / n
dy/—PX) __ N2 1 . (4.1.42
”(X)+/_oo Y- A x2+(§)2+;(x—9j)2+7f2 L

Consider now the set {x1,...,xa,81,--.,0} of roots and holes and let &
denote the k-th element in this set counting from left to right on the y-axis.
This element is defined by

(M - N)

5 (4.1.43)

€
/_ p(x)dx = J (&) — J(—o0) = Ix —

The integral equation is solved by a Fourier transform

+o0
p00= [ Ee™ ). (4.1.44)
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One finds the solution

n —zp0 —M
= —_— 4.1.45
p(p) = po(p) + Z Teooh 2 (4.1.45)
with N/2
po(p) = 5—7 = (4.1.46)
Thus
p(X) = po(X) + Y _ Phote(x — 65) (4.1.47)
J
and
= . 4.1.4
Po(x) = 5— " (4.1.48)
The total number of roots M in a state with n holes is
+oo - N-—n
M= / dxp(x) —n=p(0)—n= 5 (4.1.49)

Since M is an integer, n must be even (odd) for N even (odd). This state has
the energy eigenvalue

—Jn? / dx "(X) (4.1.50)
Here I introduced the density of roots for the Bethe—Ansatz equations
o(x) = p(x) — Z 8(x — 6:). (4.1.51)
i=1
In Fourier space, we get
E=—Jn / dpi(—p)e— (4.1.52)
with "
5(p) = Blp) — Y eiP%. (4.1.53)
i=1
We find the result n
E=Ey+ ) En6) (4.1.54)

i=1
where Eg, the ground energy state, is

Ey=—-2NJIn2
and the “excitation energy” (i.e. “holes”)
wJ
E = 4.1.55
n0) = coshf’ ( )

Thus, we can minimize the energy by choosing the solution with real roots
and no holes (complex roots are irrelevant to this issue [Lowenstein 81]). The
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total spin S for this state when N is even is obtained from Egs. (4.1.3) and
(4.1.49)

§=5~M=0. (4.1.56)

Thus the ground state is a singlet (S = 0). The excitations are “holes” with
energy ha For a lattice with N sites, N even (odd), there are an even
(odd) number of holes. A state with one hole constructed in this manner
carries S, = +%. The spin-reversed hole is found by acting with S~ on this
state. These states are degenerate as required by the SU(2) symmetry.

The momentum of these states can be calculated by noting that the op-
erator P which translates the wave function by one lattice spacing is related
to the total momentum P of the state by

Pé(p1,...,pm) = ¢Pé(p1,...,pu)- (4.1.57)

Before we found that the eigenvalue of P was A. Hence

— M M X.+i1
P=—ilnd=—i) Inpgj=—i) In (’—3) . (4.1.58)

L
i=1 j=1 X; 2

We can also write
P = —2Ztan‘1 ( ) + Mz (4.1.59)
In terms of “holes” §; and the distribution p(x) we can write P in the form

P=P+) P (4.1.60)
i=1

where Py is the total momentum of the ground state

_ too 2x
Py = —/ dxpo(x)2tan™" (7) + Mn (4.1.61)

—00

and P; is the contribution from the i-th “hole” (see Eq. (4.1.45) )

+oo zp(x 8:)
/ / P9 tan~1 (2") T (4.1.62)
€

Since po(x) is even (see Eq. (4.1.48) ), the total momentum of the ground
state is (mod 27 ) _
Py=Mnr (4.1.63)

as predicted by Marshall’s theorem [Marshall 55].

What is the momentum of the first excited state? From Mean-Field the-
ory, which yields a Néel state, we expect that the lowest excited state should
be a spin wave with wave vector @ = 7 (i.e. momentum P = ) and vanish-
ing energy. From the excitation energy, Eq. (4.1.54), we learn that there are
massless excitations (i.e. £ — Ep) if § — +oo. But, in this limit, 2; has the
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value

p 2%\ eiP(x—6:)
‘. ll-I}:looP + ‘ll.moo/dx/—2tan (—) T o=l

» eiPX
=+ llm dx/—2tan (;(x+0,~))

6o L+e™l 41 64
J eiPX
_iW/ X/27rl+e ~lpl
_ é(p)
:i:7r/dp1 g
Thus we get
. _ T
o.llg:loopi = i§ (4.1.65)

This result means that the lowest excited state of a chain with N even, which
has two “holes”, has total momentum equal either to zero or 7« (mod 27
). In fact we can view this state as the sum of two “single” particle states
(i.e. “hole”), each with momenta +7%. In other words, this state is not a
spin-wave with momentum =. Rather the system behaves as if its elementary
excitations had momenta close to 7. This resembles the physics of one-
dimensional fermions on a half-filled chain. The Fermi “surface” is just two
points, kp = *7. The elementary excitations are particle-hole pairs with
momenta close to the Fermi points. We will see below that this system, with
purely bosonic degrees of freedom, indeed has fermions in its spectrum.

4.2 Fermions and the Heisenberg Model.

4.2.1 The Jordan-Wigner Transformation

At first sight it may appear to be obvious that there should be fermions in
the spectrum of the Heisenberg model. After all, we derived the Heisenberg
model as the strong coupling limit of a purely fermionic system: the half-
filled Hubbard model. However, the fermions found in the last section are not
the “constituent” band (Hubbard) fermions. For one thing these states carry
no electric charge. The spin up and spin down species are only degenerate
precisely at the Heisenberg isotropic point. Furthermore, it is not possible to
write the spin operators S* as local bilinears in those fermions.

One may also argue that the states of the spin system can be viewed
as a collection of bosons with hard cores: a spin can only be flipped once.
The algebra of the Pauli matrices, on the other hand, seems to have mixed
properties: they commute on different sites and they anticommute on the same
sites. The anticommutivity of the Pauli matrices guarantees that the bosons
have indeed hard cores.
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More formally, let us imagine that we are going to use a set of basis vectors
in which §, = S3 is diagonal. We can also consider the raising and lowering
operators, at each site n, S*(n)

St (n) = S1(n) £ iSy(n) (4.2.1)

where I am using the notation

Si = %a; i=1,2,3 (4.2.2)

and the ofs are the three Pauli matrices

01:((1) (1)) agz((z.) _0’) 03:((1) _01) (4.2.3)

The operators S*(n) commute on different sites
[5*(r), §*(m)] = [~ (n), 5= (m)] = [S*(n), S~ (m)] =0 (424)
for m # n. But on the same sites they anticommute
{§t(n),S"(n)} =1 (4.2.5)
{8*(n),S*(n)} ={S~(n),S"(n)} = 0. (4.2.6)

This last condition implies that, if |F} is an arbitrary state not annihilated by
S*(n), then it is annihilated by S+ (n)?

S*(n) [S*(n)|F)] = 0. (4.2.7)

In other words, S*(n) creates bosonic excitation at the n-th site but it is not
possible to have two such excitations at the same site. This is the hard sphere
condition.

Consider now the kink or soliton operators K(n)

K(n) =exp (i7r i S*(5)S~ (J)) . (4.2.8)

i=1

In terms of S3(n) we can write

K(n) = exp (i7r i (Ss(j) + %)) =i""lexp (i7r i Ss(j)) . (4.29)

=1

Thus K(n) is a unitary operator which, up to a phase factor, rotates the spin
configurations by 7 around the z-axis on all sites to the left of the n-th site.
Thus the state |3 ...1), an eigenstate of S; on all sites, becomes

1 1 11 1

1 —sn—-1y - _ - = -
[{(n)lg...§> =1 l 2... 2,2...2> (4.2.10)

where the last flipped spin is at the site n — 1. The operator K(n) is said to
create a kink in the spin configuration. Clearly this operator cannot have a
non-vanishing expectation value in any state exhibiting long-range-order. On
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the other hand, it may have an expectation value on states without long-range-
order. For this reason these operators are usually called disorder operators
[Kadanoff 71] and [Fradkin 78]. Consider now the operators ct(n) and c(n)
obtained from flipping a spin and creating a kink at the same place [Jordan
28]

c(n)=K(n)S™ (n) = e'™ XL $TDS™ ) g- (n),

mmet e (4.2.11)
ct(n) = S+(n)Kt(n) =S*(n)e " 25 st 2
The following results are easy to prove [Lieb 61].
Firstly
cf(n)e(n) = () KT () K (n)S~ (n), (4212
c(n)et(n) = K(n)S~(n)S*(n)K 1 (n).
But, the kink operator is unitary
Ktm)K(n) = K(n)Kt(n) =1 (4.2.13)
and because S*(n) and K (n) commute, one finds
ct(n)c(n) =S5t (n)S~(n) = % + S3(n),
2 (4.2.14)
e(n)ct(n) = S~ (n)S*(n) = 5 — Sa(n).

Moreover, the hard-core condition (S 1)2 = 0 implies that the same property
holds for the ¢'s

(cT(n))2 = (c(n))® = 0. (4.2.15)

What are the commutation relations obeyed by the operators cT(n), c(m)?
Let us compute the products ¢(n)c(m) and c¢(m)e(n), say for m > n. Clearly
S~ (n) commutes with all the operators in K(m) except for those at the site
J = n and therefore

S (n)K(m) = "ﬁl TS TESTH) = (n)ei ™S (WS (), (4.2.16)
j=1j#n
By making use of the identity
e:i:i7r5+(n)5'(n) — eiiﬂ'(%+53(ﬂ)) — —253(1’1) (4217)
we get
ST (n)K(m) = —K(m)S~(n) (4.2.18)
since {S~(n),Sa(n)} = 0 on the same site. Thus
e(n)e(m) = K(n)S™(n)K(m)S~(m)
=—K(n)K(m)S~(n)S~(m)
=—K(m)S~(m)K(n)S™(n)
= —c(m)c(n).

(4.2.19)
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Similarly we can also prove (n # m)

cf(n)e(m) = S+ () Kt (n) K (m)S~ (m)
= —K(m)S~(m)S*t )k (n) (4.2.20)
= —¢(m)cf (n).

In summary, the operators cT(n) and ¢(n) obey canonical anticommuta-
tion relations
{e(m),e(m)} = {cl (n), el (m)} = 0 (4:2.21)

and
{c(n‘)’ CT(m)} = 6n,m' (4.2.22)

Thus the operator cT(n) (c¢(n)) creates (destroys) a fermion at site n. These

operators are highly non-local. The states created by cT(n) are fermions. Con-
versely we can also write the inverse of the Jordan-Wigner transformation

) = o= i et ets)
T 1 ) (4.2.23)
§+(n) = of (n)ei* Z5=s T et

4.2.2 The Heisenberg Chain: Fermion Picture

Let us apply these results to the Heisenberg model. In terms of St and S,
the Heisenberg Hamiltonian (with anisotropy v) is

H= JZ (STAHS G+ +S(G)SHG+1) +

j=1

oy (sts~(-3) (s*G+ns-G+1-1).

N —

N

(4.2.24)

For 7y = 1 we recover the isotropic Heisenberg model. The case ¥ = 0 is known
as the spin one-half XY model.
We can now use the Jordan-Wigner transformation, Eq. (4.2.23), to get
S*HS (G +1) = cT(j)e‘i"cT(j)c(j)c(j +1)
= () (1= 2T (1e(h)) (G +1) (42.25)

= cf(§)e(i + 1)
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and
SG)SHG+1) = e(i)et e DO 4 1)
() (1= 2¢t(G)e)) GG + 1) (4.2.26)

= e(§)el (5 + 1) = 2e(i)el (9)e(i)el (G + 1)
=c(j + 1)c(4)-
The Heisenberg Hamiltonian takes the simple form [Luther 75]

1= 335 (0t 0 4ne) #0350~ 1) (3640 - 3)

j=1
(4.2.27)
where n(j) is the density (or occupation number) for spinless fermions
n(4) = ol (3)e(s). (4.2.28)

What boundary conditions do the ¢(j) operators obey? Suppose that the
spin problem has periodic boundary conditions, i.e.

Si(N+1)=S;(1) fori=1,2,3. (4.2.29)

In the fermion case, the periodic boundary conditions on the spin degrees of
freedom imply

. N . .
(N +1) = " 2im ST g= (v 4 1)

LD DAE SO ) (4230
where
c(1) =S~ (1). (4.2.31)
Thus, the boundary condition on the fermionic degrees of freedom is
¢(N + 1) = iV ei™Sa¢(1) (4.2.32)

where S3 is the total z-component of the spin. But, E;V:l S*(5)S™(j) is just
the total fermion number Np so that S3 and Np are related by

N

n o N N

Ss= Y cl(5)e() - 5 =Nr -3 (4.2.33)
i=1

Hence, the S3 = 0 sector maps into the half-filled sector for the fermions under

the Jordan-Wigner transformation:

N
S3=0=> Np = 5‘,
provided that N is even. Conversely, the state with S3 = % has Np = %f‘—l
provided that N is odd. The boundary condition, Eq. (4.2.32), depends on
the z-component of the total spin S3 or, alternatively, on the total number of
fermions Np

(4.2.34)

(N 4+ 1) = e™Nre(1). (4.2.35)
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For a lattice with N even and S3 = 0 (i.e. Np = &) we get periodic (antiper-
odic) boundary conditions if % is even (odd). Thus the many-body fermion
wave functions obey different boundary conditions depending on whether Np
is even or odd.

The Hamiltonian, Eq. (4.2.27), has quadratic terms and is not readily
solvable except, of course, by Bethe’s method. We can gain some insight by
considering the case ¥ = 0, the XY model.

For v = 0, the Hamiltonian is simply
J < t
Ho=3 ; (F(1eG+ 1)+ hoc) . (4.2.36)

This is a trival problem. The fermions are free. As we saw before, this problem
can be solved by Fourier transform. Let ¢(k) denote the Fourier modes, with
|k| < m. The eigenvalues for a system with periodic boundary conditions are

Ho = /_ ) %c(k)c’f(k)c(k) (4.2.37)
where
e(k) = J cosk. (4.2.38)

The ground state is found by filling up the negative energy modes. In the case
of Np = %, we get two Fermi points, kp = £%. The negative energy states
have k in the interval = > |k| > 7.

This system is gapless. In fact there are no massive excitations in the
one-dimensional spin one-half spin chain. This system is critical in the sense
that all its correlation functions fall off as a power of the distance. We will
discuss this issue below. Also, there is no long-range-order in the sense that
(at equal times)

t
im  (S*(n)S~(m)) » (—1)™ " ——t 4 4.2.39
m(SH)S ()~ (1) (42:39)
with an exponent 7 that will be computed below. Thus there is no Néel order
for the chain (Kennedy, Lieb and Shastri [Kennedy 88] have shown that for
the square lattice the spin one-half XY model kas long range order (S*) # 0).

4.2.3 Continuum Limit

We are interested in the physics at large distances compared with the lattice
constant and at frequencies much lower than, say, J. In this limit some sort of
continuum theory should emerge. We will see now that the continuum theory
associated with this one-dimensional system of fermions looks like a theory of
“relativistic” fermions moving at the speed of “light” (with ¢ = vp, the Fermi
velocity). These results apply not only to the Hamiltonian of Eq. (4.2.27) but,
in fact, to allone-dimensional Fermi systems with local hopping Hamiltonians,
A similar situation developes for fermions in a flux phase in two dimensions
as we will see in chapter 6.
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Consider first the non-interacting problem

Hy = z i (cT(n)c(n +1)+ h.c.) (4.2.40)
2

n=1

which is equivalent to the XY model. We are assuming periodic boundary
conditions. The dispersion law for this system is

e(k) = Jcosk (4.2.38)

with Fermi points at kp = £7.. The elementary excitations will have a charac-
teristic momentum of +kp and we should expect that the correlation functions
of the fermions should have a rapid variation of the type e’*¥" = i® with a
slow variation on top. It is then natural to define new fermionic variables a(n)
which should only exhibit a slow variation in n and hence should have a simple
continuum limit. Define

a(n) = i""c(n). (4.2.41)

The Hamiltonian Hg now reads

N
Hy = % Z (z""at(n)z’('ﬂ'l)a(n +1)+ h.c.)
n=1

g
3 Z (z’at(n)a(n +1)+ h.c.) (4.2.42)

n=1

z'aT(n) [a(n+ 1) — a(n —1)].

I
po|
M=

il
—

n

where we have used the periodic boundary conditions in the last step. By
separating the sum into even and odd sites, one finds for N even

N/2
Ho = % ; i{at (25)[a(2s + 1) — a(2s — 1)] + aT (25 + 1)[a(2s + 2) — a(29)]).

(4.2.43)
We see that even sites couple to odd sites (and vice versa) but there is no
even-even or odd-odd coupling.
Define now the spinor field ¢q (e = 1,2), by

#1(n) = a(2s) on even sites,
pa(n) = (4.2.44)
¢2(n) = a(25+1) on odd sites.
Thus we can write
J N/2 "'
Ho = ’5 §{¢1 (25)[¢2(25 + 1) — ¢2(2s — 1)]+ (4.2.45)

+65(25 + (25 + 2) — 61(25)]).
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A Fermi field ¢4(z) in the continuum is expected to obey the equal- time
canonical anticommutation relations

{d)l(m)’ 1/)(1’(13,)} = 6(1(1’6(3 - -'13,). (4246)
The ¢,(n) fields obey

{d’l (n), ¢o(n")} = baabn,n/ (4.2.47)

since they are defined on a lattice. We can make these relations compatible
by defining
1
Ya(z) = —mcﬁa(n) (4.2.48)
for £ = 2sag and ay the lattice spacing, which will be the unit of length.
Thus 9, has dimensions of [length]‘% whereas ¢,is dimensionless. We have
assumed that the distribution 6(z — z’) is defined by the limit

6n,n’

— !y - 1
f(z—2') = alon_‘n.0 240 (4.2.49)
which, of course, makes sense only as a limit.
By expanding ¢, in Eq. (4.2.45), in a Taylor series expansion:
25 + 1) — ¢2(25 — 1) = 2a0(2a0) /20, 94(2),
¢2( ) — ¢a( ) 0(2a0) /*0z1ba(z) (4.2.50)

$1(25 +2) — ¢1(25) ~ 2a0(2a0)1/26,1/)1(:c),
and using the fact that

Jim S 9a0/(s) = / dzf(z), (4.2.51)

one gets the effective Hamiltonian in the continuum Hy to be given by

o = / deyt ()it v(z) (4.2.52)
where H
-~ 0

HO = J_ao (4.2.53)

and the matrix
01
a=o01 = (1 0) . (4.2.54)

This is just the Hamiltonian for a Dirac spinor field ¥,(2) in units in which
i = 1 and the Fermi velocity vp = 1. The upper (lower) component of 1,
represents the amplitude on even (odd) sites. Alternatively we could have used
a basis in which ¢; is diagonal. In this basis, the upper (lower) component
R(L) represents fermions moving toward the right (left) with speed vp = 1.
It will be, in fact, more convenient to work in this so-called chiral basis.

1
Y1(2) = —= (—R(z) + L(2)),
\{2— (4.2.55)
Yaole) = 5 ( Rlz)+ L(z)).
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We get
Wli0, 4 + wlidw, = —(RYi0. R — LTi6,1). (4.2.56)
In the Dirac theory in (1+ 1) dimensions one defines the y-matrices vq, 71
and <5 by requiring that they satisfy
{77} =294 and 75 = iyom1- (4.2.57)
We can choose the chiral representation, in which
Y5 =707 =03,
Yo = 01, (4.2.58)
7= —i0'2.

It is convenient t6 define a field 4 by

3= vty (4.2.59)

The Hamiltonian Hy now is
o= / dzi()iv1 0s(z). (4.2.60)

Let us write the interaction terms of Eq. (4.2.27) in this formalism.
First, we note that we can rewrite

Hin = wé (et - 3) (dG+nei+n-3)  (@20n

in the form

N 2
Hiy = % 3 ( t()e() — et G+ DelG + 1)) + i‘yJN. (4.2.62)

=1

Following the same steps which led to Eq. (4.2.60), we find that f}int, defined
by

3 Hint
Hi = 4.2.63
b= | (4:2:63)
has the form, up to the irrelevant additive constant £ 4 a5
Hine = —27 / dz (§(2)(z))’ (4.2.64)

which is usually referred to as a Gross-Neveu interaction. The expression %
is the continuum limit of
1
s—(n(2s +1) = n(25) ~ — (] (@)1 (2) - ¥ (&) (2))
ap _ (4265)
= (RTL + LTR) = 3.

Thus a non-zero average for ¥ breaks chiral (i.e. left-right) symmetry. We
see that this is equivalent to the development of a periodic density modulation
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of the lattice fermion system. Tracing our steps backwards, we interpret this
state as an antiferromagnet.

Equation (4.2.64) can also be written in the form, up to an additive con-
stant,

Hine = 7/da:j#j“ —27/da: ((R’U:)2 +(LTR)2) (4.2.66)
where we have used the fermionic current j,

Ju = Pru¥ (4.2.67)

which, in the chiral basis, has components

jo=RIR+LIL (4.2.68)

and
ji=RIR—LIL. (4.2.69)

Thus j, measures the total number of fermions, i.e. the total density, and j;
is the difference of the number of left and right movers. A system with the
first term of Eq. (4.2.66) as its only interaction is known as the (massless)
Thirring or Luttinger model.

The last term in Eq. (4.2.66) is peculiar. On the one hand, it appears to
be superficially zero, since it is a sum of squares of Fermi fields and Fermi
statistics may seem to imply that it is zero. However, all these expressions,
written in the continuum, are to be interpreted as a product of operators at
short distances. Furthermore, when inserted in the calculation of any expec-
tation value, there should be singular contributions due to the presence of this
operator. We are supposed to keep the leading singular term in the product.
Thus, an expression such as (¥%)? and the like are to be taken in the sense
of an operator product ezpansion [Kadanoff 69] and [Wilson 69] in which only
the leading singularity is kept.

What is more important the operators (RTL)? and (LTR)? break the
continuous left-right (chiral) symmetry down to a discrete subgroup. Terms
of this sort arise from Umklapp scattering processes [Emery 79] [Haldane 82].
In the language of Feynman diagrams, these terms give contributions of the
type shown in Fig. 4.1. Such processes violate momentum conservation by 4kp,
which equals 27 for a half-filled system. Thus 4kF is a reciprocal lattice vector
and hence the process is allowed, since on a lattice momentum is conserved
mod 27,

There 1s a continuous chiral symmetry

Yo = (¢7°%) .5 Y5 (4.2.70)

where 75 is given by Eq. (4.2.58), and 6 is an arbitrary constant angle.
It is easy to check that operators, such as the current ¥y,¢ and ¥iy*0,¢
are invariant. Indeed upon a chiral transformation, ¥ transforms like

B = plyg = wlemityy = gre+ine (4.2.71)
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L L R R
R R L L

Figure 4.1 Umklapp processes.

since 7 and 75 anticommute. Thus

byt = 7Y’ (4.2.72)
and ~ _
PYiy M = iy, 0% (4.2.73)
again, since {vs,7,} = 0. However ¥1 is not invariant since
P = P'et210" = cos(20)9' v’ + isin(20)¢ ys¢'. (4.2.74)
In particular (1/31/))2 only has the discrete invariance
Py = ¢’y (4.2.75)

In other words 6 = 7. This is not so surprising. The chiral symmetry originates
from the two-sublattice structure. There is always an arbitrariness in how we
choose a given sublattice. Thus the discrete symmetry is genuine, but the
continuous symmetry is a consequence of a carelessly taken continuum limit.

4.3 Bosonization

We are now going to discuss some subtle but very important properties of
one-dimensional Fermi systems. To date, these properties are known not to
generalize to higher dimensions. Some superficially similar ideas have been
recently discussed in the context of “anyon superfluids” (which we will discuss
later). The physics is quite different, though.

A very important tool for the understanding of one-dimensional Fermi
systems is the bosonization transformation. In its Abelian form this transfor-
mation was first discussed by F. Bloch and S. Tomonaga [Bloch 34]. It was
rediscovered by Mattis and Lieb [Lieb 65] in the 60’s and by Coleman [Cole-
man 75], Luther [Luther 75] and Mandelstam [Mandelstam 75] in the 70’s.
Witten [Witten 84] solved the non-Abelian problem in 1984. We will only
consider the Abelian case.
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Let us consider first the non-interacting theory with Hamiltonian Hy given by

Ho = / deytiad, v (4.3.1)

where a = 75, with canonically quantized Fermi fields, i.e.
(Wl(2), ¥ (2)} = bawb(z = ),

{#a(2), bar (2} = (¥l(2), w2} = 0

at equal times. The Hamiltonian Hy and the canonical anticommutation re-
lations follow from canonical quantization (for fermions!) of the system with
Lagrangian density

Lo = Yiy* O,y = Piv°Bovp — piy' 019 (4.3.3)

which has the Dirac form. All along I have assumed that the metric tensor

Guv 18
1 0
Juv = (0 _1) . (4.3.4)

This Lagrangian density is clearly invariant under global continuous chiral
transformations. In fact, the Hamiltonian, in the chiral basis, is

(4.3.2)

Ho=— / de(Rlio, R — Ltid,L) (4.3.5)

which implies that the right (left) moving component R(L) moves towards
the right (left) at speed 1 (in units in which vp = 1).

4.3.1 Anomalous Commutators

Consider now the “vacuum states” |0) and |G), where |0) is the empty state and
|G) is the filled Fermi sea obtained by having occupied all the negative energy
one-particule eigenstates of the Hamiltonian Eq. (4.3.5). The Hamiltonian
Hy relative to both vacua differs by normal ordering terms. Indeed, for any
eigenstate |F) of Hy one can write

Hy=:Hy:+Ep|F)(F| (4.3.6)
where : Hy : is the Hamiltonian normal ordered with respect to |F), i.e.
cHo:|Fy=(F|:Ho:=0 (4.3.7)
and EF is the energy of |F')
Hy|F) = Ef|F). (4.3.8)

Clearly, if we choose |0) or |G) as the reference state, Er will be different.

The currents and densities also need to be normal ordered. This is equiv-
alent to the subtraction of the (infinite) background charge of the reference
state, say of the filled Fermi sea. We will see that these apparently “formal”
manipulations have a profound effect on the physics.
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Let us compute the commutator of the charge density and current operators
at equal times [jo(z), j1(2’)]. Relative to the empty state [0}, both operators
are already normal ordered since a state with no fermions has neither charge
nor current, i.e.

Jo(2)10) =0,
A1(z)|0y =0.
It will be useful to consider the right and left components of the current
j+ defined by

(4.3.9)

jx = ‘;‘(J'o + 51). (4.3.10)
Clearly, we get that
j+=RIR (4.3.11)
is the right moving current, and
i- =11 (4.3.12)
is the left-moving current. In Fourier components, we find
j+(p) = % Zk: RY(k)R(k + p) (4.3.13)

which annihilates the empty state |0). In fact, for any state |¢) with a finite
number of particles, the result is

[+(p), £ (2")]l¢) = 0. (4.3.14)

Consider now the filled Fermi sea, |G). Explicitly we can write

6) = TI ”'@) [T £t (@)l0). (4.3.15)
p<0 ¢>0
In other words, in |G} all right moving states with negative momentum and
all left moving states with positive momentum are filled (see Fig. (4.2)).

Let us compute the commutator [j4(z),j+(2)] at equal times (see, for
instance, I. Affleck [Affleck 86]). The operator j4(z) is formally equal to a
product of fermion operators at the same point. Since we anticipate divergen-
cies, we should “point-split” the product

j+(z) = Rt (2)R(z) = 11_{1(1) Rt (z+€)R(z—¢ (4.3.16)

and write j; in terms of a normal ordered operator : j, : and a vacuum
expectation value

j+(@) =1 i1+ (2) : + Im(GIRT (2 + O R(z ~ IG). (43.17)

The singularities are absorbed in the expectation value.
Consider a system on a segment of length Ly with periodic boundary condi-
tions and expand R(z) in Fourier series

1 +00 ’-B’r:
R(z):m 3T Ry (4.3.18)

p=-—00
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Figure 4.2 Vacuum |G) is obtained by filling the right moving states with negative
momentum (filled cicles) and filling the left moving states with positive momentum
(empty circles).

The vacuum expectation value to be computed is

1 2 i3 [(z—e)p'—(z+¢
(GIRNz + Rz~ IG) = - D] B EHINGIRI Ry G).
p,p'=—o00

(4.3.19)

Using the definition of the filled Fermi sea, we get
(GIR} Ryt |G) = 8,06(—p), (4.3.20)
(GIL} Ly |G) = 6,,06(+p). (4.3.21)

Hence o
1 —i27P(2¢
(GIRY(z + O)R(z — €)|G) = I 3 e, (4.3.22)
p=—00

This is a conditionally convergent series. In order to make it convergent, we
will regulate this series by damping out the contributions due to states deep
below the Fermi energy. We can achieve this if we analytically continue € to
the upper half of the complex plane (i.e. € = € + in) to get the convergent
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expression

t _ 2 S LE(e+in)
(GIR'(z + ¢)R(z — ¢)|G) = hrr%J I Z::O 'To

1 1
= hm e v —
n—0 Lo 1—¢ L0 = (e+in) (4323)
— lim 1 1

2—0 Lo —zL—(c + i)
i

= 4re
Thus, the result is

(GIRY(z + O R(z — €)|G) = (4.3.24)

47!'6
Similarly, the expectation value (G|LT(.7: +¢)L(z — €)|G), is found to be given
by

—i

(GILY (z + ©)L(z — €)|G) = (4.3.25)

4re’
The current commutator can now be readily evaluated

[+ (2), i+ ()]

lim RT(:c + €)R(z — €), Rt (' — YR(z' + 5)]

lim {6(:c —z+€+ C)RT(Z +e)R(z' — )+ (4.3.26)

€,6/—

—bz—2"+€ + C)RT(ZI + €¢')R(z — €)}.

The contributions from normal ordered products cancel (since they are regu-
lar). The only non-zero terms are, using Eq. (4.4.22),

i6(z' —z+€ +e) i6(z' —z2+e+¢€)
OB h (27r(:c—:c’+c+c’) 2n(z! —z+c+c’)) ’

(4.3.27)
Thus, in the limit we find
, . )
[+ (), 54 (2] = =5 -0=6(2 — 2') (4.3.28)
and .
. . 1
U-(2),i-(z")] = +5636(a: —z'). (4.3.29)
In terms of Lorentz components, we get
. . g
[Fo(2),51(2")] = —;axé(x —z') (4.3.30)
whereas

lio(2), jo(=")] = [1(=), j1(2")] = 0. (4.3.31)

The commutator [jo(z), j1(z')] has a non-vanishing right-hand side which is
a c-number. These terms are generally known as Schwinger terms. They are
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pervasive in theories of relativistic fermions. But terms of this sort are also
found in non-relativistic systems of fermions at finite densities [Pines 66]. In
fact, these terms are the key to the derivation of the f-sum rule,

4.3.2 The Bosonization Rules

We thus notice that the equal-time current commutator [jo(z), j; (2')] acquires
a Schwinger term if the currents and densities are normal ordered relative to
the filled Fermi sea. The identity of Eq. (4.3.30) suggests that there should
be a connection between a canonical Fermi field ¢ with a filled Fermi sea and
canonical Bose field ¢. Let TI(z) be the canonical momentum conjugate to ¢,
i.e. at equal times

[¢(2), T(2)] = ié(z — 2'). (4.3.32)
If we identify the normal ordered operators
. 1
Jo(z) = ﬁaxﬂz) (4.3.33)
and ) )
hz) = —ﬁatqﬁ(x) = —ﬁﬂ(x), (4.3.34)

we see that Eq. (4.3.32) implies

% [0.6(), ()] = —%5'(.@ — ) (4.3.35)

which is consistent with the Schwinger term. These equations can be written
in the more compact form

1

Ju = ﬁe#,,a"qﬁ (4.3.36)
where ¢, is the (antisymmetric) Levi-Civita tensor and we are using from
now on the notation ¢t — 2g, 2 — #; and z = (20, 2;). We then arrive at the
conclusion that the current commutator with a Schwinger term, Eq. (4.3.30),
is equivalent to the statement that there exists a canonical Bose field ¢ whose
topological current, Eq. (4.3.36), coincides with the normal ordered fermion
current.

The fermion current j, is conserved, i.e.

8uj* = (4.3.37)

which is automatically satisfied by Eq. (4.3.36). In the case of the free theory,
the number of left and right movers are separately conserved. This means that
not only should j, be conserved, but jf‘, defined by

iy = Y1y’ (4.3.38)
should also be conserved. Using the identity

YuYs = €uY” (4.3.39)
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we see that j, and jf‘ are in fact related by
jz = €u 3", (4.3.40)

The divergence of jﬁ can be computed in terms of the Bose field ¢ as follows

1 1
.5# = l-“/ .” = — lald v A = — 2 . 4. .41
Oud el Y ﬁe €,20,0"¢ ﬁa ¢ (4.3.41)
Thus, the conservation of the azial current jf‘ implies that ¢ should be a free
canonical Bose field

0uj* =0 = 8% =0 (4.3.42)

where

0% =082 - 062 (4.3.43)

The Lagrangian for these bosons is simply given by
1
Lp =3 (8.0)°. (4.3.44)

Conversely, if ¢ is not free jf‘ should not be conserved. We will see below that
this is indeed what happens in the Thirring-Luttinger model.

Before doing that, let us consider a set of identities, originally derived by
Mandelstam [Mandelstam 75]. By analogy with the Jordan-Wigner transfor-
mation of Section 4.2, we should expect that these identities should be highly
non-local, although they should have local anti-commutation relations. These
identities, like all others derived within the Bosonization approach, only make
sense within the Operator Product Expansion: the operators so identified give
rise to the same leading singular behavior when arbitrary matrix elements are
computed. Also, from the Jordan-Wigner analogy, we should expect that the
fermion operators, as seen from their representation in terms of bosons, should
act like operators which create solitons.

The free Bose field ¢ can be written in terms of creation and annihilation
operators. Let ¢ (z) (¢~ (z)) denote the piece of #(z) which depends on the
creation (annihilation) operators only

¢(z) = ¢*(2) + ¢ (2) (4.3.45)

where ¢(z) is a Heisenberg operator (z = (o, 1), see Eq. (4.3.36)). Obviously,
¢~ annihilates the vacuum of the Bose theory. The operators ¢+ and ¢~ obey
the commutation relations

[0 (z0,21),0 ™ (zh, 2})] = 11_13(1) Ay(zo — zg, 21 — 27) (4.3.46)

where Ay is given by

Ay (2o —2b,21 — 24) = —-In [(e)((21 — 24)? — (z0 — 2b + i0)?)]
(4.3.47)
The arbitrary constant p has dimensions of mass (i.e. (length)™') and it is
necessary to make the argument of the logarithm dimensionless. It is custom-
ary to do this calculation by adding a small mass p and to consider the limit
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|zy — 2| <€ p~!. In this case the numerical constant c is related to Catalan’s
constant.
Consider now the operators Oq(z) and Qg(z) defined by

O4(z) = €¢) (4.3.48)
and

Qps(z) = e'? f—mdx‘aw(xo’x‘) =’ f—m dxln(zo’x’). (4.3.49)

When acting on a state |{¢(z")}), Oa(z) simply multiplies the state by e**#(#).
The operator Qg(z) has quite a different effect. Since II(z) and ¢(z) are
conjugate pairs, Qg(z) will shift the value of ¢(zg,z}) to ¢(zo,z}) + @ for all
2] < z,. Thus, Qg(z) creates a coherent state which we can call a soliton

Qp(z){d(20, 21)}) = {(z0,21) + BO(z1 — z1)})- (4.3.50)
Consider now the operator 14 g(z) of the form
Vg () = Oal(2)Qp(z) = ¢ ¥+ [ 1L 41008(0,52) (4.3.51)

and compute the product ¢4 g(2)¢q,s(2’) at equal times (2 = o). Using the
Baker-Hausdorff formula

eAeB = Behe[4.B] _ (A+B-3[4,B] (4.3.52)
where [A, B] is a complex valued distribution, we get
Ya,0(2)ap (@) = Yo,8 () a,p(2)e™ ) (4.3.53)

where ®(z, z') is given by (all the commutators are understood to be at equal
times and zo = zg but 2] # 21)

i9(2,4) = ~a[9(2), 8@ - 0 [ [ i) me+

—af /_’ dyi[¢(z), II(y')] — af /_’1 d ), 6] (4.3.54)

= —iapf.

For the operators v, g(z) to have fermion commutation relations we need to
choose a8 = £x. It is useful to write left and right components of the Fermi
field in the form [Mandelstam 75]

1/2 —i22 [ 4z (zo,2! )+ L ¢(z
R(z) = —i (—;i) et ce” 'R J2L dmitio s+ 96 : (4.3.55)
1/2 —i2z " 4z (zo,2t)- L ¢(x
L(z) = (—;{;) ed i e Tf—md 1Ml(zo,21)— 7 4(2) D (4.3.56)

The phase factor and constants in front of the operators R and L are chosen
so that y-matrices have the canonical form. The constant 3 is arbitrary and
it can be chosen by demanding that the currents satisfy the formula

1
Ju= =6 d’s. (4.3.57)
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Mandelstam found that Eqgs. (4.3.55) and (4.3.56), imply that

ju= %ep,aw. (4.3.58)
Thus, we must choose 8 = v/47 for the fermion problem.

It is interesting to consider products of the form limy, _,, RT(z)L(y) and
limy, .z, LT(y)R(:c) at equal times. We will use Mandelstam’s formulas to
derive an operator product expansion for RTL and LTR, both to leading order.
We find

im R _ (Y a2 i [T dsloog(zo,m))-Fé(wom)
ylh—r-ralclR (z)L(y) 1(27r) e :

—-&r f_y; dy}008(z0.y1)— L d(z0,31) |

X :e .
(4.3.59)
We can make use of the Baker-Hausdorff formula once again, now in the form
ceh i eB = AN BT], (At (4.3.60)

and write down a bosonic expression for RYL. The normal ordered operator
in Eq. (4.3.60) is, by definition, regular. Thus we can take the limit readily to
find L

lim : eA+® = ¢=#¢(2) . (4.3.61)

Yy—zr

This operator is multiplied by a singular coefficient which compensates for the

fact that RfL and e~#% have, in principle, different dimensions. An explicit
calculation gives the asymptotic result

lim RT(z)L(y):yum Flzy — 1)) : e 9@ (4.3.62)
Yy1—r 1— )

where the singular function f(|z; — y1]|) is computed as follows
_ BN £ T ~(f
fllz—u) =il ) e exp{-7 [ dy[$7(2), 8067 (V)lys=z0+
7 [ dni[008* @), 6 @llpomsgmsot

L6+, 6" @llyomeet

472

L1 Y1
+ 2 [ et [ 1006+ (), 806~ gy mes -

(4.3.63)
By inserting expressions for the commutators in Eq. (4.3.63) and, afterwards,
evaluating the integrals, we get

c
F(zy =) = 5 (e = ) (4.3.64)
with an exponent o given by

_ B o

g = 8_7[' — ﬁ' (4.3.65)
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Thus, to leading order, we must identify the operator RTL with

: c 4 —i z
lim RT(zo,zl)L(zo,yl) =~ ﬁ(c,uao) e~ iFd(=) . (4.3.66)

|zy—y1l=a0

where ag is a short-distance cutoff. Similarly, one finds the identification

lim LT(zo,yl)R(zo,zl) ~ ;—i(c,uao)" :etife@) . (4.3.67)

|1?1—91|zao
To sum up, the order-parameter field ¥y at 8 = v/4r is given by

" lirr|1~a W(2o, 21)¥(Z0,11) & c?,u : cos(Vamg(z)) : (4.3.68)
since for 3 = /47, Eq. (4.3.65) yields o = 0.

In the Ising regime of the Heisenberg model, we expect (1/31/)) to be dif-
ferent from zero and therefore the bosonic theory should have a ground state
such that the expectation value {cos(v/4m¢) is not zero. Under a chiral trans-
formation by 6 = 7 /2, ¥ transforms like

Vi — —g1 (4.3.69)

which is equivalent to a sublattice exchange. In bosonic language, this trans-

formation amounts to -

Var’
The Umklapp operators play a crucial role here [Haldane 82] [Nijs 81]

[Emery 79]. These operators enter in the interaction Hamiltonian, through
terms of the form (see Eq. (4.2.66))

é— b+ (4.3.70)

/ dz: (R')* + (£t R)?) . (4.3.71)

These terms can be bosonized using the Mandelstam identities Eqs. (4.3.66)
and (4.3.67). Indeed, we get the equal-time operator expansion

lim (RN (2)L(y))? ~ (%)2 o IVERH(E) . p—iVITH(W) .

|z1—y1l=a0

c _ )
%(ﬁ)zze—uw(zm W] .. g-i2VaTe(=) . (4.3.72)
~ (%)2 CemdmB4 (0% 2y —y1) L. —i2VATY(2) |

where Eqgs. (4.3.60) and (4.3.46) have been used. In short, the bosonized ver-
sion of the Umklapp terms is (at 8 = v/4x)

lim (RJ[(:L')L(y))2 ~ (;—":r)z(c,uao)2 ;e iVT() (4.3.73)

|-‘L‘1 —-Y1 |zao
and likewise

lim (LJ[(y)R(:c))2 ~ (%)2(cua0)2 c eHVTHE) (4.3.74)

|z1—y1l=a0
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4.3.3 The Sine-Gordon Theory

Now that we have done all the hard work and derived the necessary identities,
we are in position to write down the bosonized form of the Lagrangian. The
fermionic Lagrangian density (see Egs. (4.3.3) and (4.2.66))

Lr = $ir 0,0 — Y(Gr,¥)? + 27 ((RTL)2 + (LTR)2) (4.3.75)

which we showed was equivalent to the Heisenberg model (in the continuum

limit), is thus equivalent to a bosonic theory with Lagrangian density (see
Eqgs. (4.3.44), (4.3.57) and (4.3.73-74))

= %(@qﬁ)z - —6#,,3"¢e“>‘8,\¢ +4y ( ) (cpag)? : cos(4v/7P) : .
(4.3.76)
Using the identity
€upet = —6) (4.3.77)

we can write

5= 50 + 2040 + 47 (L) (o) cos(v/mg) . (43.78)

Thus, the interactions in the fermions give rise to (a) a rescaling of the Bose
field ¢ and (b) a non-linear term.

This Lagrangian density can be brought into the canonical form by a
simple rescaling of the field ¢(z)

<1 + 27) 6(z) = o(z). (4.3.79)

If we define 8 by the expression

167

:32: 2
1T

(4.3.80)

we can write the Lagrangian in the Sine-Gordon form

1
Lp = 3 (Bup)’ + g : cos(Be) : (4.3.81)
where ¢, the Sine-Gordon coupling constant, is given by

T (4.3.82)

IN 5
7('(10

up to a finite non-universal multiplicative constant determined by the short-
distance cutoff (i.e. we have arbitrarily set cpag = 1).

The rescaling of ¢ implies that the canonical momentum II should also be
rescaled so as to keep the form of the canonical commutation relations. Thus
1I is scaled as

= <1+ 27) " Boy. (4.3.83)
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The Mandelstam operators now read (see Egs. (4.3.55-56))

R(z) = —i (%) } el T J7L dzldop(zo,z )+iGe(e)
= 27 1 : ] : (4'3'84)
L(:z:) = (;_'u_) 2 e_& : e—i‘—; _; dz’laozp(xo,x’l)_i%‘p(z) :
T

with 8 given by Eq. (4.3.80). ~
Similarly, the order parameter field ¥¢» now has the asymptotic behavior
(see Egs. (4.3.68) and (4.3.79-80))

C

P(a)p(z) ~ ?" : cos (§¢) : (4.3.85)

This formula will help us to determine the correlation function of the staggered
longitudinal order parameter at long distances. We can also find bosonized
expressions for the -transverse components of the order parameter, i.e.
S%(2s + 1) — S(2s). The same procedure which led to the relation between
S.(2s + 1) — S,(2s) and ¢%, Eq. (4.2.65), now gives the correspondence

Mt (z)~ ST (25 +1) — S+(2s)
—ix [T dz': T:z:o = W(zg,z’): .
= v/ 2age f—md 1191 (#0,71)¥(w0,2) (1/):[(:::’) —n/);[(z))

which, in the chiral basis, has the form

(4.3.86)

M+(1?) ~ ,—2aoe—i7r f_; dz!:jo(zo,x)): (R'l'(z)e—i‘lr/él + Lt(z)eir/tl) . (4387)

The other transverse component, M ~, is just the hermitian conjugate of M+,
We can use the Bosonization “technology” to find an expression for M¥
in terms of the Bose field . The result is, up to singular coefficients,

M+(1‘) R ei%fj; 43000(20,51)= 3 ¢(z0,~00) :
5 [ asto oy i8 " (4.3.88)
% :e B ) o (z0,8) )+ p(x0,z1)— L @(z0,—00) .
The Sine-Gordon potential cos(B¢) does not affect the behavior at long
distances unless the operator is relevant, in the sense of the renormalization
group. This means that the dimension A of this operator should be less than
or equal to two, the dimension of space time. The dimension A 4 of an operator
A(z) is found by considering the correlation function, say at equal times,

1
|2y — zi 74"

(A(z)A(z")) ~ (4.3.89)

The critical exponent 74 and the dimension A 4 are related
na = 2AA (4390)

Thus, adding the operator A(z) to the Lagrangian density of the free the-
ory, Lo = $(8u¢)?, does not alter the infrared behavior unless A4 < 2. For
A, <2, the infrared divergences grow more and more severe with the order of
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perturbation theory in g4, the coupling constant for the operator A(z). Con-
versely, for A4 > 2 the infrared behavior is, at every order of perturbation
theory in g4, the same as that of a theory with g4 = 0.

In addition to the fermions themselves, two operators O,(z) and Qu(z)
are of importance to us

Oa(z) = %),

: T1 ] ' 4.3.91
Qb((l?) _ ezb f_m dxlaotp(xo,xl). ( )

The equal-time correlation functions for @, and Qp are
(G| : Oa(z) :: Of(y) : |G) = const x ed’le*(@om)e™(owa)l  (4.3.92)

Similarly we get

(Gl Qu(z) : Ol () : IG) = comst x &’ J-aw 41 J i drlBaw™ (s0,22).000 7 (zo.3)

: 2 Qy(y): = .
(4.3.93)

After a short computation, we get for the equal-time correlation functions

const
(Gl : Ou(z) : Ol(y) : |G) » - (4.3.94)
lzy — 31|37
and const
(Gl: Q(z) : 2l () : 1G) ~ - (4.3.95)
|z1 =y
Thus, the dimension A of the operator : cos(3¢) : is equal to
2
aA=2. (4.3.96)
4w

For A < 2 (i.e. 8?2 < 8n) this interaction is relevant in the infrared and for
B% > 87 it is infrared trivial. Thus, for values of the anisotropy 7y stronger
than a critical value 7y, ~ 7, we expect the non-linear term to be dominant.
In this regime, the field ¢ has small fluctuations around the classical value,
determined by its equations of motion. The order parameter field ‘151/) has a
non-zero expectation value and the ground state is two-fold degenerate. This
is the Ising regime of the Heisenberg model.

For the lattice theory one expects, and this is confirmed by a Bethe-
Ansatz calculation, that v, should be equal to one [Luther 75]. In other words,
the quantum Heisenberg antiferromagnet should be at this critical point. For
7 < %, XY anisotropy should dominate and the Mermin-Wagner theorem
would prohibit the spontaneous breaking of the continuous symmetry of the
XY model. The domain 4 < 7. is a line (or segment) of critical points. A
detailed theory of this phase transition, in connection with the Kosterlitz-
Thouless transition can be found in [Amit 80].

The correlation functions for all interesting operators on the domain
¥ £ 9, can be calculated. All the expressions listed below get logarithmic
corrections to scaling at v+ = +.. The dimensions of the fermion A(%), lon-
gitudinal A(¢)) and transverse A(M*) components of the staggered order
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parameter are found to be

sy B L B) e o

47 + 4T #?2 64w (4.3.97)
- ,32
AGY) =1 (4.3.98)
+ (%)2 4m
Aty =2 =2 (4.3.99)

where we have kept only the contributions with smallest dimension (more
relevant). Thus, at ., we find (82 = 87)

A(p) = g (4.3.100)
AHY) = (4.3.101)
AM*E) = % (4.3.102)
Conversely, at the XY point (y =0 or 82 = 167) we get
A@) =3 (4.3.103)
AQy) =1 (4.3.104)
AME) = %. (4.3.105)

From these results we conclude that the anisotropy disappears at v = 7.
since the longitudinal and transverse components of the order paramater, the
staggered magnetization, have the same correlations functions at the critical
point ¥ = v., which behave like

. - - const
(GIM™* (2) M~ (9)|G) . = (Gl (2)% ()P ()% (1) |Gy, ~ [
(4.3.106)
up to logarithmic corrections to scaling.

For ¥ < +. the correlation functions are different although both exhibit an
algebraic decay (i.e. power law behaviour) with exponents n, and 74 satisfying
7. > 1+. These exponents are universal in the sense that their numerical values
are independent of the short-distance cutoff. However, the coupling constant
itself does depend on the precise definition of the cutoff. Thus the value of
¥e, which is equivalent to one in the lattice system, turned out to be close to
7 for the continuum model. Nevertheless, it is possible to find a relationship
between the continuum and lattice coupling constants [Luther 75].

The fact that the correlation functions exhibit a power law behavior means
that the system, for y < v, is critical. It has been argued [den Nijs 81] that this
is a line of critical points ending at 7., the Heisenberg point. That the system
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is critical means that there are no energy gaps, that is, all the excitations are
gapless. For ¥ > v, a gap is known to develop [den Nijs 81]. This is the regime
with 82 < 87 in the Sine-Gordon theory. Renormalization group arguments
imply that ¢i%% has long range order, i.e. Y1) has a vacuum expectation value
different from zero.

It is natural to ask whether the fact that the spin one-half Heisenberg
chain is at a critical point with gapless (neutral) fermions in the spectrum
does generalize to other situations such as higher spin or higher dimensions.
We will see below that the spin one-half chain is very special and that, for
example, tnteger spin chains are not critical.
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CHAPTER 5

Sigma Models,
Topological Terms
and Spin Liquids

5.1 Generalized Spin Chains and Haldane’s
Conjecture

The phenomenology which emerges from the spin one-half Heisenberg anti-
ferromagnetic chain is quite striking: no long range order, there are gapless
states in particular, gapless spinless fermions (which, in the Heisenberg picture
are solitons). From the point of view of the Hubbard model, the Heisenberg
model occurs at infinite coupling where the charge-bearing degrees of freedom
get a gap infinitely large. Thus spin and charge degrees of freedom are sepa-
rated and the spin sector is at a critical point. This phenomenology inspired
Anderson [Anderson 87] to propose a similar picture for the two-dimensional
systems, the Resonating Valence Bond (RVB) picture. However, most of this
picture surely should not generalize. Critical points are not generic and, in
general, it is not possible to have gapless states without the spontaneous
breaking of a continuous symmetry. Thus, the one-dimensional spin one-half
case may be more the exception than the rule. For instance, it may be possi-
ble that the system is in a state without long-range order, which is likely to
be massive. For this reason, it is important to consider generalizations of the
Heisenberg model. This problem has been studied extensively. Two different
approaches have been considered in one dimension (a) enlarging the represen-
tation (higher spin, same symmetry group SU(2)) and (b) higher symmetry
groups (SU(N), for instance).

Haldane considered the generalization to higher spin but keeping the sym-
metry group to be SU(2) [Haldane 83] and [Haldane 85]. He first considered
the large spin limit which should have semiclassical character. He showed that
in this limit the effective Lagrangian was almost the Lagrangian of the quan-
tum non-linear sigma model. That the non-linear sigma model should appear
in a semiclassical (S — oo) limit should be of no surprise: one finds the same
answer in mean-field theory. But there is something wrong with this picture.

91



92 Chapter 5 Sigma Models

The non-linear sigma model is known to have no long-range order and, in
fact, it has a finite correlation length [Polyakov 75]. Thus if the sigma model
truly was the infrared limit of the Heisenberg model, it could not possibly
be a critical system, at least for S sufficiently large. Haldane found that this
is indeed the case for spin systems in which S is an integer. For half-integer
spins, he found that, in addition to the sigma model, there is an extra term
which changes the physics drastically. The extra term turned out to be pro-
portional to a topological invariant; the winding number or Pontryagin index
of the (smooth) spin configuration. Thus it would appear that integer and
half-integer spin-chains behave rather differently.

“Spin” systems with other symmetry groups have also been considered.
These include SU(N) generalizations of the (SU(2)) Heisenberg model for var-
lous representations of the group. Affleck studied a large-N limit in which he
was able to show that the ground state does not have long-range order and
that there are no gapless states [Affleck 85]. However, other SU(N) general-
izations of the Heisenberg model have been considered. For special choices
of parameters, these systems are integrable (in the Bethe-Ansatz sense), and
they are also at a critical point [Babudjian 1986]. Their critical behavior is
however different from the one we discussed in the Heisenberg case. Thus,
it appears that, at least in one dimension, these systems are either critical
or in a disordered state, i.e. a state without long-range order and with only
short-range spin correlations.

Let us first discuss the spin-s quantum Heisenberg chain. I will do so by
introducing a path-integral method for spin systems which does generalize to
higher dimensions, groups, representations, etc.

5.2 Path-Integrals for Spin Systems: The Single
Spin Problem

In Chapter 3 we developed a path-integral method for Fermi systems of the
Hubbard type (i.e. with local interactions). Using a Hubbard-Stratonovich
transformation we were able to derive an effective action for the low-energy
degrees of freedom, the spin fluctuations. The result was a path-integral rep-
resentation of the long-range spin fluctuations, the quantum mechanical non-
linear sigma model. .

We also showed that, in the strong coupling limit, the half-filled Hubbard
model maps onto the quantum Heisenberg model. In this limit the “band”
fermions are bound into localized spins. There is no motion of fermions, the
gap for charge fluctuations is infinitely large. It is natural to-ask for an alter-
native derivation of the effective action for the spin fluctuations which should
not be based on the weak coupling mean-field theory, as we did in Chapter 3.
Also we will now be careful enough to keep terms of topological significance.

We begin with the discussion of an extremely simple system: a spin s
degree of freedom coupled to an external field through a Zeeman term. From
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the standard treatment in elementary quantum mechanics [Baym 74] we know
that the (25+ 1)-fold degeneracy is lifted by the Zeeman interaction, resulting
in (2s + 1) non-degenerate levels. The path-integral will enable us to study
the evolution operator between arbitrary initial and final states.

There are several published path-integral treatments of spin degrees of
freedom. They all share the feature that they deal with coherent states rather
than the more familiar complete states [Schulman 81]. The method of coherent
states has been extensively reviewed by A. Perelonov [Perelomov 1986]. We
will use a special version of the method of coherent states which keeps the
spin symmetry intact, first introduced by Wiegmann [Wiegmann 88] and by
Fradkin and Stone [Fradkin 88].

Let us begin by describing the Hilbert space. It is very simple. We have
(2s + 1) states which transform like a spin-s representation of SU(2). Let |0)
denote the highest weight state in this representation

0y =S, S). (5.2.1)

This state is an eigenstate of both S3, the (only) diagonal generator of SU(2),
and of the quadratic Casimir invariant 52

S3(0) = s/0), (5.2.2)
5210) = s(s + 1)0). (5.2.3)

Consider now the state |7} labeled by the unit vector i which is obtained by
the rotation

|75} = e#0(AoxA)S |5 g) (5.2.4)
where 7i is a unit vector along the quantization axis, @ is the co-latitude
il - flg = cos @ (5.2.5)

and S; (1 = 1,2,3) are the (three) generators of SU(2) in the spin-s represen-
tation (see Fig. 5.1). For a review of SU(2) and its representations, see, for
instance, Georgi [Georgi 82].

no

Figure 5.1 The unit sphere Ss and the unit vectors 7ip and 7.
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The state |77} can be expanded in a complete basis of the spin-s irreducible
representation {|S, M)} where M labels the eigenvalue of S3

S3|S, M) = m|S, M}, (5.2.6)
§2|18, M) = s(s + 1)|S, M) (5.2.7)

and —s < m < s. The coefficients of the expansion are the representation
matrices D(S)(71) prs

s
i)y = > DS)(i)msl|S, M). (5.2.8)
M=-5

Clearly, there are many other rotations, differing from one another by multi-
plication on the right by rotations about the z-axis. This will give rise to the
same state, except for an overall phase. In more formal terms, the observable
states are in a one-to-one correspondence with the right co-sets SU(2)/U(1)
where U(1), the phase, is generated by the diagonal generators of SU(2), that
is S3. In the language of differential geometry, the coherent states form a Her-
mitian line bundle associated with the Hopf, or monopole, principal bundle.
The matrices D(5) do not form a group but rather satisfy

D(s)(fil)D(s)(ﬁg) = D(S)(fis)e"‘p(ﬁlyﬁz,ﬁa)sa (5.2.9)

where 7,7, and 7i3 are three arbitrary unit vectors and ®(7i;,7,,73) is the
area of the spherical triangle with vertices at 7, i and #iz (see Fig. 5.2).
Equation (5.2.9) is simply saying that the D(%)-matrices form a group up
to an element generated by the diagonal generators, the Cartan subalgebra.
Since the sphere Sy is a manifold without boundaries, the area of a spherical
triangle is not uniquely defined. The shaded areas of the sphere in Fig. 5.2 (a)

(a) (b)

Figure 5.2 The spherical triangle with vertices at 71, fis and fiz. Its area is not
unambiguously defined. “Inner” area (a) and “outer” area (b).
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and (b) are equally good definitions of the area. The difference of the oriented
areas is 4. Since S3 has eigenvalues equal to m, which is either an integer or
a half-integer, this ambiguity has no physical manifestation since

et =1, (5.2.10)

We can regard the requirement that the ambiguity in the definition of the
area should lead to no physical consequences as the origin of the quantization
of spin.

Other useful properties are the inner product (7 |7i3)

(ia|fiz) = (0D (7,) D) (72)10)

— (i®(A1,12,73)s (1 + 1 -7‘;‘2)’ (5.2.11)
2 )

the diagonal matrix elements of the generators §
(7|S|7) = shi (5.2.12)

and the “resolution of unity” which is an expression of the identity operator
I in terms of the coherent state operators |72} (]

I= / du(7)|R) (7. (5.2.13)

The integration measure du(#) is given by the invariant measure

du(i) = (23“) Prs(? — 1). (5.2.14)

We are now in a position to write down an expression for the path-integral
in this coherent state representation. Its generalization to other groups is
straightforward and has been given by Wiegmann. Let H(S) = B - § be the
Zeeman-like Hamiltonian for a spin system with one spin-s degree of freedom.
I will consider the representation of the evolution operator in imaginary time

Z ="Tr HT = Tr ¢ PH, (5.2.15)

In other words, we are assuming that the initial and final states are identified.
Let us split the imaginary time interval into N; steps each of length 6t and
consider the limit N; — oo and 6t — 0 while keeping N6t = # constant. As
usual we make use of the Trotter formula

Z=TrePH = lim (e-®®)™ (5.2.16)

Ny—oo
§t—0

and insert the “resolution of identity”, Eq. (5.2.13), at every intermediate time

Ni—oo
6t—s0 1

N,
Z= Jim / autiy) | | TIGEaIe* A itts0)) (5.2.17)

with periodic boundary conditions. Here {t;} is a set of intermediate times in
the imaginary-time interval [0, 8]. Since 6t is small we can approximate Eq.
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(5.2.17)

Ne N,
z= Jim (H/du(ﬁj)) ( [(fi(tj)|7'i(tj+1))—6t(ﬁ(tj)|H|7'i(tj+1))]) ,

§t—0 i=
(5.2.18)
Within the same approximation we can write

((t;) | H |7i(t541))
(fi(t;)|7(t541))

Using the inner-product formula, Eq.(5.2.11), we get

~ (7i(t;)|HA(t;)) + O (6t). (5.2.19)

At 41)) = e PEE) A1), 70)s 1+al) -iltiv) )" (5.2.20)
7 i+ 9

We now insert Egs. (5.2.19) and (5.2.20) into Eq. (5.2.18) to find the (formal)
path-integral

Z= lim [ Die 5l (5.2.21)
where the measure D1 is given by

Ny
Dii = H du(7i(t;)) (5.2.22)

and the (exponentiated) Euclidean action is equal to

Ny N, 3(5) - i(tins
~Sgli] = isz@(ﬁ(tj),"(tjﬂ),ﬁo)+Szln (1+n(t1) (tj+ ))

£ < 2
i=1 i=1

Ny
= > () HE)).
i=1
(5.2.23)
In this derivation, we have assumed that the sequence of unit vectors
{7i(t;)} are closed trajectories (because 7i(tg) = 7i(¢n+1)) on the sphere S,
which are sufficiently smooth so that all the approximations of Eq. (5.2.19)
make sense (see Fig. 5.3). This is not quite the case, as emphasized by Klauder
[Klauder 79]. But these technicalities, as well as operator ordering problems,
can be taken care of without affecting the physics. We will ignore these diffi-
culties from now on. Qur path integral will be as good a mathematical object
as any other path integral.
The first term of the effective Euclidean action is complex. It leads to
a sum over trajectories weighted by phases (even though we are working in
imaginary time!) of the form
e Al] (5.2.24)
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where A[it] is the limit

N,
Alf] = Jim S @(i(t;), A(tj+1), @o)- (5.2.25)

6t—0 j=1
Since each term of this sum is the area of the spherical triangle with vertices
at 7i(t;), f(tj4+1) and 7ig, the sum, i.e. the sum of these areas, is just equal to
the total area of the cap ¥ bounded by the trajectory I' parametrized by 7(t)
(see Fig. 5.4). Once again, since S3 has no boundaries, there are two caps o+

and X~. The oriented areas of ¥* and ¥~ also differ by 4=

AEH) + AET) = 4r. (5.2.26)

This is the same ambiguity we encountered before. It does not lead us to any
observable effects since s is restricted to be an integer or a half-integer. The
area of the cap X, say, &1, is given by (in the limit N; — oo, §t — 0)

A(Zt) = /ld‘r/ﬂ dtii(t, 7) - (Befi(t, T) x Opi(t, 7)) = Swall]  (5.2.27)

where 7i(t, 7) is an arbitrary, smooth parametrization of the cap £+ bounded
by T which satisfies the boundary conditions
i(t,0) = a(t), #(t,1)=ny, 7(0,7)=7n(B8,1), (5.2.28)

where t ¢ [0,] and 7 € [0,1]. Terms of this sort are generically called Wess-
Zumino terms although sometimes they are also referred to as Chern-Simons
terms.

We now proceed to take a naive continuum limit (N; — oo, 6t — 0) and
find from Eqgs. (5.2.27) and (5.2.23) the Euclidean action

SE[A] = —isSwa[f] + iz—t / ’ dt(0:7(t))2 + s /0 ’ ditB - 7i(t) (5.2.29)

where B is an external magnetic field.

o

Figure 5.3 Closed smooth trajectories on Ss.
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We can get back to real time zg, with
t=tzg and B=iT (5.2.30)
by writing
Z= / DiieSmlf] (5.2.31)

where Sp[7] is given by

sét

Sm[f] = sSwa[f] + (T) /0 ' do(8ofi(z0))? — s /0 ' dzoB - 7i(zo). (5.2.32)

This expression has a simple mechanical analogy. Let us imagine that 7(xg) is
the position vector of a charged particle at time zy. The particle has a small
mass m = 28t (m — 0) and is constrained to move on the surface of the unit
sphere, S3. A magnetic monopole with magnetic charge s is placed at the
center of the sphere. The usual electromagnetic coupling gives a contribution
to the action of the form [Landau 75].

Sem = ¢ dagA - g—; (5.2.33)
where A is the vector potential at 7. In order to represent a monopole, the
vector potential has to have a singular piece which describes the Dirac string.
We can use Stoke’s theorem to write Sem in terms of a two-form instead of
the one-form A. Stoke’s theorem simply says that Sem is given by the flux
of the magnetic monopole through the area of S; bounded by the trajectory
T' (see Fig. 5.5). This is nothing but the magnetic charge s of the monopole
multiplied by the area of S bounded by T, in other words, the cap X of Fig.
5.4. This is precisely identical to the first term in the action Eq. (5.2.32). Ideas
of this sort were first popularized by Witten [Witten 83] in his discussion of
Wess-Zumino terms (see also Stone [Stone 86]).

The magnetic monopole gives rise to a uniform radial magnetic field on
the surface of the sphere with total flux equal to the magnetic charge s. It
is well known that the eigenstates of such a particle are monopole spherical

Figure 5.4 The trajectory [’ and the caps 5t and $~.
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harmonics. The ground state is (2s + 1)—fold degenerate and it is separated
from the higher angular momentum states (i.e. Landau “orbits”) by an energy
gap which scales with the mass of the particle like # Thus in the small mass
limit (m — 0) the system is projected onto the ground state. In this way
the subspace of the “lowest-Landau orbit” on a spherical geometry becomes
identical to the space of the spin-s representation of SU(2). In retrospect, it
would have been possible to describe spin in terms of the path-integral with
Eq. (5.2.32) for its action directly, without reference to coherent states.

5.3 Path-Integral for Many-Spin Systems

It is trivial to generalize the one-spin problem to a many (or infinitely many!)
spin situation. Once again, I will follow the treatment of Fradkin and Stone.

The Hilbert space of a many-spin system is just the tensor product of the
Hilbert space of the individual spins. Let H be the Hamiltonian for a spin-s
system on an aerbitrary lattice

H=7JY 8F) 57" (5.3.1)

G
where (7,7 ') are pairs of sites on that lattice. We can now use the identity
(7i|S|7) = sfi, to write down the imaginary-time action for the many-spin

(a) (b)

Figure 5.5 A magnetic monopole at the center of the unit sphere in (2) and the flux
through the cap £t bounded by the trajectory I' in (b). The thick line represents
an infinitely long solenoid of infinitesimal thickness (Dirac string).
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system

B

. Iy m .

Sl = — is 3 Suali(F )] + 7 / a3 (07 1)
- 0 m
5 § (5.3.2)
+/ dt Y Js*i(F,t) - i(F 1)
N CED

where we are supposed to take the limit m — 0 (it will be dropped from now
on). The sums in Eq. (5.3.2) run over all the sites of the lattice. The first term
is just the sum of the Wess-Zumino terms of the individual spins. Note that
the only real time dependence enters through the Wess-Zumino terms.

We can Wick-rotate back to real time, t = izg, 8 = ¢T, and write the
real-time action, Sm

T v
Suli] = 8 3 Suwalt(F)] / dro 3 JsPi(F,20) - A(F ' z0).  (53.3)
= 0 =
I (7, 7)
The effective action Sp[fi] scale like s, the spin representation. Thus, in the
large spin limit s — oo, the path-integral

Z = / DiieiSmli] (5.3.4)

should be dominated by the stationary points of the action Sym[7]. This is
the semiclassical limit. Corrections to the large-s limit can be arranged in an
expression in powers of % This is the content of the Holstein-Primakoff expan-
sion [Holstein 40]. Note however that we did not make use of the semiclassical
limit in order to derive the path-integral. Let us consider a number of cases
of interest.

5.4 Quantum Ferromagnets

In this case we set J = —|J| . I will consider the case of an hypercubic lattice
and restrict the sum over pairs of sites to nearest neighbors. The results can
be generalized very easily to any other lattice.

I first make use of the constraint 72 = 1 to write the action in the form

_SZSWZ [m(F)] — IJIS Z / dzo[R(F, zo) — A(F ’/,20)]% (5.4.1)

<7 >

up to an additive constant. Consider now the long-wavelength limit, in which
(¥, z0) is a smooth function of the spatial coordinates. If we denote by ag
a short-distance cutoff (i.e. the lattice spacing) we can write the continuum
action

Suld] = / ddx%Swz[ﬁ] "”S / d%z / dzo (Vi - A(F,20))%.  (5.4.2)
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It is important to stress that the effective continuum action for the quantum
ferromagnet does not have the non-linear sigma model form. This is natural
since the non-linear sigma model leads to Goldstone bosons with a lLnear
dispersion law. This is the correct result for antiferromagnetic magnons but
not for ferromagnetic magnons. It is well known that ferromagnetic magnons
have a quadratic dispersion relation [Bloch 30].

To see how does all this come about we will derive the classical equations
of motion. We take care of the local constraint

(%, o) = 1 (5.4.3)

by introducing the Lagrangian multiplier field A(Z,z) which enforces the
constraint in the path-integral through an extra term in the action

T -
Sextralfi, A] = / d’z / dl’o@ (72 (&, 20) — 1) (5.4.4)
0
The classical equations of motion result from demanding that the total action
Stot[, A] = Sm[7T] + Sextralf, A] (5.4.5)
be stationary
8Stot = 0. (5.4.6)

The variation of the Wess-Zumino action is very simple. Indeed Sy is
essentially the area of the sphere bounded by the trajectory 7i(Z, o) (at each
point Z) on the spin manifold (the two-sphere S3). Thus the variation 6Sw,
due to a small change in the trajectory é7 is simply equal to

88wz = 871 - (7 x Gpfi) . (5.4.7)
Hence, we get the classical equations of motion
6Stot 6Stot
= Vi = 4.
én v (6Vm (5:48)
supplemented by the constraint Eq. (5.4.3). More explicitly, we get
|7

s = -

27 x Qofi + Mi = —

a
0

V2. (5.4.9)

a—2
ap

The classical value of the Lagrange field A can be evaluated by computing the
scalar product of Eq. (5.4.9) with 7. The result is

_1s?

-2
ap

Substituting Eq. (5.4.10) back in Eq. (5.4.9) I get the equation of motion for
the quantum ferromagnet

A= (i - V27). (5.4.10)

2
|‘]|32 (V2 — (- V2@)) 7 = 0. (5.4.11)

s
—n X Oyt
agn X gon + ag“
By using elementary algebra as well as Eq. (5.4.3), this equation can be
brought to the form

do7t = |J|salii x V. (5.4.12)
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This equation is known as the Landau-Lifshitz equation. The derivation shown
here is due to M. Stone.

The Landau-Lifshitz equation has several interesting properties. It is a
non-linear equation with first-order time derivatives and second-order space
derivatives. Thus the solutions of Eq. (5.4.12) have a quadratic dispersion
law, as they should. The spins move in a precessional fashion with an angular
velocity 0 given by

Q= —|J|sa2V?7. (5.4.13)

The Landau-Lifshitz equations can be solved in the linear regime. Let us
parametrize 7 by the components

ii= (j) (5.4.14)

where ¢ and m;, (¢ = 1,2) satisfy the constraint
o’ + 72 =1. (5.4.15)
The (linearized) Landau-Lifshitz equations are
domy & —|J|sa2 V27,
om & =llsacV 2 (5.4.16)
Gome = +|J|sagVemy,

to leading order in #. From Eq. (5.4.16) we find the dispersion relation for
ferromagnetic spin-waves
lpol & |J|sa|51? (5.4.17)

which is known as Bloch’s law.

5.5 Effective Action for One-Dimensional
Quantum Antiferromagnets

We will not consider here frustrated systems. Thus and for the sake of sim-
plicity, we will consider the case of quantum antiferromagnets on bipartite
lattices, such as the hypercubic lattice. We will see that, unlike the case of the
ferromagnets, the effective low-energy action is different for one-dimensional
systems and for higher dimensional cases such as the square and cubic lat-
tices. In all cases we will find a non-linear sigma model, in agreement with
our previous discussion (see Chapter 3) based on a mean-field weak coupling
treatment of the Hubbard model. But we will get more. For the spin-chain
case we will find that the action has an extra term, a topological term.

The starting point will be, once again, the real-time action of Eq. (5.3.3)
with a nearest neighbor entiferromagnetic coupling constant J > 0. Since we
expect that at least the short-range order should have Néel character, it is
natural to consider the staggered and uniform components of the spin-field 7.
This construction, as is, works only for two-sublattice systems close to a Néel
state, although it is possible to generalize it to other cases.
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Consider a spin chain with an even number of sites N occupied by
spin—s degrees of freedom. The sites of the lattice are labeled by an integer
J=1,...,N. The real time action is

N T N
SM[ﬁ]stSwz[r‘i(j)]—/o dzo 3 TG, 20) -7 +1,20)  (55.1)

j=1 ji=1

where we have assumed periodic boundary conditions. Since we expect to be
close to a Néel state, we will stagger the configuration

a(j) — (=17 A(). (5.5.2)

On a bipartite lattice, the substitution of Eq. (5.5.2) will change the sign of the
exchange term of the action to a ferromagnetic one. The Wess-Zumino terms
are odd under the replacement of Eq. (5.5.2) and thus get staggered. Thus,
it is the Wess-Zumino term, a purely quantum mechanical effect, which will
distinguish ferromagnets from antiferromagnets. After staggering the spins we
get, up to an additive constant,

N ; Js? [T N
Smlf] = sj_zl(—l)JSwz[fi(j)] - T/o dxojz_;(ii(j,xo) —7i(j +1,20))°.

(5.5.3)
We now split the (staggered) spin field 7@ into a slowly varying piece m(j), the

order parameter field, and a small rapidly varying part, T(j), which roughly
represents the average spin [Affleck 88]. Hence, we write

i(5) = m(j) + (1) aol(j). (5.5.4)

The constraint 72 = 1 and the requirement that the order-parameter field 17
should obey the same constraint, 712 = 1, demand that 7 and I be orthogonal
vectors

m-l=0. (5.5.5)
The Wess-Zumino term is rewritten

N ) N/2
s E(—l)’ Swalii(d)] = 5 Y (Sws[i(2r)] — Swalii(2r — Bl) (5.5.6)

which, by making use of the approximation

i(2r) — 7i(2r — 1) =m(2r) — m(2r — 1) + ao(I(2r) + I(2r — 1))

=ap (317_73(27‘) + 2r(27‘)) + O(Gg), (5.5.7)
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becomes
N/2

N . T
s (1P Suli(i) ~ s Y /0 deo87(2r, 20) - (R(2r, 20) X BoR(2r, 7o)

N/2

T
~s Z/ dzxo (aoalﬁz(2r, zy) + 2aor(2r, xo))
r=1 0

X (TT‘L(21‘,1¢0) X 80771(21", 1:0)) .
(5.5.8)

Thus, in the continuum limit, one finds

N
limosz(—l)jswz[fi(j)] & %/d% m- (o x 81771)+s/d2x I- (7 x o).
o~ j=1

(5.5.9)
Similarly, the continuum limit of the potential energy terms can also be found
to be given by

JS2 N T 2
m 25~ [ doo (3 20) - G+ 1,20))" =
j=170

aog—0
00.782 2 —\2 )
2 /dx((alm) +4l?).

(5.5.10)
Collecting terms we find a Lagrangian density involving both the order-

parameter field /7 and the local spin-density {
a()JS2

2

Lv(m, 1) = —2a0J s + sl - (11 x Hort) —

(817ﬁ)2+%ﬁz-(80ﬁz x Oy7) .
(5.5.11)

The fluctuations in the average spin density [ can be integrated out. The result
is the Lagrangian density of the non-linear sigma model

- 1 1 - . 0 - - -
Lym(m) = % (;s—(@om)2 - v,(alm)2) + g (O0um x d,m) (5.5.12)
where ¢ and v, are the coupling constant and spin-wave velocity respectively:
2
== .5.13
9=15 (5.5.13)
vs = 2a0J s. (5.5.14)

The last term has topological significance. We have chosen the normalization
so that # is given by
6 = 27s. (5.5.15)

The tensor €,, is the usual Levi-Civita antisymmetric tensor in two dimen-
sions.

Thus, apart from an anisotropy determined by the spin-wave velocity v,
and for the topological term, we find that the effective action for the low-
frequency, long-wavelength fluctuation about a state with short-range Néel
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order is given by the non-linear sigma model. We have reached the same
results within the weak-coupling mean-field theory of the half-filled Hubbard
model of Chapter 3. Indeed, using that approach, it is possible to get even
the topological term [Wen 88].

5.6 The Role of Topology

In the past section we reached the conclusion that the low-energy excitations
of a one-dimensional quantum antiferromagnet with short-range Néel order
can be described by the path-integral of a non-linear sigma model with a
topological term

7= / DR6(? — 1)eiSel] (5.6.1)

with the effective action obtained from Eq. (5.5.12). Before considering the
role of local quantum fluctuations, which are of fundamental importance here,
we look at the role of the last term in the action, the topological term SM

0
SM = ar /d%:q,,,ﬁz - (Ou x 9,m). (5.6.2)

Let us consider first the Euclidean sector of the theory (i.e. we are back
to imaginary time x5 = ig) with the Lagrangian density Lg
Lo = o (0, (Bum)? + = (0a)? ) + i - (97 x O5m) . (5.6.3)
E 2g s 1 v, 2 87|' tJ 3 ] . .0.
We now define the Pontryagin index (or Winding Number) @ of the Euclidean
space spin configuration {/m(z)} by the expression

1 - . -
Q= 2 /dzxe;jm (Oimt x §;m) . (5.6.4)

We impose the boundary condition that the Euclidean action [ d?zLg[m] is
finite. This is equivalent to the requirement that asymptotically m becomes
a constant vector my at space-time infinity
lim (%) = mo. (5.6.5)
[Z]—o0
Thus, topologically, Euclidean space-time is a sphere Sy since the fields are
identified with 7 at the point of infinity (Fig. 5.6). The order parameter
manifold is also isomorphic to a sphere S, since the constraint m2 = 1 has to
be satisfied everywhere. A field configuration 7(z) with finite action is thus a
smooth (differentiable) mapping from the S2 of Euclidean space-time to the
S of the order parameter manifold (Fig. 5.7).
The Pontryagin Index Q[7i] is the winding number in the sense that it
counts how many times the spin configuration m has wrapped around the
sphere, as can be checked by comparing the definition of @, Eq. (5.6.4), with
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the area formula of Eq. (5.2.27). We can make these ideas more concrete by
considering a configuration m(z) representing an instanton (Fig. 5.8). Let the
field at infinity point parallel to mg, the north pole of S;. In the case of an
instanton, the field near the origin points opposite to mig, i.e. in the direction
of the south pole. Alternatively, we can look at the configuration on S,. Here it
looks like a magnetic monopole or a hairy ball (Fig. 5.9). The winding number
Q of this configuration is determined by the area of the sphere divided by 47
(i-e. the “magnetic flux”)

Q= (4%) 41 = +1. (5.6.6)

(a)

(b)

Figure 5.6 A finite action spin configuration in Euclidean space-time (a) is iso-
morphic to one on the sphere Sz (b).
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Figure 5.7 The mapping mi(&).

Thus, an instanton has winding number +1. An anti-instanton has @ = —1. It
is also possible to find multi-instanton configurations with arbitrary integral
winding number Q.

We conclude that the smooth configurations 7i(z) can be classified ac-
cording to their winding number. In other words, the configurations m(z) are
mappings of Sz into Sz with homotopy classes classified by an integer, the
Pontryagin Index Q. In mathematical terms the statement is

I (S2) = 2. (5.6.7)

Back in real time we can consider soliton configurations, such as the half-
twist of Fig. 5.10. As time goes by, each spin traces a closed path on the
sphere S; and hence it sweeps an area bound by the path. If we define that
the area swept by a spin at —oo is equal to zero, we see that as we move from
left to right the spins sweep an increasingly large area. At +o00 the area swept
is that of a full sphere, 47. It is easy to see that @ is also equal to one for

Figure 5.8 An instanton configuration in Euclidean space-time.
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Figure 5.9 An instanton on S, has the same topology as a monopole.

the half-twist. At each point in space, the spins are coherently precessing and
keeping their relative angles constant. In other words, the spins trace lines
of longitude on a sphere. The global configuration still looks like a monopole
and hence also has winding number +1 (Fig. 5.11).

The final conclusion is that the topological term, Eq. (5.6.2), is propor-
tional to an integer Q. The action in the path-integral of Eq. (5.6.1) has a
contribution equal to (27s)Q which should be added to the sigma-model term.
Since s is an integer or a half-integer, we find that the extra, topological, term
gives conbribution

2@ — (—1)2Q, (5.6.8)

=11

— Mo

Figure 5.10 Half-twist soliton. The circles represent the precession of the spins.
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Thus, if s is an integer, the spin-chain is described at low energies by the non-
linear sigma model. For a half-integral s, each topological class contributes
with asign which is positive (negative) if the winding number Q is even (odd).
Note that the sign does not depend on the actual value of the spin s, but only
on whether it is an integer or half-integer. This means that the physics of
this problem is not analytic in s: the integer and half-integer spin-chains fall
in different universality classes. We will now see that this property implies a
very important result, known as Haldane’s conjecture, which states that the
integer spin chains are massive (i.e. have a gap) while the half-integer chains
are massless as in the spin one-half case.

5.7 Quantum Fluctuations: Renormalization
Group

In the previous section we saw that the configuration space of the non-linear

sigma model can be partitioned into classes classified by their winding num-
bers

1
Q= S—W/dzzfabcfgjmaa;mbajmc (5.7.1)

which are topological invariants. Thus, the partition function is a sum over
distinct topological sectors

o0
Z= / Dre~ el =}~ / Dinie=S0 [M]giZnsQ (5.7.2)
Q=0 Q

Figure 5.11 History of a half-twist.



110 Chapter 5 Sigma Models

where the subindex @ indicates that the path-integral is to be performed over
configurations with a fixed winding number Q and SF[m] is the standard
action of the non-linear sigma model

SE[m] = / dzx% (Vi) (5.7.3)

where space and time have been rescaled so as to have v, = 1.

In this section we will consider the role of quantum fluctuations. We can
do so by considering each topological class separately since these quantum
fluctuations are local and do not alter the winding number. In other words,
the winding number of a class of configurations cannot be changed by local
fluctuations, since the former is a global property whereas the latter are purely
local. Naturally, for this picture to hold it is necessary that the short distance
(ultraviolet) and the long distance (infrared) of the theory remain separate.
We will see that this is not the case in one-space-dimension. The behavior of
the non-linear sigma model is dominated by infrared fluctuations. Thus the
actual role, in detail, of topological sectors is unclear.

We will pretend that the fluctuations are local and reasonably small.
This assumption amounts to a semiclassical treatment of the path-integral.
Formally, this can be achieved only if the coupling constant g is small, i.e.
in the limit s — oco. The standard perturbative treatment of the non-linear
sigma model is thus equivalent, at low energies, to the 31- expansion of the
Heisenberg antiferromagnet [Haldane 83]. The classical action of the non-
linear sigma model, Eq. (5.7.3), has a very important property: it is scale

invariant. In other words the scale transformation
(z,1) — Az, 1),
m — m,

(5.7.4)

leaves the action invariant. Recall that m is dimensionless. The coupling con-
stant ¢ is also dimensionless in (1 + 1) dimension. In higher dimensions, g is
dimensionful. Let us define the dimensionless coupling constant u

u=ga?? (5.7.5)
where d is the dimension of space-time. Thus the action now reads
~ 1 ~
SPli) = —0— / d (Vi) (5.7.6)
2uag
where ¢ = 1,...,d. For the sake of simplicity the discussion will be carried

out in Euclidean space (i.e. imaginary time).

In Renormalization Group Theory [Wilson 74] the fact that the classical
action is scale invariant means that ¢ = 0 is a fixed point of the renormaliza-
tion group (RG). I will define a renormalization group transformation by pro-
gressively integrating out the faster modes and obtaining an effective theory
for the slower modes. In general, the sigma-field /7 will have Fourier compo-
nents with momenta § ranging from the infrared (|p] = 0) to the ultraviolet
(181~ 4-). We can also use the constraint m? = 1 to demand that one of the
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components of the field 7, say mgs, has only fast components and be small
[Kogut 79] . Let m; and ms be parametrized by m3 and 4,(0 < 6 < 27)

my =4/1—m3cosf, my=14/1—misinf (6.7.7)

so as to solve the constraint m? = 1. The Euclidean Lagrangian density now
reads
E 1 =12
Ly = Jua o d—2 (Vim)
1" (5.7.8)

:m[(Vma) + (1= m2) (Vi6)? +M].

2
1-—mj3

Let us rescale ms
ma = \/uad~2p (5.7.9)

and write

d-2
uag

1 1
L5 = 5(Vig)* + PGk uag~*p?)(Vi6)* + (1_—> (¢Vip)?.
0

(5.7.10)
We will be interested in the behavior for small ¢ (i.e. small «). In this
limit we can approximate £f by the expression

L‘E:—(V )+ 2(V0)— 207 (V:0)* +

) (5.7.11)
+ guag” (soV-so) + u2 D2 (pVip)? + 0(w).
Both ¢ and 6 have Fourier components all the way from zero momentum up
to the cutoff A ~ —0 The behavior at large momenta |p] ~ A should not affect
very strongly phenomena taking place for small values of p. It is then natural
to integrate out such fluctuations.

Consider the momentum shell bA < |p] < A with b < 1 and the fluctua-

tions with momenta inside that shell (fast modes). We now will carry out the
functional integral

/ D(pe_‘soa[wro] —
ba<pl<A

-3 [ @2[(Vie)*+ —F=5(Vi8)’—*(Vi0)* +O(u)]
De(p)e “*o
~/I:/\<|ﬂ</\

I will assume that @ is slowly varying and, hence, that its gradient, (V;0)2,
is small and it does not have Fourier components in the shell bA < |p] < A

(5.7.12)
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provided that & — 1. Thus

/ Dep(p)e * 2 (21)p452|“’(”)|2+% (2,)4Iw(p)l (V) &
dAL|PILA

1 (5.7.13)

I |7y

bAL|pI<A

The right-hand side of Eq. (5.7.13) can be exponentiated and approxi-
mated by the expression

1 / d%p 27 2/ dip 1
exp ln — + 5(Vif —— = . 5.7.14
{2 BAL|FI <A (27")d ( ) bA<|BI<A (27")‘1? ( )

To lowest order in u, the main effects of integrating out the fast modes in
@ are twofold: (a) a shift of energy and (b) a shift, or renormalization, of the
coupling constant u. Indeed, we can recast Eqs. (5.7.12) and (5.7.13) into the
effective Lagrangian density

1 dip 27
cE -1 / I w2y
oft 2 bAL|pl<A (27")d P2

1 1 1 dp 1 1
45Vl 5 (g [ 5| (a0 - (v
(Vi) + 5 (uag_z on<tsi<n @D (Vif)" = 5¢7(Vif)
+ O(u),
(5.7.15)
with a momentum cutoff A’ which has been reduced by b. Equivalently, the
spatial cutoff af, has been increased by %

N =bA, ap= (5.7.16)

T-
The effective Lagrangian density for the slower modes £E; has the same

form as the old Lagrangian density except for a constant shift, a new cutoff
ap (ah > ag) and a new renormalized coupling constant ' defined by

1 1 / dip 1
= — — . (5.7.17)
u'apd-2 uag 2 bA<|pl<A (27")d 7~

After evaluating the integral, we get

1 1 S 1 d—2y nd—2
= — —b A 7.1
u'afhd-2 uag_2 (2x)dd—2 ( ) (5.7.18)

where S is the area of the d-dimensional unit sphere. Since ¥ — 1 and ap = §*
we can write

—lnb=22 (5.7.19)

and find the S-function
B(u) = ag— (5.7.20)
0
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to be given by
2
Bu) = —eu + ;‘7 +Owd) (5.7.21)

for e = d— 2 small

In particular in 1 + 1 dimensions (d = 2) we find a positive S-function

[Polyakov 75].
2

B(u) = ;‘—T (5.7.22)

This result means that as the cutoff ag is increased, and we look at longer and
longer distances, the fluctuations increase the effective value of the coupling
constant at such scales (see Fig. (5.12)). Thus, even though the bare coupling
constant ug o % may be initially small, as we consider the effective theory at
lower energies we find that the effective coupling (“effective s”) increases (de-
creases). From classical statistical mechanics we know that the sigma model
at strong coupling (i.e. the classical Heisenberg ferromagnet at high tempera-
tures) is disordered and has a finite correlation length. Thus, in the language
of the quantum spin chains, we get that as the “effective s” decreases the semi-
classical behavior gets wiped-out. Instead we find a state without spontaneous
symmetry breaking and with short range correlations.

5.8 Asymptotic Freedom and Haldane’s
Conjecture

In the last section we found the result that the effective coupling constant of
the non-linear sigma model in (1 + 1) dimensions increases with the length
scale. We have chosen to present this result in the form of a f—function, Eq.
(5.7.22), which measures the change of the coupling constant u as the cutoff
ap (the lattice constant) is increased and the fast degrees of freedom of the
system are progressively integrated out. Alternatively, we could have kept the
cutoff fixed and varied a physical scale such as the length L of the chain or
an energy scale such as the temperature 7.

At finite temperature T, the system can be viewed (in imaginary time) as
a non-linear sigma model on a strip of length L (the linear size of the chain)
and width % with periodic boundary conditions in imaginary time. This is the
standard statement that the partition function of a quantum system, with a

— > —r — —>—>
u

Figure 5.12 Renormalization Group Infrared Flow for one-dimensional Quantum

Spin-Chains; ug is the bare coupling constant (up = %ag_d).
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global symmetry, in d space dimensions is equivalent to a classical mechanics
problem in (d+ 1) dimensions with imaginary time being the extra dimension
[Fradkin 78] (Fig. 5.13). The renormalization group of the last section can
easily be generalized to an anisotropic system with spin wave velocity v, # 1
which is kept fixed in the RG process.

We begin our RG process with some lattice constant ag, bare coupling
Uy o % and spin wave velocity v,. As we integrate out degrees of freedom the
effective coupling grows and the spatial cutoff increases. At some point, the
cutoff a becomes of the order of %#. At this point the quantum fluctuations
are negligible since the cutoff is as large as the width of the strip and we have
effectively a non-linear sigma model at finite temperature 7. In turn the non-
linear sigma-model, in imaginary time, is identical to the classical Heisenberg
model in d space-time Euclidean dimensions. It can be easily proven that a
classical Heisenberg model (or non-linear sigma model) in one dimension, like
all one-dimensional classical systems with short-range interactions, has a finite
correlation length £, at all temperatures [Landau 75].

We can now ask how much does the effective coupling u differ from the
bare coupling u if the cutoff is changed from ag to @y ~ %+. The f—~function
tells us what is the dependence of u on the cutoff, at least for small enough
u. The result of integrating the differential equation

Blu) = ao;—:0 =5 (5.8.1)

is
1 1 1 ap
S R i 8.2
w@o) ~ ulag) Tz (ao) (58-2)
By choosing @ to be of the order of %

ag =

Vs
% (5.8.3)

Imaginary time axis

-
f

L
—— Space axis

Figure 5.13 Euclidean space-time for a system of length L at temperature 7. With
periodic boundary conditions in imaginary time, Euclidean space-time is a cylinder.
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we find the temperature dependence of u to be

1 1 1. (aT
RIT)— u—0+ 27rln( v ) (584)

Equivalently, we can write

Uo

T= ————.
Rl Py ey

(5.8.5)
Thus, at high temperatures, T' 3> v, /ag, we find that u(7") becomes small
2m

u(T) = ln(ﬂﬂl)

—0 for T — oo (5.8.6)

In other words, the effective coupling at short distances or at high tempera-
tures is small. This result is known as asymptotic freedom and, in this context,
was first discussed by Polyakov [Polyakov 75].

Conversely, as the temperature is lowered, the effective coupling u be-
comes large (Fig. 5.14). Equation (5.8.5) exhibits an apparent divergence at
the temperature Ty where

Tom 2o 3% = Ze-ms, (5.8.7)
ao ao

The meaning of Tp is that of the temperature at which the weak coupling
(ie. }) expansion breaks down. To continue down to lower temperatures, we
must take into account the fact that for T' < Tp, the sigma model has a large
effective coupling. At this point we notice that, at large values of the coupling
constant, the sigma model is disordered no matter the dimensionality of space-
time. Thus we expect a finite, and short, correlation length £. The effective
coupling should saturate due to lattice effects and the constraint m? = 1.
These ideas have been confirmed by Monte Carlo RG studies [Shenker 80].

Ue ff

Figure 5.14 Crossover of the effective coupling u.ss(T').
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We can also use the RG to estimate the dependence of the correlation
length £ on the bare coupling constant ug = % Under the RG, the correlation
length, like all other physical observables, remains invariant. From dimensional
analysis we expect £, which is a length scale, to have the form

€(u) = aof(u) (5.8.8)

where f is a function of u, the coupling constant at the scale ag. Being an RG
invariant, it must obey
0 K

a0 e =0 (5.8.9)

which implies that f(u) satisfies the differential equation
d
ﬂ(u)% + f(u) = 0. (5.8.10)
The solution to Eq. (5.8.10) is

flw) = f(u)e Jo A7 = pluryerd-) (5.8.11)

where u and u' are connected by the RG flow.

Consider now the correlation length £ at two different values of u, u; and
uz for the same value of the lattice constant ap. Let u* be a large reference
value of the coupling u. From Eqs. (5.8.8) and (5.8.11), we find

€(wi) = aof (u) = aof(u")e ™ St 73 (5.8.12)

for both i = 1,2. Thus the ratio of values of £ for two different couplings and
equal lattice spacing ag is given by

€(ur)  aof(u*)e” f' GO

(5.8.13)
§(u2) o p(ur)e ST A
Thus, we get
E(u) - f“l 4z
5.8.14
(uz) ( )
The integral can be easily evaluated to find
§(u) _ (2x-2)
v w2, 5.8.15
£(ur) ~ ( )
We find for the case in which uqy = ug = % and u, is large that
E(ug) = &(up)e™. (5.8.16)

What value should we assign to limu,—, o £€(u2)? The answer depends on
whether the spin is integer or half-integer.

(a) Integer spin: In this case we do not get a topological term. As was
emphasized above, the sigma model is always disordered at strong coupling.
Thus, we expect £(uz) = ap and we find a finite correlation length

€o = &(uo) = age™. (5.8.17)
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There is no long-range order (i.e. no Néel state). The spectrum has a gap

A=t (5.8.18)
€o
and the ground state is unique. Equation (5.8.17) shows that the correlation
length is non-perturbative in the % expansion.

(b) Half-integer spin: The sigma model coupling constant u still scales
to strong coupling but the topological term remains unchanged at the value
f = 2xs (mod 27). However, the coupling constant ¢ o u is related to the
spin through s = 2. Thus strong coupling is equivalent to low spin. Hence the
behavior of all haﬁf-integral spin chains is qualitatively identical to the spin
one-half case for which ug o 4. The spin one-half case is gapless, as we saw
from the Bethe-Ansatz and other approaches. Thus, £(oo) is still infinite. All
half-integral spin chains are at a critical point with infinite correlation length.
At first sight, this result seems to be paradoxical. We started with smooth
configurations with well defined winding numbers and a weak coupling g.
As the energy scale was lowered the effective coupling of the sigma model
grew but the topological coupling was unaffected. Thus, at low energies, the
configurations become rough and it is unclear what is the actual meaning of the
topological term in this situation. This poses no problems for the integer spin
chains since the topological term does not contribute in this case (8 = 27s).
In contrast, for half-integral chains, this result simply means that all s > %
systems behave qualitatively in the same way as the s = % case.

This result, s integer is disordered, and s half-integer is critical, is known

T
3r »—O0—>»—>———>

It~

Figure 5.15 RG flows of QHA chains for s = —;—, 1, %, 2. The open circles represent
their o-model bare coupling constant u = % . They all iterate to u* = oo. The
difference in their behaviour is a consequence of the presence of a § = 7 term in the

o-model for the half-integer spin chains.
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as Haldane’s conjecture [Haldane 83]. It has also been checked by accurate
numerical calculations using exact diagonalization on finite (but large) chains
[Moreo 87], [Ziman 87] and by Green’s function Monte Carlo simulations
[Liang 90]. Affleck and Haldane [Affleck 87] have also found the same re-
sult using non-Abelian bosonization [Witten 84]. The RG flows are shown in
Fig. 5.15.

5.9 Hopf Term or No Hopf Term?

The one-dimensional spin chains have a very unusual behavior: disorder (inte-
ger spin) or critical (half-integer spin) ground states, neutral fermions which
are massless for the half-integer case and massive for s integer, etc. There is
nothing in this picture which is remotely close to the physics that emerges
from the mean-field theory of Chapter 3. It is then natural to ask whether
or not this picture is peculiar to one-dimensional systems or if there is a nat-
ural generalization to higher dimensions. It is a trivial matter to generalize
the one-dimensional formalism to the case of a square lattice. The lattice ac-
tion is a simple generalization of Eq. (5.5.1). Let 7 span a square lattice of
size N x N: 7= (21,z2), where z1,z2 =1...N.I will assume that N is
even. The action is

T
Smli] = s> Swalii(7)] — / dzo Y Js2A(F, zo)i(F ', zo)seqnu
7 0 (77)
where 7 and 7'/ are nearest neighboring sites on the square lattice. Since the
square lattice is bipartite and we expect short-range Néel order, we will once
again stagger the field configurations and find

T
Sull] = 5 3 (= 1)TH 2 S, [75(7 )] + / dzy 3 JsPA(F, 20)i(F ", o).
7 0 (7,7
(5.9.1)
It is straightforward, but tedious, to derive the effective action for the slow
varying fields. Once again, on the basis of symmetry, we expect a non-linear
sigma model. The issue is whether or not there is a topological term in the
effective action.

Before deriving the effective action by an explicit calculation, let us con-
sider what topological terms are possible. In the (1 + 1)-dimensional case we
saw that the configurations were classified in terms of an index, the topolog-
ical charge, which labels the homotopy class of the configuration. The exis-
tence of such an index was guaranteed by the fact that the configurations fall
into homotopy classes which form the group IIy(S2) of smooth maps of the
two-dimensional Euclidean space-time S, into the Sy of the order parameter
manifold. This homotopy group II5(S2) is isomorphic to Z, the group of inte-
gers, i.e. the winding numbers of the topological classes. In (24 1)-dimensions
the situation is rather different. Once again, the Euclidean space-time can be
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regarded as a sphere S3 and the configurations are maps of S3 into S2. How-
ever, there are no smooth solutions of the classical Euclidean equations of
motion with non-trivial winding numbers. There are singular solutions which
are known as hedgehogs (Fig. 5.16) but which have linearly divergent action.
Haldane has recently speculated that these hedgehogs may become relevant
if the sigma model becomes disordered by some mechanism [Haldane 88].

On the other hand, there are non-trivial configurations in Minkowski
space-time (i.e. real time). Consider at some time ¢t = ¢y a configuration of
sigma-model fields identical to one of the instantons of Section 5.6. Now it
represents the snapshot of an eigenstate and it is called a soliton. Thus the
configuration space of a two-dimensional quantum non-linear sigma model is
also a sphere S, and is usually denoted by £2,S,. Consider now the real-time
evolution of such a state with periodic boundary conditions in time, i.e. we
consider histories in which the initial state is the same as the final state. Thus,
a history is a closed curve in the configuration space £2S52. In quantum me-
chanics we are told to sum over all histories and to assign a phase to each
history, i.e. to each curve in §22S,. Since a phase is an element of S (the unit
circle) we have constucted the set of maps I1;(2,S52). However, we know that
the configurations at any given time are maps of Sz (space) into S; (field),
i.e. Homotopy classes of I12(S2) which we saw was isomorphic to the group of
integers Z. Hence the configuration space §22S> is decomposed into a disjoint
union of path-connected pieces, each characterized by the winding number
or soliton number Q. Thus each disconnected piece of the Hilbert space will
have a separate time evolution and will have to be summed with separate
phases. Since the classical paths are continuous curves in 2,5, classified by
Ii3(S2) = Z, the relevant issue is now what topolgical invariant is associated
with such histories.

Imaginary time

Figure 5.16 A hedgehog.
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Consider a history of the order parameter field /(&,?) in (2 4 1) dimen-
sions. We can define a topological current J, by

1
Jy = gcw,\cabcmaa”mba)‘mc (5.9.2)
with g = 0,1,2 and e,b,c,= 1,2,3. The topological current J, is clearly
conserved

94J, = 0. (5.9.3)
Therefore the total topological charge Q = [ d*zJ°(&,1) is constant in time

Q= /dZ:cJO(:Z",t) = /dzzsiwco;jcabcmaaimbajmc. (5.9.4)

Clearly @ is identical to the winding number Q of Eq. (5.6.4).

Consider now a soliton state with @ = 1 (Fig. 5.8). Imagine a time evolu-
tion in which the soliton rotates slowly around its center and executes exactly
n turns during its lifespan. Each point on the equator of the soliton traces a
curve (“worldline”) which wraps n-times around the other curves traced by
the other points (Fig. 5.17). An easy way to compute the winding number of
this history is to imagine that each worldine is a wire carrying the unit of cur-
rent. As the soliton rotates, the worldlines (“wires”) are braided. The natural
topological invariant is the linking number of these worldlines (Fig. 5.18). If
we denote by fthe current carried by the wires and by B the magnetostatic
field they create, the linking number is simply given by Ampere’s law

/d%f. B =2 (5.9.5)

where n is the number of turns.

-
time axis J

Figure 5.17 A world tube with linking number +2.
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We can make this analogy more precise by using the Hopf map which
maps the three sphere S3 onto S,. Let z; and z; be two complex number
satisfying

|2:1|2 + |22|2 =1. (596)

Clearly (21,22) span Ss. Define now the spinor zq,(ov = 1,2). The order
parameter field 7 is related to z, through the map

m® = 2,055%p (5.9.7)

where {0®}s=1 2,3 are the Pauli matrices. The order parameter 17 also satisfies
m? = 1. This is the Hopf map.

It is clear that (21, 22) has three independent parameters whereas 77 only
has two. But one of these parameters, or degrees of freedom, is unobservable
since a global chage of phase of the spinor z,

(2) — et (2) (5.9.8)

does not lead to any observable effects since m is invariani under such gauge
transformations.

Furthermore, the action of the non-linear sigma model itself can be written
in terms of the spinor field z,. This is the CP! model. To simplify matters
I will consider the problem with spin-wave velocity v, = 1. Let z, be a CP!

pPp

(c)

Figure 5.18 (a) Two world lines PP’ and Q' with linking number +1. (b)
Smooth deformation of the world line PP’ and QQ’. (c) Periodic boundary con-
ditions in time are enforced, P and P’ as well as ) and @’ are identified and the
world lines form a braid.



122 Chapter 5 Sigma Models

field and A, an unconstrained gauge field, with Lagrangian density

1
,Ccpl = El.l)“zl2 (599)
where g is a coupling constant and D, is the covariant derivative
D, =0, —iA,. (5.9.10)
The functional integral is
Z= /DEDz6(|z|2 - 1)/DAe"5cP1[’rAl. (5.9.11)

Since Lcpr is quadratic in Ay, it can be integrated out exactly by a saddle
point calculation. The saddle point condition

6Lcpr
= 5.9.12
e (59.12)
determines the gauge field in terms of the CP?! field
i, oy — b oaae
Ay = E(zaa,,za — 240,2}) = —§z06“ Zg- (5.9.13)

By substituting Eq. (5.9.14) in the Lagrangian density, Eq. (5.9.10), one finds
1 . 1
%(6um)2 = 3|D,,z|2. (5.9.14)

In other words, the CP! model and the O(3) non-linear sigma model are
equivalent.

The topological invariant, or Hopf invariant, has a very simple and natural
form in terms of the vector potentials A,. Consider a term in the Lagrangian
density of the form

Lcs = ie,w AAFFVA (5.9.15)
47

which is known as a Chern-Simons term. The gauge field A, is consirained

to be given by Eq. (5.9.14) and its field strength can be related back to the
sigma model field m

Fuy = 8,4, — 8,A, = 1 - (81 x 0,1). (5.9.16)

Thus, the flux associated with the gauge field A, is simply related to the
topological current. The Hopf invariant H is simply

]
H=os / Bze, ) AP F (5.9.17)

with A, and F,) given by Eqgs. (5.9.14) and (5.9.17). We will see in chapter
7 that a non-zero value of @ will change the statistics of the solitons.

But, is there a Hopf term in the effective action of the quantum Heisenberg
antiferromagnet in two dimensions? The only way to determine that is to
compute the effective action carefully. [Dzyaloshinskii 88] and [Wiegmann 88]
have conjectured that the effective action has a Hopf term with § = 2xs. This
is a subtle business since Wu and Zee have shown that, in its CP! form, the
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Hopf term is a total derivative which does not alter the equations of motion
but changes the spin and statistics of the topological excitations [Wu 84].
Let us first derive the effective action, following the methods of Fradkin
and Stone [Fradkin 88]. The result will be a sigma model without a topological
term [Fradkin 88], [Haldane 88], [Wen 88], [loffe 88], [Dombre 88].
First, we need to integrate out the fast degrees of freedom. We write

A7) = m(F) + (=1)"1+%2a0l(7 ). (5.9.18)

Following the same procedure which in the one-dimensional case led to a sigma
model with a topological term (see Eq. (5.5.11)), we find

2 -
LM, 1) = —JTS ((6;7ﬁ)2 +8i 2) + aiz (7 X Borid). (5.9.19)
0

If we now proceed to integrate out the fast modes, the I field, we find a non-
linear sigma model without a topological term. The (bare) coupling constant
and (bare) spin-wave velocity are given by (see Eqgs. (5.5.14) and (5.5.15))

2
g= \/500;

vs = V22a0Js.

The terms, which in the one-dimensional case gave rise to the toplogical term,
now have cancelled each other out. The reason for this cancellation can be
traced back to the staggered character of the Néel state. Naively, we expect
that each row will make a contribution similar to the one-dimensional result.
But neighboring rows are staggered in the opposite way. The result is that
the terms originating from each neighboring rows, now, effectively cancel out.
We are assuming a lattice with even rows and columns. In the case of an odd
number of rows, we may get a non zero contribution from the last row. How-
ever, this is a boundary condition effect which, incidentally, was not needed
in the case of the chains. But we do expect to see changes in the spectrum of
elementary excitations if we change the boundary conditions.

The argument which led to the cancellation is a bit too naive and maybe
dangerous. We know from the work of Wu and Zee that, at least in the CP!
representation, the Hopf term is a total derivative. Thus, a local cancellation
is not a sufficient argument for the study of a global effect. Slowly varying
configurations may have an accumulated effect near the boundaries and yield
a non-zero answer. We can dispel these fears by computing the alternating
sum P

(5.9.20)

d=s Z(—l)‘”“”’Swz[ﬁ(F)] (5.9.21)

for a configuration which, in the continuum limit, has soliton number Q =
1. If we let this soliton configuration rotate slowly around its center such
that it turns exactly once during its history, the history of this configuration
should have Hopf number or linking number +1. We should choose a lattice
configuration which, in the limit of soliton radius r, large compared with the
lattice spacing ap should go smoothly over to the continuum soliton. Any
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soliton profile should do the job. For instance, we can imagine a configuration
obtained by a stereographic configuration (Fig. 5.19). The area swept by each
spin is a = 2w R2(1—cos #). Thus the sum ®(N), for a system of size 2N x 2N,
is given by
N
®(N) = Z 27sR? (1 — cos 6(n, m)) (—1)"*+™. (5.9.22)
nm=—N+1

The sphere has radius R and its south pole, which has coordinates (1, c2),
is in the first unit cell. The radius of the soliton r; is equal to the diameter
2R of the sphere, if we define the radius as the location in which the spins are
orthogonal to the asymptotic configuration at spatial infinity. Hence we find

i": 16ms Rieim(n+m)

®(N) = 4R?2 4+ (n— a1)? 4+ (m — ap)?’

(5.9.23)
nm=—N+1

In the thermodynamic limit, N — oo, and by making use of the Poisson
Summation Formula

+o0 +o00 400 .
NOEDY /_ %e'z”"”f(k), (5.9.24)

we get for & = limpy_.oo $(N)

2 4 i2m(E4+&)-(7+G)
& — / (d k 16wsR%e (5.9.25)

2m)? & 4R? + k2

Figure 5.19 A soliton configuration can be generated using a stereographic pro-
jection. The spin is paralell-transported from the sphere to point P = (n,m). Its
history is pictured as an ellipse.
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where G = (%, -;—) In the limit R — oo it is easy to see that ¢ is exponentially
small since we can write

400
o= > BsREZFEFO K (ar, |7 + G]) (5.9.26)

ny,Nz=—00

where Ky(z) is a modified Bessel function. Thus, for r; > 1, we may keep
just the leading terms:

5/2
$ =~ 4s (r_,) ¢~ AT HiZm(ontaa) cos(mar) cos(mara). (5.9.27)
V2
This expression vanishes exponentially fast for solitons with radii ry > ﬁ"i
Notice that even fairly small solitons with radii r; = 1 are large according to
this criterion. We must conclude that if we expect to see Néel order (even if
this was true only at short distances!) the effective theory at long distances
is given by a non-linear sigma model with renormalized coupling constant
and spin-wave velocity. Phenomenologically this is what the experiments in
La;Cu104 seem to indicate [Chakravarty 88]. In Section 5.7 we calculated
the one-loop B-function for the non-linear sigma model in (2 + €) dimensions
(here 2 means (1 + 1)). We found the result (see Eq. (5.7.21))

2
Blu) = —eu+ - (5.9.28)

27
For space-time dimensions d > 2, the fixed point at the origin is stable. This
means that if the bare dimensionless coupling constant u is sufficiently small,
the effective coupling flows toward the u = 0 fixed point and we have a
Néel state with weakly coupled spin-waves. Equation (5.7.21) has another
fixed point at u* = 2me, which is infrared unstable. This fixed point is the
location of a second-order phase transition (in terms of the coupling constant).
Beyond this fixed point, i.e. for u > u*, the effective coupling flows toward the
u = oo fixed point just as in the (1+1)-dimensional case. However, we do not
have a topological term anymore. Thus, we must conclude that, for u > u*
the system is disordered at distances longer than some correlation length
&~ ju—u*|"? (U =25 +0(d- 2)) and Néel-like order at scales between the
lattice constant and &. Such a state is a zero-temperature qguantum paramagnet
(QP), i.e. a paramagnetic state driven purely by quantum fluctuations and in
the absence of thermal fluctuations. A finite correlation length without long-
range order means that the ground state is unique and there is a gap A = v, /¢

for the elementary excitations (“spin-waves”).

The theory described here, which is based in the (2 + €) expansion, is too
crude to reliably predict the value of u*. Since we saw that our approximations
were equivalent to (a resummation of) the % expansion, we must also conclude
that u* cannot be calculated with confidence from the % expansion either.
Qualitatively, we should still expect a non-trivial fixed point for ¢ = 1. The
perturbative g-function predicts that for e & 1 even s = % on a square lattice
is on the Néel side of the phase transition although not far from it. This
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result appears to be consistent with existent experimental data on quasi-two-
dimensional systems believed to be reasonably well described by the s =
% quantum Heisenberg antiferromagnet such as La;Cu;O4. Experimentally
[Shirane 87] one sees a Néel state but with a magnetic moment about fifty
percents of its classical value. The dynamical structure factor predicted by the
o-model [Chakravarty 88] is also confirmed by these experiments. Numerical
calculations on two-dimensional quantum Heisenberg models also exhibit a
similar behavior [Liang 88], [Liang 90].
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CHAPTER 6

The Spin Liquid States

In the previous chapters we discussed mostly ordered Néel-like ground states
of spin systems. The sole exception was the case of the spin-chains in which
the ordered state is always destroyed by quantum fluctuations. In this chapter
we begin a discussion of the ground states of quantum magnets which, as a
result of strong fluctuations, loose the long range order of their spin degrees
of freedom. The key driving force behind this quantum disorder is frustration.

6.1 Frustration and Disordered Spin States

It is possible to drive a Heisenberg model toward a disordered state. One way
to do that is to add extra interactions which, if strong enough, may destroy
the Néel behavior. A popular choice is to consider next-nearest neighbor in-
teractions with strength K (Fig. 6.1). These interactions frustraie the system
in the sense that, for J close to K, the classical Néel state becomes degener-
ate in energy with other classical configurations which differ from it by local
spin flips. Quantum mechanically, one may expect a substantial increase of
fluctuations which should further decrease the value of the moment.

By following the steps that led to the non-linear sigma model (see sections
5.5 and 5.9) and to the bare coupling constant ¢ and spin-wave velocity v,
(Eq. (5.9.21)),we can compute the new values of ¢ and v, if we assume that
at least the short-range order has the Néel structure of K = 0. Clearly, this
assumption is correct only for small K and should break down for K =~ J. We

find
2v2,

0
! s = v'ag,

g
Ji- 1% (6.1.1)

v, = 2v/2Jagsy[1— 2? = v,/1— ?

Thus, the main effects of frustrating interactions, in the neighborhood of a
Néel ordered state, are the increase of the bare coupling ¢ and the decrease
of the spin-wave velocity v,. It is also clear that for values of K sufficiently
large, the bare dimensionless coupling constant ' will become larger than

129



130 Chapter 6 Spin Liquids

Figure 6.1 A square lattice with nearest neighbor (J) and next-nearest neighbor
(K) interactions.

the critical value u*. Consequently, there should be a critical value of the
next-nearest-neighbor coupling strength K, beyond which the long-range Néel
order is destroyed. This theory would then predict that for X > K, the system
becomes a quantum paramagnet.

It is also clear that if K gets to be large enough, a new form of long-range
order should be found. Indeed, if K > J a Néel-like state but with wave-
vector (@ = (w,0) or (0, w) is favored, instead of the usual Q = (7, 7) ordered
state (Fig. 6.2). This Néel-like state is antiferromagnetic along the x-axis but
ferromagnetic along the y-axis. The low-energy effective action should then
be a mixture of a sigma model which describes antiferromagnetism and a
ferromagnetic Lagrangian of the form of Eq. (5.4.2). As a matter of fact, the
Wess-Zumino terms of the individual spins do not cancel completely in this
case. A term of the form

7/ B (Bpm x Oy7) (6.1.2)

is found, where 7y is a parameter. However, this is not a topological (Hopf)
term. It merely states that nearby chains exhibit the same antiferromagnetic
order and the spins on one chain precess in the average field of its neighboring
chains. This state should also become unstable for values lower than K = J.
Thus, near the classically frustrated limit, K = J, new phases should appear.

There are several possibilities. One possible phase is a state without long-
range magnetic order, with a gap for spin excitations and a unique ground

Figure 6.2 A Cj = (m, 0) Néel state.
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state. This is the usual paramagnetic state in the quantum zero-temperature
limit (QP). We can think of other possible states by considering that when
the spin-correlation length becomes very short (i.e. of the order of the lattice
constant), the ground state is more naturally described in terms of pairs of
spins forming s = 0 singlet states over fairly short distances. These states are
dubbed valence bond states (VB). Various disordered states based on the VB
picture have been proposed. They include VB crystals and Resonating Valence
Bonds (RVB) states, in both its long [Anderson 87] and short range [Kivelson
87| varieties. Still, other proposals entertain the idea of ground states with
broken 1ime reversal invariance. Such is the case of the Kalmeyer-Laughlin
(KL) state for the triangular lattice [Kalmeyer 88] , the chiral spin states for
frustrated square lattices of Wen, Wilczeck and Zee (WWZ) [Wen 89] and
unusual states with long range order such as the multisublattice Néel states
including spirals of Shraiman and Siggia [Shraiman 89] and of Kane and all
[Kane 89]. In this chapter we will deal with the disordered phases, whether
chiral or not. Affleck and collaborators [AKLT 88] found a class of lattice
models whose exact ground states are disordered.

6.2 Valence Bonds and Disordered Spin States

Imagine for the moment a microscopic spin system with interactions which
are so strong that the Néel state is destroyed. If the local coupling between
the spins is very strong, we should expect that a picture based on spin-waves,
even massive ones, should not work very well. An alternative is to pair up the
spins into singlet pairs or Valence Bonds [Anderson 73].

Our basic building block will be a singlet pairing (Valence Bond) of two
spins at sites 7 and j of the lattice, not necessarily nearest neighbors. Let |(i5))
denote a Valence Bond pairing up sites ¢ and j (Fig. 6.3). The state |(ij)) is
the antisymmetric combination of up and down spins on sites ¢ and j:

" 1
|(35)) = ﬁ(l Tels) =1 1its)) (6.2.1)

Figure 6.3 A Valence Bond |(ij)) on a 4 x 4 square lattice.
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This is a spin-singlet state with respect to the total spin operators 52 and Ss

§2|(i5)) = 0 (62.2)
S3|(i5)) =0

with . .
S:Si-{-Sj. (623)

Next, we proceed to partition the set of sites of a lattice (with an even number
of sites) into sets of all possible pairs of sites. If we assign a Valence Bond to
each pair of a given partition, we can define a VB state for the partition as a
tensor product of the Valence Bonds for each pair (Fig. 6.4)

IVB) = IT IGxde))- (6.2.4)

pairs

Since each Valence Bond is odd under the exchange of sites, the overall sign
of the VB state is defined only up to a convention on how does one label
the sites. I will assume that a fized convention has been chosen. Since each
pair is a spin singlet, the total spin of the system is necessarily equal to zero.
However, zero total spin is not a good definition of a disordered spin state, as
we will see below.

A priori we are tempted to consider an arbditrary spin singlet state as a
linear superposition of VB states

@) =Y A(P) I IGedn)) (6.2.5)
P

pairs

which is a sum over all partitions P = {(izjz)} with amplitude A(P). How-
ever, we run into a difficulty here. The VB states are not orthogonal and, what
is more important, in general they cannot all be linearly independent at the
same time. The set of VB states is, in general, an overcomplete set of states.
Therefore, they are not good states for expanding a general wavefunction. On
the other hand, if one is interested in just constructing a variational wavefunc-
tion, it may be convenient to write expressions of the type of Eq. (6.2.5) with
variational parameters. One popular wavefunction has a factorized amplitude.

Figure 6.4 A VB state |V B) on a 4 x 4 square lattice is the product of 8 Valence
Bonds |(3, 7))-
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In other words, A(P) is written in the form

A(P) = [T alix, &) (6.2.6)

pairs

and the total wavefunction looks like

1wy = > T ale, 3a)l(rde))- (6.2.7)

P pairs

If we further assume that a(é, ji) is only a function of the distance between
the paired sites i and ji

a(ix, jx) = a(|ix — Jkl) (6.2.8)

we have a Resonating Valence Bond state (RVB) [Anderson 73]. This state
has “resonances” in the sense that all Valence Bonds with sites at the same
relative distance enter with the same amplitude. The optimal function a(|Z])
can be determined by a variational calculation. The most extensive study
of the Heisenberg model using states of this sort was carried out by Liang,
Dougot and Anderson (LDA) [Liang 88].

The physical properties of a system depend on how fast does the function
a(|£|) decay at infinity. For a power-law ansatz

const

a(|Z]) ~ E for large |Z|, (6.2.9)
LDA found that for o > 5 there still is Néel long-range order, even though
the wavefunction is a global spin singlet. Conversely, for o < 5 LDA do not
find Néel order beyond a scale £, the correlation length, which is finite.

An extreme case of an RVB state is the Short-Range RVB state which is
defined as follows. Consider the VB states in which the paired sites are nearest
neighbors to each other. There is a one-to-one correspondence between the
underlying configurations of Valence Bonds and the configurations of classical
dimers (Fig. 6.5) which occupy the bonds. The Short-Range RVB state, or
Nearest-Neighbor RVB state (NNRVB), is simply the linear superposition of
all such configurations with equal amplitude [Kivelson 87]. Thus, states which

O 56— &

Figure 6.5 A Short-Range VB state on a 4 X 4 square lattice. The dark links
(“dimers”) are Valence Bonds or bonds.
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differ by a local change in the dimer covering have exactly the same amplitude
(resonance).

The NNRVB states have one important useful property: they are linearly
independent. However, they are not orthogonal. To see this, consider two
dimer coverings (a dimer covering is when every lattice site is connected to
exactly one of its nearest-neighbors by a dimer) which differ only by a local
rearrangement of a few nearby spins, such as the example of Fig. 6.6. I will pick
the following convention for the signs of the VB states. I will only consider a
bipartite lattice (say square). Since the lattice is bipartite, it can be partitioned
into two interpenetrating sublattices called R (red) and B (black). A Valence
Bond, or dimer, always joins a red site to a black site. The sign convention
I pick, assigns a positive amplitude for every VB state provided that the red
site appears (in the wavefunction) to the left of the black site. Equivalently,
we can give an orientation to the Valence Bonds’s: positive for red — black
and negative for black — red [Kivelson 87]. We can picture this either by
assigning an arrow to each VB or by coloring the sites, i.e. the endpoints of
the bonds.

Once we have picked a sign convention, we can unambiguously compute
overlaps. The overlap between the Short-Range VB states shown in Fig. 6.6
(a) and (b), call them |a) and |b), reduces to the overlap between the product
of the two Valence Bonds which have been rearranged, since the other Valence
Bonds have norm one by definition. Let 1 and 4 (2 and 3) belong to the red
(black) sublattice. The overlap (alb) is equal to

(a]b) = (12,43]13, 42) (6.2.10)

(a) (b) (c)

Figure 6.6 (a) and (b) are two configurations of dimers which differ only in the
local arrangement of the dimers at the sites 1,2,3 and 4. (c) is the superposition of
(a) and (b). The closed loop with non-vanishing area connects the sites 1,2,3 and 4
with 4 dimers, and represents the overlap of the non-orthogonal VB states |a) and
|b) associated to the dimer covering in (a) and (b).
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where |12), for instance, denotes the VB
12) = —= (I Tel2) = | la13). (6.2.11)
f )
Thus, (a|b) is simply given by

(a]b) == ((T1l2Tals || T1l2Tals) + (L1T2laTs || 11721aT3))

(6.2.12)

[T

More generally, overlaps between two arbitrary Short-Range VB states, say
|¥,) and |¥3), will not be zero. These overlaps can be represented, and cal-
culated, as a sum over all the closed loops on the square lattice obtained by
superposing the dimer coverings associated to |¥,) and |¥;). The length of a
loop T in units of the lattice spacing is 2L(T') where L(T') = 1,2, .... Its con-
tribution to the overlap is equal to 2 x 2=L(T) (the factor 2L comes from
the choice of normalization, Eq. (6.2.1), while the factor 2 counts the number
of ways to antiferromagnetically assign the spins on the sites of a loop) and

therefore
(W, |3) H2><2 LTy

:22} % 9~} Xp 2L(D) (6.2.13)

:2P(a,b) x 2—% ’

where P(a,b) (Par(a,b)) is the total number of loops (of loops of length 2L)
in the loop covering (a,b) and N the (even) number of sites. For example,
the loop covering of the 4 x 4 square lattice shown in Fig. 6.6 (c) has seven
loops: six of length two which, with our normalization, give factors of one and
one of length four which gives a factor of one-half. Thus, the NNRVB state
|¥) =", |¥s) has a wave-function normalization (¥|¥) which can be written
as a sum of contributions from loops [Sutherland 88] of the form

(T]W) = (T, |¥y)

a,b
_o- 3" 9P QP i
a,b
—9-% Z gPa(at)yP(a,b)—Pa(a,b)
a,b

(6.2.14)

with £ = 2 and y = 4. Here, the factor 2P(a:)=Pa(3.8) accounts for the fact
that there are two ways to have a loop of length 2L > 2 with a given antifer-
romagnetic spin assignment on the sites of the loop.

Not only (¥|¥) can be written as a statistical sum such as Eq. (6.2.14),
but the staggered spin-spin correlation function can also be written in a similar
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form. Let G(£) denote the staggered correlation function

(¥|o: (0)o (£)|¥)
(v|w) '

For any loop covenng (a,b), there are two possibilities [Kohmoto 88]: (1) The
two points 0 and Z are on the same loop, in which case due to the antiferro-
magnetic ordering on the loop, the contribution to the staggered correlation
function is independent on their relative position. (ii) The two points belong
to different loops and the loop covering does not contribute to the correlation
function. In other words,

G(F) = 4(-1)"*" (6.2.15)

Ea b X(E)Ipz(a’b)yp(ayb)—Pz(a,b)

G(%) = S PR PGP (6.2.16)
where .
1 if 0 and Z are on the same loop,
x(2) (6.2.17)
0 otherwise.

We can recast Eq. (6.2.16) in terms of sums over loops of non-vanishing area.
If L(a,b) is the total length of all loops with non-vanishing area for the loop
covering (a, b), then 2P,(a,b) + L(a,b) = N. Now,

Cx(@)z 7 yP - Frd(Py)
Yz yP-Pad(P,)
where the summations are only for configurations of loops with non-vanishing
areas and d(Pz) is the number of configurations of loops of length 2. Thus
the staggered correlation function gives us the probability for the two sites to
belong to the same loop in a “gas” of loops. Since z and y are fairly small, the
loop gas is reasonably dilute. A “quick-and-dirty” argument shows that the

leading contribution to G(Z) should come from the smallest loop that contains
both 0 and #

G(@) =

(6.2.18)

-2+

G(1) =
@) e3P0+ ...

g~ (L 41) 4

J—|-ln2
xe %o

(6.2.19)

Kohmoto and Shapiro [Kohmoto 88] have given a more refined argument
which shows that G(&) is bounded from above by an exponentially decreas-
ing function with correlation length ¢ & age*l/ V2 Thus, short-range RVB
wavefunclions represent states with total spin equal to zero and exponentially
decreasing correlation functions.

But are any of these RVB states, either short or long range, good approx-
imations to the ground state wavefunction of a quantum Heisenberg model?
The numerical evidence [Liang 88] indicates that for the unfrustrated model
an RVB-like wave function with fairly long range is a good approximation to
the ground state but it is a Néel state! The short-range RVB is not a good
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approximation for this system. In the case of a frustrated system, such as the
Heisenberg antiferromagnet on a triangular lattice, the situation is less clear.
We will discuss this problem in chapter 7.

6.3 Spinons, Holons and Valence Bond States

We will now turn to other states which have been proposed. Since there is
good evidence that the Heisenberg antiferromagnet may be in a Néel state,
I will take the point of view that these phases may be realized by relatively
small modifications of this Hamiltonian. Thus, I will carry out most of the
discussion with the Heisenberg (or Hubbard) model in mind as a rather generic
example.

At this point, it is convenient to go back to a representation of the spins
either in terms of fermion operators or Bose operators. For the most part we
have been using a fermion representation of the spins

5@ = %cl(z)aaﬁcﬁ(f). (6.3.1)

The main motivation for this choice is that the fermion operators cI,(:i:') are
the fermion operators of the Hubbard model. Equation (6.3.1) reproduces
the angular momentum algebra for spin s = 1 only if the Hilbert space is

2
restricted by the condition

(%) = cL(#)ca(F) = 1 (6.3.2)

which implies that each site is occupied by a single fermion with either up or
down spin. Alternatively we may use bosons to represent spin. Let a,(Z) be
a set of boson destruction operators. The boson bilinears

= 1
$(@) = Zal(®)Fapas(d) (6.3.3)
obey the angular momentum algebra for s = % only if the bosons obey the
hard core constraint
al (F)aa(®) = 1. (6.3.4)

These formulas are reminiscent of the CP! representation of the non-linear
sigma model of Section 5.9. Indeed, it is possible to derive the CP! model using
bosons as a starting point. We will not do that here. This boson representation
is closely related to standard spin-wave theory [Holstein 40].

Let us begin by looking for a representation of the Valence Bonds in terms
of fermions. Let |0) represent the empiy state. The Valence Bond on a pair of
sites ¢ and j is simply given by

1G9)) = eapel b0 = (dDel () - L@l ) 10, (635)

We will be interested, for the moment, in the half-filled system. Thus the
average number of particles per site is one and, because of the constraint, no
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doubly occupied sites are allowed. For finite Hubbard U some doubly occupied
sites, as well as empty sites, will occur. We may try to solve the constraint
of no doubly occupied sites by using a “slave boson” construction [Coleman
84] [Read 83]. This leads to the RVB theories of Baskaran, Zou and Anderson
(BZA), [Baskaran 87] and Ruckenstein, Hirschfeld and Appel [Ruckenstein 87].
In principle, there are several ways of implementing the slave boson approach.
Let us consider the fermion operators normal ordered with respect to the half-
filled state. In other words, we will assume that we are not too far from half
filling. Let us now define a set of Bose and Fermi operators at each site, b(Z)
and f.(Z) respectively, satisfying the constraint (at each site)

b1 (@0(@) + FL(@fu(® = 1. (6.3.6)

Let |0) be the reference state for these operators and define the states |A), | 1)
and | |) representing a “hole” (or holon) with charge +e and spin zero and a
spinon | T)(| |)) with spin up (down) and no charge:

) = |e,0) = bT[0),
1) =10,1) = fT‘Ll(‘)), (6.3.7)
1) =10,1) = £]10).

Thus, the only possible states are a holon and a spinon of either orientation.
More formally we can write the operator which creates a band fermion of

charge e and spin o at site Z, cj; (£), in the form

(@ = @5} @). (6.3.8)
Alternatively, we can also write
c}(®) = a(8)2} (), (6.3.9)

where a is a spinless charged fermion and the z,’s are Schwinger bosons rep-
resentation satisfying the constraint

2 (@) 2a(F) = 1. (6.3.10)

In this representation, the hole (or holon) is a fermion and the spinon is a
boson. In either representation, at half-filling, there are no holons. Away from
half-filling a number of holons will be present. In the bose-fermion version, the
holons will superficially appear to undergo a condensation transition, which
originally was mistakenly confused with “high-T,”.

6.4 Gauge Field Picture of the Disordered. Spin
States

I will consider now a particular form of Mean-Field theory for the Heisenberg
antiferromagnet, first proposed by Affleck and Marston [Affleck 88] and by
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Kotliar [Kotliar 88]. In this Mean-Field theory, one focuses on the valence
bond operator of Eq. (6.3.5). The spin exchange term, i.e. S(Z) - S(%) can be
written in the form

5@) - $G) = 5k @es@ch@eald) — r@nG.  (641)

Thus up to an additive constant, we have the fermion problem with the Hamil-
tonian 7

H=3 Y d@es@ch(@+é)cald+) (6.4.2)

£,j=1,2

supplemented by the local constraint

(&) = e} (H)cal(®) = 1. (6.4.3)

In Eq. (6.4.2), an underlying square lattice has been assumed and j = 1,2
represents the z; and z directions with é; and é; being the corresponding
unit vectors. This approach can be generalized to other lattices as well.

The path-integral picture of this system involves the use of the Lagrangian

L =Y k(@ 1)+ m)calE )+ D 0(&1)(ch(Z,t)ca( 1) 1) — H. (6.4.4)
4 E

The second term in Eq. (6.4.4) contains the Lagrange multiplier field ¢(Z,1)
which enforces the constraint of single occupancy, Eq. (6.4.3), at all times.

The Affleck-Marston Mean-Field Theory involves a Hubbard-Stratonovich
factorization in terms of the link variables x;(&), which are complex Bose (c-
number) fields. The Langrangian L’

L= E ch(2)(i8, + mealz) + Y lz)(ch(2)calz) — )+
-2 b+

+ 3 (k@ DX (@, cal@ + 65,) + L (@ + 6,03 (F,ca(#,1))
£3j
(6.4.5)
where z = (Z,t), is equivalent to L upon a Gaussian integration of the
Hubbard-Stratonovich fields x;(z). Here, the link variables satisfy the re-
lations x;(Z,t) = x*_j(.i"+ é;,t) since the current operator associated to an
electron hoping from Z to £+ ¢; is Hermitean to that associated to the hoping
from Z + é; to £.

The Mean-Field Theory (MFT) consists, as usual, in integrating out the
fermions, at a fized density, and treating the Bose (c-number) fields x;(z)
within a saddle-point expansion. The fields x;(z), being complex, can be
parametrized in terms of two real fields p;j(z) and A;(z) representing the
amplitude and phase of x;(z) respectively. Before carrying out the MFT, it is
important to consider the symmetries of this Lagrangian. Consider the local,
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time-dependent, gauge transformations

Aj(F,1) = AL (&) + Aj¢(&,1),
p(Z,1) = ¢'(Z,1) + 0g(&,1), (6.4.6)

ca(z) = e (2).

These transformations leave the Lagrangian unchanged up to the term ) . 8:¢.
Thus, the Lagrange multiplier field, ¢, transforms like the 4y component of
a U(1) gauge field. We must conclude that this system has a “secret” gauge
(local) symmetry. The effective Lagrangian Eq. (6.4.5) is reminiscent of La-
grangians of Lattice Gauge Theories [Kogut 82]. There are a few significant
differences: (a) the amplitude field |x;(z)| = p;(z) fluctuates; (b) there is no
explicit kinetic energy term for the gauge fields A, (i.e. an F2,) and (c) there
is an extra term in the Lagrangian proportional to ¢, i.e. to Ag. This last term
may seem to break gauge invariance, since, according to Eq. (6.4.6), ¢ trans-
forms like ¢ — ¢’ + ;4. However, we must keep in mind that what matters
is not the Lagrangian but the action, S

S = /dtL. (6.4.7)

The extra term will transform the action by

So8-3" / dtd,¢(&,1)
z

(6.4.8)
=S — > ($(&,t — +00) — §(&,1 — —00)).
z

If we impose periodic boundary conditions on the gauge fields, as we must
when computing a trace over Bose fields, we must only allow for local
gauge transformations which respect the boundary conditions. Thus,
é(Z,t — +o0) = ¢(Z,t — —oo) and the action is unchanged. We can re-
lax this condition to a little extent. Let us notice that the “extra term” can
be extracted from the action and written into the integrand in the form of a
product of operators of the form

e—ifdtzi o(F,1) — He——ifdt(p(f,t)' (6.4.9)

Since ¢ can be identified with Ag, the time component of a vector potential
A, which obeys periodic boundary conditions, we can write the extra terms in
the form of time-ordered exponentials of line integrals over loops I'(£) which
close around the time direction (see Fig. 6.7). These operators are generally
called Wilson loops :

D I P e I R o (PR T)

-+ Py

T T
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For the Wilson loops to be gauge invariant operators:

dz, A" = ¢ de, A"+ ¢ dz,d"¢=¢ dz, A%  (64.11)
I(z) () I(z) I()

it is suffictent that d¢ is exact, i.e. the gauge transformation is non-singular
everywhere. Recall that these Wilson loops appeared in our problem since we
had to enforce the constraint of single occupancy at every site and at all times.

Because of the gauge invariance, we only need to impose the constraint of
single occupancy, Eq. (6.4.3), on the configuration space at some initial time
surface, t = tg. The local gauge invariance implies that the spin configurations
at an arbitrary later time ¢ must still obey the same constraint; i.e. they are
smooth deformations of the initial configuration. For instance, we cannot try
to fix the gauge Ag = 0 if only non-singular gauge transformations are allowed.
This gauge is not consistent with the constraint of single occupancy since a
configuration with Ag = 0 has § Aodt = 0 and, because of gauge invariance, it
cannot evolve into configurations with § dt.Ag # 0. At best we can fix Aq(Z,1)
to be a time-independent arbitrary function Aq(Z) through

}{ dtAo(5, 1) = TAo(%) = Ao(?) (6.4.12)
where T is the time span. Alternatively, we may also choose the gauge

A (Z,1) = Ao(2)6(t —to) (6.4.13)

which yields the same value of the line integral. This choice means that, at
t = tg, we restrict the space of configurations to obey the constraint n(&) =1
at all points £. Gauge-invariance then takes care of choosing only the time
evolving configurations which satisfy this property.

However, it is worth noticing that from the point of view of quantum me-
chanics, what matters is not the invariance of the action § but the invariance
of the amplitude ¢’ assigned to a given history [Feynman 65]. Thus gauge
transformations which change during the time span T by A¢(Z) = 2am(Z)
(an arbitrary integer modulo 27 at each point Z) are allowed, since they do
not change the amplitude although they do change the action. These are
the so-called large gauge transformations. These transformations change the

\-—”

Figure 6.7 Wilson Loop along the closed curve I'(£) in the time direction.
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time-like Wilson loops accordingly:

}{ dtAg = j{ dt A} + 2rm(3) (6.4.14)

and thus, are singular gauge transformations. A correct description of these
systems, particularly at non-zero temperatures, requires a careful treatment
of these large gauge transformations.

We wish to evaluate the functional integral for a system with a Lagrangian
of the form of Eq. (6.4.5). We will attempt a semi-classical treatment of this
theory. One difficulty that we will encounter will be that there is no small
parameter to organize this semi-classical expansion. Thus we should have
every reason to suspect that the results may not be quite reliable. Indeed,
using this approach it is quite hard to reproduce a Néel state. This is so
because the approximations that we will make will be accurate for systems
which can be described in terms of Valence Bonds. In this representation we
deal with local spin singlets and the spins fluctuate very fast. Conversely, in a
Néel state, the spins are slow variables but the VB’s are fast ones. These are
complementary descriptions.

An ingenious procedure has been devised in order to control the fluctu-
ations. Affleck and Marston [Affleck 88] proposed to study a generalization
of the Heisenberg model to a system with an SU(N) symmetry by attaching
a “color” index @ = 1,..., N to each fermion. The spin one-half model was
obtained by considering the N = 2 (SU(2)) case. The Affleck-Marston La-
grangian has, after an RVB decoupling by means of a link variable x;(Z,1),
the same form as the Lagrangian of Eq. (6.4.5) except that (a) « ranges from
1to N (not just 1 and 2, or 1 and |) and (b) the local occupancy is not equal
to one but to a function n(&)

N
3" cl(®)ca(®) = n(&) (6.4.15)

which they proposed could take one of two forms on a system with two inter-
penetrating sublattices, A and B:

1 Te A,
(&) = { (6.4.16)
N —1 ZeB,
or
N - ~

n(&) = > Ze A or Ze B. (6.4.17)
Read and Sachdev [Read 89] further generalized this model and considered
an SU(N) “Heisenberg antiferromagnet” of the form

N
J . .
_ Y B Gal =
H=% (2‘ -;) a}ﬁ_:l $8(£)85(2 ") (6.4.18)

where FeA and & 'eB. The operators 5’;;’(::':’) are generators of the Lie group
SU(N). If one chooses a representation of SU(N) determined by a Young



6.4 Gauge Field Picture of the Disordered Spin States 143

tableau with m rows and n. columns (0 < m < N) on sublattice A and
N — m rows and n, columns on sublattice B (which is the conjugate of the
representation on sublattice A) (Fig. 6.8) we can write S’g(i’) in terms of
fermions as follows

8(2) = Sl () (3) — 880
Se(@) = ;caa(i“)cp (%) — 8 (6.4.19)
at the price of introducing an extra (“flavor”) index @ = 1,. .., n.. The repre-
sentation is fixed by the constraint [Read 89]
N 6tm Te A,
3 el @@ = (6.4.20)
a=1 68(N —m) e B.

Hence, there are mn, fermions on sublattice A and (N — m)n. fermions on
sublattice B. For example, for N = 2 (SU(2)), the only available value of m
1s 1 and n, 1s arbitrary. It is easy to show that this representation has n.
spins one-half. The constraint means that the allowed states are symmetric
under a permutation of the spins. This is the representation (or multiplet)
with spin s = 5. Thus, all the representations of SU(2) have been included.
This is important since the limit n, — co, N = 2, is the spin-wave theory.
:‘}le i ;xpansmn discussed in Chapter 5 is simply the nlc expansion here (since

Fgrom now on we will consider only the case of self-conjugate representa-
tions (i.e. the Young tableaus have the same number of rows m = % for both
sublattices). This is only possible for N even. We will only consider the fun-
damental representation, which has n, = 1. The limit n. large is more conve-
niently described in terms of bosons [Arovas 88] or in terms of a coherent-state
path-integral [Read 89]. Both representations lead to a generalization of the
non-linear sigma model of Chapter 5. We will not pursue this approach here.

-+ -t
N ne
m
n—m
Sublattice A Sublattice B

Figure 6.8 Conjugate Representations of SU(N) on a bipartite lattice. The case
shown here is the (m, n.) = (3, 5) representation of SU(8) and its conjugate (5, 5).



144 Chapter 6 Spin Liquids

The Lagrangian density of Eq. (6.4.5) now has the form

N
£ =cla(5vt)(iat + /‘)cad(fv t) + ()odb(fv t) (cla(fvt)cab(fv t) — bab ?) +

N o
- S P+

+ cla(fv t)X;b(fv t)cflb(i: + éJ v-t) + clb(f + é.‘i ’ t)X;b*(fl t)cad(i:v t)
(6.4.21)
where x_‘;b(.i",t) is an n, X n. complex matrix field satisfying

x$(&,1) = X257 (£ + é5,1). (6.4.22)

The field x_‘,-’b(i:',t) is a generalization of x;(Z,t) in Eq. (6.4.5). This Lagrangian
density has a non-Abelian gauge invariance which is a generalization of Eq.
(6.4.6). The functional integral is

Z= / DxDyDelDe ¢ [ e~ iH § dtvea(@), (6.4.23)
Z

The action S is a bilinear form in fermions. Hence, once again, they can
be integrated out at the expense of a determinant. The effective action Seq,
resulting from integrating out the fermions, is

Seﬂ'[()on.‘i] = Ng[()ov X.‘i] (6424)

where

Sle, x;] = —iTx In[((i0: + p)bab + par(Z,1)) 82,2/ 61,0+
+ (X;b(fvt)éf’,5+éj + X?“(f— éj»t)éf’,f—é,-)ét,t']'i'

1, woe
- [ P,

(6.4.25)
We can also decompose x_‘;b(.i",t) into an amplitude and a phase

= aby= oy 1A
X(E,1) = P (&, 1) ED (6.4.26)

where p_‘;b(:i:',t) is a positive-definite real symmetric matrix and .A_‘;b(i",t) is
in the Lie algebra of SU(N) (i.e. ¢ is a group element). Clearly, ¢®(Z,t)
can be regarded as the time component A%(Z,t) of the non-Abelian vector
potential .Azb(:i:',t) while .A;-‘b (Z,t) are its space components. The saddle-point
approximation is justified if we take the limit N — oo keeping n, < co. In the
Bose representation, on the other hand, the limit one is forced to consider has
N < 0o and n, — oco. Thus, although the theories should be equivalent, their
saddle-point-approximations have quite different physics. The limit n, — oo
means high representations and Néel-like behavior. The opposite limit, N —
00, n, fixed, has VB states and flux phases but no Néel states.
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6.5 Flux States and Valence Bond Crystals

For the most part I will consider only the case n. = 1, which is simplest.
However, there are some important new features which arise for n. > 1 which
I will mention in passing. For n, = 1, the symmetry is Abelian. The saddle-
point-approximation implies considering configurations of ;(&,t) and A,(%,t)
such that

68!;01;
"ttt _—9 6.5.1
7D (651
and 5S
tot
" = 6.5.2
SAL(Z,1) ( )

where S0t is given from Egs. (6.4.24) and (6.4.23) by
1
Stot = Set — B Zf: f dtAg = Set — Zf: f dtJ,A* (6.5.3)

with J, = 16,0. Equation (6.5.1) determines the value (or configuration) of
p(Z,t) which extremizes the action. Similarly, Eq. (6.5.2) implies the absence
of fermion currents j‘f in the ground state

681;01; _ 6Seﬂ'
6A(z)  SAL(z)

In other words, the average fermion density is equal to one, as required by
the constraint, and the average current vanishes. Two solutions have been
proposed to solve the saddle-point equations: (i) flux state and (ii) VB crystal
(or Peierls) state.

—Ju(z) = jF(z) — Ju(z) = 0. (6.5.4)

6.5.1 Flux States

We look for solutions of the saddle-point equations with maximal symmetry.
For instance, we want solutions of Eq. (6.5.1) independent of (£,t) and of j:

pi(Z,t) = p. (6.5.5)
We may also ask for a possible solution with non-zero value of A;(Z,t) but
with Ag = 0. The value of A;(&,t) may be chosen to be time-independent
but not constant in space since, in that case, it would be gauge equivalent to

zero. Thus we require that the circulation of A;(&,t), or fluz B, around any
elementary plaquette be constant

Y At =8B (6.5.6)

plaquette

In general, a non-zero flux B violates time reversal invariance since the time-
reversal transformation maps B — —B. But, this system is periodic in A;, i.e.
A; and A} = A;j + 27n; (n; an arbitrary integer) cannot be distinguished.
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Thus B is defined up to an integer multiple of 27. There are two values of
B compatible with time reversal invariance: B = 0, 7. Any other value of B
represents a state with broken time reversal symmetry. We will see below that
these are the chiral states and are dubbed generalized flux phases.

6.5.2 Valence Bond States

There are two types of VB states: chiral and non-chiral. For both types of VB
states, the field x;(Z,t) has an amplitude p;(Z,t) which takes non-zero values
only on dimer configurations: ;(£,t) = p on those links covered by dimers
and zero elsewhere. The phases A; (Z,1) of x;(Z,t) have circulations B around
elementary plaquettes which equal 0 or 7= for non-chiral states but take any
other value in the chiral states.

Let us consider the saddle-point equations for n, = 1 in more detail. We
look for solutions which are time-independent and have Ag = 0. Thus, f; and
B are constant in time. From Eq. (6.4.21) we infer that the fermions, which
are the spinons of this sytem, move with an effective Hamiltonian

Hyr == 3 5i(@) (@5 Dca(@+ &) + cf(@ + ) A Dea(7)) +

ilj

N 9,
5’]‘

(6.5.7)
in the background {p;(Z), B(Z)}. Here, we have 1 NL? fermions in a system
with the linear dimension L.

Let us consider first the uniform solutions which have p;(&) = 5 (con-
stant). We saw above that there are only two allowed values of B consistent
with time reversal invariance. For B = 0, the spinons have a square Fermi sur-
face (see Eq. (2.4.10)). This is the state found by Baskaran, Zou and Anderson
(BZA). The total energy of the BZA state is

AINL? _ 8 _
EBZA = p2 - ﬁNL2p (658)
The minimum is attained for p = %';- and Epza = _g%ﬂ' Superficially,

this state looks like a Fermi liquid of spinons. However, the fluctuations
are likely to destroy this state. There are, naturally, amplitude fluctuations,
pj(z) = pj(z)—p. These fluctuations are essentially local in character and may
trigger an instability towards a Peterls state in which g may have a periodic
component in space. More importantly, the gauge fields are completely un-
constrained. The result is a state in which the constraint of single occupancy
is enforced and in which there is no current flow.

The state with p;(#) = j constant, and B = 7, everywhere, is usually
called the flux phase. For the flux phase the spinons move according to the
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Mean-Field Hamiltonian Haux given from Eq. (6.5.7) by
Haux = — 53 (L@@ ea(@+65) + cl(@ + &)e B @ey () +
5’]‘
INL?
7

(6.5.9)
The vector potentials A; (&) should have circulation equal to 7 around every
elementary plaquettes

S A@=m (6.5.10)

plaquette

We can solve this requirement by the (gauge-dependent) choice
A@) = +3,
_ pul (6.5.11)
Ax(Z) = —5(—1)31-

The Fermi fields ¢, (Z,t), the spinons, satisfy the equation of motions
ita(Z, 1) =[cal(Z, 1), Haux]
==/ E (eijj(f)cfl(f'i' é.i’t) + e—ijj(f—éj)ca(f_ é.ivt)) )
ji=1,2
(6.5.12)

It is convenient to introduce a separate amplitude for each of the four sublat-
tices of Fig. 6.9:

00 fO(F) = — ip [[P(F + 1) — FP(F - )] +
+ip [fO@+ &) — 1D — &),
i00 fP(E + 1) = —ip [ f0(F + 261) — SO (@) +
—ip[fOE + e +én) — FOE+a — &),
00 (& + &2) = — ip [fD@+ &1+ &) — FI(E - &1 + &) +
+ip [£0(E +262) - FO@)]

100 fV(F + 61 + &) = — ip | fO(EF+ 261 + &) — fO(E+ éz)] +

—ip [fPE + 1 +28) — [P (E+ )|
(6.5.13)
If we denote by A;¢(&,t) the finite symmetric difference
A;jd(Z,t) = ¢(Z + é5,t) — ¢(& — é;,1), (6.5.14)
we can write the equation of motion, Eq. (6.5.13), in the vector form (a =
1,2,3,4)
18, f((&,1) = —ipM* fO)(&,1) (6.5.15)
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provided that # stands for an (even, even) site and the f(1), £ (3 and f
components have the coordinates shown in Fig. 6.9. The matrix M is given
by

0 Ay —-A; O
A0 0 A,

ab __
M® = A, 0 0 A, (6.5.16)
0 A, A 0
Consider now the linear combinations
uD(F,1) = FVE ) + fO(E+6,,0), (65.17)
ud(Z,8) = fO(F+é2,8) — FVE + 61+ é9,0), .
and

vt(xl)(fl t) = fzga)(f_i_ é21t) + f§4)(5+ él + 621t)1 (6 5 18)

(E,1) = fOE D)~ FOE +é,0).
In terms of the spinons us,a) and vS,“) (a = 1,2) we can write the equation of
motion in the Dirac form

i00ul®(Z,1) = —ip(03) s A1uD(E,1) + ip(01 )ap Al (£, 1) (6.5.19)

and the same equation for v((,a)(i:',t). Let us define the 2 x 2 Dirac matrices

Y0,71 and 2
Yo = —02, Y1 =—to), <2 =—t03. (6.5.20)

Equation (6.5.13), in this notation, has the form

i (7060 - vr‘y’-'&) ug’) =0,

ab
(6.5.21)
; gy YV () —
i (7030 vFpy '\7) U 0,
where I have taken the continuum limit and the Fermi velocity vp is
vp = 2agp. (6.5.22)
(e,0) (0,0)
3 Y (4)
f f
(e,e) (o,e)

Figure 6.9 The four sublattices associated with a flux phase; (e,e) denotes a site
with £, and z5 even, and so on.
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The eigenvalues are, in momentum space,

e(F) = £2p1/sin’ p, + sin” py (6.5.23)

with |p;| < w/2. The dispersion curves form critical surfaces near 7 = 0,
characteristic of a continuum relativistic system (Fig. 6.10). The ground state
energy in the flux phase is

QNL? _ _ d? . .
Egux = 5 pr—2x 2NL2p/ ﬁ\/smzm + sin® py

Ipil<%

(6.5.24)

where the factor of 2 is due to the contribution of both u and v branches. The
minimum is attained at 5 = JaJ and the total energy of the flux phase is

2
Efux = —%NLU ~ —0.115N L2J (6.5.25)
which is lower than that of the BZA state, Fpza = ___SA%Q ~ —0.082NL?J.
Both BZA and flux solutions have gapless excitations which carry the
spin 1 degree of freedom (for SU(2)) or, more generally, SU(N) color. While
this spectrum appears to be stable at the level of Mean-Field theory, we will
find problems once fluctuations are taken into account. First of all, we will find
that a set of dimer states has lower energy than both the BZA and flux states.
It is conceivable, however, that reasonable generalizations of this Hamiltonian
do exist such that the flux state may be preferred. Affleck and Marson have

indeed found such generalizations.
But what is more serious about these Mean-Field theories is the fact that
they violate the local gauge invariance present in the full theory. In fact, we
find spin non-singlet excitations which are not gauge invariant: the spinon

Figure 6.10 Dispersion law for spinons in a flux phase.



150 Chapter 6 Spin Liquids

states. In Lattice Gauge Theories, there is a theorem, known as Elitzur’s theo-
rem, which states that in a theory with local interactions and with local gauge
invariance, the only operators with a non-zero vacuum expectation value are
locally gauge-invariant operators. In other words, the only states present in
the spectrum are local gauge singlets. This result may appear to be puzzling
at first glance. After all, even in theories with a global symmetry, such as
the Ising model, the low-temperature magnetization is zero if the averages
are computed over the entire configuration space. The procedure to remedy
this problem is well known and it is crucial to a correct understanding of
spontaneous breaking of global symmetries, First one considers a finite system
of linear size L and the allowed space of configurations is reduced by either
choosing a boundary condition (which fixes the asymptotic behavior of the
spins at spatial infinity) or by turning on a weak external symmetry breaking
field. Next, the thermodynamic limit L — oo is considered in the presence of
a fixed symmetry breaking procedure which is removed after the thermody-
namic limit is taken. This procedure yields a non-zero magnetization because
it takes an infinite order in the low-temperature expansion, i.e. the expansion
around the state with broken symmetry, to mix the two degenerate classes of
configurations. Hence, there is no mixing and the magnetization is non-zero if
the expansion has a finite radius of convergence. However, if the symmetry is
local, the situation is radically different. It always takes a finite order (of the
order of the coordination number) in perturbation theory to mix states re-
lated through local gauge transformations. The behaviour of the system at the
boundaries has little effect on the behavior near its center. The expressions
for local expectation values are analytic functions of the coupling fields, even
in the thermodynamic limit, L. — co. Thus, in the absence of external fields
or gauge-fixing conditions, expectation values of locally gauge non-invariant
operators must be zero. This is the content of Elitzur’s theorem.

However, a gauge theory may be in a non-confined phase in which a gauge-
invariant operator creates a guark (spinon in the terminology of magnetism)
and antiquark (antispinon) at distances R, which can be separated all the
way to infinity and still yield a non-zero amplitude. But for that to happen,
the fluctuations of the gauge fields, or rather, of their field strengths, need to
be controlled. This is not the case for the “RVB-type” Mean-Field theories.
There is no term which controls the fluctuations of the gauge fields here. The
gauge fields fluctuate so strongly that (a) they are able to enforce the local
constraint and (b) they project out all current carrying states. The conclusion
is the BZA and flux states need not only a Gutzwiller projection but also an
additional procedure which eliminates all processes involving transport of spin
over any significant distances.

The valence bond states, on the other hand, are manifestly local singlets.
Thus gauge field fluctuations will play a rather small role in this case. We
should expect states based on a VB description to be more stable. The problem
of finding a “¢rue” spin-liquid state, i.e. a state without broken symmetries
and with spinon states in its spectrum, remains essentially an open issue.
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Let us now turn our attention to a different set of solutions of the saddle-
point equations which is based on valence bond states. Consider a configura-
tion of p; (£) which equals g on a set of links occupied by dimers such as in
Fig. 6.5.

p if the link (&,Z + é;) is occupied by a dimer,
p; (&) = { (6.5.26)
0 otherwise.
The Mean-Field Hamiltonian, Eq. (6.5.7), with Eq. (6.5.26) describes a set
of spinons confined inside the links, the VB states. Thus, we do not have
spinon states propagating beyond the size of a dimer (one lattice spacing) in
this dimer limit. Fluctuations will enable the effective size of a VB state to
grow from the lattice spacing scale up to some finite €. This scale s the spin
correlation length for this system in this phase. It is also clear that, at the
level of Mean-Field theory, the average flux is not determined. This is simply
reflecting the fact that the fluctuations of the gauge field are so strong that
the average flux is wiped out. We will see later that, if holes are taken into
account, a flux phase may develop. The energy of a VB state is

2NL? _

Evp = p:— NL?p (6.5.27)

which is minimized by the choice

__J

P=7 (6.5.28)

and has the ground state energy
Edimer = _%NL2 (6529)

hd hd
(2) (b)

Figure 6.11 (a) One of the four column or Peierls states. (b) shows a staggered
configuration.
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for any dimer configuration. These states clearly have less energy (—0.125J N
per sites) than both BZA and flux states. However, we do not get a unique
ground state at N = oo. This degeneracy is lifted by fluctuations in the
amplitude which appear at order % Dombre and Kotliar [Dombre 89] as well
as Read and Sachdev [Read 89] found that, for the case, n. = 1, the four
column or Peierls states are chosen (Fig. 6.11).

6.6 Fluctuatations of Valence Bonds:
Quantum Dimer Models

The valence bond crystal of the past section has a spin-correlation length of
the order of the lattice constant. It represents a quantum paramagnet. It is
not a translationally invariant state, unlike the equal-amplitude short-range
RVB state. It has crystalline order of its valence bonds and it is four-fold
degenerate.

Alternatively we can imagine that the amplitude fluctuations, which rep-
resent transitions to states with broken bonds, are suppressed. The only way
the system has to minimize its energy is to find a coherent rearrangement
of bonds. If the amplitude fluctuations are frozen out, the system has states
labeled by quantum numbers which describe the covering of the lattice by
dimers. For the rest of our discussion we will ignore the SU(N) structure. Let
l;(Z) be an integer-valued variable associated with the bond (Z,Z + é;). The
Hilbert space is the space of states of the form {|{l;(Z)})} where the integer
l; is either equal to zero (no dimer) or one (dimer). Every site has to belong
to one and only one dimer. This requirement leads to the local constraint

W(E) + (&) + (& — &1) + (7 — &) = 1. (6.6.1)

The “resonance” process of Fig. 6.12 is represented by an off-diagonal matrix
element in which the integer degrees of freedom I; for parallel bonds of a
plaquette are raised from zero to one if the other two bonds are lowered
from one to zero. This process can be described by a term in the effective

Figure 6.12 Resonance process. The integers | = 0, 1 represent the bond occupa-
tion by a dimer.
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Hamiltonian of the form Hreson

Hreon=J D, (IlI}{=+hc) (6.6.2)

plaquette

where J is an effective coupling constant J o J. In addition there are diagonal
matrix elements which give an energy V to a pair of neighboring parallel
dimers, Hdiag

Haiag =V (| =)= |+ [IXII - (6.6.3)
The full Hamiltonian of the Quantum Dimer Model (QDM) is
HQDM = Hreson + Hdiag (664)

which is to be supplemented by the local constraint of Eq. (6.6.1).

We will now describe a solution of this problem. The result will be
a VB crystal. Thus, even the QDM, originally proposed by Kivelson and
Rokhsar [Rokhsar 88] as a model with a short-range RVB state as its ground
state, has, in general, a crystalline ground state. For a particular value of %

(# = —1,V > 0) Kivelson and Rokhsar found that the short-range RVB wave-
function is the ground state wavefunction and it has zero energy. For V > |J|,
the staggered valence bond crystal of Fig. 6.13 is the exact ground state and
it has zero energy. We saw before that the correlation length of the spins is
short ranged [Kohmoto 88]. This does not imply that all other correlation
functions must also be short ranged. For instance, the dimer-density correla-
tion function is not short-ranged. This correlation functions, which measures
the amplitude of finding two parallel dimers at some separation R in this state
is equal to the probability of finding two parallel dimers in a random distribu-
tion of classical dimers covering the lattice. Fisher and Stephenson [Fisher 63]
found that this correlation function decays like ~ #. Thus, the short-range
RVB state is a dimer liquid while the VB crystals are dimer solids.

T
~

A
A4
O

)

)
Y/

d3—o0—& b6 85 4§

Figure 6.13 The staggered VB crystal.
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6.7 Quantum Dimers and Gauge Theories

We wish to consider the full quantum dynamics of the QDM. We will find
it most profitable to map this problem into a Lattice Gauge Theory [Kogut
79]. In a sense this mapping is suggested by the RVB-Mean-Field decoupling
that we have been using all along. Baskaran and Anderson [Baskaran 88§]
first introduced a mapping of the static interactions of the RVB-Mean-Field
theory, to a gauge theory. Here I am following the work by Kivelson and myself
[Fradkin 88], [Fradkin 90].

Let us begin by defining an enlarged Hilbert space on the links of the
lattice. Let {l;(£)} be a set of integer valued variables defined on the links
{(£,Z+ &;)} of the lattice. The states |{l;(£)}) span the unrestricted Hilbert
space. The angular-momentum operators L; (&) have the integers I;(£) as their
eigenvalues and |{l; (£)}) as their eigenstates. If we wish to restrict this Hilbert
space to the subspace in which I; = 0,1, we can do so by assigning an infinite
energy to all unwanted states. Thus, let us define a dimer contribution, or
kinetic energy term, which enforces the restriction and is nothing but a hard-
core condition. We can write Hdimer in the form

Hdimer = 51]; ; ((-z/](f) - %)2 - i) . (6.7.1)

For any value of the coupling constant k, the configurations with {; = 0,1

have exactly zero energy while any other state will have energies growing like

%ask—vo.

We need two terms: one for resonance and the other for the diagonal
terms. In order to discuss resonance we need to introduce the variable a;(Z)
at each link which should be the eigenvalue of the operator &;(Z) canonically
conjugate to f,j (&), i.e.

[6; (), Lj«(Z )] = i8jj082,2. (6.7.2)
Since the spectrum of L; (%) is the integers I;(Z), a;(Z) should be an angle
0 < aj(£) < 2m, (6.7.3)

and the Hilbert space is the space of the periodic functions of a; (£) with period
27, independently at each link. Using the commutation relations Eq. (6.7.2),
we see that the operator ei”™i% acts like a ladder operator with stepsize mj,
where m; is an integer. Indeed, we can write for any site

Lyeimsti|l;) = eimids (e7m3% [jetmss ) |fy). (6.7.4)

The commutation relations tell us that the operator between brackets in Eq.
(6.7.4) is the shifted operator

e—imj&ji‘/jeimj&j — f’j + my. (675)
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Thus, we get
Liemidill;) = &% (1 + my)|l;) = (I + mj)e™™i% ;) (6.7.6)
and we can identify o
e\l = |l; + my). (6.7.7)
The resonance term should remove from a plaquette two parallel dimers and
replace them by another pair of parallel dimers but in an orthogonal direc-
tion ( Fig. 6.11). We can accomplish this by writing, in terms of raising and
lowering operators, the term
Hieson = fZ(ei[&l(f)-Fﬁl(5+éz)—&2(5)—&2(5+51)]+
) (6.7.8)
+ei[&z(f)+&2(5+é1)—&1(5)—&1(54-52)]).
The diagonal terms are

Haing = V'3 (Er(@)EA(E + ) + La(B) Ea(E + 61)) (6.7.9)
£

and the constraint is
Q(F) = L1(8) + L1(F — é1) + La(&) + La(ZF — &) = 1. (6.7.10)

This last equation looks peculiar since the left-hand side is an operator and
the right-hand side is a number. The meaning of this equation is that the
allowed states of the Hilbert states, which I will call |Phys), satisfy

Q(Z)|Phys) = |Phys). (6.7.11)

For this condition to be consistent, Q(Z) should be diagonalizable simultane-
ously with the total Hamiltonian H, i.e.

[Q(&),H]=0 (6.7.12)

where
H= Hdimer + Hreson + Hdiag- ’ (6713)

This is indeed the case, since Q(:i:’) simply counts all the dimers touching
a given site and this number is a constant of motion. The operator Q(Z)
generates a set of local time-independent transformations of the form

¢ 202 @@ phys) (6.7.14)

which leave H unchanged. Thus we discover that H has a local gauge sym-
metry and Q is the generator of local gauge transformations. The constraint
equation is simply Gauss’s law. This symmetry is simply the fact that we are
free to change the phases of the Valence Bonds at each site independently. In
this language, the wavefunctions which are being considered have the form

[2) = > A()e*]c) (6.7.15)
{c}
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where {c} is a set of (linearly independent) VB states (i.e. dimer coverings).
A(c) is a real amplitude and ®(c) is the phase. The phase ®(c) depends on
the configuration and we have chosen to write ®(c) in the form of a sum over

links
B(c) =Y a;(2). (6.7.16)
£,j

States of the form of Eq. (6.7.15) are coherent states parametrized by the
variables a;(&).

We can write these formulas in a much more transparent and familiar
way, by staggering the configuration {a;(Z)}. Clearly this can only be done
consistently for a bipartite lattice. Define the staggered gauge field fij (£) and
“electric fields” E;(Z) by '

A;(8) = 97 4;(z) (6.7.17)
Ej(£) = €97 L;(3)

with Qo = (m, 7). It should be stressed that these fields do not represent the
electromagnetic fields. With these definitions, we can write the constraints of
Eq. (6.7.11) in the form

[Aj E;(Z) — p(£)]|Phys) = 0 (6.7.18)
where A; is the lattice divergence

and the density p(&) is
p(&) = 'F0%. (6.7.20)

Equation (8.7.18) now has the standard form of Gauss’s law. Note that p(Z)
represents a background staggered charge density which equals +1(—1) on
red (black) sites and is enforcing the condition that each site should belong
to one and only one dimer. In the presence of holes, p(&) will vanish on sites
occupied by holes. In this formulation the Hamiltonian reads

H= ; (12:(@) - a(@) - (@) + 273 con (:Z‘ ,41.(5)) +

vy (El(i:‘)El(i:‘+ &) + Ey(2) Ea(F + 62))
&

X (6.7.21)
where zplaquette A;(Z) stands for the oriented sum of staggered vector po-

tentials A;(%) around the elementary plaquette labeled by & (its southwest
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corner):

Z flj ) = eiQo-Z (81(Z) + @1(Z + é3) — @2(Z) — a2(Z + 1))
plaquette

= fil(f) - fi1(5+ éq) — A2(1‘;‘) + 1‘12(5—{- é1) (6.7.22)
= Ay A1(F) — A1 Ay(F)
and «;(Z) is
*(#) = %eiémg' (6.7.23)

By expanding the square in the first term in Eq. (6.7.21), and using Eq.
(6.7.23), we can write the first term in the form

1 co, L2
7 ZEJ.(J;)—7 (6.7.24)
Elj

where L is the linear size of the square lattice.
We can take all these considerations into account by writing the Hamil-
tonian in the form

1 I = .
H:§E ZEJ-(:B)—T) +2JZcos Z A;(Z)
,j & plaquette (6.7.25)
14 b (2 B (=2 Vo2
+3 2 (MaB@)P + (MB@)) - 5L
T
and considering the limit ¥ — 0. The states are restricted by demanding that
Gauss’s law (Eq. (6.7.18)) be satisfied.
This Hamiltonian is closely related to a problem solved by Polyakov in
1975 [Polyakov 77]: compact quantum electrodynamics in (2+1) dimensions.
It is compact in the sense that its degrees of freedom, the gauge fields A;, or

rather the exponentials e*4i() are elements of the compact Lie group U(1).
It differs from Polyakov’s compact QED in that (a) J has the wrong sign
and (b) the constraint selects a space of states which is not the usual vacuum
(p = 0) but which has an array of sources, p(£) = +1. The first problem can
be solved very easily (in the absence of holes) by shifting the gauge variables
A; = A' + 64; in such a way that 2 plaquette 6A; = . For instance, we

can shlft A1 by T on every other horizontal row. The second caveat, (b), is
intrinsic and cannot be done away with by any redefinitions of variables. The
shift 6.»4 says that Eq. (6.7.25) represents a system which likes to have flux =
per plaquette on average. This result is reminiscent of the flux phase. Thus,
in terms of shifted variables, H has exactly the same form but with J « —J.

The apparent analogy w1th QED may lead us to think that the ground
state of this system (after shifting) has weakly fluctuating gauge fields. In such
a case one may expect that the elementary excitation should have A; to be
small, slowly varying and gapless: a “photon”. Recall that we are working with
staggered variables. Hence this “photon” has wavevectors close to Qo = (m, 7).
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This is the resonon of Kivelson and Rokhsar who argued about its existence
for —J = V.

Away from |j | = V, the resonon does not exist! This is so since, as
Polyakov showed, compact QED is a confining theory. His results, which he
derived for the case p(Z) = 0 (i.e. the usual vacuum sector), imply that (i)
the ground state is unique and it is a gauge singlet, (ii) the spectrum has a
gap, and (iii) only gauge invariant states are present (in particular, there is
no “photon”). We will see now, by following Polyakov’s ideas and using the
methods of Banks, Kogut and Myerson [Banks 77], and Fradkin and Susskind
[Fradkin 78], how these results are modified by the presence of a non-zero
p(Z).

Since we expect, after Polyakov, that the physics of the ground state and
low-lying excitations may not be accessible by means of a perturbative ex-
pansion around a state with some background classical field .;1]' , it is useful to
identify the topological excitations of this system. If we consider the Euelidean
evolution of the system (i.e. imaginary time), the field configurations which
disorder the long-range properties of the classical background state look like
Dirac magnetic monopoles with integer charge. Polyakov’s observation was,
and this will also be crucial to our problem, that fluctuations around a back-
ground configuration with monopoles induce an interaction among them which
is identical to that of a (neutral) Coulomb gas in three Euclidean dimensions.
Since the Coulomb gas has the property of screening for all values of the cou-
pling constant, the ground state is unique and has gap A ~ 1, where &, is
the screening length of the monopole-antimonopole plasma. Let us rederive
these results and, at the same time, keep track of the sources p(&).

6.8 Duality transformation and Ground State

Degeneracy

The first step is a dual transformation. We will define this transformation
in terms of the evolution of the constraint equation (Eq. (6.7.18)). Let 7 label
the sites of the dual lattice, which is also a square lattice (Fig. 6.14). Let S(7)
be an operator defined on sites of the dual lattice with a spectrum labelled
by the integers S(# ). Similarly, B;(7 ) is a classical background real valued
field which resides on the Lnks of the dual lattice. I require that

Ej(f) = €k (Aké(F) + By (7 )) ) (6.8.1)

where ¢ is the Levi-Civita tensor and ¢,j = 1,2. If we now substitute Eq.
(6.8.1) into the constraint Eq. (6.7.18), then, in the subspace of physical states,
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we get

A; E;(Z) = €ji (AfAkS’(F) + A Bi(7 ))

= €A By (7) (6.82)
= p(%)

where I used the antisymmetry of the €. Thus, the background fields B (7)
are determined by the conditions

1A B(F ) = p(&) = (—1)+5s. (68.3)

Notice that the electrostatic-like constraint Eq. (6.7.18) (i.e Gauss’s law) has
become the magnetostatic constraint Eq. (6.8.3). This is the usual electric,
magnetic duality.

The set of solutions of Eq.(6.8.3) is in one to one correspondance with
the dimer configurations of the lattice since Eq.(6.8.3) is the dual version
of the constraint, Eq.(6.7.11). Moreover, different solutions B(7 ) and
Bi(7) are related through a gauge transformation since their difference
By (7)) = By () — BL(F) must satisfy

€5k A Be(7 ) = (65845 Br(7 ) — €1 A By (7))
=(p(Z) — p(%)) (6.8.4)
=0.

In other words, Bi(7 ) is curl free. Hence, at least locally, By (7 ) must be a
pure gradient

Br(7F) = AT(F), (6.8.5)

where, without loss of generality, I'(¥ ) is an integer-valued function on the
dual lattice.

Figure 6.14 The sites of the direct lattice (filled circles) are labelled by Z and the
sites of the dual lattice (empty circles) are labelled by 7.
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A local change in the gauge of By (7 ) can thus be absorbed in an appro-
priate redefinition of the operators S(7)

S(F)=8'(F)=TF). (6.8.6)

There exists however a set of By(+ ) which cannot be done away with by a
suitable redefinition of the variables 5’(17 ). They correspond to large gauge
transformations, i.e. gauge transformations which change the value of the line
integral (or sum) of Bi(¥ ) along a non-contractible loop around the torus
(see Fig. 6.15). There are two generically non-contractible loops: one along
the z; direction, y;(¥ ), and the other along the z, direction, v,(7 ); where
v1(7) and ¥2(7 ) go through the dual site # (Fig. 6.15). Thus the line integrals
L, (7)[B] and L,,(7)[B], defined by

L
LyolBl= Y Bi(F)= Y Bi(F+méy),

1(F ni=1
m@) i (6.8.7)
I’Yz(" )[.é] = Z BQ(F) = Z B2(F+ n2€2),
72(1’) na=1

are invariant under (“small”) gauge transformations (which satisfy periodic
boundary conditions). However, (“large”) gauge transformations, which do
not respect the periodic boundary conditions, do change the values of L, (7) [B]
and I, 7 )[E] The constraint (see Eq. (6.7.24))

Z E¥&) = %2 (6.8.8)

requires that there should be no bond occupied by more than one dimer. These
restrictions imply that the only allowed large gauge transformations have to

\ v2(r)

Figure 6.15 A square lattice with periodic boundary conditions is isomorphic to
a torus. Two non-contractible loops y1(7 ) and y,(7 ).
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satisfy a uniformity condition. For instance, a large gauge transformation
which raises I, (7 y[B] by +1 everywhere, has the form (Fig. 6.16)

B(7) = b3 mob.1 (6.8.9)

where ng is an integer 1 < ng < L.
_ What is the meaning of these large gauge transformations? Recall that
E;(Z) is given by

E; () = €5k (ApS(7 ) + Bi(7)). (6.8.1)

If we regard the operators S(7 ) as the quantum fluctuations and By (7 ) as
a classical background, we see that the configurations with S(¥ ) = 0 (or
constant) have E;(Z) = ¢y Br(7 ). In other words, the classical background
fields By (7 ) represent a set of classical dimer configurations which can be
regarded as the parent states for the quantum evolution of the system. Indeed
the line integral I+ )[5] is then from Eq. (6.7.17)

Ly )Bl = Y Bi(F)
)

vi(F
=Y 6iEj(#)
forr (6.8.10)
L
=€j; Y (1)L (F + ngép).
n;=1

Thus, L, # )[E] is the sum of the differences in the number of dimers occupy-
ing neighboring parallel links. This quantity is invariant under the dynamics

T2 = No

Figure 6.16 A large gauge transformation.
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of the Quantum Dimer Model. Solutions which differ by local gauge transfor-
mations are equivalent to classical dimer configurations which differ by the
“resonating” (or flipping) of a set (or sets) of plaquettes whose boundaries are
contractable loops. Large gauge transformations correspond to processes in
which a set of valence bonds circulate all the way around a non-contractable
loop. Thus, the dimer configurations can be classified by the value of the
circulation 27 (7 ) Bi(7) along a non-contractable loop. We can then iden-

tify Ly, H[B ] with the winding number introduced by Kivelson and Rokhsar
[Rokhsar 88].

Consider for instance configurations which belong to the class with van-
ishing winding numbers 3. - Bi(7) = 0. In the gauge B1(7) = 0, there
are two possible solutions to Eq. (6.8.3)

BV(F) =0,
B = - gy, (6511
and

B®(7) =0,

() =+ C )y (0512

In the gauge By(7 ) = 0, there are also two (analogous) solutions. It is easy
to see that these solutions are in the one-to-one correspondence with the four
degenerate column or Peierls states (Fig. 6.17). It is clear that there should
be a connection between the degeneracy of the ground state and its winding
number. Indeed, the number of distinct solutions of Eq. (6.8.3) for a sector
with a given winding number is equal to the degeneracy of the ground state in
that sector. Since the line integrals do not change under the dynamics and the
By’s determine the subspace of states which are being considered, we expect
that the winding number should determine the ground state degeneracy of
the full quantum theory unless extra degeneracies occur, as a results of one or
more modes becoming gapless. These arguments can be generalized to systems
with valence bonds of finite but arbitrary length. In terms of the g expans1on
this means that this topological degeneracy is valid order by order in the +
expansion.

Now that we have solved the constraint Eq. (6.7.18), we can write the dual
form of the Hamiltonian. I will assume that the constraint has been solved in
a sector with winding number I, 7 )[5], i = 1,2. We will have to find which
sector yields the lowest ground state energy. The solution of the constraint,
Eq. (6.7.18), X X

E;(Z) = €:[AxS(7 ) + B (7 )] (6.8.1)

is one of the equations we need. We also need to define the momentum P(7)
canonically conjugate to S(7)

[P(F),S(F")] = i6z . (6.8.13)
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Since the spectrum of S( ) is the set of integers, P(F ) should have eigen-
values P(7 ) in the range 0 < P(7) < 27. It is easy to see that the circu-
lation 37 1, uette A;(Z), around an elementary plaquette centered at dual site

7, has the same effect on its Hilbert space as P(7 ) has on the integer S(7).
More specifically, according to Eqs. (6.7.7) and (6.7.17) the raising operator
¢ Lntaancse 4@ ghifts the eigenvalues of E;(Z) by +1 on the oriented path

around the plaquette. This has exactly the effect of raising S (7), on the dual
lattice, by +1. Thus, we identify

> 4@ =P(F). (6.8.14)

plaquette

Alternatively, it is easy to check the consistency of this identification by an
explicit calculation of the commutation relations.

— o> <« —1—0 > <«<0—1—0 >
o>l <o—| o>l<o—} o
—1—0 > «0—| 0> <«0—]—0>

Figure 6.17 A column state and the background configuration of the By’ s asso-
ciated with it.
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The Hamiltonian dual to that of Eq. (6.7.25) is

H o= | S8 + Be(F ) - o - 275 eos (P) +

ok
+ 12/-2 ((Al(Als’(F) +By(F)) + (Ba(A28() + B2(F)))2) ;

_ VL2
2 )

(6.8.15)
where the limit ¥ — 0 is always meant. Also, in principle, all topological
terms have to be considered. We will keep the sector which minimizes the
ground state energy. All the inequivalent solutions of Eq. (6.8.3) will represent
degenerate states. The manifold of degenerate states is closed under the group
of lattice translations and rotations by %. From now on we will work within
a given topological sector.

By comparing the QDM Hamiltonian, Eq. (6.7.25), and its dual, Eq.
(6.8.15), we notice several features: (i) kinetic and potential energy terms
have been exchanged, (ii) the degrees of freedom in Eq. (6.7.25) are phases
(i.e. elements of the group U(1)) whereas the degrees of freedom in Eq.
(6.8.15) are integers and (iii) Hamiltonian of Eq. (6.8.15) has a global symme-
try S(7 ) — S'(F ) + no (with ng an arbitrary integer) whereas Eq. (6.7.25)
has a local gauge symmetry. These features are present for all systems re-
lated through a duality transformation except (iii), which only holds in 2+1
dimensions [Fradkin 78].

A system with integer-valued degrees of freedom is usually referred to as
a Discrete Gaussian (DGM) or Solid-on-Solid (SOS) Model. It was originally
introduced by Onsager for the study of the statistical mechanics of classical
interfaces. In that context S(7 ) represents the height of a column of identical
atoms standing atop the lattice site 7. The set of values of {S(¥)} can then be
regarded as the surface (or interface) of a three-dimensional solid (Fig. 6.18).
The constraint implied by the limit k¥ — 0 represents a restriction on this
DGM model. The last term in Eq. (6.8.15), which represents a next-nearest-
neighbor interaction between atoms, has the form of a Laplacian coupling. The
second term is responsible for the quantum dynamics of the system. There is
a very large body of literature on SOS and DG models. We will not discuss
it here. Its most studied system has the classical Hamiltonian H,

> (AkS(F+ &3))? (6.8.16)

r,k=1,2

where vy is a constant. Most studies deal with this classical problem although
the role of quantum fluctuations has also been considered.

Classically, systems such as the SOS model usually exhibit two distinct
phases. At high temperatures T' > Tg the interface is rough, whereas at low
temperatures T' < Tg, the interface is smooth. The temperature Tg is the
location of a critical point at which this roughening transition takes place. The
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natural correlation functions of this problem are the height-height correlation
function G(7 —7'):

G(F—7")=(S(F) - S(F")) (6.8.17)
and the order parameter correlation function go(7 — 7 '):
go(F—7") = (efeS(F )e—iaS(¥ ’)), (6.8.18)

where « is an arbitrary angle. For the classical unrestricted system, one finds
the asymptotic behavior of g,(R) where R = |F— 7’| > aq (ao the lattice
constant), to be

M? 4 const x e®D for T < Tr (smooth phase),
Jo(R) =~ (6.8.19)

const x R~7«T) for T' > Tk (rough phase),

where £(T) is the correlation length, M?2 is the square of the order parameter

and the exponent 7 is a function of o and the temperature. The corresponding
behavior of G(R) is

m? + const x T for T' < Tg (smooth phase),
G(R) ~ (6.8.20)
const x ln(%) for T < Tk (rough phase),

Figure 6.18 The configuration {S(7)} parametrizes a surface in the Solid-on-Solid
model.
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where m? represents the square of the average height, (S(7)).

The quantum fluctuations change this picture completely. If we ignore the
restriction (k — 0) and neglect the effects of frustration (introduced by the
fields By), we arrive at the quantum DGM.

Let us introduce a path-integral for this system. It will be convenient for
us to work in imaginary time so that we can also discuss thermal fluctuations.
At a non-zero temperature 7T, the partition function of the quantum system
is

Z=TrePH (6.8.21)

where 3 = 1 and H is the Hamiltonian of Eq. (6.8.15). In order to derive a
path-integral we proceed in the usual fashion [Feynman 65] . We first split up
the imaginary time interval 0 < 7 < § into N, time-steps, each of size A,
such that

AN =0. (6.8.22)

The limit A; — 0 and N, — oo is always implied. Next, we write

Z = hm Tr [e—(A,-)H]N,.
N
hm ’I‘l‘ [e_(A")H”ne_(Af)Hpot]Nr

Ar—0
Ny—oo

(6.8.23)

where we have split the Hamiltonian into a kinetic energy term (the second
term of Eq. (6.8.15)) Hiin and a potential energy term Hpo (the rest). The
next step is to introduce a resolution of the identity in terms of a complete
set of eigenstates |{S(7,1)}) of the operators {S(,1)} between neighboring
factors of e=PH:

+o0 N,
Z = lim > JTHSENHe 2S5+ 1)} (6.8.24)

Ay —0
Nr—oo {S§(Fj)}=—oc0j=1

with periodic boundary conditions in time, i.e.
{S(7, N- + 1)} = {S(F, D). (6.8.25)

In Eq. (6.8.24) the integer j represents the j** time step and 7 =T+ jA;.
Let us compute the matrix elements

({S( ) He 2 HF S, j + 1)}) ~{S(F, §)} e~ ArHrine=Ar Hoat |£5(F, j 4 1)})
=({S(7,5)} e~ A= |{S(7, 5 + 1)})
X e_A"HPOt({S(Fij"'l)})

(6.8.26)
where I used the facts that A, is small and that Hpo: is diagonal in the basis
[{S(7,4)}). In fact,

e=Ar B |{S(F, j)}) = e=Ar B USEI+DDI 57, 1)) (6:8.27)
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with an eigenvalue Hpoi({S(7,7)}) given by

. 1 o o L?
Hpoe({S(7,0)}) =53 (E (AeS(F,5) + Bi(7,5))" — 7)
k=12 , (68.28)
|4 o . . .2 VL
+3 ) Z (A} S(7,5) + ApBi(7,3))” — 5
7, k=1,2
The off-diagonal matrix elements
({S(7,5)}e= - Ha=|{S(7,j + 1)}) = (68.29)
{S(F, i) 1A 2r P 7,5 + 1))
can be evaluated by repeated use of the expansion
b .
%P = Y~ Li(2)e'?, (6.8.30)
l=~o00

where I;(z) is the Bessel function of order ! of imaginary argument. The matrix
elements of Eq. (6.8.29) are products of matrix elements of the form

(SJ |e2(Ar)J_cos(P)|5’j+1> (6831)
which we can write in the form
400 . . i
E (Sj|e$IP|Sj+1>II(2JAT) = I|5j+1—5j|(2JAT)' (6832)
l=—o00

In this last equation we have used the orthogonality of the states |S;). For
convenience, and simplicity, we will use the approximate form of the Bessel
function

e e~ b (1+0@:=™1) (6.8.33)

II(Z) ~

Putting it all together we can write the partition function in the suggestive
form

z= lim - M (6.8.34)
Ni=o (5(7,)}

where the Euclidean (discretized) action H [S] is given by (j = 1,...,N;)

H[S] =ﬁf— 3 [0S (7 )"+

A, .. L2 L2
+35r Z (AeS(F0) + Be(F ) = 5-N- |+ (6.8.35)
k=1,2
VA, S, L2
9 E ((A%S(T)J)'*'AkBk(r)J)) )
.3

»
k=1,2
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I have also used the notation
AgS(F 7)) =S(7, 1) — S(F,7—1). (6.8.36)

Thus the quantum partition function of the dimer model is given by the
classical partition function of a Discrete Gaussian Model in three Euclidean
dimensions on a cubic lattice of size LZN,. This system looks very similar
to its two-dimensional classical counterpart Eq. (6.8.16) except for the fact
that it is frustrated (By # 0), restricted (kK — 0) and it has second neighbor
interactions (V # 0) in space.

If we work in the sector with zero-winding number, the configurations
with S(7, j) = ng, a constant, represent the column states. Conversely, in the
sector with maximal winding number, for instance -, -y B1(7) = L the
configuration S(7,j) = ng is a staggered crystal. Which state dominates can
only be discerned by solving the partition function Eq. (6.8.34). The action
H[S], Eq. (6.8.35), is such that, for small A;, the V-term plays little role
while the fluctuations of S(7,t) in time tend to be suppressed. The column
states have a very large entropy (o< L?) whereas the staggered states, due to
the constraints, have virtually no excitations. Numerical simulations indicate
that, for V small and positive, the column state is stable. For large V the
staggered state should win, at least at low temperatures. Hence, we expect
that the QDGM should be in a smooth phase, albeit degenerate (see the
discussion above).

6.9 Quantum Dimer Models and Monopole
Gases

In Section 6.7 we used an intuitive argument which indicated that monopole
configurations of the gauge fields play a fundamental role in this problem. We
will now examine this issue more closely for the case V = 0.

The easiest way to relate the Quantum Dimer Model to a gas of monopoles
is to apply the Poisson Summation Formula

+oo +o0 )
. fmy= 3 / dpe’* ™ f(4) (6.9.1)

n=-—oQ m=—0C

to the three-dimensional Discrete Gaussian Model with action (6.8.35). This
amounts to replace all the integer variables {S(7,j)} by continuous variable
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{¢(r)} and another set of integers {m(r)} where now r = (ro, r1,72) are three-
dimensional lattice vectors in Euclidean space-time:

Z = lim Ze_H[S]

Ar—0

Nr—oo {5}
_ 1 iz y o m(r)¢(r)—H[¢]
= Ahm0 Z Doe

Nr—oo {m(r)}

Ap—0
Ni=e {m(r)}

(7 (od(r )+ 55 T2, L, 2(Ar8(r)?) +8() (i27m(r )+ 52 32, _, , B Ba()))
. (6.9.2)
Since H([¢] is quadratic in ¢, the ¢ variables can be integrated out, yielding the

result in terms of a partition function for a generalized Coulomb Gas, Zcg,
of the form

= lim Y /D¢ > “ T e ”B*(")

6_5

%{_ (ﬂrf_ﬁ_znk:l,zB:(F )) x
i (6.9.3)
(Det 2%)_ %e+%(éﬁ)2 Z,-,,-/ ‘aulA;Bu(")GO("—"’)fava;’Bp("')ZcG’

Z = lim e

where

k=1,2

Det M = Det (2 TAC A§+ ~ N A2) (6.9.4)

while Go(r — 7') is the three-dimensional anisotropic lattice Green function
defined by

(QJA A(2,+ E A2) Go(r — ') = 8¢ 41, (6.9.5)

k=12
(the minus sign comes from a “partial integration”) and Zcg is given by
Zoa= 3 e 2 Lo mOGr=rimrhHi2n§e 3 m¥e) (g g 6)
{m(n)}
The phase ¥(r) is found to be equal to

U(r) = 3 Go(r — ')A} Bi(r'). (6.9.7)
In the thermodynamic limit (L, N; — oo) [Banks 77] and at zero temperature
Go(r —r') is
. d3q _llieiq(r—r')

Go(r—r') = . . :
—r (2m)3 212r s1n2(92£) + Zk=1,2 %’—s1n2(921‘-)

(6.9.8)
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In the time-continuum limit we find (w = A, qq)

lim Go(f—7' , li 27 dw d?q - EE-F )
Aim, oF—F',7—7") = Jim, / 5 ). D+ By, an’(%)
(6.9.9)

At long distances (R = |F— 7 /| > ao) and long (Euclidean) times (7 =
|7 — 7'| > A;), Go(R, 7) behaves like

Go(R,7) ~ 1

411/7‘—2_*_ 2karR2t

Except for the anisotropy (2j # k) this is just the three-dimensional Coulomb
interaction. Thus the monopoles behave like a gas of charged particles (of both
signs) in three dimensions, with a pair effective interaction (at long distances)
Verr given by

(6.9.10)

Ver(R,7) = 202Go(R,A) b1 (6.9.11)

2 V72 4 2-’_;-\: R2
The total partition function is

7 = e%f;( Det _)__ 6—5 ot m(r)Ve“(r,r')m(r')+i2rm(r)‘Il(r)'

(6.9.12)
The phase 8(r) = 2x¥(r) (see Eq. (6.9.6)) takes one of four possible values,
one per sublattice,

= for 1 even and ry even,

ﬂ'f—" for r; odd and r, odd,
o) = 1 (6.9.13)
j:T” for r; odd and rj even,

| =~ for r1 even and r3 odd.

The conclusion is that in this case, very much like Polyakov’s, the system
is also equivalent to a three-dimensional Coulomb gas. Apart from some rel-
atively minor issues, the main difference between Polyakov’s case and the
problem of our interest, is the presence of the phases 6(r). These phases can
be thought of as Berry phases since they arise from non-trivial overlaps of the
state of the system at nearby times. Indeed, Read and Sachdev have derived
these phases, following Haldane’s original suggestion, by means of an adia-
batic calculation. It is remarkable that we find the same answer but started
from a regime in which a non-linear sigma model cannot possibly work.
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6.10 Chiral Spin States

So far we have considered solutions of the Mean-Field equations which respect
time-reversal invariance. We will now consider states for which time-reversal
invariance is broken. In terms of the Mean-Field theory of Section 6.4, we will
consider situations in which the phase A;(Z,t) of the link variable ¥; (Z,t) has
a non-zero curl B(Z,t) around an elementary plaquette

B@E )= Y AiE 1) = AA(E 1) — A4 ). (6.10.1)

plaquette

In Section 6.5 we argued that such flux states violate time-reversal invariance
unless B(Z,t) = 0, 7. A solution x;(&,t) of the saddle-point equation applied
to Eq. (6.4.5) satisfies

2 . L
5% E,0) = (L Dea(E + ¢,1). (6.10.2)
For a solution with p;(%,t) = p; a constant and A;(Z,t) # 0, we get

2 i N
Shie AN = (e} (Z,t)eal@ + ¢, 1)) (6.10.3)

Thus a flux phase implies that the product of the band amplitudes

(cl(f, t)co(£+ €;,t)) around a closed loop 7 of the lattice should have a phase
determined by the fluz going through the loop. Alternatively, we can consider

not the product (around the loop) of expectation values (cl(f,t)ca(5+ éj,1)),
but the ezpectation value of the path-ordered product

wm =( I (cl(f,t)ca(f '))) (6.10.4)

(F,8")ey
where (Z,Z ') denotes a link of the lattice, with endpoints at £ and £/, which

belongs to the close path . The expectation value (cl(f, t)eq(Z+€;,1)) is not
gauge invariant. Accordingly, Elitzur’s theorem implies that this expectation
value is actually equal to zero. As a matter of fact, the solutions of the saddle-
point equations are not unique. All the configurations which can be reached
by means of a local gauge transformation from a given solution are solutions
too. The saddle-point-approximation violates this condition. The invariance
is restored by fluctuations. The main effect of fluctuations is to rid the system
of spurious states which violate gauge invariance. We will come back to this
point shortly, when we discuss the spectrum of disordered spin states more
generally.

How can we compute expectation values such as W(y) from a path-
integral written in terms of x;(Z,t) fields? Let us go back to the path-integral
for this system with the effective Lagrangian density of Eq. (6.4.21). I will only
discuss the simpler n. = 1 case. Let us shift the 4o(Z,t) and x;(Z,t) variables
by a fixed, but arbitrary, amount AO(E,t) and x;(Z,t). This is essentially a



172 Chapter 6 Spin Liquids

mathematical device to compute expectation values involving Fermi field cur-
rents. We can regard the 4y and X; as external sources in term of which the
shifted Lagrangian density, £’ reads (for n, = 1)

L 202(1)(1'3:: + p)ca(z) + (Ao(x) +./io(:c)) (cl(x)ca(x) — %) +

N
- T @I+

+cb(&,1) (xj(F,1) + %i (£,1)) ca(Z + &,1) + hoc.

(6.10.5)
where we recall that according to Eq. (6.4.22) ¥;(Z,t) = X ;(£ + é;,1). Since
X;j(Z,t) couples to the hoping term from site £ + é; to &, it is clear that the
functional differentiation of the action S by x;(Z,t) yields

_&:i(c’f(f t)ca(ZE + & t)) (6.10.6)
6ij(5’t) o * J, , o

a=1

while functional differentiation with respect to Ao(f,t) gives

6S
8A0(%,1)
as follows from the constraint of Eq. (6.4.20).

Thus, by computing functional derivatives we can compute the desired
expectation values. For instance

a N
=S el (@ t)ca(E 1) - =0 (6.10.7)

a=1

YA / to s 8S
— = N — D D.A Dc'De €t 1= 6.10.8
@D ) P D (6.108)
and
_i_sz _, S
Z6%;(Z,1) “6x;(%,1)
(6.10.9)

N .

=3 (h@ veal@ +6,)).

a=1 s

In particular, the path-ordered product W(y) can also be computed. Let p

label the p*”* link on the path ¥ and ¥(p) the corresponding x;(Z,1), i.e. the

link (£,Z + é;,1) is the p** link of the path starting at some arbitrary site Z,
on the path. We can write, for a closed path y with perimeter L(7)

1 stz _ -L(v)(L:ﬁ) i T(-'t) (Z+6é,1) |)
Z8RM). x| AL\ &t (6.10.10)
= ifMw(y).

On the other hand, the x;(Z,t) degrees of freedom can be shifted without
affecting the value of the partition function

Ao(E:1) = Ay(&,1) — Ao(Z,1),

5 3 e (6.10.11)
xi(Z,1) = x;(£,1) — % (£,1).
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After this is done, all the information about the sources is in the quadratic
term of £’

£ =l (20 + wea(z) + Ap(@) (el (@)eale) — S+

—? (X (=) — %5 (2)) (x§ (2) — X} (=) + (6.10.12)

+eb (Z, 0%, (F,1)calE + &5, 1) + cL(Z + &, )X} (F, )ca(Z, 1)

Thus,
N
68
(3" b (@ t)eal@+85,8)) = (zzm)ri=0
= 8% (#1) (6.10.13)
OIN, .o
= T(X} (Z,1)).
Similarly, W(«) is given by
L(7)
IN
W) = (1] —x" @) (6.10.14)
p=1

Notice that there is no quadratic term in the action for Ao. Thus, all functional
derivatives of Z with respect to Ap are identically equal to zero

6—? =0. (6.10.15)
8Ao
This only means that the constraint
N
N
Y el(@ t)ealz 1) - =0 (6.10.16)
a=1

is strictly enforced at all times and everywhere.

The quadratic terms in £’ express the fluctuations of the amplitude
p;i(Z,t) of x;(Z,t) but not of its phase, the gauge field 4;(&,t). Thus if we
imagine a state with p;(Z,t) = p, we will still have the fluctuations of the
gauge fields A; to deal with. The path-ordered product is, in this approxima-
tion, equal to

W(y) ~ @ﬁ)“”(e‘ Ly Ay, (6.10.17)

This last expectation value, (e' EMAU)), is known as the Wilson loop. It was
introduced in the context of gauge theories of strong interactions (in particle
physics) as a way to measure the interaction between quarks. In the present
context, it measures the interactions between ideal static spinons which are
carried around the loop ¥. The interaction is mediated by the fluctuations
of the field x;. The relevance of Wilson loops for flux spin states was first
empbhasized by Wiegmann [Wiegmann 88].
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If the saddle-point-approximation was exact, the fluctuations of the gauge
field A; could be neglected. Thus W(y) would yield the result

W(y) ~ (gﬁ)L(V)(ei Liey "I(’)). (6.10.18)

Let a(y) be the area of the lattice enclosed by the path 7. Using Stoke’s
theorem, we would then get

2N _ ia
W(3) ~ (-9 HO) (o8 (6.10.19)

where B is the flux per plaquette. If we denote by 6.A4;(%,t) the fluctuat-
ing part of the gauge field 4;(Z,t), i.e. the deviation from the saddle-point
configuration, we get for W ()

W(y) ~ (gﬁ)m)(e‘amge‘zm 54y (6.10.20)

where the expectation value involves only the fluctuating pieces. It has been
argued that flux phases can generally be defined as phases in which In W(¥)
has an imaginary part which scales like the area enclosed by the loop v [Wieg-
mann 88] [Wen 89] . It is also constructive to consider the situation in which an
extra fermion, i.e. a spinon, is added at some site £ and other one is removed
at site £ ’. The constraints at £ and Z ' are

a N
3 el (@ ea(@t) - 5 =852 —bgar (6.10.21)
a=1
This means that two extra factors enter into the partition function. They have

the form eiifth°(f't). We can close the paths both in the remote past and
future (assuming an adiabatic switching on and off, i.e. a smooth path) and

( \ ﬂu

time

R
-

Figure 6.19 A space-time loop 7; of size R X 7. A static spinon (+1) and anti-
spinon (—1) separated at a distance R.
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write the extra contribution as an integral over a closed path +;

Wir) o (¢ Lo 2Oy, (6.10.22)

where v; stands for a space-time closed loops (see Fig. 6.19) of time span
and special extent R. Thus W(y;) measures the change of the ground state
energy AE(Z) of the system as a result of the presence of the static spinons

W () = eTAE@), (6.10.23)

This expression is valid for 7 > R. Thus the effective interaction between
static sources Veg (%) is

Ver(Z) = AE(F) = lim —i;_ln(W('n)). (6.10.24)

Notice that there is no classical flux associated with space-time loops v. Thus
W (4:) does not necessarily exhibit the area law of Eq. (6.10.19), associated
with the flux phase which we found for space loops. In fact, both W(¥;) and
the fluctuating components of the space-like loops have a phase which decays
like the perimeter of the loop, not its area. This is so because, unlike the case of
confining gauge theories without dynamical matter fields, we only have gauge
fields associated with a dynamical matter field. The gauge fields themselves
do not have any other dynamics of their own. We will return to this important
point in the next section.

There is an alternative way of understanding the products over closed
loops. Consider the case of three spins, $(1), $(2) and S(3). Let us form the
mixed product Ej93 which Wen, Wilczek and Zee call the chiral operator

B = 5(1) - (52 x 53)) - (6.10.25)
Under time reversal T' we have
T-18T = -S. (6.10.26)
Thus E}s3 is odd under T
T_1E123T = _E123- (61027)

Similarly, under parity, P, which in two space dimensions is the same as
reflection through a link, we have

P L EsP = 5(1) - (8(3) x $(2))
By (6.10.28)
= _E123

where we have exchanged sites 2 and 3, keeping one fixed. Thus, for the three
spins, parity implies turning an even permutation of the three spins into an
odd one.
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Let us now write Ejs3 in terms of the link operators x(i,7) = cl(i)ca(j).
Explicitly one finds [Wen 89]

Buas =+ R(LOKEHXG, ) - R(LIG,DLR D). (61029)
If we consider now four spins, 1, 2, 3 and 4, we get

CRTn R (6.10.30)
=2i (—E123 — B34 — Ey9a + E234) .

Thus if Ea3 acquires an expectation value, we should expect that the special
Wilson loops implied by Egs. (6.10.29) and (6.10.30) should exhibit a now
trivial phase. At the level of the saddle-point-approximation, we expect

(Bizs) =1 (2(1, 272,353, 1) ~ X(1, HR(3, D(2, 1)

(sz)3 (e,-gA _ e_.-sA) (6.10.31)
1 2Np
= 2( N Y3sin(Ba)

where Ba is the flux through the triangle with vertices at sites 1, 2 and 3.
Thus, in a chiral phase, E1 43 should have a non-zero expectation value. Please
notice that for the non-chiral flux phase, Ba = =, (Elga) is equal to zero.

For a system with just three spins one-half we can get a very simple in-
terpretation of this statement. For three spins one-half, the Hilbert space is
23 = 8 dimensional. The total spin is § = S(1) + S(2) + 5(3). The quadratic
Casimir operator S G2 and, say, S3 commute with each other. What is important
is that they also commute with Ejs3. Thus, 52 S3 and E123 can be diagonal-
ized simultaneously. I will refer to the elgenvalues of Ejq3 as the chirality X
of the state. The states of the three spins will thus be labeled accordingly by
|s, m; x), where s is the spin quantum number, m is the z-projection, and x
is the chirality. The total spin s is either zero or % The % sector can be ob-
tained trivially by applying the lowering operator S~ on the highest weight
state | T11):

33
|3TT;> 1330 (6.10.32)
12,2 mi0) = 5712, 200,

The state | 111) has zero chirality since it is invariant under a permutation of
any pair of spins. In terms of raising and lowering operators St and Ss, E193
has the form
B = 5(— S™(DS*(2)5:(3) + S*(1)S™(2)S2(3)+
+57(1)S5(2)5*(3) - *(1)5a(2)S~ (3)+ (6.10.33)
— S3(1)S7(2)5*(3) + S3(1)SH(2)S7(3) ).
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Clearly
. 33 .
E123|§, '2-;X) = FE123| T11) =0 (6.10.34)

which proves that x111 = 0. From the form of E1p3 in Eq. (6.10.33), we see
that all the states in the same multiplet defined by s and m have the same
chirality.

There are two, orthogonal, sectors with s = 0, lm = 0. They differ by
their chirality x. Consider the state |+), defined by the linear superposition

) = o (1T + 1 TIDEF 1111 %). (6.10.35)

75

This state |+) is an eigenstate of E}23 with eigenvalue x given by

Fuaal+) = —%sin(%lr-)H). (6.10.36)
Thus x4+ = —%sin(4F). Similarly the state |—)
1 -z izx
=) = 25 (1 + 11N 4 1) (6.10.37)

has eigenvalue x_ = +3sin(%r). Both states, |[+) and |—), have S5 = +3.
Thus we denote |+) as the states |, 2;+). Similarly the states with spin
down can also have either chirality. These two remaining states are denoted
by |5, —3;%)-

The most singlet-like states, i.e. with smallest spins, can thus be arranged
to have non-zero chirality. By inspection of Egs. (6.10.35) and (6.10.36), we
see that a state with non-zero chirality is a state in which a spin down moves
around the triangle with a non-zero angular momentum ! = £1. Thus, a state
with non-zero chirality is a state in which there is a non-zero spin current
since a down spin is being transported, at a fixed rate, around the triangle.

For a macroscopic system, we can picture a situation in which (Ems) 1s
different from zero everywhere, as in a flux state, by saying that flux states
are states in which there are non-vanishing orbital spin currents around every
elementary plaquette. If we demand that the flux B be uniform throughout
the system, we are in fact requiring that the state should in fact exhibit an
orbital ferromagnetism of some sorts [Volovik 88].

There is one interesting analogy here with the behavior of orbital angular
momentum in the A phase of 3He. As is well known, 3He becomes a superfluid
by forming bound states of two 3He atoms. The bound state has total spin

= 1 (triplet) and orbital angular momentum I = 1 (p-wave) [Leggett 74].
In 3He — A, the orbital angular momentum vector I'and the spin S of the
state are orthogonal to each other. In a thin-film geometry, the orbital angular
momenta [ are all parallel to each other and perpendicular to the surface of
the film. This superfluid has orbital ferromagnetism.
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6.11 Mean-Field Theory of the Chiral Spin
States

Let us consider the Mean-Field theory, or equivalently, the large-N limit, of
frustrated Heisenberg antiferromagnet on a square lattice. We have two cou-
pling constants: J (nearest neighbors) and J’ (next-nearest neighbors). We
have considered this problem in Section 6.1 in which we considered the effects
of J' on the Néel state. The effective Lagrangian Eq. (6.4.21) can be easily
generalized in order to include the effects of the J’. All we have to do is to de-
couple the next-nearest neighbor term using the same procedure we used for
the nearest-neighbor term [Wen 89]. The Lagrangian density now is, including
both J and J',

£’ :CL(I)(iat + p)ea(z) + Ao(z) (cl(x)ca(x) - %) +

N N
= S @I = Fh @)+ (6.11.1)
+ ol (Z )x;(F, D) calZ + 5,t) + hot
+ ek (7, 1)xj (Z,1)ca(Z + é1 + j'é2,t) + hoc.
where j' = +.
The saddle-point procedure can be carried out along very similar lines. At
this level, we assume that the amplitudes x;(&,t) and x;/(Z,t) are constant

in time and as uniform as possible in space. If we choose the gauge of Eq.
(6.5.11) (i.e. the gauge we chose in our earlier discussion of the flux phase) we

Figure 6.20 Chiral gauge on a frustrated square lattice. The left lower corner is an
even-even site. The arrows on the links represent a phase % The flux on a plaquette
is m if the left lower corner is on an even column. Otherwise it is —.
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get [Wen 89]

x1(€) = pe*'s, X2(Z) = pe~ '3,
(6.11.2)

X4+(Z) = AetoiF, X- (%) = detois,
with ¢ = (—1)*1. Notice that the flux per plaquette Bpjaquette = T but for
the triangles is Bo = +7% for A > 0 and Ba = —% for A < 0 (see Fig.

6.20). Thus, this state is chiral. At this level of approximation, the spinons
behave like fermions moving on a frustrated lattice with the amplitudes listed
in Eq. (6.11.2). Since the flux on the triangles is +m/2, some of the amplitudes
must be complex no matter what gauge we choose. Thus, the effective one-
particle Hamiltonian which controls the motion of spinons is complex (still
Hermitean!). This means that time-reversal invariance (and parity) are bro-
ken. Since in this system we do not have any terms which explicitly break
time-reversal invariance, what we are looking for is states with spontaneously
broken time-reversal invariance and parity.
Using the notation of section 6.5 and the symbol A,-+, t = 1,2 for the
lattice operator defined by
AYfF@) = fF+ &)+ f(F-6), (6.11.3)

we can write down the equations of motion Eq. (6.5.13) including the effects
of A. The new equations of motion are

if{D(@) = — ipAL D) + A FD @)+

— AT fOE+ &) — AT FOE - &),

ifOE + &) = = ipAL fO(E+ &) — B2 fO(E + &)+
+ AT FO(F+ 26) + iAAT £O(2),

ifO(E +60) = — ipALEN(E + &) + AL FV(E + 60)+
—DAAT FO(F + 634 é1) — iIAAT FO(E + 65 — é4),

ifD(F+ 61+ é2) = — ipALFD(E+ 61+ 82) — ipALfD(F + 61+ é2)+
+iAAT FID(F 4 281 + é2) + IAAT FO(F + &5).
(6.11.4)
In Fourier space, Eq. (6.11.4) becomes

'f(l)(i)') =2psin plf(z)(i)') — 2psin pgf(s) () — 4i) cos p; cospgf(4)(i>')
f(z)(i)') =2psin p1 fO(P) + 25 sin pa f§ F(P) + 44X cos py cos pa f3(p)
] (23)(1'5) =2psin py f$* )(i)') — 25sin pa f{(p) — 4i) cos py cos py )($)

if:g‘*)(i)') =2psin py fgs)(i)') + 2psinpa fP (P) + 44X cos py cospgf(l)(i)').
(6.11.5)
As with Egs. (6.5.17) and (6.5.18), we define the spinors u$® and v (a=1,2)

uP@) = 196G + £O0),

u@ ) = 1@ - F9), (6.11.6)
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and

) = 180 + £5®),
vD(5) = fOF) - £

In matrix notation, we can now write (a,b=1,2)

(6.11.7)

idg")(i)‘) = (Qﬁsin p103 — 2psin paa; — 4 cos p cos sz’z)ab u&b)(i)') (6.11.8)

where o1, 05 and o3 are the Pauli matrices. The other spinor, v((,a)(ﬁ), obey
the same equation. We can also write Eq. (6.11.9) in a Dirac form by defining
the & and vy-matrices through

a, = Yov1 = +03, ag = YoY2 = —01, ,3 =70 = —02. (6119)
In this notation, the equation of motion (6.11.9) takes the Dirac form
idg“)(i)‘) = (Qﬁsinp,-&,- + 42X cos p; cos pg,@) " u&b)(i)') (6.11.10)

Thus in the small momentum limit [p] — 0, we obtain the equation for two
Dirac spinors, u, and v,, in the continuum with the same Fermi velocity
vp = 2a9p and, what is more important, the same effective mass m, = 32’\—“7.
Notice that both species u, and v, have the same sign of the effective mass
m,. This is a consequence of the fact that the one-particle Hamiltonian

Hehiral(P) = 27sin p;&; + 4X cosp) cospg,[i (6.11.11)

is complez since all three Pauli matrices are present. This fact is, in turn,
the result of the breaking of Time-Reversal invariance. We will see in chapter
7 that this result gives rise to a Parity Anomaly which greatly changes the
behavior of the low-lying excitations. The eigenvalues of Hchiral are

e(p) = :l:\//34(sin2 p1 + sin® pa) 4+ 1612 cos? p; cos? ps. (6.11.12)

This is what we found for the flux phase, Eq. (6.5.23), up to a mass term
proportional to the next-nearest amplitude X. The two branches nearly touch
at (p1,p2) = (0,0).

Thus far, we have not discussed energetics. Wen, Wilczek and Zee [Wen 89]
have studied this problem with some detail. They found that as J' increases,
the energy of the chiral state drops below that of the flux state and gets to
be closed to the energy of the Dimer state. For the square lattice, even in the
classically frustrated limit J = J’, it appears that the Dimer states are still
preferred although not by much. Furthermore, at least in the large N-limit,
the Néel states are not favored when J = J’. There is numerical evidence,
based on the exact diagonalization of small clusters of up to 30 sites, that the
Néel states are not favored for J & J'. In fact, at least for such small systems,
the column states appear to be the ground states in this regime [Dagotto 89].
Thus, altough the chiral states are locally stable, they do not appear to be
the global minimum of energy. But, it is quite conceivable to imagine slight
modifications of the Hamiltonian which will drive the Mean-Field ground state
energy of the chiral states down and make them a global minimum.
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What appears to be more serious is the fact that the chiral Mean-Field
theory has low-lying excited states, the spinons, which are not gauge invariant.
The removal of gauge non-invariant states is likely to raise the energy of the
ground state. We will come back to these issues in the next section.

Finally it is instructive to consider the effects of a Peirls gap, i.e. the gap
which appears in the presence of a column state. This problem was studied
by Dombre and Kotliar [Dombre 89]. Consider a column state of the type de-
picted in Fig. 6.11.a. There are four such states. With the choice of gauge, Eq.
(6.11.2), the simplest case to consider has a column state with the “dimers”
on the y-axis and the columns running along the z-axis. We can represent
such a state by a modulation of the amplitude p;(Z) such that 5;(¥) equals
p + 6p if there is a dimer in the bond (&, Z + €;) and equals p — §p if there
isn’t a dimer in that bond. The next-nearest neighbor hopping terms have the
same form as in Eq. (6.11.2). Thus, we can consider the competition between
the Peierls state and the chiral state. We will see that, unlike the chiral state
which breaks Parity and thus leads to a complex Hamiltonian, the Peierls
state does not break Parity. If we assume that the selected Peierls state has
the (vertical) dimers with their lower endpoints on even rows, the modified
equations of motion are

if(@) = — ipAL fP(F) +ipAL FO(E)+
+i6pAF fO(F)+
— XA FIN(EF + &) - AATFI(E - &),
ifD(F + 1) = — ipALFD(F+ é1) — ipAfFEO(EF + 61)+
—i8pAF F(F + é1)+
+iAAT FO(F + 26) +idad FO(3),
if O(F + é2) = — ipALF(E + 62) + ip A2 f(F + &3)+
— i6pAF FD(Z + 69)+
— AT fO(Z+ &3+ 61) —iIAAT FD(E+ 65— &),
ifE + &1+ é2) = — ipAL fO(F+ 61+ 62) — ipAL[O(F + €1 + é2)+
+i6pAF F(F 4 &1 + é2)+
+iAAT FID(E 4 281 + é3) + irAT (7 + &,).
(6.11.13)
In terms of the spinors u, and v, of Eqgs. (6.11.7) and (6.11.8), we get a modi-

fied mass term which is different for u, and v,. The one-particle Hamiltonian
now is

Hpeieris(P) = 2psin p;é; + (4) cos p1 cos pa & 265 cos p3) B (6.11.14)

where the 4+ (—) sign stands for the u, (vo) spinor. Thus, the low-energy
spectrum still looks like two massive Dirac fermions which are propagating at
the same speed but with different mass. What matters here is that the sign
of the mass term depends on the relative strengths of 65 and A. Indeed, for
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|p] — 0, we find that Hpeeris(P) takes the form

HPeierls(I;) ~ Qﬁ (d’ipi + (mc + 6m)ﬁ) (61115)
where m, is the chiral mass and ém is the splitting (ap = 1)
A 85
= — = —=. 1.1
me e ém 55 (6.11.16)

Hence, for ém < m,, the u, and v, have different masses m, and m, (my >
my, for 65 > 0) both with the same sign. Conversely, for ém > m., my and
m, not only are different but they have opposite sign. If A is set to zero (i.e.
no chiral state), there is a perfect symmetry. Thus, the Peierls mass does not
lead to a complex Hamiltonian and consequently it does not break Parity. We
will see in chapter 7 that the relative sign of the masses of the elementary
excitations has very important consequences for the overall behaviour of the
system in the generalized flux states. The eigenvalues of Hpejeris are

€(p) = :l:\/4,52(sin2 p1 + sin® pa) 4 (4) cos p1 cos py £ 265 cospg)2. (6.11.17)

6.12 Fluctuations and Flux States

So far we have only considered flux states at the Mean-Field level and fluc-
tuations have not been taken into account. We have already pointed out that
this approach is not consistent since the fluctuations of the gauge fields, unlike
the fluctuations of the amplitude, are completely out of control.

Consider first amplitude fluctuations around a flux phase with flux-= per
plaquette. The Lagrangian density of Eq. (6.11.1) has degrees of freedom
which, in addition to inducing both chiral and non-chiral mass terms in the
low energy sector of the theory, can effectively drive the system into a highly
anisotropic state, a dimer state. Since we are interested in understanding how
do these different mechanisms compete with each other, it is convenient to
parametrize the fluctuations of the bond lengths in such a way that these
processes are most apparent. Thus, we are led to consider configurations in
which the bond amplitudes vary slowly at the scale of the lattice spacing (I will
refer to these processes as being uniform or unstaggered). In addition, there are
fluctuations which vary rapidly at the scale of the lattice constant. These fast
fluctuations induce scattering processes which mix different sublattices very
strongly. We will refer to them as staggered amplitude fluctuations. Hence,
the bond amplitude for the bond (Z, Z + é;) has the form

pi(Z) = P} (2) + £} (2) (6.12.1)

where pf (%) is the unstaggered (or uniform) amplitude and p}(Z) is the stag-
gered amplitude. While p¥(Z) is slowly varying, pj(Z) changes its sign from
one bond to the next. Since we anticipate that the system may choose an
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average uniform bond length p; we write p}'(Z) and p}(&) in the form
pi (%) =p; (1+6p}(%)),
p3(E) =8p3(3).
Altough these amplitudes vary very slowly and over long wave lengths, they
can be significantly different from each other. Thus the effective Dirac fermions
may have different Fermi velocities along the z; and z, directions. What is
more important, since these generalized Heisenberg models do not have any
intrinsic length scale, apart from the lattice constant itself, there is an essential
“softness” in the system which favors strong anisotropy. This can be clearly

seen by writing down the spinon energy of such a state, which has the form
for a non-chiral state (see Eq. (6.11.17))

(6.12.2)

e(p) = :l:\/(2p‘1‘ sinp1)? + (2p% sin p2)? + (263 cos p2)2. (6.12.3)
This energy can be made large and negative by setting
épt = -1, 16p3 = |p3, (6.12.4)

which is the dimer limit. The symmetric amplitude é6p} cannot grow any larger
than this without driving the total amplitude into negative values. Thus, this
is the saturation limit. In this limit, the spin gap is infinitely large since all
spinons are in singlet bond states one-lattice spacing long, the valence-bond
states, The fluctuations of the gauge fields only cause dimer rearrangements
as in our discussion of the Quantum-Dimer-Model. This phase does not break
time reversal invariance.

The tendency to a collapse towards dimers can be suppressed by a suitable
local modification of the Hamiltonian [Marston 89]. All that is needed is to
have a scale gy for the average bond amplitude around which they fluctuate.
In the SU(N) model, this involves an interaction quartic in the spins. This
possibility is not available for the case of interest, the nearest-neighbor spin-
one-half Heisenberg model, but it may occur in further neighbor interactions.
Let us assume for the moment that the dimer collapse has been avoided. Now
the flux phase may be unstable against the development of both chiral and
non-chiral mass terms. In turn, it is easy to write down an effective theory for
the low energy modes. The effective Lagrangian density should include the
(doubled) spinon modes (u, and v, ). It should also contain both staggered
amplitudes which, after normalization, can be denoted by two real Bose fields
¢1 and ¢,. The chiral modes are also bosonic and real and can be denoted by
X. The effective Lagrangian density should then have the form

L =(tatYuDytia + VatyuDyva) +
_ N
= 61 (Ve + Tatia) = 92 (Fatla — Tava) = TU(S1, 8+ (6.12.5)
N
- X (aaua + 'Eava) - TU’(Xz))

where the potentials U and U’ are even functions of ¢;, ¢, and x separately.
The phases of the bond amplitudes, the gauge fields, have been included
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through the covariant derivatives D,
D, =0, —iA,. (6.12.6)

The potentials U and U’ are assumed to have a sharp minimum at ¢, =
¢2 = x = 0 and to diverge rapidly for large values of their arguments. This
last condition is needed in order to avoid collapse towards a dimer state. The
requirement that the potentials U and U’ be even functions of their argu-
ments, implies a four-fold degeneracy of the groundstate. In the absence of
collapse the symmetric amplitude modes, which represent local fluctuations of
the length scale (i.e. Fermi velocity) and of anisotropy, do not change the qual-
itative physical properties of the system. The assumption that there is a well
defined, and sharp, average bond amplitude py means that local dilatations
and shears are strongly suppressed. When integrated out, these fluctuations
only lead to effective interactions of the fermions which involve operators with
many derivatives. In a renormalization group sense, such terms are irrelevant.
This is equivalent to say, if the physics of the system is correctly described
by the continuum model, operators with many derivatives may become im-
portant only if the fluctuations have large Fourier components at large values
of the momentum. However, the main assumption of the continuum model
is precisely that such Fourier components are small since only smooth con-
figurations are correctely described by this model. Under these assumptions,
the effective Lagrangian density of Eq. (6.12.5) is a good description of the
physics of the system.

The fluctuations which are described in detail by Eq. (6.12.5) are the fluc-
tuations of the gauge field A, and of the amplitudes ¢; and x. The fluctuations
of the amplitudes ¢; and x lead to a phase transition, in which one or sev-
eral amplitudes have a non-zero expectation value, only if N is not too large.
This can be checked by looking for a solutions of the saddle-point-equations.
These equations, in the absence of a dimer solution, do not have a solution
with (¢o) # 0 (or (x) # 0) unless N is smaller than some critical value N,.
The value of N, depends on the details of the model, but it is typically large,
N, & 40. This regime is still described correctly by the le expansion. Thus,
unless one happens to be interested in unphysically large values of N, either
(41), {¢2) or {x) will become non-zero. The fluctuations around this state are
small and have very short correlation lengths.

From this discussion, we may conclude that, unless N > N, > 1, there
are spinons in the spectrum but they have a finite gap. For N > N,, the
spinons would be massless (i.e. no gap). Thus this model appears to predict
the existence of electrically-neutral spin bearing excitations. However, this
conclusion is not well founded since the fluctuations of the gauge field A,
have been ignored altogether.

What are the effects of he gauge fields .A,? First of all, a simple inspection
of the effective Lagrangian density, Eq. (6.12.5), shows that the gauge fields
only appear in the kinetic energy term of the spinons, through the covariant
derivatives. There is no separate term in this Lagrangian density which will
control the fluctuations of the gauge field, such as F,, F#¥ in electrodynamics.
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Since the Lagrangian density is linearin A, we can integrate the gauge fields
out exactly. The integral over the A,’s yields

/DA,, iSIu,0,61,62,x, Au] — eisfu,v,¢1,¢ayxl/'DA” efda’“‘u"‘, (6.12.7)

where J# is the total spinon gauge four-current density
J¥ =t ug + 17" ve- (6.12.8)

The last factor in Eq. (6.12.4) shows that the integral over the A,’s is just a
constraint

/ DA, of AT | D EXCHER)] (6.12.9)

Hence, the only states allowed in the Hilbert space, let’s call them |Phys),
satisfy
JH#(Z,t)|Phys) = 0, (6.12.10)

which is a local condition. In components, this constraint is equivalent to the
staternent that the normal ordered spinon density jo(Z,1)

Jo(Z,t) = p(Z,t) — (p(Z,1)) (6.12.11)

(p(Z,t) being the electron density) and current j;(Z,t) i = 1,2 annihilate
the physical states. Thus, the condition of % occupancy is exactly satisfied.
However, this also means that the allowed states carry zero spinon current and
that there are no states in the spectrum of this system carrying the spinon
quantum numbers, i.e. spin one-half in the SU(2) case. As a result, these
spin-liguid phases do not have spinon states in their spectra. This is not to
say that the spinons do not have a role. Gauge-invariant spinon bound states
do not have spinon quantum numbers and hence are allowed. In spin one-
half language, these states are either spin singlets (valence bonds) or triplets.
These bound states have large energy gaps with the singlets being the states
of lowest energy. ‘

6.13 SU(2) Gauge Invariance of Spin one-half
Heisenberg Models

There is something peculiar in the way we have treated the spins so far. For
the most part, the spin degrees of freedom are either “swallowed” by dimers
or appear in an almost trivial factor as in the large-N limit (N being the num-
ber of spin degrees of freedom!). Nowhere in our discussion do we see not
even a hint of the fact that the spins, say for s = 1, have an SU(2) sym-
metry. The reason for this can be traced back to the way we decoupled the
quartic interaction in terms of an abelian field x;; living on the links. In the
past section, we showed that, for N = 2, there are two types of spinors, up
and down, coupled to amplitudes and gauge fields. (In reality, there are four
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because of the doubling.) It may seem that, if there are spinons in the exci-
tation spectrum, then even without doubling there should be four elementary
excitations bearing spin: spinon particles and holes of either spin orientation.
The gauge fields, however, make sure that the constraint of single occupancy
is strictly enforced. Thus, at each site, only two, not four, degrees of freedom
are allowed, each allowed by the orientation of the spin. We must conclude
that the particle and hole excitations of the spinons cannot possibly be in-
dependent degrees of freedom. We also know that, in the absence of holes,
particle-hole symmetry is strictly respected. Hence, the natural conclusion is
that the spinon hole with, say, spin down must be the same physical excita-
tion as the spinon particle with spin up, and vice versa. It is clear, then, that
a combination of particle-hole and spin symmetries is playing a fundamental
role in these systems. The gauge symmetry must then be larger than the lo-
cal U(1) symmetry implied by the % expansion or, for that matter, by any
RVB-like abelian decoupling of the Heisenberg interaction.

We will show now that a spin—% Heisenberg antiferromagnet on any lattice
and in any dimension, is equivalent to the strong coupling limit of an SU(2)
gauge theory coupled to fermions [Zou 88] and [Dagotto 88].

Let £ and £’ be two sites of a lattice. The term of the Heisenberg Hamil-
tonian describing the antiferromagnetic coupling between spins at £ and 7’
is

J3(®) - Sz "). (6.13.1)
Once again, we will use a fermion description of the spins
S(&) = cl(D)Rapes (2), (6.13.2)

where 7 is the set of 2 x 2 Pauli matrices and we require single occupancy at
Zand F':
1= cl(F)ca(@) = (7 eal(@ ). (6.13.3)

Let us perform a particle-hole transformation at every sites so as to ensure
that the reference state satisfies Eq. (6.13.3). We define new fermion operators
¥1(£) and ¥,(Z) given by the relationships

(@) =w(@), (@ =@,
(@ =v}@), @ =w@.

This canonical transformation amounts to an “exchange” of charge and spin
operators since

(6.13.4)

d@)er(@) + o] (@)1 () =9] @1(2) — ¥] (@ a(3) +1,
d@)e1(®) - f (@1 (@) =] @01(@) + v} (@ wa(@) - 1.

Hence, the constraint

(6.13.5)

d@er(@) + ] @ey(@ =1 (6.13.6)
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is equivalent to
@@ - o] @@ = 0. (613.7)

In other words, we are projecting onto the subspace with an equal number of
quantum numbers 1 and 2 per sites. Such states are denoted by |Phys). The
constraint, Eq. (6.13.7), has the equivalent form

T (&) 3% (&) Phys) = 0. (6.13.8)
However, Eq. (6.13.7) implies that the following identities must also hold

W @nv@IPhys) = (3] (@va(@ + ¥} @@ IPhys) = 0,

t (6.13.9)
W @rp(@)[Phys) = i (] @)92(@) — $]@91(®) IPhys) = 0.
Indeed, Eq. (6.13.9) is equivalent to the statements
(f@e]@ + c1@er (@) IPhys) = 0, 61510

i (f@e}(@) ~ 1 @er (@) IPhys) =0,

which are true since the states |Phys) are singly occupied. Therefore, we have
the local constraint on the space of allowed states

¥ (Z)7(£)|Phys) = 0 (6.13.11)
at each site of the lattice. Note, however that 1/;T(E)F1/;(E) is not a spin oper-
ator. Rather, the spin operators S,(£), a = 1,2, 3, are given by

518 = (@ ei(®) + o) B)er(®) = ¥ @V (@) + O (@),

5@ =i (d@a@ - @a@) =i (W@l @ - h@n @),

$3(8) = (@ er(d) — ] @e(®) = ¥l @i (@) + ¥} (@(®) - 1.
(6.13.12)

This set of operators have a remarkable local symmetry. Let ¢’(£) be a new
spinor related to (&) by means of an SU(2) transformation U(Z):

Vo (%) = Uap(D)¥p(%)- (6.13.13)
Clearly, under such a transformation, we have
e @8s0p(D) = 0@ (U @)U (@), ¥s(@)
= RA@l (@m0 (@),

where R(Z) is the SO(3) rotation associated with the SU(2) transformation
U(s).

The spin operators iS'a(:t'c'), a = 1,2,3, are invariant under this SU(2)
transformation. Firstly, S3(Z) is clearly invariant:

35(2) = $L(D)pa(®) ~ 1= ¢ (@)@ - 1. (6.13.15)

(6.13.14)
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Secondly, the invariance of 5'1(5) and 5'2(5) follows from the fact that the
operators x(Z) and xt(:i:'), defined by

X&) = %e.-ﬂp,-(z)zpj(z) (6.13.16)

are also inveriant under SU(2).
It is convenient to introduce the SU(2) invariant operator M (&)

M(#) = p}(@)¢a(d). (6.13.17)

It is easy to show now that the Heisenberg Hamiltonian on any lattice and in
any dimension with a translationally invariant interaction J(I) (! is the relative
position vector of a pair of spins) is equivalent to the following Hamiltonian

H=-N, (Z J(T)) (1 + 2m3)+
r

+3 IO (M@ME+D+2 () @xE+ D +x1 G+ x@)),
20
(6.13.18)
where N, is the total number of sites of on the lattice and mg is the total z
polarization of the allowed Hilbert space

Ni " $5(#)|Phys) = ms|Phys). (6.13.19)
s g

The Heisenberg Hamiltonian in the form given by Eq. (6.13.18) is manifestly
invariant under the local SU(2) transformations of Eq. (6.13.13) since it is
written in terms of M (%), x(£) and mz which are locally invariant.

It is important to stress that this local SU(2) symmetry, which involves
both spin rotations and a particle-hole transformation, is unrelated to the
global SU(2) invariance

ca(Z) = ¢ (T) = Vapep(d), (6.13.20)
which induces global rotations of the spin polarization
$.(2) — S.(Z) = R®S(2). (6.13.21)

In section (2.3.1), we showed that the Heisenberg antiferromagnet is the
U — oo limit of a half-filled Hubbard model. I will now show that it is also
the strong coupling limit of an SU(2) lattice gauge theory.

Consider a system of fermions, with creation and annihilation operators
1/;1(5) and 9¥,(Z) respectively, coupled to a set of SU(2) gauge degrees of
freedom U(Z,Z ') on the bonds (£,Z ’) of a lattice. The Hilbert space of
this system is a tensor product of fermionic states on the sites of the lattice
multiplied by states on the links associated with gauge degrees of freedom.

Let A%(£,Z ") be an operator which transforms like a vector under SU(2), i.e.
A(Z,£ ') - 7 is an element of the Lie algebra. Let us label the states on the
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links by the (real) eigenvalues of A%(Z,Z '), e.g. [{A%(Z,Z")}). The operators
U(Z,Z') are 2 x 2 matrices defined by

U(E,£') = 7" 4°@2), (6.13.22)

where the 7%’s are the generators of SU(2) in the fundamental (spinor) rep-
resentation. Moreover, we demand

AYZ, 2 ") = —-A%(Z ", ). (6.13.23)
Equivalently, the U(Z,Z ') operators must satisfy the condition
vz =vlt@E 5. (6.13.24)

Let E4(Z,Z ') be a set of operators acting on this Hilbert space. We will
require that these operators be canonically conjugate to the A*(Z, 7 ') i.e.

[A%(Z,Z2 "), EXg,§")] = i6°® - 62,962 g (6.13.25)
In addition, the operators E%(&,Z ') satisfy the angular momentum algebra
[E4(£,2"), B*(§,§")] = e E*(Z,2 ") - 62,962 g. (6.13.26)

In other words, the operators E%(Z,Z ') transform like group generators.
Clearly, the operators E%(Z,Z ') and the SU(2) matrices U(Z,Z '), satisfy
the commutation relations

[Ea(f,f ’), U(g,ff ’)] = TGU(E, z ’) . 65’!7651'9'1. (6.13.27)

All the commutators so defined (Egs. (6.13.25)-(6.13.27)) vanish if the oper-
ators act on the Hilbert spaces associated to different links.

Consider now the Hamiltonian H acting on the Hilbert space of gauge
invariant states:

"_G Q= = N\Npar= =1/
H—2 (;)E (£, HYE*(Z,Z2 ")+

z.“ (6.13.28)
+3 3 (W(@Vap(3,2 Wp(z") - hee),

(£,2)
«pB

where G is a coupling constant and (&£, Z ') are pairs of sites on an arbitrary
lattice.

On a given lattice, the equivalence between the system described by the
Hamiltonian H and the Heisenberg model holds in the limit G — oo. The argu-
ment goes as follows. First we note that H is invariant under time-independent
local SU(2) gauge transformations

Uap(,2 ") =Wy (B)U5(Z,Z YWip(Z "),
Ya() =W55 ()95 (2)-
In the limit G — oo, the ground state of the system has a huge degeneracy.

In fact, to leading order in an expansion in powers of é, the low lying states
are the gauge singlets which satisfy

E%(£,Z"\E%(&,%")|¥) = 0, (6.13.30)

(6.13.29)
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(all links) and obey the constraint

Q*(@)I¥) = ¥l@)resvs@)¥) = 0. (6.13.31)
This last condition implies that at each site Z either we have no fermion, |0} or
a “baryon” state |x) = Xt |0). We now can carry out a degenerate perturbation
theory exactly identical to the one we used to derive the Heisenberg model

from the Hubbard model. The first excited state available, |¥exc), has a link
excited to a state with angular momentum

3
4
only on that link. The effective Heisenberg exchange interaction thus obtained
is equal to J = 2.

What is the physical meaning of this symmetry? What we have actually
shown is that the strong correlation limit of the Hubbard model at half filling
has an effective gauge invariance. This gauge invariance, which is a mixture of
local particle-hole transformation and spin rotation, merely reflects the fact
that in the strong correlation limit the only excitations left do not violate
the local constraint. Hence no charge motion is possible and the system is an
insulator. The charge-carrying states, either holes or doubly occupied sites,
violate the constraint and pay a large energy penalty of order U, the Hubbard
coupling constant. The remaining states are charge neutral states which may
or may not carry spin. It is thus no surprise that the gauge theory not only
satisfies the constraint

EYZ,Z "YEYZ,Z ")|¥exc) = = |Wexe), (6.13.32)

Q%(Z)|Phys) = 0, (6.13.33)
but also the related condition for the current
J%(Z)|Phys) = 0. (6.13.34)

In other words, the current must also be zero. In a sense, we can think of
the Heisenberg model as a “free particle” problem with its Hilbert space pro-
jected onto the states with zero current and zero charge, at the scale of the
lattice spacing. The insulating phase of the Hubbard model, on the other
hand, satisfies the same condition at length scales larger than the inverse of
the charge gap. Thus, the low energy behaviour of the Hubbard insulator is
also described by a system with a gauge symmetry. This property is clearly
violated once one considers states with non-zero charge. Indeed the chemical

potential, which couples to the charge density cl (Z)cq(¥) yields a term in the
Hamiltonian H of the form Hcharge

Henarge = 1Y 91 @)ma9(@), (6.13.35)
-

which clearly violates the SU(2) symmetry. Similarly, the hopping term be-
comes

Huop =1 Y cf@eo@) =t Y vl @5P0s(E "), (6.13.36)

(£,8') (2,2')
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which also violates the local SU(2) gauge invariance. We will come back to
this issues later on. Let us point out now that this symmetry does imply that
the spinon particle (hole) state with spin up is the same state as a spinor hole
(particle) with spin down. Thus local SU(2) tells us that there are only two
spinon states, as it should be.
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CHAPTER 7

Chiral Spin States
and Anyons

7.1 Fluctuations in Chiral Spin States and
the Chern-Simons Gauge Theory

In chapter 6 we encountered a state, the Chiral Spin State (CSS), which
spontaneously violates time reversal and parity invariance. We will see in this
chapter that this feature of the CSS has far reaching novel consequences.
There are other states of Condensed Matter in which time reversal invariance
is broken. A ferromagnet has such a property. However, unlike the CSS, the
ferromagnetic ground state does not violate parity, and its properties are quite
different from what we will find in the CSS.

A system of electrons moving on a plane, in the presence of a perpendic-
ular magnetic field, does not have time reversal invariance. It is explicitely
broken by the magnetic field. If the electrons are spin polarized, in some sense
parity is also broken due to the orbital nature of the coupling. The results
are the fascinating properties of the Quantum Hall Effect (QHE), both in its
integer and fractional forms. In this chapter and the coming ones, we will dis-
cuss the deep connections which exist between the Chiral Spin State and the
Quantum Hall Effect. We will see that, as a result of the combined effects
of violation of parity and time reversal invariance, both systems have an ex-
tra term, the so called Chern-Simons (C-S) term, in the effective Lagrangians
for their low energy degrees of freedom. These Lagrangians also provide for a
natural phenomenological description of the physics. In particular, both sys-
tems have low-energy excitations with fractional statistics or anyons. We will
see in chapter 8 that, if the system is compressible, these excitations lead to
a novel form of superconductivity called anyon superconductivity. Deep and
far reaching connections between the CSS, the QHE, the mathematical the-
ories of knots and, more generally, with Topological Field Theories will be
described. We begin this chapter by going beyond the discussion of section
6.12 on the fluctuations around a Chiral Spin State.

Under what circumstances should we expect to get “free spinons”, i.e.
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Under what circumstances should we expect to get “free spinons”, i.e.
states with finite energy which carry spinon quantum numbers? The argu-
ments at the end of the Chapter 6 show that this is not possible unless the
fluctuations of the gauge fields somehow get suppressed. Terms of the Fﬁ,,
type do not efficiently suppress fluctuations. Gauge field mass terms are, on
the other hand, very efficient in suppressing fluctuations. In 2 + 1 space-time
dimensions two gauge mass terms can arise. The simplest one, Af‘, explicitely
breaks the gauge symmetry and can only arise if the system goes supercon-
ducting. This is a likely scenario at non-zero hole density but not possible at
half-filling. In 2 + 1 dimensions, there is another possible source of mass for
the gauge fields: the topological or Chern-Simons mass terms [Schonfeld 81],
[Jackiw 82]. Chern-Simons terms are locally gauge invariant but break parity
P and time reversal T invariance. They have the form Lcg

Lcs = %cu,,,\A“F"’\. (7.1.1)

The coupling constant § is dimensionless and measures the strength of P and
T (but not C) violations. We will see below that a term of this sort does
arise from the fluctuations of the gauge field in a Chiral Spin State. Since
the gauge fields now have a mass, one does expect to get spinon states in the
spectrum. These states are massive, i.e. have a non-vanishing mass. We will
also see in chapter 8 that, if holes are allowed, the system develops a novel
form of superconductivity driven by excitations with fractional statistics called
anyons.

In the abscence of mass terms for the fluctuations of the gauge fields the
spinons disappear from the spectrum. The only low-lying excitations of the
system are associated with the gauge field A,. It is then natural to ask for
the effective Lagrangian which governs the dynamics of the gauge fields.

The —1{,- expansion provides for a simple way to determine, not only the
effective action of the A, ’s, but also that of the amplitudes ¢; and x introduced
in Eq. (6.12.5). This is done by first integrating out the spinon fields and later
by expanding around one of the saddle-points of the resulting action. The
effective action determined this way is

Senlbirx, 4, = [ 2 (08,99 - TU6) +

_i (17uD* = x — ¢2) —¢1

N Indet ( Y (i“/uD“ Cx+ ¢2))
(7.1.2)

where the 2 x 2 matrix in Eq. (7.1.2) occurs because of the spinon doubling

in terms of « and v components of Egs. (6.11.6) and (6.11.7). At the saddle

point we have

(4,) =0, (¢:)=4¢i, (x)=x. (7.1.3)
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Let us now consider the effects of fluctuations around this state. Let $,-
and % denote the fluctuation component of the amplitude fields. The vector
potential A, has zero average, Eq. (7.1.3), and hence it represents a fluctu-
ation. The fluctuations of the amplitude fields are massive and thus do not
lead to any new physics provided, of course, that the saddle point represents
a stable state. We will not consider the effects of such fluctuations here. Qual-
itatively, amplitude fluctuations are important in the dimer limit. We have
already considered such effects in chapter 6.

The fluctuations of the vector potentials A, lead to interesting effects.
Their effective action can be calculated by expanding Seg of Eq. (7.1.2) in

powers of A,. To second order, we get Sg?,ge given by

1 v
Séi?xge = 2 /d3$d3y Huu(z,y)A'u(-'L')A () (7.1.4)

where II,,, (z,y) is the one-particle irreducible fermion current-current corre-
lation function (or Polarization)

O = (Ju(2) ], (y))- (7.1.5)

. 2 .
In momentum-space we can write Séag,ge in the form

(2) N / d3k /' A E sar K y
Sgauge - (27()3 (27()3’1‘1‘ S(2 + q)7 S(_E + q)7 A#(k)AV(_k)
R (7.1.6)
in terms of the fermion propagator S(p)

. 1
Spy= ————— 717
2 puY* — X — 6T ( )

where the 2 x 2 matrices T} and T3 are given by the Pauli matrices o, and o
respectively.
Explicit computation of the operator IT,, (in momentum space) gives

) = [ ks iV (ot %SG -

= (K2 g*" — k*k*)o(k?) — i b\ TL4 (k).

(7.1.8)
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The kernels IT(k?) and I14(k?) have the explicit form

N[m4|
2\ +
Mo (k") = 4k2 +
N 4m_2*_ . -1 1
+—2(—+1) sinh — | + (my = m_),
k2 4am?
8mvk 1/_k:;r__1
M4(k?) = - N sinh™ | ———| + (my = m_)
A 2V k2 4m? + e

(7.1.9)
where + denotes the mass gaps (poles of Eq. (7.1.7)) for the two species of

fermions
my =X + /6% + ¢} (7.1.10)
including their signs.

These expressions can now be used to find the effective Lagrangian Eg},ge
which governs the dynamics of the “RVB” gauge field A, at low energies. By
gauge invariance we know that only locally gauge invariant terms can possibly
occur. To lowest order in a gradient expansion (i.e. in k%, m? ) we expect a
Maxwell-like term F,, F** . However, in 2 + 1 dimensions a Chern-Simons
term (see Eq. (7.1.1)) is also possible. The C-S term although gauge-invariant,
breaks parity (P) and time reversal (T). Thus, it may occur in a chiral spin
state. Indeed, this is what actually does happen! By explicit calculation we
find that the effective Lagrangian ﬁ&i},ge does have the low-energy form

1 6
Ciuge = =gz Fw " + Zeun AU, (7.1.11)

The gauge coupling constant g2 (“spinon charge”) and C-S coupling 8 are
equal to

1 38, 1 1
== —(——+ — 7.1.12
7 = 5o Ty 1 T 7 1
and N
6= yp (sgn(m4) +sgn(m.)). (7.1.13)
Clearly, 8 vanishes if sgn(my) = —sgn(m_). This is to be expected, since

time reversal is not violated if the masses have opposite signs. This is the non-
chiral spin liquid state. In the chiral state, sgn(my) = sgn(m_) and either
sign, plus or minus do occur. Thus in a chiral spin liguid state we find that
the C-S coupling is § = :t% and it does not vanish.

We can gain some insight into the meaning of this result by considering
the propagator of the gauge field. In particular, we want to know if there is a
massless “photon” state in the spectrum. If such a state were to be present the
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whole approach would be in doubt since in our problem the vector potentials
A, would fluctuate wildly and, as we showed in chapter 6, the spinons would
in fact be confined by the monopoles of the field A,. However, if the field
A, were to become massive, the scenario would be completely different. Let
us consider this question more closely. The propagator of the gauge fields

Gu(z,2') is

Guu(z,2') = (Au(2)AL (2)) (7.1.14)
and it is not gauge invariant. It only makes sense after a gauge is fixed. We
do so by the standard procedure [Itzykson 80] of adding a gauge fixing term
to the Lagrangian Ega)uge of the form

«
Lidhng = W(BuA“)Q- (7.1.15)

In particular, I will work in the Lorentz gauge in which a—oo (i.e. 8*A, = 0).

The propagator of the gauge fields, in the Lorentz gauge, is given by

2 v 40 BUA
Y g , kHE g*0ie#
G*(p) = kz_—g402(gu -z )~ (k2 — 9%0%)

kx. (7.1.16)

This propagator has a pole at k2—g*82 = 0. This “photon” state is massive and
its mass m, is equal to g?|0|. Hence a chiral state implies massive RVB gauge
field. This mass term does not spoil gauge invariance and it does not imply the
occurence of superconductivity. However, it is just as efficient in suppressing
the fluctuations of the RVB gauge field. We have already discussed in sections
6.6 to 6.9 how the wild fluctuations of this gauge field, parametrized in terms
of monopoles, are responsible for the confinement of excitations bearing the
fundamental quantum number, the.spin. Conversely, we are led to suspect
that the presence of an induced Chern-Simons term may signal the liberation
of the spinons by suppressing the monopoles. We saw that monopoles were
responsible for disordering these loops, leading to confinement which, in the
present context, means a valence bond crystal. However, the presence of the
induced Chern-Simons term makes a significant difference.

Let us first discuss the fate of the monopoles. Consider a configuration
Aff) which represents a set of monopoles (with their strings) and assume that
they are well separated. A configuration of monopoles and anti-monopoles is
generated by a set of sources in the form of infinitesimally thin solenoids join-
ing each monopole to an anti-monopole. The issue here is the existence of a
long range monopole field in the presence of the (induced) Chern-Simons term.
But the C-S term causes the gauge field to be massive. In such a situation,
an elementary study of the Euclidean equations of motion reveals that, for
instance, in the case of a simple monopole-anti-monopole pair, the RVB mag-
netic field does not extend beyond a distance r ~ —%—5 away from the solenoid.
Thus, the dominant contribution to the Euclidean action comes from this ef-
fective flux tube. If the linear size of the monopole-anti-monopole pair is R,
the action Sp,ir grows linearly with R. Hence, monopoles and anti-monopoles
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confined and their contribution to the expectation value of gauge-invariant
operators is exponentatially small and can be neglected. More generally, the
fermion path integral, in a chiral spin state, looses its gauge invariance in the
presence of monopoles. The result is the supression of the monopoles and the
deconfinement of the spinons. In consequence, in the CSS there is genuine
separation of spin and charge [Fradkin 91].

7.2 The Statistics of the Spinons

What properties do the liberated spinons have? The best way to address this
question is to look at how does the spinon propagate in this system. Consider
the amplitude W(l)(i", Z;T) for a spinon, of any type, created in the remote
past at site Z, to propagate throughout the system to finally return to the
same place Z, in the same state, in the remote future (i.e. T — oo). The
(imaginary time) path-integral for this amplitude is

. . . T T
Thm w(z &T) = hm Tr Sp(z',——;z',+—)

7 —Se11(A)
/DA’I‘r 'D,,«,u+m| T) e
(7.2.1)
where I have used the (imaginary-time) spinon-propagator in a fixed back-
ground configuration of RVB vector potentials. We can now use the Feynman
picture of a sum over paths by first writing [Polyakov 87] the spinon propa-
gator in the form

T 1 T T
Te (7, | = | & +2) =Tt (#,~= | (~Dyuy* z
(2 | ——y | 5, 4) h
—DZm?2 ! T

The proper-time representation of the propagator yields the following expres-
sion for the trace in Eq. (7.2.2)
(e e]
Tr (2, —g | (=Dyy* +m) | Z)/ dr(Z | e+ | , g)e—m’. (7.2.3)
0
The operator D, is the Euclidean covariant derivative, D, = V, + i4,. The
(Euclidean) Dirac matrices are only present in the prefactors.

Notice that by taking a trace we are effectively summing over all spinon
polarizations. A standard path-integral argument now yields an expression
for W(l)(.i", Z;T) in terms of sums over paths T of arbitrary length 7. The
boundary conditions that we are using here imply that the sum over paths
runs over contributions with paths which close on the imaginary time direction
(i.e. run around the cylinder). The result is the path-integral

(Z]e*t™P* | 2,4 /Dze JS #(3E A ) (7.2.4)
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which is the sum over paths I' of length 7 satisfying the boundary condition
a:(O) Z and z(7) = (£, T). The amplitude W) (Z, #;T) can now be written
in the form

W(l)(.i", z;T) :/DAue—Seﬂ(Au)’I‘r (5;,_221_ | (=Duy* +m) | Z)

0o (7.2.5)
T
x/ dre_""j(Z | et7D? | z,+=).
0 2
Equivalently, W(l)(:i:', Z;T) can be written in the form
g T
/ dre=™™ /Dzu/DAu Tr (5:',—— | (=Duv* +m) | 2Z)
0 (7.2.6)

xe—f t3(45)° i §, Audr,

where I have used the fact that the paths I' are closed and, consequently,
the term fo dtA - W is simply the circulation of A around T. Notice that
this quantity is a gauge invariant and it arises because we are considering
paths which close around the cylinder. The path integral requires that this
amplitude be averaged over all the configurations of the RVB gauge fields, for
each path I'. After we do that we get, using an obvious notation,

(wy Z(a.mphtude)p X f dopd (7.2.7)

which involves the Wilson loop operator.

If we ignore the contribution of the monopoles, the amplitude W(1) can
be estimated just by using the effective action of Eq. (7.1.11). The average in
Eq. (7.2.7)

(¢ e don A" (7.2.8)

can now be calculated quite easily. Let J,(I') be a current in (2 + 1)--
dimensional Euclidean space defined by

Su(z), zel,
Ju(T) = { ( (7.2.9)

0, otherwise,

where S, (z) 1s the unit vector tangent to the path I' at z. The average to be
computed has the form

(¢ Jodondy _ (o [ #elu(@)2% @)y (7.2.10)

Since the effective action of Eq. (7.1.10) is quadratic in A, the average,
Eq.(7.2.8), is simply given by

f dz, AP (z) -4 [ @z [ @' 1,(2)6* (z-2") (') (7.2.11)
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where the propagator G, (z,z) has the Fourier transform given in Eq.(7.1.14).
By direct substitution of Eq.(7.1.14), we get

PPy ip(e-v)
Guu(z) y) = (27()3G (p)e
1 L oHer
=—g*z| (m)(g“ — ) v+ (7.2.12)

1
LY. JNTTN
+ g*6e (z|——62(62+g402)6,\|y).

Thus, the argument I of the exponential in the right hand side of Eq. (7.2.12)
reads

=- 2 [ @2 [ @@t vim)Iu+ (7.2.13)

_i 4 3 3 By _—1_
29 H/d -"’/d yJu(z)e" (z | 62(62+g402)a>\ | 9)J4(v)-

Here 1 used Go(z, y; m?) as the propagator for a massive field with m? = ¢%62,
which obeys

(=8% — mH)Go(z, y;m?) = 6(z — ). (7.2.14)

If we restrict our discussion to long loops only, we can make the long-
distance approximation

1
Go(z,y;m?) ~ —m—26(z —y). (7.2.15)

In this limit we get

iL(T) i )
29262 +ﬁ/d3”/d3y‘7u(z)f“ ’\Go(z,y;O)a,\J,,(y) (7.2.16)

where L(T) is the perimeter of the loop T', Go(z,y;0) is the propagator of
a massless scalar field and, in 2 + 1 space-time dimensions, behaves like
Go(z,y;0) | z — y |~!. We will see below that this last non-local term plays
a crucial role in this phase.

The first term in Eq. (7.2.16) embodies the quantum corrections to the
propagation amplitude of the spinon. Hence it can be interpreted as a finite
renormalization of its mass. The second term in Eq. (7.2.16) is more interest-
ing. The quantity R(T'), given by

I~ -

R(D) = / Po / By, () Go(z, ¥;0) 89, (y), (7.2.17)

is in fact a topological invariant. After an integration by parts and using the
difinition of the current J#(z), we can write R(T) in the form
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R(T) = }{ dz,, }{ dy, e 85 Golz, 3 0). (7.2.18)
T T

We can make more sense of R(I') by means of the following magnetostatic
analogy. In order to make these ideas precise it is necessary to momentarily
go to Euclidean space. Now Gg(z,y;0) is just the inverse Laplacian in three
dimensions:

Golz,4:0) = (£ | —Lw | ). (7.2.19)

Let us regard J,(z) as a current in three dimensions. This current establishes
the static magnetostatic field B,(z) which satisfies

VxB=J, V.-B=0, (7.2.20)

i.e. Ampére’s Law. Thus, we can solve for B, by means of the Green function
Go(z,y;0) in the form

B,(z) = /d3yGo(w, ¥;0) €428, Jx(v)- (7.2.21)

Thus, R(I')can be written in the more compact form

R(T) = / B2, (2)B,() (7.2.22)

where B, is the field established by J,. This is a self-interaction effect. Now
we can use the definition of J, and Stoke’s theorem to get R(I') in the form
of a surface integral

R(F) = f dzuBu = / do nufuu)\auB)\ (7223)
r =

where ¥ is an open surface bounded by I'. By substitution of Eq. (7.2.15) into
Eq. (7.2.23) we get

R(T) = /2 dé - J (7.2.24)

i.e. R(T) is the flux of J, the current, through a surface bounded by itself
(see Eq. (7.2.9)). Thus, at least qualitatively, R(T') should be equal to the
self-linking, or writhing, number of the path I' which measures the number of
times a vector normal to T winds as the loop is traced. Polyakov [Polyakov
88], who was the first to put these arguments forward, has argued that the
writhing R(T) of the path should be interpreted as an intrinsic spin. On the
other hand, this spin only makes sense after a choice is made of a specific
prescription for both measuring lengths along the path (i.e. choice of metric)
and a short-distance regularization of the integrals involved in R(T'). In his
seminal work relating the theory of knots and Chern-Simons gauge theories,
Witten [Witten 89] has argued that these definitions depend on the choice
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of regularization at short distances (“the framing of the knot”). In the prob-
lem that we are considering here, the Chern-Simons gauge theory (abelian in
our case) appears as the effective theory at distances long compared with the
inverse spinon gap of the mean-field-theory. It is unclear what regularization
one should adopt in this case. It is conceivable that the anomalous spin pre-
dicted by Polyakov may or may not be present depending on the size of the
spinon gap. This issue is still unresolved.

Let us consider the properties of spinons upon exchange processes. That
is to say, we want to know what statistics they obey. Microscopically, we
have defined the spinons to be fermions. The Chern-Simon term may change
that. To see how that can happen, let us consider the propagation amplitude
Wz, 7}, {Z,7};T) for two spinons, which in the remote past where located
at £ and 7, to end up either at the same locations in the remote future
(T — +o0) or to exchange their positions. Once again, we will carry out the
computation in the imaginary time formalism in which the time direction is
periodic, i.e. the space-time has, at least, the topology of a cylinder. The two-
particle amplitude will be represented as a sum over paths which close on the
time direction. In principle, we will be dealing with two different paths I'y
and I'y each representing the evolution of each spinon. These paths may or
may not be linked. In other words, the paths are equivalent to knots or braids.
We will see that the path integral can be written as a sum over classes of
topologically inequivalent knots. Each class will be characterized by a phase
factor. These phase factors can effectively alter the statistics of the spinons.
The two-spinon amplitude W(2 has the form

oo
W =13 wDeit (7.2.25)
v=0
where v is the linking number of the paths, to be defined below. The & sign
represents the two possible processes, direct and exchange. We will primarely
be interested in the computation of the phases ¢,. The amplitudes W,SQ) are
renomalizations of the spinon self energies, scattering amplitude, etc.

In terms of a sum over paths I', which are the union of the individual
paths of the spinons, W(2) has the form

WO =1 3 A b oA @) (7.2.26)
Ir=r,ul’;

where A(T') is the absolute value of the amplitude. After a little algebra we
get

w® — iZ_A(I‘)e%fda"'fda”"’u("')G“"(”’”')""(”’) (7.2.27)
r

where J, is the sum of the currents which define the paths I'; and T'5, and
Gy (z,2') is the analytic continuation to imaginary time of the propagator of
the gauge fields. We will only be interested in the behavior of very large loops
in the Euclidian space. The paths for direct and exchange processes become
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closed by identifying their endpoints. Thus, exchange and direct processes
have an extra relative linking number. It is this extra linking number which is
responsible for the fractional statistics. It will be sufficient, for our purpose,
to compute just this relative linking number. Thus, we can consider a sim-
ple direct process, in which the paths I'; and T's are not linked, and simple
exchange process in which the two paths are linked in such a way that they
form a single path. Now, the linking number of a single path is its writhing
number R(T'). However, there are no regularization ambiguities now, since the
path winds around the cylinder exactly once.

The cylinder represents a topological obstruction and no redefinition of
the metric on the path (for example by stretching it) can change this number.
Thus exchange and direct process have a relative linking number of +1. The
sign depends on the process by which we define exchange. If we define exchange
by a counterclockwise (clockwise) rotation of one spinon around the other by
an angle of m, followed by a translation equal to their relative separation, the
sign is +1(-1).

In the phase of the amplitude of the path integral the writhing number
R(T) enters multiplying a factor of 5. Hence, the total amplitude changes by

a factor of —e*3 when two particles are exchanged, i.e.

W = —etsm W, (7.2.28)

Eq. (7.2.28) implies that the spinons have fractional statistics with a statistical
angle 6 equal to

=2l

1
6= % (7.2.29)
relative to the fermions. In particular, Eqs. (7.2.28) and (7.2.29) require that
the two-spinon state should have a multivalued wave function [Wilczek 82]

P2 (1,2) = —eF (2, 1). (7.2.30)

For the case of physical interest, N = 2, the statistical angle 6 = 7 and the
wave function gets multiplied by i when two spinons are exchanged. Since
this phase factor is exactly half-way between fermions (—sign) and bosons
(+sign) these excitations have been dubbed semions [Laughlin 88]. In general,
they are anyons, particles with fractional statistics [Wilczek 82].

We are only left to compute the phases ¢, in Eq. (7.2.25) and (7.2.27).
Let us write the phase ¢, in the form

1
6, = —R(T1,T). (7.2.31)

260
Clearly, since R(I'1,T'z) is bilinear in the currents, we can write R(T;,Ts)
in terms of the writhing numbers of the individual paths and of the linking

number v = R(T';,T>)

R(T'1,T3) = R(T'1) + R(T2) + 2R(T;,T3) (7.2.32)
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with

R(Iy,T3) = % }fr dz, }g dz!, G (z —2'). (7.2.33)
1 2

We can now use the magnetostatic analogy once again. Let J ‘(‘1) and J, ‘(‘2)

be the two currents which establish the static fields B;(ll) and B‘(f) respectively.
We get

v = R(y,T) = / B3270(2) B (z) = }{ di-B®(z)  (1.2.34)
I,

as a circulation of the field B(® (established by T'p) around I';. Using now
Stoke’s theorem we write v as the surface integral

v =f{ dz - BA(3)
ry

= [ doii-V x B® (7.2.35)

where ¥, is an arbitrary surface bounded by I';. Thus v counts how many
times does the loop I's wind around T';. Putting it all together, we get a
formula for the two spinons amplitude W(?), of the form

we= ( A(T) e;‘;((n(rl)m(ra))) ¢ #(T1.T3) (7.2.36)
P11P3

which, for an exchange process, picks up an additional factor —e**®. The quan-
tity in bracket in Eq. (7.2.36) is a renormalized amplitude including possible
an anomalous spin effect. It represents the total two-spinon amplitude in the
topological sector with fixed linking number v.

In the next sections we will find that the remarkable properties of the
spinons in the CST are generically present for any system with anyons.

7.3 Flux States and the Fractional Hall Effect

In sections 6.5 we considered solutions to the saddle-point-equations, Egs.
(6.5.1) and (6.5.2), with a spontaneously generated fluz of 7 per plaquette.
The problem was shown to be equivalent, at the saddle point level, to a system
of fermions moving in an uniform average field with a one-half flux quantum
per plaquette. In section 6.10, we saw that a next-nearest-neighbor exchange
coupling, which frustrates the system, effectively lowers the energy of the flux
state. Furthermore, it drives the flux state into a chiral phase with sponta-
neously broken time reversal invariance. The flux phase has two bands that
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become degenerate at four points of the Brillouin Zone. The chiral states have
gaps at those points and the gaps grow larger as the frustrated regime J ~ J'
is approached.

If the fluctuations around the mean field are ignored (at a first stage), a
flux phase is then equivalent to two species (up and down spinons) of fermions
moving in that flux. In the chiral phase we also have a gap which grows larger
as frustration increases (i.e. for increasing J’/J). The one-particle spinon
states can, in this limit, be approximated by the eigenstates of the lowest
Landau level of a continuum problem in which the fermions move in a field
with the same total flux. This approximation should be qualitatively correct
provided that no level crossings occur. However, as we stressed previously, it
is not possible to ignore the fluctuations around the mean field. Nevertheless,
such an anology offers the possiblity of a new sort of spin liquid: a Laughlin
state.

Laughlin states [Laughlin 83] represent condensed states of N fermions
moving on a plane in the presence of an external magnetic field. These incom-
pressible states, which have been shown to exhibit the fractional Hall Effect,
represent a featureless liquid. It is tempting to speculate that the spin liquid
states, which are also incompressible if there is a gap, may be described in
terms of a Laughlin wave function, which we will discuss below.

Kalmeyer and Laughlin [Kalmeyer 87] have shown that, in the case of
frustrated quantum spin systems, there is indeed a close analogy with the
Hall Effect system except for the case that, here, we have bosons instead of
fermions.

Let us discuss the Kalmeyer-Laughlin picture in more detail. Consider a
frustrated quantum spin system, such as the square lattice with J = J’ or
the triangular lattice. Let us assume that the Hamiltonian is still given by the
usual Heisenberg exchange Hamiltonian. Instead of representing spins in terms
of constituent bands of fermions, one can use hard-core bosons instead. This
idea goes back to Holstein and Primakoff. Let | F') represent the ferromagnetic
state which we will use as a reference state, not necessarily the ground state.
Relative to | F'), the raising operator S*(7) acts like a boson creation operator,
a spin-flip being the boson. Since it is not possible to flip a spin twice, the
bosons should have hard-cores: a site cannot be occupied by more than one
boson. More formally we can write

§*H(7) = 51(F) +iSx(7) = a! ()
S~ (F) = 51(F) — iS2(F) = a(F) (7.3.1)
5. = 5~ a'(Ma(?)

where the operators a and a! are bosons and, hence, satisfy the commutation
relations

[a(), a'(F )] = 67 7 (7.3.2)

The Pauli spin algebra requires that these operators also satisfy a hard-core
condition, a? = (a')?2 = 0. Using these identities, it is now easy to write
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the Heisenberg Hamiltonian in terms of hard-core bosons. Notice that these
identities follow just from the nature of the states at each site. Thus, they
hold for any lattice and dimension.

Thus, the Quantum Heisenberg Model can be written as an equivalent
model of hard core bosons of the form

=2 3 (a*(@alF") +a* (7 a(®) +

(77)

—yJ Z at(a(M)+
+7 > at(Ma(@a* (7 )a(F )+ (7.3.3)

(7.7

+ 2 U o a () @ (9a() — )

where (7,7') stands for the nearest neighboringsites #and 7' (on that lattice),
v is the coordination number, and N is the total number of sites. The last
term enforces the hard-core condition since at Uy, — 00 the only states in the
Hilbert space with finite energy are occupied at most by one boson.

We are interested in studying the sector of the Heisenberg model with
Stet = 0. This implies that the bosons half fill the system. Thus, if Np is the
number of bosons, we have

Stet=%" (_ - a+(r'")a(r'")) ——Np=0 (7.3.4)
'7
le.,, Np = %N.

The first term of the Hamiltonian Eq. (7.3.2) can be regarded as a kinetic
energy term for the bosons. However, it has the wrong sign We can remedy
this problem by means of the following trick. Let A(7,7 /) be a fixed gauge
field defined on each link. Let us write the Hamiltonian Eq. (7.3.2) in the form

H=-% Z (a* (4 Da(m ) +he) +7 3 ot (Ha(at (7 Ya(7')

2 (7,7)

+ U (e (a9 — (75 + 555

(7.3.5)
This expression is consistent with Eq. (7.3.2) provided that A(7,7‘) = = for
all bonds of the lattice. Now, the first term does have the interpretation of the
kinetic energy operator for the bosons but there is an external fixed gauge field
A(F,7"). This gauge field, or rather its circulation, represents the frustration
of the spin system. For the case of a bipartite lattice, such as the square
lattice, this gauge field can be removed. This is so because the circulation of
a A(F,7 ') around any elementary plaquette of the square lattice is always
equal to 27 which, by periodicity, is equivalent to zero. Indeed on the square
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lattice, the transformation
(7) — (<1 *2a(7) (1.35)

flips all the signs and we get a kinetic energy operator with a proper sign.

However, for a frustrated lattice, it is not possible to do so. In the case of
a triangular lattice the circulation is 3w, which is equivalent to = (mod 2r).
Thus, the flux is intrinsic and it is determined by the lattice structure. More-
over, we conclude that the bosons behave like charge e particles moving in an
external magnetic field B with a flux of half of the flux quantum per triangle.
This result motivates the following approximation [Kalmeyer 87].

Consider a system of hard-core bosons with an effective mass M moving
on a plane in the presence of an external magnetic field B and of a periodic
potential V(7) which localizes the bosons on the lattice sites. The bosons
also have a short-range interaction. Now one imagines varying the periodic
potential from some weak value to the strong tight-binding limit, in which
Eq. (7.54) holds.

The magnetic field B is fine tuned so as to always give one-half of a flux
quantum per triangle. If we denote the lattice spacing by a¢ and the magnetic
(or cyclotron) length by lg, we can fulfill the requirements mentioned above
by setting B = 7105 and Iy = ao(fg)%, in units in which the flux quantum ¢,
equals 27.

Assume for the moment that we can make the further approximation that
the tight-binding (lattice) limit and the weak potential limit are smoothly
connected. In this limit a simple physical picture can be drawn. The problem
we are dealing with is that of a set of bosons with hard cores and short range
interactions, which carry the unit of charge and are moving on a plane in the
presence of an external magnetic field perpendicular to the plane. Except for
the fact that these particles are bosons, this situation appears to be identical
to the problem of the Fractional Hall effect. In that case a system of fermions
(electrons each with charge e), move on a plane in the presence of a magnetic
field B with the same geometry. The electrons have short range interactions.
This problem has been solved by Laughlin [Laughlin 83] who guessed a wave
function for it which appears to have exceedingly good properties. It then
appears that the chiral spin state (CSS) and the Fractional Quantum Hall
Effect (FQHE) belong to a general class of problems which are characterized
by strong correlation and broken time reversal invariance. In the FQH case,
time reversal is broken ezplicitely by the presence of the external magnetic
field. In the CSS case time reversal symmetry is spontaneously broken. We
will see below that, at long distances and low energies, both problems have
effective Lagrangians which include a Chern-Simons (C-S) term. In a sense it
is this C-S term which defines this problem.



208 Chapter 7 Chiral Spin States and Anyons

7.4 FPractional Statistics

One of the fundamental, and most cherished, axioms of local quantum field
theory is the spin-statistics theorem. In the way that it is most commonly
stated, it says that particles with integer (half-integer) spin are bosons
(fermions) and that the corresponding second-quantized fields obey canon-
ical equal time commutation (anticommutation) relations. At the root of this
theorem is the need to preserve causality in a theory with local interactions
as well as the requirement for the existence of a lowest energy state. Spin
can only be integer or half-integer since the fields should transform like an
irreducible representation of the Lorentz group in 3+1 dimensions: SO(3,1).
Even in a non-relativistic setting, the same requirements arise since the group
of rotations SO(3) is a subgroup of SO(3,1). Furthermore, the many par-
ticle wavefunctions should be either symmetric or antisymmetric under the
exchange of any pair of particles giving rise again to bosons and fermions.
Thus, it may appear that these are the only possibilities.

The situation becomes radically different if the dimension of space-time
is less than four. It has been known for a very long time [Jordan 28] that in
one space dimension the statistics is essentially arbitrary. This is basically a
kinematic effect. Fermions on a line cannot experience their statistics since
they cannot get past each other and neither can bosons with hard cores. The
Jordan-Wigner transformation, which we discussed in section 4.2, gives an
explicit construction of a boson operator aT( j) at the j*P site of a one dimen-
sional lattice as a non-local function of fermion densities (see Eq. (4.2.23))

at(4) = et ()’ Lomes efeme(m) (74.1)

where the operators cf (7) and ¢(j) obey canonical anticommutation relations.
In continuum quantum field theory, there exists an analogous construction
known as bosonization (see section 4.3) , which yields a connection between a
canonical Dirac Fermi field ¥ (z) (o = 1,2) and a canonical Bose field ¢(z)
in 1+1 dimensions given by the Mandelstam formula (see Egs. (4.3.55-56))

Yo(z) o7 S WO EIVTHE) (7.4.2)

with o =1 (2) for + (-).

Both constructions are based on the idea that in order to change the
statistics one has to multiply an operator which creates a particle, such as
ct (7), times an operator which creates a kink, i.e., a topological soliton. This
idea, to some extent, can be generalized to higher dimensions. For instance,
in 341 dimensions a dyon, a bound state of a charged bose particle and a
Dirac magnetic monopole, behaves like a fermion. However, unlike the one-
dimensional cases, all the examples in 3+1 dimensions are semi-classical in
character. Furthermore, in one space dimensions, it is also possible to get
Jractional statistics (i.e., intermediate between fermi and bose). A simple way
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to do that is to change the exponent of the kink operator in the Jordan-
Wigner formula by replacing = by an arbitrary angle 6. The resulting operators
aT(j) do not obey bose commutation relations but instead exhibit fractional
statistics, i.e.,

a(i)al (k) = 6,5 — eat (k)a (). (714.3)

These operators, also known as parafermion operators, are generalizations
of the fermion operators which are essential to the solution of the two-
dimensional Ising model [Kadanoff 71]. They occur naturally in a number
of quantum theories in 1+1 dimensions, such as the Gross-Neveu model, and
in two-dimensional classical statistical mechanics. These operators have been
found to play an important role in the critical behavior of the Clock Mod-
els in two dimensions, when studied using the methods of Conformal Field
Theory [Dotsenko 84].

We will consider now the construction of anyon or parafermion operator
more closely. This construction is due to Kadanoff and myself [Fradkin 80].
From the point of view of our discussion, the interest of this classical con-
struction is that it has a natural generalization to 241 dimensions which has
turned out to be quite useful. Consider a two-dimensional classical statistical
mechanics model such as the Z, Model on a square lattice. In the Z, model,
one defines an angle-like variable 8(7) residing at each site of a lattice. The
angle 6(7) takes the discrete values 6 = 2—:—‘1 at each site, where p and n are
positive integers and p = 1, ...,n. The classical Hamiltonian H is chosen to
be a local function of the angles §(+) and invariant under global Z,, transfor-
mations 6(7) — () + 2™, where m is a constant integer (1 < m < n). The
partition function is

z=Y ¢ 2 oA () (7.4.4)
{6(7)}
where £ is the inverse temperature and g = 1,2. In this particular case,

the parafermion consists of an order operator Om(7) = exp(iZZ24(7)). It
measures the order at a site 7 of the lattice which is the endpoint of a defect
or domain wallwhich flips the Z, spins by a fixed angle 277;1 This defect, which
tries to create a fractional vorter of strength 2—:1, is most easily described by
means of a gauge field .4;(Z) defined on all the links of the square lattice. The
Z,, spins and the gauge fields are minimally coupled through the covariant
difference A;6(7) + A;(¥). The vector potential can be chosen to have non-
vanishing curl equal to 2—:1 on any arbitrary closed loop on the lattice which
contains the site £ on the dual lattice at the plaquette North-East of the site
7. A popular choice is to have 4; = 0 except on a path on the dual lattice
ending at R ( a Dirac string). From this construction it is apparent that the
fractional statistics of these operators results from a mechanism closely related
to the Aharonov-Bohm effect.

It is now easy to check that the correlation functions of these operators
are multivalued. Consider for instance the two-point function G, (7, 7 ‘) which
measures the correlations between operators O, ,in the presence of defects of
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strengths %ﬁ, at sites 7 and 7' respectively. Let K, be the operator which
creates a defect of strength 2—:1 Imagine carrying the site 7' around site 7
on a closed loop I'. After a full round trip, the spin operators have returned
to their original locations but the Dirac strings are now misplaced: if in the
original situation the spin at 7 was North of the string, now it is located
South of it. The string can be returned to its original position by means of a
gauge transformation. However the spin operator is not invariant under this
operation. As a result, the correlation function picks up a phase of 4T”pq. Hence
the composite operator ¥,, = O K, creates an excitation which is an anyon
with statistical angle § = 2T”pq.

From the discussion outlined above it is apparent that any statistics is
possible in one space dimension. Furthermore, the states created by operators
which obey fractional statistics are, up to a boundary condition, completely
determined by the coordinates of the particles on the line. In three dimensions,
on the other hand, there does not seem to be room for particles with exotic
statistics. However, a number of years ago, t’'Hooft [t’Hooft 78] showed that
there can be string-like states in four dimensional gauge theories which obey
commutation relations with fractional statistics.

In two dimensions, however, one finds a very interesting situation. The
Lorentz group for a two-dimensional system is SO(2,1). The rotation group,
which is crucial to both relativistic and non-relativistic systems, is SO(2).
This group has only one generator L,, the generator of infinitesimal rota-
tions in the plane, and hence it is abelian. Thus, all of its representations are
one dimensional and labelled by the angular momentum quantum number £.
If the wave functions of the excitations are required to be single valued, the
angular momentum £ can only be an integer. However fractional shifts of £
are also compatible with the algebra of SO(2). States with fractional angular
momentum have multivalued wavefunctions. In the Hilbert space which rep-
resents particles that move on the plane but are not allowed to sit on top of
each other (a “punctured” plane) such wave functions are indeed allowed
[Leinaas 77]. The plane becomes isomorphic to a Riemann surface punctured
at the locations of the particles and different points are identified up to a phase
determined by the fractional angular momentum. This framework provides for
a natural construction of wave-functions which obey fractional statistics.

Wilczek [Wilczek 82] proposed the first fully quantum mechanical pre-
scription to make such particles. He dubbed them anyons. Wilczek’s model
makes use of the Aharonov-Bohm effect experienced by a particle of charge ¢
moving on the plane in the presence of a magnetic solenoid with flux ¢ per-
pendicular to the plane. More precisely, he assummed that each particle is
rigidly bound to a solenoid which moves along with it. Consider now two such
bound states. Let us make the gedanken experiment of adiabatically carrying
one bound state around the other along some closed curve I'. Because of the
Aharonov-Bohm effect, the wavefunction ¥ of the bound state changes by an
overall phase factor

N $. 4@y v (7.4.5)
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where A is the vector potential associated with the magnetic flux of the
solenoid. The angular momentum £ of the state is then equal to 6. If we
denote with ¢y the flux quantum, ¢¢ = %, we can write the angular mo-
mentum £ in the form £ = go, where o = % The angular momentum is
not an integer if the Dirac quantization condltlon is not satisfied. The statis-

tics obeyed by the bound states can be computed by considering an exchange
process in which one bound state goes half its way around the other and, af-
terwards, both objects are shifted rigidly in such a way that they now have
exchanged their initial positions. In this process their joint wave-function has
picked up a phase factor exactly equal to half of what it is for a full round
trip around the other particle, i.e., e**®, This definition is peculiar in the
sense that the statistics of a state is determined by an adiabatic transport
of the bound states in such a way that they never get on top of each other.
Clockwise and counterclockwise processes yield complex conjugate phase fac-
tors. These wavefunctions are not representations of the permutation group.
These states form representations of the Braid Group. These states are not
defined in terms of the coordinates of the bound states alone. We have seen
in section 7.2 that the amplitudes for the propagation of a pair of spinons
in a CSL has precisely these properties. In that case, the fractional statis-
tics was a consequence of the presence of an induced Chern-Simons term in
the effective action for the low-energy degrees of freedom. We will see below
that the Chern-Simons term is the most general local gauge invariant La-
grangian which binds particles and fluxes together. In chapter 10 we will see
that the quasiholes of the Laughlin ground state for the Fractional Quantum
Hall Effect have very similar properties.

7.5 Chern-Simons Gauge Theory: A Field
Theory of Anyons

In order to make further progress we need a theory that will bind particles
and fluxes together. Fluxes are most simply described as curls of a gauge field,
which is usually called the statistical gauge field. Also, we want the particles
to feel the fluxes through an Aharonov-Bohm mechanism. This means that the
particles have to be minimally coupled to the statistical gauge fields through
the covariant derivative. There is a problem with this approach. In most cases,
a fluxoid which is electromagnetically coupled to a charged particle is not
usually bound to it. The Aharonov-Bohm effect is not a bound-state problem.
Rather, the amplitudes for the propagation of the particle get modified, by
a phase factor, in the presence of flux. Thus, in the usual case, particles and
fluxoids move quite independently from each other. In the problem that we
are discussing, we want to force particles and fluxes to move together, as if
they were the constituents of a bound-state. There is a theory which does all
of that in a simple an straightforward way: the Chern-Simons gauge theory.
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Let us imagine that we have a set of N particles. In a path-integral pic-
ture, the motion of the particles is described in terms of a set of trajectories
I =Ti+...4I'y with specified initial and final conditions. Quantum mechan-
ics tells us that we have to sum over all possible trajectories weighing each
history by the usual phase factor exp %S(*‘/) in terms of the classical action of
that particular history. If the particles have mass m, the classical action S,
of the particles is

’

Sm(y) = t!dtN Ln(Ziy2 4 925 Ja;0) — Ao(E;,t 75.1
ORTAD> (3m(Ey+ S d@0) - Ai0) . (15)
The second term implies that the particle trajectories can also be regarded as
a set of currents ( and densities) J, = (Jo,J) (¢ = 0,1,2) which are different
from zero only on the trajectories of the particles and carry the unit of charge.

What should be the action for the statistical gauge fields? It cannot have
the standard Maxwellian form since purely electrodynamical processes do not
yield bound states of particles and fluxes. What is needed is a constraint which
will rigidly bind particles and fluxes. There is only one gauge invariant, local
expression which does the job: the Chern-Simons term

Ses = / d%%eu,,,\A“}"”\. (7.5.2)

The binding of particles to fluxes follows from the observation that the time
component of the statistical vector potential Ao plays the role of a Lagrange
multiplier field which enforces the local constraint

[Z] "
Jo = zei FI = 0B. (7.5.3)

This constraint simply means that a statistical flux of strength % is present
wherever there is a particle. In section 7.2 we saw that the presence of a
Chern-Simons term modifies the two particle amplitudes in such a way that
they exhibit fractional statistics. However, the Chern-Simons term does more
than attaching particles to fluxes. It also determines the canonical structure
of this system.

7.6 Anyons at Finite Density

In this section we consider a simple model which describes a gas of anyons
at finite density. Since we are interested in systems in their thermodynamic
limit, this theory is necessarily a field theory of anyons. The model that we
will discuss is a system of “free” anyons on a square lattice ( in space) with
the topology of a torus. We choose to work on a spacial lattice both in order
to avoid regularization problems and with an eye on applications to theories
of high T, superconductors. The time variable will remain continuous. This
choice simplifies the formalism without any significant loss of generality. The
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model can also be defined rigorously on a space-time lattice [Frohlich 88]. The
results have much wider applications than our derivation may suggest. For
instance, as a byproduct, we will derive a Jordan-Wigner Transformation for
systems in two space dimensions. This transformation is of great use for the
study of two-dimensional quantum magnets. The theory can also be considered
in the continuum, although some care has to be exercised at short distances.
Chen, Wilczek, Witten and Halperin [Chen 89] have considered the continuum
non-relativistic theory in great detail. In this section, I discuss the problem
on a spacial lattice [Fradkin 89].

In the model that we consider, the anyons are free in the sense that the
Hamiltonian only contains a nearest-neighbor hopping term. However, the
anyons will be assumed to have hard cores. This last requirement is essential
to the whole construction since otherwise the anyon worldlines can cross and
the notion of braids falls apart.

Let us now show that the problem of a gas of N, anyons with hard cores
on a square lattice is equivalent to a gas of Ny = N, fermions, on the square
lattice, coupled to a Chern-Simons gauge field defined on the links of that
lattice. To be more precise, let &T(a':') and a(£) be a set of anyon creation and
annihilation operators defined on the sites {Z} of the square lattice which
satisfy the generalized equal-time commutation relations

a@al (@) = 625 - fal (@a@). (7.6.1)

The angle 6 indicates that we are dealing with fractional statistics. The choice
of sign is such that for § = 0 we have fermions while for § = m we have bosons.
The hard core condition implies that, when acting on physical states, these
operators obey

at(@at (@) = a@a@) =o. (7.6.2)

The second quantized Hamiltonian is simply given by

H=Y al(@a@ +h.c (7.6.3)
(2.9
where ( Z,y ) are nearest neighboring sites on the square lattice.

Consider now a set of fermion creation and annihilation operators éT(i")
and ¢(Z) on the same square lattice. Let A;(£) be a set of boson operators
defined on the links of the lattice {(£,Z + é;)}( with j = 1,2) representing
statistical gauge fields which satisfy the equal-time commutation relations

A@), A = gsm. (7.6.4)

Notice that, at every point & of the lattice, the component of the vector po-
tential along the direction z; is the canonical pair of the component along the
direction z5. This choice may appear to be strange at first sight. In quantum
mechanics, the canonical pairs are usually a coordinate and a momentum.
The same is true in most field theories as well. However, there are a set of
problems, both in field theory and in quantum mechanics, in which two “co-
ordinates” form a canonical pair. The most common example is the case of
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a charged particle moving on a plane in the presence of an external mag-
netic field. In this problem the guiding center coordinates for the position of
a particle in the lowest Landau level satisfy an analogous set of commutation
relations [Klauder 79).

The dynamics of the system is governed by the Hamiltonian

Hy =Y el(#) ¢4 gz + ;) + he. (7.6.5)
Elj

and the physical constraint states {|Phys)} are required to satisfy a local
constraint (“Gauss’ Law”) between the fermion density p(Z) and the local
magnetic flux B(&) of the statistical gauge fields

(p(f) - 013'(5))'|Phys) =0. (7.6.6)

This constraint implies that a fluxoid of strength % is attached to each particle

at the level of the lattice scale. The local statistical flux B() is given by the
usual formula

B(£) = A A3(F) — A0 AL(F) (7.6.7)

where A; is the finite difference operator in the direction j. The flux thus
defined effectively exists only on the dual lattice. This formulation has the
additional advantage that the particles are not allowed to get “inside” the
flux. The Hamiltonian H, together with the constraint and the commutation
relations, follow from canonical quantization, in the gauge Ag = 0, of the
Lagrangian density £

£ = ct(2) (80 + Ao + p) c(z) — H(c, ¢, A) — Lcs. (7.6.8)

Here H is the Hamiltonian per site, u the chemical potential, z = (Z,t) and
Lcs is the Chern-Simons Lagrangian density which, in terms of the vector
potential A, and the field strength tensor F,, suitably defined on a lattice,
has the form

0
Lcs = Ze‘“”\AuF,,,\. (7.6.9)

This Lagrangian density is explicitly invariant under local, time-dependent,
gauge transformations, provided that the system does not have boundaries.
The Chern-Simons Lagrangian density is not invariant at the boundary. The
problem can be put on a lattice with boundaries by adding a potential energy
term V(7) to the Hamiltonian which rises very rapidly at the physical location
of the boundaries. No particles would go into the forbidden region and, since
the flux is rigidly tied to the particle density, the statistical flux would be zero
in that region.

Let us apply the canonical quantization procedure to this system. As is the
case in all gauge theories, the component Ap of the Chern-Simons gauge field
does not have a canonical pair since £ does not depend on 89Ap. Thus, Ag is
a local Lagrange multiplier which is just enforcing the constraint, Eq.(7.6.6).
The combination of fields which appears multiplying Ao defines the generator
Q for local time-independent gauge tranformations. It is easy to check that,
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for this problem, Q = p(&) — 013‘(5) Thus, the constraint amounts to the
requirement that the physical states |Phys) be gauge invariant. It is then
customary to set Ap = 0 and to demand that the constraint be satisfied
locally.

The space components of the gauge field do have canonical pairs. The
canonical momentum I1;(Z) conjugate to A;(Z) is given by

5C
L@ = Fa®

Thus, the canonical commutation relations
[A1(2), L (§)] = ibz¢ (7.6.11)

are equivalent to the commutation relations among the space components of
the gauge field

= 0.A,(%). (7.6.10)

A@), A7) = -;;65‘!7. (7.6.12)

The equivalence between the anyon Hamiltonian and the Chern-Simons gauge
theory coupled to fermions is established by solving the constraint, Eq. (7.6.6),
which relates the local flux to the local density. This can be accomplished by
fixing the remaining invariance under local time-independent gauge transfor-
mations. We will choose the Coulomb or anyon gauge V - A(Z) = 0. The
statistical vector potential A(Z) which is the solution of the constraint in this
gauge is an explicit function only of the local particle density. Thus it may
appear that there are no gauge degrees of freedom left. This however is not
generally the case. Whether or not there are any gauge degrees of freedom
left depends on the boundary conditions. On a torus, there are global gauge
degrees of freedom which are not affected by the local fixing of the gauge.
We now have to solve the constraint, Eq. (7.6.6), for a lattice with the topol-
ogy of a torus. Let L; and L4 be the linear dimensions of the lattice along
directions 1 and 2 respectively. It is impossible to eliminate all the gauge de-
grees of freedom by solving the constraint equation no matter what gauge is
chosen unless large gauge transformations, which wrap around the torus along
directions 1 or 2, are included. Consider the circulation of the statistical vector
potential on a non-contractible closed loop wrapping around the torus along
one of its large circles C; (j = 1,2). Any local time-independent gauge trans-
formation shifts the spacial components of the vector potential A by the gra-
dient of a smooth function A of the coordinates Ay (Z,t) — Ar(Z,1) + ArA(Z).
Thus, the circulation I';, with T'; = fcj ds - /T(:E), is unchanged since A is a
smooth and single-valued function of £. Notice that this is the case even in
the abscence of fermions! Thus, the circulations T';, or non-integrable phases,
are global degrees of freedom of the gauge field. A consistent treatment of this
problem must take into account their dynamics.

There is a simple way to take care of both global and local gauge degrees
of freedom. The local gauge degrees of freedom are non-local functions of
the local particle density p(Z,1) given by the solution of the local constraint
equation in some particular gauge. The global degrees of freedom are the
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non-integrable phases I';. To make any further progress it is necessary to
fix the gauge. At the level of the functional integral, we first observe that the
component Ag of the statistical gauge field can always be integrated out giving
rise to the local constraint at all times. We next write the spacial components
of the statistical vector potential A; in the form

Aj () = A; (:L‘) + /ij (z) (7.6.13)

where A; is a particular solution of the constraint equation and /i_,- generates
the non-integrable phases which are solutions to the homogeneous constraint
equation (i.e., without fermions). We can completely determine all of these
fields by choosing a particular gauge.

Let us consider first the local gauge degrees of freedom. In the Coulomb
gauge, the inhomogeneous solution for the constraint equation is given in
terms of the scalar field ®(7): '

. A (E) = € A1 2(7) (7.6.14)

where 7 are the sites of the dual lattice [Fradkin 89]. Here the scalar field @
is the solution to the equation (see Egs. (7.6.6-7))

A2Q(F) = —%p(f) (7.6.15)

where 7 is the site on the dual lattice located northeast of the site & on the
direct lattice and A? is the lattice Laplacian.

In this approach, fluxes are on the dual lattice while particles are on
the direct lattice. Particles and fluxes never sit on top of each other and
we have no ambiguities. On the other hand we could have chosen to put
the flux southeast of the particle, or some other similar prescription. These
different prescriptions are related to the possible existence of a self-linking
number and an anomalous spin. We will not explore these issues any further.
Let us simply note that this lattice regularization provides a natural way to
separate particles and fluxes while keeping all the relevant symmetries intact.
Also note the close analogy with the order-disorder operator construction for
two-dimensional classical statistical mechanical systems. This feature is also
present in the two dimensional Ising model and it reflects the fact that the
Onsager fermions are two-component spinors [Kadanoff 71].

We now use the lattice Green function G(7,7’), which is the solution of
the partial difference equation

1

AZG(FF)=bpp1 — )
7 (T‘,T‘ ) r,r L1L2

(7.6.16)

The last term of this equation, while unimportant in the thermodynamic limit,
is necessary in order to define the Green function in a finite system without
boundaries, no matter how large it is. The solution for the scalar field has the
form

3(7) = %E G, 7 )p(3"). (7.6.17)
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Thus, by inserting Eq. (7.6.17) into Eq. (7.6.14), we can write the vector
potentials .4; in the form

A;(£) = e_,kAk EG(r (T ). (7.6.18)

Let us define the multivalued function O(Z, 7 ') as the solution for the lattice
version of the Cauchy-Riemann equation

—AJ‘G(F,F') = EjkAk@(f,F'). (7.6.19)

The function ©(F,7 ') is found by integrating the Cauchy-Riemann equation
along a path T'(£,£ '), on the direct lattice, going from £ to & ' which leaves
the point 7 to its left. For a finite system, the function ©(Z,7’) obtained
by this procedure is path dependent. Moreover, along a closed path I' on the
direct lattice, which has the point 7 of the dual lattice in its interior region,
the function © has a discontinuity (A®)r. We can compute this discontinuity
by using the Cauchy-Riemann equation

(AO)r =Y si(T)A;0 =Y 5j(D)ejx ArG (7.6.20)
r r

where s;(T) is a vector field which is equal to one on the path I' and zero
everywhere else. The last “line integral” in this equation can be computed by
first using a discrete version of Gauss’ theorem and then inserting Eq. (7.6.16)
to yield

AT)

(AO)r _EN =1-70 (7.6.21)

where T is the region of the dual lattice inside the closed path T' and A(T) is
its area. Thus, in the thermodynamic limii, the function © has a jump equal
to one as a closed path T is traversed. Equivalently, we can say that © is a
multivalued function which has a branch cut r'epresenting a jump by one unit.
Using the same line of reasoning, one can show that the following important
identity holds

0@, 7Y —0(F",7) = 1. (7.6.22)

This equation can be derived by using the following geometrlc construction.
Draw a rectangle centered at £ which has corners at & + R and £ — R along
a diagonal. We now consider the paths I'y, & + R — & — R without crossing
the cut, and Ty, F4+ R — & — R crossing the cut. By symmetry, we have

(e - &7 - + &) L= (e(z + &, 1) - 6(z - £, ) .- (16.23)

Since the total discontinuity of © is one, [AO]r, 41, = 1, we get just half that
result for a “half-way trip”.

We can now use the Cauchy-Riemann equation, Eq. (7.6.19), to write the
vector potential A4; in Eq. (7.6.18) as the gradient of a scalar “function” ¢(Z):

Aj(E) = A; (&) (7.6.24)
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where ¢ is given by

(&) = %Z 0@, 7 Yp(3 ). (7.6.25)
<

Therefore, the vector potentials associated with the local gauge degrees of
freedom are pure gradients, and they can be “eliminated” by means of the
“gauge transformation”

a(£) = e ¢(3). (7.6.26)

However, since ¢ is a function of the local density p(Z), the phase factor e~*¢
is not a c-number but an operator. This operator creates a coherent state
of vector potentials which represents the flux attached to the particles. The
operators a(Z) so defined satisfy the anyon commutation relations and the
hard-core condition. Indeed, after some straightforward algebra we get that
the operators a(Z) satisfy the commutation relations

a@)al (@) = 625 — *al (Pa@) (7.6.27)

where the “phase” § is given by
R Py _ 1
§= H(O(z,r )—0(F,7) = 5. (7.6.28)

The hard-core condition a(552 = 0 is a consequence of the fact that the
operator ¢(Z) is a fermion. Thus, the operators a(£) and a'(Z) are anyon
destruction and creation operators. The statistical angle 6 and the Chern-
Simons coupling constant § are related by

1

6= %" (7.6.29)

Notice that this is the same result that we derived in section 7.2 by considering
a first quantized path integral approach.

It is clear that much of what was done above for a lattice theory can
also be done in the continuum case. Thus, the identification of anyons with
either fermions or bosons coupled to Chern-Simons gauge fields is also valid for
continuum systems [Semenoff 88] but with one caveat. The notion of attaching
fluxes to particles in the continuum is a very tricky one. We remarked in
section 7.2 that, in addition to fractional statistics, the particles may acquire
a fractional induced spin depending on the definition of the problem at short
distances. For example, if the particle and the charge literally “sit on top
of each other”, there is no relative winding and no extra phase can possibly
appear. But, if the particle and the flux are separated by some distance, they
can wind around each other. As a result an extra phase may appear in the
propagation amplitudes. This extra phase can be interpreted as an induced
fractional spin. The lattice theory that we have discussed above does separate
particles from fluxes in a natural and gauge-invariant way. We then expect
that this lattice anyons should have an induced fractional spin.
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7.7 Periodicity and Families of Chern-Simons
Theories

The results of the last section allow us to conclude that a theory of anyons
with statistical phase 6 can be defined in terms of a theory of fermions coupled
to a Chern-Simons gauge field with a coupling constant § = % Likewise, the
same theory of anyons can also be defined in terms of a theory of bosons with
hard cores coupled to a Chern-Simons gauge field but with a coupling constant
6 = 1/2(8 £ ). This equivalency is the starting point of the boson approach.

However, there is an apparent discrepancy between the fermion (or boson)
and anyon theories. The problem is that the anyon commutation relations are
periodic in the statistical phase 6. Nothing changes in the anyon problem if the
statistical phase is shifted by § — § + 2wn, where n is an arbitrary integer, not
necessarily positive. On the other hand, the only information in Chern-Simons
theory about the statistics of the particles is in the coupling constant 8. It is
not obvious that the Chern-Simons theory is invariant under the change in its
coupling constant % — % + 4mn as it is required by the anyon commutation
relations. This issue is of particular importance since all approximations which
are commonly made, such as the average field approximation of Laughlin, work
only in one particular period i.e., a choice of n. Fortunately, it is possible that
the Chern-Simons theory is indeed invariant under shifts. Notice that a shift
of § by 2mn is equivalent to attaching an additional even number 2n of flux
quanta to each one of the particles. The argument is the following.

Let us first prove that “an even number of flux quanta is the same as
nothing”. Consider a system of fermions coupled to a Chern-Simons gauge
field with coupling constant 8 = #. In first quantization, the functional
integral reduces to a sum over all the histories of the particles and gauge
fields. In section 7.2 we showed that the trajectories of the fermions form
braids. If we compare two histories which differ just by the relative braiding
of two particles, the propagation amplitude changes just by a phase factor
exp(i%‘i), where Av is the change in the linking number. Thus, for § = 71,
all scattering amplitudes remain unchanged since the phase change is just an
integer multiple of 27.

This suggests that if we want to attach an additional even number of
fluxes to each particle, then we have to couple the system of fermions to
a new Chern-Simons gauge field, let us call it 4}, with a coupling constant
8 = 4—:;. Thus, the fermions end up being coupled to two Chern-Simons gauge
fields, one which is responsible for the fractional statistics and the other for
the periodicity.

However, the resulting theory seems to be unnecesarily complicated. This
problem can be remedied quite easily. Since the Chern-Simons action is bi-
linear in the fields, we can integrate out one of the two gauge fields. More
precisely, let us consider a problem in which two Chern-Simons gauge fields,
A, and A}, are both coupled to the same fermi field ¢ through the Lagrangian
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density £ (I drop the subindex of the gauge fields)
L=Lr[Y, A+ Al + 61Lcs[A] + 02L5[A'] (7.7.1)

where Lr[, A + A’] is the fermion part of the Lagrangian. Note that the
fermions are assumed to couple in the same awy to both gauge fields. This
is needed for the fluxes to be additive. We can use the invariance of the
integration measure to define a new gauge field A = 4+ A’. The fermion only
couples to the field A.

Let us now compute the functional integral over the fields A’. After the
shift the Lagrangian reads

L: = L:F[II),A] + GIL:CS[A - A,] + 02[:(:5[./4.,]
8
= L[, Al + (61 + 62) Lasl A + 01 Lasl A — reun My Fon. (17.2)

The functional integral over the A, fields can be carried out exactly. As usual

one first shifts the field A, — A), + A, and A, is then determined from the
condition that the terms linear in A, are exactly cancelled. This condition

yields the result
~ 0
A, = (m) A, (7.7.3)

The fermions are coupled to a single Chern-Simons gauge field A, with the
effective Lagrangian

Lest = LF [’([),Au] + Heﬁﬁcs[Au]. (7.7.4)
The effective Chern-Simons coupling f.s given by
1 1 1
_—= 4 —. 7.7.5
bt 01 02 (7.75)
If we make the choice §2 = 31 we get the desired result.

Thus, Chern-Simons theories with coupling constants @ of the form % =
26 4+ 47n have the same physical properties. However, approximations done
on each member of this sequence yield quite different results. This property
will be of great importance for our discussion of the Fractional Quantum Hall
Effect in chapter 10.

7.8 The Jordan-Wigner Transformation in Two
Dimensions

The identity
a@)al () = 625 — Pal(@a@) (7.8.1)

is the two-dimensional analog of the Jordan- Wigner Transformation discussed
1

in chapter 4. As a matter of fact, for § = 5~ we get § = 7m. Hence, for m
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odd the operators a(Z) obey equal-time boson commutation relations and a
hard-core condition. If we recall the mapping in section 7.3 between bosons
with hard cores and spin-3 Pauli operators:

ot () =dl (@), o7 (F)=a(@), 03(%)=2a!()a(?) -1, (7.8.2)
we get from Eq. (7.6.26)

ot (@) = et¥@D (), o (&) = e D ¢(F), 03(2) = 2H(@)e(F) — 1.

(7.8.3)
These equations tell us that the two-dimensional quantum Heisenberg anti-
ferromagnet on a square lattice is eractly equivalent to a theory of spinless
fermions on the same lattice coupled to a Chern-Simons gauge field. In addi-
tion, there is a direct density-density repulsive force among nearest neighbors.
Thus, unlike the familiar results from one dimension, in which the fermions
are free (see chapter 4) in the XY limit, there is a long-range gauge inter-
action in two dimensions even in the XY limit. This property is due to the
fact that, in one dimension, the only possible flux that the fermions can feel
is a global effect determined by the boundary conditions. In two-dimensions,
the fermions feel both a local and a global flux. As we will see next, even
the global flux is non-trivial. Although the resulting fermion theory is not
free, approximations and perturbation theory in one scheme still turns into a
non-perturbative feature in the other.

7.9 Quantizing the Global Degrees of Freedom

In this section we consider the global degrees of freedom. Here I follow the
results of Wen, Dagotto and myself [Dagotto 90]. The global gauge degrees
of freedom /ij are completely unaffected by the Jordan-Wigner transforma-
tion which only involves local transformations. They satisfy the homogeneous
constraint equation _

EjkAjAk = 0. (7.9.1)

As was discussed above, these degrees of freedom cannot be eliminated by local
(“small”) gauge transformations since they have non-vanishing circulation I';
along any large circles C; of the torus. The “best” we can do is, for instance,
to pick the gauge in which the fields A; are constant in space ( but not in
time!)

- T;(t

A; = # (7.9.2)

3

(no sum over j is implied).

These relations allow us to derive an effective Lagrangian for the global
degrees of freedom TI';(¢) and to extract from it the quantum dynamics of the
global degrees of freedom. By carrying out the canonical formalism to comple-
tion, it is easy to check that the non-integrable phases obey the commutation
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relations .
1

Hence, T'; and 0T, form a canonical pair and cannot be diagonalized simul-
taneously. This feature is not present in one-dimensional systems for which
there is only one non-integrable phase which is just a c-number. The global
degrees of freedom in one dimension are just boundary conditions. In 241 di-
mensions, we discover that the global degrees of freedom acquire a life of their
own. We will see now that, as a result of this feature, the states of anyon
systems on a torus are not determined by the location of the particle alone.
It is now easy to check that the operators exp(iT';) satisfy the algebra

. . i .
Tt ¢'T2 = g7l il (7.9.4)

Let us denote the exponential operators exp(il';) by T; . These operators will
give an extra phase to any state as the anyons move around each other. Fur-
thermore, since I'; and I'y do not commute, the eigenstates of the Hamiltonian
are only functions of either variable but not of both at the same time. Also,
both I'; and Ty enter only through the exponential operators T;. Thus we can
always choose say I'; to be an angle with a range [0, 27]. Hence 6T is an an-
gular momentum-like operator whose spectrum is the set of integers. In all
cases of physical interest, the statistical angle # can only take the restricted
set of values § = 53—, where m and n are integers. After all local gauge de-
grees of freedom are eliminated, we find that the effective Hamiltonian for the
anyon system has the form

H=Y af(f)e‘(“‘j(")"rf) a(Z + ¢;) + h.c. (7.9.5)

£j=1,2

where A; is given by the solution of the local constraint. This Hamiltonian
is almost identical to the “free anyon” Hamiltonian. The only difference here
is the presence of the global degrees of freedom I'; which were not included
in our original naive expression. We will adopt this generalized version as the
definition of the anyon Hamiltonian. In other words, the global degrees of
freedom are an intrinsic feature of the anyon system on a torus. Clearly, if the
manifold on which the anyons move is not a torus, but some other manifold,
the properties of the global degrees of freedom will be different. For instance,
if the system is quantized on a manifold with a boundary, such as a disc,
there are no global degrees of freedom. Instead, gauge invariance requires the
existence of edge states which have very interesting properties.

The form of the Hamiltonian suggests that its eigenstates are not functions
only of the coordinates of the anyons since H involves the global degrees of
freedom as well. Let us denote by ¥, an eigenstate of H. We can also choose
¥, to be an eigenstate of I'; with zero eigenvalue or, what is equivalent, to
be an eigenstate of 77 with unit eigenvalue

TI‘IlO = ‘I’o. (7.9.6)



7.9  Quantizing the Global Degrees of Freedom 223

Let us consider now the state ¥, defined by

¥, = TH¥,. (7197

The state ¥, is an eigenstate of T}
T, = TiT0 W = e ¥TET ¥y = e~ ¥ 7, (7.9.8)
with the eigenvalue e~ ¥, Thus, for all cases of physical interest (6§ = 5T-),

there are m distinct eigenstates, each labelled by the integer p. The states
of the Hilbert space are thus labelled by the anyon coordinates and by the
quantum number p describing the state of the global degrees of freedom. In
particular the condensed states of the anyon system do exhibit this degeneracy.
The idea that such topological degeneracies occur quite generally in spin liquid
states and other topologically ordered states is originally due to Wen [Wen

90].
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CHAPTER 8

Anyon
Superconductivity

8.1 Anyon Superconductivity

In this chapter we will consider the problem of predicting the behavior of
an assembly of particles obeying fractional statistics. In the past sections
we considered the problem of the quantum mechanics of systems of anyons.
However, we did not consider what new phenomena may arise if the system
had a macroscopic number of anyons present. At the moment of writing these
lines, the physical reality of this problem is still unclear. However, this is
such a fascinating problem that we will discuss it despite the lack of firm
experimental support for the model.

There are two different physical situations in which the problem of anyons
at finite density is important. Halperin observed [Halperin 84] that the quasi-
particles of the Laughlin state for the Fractional Hall effect obeyed fractional
statistics (1.e., they are enyons). In chapter 10 we will discuss Halperin’s the-
ory. Furthermore, Halperin and Haldane suggested that, for filling fractions
different from the —,:‘- Laughlin sequence, the ground state of a two dimensional
electron gas in a strong magnetic field could be understood as a Laughlin state
of anyons. Shortly afterwards, Arovas, Schrieffer, Wilczek and Zee [Arovas 85]
studied the high temperature behavior of a gas of anyons and calculated the
second virial coefficient.

Much of the recent interest on this problem is connected to its possible
relevance to high temperature superconductors. Since anyons “interpolate”
between fermions and bosons it is natural to ask if an assembly of anyons
at finite density is more “fermion-like” or “boson-like”. Fermions have non-
condensed ground states with Fermi surfaces while bosons undergo Bose con-
densation and are superfluids. In two remarkable papers, Laughlin [Laughlin
88] argued that anyons generally form “condensates” in the sense that their
ground states exhibit superfluid properties. Fetter, Hanna and Laughlin [Fet-
ter 89] (FHL) developed a mean-field-theory for the free anyon gas in the con-
tinuum which has generally confirmed these conjectures. They argued that,
if one represents anyons in terms of fermions coupled to fractional fluxoids,

225
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then the fermions feel an effective average flux determined by the particle den-
sity. A quantum Hall effect-like picture could then be used, at least within
mean-field-theory. In a sense this is a very surprising result since a Hall Effect
system is incompresstble and, thus, it does not have any low energy modes.
However, the flux is uniform only on average since the constraints force it
to fluctuate together with the particle density. Fetter, Hanna and Laughlin
showed that this was indeed the case. They did a calculation with the flavor
of a Random Phase Approximation (RPA) and found a Goldstone pole in the
(fermion) current-current correlation function. Hence, the fluctuations restore
the compresstbility which is necessary for the system to behave like a conden-
sate. They argued that this pole implies the presence of a Meissner effect for
an external electromagnetic field. This picture relies on two crucial assump-
tions: 1) the fermions can effectively be stripped off their fluxes and 2) the
Goldstone pole is robust against fluctuations.

The predictions of Fetter, Hanna and Laughlin have, to some extent, been
confirmed by extensive numerical calculations [Canright 89]. Chen, Wilczek,
Witten and Halperin [Chen 89] have offered two (complementary) arguments
to explain why the Goldstone pole is exact. One argument is based on the
fsum rule which is a consequence of gauge invariance (see chapter 9). For a
nice derivation see, for instance, the book of Martin [Martin 75]. Their other
argument (spontaneous violation of a fact) is based on translation invariance
and on the fact that the translation generators of this theory become anoma-
lous in the mean field ground state, reflecting the fact that they are actually
the generators of magnetic translations. This latter argument is strongly rem-
iniscent of a field theoretic anomaly. I will show below that this is indeed
the case and that the “anyon mechanism” for superconductivity is the two-
dimensional analog of the Schwinger [Schwinger 62] or Anderson [Anderson
63] mechanism more familiar from one space dimension.

Wen and Zee [Wen 90], Fisher and Lee [Fisher 89] and Kitazawa and Mu-
rayama [Kitazawa 90] have considered this problem from a bosonic point of
view. In this language, one focuses more directly on the role of vortices, anyons
binding into “Cooper bound states”, etc. The emerging picture is complemen-
tary to the fermion description. Local operators in one language are non-local
“disorder” operators in the other. It is worth noting that a similar picture has
been developed for the Fractional Hall Effect [Girvin 87], [Zhang 89], [Read
89].

In our discussion here, I will follow my own work which is based on
the path-integral approach for fermions coupled to the Chern-Simons the-
ory [Fradkin 90], see also [Salam 90], [Hosotani 90]. In this approach, the
exactness of the Goldstone modes follows from the topological invariance of
an effective Hall conductance. In chapters 9 and 10, we discuss these issues of
topological invariance and quantization at great length within the framework
of the theory of the Quantum Hall Effect.
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8.2 Functional Integral Formulation of the
Chern-Simons Theory

In this section I consider the functional integral formalism for a system of N,
anyons at zero temperature. I will use the fermion formalism discussed above.
I will work with a chemical potential g which will be determined later from
the requirement that the density p be equal to %/g- for a system with L? sites
(I assume a square lattice of L? sites with lattice constant ap = 1).

The functional integral representation for the partition function of this
system at zero temperature (in real time) with chemical potential 4 and back-
ground electromagnetic fields A, (u# = 0,1,2) is given by

Z= / DIDYDA ¢ [ #L (8.2.1)

where the 9’'s are Grassmann fields and some gauge fixing procedure is im-
plicitly assumed. This functional integral has to be understood as a Coherent
State path-integral. Let us consider the gauge field sector for the moment.
The fermion sector is already known to be a Coherent State path-integral.
In section 7.6, I showed that .4; and 6.4, form a canonical pair. Notice that
A, resides on the link (&,% + €;) while 6.4, resides on the orthogonal link
(Z,% + é3). Let ¢(&) denote A;(Z) and p(£) denote 8.A2(&). The operators
p(Z) and ¢(&) obey canonical commutation relations. In the derivation of the
path-integral one has to introduce complete sets of states at every interme-
diate time of the evolution. However, since A, and A2 do not commute, we
cannot define a complete set of states in which both are diagonal. Let us say
we choose a basis in which A, is diagonal and that we now insert a complete
set of such states at every intermediate time. In addition, the states have to be
restricted so as to satisfy the local constraint. This is implemented by means
of a Lagrange multiplier Ap(Z,t) at every lattice site and at all times. The
matrix elements of the time evolution operator for an infinitesimal time 6t is
not easy to compute in such a basis. Thus, it is convenient to also introduce a
complete set of states in which A, is diagonal. It is easy to show that, in ad-
dition to a term of the form #.4o8 which arises from the constraint, we get an
extra term in the Lagrangian of the form 6}, A42(£)d0A1(&). This term is
generated by the overlaps of A, and A, states on neighboring time slices. Both
sets of terms can be condensed into a single expression: the Chern-Simons La-
grangian. Hence, the functional integral is just the phase-space integral for
the canonical pair A, and 0.A4,.

In the last section we derived the Lagrangian of the system. The anyons
are coupled to the electromagnetic field via the minimal coupling prescription.
Thus, all we need to do in order to include the chemical potential y and the
electromagnetic fields A, is to modify the derivatives and amplitudes in the
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usual manner )
Do = 0o — iAo — G0 — i (Ao + Ao + 1),

4i(@) _, (il As(2)1HA5(2)) (8.2.2)

Notice that, as usual, the chemical potential z can be regarded as a constant
shift of Ap. The integration measures are invariant measures.

8.3 Correlation Functions

The response of the system to slowly varying electromagnetic fields, can be
studied in terms of the current correlation functions. In addition, we will be
also interested in correlations which probe other features of the spectrum of
the system. In particular it is of interest to study the gauge-invariant fermion
propagator

Gr(e2) = (¥(a) e w(@) (8.3.1)

where [ A is a short hand for the line integral of the statistical vector po-
tentials along some path I'. Likewise the pair correlation function can be cal-
culated in terms of the gauge-invariant four-point function, and so on. Other
probes of interest are Wilson loops for the statistical vector potential 4 along
a closed path I':

Wall] = <e‘fr“‘>. (8.3.2)

In particular a space-like Wilson lIoop for a closed path I' on the square lattice
must represent, as a result of the constraint, the fluctuation in the number of
fermions N,(X) (and hence anyons) inside the region ¥ bounded by the loop
I:

Wiapace [I' = 85 = <e‘fr“‘> - <ei‘fn"°(’)> = (@) (833)

In the case of a time-like loop T', the constraint implies that a static particle has

been added at one point and one subtracted at another point. Thus (eifrA)
for time-like loops roughly represents the energy cost for adding a particle,
say at 7, and removing it at 7’. This is the standard interpretation of the
Wilson loop. Notice however, that now a particle is added without adding a
flux. Hence we are creating a mismatch between charge and flux.
Analogously we can create a coherent state which represents a (static)
flux piercing a given plaquette at dual site 7. The operator which creates this

state is . ) )
K(F) = ' L v Ax(E D45 1) (8.3.4)

where A$(£ ) is a background static vector potential with a curl equal to the
flux. For A3(Z ') to represent a flux we demand that A{(Z') = 74;0(Z',7).
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It is easy to show that this operator K () is precisely identical to the operator
e‘® defined in Eq. (7.6.25). Indeed, using Gauss’ law, Eq. (7.6.6),

HfjkAjAk - jo =0 (835)
one finds (up to boundary terms)

0> e Ar(ENANE) =D erAr(F )A;O(E ', 7)
i i

==Y e (8545 ))0E ", 7)
=

(8.3.6)
1 o - =
= _EZJO(:B Ne(z’,r).
zl
By means of the identity (see Eq. (7.6.22))
0,7 ") — O ',7) = % (8.3.7)
one finds
=N gefm 1 s 1 o S o
GZijAk(a: NAS(Z ') = 55 Ego(z N — 7 E]o(z Ne(z,7")
& E-4 E
_ 1 - (8.3.8)
= +§§Na - ¢(£).
Hence . )
K(£) = e3oNeg=i9(®), (8.3.9)

Clearly K(Z) is not invariant under local gauge transformation of the statisti-
cal gauge field. Indeed, for a gauge transformation A4;(Z) — A;(Z) + Aj(Z),
we get

0 erAr(E NALE") = 0 eipAr(E NVASE ) +0 D 61 App(D)ALD).
& & &

(8.3.10)

By integrating by parts and with the help of Egs. (7.6.19) and (7.6.16) one
finds

K(&) = K(&)etie® (8.3.11)

and thus the product
a(¥) = K(%)e(F) (8.3.12)

is gauge invariant. Obviously the operator a(Z) is nothing but the anyon
operator.
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8.4 The Semi-Classical Approximation

We are interested in studying the physical properties of the partition function
of a gas of anyons. In particular we want to understand the following issues: (1)
the spectrum of low lying excitations, (2) statistics of the quasiparticles, (3)
does it exhibit superfluidity, (4) if there is a Meissner effect, and (5) behavior
of correlation functions.

I will study this problem by treating the functional integral within the
semi-classical (saddle-point) expansion. Formally this requires the presence of
a large coefficient in front of the action S = [ dtL. This system does not have
such a coefficient (apart from 3 itself). It is plausible that at large-densities
the saddle-point approximation may become accurate. Such is the case for the
(weakly interacting) electron gas where the Random Phase Approximation
(RPA) works very well. Since the statistical angle § happens to be equal to
21—0 one expects that this approximation may also work for large values of 8
(2.e., almost a fermion). This is the limit studied by Chen, Wilczek, Witten
and Halperin. In the Bose limit (8 = 2%) the results depend crucially on the
density. In fact it is well known that the hard-core Bose gas, at moderate
densities, can be treated within RPA due to the effective softening of the
hard-cores at such densities. At high-densities on a lattice, this approximation
breaks down and the hard-cores cause the existence of crystalline states or off-
diagonal long range order (ODLRO) for the spin one-half XY model. However,
it is conceivable that regimes of Bose systems may exist for which the results
of a fermion mean field theory may still be qualitatively correct. The results
of Fisher and Lee [Fisher 89] suggest that this may be the case.

The saddle-point approximation (SPA) may also be formally justified by
considering a system of M species of anyons (each with N; particles) which are
“free” in the sense that there is no explicit interaction term in the Hamiltonian.
The requirement of fractional statistics, of course, amounts to an interaction
since it is equivalent to the statement that all M species of fermions interact
through the same statistical vector potential A,. At large M, with § = 6o M,
the saddle-point approximation is formally correct. For the sake of simplicity
I will consider only M = 1 and assume that the approximation is, at least,
qualitatively correct.

The SPA is now carried out in the usual fashion. One first observes that
the action is a bilinear form in fermion variables. Thus the fermions can be
integrated out explicitly. The result is naturally a determinant

/Dzﬁvzp ¢'SF = Det [z’Do — h4; + A,-]] (8.4.1)
where S is the fermion part of the action

Sp = / dt Y $(x) (iDods 2 — hlA; + 4;])¥(z") (8.4.2)

2
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and the one-particle Hamiltonian h[A] is
h[4;] =7 E A6 aye; . (8.4.3)

j=1,2

The condition A;(z) = —A-;(z+e;) guarantees the hermiticity of the Hamil-
tonian.
Therefore, the statistical vector potentials A, have the effective action

Seﬂ'
. . 6
Set[ Ay, Ay = —i Tr In (zDo — h[A+ A]) — ZSalAl (8.4.4)

We can use the invariance of the measure to shift the statistical vector poten-
tials A, + A, — Ay. The result is that the effective action now reads

Seal Ay, Ay = —i Tr n(iDo + pu — h[A]) — %SCS[A — A] (8.4.5)

where we have pulled the chemical potential g out of the definition of Dy. In
this form, the electromagnetic fields only appear in the Chern-Simons term
which is quadratic in the fields. We can thus write

SeslA — A] = Sco[A] + Ses[A] — €ppr (A#FPX + ARPFY) . (8.4.6)

We will assume that the electromagnetic field A, is small and has zero av-
erage strength. In this case we may treat A, as a perturbation (i.e., linear
response theory). Note that a non-zero uniform external magnetic field can-
not be treated in perturbation theory. This is crucial for the correct study of
the Meissner effect. Let us consider, for the moment, the SPA in the abscence
of external electromagnetic fields.

We demand that S.g be stationary around some configuration A, which
is assumed to be time independent (i.e., zero “electrical” statistical field £)
and with uniform statistical “magnetic” field B. Thus

i&jﬁ =0 (8.4.7)
“ .A‘,
yields the Saddle-Point Equation (SPE)
: 6 v v
(35 1= Z€nA (F** — F*Y) (8.4.8)

where ( jf ) is the gauge-invariant fermion current.

Since the electromagnetic field will be assumed to be small and with zero
average, we will set F¥* = 0 in the SPE for the rest of this section. In this
case, and for solutions with (B = const ,£ = 0), we find

p=0B8 (8.4.9)
where p is the fermion density.
The requirement that there should be A, particles is met by requiring
it 07

AT Na. (8.4.10)
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Since p is nothing but a constant shift of 44, one finds

Na =09 (8.4.11)
where @ is the total fluz

¢ =BL% (8.4.12)
Thus, we find

6B = ’%fg- (8.4.13)

which is Laughlin’s result. Thus, at the Saddle-Point level, the fermions feel
an effective flux B per plaquette.

The spectrum of this problem was studied by D. Hofstadter and its prop-
erties are summarized in chapter 9. He found that if the number of particles is
fized, then as B varies the spectrum of the effective one-particle Hamiltonian
is very rich and complex and, as a function of B, it has a fractal structure.
However, in the problem at hand, B is determined by the number of particles.
In fact, for a system of A/, anyons on a lattice with L? sites, the density p is
%/g- and therefore can be written as a ratio of two relatively prime integers r

and ¢, te.,
p="_. ' (8.4.14)
q
Similarly, we can also write the statistical phase § also in the form of an
irreducible fraction in terms of two relatively prime integers n and m

n

6=m—. (8.4.15)
m
Equivalently, the Chern-Simons coupling constant @ is given by
m
0=—. 4.
o (8.4.16)
The effective field B is a fraction of the flux quantum, 27,
= P
B=2r— 8.4.17
0 ( )

where the two relatively prime integers P and @ are given from Eq. (8.4.13)
by
P

e = g. (8.4.18)
Hence, we can write

P

G- % (8.4.19)

The spectrum of one-particle states, the Hofstadter problem , for rational
fields B = 2#%, consists of ¢ Landau bands each with %ﬁ degenerate states
(see section 9.2). In the continuum limit, these bands become the usual Landau
levels. If we denote by f the fraction of occupied Landau bands, then f must
be N, x L% since there is a total of A/, particles. The density is then ‘QL Using
Eq. (8.4.14), we get f = %Q. Thus, f is an integer if and only if ¢ is a factor
of Q.
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Let (a, b) denote the largest common factor of the pair of integers a and
b. Let k and ! be two integers defined satisfying k¥ = (n,¢) and I = (m,r).
Hence, there exist four integers 7, m, ¥ and ¢ such that

n = kn, g = kq,

m = Im, r=1IF,
(7,9 =1, (M7 =1, (8.4.20)
(Rm) =1, (7§=1

Thus,

P aF

—_ == 8.4.21

0= ™ ( )
and

P = @7,

Q = mq. (8.4.22)
Therefore, the fraction f of occupied Landau bands is

r l__

f= EQ =g (8.4.23)

It is easy to show that k does not have any common factors with either I,
7 or . In general, f is an irreducible fraction, unless one of the following
conditions is satisfied

(n’ ‘I) =1,

()= (mn,lr)’ (8.4.24)

(n,q) = RT_)

If f is not an integer, then there is no gap. Fluctuation effects should over-
whelm the saddle-point results and this theory will generally be unstable.
Hence, whenever possible, one must have f integer since, except for one spe-
cial case, there is always a gap. In summary, for arbitrary density p and
Chern-Simons coupling constant 8, it is not always possible to require f to be
an integer. On the other hand, for the “happy fractions” listed above f is an
integer and we have an integer number f of filled Landau bands. The physical
behavior of the system will depend on which of the conditions listed above is
realized. Thus, the physics of this problem is not just determined by the den-
sity and the statistics, but is also determined by number-theoretic conditions,
1.e., on the commensurability.
Of particular importance will be the sequence 8§ = -,

this case we have k = (n,¢) = 1 and f is indeed an integer, f = z,':—'r)
For this sequence, we have an integer number f of Landau bands filled for a
system with arbitrary density p = L and statistical parameter § = L. This is
the case considered by Chen, Wilczek, Witten and Halperin. The saddle-point
approximation is expected to work for 6 large (i.e., large m) which is the limit
in which the anyons are almost fermions. The case of semions has m = 2.

e, n=11In
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An exceptional case occurs if p = % (i.e., half-filling) and § = $2-, with
n an odd integer. In this case we get P = n, @ = 2m and f = m. This means
that all states with energy less than zero are filled and that the Fermi level
is at £ = 0. It has been known since Hofstadter’s work that, in this case,
there is a band crossing in the spectrum (see chapter 9). These bands cross
at £ = 0 at @ points of the Brillouin Zone. In fact the case m = 1 and
p= % corresponds to a “flux phase” with B = 7 (i.e., half-flux quantum per
plaquette). In this case the fermion spectrum is effectively relativistic. In fact
it has long been recognized that hopping in a frustrated lattice is an efficient
way to set up the Dirac equation on a lattice. In general one finds ) species
of Dirac fermions. Fluctuations in the statistical gauge fields may open up
a gap in the spectrum. It is possible that this may be done in a manner in
which time reversal invariance is violated explicitly or it may be spontaneously
broken by fluctuations. In the field theory language, one is asking whether a
Parity Anomaly is present. This problem is exactly the same one we have
already encountered in our study of the Chiral Spin Liquid (chapter 7). For
lattice systems one has to deal with the (infamous) “doubling” problem (here
it is @ fold!). In most cases one expects no anomalies unless a perturbation
which breaks time reversal is explicitly introduced. We are going to see in the
next section that these issues are quite relevant for our problem.

Thus, the saddle-point approximation to the partition function yields
Laughlin’s result that the mean-field-theory for the anyon system should be
equivalent to a system of particles (say fermions) moving in an effective mag-
netic field determined by their density. It is clear that this approximation
assumes that the flux subsystem is rigid in the sense that the average field,
determined at the saddle-point level, will not be modified by the fluctuations.
In this high-density-like approximation, the fluctuations around the average
field B should be small for this approximation to be stable. The local value of
the field is however still being determined by local fluctuations of the density.
In this sense, the system is compressible. If the local fluctuations are massive,
the spectrum should have a gap and the system will truly be rigid. But, if the
fluctuations have a gapless state, the system will not be rigid. Indeed, this
“fluctuation-induced compressibility” is the very origin of the superfluidity.

8.5 Fluctuations, Topological Invariance and
Effective Action

8.5.1 Effective Action

In the past section we discussed the saddle-point approximation to the path-

integral for the anyon gas. Fetter, Hanna and Laughlin claim that the fluc-

tuations around the state with average flux B = %" induce a pole in the
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current-current correlation function which, in turn, is responsible for the su-
perfluidity. This is the FHL Goldstone boson . At first sight, this result seems
to be quite surprising. In fact, fermions in a background magnetic field always
lead to a spectrum with a gap, as in Quantum Hall Effect systems. What is
different here is that the magnetic fields do not constitute a fized background,
since they are generated by the particles themselves. The fluctuations of the
system retain this character. The SPA only fixes the average field, not its fluc-
tuations and one is led to study the effects of fluctuations of the statistical
gauge fields about the mean field. It is natural to compute the effective ac-
tion of the statistical gauge fields including the effects of fermion loops. In
this sense this calculation is close to the standard RPA.

Purely on the grounds of gauge and translation invariance, we can as-
sert that the effective action for the statistical gauge fields at low energies
and long-distances (i.e., to leading order in a gradient expansion) should only
be a function of the fluctuating part of F,, (with the smallest number of
gradients) plus a term with the same form as the bare Chern-Simons term.
Banks and Lykken [Banks 90] argued that if the effective action has an in-
duced Chern-Simons term which happens to cancel the bare one, then the
FHL Goldstone boson is found and it is nothing but the massless transverse
component of the fluctuating statistical vector potential. However, it is nec-
essary to explain why does this crucial cancellation, present to leading order,
survive renormalization. This is in fact far from obvious since the coefficients
of the other terms do get renormalized.

Let us now investigate how does the FHL Goldstone pole appear within
this path-integral framework. We will see that the exactness of the FHL Gold-
stone boson is a consequence of the topological invariance of the quantized Hall
conductance for this system of fermions. Thus our problem is naturally related
to the IQHE integral Hall Effect on lattices. In fact, we are going to be using
many results of the theory of the Quantum Hall Effect. Most of these results
are discussed in chapter 9.

Let us first consider the quadratic (i.e., gaussian) fluctuations around the
mean field. The effective action for the fluctuating part of the statistical gauge
fields, hereafter denoted by A, to quadratic order, S(?), is given by

SPA,] = ,2,: W&)S;%Au(z)fty(z') (8.5.1)

where z = (£,1) and 2’ = (£ /,t'), ¥ and £ ' take values on the square lattice
and £,1’ are continuous (time) variables. Since Ses is a sum of a fermionic part
and a Chern-Simons term, S(® also is a sum of two terms. The first term,
which comes from the fermion loops, is nothing but the polarization operator
II,,(z,2'). The second term is just the Chern-Simons term itself

S = T (2, 8) A (@A, () — FScslA). (852)

I, (z,2') is the polarization operator for a system of fermions on a lattice
in the presence of the background magnetic field B. Thus it is just the usual
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linear response theory kernel, the current-current correlation function. The
long-distance, low-energy behavior of S(?) can be obtained simply by noting
that it has to satisfy the requirements of translation and gauge invariance.
If there is a gap in the spectrum, IT,, is also local and it has a gradient
expansion. Thus the effective action for fluctuations at distances larger than
the interparticle separation and energies less than the gap has the form

S A~ / dzdt [gf 2(£,1) — 22‘-32(5,1) + %(o,y — 0)eu.,,\.A“]-"”\] +h.o.t.
(8.5.3)

where €, x and o, are the (long-wavelength, low frequency) dielectric con-
stant, diamagnetic susceptibility and Hall conductance of the Fermi system
respectively. Note that the term which contains the Hall conductance has the
same form but opposite sign as the bare Chern-Simons term which determines
the statistics of the anyons.

The parameters (¢, x and o) are in principle determined by integrating
out all fluctuations from the highest energies allowed in this problem down
to the only physical scale this system has: the gap. One expects that these
coefficients will be heavily renormalized away from their saddle-point values.
For the “almost-fermion” limit of large #, the renormalizations are expected to
be small, of order % Thus, although explicit expressions for these coefficients
can be found (they are given by various pieces of the polarization operator
IT,,), their precise form is not in principle very important due to the above
mentioned renormalization effects.

While these considerations apply to € and x, as well as to the higher
order terms in the effective action which we have neglected, the value of ozy
is completely determined already al the saddle-point level. This is so because
gzy is the Hall conductance for a system of fermions on a lattice, with an
integer number f of Landau bands exactly filled, which has been shown to be
quantized.

8.5.2 Quantized Hall Conductance and Compressibility

The quantization of o5, has been studied extensively in the context of the
Quantum Hall Effect. Thouless, Kohmoto, den Nijs and Nightingale (TKNN)
[Thouless 82] have shown that the o, associated with the Hofstadter prob-

lem is quantized in terms of an integer t,(—% <t< %—), which, in turn, is

determined by a Diophantine equation. The theory of TKNN is discussed in
chapter 9. The following results are relevant to our problem. If j denotes the
j-th gap of a Hofstadter problem with B = %, there exist two integers ;

and s; ( with ¢; in the same range as ¢ and s; unconstrained) such that

J=Qs; + Pt;. (8.5.4)
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If the Fermi energy lies in the f-th gap, the Hall conductance is given by

2 d
o= 5 311 ®59
with tg = 0. Thus, in units in which e2 = A =1, we find
_ i
T 8.5.6
Ogy = 27[' ( )

where ; is the solution of the Diophantine equation for the f-th gap. We may
now combine these results to get

0py = 0(1 =L 5.
2y =0(1= L), (85.7)

The Diophantine equation has solutions in the form of a pair of integers
(ss,ts). The solution is, in most cases, unique and, in general, both s; and
ty will be different from zero. Under special circumstances, we will find fam-
ilies of solutions with s; = 0. Also, in some special cases, the solution is not
unique. The solutions with sy = 0 play a special role for, as we will see, they
represent the compressible states .

Let us first consider the sequence 0= 27 and p arbitrary. The mean field
theory y1elds the values P = (m 7y Q= (m r) and it requires that exactly
f= (—5 Landau bands are filled. The Diophantine equation has, for j = f,

the unique solution

sy =0, ty =m, if|m|<ﬂ%’

51 =yl =M= sy, if [m| > 5ls.

There are degenerate solutions whenever |m| = 7(% In this case both so-
lutions are possible and the value of ¢; is ambiguous. It is easy to see that a

degeneracy occurs whenever m = ﬂ%’ i.e., for ¢ = 2(m,r) and ¢ is even.

(8.5.8)

This includes the half-filled even-denominator case p = 12 Which solution is
realized depends on how this degeneracy is lifted by additional terms in the
Hamiltonian. It is natural to assume that it is always possible to find terms
which will remove this degeneracy. The physical properties of the system will
depend on the way we choose to render the system non-degenerate.
Thus, in the absence of degeneracies, the solution is unique and one finds
ty =m and s; = 0if ¢ > 2(m,r). Hence, we get
m
Tzy = 5o (8.5.9)
which is exactly identical to 8! We then conclude that, at least at the level of
the saddle-point approximation and in the absence of degeneracies, o7y = 6
and the Chern-Simons term in the effective action for the fluctuating statistical
gauge fields is cancelled provided that ¢ > 2(m,r). As Banks and Lykken
observed, this is a sufficient condition for the existence of the FHL Goldstone
boson. Conversely, for ¢ < 2(m, r), the solution has sy = (#5 # 0, and there
is no cancellation and no FHL Goldstone boson .
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For other sequences, such as n # 1, it is not possible to find a solution
of the Diophantine equation with s; = 0. It easy to check that this solution
exists only if n is a factor of m, which is impossible since (n,m) = 1 except for
the case n = 1. Thus, the other sequences do not exhibit superfluidity. These
non-superfluid states cannot be found in the continuum theory. They are the
result of diffraction effects generated by the underlying lattice. It is clear
that, in the low-density limit, these effects do not impose an overwhelming
constraint, provided that the Fermi energy lies in one of the main energy gaps.
In this case, there is a smooth continuum limit at low densities. However, if
the Fermi energy is in one of the lower gaps, we will not get a cancellation,
even in the low density limit. Thus, the continuum limit is tricky to get. We
should then expect that the properties of the ground state should depend on
some details of the behavior of the system at short distances. This problem
will come back when we consider the role of higher order fluctuations.

8.5.3 Stability of the Mean Field State

One might wonder about the stability of this crucial result once fluctuations
about mean field theory are considered. Two problems naturally arise. Firstly
one must worry about infinite renormalizations. In continuum relativistic field
theories it is known that the Chern-Simons term does not acquire infinite
renormalizations [Semenoff 89]. Non-relativistic theories are not expected to
be any more singular. Thus divergent renormalization of o, are not to be ex-
pected. However, finite renormalizations are not excluded by such arguments.
The stability of the FHL Goldstone boson requires no renormalization at all,
neither infinite nor finite.

No-renormalization theorems usually follow from symmetry considera-
tions or as a result of topology (or both). For the case of the lattice system,
Kohmoto and Avron, Seiler and Simon showed that o, is a topological in-
variant (see chapter 9). The topological invariance of oy follows from the fact
that the Brillouin zone of a two dimensional system with periodic boundary
conditions is a two torus. The integer #,, is the first Chern number of the
fiber bundle associated with the Berry connection induced by the wave func-
tions on the two-torus. Small changes in the microscopic Hamiltonian will not
change this number provided that no band crossings occur as a result of such
changes. Qualitatively speaking, fluctuations about a solution with a finite
gap are expected to have the same effect. After all, the fluctuations, configu-
ration by configuration, will modulate the gap. Since each configuration yields
the same value for oy, the final result should be the same, provided that the
sum over configurations makes sense. Once again, this argument requires the
existence of a non-zero energy gap. Niu, Thouless and Wu have also given
an argument for the stability of the quantization of 0zy including many-body
effects (i.e., fluctuations). They showed that if the many-body wave-function
for the ground state winds by the phases « and 3 along the z; and z5 direc-

tions, then the value of 05y, averaged over o and 3, is a topological invariant
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and hence it is quantized in the full theory. For a system with specific bound-
ary conditions, say periodic, they showed that oggc differs from o7y by terms
which vanish exponentially fast in the thermodynamic limit provided that
the system has a non-zero energy gap. For more details, see the discussion in
chapter 9.

I thus conclude that the topological invariance of oy guarantees that the

FHL Goldstone boson is stable to all orders in perturbation theory.

8.5.4 Low Energy Spectrum

We must then conclude that the anyon gas can exist in only one of two possible
states, each defined by a low-energy effective action of the form of a QED-type
theory with possibly a Chern-Simons term with some effective coupling. For
the case of the “happy fractions”, § = I and p = Z, the effective action does

2r
not have a net Chern-Simons term. The effective action has the form

S®[A] = / d?zdt [%E‘Z(f,t)—gzs?(f,t) +hot. (8.5.10)

which is the action of free “Maxwell” electrodynamics in 2+1 dimensions.
Here I have neglected terms which vanish in the infrared limit. Some of these
terms violate time reversal and parity explicitly. However their effects are very
small and do not affect our main conclusions.

This theory has only one transverse degree of freedom, the “photon”. Note
that this has nothing to do with the real electromagnetic field. It originates
from the fluxes associated with the anyons. This “photon” is the only massless
excitation of this theory. It is precisely the FHL Goldstone boson. It is respon-
sible for both the phase mode necessary for superconductivity and for a direct
Coulomb-like static interaction among sources (or excitations) which couple
to the statistical gauge field. At long distances, the 241 dimensional Coulomb
interaction goes like In R where R is the separation between two sources of
the field A. Thus, the energy necessary to create a fermion diverges logarith-
mically with the size of the system. The same happens with the energy to add
a flux to the system.

An anyon, however, is a gauge-invariant state. As such it only couples
weakly to the fluctuations of the statistical gauge field since it is neutral
but not quite point-like. Thus, we expect that the energy of an anyon-like
excitation be finite and its value be determined primarily by short-distance
effects. Let us consider an operator which creates an anyon at point &. It is
easy to compute correlation functions of these gauge invariant operators in
the Coulomb (or anyon) gauge. In this gauge, we can write

Aj(.’;}‘,t) = cjkAqu(:i",t) (8511)

where ¢ also obeys periodic boundary conditions. If we now substitute eq.
(8.5.11) back into eq. (8.3.4) then, after an integration by parts the argument
of the exponential, we find

K(Z,1) = ¥ T99(T:)A;45(7) (8.5.12)
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If we also choose the Coulomb gauge to describe the classical fluxes, i.e.,
AjAS = 0, we see that, in this gauge, K(Z, t) is equivalent to the identity
operator Thus, the correlation function for anyon operators is, in the Coulomb
gauge, the same as the (gauge dependent) fermion propagator evaluated in the
same gauge. In the Coulomb gauge, the fermion propagator has the following
properties: (a) it is multivalued and (b) it is short ranged. It is multivalued,
since the one-particle wave-functions are multivalued in this gauge. It is short-
ranged, since the ground state has filled Landau bands and the only possible
one-particle states available are in the next unfilled Landau band. These states
are separated from the ground state by the energy gap between Landau bands
which is finite.

In contrast, the elementary fermion excitations have a logarithmically
divergent energy. This is so because the operators that create these states are
not gauge invariant, reflecting the fact that these are not neutral states. A
gauge-invariant fermion operator can be defined. This is achieved by inserting
the usual exponential of the line integral, along some path T, of the statistical
vector potential between a pair of fermion creation and amhllatlon operators
some distance apart from each other:

o (&, 1) A o3 1 1), - (8.5.13)

The massless “photon” gives rise to a logarithmically divergent fermion self-
energy. A similar treatment can be given to flux states. The operator K which
creates fluxes is not gauge invariant. A way to make it invariant is to multiply
this operator by a fermion operator which represents anyons, not fermions or
fluxes. However, it is still possible to multiply K(Z,t) by a line integral, just
as in the fermion case. The resulting operator is a boson and it is manifestly
gauge invariant. The one-particle states created by these operators also have
logarithmically divergent energy and exactly for the same reason: the exchange
of massless “photons”.

Let us end this section by briefly considering the state in which the ef-
fective action has a non-zero effective Chern-Simons term. I will call this
phase the Quantum Hall state. The effective Chern-Simons coupling constant

# equals

6= —s,%. (8.5.14)

Thus, a non-zero sy means § # 0. A theory with a non-zero Chern-Simons
coupling constant is known to contain a massive photon. The mass of the pho-
ton is proportional to # and hence it is determined by s - Thus, the Quantum
Hall State has short range gauge interactions mediated by the statistical gauge
field. These fluctuations are effectively supressed and the state is effectively
incompressible. We will see in the next section that both Superfluid and Quan-
tum Hall states exhibit a quantized Hall effect. While this is to be expected
in a Quantum Hall state it is quite a surprising result for a superfluid state.
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8.6 The Anyon Superfluid State

We want to understand the superconducting properties of the anyon system. In
the last section, an effective low-energy action for the statistical gauge fields
was derived. We saw that the spectrum of this theory contains a massless
excitation. I now give an argument which shows that this system is in fact a
superconductor.

8.6.1 Duality Transformation and Landau-Ginzburg
Action

Let us consider the effective low-energy action in the presence of weak, slowly
varying electromagnetic fields A,. The effective action now has the form

Set = /dtd2z <%f"’(i‘,t) - %‘B"’(i‘, t) — gf,‘y,\Au(f,t)Fy,\(E,t)) - % es[A]

(8.6.1)
where A is the electromagnetic field.

Let us now consider the dual theory. Here we understand duality in the
statistical mechanical sense in which a gauge theory in 241 dimensions is dual
to a theory with a global symmetry. Since the gauge field of this problem,
the statistical gauge field, has a U(1) symmetry, its dual is a phase field. Let
ALy (Z,1) be a real antisymmetric tensor field. Since we are dealing with an
anisotropic theory, it is convenient to define Ag; = &; and A;; = €;;b, where €;
and b are real functions of space and time.

Consider now the modified action S’

1 1 1 0 0
S = /dtdz:c <—§€2 + a‘bz + EA;‘V}-‘“’ - quw\A”]:W\) —3 es[A]-
(8.6.2)
We can identify the path integrals with actions S and S’ after a shift of
the gaussian variables A,,, except for an irrelevant constant. The fluctuating

statistical gauge fields A, can now be integrated out, yielding the constraint
on the A,, fields

0" (Apy — BeurAt) = 0. (8.6.3)
This constraint can be solved by means of the phase field w defined by
1
Er-c,,.,,\a’\w = Apy — Beuur A, (8.6.4)

By substituting back into the effective action, we get the effective Lagrangian
density in terms of the w field

1 0
c (Bow + on)"’—m (Biw + mA;)2+h.o.t.—Zc,,,,,\A” F*, (8.6.5)

= 8r2y

This effective Lagrangian was first obtained by Banks and Lykken. In this
derivation I used the fact that § = 7%, For systems in the Quantum Hall phase,
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t.e., 0™ # 0, the dual theory contains a non-local term which effectively
suppresses the fluctuations of the phase field w.

8.6.2 Physical Picture and the Schwinger Mechanism

The first two terms of the effective action for the w field are identical to the
Lagrangian of a Landau-Ginzburg Theory, in the London limit, of a system
with an order parameter e, which is a single component scalar field with
fixed amplitude. The last term is an induced Chern-Simons term for the elec-
tromagnetic field. All the effects of broken time reversal invariance are due to
this term. Let us remark that the coefficient of this effective Chern-Simons
term for the electromagnetic field is not universal. As a matter of fact, if we
add a bare Maxwell term for the statistical vector potential, such as the one
we derived in section 7.1 in the framework of the CSL, it is straightforward
to see that its main effect is to change the value of the Chern-Simons cou-
pling for the electromagnetic field. Under some circumstances, this coupling
may effectively be equal to zero [Halperin 90].

This is a remarkable result. We have obtained an effective Lagrangian
density for the low energy fluctuations (i.e., a Landau Theory) of a supercon-
ductor without having to go through an intermediate pairing Hamiltonian! In
other words, the anyon gas is a superconductor without the need of Cooper
pairs. There has been some speculation in the literature that this theory may
have “hidden pairs”. Also, it has been claimed that the anyon superconduc-
tor does not have flux quantization. Neither of these statements are correct.
The anyon gas is a superconductor which does not require Cooper pairing as
a microscopic mechanism and which does exhibit flux quantization.

There is a simple physical way to understand these issues. The abscence of
explicit Cooper pairing is essentially a kinematic effect. The condensed state
can be viewed as a set of fermions moving in a uniform magnetic field with flux
B= £. There are an integer number f of filled Landau bands. In other words,
there is an integer number of Landau orbits which are completely filled with
fermions (not anyons!) very much in the same way as there are filled shells in
atomic physics. The fermions, which carry the statistical gauge charge, and
hence are not gauge-invariant, move on circles of radii equal to the cyclotron
radius of the average magnetic field B. This state is coherent, which means that
all the fermions rotate in phase at the same angular frequency, the cyclotron
frequency w., which is equal to the gap. The average distance between any
pair of fermions is thus constant in time and we expect pairing correlations
to be present in the system even though we did not have to solve a “Cooper
problem” to make the superconductivity possible.

Thus, the superconductivity of the anyon gas is not due a microscopic BCS
mechanism by which the particles would form bosonic bound states which
later form a Bose condensed ground state. The BCS picture assumes that
the fermions are good quasiparticles which would form a Fermi surface if
superconductivity would not have occured. The instability in BCS theory is
essentially caused by short range attractive forces. In contrast, the fermions
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(or bosons) which become anyons when coupled to the Chern-Simons gauge
field, are always experiencing a long range gauge force. The “normal state
excitations” of the mean-field-theory of FHL do not have a Fermi surface.
Rather, they fall into effective Landau levels. The best the system can do to
lower its energy is to adjust the field to the particle density at every point.

Furthermore, the FHL Goldstone boson is a charge-carrying transverse
excitation of this state. Imagine first a set of filled Landau orbits, with radii
fixed by the field (and hence by the density), filling-up the plane. Imagine next
a density fluctuation, by which a particle is removed from an orbit, centered
around some point £y, and added to another orbit located some distance away
say on the z axis. At the point in which we removed a particle, the density
has been decreased, the effective magnetic field also decreased (because of the
constraint) and, hence, the radius of the orbit has increased. Conversely, at the
point at which the particle was added, the density and the field have increased
but the radius of the orbit has decreased. We can now imagine a wave of
this sort in which the fermions move on closed orbits whose radii execute
an oscillatory motion as the wave goes by. The motion of the fermions is
transverse to the direction of propagation of the wave. The calculation of the
effective action shows that this wave is a massless mode, the FHL Goldstone
boson.

That there is flux quantization is self-evident by inspection of the La-
grangian. The phase of the order parameter field, w, is minimally coupled to
the electromagnetic field A, with an effective charge me, where e is the elec-
tric charge. Thus, we get a flux quantum ¢o = %"5 Barring a microscopic
derivation of the anyon Hamiltonian, which should yield a value of , we can
only argue that phenomenology requires m = 2 and, hence, semions.

This picture is strongly reminiscent of the Schwinger mechanism for the
generation of mass to a gauge field in 1 4+ 1 dimensions coupled with mass-
less fermions, the Schwinger Model. Schwinger argued that this system has a
spectrum equivalent to that of a massive boson. In his analysis, in which the
chiral anomaly plays a crucial role, the density fluctuations of the fermions
couple to the longitudinal (and only!) fluctuations of the vector potential
which becomes massive. An alternative picture is found by bosonization of
the Schwinger Model which makes the equivalence with a theory of a single
massive scalar field apparent. The origin of this phenomenon can be traced
back to the kinematical restrictions implied by the fact that the space dimen-
sion is equal to one. Any pair of massless particles in one dimension which
move in the same direction have the same speed. Thus, their distance is con-
stant in time, up to quantum fluctuations. It is indeed this special property
of massless fermion in one dimensional space which makes bosonization work.
In higher dimensions the situation is more complicated. The vector potential
has both longitudinal and transverse componenents, both of which become
massive in a superconductor: the longitudinal component is massive due to
screening whereas the transverse component is massive (Meissner effect) by
“eating” the phase degree of freedom of the order parameter field. This mech-
anism is usually called the Higgs mechanism. This phenomenon was discussed



244 Chapter 8 Anyon Superconductivity

in precisely these terms by P.W. Anderson in 1963 who drew an analogy with
the Schwinger mechanism. However, in dimensions of space larger than one,
there aren’t enough density degrees of freedom to make all the components
of the vector potential massive, unless a Cooper instability is present. This
is the BCS mechanism. In this sense, anyon superconductivity is a higher di-
mensional analog of the Schwinger mechanism and, in fact, it is the only one
known to this date!

8.6.3 Electrodynamics of Anyon Superconductivity

The effective Lagrangian density exhibits several features which are character-
istic of a superconductor: a) Meissner effect, b) screening and c) supercurrent.
However the last term, which is the result of the breakdown of Time-Reversal
Invariance, modifies this picture in some significant ways.

Let us now include the dynamics of the electromagnetic field A, in the
problem. For simplicity I will just add an extra term to the Lagrangian density
to represent the dynamics of the electromagnetic field in the plane. The new
Lagrangian density, keeping just leading order in gradients is
L= # (Bow + mAo)® — # (Biw +mA;)? — %c,,,,,\A“F"’\ - %F,,.,F‘“’.

(8.6.6)
The main drawback of this Lagrangian density is that the dynamics of the
electrodynamic gauge fields is purely two-dimensional. There are only two
space directions and two space components of the electromagnetic field. This
is not physically correct, unless one wants to study a purely (2+1)-dimensional
model. A more realistic model requires the addition of the third direction of
space and the third spacial component of the electromagnetic field. It is not
possible, for the moment, to write such a model since it would require to
know how anyons in different planes of a three-dimensional system couple to
each other. Clearly, there is no way for an anyon to meaningfully exist in
three dimensions. Anyons only exist on a given plane, Thus, a simple anyon-
hopping is not allowed. In the particular case of semions, bound states of two
anyons are bosons (in general an m-anyon bound state is a boson), thus they
can hop (or tunnel) together. Also, a direct electromagnetic coupling between
planes is certainly allowed. Which one of these possibilities ( or even others)
are realized, requires a more deta.iled‘ microscopic theory which, presently, is
not available. Thus I will consider the above simpler choice for the Lagrangian
density while keeping in mind that we are only allowing for electromagnetic
fluctuations, polarized in the plane (both longitudinal and transverse) and
propagating only in the plane.

Let us now derive the classical equations of motion in the Coulomb gauge.
In this gauge, the electromagnetic vector potential can be written in the form

A,‘ = c;j6j<I>,

8.6.7
G;ja,'Aj = qu) ( )
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The equations of motion are
(33 - %Vz) w +mdoAo =0,

Zi (Bow + mAp) + 0V3® — izv"’Ao =—J&,
LR’ . )2 € . (8.6.8)
VZ[040— V2| + —V2® + —02V® = ;0 J5*,
e? € e? L

where J§** and J§** represent an external distribution of charges and currents
which we will use to probe the system.

8.6.4 Screening of a Static Charge:

Consider first the case of a static probe of electric charge @, located at the
origin, and zero external currents

ngt — Qotsz(f),
I = 0. (8.6.9)

We look for static (i.e., time-independent) solutions of the equations of motion
with sources . In this case, the equations of motion take the form

Evzw =0,
€
ﬁAo +6Vie — iv"’Ao = —Qo6%(?)
X e? (8.6.10)
1_, 6?
0Ao— V@ +—2=0.
e €
The solution gives Ag and @ in terms of the potential U(Z)
62 1
Ap = —Qoe? ———V"’)U ),
0=~ < € e & (8.6.11)

® = Quhe’U ().

The potential U(£Z) is a linear combination of the two-dimensional static Green
function Go(£; M)

U(F) = ﬁ (Go(& M_) - Gol7; My)) (8.6.12)

where
(=V2 + M2) Go(%, M3) = 6%(3) (8.6.13)
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and My, which we will see below are related to the masses of longitudinal
and transverse modes, are given by

6%e? X X X\ %
2 _ X .2 _Xy2 4.2 2 X
P= ((1+ = efx) ((1 =)? +efx® + 26X (1 + €)) :
(8.6.14)
The Green function Gy, for |z| = R, is
Go(R) = %KO(MR) (8.6.15)

where K is a Bessel function. At long distances, M R > 1, G decays expo-

nentially fast

e—MR

" (87MR)}

Thus, the electric field E and the magnetic field B induced by the static charge
Qo, are

Go(R, M) (8.6.16)

- - 1
E =—VAy = Qoe’(ef 62V YWVU, (8.6.17)
B

= —Qohe*V3U.

Therefore a static electric charge Qg is screened over a distance &, the screening
length,
1

Er (8.6.18)

Notice that both electric and magnetic fields are present in the vicinity of the
charge, although the magnetic field certainly decays faster than the electric
field does. These results indicate that the integrated induced magnetic flux
on the entire sample is zero. The induced field is largest at a distance of the
order of the screening length itself. This result is a consequence of the induced
Chern-Simons term and was first derived by Paul and Khare [Paul 86] and by
Lozano, Manias and Schaposnik [Lozano 88]. It is important to stress that this
calculation is strictly two-dimensional and it does not apply to the problem of
a single plane embedded in three dimensions since in that case the field would
escape from the plane. However, it is the calculation of the screening field
surrounding a line of charge in a three-dimensional stack of planes. The more
physical situation of a single charge in three dimensions cannot be addressed
by the two-dimensional anyon model since it requires to make assumptions
about the behavior of a stack of planes with the anyon confined to the planes.
Presently, there is no satisfactory microscopic model which could describe the
behavior of a three dimensional system with anyons confined to its planes.

8.6.5 Longitudinal and Transverse Masses: Meissner
Effect

Let us now solve the equations of motion in the absence of external sources.
We are looking for the normal modes, namely for plane wave solutions which
represent electromagnetic waves (both longitudinal and transverse) polarized
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and propagating in the plane, with momentum p, frequency po and amplitudes
@, ® and Ag. These amplitudes are related to each other by

(8.6.19)

The solution of the equations of motion has two branches. In terms of E? ,
E2 and A defined by

02
Ei2=ﬁ‘2+62_)
€
E} = %‘z‘»‘z, (8.6.20)
1 2 2 2,2¢.2 1
A=§ E{ + E; +0%“(e +;) ,

the energy-momentum relations are

2
pPP=A+ \/A2 - E?E2 — %ezEf —02e4E2. (8.6.21)

There are two interesting limits to consider: i) 2 — oo and ii) 52 — 0. In
the limit of large momentum, the disperion relation becomes linear, but the
speed of light ¢4 is different for each solution

|pol = c+ |- (8.6.22)
for |p] — oo, where the speed of light cy is

cy =1,

X (8.6.23)
c_ =,/=.
€
We identify the solution with the positive root, which represents waves moving
at the speed of light in the vacuum, with the transverse photon mode. The
solution with the negative root, represents waves propagating at speed \/¥ <
1, and we identify it with the plasmon, the longitudinal photon mode.

In the opposite limit, |p] — 0, both branches intercept the frequency axis
at different values of py, i.e., My . The value po = M, is the mass of the
transverse photon, whereas po = M_ is the plasma frequency associated with
the plasmon. In a Time- Reversal Invariantsuperconductor, these two frequen-
cies coincide( My = M_). In a Time-Reversal Noninvariant superconductor,
such as the anyon gas, these frequencies do not coincide. Indeed, the split-
ting of the square of the frequencies §M? is a measurement of the violation
of Time-Reversal invariance,

M7 = 6% 1+ . (8.6.24)
e“e€
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This is a very important prediction. This splitting should be observable in
light-scattering experiments in which the light beam propagates in the plane
of the anyon gas, i.e., the ab plane of the CuO, superconductor, and it is also
polarized in the plane. What is important is that this spectroscopic probe
is insensitive to the pattern in which Time-Reversal invariance is broken.
For example, if different CuQ; planes have different values of 8, such as a
staggered pattern, the splitting will still be there. Other probes, such as the
rotation of the angle of polarization of a beam perpendicular to the plane or
the Condensate Hall effect, which we will discuss next, will cancel out for such
patterns of symmetry breaking.

8.6.6 Supercurrent and Condensate Hall effect

Let us finally discuss the supercurrent and the Condensate Hall effect. The
Lagrangian implies that the total current J; of this system is

6L
8A;
where Ej is the electric field. The first term of J; is clearly the London current
of a standard superconductor. The second term, due to the induced Chern-
Simons term, has the form of a Hall current with a Hall conductance o4 =
— 0 = —% , if renormalization effects are ignored. This effect is due to the
condensate, not to quasiparticles. Indeed, since we are studying the system at
zero temperature, there are no quasiparticles left since this system has a gap.
Also, this effect is taking place even though flux is expelled from the system
due to the Meissner effect. This remarkable effect unfortunately is sensitive to
the sign of 6 and would not be observable if 8 is staggered between different
planes.

0 0
Ji=— = %(6.@1 + mA.-) - quEj (8625)

8.6.7 Vortices

The supercurrent derived above also implies that the vortices of this system
are charged. Consider now the charge density Jo associated with J,
6L [
Jo= —/— = —(8 Ap) — 0B. 6.

0 6A0 27I'X( w + m 0) (8626)
A vortex is a configuration with non-trivial winding number for the phase w
of the order-parameter field over a very large circle C in space. A configura-
tion with total vorticity k, with k integer, has Aw = 27, Ag = 0, it is time
independent and has no current in the abscence of external fields. The total
charge @ carried by the vortex is

Q= /dzzJo = —0/d2:cB = —0/ dz, A, (8.6.27)
C

Using the zero-current condition, d;w + mA; = 0, we find

- A 2
0= 07“’ = 0;7% =k (8.6.28)
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In other words, the vortex is charged and carries an integer charge equal to
the vorticity, Q = k. By tracing back the duality transformation, it is easy to
prove that to add a vortex with charge Q = +1 is equivalent to add an extra
slowly moving charge to the system (not an anyon!). This result is consistent
with the fact that an extra charge has a logarithmically divergent self-energy,
as any vortex should.
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CHAPTER 9

Topology and
Quantum Hall Effect

In this chapter I discuss the problem of electrons moving on a plane in
the presence of an external uniform magnetic field perpendicular to the sys-
tem. This is a subject of great interest from the point of view of both theory
and experiment, The explanation of the remarkable quantization of the Hall
conductance observed in MOSFETS and in heterostructures has demanded
a great deal of theoretical sophistication. Concepts drawn from branches of
mathematics, such as topology and differential geometry, have become es-
sential to the understanding of this phenomenon. In this chapter I will only
consider the Quantum Hall Effect in non-interacting systems. This is the the-
ory of the integer Hall Effect. The Fractional Quantum Hall Effect is discussed
in chapter 10.

The chapter begins with a description of the one-electron states, both in
the continuum and on a two-dimensional lattice, followed by a summary of
the observed phenomenology of the Quantum Hall Effect. A brief discussion
of Linear Response theory is also presented. The rest of the chapter is devoted
to the problem of topological quantization of the Hall conductance.

9.1 Particle States in the Presence of a
Magnetic Field

Let us review the Landau problem of the states of charged particles moving
on a plane in the presence of a perpendicular uniform magnetic field B. We
will consider both, the continuum and lattice versions of the problem.

We consider first the continuum problem. Let us think of a spinless particle
of mass M and charge e. The one-particle Hamiltonian which describes the
dynamics of this system is

_ 1 . 6 [4 2 . 6 € 2.'
H= 2M[( lhazl + EA]) -+ (—lh—a?‘z + cA‘z) IN (9.1.1)

The vector potential A4 is such that its curl is equal to B, the perpendicular
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component of the field,
B = €;;0;A;- (9.1.2)

If the linear size of the plane is L, the total flux ® is
® = BL* (9.1.3)

In what follows, I will assume that there is an exact integer number Ny of
flux quanta ¢@¢ piercing the plane.

he
d= N¢¢0 = N¢?' (9.1.4)

If we choose units such that A = e = ¢ = 1, the flux quantum ¢, is just equal
to 2m. In these units we can write & = 2Ny, Also, we are going to measure

lengths in units of the magnetic length Iy defined to be lp = B~3.
We will work in the isotropic gauge

1
A,' = —-2-B€.'J':Bj' (915)

In this gauge, it is convenient to work in complex coordinates z = z; +
izo. Let us factor an exponentially decaying function of |z|? out of the wave
function. This procedure automatically introduces an apparently special point,
the origin z = 0. Since the location of the origin must be arbitrary, there should
exist an operator which will remove this arbitrariness. We will see that this is
the case. As a by product, we will also find that the energy eigenvalues, the
Landau levels, not only are degenerate but that this degeneracy is generated
by a special group of transformations, the group of magnetic translations [Zak
64]. If we are dealing with rotationally invariant system, such as a disc, it is
convenient to write the wave functions in the form

W(z,2) = f(z,2) e (9.1.6)

which decays exponentially fast at infinity. For this Hilbert space, the disk is
topologically equivalent to a two-sphere.
If we now choose for A the value

e =T =@ (®-17)
(where we introduced the cyclotron radius {y), the function f(z, Z) is found to

satisfy an equation which, in complex coordinates, has the form

2h? e|B|h e|B|h
—ﬁ-azazf +

20:f + 5, —f = Bf (9.1.8)

for B > 0. For B < 0 we must replace z by z. In Eq.(9.1.8), we have introduced
the operators 3, and 9; defined by

8, = %(a1 — idy) (9.1.9)

0z = "(61 + i0,)- (9.1.10)
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It will be sufficient to discuss the case of B > 0.
Any analytic function f(z) is a solution of Eq.(9.8). A complete basis
{fa(2)} has the form

fa=2" (9.1.11)
which are also eigenstates of angular momentum operator L,
L, = —ih(z,07 — 2201) = +h(28, — 20;) (9.1.12)
with eigenvalue
L,z" = hnz". (9.1.13)

The energy E, of the ntt Landau level is

1
E, =hw.(n + 5),

_eBh
T Mc
is the cyclotron frequancy. The Landau levels have a huge degeneracy which
is the same for all the Landau levels and it is equal to Ng.

In order to make this degeneracy more apparent, let us introduce the
operators of magnetic translation and the group of transformations induced
by them. Let @ and b be two vectors on the plane. For a system in a magnetic
field B (B > 0), the canonical momentum operator P is given by the usual
minimal coupling definition

(9.1.14)

We

ﬁ:—iﬁﬁ—{-—fx‘i‘,
[+ .

(9.1.15)
B =€.'J'6,‘AJ'
The generator of infinitesimal magnetic translations k [Zak 64] is
B
ki=P— eTe.-,.z,. = P,(-B)- (9.1.16)

A finite magnetic translation by a vector @ is represented by the operator #(&)
i(@) = ek (9.1.17)

These magnetic translation operators obey the so called magnetic algebra
@id)y=e % i(d)i@) (9.1.18)

where Z is a unit vector normal to the plane.
The magnetic translations form a group in the sense that the operators
(@) obey the composition law

i(@iF) = exp(;Tg(fi x B) - £) i(b + @) (9.1.19)

Thus, the operators #(&@) form a representation of the group of magnetic trans-
lations. Eq.(9.1.19) has an extra phase factor, not present in the usual group
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composition law. The existance of this phase, which is known in mathemat-
ics as a cocycle, indicates that the operators #(&) form a ray representation of
the group of magnetic translations.

The Hamiltonian for a charged particle moving in a magnetic field can
now be written in the standard form, H = f—; The canonical momentum
operators P and the generators of magnetic translations k commute with

each other
[k, P;]=0 (9.1.20)

although the different components of k (and P) do not commute among them-

selves
iehB

(ks k5] = =[P, 3] = €5 (9.1.21)

Thus, the two components of F commute with the Hamiltonian
1 -
o Hl = ——[k;, P?] = 1.22
[k, H] = 52 ke, P2 = 0 (9.1.22)

and are constants of motion. However, since k; and k3 do not commute with
each other, they cannot be diagonalized simultaneously. We can then use k, or
k2, or some linear combination of both, to label the degenerate states. Which
combination is convenient depends on the choice of boundary conditions.
Let us assume, for the moment, that the system has the shape of a rect-
angle with linear dimensions L, and L, along the (orthogonal) directions é,
and é; respectively (€; - é; = 6;5,7 = 1,2). The total flux ¢ passing through
the rectangle is ® = BL) L,. In units of the flux quantum &, = %, the total
flux is an integer Ny = ®/®(. Alternatively, Ny can be given in terms of the
magnetic length lp and the area of the system L, L in the equivalent form

L,L,

S =2y (9.1.23)

Let us now consider the operator 7} and T3 which represent magnetic trans-
lations by %:— and 1%1— along the directions é; and é; respectively

N ~ Iy .
T] =i (N_;el)’

I . (9.1.24)
o _ o Lo,
To=t (N¢62)
These operators obey the algebra
A A Y o L BN
TiTz=e¢ Ne ToTh (9.1.25)

which is often also referred to as the magnetic algebra. In chapter 7 we dis-
cussed this algebra in the context of the commutation relations for anyon
operators.

Let us now assume that we have a state ¥, o which is an eigenstate of
the Hamiltonian in the n-th Landau level and that it is also an eigenstate of,



9.1 Particle States in the Presence of a Magnetic Field 255

say, Tl, ie. X
H¥n0 = Bntno, (9.1.26)
TY'V¥a,0= 6"\°‘I’n,0,

where E,, and Ao are the eigenvalues. Consider now the state ¥y, ,,
Vo =17 U, o (9.1.27)

Since both T} and T commute with H, it follows that all the states ¥pom
have energy E,.

HYy o = HIP U, o = TP HY, 0= En ¥y i (9.1.28)
However, the states ¥, ,, have different eigenvalues of Tl
Ty = Wty . (9.1.29)

Thus, there are exactly Ny linearly independent degenerate eigenstates of
the Hamiltonian in a given Landau level. For a system with wave functions
satisfying vanishing at spacial infinity (i.e. a “disk”) the operators k; and kg
are replaced by their counterparts in complex coordinates, k and k.

k =L(k1 —iky) = 0, — %
(9.1.30)
=-—(k1 + lk'z) 65 + 412

which also commute with the momenta (in complex coordinates) P and P

P_—-(Pl +iPy) = 05 —

412
. (9.1.31)
P=—_(P, —1 = —
2ﬁ( 1 IPZ) 61 413
The complex coordinate analogs of Ty and T, T and T are defined by
T =e#:k
L. (9.1.32)
T =e'Ms"

b

for a system with L, = Ly = L. The operators T, T also satisfy the magnetic
algebra Eq.(9.1.25). The operator k anhilates the wave function ¥,,(z, 7)

13
E¥,=0 with ¥,= c,,z"e’]*"'?. (9.1.33)
Thus, ¥, is an eigenstate of T with unit eigenvalue
T, = %5 ¥, = ¥, (9.1.34)

A complete set of eigenstates of the n-th Landau level {¥, m} can now be
constructed quite easily (m =1, ..., Ny)

ﬂm(z z) = T™W,(z, z) = nm e+2LN¢ ¥, (z,2) (9135)



256 Chapter 9 QHE

The states in the set {¥,, m(2,2)} have eigenvalues

HY, m(2,2) =B ¥, (2, 2)

_ iomm (9.1.36)
T¥, m(2,%2) =e W\II,,,m(z, z)
with .
2h _ eB
H= T{[_[_PP+ m] (9.1.37)

If instead of open (or vanishing) boundary conditions we want to consider a
system on a torus, i.e. periodic boundary conditions along the directions é,
and é; of a rectangle, the wave functions will have to satisfy a periodicity
condition. It is customary to demand that

U(zy,22) = V(2 + L1,22) = ¥(21,22 + L2)- (9.1.38)

However, it is not possible to satisfy this condition if a non-zero magnetic
field is present. The vector potential violates translation invariance. Thus,
the wave functions cannot obey periodic boundary conditions (PBC’s) since
no flux could possibly go through the system if PBC’s are to be obeyed. In
such a case, the circulation of A around the boundary equals zero. In order
to accomodate a non-zero external flux, the vector potentials and the wave
functions, have to change by a large gauge transformation as we traverse the
system [Haldane 85a]

Ai(zy + Ly, z3) =Ai(21,22) + 8i A (21, z2)
Ai(z1,22 + L) =Ai(z1, z2) + 0if2(21, 22)

such that the circulation around the boundary T equals the flux ®. This
requirement implies that 5, and f#; must satisfy the condition

[Bo(z1 + Ly, z2) — B2(z1, 22)] — [Br(21, 22 + Lo) — Bo(z1,22)] = @ (9.1.40)

It is sufficient to give just one solution to this equation, which we choose to
be

(9.1.39)

1 z;
B = —E(D Gij-L—';- (9.1.41)
The requirement of gauge invariance. forces the wave functions ¥(z;,z3) to
transform like

U(zy,z9) — exp(—i%A(:cl, z3)) ¥(z1,22) (9.1.42)

under a gauge transformation in which A; changes by 8;A(z;, ). Thus, under
the large gauge transformation of Eq.(9.1.39), the wave functions must change
like )

\I’(ll + Ll, 1‘2) =e|f—cﬁ1(1‘1,zg) \I’(.’L‘I,I'z)

» 9.1.43
U(z), 29 + Lg) =€*¥sP3(3122) W(z, z4) ( )

The boundary conditions of Eq.(9.1.39) and Eq.(9.1.43) are consistent pro-
vided that the translations (z1,z2) — (21 + L1, 22) — (21 + L1, 22 + L2) and
(z1,22) — (21,22 + L3) — (z1 + L1, 22 + L2) lead to the same value of the
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wave function. It is easy to check that this consistency condition leads to flux
quantization & = Ng,. This result should come to no surprise since we are
in the situation of the Aharonov-Bohm effect. In other words, the system has
single valued wave functions on the torus only if the flux is quantized. The
(single valued) wave functions constructed with this prescription are (doubly)
periodic and form Ng-fold degenerate multiplets. If the flux is not quantized
(e.g. a rational multiple of ¢y) the wave functions are multivalued and have
branch cuts.

9.2 The Hofstadter Wave Functions

In the past section we considered the quantum mechanical motion of charged
particles which move in a plane in the presence of an external magnetic field
perpendicular to the plane. There are many physical situations in which the
presence of a lattice cannot be ignored. In most cases these effects are quite
small. Magnetic fields are relativistic effects and if we want to pass a sizable
fraction of the flux quantum ¢ through a plaquette of a physical lattice (with
spacing ag = 10;1), astronomically large magnetic fields are required. Thus, for
problems such as electrons in a heterostructure, lattice effects are, in practice,
negligible. However, when we are dealing with a Chiral Spin State, we discover
the existance of dynamically generated gauge fields with large fluxes. Here, of
course, lattice effects become dominant.

The problem of the quantum motion on two dimensional lattices in ex-
ternal magnetic fields was first studied by D. Hofstadter [Hofstadter 76]. He
considered the problem of particle of charge e hopping on a square lattice,
with hopping amplitude t, in the presence of an external uniform magnetic
field B. Let |Z) denote the (Wannier) state localized at site & of the square
lattice. The hopping (tight-binding) Hamiltonian H is

H=—t Y |84 (F1¢|+hec. (9.2.1)
#,j=1,2

The vector potentials A;(Z) reside on the links and represent the external
flux. The total flux & going through any individual plaquette (with lattice
spacing agp = 1) is B

Y Aj=A1A— AA = B (9.2.2)

If we demand that the system be a torus, it is customary to work in the
Landau gauge
Al = —B.’l!'z A2 =0 (923)

where z; and z; are integers (0 < z; < Li,i = 1,2). From now on, I will
assume that Ba? = ¢, with p and ¢ a pair of relatively prime integers.
In other words, the flux going through an elementary plaquette is a fininte
fraction (}ql) of the flux quantum ¢o.
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The eigenstates |¥) of the system can be expanded in terms of a set of
site (or Wannier) states

[¥) = > W(&)|7) (9.2.4)
z

and obey the discrete Schrodinger equation
_t{e—imr%zq \I’(ll + 1’32) + e+521r§:l:7 \Il(:cl _ 1’1:2)} +

(9.2.5)
—t{¥(z1,z2+ 1)+ ¥(z1,22 — 1)} = E ¥(z), z3)

This Hamiltonian is not invariant under translations by one lattice spacing.
However, in the Landau gauge, it is invariant under the translations

(z1,22) =(=1 + ¢, 22)

(z1,22) —(z1, 22+ 1)- (9.2.6)

Hence, the unit cell has ¢ elementary plaquettes. With the present choice of
gauge, the unit cell is 1 x ¢q. The total flux passing through the unit cell is

Peenn = ¢ q)plaquette =p (9‘2‘7)

which is an integer. Naturally, this is not an accident.

The gauge-invariant operator for translations e'Pi is (in units such that

e=h=c=ay=1 )
P — Z |Z) e4i®) (£ + & (9.2.8)
z

These operators satisfy the algebra

. - 3 z . P
elPl eng = el'Zﬂ"l equelPl (929)

and, hence, do not generally commute with each other. But emPr and einabs
commute if
gnlng = integer- (9.2.10)

Thus, the translations e®Pt and e"3”? commute if and only if the flux passing
through the rectangle with edges n; and ns is an integer multiple of the flux
quantum. The smallest rectangle satisfying Eq.(9.54) is known as the magnetic
unit cell.
_ The hopping Hamiltonian can now be written in terms of the operators
¢'¥i in the form X i
H=—t) (e i) (9.2.11)
j=1,2

The eigenstates of H are not eigenstates of ¢'Fs, but of the operators etk

which generate finite (i.e. lattice) magnetic translations. The operators eiks
are defined by

eiki = Z |£)e 453 (Z + ¢ (9.2.12)
z
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where the vector potentials A}(#) have to be chosen so that the magnetic
translation operators e'ki commute with the elementary lattice translations

eiPs and, hence, with the Hamiltonian H. This conditions are met if we choose

(G #k)
AL(Z) = Ap A (D) (9.2.13)

So, once again, we find X
k; = P;(—B) (9.2.14)

but in the specific choice of gauge:

1(#F) =0 2(%) = —27r§z1- (9.2.15)

The operators e'¥i do not commute with each other. Rather, they obey
eifreita = (1278 eita oibu. (9.2.16)

Consider now the magnetic translations by n; steps along z; and na steps

along z2 (no sum over j) )
Tj"" = einiki. (9.2.17)

These operators commute with each other if ny and n» satisfy Eq.(9.2.10).
Thus, the eigenstates of H are also eigenstates of T7* and 73'2. With the
choice of Eq.(9.2.15), we see that T} and TY satisfy

[T1,T§] = [Ty, H] = [T{,H] =0 (9.2.18)

and their eigenstates can be used to label the eigenstates of H. The eigenstates
of Ty and T¢ are of the form |k, k)

Ty | k1, ko) =€ |k, k2)

. . 9.2.19
Tq k1, ka) =€ 72|k, ko) ( )
and must satisfy periodic boundary conditions
TEV | by, k) =|ky, k2
! ) (9.2.20)

~ L
(T$) 7 |ky, ko) =lk1, k2)-

These conditions can only be met if (k1, k2) belongs to the magnetic Brillouin
zone (—w < ky < ) and (—— <k < ;) Clearly, this boundary conditions
can only be imposed if L is an integer multiple of ¢. That is to say, the total
flux @ going through the entire system has to be an integer Ny multiple of
the flux quantum ¢o, with Ny = ELng

The magnetic Brillouin zone labels a total of 5%1 states. We will see now

that this system has ¢ Landau (or Hofstadter) bands each with a £’&,Al—i'old
degeneracy. This is the discrete version of the degeneracy of the continuum
problem.
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Let us now expand the states ¥(Z) in terms of magnetic translation eigen-
states

1 g dkl dkz ‘(kl. 14k 2) P
v = - E — etz +ke®2) (k) ko4 2w=r). (9.2.21
(zl’zZ) qr:l/_x / 2"/q ‘ ( b2 qr) ( )

It is now convenient to define the g-component vector, ¥, (ky, k2)
U, (ky, ko) = U (ky, ks + 27r§r) r=1,..,q. (9.2.22)

We recognize in this vector a generalization of the spinons used to study the

flux phase where £ = 1. The (discrete) Schroedinger equation now reads

— 410, 41 (R, k2) + e F W1 (K1, ka)] — 2tcos(kz + 2“%’”)‘%(1‘71, k2) =

= E(kl, kz)\I/,-(kl, kz)
(9.2.23)
This equation is also known under the name of Harper’s equation and plays
an important role in the theory of incommensurate systems. The amplitudes
V¥,(ry,r2) are periodic functions on the magnetic Brillouin zone and thus
satisfy
\I/,-(kl + 27!'711,]02) == \I/,-(k1, kz)

2 9.2.24
VU, (k1 ks + TnZ) =V, 1n,(k1,k2) ( )

and
\I/r+q(k1, kz) = \I/,-(kl, kz) (9225)

where ny and n, are integers. Eq.(9.2.24) implies that the magnetic Brillouin
zone has the topology of a two-torus. The amplitudes ¥, (k;,k2), which are
solutions of Eq.(9.2.23), form an r-component complex vector field which is
continuous on the torus.

For arbitrary values of the integers p and ¢ (p and ¢ relatively prime), the
spectrum determined from Eq.(9.2.23) has a very complex structure. For in-
stance, if p and ¢ are chosen to belong to some infinite sequence such that,
in the limit, 2 becomes arbitrarily close to an irrational number, the spec-
trum becomes a Cantor set [Hofstadter 76] and the wave functions exhibit
self-similar behavior [Kohmoto 83]. Even if the problem is restricted to com-
mensurate flux only (® = 27rﬂ¢o) the spectrum has energy gaps which | as
q is increased, exhibits a hlera.rchlcal structure. We will not consider these 1s-
sues here. Rather, we will consider only the broad qualitative properties of
the spectrum and wave functions. In general, Eq.(9.2.23) has to be solved
numerically.

For generic values of p and ¢, the spectrum has ¢ bands. For any arbitrary
pair of relatively prime integers p and ¢, the Hamiltonian H(ky, k2) associated
with the Schroedinger equation Eq.(9.2.23) has a number of symmetries [Wen



9.2 The Hofstadter Wave Functions 261

89]. Let Aand Bbea pair of ¢ X ¢ matrices defined by

Ajp =w*6
Rk (9.2.26)

Bjr =6;,k-1
where j,k = 1,...,¢ and w = e—#27P/1  and satisfy the algebra AB =
¢'2"¢ BA. The Hamiltonian H(k;, k,) is given by

H(ky, ks) = e~ *F3 A+ et F1B 4 b, (9.2.27)

Given p and q, we can always find a pair of (relativley prime) integers n and
m such that
1=np+ mq (9.2.28)

It is easy to check that the matrices A = A™ and B = B™ satisfy the following
identities

AHM(ky,kz) A~ =H (k1 + 277’71,1@) (9.2.29)
BH(k1,ko) B~ =H(k1, k2 + 277') (9.2.30)

H(k: + 27” — 27m, ko) =H(k1 + 27”,1@2) (9.2.31)
AB =% BA. (9.2.32)

Thus, if ¥(k1, k2) is an eigenstate of H(k1, k2) with energy E(k1, k2), the state
W' (ky, k2) B
U (k1,ks) = AV (ky1,k2) (9.2.33)

is an eigenstate of M'(k1,k2) = H(k1 + 2T",Icz) with the same eigenvalue
E(k1,k2). In other words, there is a one-to-one correspondence between the
spectrum at (k1,k2) and at (k1 + ZT", k2). An analogous argument shows that
the spectra at (kq, ks + ZT") and (ky,k,) are also indentical to each other. In
addition, under the translation (ki,ks) — (k1 + 7, k2 + ), the Hamiltonian
changes sign, i.e. H(k1 + 7, ko + 7) = —H(k1,k2), and E(k1 + 7, ks + 7) =
—E(k1, ks). For ¢ even this operation is a particular case of Eq.(9.2.29). Thus,
if ¢ is even, for each eigenstate of H with energy E, there exists an eigenstate
with energy —F. The operator which connects states with opposite signs of
the enery, let us call it I', must anticommute with H and be hermitian. It is
easy to check that the matrix I';; with elements

Tjk = (—1Yi#6; ;44 (9.2.34)
has the desired pronerties
{H,T}=0 rZ=1 (9.2.35)

T also anticommutes with A, B, A and B.

Furthermore, it is possible to show that for ¢ even there are at least ¢
eigenstates of H with zero energy [Wen 89]. The argument uses the topology
of the torus in an essential way. It can be regarded as a generalization of the
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Nielsen-Ninomiya theorem for the absence of Weyl fermions in lattice systems
[Nielsen 81]. The magnetic Brillouin zone is locally isomorphic to the complex
plane (w = k; + tk2) and globally equivalent to a torus. Let us consider a
point w on the magnetic Brillouin zone and assume that the eigenstates of H
at w = kj + ik are all different from zero. It is possible to choose a basis of
states in which T' is diagonal. In this basis we can write

I 0 _ (0 At
r_[o —1] ’H—[h 0] (9.2.36)
his a £ x £ non hermitean matrix and k¥ is its adjoint. If in the neighborhood
of w there are no zero energy eigenvalues, the determinant of H

detH = —|det h| (9.2.37)

is non zero. Let us denote by D the determinant of h, D = det h. D is

locally an analytic function of w, Thus, it is possible to define the vector field

Ai 1=1,2)

1 a
Ok;

which, in fiber-bundle parlance, is a one-form. In any neighborhood of w free

of zero energy eigenvalues, the one-form A; is closed, i.e.

Gija.'.Aj = e.-,-c‘).-c‘)j InD = 0 (9239)

A; =D~

(9.2.38)

but, in general, it is not exact. The circulation v of A on an arbitrary contour
C of the magnetic Brillouin zone

1
V=g dk A (9.2.40)
is in general different from zero. If v is not zero, the determinant D(I;) =
det h(E) must have a zero at some point o somewhere inside C. We now
follow Wen and Zee and consider a path C which is a rectangle with corners at
(k1,k2), (k1 + L k2), (k1+ Jko+ 2") and (k1, ko + 2") From the symmetries
of H, it is pOSSlble to show that D(kl, ko) satisfies

D(ky, k2) = —D* (k1 + 27”,1@.) = —D(k; + 277',1“2 + 27”) = D*(k1, k2 + 27”)-

(9.2.41)
Eq.(9.2.41) implies that the phase of D must wind as the path C is traversed.
In general, D(E) being a complex number, will trace a closed path D on the
complex plane as k traces the path C. If the D does not have a zero inside C,
the winding number v will vanish and C, and hence D, can be smoothly shrunk
to zero. If there is a zero, D will have a singularity and C cannot be deformed
to zero. The path D will now wind around the origin D = 0 a number of times
before closing. The winding number v of Eq.(9.81) is precisely this winding
number. Since D(k) is not a constant, we conclude that it must have zeroes at
certain isolated locations. However, the translation symmetries of Eq.(9.2.29)
require that if I;o is a zero of H, then 1;0 + ZT"(nlél + n2é3) must also be
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zeroes of H. This lattice of zeroes of { must be periodic. The only values of
ko consisent with these demands are ko = (2, %) and its translations.

There are exactly ¢ distinct points in this lattice. Thus, for ¢ even, the
Hamiltonian has exactly ¢q zeros. Note that the flux phase is a particular case
of this problem. The doubling of spinon species that we found there, is a
particular case of the g-fold multiplicity discussed in this section.

9.3 The Quantum Hall Effect

In this section we will discuss the most qualitative features of a very fascinating
problem: the Quantum Hall Effect. It is not within the scope of this book to
give an exhaustive review on this subject. Reviews are already available, in
particular the excellent volume by R. Prange and S. Girvin [Prange 90].

However, there are very close analogies and connections between the the-
ories of the Fractional and Integer Quantum Hall Effects and the theories of
Chiral Spin Liquids. We will devote considerable attention to these analogies.

In 1980, K. von Klitzing, G. Dorda and M. Pepper [Klitzing 80] announced
the discovery of very unusual transport properties of a two-dimensional elec-
tron gas in a high magnetic field. They were studying the Hall conductance
of two-dimensional inversion layers or MOSFETS. In these systems, the elec-
trons of a semiconductor move on quantum states which are localized whithin
atomic scales of the layer. They are almost free to move inside the layer. Von
Klitzing and his collaborators noticed that when they measured the Hall con-
ductance o,y of the layer at very low temperatures, the conductance had a
stepwise dependence on the external magnetic field. At the same time, the
longitudinal conductivity o;,, appeared to be essentially zero when o, was
nearly constant, the so called plateaus. For values of the field in which o,y
varied, 0, was non zero.

What was very unusual was the values that o, attained at the plateaus.

It appeared to be quantized at integer multiples of “;‘—2 Furthermore, the quan-
tization appeared to be sharper at lower temperatures and, oddly enough, for
the more disordered samples. This phenomenon is known today as the Integer
Quantum Hall Effect.

In 1982, D. Tsui, H. Stormer and A. Gossard [Tsui 82], performed a similar
series of experiments but on highly pure Ga As — Al As heterojunctions. Here
too, the electrons are bound to a surface and are essentially free to move
inside the surface. They found a Fractional Quantum Hall Effect. In fact,
their results were very similar to what von Klitzing et al have seen, except
that o, was not an integer multiple of £- " but a fraction. In particular, they
were able to observe the fractions é, £ and others. It is a simple matter to
argue that, if a Landau level is completelly filled, the Hall conductance has
to be quantized. In the case of a translationally invariant system a simple
argument can be made. Let us imagine that we have an external magnetic
field B perpendicular to the sample and that there is an external electric field
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E paralell to the sample. By coupling the system to a source and a sink of
electrons, a current is established. In such a situation, there is a Lorentz force
which pushes all the electrons sideways. Also, if a number of Landau levels are
completely filled, leaving all others empty, there cannot be any component of
the current parallel to F since it would require processes which are suppressed
by an energy gap equal to Aw,. If the electric field is small, and the system
is translationally invariant, there is a reference frame moving at a velocity ¥,
relative to the laboratory such that % x B = —E. In this frame the electric
field is absent. A completely filled Landau level has N = Ny electrons. If
there are n Landau levels which are filled, the total charge @ is @ = nNy.
The current J is then equal to ‘Jﬂz +Qev. Putting it all together we conclude

that the current density, f: f’; has components

. Qe Qec
Ji=zu= (B—Lg)f.'jEj (9.3.1)
From Eq.(9.83) we conclude that the Hall conductance o4y , i.e. the coefficient
of Ej;, is equal to gf’;—. By using the fact that there are n filled Landau levels
and that the flux BL? is equal to Ny times the flux quantum %, we get
Qec  nNgec  €?

gy = 228 = DlVeec o 32
7 = BL2T RN,  h (932)

Notice that h, and hence quantum mechanics, comes only through the flux
quantum th

This is an appealing argument but it is deceptive. First of all, it does not
apply to systems which are not translationally invariant. However, a detailed
calculation shows that Eq.(9.3.2) is valid even in that case. The second and
most serious problem with this argument is that it cannot predict the exis-
tence of the fractional values of ¢,,. In fact, the absence of the parallel, or
dissipative, component of the current was argued by recalling the fact that , if
an integer number of levels is exactly filled, no scattering is possible. If some
level is only partially filled, there are states availables for scattering and the
argument seems to fall apart. Thirdly, this argument alone cannot explain the
fact that the effect is actually observed. It cannot explain either the incredi-
ble accuracy to which the quantization is measured (one part per million for
the integer steps). In the experimental setup, the charge density or the exter-
nal magnetic field can be varied. In either case, the chemical potential must
lie between Landau levels for one Landau level to be filled and the next one
to be empty. As the density increases, the chemical potential (i.e. Fermi en-
ergy) jumps discontinuously from Landau level to Landau level. It remains
fixed at the energy of a given level until the level gets filled completely. This
argument suggests that ¢, should be a monotonically increasing function of
the electron density. So, why do we see steps?

The resolution of all of these paradoxes has required a significant amount
of theoretical effort. The explanation of the observability of the steps in o4y
(i.e. the plateaus) involves both the presence of impurities and of states at the
edge of the sample. The accuracy of the effect turned out to be connected to
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the topological properties of the quantum states. The fractional effect required
the discovery of a new condensed state of matter, the Laughlin state.

The in-depth study of all these issues lies far from the main scope of
this book. Besides, there are excellent reviews widely available. I will then
not discuss the role of disorder beyond a very qualitative description. The
role of topology and the Laughlin wave function will be discussed in the next
sections.

9.4 The Quantum Hall Effect and Disorder

Let us briefly discuss the role of disorder. In part for the sake of simplicity,
but also because the problem is not fully understood, we will only focus in the
non-interacting problem. It is widely suspected that disorder is as essential to
the observability of the fractional effect as it is to the integer effect. So, we
wish to understand why is the integer quantum Hall effect observed in the
more disordered samples. We saw above that a simple model of free electrons
in Landau levels does not explain the plateaus which are characteristics of
the integer Hall effect. The reason behind the monotonic increase was the fact
that the Fermi level jumps from one Landau level to the next as the level gets
filled-up. If there were extra states “in the gap”(i.e. “between Landau levels”),
the Fermi energy will have to progress through those levels until they too get
filled. However, these extra states should not contribute to the value of oy
for the plateaus to remain sharp.

Disorder offers a natural way to generate states “between Landau lev-
els”. First of all, any degree of randomness, usually represented by a random
potential V(Z), will lift the degeneracy of each Landau level which become nar-
row bands. From studies of electron states in random potentials one expects
that at least some states should become localized [Anderson 58]. In the ab-
sence of a magnetic field, it is widely believed that all electronic states of two
dimensional disordered system are localized [Abrahams 79]. The arguments
involve both scaling ideas and a mapping of the problem onto a special type
of non-linear sigma model [Wegner 79], [Wegner 83]. If the electrons move in
the presence of a weak magnetic field, the same arguments apply. It turns out
that the presence of the field has only two effects: (1) the symmetry of the
non-linear sigma model is unitary (which reflects the fact that, in the pres-
ence of the field there is no time-reversal invariance) and (2) the presence of
a topological term in the effective action [Levine 83] and [Pruisken 84]. There
is an excellent review by Pruisken on this subject in the book by Prange and
Girvin [Prange 90].

The non-linear sigma model represents the physics of the diffusive modes
in the presence of the external field. It is a correct description if the elastic
mean-free-path A is short compared with the magnetic length lp, A < lp. This
condition can only be achieved in the weak field limit. The diffusive modes
are represented in the replica formalism, by 2N x 2N hermitian matrices
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Qia,js(z), where i,j = 1,...,N and «,f = +. The latin indices i and j
represent the “replicas” and the greek indices, o and 3, represent the particle
and hole channels. The non-linear sigma model has the effective Lagrangian
[Wegner 83] [Levine 83]

0 0
C= _"Sﬂ 4:(0,08,Q] + "Sﬂ(a) (€4, Q8,Q0, Q] (9.4.1)

valid in the replica limit, N — 0.

The coefficients in this Lagrangian o, and o), (B) represent the values
of the longitudinal (¢2,) and Hall (¢2,) conductance at the length scales
of the elastic mean-free-path (i.e. their Boltzmann values). This non-linear
sigma model is invariant under global unitary transformations in the coset
U(2N)/U(N) x U(N). Notice that the topological term in Eq.(9.4.1) has the
same structure as the topological terms that we discussed for antiferromagnets
in Chapter 5. At scales | long compared with A but short compared with Iy, the
effective values of 0., (1) and o,y (I) are strongly renormalized. The non-linear
sigma model of Eq.(9.4.1) is asymptotically free which means that oz,(1) — 0
for I < X. In this infrared limit o,y (!) is quantized, oy(I) — %("h—?) This
quantization has the same topological origin of the quantization of spin and
of the coefficients of the topological terms that we discussed in chapter 5.

Thus, this calculation shows that o.yis indeed quantized and that oy,
is zero whenever we are in a plateau. However, the replica limit obscures
the physical mechanism by which all of this takes place. It almost seems like
magic!. Moreover, the actual mechanism by which the system manages to even
support a Hall current is very obscure in this picture. But it does point to the
fact that it is the physics of localization that makes the effect observable in
the first place and that the fopological properties of the quantum states are
responsible for the exact gquantization of oy.

If topology is to be the source of both the quantization and accuracy of
the Quantum Hall Effect, it appears that the mechanism which supports the
Hall current should not be linked to disorder in an essential way. Halperin
proposed that the states which carry the Hall current resides at the edge of
the system [Halperin 82]. Roughly speaking, the electrons are kept inside the
sample by a potential which rises towards the physical edge of the system.
On some set of points close to the edge, the potential is equal to the Fermi
energy. This set of points constitutes a closed curve. The edge states are the
waves of the electron liquid spilling over this curve. The presence of disorder
complicates the picture. The landscape of the potential can be quite rough.
Semiclassically the ground state can be viewed as a set of equipotential curves.
In the high field limit, equipotential curves will generally be closed and enclose
regions which are quite small and are occupied by electrons. As the field is
lowered, these regions will begin to merge and at some critical value B, of
the field, a percolation phenomenon occurs [Trugman 83]. At B, there is at
least one curve which percolates thoughout the system. This curve is a “new
edge” which is thus capable of carrying current. The electron states associated
with these “edges” have a very special property: they are “chiral” [Wen 90c].
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What this means is that the electrons have to drift in the field and hence
the direction of their motion is determined by the sign of the magnetic field.
Roughly, the electrons move at the drift velocity %'7-. Since the electrons on the
edge states move only in one direction, the only possible effect of impurities
on them is only a phase shift of the wave propagating forward. There are
no backward scattering processes. Localization is due to multiple scattering
process in which forward and backward scattering events interfere so much
that the electron is unable to propagate. In the absence of backward scattering,
there are no localized states. The edge states carry the full current.

9.5 Linear Response Theory and Correlation
Functions

In this section, we derive a set of formulas which will enable us to calculate
the Hall conductance, as well as other response functions, in terms of the
Green functions of the system. In the next section it will be shown that these
formulas, when used to compute o, for a system with an energy gap, have a
hidden topological structure.

Let us consider the system of fermions coupled to an external electromag-
netic field. We will consider cases of the fermions moving in free space and on
a lattice in the tight-binding limit. In both cases, the generating functional
of the fermion Green functions is a functional integral Z[A,] which is a func-
tional of the external electromagnetic field A,. Let us further assume that
Ay is a small fluctuating component of the external field. The average field
< Ay > is absorbed in the definition of the system. Under such circumstances,
it makes sense to determine Z[A] in perturbation theory, i.e. a series expan-
sion in powers of A,. The leading term in this expansion is known as linear
response theory [Fetter 71]. This series can be written in the exponentiated
form

Z[A,] = Z[0] exp{%/dD:c/dDyA”(:B)H,,,,(:c,y)A,,(y) +...} (9.5.1)

where I, (2, y) is the polarization tensorand D = d+1, d being the dimension

of the space. For a tight binding model the integrals are replaced by sums.
The underlying fermiongauge-invariant fermion system system is gauge-

tnvariant. Thus, upon an arbitrary local gauge transformation ¢(z)

Ap = A:z + 9, é(z)
() = Tt y/(z)

the functional Z[A] is invariant. Thus, the linear response term must also
be gauge-invariant. This is only possible if the polarization tensor I, (zy) is
transverse, i.e.

(9.5.2)

8,f11,,,,(a:,y) =0. (9.5.3)
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To be more precise, we consider either a system without boundaries or one
in which only “small” gauge transformations are allowed , i.e. those trans-
formations which vanish at the boundaries, lim|;|_,o #(z) = 0. If the actual
boundaries are to be taken into account, such as in cases in which the system
is physically coupled to external leads of batteries or measuring instruments,
then the values of the gauge transformations at the boundaries become phys-
ical degrees of freedom (i.e. the voltage of a battery.) Similarly, for a system
without boundaries, the circulation of the vector potential A, around closed
loops T' which wrap around the system are gauge-invariant operators and
also represent physical degrees of freedom. An example are the loops I' which
are topologically equivalent to the large circles of a torus. The line integrals
$p dz, A, are the so-called holonomies of the gauge fields on the torus.

The transversality condition Eq.(9.5.3) then follows from a simple alge-
braic manipulation of the exponent in Eq.(9.5.2)

I :%/duz/duy Apu(z) Wy (2,y) Av(y)
:% / dPz / dPy [AL(z) + 8ud(2)] W (2,9) [A) () + B8 (y)]  (95.4)
:%/d”z/d”yA;(z) O (2,y) A, (y) + 61

where 61 is given by
i1 =5 [P [Py (8,6(x) L (e.0) AL+

+A;;(1') I (2,9)0,¢(y) + 0ud(z) M (2,y) 8, 8(v)}

Then Z[A] is gauge invariant if and only if § = 0. Upon an integration by
parts we get

(9.5.5)

§I = —%/dD:c/dDy{qS(z) Ol (z,y) A, (y)+
+AL(2) BT (2,0) 8(0) — BN @ w)é))+ 05O

+surface terms.

Since ¢(z) is arbitrary, 81 vanishes identically if and only if I, (2, y) is trans-
verse. The surface terms are zero since either ¢ vanishes at the surface or there
are no boundaries.

It is possible to relate I, to a fermion current,Green function. The gauge
invariant fermion current J,(z) is

8S

1) = 540 (9.5.7)

where S is the total action of the system. The current J,, is gauge invariant
because the action S itself is invariant. For the problem of fermions in free
space, J,; is just the usual fermion current with the diamagnetic term included
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(the spin is omitted.)

Jo =€1/)T1/)
(9.5.8)
[W(a %) — (0;9")¥] - ——A vy

The spacial components of the current can be written in the more manifestly
gauge invariant form

I 2zm

J; =

— (D )ty (9.5.9)

where D; is the covariant derivative
ie
D; =0; — -h—c-Aj (9.5.10)

and e is the (negative) electron charge.
For a lattice, J; has the form

2465 _
Ji(&) = (1/)T(a:) exp[-—- / A(2).d5) $(3 + éj)—h.c.) (9.5.11)

where 1 is a hopping amplitude and é; is the vector difference of the positions
of two lattice sites along the direction j on the lattice.

Since J, = 3%, we can compute expectation values of products of cur-
rents by functional differentation of Z[A)]. The average current < J,(z) > is
given by
—i 1 6Z[A]
h Z [A] 8A,(z)’

The polarization tensor II,,(z,y) can be computed from its definition. We
get

< Ju(z) >= — (9.5.12)

52
M, (z,y) = WIHZ[A]. (9.5.13)
A straightforward algebraic manipulation yields the expression
) 1 62[4],
e (®0) == i ) A AL
—in( 1 6Z[A4] ) 1 6Z2[4] ) —ih 1 §2Z[A]
Z[A6A,) ZAISAG) " 2 5A.@)6A, ()
(9.5.14)
Hence, we get
L (2,9) = 5 < Ju(@)(y) >e + < 51{1"((’;)) > (9.5.15)

where < J,(z)J,(y) > is the connected time-ordered current-current corre-
lation function Dy, (z,y) defined by

?D,,,,(:c,y) =< Ju@) () >e=< Ju(@) () > — < Ju(z) >< Jo(y) > .
(9.5.16)
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The last term in Eq.(9.5.15) is usually called the “tadpole” term and follows
from the diamagnetic piece of the current.

Since II,, has to be transverse for the system to be gauge invariant, D,
must obey a similar conservation law. However D,, is not quite transverse
because of the presence of the tadpole term in Eq.(9.5.15). Indeed from the
transversality of II,, we get the equation

§
0= 82M,,(z,y) = 85Dy (2, y) + 6% < Ju(2) o (9.5.17)
6A,(y)
Thus the divergence of D, is
z z 6‘]# (z)
8,,D,,,,(z, y) —8 W > (9518)

Since D,,, is time ordered and J, is conserved (8,J, = 0) we can write the
Lh.s of Eq.(9.5.14), as

9 Dyy(z,y) =
=%a; < TJ,(2)J,(y) >
2%3;‘[9(1‘0 — %0) < Ju(2)Jo (¥) > +0(yo — 20) < Ju(y)Ju(z) >] (9.5.19)
=58(z0 —w0) < [Jo(@), L)) > +5 < TOTu(@)7,(3) >
=2 6(z0 — o) < Ol[Jo(z), Ju(w)]I0 >
The r.hs. of Eq.(9.5.14) is equal to

v 8Ju(z) __
O < Faoly) " (9.5.20)
e 602) e 80u(a)

0; < 54(9) >=0; < 5Ak( ) >=0F[6(z — y)( Jo(:c))] (9.5.21)

Collecting terms, we get the following identities for the ground state equal-
time expectation value of the commutators

(20 — 0) < Oll70(), Je(3)]I0 >=3-e3 65 6(z — 3)Jo(a)]
(0 — y0) < Ol[Jo(2), Jo(w)]|0 >=0

which are the Ward-Identities for this system. These identities are the key
to the derivation of the f-sum rule [Kadanoff 61]. These identities show that,
even though D,,(z,y) is a correlation function of conserved currents, D,
itself it is not conserved

92 D,0(z, y) =0
z ie z
aﬂDuk(z’y) :h o2 ak [6(1‘ - y)JO(z)]

I, is stricly conserved, 8511, = 0. The non-vanishing r.h.s of Eq.(9.5.23) is
what in Quantum Field Theory is commonly called Schwinger term (S.T.). We

(9.5.22)

(9.5.23)
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have already encountered a S.T. in section 4.3.1. There, the S.T. resulted from
the lack of chiral symmetry in a gauge-invariant theory of one-dimensional
relativistic fermions. In a sense, it is due to an effect produced by the “bottom”
of the Fermi sea. In the problem discussed in the present section it follows
from the definition of the current.

The results of this section are valid in the most general condensed mat-
ter systems. They hold regardless of the statistics of the charge carriers. In
the derivation that is usually presented in textbooks ([Pines 66],[Mahan 90]),
the proof is done within the framework of Fermi Liquid Theory. The argu-
ment presented here is more general and follows in spirit the discussion by
Kadanoff-Martin. These conservation laws and sum rules are, in fact, a di-
rect consequence of local gauge-invariance. In other words, they follow from
local charge conservation. It is important to stress that they also hold in
phases with “spontaneously broken gauge invariance,” such as superconduct-
ing states. The quotation marks are meant to stress that local gauge invariance
cannot be spontaneously broken, as dictated by Elitzur’s theorem (see chapter
6). In superconducting states the global phase invariance (a subgroup of local
gauge transformations) is spontaneously broken in the absence of electromag-
netic gauge field. The sum rules are a statement about the system as a whole
and they hold provided that both the normal and the superfluid contributions
are taken into account.

Let us now find an explicit expression for II,, (z,y) for a simple system.
For the sake of simplicity I will discuss only the non-interacting fermion case.
Interactions can be introduced in standard fashion. Let us discuss the prob-
lem of non-interacting electrons moving in free space coupled to an external
electromagnetic field A,. Once again, A, represents a small fluctuating com-
ponent with vanishing average. All averages < A, > are absorbed in the
definition of the otherwise non-interacting fermions. The action for this sys-
tem is (ignoring spin)

S[4] = / diz " (iDo + p— h< Ay > +A,])0 (9.5.24)

where h[A,] is a one-particle Hamiltonian which describes the dynamics of
particles coupled to a gauge field, such as

h? -
hAu] = ——D} (9.5.25)

and Dy and Dj are covariant derivatives. The generating functional of the
current correlation functions Z[A] is given by

Z[A] = / Dy* Dy exp{%S[A]}. (9.5.26)
Since the 1 fields represent fermions, we get (h = 1)

Z[A] = Det(iDo + p — h[A]). (9.5.27)
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Thus, the effective action for the vector potential A, due to the motion of the
charged particles is

Sei[A] = —i trln Det(iDp + p — h[A]). (9.5.28)

We have encountered several times expressions of this sort in the previous
sections of this book. We will deal with it exactly in the same way. If A, is
small, Seg[A,] can be expanded in powers of A, and, if A, has zero average,
the first non-zero term is quadratic in A,. A straightforward calculation yields
the following expressions for II,,(z,y) in terms of the one-particle fermion
Green function G(z,y). G(z,y) satisfies the equation of motion

(Do + 1 — h[< A>]), G(z,y) = b6(z —y) (9.5.29)

i.e.
1

iDo + p — h[< A >]

G(z,y) =< z| ly> . (9.5.30)

The components of the polarization tensor II,, (z, y) are (h = 1)
Mpo(z,y) =i G(z,y)G(y,z) (9.5.31)
1
oj(2,1) =5 -{G(z,1)D!G(y,2) - G(,2) DY Ge,y))  (95:32)

jo(z,y) = + 5 -{~G(z,9) D Gly, 2) + G(v, 2) D} G(z,1)} (9.5:33)
Ljb(2,) == 6(z — )64 Gz, u)+

~ 5 (D} Gla, y))(DYG(y, )+

— (D} Gy, )(DY Gz, )+

i
+ WG(%-'L‘))(D;DZTG(EZI))'F

i xr
+ 75D} ' D{G(y,2))G(z,v): (9.5.34)

These formulas, in addition to satisfying the requirements of gauge invariance,
are also translation invariant if the external fields are uniform.

In the next section we will make use of these formulas, particularly Ily;, to
compute the Hall conductance. Notice that all the expressions in this section
hold for time-ordered correlation functions. In order to compute the conduc-
tivities it is necessary to go to retarded functions [Fetter 71]. Fortunately, the
static limit of the Hall conductance can also be calculated directly from the
time-ordered functions.

The tight-binding case (on a cubic lattice) can be treated using a similar
line of argument. In fact, the polarization tensor II,, for the lattice case can
be obtained in the following manner. First the spacial integrals are replaced by
sums over lattice sites {Z}. The covariant derivatives are replaced by covariant
difference according to the rule

. . _ ([T A
D7 G(z,y) — AjG(z,y) = G(z + ¢j;y)e J= - G(z,y) (9.5.35)
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and the hopping amplitude t and the mass m are related by % = ma2, where
ap 1s the lattice constant. Once these identifications are made, the continuum
result becomes valid for the lattice case.

We will be interested primarily in the low frequency, long wave length
limit of the effective action. On the basis of gauge and translation invariance
we can write the effective action Ses[A] in terms of an expansion in powers of
the gradients of A,. The leading order terms are (in two space dimensions)

Seft[Au] = / d zdt [%E‘z— §32+7(€7.E)B+ U—Zy-e,,,,)\A,,F,,A +...] (9.5.36)
where E and B are the fluctuating pieces of the external electromagnetic field.
The coefficients €, x,7 and o,y can be determined from II,,. In particular €
and x are the static dielectric constant and diamagnetic susceptibility of the
system and o,y is the static Hall conductance. Notice that the Hall term
is precisely the Chern-Simons term which we encountered in section (7.1).
Indeed, the last term gives a contribution to the average current < Jy >4y

< Ji Sgpy= U:cykaEI (9537)

which has precisely the correct form for the Hall current. The static Hall
conductance o,y can be obtained from the Fourier transform II,,(Q) of the
polarization tensor

. Cuy
0oy = Jim i s 5?* ,,(Q) (9.5.38)

where Q = (Qo,é).

9.6 The Hall Conductance and Topological
Invariance

The most remarkable feature of the Quantum Hall Effect is the quantiza-
tion of the Hall conductance, i.e. the very existance of the effect itself!. The
arguments of the previous section show that o, is determined from II ,,,. How-
ever, the coefficients of the gradient expansion of the effective action Seg[A]
are usually renormalized away from the values predicted by a theory of weakly
interacting fermions. In effect, the II,, of the last section is just the leading
order (RPA) approximation to the full II,,. Furthermore, the higher order
terms of the gradient expansion are also expected to give contributions at
lower orders. This is so since the higher order terms are important for wave
vector |Q]| larger than the inverse cyclotron length and frequencies Qo larger
than the inverse Landau gap. The effective low energy (hydrodynamic) the-
ory is determined by integrating out (or summing over) the high-momentum
and high-frequency modes. All these processes will contribute with effective
(usually finite) renormalization of the parameters €,X,0zy, and 7. On these
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grounds, it is not obvious why should o5, be given exactly by some integer

(or fraction) multiple of %2

In a general case (i.e. arbitrary density and arbitrary external field) ozy
does get renormalized. However, there is a special, but very important, case in
which o2y does not get renormalized. This happens whenever the ground state
and the lower energy excitations of the system are separated by a non-zero
energy gap.

We will show now, following the arguments due to D.J. Thouless and
collaborators [Thouless 82], that in this case oy is not renormalized by fluc-
tuations. The key to the argument is the observation that o, is determined
by a topological invariant. We will follow the arguments first presented by M.
Kohmoto [Kohmoto 85] and by Q. Niu, D. Thouless and Y.S. Wu [Niu 85]. In
this section I will discuss the topological invariance in terms of the more gen-
eral problem of boundary conditions in a many-body system with an enery

gap.
(A) The Kubo Formula

Let us consider a system which is in its ground state |¥g > and that there is a
gap to all excitations. Let us assume that, in addition to a uniform magnetic
field B, the system is allowed to interact with a small slowly varying exter-
nal electromagnetic field. In this limit, perturbation theory reduces to the
adiabatic approzimation. To first order in the time derivative, the perturbed
eigenstates are

>< B()|E|a(t) >
Ep(t) — Ea(?)

]
(9.6.1)

where |a(1) > is an instantaneous eigenstate of the time dependent Schroedin-
ger equation

Wy (t) >= exp{_%/ot dt'ea(t")}la(t) > +ik Y 0

B#a

H@)|a@t) >= Ea(t) |a(t) > (9.6.2)

which is a parametric function of t. If we choose the gauge Ap = 0, time enters
in the Hamiltonian H through the space components of the vector potential
which have now the extra term § A

§A = E()t (9.6.3)

where E is a very weak, slowly varying electric field. The expectation value
of an arbitrary operator M in this state is

< \Ila(t)|M|\Ila(t) >=
,hz <a|M|B>< Bl&la>+<ald|>B < BIMla> (9.64)
- o) — al?) ‘

Let us compute the expectation value of the current operator Ji(z). Let us
recall that the states {|« >} obey the time-dependent Schroedinger equation.
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Thus < a|Z |8 > is given by

<a| |ﬂ>

<algl8> m (9.6.5)

The Hamiltoninan H is a slowly varying function of time. But time only
enters in H through its dependence on the vector potential A. From this
observation, and from the definition of the current as the functional derivative
of the Hamiltonian H, it follows that the Hall conductance ozy can be written
in the form

< alJi|B >< BlJala > — < alfz|8 >< BlJ:|a >
Ty oo — — ik
(7o) = —ihlala ), (O — <))

(9.6.6)
This expression is known as the Kubo formula for the Hall conductance ozy.
Analogous formulae can be derived for other components of the conductivity
tensor as well as for other transport properties. It is important to stress that
the states {|a >} are the ezact eigenstates of the full many-body system de-
scribed by H and that {e4(t)} are the exact energy levels. They should not be
confused with the one-particle states and levels of the non-interacting system
which are quite different.

(B) Generalized Toroidal Boundary Conditions

There is an alternative approach which yields a more suggestive and useful
expression for ¢,y. Let us use the Schroedinger Equation to write an equiv-
alent, but more useful, expression for the Hall conductance. Let us imagine
that the system under consideration has N particles inside a rectangle of sides
L, and L,. Since the external (weak) electric field is taken to be uniform in
space, we can write the associated electrostatic potential U(Z) in the form

U@ =E-% (9.6.7)
and E = VU. Thus, the extra term in the vector potential 64 is
§A = Et = V[U(D)1]- (9.6.8)

Since 64 is a pure gradient, it can be eliminated by a suitable gauge trans-
formation of the fermion operator of the form

V() — 'RV (), (9.6.9)

Notice, however, that such local gauge transformations cannot change the
value of the c1rculat10n of the vector potential 64 on closed non-contractible
loops. More specifically the line integrals I;,

Ijzjf §Adl=t ¢ E.di=tE;L; (9.6.10)

on paths T'; which wrap around the system on the z; and z directions respec-
tively, are gauge invariant if the fermions move on the torus. Thus, although
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the vector potential §A disappears from the problem, the holonomies do not.
In fact, they enter in the boundary conditions. Line integrals of a gauge field
on non-contractible loops in space (or space-time) are called the holonomies
of the gauge field.

The problem of assigning boundary conditions to quantum mechanical
systems on a closed manifold is a very subtle one. For instance, if the fermions
move on a torus and no magnetic field is present, it is perfectly consistent to
use periodic or twisted boundary conditions which, for an N-particle system,
are . . .

Y($y,...,in) = lW(E + L,...,En + L) (9.6.11)

where § is an arbitrary two-component vector and L is a displacement along
z; by a distance L, or x5 by a distance L,. These boundary conditions are per-
fectly consistent since, in the absence of magnetic field, the total momentum
P is a constant of motion. The momentum of the only eigenstate compatible

with the boundary conditions is I%I—' But, if a magnetic field is present, the

situation is somewhat different. In section (9.1) we introduced the magnetic
translation operators. These operators commute with the one-particle Hamil-
tonian. In fact, they also commute with the Hamiltonian of the full interacting
system. In section (9.1), we also found that the only consistent boundary con-
ditions for the wave functions (generalized now to the N-particle case) for

charged particles moving on a torus in the presence of a non-zero magnetic
field B are

ai(z1,z2+ La) = ay(z1,z2) + 0182(z1,22)
as(z1 + L1, z2) = az(z1,22) + 32ﬂ1(31,$2)

V(=D + L) (o8 = exp{ 3 Zﬂl CEEDELAMCOREAD

V(D) (o) + L)) = expl S S a5 4+ WY ()
j=1

(9.6.12)
where we have included the effect of the electric fields through the angles
61,03. These boundary phases are related to the electric field by

et

0; = LEL; = 21 (9.6.13)

h i= e
Thus, in addition to the phase twist §, the requirement that the states be
eigenstates of the magnetic translation operator leads naturally to the gen-
eralized boundary conditions. We will see below that the additional phase
factors arise from the impossibility of defining the phase of the wave func-
tion globally and smoothly on the torus. The wave functions for particles on
a torus in the presence of a magnetic field form a fiber bundle. The condi-
tions, or rather the requirement that the states be eigenstates of the magnetic
translations, define the fiber bundle. We will see below, that a similar diffi-
culty arises when one tries to define the dependence of the phase of the wave
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function on the twist angles g.
(C) The Kubo Formula for 0zy and the First Chern Character

From now on, we will assume that the vector 7 represent two constant angles.
In any case all the time dependence of the states enters through #. All time
derivatives become derivatives relative to the phase 6;. The Kubo formulas
can now be written in the form (6; = 39j)

> 2
(0ey)a = =101 < aldzla > —82 < aldyla >]. (9.6.14)

In this form, this formula was first derived by Q. Niu, D. Thouless and Y.S.
Wu [Niu 85]. They also considered the average < (0zy) > over the torus of
boundary conditions

2% 2%
< (0zy)a >:/ d01/ db2 (02y)a
0 9 - (9.6.15)

2 2% 2%
== / d6,d05 [83 < a|dr]a > —8; < a|da|a >]
0 0

What matters to our discussion is the fact that < (o,y)s > is proportional
to a quantity, known as the first Chern number C}, which is a topological
invariant. A similar expression also appears in the tight-binding case, which
will be discussed below.

Before we consider what the average conductance is, we must face the fact
that in any physically relevant situation the boundary conditions are fixed.
Thus it might appear that while < (0zy)o > may be an interesting quantity to
compute, it is not directly relevant. This is true. However, we are considering a
special situation in which there is a finite energy gap between the ground state
and the first excited state. It is easy to argue that, if the gap is finite, then
the difference of the measured value of (04y)%, with fized boundary conditions,
and < (04y)a > vanishes in the thermodynamic limit, at least like 1.

Let us consider the differential change 9&8—;4&:-. The dependence of the
conductance on the phase angles 6; and 6 enters through the Hamiltonian
H. But H is a function of %t and %‘; only. Thus, all changes must be of

the form -I—};%Z—.fr%‘i (7 = 1,2). Since there is a non-vanishing gap, all small

changes in the parameters of the Hamiltonian A must lead to changes of or-
der unity in all local quantities. This includes, changes in the energies and
wave functions of local excitations. Thus, the derivatives ﬂi}’.)ﬂ must have

finite limits for thermodynamically large systems. Hence, ﬁ%f& behaves like

% for asymptotically large systems. This justifies the use of the conduc-
tance averaged over all boundary conditions [Niu 85].
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(D) Fiber Bundles and the Quantum Hall Conductance

Let us now turn to the issue of the topological invariance of < (0zy)a >. The
argument goes as follows. The boundary condition angles #; and 62, being
phases, are defined modulo 27. Each choice of a boundary condition amounts
to a choice of a point g on the torus S; x S of boundary conditions. For
each point § we have a unique eigenstate ¥, ({Z}; 0) of the full many-body
Hamiltonian H. In mathematical jargon, we have a fiber bundle. The wave
function has an amplitude and a phase which are smooth functions of g. Now,
the total phase of the wave function is not a physical observable. But changes
of the phase are. In particular, let us imagine that, at some initial time %o,
we have defined an initial boundary condition 0(t0) w1th a phase for the state
arg¥(6(to)). The external electromagnetic field is now allowed to couple to
the system in such a way that the boundary conditions change as a function
6(t) and return to the initial value 8(to) after some very long time T'. During
this process the vector é‘(t) traces a closed curve T on the torus S; x S1. At
the same time, the phase of the wave function changes by an amount ép

ép = Aarg¥ = AlmIn ¥ = arg¥(0(to + T)) — arg¥(0(to)) (9.6.16)

If ¥ is an analytic non-vanishing function of 5, the phase change, ér must
be zero. This is so because, in such case the contour can be deformed to
zero. However, the only analytic function on a torus is a constant. Thus, a
non-vanishing adiabatic phase change ér requires that the function In ¥ be
non-analytic on the torus of boundary conditions. In this case, closed contours
which enclose singularities of In ¥ are non-contractible and ér is non-zero for
such contours. Non-zero adiabatic changes of the phase of wave functions
of quantum mechanical systems are known as Berry phases [Berry 84] and
[Simon 83]. Since the wave function ¥, (77, .. .,i"N;H-‘) is a smooth function
of its arguments, a non-analyticity in In ¥ amounts to zeroes of ¥ for some
values of 6. Smoothness requires that the zeroes be isolated points on the
torus S; x S;. The Berry phase 6r counts the number of zeroes of ¥ enclosed
by the contour T'.

How is the phase of the wave function W(®)({Z};6) related to the Hall
conductance? In order to investigate this issue let us introduce the following
suggestive notation originally introduced by Kohmoto. Let Aia)(ﬂl, f5) be on
a vector field on the torus S'1 x 51 defined by

AP =i« a| la>=i< w<“>| |\1/<“> (9.6.17)

With this notation, the averaged Hall conductance is

2 2 2r
< (0zy)a >= %/ d01/ dfs (01.A2 — 02.A1)- (9.6.18)
0 0

This is the Niu-Thouless-Wu formula [Niu 85].
In other words, < (0zy)a > is the flux through the torus S1 x S1 of the
vector field A(6).
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Furthermore, the states [¥(®)(#) > are defined up to an overall phase fac-
tor. Thus, the states [¥(®)(§) > and e‘f(§)|w(“)(§) > are physically equivalent.
Notice that the phase factor does not modify the boundary conditions. Under
a phase change, the vector field .A(0) transforms like a gauge transformation.

Ap(@) = i < a|dla >— i < a|dla > -0 £(8). (9.6.19)

Thus phase factors in the wave functions translate into a gauge transformation
for the vector field A; defined on the torus of boundary conditions. We can
now use Stoke’s Theorem to write the averaged Hall conductance in the form

2 -
<m)a>=5 f oL (9.6.20)
r

where T is the rectangular contour with corners at (61,603), (6; + 2m,0,),
(61,02+2m), (61+ 27,62+ 27). A non-zero Hall conductance means that the
vector field A cannot be a periodic function on the torus Sy x Sy of boundary
conditions. This, in turn, implies that along non-contractible closed contours
I'; and Ty, which wrap around the torus along the #; and #; directions re-
spectively, A and the wave functions must change like

.Ak(01 +27r,02) =Ak(01,02)+3kf1(01,02) (9.6.21)
Ak(01,02 + 27) = Ag(64,02) + O f2(61,62) (9.6.22)
U ({F};6, + 27,60,) = 1010 @() ({7}, 6,,0,) (9.6.23)
U ({£}; 601,02 + 2) = e/20102)G(({£}; 0, ,0,). (9.6.24)

This topological structure is strongly reminiscent of the Wu-Yang construction
for the wave functions of charged particles moving in the presence of a Dirac
magnetic monopole [Eguchi 80] and [Nash 83]. We can make the analogy
even sharper. Let us suppose that we have a wave function ¥, ({Z}, 6-) which
satisfies boundary conditions determined by the point fon ) x S1. Now, given

¥, ({£},6), can we unambiguosly and completely determine ¥, ({Z}, §') for
some other arbitrary point §" on S1 x S17?7. The answer to this question is
no. The phase of ¥, cannot be determined uniquely and smoothly over the
boundary condition torus unless the Hall conductance is equal to zero. This
is so because at the zeroes of ¥, its phase is undefined. Let us consider the
simpler case of a wave function which vanishes at just one point 50 on S1 x Sy.
We now split the torus T'= S§; x S; into two disjoint subsets Tt and Ty such
that 50 is in Ty. Since Ty; does not contain point g in which ¥, is zero the
phase of ¥, can be determined globally on Tty. For lnsta.nce we can choose
to make ¥, real on Ty;. However, on Tt there is a pomt 00 in which ¥, does
vanish. We can always define the phase of ¥, at f = 00 to be some arbitrarily
chosen value. Once a value is chosen, the phase of ¥, can be defined by
continuity on an arbitrary neighborhood of 8y which is not equal to the whole
torus T, Thus we have two different definitions of the phase of ¥, on Ty and
Trr1. Obviously these definitions must amount to a gauge transformation, i.e.

VI ({#}, 8) = e/ OwI ({7}, 6) (9.6.25)
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where f(ﬂ-‘) is a smooth function on the closed curve 5 which is the boundary
between T and Ty;. The vector field A also has two different definitions on
Ty and Tyy, which differ again by a gauge transformation

AL@B) - AL (8) = 0 £(B). (9.6.26)

The Hall conductance reduces to a sum of two contributions, one from T and
the other from T7;. Since both surfaces have boundaries, we can readily use
Stoke’s Theorem to write

2
< (Ozy)a > = %{/ (0142 — 32 A41) +/ (0142 — 02A41)}
T Ty

2 - - - -
- 6—{/ A,da—/A,,de}
h Y Y

where we have used the fact that the boundaries of Tt and Ty have opposite
orientation. Thus, we find

(9.6.27)

2 e - 2 - -
< (Ony)a >= = / (A1 —Ai)-dif == / af - db. (9.6.28)
hJ, hJ,

Thus, < (0zy)a > counts the number of times the gauge transformation £(§)
winds around 27 as § traces the closedwinding number loop v. The winding
number C;

Ci = i/é’f.dﬁ (9.6.29)

27 J,

is a topological invariant known as the first Chern character. It is a topological
invariant since it cannot change by any smooth deformation of the contour 7.
However, if under a deformation, one or more additional zeroes of ¥,, cross the
boundary into region T7, the winding number will jump by integer amounts.
These processes correspond to crossings of energy levels.

The fiber bundle associated with this problem can be defined in the fol-
lowing way [Kohmoto 85]. To every point g on T we associate a state \Ila(ﬁ)
States W’ (), which differ from ¥, () by a gauge transformation, f(d), are
physically equivalent. Thus, at every point eT we have associated the ray or
bundle of states related to ¥, (5) by a gauge transformation. The torus T is
partitioned into a union of sets Ty, Ty, ... each containing at most one zero
of ¥,. The phase of ¥, is defined on each set which results on a set of state
vectors W1, WI! whose phases are smoothly defined on 77, Tyy, . ... These
state vectors dlﬂ'er from each other just by gauge transformations whlch are
smooth functions f(ﬂ-) on the overlap between two regions, say 11 and Tyr. The
transition function f(0) is a smooth map from the closed curve v C Ty [ Tir
to the group U(1) of phases e, Since v is isomorphic to U(1) the tran-
sition function is a smooth map from U(1) onto U(1). These maps can be
classified into homotopy classes, each class defined by the winding number C}
of equation Eq.(7.199). This map is known as the principal U(1) bundle over
the torus T. The vector field Ak(ﬂ-‘) defines a connection.
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Let’s define now the one-form dA = A; dfi. A connection one-form can
be written as 2 = A + dA. The transition functions act on fibers (i.e. state
vectors) by multiplication. Once a connection Ag is given a curvature two-
form F = dA can be defined and it is known as the first Chern form. The
integral of this two-form is the first Chern number.

Let us now note the following interesting analogy. In section (9.1) we dis-
cussed the problem of the quantization of the motion of a charged particle in
an uniform magnetic field with the particle constrained to move on the surface
of a torus in space. There, we found how the wave functions transform under
magnetic translations. In this section, we showed how to construct the wave
function on different patches of the torus of boundary conditions. The rela-
tion between the wave functions on different patches is analogous to the way
the wave functions transform under magnetic translations. However, here we
are discussing phases of many-body wave functions on the torus of boundary
conditions! At the root of this analogy is the fact that the many-body wave
functions are also representations of the group of magnetic translations. Here
too, if the wave functions ¥(®)({£},§) are required to be single valued func-
tions on the torus S; x S, the same consistency condition discussed in section
(9.1) implies that the total flux through the torus should be an integer n mul-
tiple of 27. Otherwise different paths from g = (0,0) to, say, g = (2m,2m)
would lead to inequivalent phases for the wave function ¥(®). We conclude
that, in this case, the averaged Hall conductance is quantized to be an integer
multiple of ;—2

This argument is actually much too strong. In fact, it appears to require
that < (0zy)e > should always be an integer multiple of ;—2 The actual obser-
vation of the Fractional Hall Effect, as well as the success of Laughlin’s the-
ory, indicates that this argument has to be relaxed. Indeed, the observation of
FQHE which has oy = ;—2(%) requires that for the case of toroidal boundary

conditions, the wave functions ¥(®)({£};#) must be multivalued functions on
the torus of boundary conditions. This means that the eigenstates of H must
have several components and behave like vectors under periodic changes of
boundary conditions. Hence, rather than requiring that \Ila({.i"},ﬂ-‘) be single
valued on the torus S; x S1, we should demand that ¥, should have m com-
ponents (where m is some integer). The wave function returns to its initial
value only after the torus has been covered m times. In this case the aver-
aged Hall conductance is equal to %(%2) The integers n and m cannot be
determined by topological arguments alone. They have to be calculated from
some microscopic theory. In the next sections we will discuss a few examples:
(a) free electrons filling up one Landau level, (b) the tight-binding Hofstadter
problem and (c) Laughlin’s theory of the Fractional Quantum Hall Effect. In
each case n and m turn out to be different. However, the importance of the
topological argument is that, for the specific task of computing o4y, it suf
fices to consider just some simple limit in which the calculation can be done
easily. The topological invariance of < 0, > insures that it cannot change
under smooth deformations of the underlying Hamiltonian (unless, of course,
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during this process there is a level crossing)
(E) How Many Components does the Wave Function Have?

Let us point out that subtle, but important, differences in the behavior of the
system arise depending on the choice of boundary conditions. In this section
we have considered mainly the case of generalized periodic boundary condi-
tions (GPBC’S.) These GPBC’S require that the fermions move on a two-
dimensional torus in space. While this choice is conventent from the point
of view of mathematics, it is not very natural from an experimental stand-
point. Experimentally, the natural choice is a rectangle coupled to a four-point
probe, which is a set of sources and sinks of charge. In practice this means
taking charge from one point on the edge of the sample (sink) and injecting it
back into the system at another point (source). Typically this process involves
the use of wires, batteries, etc. In a sense the measuring devices implement the
generalized periodic boundary conditions. The voltage drop accross the de-
vice is proportional to the boundary condition angles §; and 8. Yet, another
physically relevant situation is a disk without wires. If the disk is isotropic
and thermodynamically large, then the wave function vanishes exponentially
fast as the difference of the particle coordinates becomes large. This can hap-
pens due to the presence of an isotropic potential which confines the particles
inside some region of the disk. In this case the points on the edge of the disk
are asymptotically equivalent to each other. The thermodynamic limit of this
case is thus identical to that of a set of particles moving on the surface of a
sphere with uniform radial magnetic field. i.e. a magnetic monopole [Haldane
83]. Niu, Thouless and Wu [Niu 85] observed that GPBC’S require multicom-
ponent wave functions. Spherical (or disk-like) boundary conditions have only
one-component wave functions [Laughlin 83] and [Haldane 83]]. This issue has
caused a great deal of confusion, which was partly due to the fact that the
components of the wave functions for GPBC’S were originally thought as re-
sulting from the spontaneous breakdown of some unknown discrete symmetry.
Indeed, in systems in which a global discrete symmetry is spontaneously bro-
ken, there are a finite number of degenerate ground states which are related
by a symmetry operation. This phenomenon is quite common in magnetic sys-
tems with discrete symmetries. The most common example is the Ising Model.
It is also present in commensurate charge-density-wave systems, such us poly-
acetylene chains. However, these analogies are quite misleading. In the case
of Quantum Hall systems, the multicomponent structure is a feature of the
entire Hilbert space, not just of the ground state. The Hilbert space is split
into a number of disconnected pieces not related by a symmetry operation.
In other words, this structure is not the result of the spontaneous breakdown
of any symmetry. Rather, this feature of the Hilbert space merely reflects the
global non-triviality of the manifold on which the particles move. As a mat-
ter of fact, the number of components of the wave functions is different on
different manifolds [Wen 90a]. For example, instead of a torus, let us consider
a sphere. All closed loops on the surface of a sphere are contractible. Thus,



9.7 Quantized Hall Conductance of a Non-Interacting System 283

all the holonomies are trivial. The wave functions for charged particles mov-
ing on the surface of the sphere in the presence of a uniform radial magnetic
field (i.e. a magnetic monopole) still form non-trivial fiber bundle, known as
the monopole bundle [Wu 75]. But the arguments given above indicate that
the states are now non-degenerate.

What is the physical significance of this degeneracy?. There are two
schools of thought on this issue. According to one school, the degeneracy
should not be regarded as being physical since it changes with boundary con-
ditions. According to this point of view, the degeneracy merely reflects the
fact that the location of the center of mass is quantized if the system is placed
on a torus. Indeed, Haldane [Haldane 85b] has given a detailed study of the
symmetries of the states on the torus and showed that degeneracy arises from
the magnetic translations of the center of mass independently of the physi-
cal properties of the system. He further showed that, in general, there are no
additional degeneracies and that the states for the relative coordinates are
generally non-degenerate. But, for the same token, it is clear that there are
no states on a sphere that can carry a current. Thus, if we wish to construct
a state with a non zero current we must put the system on the torus. Wen
[Wen 90b] has given a very general argument which shows that if the surface
on which the fermions move have g handles (genus g Riemann surface) the
degeneracy is k4, if k is the degeneracy on the torus. From this point of view,
the topological degeneracy is a fundamental qualitative feature of the system.

9.7 Quantized Hall Conductance of
a Non-Interacting System

In this section we will discuss the fairly simple but interesting problem of
the computation of the Hall conductance for an assembly of non-interacting
electrons moving freely on a torus . We will assume that the external magnetic
field and the electron density are such that there are an integer number of
completely filled Landau levels.

Let us begin by discussing the nature of the one-particle states. Let £
denote the coordinate of a particle of charge e and mass m. The magnetic field
is B and the torus has linear dimensions L; and L, along its main circles. In
section (9.1) we constructed the single particle state for the case of an isotropic
disk. For simplicity we will restrict our discussion to the case of particles on
the lowest Landau level. In section (9.1) we found that the single particle
states for the lowest Landau level ¥(z, £) have the form

U(z,z) = f(z,f)e"'[’l’/‘”g (9.7.1)

where f(z, %) is an analytic function, i.e. 8;f = 0.
A basis of (analytic) functions are the powers z™. For a system with
Ny flux quanta there are Ny linear independent states. Thus, an arbitrary
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state in the lowest Landau level is a polynomial in z of degree Ny times the
exponential factor.

Let us consider now the case of a system with exactly N = Ny electrons
in a magnetic field B with Ny flux quanta. The ground state wave function
¥ for the N-particle system is the Slater determinant

1 ... 1
N
FAl .o 2ZN 1
Un(z1,...,28) = . c exp{—wzkﬂz}. (9.7.2)
. . . 0.=l
NN !

This determinant has the Vandermonde form. The wave function ¥n can be
written in the form

N
1
Un(z1,...,2N) = H (25 — zx) exp{—mzkﬂz}. (9.7.3)
1< <k<N 0 =1

We want to compute the Hall conductance for this system. We will use the
Niu-Thouless-Wu formula. However, in order to use that formula we need to
write down a wave function which is an explicit function of the boundary con-
dition angles 6, and #;. What we need is to generalize the state for a system on
a torus (instead of a disk) of linear dimensions L, and L, satisfying the gen-
eralized periodic boundary conditions of Haldane [Haldane 85a], whose work
I follow here. Since toroidal boundary conditions break rotational invariance,
it is more natural to work in the axial (or Landau) gauge A = —Bz;, A, = 0.
It can be easily checked that the wave functions for the states in the lowest
Landau level have the form
’2
U(zy,z2) = f(2) e s
where z = £, + iz2 and f(z) is an analytic function.
The generalized periodic boundary conditions imply that f(z) must sat-
isfy the consitency conditions

f(z+ L)) =€ f(2)
f(z + 1L2) :ew’"i"Nl[(z,le)'l'T]f(z)

(9.7.4)

(9.7.5)

where 7 = %}z The analytic function f(z) must have zeros inside the rectangle
with vertices at £:(%1 % 7). Thus, f(z) must have N, zeroes. Indeed, the
integral of %(3 around the edges of the rectangle is equal to N, since the
total change of the phase of f(z) is 27 N,.

The functions f(z) which are analytic inside the rectangle and satisfy the

consistency conditions, must be all analytic functions with exactly N, zeroes.
The most general form that f(z) can take is [Haldane 85a]

Z—Zj
L

N,
f(2) = etks H 1 ( ™) (9.7.6)
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where 9 (u|r) is the first odd elliptic theta function defined by Ederlyi [Ederlyi
53]

+00
di(u|r) =1 Z (—1)" exp[inr(n — %)2 + im(2n — 1)4]. (9.7.7)

n=-—oo

The parameter k is a real number in the range 0 < [k| < 7N, %3- The solutions
1

are thus parametrized by the set of N, complex numbers {z;} which determine
the location of the zeros of the function f(z), and by k. By direct substitution

we find that k and zo = ZN

j=1 2j are the solutions to the set of equations

eif1 =eikL1(—-l)N'

ei92 —p—kLatin il (9.78)
which have the unlque solution k£ = —ILLN'- and zg = b,r—L zk—l—l The
location of the zeroes is determined by requiring that the wave functions f(2)
form a complete set of orthogonal wave functions which are eigenstates of the
magnetic translation operators. A simple way to construct such a set (i.e. a
basis for the Hilbert space of the lowest Landau levels) is to choose a set of
zeros which satisfies z;4; = z; + I%f- Thus the dimension of the Hilbert space
equals N, as it should be.

The N-particle states are constructed very much in the same fashion. Here
we consider the case of N = N, particles and, once again, we have filled up
the lowest Landau level The only difference here is that we will separate the
coordinates z = , % for the center of mass (C.M.) of the system from the
set of relative coordlnates z; — z. The antisymmetric N-particle wave function
¥ n has the form

Uy =N ¥eopu(2) H f(z; — zi) exp{— Z (22) (9.7.9)

2
1<j<k<N 25

where :c'; is the z3-coordinate of the j** particle and A is a normalization con-
stant. The wave functions ¥car and f(2) for the center of mass and relative
coordinates are determined by demanding ¥y to satisfy the GPBC’s. The
“pair-wave-functions” f(z; — z;) do not change if all particles are (magneti-
cally) translated simultaneously. Only the CM wave function ¥ py is sensitive
to a uniform translation of the system as a whole. On the other hand if a par-
ticle (say the j** particle) is transported around the torus exactly once, the
wave function must change by a sign determined by its antisymmetry prop-
erty. These conditions can be met by requiring ¥¢ps(2) and f(z) to satisfy

f(z+ L1) =f(2)

f(z +iLy) =f(2) exp[iw(%? + 1] (9.7.10)
Von(z + L)) = (=) "1y (2)
Wonr(z + iLy) =3 (—1)N-1 exp[-iw(i—‘j +O)¥em(z)- (97.11)
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These conditions imply that both f(z) and ¥cas(z) are entire (doubly) peri-
odic functions with just one zero in the principal region. The solution is again
an odd elliptic theta function

zj—z
Sz =) = 9 (Z L £lr). (9.7.12)
The wave function ¥¢cpr(2) can also be written in terms of a theta function
Yem(z) = e““ﬂl(z; Z0 [7). (9.7.13)
1

This solution has three parameters (k and zg, the coordinates of the zero of
¥ear ) which are determined by the set of consistency conditions
eI —(_1)Nits

2T IE =(=1)NeibatEL (9.7.14)
which has the unique solution k = % + %11- and zg = Ll(—g-fr- + %) - iLz(% +
2.). Thus the wave-function for one filled Landau level is unique. Notice
that, in contrast, the single particle states have an N-fold degeneracy. We
will encounter a similar phenomenon when we consider the case of fractional
filling.

One important feature of the wave function ¥y is the fact that the twist
angles #, and f#; only affect the dynamics of the CM through ¥car(z). The
wave function ¥car(2) can be viewed as the wave function for a single particle
located at z with charge —Ne moving on a torus in the presence of an uniform
external magnetic field with N, = W units of flux. Thus, the center of mass
carries the full current. The Niu-Thouless-Wu formula can now be used to
yield the result

e2 i}
< Oy >=m daj < ‘I’Nlﬁlq’N >
7
e L o o e11)
=mfd0j‘/0 d:cl A d.’tzl\I’Nl 6—0j1n\I’CM(Z,0).

The average Hall conductance is thus determined by average change of the
phase of the wave function for the center of mass on a closed loop of the torus
of boundary conditions. Since ¥¢pr(z,6) is an entire function with exactly
one zero in the principal region of the elliptic theta function, the theory of
functions of complex variables tells us that the integral has the value

}{ da,-iln Vem(z,0) = 2. (9.7.16)
06;
Thus we get
2
< Opy >= % ‘1 (9.7.17)

which is indeed the answer we expected to get.
Let us finallly remark that the wave function ¥ is unique because we
have an exactly filled Landau level. In contrast, the single-particle states are
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N,fold degenerate. In the more general situation of fractional filling, where
%’- is not an integer, the wave function has more than one component [Haldane
8ba).

9.8 The Quantized Hall Conductance of Filled
Hofstadter Bands

We now turn to the far less trivial problem of computing the value of ¢y for
the problem of charged particles moving on a square lattice in the presence of
an uniform commensurate magnetic field, the Hofstadter problem. In section
(9.2) we presented a description of its single-particle states. Let us recall that,
if the flux-per-plaquette is %q’)o, there are q single-particle Landau barids each

with quﬁl degenerate states. In principle, if we solve the Schrodinger Equa-
tion, we can construct all the wave functions and, from there, we can compute
anything we wish. These equations are very complicated and yield only to nu-
merical solutions. However, the computation of o, is considerably simplified
by the fact that, here too, it is related to a topological invariant. Thus, we can
calculate o,y within some approximate scheme and still get the exact answer.

Let us first derive an expression for o,y for a lattice system with periodic
boundary conditions. Unlike the continum problem case of the last section, the
lattice problem is considerably simpler since the main effect of the magnetic
field is to generate a sublattice structure. Indeed, in section (9.2) we saw that
the requirement that there should be an integer number of flux quanta piercing
the lattice means that either L; or La have to be integer multiples of q. Since
the magnetic unit cell has q plaquettes, there are ££2 magnetic unit cells. We
have ¢ sublattices and a Schrodinger Equation satisfied by the ¢ sublattices.
Hence, unlike the continuum case, we can apply periodic boundary conditions
directly. The reason is that for this lattice problem what matters is not the
vector potential A;() on the link (7,7 + é;) but on the phase ¢*4i(") which
is invariant under the shifts A4;(7) — A4;(7) + 2nl;(¥), where {l;(7)} is a set
of arbitrary integers. Furthermore, in section (9.2) we saw that even though
the discrete magnetic translations do not commute with each other, there is
a subset of discrete magnetic translations (i.e. those generated by 71 and 7§)
which commute among themselves and with the Hamiltonian. This subset,
which defines the magnetic Brillouin zone, consists of the set of translations
by integer numbers of magnetic unit cells. Thus, in units of the magnetic unit
cell, the Hamiltonian is translationally invariant. It is then perfectly consistent
to impose conventional periodic boundary conditions since the wave functions
in real space are globally defined. However, they are not globally defined on
the momentum space torus (—w < ky < w,—Z < ky < I).

Let us derive a version of the Niu-Thouless-Wu formula for the case of a
tight-binding system. This formula was derived by Kohmoto [Kohmoto 85],
[Kohmoto 87].
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In the case of a tight-binding system the current operator Ji () flowing
on the link (7,7 + €;), can be obtained by differentation of the Hamiltonian

6H
J
k(‘F) 6Ak(7-')
where H is an arbitrary (many-body) tight-binding Hamiltonian. We will
assume here that the external vector potential A(7) only enters in the kinetic
energy term of H, which has the form Hyj,

(9.8.1)

Hn = / _ CH(E) hyn(F, F) C(F') (9.8.2)
EE

where hyin(k, k') is the (hermitian) one-particle non-interacting Hamiltonian.
In the particular case of a system coupled to an external electric field E, the
vector potential A gets shifted by Et. It is easy to show that, when E is not
zero, the kinetic part of the one-particle Hamiltonian Ay, takes the form

in(E, B3 E) = hign(k + — Et, B + —Et). 8.
hyin(k, k' E) kin(k + > Et, kK + e ) (9.8.3)
Thus, the external uniform electric field E (or a twist f= ,:ZE ) is equivalent

to a shift of the momentum of each particle by £; 2558
The Kubo formula can be written in the following simple form (j, k = 1,2)

(0sy)a = —thL1Lo €kt - > . (9.8.4)

6 ol 6 o
8A; 6A;
For the case of a non-interacting system this expression reduces to a sum over
all the occupied one-particle states {|n >} (i.e €n < Ey )

— 6_2 . Z i o 9.8.5
(O':J:y)a = i €51 {n}(ak.’ <n|)(5]a|n >) ( O, )

The one-particle states {|[n >} are labelled by a band index r (1<r<g¢—1)
and by a momentum label k, where k in the magnetic Brillouin zone, ¥, (E)
are the eigenstates of the Schroedmger equation which satisfy the boundary
condition \Il,..,_q(k) = ¥, (k). Let A be a small parameter (A — 1) which we
will use to define (formally) a perturbation theory. This parameter enters in
the Schroedinger equation in the form

—At [ 51 W4y (ky, ko) e E W,y (R, o))+
—9t cos(ks + 27r§r)\1:,(k1, ko) = E(ky, k2) ¥, (ky, k2)-
(9.8.6)

This equation has a set of q linearly independent solutions {\IIS-" )}(E)(] =
1,...,¢). Each solution \Il,(-J)(E) has an eigenvalue EJ(E) These are the
Landau-Hofstadter bands.

Let us now consider the case in which the number of particles N is such
that there are an integer number r of exactly filled Landau-Hofstadter bands.
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This requirement defines the state |o > . The Hall conductance (¢zy)q is then
a sum of contributions, one from each filled band, of the form

2 r
(02y)a = f—h > / ] / ks Ze,xak ¥ (F) 05, UM(E).  (9.8.7)
n=1v"

We can define a vector field .Ag-")(k), for k on the magnetic Brillouin zone, to
be

A(E) = Xq: T (k)(—1) 8, (M (k). (9.8.8)

p=1

The Hall conductance is essentially the flux of .Ag-") through the magnetic
Brillouin zone

e — dk dk n
(0sy)a = 5,,2_:1/., . /__ —Ze,,ak A (k). (9.8.9)

Once again, (05y)q is identified with a Chern number which counts the wind-
ing number of the phase of the wave functions as k traces the boundary of
the magnetic Brillouin zone. Let us denote with I, the Chern number for the
n-th band. I, is given by

_ [T dky [Fdky (n)* (TN A (n)( T 0
I, = /_,,?/_z_ ge,,zlakjwp (k) 8k, ¥ (k). (9.8.10)
q p=

Since the numbers I, are topological invariants, we can compute their exact
value by considering a smooth deformation of the Schrodinger equation. For
instance, we can compute the integers I, in the limit A — 0 (or rather a
perturbative expansion in powers of A ). If, as A is varied from A =0 to A = 1,
there are no band crossing, the integers I, will not change.

Let us now discuss the qualitative features of a (degenerate) perturbation

theory in A. At A = 0 the eigenstates \Ilg,")(l?) are (n=1,...,9)
YM(k) = 8pn (9.8.11)
with eigenvalues ES”(E)
EQ(F) = =2t cos(ky + 27Ln). (9.8.12)
q

The spectrum then has ¢ generally non-degenerate bands with dispersion laws
E,(,O)(E). On the magnetic Brillouin zone (—7 < k; < m,— % < ka < 7), these
bands cross at £ = (k,0) and k = (k1,7). For example, the lowest band
(n = 1) crosses the next (n = 2) band at k; = 7. The second band crosses the
third one (n = 3) at k, = 0, etc. In general, the n-th band (for n even) crosses
with the n — 1-st band at k3 = 7 (the bottom of the n-th band) and with the
n + 1-st band at k; = 0 (the top of the n-th band). Conversely, for n odd, the
top of the n-th band is at k2 = 0 (where it crosses with the n + 1-st band)
while the bottom is at k3 = % (where it crosses with the n — 1-st band). The
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integer n labels the bands as well as the gaps. The top band (n = ¢) has only
one crossing (with the band n=¢— 1 at k = 0 (g even) or k2 = 7 (¢ odd).

The integers I, are determined by the changes of the phases of the wave
function as k passes through the degeneracy points. We can determine these
phases by using Brillouin-Wigner pertubation theory (see section 2.3). The
n-th band (for p and ¢ fixed) crosses with the m-th band if m = n —1I,,, where
the integer 1 (|In| < %) is the solution of the Diophantine equation

n = qsn + ply (9.8.13)

a result first derived by Thouless and collaborators [Thouless 82].

The Schrodinger equation only mixes ¥(™ with ¥(**1), Thus, it takes
I, orders on perturbation theory to mix ¥(*) and ¥(*~9. For k close to the
degeneracy points, the eigenstates will have almost all of their weight in ¥(")
and ¥~ Thus, we get an effective Schroedinger equation of the form

en¥n + Vn,n—I‘I’n—-I =EV¥,

9.8.14
Vn—-I,n‘I’n +en-1¥n =E¥, ;- ( )
The matrix element V,, ,—; is (approximately) equal to
; —Ateik
Va1 = Voo = (=Ate™* )22 9.8.15
n,n—| n—in ( € ) ,.__n..1+1[_12_(6n + fn-——I) _ fr] ( )

where €, (k) = —2t cos(ks + 27En). The eigenvalues of Eq.(9.8.14) are

% 1 n~— tn—- 2
E*(k) = 5(6" +éen) £ \/(6—261 + |Va,n—i]? (9.8.16)
The eigenstates have amplitudes (\Ils,i), \Ilf__ ;) Which are given by
UE) = | W) exp(i6(F)) (9.8.17)

with a similar expression for \IISf_),“. The amplitudes are

)| = V|

n E(B—fnz‘l' Vnn-—- 2

4 (i)l Vol (9.8.18)
w® | = |E=) — €a]
n—l, \/lE(;i;) _ fnlz + |Vn,n—-l,,|2
with the phases
95,+)—9(t) =arg(Vona )+ m==kiln, -, —Dnm

O, =arg(Von-s) i = (1 = 1) 0519

0'(1—-) _ 0(") =a-1‘g(Vn,n—-I,.) = _klln - In7|'.

n—ly,

Let us consider the n-th band with n even. The result is the same for n odd.

At ky = % it crosses with the n + 1-th band. At this degeneracy we have

to choose the solution E(~) for the top of n-th band. Conversely, at k; = 0,
the n-th band crosses with the n — 1-th band. Thus, we have to choose the
solution E(+) for the bottom of the n-th band. Let us compute the circulation
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of the vector field Ag")(z) for the n-th band for & = (ki, k) along the contour
v {(0,0) — (7r 0) — (7, %) — (0,0)}. On the first and third segments of the
contour, ks is constant whlle ks changes from zero to 7 and from 7 to zero
respectively. The component .A(1 ") is then equal to

n 4]
'A(l )|k2=§ =6Ta-rgvn,n—-l,,|k,=% =-l,
! (9.8.20)

n 4]
-Ag )|k2=0 _610 arg(Vn In—-1-l,., )lkg_O - _In-—l~

For the second and fourth segments we need to compute .A(Z"). But the phases
have no essential dependence on k3. Thus, we get

AP k=02 = 0. (9.8.21)

The results summarized by equations Eq.(9.8.19) and Eq.(9.8.20) shows that
the circulation of .AS-") on v is

=L fam ._/”& ) ™) g, T
In—27r‘£.AJ ko_ 0 27|' [-Al (kl,o) 'Al (k1,2)]- (9.8.22)

Thus, we get .
I, = g(ln —lp—1). (9.8.23)

Hence, the contribution from the n-th band to the conductance is

2
(02y)™ = %(ln = la-1) (9.8.24)

For a problem with r filled bands we have

(Uzy) - E(I n l) - F( Io) e—’: (9825)

where we have used the deﬁmtlon lp =0.

This result, originally derived by Thouless, Kohmoto, den Nijs and Night-
ingale [Thouless 82], shows that o,y is determined by the topological invariant
I, which characterizes the Landau-Hofstadter bands. This integer is the solu-
tion of the Diophantine equation. The integers l,, may be positive or negative
and are restricted to be in the range |I| < £. Thus, in contrast to the con-
tinuum result, the quantized Hall conductance of a filled Landau-Hofstadter
band may be positive or negative. This surprising result is a Bragg scatter-
ing effect due to the magnetic unit cells. Let us consider an example with
p = 11 and ¢ = 7. There are seven bands. Let us use the notation (sn,l,)
for the two integers which solve the Diophantine equation. The solutions are
(-3,2),(-6,4),(2,-1),(-1,1),(7,—4),(4,-2) and (1,0) for n ranging from
n =1 up to n = 7. Notice that the bands with n = 3,5 and 6 have l = —1, -4
and —2 respectively and carry negative Hall conductance.

The Diophantine equation has a unique solution for ¢ odd. For ¢ even,
the band with index n = £ has two possible solutions (132, %) and (1$2,-1).
What happens here is that for ¢ even and n = 527- the Landau-Hofstadter bands
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have a degeneracy, which we already dicussed in section (9.2). Depending on
how this degeneracy is removed, the conductance is +%, — or even zero. This
observation is important to the physics of flux phases. Let us finally remark
that the n—l sn and Efl__:l l,, obey the sum rules

! g+1 d
Z:l Sn = ’; l,=0 (9.8.26)
for ¢ odd, and
Xq: -4+ _Fr 1 Fp Xq: =41 (9.8.27)
n=1 n=1 2

for ¢ even. The ambiguity in the sum rule is due precisely to the double
solution at n = (g even).
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CHAPTER 10

The Fractional
Quantum Hall Effect

In this chapter we discuss the theory of the Fractional Quantum Hall
Effect ( FQHE). The explanation of this phenomenon has required the de-
velopment of completely new ideas and methods. The concept of fractional
statistics has become a crucial element of the theory.

The physical system involves fermions in strong correlation in the absence
of time reversal symmetry. The treatment of systems with these features can-
not be achieved succesfully within the conventional Hartree-Fock approach to
correlations in Condensed Matter Physics. A new condensed state of matter,
the Laughlin state, had to be discovered.

The Chern-Simons gauge theories, already discussed in chapter (7), have
come to play an essential role in the theory of the FQHE, both as a way
to describe the low energy phenomena (Landau-Ginzburg theory) and as a
theoretical tool to explain the most important features of the problem.

We begin with a detailed description of the theory of the Laughlin wave
function, which is followed by the field theory approaches to the FQHE.

10.1 The Fractional Quantum Hall Effect and
the Laughlin Wave Function

In the past two sections we considered the problem of electrons moving on
a two dimensional surface in the presence of a perpendicular magnetic field.
We assumed that the electron density was such that an integer number of
Landau levels (or bands) were completely filled. Because the system has an
energy gap, the interactions do not play a very important role. In fact, a
perturbative expansion (in powers of the coupling constant) around a state
with one (or more) filled Landau level is likely to be well behaved. Since
all processes involve exciting one (or several) electrons across the gap, the
energy denominators are always different from zero. The ground state wave
function for the interacting system is smoothly connected to the ground state
wave function of the non-interacting system. The arguments of the past three
sections indicate that the topological properties of the wave function will then

295
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be the same for both the interacting and the non-interacting systems. In other
words, naive perturbation theory is a good approximation in this case.
However, if one Landau level (or band) is partially filled, perturbation
theory breaks down. Consider for simplicity the case of N particles in a mag-
netic field B with N4 quanta of flux piercing the surface. The filling fraction

v= 1\% is not an integer. We will consider the simpler (and popular) case of

v= #, where m is an odd integer and, for each electron there are m quanta
of flux. We further assume that the magnetic field is sufficiently large so that
all the Zeeman energies are so large that the system is completely spin po-
larized. This is the case for most, but not all, the experimentally accesible
systems. In this limit, the electrons behave as charged spinless fermions, each
carrying an electric charge of —e.

In section 9.7 we saw that if just one Landau level is filled (m = 1), the
ground state is non-degenerate and its wave function is a Slater determinant.
For m > 1 only a fraction # of the states in the first Landau level are occupied.
The remaining ”‘T"l states are empty. However, occupied and unoccupied
states have exactly the same energy. The actual ground state has then to be
determined through some sort of degenerate perturbation theory scheme. This
procedure is bound to be very complex due to the macroscopic degeneracy of
the Landau level . The resulting state is likely to have properties which are
completely different from those of the unperturbed state.

The observed phenomenology of FQHE also suggests the need for a com-
pletely different state. A non-interacting fractionally filled state would still
exhibit a fractional Hall conductance o,y since, at least for a Galilean invari-
ant system, the conductance is determined by the amount of charge present.
But such a state would not support the very precise plateaus which are seen
in experiments, since additional particles can be added at almost no energy
cost. The fact that the FQHE is seen only in the purest samples indicates
that the effect is the result of electron correlations due to the Coulomb in-
teractions. Moreover, the “quenching” of the single-particle kinetic energies
by the magnetic field is telling us that the interactions play a dominant role.
The FQHE is the result of the competition between degeneracy and interac-
tions. In this sense, the FQHE is an example of strongly correlated electron
systems.

The model which naturally describes the essential features of the physical
system consists of an assembly of N electrons which occupy a fraction v of the
Ny states of the lowest Landau level and interact with each other via Coulomb
interactions. The ground state of this system must be such that it should not
support any gapless excitations (otherwise the plateaus of ¢,y could not be so
sharp) and it should be essentially insensitive to the presence of impurities.
The wave function should be a complex function of the electron coordinates.
This requirement follows from the fact that, if a magnetic field is present,
time-reversal invariance is broken explicitly. Finally, Fermi statistics demands
that the wave function ¥n(7,...,7~n) should be antisymmetric under the
permutation of the positions of any pair of particles. Thus, ¥ vanishes as
the positions of two particles approach each other.
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We will now construct a wave function which satisfies all these require-
ments. Here we follow closely Laughlin’s construction [Laughlin 83] [Laughlin
87]. Let us consider first the low-density limit ¥ < 1 (m > 1). In this limit,
the average separation between two electrons is much larger than the single-
particle cyclotron radius lo(ag > lo ) . The electrons do not venture very far
away and interactions further restrict their motion. The natural ground state
in this limit is an electron crystal, known as a Wigner crystal. The electrons
are able to minimize the total energy by arranging themselves on a triangular
lattice. Actually the “guiding center coordinates” form a triangular lattice. A

Hartree approximation yields a Wigner crystal state Yw(z1,...,2n5) of the
form [Laughlin 87]
‘I’W(Zla s 7ZN) = Z(_l)P¢j111(zP1) tee ¢jN1N(zPN) (1011)
P

where the single particle states ¢j1(z) are

|2 (0)|2 5,00 _

2122 i 413 —|2]%] (10.1.2)

é;1(z) = exp _W

and z( ) are the (complex) coordinates of the (j,1) site of a triangular lattice,

0 4rm V3
2D =1 \/_( +( +i5)). (10.1.3)

The Wigner crystal state ¥y does satisfy a number of the requirements listed
above but not all of them. First, it does support elementary excitations with
arbitrarily low excitation energy, the sound waves of the Wigner crystal. Since
the state is a periodic array of charges, the charge density is not uniform and
it is strongly affected by the presence of impurities which can, and do, pin the
crystal at the impurity sites. Thus, this pinned state does not support any
charge current unless the electric field is larger than some critical threshold
value Ey determined by the local pinning forces. This behavior is commonly
seen in other charge crystals, such as incommesurate Charge Density waves.
The best known examples are the quasi-one-dimensional system NySes and
the quasi-two-dimensional system NpSes.

As the electron density increases (i.e. m grows smaller) the interparticle
separation ag decreases. For a triangular lattice, ag is related to the filling
fraction v and the cyclotron length Iy through the relation v = 4”( )2 Asv

approaches unity, the ratio ﬁ% is also a number of order one. Thus, as v grows
larger, there should be a phase transition from a Wigner crystal to a state
which supports a Hall current. Indeed, as v grows larger and the cyclotron
length approaches the interparticle spacing, the quantum fluctuations should
increase. The leading fluctuations should involve exchanges of a small number
of nearby particles. In particular, there are processes which involve three-
particle exchanges around an elementary triangle (or “ring”). Such processes
spoil the long range positional order of the Wigner crystal. If these ring-
exchanges are able to proliferate, the Wigner crystal melts and there is a
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transition to a liquid state [Kivelson 86]. This phase transition is most likely
to be first order but, depending on microscopic properties, it can also be
second order. The resulting liquid state is expected to have uniform density.
What is more important, and far less trivial to see from this point of view,
is that it should have a gap to all excitations. The phonon of the Wigner
crystal should dissapear from the physical spectrum. This phenomenon is
strongly reminiscent of the Anderson-Higgs mechanism in a superconductor
coupled to a dynemical gauge field: the phase mode of the superconductor
gets “eaten” by the gauge field which, in the process, becomes massive. We
will see below that FQHE has ¢ hidden, dynamically generated, gauge field
which is responsible for the most striking features of this phenomenon.

The liquid state should be regarded as a new condensed state of matter.
Laughlin was the first to realize that this state is fundamentally different
from other known condensed states, such as magnetism or superconductivity.
Drawing on intuition he gained by studying systems with small numbers of
particles, Laughlin proposed the following class of wave functions [Laughlin

83]

2
Un(F1,...,7N) = H f(z; — z1) exp{— E |z’1l (10.1.4)

1S5 <k<N

where f(z) is a suitably chosen analytic function of the complex coordinates
{z1,...,2zn}, l.e. single-particle states only from the lowest Landau level.
Fermi statistics demands that f(z; — zx) be an odd function of z; — zx which
vanishes as z; — z;. These requirements, together with the demand that ¥
should be an eigenstate of the total L, orbital angular momentum, can be
met by the simple choice of f(z) ~ 2™, where m is an odd integer. We thus
arrive to the celebrated Laughlin wave-function ¥y,

N 2
_ . m z;
Up(F1,...,7N) = H (25 — 2k)™ exp{— E |4Jll } (10.1.5)
j=1 0

1<j<k<N

This wave function is remarkable in several ways. Laughlin has computed
the overlap between ¥,, and the exact wave function of a small cluster of
electrons (with N < 3) and interaction pair potentials u(r) = 4, —Inr ,

exp(——z-). He found that in all cases, the overlap was better than 99 per-
cent. For a special potential, namely u(r) = uoV26(F), Trugman and Kivelson
[Trugman 85]showed that U is the ezact ground state wave function for
all F.D.M. Haldane [Haldane 83] has constructed a class of Hamiltonians for
which Laughlin-like states are the exact ground states (see below). Laughlin
originally thought of ¥, as a variational wave function, with a Jastrow form
which is commonly used to construct variational states for superfluid liquid
Helium [E.Feenberg 69].

However, ¥,,; does not contain any variational parameters!. The ground
state is determined by just finding the values of m which minimize the energy.
But m is in fact determined by the total angular momentum! It is remarkable
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that this guess works so well. It is an important problem for theorists to ex-
plain why is this such a good state. The Laughlin wave function also admits a
number of generalizations which describe other filling fractions. These are the
Hierarchical wave functions of Haldane [Haldane 83] and Halperin [Halperin
84]. We will consider mostly the # Laughlin states.

We now follow Laughlin and determine the optimal value of m, as well
as the nature of the correlations present in ¥,,, by using the plasma analogy.
Let p(z1,...,2n) be the joint probability distribution function

p(z1,. . 2N8) = [¥m (21, .., zn) (10.1.6)
which can be thought of as a classical probability distribution for one-compo-
nent plasma with N particles located at {z1,...,zn}. Let U(21,...,2n) be

the classical potential energy and 3 an effective inverse temperature (8 = m).
The potential U is defined by demanding that p should have the Gibbs form

[¥m(z1,-..,2n)]* = exp{—=BU(z1,...,2~n)} (10.1.7)
The classical potential energy U(z1, ..., zn) is given by

N

1

Uz, 2zn) = =2 E ln|zj—zk|+§;2|zj|2 (10.1.8)
1<j<k<N j=1

where we have used units of length such that Iy = 1. The potential U({z;})
is equal to the total energy of a gas of classical particles each carrying charge
g = 1 which interact with each other via the two-dimensional Coulomb pair

potential, Vc(z; — 2¢) = — In|z; — 2|, and with a uniform neutralizing back-
ground charge of density po = zi—. The interaction with the background

charge is represented in U(z) by the last term. This can be checked by noting
that V2z-|z|> = 2, which agrees with the density being uniform and equal

to =-—. This is the one-component classical plasma.

27m

The plasma analogy is a very powerful tool for the investigation of the
properties of the Laughlin wave function. All expectation values of local oper-
ators in the Laughlin state can be represented as an ensemble average in the
plasma. There is a well developped body of knowledge on this subject. For

instance, the average electron density at point z, < p(z) >, is

Jd%zy...d%2N p(2) |¥m(z1,. .., 2n)|2
fd221 22N W (21, ., 2N) 2

where the local charge density p(z) is equal to

<p(z) >=

(10.1.9)

N
p(2) = Z&(z—z_,-). (10.1.10)

In the plasma analogy, we write the average charge density < p(z) > in the
form of a weighted average over the positions of the classical charges

< p(z) >= /d221 c.d?zn p(2)exp{—BU(z1,...,2zn)}  (10.1.11)

Zplasma
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where Zplasma 18 the partition function for a classical one-component plasma.
The potential energy U(z, ..., zx) has a simple form in terms of the density
variable p(z)

U] = [ & [ @ () = )V (= o) = o) (10.112)
where V(z — 2') is the Coulomb pair-potential
V(iz=2)=—-In|z- 7| (10.1.13)

and pg is the background charge.

If the density is low, the quantization of the charge of the individual elec-
trons is very important. The dominant configuration in this limit is a Wigner
crystal. But, as the density increases, the local density has larger fluctua-
tions. As a result, the local average charge is not equal to the electron charge.
In other words, at high densities, the local averarge density p(z) becomes a
continuous variable. In this limit, any additional local charge will be rapidly
screened, and the local average density should become equal to the background
charge. Conversely, at low-densities, screening is very poor and the local den-
sity can deviate significantly from the value of the background charge density.
Thus, the electron liquid corresponds to the (high-density) plasma phase of
the one-component Coulomb gas. The approximation in which the local den-
sity becomes a continuous variable is known as the Debye-Hiickel theory. It is
straightforward to verify that in this limit < p(z) >= po. This result is also
seen to hold in Monte-Carlo simulations, at least for m < 5. More details on
how are the plasma methods applied to the theory of the Laughlin state can
be found in Laughlin’s article in the book of Girvin [Laughlin 87] where he
uses extensively the methods described by G. Stell [Stell 64].

Let us now discuss Haldane’s construction of a class of Hamiltonians which
have the Laughlin state as their exact ground state. Haldane begins by noticing
that a system with a disk geometry with wave functions which vanish on
the boundary (in the thermodynamic limit) is equivalent to a (large) sphere
of radius R. A uniform magnetic field flows outwards from the sphere. The
Laughlin states are then isotropic on the sphere. If the magnetic field is normal
to the sphere, then it has to be that one of a magnetic monopole with magnetic
charge equal to the total flux. Let 2s be the total flux (in units of the flux
quantum %’5) The single particle states for particles of charge e moving on
the surface of the sphere have to be smooth and single valued. This demand
forces the magnetic charge 2s of the monopole to be an integer. This is the
famous Dirac quantization condition [Dirac 31]. We have already encountered
this problem in chapter (5) when we described the path-integral formalism
for spin,

The single particle Hamiltonian H now becomes
We

2hs

where w, is the cyclotron frequency. Let 7 be a unit vector normal to the
surface of the sphere (i.e. 7 = &). The magnetic field of the monopole is

H =

[FA(F+ %E)]Z (10.1.14)
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V A A = Bii where B = (hes/eR?). The vector A = i A (F+ —z—./_f) satisfies the
algebra
[Aa, Ap] = iheqpe(Ae — hsne) (10.1.15)

and A -7 = 7 - A = 0. Of course, this is the same problem with the gauge-
covariant momentum which we discussed in section (9.1). Here too we should
define another operator which should generate the magnetic translations. For
the spherlca.l geometry, this is just rotations. The generators of rotations are
L = A + hsfi and satisfy the algebra

[La; Lb] =ihegpeLe (10.1.16)
[La, L% =0 (10.1.17)
[La, ] =thegpene (10.1.18)
[La, As] =ihegpeAe. (10.1.19)

The last condition implies that L, commutes with A? and hence with H.
Thus Ls and H can be diagonalized simultaneously. The first two equations
are telling us that the operators L, satisfy the algebra of angular momentum.
The eigenvalues of L? are h%1(14+1), where I = s+n, n is a possitive integer (or
zero) and 2s is an integer. This is just the Dirac quantization condition. Thus,
A% is equal to [? — h%s%. We conclude that the single particle Hamiltonian
has eigenstates |m,! > such that

Ls|m,l >=hm |m,l > (10.1.20)
L?|m, 1 >=h2I(I + 1) |m,1 > (10.1.21)
H|m,I>=hwc(1(1—+2ls)_—s) Im, 1> (10.1.22)

where |m| < I. Thus, each level is 2/ + 1-fold degenerate. In terms of n and s
the degeneracy i1s 2n+1+2s. The lowest energy level, which corresponds to the
lowest Landau level, has n = 0, (I = 0) and it is 2s + 1-fold degenerate. If we
represent the unit vector 7 in terms of a two-component spinor @ = (u, v), as
i = ulTaptp (Tap are the Pauli matrices), then the Hilbert space of the lowest

Landau level is spanned by the coherent states \Il )(u v) = (a*u + f*v)?

,with |a|? + |B]? = 1, which are polynomials of degree 2s.
In this notation the Laughlin states ¥, are

Um= [ (ujor—upwe)™ (10.1.23)

1< <k<N
with § = m(N — 1) for states with N particles It can be readily checked
that this state is also an eigenstate of L2 = (ZJ 1 L; ;)% with zero eigenvalue
since the three operators Lt = hZJ 1 Ui av , L™= hZJ leT' and Lz =

h ijl(uj a7 — Yide; -2.) anhilate ¥,,. The state ¥, is thus rotationally and
tra.nslationally invariant on the sphere.

Haldane further remarked that the states ¥,, are ezact eigenstates of a
class of Hamiltonians constructed in the following manner. Let P;(L) be a
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projection operator on states with L2 eigenvalue equal to #*J(J + 1) and I,
be the projection operator onto the Hilbert space of the lowest Landau level.
Haldane proposed to write a projected Hamiltonian as

LAD, = Y. { > PiLj+Lvs) (10.1.24)
1<j<k<N j>2s—m

which, by construction, anihilates the state ¥,,.

10.2 The Elementary Excitations of the
Laughlin State

The Laughlin wave function is an accurate approximation for the ground state
of the system only if the electron density p and the magnetic field B are such
that the filling fraction v is exactly equal to L. For densities and fields for
which v is close to (but not equal ) #, it is no longer a good approximation.
As we will see below, the states with v =~ # are excitated states of the v = 1;
state. It is an essential feature of the Laughlin state that these states are
not degenerate with the ground state even in the thermodynamic limit. The
Laughlin state is found to have non-zero gap for all elementary excitations.
The Laughlin state thus represents a uniform incompressible fluid.

Several excited states are possible. We may change the magnetic field lo-
cally without changing the total number of particles. This can be achieved
by inserting an infinitesimally thin solenoid, carrying exactly one flux quan-
tum, at one point of the sample (say, the origin z = 0). Or, we may add (or
subtract) an electron without changing the external field. Furthermore, we
may imagine local density fluctuations which do not change either the field or
the total particle number. Among these excitations, there are density fluctua-
tiones involving states only in the lowest Landau levels (phonons) or states in
the first (or higher) excitated Landau levels (plasmons). For the sake of sim-
plicity, in this section, I will only consider the state obtained by the addition
of a solenoid. This state is a Laughlin’s quasthole. We will briefly discuss the
collective modes in a later section in which we will discuss the field theory
picture of the Laughlin state.

The Laughlin state ¥, for v = # is the product of a polynomial in
the particle coordinates times an exponential factor. We can expand ¥,,, in a
series of the form

Um(21,...,28) = Z Cky,o kN z;"k‘ .. '"k"" exp{— Z
{kl,...,kn}

|z; |2
412
(10.2.1)

The integers {k1,...,kn} run from 0 to N with the restriction

Z —N(N - 1) (10.2.2)
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The coefficients Cy, , . .., kxy must be antisymmetric under the permutation of
the indices.

Under a rigid rotation of the system as a whole by an angle # about the
origin, the coordinate z; of each particle gets multiplied by a phase factor e’
Thus, ¥,, transforms like

Um(ez1,...,e7%2,) = ™ TN Dy, (2,...,28) (10.2.3)

which means that the total L, angular momentum of ¥, is equal to

My = %mN(N ~1). (10.2.4)
Let us now imagine that an infinitesimally thin solenoid which carries one
unit of flux, is introduced adiabatically into the system and it pierces the
disk at the origin, z = 0 For flux ¢, the single particle state changes from
e 1A 1410 1o gt /40 where o = ~ , ¢o being the flux quantum 2¢ he
Thus, if ¢ = ¢, the n-th state in the first Landau level becomes the n+1- th
state in the same Landau level.
The Laughlin state reacts very much in the same way, by shifting each
J ki to ™%t and a change in the coefficients. This process does not alter
the exponential factor. If we ignore the change in the coefficients Cg,, ... kn
the shift can be seen to be the same as a multiplication of ¥,, by a factor
of the form IV 5=1%; - This observation, which was also made first by Laughlin
[Laughlin 83], motlvates the choice of the following ansatz for the wave func-

tion \IIS,',")(ZO; {z;}) of the quasihole state, created by the adiabatic insertion
of a solenoid

N
U (20521, .., 28) = [[ (25 = 20) Um(21,- -+, 28)- (10.2.5)
j=1

This state has angular momentum M, (+) = M,, + N. Furthermore, the am-
plitude \IIS,,) vanishes whenever the coordinate z; of any of the N electrons
approaches zo. Thus, at zo the effect of the solenoid is to deplete the charge
density. Hence, this state can be regarded as a quasthole. Naturally, since the
total charge is the same as in the Laughlin state and since the charge den-
sity away from 2y should be uniform, the only place where the charge missing
from zq could have gone to is infinity. Or, rather, the physical boundary of
the system. Thus, the solenoid causes the electron liquid to swell and to spill
over the region it occupied before the solenoid was introduced.

The quasihole excitation energy eo can be calculated using the plasma
analogy. I will not describe this calculation here since it demands getting into
a very technical plasma calculation which is better described elsewhere. The
computation is given in considerable detail by Laughlin in his excellent review
on the FQHE [Prange 87].

What will matter for the purposes of our discussion, is that the excitation
energy is finite and has a finite limit as N — oo. Thus, the spectrum of
quasiholes has an energy gap €.
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The charge go of the quasihole can also be determined using the plasma
analogy. It turns out that g is a fraction of the electron charge, ¢go = +:%. The
argument goes as follows. The normalization of the quasihole wave function
1s

[ (205 21, - ., 2n) [P = L, |z — 20l [¥m(za, . .., 28)|2 (10.2.6)

We can rewrite this expression in terms of a modified classical potential energy
U(20; z1,...,2n) which has the simple form

N
2
U(zo;21,...,28) =U(z1,...,28) — ;E In|z; — zo| (10.2.7)
j=1

where U(zy,...,2x) is the classical potential energy for the one-component
plasma.

The potential energy U(2o;21,...,2n) represents a classical one-compo-
nent plasma interacting with a charge —L which is held fixed at z = z.
The most important properties of a plasma are its uniform density (in the
absence of external probes) and the exact screening of all external probes.
Since the external probe has charge —#, it repells the charges of the plasma
within a distance £ which is the plasma screening length. For |z — zo| < &,
the plasma density is suppressed by the repulsive force due to the probe. The
amount of charge expelled from the vecinity of z¢ is equal to —# so that
there 1s a missing charge of +# which neutralizes the charge of the probe.
This behavior 1s indeed seen in detailed calculations, such as the ones reported
by Laughlin [Laughlin 87].Thus, the quasihole behaves like a positive charge
go = +;5. Away from the quasihole, the charge density is uniform and equal to
its value in the absence of the quasihole. Where has the missing charge gone?
To the boundary, of course!. Indeed, if the N-particle system occupies an area
of radius R in the absence of the quasihole, its presence forces the liquid to
expand from R to K + 6 R. The extra area occupied by the deformed liquid
is (R + 6R)%? — wR2. Since R is large, the density is uniform and equal to

1

pre & The radius R has to grow just enough to accomodate the extra charge

L. Thus, we get the relation

[*(R+ 6R)? — R] 27r—rlnl(2) = % (10.2.8)
where % is given by
g=' 9mN. (10.2.9)
The total change 6 R of the radius is
;TI: =vVmN +1-vVmN. (10.2.10)

By inspecting the expansions in single particle wave functions of both the
Laughlin state and of the quasihole, we see that the highest single particle an-
gular momentum which enters in the Laughlin state has angular momentum
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equal to mN. For the quasihole the highest occupied state has angular mo-
mentum mN + 1. Indeed, the change § R of the radius is exactly the amount
necessary to include the mN + 1-th state inside the region occupied by the
liquid. On the other hand, had we added or extracted a whole particle from
the liquid (N — =+1), the change in the area would have been m-times the
amount we just calculated. This can be seen quite easily in the expansion
of the Laughlin state in single particle Landau states. We conclude that the
quasihole has fractional charge +=.

The quasi-electron can be constructed in a similar manner. Instead of adi-
abatically introducing a solenoid which increases the local magnetic field, the
solenoid now carries a flux which decreases the field by exactly one flux quan-
tum. An argument along the lines of what we did above for the quasihole,
shows that a solenoid carrying a negative flux decreases the angular momen-
tum of each single particle state by one unit. Except for the state with angular
momentum zero, which gets shifted to astate on the first excited Landau level,
the addition of a solenoid with negative flux is equivalent to a downwards shift
of the angular momentum of all single particle states by one unit. At the level
of the Laughlin wave function, this is accomplished by a derivative operator
which acts on the polynomial factor in the wave function [Laughlin 83],

N 2 N —
- z; 0 z m
¥ o ) == 30 Bhy [ - 2) I (5 -a0™
j=1 o oy 9%

0 1<i<kgN

(10.2.11)
The same line of argument used above on the quasihole shows that the charge
go of the quasielectron is also fractional but negative, gp = — .

The construction of the quasihole, as well as the quasielectron, has a
strong resemblance with the construction of soliton states in one-dimensional
systems in Quantum Field Theory [Jackiw 76] and in one-dimensional con-
densed matter systems [Su 81]. However, these two problems are qualitatively
different. In fact, the Laughlin states either are non-degenerate, as in the case
of a spherical geometry, or have a degeneracy of topological origin, as in the
case of a torus. In contrast, the one-dimensional systems which have solitons,
have ground states which spontaneously brake a (discrete) global symmetry.
The degeneracy of their ground states is a consequence of this phenomenon.
Nevertheless, the operator which introduces an extra solenoid has some of
the characteristic features of a soliton operator. While the short distance de-
tails are unimportant, the topological properties of the extra vector potential
(i.e. the line integral on a non-contractible loop) is the only essential property
of the “solenoid” or quasihole operator. In fact, the addition of the solenoid
changes the value of the circulation of the vector potential around the phys-
ical boundary of the system. In turn, this change determines the amount of
charge “spilled over the edge.” This extra charge becomes an excitation of the
states at the edge of the system.

The quasiholes and quasielectrons cannot be made in isolation directly
by just adding or subtracting electrons. As a matter of fact a hole (not a
quasihole) requires to remove a full electron which carries integer charge.
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Thus, electrons and holes are equivalent to bound states of m fractionally
charged quasiparticles. For certain definite electron densities, the excess elec-
trons which cannot be accommodated into a -,1; Laughlin state, can be placed
into a generalized Laughlin state. The excess electrons can be regarded as
bound states of quasiholes or quasielectrons which, if their number is right,
can form a Laughlin state. But this is a Laughlin state for anyons not elec-
trons, This mechanism is known as the Hierarchy scheme of Haldane and
Halperin,

The construction of the quasihole also suggests a different interpretation
of the Laughlin wave function as well as generalizations valid for other fill-
ing fractions. Let us write the Laughlin wave function ¥,, in the following
suggestive form due to J. Jain [Jain 89] [Jain 90].

Un(zs,..,2n) = [[ (G —2)™ Wz, ..o 28). (10.2.12)
1<i<kSN
The factor ¥;(21,...,2~) is just the wave function for N particles exactly

filling up the lowest Landau level. Following the construction of the quasihole,
the factor in front of W, is interpreted as the result of having attached a
solenoid to each particle. The flux carried for each solenoid is equal to (m—1)
flux quanta. Unlike the quasihole construction, the solenoids are physically
attached to the particles which fill up the Landau level and move around with
them. This factorization, which appears to be quite innocent, has the virtue
(and the beauty) of bringing the Fractional and Integer Hall states together.
It is also telling us that the Laughlin state can be viewed as the result of
a dynamical generation of a local gauge field which generates the solenoids
which partially screens the external magnetic flux. In fact, the amount of
screening is sufficient to turn the fractional filling of a Landau level of the
bare field into the complete filling of a Landau level of the unscreened part of
the field. We will see later on this chapter, that this is the starting point of
the field theoretic description of the FQHE,

In summary, the ;1; Laughlin states are seen to have quasihole and
quasielectron excitations which have fractional charge +-£ and fractional
statisticst-. These quasiparticles are obtained by the adiabatic addition or
removal of infinitesimally thin solenoids carrying one flux quantum. The adia-
baticity of this process is essential to this construction, since it is necessary to
make the fluid swell enough to include one additional Landau orbit and with-
out promoting electrons to higher Landau levels or producing ripples in the
fluid. All these bulk excitations have finite energy gaps. This is required by the
incompresibility of the fluid, which guarantees the accuracy of the adiabatic
process.
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10.3 Physics at the Edge

In an incompressible quantum fluid, such as the Laughlin state, the fluc-
tuations in the bulk induce fluctuations at the boundary. While the local
fluctuations in the bulk are associated with local changes in the density, the
fluctuations of the states at the boundary are associated with changes in the
shape of the “droplet”. These “edge waves” are the only gapless excitations
of the system. It may seem surprising that an incompressible fluid may have
gapless modes at the surface, although this is quite common in conventional
fluids such as water!. In the FQHE the gaplessness arises from the fact that
the geometric edge of the fluid coincides with the locus of points in which the
Fermi energy crosses the external potential which confines the fluid. Thus, the
boundary of the fluid behaves like a “Fermi surface” and, as we move from the
edge and into the bulk, we get deeper and deeper in the Fermi sea of occupied
states. Because of the presence of the magnetic field, the edge waves are chiral
excitations which move at a velocity which is the drift velocity of the particles
at that point. Thus, edge states move only in one direction, which is specified
by the magnetic field. The importance of the edge states to the observability
of the Quantum Hall effect was first emphasized by Halperin [Halperin 82].
The description of the chiral quantum dynamics of the edge states is due to
X.G.Wen [unpublished ,1990] and M.Stone [unpublished, 1990].

Let us discuss the physics of the edge waves in the context of the simplest
system: non interacting electrons filling up the lowest Landau level (v = 1).
Strictly speaking we are discussing the behavior of the edge states in a system
with an Integer Quantum Hall Effect (IQHE). However, at least within a mean
(or average) field approximation , the Fractional Quantum Hall Effect can also
be regarded as an IQHE of an equivalent system of fermions. We will discuss
this point of view ( originally due to Jain) at the end of this chapter where
we discuss the Chern-Simons approach to the FQHE. In this section we follow
the methods of M.Stone [M.Stone, unpublished, 1990].

Let us, once again, consider a set of N electrons which are filling up the
lowest Landau level of a system with Ny = N flux quanta piercing the surface.
In the absence of any other forces, the system has uniform density {p) = B/2,
if the units are such that A = ¢ = e = 1. But, if no external forces are present,
a system with N electrons in an tnfinite plane cannot have a fixed density.
Furthermore, since we are interested in the physics at the edges, we must
assume that the N electrons are constrained to remain within some region of
the sample by the action of some extermal force. In the experimental setting,
even in the purest samples there are forces as we examine the system close to
the edges. So, we sould assume that, in addition to experiencing the uniform
magnetic field B, the electrons also feel an electrostatic potential V(Z) which
keeps them inside the sample. We will consider the simple geometry of an
infinite strip. The system has finite width L; along the axis z; and length
L, along the axis x5, with Ly > L,. We can also assume periodic boundary
conditions along z9. I will also assume that the potential V only varies along
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z; and that its variation is so slow that we locally can always be approximated
by the linear function of z;, V(z;) = Ez;. In this geometry, it is natural to
use the axial-Landau gauge A; = 0, Ay = Bz;.

Let us expand the second quantized electron field operators ¥(Z) as a sum
over states of the lowest Landau level, namely

B .
Wen,22) = (7 D an s e O h/B) (10.3.1)

n=-00

which satisfies the boundary conditions. The allowed momenta k,, are k, =
2wn/Ls. The creation and destruction operators , al and a,, obey the anti-
commutation relations

{a,,,aIn} = bnm (10.3.2)

In the presence of an external potential, the degeneracy of the Landau level
is lifted. For the particular case of the linear potential, the wave functions are
the same as the wave functions in the absence of the potential but the single
particle €(k) energies become

(k) = ok (10.3.3)

with a sign determined by the sign of B ( for V(z,) fixed). This expresion
is accurate for those states whose energy is close to the Fermi energy, which
I have set to zero. Away from the boundaries, the potential is essentially
constant and the Landau level effectively has a degeneracy. The origin of my
coordinate system is at the point where the potential crosses the Fermi energy.
Thus, far to the left of the crossing point, the density is constant and to the
right of the crossing point there are no particles. It is clear from this picture
that it takes a negligible amount of energy to add a particle to the system,
but the particle is added to the surface, not to the bulk. The low energy
excitations of the system are local changes of density at the surface, the edge
waves, Notice that since the number of particles is fixed and since the next
Landau level is separated from the ground state by a very large energy gap, a
lower density at a point on the surface means that there should be an excess
density at some other point of the same surface.

As usual, we are only interested in the excitations with low energy. Here,
to be close to the Fermi energy means to be close to the surface. Let j(z3)
be the operator which measures the amount of charge localized within some
region of size A of the edge,

J(z2) = /_+°° dz; fa(z1) ¥ (21, z2) ¥(21, 22). (10.3.4)

[e ]

The cutoff function fy(z;) must be chosen in such a way that it is vanishingly
small in the region |z1| > A and the cutoff A must be larger than the typi-
cal amplitude fluctuation of the low energy states. We will choose the cutoff
function to be a gaussian, fy(z;) = 72—%7 exp(—z2/2A?).
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Since we are using periodic boundary conditions in zq, it is convenient to
consider the Fourier transform of the operator j(z;) i.e.,

HENED P (10.3.5)

Conversely, we can write

400
Jn = }: afn_l_nam e~ %ka (10.3.6)

m=-—00

It is apparent that the gaussian factor exp(—Bk2/4) is negligibly small away
from the Fermi surface,

If we ignore the gaussian factor,the density operator j, coincides with the
density operator for a system of fermions in one space dimension which are
only allowed to move in one direction. In this case the direction is specified
by the sign of the magnetic field B. Indeed, the dispersion law ¢(k) = vrk,
with a Fermi velocity vp = E/B, follows from the Hamiltonian

H= / dzz Y} (z2) (—ivpds)d(z2) (10.3.7)

which governs the dynamics of right-moving chiral fermions in one dimension.
Notice that this is precisely the same Hamiltonian that we found in chapter
(4) when we discussed bosonization.

The results of chapter (4) enable us to write down the commutation re-
lations obeyed by the operators j,. There we found that the commutator of
the Fourier transformed density operators is different from zero due to the
presence of a Schwinger term

nsdm] = —nénsm,0 (10.3.8)
Alternatively, in position space we can write
[ie2),3(5)] = —5-028(z2 — =3) (103.9)

This algebra is known as the level one U(1) Kac-Moody algebra. Wen has
shown that the spectrum of the edge states is always determined by an ap-
propriate Kac-Moody algebra. For instance, if the fermions were not fully
polarized, spin would have to be included in the dynamics. In that case the
relevant algebra is the (level one) SU(2) Kac-Moody algebra,

Stone has also given the following explicit construction of the edge density
waves, Let |0) denote the ground state, which has an undisturbed droplet. Let
us define the family of coherent states {|0(z2))}, where

10(z2)) = ¢ J 42 0EiE) g (10.3.10)

which represent coherent ezcitations of the edge states. Throughout it is as-
sumed that the density operator has been normal-ordered relative to the undis-
turbed state, namely j(z2)| 0) = 0.
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We now show that the states |#(z3)) are eigenstates of the (normal or-
dered) density operator j(z2):

J(z2) |0(z2)) = %620(z2)|0(z2)) (10.3.11)

This property can be derived by using the identity
o= [ 475 6(z3)i(=) j(z2) et [ dsh 0(=)i(=h) _ j(z2) + 2%329(1.2) (10.3.12)

These states represent local changes in the density. This can be seen by
the following argument: the state |@(z2)) has local excess of charge equal
to 5=820(22). From the linearity of the energy-momentum relation we know
that an extra number of particles means that the local position of the Fermi
level has gone from zero to 826, which is still much less than the Landau gap.
Likewise, the momentum k has changed by the same amount. Since we also
saw that, for these states, there is a precise relation between the energy of the
state and its location on the axis z1, we conclude that this state is in fact a lo-
cal change of the shape of the droplet, Moreover, at least within the accuracy
of the linear approximation for the dispersion relation, these states propagate
without deformation since all the excitations propagate at the same speed vp.

Throughout this discussion we have focused on the states close to the edge.
But, as we have already warned the reader, the bulk cannot be decoupled from
the edge. In fact, theories of chiral fermions, such as the one we are discussing
here, are intrinsically sick. The reason is that, if the linear spectrum is taken
literally this system would not be able to keep track of the conservation of
charge at the moment it is coupled to a fluctuating vector potential. Indeed,
in one dimension, all the components of the vector potential are longitudinal
since there is no way to “enclose flux inside a line”. But it is possible to do
it if the line closes on itself forming a closed curve. This is precisely the case
of interest to us. For example, in the gauge Ap = 0, the only component
we are left with is the component A tangent to the curve (the edge). By
general arguments of gauge invariance we know that the Hamiltonian for the
chiral fermions coupled to the gauge field is obtained by the minimal coupling
procedure, which replaces the derivative 8, by the covariant derivative Dy =
02 — ieAj(z2). Thus, the Hamiltonian picks up an extra term Hgayge of the
form

Hyauge = / dzs eAj(z2) vk(z2) ¥(z2) (10.3.13)

This term shows that the local fluctuations of Ay(z2) will cause the Fermi level
to move up and down. Thus, charge has to “leak-in” or “leak-out” through
the bottom of the Fermi sea. For a theory “without a bottom”, such as in a
relativistic field theory, this is a disaster. The chiral theories are then said to
be sick and to break gauge invariance and to have a gauge anomaly. But in
the problem that we are considering, the Fermi sea does have a bottom. It is
determined by the Landau level, which acts like a reservoir of particles and it
redistributes the particles from one point of the edge to another.
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The configurations with a non-zero circulation of A have a very interest-
ing meaning: the circulation of Ay on a closed curve such as the edge is just
the amount of flux enclosed inside the curve. Thus, the uniform field causes
the electrons on edge states to move around the system. A change in the cir-
culation means that flux has been added or taken from the system. Thus, the
addition of one quasihole should cause a jump in the circulation by exactly
one flux quantum. The edge states see this extra flux as a change of the po-
sition of the Fermi level. This is then interpreted as the generation of a net
charge at the edge. For a non-interacting problem, the net charge is equal to
e. But for Laughlin state, it is equal to e/m. The extra charge accumulated at
the edge is interpreted as a lack of charge conservation, as a gauge anomaly
of the theory of the edge states.

10.4 The Statistics of the Quasiparticles
within Laughlin’s Theory

In this section we will discuss the statistics of the quasiholes within the first
quantized picture of the FQHE. In the last section of this chapter we will
return to this problem and derive the main results directly from the field
theory . The statistics of the quasielectron can also be discussed along a very
similar line of argument.

The quasihole wave function discussed in section (10.2), is given up to
a normalization factor. For a single quasihole, the amplitude of this wave
function is not very important. However, at the moment we wish to construct
a wave function for two or more quasiholes, the normalization begins to play
a rather subtle but importand role. During a process which involves dragging
a single quasihole very slowly around a closed loop, the phase of the quasihole
wave function becomes very important. Indeed, since the quasihole carries an
electric charge of —:%, we should expect an Aharonov-Bohm effect(AB) -,1;
times smaller than the value for electrons. In fact, the AB effect is perhaps
the “operationaly correct” way of measuring the charge of a quasiparticle.

The quasihole wave function is physically appealing but it has several
drawbacks. Consider for example a naively constructed wave function for two
quasiholes located at z = u and z = w respectively

N
Y (u,w,21,...,28) = N(u,w) H(zj —u)(zj — w) ¥pu(z1,...,2n).
=1
(10.4.1)
The factor N(u,w) has a subtle origin. On the one hand, it can be regarded
as the normalization constant for the state with two quasiholes, However, if
that was indeed the case, N would have to be not only a function of u and
w, but also of % and w and it would not be analytic. More importantly, this
amplitude has to be determined from the requirement that it represents the
physical process of adiabatic insertion of two thin solenoids. In section (10.2)
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we saw that the form of the wave function for one quasihole was suggested
by the observation that the adiabatic insertion of a solenoid carrying one flux
quantum implied an increase of the angular momentum relative to the location
of the solenoid of one unit per particle. We also argued that the quasihole
carries charge e/m. Below in this section we will give a path integral argument
to support this picture.

But, let us assume that we have already manufactured one quasihole,
which is sitting at z = u. We now want to create another quasihole but, this
time at z = w. The adiabatic addition of the extra solenoid must change
the angular momentum of the particle also by one unit, but this time the
angular momentum is measured relative to w, not to u. Furthermore, since
the quasihole carries electric charge equal to e/m, as we drag one quasihole
slowly around the other, we should pick up an extra AB phase factor. This
phase factor should correspond to an AB effect for a charge equal to ¢/m
[Kivelson 85].

We are going to determine the amplitude (or “normalization constant”)
N(u,w) by demanding that the following conditions are met: (a) the wave
function should be an analytic function of the coordinates of the electrons
{z1,...,2zn} and of the quasiholes u, w up to exponential factors; (b) the nor-
malization of this wave function should be invariant under translations, i.e.
a function of differences of the coordinates {z,...,znx,u,w}. The analytic-
ity condition is just the requirement that the wave function should only have
contributions from the lowest Landau level. This conditions, as well as the
solution, were first proposed by Halperin [Halperin 84][Halperin 83].The nor-
malization of the state is

[WEH (u,w, 21, ..., 2v) 2 = exp{—BUeqr(u,w, 21,...,2n)} (10.4.2)
where U 1s given by
g N
Uett(u,w, 21,...,28) = U(21,...,28) — — E(ln|u —zj|+In|w — z;[)+
m j=1

2
+—n?ln|N(u,w)|,

(10.4.3)
The translation invariance and analyticity requirements are met by the choice
N(u,w) = No(u —w)*/™ exp{— |u|41-;- il }. (10.4.4)

Thus, the Halperin wave function for two quasiholes is

WCH (u, wi {z3}) =No(u — w)= H[(u - z)(w—z)] [[(z —z)™

i<k

1 1
exp{- 3 Sl Fong (ul? + 1)}
j=1

(10.4.5)
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With this choice, the effective potential Ueg is

Uest(u, wi{z;}) =

N
2
) }: ln|2j—zk|—;Z(ln|z_,~—u|+ln|z_,~—w|)+
1<j<k<N j=1

N
2 1 2 1 2 2
-l ul+ g 3+ g + el

(10.4.6)
In plasma language, this is the potential energy of a set of N classical particles
(each carrying charge (—1)) at sites {z1,...,2n} interacting with two extra

particles (each with charge —:1) at u and w. All N +2 charges are coupled to
a neutralizing background charge of density 21r—r1n13 The manifest translation
invariance of Uesr takes care of the translation invariance requirement.

The wave function for two quasiholes is a multivalued function of the com-
plex coordinates of the two quasiholes. As a result, if the quasiholes undergo
a counterclockwise exchange process, defined as a counterclockwise rotation
by m of one quasihole around the other followed by a translation which re-
stores the relative position of the quasiholes, the phase of this wave function
changes by -

O (u,w; {7}) = e TP (w,u; {z}). (10.4.7)

Thus, the quasiholes are anyons with statistical angle § = - relative to bosons
or § = ™=1g relative to fermions. This remarkable result suggests that the
Fractional Quantum Hall Effect can be described in terms of a theory of either
bosons or fermions coupled to a hidden (or dynamically generated) Chern-
Simons gauge field. In the next section we will describe both a “Landau-
Ginzburg” approach to the FQHE and a field theory which are based on this
idea.

We conclude that the quasiholes of the Laughlin state carry fractional
charge +;= and fractional statistics -, This is a very striking result. Arovas,
Schrieffer and Wilczek [Arovas 84] have given an alternative derivation of
both results using an argument based on the concept of Berry phases [Berry
84][Simon 83]. Rather than following that path, we will now construct a path-
integral to represent the motion of the quasiholes. The key ingredient of our
construction is the observation that the quasihole wave functions are coherent
states [Kivelson 87]. Thus, we can adapt the formalism described in chapter
(5) to construct the path integral for spin s particles, to treat the quantum
dynamics of the quasiholes. The reader should keep in mind that the following
arguments are heuristic at best. In the last section of this chapter I give a
different derivation of the same result, based on the field theory approach to
the FQHE, Fortunately, the results agree!

Let us begin with the wave function for a single quasihole. Let us define
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the state |z > as

N
L 2
|z >= exp{—4m1(2) 2] };E_l;(zj - z)|m> (10.4.8)

where |m > is the Laughlin state. The set of states {|z >} is overcomplete
[Laughlin 87]. The overlap between two states [z > and |w > is

< shw>= exp{- ,2(|z|2+|w|2>}<m|1'[[(z,—z>(z,—w>nm> (10.49)

Except for the exponential factor, < z|w > is an analytic function of z and w
separately. Thus, < z|w > can be related to < z|z > by analytic continuation
[Laughlin 87]. The result is

1
<zlw >= exp{ 2(|z|2 + [w]?) + —zw} <zlz >. (10.4.10)

Indeed, the translation invariance of the 2D one-component plasma guarantee
that the overlap < z|z > is just a constant independent of z. Also, up to a
normalization constant we can write the resolution of the identity

1 =N/ |z >< z| d?z. (10.4.11)

We consider now a process in which we prepare the quasihole in a coherent
state |zo > at time ¢ = {5 . We now ask for the quantum mechanical amplitude
< zp,to + T|z0,t0 > for the quasihole to return to |zp > after a very long
time T. By inserting the resolution of identity at A, intermediate times ¢, =
to + nAt in the limit A; — 00 and A — 0 with T' = A, At fixed we can write

< 2o, T +to|z0,t0 >= N/ II @2 ] < 2al2n1 > (10.4.12)
n=1 1

where z, = 2(to + nAt) and zn, = zp.
In the limit Af — 0 we can approximate the overlaps by the expression

dz,.

1
< Zn+1|2n > z,,|z,, > exp{m(fnw )At} (10413)
0

Thus, the path integral is
- N 1 T  dz
< 2o, T + to|zo, 10 >= Dz exp{m ; di i (10.4.14)

By expanding the exponent in its real and imaginary components we get the

identity
1" (e/m)
— | dt 7 4.
5 13/0 Z— dt }{A( ) - dZ (10.4.15)
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where A is the vector potential for the field B in the isotropic gauge and T is
the path. Thus, the amplitude is given by the path integral

< 20, T +to|z0, to >= N/Di’ exp{i(e'fl:‘) }{ di- A(#)}  (10.4.16)
r

which is just the path integral for a particle of mass M and charge £ moving
in the field B = V x A -3 in the limit M — 0. This limit is just the projection
onto the lowest Landau level. Notice that the normalization constants < z|z >
have been absorbed into the uninteresting factor A'. The amplitude for the
path T of this path integral is just the Aharonov-Bohm phase factor [Arovas
84]. At the end of this chapter we give a derivation of this result based on
the field theory approach, which does not require the choice of a set of wave
functions with a specific form,

Let us briefly discuss the generalization of this result for the problem
of two quasiholes. Let us assume that at some initial time ¢y the quasiholes
are prepared in the state |zg,wp >. Once again we ask for the amplitude
< zp,wh;to + T|20,wo;t > after a very long time T. The normalized two-
quasiholes states |z, w > will be taken to be of the Halperin form. The deriva-
tion for two quasiholes follows quite closely the arguments given for one quasi-
hole. However, the two results differ in two important aspects :(a) the multi-
valued phase factors (z — w)!/™ lead to an “induced” gauge interaction and
(b) the diagonal overlaps are no longer constant but functions of |z — w|. The
final result is

< 2, Wh|Z0, o >= N / DD exp{%sg,':?(z, )} (10.4.17)

where Sgg-)(z“, W) is the effective action for two quasiholes. The integration
measure, denoted here by “ Dz Dw”, has absorbed the diagonal overlaps
[1,, < Za,%n|Zn, W, >. Laughlin [Laughlin 87] has shown that these factors
are constant at long distances but vanish at short distances like |Z — @|=.
Thus, their main effect is to remove from the path-integral the paths in which
the particles get to be too close to each other. This feature of the integration
measure is essential since fractional statistics cannot be defined if the paths
of the particles are allowed to cross.

The effective action ng) for two holes is

to+T =
SRz, w [ " {d_z ,(‘3/_"‘1(2) + EA“(Z*_ @)+ 10418
4. (L2 Ky + 2 A - )

where m is the index of the Laughlin state (not to be confused with a mass!)
and A is the electromagnetic vector potential. The “induced” vector potential
A arises from the multivalued factors, It is given by the total change of phase



316 Chapter 10 FQHE

accumulated during the process, i.e.
1 [rotT dZ - _ di
— [A(z“—zE)»d—j+A(w—2')--%=
™ Jto (10.4.19)

1
= ;[arg(z{, — wp) — arg(zo — wo)]-

This equation only requires that the “induced” vector potential A give the
correct winding number, It is clear that A can be represented by an effective
Chern-Simons gauge field with an appropiately chosen coupling constant. One
possible choice for A was given by Arovas, Schrieffer and Wilczek [Arovas 84]
(in the isotropic gauge) to be

o 4 €z —w
Aj(Z-0) = ——’fzﬁ_ u“)lz)k (10.4.20)

which has the quantized circulation

Aj(Z— ) dz; = 2x (10.4.21)
Cla]
for any closed path C[w] which encloses the point .

Hence, each quasihole carries a solenoid with just one flux quantum. In
agreement with our discussion of section (7.2), these “induced ” or statis-
tical gauge fields change the statistics of the quasiparticles. In the problem
of spinons in the Chiral Spin State (see section 7.1) the quasiparticles are
semions or half-fermions. The quasiholes of the FQHE have statistical angle

equal to L. This property can be seen very directly from the coherent-state

path integral, Let us consider a process in which two quasiholes undergo a
counterclockwise exchange, during which Aarg(zp — wo) = #. The amplitude
of the path integral picks up a phase of ¢*/™,  Below, when we derive the
Laughlin theory from a field theory, we will see that these phase factors arise

directly from a Chern-Simons gauge field.

10.5 The Field Theory Approach to The
Fractional Quantum Hall Effect

In the past sections we discussed the first quantization approach to the
FQHE. Here we will discuss an alternative approach which is based on a special
form of field theory, the Chern-Simons theory which we discussed extensively
in chapter (7) in the context of theories of anyons. Here we will show that the
Chern-Simons theory is quite useful from two different points of view: (a) as
a Landau-Ginzburg theory for the long distance phenomenology and (b) as
a way to derive the Laughlin state from a microscopic theory. For reasons of
space and conciseness I will only discuss the simplest case of fully polarized
(i.e., “spinless”) electrons. Also I will restrict myself to the theory of the
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Laughlin sequence and to the first level of the hierarchy. The methods that I
will describe below can be used ( and have been used) to study the problem
of unpolarized electrons, the singlet Hall effect [A. Balatsky and E.Fradkin,
unpublished, 1990; G.Moore and N.Read, unpublished, 1990]. They are also
very useful for the study of the structure of the hierarchical states [V.Blok
and X.G.Wen, unpublished, 1990].

In section 8.10 we saw that the construction of the state for the quasihole
suggested a different interpretation of the Laughlin wave-function first pro-
posed by Jain, This structure of the state for the quasihole gave rise to the
picture of the FQHE as a ground state of “electrons bound to fluxes”. From
this point of view, all what the long range correlations do is to make it pos-
sible for the electrons to “nucleate” flux. Jain [Jain 89] realized that, in the
Laughlin state, the electrons nucleate enough flux so that the bound states
ezactly fill up an integer number of the Landau levels of the unscreened part
of the field. In this formulation, the FQHE is an Integer Quantum Hall Effect
of the bound states. Jain proposed to write the Laughlin wave function in the
suggestive factorized form

U(21,...,28) = H(z,' - z;)™ 1 x1(21,. .. 28). (10.5.1)
i<j

where x; is the wave function for a completely filled lowest Landau level

x1(2z1,...,28) = H(Z'_ZJ) exp(— Z|Z'£|2 (10.5.2)
$<j

The phases associated with the factor multiplying x; represent an even num-
ber (m — 1) of fluxes which are attached to each coordinate z; where an elec-
tron is present. It is a crucial feature of this picture that the electrons bind
to an even number of flux quanta and, in this way, they retain their fermion
character. We will also see below that this approach has allowed for a simple
description of the so-called Hierarchy states in terms of wave functions which
have a factorized structure.

In chapter (7) we saw that there is a natural and local way to attach par-
ticles and fluxes together: the Chern-Simons gauge theory. The relevance of
the Chern-Simons theory to the physics of the FQHE actually predates its
application to problems (presumably) connected to High Temperature Super-
conductors, such as the Chiral Spin Liquid. Girvin and MacDonald [Girvin
87] were the first to realize that the Laughlin state had a hidden form of
Off-Diagonal Long Range Order (ODLRO). They further suggested an order
parameter for the Laughlin state but it turned out to be non-local. As a mat-
ter of fact, the Girvin-MacDonald order parameter is closely related to the
anyon operators constructed in chapter (7). We also saw that it is always pos-
sible to map any two-dimensional fermion system into an equivalent problem
with arbitrarily chosen statistics. We are going to use this mapping in two
different ways: (a) as a mapping to a theory of bosons and (b) to a theory of
fermions (each coupled to a Chern-Simons gauge field with a suitably chosen
coupling constant).
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10.6 Off-Diagonal Long Range Order

The Girvin-MacDonald argument that the Laughlin state has a hidden form
of off-diagonal long range order goes as follows. The ground state correlation
function p(z, 2') for the electron operator ( also called the one-particle density
matrix) in the m*™® Laughlin state for a system with N particles |0,,,; N) is
given by the expansion

p(z,2') = (Om; N[ (2)9(2")|0m; N)

= 3 04(2)pr(z")(Om; NIBL 52 [0m; N) (10.6.1)
n.,k

where {¢n(2)} is the set of one-particle wave functions of the lowest Landau
level (see section 8.1) and n and k run over all the occupied states. Since the
states {¢,(2)} all have different angular momentum, the expectation value
(O [9199n|0m; N) in an isotropic uniform state, such as the Laughlin state,
takes the very simple form

(Om; N[} 95k |Om; N) = vnr (10.6.2)

where v is the filling fraction. The correlation function can be shown to be
given by [Girvin 84]

|z — =

112
p(z,2') = 2—V7Fexp ( TJ) exp [:1%(2‘2' - z"z)] (10.6.3)

This identity shows that the one-particle electron correlation function decays
exponentially fast in a Laughlin ground state.

Consider now the composite operator K(z), introduced by Read [Read
89](see also [Rezayi 88]), who refined the arguments of Girvin and MacDonald.
The operator K(z) that creates one electron, together with a solenoid carrying
m flux quanta, at point (2) is

K(2) = 1) 0™(2) (10.6.4)

where U(z) is the second quantized operator which creates a quasihole at z.
Each quasihole has charge -'1; and fractional statistics I~ and m quasi-
holes have charge 1 and statistics . Thus m holes have the same quantum
numbers as a missing electron. Furthermore, the operator IA{(z) obeys bosonic
commutation relations. This implies that the operator K(z) must have a non-
vanishing expectation value in a ground state with an indefinite number of
particles. This property is indeed strongly reminiscent to Bose condensation.

More precisely, Read showed that the following identity holds

o 1 o

(Om; N|KN(2)K(2")|0m; N) = og Omi NV + 1|p(2)p(2")|0m; N +1) — po

(10.6.5)
1

where p(z) is the density operator and its expectation value is pp =
Thus, there is ODLRO in the Laughlin state.

2xm ’
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Since ODLRO is the hallmark of superfluidity, its existence suggested
the idea that there should be a Landau-Ginzburg theory for the FQHE. But,
unlike superfluids, the Laughlin state is an incompressible state and it does
not have excitations with arbitrarily low energy. So, whatever the Landau-
Ginzburg theory happened to be it could not have any Goldstone modes.
Now, a system with an order parameter which is complex as the Girvin-
MacDonald order parameter is, in principle should have Goldstone modes
unless the order parameter is coupled to a fluctuating gauge field. In this case
the gauge field would “eat” the Goldstone mode and, at the same time, it
would become massive. In this case , there would not be any gapless modes
left. This phenomenon, usually called the Anderson-Higgs mechanism, does
take place in charged superfluids :.e., superconductors. This is the Meissner
state of the superconductor.

The problem with this picture is that the FQHE is not a superconductor!
There is no flux expulsion in the Laughlin state. Moreover, the non-locality
of the Girvin-MacDonald order parameter is clearly indicating that a naive
application of the Anderson-Higgs mechanism is not possible. So the gauge
fields have to arise from the fluctuations about the Laughlin ground state
rather than come from “honest-to-god” electromagnetism. In other words,
the gauge field has to be self-generated. Furthermore, since the Laughlin state
is not a superconductor, the mechanism for generation of mass (or gaps) to
all excitations should be gauge invariant. This fact suggested to Girvin and
MacDonald that the gauge field should have a Chern-Simons form.

10.7 The Landau-Ginzburg Theory of the
Fractional Quantum Hall Effect

The methods that we have discussed for the field theoretic treatment of anyons
can also be used to study the FQHE. As a matter of fact, Zhang, Hansson and
Kivelson (ZHK) [Zhang 89] used a mapping to bosons in terms of a Chern-
Simons gauge field. This procedure allowed them to derive the qualitative
features of a Landau-Ginzburg theory for the FQHE. Their Landau-Ginzburg
approach, which is valid at low energies and long distances, qualitatively con-
firmed the idea that the FQHE had a hidden form of ODLRO without Gold-
stone bosons. Read [Read 89] has given a careful derivation of the Landau-
Ginzburg theory directly from the Laughlin wave function.

Let us use the methods of chapter (7) to derive the Landau-Ginzburg
theory. Consider once again a system of N electrons moving on a plane in the
presence of an external uniform magnetic field B perpendicular to the plane.
The electrons will be assumed to have an interparticle interaction governed by
a pair potential V(|]), for two electrons separated a distance |7] on the plane.
The magnetic filed will be assumed to be so large that the system is completely
polarized and that we can ignore the spin degrees of freedom. The eigenstates
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W(#1,...,Zn) are eigenfunctions of the (first quantized) Hamiltonian H
. N o e ~ 2
H=Y {5 (55 - SA(E) +edo@&}+3_ V(& -%).  (107.0)
=1 i<y
where we have included the coupling to both the electromagnetic vector poten-
tial A and scalar potential Ap. Hence, we are dealing with N spinless fermions

of charge —e and mass m, In second quantized notation, the electron operator
is ¥(z) and the dynamics of the system is governed by the action §

5= [@: {¥@liDo+ vt + g 1DUI | +
—3 [# [ & (WOI - sV (- 2 DIEE - po).

where pp is the average density. The quantum partition function Z for this
system is ( at zero temperature and in real time)

Z= /D¢‘D¢ exp{%S} (10.7.3)

(10.7.2)

10.8 Mapping to a Chern-Simons Theory with
Bosons

In chapter (7) we showed that a system of fermions in two dimensions is
equivalent to a system of bosons coupled to a Chern-Simons gauge field A, .
The action Sp for the Bose system is

6

Sp = /daz {¢‘(z)[z’D0 + plo(z) + 51;|D'¢(z)|2 + Ze,,,,,\.A”.'F”)‘}

—5 [ [ @2 ()1 - pV (1 - /DI - po)

where ¢(z) is the Bose field and § = 1/27n and n, for the moment, is an
arbitrary odd integer. The covariant derivatives D, in this action contain
both electromagnetic and Chern-Simons gauge fields z.e.,

D,=0,+ i%A,, +id,. (10.8.2)

(10.8.1)

It is an implicit assumption of this theory that the bosons must have a hard-
core since, otherwise, the fractional statistics transformation does not make
sense. It is very difficult to keep track of this constraint in the continuum. On a
lattice the hard-core constraint does not pose any serious problem. However,
if we are interested only in the long distance and low energy behavior, we
can replace the hard-core by an effective short distance repulsive force. This
change amounts to add an extra term Sy to the action of the form

She = / B2(=Mo(2)[). (10.8.3)
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The total action is Sef = S + Shc and we have now a bosonic functional
integral

Z= /D¢‘D¢ exp{%Seﬂ} (10.8.4)

This functional integral can be regarded as a Landau-Ginzburg theory and
was first proposed by Zhang, Hansson and Kivelson [Zhang 89]. The parameter
A cannot be calculated directly from this theory. In fact, ZHK dropped the
repulsive pair potential term altogether and replaced it by the |¢[* term.
Actually, the effective action has to be derived directly from the Laughlin
wave function [Read 89]. We now follow ZHK and extract the low energy
behavior,

Landau-Ginzburg Theory

The effective theory looks like a theory of bosons coupled to a gauge field. In
the absence of the gauge field, the bosons condense and spontaneously break
the global phase symmetry U(1)

#(z) — €' ¢(z). (10.8.5)

The system is then a superfluid and its spectrum has a massless excitation,
the phase w of ¢, which is the Goldstone boson associated with the broken
U(1) symmetry. We will see now that this Goldstone boson disappears from
the spectrum once the system is coupled to the statistical gauge field.

Let us consider the behavior of the system in the semiclassical ( mean-
field) limit. In that limit, the fluctuations of the amplitude of the Bose field
¢ are small. Let us write ¢ in the form

é(z) = V/p(2) expliw(2)]. (10.8.6)

The classical equations of motion of the Bose theory are, for a configuration
¢ with constant amplitude (the ground state)

p+6(B)=0
pp—Ap?=0
(.A,,)-}-LA”:O (10.8.7)
he
L
’ 2rm

Thus, the average statistical gauge field (A,) exactly cancels, or screens, the
electromagnetic field A,. We get (B) = —;& B. However the first equation
requires the average statistical magnetic field to be proportional to the average
particle density. Hence, the density and the field are not independent from
each other but satisfy p = 3% B. Recall the definition of the filling fraction v
as v = ¢o(p/B), where ¢y is the flux quantum ¢ = % Thus, the classical
equations of motion only have uniform solutions if the filling fraction v is
v = %r = %, with n odd. We can then identify the odd integer n with the
index m of the Laughlin wave function which is also odd. Thus, the Landau
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theory suggests the picture of the FQHE as a problem of bosons in an average
magnetic field which is determined by the number of bosons!. Notice that,
with the identification of n as the index m of the Laughlin wave function,
the constraint implies that each boson is made of a fermion and n = m flux
quanta. This is precisely what the arguments of Girvin and MacDonald, and
Read told us.

10.9 The Low Energy Fluctuations
of the Landau Theory

However, this story does not end at the level of mean-field-theory. The fluc-
tuations play a very important role in this problem. Mean-field-theory told
us that the average particle density and average statistical magnetic field are
fixed. But the fluctuations of the phase w appear to be completely uncon-
strained. In order to investigate this problem we need an effective action for
the slow modes of the phase field. This effective action can be obtained by in-
tegrating out the amplitude fluctuations. Indeed, we can write the field ¢ in
the form

#(z) = [po + 6p(2)]} expliw(2)]. (10.9.1)

We now substitute this expression back into the Landau-Ginzburg action and
expand it in powers of the density fluctuation §p(z) up to second order. By
integrating out the density fluctuations we get the effective Lagrangian for
the fluctuations of the phase and statistical gauge fields

k|1 = 2 6
Eeﬂ' = 5 [v_2 (60(-0 + -AO)2 - (Vw + -A) ] + Zf;‘uA-AprA (1092)

where the rigidity « and the velocity v have to be determined from the mi-
croscopic theory. This effective Lagrangian has the same form as the one we
derived for the anyon superconductor in chapter (7) except for the very im-
portant difference that the gauge field here is the statistical one whereas there
it was the electromagnetic field. Nevertheless, the phase field still disappears
from the spectrum. Indeed, the phase field w can be eliminated by a gauge
transformation A, = A), — 0,w. The resulting theory is that of a gauge field
which has just two massive modes. The masses were also calculated in chapter
(7). Thus, this is an incompressible ground state. The two massive modes rep-
resent the magnetophonon and magnetoplasmon which were derived directly
from Laughlin’s theory by Girvin, MacDonald and Platzman [Girvin 86]. The
magnetoroton cannot be studied within the Landau-Ginzburg approach.

The Order Parameter of the Fractional Quantum Hall Effect

In hindsight, we can construct the order parameter directly in the theory
of bosons, without having to rely on the Landau-Ginzburg theory. The first
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guess is that the order parameter is the Bose field ¢ itself. However, ¢ is not
invariant under gauge transformations of the statistical gauge field. Thus, its
expectation value, as well as the expectation values of any product of ¢’s, is
zero when averaged over all configurations of the gauge field. It may be argued
that this is not much of a problem since one always has to fix the gauge. Since
this gauge theory is abelian and non-compact, all small gauge transformations
(i.e., those which do not wind around the system) are connected to the identity
and it is possible to fix the gauge completely. Now, the expectation value of
products of ¢ fields will depend on the gauge in which it is evaluated. Thus, it
does not represent a physical observable. However, all we need is an operator
which in some convenient gauge reduces to a product of ¢ fields. Fortunately,
it 1s quite easy to construct such operators.

Let us consider the case of the boson correlation function, which is the
expectation value of the product ¢!(z)¢(y), where z and y are two arbitrary
points in 2+1-dimensional space-time. Under a gauge transformation ¢(z) —
exp(iA(z))é(z), the product transforms like

#1(2)¢(y) — expli(—A(z) + A())] ¢1(2)$(v)- (10.9.3)

Thus, we need to find an operator which transforms in the opposite way and
cancels the unwanted phase factor, One possibility is the exponential of the
line integral [ A,dz,, where T is a path that goes from z to y. But this
is just an Aharonov-Bohm phase factor, which fluctuates very rapidly and it
does not vanish in any gauge. It can be shown that the expectation value of
the product

#aew (i [ Auds,) 80 (10.9.4)

decays rapidly as |z - y| — co.
Let us consider the operator O1(z)O(y)

0'(2)0(y) = exp (,» / dszA,,(zw;(z)) #(2)8(v) (10.9.5)

where Aj, is some suitably chosen, fixed classical configuration. We will choose
B, in such a way that the product O'(z)O(y) is gauge invariant and that, in

the Landau-Lorentz gauge (8,4, = 0), it reduces to the product ¢1(z)¢(y).
Under a gauge transformation which vanishes at infinity limz_,, A(z) = 0,

¢(z) = exp(iA(z)) ¢'(z)

Au(z) = Ay(z) — 9,A(z) (10-96)
the operator O1(z)O(y) transforms like
Ot (2)O(y) = exp(i®) O1(2)O(y) (109.7)

where ® is given by

® = A(y) — A(z) + /daz A(2) 8,BS(2) (10.9.8)
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Gauge invariance demands that ® = 0 for all gauge transformations A(z) and
for all points z and y. The only way to meet these requirements is for B;(z)
to satisfy the equation

0uB;(2z) = 6(z —2) — 8(z — y) (10.9.9)
We can think of B;(z) as being the classical magnetic field of two magnetic
monopoles of (opposite) unit magnetic charge located at z and y. If we denote
by U(z) the “potential”, we get

Bi(2) = 6,U(2)

ViU(z) = 6(z —z) — 6(z — y)
the solution of which is just the electrostatic potential for two unit and oppo-
site charges.

Having checked that it is gauge invariant, we now want to see what this

operator is in the Landau-Lorentz gauge (0,4, = 0). In this gauge, the ex-
ponential part of the operator vanishes

/ @3z A,(2)BS(2) = / Bz Ay (2)9,U(2) = — / Bz 9, A,(2)U(z) = 0
(10.9.11)

(10.9.10)

Thus, in the Landau-Lorentz gauge, we get

Ol(z)0(y) = ¢'(2)$(y) (10.9.12)
Therefore, the operator O(z), defined by

O(z) = ¢(z) exp (i/daz .A,,(z)Bf‘(z)) (10.9.13)

where Bj;(z) = 8,U(z) is the field created by a single charge at z, is the gauge
invariant order parameter operator for this problem in the boson description
since, in this gauge, it becomes identical to the field operator of the bosons.
Thus, the correlation functions of this operators exhibit long-range order.

In an arbitrary gauge, this operator is highly non-local. But, in the
Landau-Lorentz gauge, it becomes local andjust simple. This is not a sur-
prise since, for instance the order parameter of an ordinary BCS-like super-
conductor is only local in this gauge. Indeed, it is possible to define an order
parameter for a superconductor in the same way. For practical purposes, in
the case of a superconductor, this is not very useful since the electromagnetic
field is not usually treated as a dynamical field. In the problem of the FQHE,
the gauge field is dynamically generated and it plays an essential role.

10.10 The Fermion Field Theory Picture of the
FQHE

In this section we derive a field theory for the FQHE based on the fermion
picture. These methods, which have been so succesful in the treatment of
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Anyon Superfluidity (see chapter (7)), are also very useful for the study of the
FQHE. They have a great advantage over the boson theories in that there is no
difficulty in handling the short distance behavior unlike the case of bosons. It
is quite easy to derive an effective action for the fluctuations which explicitly
involves Chern-Simons gauge fields. The Landau-Ginzburg theory can be seen
to be the dual of the fermion theory in very much the same way as in the case
of the anyon superconductor. The fermion field theory has been developed by
Lopez and myself [ A.Lopez and E.Fradkin, unpublished, 1990].

Let us go back to the second quantized form of the problem of electrons
in a magnetic field. In its standard form, the dynamics is governed by the
action

1 =
S= [z {4*(2)[iDo + pl(2) + —|Dy(2)|*  +
/ { 2m } (10.10.1)

—5 [&2 [ @2 (W@ = o) V(1= 2D (9 - po).

Since we are dealing with a problem in which one Landau level is fractionally
filled, we do not expect that the semiclassical approximation for this problem
will, in general, be very reliable. Unless, of course, the ground state of the
system is such that there is a gap in the energy spectrum. For example, in the
low-density limit, the system can lower its energy by modulating the electron
density and forming a Wigner crystal. Wigner crystals can also be studied
with a path-integral of this section, but we will not do it here.

Let us recall Jain’s interpretation of the Laughlin state as a state in which
the electrons “nucleate” flux to screen enough of the external magnetic field, so
that the bound states of electrons plus fluxes exactly filled an integer number
of Landau levels. In this section we are going to use the periodicity property of
theories of fermions coupled to Chern-Simons gauge fields, derived in chapter
(7), to make this nucleation picture more explicit.

In chapter (7) we saw that a system of fermion could be mapped into a
system of fermions coupled to Chern-Simons gauge fields if the Chern-Simons
coupling constant is chosen to be equal to § = 1/27n, where n is an even
integer. Thus, the problem becomes equivalent to a theory with fermions and
gauge fields with an action given by

So = / d3z {¢‘(z)[iD0 + ulp(z) + —21;|D'1,b(z)|2 + ge,,,,,\.A“f"’\}

1 _ - o _
—5 [ [ & e - v (- 2 DIEF - 9.

(10.10.2)
where 9¥(z) is a second quantized Fermi field, u is the chemical potential and
D, is the covariant derivative which couples the fermions to both the external
electromagnetic field A, and to the statistical gauge field A,

Dy=08,+ i%A,, +iA,. (10.10.3)
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We are going to see below, that the even integer n has to be identified with
m — 1, where m is the index of the Laughlin state.

10.11 The Semiclassical Limit and
The Laughlin Ground State

In this section we will show that the semiclassical limit of the theory described
by the action Sy, with % = 2x(m—1), yields the same physics as the Laughlin
state. In order to prove this statement we will develop a semiclassical approach
to this problem. As a by-product, this formalism provides for a systematic
procedure to compute the corrections to the Laughlin approximation. This
is, to the best of my knowledge, the first formalism for which the Laughlin
ansatz arises as the first of a series of approximations.

The action Sy governs the dynamics of a system of spinless fermions in-
teracting through a pair interaction potential V(|Z — &'|) coupled to both
electromagnetic and statistical gauge fields. The starting point of the semi-
classical approximation maps this FQHE problem into an equivalent IQHE
system. This mapping is made possible by the statistical or Chern-Simons
gauge fields which screen-out enough of the external magnetic field to the
point that the number of flux quanta of the effective magnetic field which is
left, is an exact factor of the total number of particles. Naturally, this perfect
screening is not possible for arbitrary values of the external magnetic field for
a fixed number of electrons. The values of the filling fraction for which this
perfect screening can be accomplished happens to be the same as the Laugh-
lin sequence -'1; and the first level of the hierarchy. For all other cases, there
will be some partially filled level leftover. As we discussed in section (8.11),
these quasiparticles are anyons.

Consider the quantum partition function for this problem ( at T = 0)

Z= / DY*DyYDA, exp(iSs). (10.11.1)

We will treat this path-integral in the semi-classical approximation. In order to
do that we will first integrate-out the fermions and treat the resulting theory
within the saddle-point-expansion (SPA). The procedure is almost identical
to the theory of Anyon Superconductivity discussed in chapter (7). In the ab-
sence of electron-electron interactions the fermions can be integrated-out im-
mediately since the action becames quadratic in Fermi fields. In the presence
of interactions, this is no longer possible since the interaction term makes the
action quartic in the Fermi fields. This problem can be sidestepped by means
of a Hubbard-Stratonovich transformation by which we trade a quartic form
in fermions for a quadratic action coupled to a new Bose field , the density
fluctuation. This procedure will allow us to give a full description of the spec-
trum of collective modes of the FQHE states. Note that, since we are dealing
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with a gauge theory, a gauge has to be specified in order to make the func-
tional integral well defined. We will assume that a gauge fixing condition has
been imposed but, for the moment, we will not make any specific choice of
gauge.

Before we proceed to integrate the Fermi degrees of freedom out, we per-
form the Hubbard-Stratonovich transformation in terms of a scalar Bose field
A(z). Let F be the weight in the path-integral amplitude which contains in
its exponent the terms in the action which are quartic in ¥ i.e.,

Fep{=i [ [ @2 L0 -5 V=) (6P - )
(10.11.2)

The Hubbard-Stratonovich transformation allows us to write F' as a gaussian
functional integral over the Bose field A(z) in the form

F= .N'/’D A exp {i/daz Az) ([p(2)]2 = ﬁ)} X

X exp {%/dsz/daz’ M)V i(z=2") A(ZI)} |

where A is a normalization constant and V(z — z’) represents the instanta-
neous pair interaction i.e.,

V(z—2') = V(7= 2])é(t —t'). (10.11.4)

V(2 —2') is the inverse of V(z—z') in an operator sense. I will assume that
the physics of the FQHE can be studied in a model system in which the pair
potential is reasonably local, such as

V(Z-2')=Vavié(z-2"). (10.11.5)

For this case, the inverse potential V~1(z — 2’) takes the particularly simple
form

(10.11.3)

Vl(z= ) = VlGO(|z— 76t — t'). (10.11.6)
2
Here Gp(R) is the two-dimensional Coulomb green function. Hence,
iy 1
V™ (R) = 5V, In(R/a). (10.11.7)

where a is a constant with dimensions of length which represents the range of
the interaction.

After the Hubbard-Stratonovich transformation is performed, the parti-
tion function Z can be written in the form of a functional integral involving
the fermi fields ¢, the statistical gauge fields A, and the collective modes A.
The action for the system is now given by

S = /daz {1/)"(2) (iDg + p+ A(2)) ¥(z) + %M—)‘d)(znz - /\(z)p_} +

+/d32 %6,“,,\.4”.7:"’\ + %/dsz/daz' A=) V7 i(z = 2') A(2).
(10.11.8)
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The Fermi fields can be integrated out without any difficulty yielding a fermion
determinant. The resulting partition function can thus be written in terms of
an effective action Seq given by

. . 1 = i
Ser = —i Tr logliDo + p + A + 5—D?] + 6Scs (Au — Au)+

_/dSZ Mz)p + %/d‘*z/d%' A(Z) V=12 — ) (). (10.11.9)

where Do and D are the covariant derivatives and Scs is the Chern-Simons
action for § = 1. The field A, represents a small fluctuating electromagnetic
field, with vanishing average everywhere, which will be used to probe the
system. The electromagnetic currents will be calculated as first derivatives
of Z with respect to fi,,. The full electromagnetic response can be obtained
in this way. Notice that since the collective mode A(z) can be thought of
as a locally fluctuating electrostatic potential, it couples to the fermions in
the same way as the time component of the statistical and electromagnetic
vector potentials. From this point of view, it does not describe an independent
excitation.

We are now ready to proceed with the semiclassical approximation. The
path-integral Z will be approximated by expanding its degrees of freedom
around stationary configurations of the effective action Seg in powers of the
fluctuations. This is the conventional WKB approximation. The classical con-
figurations (A,(z) and A(z))can be obtained by demanding that Seq be sta-
tionary under small fluctuations. This requirement yields the classical equa-
tions of motion

8Sefr

lax=0; ml;,x =0. (10.11.10)

By varying Seq with respect to .4,(z) and A(z) we get

GEE) + geul(FA () - ()] = 0

(10.11.11)
(o(a) =7+ [ &5 V7= ) (M) =0

In addition, we must fix the particle density to be uniform and equal to f i.e.,
(Jo(2)) =p (10.11.12)

This condition, which implies that we are in a liquid phase, is only consistent
with a solution of the equation of motion with

(Mz)) =0. (10.11.13)

If the external electromagnetic fluctuation is assumed to have zero average,
the only time-independent uniform solutions have uniform average statistical
flux (B) and vanishing average statistical electric field (£) (unless there is a
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non-zero current in the ground state) and satisfy

(B) = -
@ =0

DI

(10.11.14)

The non-uniform solutions have {A(z)) a periodic function which induces a
periodic modulation of the electron density. This is the Wigner crystal state.
Notice that, in principle, the crystalline solutions have a modulation in both
the charge density and in the local statistical flux.

The equations of motion show that, for a translationally invariant ground
state, the effect of the statistical gauge fields, at the level of the saddle-point-
approximation, is to reduce the effective flux experienced by the fermions. The
total effective field is thus reduced from the value of the external field B down
to Begx = B+(B) = B— g. Let us assume that we have a situation in which we
are trying to find the ground state of N (interacting) electrons in the presence
of an external magnetic field of strength B. We will further assume that the
linear size L of the sample is such that a total of Ny quanta of the magnetic
flux are piercing the surface. In general, the filling fraction v = 7\,1-\-’- is not an
integer. Thus, a perturbative approach based on a Slater determinant wave
function of the occupied single particle states does not yield a stable answer.
This is so because there is a macroscopic number of essentially degenerate
states which will mix with this trial state. On the other hand, a Laughlin
state is known to represent a state with an energy gap. Thus, the correlations
have removed the massive degeneracy of the free electrons. Since this gap is
not equal to the Landau gap of the non-interacting electrons, we can expect
our saddle-point-expansion to succeed only if the effective theory ends up with
a non-zero gap.

It is easy to check that the uniform saddle-point state has a gap only if
the effective field Beg experienced by the N fermions is such that the fermions
fill ezactly an integer number p of the effective Landau levels. This is precisely
the point of view advocated by Jain: the FQHE is an IQHE of a system of
electrons dressed by an even number of flux quanta. However, this condition
cannot be met for arbitrary values of the filling fraction v at fixed field ( or
at fixed density). Let N, gﬂ denote the effective number of flux quanta piercing
the surface after screening. It is given by

2rNST = 27Ny — gLZ = 27Ny — 272sN. (10.11.15)

where 2s is an even integer, which before we had denoted by n. The spectrum
supported by this state has an, energy gap if the N fermions fill exactly p
of the Landau levels created by the effective field Beg. In other words, the
effective filling fraction is veg = N—IY,; = p. Using these results, we find that

the filling fraction v and the external magnetic field B must satisfy

N_oN o, (10.11.16)
P 14
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or, equivalently,
1 = L + 2s. (10.11.17)
v p

Since the filling fraction v is in general equal to the ratio of two integers,
v = 2, a solution exists if the integers n and m satisfy

m_1a (10.11.18)

n p
The states are thus parametrized by two integers p ( the number of filled
Landau levels of the effective field) and 2s ( the number of flux quanta carried
by each fermion). The Laughlin sequence is an obvious solution since, for
n = 1 and m odd, we get the unique solution p = 1 and 2s = m — 1. The
effective fermions thus fill up exactly one Landau level and # has to be chosen
to be § = 2m(m—1). This result agrees with Jain’s theory. At this mean-filled
level the wave function is the Slater determinant for one filled Landau level
x1 - The additional factor, [; ;(2i — z; Y"1 is due to the fluctuations of the
statistical gauge fields.

In addition to the Laughlin sequence (p = 1,2s = m — 1), there is a host
of other solutions to the equations of motion. For n < m, we can use the
division algorithm to find a pair of integers r and ¢ (0 < ¢ < n) such that
m = nr + q. The solution is consistent only if 7 = 2s and ¢ is a factor of n
such that £ = i—. For instance, the sequence m = 2sn + 1 is a solution if 7 is
an odd integer (g = 1). Clearly, this case has p = n filled Landau levels. This
is the first level of the hierarchy. Here too, the semiclassical theory yields the
same answers as in Jain’s approach.

10.12 The Excitation Spectrum in

the Semiclassical Limit

In this section we consider the role of the Gaussian fluctuations around the
classical solutions. This is equivalent to a WKB approximation of the func-
tional integral. We begin by considering the effective action. We showed that
the saddle-point approximation has a uniform liquid-like solution. Let A,(z)
and A(z) denote the fluctuations of the statistical vector potential .4, and
of the collective mode A(z) respectively i.e., we set A, — (A,) + A, and
A — (A) + A. The effective action can be expanded in a series in powers of the
fluctuations. We will be interested only in keeping the terms up to quadratic
order in the fluctuations. As usual, the linear terms are cancelled if the saddle-
point equations are satisfied. It will be convenient to shift the component Ag
of the statistical vector potential by Ag — Ag + A. In this way, the collective
mode A disappears from the fermion determinant. Naturally, this means that
the Chern Simons piece of the action now has the form Scg(A, — j# —b6,0A).
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At the quadratic (gaussian) level the effective action has the form
1
S® = E/dszday Au ()1 (z, y) AL (y)+

+ Scs(Au — Ay — 640)) + Sa(X)
where Sy () is the part of the effective action which only depends on A i.e.,

Sy(A) = %/daz/daz’ A=)V 1z - z’)/\(z’)—/daz Mz)p  (10.12.2)

The polarization tensor II,, was derived explicitly in section (8.6). For a sys-
tem with an integer number of Landau levels, the most important properties
of I, are its transversality ( i.e., 8,1, = 0) and that it can be expanded in
powers of gradients. This last property is a consequence of the fact that the
system has an energy gap. Thus, in close analogy with the problem of Anyon
Superconductivity of chapter (7), gauge invariance and locality are sufficient
to fix the form of the effective action for the low-energy fluctuations.

To leading order in fluctuations and in gradients, we get the following
effective action

(10.12.1)

o -
Sef = /daz (%5‘7 - %BZ + %”-eyy,\A,,f,,\) +0Scs(Ap—Ap—A6,0)+Sr(A)

(10.12.3

Once again, we find that the effective action is parametrized in terms of tht)e
three quantities ¢, ¥ and 02y which we already discussed in chapter (7). For
exactly the same arguments, we expect that ¢ and x will have significant finite
renormalizations but the Hall conductance o, will remain unrenormalized at
the value predicted by mean-field-theory. Thus, we know that, for a state with
an integer number p of filled Landau levels, ¢2, = £ ( in units of 9,;)

The Chern-Simons term in the effective action Seg can be expanded to
give

Sl A — Ay = M6,0) = Ses( Ay — A,) — / B2 M(=)(B(z) = B(2)). (10.12.4)

Since the term in the action S)(A), which is determined by the interaction
potential V', is quadratic in the collective mode A, we can further simplify the
effective action by doing the gaussian integral over A. After some straightfor-
ward algebra, the final form of the effective action is

2
Seff = /daz (%6—"2 - %BZ) —/daz/ a3z %B(z) V(z —2') B(z')+

~ [ ~
+ (03 +0)Ses(Ap) + 0Scs(Au) — / daziepu,\A“F"’\

(10.12.5)
where I used the definition B(z) = (B(z)— B(z)). This effective action is suffi-
cient to derive the behavior of the cyclotron collective modes, their spectrum
and dynamics, as well as the electromagnetic response of the system and the
statistics of the quasiparticles. Notice that, if the electromagnetic fluctuation
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is turned off, the action for the statistical gauge field has a Chern-Simons
with a coupling constant equal to the sum of the bare (#) and induced (o)
couplings. In the Anyon Superconductor of chapter (7), these two contribu-
tions cancelled each other out leading to a compressible state. In a Fractional
Hall state, they add up and the state is incompressible. It is also worth to
note that, except for the “Maxwell-like” first two terms, this expression is ex-
act and independent of the gradient fluctuation. In particular, it contains the
exact dependence on the interaction pair potential V.

I will show now how this formalism can be used to compute the Hall
conductance g,y and the statistics of the quasiparticles. Let us first note that
the quantity agy is the Hall conductance of the effective fermions in mean-
field-theory and it is not equal to 4y. In particular it is equal to agy = p/2m,
and shows it integer quantization instead of a fractional Hall conductance. The
full Hall conductance is obtained by calculating the electromagnetic response
function.

If we are only interested in the behavior at very low frequency and mo-
mentum, we can further approximate Seq by keeping only the terms with the
smallest number of derivatives. The Chern-Simons terms have just one deriva-
tive while the other terms have at least two. Thus, at long wavelengths and
low frequencies, we can use the approximation

Seft[A, A] % (02, + 0)Scs(Ap) + 0Sca(Ay) — / d3z ge,,,,,\.A“ﬁ“”\ (10.12.6)

where only the statistical gauge field A, is dynamical. This approximation is
sufficient for our purposes. We will see below that, this approximate form of
the effective action is sufficient to determine the charge and statistics of the
quasiparticles as well as the Hall conductance.

10.13 The Hall Conductance in the
Chern-Simons Theory

The electromagnetic response is calculated from the partition function Z[A]

Z[f’i] = /D.A” exp(iSefr[A:A])

= exp (% / & / B2 Ay(z) I*(z, ') g,(zf))

where I147(z,2") is the effective polarization tensor (i.e., the current-current
correlation function for the full system) in the gaussian (RPA) approximation.
The calculation is particularly simple in the infrared limit. _

In chapter (7) we showed that a theory with two gauge fields A, and
A, with just Chern-Simons terms in the action, with couplings 6; = 8 and

0y = agy respectively, is equivalent upon integration over A,, to a theory with

(10.13.1)
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a Lagrangian Leg[A] = —¢ log Z[A] which has the Chern-Simons form
Leg[A] = begLcs[A] (10.13.2)

The effective coupling g is given by

1 1 1
- 4+ 10.13.3
bor 0, 1 05 ( )

For the values (1/6) = 2x(2s) and o3, = (p/27), that we found above, we get

1
0eﬂ'

= 2n(2s) + 27 (10.13.4)
p

Since in the effective Lagrangian Leq[A] we are only keeping the terms with
the smallest number of gradients, we are neglecting even the Maxwell terms,
coming both from electrodynamics and from their renormalization by the
charge fluctuations.

The (induced) current J,(z) is computed by its usual definition

;8log Z[A] _ 8LealA]

Ju(z) = = - 10.13.5
S WE R WE (1013

The current J,(z) is determined by the Chern-Simons term alone
Ju(z) = —f;wz\FW\(-T) (10.13.6)

For a weak external static electric field E'j (£), we find that the induced charge
vanishes and that there is a non-zero Hall current i.e.,

Pind(-'E) = Jo(.’l-f) =0
T4(E) = Oenrer; E;(£)

The form of the Hall current enables us to identify the Hall conductance 6.y
with feg. Thus, the Hall conductance for this ground state is

(10.13.7)

1 P
=05 = — 13.
Ozy eflf o (2sp+ 1) (10 13 8)
For the odd integers m, in the sequence m = 2sp + 1, we can write the Hall
conductance as the fraction

2
Oy = L (%) (10.13.9)

2rm

where I have restored the factor 9,; Hence, we get a fractional quantum Hall
effect. The particular choice p = 1 yields the family of Laughlin states ¥y,
with m =25+ 1.



334 Chapter 10 FQHE

10.14 The Quantum Numbers of the
Quasiparticles in the Chern-Simons Theory

Let us now evaluate the quantum numbers of the quasiparticles within the
Chern-Simons theory. In particular, we want to compute their charge and
statistics. Much of what follows is a rederivation, directly from the path inte-
gral, of results which were obtained before using Berry phase arguments. The
path integral methods have the great advantage that they are very general
and widely applicable.

We first need to identify the operators which create the quasiparticles
in the Chern-Simons theory . Or, at least, we need to find a set of opera-
tors whose correlation functions yield information about the spectrum of the
quasiparticles.

We have already identified the collective modes. Let us now identify the
quasthole. From Laughlin’s theory we know that the quasihole is an anyon
which carries fractional charge.

We will now define a gauge invariant operator which creates an excitation
at & at time z¢ and destroy it at &’ at time zg which behaves like a quasihole.
Let us consider the “bilinear”

¥} (z) exp (—i /F o +.A,,)dx,,) ¥(z) (10.14.1)

where I'(z, z’) is a path in space-time going from z to z’. By construction, this
operator is invariant under gauge transformations of the statistical gauge field
A,. We will assume for the moment that the fluctuating component A, of
the electromagnetic field is switched off and, therefore, this object only feels
the uniform magnetic field A, ( as far as electromagnetism is concerned).
In any event, the line integral in the exponent of the bilinear, only depends
on the sum of all the vector potentials. According to the procedure we used
above, the fields A, and A have already been shifted away and do not appear
explicitly in this operator. Their effect is felt through their coupling to the
the vector potential A,.
Let us evaluate the Green function Gp(z,z') defined by
I)(Au +Ay) dx,,) 1/’(1")] |0:m)

t(z) exp|i
" p(/l‘(= (10.14.2)

where T is the time ordering operator. This Green function is gauge-invariant
but depends on the choice of path T'.

In path integral language, this Green function is given by an average
over the histories of Fermi and statistical fields, weighed with the amplitude
exp(iSy) defined earlier in this section. We now proceed to integrate out the

Gr(z,2') = (0| T

X
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Fermi fields, and find that the Green function is given by the average

Gr(z,z') = (G(z,2'|{Ay + Au}) exp (1./1‘ )(A,, + Ay) d:c,,) Ya

(10.14.3)
The function G(z, z'|[{ A, +.Au}) is the one-particle Green function for a prob-
lem of fermions in fired statistical and electromagnetic gauge fields at finite
particle density, determined by the chemical potential u. It is straightforward
to see that G(z,z’|[{A, + A,}) is the inverse of the Schrodinger operator i.e.,

1
iDo+ p+ A+ 51 D?

From now on we will not write down explicitly in our formulas the constant
part of the electromagnetic field, A,. Its presence will be assumed throughout
the rest of the discussion.

The average of any operator O[{A}] over all configurations of the fields
A, is given by the path integral

(z,z'

G(a:,:c'|{A,, +Au}) = (]

|2') (10.14.4)

(O A = 5 [ PAOHAY exp(iSentAD (10.14.5)

where Z is the partition function and Seg[A] is the effective action, which
turns out to be given by

0 - 1 a3
Seg = —1 Tt log[zDo +pu+r+ %DZ] + 0SCS(A;4)+

- /daz A(2)p + %/daz/daz’ Az) V7i(z = 2') A(2').

Let us now represent the one-particle Green function G(z,z’|{A,}) in terms
of a Feynman path integral [Feynman 65] [Polyakov 86].We first use the repre-
sentation of the Green function as an integral of a transition matrix element,
namely for T = z — z¢, we have

G(z,z'|{Au}) = —i (£,0|1&,T) '»T (10.14.7)

where the weight exp(ipT’) serves to fix the number of particles. Since the
saddle point has p filled Landau levels, the chemical potential has to be set
to lie between the levels p and p + 1. The matrix element (&,0|z’,T) can be
written as a sum over histories by means of the Feynman formula

(10.14.6)

(Z,018,7) = / Dzt] &SI (10.14.8)
with the boundary conditions
tlirr(1) t)y=7
- 10.14.9
11rr71‘ @) =7 ( )

Thus, as usual, the matrix element (Z,0|&',T) is a sum over all paths T which
go from T to &’ in time T. The action S in the path integral is the standard

335
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action for non-relativistic quantum mechanical particles coupled to a gauge

field
5= /0’ a {% (%:’) + %%ﬁ(t)flu(f(t))} (10.14.10)

where we have used the notation zg = t. The second term in the integrand is
a shorthand notation for the coupling to the electromagnetic and statistical
gauge fields,

edz edZ

5 (DAu(E1)) =-—(t) A(Z(1)) + eAo(Z(1))+

(t) A(Z(2)) + Aol Z(1)) + MAD)

Similar looking formulas can be derived for the two-particle and many-particle
propagators.

For a problem with an energy gap, the long-distance, long-time limit,
|z—2’| — oo, of the path integral is dominated by paths close to the solution of
the classical equations of motion. Thus, in this case, the dominant trajectories
are smooth. Thus, it should be a good approximation for our problem to pull
the integral over the trajectories {Z(t)} outside of the functional integral over
the statistical gauge fields and to over all the configurations of these fields
for a fixed path v. The averaging over the trajectories of the particle is done
at a later stage. We should keep in mind that these averages are performed
around the saddle-point configuration which has an effective constant uniform
magnetic field Beg and a total number p of Landau levels completely filled.
Formally, we can write the average in the form

G’p(:c:c)_/Dz"(t)e exp</ a7 d"‘ )x

% (exp(i }i Adz,)) 4

(10.14.11)

(10.14.12)

where the set of closed curves {7}, represents paths which are the oriented
sum of the path I' and the histories of the particle T. It is important to keep
in mind that this formula is a sum over all trajectories that go from & to '
with a fized return path I'. Notice that the particle does not return to &, only
the gauge fields see the closed paths ~.

It is straightforward to find a generalization of this formalism for the
calculation of the two-particle Green function. The main difference is that,
for the two particle case, there are two sets of trajectories to be summed over.
The Grassman integral automatically antisymmetrizes the two particle Green
function, which comes in the form of a sum over direct and exchange processes
with the gauge fields as a fixed background.

In the semiclassical approximation, the exact average is replaced by an
expansion around the solutions of the classical equations of motion. Thus, in
this approximation, the particle only feels the average of the sum of the elec-
tromagnetic and statistical gauge field. The effective field felt by the particle
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is equal to Ber = B —(p/8). Thus, for each closed trajectory <, there is a con-
stant factor which can be factored out from the funtional integral. This factor
corresponds to an Aharonov-Bohm (AB) phase factor for a particle moving in
the field Beg, not in the external field B. It is easy to show that, as a result
of the screening of the external magnetic field, the AB phase factor is that of
a particle of charge # of the electron charge moving in the unscreened field
B.

Indeed, the exponent of AB phase factor is equal to i—:Beﬂ'A 1(7), where
Ay (7) is the (spacial) cross sectional area bounded by the path 7. Since Beg =
B —(p/8), we can define the effective charge (in units of €) geg = 1 — (p/0B)
and write Beg = gegB. The effective charge geg can also be written in the
more useful form

p pL? N
i=1l———=1— =1—-— 10.14.13
en=1-3p=1-4p0 970N, ( )
where L is the linear size of the system. Thus, we get
=1--2 (10.14.14)
Qeff = 270 s 452

For a filling fraction v = (p/m) = (p/2sp + 1) and 6 = 1/4xs, we find that
the effective charge is

2sp 1
2%sp+1~ 2sp+1

1
gesr = 1 = (10.14.15)
Hence, the effective charge is +(e/m).

The fractional statistics can be studied by considering the two-particle
Green function. Recall that now we have to consider two sets of trajecto-
ries, one for each particle. We now consider two paths v; and v,, such as the
ones discussed in section (7.2). Here too, the configurations of paths can be
classified according to their linking number vy,. The weights of configurations
with different linking numbers have different phase factors. Likewise, configu-
rations of paths from direct and exchange processes also have different linking
number. While the phase factors themselves depend on the trajectories, and
thus on the arbitrarily chosen paths for the two particles, the relative phase
only depends on the topological properties of the configurations of paths and
it is determined entirely by the relative linking number Ayy,. In particular we
want to compare two paths which form a linked knot with two paths which
do not. In this case, the the linking number changes by Ay, = 1.

If the paths are very long and wide, such as the dominant paths for
the low energy excitations, the average over the statistical gauge fields can
be calculated using the effective action in the infrared approximation. This
effective action only contains one Chern-Simons term (if A = 0) with coupling
constant 8 equal to

f=o® +o=2 4 L (10.14.16)
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The arguments of section (7.2) show that these two amplitudes differ by a
factor Wy A
Wex = — exp(iT;L— (10.14.17)

Thus the effective statistics ( relative to bosons) is given by the angle 6

+1] (10.14.18)

where we have included the effect of the minus sign. For the Laughlin sequence
and for the first level of the hierarchy, we got the filling fraction » = (n/m)
with n = p and m = 2sp + 1. Hence, in this case the effective statistics
( relative to bosons) is § = +(x/m)

We conclude that the operator that we found creates quasiholes ( or con-
versely, quasielectrons) of charge *(e/m) and statistics (v/m). This result
agrees with the Berry phase arguments of Arovas, Schrieffer and Wilczek and
with the calculations based on the Laughlin wave function, which we summa-
rized in section (10.4). The power of the derivation that we just gave lies in
the fact that it follows directly from the general principles of quantum me-
chanics (just as the Berry phase arguments do) but without having to make
any specific ansatz for the wave functions for the ground state and for the
quasihole. The adiabatic approximation, which is essential to the Berry phase
argument, is just as important here since it results from the existence of a
non-vanishing energy gap. But the general formula for the path integral is
valid even in the absence of a gap.
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