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Chapter 1

Figure 1.0-1 The theory of quantum optics provides an
explanation for virtually all optical ...

perfect projections of stops.

Figure 1.1-2 (a) Reflection from the surface of a curved
mirror. (b)_Geometrical constructio...

Figure 1.1-3 Reflection and refraction at the boundary
between two media.

Figure 1.1-4 Construction to prove Snell’s law.

Figure 1.2-1 Reflection of light from a planar mirror.
Figure 1.2-3 Reflection from an elliptical mirror.

Figure 1.2-4 Reflection of parallel rays from a concave
spherical mirror.

Figure 1.2-5 A spherical mirror approxi-mates a
paraboloidal mirror for paraxial rays.

Figure 1.2-6 Reflection of paraxial rays from a concave
spherical mirror of radius R< 0.

Figure 1.2-7 Image formation by a spherical mirror. Four
particular rays are illustrated.



Figure 1.2-8 Relation between the angles of refraction and
incidence.

(1.2-6)_for the deflection angle 6d...

Figure 1.2-11 Beamsplitters and beam combiners.

convex axicon.

Figure 1.2-13 Refraction at a convex spherical boundary
(R>0).

Figure 1.2-14 Cross section of a collimator for LED light.
LED collimators come in many confi...

Figure 1.2-15_A biconvex spherical lens.

Figure 1.2-16 (@) Ray bending by a thin lens. (b) Image
formation by a thin lens.

Figure 1.2-17 Nonparaxial rays do not meet at the paraxial
focus. The dashed envelope of the ...

multiple total internal reflections...
Figure 1.2-21 Acceptance angle of an optical fiber.

Figure 1.2-22 Trapping of light in a parallelepiped of high
refractive index.

Figure 1.3-1 The ray trajectory is described parametrically




Figure 1.3-4 Trajectory of a ray in a GRIN slab of parabolic
index profile (SELFOC).

source in a SELFOC slab.

Figure 1.3-6 The SELFOC slab used as a lens; _F'is the focal
point and H is the principal poi...

Figure 1.3-7 (a)_Meridional and (b)_helical rays in a graded-
index fiber with parabolic inde...

Figure 1.3-8 Acceptance angle of a graded-index optical
fiber.

constant S(r).

Figure 1.3-10 Rays and surfaces of constant S(r)_in a
homogeneous medium.

Figure 1.4-1 A ray is characterized by its coordinate y_and
its angle 0.

Figure 1.4-2 A ray enters an optical system at location z,
with position y, and angle 6, and...

set of cascaded optical elements....
Figure 1.4-5_A cascade of identical optical systems.

Figure 1.4-6 Examples of trajectories in periodic optical

Figure 1.4-7 A periodic sequence of lenses.




periodic lens system: (a)_d = 2f;(b)d...

Figure 1.4-9_A periodic sequence of lens pairs.

Figure 1.4-10 The optical resonator as a periodic optical
system.

Reflection from an inscribed tang...

Figure P1.2-10 Focusing light into an optical fiber with a
spherical glass ball.

Chapter 2

Figure 2.0-1 Optical frequencies and wavelengths. The

Figure 2.0-2 Wave optics encompasses ray optics. Ray
optics is the limit of wave optics when...

Figure 2.2-1 Representations of a monochromatic wave at a
fixed position r:(a)_the wavefunct...

Figure 2.2-2 The wavefunction of a plane wave traveling in
the z direction, schematically dr...

Figure 2.2-3 Cross section of the wave-function of a
spherical wave. The associated wavefron...

Figure 2.2-4 A spherical wave may be approximated at
points near the z axis and sufficiently...

Figure 2.2-5 (a)_ Wavefunction of a paraxial wave at point
on the z axis as a function of the...

Figure 2.3-1 (a)_The rays of ray optics are orthogonal to the
wavefronts of wave optics (see...

Figure 2.4-1 Reflection of a plane wave from a planar
mirror. Phase matching at the surface ...




Figure 2.4-2 Refraction of a plane wave at a dielectric
boundary. The wavefronts are matched...

Figure 2.4-3 Transmission of a plane wave through a
transparent plate.

Figure 2.4-4 Transmission of an oblique plane wave
through a thin transparent plate.

Figure 2.4-5_A transparent plate of varying thickness.

Figure 2.4-6 Transmission of a plane wave through a thin
prism.

paraboloidal wave.

Figure 2.4-10 A lens transforms a paraboloidal wave into
another paraboloidal wave. The two w...

varying thickness serves as a diffra...

Figure 2.4-12 A diffraction grating directs two waves of
different wavelengths, A, and A, in...

Figure 2.4-13_A graded-index plate acts as a lens.

Figure 2.5-1 (a)_Phasor diagram for the superposition of
two waves of intensities I, and I, ...

Figure 2.5-2 Dependence of the intensity I of the
superposition of two waves, each of intens...

waves U, _and U, (they are shown as... B

Figure 2.5-4 The interference of two plane waves traveling
at an angle O with respect to eac...




Figure 2.5-5 The interference of a plane wave and a
spherical wave creates a pattern of conc...

Figure 2.5-6 Interference of two spherical waves of equal
intensities originating at the poi...

Figure 2.5-7 (a)_The sum of M phasors of equal

Figure 2.5-8 Reflection of a plane wave from M parallel
planes separated from each other by ...

Figure 2.5-9 The Fresnel zone plate serves as a spherical
lens with multiple focal lengths.

Figure 2.5-10 (@)_The sum of an infinite number of phasors
whose magnitudes are successively ...

Figure 2.5-11 The LIGO interferometer is a Michelson
interferometer (MI) with Fabry—Perot int...

of a pulsed plane wave. (a)_The...

Figure 2.6-3 Time dependence of the optical intensity (1)
of a polychromatic wave comprisin...

Chapter 3

Figure 3.1-1 Normalized Gaussian beam intensity I/I, as a
function of the radial distance p ...

Figure 3.1-2 The normalized beam intensity I/, at points
on the beam axis (p = 0)_as a func...

Figure 3.1-3.The beam width W(z)_assumes its minimum
value W, at the beam waist (z = 0), rea...

Figure 3.1-4 Depth of focus of a Gaussian beam.



Figure 3.1-5 The function {(z)_represents the phase
retardation of the Gaussian beam relativ...

Figure 3.1-6 The radius of curvature R(z)_of the wavefronts
of a Gaussian beam as a function...

Figure 3.1-7 Wavefronts of a Gaussian beam.

Figure 3.1-10 Given W , R, and d, determine W, and R,

Figure 3.1-11 Given R, R,, and d, determine z,,

and d, determine z,,z,,.Z
W

Zo,Zo,.and

Figure 3.2-1 Transmission of a Gaussian beam through a
thin lens.

beam waist.
Figure 3.2-4 Focusing a collimated beam.

Figure 3.2-6 Relation between the waist locations of the
incident and transmitted beams.

Figure 3.2-7 Beam expansion using a two-lens system.

Figure 3.2-8 Reflection of a Gaussian beam with radius of
curvature R, from a mirror with rad...

Figure 3.2-10 Modification of a Gaussian beam by a thin
optical component.



Figure 3.3-1 Low-order Hermite—Gaussian functions:

Figure 3.3-2 Intensity distributions of several low-order
Hermite—Gaussian beams, HGy,, in th...

Figure 3.4-1 The Laguerre—Gaussian beam LG, .(a)_The
transverse intensity distribution takes ...

Figure 3.4-2 Transverse intensity distributions of the
superposition of two Laguerre—Gaussian...

Figure 3.5-1 (a)_The intensity distribution of the Bessel
beam in the transverse plane is ind...

Chapter 4

Figure 4.0-1 An arbitrary function f(#)_may be analyzed as a
sum of harmonic functions of di...

in terms of a sum of harmonic fun...

Figure 4.0-3The principle of Fourier optics: An arbitrary
wave in free space can be analyze...

Figure 4.0-4 The transmission of an optical wave U (x,.y,z)
through an optical system locat...

transmittance is a harmonic function of ...

Figure 4.1-3 A thin optical element of amplitude
transmittance f(x,.y)_.decomposes an inciden...

Figure 4.1-4 Deflection of light by the transparencies f(x,
y)and fo(x,. y)_exp(=j2av, oX). ...




Figure 4.1-5 Deflection of light by a transparency made of
several harmonic functions (phase...

Figure 4.1-6 Making use of a frequency-modulated
transparency to scan an optical beam.

Figure 4.1-7 A transparency with transmit-tance f(x,y)_=
expljz(x2+y?) /Af]_acts as a spheric...

Figure 4.1-10 Propagation of light between two planes is
regarded as a linear system whose in...

Figure 4.1-11 Magnitude and phase of the transfer function
H(v,,v,) for free-space propagati...

Figure 4.1-12 The transfer function of free-space
propagation for low spatial frequencies (mu...

Figure 4.1-13 The Huygens— Fresnel principle. Each point
on a wavefront generates a spherical...

Figure 4.2-1 When the distance d is sufficiently long, the

Figure 4.2-2 Focusing of a plane wave into a point. A
direction (6,, Qy_) is mapped into a po...

Figure 4.2-3 Focusing of the plane waves associated with
the harmonic Fourier components of ...

Figure 4.2-4 The 2-f system. The Fourier component of f(x,
y)_with spatial frequencies v, an...

Figure 4.3-1 Diffraction pattern of the teeth of a saw.

Figure 4.3-2 A wave U (x,.y) s transmitted through an
aperture of amplitude transmittance p...



aperture. The central lobe of the pat...

Figure 4.3-4.The Fraunhofer diffraction pattern from a

Figure 4.3-5 Focusing of a plane wave transmitted through
a circular aperture of diameter D....

Figure 4.3-6 The real and imaginary parts of exp(=jzX3).

Figure 4.3-7 Fresnel diffraction from a slit of width D = 2a.
(@)Shaded area is the geometri...

Figure 4.3-8 Fresnel diffraction pattern for a Gaussian
aperture of radius W at distances d...

Figure 4.3-9 Talbot effect. Fresnel diffraction pattern from
a periodic aperture that takes ...

Figure 4.4-1 Rays in a focused imaging system.

Figure 4.4-2 (a)_Rays in a defocused imaging system. (b)
The impulse response function of an...

Figure 4.4-3.The 4-fimaging system. If an inverted
coordinate system is used in the image p...

Figure 4.4-4.The 4-f imaging system performs a Fourier
transform followed by an inverse Four...

Figure 4.4-5 Spatial filtering. The transparencies in the
object and Fourier planes have com...

Figure 4.4-6 Examples of object, mask, and filtered image
for three spatial filters: (a) low...

Figure 4.4-7 Single-lens imaging system.

Figure 4.4-8 Impulse response function of an imaging
system with a circular aperture.

Figure 4.4-9 The imaging system in (a)_is regarded in (b)_as
a combination of an ideal imagi...



Figure 4.4-10 Transfer function of a focused imaging
system with a circular aperture of diame...

Figure 4.4-11 In a single-lens imaging system, the
subwavelength spatial details of an object...

tip for near-field imaging,

Figure 4.5-1 (a)_A hologram is a transparency on which the
interference pattern between the ...

Figure 4.5-2 The hologram of an oblique plane wave is a
sinusoidal diffraction grating,

a point source. The conjugate wav...

Figure 4.5-4 Hologram of an off-axis object wave. The
object wave is separated from both the...

Figure 4.5-5_(a)_Hologram of a wave whose complex
amplitude represents the Fourier transform...

Figure 4.5-6 The VanderLugt holographic filter. (@) A
hologram of the Fourier transform of h...

Figure 4.5-7 Holographic recording and reconstruction.

Figure 4.5-8 Interference pattern when the reference and
object waves are plane waves. Since...

Figure 4.5-9 The reference wave is Bragg reflected from the
thick hologram and the object wa...

reconstruction of a volume hologram. (a)_This ...

Figure 4.5-11 Computer-generated holographic optical
elements for introducing a spiral phase ...

Chapter 5



Figure 5.0-1 The electromagnetic spectrum from low
frequencies (long wavelengths)_to high fr...

Figure 5.0-2 Electromagnetic optics is a vector theory,
comprising an electric field and a ma...

Figure 5.1-1 Boundary conditions at: (a)_the interface
between two dielectric media; (b)_the...

Figure 5.2-1 In response to an applied electric field €, the
dielectric medium creates a pol...

Figure 5.2-2 A linear, nondispersive, homogeneous, and
isotropic medium is fully characteriz...

Figure 5.2-3_An inhomogeneous (but linear, nondispersive,
and isotropic) medium is character...

Figure 5.2-4_An anisotropic (but linear, homogeneous, and
nondispersive) medium is character...

Figure 5.2-5 In a dispersive (but linear, homo geneous, and
isotropic) medium the relation b...

Figure 5.4-1 The TEM plane wave. The vectors E, H, and k
are mutually orthogonal. The wavefr...

and magnetic-field vectors and w...

Figure 5.4-3_(a)_Wavefronts of the scalar Gaussian beam
U(r)in the x—z plane. (b)_Electric-...

Figure 5.4-4.The paraxial electromagnetic wave. The
vectors E and H reverse directions after...

Figure 5.4-5 Vector beams with cylindrical symmetry. (@),
Electric-field vectors oriented in ...

Figure 5.5-1 The white regions indicate the spectral bands
within which the specified optica...

Figure 5.5-2 Optical components fabricated from dispersive
materials refract waves of differ...




pulse of light because the different fr...

Figure 5.5-4_ Wavelength dependence of the refractive
index of selected optical materials, in...

Figure 5.5-5_A time-varying electric field € applied to a
Lorentz-oscillator atom induces a ...

Figure 5.5-6 Real and imaginary parts of the susceptibility
of a resonant dielectric medium....

Figure 5.5-7 Absorption coefficient a(v)_and refractive
index n(v)_of a dielectric medium of...

Figure 5.5-8 Frequency dependence of the absorption
coefficient a(v)_and the refractive inde...

Figure 5.5-9 Typical wavelength dependence of the
absorption coefficient and refractive inde...

Figure 5.6-1 Under the Born approximation, the scattered

Figure 5.6-2 A transverse electromagnetic plane wave with
electric field E,_scattered from a...

E, from a dielectric nanosphere ...

Figure 5.6-4 Scattering and absorption from scatterers
embedded in a nonabsorbing homogenous...

Figure 5.7-1 An optical pulse traveling in a dispersive
medium that is weak enough so that i...

Figure 5.7-2 The temporal spread of an optical pulse
traveling in a dispersive medium is pro...

Figure 5.7-3 Propagation of an optical pulse through media
with normal and anomalous dispers...




Figure 5.7-4 Wavelength dependence of the optical
parameters associated with a single-resona...

for fused silica calculated on the ...

Chapter 6

Figure 6.0-1 Trace of the time course of the electric-field
vector endpoint for monochromati...

field vector in the x—y_plane at a...
Figure 6.1-2 Polarization ellipse.

Figure 6.1-3 Linearly polarized light (also called plane
polarized light). (a)_Time course o...

Figure 6.1-4 Motion of the endpoints of the electric-field
vectors for left and right circul...

Figure 6.1-5 (a)_The orientation and ellipticity of the
polarization ellipse are represented geo...

Figure 6.1-6 An optical system that alters the polarization
of a plane wave.

represent the field direction ...

Figure 6.1-8 Operations of quarter-wave (z/2) and half-
wave (zr)_retarders on several particu...

Figure 6.2-1 Reflection and refraction at the boundary
between two dielectric media.

Figure 6.2-2 Magnitude and phase of the re-flection
coefficient as a function of the angle o...

Figure 6.2-3 Magnitude and phase of the reflection
coefficient as a function of the angle of...



Figure 6.2-4 Magnitude and phase of the reflection
coefficient as a function of the angle of...

Figure 6.2-5 Magnitude and phase of the reflection
coefficient as a function of the angle of...

Figure 6.2-6 The Brewster window transmits TM-polarized
light with no reflection loss.

Figure 6.2-7 Power reflectance of TE-and TM-polarization
plane waves at the boundary between...

Figure 6.3-1 Positional and orientational order in different
types of materials.

Figure 6.3-2 Geometrical representation of: (a)_a vector;
(b)_a symmetric second-rank tensor...

Figure 6.3-3 The index ellipsoid. The coordinates (x;, X, X),
are the principal axes while ...

Figure 6.3-4_A wave traveling along a principal axis and
polarized along another principal a...

Figure 6.3-5_A linearly polarized wave at 45°inthez =0

Figure 6.3-6 Determination of the normal modes from the
index ellipsoid.

Figure 6.3-7 Variation of the refractive index n(0)_of the
extraordinary wave with 0 (the an...

Figure 6.3-8 The vectors D, E, k, and S all lie in a single
plane, to which H and B are norm...

Figure 6.3-9 One octant of the k surface for (a)_a biaxial
crystal (n, < n, < n3),;,(b) a unia...

Figure 6.3-10 Rays and wavefronts for (a)_a spherical k




Figure 6.3-11 Intersection of the k surfaces with the y—z
plane for a positive uniaxial cryst...

Figure 6.3-12 The normal modes for a plane wave traveling
in a direction k that makes an angl...

matching projections of the k vect...

Figure 6.3-14 Double refraction at normal incidence.

liquid crystals.

Figure 6.5-2 Molecular orientations of the twisted nematic
liquid crystal.

liquid crystal. In this diagram the a...

Figure 6.6-1 Power transmittances of a typical dichroic
polarizer with the plane of polariza...

Figure 6.6-2 The Brewster-angle polarizer.

Figure 6.6-3 Examples of polarizing beamsplitters. The
parallel (p)_and orthogonal (s)_polar...

retarder with variable retardati...

Figure 6.6-5_An optical isolator that makes use of a Faraday,
rotator transmits light in one ...




Figure 6.6-6 A Faraday rotator followed by a half-wave ()
retarder is a nonreciprocal devic...

Chapter 7

Figure 7.0-1 Periodic photonic structures in one-
dimensional (1D), two-dimensional (2D), and...

boundaries of a multilayered medium. (b...

Figure 7.1-2 Transmission of a plane wave through a
cascade of two separated systems.

Figure 7.1-3 Antireflection coating,

Figure 7.1-4_(a)_Reflections of a single incident oblique
wave at the boundaries of a multil...

Figure 7.1-5 Intensity transmittance and reflectance, 7 and
R =1 -7, of the Fabry—Perot et...

Figure 7.1-6 (a)_An off-axis wave transmitted through a
mirror Fabry—Perot etalon. (b)_ White...

Dependence of the intensity t...

Figure 7.1-8 Locus of frequencies v and angles 0 at which
the Bragg condition is satisfied. ...

the 10-segment dielectric Bragg gr...



Figure 7.1-13 Power reflectance as a function of the angle
of incidence 0 at fixed frequencie...

periodic function with period g = ...

Figure 7.2-3 Wave-transfer matrix representation of a
periodic medium.

Figure 7.2-4 Dispersion diagram of a periodic set of
mirrors, each with intensity transmitta...

Figure 7.2-5 Dispersion diagram of an alternating-layer
periodic dielectric medium with n, =...

refractive index n.¢ , which determines ...

Figure 7.2-7 Projected dispersion diagram for an
alternating-layer periodic dielectric mediu...

bandgaps.

Figure 7.2-10 Projected dispersion diagram for an
alternating-layer dielectric medium with ni...

Figure 7.3-1 (a)_A 2D periodic structure comprising parallel
rods. (b)_The rectangular latti...

Figure 7.3-2 (a)_A 2D periodic structure comprising parallel
cylindrical holes. (b)_The tria...

Figure 7.3-3_Calculated band structure of a 2D photonic
crystal consisting of a homogeneous ...



Figure 7.3-4_(a)_A 3D periodic structure comprising
dielectric spheres. (b)_The spheres are ...

Figure 7.3-5_Calculated band structure of a 3D photonic
crystal with a diamond (facecentered...

Figure 7.3-6 (a)_The Yablonovite photonic crystal is
fabricated by drilling cylindrical hole...

Chapter 8

Figure 8.1-1 (a)_Plane wave propagating in an ordinary
double-positive (DPS)_medium. The vec...

between two DPS media takes place f...

Figure 8.1-3 (a)_Schematic representation of an optical
surface wave traveling along the bou...

Figure 8.1-4 The boundary between two media with real
permittivities and permeabilities can ...

Figure 8.1-5 (a)_Refraction at the boundary between two
positive-index media. The directions...

Figure 8.1-6 (@)_Focusing of rays by a boundary between
DPS and DNG media with refractive in...

Figure 8.1-7 (a)_An evanescent wave restored by a DNG
slab attenuates in air beyond the near...

Figure 8.1-8 Contours of the k surfaces in the k,—k, plane

for a uniaxial anisotropic medium...

£, K | &] has a planar dispersio...

Figure 8.1-10 Refraction at a boundary between an
isotropic DPS medium of refractive index ni...

curve) and imaginary part (dashed ...



Figure 8.2-2 (a@)_Real and imaginary parts of the relative
effective permittivity...

Figure 8.2-3 Left: Frequency dependence of the relative
effective permittivity e /e, the re...

metal—dielectric boundary, as depicte...

Figure 8.2-5 (a)_Generation of a SPP wave by use of a
prism coupler. An evanescent wave (EW)...

Figure 8.2-6 (@) Magnitude of the optical field outside a
metallic nanosphere supporting the...

Figure 8.2-7 Resonance characteristics of the scattering
cross section o and the internal f...

structures that exhibit resonance at opti...

Figure 8.2-10 Optical antennas used to localize light in
near-field microscopy. (a)_Monopole ...

Figure 8.3-1 A medium with resonant permittivity and
permeability can behave as a DNG medium...

Figure 8.3-2 Negative-permittivity metamaterial. (a),
Metallic nanosphere. (b)_Metamaterial c...

Figure 8.3-3 Negative-permittivity metamaterial. (a)_Thin
metallic rods of length a and radi...

Figure 8.3-4 Negative-permeability metamaterial. (a) A
metallic split ring excited by a magn...

Figure 8.3-5 Negative-index metamaterial. (a) Combined
rod and double split-ring element. (b...




Figure 8.3-6 Simplified version of a “fishnet” metal—
dielectric nanostructured composite met...

Figure 8.3-7 Hyperbolic metamaterial. Frequency

Figure 8.3-8 (a)_A metasurface using an array of metallic
elements whose shapes and resonanc...

Figure 8.4-1 Geometrical transformation implementing
refraction without reflection. (a)_Desi...

Figure 8.4-2 Geometrical transformation implementing
refraction at normal incidence. (a) _Des...

Figure 8.4-3 Geometrical transformation implementing

Chapter 9
Figure 9.0-1 Optical waveguides.

Figure 9.0-2 Schematic of a photonic integrated circuit that
serves as an elementary optical...

Figure 9.1-1 Planar-mirror waveguide.

reflects twice it duplicates itsel...

Figure 9.1-3 The bounce angles 6, and the wavevector
components of the modes of a planar-mir...

mirror waveguide.

Figure 9.1-5 (a) Number of modes M as a function of
angular frequency w. Modes are not permi...

in the z direction by a distance d...



Figure 9.1-7 TE and TM polarized guided waves.

Figure 9.1-8 Variation of the intensity distribution in the
transverse direction y_at differ...

Figure 9.2-1 Planar dielectric (slab) waveguide. Rays
making an angle...

Figure 9.2-2 Graphical solution of (9.2-19) to determine
the bounce angles 6,,, of the modes o...

Figure 9.2-3 The bounce angles 6, and the corresponding

components k, and k, of the wavevect...

Figure 9.2-4 Number of TE modes as a function of
frequency. Compare with Fig, 9.1-5(a)_for t...

dielectric waveguide. These result...

Figure 9.2-6 TE and TM modes in a planar dielectric
waveguide.

Figure 9.2-7 (a)_Gaussian beam in a homogeneous
medium. (b)_Guided mode in a dielectric wave...

characterized by a finite number of...

Figure 9.3-2 Geometry of a rectangular dielectric
waveguide. The values of k. and k, for the...

Figure 9.3-3 Various waveguide geometries. The darker the
shading, the higher the refractive...




Figure 9.3-4_Different waveguide configurations, in this
case for the embedded-strip geometr...

Figure 9.3-5(a) Ti:LiNb03 embedded-strip waveguide. (b),
Rib waveguide with GaAs core, AIGaA...

Figure 9.4-1 Coupling an optical beam into an optical
waveguide.

Figure 9.4-3_ End butt coupling from a light-emitting diode
or laser diode into a waveguide.

Figure 9.4-4 Prism and grating side couplers.

Figure 9.4-5 Coupling between two parallel planar
waveguides. At z = 0 the light is located ...

Figure 9.4-6 Periodic exchange of power between
waveguides 1 and 2: (@) _Phase-mismatched cas...

Figure 9.4-7 Optical couplers: (a)_switching power from
one waveguide to another; (b)_a 3-dB...

Figure 9.4-8 Dependence of the power transfer ratio T =
P,(L,)/P,(0)_on the phase-mismatch p...

Figure 9.4-9 (a)_Dispersion diagram of a slab waveguide
with cutoff angular frequency w, = (...

Figure 9.5-1 Planar waveguide comprising a dielectric slab
sandwiched between two Bragg-grat...

Figure 9.5-2 Dispersion diagram of a photonic crystal with
a defect layer.

Figure 9.5-3_(a)_Propagating mode in a photonic-crystal
waveguide. (b)_An L-shaped photonice...

Figure 9.6-1 Configurations and dispersion relations for
various optical and plasmonic waveg...



Figure 9.6-2 Metal-insulator periodic structure and its
dispersion relation for light travel...

Chapter 10

Figure 10.0-1 An optical fiber is a cylindrical dielectric
waveguide with an inner core and a...

plane that passes through the fibe...

Figure 10.1-2 A skewed ray lies in a plane offset from the
fiber axis by a distance R. The ra...

Figure 10.1-3 (a)_The acceptance angle 6, of a fiber. Rays
within the acceptance cone are gui...

graded-index optical fiber.

Figure 10.1-5 Power-law refractive-index profile n?(r)_for
various values of p.

meridional ray confined to a mer...
Figure 10.2-1 Cylindrical fiber coordinate system.

Figure 10.2-2 Examples of the radial distribution u(r),
provided in (10.2-6) forl=0and [ =...

Figure 10.2-3 Graphical construction for solving the
characteristic equation (10.2-14). The l...

Figure 10.2-4 Intensity distributions in the transverse
plane for several LP;,, modes for a st...

Figure 10.2-5 Total number of modes M versus fiber
parameter V = 271(a/A,JNA. Included in the ...



Figure 10.2-6 Schematic illustrations of the propagation
characteristics of the fundamental L...

Random transfer of power between ...

Figure 10.2-8 (a)_ The wavevector k =(k,., k¢_, k,)in a

Figure 10.2-9 Dependence of
2 (r A2, 2(rh k2 — B/, and &2 = o2 K2 — B2 — g the position r. At
anys...

Figure 10.2-10 The propagation constants and confinement
regions of the fiber modes. Each curv...

Figure 10.2-13 A multicore fiber (MCF)_with seven cores.

glass single-mode fibers (SMF)_an...

Figure 10.3-6 Refractive-index profiles with schematic
wavelength dependences of the silica-gl...

Figure 10.3-7 Differential group delay (DGD)_associated
with polarization mode dispersion (PMD...

Figure 10.3-9_Broadening of a short optical pulse after
transmission through different types o...

Figure 10.4-1 Various forms of holey fibers. (a)_Solid core
(dotted circle) surrounded by a cl...

Chapter 11

Figure 11.0-1 Storage of light in optical resonators via: (a)
multiple reflections from mirro...

Figure 11.0-2 Resonator size a vs. resonance wavelength A,
for various dielectric and metalli...



mirror mode as a function of z (f...

Figure 11.1-3 The adjacent resonance frequencies of a
planar-mirror resonator are separated b...

Figure 11.1-4 (a) A wave reflects back and forth between

the resonator mirrors, suffering a p...

Figure 11.1-5 Traveling-wave resonators. (a)_ Three-mirror
ring resonator. (b)_Four-mirror bow...

Figure 11.1-7 Finesse of an optical resonator versus the loss
factor a,d, where a,.is the eff...

resonator. (b)_Relation between mode angle...

Figure 11.2-1 Geometry of a spherical-mirror resonator. In
this illustration both mirrors are...

Figure 11.2-2 The position and inclination of a ray after m
round trips are represented by y,,,...

beam width (dashed curve).

Figure 11.2-6 Fitting a Gaussian beam to two mirrors
separated by a distance d. Their radii o...

Figure 11.2-7 The beam width at the waist, W, and at the
mirrors, W, = W,, for a symmetrics...




Figure 11.2-8 Gaussian beam in a symmetric confocal
resonator with concave mirrors. The depth...

longitudinal modes associated with two t...

Figure 11.2-10 Propagation of a wave through a spherical-
mirror resonator. The complex amplitu...

round trip)_as a function of the Fres...

Figure 11.3-1 A two-dimensional planar-mirror resonator:

Figure 11.3-2 Dots denote the endpoints of the wavevectors
k= (ky_, k,)for modes in a two-di...

Figure 11.3-3 Reflections in a circular resonator.

Figure 11.3-4 (a) Waves in a three-dimensional cubic
resonator (d, = dy_ =d,=d).(b) Theen...

Figure 11.3-5 (a)_The frequency spacing between adjacent
modes decreases as the frequency inc...

Figure 11.4-1 Modal density M(v)_for rectangular
microresonators with (a)_one;_(b)_two;.and (

resonators.

Figure 11.4-3 (a)_ Whispering-gallery mode in a
microsphere resonator. (b)_Ray model of the wh...

Figure 11.4-4 Coupling optical power from an optical fiber
into a microsphere resonator.

Figure 11.4-5 Photonic-crystal microresonators. (a)_The
micropillar resonator as a 1D photoni...

Figure 11.4-6 Schematic of optical-field distributions in
disk resonators. (a)_ Photonic mode ...




Chapter 12

Figure 12.0-1 Time dependence and wavefronts of (a)_a
monochromatic spherical wave, which is ...

Figure 12.0-2 Time dependence of the wavefunctions of
three random waves.

wavelength, at three locations in ...

Figure 12.1-5 Two random waves together with the
magnitudes of their complex degree of tempor...

Figure 12.1-6 Light comprising wavepackets emitted at
random times has a coherence time equal...

Figure 12.1-7 Two examples of |g(r,,1,, )| as a function of
,|_and the...

Figure 12.1-8 Two illustrative examples of the magnitude
of the normalized mutual intensity a...

complete spatial coherence at all ...

Figure 12.2-1 Normalized intensity I/2[, of the sum of two
partially coherent waves of equal ...

Figure 12.2-2 The normalized intensity I/21,, as a function
of the time delay 7, when a parti...



Figure 12.2-3 Optical coherence tomography.

Figure 12.2-4 Young’s double-pinhole interferometer

at position x is the magnitude o...

Figure 12.3-1 The absolute value of the degree of spatial
coherence is not altered by transmi...

Figure 12.3-5 Impulse response functions and transfer
functions of a single-lens, focused, di...

Figure 12.3-6 Gain of coherence by propagation is a result
of the spreading of light. Althoug...

Figure 12.3-7 Radiation from an incoherent source in free
space.

coherence of light radiated from an inco...

Figure 12.3-9 The Michelson stellar interferometer. The
angular diameter of a star is estimat...

Figure 12.4-1 Fluctuations of the electric-field vector for (a)

Chapter 13

Figure 13.0-1 The theory of quantum optics explains
virtually all optical phenomena. It is mo...



of different frequencies and direc...

Figure 13.1-2 Relationships among photon wavelength A,

Figure 13.1-3_A photon in the x linear polarization mode is
the same as a photon in a superpo...

Figure 13.1-4 Probability of a linearly polarized photon
passing through a polarizer. The axi...

Figure 13.1-5 A linearly polarized photon is equivalent to
the superposition of a right-and a...

Figure 13.1-6 Probabilistic reflection or transmission of a
photon at a lossless beam-splitte...

Figure 13.1-7 Young’s double-pinhole experiment with a
single photon. The interference patter...

Figure 13.1-8 Single photon in a Mach—Zehnder
interferometer.

Figure 13.2-1 Photon registrations at random localized
instants of time for a detector that i...

Figure 13.2-2 Random photon registrations exhibit a
spatial density that follows the local op...

Figure 13.2-3_(a)_Constant optical power and a sample
function of the randomly arriving photo...

Figure 13.2-4 Random arrival of photons for a coherent
light source of power P. Consecutive c...

number distribution, p(n)_vs. n, for...

Figure 13.2-6 Boltzmann probability_distribution P (E,),
(plotted along the abscissa)_versus e...



Figure 13.2-7 Semilogarithmic plot of the Bose—Einstein
photon-number distribution, p(n)_vs. ...

Figure 13.2-8 Random partitioning of a stream of photons
by a beamsplitter.

for the coherent state. Representat...

Figure 13,3-3_Quadrature and electric-field uncertainties

for the vacuum state. This state is...

state. The mode contains a fixed nu...
Chapter 14

Figure 14.1-1 Energy levels of a hydrogen atom (Z = 1; left
ordinate) and a C>* ion (a hydroge...

Figure 14.1-2 Selected excited-state energy levels of He and
Ne atoms. Electron configurations...

Figure 14.1-3 Periodic table of the elements, with element
abbreviations and atomic numbers Z ...

Figure 14.1-4 Selected energy levels and energy bands for

Figure 14.1-5 Selected energy levels of Nd3*.in YAG and in
phosphate glass. The arrows indicat...

Figure 14.1-6 Sublevels of the three manifolds associated
with Nd3*:YAG laser transitions near...

Figure 14.1-7 Vibrational energy levels of the N, and CO,
molecules (the zero of energy is ar...



Figure 14.1-8 Structure of the Rhodamine6G ion, which
has the chemical formula c.:H:;N.0:7, The schemati...

Figure 14.1-9 Schematic energy levels for: (a)_two isolated
atoms; (b)_the same two atoms aft...

Figure 14.1-10 Broadening of the discrete energy levels of
an isolated atom into energy bands ...

Figure 14.1-11 The semiconductor GaAs takes the form of a
zincblende crystal structure compris...

AlGaAs/GaAs multiquantum-well strue...
Figure 14.1-13 Photoluminescence from colloidal CdSe

Figure 14.2-1 The Boltzmann distribution P(E,, ), plotted on
the abscissa, specifies the probab...

Figure 14.2-2 The Fermi—Dirac distribution f(E), plotted on

the abscissa, represents the prob...

Figure 14.3-1 Spontaneous emission of a photon into the
mode of frequency v by an atomic tran...

Figure 14.3-2 Spontaneous emission into a single mode
results in an exponential decrease of t...

Figure 14.3-3_Absorption is a process whereby a photon of
energy hv induces the atom to under...

Figure 14.3-4_Stimulated emission is a process whereby a
photon of energy hv induces the atom...

Figure 14.3-5 The transition cross section o(y) and the
lineshape function g(v).

Figure 14.3-6 An atom may spontaneously emit a photon

Figure 14.3-7 Wavepacket emissions at random times from
a lifetime-broadened atomic system wi...




Figure 14.3-8 A sine wave interrupted at the rate f.; by,
random phase jumps has a Lorentzian...

Figure 14.3-9 The average lineshape function for an
inhomogeneously broadened collection of a...

Figure 14.3-10 The frequency radiated by an atom depends
on the direction of atomic motion rel...

Figure 14.3-11 Velocity distribution and construction of the
average lineshape function fora ...

Figure 14.3-12 Spontaneous emission from an atom with
normalized lineshape function g(v)_into ...

(dotted curve). A laser beam of fix...

Figure 14.4-1 Decay of the upper-level population caused
by spontaneous emission alone.

Figure 14.4-2 Semilogarithmic plot of the average energy. E
of an electromagnetic mode in therm...

Figure 14.4-2 Semilogarithmic plot of the average energy E
of an electromagnetic mode in ther...

Figure 14.4-3 Frequency pendence of the energy per mode
E | the density of modes M(v),.and the ...

Figure 14.4-4 Dependence of the blackbody spectral energy
density o(v)_on frequency for sever...

Figure 14.4-5 Representative thermographic images in
different temperature regions for use in...

Figure 14.5-1 (a)_Cathodoluminescence from a mineral
sample reveals the presence of zoned cal...

Figure 14.5-2 Single-photon photoluminescence from
materials with different energy-level stru...

Figure 14.5-3_(a) Two-photon fluorescence. (b)_Three-
photon fluorescence. (¢)_Up-conversion f...



Figure 14.5-4 Relative infrared detection sensitivity and
relative visible spectral intensity...

Figure 14.5-5 Several forms of light scattering; (a),

Chapter 15

Figure 15.0-1 The laser amplifier. An external power source

Figure 15.0-2 (@)_An ideal amplifier is linear. It serves to
increase the amplitude of a sign...

Figure 15.1-1 The photon-flux density ¢ (photons/cm2-s)
entering an incremental cylinder cont...

Figure 15.1-2 Gain coefficient y(v)_of a Lorentzian-
lineshape resonant laser amplifier.

Figure 15.1-3_Gain coefficient y(v)_and phase-shift

Figure 15.2-4 Population densities N, and N, of atoms in
energy levels...

Figure 15.2-5 Depletion of the steady-state population
difference N = N, — N, as the rate of ...

Figure 15.2-6 Energy levels and decay rates for a four-level
system. The four levels are draw...

system. A multitude of other en...

Figure 15.2-8 In-band pumping. The pump band _and the
uppe...



Figure 15.2-9 Examples of electrical and optical pumping.

Figure 15.3-1 Relevant energy levels for operation of the
ruby laser amplifier in the red. Th...

Figure 15.3-2 Ruby laser-amplifier configurations. (a),
Geometry used for the first laser osci...

Figure 15.3-4_(a)_A bundle of amplifiers comprises eight
laser-glass plates stacked inside a ...

Figure 15.3-5 Longitudinal pumping of a rare-earth-doped
fiber amplifier. The pumping may be ...

manifolds for the 41 13/2 =4 Ql_

Figure 15.3-7 Stimulated Raman scattering (SRS)_is
schematized in the inset. Raman gain is av...

Figure 15.4-1 Dependence of the normalized saturated gain
coefficient y(v)/y,(v)-on the norma...

Figure 15.4-2 Gain coefficient reduction and bandwidth
increase resulting from saturation when...

Figure 15.4-3.(a)_A nonlinear (saturated) amplifier. (b)
Relation between the normalized outpu...

Figure 15.4-4.The transmittance of a saturable absorber

Y/X = §(d)/¢(0)_versus the normalized ...

Figure 15.4-5_ Comparison of gain saturation in

broadened medium is locally saturated...



Figure 15.5-1 Spontaneous emission is a source of
amplifier noise. It is broadband, radiated i...

Chapter 16

Figure 16.0-1 An oscillator is an amplifier with positive
feedback.

Figure 16.0-2 If the initial amplifier gain is greater than the
loss, oscillation may begin. ...

Figure 16.0-3 A laser consists of an optical amplifier

Figure 16.1-1 Spectral dependence of the gain and phase-
shift coefficients for an optical amp...

Figure 16.1-2 Resonator modes are separated by the

frequency vy = ¢/2d and have linewidths 6,...

Figure 16.1-3 The left-hand side of (16.1-20), (v), plotted
as a function of v. The frequenc...

Figure 16.1-4 The laser oscillation modes fall near the cold-
resonator modes; they are pulled...

Figure 16.2-1 Determination of the steady-state laser
photon-flux density ¢. At the time of 1...

difference N, and the laser internal phot...

Figure 16.2-3 Dependence of the transmitted steady-state
photon-flux density ¢, on the mirror...

frequencies for which the gain coeffici...

Figure 16.2-5 Growth of oscillation in an ideal

Figure 16.2-6 The lineshape function of an
inhomogeneously broadened medium is a composite of...



Figure 16.2-7 (a)_Laser oscillation occurs in an

inhomogeneously broadened medium by each mod...

Figure 16.2-8 Hole burning in a Doppler-broadened
medium. A probe wave at frequency_v, satura...

Figure 16.2-9 Power in a single laser mode of frequency v,
in a Doppler-broadened medium whos...

Figure 16.2-10 The laser output for the (0, 0)_transverse
mode of a spherical-mirror resonator...

Figure 16.2-11 The gains and losses for two transverse

the use of a prism placed inside th...

Figure 16.2-13 The use of Brewster windows in a gas laser
provides a linearly polarized output...

Figure 16.2-14 Longitudinal mode selection by use of a thin
intracavity etalon. Oscillation oc...

Figure 16.2-15 Longitudinal mode selection achieved with
the help of: (a) two coupled resonato...

Figure 16.3-1 (a) Selected energy levels of Nd3*:YVO 4o Lhe
red arrow indicates the principal ...

Figure 16.3-2 (a) Energy levels pertinent to the ytterbium-
doped YAG laser transition at A, =...

Figure 16.3:3_(a)_Selected energy bands of Ti3*:Al,O,. The
red arrow indicates the principal ...

Figure 16.3-4_(a) Simplified schematic of a laser-diode-
pumped fiber laser that makes use of ...

Figure 16.3-5_(a)_Cascaded Stokes shifts of multiple orders.



Figure 16.3-6 (a) A random laser relies on incoherent and
nonresonant feedback provided by mu...

Figure 16.3-7 Wavelengths and photon energies for the
extreme ultraviolet (EUV), soft-X-ray (...

Figure 16.3-8 Schematic of a free-electron laser (FEL)
oscillator. The undulator creates a pe...

powers using (a) an external modulat...

Figure 16.4-2 Gain switching, The laser pump is switched
on and off periodically.

builds up as an increase of the ph...

Figure 16.4-5 Variation of the population difference N(?),
and the photon-number density n(f)_...

Figure 16.4-6 Operation of a Q-switched laser. Behavior of
the threshold population differenc...

Figure 16.4-7 Graphical construction for determining N¢
from N;, where X = N;/N, and Y = N¢/N...

Figure 16.4-8 Q-switched pulse shapes obtained by
numerically integrating the approximate rat...

from the sum of M laser modes o...

Figure 16.4-10 The mode-locked laser pulse reflects back
and forth between the mirrors of the ...



CW laser by beating an octave-spannin...

Figure P16.2-7 Transmittance of a laser resonator.

Chapter 17

Figure 17.1-1 Energy bands in Si and GaAs. The bandgap
energy E , which separates the valence...

infinite one-dimensional colle...

Figure 17.1-3 Electrons in the conduction band and holes in
the valence band at T > 0° K.

Figure 17.1-4 Cross sections of the E—k relations for Si and
GaAs along two crystal direction...

Figure 17.1-5 The E—k relation is well-approximated by,
parabolas at the bottom of the conduct...

Figure 17.1-6 Section of the periodic table relating to
semiconductors. Each column designati...

Figure 17.1-7 Dots represent bandgap energies, bandgap
wavelengths, and lattice constants for...

Figure 17.1-8 Bandgap energies, bandgap wavelengths, and
lattice constants for various I1-VI ...

Figure 17.1-9_ Organic semiconductors are available in two

Figure 17.1-10 Graphene, also referred to as h-C, is a single
layer of carbon atoms arranged i...

Figure 17.1-11 (a)_Cross section of the E—k diagram (e.g.,in
the direction of the k,_componen...

Figure 17.1-12 The Fermi function f(E)_is the probability
that an energy level E is filled wit...



Figure 17.1-13 The concentrations of electrons and holes,

Figure 17.1-14 Energy-band diagram, Fermi function f(E),
and concentrations of mobile electron...

Figure 17.1-15 Energy-band diagram, Fermi function f(E),
and concentrations of mobile electron...

probability that a particular conduct...

Figure 17.1-17 Electron—hole generation and
recombination.

Auger recombination.

Figure 17.1-19_ Energy levels and carrier concentrations for

Figure 17.1-20 A p—n junction in thermal equilibrium at T
> 0° K. The depletion-layer, energy-...

Figure 17.1-21 Energy-band diagram and carrier
concentrations for a forward-biased p—n junctio...

Figure 17.1-22 (a)_Voltage and current in a p—n junction.

electric field magnitude for a p—i—n...

Figure 17.1-24 The p—p—n double heterojunction structure.
The middle layer is of narrower band...

Figure 17.1-25 (a)_Geometry of the quantum-well
structure. (b)_Energy-level diagram for electr...

Figure 17.1-26 Energy levels of (a)_a one-dimensional
infinite rectangular potential well, and...

Figure 17.1-27 Density of states for a quantum-well
structure (solid curve) and for a bulk sem...




Figure 17.1-28 A MQW structure fabricated from
alternating layers of materials of different ba...

superlattice structures fabricated from alterna...

Figure 17.1-30 The density of states in different
confinement configurations. The conduction a...

photons in bulk semiconductors. (a)_Band...

Figure 17.2-2 Observed optical absorption coefficient a
versus photon energy and wavelength f...

Figure 17.2-3_Absorption coefficient versus photon energy
and wavelength for Ge, Si, GaAs, Ga...

generation of an electron—hole pa...

Figure 17.2-5 The density of states with which a photon of
energy hv interacts increases with...

Figure 17.2-6 Photon absorption in an indirect-bandgap
semiconductor via a vertical (k-conser...

Figure 17.2-7 Photon emission via an interband transition
in an indirect-bandgap semiconducto...

resulting from direct interband t...

Figure 17.2-10 Photon absorption and emission in
multiquantum-well structures. (a)_Interband t...

Figure 17.2-11 Refractive index n and group index N for
GaAs as a function of the free-space w...

Chapter 18




Figure 18.0-1 A forward-biased semiconductor p—n
junction diode operated as: (g)_a light-emit...

Figure 18.1-1 Spontaneous photon emission resulting from
electron—hole radiative recombinatio...

Figure 18.1-2 The spontaneous emission of a photon
resulting from the recombination of an ele...

Figure 18.1-3 Energy bands and Fermi functions for a

injection-electroluminescence rate r...

Figure 18.1-5 Energy-band diagram of a heavily doped p—n
junction that is strongly forward bi...

Figure 18.1-6 A simple forward-biased LED. The photons
are emitted spontaneously from the jun...

Figure 18.1-7 Not all light generated in an LED with a
planar surface is able to emerge. Ray ...

Figure 18.1-8 LED-die geometries that offer enhanced
extraction efficiencies relative to the ...

Figure 18.1-9 An LED with a roughened planar surface
permits rays beyond the critical angle t...

Figure 18.1-11 Radiation patterns of surface-emitting LEDs:

light-emitting diode (RCLED). Two cl...
Figure 18.1-13 Optical power at the output of an LED

Figure 18.1-14 Spectral intensities versus wavelength for
LEDs that operate in the ultraviolet...

Figure 18.1-15 Various circuits can be used as LED drivers.
These include (a)_an ideal DC curr...



Figure 18.1-16 Bandgap wavelength A,, and corresponding
bandgap energy E,, for selected elemen...

Figure 18.1-17 LED traffic signal based on ITI-V materials.

Figure 18.1-18 (a) Surface-emitting LED. (b)_Edge-emitting
LED.

Figure 18.1-19 Saul-Lee—Burrus-type surface-emitting
InGaAsP LED for use in an optical fiber c...

Figure 18.1-20 Surface-emitting AllInGaP/InGaP 650-nm
MQW RCLED for use in short-haul, plastic-...

Figure 18.1-21 Flip-chip packaged, surface-emitting
GaN/InGaN MQW LED operating at A, = 420 nm...

Figure 18.1-22 OLED structures fabricated in the form of

Figure 18.1-23 Evolution of the phosphor-conversion white
LED. (a)_ White-light emission from a...

addressable red, green, and blue die...

Figure 18.1-26 An illuminated chip-on-board (COB)_device
containing 120 InGaN dies embedded in...

of LEDs or chip-on-board (COB)_devi...

Figure 18.1-28 A 1/4-mm-thick white OLED light panel
that generates metameric white light with...

generation of an electron—hole pa...

Figure 18.2-2 Dependence on energy of the optical joint
density of states o(v), the Fermi inv...

Figure 18.2-3 (a)_Calculated gain coefficient yo(v)_for an
InGaAsP SOA versus photon energy h...



Figure 18.2-4 Peak value of the gain coefficient y, as a
function of injected-carrier concent...

Figure 18.2-5 Optical pumping of a semiconductor optical
amplifier.

amplifier. Charge carriers travel pe...

Figure 18.2-7 Peak optical gain coefficient y,, as a function
of current density J for the app...

Figure 18.2-8 Energy-band diagram and refractive index as
functions of position for a double-...

Figure 18.2-9 (a)_E—k relations of different subbands. (b),
Optical joint density of states fo...

Figure 18.2-10 Density of states...

Figure 18.2-11 A MQW InGaAsP/InP superluminescent
diode. SLEDs can generate light with substan...

a forward-biased p—n junction i...

Figure 18.3-2 Spatial spread of the laser light in the
direction perpendicular to the plane o...

Jyon the thickness of the active l...

Figure 18.3-4 Measured (solid) and ideal (dashed) light—
current curves for: (a)_a gain-guided...

index-guided buried-heterostructure las...

Figure 18.3-7 Normalized spectral intensities for a light-
emitting diode (LED), a superlumine...



Figure 18.3-8 Schematic illustration of optical-intensity
spatial distributions for the laser...

Figure 18.3-11 Littman—Metcalf configuration for a tunable
external-cavity laser diode. The ou...

Figure 18.4-1 Schematic representation of several

Figure 18.4-2 Peak gain coefficient y,, versus current

density J for SQW and bulk DH laser dio...

Figure 18.4-3 Schematic of the active region of a
multiquantum-well laser. The confinement la...

Figure 18.4-4 Schematic diagram of a strained-MQW
InGaAsP/InGaAsP ridge-waveguide laser diode...

Figure 18.4-5 Buried-heterostructure multiquantum-well
DFB laser used for optical fiber commu...

Figure 18.4-6 Schematic of the active region of a
multiquantum-wire laser. Light is ordinaril...

Figure 18.4-7 Schematic of the active region of a
multiquantum-dot laser, which often consist...

Figure 18.4-8 Schematic diagram of: (a)_two stages of a
QCL with a quantum-well active region...

Figure 18.5-1 Microresonator (or microcavity)_lasers,
sometimes called microlasers for short,...

um diameter) multiquantum-well GaAs/...

Figure 18.5-3 Spectral intensity, optical power, and angular
emission distribution of the mul...



Figure 18.5-4 VCSEL with a multiquantum-dot active
region.

Figure 18.5-5 Variations on the theme of VCSELs. (a),
VCSEL with photonic crystal for lateral ...

Figure 18.5-7 (a) InGaAsP/InGaAsP 2D multiquantum-
well photonic-crystal laser. The InP post h...

Figure P18.1-5 (a)_ InGaAsP/InGaAsP 2D multiquantum-
well photonic-crystal laser. The InP post h...

Figure P18.2-3 (a)_InGaAsP/InGaAsP 2D multiquantum-
well photonic-crystal laser. The InP post h...

Chapter 19

with a photocathode operated in refl...

Figure 19.1-3 Electron—hole pair photogeneration in an
intrinsic semiconductor.

absorption (arising from an insuffic...

Figure 19.1-5 Responsivity R (A/W)_versus Wavelength_)\g_,
with the quantum efficiency 1_as a p...

Figure 19.1-6 (a) An electron—hole pair is generated at the
position x. The hole drifts to the...

Figure 19.1-7 Hole current i;(1), electron current i,(f), and

total current i(¢)_induced in th...

Photogenerated carrier pairs move in response ...




Figure 19.2-2 Relative responsivity vs. wavelength A, (um),
for a number of different doped-Ge ...

biased p—n photodiode detector. The dr...

Figure 19.3-2 Generic photodiode and its i—V relation.

Figure 19.3-3_Photovoltaic (open-circuit)_operation of a
photodiode.

Figure 19.3-4_Short-circuit operation of a photodiode.

Figure 19.3-5 Reverse-biased operation of a photodiode: (a)
without a load resistor and (b) wi...

Figure 19.3-6 The p—i—n photodiode structure, energy-band
diagram, charge distribution, and el...

Figure 19.3-7 Responsivity (A/W)_vs. wavelength (um)_for
an ideal Si photodiode (77.=1)_and fo...

Figure 19.3-8 (@) _Structure and (b) energy-band diagram of
a Schottky-barrier photodiode forme...

multiplication process in a conventional homojun...

Figure 19.4-2 Exponential growth of the electric current
density in a single-carrierinjection ...

double-carrier-multiplication APD with ...



Figure 19.4-5 Growth of the gain G with multiplication-
layer width w for several values of the...

Figure 19.4-6 Reach-through p*—m—p—n* APD structure.
The 7 region is intrinsic or very lightly...

Figure 19.4-7 (a)_Tracing the course of the avalanche
buildup time in a SAM APD with the help ...

Figure 19.4-8 Current—voltage characteristic for an
InGaAs/InP separate absorption and multip...

Figure 19.6-1 Input and detected signals along with various
sources of noise for (a)_a photod...

circuit comprises a superposition o...

Figure 19.6-3 Each photoevent in a photodetector with gain
generates a random number G; of ca...

Figure 19.6-4 _Excess noise factor F for a conventional APD
(CAPD)_with a uniform multiplicati...

engineered staircase avalanche photodiode unde...

Figure 19.6-7 Modified excess noise factor F — 1 versus
mean gain...

to a noiseless resistor in parall...

Figure 19.6-9 A noisy receiver circuit (left) can be replaced
by a noiseless receiver circuit...

Figure 19.6-10 Resistance-limited optical receiver.



Figure 19.6-11 Signal-to-noise ratio (SNR)_as a function of
the mean number of photoelectrons ...

Figure 19.6-12 SNR versus m = n®/2B for a photodiod...

Figure 19.6-13 Dependence of the SNR on the APD mean
gain...

Figure 19.6-14 Double-logarithmic plot illustrating the
dependence of the SNR on the circuit b...

Figure 19.6-15 Double-logarithmic plot of receiver
sensitivity...

Figure 19.6-16 (a)_Schematic illustrating errors that result
from randomness in the photon num...

Chapter 20

Figure 20.0-1 Sound can modify the effect of an optical
medium on light.

Figure 20.0-2 Variation of the refractive index of a material
accompanying a harmonic sound w...

Figure 20.0-3 Bragg diffraction: an acoustic plane wave
acts as a partial reflector of light ...

Figure 20.1-1 Reflections from layers of an inhomogeneous
medium.

Figure 20.1-2 The Bragg condition sin 0, = q/2k is

equivalent to the vector relation k, =k +...

Figure 20.1-3 Dependence of the intensity reflectance |r|2
on the angle 0. Maximum reflection...

Figure 20.1-4 Dependence of the exact reflectance #,of a
Bragg reflector on the intensity of...

from a sound wave traveling in the...



Figure 20.1-6 Bragg diffraction from a quantum
perspective: a photon combines with a phonon t...

Figure 20.1-7 Top: Incident and reflected waves for small-
angle Bragg diffraction. Bottom: Th...

Figure 20.1-8 Diffraction of an optical beam from an
acoustic plane wave. There is only a sin...

Figure 20.1-9_Diffraction of an optical beam from an
acoustic beam. There are many plane-wave...

Figure 20.1-10 Raman—Nath diffraction of light by sound.
An optical plane wave normally incide...

Figure 20.1-11 (a)_A thin acoustic beam acts as a diffraction
grating, (b)_Conservation-of-mom...

electrically controlled piezoelectr...

Figure 20.2-2 Sample waveform of an amplitude-
modulated acoustic signal and its spectrum.

Figure 20.2-3 Interaction of an optical plane wave with a
modulated (multifrequency)_acoustic...

Figure 20.2-4 Interaction of an optical beam of angular
divergence 60 with acoustic plane wav...

and acoustic-wave direction. The plana...

Figure 20.2-6 Scanning an optical wave by varying the
frequency of a sound beam over the freq...

Figure 20.2-7 Number of resolvable spots of an acousto-
optic scanner.

wave deflects light in a different direct...

Figure 20.2-9 Routing an optical beam to one of N




number of directions.

Figure 20.2-11 Routing each of two light beams in a set of
specified directions. The acoustic ...

Figure 20.2-12 The spatial light modulator modulates N
optical beams. The acoustic wave is dri...

Figure 20.2-13 An arbitrary-interconnection switch routing
each of L incoming light beams for ...

Figure 20.2-14 Several examples of dividing the time—
bandwidth region T B in the time— frequen...

Figure 20.2-15_An acousto-optic isolator.

Figure 20.3-1 Displacements associated with tensile strain
and shear.

z direction in a cubic crystal al...

Figure 20.3-3 Bragg condition (conservation of momentum
or phase-matching condition) in an an...

Figure 20.3-4 Wavevector diagrams for front and back
reflections of an optical wave from an a...
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optic material changes its refrac...

Figure 21.1-1 Dependence of the refractive index on the

Figure 21.1-2 (a) Longitudinal modulator. The electrodes
may take the shape of washers or ban...

Figure 21.1-3 An integrated-photonic phase modulator
using the electro-optic effect.




(or optical switch). A Mach—Zehnder ...

Figure 21.1-6 (a)_An optical intensity modulator using a
Pockels cell placed between two cros...

Figure 21.1-8 A position switch based on electro-optic
phase retardation and double refractio...

Figure 21.1-9 (a)_Exchange of power between two parallel,

Figure 21.1-10 An integrated electro-optic directional
coupler.

Figure 21.1-11 Dependence of the coupling efficiency of the
directional coupler on the applied...

Figure 21.1-12 The spatial light modulator.

longitudinal electro-optic modulators.

Figure 21.1-14 An optically addressed electro-optic spatial
light modulator uses a photoconduc...

Figure 21.1-15 The Pockels readout optical modulator
(PROM).

Figure 21.2-1 The index ellipsoid. The coordinates (X,X5,X5),
are the principal axes and n , ...

Figure 21.2-2 The index ellipsoid of a crystal is modified
when a steady electric field is ap...

Figure 21.2-3 Modification of the index ellipsoid of a
trigonal 3m crystal such as LINbO, tha...



Figure 21.2-4 Modification of the index ellipsoid resulting
from the application of a steady ...

Figure 21.2-5 Modification of the index ellipsoid as a result

Figure 21.3-1 The molecules of a positive uniaxial liquid
crystal rotate so their long molecu...

Figure 21.3-2 Molecular orientation of a liquid-crystal cell:
(a)in the absence of a steady, ...

Figure 21.3-3_(a) Dependence of the tilt angle 0 of the
liquid-crystal molecules on the norma...

between a polarizer and a mirror funct...

Figure 21.3-5 (a)_A twisted nematic liquid-crystal cell in its
twisted state. (b)_In the pres...

Figure 21.3-6 A twisted nematic liquid-crystal modulator.
(@) When the electric field is abse...

Figure 21.3-7 A twisted nematic liquid-crystal cell with a
452 twist angle and a mirror provi...

Figure 21.3-8 The two allowed states of a ferroelectric
liquid-crystal cell.

Figure 21.3-9 Electrodes of a seven-bar-segment reflective-
mode LCD.

sequential scanning (S)_voltage pulse...

Figure 21.3-11 An active-matrix liquid-crystal display
(AMLCD). (a)_Device structure viewed fr...

Figure 21.3-12 Schematic of the Hamamatsu Parallel-
Aligned Spatial Light Modulator (PAL-SLM). ...

Figure 21.4-1 Energy-level diagram of LiNbO3 _doped with
Fe ions that illustrates the processe...



holography.

Figure 21.5-1 The Franz—Keldysh effect. (a)_The bandgap
energy E,in the absence of an extern...

Figure 21.5-2 (a) Energy-band diagrams of a quantum well

Figure P21.2-3
Figure P21.2-4
Chapter 22

Figure 22.1-1 The P—¢ relation for (@)_a linear dielectric
medium, and (b)_a nonlinear medium...

Figure 22.1-2 The first Born approximation. An incident
optical field g, creates a source S(¢...

Figure 22.2-1 A sinusoidal electric field of angular
frequency w in a second-order nonlinear ...

Figure 22.2-2 SHG interaction volumes. (a)_For a thin
crystal, minimize A.(b) For a thick cry...

Figure 22.2-3 Optical second-harmonic generation (a)_in a

Figure 22.2-4 The transmission of an intense beam of light
through a second-order nonlinear c...

Figure 22.2-5 Linearization of the second-order nonlinear
relation Py; = 2de? in the presence...

Figure 22.2-6 An example of sum-frequency generation

Figure 22.2-7 The phase-matching condition.



integrated waveguides: optical f...

Figure 22.2-9 Comparison of parametric processes in a
second-order nonlinear medium and laser...

Figure 22.2-10 Phase matching in e-e-o SHG. (@) Matching
the index of the e wave at @ with tha...

Figure 22.2-11 Tuning curves for a collinear OPO using a
BBO crystal and a 532-nm pump, which ...

Figure 22.2-12 Non-collinear Type-II second-harmonic
generation.

nonlinear optical coefficient d(z...

Figure 22.2-16 Phasors of the waves radiated by,
incremental elements at different positions z ...

Figure 22.2-17 Schematic of second-harmonic generation

Figure 22.3-1 Third-order nonlinearity in a Kerr medium.

Figure 22.3-2 A third-order nonlinear medium acts as a
lens whose focusing power depends on t...

Figure 22.3-3_ Comparison of (a)_.a Gaussian beam traveling

Figure 22.3-5 Three-wave, four-photon optical fiber
parametric amplifier (OPA).



Figure 22.3-6 Reflection of a plane wave from (@) an

Figure 22.3-8 An optical system for degenerate four-wave
mixing using a nonlinear crystal. Th...

reference and object wave interfere a...

Figure 22.3-10 Optical reciprocity.

wave onto itself, so that when it...

Figure 22.3-12 An optical resonator with an ordinary
mirror and a phase conjugate mirror.

Figure 22.4-1 Second-harmonic generation. (a) A wave of
frequency w incident on a nonlinear c...

wave mixing in a uniaxial crystal...

Figure 22.7-1 Block diagram representing the nonlinear
differential equation (22.7-10). The l...

Chapter 23



Figure 23.1-1 Temporal and spectral representations of an

Figure 23.1-2 (a)_The relation Av = 0.44/Tpwinm etween
the spectral width Av and the temporal...

Figure 23.1-3_Linearly up-chirped and down-chirped optical

Figure 23.1-4 The short-time Fourier transform of U(¢)_is
constructed by making use of a sequ...

Figure 23.1-5 Temporal and spectral profiles of three
Gaussian pulses of central frequency,_v,,...

Figure 23.1-6 The envelope of a plane-wave pulse of width
T traveling in the z direction with...

Figure 23.2-2 Magnitude and phase of the envelope
transfer functions for (a)_an ideal filter,...

Figure 23.2-3 Approximation of an arbitrary filter with
slowly varying transfer function as a...

Figure 23.2-4_A chirp filter with coefficient b converts an
unchirped Gaussian pulse of width...

chirp parameter a, with a chirp filt...

Figure 23.2-6 Chirped-pulse amplifier.

Figure 23.2-7 (a)_An optical element exhibiting angular
dispersion. The component at frequenc...

Figure 23.2-8 Prism chirp filter.



serves as a positive chirp filter.

Figure 23.2-11 Compression of a transform-limited pulse
by use of a quadratic phase modulator ...

Figure 23.2-12 A system for pulse shaping includes: (1),
frequency-to-space mapping — a grating...
Figure 23.2-13 Pulse shaping based on time-to-space

Figure 23.3-1 Transmission of an optical pulse through a
dispersive medium is equivalent to a...

Figure 23.3-2 Prism chirp filter with adjustable chirp
coefficient.

Figure 23.3-3 Propagation of an initially unchirped
Gaussian pulse through a dispersive mediu...

Figure 23.3-4_Propagation of an initially down-chirped
Gaussian pulse (a, = —1)_through a med...

Figure 23.3-5_Pulse compression by a quadratic phase

Figure 23.3-6 Dispersion compensation in optical fibers.

Figure 23.3-7 Dispersion compensation by use of periodic
positive QPM and negative GVD.

Figure 23.3-8 Analogy of spatial optics (left column)_and
temporal optics (right column). The...

system resulting from material (chrom...

Figure 23.4-2 Spreading of a pulsed beam. The long-



Figure 23.4-3.A spatial Fourier-transform system couples
the temporal and spatial distributio...

Figure 23.4-4 Temporal and spatial spreading of a Gaussian
beam modulated by a Gaussian pulse...

Figure 23.4-5 Focal-plane spatiotemporal profile of the
intensity of a Gaussian beam modulate...

Figure 23.4-6 Three snapshots of the spatial distribution of
a pulse as it travels through a ...

Figure 23.5-1 A pulsed wave at the fundamental frequency
(F)_and its associated second-harmon...

downconversion of an optical wave.

Figure 23.5-3_Chirping of an optical pulse by propagation
through a nonlinear optical Kerr me...

Figure 23.5-4_Pulse compression by a combination of a

Figure 23.5-7 Simple model for a medium with negative
GVD and positive SPM.

Figure 23.5-8 Comparison of a sech function and a
Gaussian function of the same height and wi...

Figure 23.5-9 Propagation of the fundamental (N = 1)
soliton and the N = 2 soliton.

Figure 23.5-10 An optical-fiber soliton laser.

Figure 23.5-11 (a)_Spatial and temporal spreading of a
pulsed beam as a result of propagation ...




Figure 23.5-12 Principal nonlinear mechanisms for

Figure 23,5-13_Comparison between (a)_second-harmonic
generation (SHG)_and (b)_high-harmonic g...

Figure 23.5-14 Simplified three-step recollisional model for
HHG. (a) A gas atom is modeled as...

Figure 23.5-15_(a) Normalized trajectories x(f)/x,_of
liberated electrons for various normaliz...

Figure 23.6-1 Response of a photodetector with impulse
response function hp(t)_to optical pul...

Figure 23.6-2 Measurement of an optical pulse I(t)_by use
of an optical gate controlled by a ...

Figure 23.6-5 Measurement of the intensity profile I(f)_of a
brief single-shot optical pulse ...

Figure 23.6-6 Temporal-to-spatial transformation of an
optical pulse by use of an oblique wav...

Figure 23.6-7 Measurement of a single-shot pulse by use of
non-collinear Type-II SHG (Exercis...

Figure 23.6-8 Measurement of the intensity
autocorrelation function G(1).

Figure 23.6-10 Interferometric measurement of the pulse
spectral intensity. The interferogram ...



Figure 23.6-11 A spectral interferometer generates an
interferogram in the Fourier domain.

Figure 23.6-12 Self-referenced spectral interferometer.
Figure 23.6-13 Nonlinear interferometer.

Figure 23.6-14 Normalized intensity autocorrelation
function &)/ (cop, e

Figure 23.6-15 Measurement of the spectrogram S(v, t)_by
frequency-resolved optical gating (FR...

Figure 23.6-16 Two implementations of frequency-resolved
optical gating (FROG): (a)_Second-har...

Figure 23.6-17 (a)_Measured spectrogram S,(4, 7)_of a 21/~

[wide-area networks (WANs) and me...

Figure 24.0-2 A generic N xM system may function as a
passive interconnect, a router, or a sw...

Figure 24.0-3 Attributes of an optical beam that can be
used for modulation, multi-plexing, r...

Figure 24.1-3_A 4-port circulator represented by two
equivalent configurations.

created by conventional refractive opt...

Figure 24.1-5 Bending of an optical wave as a result of
transmission through a phase grating....



Figure 24.1-6 Holographic interconnection map created by
an array of phase gratings of differ...

Figure 24.1-7 Diffraction from a phase hologram as a
continuous interconnection system.

Figure 24.1-8 Integrated-photonic devices implementing
some of the interconnects depicted in ...

Figure 24.1-9 Fiber-optic couplers that implement some of
the interconnects displayed in Fig....

Figure 24.1-10 (a)_Implementation of the 3-port

Figure 24.1-11 Schematic illustration of optical
interconnects in microelectronics and compute...

planar waveguides in a bus configuration...

Figure 24.1-13 Schematic illustrations of optochips
mounted on printed circuit boards (PCBs). ...

Figure 24.1-14 Light sources integrated with Si CMOS chips
via heterogeneous integration (hybr...

Figure 24.1-15 (a)_Interconnects between on-chip sources
and detectors via an external reflect...

Figure 24.2-2 Wavelength-division demultiplexers. (),
Prism. (b)_Diffraction grating with a l...

This version makes use of a fiber Bragg...

Figure 24.2-4 Another configuration for an OADM. This
version makes use of multiple micro-rin...

Figure 24.2-5 Wavelength-division routing
(demultiplexing)_of two wavelengths by use of an in...




Figure 24.2-6 Wavelength-division routing
(demultiplexing)_of four wavelengths by use of casc...

wavelength dependence of its transmittance.

Figure 24.2-8 Wavelength-division demultiplexing using
an arrayed waveguides (AWG)_router.

polarizing beamsplitter (PBS). For beams ...

Figure 24.2-10 Phase-based routing using a Mach—Zehnder
interferometer.

Figure 24.2-11 An intensity-based 1 x 2 router using a
Mach—Zehnder interferometer in which a ...

Figure 24.2-12 Intensity-based 1 x2 router using a
nonlinear Sagnac interferometer that serves...

directional coupler fabricated from a nonlin...

Figure 24.3-1 Examples of space switches. (a) A1 x 1
switch connects or disconnects two line...

Figure 24.3-2 (@)A1 x 3 switch made from three1 x 1
switches. (b)A 3_x 3switch made from n...

Figure 24.3-3.(a)A 4_x 4. switch made from five 2 x 2
switches. Input line 1 is connected to o...

Figure 24.3-4_An optoelectronic crossbar switch. Incoming

Figure 24.3-5_(a)_An optical scanner as a 1 x N switch. (b)
An interferometer with a phase mo...

Figure 24.3-6 A 4 x 4_crossbar switch. Each of the 16
elements is a 1 x 1 switch that transmi...

Figure 24.3-7 Examples of the deflection of light into
different directions using mechano-opt...



Figure 24.3-8 (a) MEMS popup-mirror switch. (b) MEMS
rotating-mirror switch.

Figure 24.3-9 The digital micromirror device (DMD)_is an
array of micromirrors switched betwe...

Figure 24.3-10 (@)A1 x 1 switch using an integrated-
photonic Mach—Zehnder interferometer (MZL...

Figure 24.3-11 An integrated-photonic 4_x 4 switch using
five directional couplers (A, B, C, D...

Figure 24.3-12 An array of MQW switches in a surface-
normal configuration. Operation is based ...

in the broadcast-and-select config...

Figure 24.3-14 A 2 x 2 crossbar liquid-crystal switch. The
two polarization components of an i...

Figure 24.3-15_Acousto-optic switches. (a)A 1 x 2 switch.
(b)A 2 x 2 switch. (¢) An L x M swit...

Figure 24.3-16 Thermo-optic Mach—Zehnder
interferometer (MZI)_switch.

Figure 24.3-17 Bubble-jet switch.

Figure 24.3-18 SOA all-optical switches. (@)A1 x 1 switch
based on cross-gain modulation (XGM...

Figure 24.3-19 An all-optical 1 x 1 switch based on
depletion resulting from parametric sum-fr...

Figure 24.3-20 An all-optical 1 x 2 switch based on cross-

Figure 24.3-21 An all-optical 1 x 1 switch based on altering
the resonance frequency of a micr...

Figure 24.3-22 An all-optical 1 x 2 switch based on cross-
phase modulation (XPM), which alters...




Figure 24.3-23_.An all-optical 1 x 1 switch based on the

Figure 24.3-24_An all-optical 1 x 1 switch based on
depletion of the signal wave caused by fou...

Figure 24.3-25_An all-optical switch using vector solitons in

Figure 24.3-26 An all-optical-fiber nonlinear asymmetric
Sagnac interferometer usedas a1 x 2...

Figure 24.3-27 A reconfigurable wavelength selector.

Figure 24.3-28 A reconfigurable optical add—drop
multiplexer (ROADM).

Figure 24.3-29 Implementation of a wavelength-channel

from a beam of frequency w, to a bea...

Figure 24.3-32 Correspondence between time-and space-
domain switches. (a)_Space-domain switch....

Figure 24.3-33 Time—space—time (TST)_switch.
Figure 24.3-34_Time-division demultiplexing with N = 4.

Figure 24.3-35.Two implementations of time-division
demultiplexing using star couplers, optica...

Figure 24.3-36 An implementation of optical time-slot
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PREFACE TO THE THIRD EDITION

Since the publication of the Second Edition in 2007, Fundamentals
of Photonics has maintained its worldwide prominence as a self-
contained, up-to-date, introductory-level textbook that features a
blend of theory and applications. It has been reprinted dozens of
times and been translated into German and Chinese, as well as
Czech and Japanese. The Third Edition incorporates many of the
scientific and technological developments in photonics that have
taken place in the past decade and strives to be cutting-edge.

Optics and Photonics

Before usage of the term photonics became commonplace at the
time of the First Edition in the early 1990s, the field was
characterized by a collection of appellations that were not always
clearly delineated. Terms such as quantum electronics,
optoelectronics, electro-optics, and lightwave technology were
widely used. Though there was a lack of agreement about the
precise meanings of these terms, there was nevertheless a vague
consensus regarding their usage. Most of these terms have since
receded from general use, although some have retained their
presence in the titles of technical journals and academic courses.

Now, more than 25 years later, the term Optics along with the term
Photonics, as well as their combination Optics & Photonics, have
prevailed. The distinction between optics and photonics remains
somewhat fuzzy, however, and there is a degree of overlap between
the two arenas. Hence, there is some arbitrariness in the manner in
which the chapters of this book are allocated to its two volumes,
Part I: Optics and Part II: Photonics. From a broad perspective, the
term Optics is taken to signify free-space and guided-wave
propagation, and to include topics such as interference, diffraction,
imaging, statistical optics, and photon optics. The term Photonics, in
contrast, is understood to include topics that rely on the interaction



of light and matter, and is dedicated to the study of devices and
systems. As the miniaturization of components and systems
continues to progress and foster emerging technologies such as
nanophotonics and biophotonics, the importance of photonics
continues to advance.

Printed and Electronic Versions

The Third Edition appears in four versions:

1. A printed version.

2. An eBook in the form of an ePDF file that mimics the printed
version.

3. An eBook in the form of a standard ePUB.
4. An eBook in the form of an enhanced ePUB with animations for

selected figures.

In its printed form, the text consists of two volumes, each of which
contains the Table of Contents and Index for both volumes along
with the Appendices and List of Symbols:

= Part I: Optics, contains the first thirteen chapters.
= Part II: Photonics, contains the remaining twelve chapters.
The material in the eBook versions is identical to that in the printed

version except that all 25 chapters reside in a single electronic file.
The various eBooks enjoy the following features:

Hyperlinked table of contents at the beginning of the text.

Hyperlinked table of contents as an optional sidebar.

Hyperlinked index.

Hyperlinked section titles, equations, and figures throughout.

Animations for selected figures in the enhanced ePUB.



Presentation

Exercises, examples, reading lists, and appendices. Each
chapter of the Third Edition contains exercises, problem sets, and
an extensive reading list. Examples are included throughout to
emphasize the concepts governing applications of current interest.
Appendices summarize the properties of one-and two-dimensional
Fourier transforms, linear systems, and modes of linear systems.
Important equations are highlighted by boxes and labels to facilitate
retrieval.

Symbols, notation, units, and conventions. We make use of
the symbols, notation, units, and conventions commonly used in
the photonics literature. Because of the broad spectrum of topics
covered, different fonts are often used to delineate the multiple
meanings of various symbols; a list of symbols, units, abbreviations,
and acronyms follows the appendices. We adhere to the
International System of Units (SI units). This modern form of the
metric system is based on the meter, kilogram, second, ampere,
kelvin, candela, and mole, and is coupled with a collection of
prefixes (specified on the inside back cover of the text) that indicate
multiplication or division by various powers of ten. However, the
reader is cautioned that photonics in the service of different areas of
science can make use of different conventions and symbols. In
Chapter 2, for example, we write the complex wavefunction for a
monochromatic plane wave in a form commonly used in electrical
engineering, which differs from that used in physics. Another
example arises in Chapter 6, where the definitions we use for right
(left) circularly polarized light are in accord with general usage in
optics, but are opposite those generally used in engineering. These
distinctions are often highlighted by in situ footnotes. Though the
choice of a particular convention is manifested in the form assumed
by various equations, it does not of course affect the results.

Color coding of illustrations. The color code used in
illustrations is summarized in the chart presented below. Light
beams and optical-field distributions are displayed in red (except



when light beams of multiple wavelengths are involved, as is often
the case in nonlinear optics). When optical fields are represented,
white indicates negative values but when intensity is portrayed,
white indicates zero. Acoustic beams and fields are similarly
represented, but by with green rather than red. Glass and glass
fibers are depicted in light blue; darker shades represent larger
refractive indices. Semiconductors are cast in green, with various
shades representing different doping levels. Metal and mirrors are
indicated as copper. Semiconductor energy-band diagrams are
portrayed in blue and gray whereas photonic bandgaps are
illustrated in pink.

Intended Audience

As with the previous editions, the Third Edition is meant to serve
as:

= An introductory textbook for students of electrical engineering,
applied physics, physics, or optics at the senior or first-year
graduate level.

= A self-contained work for self-study.

= A textbook suitable for use in programs of continuing
professional development offered by industry, universities, and
professional societies.



The reader is assumed to have a background in engineering, physics,
or optics, including courses in modern physics, electricity and
magnetism, and wave motion. Some knowledge of linear systems
and elementary quantum mechanics is helpful but not essential.
The intent is to provide an introduction to optics and photonics that
emphasizes the concepts that govern applications of current
interest. The book should therefore not be considered as a
compendium encompassing all photonic devices and systems.
Indeed, some areas of photonics are not included at all, and many of
the individual chapters could easily have been expanded into free-
standing monographs.

Organization

The Third Edition comprises 25 chapters compartmentalized into
six divisions, as depicted in the diagram below.

In recognition of the different levels of mathematical sophistication
of the intended audience, we have endeavored to present difficult
concepts in two steps: at an introductory level that provides physical
insight and motivation, followed by a more advanced analysis. This
approach is exemplified by the treatment in Chapter 21 (Electro-
Optics), in which the subject is first presented using scalar notation
and then treated again using tensor notation. Sections dealing with
material of a more advanced nature are indicated by asterisks and
may be omitted if desired. Summaries are provided at points where
recapitulation is deemed useful because of the involved nature of
the material.



The form of the book is modular so that it can be used by readers
with different needs; this also provides instructors an opportunity
to select topics for different courses. Essential material from one
chapter is often briefly summarized in another to make each
chapter as self-contained as possible. At the beginning of Chapter 25
(Optical Fiber Communications), for example, relevant material
from earlier chapters describing optical fibers, light sources, optical
amplifiers, photodetectors, and photonic integrated circuits is
briefly reviewed. This places important information about the
components of such systems at the disposal of the reader in advance
of presenting system-design and performance considerations.

Contents

A principal feature of the Third Edition is a new chapter entitled
Metal and Metamaterial Optics, an area that has had a substantial
and increasing impact on photonics. The new chapter comprises
theory and applications for single-and double-negative media, metal
optics, plasmonics, metamaterial optics, and transformation optics.

All chapters have been thoroughly vetted and updated. A chapter-by-
chapter compilation of new material in the Third Edition is
provided below.

= Chapter 1 (Ray Optics). Ray-optics descriptions for optical
components such as biprisms, axicons, LED light collimators,
and Fresnel lenses have been added. The connection between
characterizing an arbitrary paraxial optical system by its ray-
transfer matrix and its cardinal points has been established. A
matrix-optics analysis for imaging with an arbitrary paraxial
optical system has been included.

» Chapter 2 (Wave Optics). A wave-optics analysis of
transmission through biprisms and axicons has been added. A
treatment of the Fresnel zone plate from the perspective of
interference has been introduced. An analysis of the
Michelson—Fabry—Perot (LIGO) interferometer used for the



detection of gravitational waves in the distant universe has
been incorporated.

Chapter 3 (Beam Optics). An enhanced description of
Laguerre—Gaussian beams has been provided. The basic
features of several additional optical beams have been
introduced: optical vortex, Ince—Gaussian, nondiffracting
Bessel, Bessel— Gaussian, and Airy.

Chapter 4 (Fourier Optics). An analysis of Fresnel
diffraction from a periodic aperture (Talbot effect) has been
included. Nondiffracting waves and Bessel beams have been
introduced from a Fourier-optics perspective. A discussion of
computer-generated holography has been added.

Chapter 5 (Electromagnetic Optics). A new section on the
dipole wave, the basis of near-field optics, has been
incorporated. A new section on scattering that includes
Rayleigh and Mie scattering, along with attenuation in a
medium with scatterers, has been added.

Chapter 6 (Polarization Optics). The material dealing with
the dispersion relation in anisotropic media has been reworked
to simplify the presentation.

Chapter 7 (Photonic-Crystal Optics). The behavior of the
dielectric-slab beam-splitter has been elucidated. A discussion
relating to fabrication methods for 3D photonic crystals has
been incorporated.

Chapter 8 (Metal and Metamaterial Optics). This new
chapter, entitled Metal and Metamaterial Optics, provides a
venue for the examination of single-and double-negative media,
metal optics, plasmonics, metamaterial optics, and
transformation optics. Topics considered include evanescent
waves, surface plasmon polaritons, localized surface plasmons,
nanoantennas, metasurfaces, subwavelength imaging, and
optical cloaking.



Chapter 9 (Guided-Wave Optics). A new section on
waveguide arrays that details the mutual coupling of multiple
waveguides and introduces the notion of super-modes has been
inserted. A new section on plasmonic waveguides that includes
metal-insulator—metal and metal-slab waveguides, along with
periodic metal— dielectric arrays, has been incorporated.

Chapter 10 (Fiber Optics). A discussion of multicore fibers,
fiber couplers, and photonic lanterns has been added. A brief
discussion of the applications of photonic-crystal fibers has
been provided. A new section on multimaterial fibers, including
conventional and hybrid mid-infrared fibers, specialty fibers,
multimaterial fibers, and multifunctional fibers, has been
introduced.

Chapter 11 (Resonator Optics). A section on plasmonic
resonators has been added.

Chapter 12 (Statistical Optics). The sections on optical
coherence tomography and unpolarized light have been
reorganized.

Chapter 13 (Photon Optics). A brief description of single-
photon imaging has been added. The discussion of quadrature-
squeezed and photon-number-squeezed light has been
enhanced and examples of the generation and applications of
these forms of light have been provided. A section that
describes two-photon light, entangled photons, two-photon
optics, and the generation and applications thereof, has been
incorporated. Examples of two-photon polarization, two-photon
spatial optics, and two-beam optics have been appended.

Chapter 14 (Light and Matter). The title of this chapter
was changed from Photons and Atoms to Light and Matter.
Brief descriptions of the Zeeman effect, Stark effect, and
ionization energies have been added. The discussion of
lanthanide-ion manifolds has been enhanced. Descriptions of
Doppler cooling, optical molasses, optical tweezers, optical




lattices, atom interferometry, and atom amplifiers have been
incorporated into the section on laser cooling, laser trapping,
and atom optics.

Chapter 15 (Laser Amplifiers). Descriptions of quasi-three-
level and in-band pumping have been added. The sections on
representative laser amplifiers, including ruby, neodymium-
doped glass, erbium-doped silica fiber, and Raman fiber
devices, have been enhanced.

Chapter 16 (Lasers). Descriptions of tandem pumping,
transition-ion-doped zincchalcogenide lasers, silicon Raman
lasers, and master-oscillator power-amplifiers (MOPAs) have
been added. Descriptions of inner-shell photopumping and X-
ray free-electron lasers have been incorporated. A new section
on optical frequency combs has been provided.

Chapter 177 (Semiconductor Optics). The section on
organic semiconductors has been enhanced. A discussion of
group-IV photonics, including graphene and 2D materials such
as transition-metal dichalcogenides, has been added. A brief
discussion of quantum-dot single-photon emitters has been
incorporated.

Chapter 18 (LEDs and Laser Diodes). The title of this
chapter was changed from Semiconductor Photon Sources to
LEDs and Laser Diodes. A new section on the essentials of LED
lighting has been incorporated. Brief discussions of the
following topics are now included: resonant-cavity LEDs,
silicon-photonics light sources, quantum-dot semiconductor
amplifiers, external-cavity wavelength-tunable laser diodes,
broad-area laser diodes, and laser-diode bars and stacks. A
discussion of the semiconductor-laser linewidth-enhancement
factor has been added. A new section on nanolasers has been
introduced.

Chapter 19 (Photodetectors). The title of this chapter was
changed from Semiconductor Photon Detectors to



Photodetectors. Brief discussions of the following topics have
been added: organic, plasmonic, group-IV-based, and
grapheneenhanced photodetectors; edge vs. normal
illumination; photon-trapping microstructures; SACM and
superlattice APDs; multiplied dark current; and 1/f detector
noise. New examples include multi-junction photovoltaic solar
cells; Ge-on-Si photodiodes; graphene-Si Schottky-barrier
photodiodes; and SAM, SACM, and staircase APDs. A new
section on single-photon and photon-numberresolving
detectors details the operation of SPADs, SiPMs, and TESs.

Chapter 20 (Acousto-Optics). The identical forms of the
photoelastic matrix in acousto-optics and the Kerr-effect matrix
in electro-optics has been highlighted for cubic isotropic media.

Chapter 21 (Electro-Optics). New sections on passive-and
active-matrix liquid-crystal displays have been introduced and
their operation has been elucidated. The performance of active-
matrix liquid-crystal displays (AMLCDs) has been compared
with that of active-matrix organic light-emitting displays
(AMOLEDs).

Chapter 22 (Nonlinear Optics). New material relating to
guided-wave nonlinear optics has been introduced. Quasi-phase
matching in periodically poled integrated optical waveguides,
and the associated improvement in wave-mixing efficiency, is
now considered. The section pertaining to Raman gain has been
enhanced.

Chapter 23 (Ultrafast Optics). New examples have been
incorporated that consider chirped pulse amplification in a
petawatt laser and the generation of high-energy solitons in a
photonic-crystal rod. A new section on high-harmonic
generation and attosecond optics has been added. The section
on pulse detection has been reorganized.

Chapter 24 (Optical Interconnects and Switches). The
role of optical interconnects at the inter-board, inter-chip, and



intrachip scale of computer systems is delineated. All-optical
switching now incorporates nonparametric and parametric
photonic switches that operate on the basis of manifold
nonlinear-optical effects. Photonic-crystal and plasmonic
photonic switches are discussed. The treatment of photonic
logic gates now includes an analysis of embedded bistable
systems and examples of bistability in fiber-based-
interferometric and microring laser systems.

» Chapter 25 (Optical Fiber Communications). The
material on fiber-optic components has been updated and
rewritten, and the role of photonic integrated circuits is
delineated. A new section on space-division multiplexing in
multicore and multimode fibers has been added. The section on
coherent detection has been expanded and now emphasizes
digital coherent receivers with spectrally efficient coding.

Representative Courses

The different chapters of the book may be combined in various ways
for use in courses of semester or quarter duration. Representative
examples of such courses are presented below. Some of these
courses may be offered as part of a sequence. Other selections may
be made to suit the particular objectives of instructors and students.



The first six chapters of the book are suitable for an introductory
course on Optics. These may be supplemented by Chapter 12
(Statistical Optics) to introduce incoherent and partially coherent
light, and by Chapter 13 (Photon Optics) to introduce the photon.
The introductory sections of Chapters 9 and 10 (Guided-Wave
Optics and Fiber Optics, respectively) may be added to cover some
applications.

A course on Guided-Wave Optics might begin with an introduction
to wave propagation in layered and periodic media in Chapter 7
(Photonic-Crystal Optics), and could include Chapter 8 (Metal and
Metamaterial Optics). This would be followed by Chapters 9, 10,
and 11 (Guided-Wave Optics, Fiber Optics, and Resonator Optics,
respectively). The introductory sections of Chapters 21 and 24
(Electro-Optics and Optical Interconnects and Switches) would
provide additional material.



A course on Lasers could begin with Beam Optics and Resonator
Optics (Chapters 3 and 11, respectively), followed by Light and
Matter (Chapter 14). The initial portion of Photon Optics (Chapter
13) could be assigned. The heart of the course would be the material
contained in Laser Amplifiers and Lasers (Chapters 15 and 16,
respectively). The course might also include material drawn from
Semiconductor Optics and LEDs and Laser Diodes (Chapters 17 and
18, respectively). An introduction to femtosecond lasers could be
extracted from some sections of Ultrafast Optics (Chapter 23).

The chapters on Semiconductor Optics, LEDs and Laser Diodes, and
Photodetectors (Chapters 17, 18, and 19, respectively) form a
suitable basis for a course on Optoelectronics. This material would
be supplemented with optics background from earlier chapters and
could include topics such as liquid-crystal devices (Secs. 6.5 and
21.3), electroabsorption modulators (Sec. 21.5), and an introduction
to photonic devices used for switching and/or communications
(Chapters 24 and 25, respectively).



Photonic Devices is a course that would consider the devices used in
Acousto-Optics, Electro-Optics, and Nonlinear Optics (Chapters 20,
21, and 22, respectively). It might also include devices used in
optical routing and switching, as discussed in Optical Interconnects
and Switches (Chapter 24).

The material contained in Chapters 21—23 (Electro-Optics,
Nonlinear Optics, and Ultrafast Optics, respectively) is suitable for
an in-depth course on Nonlinear and Ultrafast Optics. These
chapters could be supplemented by the material pertaining to
electro-optic and all-optical switching in Chapter 24 (Optical
Interconnects and Switches).



The heart of a course on Fiber-Optic Communications would be the
material contained in Chapter 25 (Optical Fiber Communications).
Background for this course would comprise material drawn from
Chapters 9, 10, 18, and 19 (Guided-Wave Optics, Fiber Optics, LEDs
and Laser Diodes, and Photodetectors, respectively), along with
material contained in Secs. 15.3C and 15.3D (doped-fiber and
Raman fiber amplifiers, respectively). If fiber-optic networks were
to be emphasized, Sec. 24.3 (photonic switches) would be a valuable

adjunct.

Background material for a course on Optical Information
Processing would be drawn from Wave Optics and Beam Optics
(Chapters 2 and 3, respectively). The course could cover coherent
image formation and processing from Fourier Optics (Chapter 4)
along with incoherent and partially coherent imaging from
Statistical Optics (Chapter 12). The focus could then shift to devices
used for analog data processing, such as those considered in
Acousto-Optics (Chapter 20). The course could then finish with
material on switches and gates used for digital data processing, such
as those considered in Optical Interconnects and Switches (Chapter

24).
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PREFACE TO THE SECOND EDITION

Since the publication of the First Edition in 1991, Fundamentals of
Photonics has been reprinted some 20 times, translated into Czech
and Japanese, and used worldwide as a textbook and reference.
During this period, major developments in photonics have
continued apace, and have enabled technologies such as
telecommunications and applications in industry and medicine. The
Second Edition reports some of these developments, while
maintaining the size of this single-volume tome within practical
limits.

In its new organization, Fundamentals of Photonics continues to
serve as a self-contained and up-to-date introductory-level textbook,
featuring a logical blend of theory and applications. Many readers of
the First Edition have been pleased with its abundant and well-
illustrated figures. This feature has been enhanced in the Second
Edition by the introduction of full color throughout the book,
offering improved clarity and readability.

While each of the 22 chapters of the First Edition has been
thoroughly updated, the principal feature of the Second Edition is
the addition of two new chapters: one on photonic-crystal optics and
another on ultrafast optics. These deal with developments that have
had a substantial and growing impact on photonics over the past
decade.

The new chapter on photonic-crystal optics provides a
foundation for understanding the optics of layered media, including
Bragg gratings, with the help of a matrix approach. Propagation of
light in one-dimensional periodic media is examined using Bloch
modes with matrix and Fourier methods. The concept of the
photonic bandgap is introduced. Light propagation in two-and three-
dimensional photonic crystals, and the associated dispersion
relations and bandgap structures, are developed. Sections on



photonic-crystal waveguides, holey fibers, and photonic-crystal
resonators have also been added at appropriate locations in other
chapters.

The new chapter on ultrafast optics contains sections on
picosecond and femtosecond optical pulses and their
characterization, shaping, and compression, as well as their
propagation in optical fibers, in the domain of linear optics. Sections
on ultrafast nonlinear optics include pulsed parametric interactions
and optical solitons. Methods for the detection of ultrafast optical
pulses using available detectors, which are relatively slow, are
reviewed.

In addition to these two new chapters, the chapter on optical
interconnects and switches has been completely rewritten and
supplemented with topics such as wavelength and time routing and
switching, FBGs, WGRs, SOAs, TOADs, and packet switches. The
chapter on optical fiber communications has also been
significantly updated and supplemented with material on WDM
networks; it now offers concise descriptions of topics such as
dispersion compensation and management, optical amplifiers, and
soliton optical communications.

Continuing advances in device-fabrication technology have
stimulated the emergence of nanophotonics, which deals with
optical processes that take place over subwavelength (nanometer)
spatial scales. Nanophotonic devices and systems include quantum-
confined structures, such as quantum dots, nanoparticles, and
nanoscale periodic structures used to synthesize metamaterials
with exotic optical properties such as negative refractive index. They
also include configurations in which light (or its interaction with
matter) is confined to nanometer-size (rather than micrometer-
size) regions near boundaries, as in surface plasmon optics.
Evanescent fields, such as those produced at a surface where total
internal reflection occurs, also exhibit such confinement.
Evanescent fields are present in the immediate vicinity of
subwavelengthsize apertures, such as the open tip of a tapered



optical fiber. Their use allows imaging with resolution beyond the
diffraction limit and forms the basis of near-field optics. Many of
these emerging areas are described at suitable locations in the
Second Edition.

New sections have been added in the process of updating the
various chapters. New topics introduced in the early chapters
include: Laguerre—Gaussian beams; near-field imaging; the
Sellmeier equation; fast and slow light; optics of conductive media
and plasmonics; doubly negative metamaterials; the Poincaré
sphere and Stokes parameters; polarization mode dispersion;
whispering-gallery modes; microresonators; optical coherence
tomography; and photon orbital angular momentum.

In the chapters on laser optics, new topics include: rare-earth and
Raman fiber amplifiers and lasers; EUV, X-ray, and free-electron
lasers; and chemical and random lasers. In the area of
optoelectronics, new topics include: gallium nitride-based
structures and devices; superluminescent diodes; organic and
white-light LEDs; quantum-confined lasers; quantum cascade
lasers; microcavity lasers; photonic-crystal lasers; array detectors;
low-noise APDs; SPADs; and QWIPs.

The chapter on nonlinear optics has been supplemented with
material on parametric-interaction tuning curves; quasi-phase-
matching devices; two-wave mixing and cross-phase modulation;
THz generation; and other nonlinear optical phenomena associated
with narrow optical pulses, including chirp pulse amplification and
supercontinuum light generation. The chapter on electro-optics now
includes a discussion of electroabsorption modulators.

Appendix C on modes of linear systems has been expanded and
now offers an overview of the concept of modes as they appear in
numerous locations within the book. Finally, additional exercises
and problems have been provided, and these are now numbered
disjointly to avoid confusion.
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PREFACE TO THE FIRST EDITION

Optics is an old and venerable subject involving the generation,
propagation, and detection of light. Three major developments,
which have been achieved in the last thirty years, are responsible for
the rejuvenation of optics and for its increasing importance in
modern technology: the invention of the laser, the fabrication of
low-loss optical fibers, and the introduction of semiconductor
optical devices. As a result of these developments, new disciplines
have emerged and new terms describing these disciplines have
come into use: electro-optics, optoelectronics, quantum
electronics, quantumoptics, and lightwave technology.
Although there is a lack of complete agreement about the precise
usages of these terms, there is a general consensus regarding their
meanings.

Photonics

Electro-optics is generally reserved for optical devices in which
electrical effects play a role (lasers, and electro-optic modulators
and switches, for example). Optoelectronics, on the other hand,
typically refers to devices and systems that are essentially electronic
in nature but involve light (examples are light-emitting diodes,
liquid-crystal display devices, and array photodetectors). The term
quantum electronics is used in connection with devices and systems
that rely principally on the interaction of light with matter (lasers
and nonlinear optical devices used for optical amplification and
wave mixing serve as examples). Studies of the quantum and
coherence properties of light lie within the realm of quantum
optics. The term lightwave technology has been used to describe
devices and systems that are used in optical communications and
optical signal processing.

In recent years, the term photonics has come into use. This term,
which was coined in analogy with electronics, reflects the growing



tie between optics and electronics forged by the increasing role that
semiconductor materials and devices play in optical systems.
Electronics involves the control of electric-charge flow (in vacuum
or in matter); photonics involves the control of photons (in free
space or in matter). The two disciplines clearly overlap since
electrons often control the flow of photons and, conversely, photons
control the flow of electrons. The term photonics also reflects the
importance of the photon nature of light in describing the operation
of many optical devices.

Scope

This book provides an introduction to the fundamentals of
photonics. The term photonics is used broadly to encompass all of
the aforementioned areas, including the following:

= The generation of coherent light by lasers, and incoherent light
by luminescence sources such as light-emitting diodes.

= The transmission of light in free space, through conventional
optical components such as lenses, apertures, and imaging
systems, and through waveguides such as optical fibers.

= The modulation, switching, and scanning of light by the use of
electrically, acoustically, or optically controlled devices.

» The amplification and frequency conversion of light by the use
of wave interactions in nonlinear materials.

» The detection of light.
These areas have found ever-increasing applications in optical

communications, signal processing, computing, sensing, display,
printing, and energy transport.

Approach and Presentation

The underpinnings of photonics are provided in a number of
chapters that offer concise introductions to:



= The four theories of light (each successively more advanced
than the preceding): ray optics, wave optics, electromagnetic
optics, and photon optics.

= The theory of interaction of light with matter.

= The theory of semiconductor materials and their optical
properties.

These chapters serve as basic building blocks that are used in other
chapters to describe the generation of light (by lasers and light-
emitting diodes); the transmission of light (by optical beams,
diffraction, imaging, optical waveguides, and optical fibers); the
modulation and switching of light (by the use of electro-optic,
acousto-optic, and nonlinear-optic devices); and the detection of
light (by means of photodetectors). Many applications and examples
of real systems are provided so that the book is a blend theory and
practice. The final chapter is devoted to the study of fiber-optic
communications, which provides an especially rich example in
which the generation, transmission, modulation, and detection of
light are all part of a single photonic system used for the
transmission of information.

The theories of light are presented at progressively increasing levels
of difficulty. Thus light is described first as rays, then scalar waves,
then electromagnetic waves, and finally, photons. Each of these
descriptions has its domain of applicability. Our approach is to draw
from the simplest theory that adequately describes the
phenomenon or intended application. Ray optics is therefore used
to describe imaging systems and the confinement of light in
waveguides and optical resonators. Scalar wave theory provides a
description of optical beams, which are essential for the
understanding of lasers, and of Fourier optics, which is useful for
describing coherent optical systems and holography.
Electromagnetic theory provides the basis for the polarization and
dispersion of light, and the optics of guided waves, fibers, and
resonators. Photon optics serves to describe the interactions of light



with matter, explaining such processes as light generation and
detection, and light mixing in nonlinear media.

Intended Audience

Fundamentals of Photonics is meant to serve as:

= An introductory textbook for students in electrical engineering
or applied physics at the senior or first-year graduate level.

» A self-contained work for self-study.

= A text for programs of continuing professional development
offered by industry, universities, and professional societies.

The reader is assumed to have a background in engineering or
applied physics, including courses in modern physics, electricity and
magnetism, and wave motion. Some knowledge of linear systems
and elementary quantum mechanics is helpful but not essential.
Our intent has been to provide an introduction to photonics that
emphasizes the concepts governing applications of current interest.
The book should, therefore, not be considered as a compendium
that encompasses all photonic devices and systems. Indeed, some
areas of photonics are not included at all, and many of the
individual chapters could easily have been expanded into separate
monographs.

Problems, Reading Lists, and Appendices

A set of problems is provided at the end of each chapter. Problems
are numbered in accordance with the chapter sections to which they
apply. Quite often, problems deal with ideas or applications not
mentioned in the text, analytical derivations, and numerical
computations designed to illustrate the magnitudes of important
quantities. Problems marked with asterisks are of a more advanced
nature. A number of exercises also appear within the text of each
chapter to help the reader develop a better understanding of (or to
introduce an extension of) the material.



Appendices summarize the properties of one-and two-dimensional
Fourier transforms, linear-systems theory, and modes of linear
systems (which are important in polarization devices, optical
waveguides, and resonators); these are called upon at appropriate
points throughout the book. Each chapter ends with a reading list
that includes a selection of important books, review articles, and a
few classic papers of special significance.
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Sir Isaac Newton (1642—1727) set forth a theory of optics in
which light emissions consist of collections of corpuscles that
propagate rectilinearly.

Pierre de Fermat (1601—1665) enunciated a rule, known as
Fermat’s Principle, in which light rays travels along the path of least
time relative to neighboring paths.

Light can be described as an electromagnetic wave phenomenon
governed by the same theoretical principles that govern all other
forms of electromagnetic radiation, such as radio waves and X-rays.
This conception of light is called electromagnetic optics.
Electromagnetic radiation propagates in the form of two mutually
coupled vector waves, an electric-field wave and a magnetic-field
wave. Nevertheless, it is possible to describe many optical
phenomena using a simplified scalar wave theory in which light is
described by a single scalar wavefunction. This approximate way of
treating light is called scalar wave optics, or simply wave optics.

When light waves propagate through and around objects whose
dimensions are much greater than the wavelength of the light, the
wave nature is not readily discerned and the behavior of light can be
adequately described by rays obeying a set of geometrical rules. This
model of light is called ray optics. From a mathematical
perspective, ray optics is the limit of wave optics when the
wavelength is infinitesimally small.

Thus, electromagnetic optics encompasses wave optics, which in
turn encompasses ray optics, as illustrated in Fig. 1.0-1. Ray optics
and wave optics are approximate theories that derive validity from



their successes in producing results that approximate those based
on the more rigorous electromagnetic theory.

Figure 1.0-1 The theory of quantum optics provides an explanation
for virtually all optical phenomena. The electromagnetic theory of
light (electromagnetic optics) provides the most complete treatment
of light within the confines of classical optics. Wave optics is a
scalar approximation of electromagnetic optics. Ray optics is the
limit of wave optics when the wavelength is very short.

Although electromagnetic optics provides the most complete
treatment of light within the confines of classical optics, certain
optical phenomena are characteristically quantum mechanical in
nature and cannot be explained classically. These nonclassical
phenomena are described by a quantum version of electromagnetic
theory known as quantum electrodynamics. For optical
phenomena, this theory is also referred to as quantum optics.

Historically, the theories of optics developed roughly in the
following order: (1) ray optics — (2) wave optics — (3)
electromagnetic optics — (4) quantum optics. These models are
progressively more complex and sophisticated, and were developed
successively to provide explanations for the outcomes of
increasingly subtle and precise optical experiments. The optimal
choice of a model is the simplest one that satisfactorily describes a



particular phenomenon, but it is sometimes difficult to know a
priori which model achieves this. Experience is often the best guide.

For pedagogical reasons, the initial chapters of this book follow the
historical order indicated above. Each model of light begins with a
set of postulates (provided without proof), from which a large body
of results are generated. The postulates of each model are shown to
arise as special cases of the next-higher-level model. In this chapter
we begin with ray optics.

This Chapter

Ray optics is the simplest theory of light. Light is described by rays
that travel in different optical media in accordance with a set of
geometrical rules. Ray optics is therefore also called geometrical
optics. Ray optics is an approximate theory. Although it adequately
describes most of our daily experiences with light, there are many
phenomena that ray optics cannot adequately construe (as amply
attested to by the remaining chapters of this book).

Ray optics is concerned with the locations and directions of light
rays. It is therefore useful in studying image formation — the
collection of rays from each point of an object and their redirection
by an optical component onto a corresponding point of an image.
Ray optics permits us to determine the conditions under which light
is guided within a given medium, such as a glass fiber. In isotropic
media, optical rays point in the direction of the flow of optical
energy. Ray bundles can be constructed in which the density of rays
is proportional to the density of light energy. When light is
generated isotropically from a point source, for example, the energy
associated with the rays in a given cone is proportional to the solid
angle of the cone. Rays may be traced through an optical system to
determine the optical energy crossing a given area.

This chapter begins with a set of postulates from which we derive
the simple rules that govern the propagation of light rays through
optical media. In Sec. 1.2 these rules are applied to simple optical
components, such as mirrors and planar or spherical boundaries



between different optical media. Ray propagation in
inhomogeneous (graded-index) optical media is examined in Sec.
1.3. Graded-index optics is the basis of a technology that has become
an important part of modern optics.

Optical components are often centered about an optical axis, with
respect to which the rays travel at small inclinations. Such rays are
called paraxial rays and the assumption that the rays have this
property is the basis of paraxial optics. The change in the position
and inclination of a paraxial ray as it travels through an optical
system can be efficiently described by the use of a 2 x 2-matrix
algebra. Section 1.4 is devoted to this algebraic tool, which is known
as matrix optics.

1.1 POSTULATES OF RAY OPTICS



Postulates of Ray Optics

» Light travels in the form of rays. The rays are emitted by
light sources and can be observed when they reach an
optical detector.

= An optical medium is characterized by a quantity n > 1,
called the refractive index. The refractive index n = ¢,/c

where c, is the speed of light in free space and c is the speed
of light in the medium. Therefore, the time taken by light to
travel a distance d is d/c = nd/c,. It is proportional to the
product nd, which is known as the optical pathlength.

= In an inhomogeneous medium the refractive index n(r) is a
function of the position r = (x, y, z). The optical pathlength
along a given path between two points A and B is therefore

(1.1-1)

where ds is the differential element of length along the
path. The time taken by light to travel from A to B is
proportional to the optical pathlength.

= Fermat’s Principle. Optical rays traveling between two
points, A and B, follow a path such that the time of travel (or
the optical pathlength) between the two points is an
extremum relative to neighboring paths. This is expressed
mathematically as

(1.1-2)

where the symbol 6, which is read “the variation of,”
signifies that the optical pathlength is either minimized or



maximized, or is a point of inflection. It is, however, usually
a minimum, in which case:

Light rays travel along the path of least time.

Sometimes the minimum time is shared by more than one path,
which are then all followed simultaneously by the rays. An
example in which the pathlength is maximized is provided in
Prob. 1.1-2.

In this chapter we use the postulates of ray optics to determine the
rules governing the propagation of light rays, their reflection and
refraction at the boundaries between different media, and their
transmission through various optical components. A wealth of
results applicable to numerous optical systems are obtained without
the need for any other assumptions or rules regarding the nature of
light.

Propagation in a Homogeneous Medium

In a homogeneous medium the refractive index is the same
everywhere, and so is the speed of light. The path of minimum time,
required by Fermat’s principle, is therefore also the path of
minimum distance. The principle of the path of minimum distance
is known as Hero’s principle. The path of minimum distance
between two points is a straight line so that in a homogeneous
medium, light rays travel in straight lines (Fig. 1.1-1).

Figure 1.1-1 Light rays travel in straight lines. Shadows are perfect
projections of stops.



Reflection from a Mirror

Mirrors are made of certain highly polished metallic surfaces, or
metallic or dielectric films deposited on a substrate such as glass.
Light reflects from mirrors in accordance with the law of reflection:

The reflected ray lies in the plane of incidence; the angle of
reflection equals the angle of incidence.

The plane of incidence is the plane formed by the incident ray and
the normal to the mirror at the point of incidence. The angles of
incidence and reflection, 6 and 0', are defined in Fig, 1.1-2(a). To
prove the law of reflection we simply use Hero’s principle. Examine
a ray that travels from point A to point C after reflection from the
planar mirror in Fig, 1.1-2(b). According to Hero’s principle, for a
mirror of infinitesimal thickness, the distance 4 + B¢ must be
minimum. If C” is a mirror image of C, then E¢ = B, so that ar +
Bc® must be a minimum. This occurs when 4B8c” is a straight line,
i.e., when B coincides with B' so that 6 = 0'.

Figure 1.1-2 (a) Reflection from the surface of a curved mirror. (b)
Geometrical construction to prove the law of reflection.

Reflection and Refraction at the Boundary Between Two Media

At the boundary between two media of refractive indices n, and n,,
an incident ray is split into two — a reflected ray and a refracted (or



transmitted) ray (Fig. 1.1-3). The reflected ray obeys the law of
reflection. The refracted ray obeys the law of refraction:

The refracted ray lies in the plane of incidence; the angle of
refraction 0, is related to the angle of incidence 0, by Snell’s law,

7y sinfy = nasind,. (1.1-3)

Snell’s Law

The proportion in which the light is reflected and refracted is not
described by ray optics.

Figure 1.1-3 Reflection and refraction at the boundary between
two media.



EXERCISE 1.1-1

Proof of Snell’s Law. The proof of Snell’s law is an exercise in
the application of Fermat’s principle. Referring to Fig. 1.1-4, we
seek to minimize the optical pathlength n, ag + n,B¢ between

points A and C. We therefore have the following optimization
problem: Minimize n,d, sec 6, + n,d, sec 6, with respect to the

angles 0, and 0., subject to the condition d, tan 6, + d, tan 0, =

d. Show that the solution of this constrained minimization
problem yields Snell’s law.

Figure 1.1-4 Construction to prove Snell’s law.

S J

The three simple rules — propagation in straight lines and the laws
of reflection and refraction — are applied in Sec. 1.2 to several
geometrical configurations of mirrors and transparent optical
components, without further recourse to Fermat’s principle.

1.2 SIMPLE OPTICAL COMPONENTS

A. Mirrors
Planar Mirrors

A planar mirror reflects the rays originating from a point P, such
that the reflected rays appear to originate from a point P, behind the
mirror, called the image (Fig, 1.2-1).



Paraboloidal Mirrors

The surface of a paraboloidal mirror is a reflective paraboloid of
revolution. It has the useful property of focusing all incident rays
parallel to its axis to a single point, called the focus or focal point.
The distance FF =f defined in Fig, 1.2-2 is known as the focal
length. Paraboloidal mirrors are often used as light-collecting
elements in telescopes. They are also used to render parallel the
rays from a point source of light, such as a flashlight bulb or a light-
emitting diode, located at the focus. When used in this manner, the
device is known as a collimator.

Figure 1.2-1 Reflection of light from a planar mirror.

Figure 1.2-2 Focusing of light by a parabo-loidal mirror.
Elliptical Mirrors

An elliptical mirror reflects all the rays emitted from one of its two
foci, e.g., P,, and images them onto the other focus, P, (Fig. 1.2-3).



In accordance with Hero’s principle, the distances traveled by the
light from P, to P, along any of the paths are equal.

Figure 1.2-3 Reflection from an elliptical mirror.

Spherical Mirrors

A spherical mirror is easier to fabricate than a paraboloidal mirror
or an elliptical mirror. However, it has neither the focusing property
of the paraboloidal mirror nor the imaging property of the elliptical
mirror. As illustrated in Fig, 1.2-4, parallel rays meet the axis at
different points; their envelope (the dashed curve) is called the
caustic curve. Nevertheless, parallel rays close to the axis are
approximately focused onto a single point F at distance (-R)/2 from
the mirror center C. By convention, the radius of curvature R is
negative for concave mirrors and positive for convex mirrors.

Paraxial Rays Reflected from Spherical Mirrors

Rays that make small angles (such that sin 6 = 0) with the mirror’s
axis are called paraxial rays. In the paraxial approximation,
where only paraxial rays are considered, a spherical mirror has a
focusing property like that of the paraboloidal mirror and an
imaging property like that of the elliptical mirror. The body of rules
that results from this approximation forms paraxial optics, also
called first-order optics or Gaussian optics.



Figure 1.2-4 Reflection of parallel rays from a concave spherical
mirror.

Figure 1.2-5 A spherical mirror approxi-mates a paraboloidal
mirror for paraxial rays.

A spherical mirror of radius R therefore acts like a paraboloidal
mirror of focal length f = R/2. This is, in fact, plausible since at
points near the axis, a parabola can be approximated by a circle with
radius equal to the parabola’s radius of curvature (Fig, 1.2-5).

All paraxial rays originating from each point on the axis of a
spherical mirror are reflected and focused onto a single
corresponding point on the axis. This can be seen (Fig. 1.2-6) by
examining a ray emitted at an angle 0, from a point P, at a distance
z, away from a concave mirror of radius R, and reflecting at angle

(—6.,) to meet the axis at a point P, that is a distance z, away from



the mirror. The angle 0, is negative since the ray is traveling
downward. Since the three angles of a triangle add to 180°, we have
0,=0,-0and (-0,)= 0, + 0, so that (-0,)+ 0, = 20,.If 0, is
sufficiently small, the approximation tan 0, = 0, may be used, so
that 6, = y/(—R), from which

() + 61 ~ [%} , (1.2-1)

where y is the height of the point at which the reflection occurs.
Recall that R is negative since the mirror is concave. Similarly, if 0,
and 0, are small, 0, = y/z, and (-0,)= y/z,, so that (1.2-1) yields
y/z, +y/z, = 2y/(-R), whereupon

R (1.2-2)

Figure 1.2-6 Reflection of paraxial rays from a concave spherical
mirror of radius R< 0.

This relation holds regardless of y (i.e., regardless of 8,) as long as
the approximation is valid. This means that all paraxial rays
originating from point P, arrive at P,. The distances z, and z,, are
measured in a coordinate system in which the z axis points to the
left. Points of negative z therefore lie to the right of the mirror.

According to (1.2-2), rays that are emitted from a point very far out
on the z axis (z, = «) are focused to a point F at a distance z, =



(-R)/2. This means that within the paraxial approximation, all rays
coming from infinity (parallel to the axis of the mirror) are focused
to a point at a distance f from the mirror, which is known as its focal
length:

(—R) (1.2-3) Focal Length Spherical Mirror
f=—.
2

Equation (1.2-2) is usually written in the form

1 1 1 (1.2-4) Imaging Equation (Paraxial Rays)

7y oz f

which is known as the imaging equation. Both the incident and the
reflected rays must be paraxial for this Equation to hold.



EXERCISE 1.2-1

Image Formation by a Spherical Mirror. Show that,
within the paraxial approximation, rays originating from a point
P, =(y,,z,) are reflected to a point P, =(y,,z,), where z, and z,,
satisfy (1.2-4) and y,, = -y,2,/z, (Fig.1.2-7). This means that rays
from each point in the plane z = z, meet at a single
corresponding point in the plane z = z,,, so that the mirror acts as
an image-formation system with magnification —z,/z,. Negative
magnification means that the image is inverted.

Figure 1.2-7 Image formation by a spherical mirror. Four
particular rays are illustrated.

.

B. Planar Boundaries

The relation between the angles of refraction and incidence, 6, and
0,, at a planar boundary between two media of refractive indices n,
and n, is governed by Snell’s law (1.1-3). This relation is plotted in
Fig. 1.2-8 for two cases:

» External Refraction (n, < n,). When the ray is incident from
the medium of smaller refractive index, 0, <0, and the refracted
ray bends away from the boundary.

= Internal Refraction (n, >n,). If the incident ray is in a medium
of higher refractive index, 0, >0, and the refracted ray bends



toward the boundary.

Figure 1.2-8 Relation between the angles of refraction and
incidence.

The refracted rays bend in such a way as to minimize the optical
pathlength, i.e., to increase the pathlength in the lower-index
medium at the expense of pathlength in the higher-index medium.
In both cases, when the angles are small (i.e., the rays are paraxial),
the relation between 0, and 0, is approximately linear, n,0, = n,0.,,

or 0, = (n,/n,)0,.

Total Internal Reflection

For internal refraction (n, >n,), the angle of refraction is greater
than the angle of incidence, 8, >0,, so that as 0, increases, 6,

reaches 90° when 0, = Oc, the critical angle (see Fig. 1.2-8). This
occurs when n, sin 6c = n,, sin(sr/2) = n,, so that

M3 (1.2-5) Critical Angle

When 0, >0c, Snell’s law (1.1-3) cannot be satisfied and refraction

does not occur. The incident ray is then totally reflected as if the
surface were a perfect mirror [Fig. 1.2 9(a)]. This phenomenon,
called total internal reflection (TIR), is the basis of many
optical devices and systems, such as reflecting prisms [Fig, 1.2-



9(b)], light-emitting diode collimators (Fig. 1.2-14), and optical
fibers (Sec. 1.2D). Electromagnetic optics (Fresnel’s equations in
Chapter 6) reveals that all of the energy is carried by the reflected
light so that the process of total internal reflection is highly
efficient.

Figure 1.2-9 (a) Total internal reflection at a planar boundary. (b)
The reflecting prism. If n, > and n, = 1 (air), then 0, < 45°; since

n, = 1.5 > 2 for glass, and 0, = 45°, the ray is totally reflected. (c)

Rays are guided by total internal reflection from the internal surface
of an optical fiber.

Prisms

A prism of apex angle a and refractive index n (Fig, 1.2-10) deflects a
ray incident at an angle 6 by an angle

B;=0 —a+sin! |vn?—sin’f sino —sinf cosal . 1.2-6
(1.2-6),

This Equation is arrived at by using Snell’s law twice, at the two
refracting surfaces of the prism. When a is very small (thin prism)
and 0 is also very small (paraxial approximation), (1.2-6) may be
approximated by

#; = (n— l)ea. (1.2-7)



Figure 1.2-10 (a) Ray deflection by a prism. (b) Graph of (1.2-6)
for the deflection angle 6d as a function of the angle of incidence 6,
for different apex angles a and n = 1.5. When both a and 6 are small
the angle of deflection 63 = (n — 1)a, which is approximately

independent of 0, as is evident for the a = 10° curve. When 6 = 0°
and a = 45°, total internal reflection occurs, as illustrated in Fig, 1.2-

9(b).
Beamsplitters

The beamsplitter is an optical component that splits an incident ray
into a reflected ray and a transmitted ray, as illustrated in Fig, 1.2-11.
The relative proportions of light transmitted and reflected are
established by Fresnel’s equations in electromagnetic optics
(Chapter 6). Beamsplitters are also frequently used to combine two
light rays into one [Fig. 1.2-11(c)]. Beamsplitters are usually
constructed by depositing a thin semitransparent metallic or
dielectric film on a glass substrate. A thin bare glass plate, such as a
microscope slide, can also serve as a beamsplitter although the
fraction of light reflected is small. Transparent plastic materials are
often used in place of glass.



Figure 1.2-11 Beamsplitters and beam combiners.
Beam Directors

Simple optical components can be used to direct rays in particular
directions. The devices illustrated in Fig, 1.2-12 redirect incident
rays into rays tilted at fixed angles with respect to each other. The
biprism depicted in Fig, 1.2-12(a) is the juxtaposition of a prism
and an identical inverted prism. The Fresnel biprism portrayed in
Fig. 1.2-12(b) is formed from rows of adjacently placed tiny prisms.
This device is equivalent to a biprism but is thinner and lighter. The
cone-shaped optic depicted in Fig. 1.2-12(c), known as an axicon,
converts incident rays into a collection of circularly symmetric rays
directed toward its central axis in the form of a cone. It has the
same cross section as the biprism, namely an isosceles triangle.

Figure 1.2-12 (a) Biprism. (b) Fresnel biprism. (¢) Plano-convex
axicon.

C. Spherical Boundaries and Lenses

We now examine the refraction of rays from a spherical boundary of
radius R between two media of refractive indices n, and n,. By
convention, R is positive for a convex boundary and negative for a
concave boundary. The results are obtained by applying Snell’s law,



which relates the angles of incidence and refraction relative to the
normal to the surface, defined by the radius vector from the center
C. These angles are to be distinguished from the angles 6, and 0.,

which are defined relative to the z axis. Considering only paraxial
rays making small angles with the axis of the system so that sin 6 =
0 and tan 6 = 0, the following properties may be shown to hold:

= Aray making an angle 0, with the z axis and meeting the
boundary at a point of height y where it makes an angle 6, with

the radius vector [see Fig. 1.2-13(a)] changes direction at the
boundary so that the refracted ray makes an angle 6, with the z

axis and an angle 6, with the radius vector. With the help of
Exercise 1.2-2, we obtain

Mg T2y
oy = ﬂ_gfh — (1.2-8),

Figure 1.2-13 Refraction at a convex spherical boundary (R> 0).

= All paraxial rays originating from a point P, =(y,,z,) in the z =
z, plane meet at a point P, =(y,,z,) in the z = z, plane (see
Exercise 1.2-2), where



ny Ry Tp—m
e + Za R (&9)

and

Ty £2

y2 = — (1.2-10)

The z = z, and z = z, planes are said to be conjugate planes.
Every point in the first plane has a corresponding point (image)
in the second with magnification —(n,/n,)(z,/z,). Again,
negative magnification means that the image is inverted. By
convention P, is measured in a coordinate system pointing to

the left and P, in a coordinate system pointing to the right (e.g.,
if P, lies to the left of the boundary, then z, would be negative).

The similarities between these properties and those of the spherical
mirror are evident. It is important to remember that the image
formation properties described above are approximate. They hold
only for paraxial rays. Rays of large angles do not obey these
paraxial laws; the deviation results in image distortion called
aberration.
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EXERCISE 1.2-2

Image Formation. Derive (1.2-8). Prove that paraxial rays
originating from P, pass through P, when (1.2-9) and (1.2-10) are

satisfied.

EXERCISE 1.2-3

Aberration-Free Imaging Surface. Determine the Equation
of a convex aspherical (nonspherical) surface between media of
refractive indices n, and n, such that all rays (not necessarily
paraxial) from an axial point P, at a distance z, to the left of the
surface are imaged onto an axial point P, at a distance z,, to the
right of the surface [Fig, 1.2-13(a)]. Hint: In accordance with
Fermat’s principle the optical pathlengths between the two
points must be equal for all paths.




EXAMPLE 1.2-1.

Collimator for LED Light. Light emitted by an LED (Sec.
18.1) is often collimated by making use of an optic whose surface
takes the form of a paraboloid of revolution (Fig. 1.2-14). The
LED is placed at the focus of the paraboloid by inserting its
hemispherical dome (darker blue) into a recess formed in the
narrow end of the optic. Rays emanating from the sides of the
LED dome impinge on the paraboloidal boundary at angles of
incidence greater than the critical angle and are thus reflected
out of the device via total internal reflection. Rays emanating
from the central portion of the LED dome are refracted out of
the device at the spherical boundary. Optical systems that
combine reflection and refraction are known as catadioptric
systems.

Figure 1.2-14 Cross section of a collimator for LED light. LED
collimators come in many configurations but most make use of
both total internal reflection and refraction to provide rays of
light that are approximately parallel at the exit. Such devices are
often fabricated from molded acrylic or polycarbonate plastic,
which have refractive indices similar to that of glass (n = 1.5).
The diameter of the narrow end of the optic illustrated is = 1 cm.

-
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Spherical Lenses

A spherical lens is bounded by two spherical surfaces. It is,
therefore, defined completely by the radii R, and R, of its two



surfaces, its thickness A, and the refractive index n of the material
(Fig.1.2-15). A glass lens in air can be regarded as a combination of
two spherical boundaries, air-to-glass and glass-to-air.

Figure 1.2-15 A biconvex spherical lens.

A ray crossing the first surface at height y and angle 0, with the z
axis [Fig, 1.2-16(a)] is traced by applying (1.2-8) at the first surface
to obtain the inclination angle 0 of the refracted ray, which we
extend until it meets the second surface. We then use (1.2-8) once
more with 0 replacing 0, to obtain the inclination angle 0, of the ray
after refraction from the second surface. The results are in general
complex. When the lens is thin, however, it can be assumed that the
incident ray emerges from the lens at about the same height y at
which it enters. Under this assumption, the following relations
obtain:

» The angles of the refracted and incident rays are related by (see
Exercise 1.2-4)

Y
Gy =1 -~ (L.2-11)

where f, called the focal length, is given by

(1.2-12) Focal Length Thin Spherical Lens




Figure 1.2-16 (a) Ray bending by a thin lens. (b) Image formation

by a thin lens.

= All rays originating from a point P, =(y,,z,) meet at a point P, =
(Yo»Z,) [Fig. 1.2-16(b)] (see Exercise 1.2-4), where

and

z2

1

Ya = ——¥1.

(1.2-13) Imaging Equation

(1.2-14) Magnification

These results are identical to those for the spherical mirror [see

(1.2-4) and Exercise 1.2-1].

These equations indicate that each point in the z = z, plane is
imaged onto a corresponding point in the z = z, plane with the
magnification factor —z,/z,. The magnification is unity when z, = z,
= 2f. The focal length f of a lens therefore completely determines its
effect on paraxial rays. As indicated earlier, P, and P, are measured

in coordinate systems pointing to the left and right, respectively,
and the radii of curvatures R, and R, are positive for convex

surfaces and negative for concave surfaces. For the biconvex lens



shown in Fig, 1.2-15, R, is positive and R, is negative, so that the
two terms of (1.2-12) add and provide a positive f.

4 N

EXERCISE 1.2-4

Proof of the Thin Lens Formulas. Using (1.2-8), along with
the definition of the focal length given in (1.2-12), prove (1.2-11)
and (1.2-13).

- J/

It is emphasized once again that the foregoing relations hold only
for paraxial rays. The presence of nonparaxial rays results in
aberrations, as illustrated in Fig, 1.2-17.

Figure 1.2-17 Nonparaxial rays do not meet at the paraxial focus.
The dashed envelope of the refracted rays is known as the caustic
curve.

Convex and Concave Lenses

Lenses are transparent optical devices that bend rays in a manner
prescribed by the shapes of their surfaces. Most common lenses,
such as the biconvex lens considered above, are spherical lenses.
Lenses that consist of a single piece of material (glass and plastic
are favored in the visible) are called simple lenses, while lenses that
comprise multiple simple lenses, usually along a common axis, are
known as compound lenses.

The surface of a lens can be convex or concave, depending on
whether it projects out of, or recedes into the body of the lens,
respectively, or it can be planar, indicating that it has a flat surface.



A cylindrical lens is curved in only one direction; it thus has a
focal length f for rays in the y—z plane, and no focusing power for
rays in the x—z plane. A lens in which one surface is convex and the
other concave is called a meniscus lens (these are often used for
spectacles). A lens in which one or both surfaces have a shape that
is neither spherical nor cylindrical is known as an aspheric lens.

Several different types of lenses are illustrated in Fig, 1.2-18.
Biconvex and plano-convex lenses result in the convergence of rays
and are useful for image formation, as depicted in Fig, 1.2-16.
Biconcave and plano-concave lenses lead to the divergence of rays
and are used in projection and focal-length expansion. A Fresnel
lens is constructed by removing the nonrefracting portions of a
conventional lens. Hence, the Fresnel-lens equivalent [Fig, 1.2-
18(e)] of a plano-convex lens [Fig, 1.2-18(b)] is a flattened set of
concentric surfaces with identical curvature at all locations on the
surface (except at the stepwise discontinuities). The Fresnel design
allows for the construction of thin, light, and inexpensive plastic
lenses with sizes that range from meters to micrometers and short
focal lengths. Fresnel lenses can be converging, diverging, or
cylindrical.

Figure 1.2-18 Lenses: (a) Biconvex; (b) Plano-convex; (¢) Concave;
(d) Planoconcave. (e) Fresnel-lens counterpart of the planoconvex
lens displayed in (b); the curvatures are the same everywhere on the
two surfaces.

D. Light Guides

Light may be guided from one location to another by use of a set of
lenses or mirrors, as illustrated schematically in Fig, 1.2-19. Since



refractive elements (such as lenses) are usually partially reflective
and since mirrors are partially absorptive, the cumulative loss of
optical power will be significant when the number of guiding
elements is large. Components in which these effects are minimized
can be fabricated (e.g., antireflection-coated lenses), but the system
is generally cumbersome and costly.

Figure 1.2-19 Guiding light: (a) lenses; (b) mirrors; (c) total
internal reflection.

An ideal mechanism for guiding light is that of total internal
reflection at the boundary between two media of different refractive
indices. Rays are reflected repeatedly without undergoing refraction.
Glass fibers of high chemical purity are used to guide light for tens
of kilometers with relatively low loss of optical power.

An optical fiber is a light conduit made of two concentric glass (or
plastic) cylinders (Fig. 1.2-20). The inner, called the core, has a
refractive index n,, and the outer, called the cladding, has a slightly

smaller refractive index, n, <n,. Light rays traveling in the core are

totally reflected from the cladding if their angle of incidence is
greater than the critical angle, 7>0c = sin_,(n,/n,). The rays making
an angle 6 = 90° — 7 with the optical axis are therefore confined in
the fiber core if 6< Fc, where ¢ = 90° — Oc = cos_,(n,/n,). Optical
fibers are used in optical communication systems (see Chapters 10



and 25). Some important properties of optical fibers are derived in
Exercise 1.2-5.

Figure 1.2-20 The optical fiber. Light rays are guided by multiple
total internal reflections. Here 0 represents the angle measured
from the axis of the optical fiber so that its complement g = 90° - 0
is the angle of incidence at the dielectric interface.



EXERCISE 1.2-5

Numerical Aperture and Angle of Acceptance of an
Optical Fiber. An optical fiber is illuminated by light from a
source (e.g., a light-emitting diode, LED). The refractive indices
of the core and cladding of the fiber are n, and n,, respectively,
and the refractive index of air is 1 (see Fig, 1.2-21). Show that the
half-angle 0, of the cone of rays accepted by the fiber

(transmitted through the fiber without undergoing refraction at
the cladding) is given by

(1.2-15) Numerical Aperture Optical Fiber
NA = sinf, = {/n? — nZ.

The angle 0, is called the acceptance angle and the parameter
NA =sin 0, is known as the numerical aperture of the fiber.

Calculate the numerical aperture and acceptance angle for a
silica-glass fiber with n, = 1.475 and n, = 1.460. Silica glass, also

known as fused silica, is amorphous silicon dioxide (SiO2). It is
widely used because of its excellent optical and mechanical
properties. Moreover, its refractive index can be readily modified
by doping (e.g., with GeO2).

Figure 1.2-21 Acceptance angle of an optical fiber.

.

Trapping of Light in Media of High Refractive Index

It is often difficult for light originating inside a medium of large
refractive index to be extracted into air, especially if the surfaces of



the medium are parallel. This occurs since certain rays undergo
multiple total internal reflections without ever refracting into air.
The principle is illustrated in Exercise 1.2-6.

Ve

EXERCISE 1.2-6
Light Trapped in a Light-Emitting Diode.

a. (a) Assume that light is generated in all directions inside a
material of refractive index n cut in the shape of a
parallelepiped (Fig. 1.2-22). The material is surrounded by
air with unity refractive index. This process occurs in light-
emitting diodes (see Sec. 18.1B). What is the angle of the
cone of light rays (inside the material) that will emerge
from each face? What happens to the other rays? What is
the numerical value of this angle for GaAs (n = 3.6)?

Figure 1.2-22 Trapping of light in a parallelepiped of high
refractive index.

b. Assume that when light is generated isotropically the
amount of optical power associated with the rays in a given
cone is proportional to the solid angle of the cone. Show
that the ratio of the optical power that is extracted from the
material to the total generated optical power is 3 {1- vT-T/=%)

, provided that » - +2. What is the numerical value of this
ratio for GaAs?




1.3 GRADED-INDEX OPTICS

A graded-index (GRIN) material has a refractive index that varies
with position in accordance with a continuous function n(r). These
materials are often fabricated by adding impurities (dopants) of
controlled concentrations. In a GRIN medium the optical rays
follow curved trajectories, instead of straight lines. By appropriate
choice of n(r), a GRIN plate can have the same effect on light rays
as a conventional optical component, such as a prism or lens.

A. The Ray Equation

To determine the trajectories of light rays in an inhomogeneous
medium with refractive index n(r), we use Fermat’s principle,

B
] mrjds =10, (1'3_1)
aL (r)ds =0,

where ds is a differential length along the ray trajectory between A
and B. If the trajectory is described by the function x(s), y(s), and
z(s), where s is the length of the trajectory (Fig. 1.3-1), then using
the calculus of variations it can be shown that! x(s), y(s), and z(s)
must satisfy three partial differential equations,

d dr n d dy in d dz on
J—  — = — —_ —_ = — e —_— = —. 1. _2 A
ds (n ds) gz’ ds (nds) dy’ ds (nds) &z (1.3:2)

By defining the vector r(s), whose components are x(s), y(s), and
z(s), (1.3-2), may be written in the compact vector form

d { dr (1.3-3) Ray Equation
( ) = Vn,

ds \'ds

where n, the gradient of n, is a vector with Cartesian components
on/0x, on/dy, and on/0z. Equation (1.3-3) is known as the ray
equation.



Figure 1.3-1 The ray trajectory is described parametrically by three
functions x(s), y(s), and z(s), or by two functions x(z) and y(z).

One approach to solving the ray Equation is to describe the
trajectory by two functions x(z) and y(z), write

ds = dzv/1 +{dz/dz)? + (dy/d-)?, and substitute in (1.3-3) to obtain two
partial differential equations for x(z) and y(z). The algebra is
generally not trivial, but it simplifies considerably when the paraxial
approximation is used.

The Paraxial Ray Equation

In the paraxial approximation, the trajectory is almost parallel to
the z axis, so that ds = dz (Fig. 1.3-2). The ray equations (1.3-2) then
simplify to

d 7 de B d [ dy sn | (L.3-4) Paraxial Ray Equations
az (“.:T) o dz (“d—) = By

Given n = n(x, y, z), these two partial differential equations may be
solved for the trajectory x(z) and y(z).

In the limiting case of a homogeneous medium for which n is
independent of x, y, z, (1.3-4), gives d,x/dz, = 0 and d,,y/dz, = O,
from which it follows that x and y are linear functions of z, so that
the trajectories are straight lines. More interesting cases will be
examined subsequently.



Figure 1.3-2 Trajectory of a paraxial ray in a graded-index medium.

B. Graded-Index Optical Components
Graded-Index Slab

Consider a slab of material whose refractive index n = n(y) is
uniform in the x and z directions but varies continuously in the y
direction (Fig. 1.3-3). The trajectories of paraxial rays in the y—z
plane are described by the paraxial ray equation

d dy dn

P (ﬂa) =& (1.3-5)
from which

dﬁy 1 dn(y) (13-6)

dz?  nfy) dy

Given n(y) and initial conditions (y and dy/dz at z = 0), (1.3-6), can
be solved for the function y(z), which describes the ray trajectories.

Figure 1.3-3 Refraction in a graded-index slab.

Derivation of the Paraxial Ray Equation in a Graded-
Index Slab Using Snell’s Law. Equation (1.3-6) may also be
derived by the direct use of Snell’s law (Fig. 1.3-3). Let 0(y) = dy/dz
be the angle that the ray makes with the z axis at the position (y, z).



After traveling through a layer of thickness Ay the ray changes its
angle to O(y +Ay). The two angles are related by Snell’s law where 0,
as defined in Fig. 1.3-3, is the complement of the angle of incidence
(refraction):

nly)cosMy) = nly + Ay} oos My + Ay}

(1.3-7)
- [n{y}+ j—;ay] [cus&w} - Ly s‘mety}] ..

where we have applied the expansion f(y +Ay)= f(y)+(df/dy)Ay to
the functions f(y)= n(y) and f(y) = cos 6(y). In the limit Ay — o,

after eliminating the term in (Ay)?, we obtain the differential
equation

&y gy et (1.3:8),

For paraxial rays 0 is very small so that tan 0 = 0. Substituting 0 =
dy/dz in (1.3-8), we obtain (1.3-6). °



EXAMPLE 1.3-1.

Slab with Parabolic Index Profile. An important particular
distribution for the graded refractive index is

n(y) = ng (1 - o™y’ (1.3-9),

This is a symmetric function of y that has its maximum value at
y = 0 (Fig. 1.3-4). A glass slab with this profile is known by the
trade name SELFOC. Usually, a is chosen to be sufficiently small

so that a®y? « 1 for all y of interest. Under this condition,

nly) = noy/T — 0% = nofl — La®?); 1.e., n(y) is a parabolic distribution.
Also, because n(y)—n, « n,, the fractional change of the
refractive index is very small. Taking the derivative of (1.3-9), the
right-hand side of (1.3-6) is (1/n)dn/dy = —(n,/n)*a?y =—a®y, so
that (1.3-6) becomes

Ly .
&z T (1.3-10)

The solutions of this Equation are harmonic functions with
period 27t/a. Assuming an initial position y(0) = y, and an initial
slope dy/dz = 0, at z = 0 inside the GRIN medium,

— I ﬁ 1
yla} = ypcoz ez + _ sinez, (1.3_11)

from which the slope of the trajectory is

§iz2) = d_y; = —gypor=in ar + #y cosoa. (1-3_12)

The ray oscillates about the center of the slab with a period
(distance) 2;t/a known as the pitch, as illustrated in Fig, 1.3-4.




Figure 1.3-4 Trajectory of a ray in a GRIN slab of parabolic
index profile (SELFOC).

The maximum excursion of the ray is and the
maximum angle is 0 ., = Ay The validity of this
approximate analysis is ensured if 0, « 1. If 2y, is smaller
than the thickness of the slab, the ray remains confined and the
slab serves as a light guide. Figure 1.3-5 shows the trajectories of
a number of rays transmitted through a SELFOC slab. Note that
all rays have the same pitch. This GRIN slab may be used as a
lens, as demonstrated in Exercise 1.3-1.

Figure 1.3-5 Trajectories of rays from an external point source
in a SELFOC slab.




EXERCISE 1.3-1

The GRIN Slab as a Lens. Show that a SELFOC slab of length
d < m/2a and refractive index given by (1.3-9) acts as a
cylindrical lens (a lens with focusing power in the y—z plane) of
focal length

1
fa nposin{ad) (1'3_13)
Show that the principal point (defined in Fig, 1.3-6) lies at a
distance from the slab edge a7 = (1/n,a) tan(ad/2). Sketch the
ray trajectories in the special cases d = s1/a and 71/2a.

Figure 1.3-6 The SELFOC slab used as a lens; Fis the focal
point and H is the principal point.

. J/

Graded-Index Fibers

A graded-index fiber is a glass cylinder with a refractive index n that
varies as a function of the radial distance from its axis. In the
paraxial approximation, the ray trajectories are governed by the
paraxial ray equations (1.3-4). Consider, for example, the
distribution

n? =nd[1 - o? (2 +47)]. (1.3214)

Substituting (1.3-14) into (1.3-4). and assuming that a,(x+ y,) « 1 for
all x and y of interest, we obtain



d’r d*y
T _alr, 5 —aly. (L.3-15)

Both x and y are therefore harmonic functions of z with period 27/
a. The initial positions (x,,y,) and angles (0x0 = dx/dz and Oy, =
dy/dz) at z = 0 determine the amplitudes and phases of these
harmonic functions. Because of the circular symmetry, there is no
loss of generality in choosing x, = 0. The solution of (1.3-15), is then

=
z{z) = — finaz (1.3-16)
y{z) = 2 sinaz + y cos az.

o

If 0., = 0, i.e., the incident ray lies in a meridional plane (a plane
passing through the axis of the cylinder, in this case the y—z plane),
the ray continues to lie in that plane following a sinusoidal
trajectory similar to that in the GRIN slab [Fig. 1.3-7(a)].

On the other hand, it 6, = 0, and 0, = ay,, then

z{z) = wsinaz (1.3-17)

¥(2) = wecsaz,

Figure 1.3-7 (a) Meridional and (b) helical rays in a graded-index
fiber with parabolic index profile.



so that the ray follows a helical trajectory lying on the surface of a
cylinder of radius y, [Fig. 1.3-7(b)]. In both cases the ray remains
confined within the fiber, so that the fiber serves as a light guide.
Other helical patterns are generated with different incident rays.

Graded-index fibers and their use in optical fiber communications
are discussed in Chapters 10 and 25.



EXERCISE 1.3-2

Numerical Aperture of the Graded-Index Fiber. Consider
a graded-index fiber with the index profile provided in (1.3-14),
and radius a. A ray is incident from air into the fiber at its center,
which then makes an angle 0, with the fiber axis in the medium
(see Fig. 1.3-8). Show, in the paraxial approximation, that the
numerical aperture is

(1.3-18) Numerical Aperture Graded-Index Fiber

NA =snd, = npaa,

where 0, is the maximum acceptance angle for which the ray
trajectory is confined within the fiber. Compare this to the
numerical aperture of a step-index fiber such as the one
discussed in Exercise 1.2-5. To make the comparison fair, take
the refractive indices of the core and cladding of the step-index v
a, fiber to be ni = ryand nz = rov'T—a%e® = nol - Laa"), Tespectively.

Figure 1.3-8 Acceptance angle of a graded-index optical fiber.

. /

*C. The Eikonal Equation

The ray trajectories are often characterized by the surfaces to which
they are normal. Let S(r) be a scalar function such that its equilevel
surfaces, S(r)= constant, are everywhere normal to the rays (Fig,
1.3-9). If S(r) is known, the ray trajectories can readily be




constructed since the normal to the equilevel surfaces at a position
ris in the direction of the gradient vector VS(r). The function S(r),
called the eikonal, is akin to the potential function V (r) in
electrostatics; the role of the optical rays is played by the lines of
electric field E = -VV.

Figure 1.3-9 Ray trajectories are normal to the surfaces of
constant S(r).

To satisfy Fermat’s principle (which is the main postulate of ray
optics) the eikonal S(r) must satisfy a partial differential Equation
known as the eikonal equation,

(- () () -
T y z

which is usually written in the vector form

|VS? = n?, (1.3-20) Eikonal Equation

where |VS2| = VS -VS. The proof of the eikonal Equation from
Fermat’s principle is a mathematical exercise that lies beyond the
scope of this book.2 Conversely, Fermat’s principle (and the ray
equation) can be shown to follow from the eikonal equation.
Therefore, either Fermat’s principle or the eikonal Equation may be
regarded as the principal postulate of ray optics.



Integrating the eikonal Equation (1.3-20) along a ray trajectory
between points A and B gives

(1.3-21)
B B
S{ra) — S(rs) = j; VS| ds = L n ds = optical pathlength between A and B.

This means that the difference S(rz)—S(r,) represents the optical

pathlength between A and B. In the electrostatics analogy, the
optical pathlength plays the role of the potential difference.

To determine the ray trajectories in an inhomogeneous medium of
refractive index n(r), we can either solve the ray Equation (1.3-3), as
we have done earlier, or solve the eikonal Equation for S(r), from
which we calculate the gradient VS.

If the medium is homogeneous, i.e., n(r) is constant, the magnitude
of VS is constant, so that the wavefront normals (rays) must be
straight lines. The surfaces S(r)= constant may be parallel planes or
concentric spheres, as illustrated in Fig, 1.3-10.

Figure 1.3-10 Rays and surfaces of constant S(r) in a
homogeneous medium.

The eikonal Equation is revisited from the point-of-view of the
relation between ray optics and wave optics in Sec. 2.3.

1.4 MATRIX OPTICS



Matrix optics is a technique for tracing paraxial rays. The rays are
assumed to travel only within a single plane, so that the formalism
is applicable to systems with planar geometry and to meridional
rays in circularly symmetric systems.

A ray is described by its position and its angle with respect to the
optical axis. These variables are altered as the ray travels through
the system. In the paraxial approximation, the position and angle at
the input and output planes of an optical system are related by two
linear algebraic equations. As a result, the optical system is
described by a 2 x 2 matrix called the ray-transfer matrix.

The convenience of using matrix methods lies in the fact that the
ray-transfer matrix of a cascade of optical components (or systems)
is a product of the ray-transfer matrices of the individual
components (or systems). Matrix optics therefore provides a formal
mechanism for describing complex optical systems in the paraxial
approximation.

A. The Ray-Transfer Matrix

Consider a circularly symmetric optical system formed by a
succession of refracting and reflecting surfaces all centered about
the same axis (optical axis). The z axis lies along the optical axis and
points in the general direction in which the rays travel. Consider
rays in a plane containing the optical axes, say the y—z plane. We
proceed to trace a ray as it travels through the system, i.e., as it
crosses the transverse planes at different axial distances. A ray
crossing the transverse plane at z is completely characterized by the
coordinate of y of its crossing point and the angle 6 (Fig. 1.4-1).

An optical system is a set of optical components placed between two
transverse planes at z, and z,, referred to as the input and output

planes, respectively. The system is characterized completely by its
effect on an incoming ray of arbitrary position and direction (y,,0,).

It steers the ray so that it has new position and direction (y.,0,) at
the output plane (Fig. 1.4-2).



Figure 1.4-1 A ray is characterized by its coordinate y and its angle
0.

Figure 1.4-2 A ray enters an optical system at location z, with
position y, and angle 0, and leaves at position y, and angle 0,.

In the paraxial approximation, when all angles are sufficiently small
so that sin 0 = 0, the relation between (y.,0,) and (y,,0,) is linear

and can generally be written in the form

=A B
Y2 yt + B (1.4-1)

#y = Cyy + DFy, (1 4_2)

where A, B, C, and D are real numbers. Equations (1.4-1) and (1.4-2)
may be conveniently written in matrix form as

2 -1 8] 4] (14-3)



The matrix M, whose elements are A, B, C, and D, characterizes the
optical system completely since it permits (y.,,0,) to be determined
for any (y,,0,). It is known as the ray-transfer matrix. As will be
seen in the examples provided in Sec. 1.4B, angles that turn out to
be negative point downward from the z axis in their direction of
travel. Radii that turn out to be negative indicate concave surfaces
whereas those that are positive indicate convex surfaces.

(" I

EXERCISE 1.4-1

Special Forms of the Ray-Transfer Matrix. Consider the
following situations in which one of the four elements of the
ray-transfer matrix vanishes:

a. Show that A = o represents a focusing system, in which all
rays entering the system at a particular angle, whatever
their position, leave at a single position.

b. Show that B = 0 represents an imaging system, in which all
rays entering the system at a particular position, whatever
their angle, leave at a single position.

c. What are the special features of a system for which C = 0 or
D = o?

. /

B. Matrices of Simple Optical Components
Free-Space Propagation

Since rays travel along straight lines in a medium of uniform
refractive index such as free space, a ray traversing a distance d is
altered in accordance with y, = y, + 0,d and 0,, = 0,. The ray-transfer

matrix is therefore



(1.4-4)

Refraction at a Planar Boundary

At a planar boundary between two media of refractive indices n, and
n,, the ray angle changes in accordance with Snell’s law n, sin 0, =
n, sin 0,. In the paraxial approximation, n,0, = n,0,. The position of
the ray is not altered, y, = y,. The ray-transfer matrix is

(1.4-5)

Refraction at a Spherical Boundary

The relation between 0, and 0, for paraxial rays refracted at a

spherical boundary between two media is provided in (1.2-8). The
ray height is not altered, y, = y,. The ray-transfer matrix is

(1.4-6)

Transmission Through a Thin Lens

The relation between 6, and 0, for paraxial rays transmitted through

a thin lens of focal length fis given in (1.2-11). Since the height
remains unchanged (y, = y,), we have



(1.4-7)

Reflection from a Planar Mirror

Upon reflection from a planar mirror, the ray position is not altered,
Y, = Y- Adopting the convention that the z axis points in the general

direction of travel of the rays, i.e., toward the mirror for the incident
rays and away from it for the reflected rays, we conclude that 6, =

0,. The ray-transfer matrix is therefore the identity matrix

(1.4-8)

Reflection from a Spherical Mirror

Using (1.2-1), and the convention that the z axis follows the general
direction of the rays as they reflect from mirrors, we similarly
obtain

(1.4-9)

Note the similarity between the ray-transfer matrices of a spherical
mirror (1.4-9) and a thin lens (1.4-7). A mirror with radius of
curvature R bends rays in a manner that is identical to that of a thin
lens with focal length f = —R/2.

C. Matrices of Cascaded Optical Components



A cascade of N optical components or systems whose ray-transfer
matrices are M,, M.,..., My is equivalent to a single optical system

of ray-transfer matrix

— M s My |—o— My | — M=My.- MM, (1.4-10)

Note the order of matrix multiplication: The matrix of the system
that is crossed by the rays is first placed to the right, so that it
operates on the column matrix of the incident ray first. A sequence
of matrix multiplications is not, in general, commutative, although
it is associative.
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EXERCISE 1.4-2

A Set of Parallel Transparent Plates. Consider a set of N
parallel planar transparent plates of refractive indices n ,n,,....,ny

and thicknesses d,, d.,..., dy, placed in air (n = 1) normal to the z
axis. Using induction, show that the ray-transfer matrix is

(1.4-11)

Note that the order in which the plates are placed does not affect
the overall ray-transfer matrix. What is the ray-transfer matrix
of an inhomogeneous transparent plate of thickness d, and

refractive index n(z)?

EXERCISE 1.4-3

A Gap Followed by a Thin Lens. Show that the ray-transfer
matrix of a distance d of free space followed by a lens of focal
length fis

(1.4-12)

EXERCISE 1.4-4

Imaging with a Thin Lens. Derive an expression for the ray-
transfer matrix of a system comprised of free space/thin
lens/free space, as shown in Fig, 1.4-3. Show that if the imaging
condition (1/d, +1/d, = 1/f) is satisfied, all rays originating from




a single point in the input plane reach the output plane at the
single point y,, regardless of their angles. Also show that if d, =

f, all parallel incident rays are focused by the lens onto a single
point in the output plane.

Figure 1.4-3 Single-lens imaging system.

- J/

Imaging with an Arbitrary Paraxial Optical System

A paraxial system comprising an arbitrary set of cascaded optical
elements is characterized completely by the four elements A, B, C, D
of its ray-transfer matrix M. Alternatively, the system may be
characterized by the locations of four cardinal points: two focal
points that determine the transmission of rays between its input
and output planes. In accordance with (1.4-3), an incoming ray
parallel to the optical axis (0, = 0) at height y, exits the system at

height y, = Ay, and angle 0, = Cy,. This ray crosses the axis at a
point F called the back focal point, which is located a distance y,/
0, = A/C from the system’s back vertex V', as shown in Fig, 1.4-4(a).

The intersection of the extensions of the incoming and outgoing
rays defines the back principal point H, which lies at a distance f
=y,/0, = —1/Cto the left of F, and is known as the back focal
length. The back principal point H is thus located at a distance h =
—1/C +A/C to the left of the back vertex V. Note that the locations of
the focal and principal points are independent of y, as long as the
paraxial approximation is applicable.

Similarly, rays parallel to the axis but entering the system in the
opposite direction (from right to left) are focused to the front focal
point F’ and define the front principal point H’, which lies at a
distance h’ from the front vertex V’. The front focal point lies at a



distance f to the left of H’, where fis the front focal length. These
distances may be expressed in terms of the elements of the inverse
ray-transfer matrix

_ A B 1 D _—
via the relations —f' = —-1/Cand -h’ = -1/C + A’ /C’. The
determinant of M, denoted det[M], is given by AD — BC..

In summary, the focal lengths and locations of the principal points
may be determined from the ABCD parameters by use of the
following relations:

f=-1C, h={1-A)f (1.4-14)

ff=detM]f, K =—f4+Df (1.4-15)
Negative signs indicate directions opposite to those denoted by the
arrows in Fig. 1.4-4(a). The four distances may alternatively be
established by tracing two rays, parallel to the optical axis but
pointing in opposite directions, through the system. The ABCD
parameters may be determined from f, f, h, and h’ by inverting (1.4-

14) and (1.4-15).



Figure 1.4-4 (a) Paraxial system representing an arbitrary set of
cascaded optical elements. The designations F, V', and H represent
the focal, vertex, and principal points, respectively, whereas f and h
represent the focal length and distance from the principal point to
the vertex, respectively. Primed quantities refer to the input plane
while unprimed quantities refer to the output plane. (b) Imaging
with this system. The refractive indices of the media in which the
optical system is embedded are denoted n, and n,, as shown.

The imaging condition is determined by considering the geometry
portrayed in Fig, 1.4-4(b). Since s, /f = f' /s,, the imaging condition is
simply s,s, = ff’, or equivalently (z, — f)(z, — f)=ff", which leads to

5—1 +z—i =1. (1.4-16)
If the refractive indices of the media within which the system is
embedded are equal, then det[M]=1 and, in accordance with (1.4-
15), we have f = f. The imaging condition in (1.4-16) then reduces to
the familiar imaging Equation 1/z, +1/z, = 1/f [see (1.2-4)]; note,
however, that here the distances z, and z, are measured from the
principal points H and H, respectively.



EXERCISE 1.4-5

Imaging with a Thick Lens. Consider a glass lens of
refractive index n, thickness d, and two spherical surfaces of
equal radii R. Determine the ray-transfer matrix of the lens
assuming that it is placed in air (unity refractive index). Show
that the back and front focal lengths are equal (fV = f) and that
the principal points are located at equal distances from the
vertices (hV = h), where

(1.4-17)

n—11fd
A=t ngjf ~ (1.4-18)

Demonstrate that the transfer matrix of the system between two
conjugate planes at distances z, and z,, from the principal points
of the lens (i.e., at distances d, =z, - hV and d, = z, — h from
the vertices) that satisfies the imaging Equation yields B = o,
indicating that it does indeed satisfy the imaging condition [see
Exercise 1.4-1(b)].

S J

D. Periodic Optical Systems

A periodic optical system is a cascade of identical unit systems. An
example is a sequence of equally spaced identical relay lenses used
to guide light, as shown in Fig. 1.2-19(a). Another example is the
reflection of light between two mirrors that form an optical
resonator (see Sec. 11.2A); in that case, the ray repeatedly traverses
the same unit system (a round trip of reflections). Even a
homogeneous medium, such as a glass fiber, may be considered as a
periodic system if it is divided into contiguous identical segments of
equal length. We proceed to formulate a general theory of ray
propagation in periodic optical systems using matrix methods.



Difference Equation for the Ray Position

A periodic system is composed of a cascade of identical unit systems
(stages), each with a ray-transfer matrix (A, B, C, D), as shown in
Fig. 1.4-5. A ray enters the system with initial position y, and slope

0,. To determine the position and slope (y,,,0,,) of the ray at the
exit of the mth stage, we apply the ABCD matrix m times,

| _[A B]”
lgm} = [c D] [EE : (1.4-19)
We can also iteratively apply the relations

m = m+B m
Ymit = Ay # (1.4_20)

=L Dy
Bt t Ym + ™ (1.4_21)

to determine (y,,0,) from (y,,0,), then (y,,0,) from (y,,0,), and so
on, using a software routine.

glaelufael,fasl Jasbelae i,
EUCD,[;LCD C B lZZnglCDIg]m+I
1 2 m=1 it e+l

Figure 1.4-5 A cascade of identical optical systems.

It is of interest to derive equations that govern the dynamics of the
position y,,,, m = 0, 1,..., irrespective of the angle 0,,. This is
achieved by eliminating 0, from (1.4-20) and (1.4-21). From (1.4-
20)

B, = %_ (1.4-22)

Replacing m with m +1 in (1.4-22) yields

Ymiz — J"q_?;|||':'1'1,+1

i1 = 5 (1.4-23)




Substituting (1.4-22) and (1.4-23), into (1.4-21), gives

Ymi2 = Bt — Fym, (1.4-24)
Recurrence Relation for Ray Position
where
p=2 2 & (1.4-25)
F2 = AD — BC = det[M), (1.4-26)

and det[M] is the determinant of M.

Equation (1.4-24) is a linear difference Equation governing the ray
position y,,,. It can be solved iteratively by computing y, from y, and

Yy, then y, from y, and y,, and so on. The quantity y, may be
computed from y, and 8, by use of (1.4-20) with m = o.

It is useful, however, to derive an explicit expression for ym by
solving the difference Equation (1.4-24). As with linear differential
equations, a solution satisfying a linear difference Equation and the
initial conditions is a unique solution. It is therefore appropriate to
make a judicious guess for the solution of (1.4-24). We use a trial
solution of the geometric form

= yph™,
Ym = Hont o, (1.4_27)

where h is a constant. Substituting (1.4-27) into (1.4-24)
immediately shows that the trial solution is suitable provided that h
satisfies the quadratic algebraic equation

2 2
R? —2bh 4 F* =1, (1.4-28)

from which



A=bx Vv F2 b=, (1.4_29)

The results can be presented in a more compact form by defining
the variable

= cos™! .
P = oo OB (1.4-30)

so that b = F cos ¢, /FT_# — Fsiny» and therefore h = F(cos ¢ + J
sin @)= F exp(+jp), whereupon (1.4-27) becomes y,,, = y,F™
exp(xjmeo).

A general solution may be constructed from the two solutions with
positive and negative signs by forming their linear combination. The

sum of the two exponential functions can always be written as a
harmonic (circular) function, so that

ym = Ymux P oin (i + o) (1.4-31)

where y,,,., and ¢, are constants to be determined from the initial
conditions y, and y,. In particular, setting m = 0 we obtain Yy, 5 =
Yo/ Sin @,,.

The parameter F is related to the determinant of the ray-transfer
matrix of the unit system by r = /detjM]. It can be shown that
regardless of the unit system, det{M]= n,/n,, where n, and n, are

the refractive indices of the initial and final sections of the unit
system. This general result is easily verified for the ray-transfer
matrices of all the optical components considered in this section.
Since the determinant of a product of two matrices is the product of
their determinants, it follows that the relation det[M]= n,/n, is

applicable to any cascade of these optical components. For example,
if det[M, ]= n,/n, and det[M,]= n,/n,, then det[M,M, ]=(n,/n,)
(n,/n,)=n,/n,. In most applications the first and last stages are air
(n = 1) so that n, = n,, which leads to detfM]=1 and F = 1. In that
case the solution for the ray position is



Y = Yonaoe SO + 7). (1.4-32) Ray Position Periodic System

We shall henceforth assume that F = 1. The corresponding solution
for the ray angle is obtained by use of the relation Om =(y,,,,, — A

Y)/B, which is derived from (1.4-20).
Condition for a Harmonic Trajectory

For y,,, to be a harmonic (instead of hyperbolic) function, ¢ = cos_,
b must be real. This requires that

<1 o LArD[<1. (1.4-33) Stability Condition

If, instead, |b| > 1, ¢ is then imaginary and the solution is a
hyperbolic function (cosh or sinh), which increases without bound,
as illustrated in Fig. 1.4-6(a). A harmonic solution ensures that y,,

is bounded for all m, with a maximum value of y, . The bound |b|
< 1 therefore provides a condition of stability (boundedness) of the
ray trajectory.

Since y,,, and y,,,,., are both harmonic functions, so too is the ray

trigonometric identities. Thus, 0,, = 0,,,., sin(me + ,), where the
constants 0,,,, and ¢, are determined by the initial conditions. The
maximum angle 0,,,, must be sufficiently small so that the paraxial
approximation, which underlies this analysis, is applicable.



Figure 1.4-6 Examples of trajectories in periodic optical systems:
(a) unstable trajectory (b> 1);(b) stable and periodic trajectory (¢ =
671/11; period = 11 stages); (c¢) stable but nonperiodic trajectory (¢ =

1.5).
Condition for a Periodic Trajectory

find an integer s such that y,,,, ;. = y,,, for all m. The smallest integer

is the period. The ray then retraces its path after s stages. This
condition is satisfied if s¢p = 271q, where q is an integer. Thus, the
necessary and sufficient condition for a periodic trajectory is that
¢/2m is a rational number g/s. If @ = 67/11, for example, then ¢/2n
= 3/11 and the trajectory is periodic with period s = 11 stages. This
case is illustrated in Fig, 1.4-6(b). Periodic optical systems will be
revisited in Chapter 7.



Summary

A paraxial ray (0,4 « 1) traveling through a cascade of identical
unit optical systems, each with a ray-transfer matrix with
elements (A, B, C, D) such that AD — BC = 1, follows a harmonic
(and therefore bounded) trajectory if the condition %2 (A + D)|<
1, called the stability condition, is satisfied. The position at the
mth stage is then y,,, = Y., sSin(me + @), m = 0, 1, 2,..., where
. The constants ymax and ¢, are determined
from the initial positions y, and y, = Ay, + BO,, where 0, is the

initial ray inclination. The ray angles are related to the positions
by 0., =(y,,,+, — AY,,)/B and follow a harmonic function 0,,, =

0. .x SIN(Me + @,). The ray trajectory is periodic with period s if
/27 is a rational number g/s.
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EXAMPLE 1.4-1.

A Sequence of Equally Spaced Identical Lenses. A set of
identical lenses of focal length f separated by distance d, as
shown in Fig. 1.4-7, may be used to relay light between two
locations. The unit system, a distance of d of free space followed
by a lens, has a ray-transfer matrix given by (1.4-12); A=1, B =d,
C = -1/f,D =1 - d/f. The parameter & = {(A+ D) = 1 - d/2f and the
determinant is unity. The condition for a stable ray trajectory,
|b|< 1 0or-1<b <1,is therefore

brd=dl (1.4-34)

so that the spacing between the lenses must be smaller than four
times the focal length. Under this condition the positions of
paraxial rays obey the harmonic function

Y = Ymax SIM{ME 4+ 30), = cos”! (1 - ﬁ) - (1.4-35)

Figure 1.4-7 A periodic sequence of lenses.

When d = 2f, ¢ = 71/2, and @/27 = 1/4, so that the trajectory of
an arbitrary ray is periodic with period equal to four stages.
When d = f, ¢ = 71/3, and @/27 = Y%, so that the ray trajectory is
periodic and retraces itself each six stages. These cases are
illustrated in Fig. 1.4-8.




Figure 1.4-8 Examples of stable ray trajectories in a periodic
lens system: (a) d = 2f;(b) d = f.

.
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EXERCISE 1.4-6

A Periodic Set of Pairs of Different Lenses. Examine the
trajectories of paraxial rays through a periodic system
comprising a sequence of lens pairs with alternating focal
lengths f, and f,, as shown in Fig. 1.4-9. Show that the ray

trajectory is bounded (stable) if

o< (1 - %) (1 —%) < L (1.4-36)

Figure 1.4-9 A periodic sequence of lens pairs.

EXERCISE 1.4-7

An Optical Resonator. Paraxial rays are reflected repeatedly
between two spherical mirrors of radii R, and R, separated by a
distance d (Fig. 1.4-10). Regarding this as a periodic system
whose unit system is a single round trip between the mirrors,
determine the condition of stability for the ray trajectory. Optical
resonators will be studied in detail in Chapter 11.




Figure 1.4-10 The optical resonator as a periodic optical
system.

o
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1979.

PROBLEMS

1.1-2 Fermat’s Principle with Maximum Time. Consider the
elliptical mirror shown in Fig. P1.1-2(a), whose foci are denoted
A and B. Geometrical properties of the ellipse dictate that the
pathlength 4Fz is identical to the pathlengths 777 and A7F for
adjacent points on the ellipse.

a. Now consider another mirror with a radius of curvature smaller
than that of the elliptical mirror, but tangent to it at P, as
displayed in Fig, P1.1-2(b). Show that the path 47z followed by
the light ray in traveling between points A and B is a path of
maximum time, i.e., is greater than the adjacent paths a2 and
AQUE.

b. Finally, consider a mirror that crosses the ellipse, but is tangent
to it at P, as illustrated in Fig, P1.1-2(c). Show that the possible
ray paths a8, AFi, and Ag°F exhibit a point of inflection.

Figure P1.1-2 (a) Reflection from an elliptical mirror. (b)
Reflection from an inscribed tangential mirror with greater
curvature. (c) Reflection from a tangential mirror with curvature
changing from concave to convex.

1.2-7 Transmission through Planar Plates.

a. Use Snell’s law to show that a ray entering a planar plate of
thickness d and refractive index n, (placed in air; n = 1)



emerges parallel to its initial direction. The ray need not be
paraxial. Derive an expression for the lateral displacement of
the ray as a function of the angle of incidence 6. Explain your
results in terms of Fermat’s principle.

b. If the plate instead comprises a stack of N parallel layers
stacked against each other with thicknesses d,, d.,..., dy and

refractive indices n,,n,,...,ny, show that the transmitted ray is
parallel to the incident ray. If 0, is the angle of the ray in the
mth layer, show that n,, sin 0,, =sin 6, m = 1, 2,....

1.2-8 Lens in Water. Determine the focal length f of a biconvex
lens with radii 20 cm and 30 cm and refractive index n = 1.5.

What is the focal length when the lens is immersed in water
(=127

1.2-9 Numerical Aperture of a Cladless Fiber. Determine the
numerical aperture and the acceptance angle of an optical fiber
if the refractive index of the core is n, = 1.46 and the cladding is

stripped out (replaced with air n, = 1).

1.2-10 Fiber Coupling Spheres. Tiny glass balls are often used as
lenses to couple light into and out of optical fibers. The fiber
end is located at a distance f from the sphere. For a sphere of
radius a = 1 mm and refractive index n = 1.8, determine f such
that a ray parallel to the optical axis at a distance y = 0.7 mm
is focused onto the fiber, as illustrated in Fig, P1.2-10.

Figure P1.2-10 Focusing light into an optical fiber with a spherical
glass ball.



1.2-11 Extraction of Light from a High-Refractive-Index

Medium. Assume that light is generated isotropically in all
directions inside a material of refractive index n = 3.7 cut in
the shape of a parallelepiped and placed in air (n = 1) (see
Exercise 1.2-6).

a. If a reflective material acting as a perfect mirror is coated on all
sides except the front side, determine the percentage of light
that may be extracted from the front side.

b. If another transparent material of refractive index n = 1.4 is

placed on the front side, would that help extract some of the
trapped light?

1.3-3 Axially Graded Plate. A plate of thickness d is oriented

normal to the z axis. The refractive index n(z) is graded in the z
direction. Show that a ray entering the plate from air at an
incidence angle 0, in the y—z plane makes an angle 6(z) at

position z in the medium given by n(z) sin 6(z) = sin 6,,. Show
that the ray emerges into air parallel to the original incident
ray. Hint: You may use the results of Prob. 1.2-7. Show that the
ray position y(z) inside the plate obeys the differential

Equation (dy/dz)? = (n?/ sin? 0 — 1)1,

1.3-4 Ray Trajectories in GRIN Fibers. Consider a graded-index

optical fiber with cylindrical symmetry about the z axis and
refractive index =), p = /=2 +#. Let (p, ¢, z) be the position
vector in a cylindrical coordinate system. Rewrite the paraxial
ray equations, (1.3-4), in a cylindrical system and derive
differential equations for p and ¢ as functions of z.

1.4-8 Ray-Transfer Matrix of a Lens System. Determine the

ray-transfer matrix for an optical system made of a thin convex
lens of focal length f and a thin concave lens of focal length —f
separated by a distance f. Discuss the imaging properties of this
composite lens.



1.4-9 Ray-Transfer Matrix of a GRIN Plate. Determine the ray-
transfer matrix of a SELFOC plate [i.e., a graded-index material
with parabolic refractive index of thickness d.

1.4-10 The GRIN Plate as a Periodic System. Consider the
trajectories of paraxial rays inside a SELFOC plate normal to
the z axis. This system may be regarded as a periodic system
comprising a sequence of identical contiguous plates, each of
thickness d. Using the result of Prob. 1.4-9, determine the
stability condition of the ray trajectory. Is this condition
dependent on the choice of d?

1.4-11 Recurrence Relation for a Planar-Mirror Resonator.
Consider a planar-mirror optical resonator, with mirror
separation d, as a periodic optical system. Determine the unit
ray-transfer matrix for this system, demonstrating that b = 1
and F = 1. Show that there is then only a single root to the
quadratic Equation (1.4-28) so that the ray position must then
take the form a + mf, where a and f are constants.

1.4-12 4 x 4 Ray-Transfer Matrix for Skewed Rays. Matrix
methods may be generalized to describe skewed paraxial rays
in circularly symmetric systems, and to astigmatic (non
circularly symmetric) systems. A ray crossing the plane z = 0
is generally characterized by four variables — the coordinates
(x, y) of its position in the plane, and the angles (6,, 0,) that
its projections in the x—z and y—z planes make with the z axis.
The emerging ray is also characterized by four variables that
are linearly related to the initial four variables. The optical
system may then be characterized completely, within the
paraxial approximation, by a 4 x 4 matrix.



a. Determine the 4 x 4 ray-transfer matrix of a distance d in free
space.

b. Determine the 4 x 4 ray-transfer matrix of a thin cylindrical
lens with focal length f oriented in the y direction. The
cylindrical lens has focal length f for rays in the y—z plane, and
no focusing power for rays in the x—z plane.

Notes

1. See, e.g., R. Weinstock, Calculus of Variations: With Applications
to Physics and Engineering, 1952; Dover, 1974.

2. See, e.g., M. Born and E. Wolf, Principles of Optics, Cambridge
University Press, 7th expanded and corrected ed. 2002.
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Christiaan Huygens (1629—1695) advanced a number of novel
concepts pertaining to the propagation of light waves.

Thomas Young (1773—1829) championed the wave theory of
light and discovered the principle of optical interference.

Light propagates in the form of waves. In free space, light waves
travel with a constant speed, ¢, = 3.0 x 108 m/s (30 cm/ns or 0.3
mm/ps or 0.3 um/fs or 0.3 nm/as). As illustrated in Fig, 2.0-1, the



range of optical wavelengths comprises three principal sub-regions:
infrared (0.760 to 300 um), visible (390 to 760 nm), and ultraviolet
(10 to 390 nm). The corresponding range of optical frequencies
stretches from 1 THz in the far-infrared to 30 PHz in the extreme
ultraviolet.






Figure 2.0-1 Optical frequencies and wavelengths. The infrared (IR)
region of the spectrum comprises the near-infrared (NIR), mid-
infrared (MIR), and far-infrared (FIR) bands. The MWIR and
LWIR bands both lie within the MIR band; radiation in these
regions can penetrate the atmosphere. The ultraviolet (UV) region
comprises the near-ultraviolet (NUV), mid-ultraviolet (MUV) or
deep-ultraviolet (DUV), far-ultraviolet (FUV), and extreme-
ultraviolet (EUV or XUV) bands. The vacuum ultraviolet (VUV)
consists of the FUV and EUV bands. The ultraviolet region is also
divided into the UVA, UVB, and UVC bands, which have chemical
and biological significance. The infrared, visible, and ultraviolet
regions are gathered under the rubric “optical” since they make use
of similar types of components (e.g., lenses and mirrors). The
terahertz (THz) region occupies frequencies that stretch from 0.3
to 3 THz, corresponding to wavelengths that extend from 1 mm to
100 um; the THz region partially overlaps the FIR band. For X-ray
wavelengths, see Fig. 16.3-7.

The wave theory of light encompasses the ray theory (Fig, 2.0-2).
Strictly speaking, ray optics is the limit of wave optics when the
wavelength is infinitesimally short. However, the wavelength need
not actually be zero for the ray-optics theory to be useful. As long as
the light waves propagate through and around objects whose
dimensions are much greater than the wavelength, the ray theory
suffices for describing most optical phenomena. Because the
wavelength of visible light is much smaller than the dimensions of
the usual objects we encounter on a daily basis, the manifestations
of the wave nature of light are usually not apparent without careful
observation.



Figure 2.0-2 Wave optics encompasses ray optics. Ray optics is the
limit of wave optics when the wavelength is very short.

This Chapter

In the context of wave optics, light is described by a scalar function,
called the wave-function, that obeys a second-order differential
equation known as the wave equation. A discussion of the physical
significance of the wavefunction is deferred to Chapter 5, where we
consider electromagnetic optics; it will become apparent there that
the wavefunction represents any of the components of the electric
or magnetic fields. The wave equation, together with a relation
between the optical power density and the wavefunction, constitute
the postulates of the scalar-wave model of light known as wave
optics. The consequences of these simple postulates are manifold
and far reaching. Wave optics constitutes a basis for describing a
host of optical phenomena that fall outside the confines of ray
optics, including interference and diffraction, as will become clear in
this and the following two chapters (Chapters 3 and 4).

Wave optics does have its limitations, however. It is not capable of
providing a complete picture of the reflection and refraction of light
at the boundaries between various media, nor can it accommodate
optical phenomena that require a vector formulation, such as
polarization effects. Those issues will be considered from a
fundamental perspective in Chapters 5—8, as will the conditions
under which scalar wave optics provides a good approximation to
electromagnetic optics.



The chapter begins with the postulates of wave optics (Sec. 2.1). In
Secs. 2.2—2.5 we consider monochromatic waves. Elementary
waves, such as the plane wave, the spherical wave, and paraxial
waves are introduced in Sec. 2.2. Section 2.3 establishes how ray
optics is formally derived from wave optics. The interaction of
optical waves with simple optical components such as mirrors,
prisms, lenses, and various graded-index elements is examined in
Sec. 2.4. Interference, an important manifestation of the wave
nature of light, is the subject of Secs. 2.5 and 2.6, where
polychromatic and pulsed light are discussed.

2.1 POSTULATES OF WAVE OPTICS

The Wave Equation

Light propagates in the form of waves. In free space, light waves
travel with speed c,. A homogeneous transparent medium such as
glass is characterized by a single constant, its refractive index n (>
1). In a medium of refractive index n, light waves travel with a
reduced speed

(2.1-1)

Speed of Light in a Medium

An optical wave is described mathematically by a real function of
position r = (x, y, z) and time t, denoted u(r,t) and known as the
wavefunction. It satisfies a partial differential equation called the
wave equation,
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Wave Equation

where V? is the Laplacian operator, which is V2 = 92/0x> + 02/0y> +
02/0z2 in Cartesian coordinates. Any function that satisfies (2.1-2)
represents a possible optical wave.

Because the wave equation is linear, the principle of
superposition applies: if u,(r, t) and u,(r, t) represent possible
optical waves, then u(r, t) = u,(r, t) + u,(r, t) also represents a
possible optical wave.

At the boundary between two different media, the wavefunction
changes in a way that depends on their refractive indices. However,
the laws that govern this change depend on the physical significance
assigned to the wavefunction which, as will be seen in Chapter 5, is
an electromagnetic-field component. The underlying physical origin
of the refractive index derives from electromagnetic optics (Sec.

5.5B).

The wave equation is also approximately applicable for media with
refractive indices that are position dependent, provided that the
variation is slow within distances of the order of a wavelength. The
medium is then said to be locally homogeneous. For such media, n
in (2.1-1) and c in (2.1-2) are simply replaced by the appropriate
position-dependent functions n(r) and c(r), respectively.

Intensity, Power, and Energy

The optical intensity I(r, t), defined as the optical power per unit

area (units of watts/cm?), is proportional to the average of the
squared wavefunction:



(2.1:3),
I{r,t) = 2{?(r, )}

Optical Intensity

The operation (-) denotes averaging over a time interval much
longer than the time of an optical cycle, but much shorter than any
other time of interest (such as the duration of a pulse of light). The
duration of an optical cycle is very short: 2 x 10715 s = 2 fs for light
of wavelength 600 nm, as an example. This concept is further
elucidated in Sec. 2.6. The quantity I(r, t) is sometimes also called
the irradiance.

Although the physical significance of the wavefunction u(r, t) has
not been explicitly specified, (2.1-3) represents its connection with a
physically measurable quantity — the optical intensity. There is
some arbitrariness in the definition of the wavefunction and its
relation to the intensity. For example, (2.1-3), could have been
written without the factor 2 and the wavefunction scaled by a factor
\/5, in which case the intensity would remain the same. The choice
of the factor 2 in (2.1-3) will later prove convenient, however.

The optical power P(t) (units of watts) flowing into an area A
normal to the direction of propagation of light is the integrated
intensity

P(t) = [q I(r,t)dA. (2.1-4)

The optical energy & (units of joules) collected in a given time
interval is the integral of the optical power over the time interval.

2.2 MONOCHROMATIC WAVES



A monochromatic wave is represented by a wavefunction with
harmonic time dependence,

u(r,t) = a(r) cos2nvt + (r)], (2.2-1)

as illustrated in Fig, 2.2-1(a), where

a(r} = amplitude

w(r) = phase
v = frequency (cvcles/s or Hz)
w = 2w = angular frequency (radians/s or s=1)

T = 1/v = 2n/w = period (s).

Both the amplitude and phase are generally position dependent, but
the wavefunction is a harmonic function of time with frequency v at
all positions. Optical waves have frequencies that lie in the range 3

x 10 to 3 x 10'© Hz, as depicted in Fig, 2.0-1.

Figure 2.2-1 Representations of a monochromatic wave at a fixed
position r:(a) the wavefunction u(t) is a harmonic function of time;
(b) the complex amplitude U = a exp(je) is a fixed phasor; (c) the
complex wavefunction U(t) = U exp(j2srvt) is a phasor rotating with
angular velocity w = 27rv radians/s.

A. Complex Representation and the Helmholtz
Equation



Complex Wavefunction

It is convenient to represent the real wavefunction u(r, t) in (2.2-1),
in terms of a complex function

Ulr,t) = alr) expljp(r)] exp(32nvt) (2.2-2)
so that

u(r,t) = Re{U(r,t)} = 1 [U(r,t) + U*(x, )], (2.2-3)

where the symbol * signifies complex conjugation. The function
U(r, t), known as the complex wavefunction, describes the wave
completely; the wavefunction u(r, t) is simply its real part. Like
the wavefunction u(r, t), the complex wavefunction U(r, t) must
also satisfy the wave equation

(2.2-4)
ViU - LU _ 0
2 92

Wave Equation
The two functions satisfy the same boundary conditions.
Complex Amplitude
Equation (2.2-2) may be written in the form

U(r! t) — U{I‘) E}{p(jzﬂb’t) 1 (2.2-5)

where the time-independent factor U(r) = a(r) exp[je(r)] is referred
to as the complex amplitude of the wave. The wavefunction u(r,
t) is therefore related to the complex amplitude by

(2.2-6)
u(r,t) = Re{U(r) exp{j2nvt)} = %[U(r) expl(72nvt) + U*(r) exp(—j2xut)] .



At a given position r, the complex amplitude U(r) is a complex
variable [depicted in Fig, 2.2-1(b)] whose magnitude |U(r)| = a(r) is
the amplitude of the wave and whose argument arg{U(r)} = ¢(r) is
the phase. The complex wavefunction U(r, t), shown in Fig. 2.2-1(c),
is represented graphically by a phasor that rotates with angular
velocity w = 27rv radians/s. Its initial value at ¢t = 0 is the complex
amplitude U(r).

The Helmholtz Equation

Substituting U(r, t) = U(r) exp(j2srvt) from (2.2-5) into the wave
equation (2.2-4) leads to a differential equation for the complex
amplitude U(r):

2.2-7)
VU + kU =0, (2.277
Helmholtz Equation
which is known as the Helmholtz equation, where
(2.2-8)
2w
,I.: - — = —
C C

Wavenumber

is referred to as the wavenumber. Different solutions are obtained
from different boundary conditions.

Optical Intensity

The optical intensity is determined by inserting (2.2-1) into (2.1-3):

2u?(r,t) = 2a%(r) cos? [2nrt + (r)] (2.2-9)
= |U(r}|? {1 +cos (2 [2avt + (r)])}.



Averaging (2.2-9) over a time longer than an optical period, 1/v,
causes the second term of (2.2-9) to vanish, whereupon

1) = U@ (2219

Optical Intensity

The optical intensity of a monochromatic wave is the absolute
square of its complex amplitude.

The intensity of a monochromatic wave does not vary with time.

Wavefronts

The wavefronts are the surfaces of equal phase, ¢(r) = constant. The
constants are often taken to be multiples of 2ir so that ¢(r) = 271q,
where g is an integer. The wavefront normal at position r is parallel
to the gradient vector V¢(r) (a vector that has components d¢/0x,
d¢p/0y, and 0¢p/0z in a Cartesian coordinate system). It represents
the direction at which the rate of change of the phase is maximum.



Summary

= A monochromatic wave of frequency v is described by a
complex wavefunction U(r, t) = U(r) exp(j2vt), which
satisfies the wave equation.

= The complex amplitude U(r) satisfies the Helmholtz
equation; its magnitude | U(r)| and argument arg{U(r)} are
the amplitude and phase of the wave, respectively. The

optical intensity is I(r) = |U(r)|?. The wavefronts are the
surfaces of constant phase, ¢(r) = arg{U(r)} = 271q (g =
integer).

» The wavefunction u(r, t) is the real part of the complex
wavefunction, u(r, t) = Re{U(r, t)}. The wavefunction also
satisfies the wave equation.

B. Elementary Waves

The simplest solutions of the Helmholtz equation in a
homogeneous medium are the plane wave and the spherical wave.

The Plane Wave

The plane wave has complex amplitude

(2.2-11)
where A is a complex constant called the complex envelope that
represents the strength of the wave, and k = (k,, ky, k,) is called the

wavevector.! Substituting (2.2-11) into the Helmholtz equation
(2.2-7),yields the relation ki + kz + kg = k2, so that the magnitude

of the wavevector k is the wavenumber k.

Since the phase of the wave is arg{U(r)} = arg{A} — k - r, the
surfaces of constant phase (wavefronts) obey k - r = k.x + kyy + k,z




= 271q + arg{A} with g integer. This is the equation describing
parallel planes perpendicular to the wavevector k (hence the name
“plane wave”). Consecutive planes are separated by a distance A =
271/k, so that

(2.2-12)

Wavelength

where A is called the wavelength. The plane wave has a constant
intensity I(r) = |A|? everywhere in space so that it carries infinite
power. This wave is clearly an idealization since it exists everywhere
and at all times.

If the z axis is taken along the direction of the wavevector k, then
U(r) = A exp(—jkz) and the corresponding wavefunction obtained
from (2.2-6) is

(2.2-13)
u(r,t) = [A|cos [2nvt — kz + arg{A}] = |A| cos [2nv(t — z/c) + arg{A}] .

The wavefunction is therefore periodic in time with period 1/v, and
periodic in space with period 257/k, which is equal to the wavelength
A (see Fig, 2.2-2). Since the phase of the complex wavefunction,
arg{U(r, t)} = 21v(t — z/c) + arg{A}, varies with time and position as
a function of the variable t — z/c (see Fig, 2.2-2), cis called the
phase velocity of the wave.



Figure 2.2-2 The wavefunction of a plane wave traveling in the z
direction, schematically drawn as a graded red pattern, is a periodic
function of z with spatial period A, and a periodic function of t with
temporal period 1/v. The surfaces of constant phase (wavefronts)
comprise a parallel set of planes normal to the z axis. The
wavelengths displayed in Fig. 2.0-1 are in free space (A = A,).

In a medium of refractive index n, the wave has phase velocity ¢ =
c,/n and wavelength A = ¢/v = ¢,/nv, so that A = A ,/n where Ao = ¢,/
v is the wavelength in free space. Thus, for a given frequency v, the
wavelength in the medium is reduced relative to that in free space
by the factor n. As a consequence, the wavenumber k = 271/ is
increased relative to that in free space (k, = 271/A,) by the factor n.

As a monochromatic wave propagates through media of different
refractive indices its frequency remains the same, but its velocity,
wavelength, and wavenumber are altered:

(2.2-14)
, k=mnk,.

The Spherical Wave

Another simple solution of the Helmholtz equation (in spherical
coordinates) is the spherical wave complex amplitude



A
Ur) = =2 exp{—jkr), (2.2-15)
L
where ris the distance from the origin, k = 2;1v/c = w/c is the
wavenumber, and A, is a constant. The intensity I(r)= |A,|?/? is
inversely proportional to the square of the distance. Taking arg{A,}

= 0 for simplicity, the wavefronts are the surfaces kr = 2;1q or r =
gA, where @ is an integer. These are concentric spheres separated by
a radial distance A = 2s1/k that advance radially at the phase velocity

c (Fig. 2.2-3).

Figure 2.2-3 Cross section of the wave-function of a spherical wave.
The associated wavefronts are a set of concentric spheres.

A spherical wave originating at the position r, has a complex
amplitude U(r) = (A,/|r — 1,|) exp(—jk |r — r,|). Its wavefronts are
spheres centered about r,. A wave with complex amplitude U(r)=
(A,/r) exp(+jkr) is a spherical wave traveling inwardly (toward the
origin) instead of outwardly (away from the origin).

Fresnel Approximation of the Spherical Wave: The Paraboloidal
Wave

Let us examine a spherical wave (originating at r = 0) at points r =
(x, y, z) that are sufficiently close to the z axis but far from the



origin, so that \/ x2 4+ y2 < z. The paraxial approximation of ray
optics (Sec. 1.2) would be applicable were these points the endpoints
of rays beginning at the origin. Denoting 6% = (x® + y?)/z? < 1, we
use an approximation based on the Taylor-series expansion:

2 8

6!2 I2_|_,y2
% ]_ — = .
( +2) T,

! 4 _
TZ\/IE—i-yE—I—zQ:zw’]—H??:z(1+6__6__|___,) (2.2-16)

This expression, r = z + (x* + y*)/2z, is now substituted into the
phase of U(r) in (2.2-15). A less accurate expression, r = z, can be
substituted for the magnitude since it is less sensitive to errors than
is the phase. The result is known as the Fresnel approximation
of a spherical wave:

(2.2-17)

Ag . LTty
Ulr) = ?exp(—jkzj exp |:—_;.lk 2, ] !

Fresnel Approximation of a Spherical Wave

This approximation plays an important role in simplifying the
theory of optical-wave transmission through apertures
(diffraction), as discussed in Chapter 4.

The complex amplitude in (2.2-17) may be viewed as representing a
plane wave A, exp(—jkz) modulated by the factor (1/z) exp[—jk(x* +

y?)/2z], which involves the phase k(x? + y?)/2z. This phase factor
serves to bend the planar wavefronts of the plane wave into
paraboloidal surfaces (Fig. 2.2-4), since the equation of a paraboloid
of revolution is (x* + y?)/z = constant. In this region the spherical
wave is well approximated by a paraboloidal wave. When z becomes
very large, the paraboloidal phase factor in (2.2-17) approaches 0 so



that the overall phase of the wave becomes kz. Since the magnitude
A,/z varies slowly with z, the spherical wave eventually approaches

the plane wave exp(—jkz), as illustrated in Fig, 2.2-4.

Figure 2.2-4 A spherical wave may be approximated at points near
the z axis and sufficiently far from the origin by a paraboloidal
wave. For points very far from the origin, the spherical wave
approaches a plane wave.

The condition of validity for the Fresnel approximation is not
simply that 0, «< 1, however. Although the third term of the series

expansion, 64/8, may be very small in comparison with the second
and first terms, when multiplied by kz it can become comparable to
7. The approximation used in the foregoing is therefore valid when

kz04/8 « m, or (x* + y?)? K< 4z3A. For points (x, y) lying within a
circle of radius a centered about the z axis, the validity condition is
thus a* « 4z3A or

Npd?
4

where 0., = a/z is the maximum angle and

(2.2-18)

< 1,



0 (2.2-19)

Fresnel Number

is known as the Fresnel number.

4 I

EXERCISE 2.2-1

Validity of the Fresnel Approximation. Determine the
radius of a circle within which a spherical wave of wavelength A
= 633 nm, originating at a distance 1 m away, may be
approximated by a paraboloidal wave. Determine the maximum
angle 0,, and the Fresnel number Ny.

. J/

C. Paraxial Waves

A wave is said to be paraxial if its wavefront normals are paraxial
rays. One way of constructing a paraxial wave is to start with a plane
wave A exp(—jkz), regard it as a “carrier” wave, and modify or
“modulate” its complex envelope A, making it a slowly varying
function of position, A(r), so that the complex amplitude of the
modulated wave becomes

U(r) = Alr)exp{—jkz) . (2.2-20)

The variation of the envelope A(r) and its derivative with position z
must be slow within the distance of a wavelength A = 2;1/k so that
the wave approximately maintains its underlying plane-wave
nature.

The wavefunction of a paraxial wave, u(r, t) = |A(r)| cos[2nvt — kz +
arg{A(r)}], is sketched in Fig, 2.2-5(a) as a function of z at t = 0 and
x =y = 0. It is a sinusoidal function of z with amplitude |A(0, 0, z) |
and phase arg{A(o0, 0, z)}, both of which vary slowly with z. Since



the phase arg{A(x, y, z)} changes little within the distance of a
wavelength, the planar wavefronts kz = 271q of the carrier plane
wave bend only slightly, so that their normals form paraxial rays

[Fig. 2.2-5(D)].

Figure 2.2-5 (a) Wavefunction of a paraxial wave at point on the z
axis as a function of the axial distance z. (b) The wavefronts and
wavefront normals of a paraxial wave in the x—z plane.

The Paraxial Helmholtz Equation

For the paraxial wave (2.2-20) to satisfy the Helmholtz equation
(2.2-7), the complex envelope A(r) must satisfy another partial
differential equation that is obtained by substituting (2.2-20) into
(2.2-7). The assumption that A(r) varies slowly with respect to z
signifies that within a distance Az = A, the change AA is much
smaller than A itself, i.e., AA « A. This inequality of complex
variables applies to the magnitudes of the real and imaginary parts
separately. Since AA = (0A/0z)Az = (0A/0z)A, it follows that 0A/0z
K A/A = Ak/2m, so that

% <« kA . (2.2-21)
iz

The derivative 0A/0z itself must also vary slowly within the
distance A, so that 02 A/0z> « k 0A/0z, which provides



% <« k2A . (2.2-22)
z

Substituting (2.2-20) into (2.2-7), and neglecting 02A/0z> in
comparison with k 0A/0z or k2A, leads to a partial differential
equation for the complex envelope A(r):

aA (2.2-23)

2 o il
?Tﬂ j?kaz U.,

Paraxial Helmholtz Equation

where V2 = 82/0z* + 8?/9y” is the transverse Laplacian
operator.

Equation (2.2-23) is the slowly varying envelope
approximation of the Helmholtz equation. We shall simply call it
the paraxial Helmholtz equation. It bears some similarity to the
Schr”odinger equation of quantum physics [see (14.1-1)]. The
simplest solution of the paraxial Helmholtz equation is the
paraboloidal wave (Exercise 2.2-2), which is the paraxial
approximation of a spherical wave. One of the most interesting and
useful solutions, however, is the Gaussian beam, to which
Chapter 3 is devoted.



EXERCISE 2.2-2

The Paraboloidal Wave and the Gaussian Beam. Verify
that a paraboloidal wave with the complex envelope A(r) =

(A,/z) expl—jk(x* + y?)/2z] [see (2.2-17)] satisfies the paraxial
Helmholtz equation (2.2-23). Show that the wave whose
complex envelope is given by A(r) = [A,/q(z)] exp[—jk(x* +

y?)/2q(z)], where q(z) = z + jz, and z, is a constant, also
satisfies the paraxial Helmholtz equation. This wave, called the
Gaussian beam, is the subject of Chapter 3. Sketch the intensity
of the Gaussian beam in the plane z = o.

. /

*2.3 RELATION BETWEEN WAVE OPTICS
AND RAY OPTICS

We proceed to show that ray optics emerges as the limit of wave
optics when the wavelength A, — 0. Consider a monochromatic
wave of free-space wavelength A, in a medium with refractive index
n(r) that varies sufficiently slowly with position so that the medium
may be regarded as locally homogeneous. We write the complex
amplitude in (2.2-5), in the form

(2.3-1)
where a(r) is its magnitude, —k,S(r) is its phase, and k, = 271/A,, is
the free-space wavenumber. We assume that a(r) varies sufficiently

slowly with r that it may be regarded as constant within the distance
of a wavelength A,

The wavefronts are the surfaces S(r)= constant and the wavefront
normals point in the direction of the gradient vector VS. In the
neighborhood of a given position r,, the wave can be locally

regarded as a plane wave with amplitude a(r,) and wavevector k



with magnitude k = n(r,)k, and direction parallel to the gradient
vector VS at r,,. A different neighborhood exhibits a local plane wave
of different amplitude and different wavevector.

In ray optics it was shown that the optical rays are normal to the
equilevel surfaces of a function S(r) called the eikonal (see Sec.
1.3C). We therefore associate the local wavevectors (wavefront
normals) in wave optics with the ray of ray optics and recognize that
the function S(r), which is proportional to the phase of the wave, is
nothing but the eikonal of ray optics (Fig. 2.3-1). This association
has a formal mathematical basis, as will be demonstrated shortly.
With this analogy, ray optics can serve to determine the
approximate effects of optical components on the wavefront
normals, as illustrated in Fig, 2.3-1.

Figure 2.3-1 (a) The rays of ray optics are orthogonal to the
wavefronts of wave optics (see also Fig. 1.3-10). (b) The effect of a
lens on rays and wavefronts.

The Eikonal Equation

Substituting (2.3-1) into the Helmholtz equation (2.2-7) provides

k2 [n2 — VS]] a+ V2a — jk, [2VS - Va+ a V25] =0, (23-2)

where a = a(r) and S = S(r). The real and imaginary parts of the left-
hand side of (2.3-2) must both vanish. Equating the real part to zero
and using k, = 27t/A,,, we obtain



b 9 _
VS[? =n?+ (ﬁ) Ve, (233)
21 a

The assumption that a varies slowly over the distance A, means that
A2V2a/a < 1, so that the second term of the right-hand side may
be neglected in the limit A, — 0, whereupon

2.3-
VS . (2.3-4)

Eikonal Equation

This is the eikonal equation (1.3-20), which may be regarded as the
main postulate of ray optics (Fermat’s principle can be derived from
the eikonal equation and vice versa).

Thus, the scalar function S(r), which is proportional to the phase in
wave optics, is the eikonal of ray optics. This is also consistent with
the observation that in ray optics S(rg) — S(r4) equals the optical

pathlength between the points r, and rp.

The eikonal equation is the limit of the Helmholtz equation when A,

— 0. Given n(r) we may use the eikonal equation to determine S(r).
By equating the imaginary part of (2.3-2) to zero, we obtain a
relation between a and S, thereby permitting us to determine the
wavefunction.

2.4 SIMPLE OPTICAL COMPONENTS

In this section we examine the effects of optical components, such
as mirrors, transparent plates, prisms, and lenses, on optical waves.

A. Reflection and Refraction

Reflection from a Planar Mirror



A plane wave of wavevector k, is incident onto a planar mirror
located in free space in the z = 0 plane. A reflected plane wave of
wavevector k, is created. The angles of incidence and reflection are
0, and 0., as illustrated in Fig, 2.4-1. The sum of the two waves
satisfies the Helmholtz equation if the wavenumber is the same,
i.e., if k, = k, = k,. Certain boundary conditions must be satisfied at
the surface of the mirror. Since these conditions are the same at all

points (x, y), it is necessary that the phases of the two waves match,
l.e.,

Figure 2.4-1 Reflection of a plane wave from a planar mirror. Phase
matching at the surface of the mirror requires that the angles of
incidence and reflection be equal.

This phase-matching condition may also be regarded as matching of
the tangential components of the two wavevectors in the mirror
plane. Substituting r =(x, y, 0), k, = (k, sin 0,, 0, k, cos 0,), and k,, =
(k, sin 0,, 0, —k, cos 0,) into (2.4-1), we obtain k,x sin 0, = k x sin
0., from which 0, = 0., so that the angles of incidence and reflection

must be equal. Thus, the law of reflection of optical rays is
applicable to the wavevectors of plane waves.



Reflection and Refraction at a Planar Dielectric Boundary

We now consider a plane wave of wavevector k, incident on a planar
boundary between two homogeneous media of refractive indices n,
and n,. The boundary lies in the z = 0 plane (Fig. 2.4-2). Refracted
and reflected plane waves of wavevectors k, and k, emerge. The

combination of the three waves satisfies the Helmholtz equation
everywhere if each of the waves has the appropriate wavenumber in
the medium in which it propagates (k, = k, = n,k, and k, = n,k).

Figure 2.4-2 Refraction of a plane wave at a dielectric boundary. The
wavefronts are matched at the boundary so that the distance
between wavefronts for the incident wave, A,/ sin 0, = A,/n, sin 0,,

equals that for the refracted wave, A,/ sin 0, = A,/n, sin 0,, from
which Snell’s law follows.

Since the boundary conditions are invariant to x and y, it is
necessary that the phases of the three waves match, i.e.,

ki r=ky.-r=ks-r forall r ={x, vy, 0). (2.4-2)

This phase-matching condition is tantamount to matching the
tangential components of the three wavevectors at the boundary
plane. Since k, = (n,k, sin 6,, 0, n,k, cos 6,), k; = (n,k, sin 6, 0,



—n,k, cos 6,), and k, = (n,k, sin 6,, 0, n,k, cos 6,), where 6,, 6,, and
6, are the angles of incidence, refraction, and reflection,
respectively, it follows from (2.4-2) that 0, = 03 and n, sin 0, = n,
sin 6,. These are the laws of reflection and refraction (Snell’s law) of
ray optics, now applicable to the wavevectors.

It is not possible to determine the amplitudes of the reflected and
refracted waves using scalar wave optics since the boundary
conditions are not completely specified in this theory. This will be
achieved in Sec. 6.2 using electromagnetic optics (Chapters 5 and 6).

B. Transmission Through Optical Components

We now proceed to examine the transmission of optical waves
through transparent optical components such as plates, prisms, and
lenses. The effect of reflection at the surfaces of these components
will be ignored, since it cannot be properly accounted for using the
scalar wave theory of light. Nor can the effect of absorption in the
material, which is relegated to Sec. 5.5. The principal emphasis here
is on the phase shift introduced by these components and on the
associated wavefront bending.

Transparent Plate

Consider first the transmission of a plane wave through a
transparent plate of refractive index n and thickness d surrounded
by free space. The surfaces of the plate are the planes z = 0 and z =
d and the incident wave travels in the z direction (Fig. 2.4-3). Let
U(x, y, z) be the complex amplitude of the wave. Since external and
internal reflections are ignored, U(x, y, z) is assumed to be
continuous at the boundaries. The ratio t(x, y)= U(x, y, d)/U(x, y, 0)
therefore represents the complex amplitude transmittance of
the plate; it permits us to determine U(x, y, d) for arbitrary U(x, y,
0) at the input. The effect of reflection is considered in Sec. 6.2 and
the effect of multiple internal reflections within the plate is
examined in Sec. 11.1.



Figure 2.4-3 Transmission of a plane wave through a transparent
plate.

Once inside the plate, the wave continues to propagate as a plane
wave with wavenumber nko, so that U(x, y, z) is proportional to
exp(—jnk,z). Thus, the ratio U(x, y, d)/U(x, y, 0) = exp(—jnk,d), so
that

(2.4-3)

Transmittance Transparent Plate

The plate is seen to introduce a phase shift nk,d = 271(d/A).

If the incident plane wave makes an angle 6 with respect to the z
axis and has wavevector k (Fig. 2.4-4), the refracted and transmitted
waves are also plane waves with wavevectors k, and k and angles 0,

and 0, respectively, where 0, and 0 are related by Snell’s law: sin 0 =
n sin 0,. The complex amplitude U(x, y, z) inside the plate is now
proportional to exp(—jk, - r) = exp[—jnk,(z cos 0, + x sin 0,)], so that
the complex amplitude transmittance of the plate U(x, y, d)/U(x, y,
0) 1S

t{z,y) = exp{—jnk,dcos ;) . (2.4-4)



Figure 2.4-4 Transmission of an oblique plane wave through a thin
transparent plate.

If the angle of incidence 6 is small (i.e., if the incident wave is
paraxial), then 0, = 6/n is also small and the approximation

cos 0; ~1— %0% yields t(x, y) = exp(—jnk,d) exp(jk,0°d/2n). If
the plate is sufficiently thin, and the angle 0 is sufficiently small
such that k,0°d/2n « 27 [or (d/A,)0?%/2n < 1], then the
transmittance of the plate may be approximated by (2.4-3). Under

these conditions the transmittance of the plate is approximately
independent of the angle 0.

Thin Transparent Plate of Varying Thickness

We now determine the amplitude transmittance of a thin
transparent plate whose thickness d(x, y) varies smoothly as a
function of x and y, assuming that the incident wave is an arbitrary
paraxial wave. The plate lies between the planes z = 0 and z = d,,,

which are regarded as the boundaries encasing the optical
component (Fig, 2.4-5).



Figure 2.4-5 A transparent plate of varying thickness.

In the vicinity of the position (x, y, 0) the incident paraxial wave
may be regarded locally as a plane wave traveling along a direction
that makes a small angle with the z axis. It crosses a thin plate of
material of thickness d(x, y) surrounded by thin layers of air of total
thickness d, — d(x, y). In accordance with the approximate relation

(2.4-3), the local transmittance is the product of the transmittances
of a thin layer of air of thickness d, — d(x, y) and a thin layer of

material of thickness d(x, y), so that t(x, y) = exp[—jnk, d(x, y)]
expl—jk,(d, — d(x, y))], from which

tz,y) & hoexpl—j{n — Lkod(z, y)], (2.4°5)

Transmittance Variable-Thickness Plate

where h, = exp(—jk,d,) is a constant phase factor. This relation is
valid in the paraxial approximation (where all angles 6 are small)
and when the thickness d is sufficiently small so that (d,/A,)0%/2n
< 1.



EXERCISE 2.4-1

Transmission Through a Prism. Use (2.4-5) to show that
the complex amplitude transmittance of a thin inverted prism
with small apex angle a « 1 and thickness d,, (Fig. 2.4-6) is t(x,
y) = hy exp[—j (n — 1)akx], where h, = exp(—jk,d,). The
transmittance is independent of y since the prism extends in the
y direction. What is the effect of the prism on an incident plane
wave traveling in the z direction? Compare your results with that
obtained via the ray-optics model, as provided in (1.2-7).

Figure 2.4-6 Transmission of a plane wave through a thin prism.

Transmission Through a Biprism and an Axicon. The
biprism depicted in Fig, 1.2-12(a) comprises an inverted prism,
such as that illustrated in Fig, 2.4-6, juxtaposed with an identical
uninverted prism. Taking its thickness to be d,, and its edge
angle a « 1, the results of Exercise 2.4-1 generalize to t(x, y) =
hy{exp[-j (n — 1)akx] + exp[+j (n — 1)akx]} = 2h, cos [(n -
1)akx], with h, = exp(—jk,d,). The biprism thus converts an
incident plane wave into a pair of waves that are tilted with
respect to each other. The Fresnel biprism portrayed in Fig, 1.2
12(b) behaves in the same way.




The cone-shaped axicon shown in Fig. 1.2-12(c) is constructed by
rotating the prism cross section depicted in Fig, 2.4-6 about a
horizontal axis located at its top edge, from ¢ = — to ;1. At any
angle ¢, the cross section of this device is an isosceles triangle of
thickness d, and edge angle a « 1. Using polar coordinates and
integrating the results presented in Exercise 2.4-1 over ¢
provides t(z,y) = ho ["_exp [—j(n — 1)] a (k, cos ¢) x - J (n
- 1) a (ko Sin ¢) y]

dp = hyg f:r exp [—j(n —1) « ko\/xQ + y2 sin (¢ + 0)|do.
Since the integration is over 27, the integral is independent of 6.
Given that ["_exp (—ju sin ¢)d¢ = 2nJy(u), where Jy(u) is
the Bessel function of the first kind and zeroth order, the
amplitude transmittance may be rewritten as

t(z,y) = 2whoJo[(n — 1) & kor/22 + 32]. The axicon thus
converts an incident plane wave into an infinite number of plane
waves, all directed toward its central axis in the form of a cone of

half angle (n — 1)a. This device may be used to convert a plane
wave into a Bessel beam (see Sec. 3.5A and Example 4.3-5).

S J

Thin Lens

The general expression (2.4-5) for the complex amplitude
transmittance of a thin transparent plate of variable thickness is
now applied to the plano-convex thin lens shown in Fig. 2.4-7. Since
the lens is the cap of a sphere of radius R, the thickness at the point

(x,y)isd(x,y) =dyg — PQ =dy — (R— QC),or

diz,y) = do — [R —/R2— (22 + y"’)] : (2.4-6)



Figure 2.4-7 A plano-convex thin lens. The lens imparts a phase

proportional to x> + y? to an incident plane wave, thereby
transforming it into a paraboloidal wave centered at a distance f
from the lens (see Exercise 2.4-3).

This expression may be simplified by considering only points for
which x and y are sufficiently small in comparison with R so that x?
+ Yy < R?. In that case

: / T + g (2.4-7)
\/RE—(SEE"t_Qd):R 1— RE ER ].—W}),
where we have used the same Taylor-series expansion that led to
the Fresnel approximation of a spherical wave in (2.2-17). Using this
approximation in (2.4-6) then provides

4y (2.4-8)
o°R

d(z,y} = dp —

Finally, substitution into (2.4-5) yields

(2.4-9)
1—2+y2] 4-9

t{I-: y) == ho exp |:jka 2f




Transmittance Thin Lens

where

f= il (2.4-10)

12— 1

is the focal length of the lens (see Sec. 1.2C) and h,, = exp(—jnk,d,)
is another constant phase factor that is usually of no significance.



EXERCISE 2.4-2

Double-Convex Lens. Show that the complex amplitude
transmittance of the double-convex lens (also called a spherical
lens) shown in Fig, 2.4-8 is given by (2.4-9) with

= (n—1) (L _ i) ‘ (2.4-11)

1
f R, R,

Figure 2.4-8 A double-convex lens.

You may prove this either by using the general formula (2.4-5),
or by regarding the double-convex lens as a cascade of two
plano-convex lenses. Recall that, by convention, the radius of a
convex/concave surface is positive/negative, so that R, is

positive and R, is negative for the lens displayed in Fig, 2.4-8.

The parameter f is recognized as the focal length of the lens [see
(1.2-12)].

EXERCISE 2.4-3

Focusing of a Plane Wave by a Thin Lens. Show that when
a plane wave is transmitted through a thin lens of focal length f
in a direction parallel to the axis of the lens, it is converted into a
paraboloidal wave (the Fresnel approximation of a spherical
wave) centered about a point at a distance f from the lens, as
illustrated in Fig, 2.4-9. What is the effect of the lens on a plane
wave incident at a small angle 6?




Figure 2.4-9 A thin lens transforms a plane wave into a
paraboloidal wave.

EXERCISE 2.4-4

Imaging Property of a Lens. Show that a paraboloidal wave
centered at the point P, (Fig. 2.4.10) is converted by a lens of

focal length f into a paraboloidal wave centered at P,, where 1/z,
+1/z, = 1/f, a formula known as the imaging equation.

Figure 2.4-10 A lens transforms a paraboloidal wave into another
paraboloidal wave. The two waves are centered at distances that
satisfy the imaging equation.

. J/

Diffraction Gratings

A diffraction grating is an optical component that serves to
periodically modulate the phase or amplitude of an incident wave. It



can be made of a transparent plate with periodically varying
thickness or periodically graded refractive index (see Sec. 2.4C).
Repetitive arrays of diffracting elements such as apertures,
obstacles, or absorbing elements (see Sec. 4.3) can also be used for
this purpose. A reflection diffraction grating is often fabricated from
a periodically ruled thin film of aluminum that has been evaporated
onto a glass substrate.

Consider a diffraction grating made of a thin transparent plate
placed in the z = 0 plane whose thickness varies periodically in the x
direction with period A (Fig, 2.4-11). As will be demonstrated in
Exercise 2.4-5, this plate converts an incident plane wave of
wavelength A « A, traveling at a small angle 0, with respect to the z

axis, into several plane waves at small angles with respect to the z
axis:

A (2.4-12)
6{1 ~ ﬁi + gi 1

Grating Equation

where g = 0, £,, +,,..., is called the diffraction order. Successive

diffracted waves are separated by an angle 6 = A/A, as shown
schematically in Fig, 2.4-11.



Figure 2.4-11 A thin transparent plate with periodically varying
thickness serves as a diffraction grating. It splits an incident plane
wave into multiple plane waves traveling in different directions.

4 I

EXERCISE 2.4-5

Transmission Through a Diffraction Grating.

(a) The thickness of a thin transparent plate varies
sinusoidally in the x direction,

d(z,y) = 3do[1+ cos (2mz/A)], as illustrated in Fig, 2.4-
11. Show that the complex amplitude transmittance is t(x, y)
= ho exp [—j+ (n — 1)k,do cos (2mz/A)] where

ho =exp [—j+(n + 1)k,do).

(b) Show that an incident plane wave traveling at a small
angle 0; with respect to the z direction is transmitted in the
form of a sum of plane waves traveling at angles 6, given by

(2.4-12). Hint: Expand the periodic function t(x, y) in a
Fourier series.




Equation (2.4-12) is valid only in the paraxial approximation, when
all angles are small, and when the period A is much greater than the
wavelength A. A more general analysis of a thin diffraction grating
that does not rely on the paraxial approximation reveals that an
incident plane wave at an angle 0; gives rise to a collection of plane

waves at angles 6, that satisfy

A
sinfly = sinf; + 7y - (2.4-13)

This result may be derived by expanding the periodic transmittance
t(x, y) as a sum of Fourier components of the form exp(—jq27x/A),
where g = 0, £1, £2,... is the diffraction order. An incident plane
wave exp(—jkx sin 0;), modulated by the harmonic component
exp(—jq27x/A), generates a transmitted plane wave at the angle 6,
given by exp(—jkx sin 6,) « exp(—jkx sin 6;) exp(—jq27x/A). This
leads to the phase-matching condition k sin 6, = k sin 6, + g271/A.
Equation (2.4-13) follows since k = 2s1/A; this result is also
applicable to waves reflected from the grating.

Diffraction gratings are used as filters and spectrum analyzers.
Since the angles 6, depend on the wavelength A (and therefore on
the frequency v), an incident polychromatic wave is separated by the
grating into its spectral components (Fig, 2.4-12). Diffraction
gratings have found numerous applications in spectroscopy.



Figure 2.4-12 A diffraction grating directs two waves of different
wavelengths, A, and A,, into two different directions, 6, and 0,. It

therefore serves as a spectrum analyzer or a spectrometer.

C. Graded-Index Optical Components

The effect of a prism, lens, or diffraction grating on an incident
optical wave lies in the phase shift it imparts, which serves to bend
the wavefront in some prescribed manner. This phase shift is
controlled by the variation in the thickness of the material with the
transverse distance from the optical axis (linearly, quadratically, or
periodically, in the cases of a prism, lens, and diffraction grating,
respectively). The same phase shift may instead be introduced by a
transparent planar plate of fixed thickness but with varying
refractive index. This is a result of the fact that the thickness and
refractive index appear as a product in (2.4-3).

The complex amplitude transmittance of a thin transparent planar
plate of thickness d, and graded refractive index n(x, y) is, from

(2.4-3),

t{x,y) = exp [—jn{x, y)k,dy) . (2.4-14)

Transmittance Graded-Index Thin Plate



By selecting the appropriate variation of n(x, y) with x and y, the
action of any constant-index thin optical component can be
reproduced, as demonstrated in Exercise 2.4-6.

4 ™

EXERCISE 2.4-6

Graded-Index Lens. Show that a thin plate of uniform
thickness d,, (Fig. 2.4-13) and quadrati cally graded refractive

index nn(z,y) = ng[l — 3a?(z? + y?)], with ad, < 1, acts as a
lens of focal length f = 1/n,d,0* (see Exercise 1.3-1).

Figure 2.4-13 A graded-index plate acts as a lens.

. J/

2.5 INTERFERENCE

When two or more optical waves are simultaneously present in the
same region of space and time, the total wavefunction is the sum of
the individual wavefunctions. This basic principle of superposition
follows from the linearity of the wave equation. For monochromatic
waves of the same frequency, the superposition principle carries
over to the complex amplitudes, which follows from the linearity of
the Helmholtz equation.

The superposition principle does not apply to the optical intensity
since the intensity of the sum of two or more waves is not
necessarily the sum of their intensities. The disparity is associated
with interference. The phenomenon of interference cannot be



explained on the basis of ray optics since it is dependent on the
phase relationship between the superposed waves.

In this section we examine the interference between two or more
monochromatic waves of the same frequency. The interference of
waves of different frequencies is discussed in Sec. 2.6.

A. Interference of Two Waves

When two monochromatic waves with complex amplitudes U,(r)
and U,(r) are superposed, the result is a monochromatic wave of the
same frequency that has a complex amplitude

U(r) =Ui{r) + Us(r). (2.5-1)

In accordance with (2.2-10), the intensities of the constituent waves
are I, = |U,|? and I, = | U, |?, while the intensity of the total wave is

I=UP =0+ Uf = ||* + |Ugf + U0y + UL U3 (2.5-2)

The explicit dependence on r has been omitted for convenience.
Substituting

Ur=+1 exp(ipr) and  Us =1 exp(Gpe)  (2.5-3)

into (2.5-2), where ¢, and ¢, are the phases of the two waves, we
obtain

(2.5-4)
IT=L+I+2/1 1 COS @,

Interference Equation

with

Fov2TL (2.5-5)



This relation, called the interference equation, can also be
understood in terms of the geometry of the phasor diagram
displayed in Fig, 2.5-1(a), which demonstrates that the magnitude of
the phasor U is sensitive not only to the magnitudes of the
constituent phasors but also to the phase difference .

Figure 2.5-1 (a) Phasor diagram for the superposition of two waves
of intensities I, and I, and phase difference ¢ = @, — ¢@,. (b)

Dependence of the total intensity I on the phase difference ¢.

It is clear, therefore, that the intensity of the sum of the two waves
is not the sum of their intensities [Fig. 2.5-1(b)]; an additional term,
attributed to interference between the two waves, is present in
(2.5-4). This term may be positive or negative, corresponding to
constructive or destructive interference, respectively. If I, = I, = I,,

for example, then (2.5-4), yields I = 21 (1 + cos @) = 41, cos?*(¢p/2),
so that for ¢ = 0, I = 41, (i.e., the total intensity is four times the

intensity of each of the superposed waves). For ¢ = i, on the other
hand, the superposed waves cancel one another and the total
intensity I = 0. Complete cancellation of the intensity in a region of
space is generally not possible unless the intensities of the
constituent superposed waves are equal. When ¢ = s1/2 or 371/2, the
interference term vanishes and I = 21; for these special phase

relationships the total intensity is the sum of the constituent
intensities. The strong dependence of the intensity I on the phase
difference ¢ permits us to measure phase differences by detecting
light intensity. This principle is used in numerous optical systems.

Interference is accompanied by a spatial redistribution of the optical
intensity without a violation of power conservation. For example,



the two waves may have uniform intensities I, and I, in a particular

plane, but as a result of a position-dependent phase difference ¢,
the total intensity can be smaller than I, + I, at some positions and

larger at others, with the total power (integral of the intensity)
conserved.

Interference is not observed under ordinary lighting conditions
since the random fluctuations of the phases ¢, and ¢, cause the

phase difference ¢ to assume random values that are uniformly
distributed between 0 and 2, so that cos ¢ averages to 0 and the
interference term washes out. Light with such randomness is said to
be partially coherent and Chapter 12 is devoted to its study. The
analysis carried out here, and in subsequent chapters prior to
Chapter 12, assume that the light is coherent, and therefore
deterministic.

Interferometers

Consider the superposition of two plane waves, each of intensity I,
propagating in the z direction, and assume that one wave is delayed
by a distance d with respect to the other so that

U, = V1 exp (—jkz) and Uy = /I exp [—jk(z — d)]. The
intensity I of the sum of these two waves can be determined by
substituting I, = I, = I, and ¢ = kd = 2:1d /A into the interference
equation (2.5-4),

I =2Iy |:1 -+ cos (2:rr§):| . (2.5-6)

The dependence of I on the delay d is sketched in Fig. 2.5-2. When
the delay is an integer multiple of A, complete constructive
interference occurs and the total intensity I = 41,. On the other
hand, when d is an odd integer multiple of A/2, complete destructive
interference occurs and I = 0. The average intensity is the sum of
the two intensities, i.e., 21,.



Figure 2.5-2 Dependence of the intensity I of the superposition of
two waves, each of intensity I,, on the delay distance d. When the

delay distance is a multiple of A, the interference is constructive;
when it is an odd multiple of A/2, the interference is destructive.

An interferometer is an optical instrument that splits a wave into
two waves using a beamsplitter, delays them by unequal distances,
redirects them using mirrors, recombines them using another (or
the same) beamsplitter, and detects the intensity of their
superposition. Three important examples are illustrated in Fig, 2.5-
3: the Mach—Zehnder interferometer, the Michelson
interferometer, and the Sagnac interferometer.



Figure 2.5-3 Interferometers: A wave U, is split into two waves U,
and U, (they are shown as shaded light and dark for ease of

visualization but are actually congruent). After traveling through
different paths, the waves are recombined into a superposition wave
U = U, + U, whose intensity is recorded. The waves are split and
recombined using beamsplitters. In the Sagnac interferometer the
two waves travel through the same path, but in opposite directions.

Since the intensity I is sensitive to the phase ¢ = 271d/A = 22ind /A, =
2mtnvd/c,, where d is the difference between the distances traveled

by the two waves, the interferometer can be used to measure small
changes in the distance d, the refractive index n, or the wavelength

A, (or frequency v). For example, if d/A, = 104, a change of the

refractive index of only An = 1074 corresponds to an easily
observable phase change Ag = 271. The phase ¢ also changes by a
full 27 if d changes by a wavelength A. An incremental change of the
frequency Av = c¢/d has the same effect.

Interferometers have numerous applications. These include the
determination of distance in metrological applications such as
strain measurement and surface profiling; refractive-index
measurements; and spectrometry for the analysis of polychromatic
light (see Sec. 12.2B). In the Sagnac interferometer the optical paths
are identical but opposite in direction, so that rotation of the
interferometer results in a phase shift ¢ proportional to the angular
velocity of rotation. This system can therefore be used as a
gyroscope. Because of its precision, optical interferometry is also



being co-opted to detect the passage of gravitational waves, as
discussed subsequently.

Finally, we demonstrate that energy conservation in an
interferometer requires that the phases of the waves reflected and
transmitted at a beamsplitter differ by sr/2. Each of the
interferometers considered in Fig, 2.5-3 has an output wave U = U,
+ U, that exits from one side of the beamsplitter and also another
output wave U’ = U] + U, that exits from the opposite side.
Energy conservation dictates that the sum of the intensities of these
two waves must equal the intensity of the incident wave, so that if
one output wave has high intensity by virtue of constructive
interference, the other must have low intensity by virtue of
destructive interference. This complementarity can only be achieved
if the phase differences ¢ and ¢’, associated with the components of
output waves U and U’, respectively, differ by s. Since the
components of U and the components of U’ experience the same
pathlength differences, and the same numbers of reflections from
mirrors, the ;1 phase difference must be attributable to different
phases introduced by the beamsplitter upon reflection and
transmission. Examination of the three interferometers in Fig. 2.5-3
reveals that for one output wave, each of the components is
transmitted through the beamsplitter once and reflected from it
once, so that no phase difference is introduced. However, for the
other output wave, one component is transmitted twice and the
other is reflected twice, thereby introducing the phase difference of
7. It follows that the phases of the reflected and transmitted waves
at a beamsplitter differ by s7/2. This important property of the
beamsplitter is considered in more detail in Example 7.1-6.

Interference of Two Oblique Plane Waves

Consider now the interference of two plane waves of equal
intensities: one propagating in the z direction,

U, = +/I, exp (—jkz); the other propagating at an angle 6 with
respect to the z axis, in the x—z plane,



Uy = /Iy exp [—j(k cos 0 z+ k sin 0 x)], as illustrated in Fig,
2.5-4. At the z = 0 plane the two waves have a phase difference ¢ =
k sin 0 x, for which the interference equation (2.5-4) yields a total
intensity

I =201 + cos(ksinf )] . (2.5-7)

This pattern varies sinusoidally with x, with period 271/k sin 6 = A/
sin 0, as shown in Fig. 2.5-4. If 6 = 30°, for example, the period is 2A.
This suggests a method of printing a sinusoidal pattern of high
resolution for use as a diffraction grating. It also suggests a method
of monitoring the angle of arrival 6 of a wave by mixing it with a
reference wave and recording the resultant intensity distribution. As
discussed in Sec. 4.5, this is the principle that lies behind
holography.

Figure 2.5-4 The interference of two plane waves traveling at an
angle O with respect to each other results in a sinusoidal intensity
pattern in the x direction with period A/ sin 6.



EXERCISE 2.5-1

Interference of a Plane Wave and a Spherical Wave. A
plane wave traveling along the z direction with complex
amplitude A, exp(—jkz), and a spherical wave centered at z = 0
and approximated by the paraboloidal wave of complex
amplitude (A,/z) exp(—jkz) exp[—-jk(x* + y?)/2z] [see (2.2-17)],
interfere in the z = d plane. Derive an expression for the total
intensity I(x, y, d). Assuming that the two waves have the same
intensities at the z = d plane, verify that the locus of points of
zero intensity is a set of concentric rings, as illustrated in Fig,

2.5-5.

Figure 2.5-5 The interference of a plane wave and a spherical
wave creates a pattern of concentric rings (illustrated at the
plane z = d).

EXERCISE 2.5-2

Interference of Two Spherical Waves. Two spherical
waves of equal intensity I, originating at the points (-a, 0, 0)
and (a, 0, 0), interfere in the plane z = d as illustrated in Fig, 2.5-
6. This double-pinhole system is similar to that used by Thomas
Young in his celebrated double-slit experiment in which he
demonstrated interference. Use the paraboloidal approximation




for the spherical waves to show that the intensity at the plane z
=dis

e,y d) = 21, (1 + cos E?Tﬂ) -. (2.5-8)

where the angle subtended by the centers of the two waves at the
observation plane is 0 = 2a/d. The intensity pattern is periodic
with period A/6.

Figure 2.5-6 Interference of two spherical waves of equal
intensities originating at the points P, and P,. The two waves can
be obtained by permitting a plane wave to impinge on two
pinholes in a screen. The light intensity at an observation plane a
large distance d from the pinholes takes the form of a sinusoidal
interference pattern, with period = A/0, along the direction of the
line connecting the pinholes.

S

B. Multiple-Wave Interference

The superposition of M monochromatic waves of the same
frequency, with complex amplitudes U,, U.,,..., Uy, gives rise to a
wave whose frequency remains the same and whose complex
amplitude is given by U = U, + U, + - + Uy;. Knowledge of the
intensities of the individual waves, I, L,,..., I}, is not sufficient to



determine the total intensity I = | U|? since the relative phases must
also be known. The role played by the phase is dramatically
illustrated in the following examples.

Interference of M Waves with Equal Amplitudes and Equal
Phase Differences

We first examine the interference of M waves with complex
amplitudes

Un = \/I_D epr{m o 1){:‘9]! m=12,... :-‘ﬁ’f{ . (25-9)

The waves have equal intensities I,, and phase difference ¢ between
successive waves, as illustrated in Fig, 2.5-7(a). To derive an
expression for the intensity of the superposition, it is convenient to
introduce the quantity h = exp(jo) whereupon U,, = /T,h™ L.
The complex amplitude of the superposed wave is then

1— kM

U=+Ig(l+h+hi+ -+ Y=/ — (2.5-10)
1 exp(jMy)
- Vi .
1 — exp(ji)
which has the corresponding intensity
= UR = 1y exp(—iM/2) — exp(iM p/2} |7 (2.5-11)
exp(—jw/2) — exp(fp/2) "
whence

(2.5-12)



Interference of M Waves

Figure 2.5-7 (a) The sum of M phasors of equal magnitudes and
equal phase differences. (b) The intensity I as a function of ¢. The
peak intensity occurs when all the phasors are aligned; it is then M

times greater than the mean intensity I = M. In this example M
= 5.

The intensity I is evidently strongly dependent on the phase
difference ¢, as illustrated in Fig, 2.5-7(b) for M = 5. When ¢ = 21q,
where g is an integer, all the phasors are aligned so that the
amplitude of the total wave is M times that of an individual

component, and the intensity reaches its peak value of M?I,,. The
mean intensity averaged over a uniform distribution of ¢ is
I = (1/2m) Ozﬁ Idy = M1, which is the same as the result

obtained in the absence of interference. The peak intensity is
therefore M times greater than the mean intensity. The sensitivity
of the intensity to the phase is therefore dramatic for large M. At its
peak value, the intensity is magnified by a factor M over the mean
but it decreases sharply as the phase difference ¢ deviates slightly
from 27q. In particular, when ¢ = 2;1/M the intensity becomes zero.
It is instructive to compare Fig, 2.5-7(b) for M = 5 with Fig, 2.5-2 for
M = 2.



EXERCISE 2.5-3

Bragg Reflection. Consider light reflected at an angle 0 from
M parallel reflecting planes separated by a distance A, as shown
in Fig. 2.5-8. Assume that only a small fraction of the light is
reflected from each plane, so that the amplitudes of the M
reflected waves are approximately equal. Show that the reflected
waves have a phase difference ¢ = k(2A sin 0) and that the angle
0 at which the intensity of the total reflected light is maximum
satisfies

(2.5-13)

sinflg = — .

Bragg Angle

This equation defines the Bragg angle 0. Such reflections are

encountered when light is reflected from a multilayer structure
(see Sec. 7.1) or when X-ray waves are reflected from atomic
planes in crystalline structures. It also occurs when light is
reflected from a periodic structure created by an acoustic wave
(see Chapter 20). An exact treatment of Bragg reflection is
provided in Sec. 7.1C.




Figure 2.5-8 Reflection of a plane wave from M parallel planes
separated from each other by a distance A. The reflected waves
interfere constructively and yield maximum intensity when the
angle 0 is the Bragg angle 0. Note that 0 is defined with respect

to the parallel planes.

- S

Fresnel Zone Plate

A Fresnel zone plate comprises a set of ring apertures of
increasing radii, decreasing widths, and equal areas, as illustrated in

Fig, 2.5-0.



Figure 2.5-9 The Fresnel zone plate serves as a spherical lens with
multiple focal lengths.

The structure serves as a spherical lens with multiple focal lengths,
as may be understood from the perspective of interference. The
center of the mth ring has a radius p,,, at the mth peak of the cosine

function, i.e., 7rp72n /Af = m2m [see (2.4-9)]. At a focal point z = f,
the distance R,, to the mth ring is given by R,2n = f2+ pgn, so that

Ry = v/ f2 + 2m\f. If fis sufficiently large so that the angles
subtended by the rings are small, then a Taylor-series expansion
provides R,, = f + mA. Thus, the waves transmitted through

consecutive rings have pathlengths differing by a wavelength, so
that they interfere constructively at the focal point. A similar
argument applies for the other foci. The operation of the Fresnel
zone plate may also be understood from the perspective of Fourier
optics, as explained in Sec. 4.1A.

Interference of an Infinite Number of Waves of Progressively
Smaller Amplitudes and Equal Phase Differences

We now examine the superposition of an infinite number of waves
with equal phase differences and with amplitudes that decrease at a
geometric rate:



U=+, Ub=hUy, Us=hUs=rlh, ..., (2.5-14)

where h = |h|e’?, |h|<1 and I, is the intensity of the initial wave.
The amplitude of the mth wave is smaller than that of the (m - 1)st
wave by the factor |h| and the phase differs by ¢. The phasor
diagram is shown in Fig, 2.5-10(a).

Figure 2.5-10 (a) The sum of an infinite number of phasors whose
magnitudes are successively reduced at a geometric rate and whose
phase differences ¢ are equal. (b) Dependence of the intensity I on
the phase difference ¢ for two values of Z. Peak values occur at ¢ =
271q. The full width at half maximum of each peak is approximately
27/ when & > 1. The sharpness of the peaks increases with
increasing .

The superposition wave has a complex amplitude

U=U4+U+Us3+--- (2.5-15)
=vI(Q+h+kE+--)

_vh _ vk
1—h  1-— [Hei®"

The total intensity is then



I=|UP= Io — Io (2.5-16)
L — |hlefe]® (L — |h|cos) + |k|”sin® ¢

from which

} Iy _
" A alh] s (/2 =77

It is convenient to write this equation in the form

2.5-18
. I g (2.5-18)
L+ (25 /) sin® (/2) R o
Intensity of an Infinite Number of Waves
where the quantity
(2.5-19)
- VI

1Al

Finesse
is a parameter known as the finesse.

The intensity I is a periodic function of ¢ with period 27, as
illustrated in Fig, 2.5-10(b). It reaches its maximum value Imax
when ¢ = 271q, where q is an integer. This occurs when the phasors
align to form a straight line. (This result is not unlike that displayed
in Fig. 2.5-7(b) for the interference of M waves of equal amplitudes
and equal phase differences.) When the finesse F is large (i.e., the
factor |h| is close to 1), I becomes a sharply peaked function of ¢.
Consider values of ¢ near the ¢ = 0 peak, as a representative



example. For |p| <« 1, sin(¢/2) = ¢/2 whereupon (2.5-18), can be
written as

(2.5-20)

The intensity I then decreases to half its peak value when ¢ = 7/F,
so that the full-width at half-maximum (FWHM) of the peak
becomes

I (2.5-21)

Width of Interference Pattern

In the regime F > 1, we then have Agp « 2;r and the assumption that
¢ « 11is applicable. The finesse Fis the ratio of the period 27 to the
FWHM of the peaks in the interference pattern. It is therefore a
measure of the sharpness of the interference function, i.e., the
sensitivity of the intensity to deviations of ¢ from the values 271qg
corresponding to the peaks.

A useful device based on this principle is the Fabry—Perot
interferometer. It consists of two parallel mirrors within which light
undergoes multiple reflections. In the course of each round trip, the
light suffers a fixed amplitude reduction |h| = |r|, arising from
losses at the mirrors, and a phase shift ¢ = k2d = 41vd/c =
251v/(c/2d) associated with the propagation, where d is the mirror
separation. The total light intensity depends on the phase shift ¢ in
accordance with (2.5-18), attaining maxima when ¢/2 is an integer
multiple of ;7. The proportionality of the phase shift ¢ to the optical
frequency v shows that the intensity transmission of the Fabry—
Perot device will exhibit peaks separated in frequency by c/2d. The
width of these peaks will be (c/2d)/F, where the finesse F is
governed by the loss via (2.5-19). The Fabry—Perot interferometer,



which also serves as a spectrum analyzer, is considered further in
Sec. 7.1B. It is commonly used as a resonator for lasers, as discussed
in Secs. 11.1 and 16.1A.



EXAMPLE 2.5-1.

The LIGO Interferometer. The LIGO interferometer?
comprises a Michelson interferometer (MI) with a Fabry—Perot
interferometer (FPI) embedded in each of its reflecting arms, as
illustrated in Fig, 2.5-11. The MI is sensitive to the phase
difference encountered by the optical waves that propagate
through its arms; the FPIs serve to amplify the phases in each
arm and thereby to significantly increase the sensitivity of the
overall instrument.

If the phase shift encountered in a double pass within the FPI is
denoted ¢, the phase of the overall intracavity reflecting field U
is, in accordance with (2.5-15),

(2.5-22)

If ¢ is taken to be an integer multiple of 2s, to which is added a
very small double-pass deviation 2A¢ « s, a Taylor-series
expansion of (2.5-22) yields arg{U}= 2A¢ |h|/(1 — |h|). This
result is closely related to the finesse of the FPI,

F = m+/]h|/(1 — |h|), as provided in (2.5-19). When |h| = 1 and
the finesse is high, we have arg{U} = 2A¢@ - 1/(1 — |h|) and F =
/(1 - |h|), so that arg{U} = (2F/m)Ag. Thus, a very small phase
deviation A imposed on the FPI is amplified by the factor 2F/,
which is large. This phase amplification results from the many
reflections of the light between the mirrors of the FPI, which
effectively increases its length and thus its sensitivity.

The interference pattern associated with the Michelson
interferometer is characterized by the two-wave interference
equation (2.5-4). If the light injected into both of its arms is of
equal intensity, i.e.,if [1 = Is = %I 0, (2:5-4) becomes I = I [1 +
cos(@, — @,)]. If the interferometer is then operated at a null and




the phases for the two arms are taken to be ¢, , = (2F/71)Ag, ,,
the LIGO interference pattern is given by

1 —cos ZZ (Aps — Apr). (2.5-23)

The LIGO interferometer is thus a factor of 2F/;r more sensitive
to the phase difference Ap, — Ap, than is a Michelson

interferometer with the same arm lengths.

This increased sensitivity is the rationale for using the LIGO
interferometer as a gravitational-wave detector. Generated by
cataclysmic events in the distant universe, gravitational waves
impose a dynamic strain on the fabric of space, which results in
differential length variations in the orthogonal arms of the
interferometer. This in turn modulates the phase difference Ag,

— A@,, resulting in an overall light intensity whose magnitude is

proportional to the gravitational-wave-induced strain.
Gravitational waves were first detected by LIGO in 2015, a

hundred years after Einstein first predicted their existence.3




-

Figure 2.5-11 The LIGO interferometer is a Michelson
interferometer (MI) with Fabry—Perot interferometers (FPIs)
nested in each of its arms. Each FPI in the advanced-LIGO
instrument has a length d = 4 km and a finesse F = 450, so that
the enhancement in sensitivity with respect to an ordinary MI is
2F/m = 286. The gravitational wave observed in 2015 imparted to
the LIGO interferometer a differential spatial strain (Ad, -

Ad,)/d = Ad/d with a magnitude of roughly 5 x 10722, which

corresponds to a differential length deviation Ad of about 2 am
(some 400 times smaller than the radius of a proton). The light
source was a 20-W Nd:YAG laser operated at A, = c,/v = 1.064

pm. The corresponding phase difference Ap, — Ag, thus had a
magnitude of 2;tvAd/c, = 1.8 x 107! rad; its oscillations were in
the audio-frequency range.

2.6 POLYCHROMATIC AND PULSED LIGHT

Since the wavefunction of monochromatic light is a harmonic
function of time extending over all time (from — to ©), it is an




idealization that cannot be met in reality. This section is devoted to
waves of arbitrary time dependence, including optical pulses of
finite time duration. Such waves are polychromatic rather than
monochromatic. A more detailed introduction to the optics of
pulsed light is provided in Chapter 23.

A. Temporal and Spectral Description

Although a polychromatic wave is described by a wavefunction u(r,
t) with nonharmonic time dependence, it may be expanded as a
superposition of harmonic functions, each of which represents a
monochromatic wave. Since we already know how monochromatic
waves propagate in free space and through various optical
components, we can determine the effect of optical systems on
polychromatic light by using the principle of superposition.

Fourier methods permit the expansion of an arbitrary function of
time u(t), representing the wavefunction u(r, t) at a fixed position r,
as a superposition integral of harmonic functions of different
frequencies, amplitudes, and phases:

u(t) = / N v(v) exp(§2nvt) dv (2.6-1)

—x

where v(v) is determined by carrying out the Fourier transform

v(v) = fm ul{t) exp{—j2nvit) dt. (2.6-2)

—o0

A review of the Fourier transform and its properties is presented in
Sec. A.1 of Appendix A. The expansion in (2.6-1) extends over
positive and negative frequencies. However, since u(t) is real,
v(-v)=v *(v) (see Sec. A.1). Thus, the negative- frequency
components are not independent; they are simply conjugated
versions of the corresponding positive-frequency components.

Complex Representation



It is convenient to represent the real function u(t) in (2.6-1) by a
complex function

U{t) = qum v(v) exp(2nvt) dv (2.6-3)

that includes only the positive-frequency components (multiplied
by a factor of 2), and suppresses all the negative frequencies. The
Fourier transform of U(t) is therefore a function V (v) = 2v(v) for v
> 0,and o for v < o.

The real function u(t) can be determined from its complex
representation U(t) by simply taking the real part,

u(t) = Re{U(t)} = LU () + U*(8)]. (2.6-4)

The complex function U(t) is known as the complex analytic
signal. The validity of (2.6-4) can be verified by breaking the
integral in (2.6-1) into two parts, with limits from 0 to + and from
—o to 0. The first integral equals %U (t) by virtue of (2.6-3),
whereas the second is given by

(2.6-5)

0 X
/ v{r) exp(j2nvt)dy = f v(—v)exp{—j2nvt) dv
0

— /Dm v*(v) exp{—j2nvt) dv = TU*(2).

The first step above reflects a simple change of variable from v to
—v, while the second step uses the symmetry relation v(-v) = v *(v).
The net result is that u(t) can be expressed as a sum of the complex
function Y2 U(t) and its conjugate, confirming (2.6-4).



As a simple example, the complex representation of the real
harmonic function u(t) = cos(wt) is the complex harmonic function
U(t) = exp(jwt). This is the complex representation introduced in
Sec. 2.2A for monochromatic waves. In fact, the complex
representation of a polychromatic wave, as described in this section,
is simply a superposition of the complex representations of each of
its monochromatic Fourier components.

The complex analytic signal corresponding to the wavefunction
u(r,t) is called the complex wavefunction u(r,t). Since each of its
Fourier components satisfies the wave equation, so too does the
complex wavefunction u(r,t),

(2.6-6)

2

ViU - %% =0.
i

Wave Equation

Figure 2.6-1 shows the magnitudes of the Fourier transforms of the
wavefunction u(r,t) and the complex wavefunction u(r, t). In this
illustration the optical wave is quasi-monochromatic, i.e., it has
Fourier components with frequencies confined within a narrow
band of width Av surrounding a central frequency v, such that Av

K V,.



Figure 2.6-1 (a) The magnitude |v(r,v)| of the Fourier transform of
the wavefunction u(r,t). (b) The magnitude |V (r,v)| of the Fourier
transform of the corresponding complex wavefunction u(r,t).

Intensity of a Polychromatic Wave

The optical intensity is related to the wavefunction by (2.1-3):

I(r,t) = 2(u’(r,t)) (2.6-7)
_9 <{% [U(r,t) + U*(x, t}]}2>
= L{2(r, 6)) + L {U2(x, £)) + (U(x, )U*(x, 1)) .

For a quasi-monochromatic wave with central frequency v, and
spectral width Av « v, the average (-) is taken over a time interval
much longer than the time of an optical cycle 1/v, but much shorter
than 1/Av (see Sec. 2.1). Since U(r,t) is given by (2.6-4), the term U?
in (2.6-7) has components oscillating at frequencies = 2v,,.
Similarly, the components of U,, oscillate at frequencies =—-2v,,.
These terms are therefore washed out by the averaging operation.

The third term, however, contains only frequency differences, which
are of the order of Av « v,,. It therefore varies slowly and is

unaffected by the time-averaging operation. Thus, the third term in
(2.6 7) survives and the light intensity becomes



.6-8
I(r,8) = UG, B . (268

Optical Intensity

The optical intensity of a quasi-monochromatic wave is the
absolute square of its complex wavefunction.

The simplicity of this result is, in fact, the rationale for introducing
the concept of the complex wavefunction.

Pulsed Plane Wave

The simplest example of pulsed light is a pulsed plane wave. The
complex wavefunction has the form

Ur,t) = Jf[(t — %) exp [j??ry[. (t — %)] ; (2.6-9)

where the complex envelope A(t) is a time-varying function and
v, 1s the central optical frequency. The monochromatic plane wave
is a special case of (2.6-9) for which A(t) is constant, i.e., U(r,t) = A
explj2mv,(t — z/c)] = A exp(—jk, z) exp(jw,t), where k, = @,/c and
W, = 27TV,.

Since u(r,t) in (2.6-9) is a function of t — z/c it satisfies the wave
equation (2.6-6) regardless of the form of the function A(-)

(provided that d?A/dt? exists). This can be verified by direct
substitution.

If A(t) is of finite duration 7, then at any fixed position z the wave
lasts for a time period 7, and at any fixed time t it extends over a
distance ct. It is therefore a wavepacket of fixed extent traveling in
the z direction (Fig, 2.6-2). As an example, a pulse of duration T =1
ps extends over a distance ct = 0.3 mm in free space.

The Fourier transform of the complex wavefunction in (2.6-9), is



Vir,v) = A(lv — vp) exp(—j2nvz/e), (2.6-10)

where A(v) is the Fourier transform of A(t). This may be shown by
use of the frequency translation property of the Fourier transform
(see Sec. A.1 of Appendix A). The complex envelope A(t) is often
slowly varying in comparison with an optical cycle, so that its
Fourier transform A(v) has a spectral width Av much smaller than
the central frequency v,,. The spectral width Av is inversely

proportional to the temporal width t. In particular, if A(%) is
Gaussian, then its Fourier transform A(v) is also Gaussian. If the
temporal and spectral widths are defined as the power-RMS widths,
then their product equals 1/47 (see Sec. A.2 of Appendix A). For
example, if 7 = 1 ps, then Av = 80 GHz. If the central frequency v, is

5 % 1014 Hz (corresponding to A, = 0.6 um), then Av/v, = 1.6 x 1074,
so that the light is quasi-monochromatic. Fig, 2.6-2 illustrates the

temporal, spatial, and spectral characteristics of the pulsed plane
wave in terms of the wavefunction.

Figure 2.6-2 Temporal, spatial, and spectral characteristics of a
pulsed plane wave. (a) The wavefunction at a fixed position has
duration 1. (b) The wavefunction as a function of position at times t
and t + T. The pulse travels with speed c and occupies a distance crt.
(¢) The magnitude |A(v)| of the Fourier transform of the complex
envelope. (d) The magnitude |V (v)| of the Fourier transform of the
complex wavefunction is centered at v,,.



The propagation of a pulsed plane wave through a medium with
frequency-dependent refractive index (i.e., with a frequency-
dependent speed of light ¢ = ¢,/n) is discussed in Sec. 5.7 while

other aspects of pulsed optics are considered in Chapter 23.

B. Light Beating

The dependence of the intensity of a polychromatic wave on time
may be attributed to interference among the monochromatic
components that constitute the wave. This concept is now
demonstrated by means of two examples: interference between two
monochromatic waves and interference among a finite number of
monochromatic waves.

Interference of Two Monochromatic Waves of Different
Frequencies

An optical wave composed of two monochromatic waves of
frequencies v, and v, and intensities I, and I, has a complex

wavefunction at some location in space
Ut) = +/ I exp(j2mint) + +/ Iz exp(j2ruat), (2.6-11)

where the phases are taken to be zero and the r dependence has
been suppressed for convenience. The intensity of the total wave is
determined by use of the interference equation (2.5-4),

I(t) = I] + Ig + 21,'.-" IIIQ cos [QTI'(L"Q — 1 )t] . (2_6_12)

The intensity therefore varies sinusoidally at the difference
frequency |v, — v,|, which is known as the beat frequency. This
phenomenon goes by a number of names: light beating, optical
mixing, photomixing, optical heterodyning, and coherent
detection.



Equation (2.6-12) is analogous to (2.5-7), which describes the
spatial interference of two waves of the same frequency traveling in
different directions. This can be understood in terms of the phasor
diagram in Fig, 2.5-1. The two phasors U, and U, rotate at angular
frequencies w, = 271v, and w, = 271v,, so that the difference angle is
@ =@, — @, = 271(v, — vt in accord with (2.6-12). Waves of
different frequencies traveling in different directions exhibit
spatiotemporal interference.

In electronics, beating or mixing is said to occur when the sum of
two sinusoidal signals is detected by a nonlinear (e.g., quadratic)
device called a mixer, producing signals at the difference and sum
frequencies. This device is used in heterodyne radio receivers. In
optics, photodetectors are responsive to the optical (Sec. 19.1B), or
optical intensity which, in accordance with (2.6-8), is proportional
to the absolute square of the complex wavefunction. Optical
detectors are therefore sensitive only to the difference frequency.

Much as (2.5-7), provides the basis for determining the direction of a
wave via the spatial interference pattern at a screen, (2.6-12)
provides a way of determining the frequency of an optical wave by
measuring the temporal interference pattern at the output of a
photodetector. The use of optical beating in optical heterodyne
receivers is discussed in Sec. 25.4. Other forms of optical mixing
make use of nonlinear media to generate optical-frequency
differences and sums, as described in Chapter 22.



EXERCISE 2.6-1

Optical Doppler Radar. As a result of the Doppler effect, a
monochromatic optical wave of frequency v, reflected from an
object moving with a velocity component v along the line of
sight from an observer, undergoes a frequency shift Av = £(2v/c)
v, depending on whether the object is moving toward (+) or away
(=) from the observer. Assuming that the original and reflected
waves are superimposed, derive an expression for the intensity
of the resultant wave. Suggest a method for measuring the
velocity of a target using such an arrangement. If one of the
mirrors of a Michelson interferometer [Fig. 2.5-3(b)] moves
with velocity +v, use (2.5-6) to show that the beat frequency is
+(2v/c) v.

- J

Interference of M Monochromatic Waves with Equal Intensities
and Equally Spaced Frequencies

The interference of a large number of monochromatic waves with
equal intensities, equal phases, and equally spaced frequencies can
result in the generation of brief pulses of light. Consider an odd
number of waves, M = 2L +1, each with intensity I, and zero phase,

and with frequencies

I—”q:y[.—f—gyp? q:_L:l"':IDa"'Lj (2.6_13)

centered about frequency v, and spaced by frequency vy < v,,. At a
given position, the total wave has a complex wavefunction

L
Ut) =1 Y expli2n{vg + qup)t] - (2.6-14)

g=-L

This represents the sum of M phasors of equal magnitudes and
successive phases that differ by ¢ = 27vt. Results for the intensity



are immediately available from the analysis carried out in Sec. 2.5B,
which is mathematically identical to the case at hand. Referring to
(2.5-12) and Fig. 2.5-7, and using the substitution ¢ = 2xt/Ty with
Ty = 1/vp, the total intensity is

_ s, sin’(Mnt/Tg) (2.6-15)
Ity =U()|" = Iy e ryr

As illustrated in Fig, 2.6-3, the intensity I(t) is a periodic sequence
of optical pulses with period T}, peak intensity M?I,, and mean

intensity I = M. The peak intensity is therefore M times greater
than the mean intensity. The duration of each pulse is
approximately Tr/M so that the pulses become very short when M

is large. If v = 1 GHz, for example, then T = 1ns; for M = 1000,
pulses of 1-ps duration are generated.

Figure 2.6-3 Time dependence of the optical intensity I(t) of a
polychromatic wave comprising M monochromatic waves of equal
intensities, equal phases, and successive frequencies that differ by
vr . The intensity I(t) is a periodic train of pulses of period Ty = 1/vp

with a peak that is M times greater than the mean /. The duration
of each pulse is M times shorter than the period. In this example M
= 5. These graphs should be compared with those in Fig, 2.5-7. The
magnitude of the Fourier transform |V (v)| is shown in the lower
graph.

This example provides a dramatic demonstration of how M
monochromatic waves can conspire to produce a train of very short



optical pulses. We shall see in Sec. 16.4D that the modes of a laser
can be mode-locked in the fashion described above to produce a
sequence of ultrashort laser pulses.

READING LIST

Wave Optics and Interferometry

See also the reading list on general optics in Chapter 1.

D. Fleisch and L. Kinnaman, A Student’s Guide to Waves,
Cambridge University Press, 2015.

M. Mansuripur, Classical Optics and Its Applications, Cambridge
University Press, 2nd ed. 2009.

P. Hariharan, Basics of Interferometry, Academic Press, 2nd ed.
2006.

J. R. Pierce, Almost All About Waves, MIT Press, 1974; Dover,
reissued 2006.

H. J. Pain, The Physics of Vibrations and Waves, Wiley, 6th ed.
2005.

R. H. Webb, Elementary Wave Optics, Academic Press, 1969; Dover,
reissued 2005.

E. Hecht and A. Zajac, Optics, Addison—Wesley, 2nd ed. 1990.
J. M. Vaughan, The Fabry—Perot Interferometer, CRC Press, 1989.

H. D. Young, Fundamentals of Waves, Optics, and Modern Physics,
McGraw—Hill, paperback 2nd ed. 1976.

M. Franc,on, N. Krauzman, J. P. Matieu, and M. May, Experiments
in Physical Optics, CRC Press, 1970.

M. Franc  on, Optical Interferometry, Academic Press, 1966.

Spectroscopy



D. L. Pavia, G. M. Lampman, G. S. Kriz and J. A. Vyvyan,
Introduction to Spectroscopy, Brooks/Cole, 5th ed. 2014.

B. C. Smith, Fundamentals of Fourier Transform Infrared
Spectroscopy, CRC Press/Taylor & Francis, 2nd ed. 2011.

J. M. Hollas, Modern Spectroscopy, Wiley, paperback 4th ed. 2010.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared
Spectrometry, Wiley, 2nd ed. 2007.

Diffraction Gratings

C. Palmer, Diffraction Grating Handbook, Richardson Gratings
(Rochester, NY), 7th ed. 2014.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications,
CRC Press, 1997.

Interferometry for Gravitational-Wave Detection

S. Wills, Gravitational Waves: The Road Ahead, Optics & Photonics
News, vol. 29, no. 5, pp. 44—51, 2018.

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral, Physical Review
Letters, vol. 119, 161101, 2017.

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Observation of Gravitational Waves from a
Binary Black Hole Merger, Physical Review Letters, vol. 116,
061102, 2016.

B. P. Abbott et al., Astrophysical Implications of the Binary Black
Hole Merger GW150914, The Astrophysical Journal Letters,
vol. 818, L22, 2016.

R. W. P. Drever, Fabry—Perot Cavity Gravity-Wave Detectors, in D.
G. Blair, ed., The Detection of Gravitational Waves, Cambridge
University Press, 1991, Chapter 12, pp. 306—328.



A. Brillet, J. Gea-Banacloche, G. Leuchs, C. N. Man, and J. Y. Vinet,
Advanced Techniques: Recycling and Squeezing, in D. G. Blair,
ed., The Detection of Gravitational Waves, Cambridge
University Press, 1991, Chapter 15, pp. 369—405.

D. G. Blair, Gravitational Waves in General Relativity, in D. G. Blair,
ed., The Detection of Gravitational Waves, Cambridge
University Press, 1991, Chapter 1, pp. 3—15.

A. Einstein, Die Feldgleichungen der Gravitation (The Field
Equations of Gravitation), Sitzungsberichte der K™ oniglich
Preussische Akademie der Wissenschaften (Berlin), pp. 844—

847 (part 2), 1915.
Popular and Historical

P. Daukantas, 200 Years of Fresnel’s Legacy, Optics & Photonics
News, vol. 26, no. 9, pp. 40—47, 2015.

T. Levitt, A Short Bright Flash: Augustin Fresnel and the Birth of
the Modern Lighthouse, Norton, 2013.

F. J. Dijksterhuis, Lenses and Waves: Christiaan Huygens and the
Mathematical Science of Optics in the Seventeenth Century,
2004, Springer-Verlag, paperback ed. 2011.

J.Z. Buchwald, The Rise of the Wave Theory of Light: Optical
Theory and Experiment in the Early Nineteenth Century,
University of Chicago Press, paperback ed. 1989.

W. E. Kock, Sound Waves and Light Waves: The Fundamentals of
Wave Motion, Doubleday/Anchor, 1965.

C. Huygens, Treatise on Light, 1690, University of Chicago Press,
1945; Echo Library, reprinted 2007.

Seminal Articles

G. W. Kamerman, ed., Selected Papers on Laser Radar, SPIE Optical
Engineering Press (Milestone Series Volume 133), 1997.



P. Hariharan and D. Malacara-Hernandez, eds., Selected Papers on
Interference, Interferometry, and Interferometric Metrology,
SPIE Optical Engineering Press (Milestone Series Volume

110), 1995.

D. Maystre, ed., Selected Papers on Diffraction Gratings, SPIE
Optical Engineering Press (Milestone Series Volume 83),

1993.

P. Hariharan, ed., Selected Papers on Interferometry, SPIE Optical
Engineering Press (Milestone Series Volume 28), 1991.

PROBLEMS

2.2-3 Spherical Waves. Use a spherical coordinate system to
verify that the complex amplitude of the spherical wave (2.2-
15) satisfies the Helmholtz equation (2.2-7).

2.2-4 Intensity of a Spherical Wave. Derive an expression for
the intensity I of a spherical wave at a distance r from its center
in terms of the optical power P. What is the intensity at r = 1 m
for Z=100 W?

2.2-5 Cylindrical Waves. Derive expressions for the complex
amplitude and intensity of a monochromatic wave whose
wavefronts are cylinders centered about the y axis.

2.2-6 Paraxial Helmholtz Equation. Derive the paraxial
Helmholtz equation (2.2-23) using the approximations in (2.2-
21) and (2.2-22).

2.2-7 Conjugate Waves. Compare a monochromatic wave with
complex amplitude U(r) to a monochromatic wave of the same
frequency but with complex amplitude Ux(r), with respect to
intensity, wavefronts, and wavefront normals. Use the plane
wave U(r)= A exp[-jk(x + y)/ \/5] and the spherical wave U(r)
= (A/r) exp(—jkr) as examples.



2.3-1 Wave in a GRIN Slab. Sketch the wavefronts of a wave
traveling in the graded-index SELFOC slab described in
Example 1.3-1.

2.4-7 Reflection of a Spherical Wave from a Planar Mirror. A
spherical wave is reflected from a planar mirror sufficiently far
from the wave origin so that the Fresnel approximation is
satisfied. By regarding the spherical wave locally as a plane
wave with slowly varying direction, use the law of reflection of
plane waves to determine the nature of the reflected wave.

2.4-8 Optical Pathlength. A plane wave travels in a direction
normal to a thin plate made of N thin parallel layers of
thicknesses dq and refractive indices ngq=1,2,.,N. If all
reflections are ignored, determine the complex amplitude
transmittance of the plate. If the plate is replaced with a
distance d of free space, what should d be so that the same
complex amplitude transmittance is obtained? Show that this
distance is the optical pathlength defined in Sec. 1.1.

2.4-9 Diffraction Grating. Repeat Exercise 2.4-5 for a thin
transparent plate whose thickness d(x, y) is a square (instead
of sinusoidal) periodic function of x of period A > A. Show that
the angle 6 between the diffracted waves is still given by 6 = A/
A. If a plane wave is incident in a direction normal to the
grating, determine the amplitudes of the different diffracted
plane waves.

2.4-10 Reflectance of a Spherical Mirror. Show that the
complex amplitude reflectance r(x, y) (the ratio of the complex
amplitudes of the reflected and incident waves) of a thin

spherical mirror of radius R is given by r(x, y)= h, exp[ —jk,(x*
+ y?)/R], where h,, is a constant. Compare this to the complex
amplitude transmittance of a lens of focal length f= —-R/2.

2.5-4 Standing Waves. Derive an expression for the intensity I of
the superposition of two plane waves of wavelength A traveling
in opposite directions along the z axis. Sketch I versus z.



2.5-5 Fringe Visibility. The visibility of an interference pattern
such as that described by (2.5-4). and plotted in Fig, 2.5-1 is
defined as the ratio V =(I,,x — Inin)/Umax + Imin)> Where I,
and I;, are the maximum and minimum values of I. Derive an
expression for V as a function of the ratio I,/I, of the two
interfering waves and determine the ratio I, /I, for which the
visibility is maximum.

2.5-6 Michelson Interferometer. If one of the mirrors of the
Michelson interferometer [Fig. 2.5-3(b)] is misaligned by a
small angle A0, describe the shape of the interference pattern
in the detector plane. What happens to this pattern as the other
mirror moves?

2.6-2 Pulsed Spherical Wave.

a. Show that a pulsed spherical wave has a complex wavefunction
of the form U(r, t) = (1/r)a(t — r/c), where a(t) is an arbitrary
function.

b. An ultrashort optical pulse has a complex wavefunction with
central frequency corresponding to a wavelength A, = 585 nm
and a Gaussian envelope of RMS width of 0, = 6 fs (1 fs = 10-15
s). How many optical cycles are contained within the pulse
width? If the pulse propagates in free space as a spherical wave
initiated at the origin at t = 0, describe the spatial distribution
of the intensity as a function of the radial distance at time t = 1

ps.

Notes

1 The complex wavefunction for a monochromatic plane wave is
written in a form commonly used in electrical engineering: U(r, t) =
A exp[j(wt — k - r)]. In the physics literature, this same wave is
usually written as U(r, t) = A exp[-i(wt — k - 1)]; correspondence is

attained by simply replacing i with —j, where ¢ = 5 = v/ —1. This



choice has no bearing on the final result, as is evidenced by
observing that the wavefunction u(r, t) in (2.2 13) takes the form of
a cosine function, for which cos(x) = cos(-x).

2 LIGO is an acronym for Laser Interferometer Gravitational-Wave
Observatory, a facility with dual sites in Livingston, Louisiana and
Hanford, Washington.

3 B. P. Abbott et al., Observation of Gravitational Waves from a
Binary Black Hole Merger, Physical Review Letters, vol. 116, 061102,
2016. The near-simultaneous detections at both LIGO sites, which
are separated by a distance of = 3000 km and a time of = 10 msec,
unequivocally confirmed the cosmological origin of the waves.
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BEAM OPTICS
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The Gaussian beam, named after the German mathematician Carl
Friedrich Gauss (1777— 1855), is circularly symmetric and has a
radial intensity that follows the form of a Gaussian distribution.

Edmond Nicolas Laguerre (1834—1886), a French
mathematician, devised a set of polynomials useful for describing
circularly symmetric light beams with helical wavefronts and orbital
angular momentum.



Friedrich Wilhelm Bessel (1784—-1846), a noted German
astronomer, established a set of functions that characterize the
radial intensity of circularly symmetric, planar-wavefront, non-
diffracting optical beams.

Can light be spatially confined and transported in free space without
angular spread? Although the wave nature of light precludes the
possibility of such idealized transport, light can, in fact, be confined
in the form of beams that come as close as possible to waves that
are spatially localized and nondiverging.

The two extremes of angular and spatial confinement are the plane
wave and the spherical wave, respectively. The wavefront normals
(rays) of a plane wave coincide with the direction of travel of the
wave so that there is no angular spread, but its energy extends
spatially over all space. The spherical wave, in contrast, originates
from a single spatial point, but its wavefront normals (rays) diverge
in all angular directions.

Waves whose wavefront normals make small angles with the z axis
are called paraxial waves. They must satisfy the paraxial Helmholtz
equation, which was derived in Sec. 2.2C. The Gaussian beam is
an important solution of this equation that exhibits the
characteristics of an optical beam, as attested to by a number of its



properties. The beam power is principally concentrated within a
small cylinder that surrounds the beam axis. The intensity
distribution in any transverse plane is a circularly symmetric
Gaussian function centered about the beam axis. The width of this
function is minimum at the beam waist and gradually becomes
larger as the distance from the waist increases in both directions.
The wavefronts are approximately planar near the beam waist, then
gradually curve as the distance from the waist increases, and
ultimately become approximately spherical far from the beam waist.
The angular divergence of the wavefront normals assumes the
minimum value permitted by the wave equation for a given beam
width. The wavefront normals are therefore much like a thin pencil
of rays. Under ideal conditions, the light from many types of lasers
takes the form of a Gaussian beam.

This Chapter

An expression for the complex amplitude of the Gaussian beam is
set forth in Sec. 3.1 and a detailed discussion of its physical
properties (intensity, power, beam width, beam divergence, depth of
focus, and phase) is provided. The shaping of Gaussian beams
(focusing, relaying, collimating, and expanding) via the use of
various optical components is the subject of Sec. 3.2. In Secs. 3.3
and 3.4 we introduce more general families of optical beams, known
as Hermite—Gaussian and Laguerre—Gaussian beams, respectively,
of which the simple Gaussian beam is a member. Finally, in Sec. 3.5
we discuss nondiffracting beams, including Bessel, Bessel—
Gaussian, and Airy beams.

3.1 THE GAUSSIAN BEAM

A. Complex Amplitude

The concept of paraxial waves was introduced in Sec. 2.2C. A
monochromatic paraxial wave is a plane wave traveling along the z

direction e7/*Z (with wavenumber k = 271/ and wavelength 1),



modulated by a complex envelope A(r) that is a slowly varying
function of position (see Fig. 2.2-5), so that its complex amplitude is

U(r) = Ar}exp(—jkz). (3.1-1)

The envelope is taken to be approximately constant within a
neighborhood of size A, so that the wave locally maintains its plane-
wave nature but exhibits wavefront normals that are paraxial rays.

In order that the complex amplitude U(r) satisfy the Helmholtz
equation, V2U + k2U = 0, the complex envelope A(r) must satisfy the
paraxial Helmholtz equation (2.2-23)

a4
2 — ¥ —_— -
VA — 32k 5 a0, (3.1-2)

where V2 = &%/02° 162 /8y is the transverse Laplacian operator. A

simple solution to the paraxial Helmholtz equation yields the
paraboloidal wave (see Exercise 2.2-2), for which

A s (3.1-3)
A(r) = - exp(—jkg—z) . PP =2t 14

where A, is a constant. The paraboloidal wave is the paraxial
approximation of the spherical wave U(r) = (A,/r) exp(—jkr) when x
and y are much smaller than z (see Sec. 2.2B).

Another solution of the paraxial Helmholtz equation leads to the
Gaussian beam. It is obtained from the paraboloidal wave by use of
a simple transformation. Since the complex envelope of the
paraboloidal wave (3.1-3) is a solution of the paraxial Helmholtz
equation (3.1-2), so too is a shifted version of it, with z — £ replacing
z where £ is a constant:

Alr) = % exp [—jk %] ; g(z) =z — &. (3.1-4),



This represents a paraboloidal wave centered about the point z =
instead of about z = 0. Equation (3.1-4) remains a solution of (3.1-2)
even when £ is complex, but the solution acquires dramatically
different properties. In particular, when £ is purely imaginary, say &
= —jz, where z is real, (3.1-4) yields the complex envelope of the
Gaussian beam

9 (3.1-5),

Afr) = % exp [_ij;(z}] , ¢{z) = z + jzp.

Complex Envelope

The quantity g(z) is called the q-parameter of the beam and the
parameter z, is known as the Rayleigh range.

To separate the amplitude and phase of this complex envelope, we
write the complex function 1/q(z)=1/(z + jz,) in terms of its real

and imaginary parts by defining two new real functions, R(z) and
W(z), such that

(2 "Rz T awiz)

It will be shown subsequently that W(z) and R(z) are measures of
the beam width and wavefront radius of curvature, respectively.
Expressions for W(z) and R(z) as functions of z and z, are provided
in (3.1-8) and (3.1-9). Substituting (3.1-6), into (3.15), and using (3.1-
1) leads directly to an expression for the complex amplitude U(r) of
the Gaussian beam:



(3.1-7)

ERTRL N N P T
Complex Amplitude
Wiz = Wor/1 4 (;_ﬂ)ﬁ (3.1-8),
R(z) =2 [1 + (?)2] (31-9)
((z) =tan™! ;—D (3.1-10)
W — 1) 270 (3:1-11),

Beam Parameters

A new constant A, = A, /jz,, has been defined for convenience.

The expression for the complex amplitude of the Gaussian beam
provided above is central to this chapter. It is described by two
independent parameters, A, and z,, which are determined from the

boundary conditions. All other parameters are related to the z, and
the wavelength A by (3.1-8),to (3.1-11). The significance of these

parameters will become clear in the sequel.
B. Properties

Equations (3.1-7)—(3.1-11) will now be used to determine the
properties of the Gaussian beam.



Intensity

The optical intensity I(r)= |U(r)|? is a function of the axial and
radial positions, z and p = /2% + . respectively

where I, = |A,|? . At any value of z the intensity is a Gaussian

function of the radial distance p — hence the appellation “Gaussian
beam.” The Gaussian function has its peak on the z axis, at p = 0,
and decreases monotonically as p increases. The beam width W(z)
of the Gaussian distribution increases with the axial distance z as
illustrated in Fig, 3.1-1.

Figure 3.1-1 Normalized Gaussian beam intensity I/I, as a

function of the radial distance p at different axial distances: (a) z =
0;(b) z = z,;(c) z = 2z,,.

On the beam axis (p = 0) the intensity in (3.1-12) reduces to

(3.1-13)

Wy r I

10,2) = Io [W(z) T 1+ (2/20)]



which has its maximum value I, at z = 0 and decays gradually with
increasing z, reaching half its peak value at z = +z, (Fig. 3.1-2).
When |z| > z,, 1(0,z) = I3z3/ 2%, so that the intensity decreases with
distance in accordance with an inverse square law, as for spherical

and paraboloidal waves. Overall, the beam center (z = 0, p = 0) is
the location of the greatest intensity: I(0, 0) = I,,.

Figure 3.1-2 The normalized beam intensity I/I, at points on the
beam axis (p = 0) as a function of distance along the beam axis, z.
Power

The total optical power carried by the beam is the integral of the
optical intensity over any transverse plane (say at position z),

P= / I{p,z) 2mp dp, (3.1-14)
a

which yields

P =1l (Wg). (3.1-15),

The beam power is thus half the peak intensity multiplied by the
beam area. The result is independent of z, as expected. Since optical
beams are often described by their power P, it is useful to express I,

in terms of P via (3.1-15), whereupon (3.1-12) can be rewritten in the
form



(3.1-16)

2P 2p°
0.5~ ey |~ |

Beam Intensity

The ratio of the power carried within a circle of radius p, in the
transverse plane to the total power, at position z, is

L 205 (3.1-17)
— I dmodp — 1 — __“rn | \3:1=17),
PL {p,z) 2mpdp EKP[ H,g(z)]

The power contained within a circle of radius p, = W(z) is therefore

approximately 86% of the total power. About 99% of the power is
contained within a circle of radius 1.5 W(z).

Beam Width

At any transverse plane, the beam intensity assumes its peak value

on the beam axis, and decreases by the factor 1/e® = 0.135 at the
radial distance p = W(z). Since 86% of the power is carried within a
circle of radius W(z), we regard W(z) as the beam radius (or beam
width). The RMS width of the intensity distribution, on the other
hand, is (see Appendix A, Sec. A.2, for the different

definitions of width).
The dependence of the beam width on z is governed by (3.1-8),

(3.1-18)
2
Wiz)=Wor/1+ (—) .

Beam Width (Beam Radius)



It assumes its minimum value, W, at the plane z = 0. This is the
beam waist and W is thus known as the waist radius. The waist
diameter 2W,, is also called the spot size. The beam width
increases monotonically with z, and assumes the value +/2W, at z =

+z,, (Eig. 3.1-3).

Figure 3.1-3 The beam width W(z) assumes its minimum value
W, at the beam waist (z = 0), reaches +/2W, at z = +z,, and

increases linearly with z for large z.

Beam Divergence

For z >» z, the first term of (3.1-18) may be neglected, which results
in the linear relation

W(z)m 0y _ g (3.1-19)

Zp
As illustrated in Fig, 3.1-3, the beam then diverges as a cone of half-
angle

by — Wo _ A 1 (3.1-20)
20 '.JTW{]

where we have made use of (3.1-11). Approximately 86% of the
beam power is confined within this cone, as indicated following

(3.1-17).

Rewriting (3.1-20) in terms of the spot size, the angular divergence
of the beam becomes



(3.1-21)

Divergence Angle

The divergence angle is directly proportional to the wavelength A
and inversely proportional to the spot size 2W,,. Squeezing the spot

size (beam-waist diameter) therefore leads to increased beam
divergence. It is clear that a highly directional beam is constructed
by making use of a short wavelength and a thick beam waist.

Depth of Focus

Since the beam has its minimum width at z = 0, as shown in Fig,
3.1-3, it achieves its best focus at the plane z = 0. In either direction,
the beam gradually grows “out of focus.” The axial distance within
which the beam width is no greater than a factor ,/2 times its
minimum value, so that its area is within a factor of 2 of the
minimum, is known as the depth-of-focus or confocal
parameter (Fig. 3.1-4). It is evident from (3.1-18) and (3.1-11) that
the actual depth of focus is twice the Rayleigh range:

W2 (3.1-22)
2zu = I .

Depth of Focus

Figure 3.1-4 Depth of focus of a Gaussian beam.



The depth of focus is therefore directly proportional to the area of
the beam at its waist, #WZ, and inversely proportional to the

wavelength, A. A beam focused to a small spot size thus has a short
depth of focus; locating the plane of focus thus requires increased
accuracy. Small spot size and long depth of focus can be
simultaneously attained only for short wavelengths. As an example,
at A, = 633 nm (a common He— Ne laser-line wavelength), a spot

size 2W,, = 2 cm corresponds to a depth of focus 2z, = 1 km. A much

smaller spot size of 20 um corresponds to a much shorter depth of
focus of 1 mm.

Phase

The phase of the Gaussian beam is, from (3.1-7),%

kp®

SR(D) (3.1-23),

oo, z) = kz — C(z) +

On the beam axis (p = 0) the phase comprises two components:

@(0,2) = kz — ((z). (3.1-24)

The first, kz, is the phase of a plane wave. The second represents a
phase retardation {(z) given by (3.1-10), which ranges from —s/2 at
z = —x to +71/2 at z = , as illustrated in Fig, 3.1-5. This phase
retardation corresponds to an excess delay of the wavefront in
relation to a plane wave (see also Fig. 3.1-8). The total accumulated
excess retardation as the wave travels from z = —o to z = « is s1. This
phenomenon is known as the Gouy effect. It arises from the
transverse spatial confinement of the beam, which is accompanied
by a spread in its transverse wavevector components by virtue of the
Fourier transform. This results in a reduction in the axial
component of the wavevector k, from its plane-wave value

k, = \/kz — k2 — k2 (see Sec. 2.2B).2




Figure 3.1-5 The function {(z) represents the phase retardation of
the Gaussian beam relative to a uniform plane wave at points on the
beam axis.

Wavefronts

The third component in (3.1-23) is responsible for wavefront
bending. It represents the deviation of the phase at off-axis points in
a given transverse plane from that at the axial point. The surfaces of
constant phase satisfy k[z + p2/2R(z)] — {(z)=2711q. Since {(z) and
R(z) are relatively slowly varying functions, they are effectively
constant at points within the beam width on each wavefront. We
may therefore write z + p?>/2R = gA + {A/27, where R = R(z) and ( =
((z). This is the equation of a paraboloidal surface with radius of
curvature R. Thus, R(z), plotted in Fig. 3.1-6, is the radius of
curvature of the wavefront at position z along the beam axis.

Figure 3.1-6 The radius of curvature R(z) of the wavefronts of a
Gaussian beam as a function of position along the beam axis. The
dashed line is the radius of curvature of a spherical wave.



As illustrated in Fig, 3.1-6, the radius of curvature R(z) is infinite at
z = 0, so that the wavefronts are planar, i.e., they have no curvature.
The radius decreases to a minimum value of 2z at z = z, where the

wavefront has the greatest curvature (Fig. 3.1-7). The radius of
curvature subsequently increases as z increases further until R(z) =
z for z » z,. The wavefronts are then approximately the same as

those of a spherical wave. The pattern of the wavefronts is identical
for negative z, except for a change in sign (Fig. 3.1-8). We have
adopted the convention that a diverging wavefront has a positive
radius of curvature whereas a converging wavefront has a negative
radius of curvature.

Figure 3.1-7 Wavefronts of a Gaussian beam.



Figure 3.1-8 Wavefronts of (a) a uniform plane wave; (b) a
spherical wave; (¢) a Gaussian beam. At points near the beam
center, the Gaussian beam resembles a plane wave. At large z the
beam behaves like a spherical wave except that its phase is retarded
by 7r/2 (a quarter of the distance between two adjacent wavefronts).

Parameters Required to Characterize a Gaussian Beam

Assuming that the wavelength A is known, how many parameters
are required to describe a plane wave, a spherical wave, and a
Gaussian beam? The plane wave is completely specified by its
complex amplitude and direction. The spherical wave is specified by



its complex amplitude and the location of its origin. The Gaussian
beam, in contrast, requires more parameters for its characterization
— its peak amplitude [determined by A, in (3.1-7)], its direction (the
beam axis), the location of its waist, and one additional parameter,
such as the waist radius W, or the Rayleigh range z,. Thus, if the
beam peak amplitude and the axis are known, two additional
parameters are required for full specification.

If the complex g-parameter, q(z)= z + jz,, is known, the distance to
the beam waist z and the Rayleigh range z, are readily identified as
the real and imaginary parts thereof. As an example, if g(z) is 3+ j4
cm at some point on the beam axis, we infer that the beam waist lies
at a distance z = 3cm to the left of that point and that the depth of
focus is 2z, = 8 cm. The waist radius W, may then be determined
via (3.1-11). The quantity g(z) is therefore sufficient for
characterizing a Gaussian beam of known peak amplitude and beam
axis. Given g(z) at a single point, the linear dependence of q on z
permits it to be determined at all points: if g(z)= g, and q(z + d)=
q., then g, = q, + d. Using the example provided immediately above,
at z = 13 cmit is evident that g = 13+ j4.

If the beam width W(z) and the radius of curvature R(z) are known
at an arbitrary point on the beam axis, the beam can be fully
identified by solving (3.1-8), (3.1-9), and (3.1-11) for z, z,, and W,,.
Alternatively, the beam can be identified by determining g(z) from
W(z) and R(z) using (3.1-6).



Summary: Properties of the Gaussian Beam at
Special Locations

= At the location z = z,. At an axial distance z,, from the beam
waist, the wave has the following properties:

— The intensity on the beam axis is the peak intensity.

— The beam width is a factor of greater than the

width at the beam waist, and the beam area is larger by a
factor of 2.

— The phase on the beam axis is retarded by an angle 77/4
relative to the phase of a plane wave.

— The radius of curvature of the wavefront achieves its
minimum value, R = 2z, so that the wavefront has the

greatest curvature.

= Near the beam center. At locations for which |z|« z, and p
& W,, the quantity , SO

that the beam intensity, which is proportional to the square
of this quantity, is approximately constant. Also, R(z) =

and {(z) = 0, so that the phase k[z + p*/2R(z)] = kz(1 +
) = kz, by virtue of (3.1-11) when z, > A. The Gaussian

beam may therefore be approximated near its center by a
plane wave.

= Far from the beam waist. At transverse locations within the
waist radius (p < W,,), but far from the beam waist (z > z),
the wave behaves approximately like a spherical wave. In
this domain W(z) = Wyz/z, > W, and p<W,, so that
exp[-p,/W?(z)] = 1 and the beam intensity is approximately
uniform. Since R(z) = z in this regime, the wavefronts are

approximately spherical. Thus, except for the Gouy phase
retardation {(z) = 71/2, the complex amplitude of the



Gaussian beam approaches that of the paraboloidal wave,
which in turn approaches that of the spherical wave in the
paraxial approximation.



EXERCISE 3.1-1

Parameters of a Gaussian Laser Beam. A 1-mW He—Ne
laser produces a Gaussian beam at a wavelength of A = 633 nm
with a spot size 2W, = 0.1 mm.

(a) Determine the angular divergence of the beam, its depth

of focus, and its diameter at z = 3.5 x 105 km (approximately
the distance to the moon).

(b) What is the radius of curvature of the wavefront at z = o,
Z =2y andz = 2z,?

(c) What is the optical intensity (in W/cm?) at the beam
center (z = 0, p = 0) and at the axial point z = z,? Compare
this with the intensity at z = z, of a 100-W spherical wave
produced by a small isotropically emitting light source
located at z = o.

EXERCISE 3.1-2

Validity of the Paraxial Approximation for a Gaussian
Beam. The complex envelope A(r) of a Gaussian beam is an
exact solution of the paraxial Helmholtz equation (3.1-2), but its
corresponding complex amplitude U(r)= A(r) exp(—jkz) is only
an approximate solution of the Helmholtz equation (2.2-7). This
is because the paraxial Helmholtz equation is itself approximate.
The approximation is satisfactory if the condition (2.2-21), is
satisfied. Show that if the divergence angle 0, of a Gaussian
beam is small (6, < 1), the necessary condition (2.2-21) for the

validity of the paraxial Helmholtz equation is indeed satisfied.

EXERCISE 3.1-3




Determination of a Beam with Given Width and
Curvature. Consider a Gaussian beam whose width W and
radius of curvature r are known at a particular point on the beam
axis (Fig. 3.1-9). Show that the beam waist is located to the left at
a distance

. R
T 1+ (AR/TW2)2 (3:1-25),
and that the waist radius is
W

(3.1-26)

Wy

T 1+ (aW2AR2

Figure 3.1-9 Given W and R, determine z and W,,.

EXERCISE 3.1-4

Determination of the Width and Curvature at One Point
Given the Width and Curvature at Another Point.
Assume that the width and radius of curvature of a Gaussian
beam of wavelength A = 1 um at some point on the beam axis are
W, =1mm and R, = 1 m, respectively (Fig. 3.1-10). Determine
the beam width W, and radius of curvature R, at a distance d =
10 c¢m to the right.




Figure 3.1-10 Given W, R, and d, determine W, and R.,,.

EXERCISE 3.1-5

Identification of a Beam with Known Curvatures at
Two Points. A Gaussian beam has radii of curvature R, and R,

at two points on the beam axis separated by a distance d, as
illustrated in Fig. 3.1-11. Verify that the location of the beam
center and its depth of focus may be determined from the
relations

., - —dR—d) (3.1-27)
Ba— By —2d
o Zd(R+ d)(R: — d)(Po— Ry — d) (3.1-28)

(R, — B, — 2d)?

Az
1/?r.

Wo




Figure 3.1-11 Given R, R,, and d, determine z,, z,, Z,, and W,,.

. J/

C. Beam Quality

The Gaussian beam is an idealization that is only approximately
met, even in well-designed laser systems. A measure of the quality
of an optical beam is the deviation of its profile from Gaussian
form. For a beam of waist diameter 2W,,, and angular divergence
20,., a useful numerical measure of the beam quality is provided by
the  -factor, which is defined as the ratio of the waist-diameter—
divergence product, 2W, - 20, (usually measured in units of
mm-mrad), to that expected for a Gaussian beam, which is 2W, -

20, = 4A/7. Thus,

_ 2Wo - 200 (3.1-29)
AXfm

If the two beams have the same waist diameter, the  -factor is
simply the ratio of their angular divergences,

ME

M = 8, /60, (3.1-30)



where 0, = A/nW, = A/aW_, [see (3.1-21)]. Since the Gaussian beam

enjoys the smallest possible divergence angle of all beams with the
same waist diameter, > 1. The specification of the  -factor of
an optical beam thus signifies a divergence angle thatis  times
greater than that of a Gaussian beam of the same waist diameter.

Optical beams produced by commonly available Helium—Neon
lasers usually exhibit < 1.1. Forion lasers, is typically in the
range 1.1-1.3. Collimated TEM ,, diode-laser beams usually exhibit

~1.1-1.7, whereas high-energy multimode lasers display
factors as high as 3 or 4.

For an optical beam that is approximately Gaussian, the  -factor
may be determined by making use of a charge-coupled device (CCD)
camera to measure the intensity profile of the beam at various
locations along the axis of the beam. The beam is focused, by a high-
quality lens with a long focal length and large F,, to a size that is

roughly the same as that of the CCD array [see (3.2-17)]. First, the
beam center is located by finding the plane at which the spot size is
minimized; the waist diameter 2W,, is then measured. The axial
distance from the beam center to the plane at which v the beam
diameter increases by a factor of /2 provides the Rayleigh range
Z,- An estimate of the angular divergence 20,, is obtained by using
the Gaussian-beam relation g,, = \/A/wz,,,, which is obtained from

(3.1-11) and (3.1-20). Finally, the = -factor is computed by means of
(3.1-29).

3.2 TRANSMISSION THROUGH OPTICAL
COMPONENTS

We proceed now to a discussion of the effects of various optical
components on a Gaussian beam. We demonstrate that if a
Gaussian beam is transmitted through a set of circularly symmetric
optical components aligned with the beam axis, the Gaussian beam
remains a Gaussian beam, provided that the overall system



maintains the paraxial nature of the wave. The beam is reshaped,
however — its waist and curvature are altered. The results of this
section are of importance in the design of optical instruments that
rely on Gaussian beams.

A. Transmission Through a Thin Lens

The complex amplitude transmittance of a thin lens of focal length f
is proportional to exp(jkp?/2f) [see (2.4-9)]. When a Gaussian beam
traverses such a component, its complex amplitude, given in (3.1-7),
is multiplied by this phase factor. As a result, although the beam
width is not altered (W’ = W), the wavefront is.

To be specific consider a Gaussian beam centered at z = 0, with
waist radius W, transmitted through a thin lens located at position
z, as illustrated in Fig, 3.2-1. The phase of the incident wave at the
plane of the lens is kz + kp?/2R—-(, as prescribed by (3.1-23), where
R = R(z) and ¢ = {(z) are given in (3.1-9) and (3.1-10), respectively.
The phase of the emerging wave therefore becomes

P rFo F o o1
k2 + ks — ¢~ kg o7 =kz+ kg — ¢, (3.2-1)
where
1 — 1 l (3.2-2)
R R f

Figure 3.2-1 Transmission of a Gaussian beam through a thin lens.



We conclude that the transmitted wave is itself a Gaussian beam
with width W’ = W and radius of curvature R’, where R’ satisfies the
imaging equation 1/R-1/R’ = 1/f. The sign of R is positive since the
wavefront of the incident beam is diverging whereas the opposite is
true of R’.

The parameters of the emerging beam are determined by referring
to the outcome of Exercise 3.1-3, in which the parameters of a
Gaussian beam are determined from its width and curvature at a
given point. Equation (3.1-26) provides that the waist radius is

W

— (3.2-3)
1+ (@W2/AR)?

Wy

whereas (3.1-25) provides that the beam center is located at a
distance from the lens given by

; R

_ (3.2-4)
1+ (AR /mW2)*’

The minus sign in (3.2-4) indicates that the beam waist lies to the
right of the lens. Substituting W — Wy4/1 + (2/29)? and R = z[1 +

(z0/2)?] from (3.1-8), and (3.1-9) into (3.2-2) to (3.2-4), yields a set of

formulas that relate the unprimed parameters of the Gaussian beam
incident on the lens to the primed parameters of the Gaussian beam
that emerges from the lens, as represented in Fig, 3.2-1:

(3.2-5)

Waist location (- f)=M(z—f) (3.2-6)

(3.2-7)
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Divergence angle 20 = (3.2-8)
Fi%
M
Magnification M= r (3.2-9),
8 V14 P2
20 f
— "'Tl'{f'il" = . .2_ a

Parameter Transformation by a Lens

The magnification factor M evidently plays an important role. The
waist radius is magnified by M, the depth of focus is magnified by
M?, and the divergence angle is minified by M.

Limit of Ray Optics

Consider the limiting case in which (z - f) > z,, so that the lens is

well outside the depth of focus of the incident beam (Fig. 3.2-2).
The beam may then be approximated by a spherical wave, and, in
accordance with (3.2-9) and (3.2-92), r << 1 so that M = M,. In this

case (3.2-5)—(3.2-9a) reduce to

(3.2-10)
1 1 1
T = (3.2-11)
z + z f
M~ M, = / : (3.2-12)
z—f




Figure 3.2-2 Beam imaging in the ray-optics limit.

Equations (3.2-10)—(3.2-12), are precisely the relations provided by
ray optics for the location and size of a patch of light of diameter

2W, located at a distance z to the left of a thin lens (see Sec. 1.2C).
Indeed, the magnification factor M, is identically that based on ray

optics. Since (3.2-9) provides that M < M,, the maximum Gaussian-

beam magnification attainable is the ray-optics limit M,. As 2
increases, the magnification is reduced and the deviation from ray
optics widens. Equations (3.2-10)—(3.2-12) also correspond to the
results obtained from wave optics for the focusing of a spherical
wave in the paraxial approximation (see Sec. 2.4B).

B. Beam Shaping

Alens, or sequence of lenses, may be used to reshape a Gaussian
beam without compromising its Gaussian nature. Of course, graded-
index components can serve this purpose as well.

Beam Focusing

For a lens placed at the waist of a Gaussian beam, as illustrated in
Fig. 3.2-3, the appropriate parameter-transformation formulas are
obtained by simply substituting z = 0 in (3.2-5) to (3.2-9a). The
transmitted beam is then focused to a waist radius Wy at a distance
z’ given by



' Wﬂ

W = (3.2-13)
* VT (w/f)

,
L+ (f/z0)F

In the special case when the depth of focus of the incident beam 2z
is much longer than the focal length f of the lens, as illustrated in
Fig. 3.2-4, (3.2-13) reduces to W = (f/z)Wo. Using = = W/ from
(3.1-11), along with (3.1-20), then leads to the simple result

(3.2-14)

Z

. A
Wem i f = bof (3.2-15)
= (3.2-16)

The transmitted beam is then focused in the focal plane of the lens
as would be expected for a collimated beam of parallel rays
impinging on the lens. This result emerges because, at its waist, the
incident Gaussian beam is well approximated by a plane wave. Wave
optics provides that the focused waist radius Ww; is directly
proportional to the wavelength and the focal length, and inversely
proportional to the radius of the incident beam. The spot size
expected from ray optics is, of course, zero, a result that is indeed
obtained from the wave-optics formulas as A — 0.



Figure 3.2-3 Focusing a Gaussian beam with a lens at the beam
waist.

Figure 3.2-4 Focusing a collimated beam.

In many applications, such as laser scanning, laser printing,
compact-disc (CD) burning, and laser fusion, it is desired to
generate the smallest possible spot size. It is clear from (3.2-15) that
this is achieved by making use of the shortest possible wavelength,
the thickest incident beam, and the shortest focal-length lens. Since
the lens must intercept the incident beam, its diameter D should be
at least 2W,,. Taking D = 2W,, and making use of (3.2-15), the

diameter of the focused spot is given by

4 f (3.2-17)
P _ = =

Focused Spot Size



where the F-number of the lens is denoted F,. A microscope

objective with small F- number is often used for this purpose. A

caveat is in order: since (3.2-15) and (3.2-16) are approximate their
validity must always be confirmed before use.



EXERCISE 3.2-1

Beam Relaying. A Gaussian beam of radius W, and
wavelength A is repeatedly focused by a sequence of identical
lenses, each of focal length f and separated by a distance d (Fig,
3.2-5). The focused waist radius is equal to the incident waist
radius, i.e., W} = w,. Using (3.2-6), (3.2-9), and (3.2-9a) show that
this condition can arise only if the inequality d < 4f is satisfied.
Note that this is the same as the ray-confinement condition for a
sequence of lenses derived in Example 1.4-1 using ray optics.

Figure 3.2-5 Beam relaying.

EXERCISE 3.2-2
Beam Collimation. A Gaussian beam is transmitted through a
thin lens of focal length f.

(a) Show that the locations of the waists of the incident and
transmitted beams, z and z’, respectively, are related by

LA 2/ f—1 )
PRl ey e ST (3.2-18)

This relation is plotted in Fig, 3.2-6.




Figure 3.2-6 Relation between the waist locations of the
incident and transmitted beams.

(b) The beam is collimated by making the location of the new
waist z’ as distant as possible from the lens. This is achieved
by using the smallest possible ratio z,/f (short depth of

focus and long focal length). For a given ratio z,/f, show
that the optimal value of z for collimation is z = f + z,,.

(c) Given A =1 um, z, = 1 cm, and f = 50 cm, determine the
optimal value of z for collimation, and the corresponding
magnification M, distance z’, and width ¥} of the collimated
beam.

EXERCISE 3.2-3

Beam Expansion. A Gaussian beam may be expanded and
collimated by using two lenses of focal lengths f, and f,, as
illustrated in Fig, 3.2-7. Parameters of the initial beam (W, z,)
are modified by the first lens to (#w7,:2} and subsequently altered
by the second lens to {¥},=;).. The first lens, which has a short
focal length, serves to reduce the depth of focus 2:¢# of the beam.
This prepares it for collimation by the second lens, which has a




long focal length. The system functions as an inverse Keplerian
telescope.

Figure 3.2-7 Beam expansion using a two-lens system.

(a) Assuming that f, < z and z —f, » z,, use the results of
Exercise 3.2-2 to determine the optical distance d between
the lenses such that the distance z’ to the waist of the final
beam is as large as possible.

(b) Determine an expression for the overall magnification
M — w;swy of the system.

- J/

C. Reflection from a Spherical Mirror

We now examine the reflection of a Gaussian beam from a spherical
mirror. The complex amplitude reflectance of the mirror is
proportional to exp(—jkp?/R) (see Prob. 2.4-10), where by
convention R > 0 for convex mirrors and R < 0 for concave mirrors.
The action of the mirror on a Gaussian beam of width W, and radius

of curvature R, is therefore to reflect the beam and to modify its
phase by the factor —kp?/R, while leaving the beam width unaltered.

The reflected beam therefore remains Gaussian, with parameters
W, and R, given by

We =W (3.2-19)



1 1 2
R R R (3.2-20)

Equation (3.2-20), is identical to (3.2-2) provided f = —R/2. Thus, the
Gaussian beam is modified in precisely the same way as it is by a
lens, except for a reversal of the direction of propagation.

Three special cases, illustrated in Fig, 3.2-8, are of interest:

Figure 3.2-8 Reflection of a Gaussian beam with radius of
curvature R, from a mirror with radius of curvature R:(a) R = ;(b)

R, = =;(c) R, = —R. The dashed curves show the effects of replacing
the mirror by a lens of focal length f = —R/2.

= If the mirror is planar, i.e., R = «, then R, = R,, so that the

mirror reverses the direction of the beam without altering its
curvature, as illustrated in Fig, 3.2-8(a).

= If R, = o, i.e., if the beam waist lies on the mirror, then R, =
R/2. If the mirror is concave (R< 0), R, < 0 so that the reflected
beam acquires a negative curvature and the wavefronts
converge. The mirror then focuses the beam to a smaller spot
size, as illustrated in Fig, 3.2-8(b).

= If R, = —R, i.e., if the incident beam has the same curvature as
the mirror, then R, = R. The wavefronts of both the incident

and reflected waves then coincide with the mirror and the wave
retraces its path as shown in Fig. 3.2-8(c). This is expected
since the wavefront normals are also normal to the mirror so
that the mirror reflects the wave back onto itself. In the
illustration in Fig. 3.2-8(c) the mirror is concave (R < 0); the



incident wave is diverging (R, > 0) and the reflected wave is
converging (R, < 0).

EXERCISE 3.2-4

Variable-Reflectance Mirrors. A spherical mirror of radius
R has a variable power reflectance characterized by

, which is a Gaussian function of the
radial distance p. The reflectance is unity on axis and falls by a

factor 1/e* when p = W,,,. Determine the effect of the mirror on a
Gaussian beam with radius of curvature R, and beam width W,
at the mirror.

- J/

*D. Transmission Through an Arbitrary Optical System

In the paraxial ray-optics approximation, an optical system is
completely characterized by the 2 x 2 ray-transfer matrix relating
the position and inclination of the transmitted ray to those of the
incident ray (see Sec. 1.4). We now consider how an arbitrary
paraxial optical system, characterized by a matrix M of elements (A,
B, C, D), modifies a Gaussian beam (Fig. 3.2-9).

Figure 3.2-9 Modification of a Gaussian beam by an arbitrary
paraxial system described by an ABCD matrix.

The ABCD Law

The g-parameters, g, and g., of the incident and transmitted

Gaussian beams at the input and output planes of a paraxial optical
system described by the (A, B, C, D) matrix are related by



Agi+ B (3.2-21)
P=Ca+D The ABCD Law

Because the complex g-parameter identifies the width W and radius
of curvature R of the Gaussian beam (see Exercise 3.1-3), this
simple expression, called the ABCD law, governs the effect of an
arbitrary paraxial system on a Gaussian beam. The ABCD law will be
established by verification in special cases; its generality will
ultimately be proved by induction.

Transmission Through Free Space

When the optical system is a distance d of free space (or of any
homogeneous medium), the elements of the ray-transfer matrix M
are A=1,B=d,C=0,D =1[see (1.44)]. Since it has been
established earlier that g = z + jz, in free space, the g-parameter is
modified by the optical system in accordance with q, = q, + d. This
is, in fact, is equal to (1 - ¢, + d)/(0 - g, + 1) so that the ABCD law is

seen to apply.

Transmission Through a Thin Optical Component

An arbitrary thin optical component does not affect the ray position
so that

2= (3.2-22)

but does alter the inclination angle in accordance with

#y = Cyy + Dby, (3.2-23)

as illustrated in Fig, 3.2-10. Thus, A =1 and B = 0, but C and D are
arbitrary. However, in all of the thin optical components described
in Sec. 1.4B, D = n,/n,. By virtue of the vanishing thickness of the

component, the beam width does not change, i.e.,



Ha= W (3.2-24)

Moreover, if the beams at the input and output planes of the
component are approximated by spherical waves of radii R, and R,,

respectively, then in the paraxial approximation, when 6, and 0, are
small, 0, = y,/R, and 0, = y,/R,. Substituting these expressions into
(3.2-23), with the help of (3.2-22) we obtain

1 D
ot E (3.2-25)

Using (3.1-6), which is the expression for g as a function of R and W

, and noting that D = n,/n, = A,/A,, (3.2-24) and (3.2-25), can be
combined into a single equation,

1_¢ + E, (3.2-26)
ga 1

from which g, = (1 - g, + 0)/(Cq, + D), so that the ABCD law again
applies.

Invariance of the ABCD Law to Cascading

If the ABCD law is applicable to each of two optical systems with
matrices M; = (4,, B;, C;, D;), 1 = 1, 2, it must also apply to a system
comprising their cascade (a system with matrix M = M,M,). This
may be shown by straightforward substitution.

Figure 3.2-10 Modification of a Gaussian beam by a thin optical
component.

Generality of the ABCD Law



Since the ABCD law applies to thin optical components as well as to
propagation in a homogeneous medium, it also applies to any
combination thereof. All of the paraxial optical systems of interest
are combinations of propagation in homogeneous media and thin
optical components such as thin lenses and mirrors. It is therefore
apparent that the ABCD law is applicable to all of these systems.
Furthermore, since an inhomogeneous continuously varying
medium may be regarded as a cascade of incremental thin elements
followed by incremental distances, we conclude that the ABCD law
applies to these systems as well, provided that all rays (wavefront
normals) remain paraxial.
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EXERCISE 3.2-5

Transmission of a Gaussian Beam Through a
Transparent Plate. Use the ABCD law to examine the
transmission of a Gaussian beam from air, through a
transparent plate of refractive index n and thickness d, and again
into air. Assume that the beam axis is normal to the plate.

3.3 HERMITE-GAUSSIAN BEAMS

The Gaussian beam is not the only beam-like solution of the
paraxial Helmholtz equation (3.1-2). Of particular interest are
solutions that exhibit non-Gaussian intensity distributions but
share the wavefronts of the Gaussian beam. Such beams have the
salutary feature of being able to match the curvatures of spherical
mirrors of large radius, such as those that form an optical resonator,
and reflect between them without being altered. Such self-
reproducing waves are called the modes of the resonator (see
Appendix C). The optics of resonators is discussed in Chapter 11.

Consider a Gaussian beam of complex envelope [see (3.1-5)]



A LT 4yl
Aglz, y,2) = ﬁﬂp l—JkT{;;} : (3.3-1)

where q(z)= z + jz,. Expressions for the beam width W(z) and the
wavefront radius of curvature R(z) are provided in (3.1-8) and (3.1-
9), respectively. Now consider a second wave whose complex
envelope is a modulated version of the Gaussian beam,

Alz,y,2) = :rle'i = ] H{xﬁ

Hf'[z} HEJEZ}] exp[jZ(Z}] AG[I,_U,Z], (3'3_2)

where X(-), Y(-), and Z(-) are real functions. This wave, should it be
shown to exist, has the following two properties:

1. The phase is the same as that of the underlying Gaussian wave,
except for an excess phase Z(z) that is independent of x and y.
If Z(z) is a slowly varying function of z, both waves have
wavefronts with the same radius of curvature R(z). These two
waves are therefore focused by thin lenses and mirrors in
precisely the same manner.

2. The magnitude

- 2 2

a2 a8 | s s | 99
where A, = A,/jz,, is a function of x/W(z) and y/W(z) whose
widths in the x and y directions vary with z in accordance with
the same scaling factor W(z). As z increases, the intensity
distribution in the transverse plane remains fixed, except for a
magnification factor W(z). This distribution is a Gaussian
function modulated in the x and y directions by the functions

X2(-) and Y3(-), respectively.

The modulated wave therefore represents a beam of non-Gaussian
intensity distribution, but it shares the same wavefronts and
angular divergence as the underlying Gaussian wave.



The existence of this wave is assured if three real functions X(+),
Y(-), and Z(z) can be found such that (3,3-2) satisfies the paraxial
Helmholtz equation (3.1-2). Substituting (3,3-2) into (3.1-2), using
the fact that A itself satisfies (3.1-2), and defining two new

variables u= +2z/W(z)and v = +v2 3/ W(z), we obtain

X

1 /8%y 8% 1 /&Y Y
() (e

Fuz — 25 52 Em) + kﬂfz[z}% =0. (3.3-4)
Since the left-hand side of this equation is the sum of three terms,
each of which is a function of a single independent variable, u, v,
and z, respectively, each of these terms must be constant. Equating
the first term to the constant —2u, and the second to —2u,, the third
must be equal to 2(u; + u,). This technique of “separation of
variables” permits us to reduce the partial differential equation (3,3-
4).into three ordinary differential equations, for X(u), Y(v), and
Z(z), respectively:

142X ax
_EE + HH = ,ulflf (3.3'53)
1d°
_Ed—g -+ U?—; = _,LEEH (3'3_5b)
2
) [1 N (j_ﬂ) % = H1 + fa, (33_50)

where we have made use of the expression for W(z) given in (3.1-8),
and (3.1-11).

Equation (3.3-5a) represents an eigenvalue problem (see Appendix
C) whose eigen values are y; = [, where [ = 0, 1, 2,... and whose
eigenfunctions are the Hermite polynomials

These polynomials are defined by the
recurrence relation



(3.3-6)
with

(3.3-7)
Thus,

(3.3-8)
Similarly, the solutions of (3.3-5b) are u, = m and

where m = 0, 1, 2,.... There is therefore a
family of solutions labeled by the indices (I, m). Substituting u, =1

and u, = m in (3.3-5¢), and integrating, we obtain

2{z} = (I + m) ¢(2), (3.3-9)

where {(z) = tan"'(z/z,). The excess phase Z(z) thus varies slowly

between —({ + m) ;r/2 and +(l + m) ;t/2, as z varies between —~ and
o (see (3.1-10) and Fig, 3.1-5).

Complex Amplitude

Finally, substitution into (3.3-2), yields an expression for the
complex envelope of the beam labeled by the indices (I, m).
Rearranging terms and multiplying by exp(—jkz) provides the
complex amplitude

Wo (3.3-10)
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Hermite—Gaussian Beam

where



Gilw) M) ep{ - ). 1=0.1.2... (3.3-11)

is known as the Hermite—Gaussian function of order /, and A4;,,
is a constant.

Since the Hermite—Gaussian function of order o0 is simply
the Gaussian function. Continuing to higher order,

Gi(u) = 2u exp_[—uzf"?] is an odd function, Gz} = {4u® — 2) exp{—u2/2} 1S
even, Ga(u) = (8 — 12u)exp{—u?/2) is 0odd, and so on. These functions
are displayed schematically in Fig, 3.3-1.

Figure 3.3-1 Low-order  Hermite—Gaussian  functions:

An optical wave with complex amplitude given by (3.3-10) is known
as a Hermite—Gaussian beam of order (/, m), which is often
denoted HGy,,,. The Hermite—Gaussian beam of order (0, 0), namely

HG,,, is the simple Gaussian beam.

Intensity Distribution

The optical intensity of the HG,, Hermite—Gaussian beam, I;,,, =
|Upm|?, 1s given by

[ viz

Fiom(Z, 4, 2) = | At l e ] HW(z)

W G2 [p‘;’; y}] (3.3-12)

Figure 3.3-2 illustrates the dependence of the intensity on the
normalized transverse distances « = v2 z/W(z) and v = v/2 y/W{z) for
several values of [ and m. Beams of higher order have larger widths
than those of lower order, as is evident in Fig, 3.3-1. Regardless of



the order, however, the width of the beam is proportional to W(z);
thus, as z increases, the transverse spatial extent of the intensity
pattern is magnified by the factor W(z)/W, but otherwise maintains

its profile. The only circularly symmetric member of the family of
Hermite—Gaussian beams is the elementary Gaussian beam itself.

Figure 3.3-2 Intensity distributions of several low-order Hermite—
Gaussian beams, HGy,,, in the transverse plane. The HG,, beam is

the elementary Gaussian beam displayed in Fig,. 3.1-1.

The Hermite—Gaussian beam defined in (3,3-10) may be
generalized by ascribing different beam widths to its x and y
components, W,(z) and Wy(z), respectively, thereby defining the

elliptic Hermite—Gaussian beam. Because (3.3-10) is a
separable function of x and y, this constitutes yet another exact
solution of the paraxial Helmholtz equation. A special case is the
elliptic Gaussian beam that appears in Prob. 3.1-8; it exhibits
elliptical, rather than circular, contours of constant intensity.

3.4 LAGUERRE-GAUSSIAN BEAMS

Laguerre—-Gaussian Beams

The Hermite—Gaussian beams form a complete set of solutions to
the paraxial Helmholtz equation. Any other solution can be written
as a superposition of these beams. An alternate complete set of
solutions, known as Laguerre—Gaussian beams, is obtained by
writing the paraxial Helmholtz equation in cylindrical coordinates
(p, ¢, z) and then using the separation-of-variables technique in p



and ¢, rather than in x and y. The complex amplitude of the
Laguerre—Gaussian beam, denoted LGy,,, can be expressed as

Uim{0:9,2) = Aim [me (#5) | Lf“(w?f;z}) E"‘“"(‘wfizj) (34-1)

2
. . 2 ir .
® Exp[—jkz—jkzﬂfz} FHe+ I +2m+ 1) C[z}] .

where the represent generalized Laguerre polynomials,3 and
where W(z), R(z), {(z), and W are given by (3.1-8)—(3.1-11). The
integers [ = 0, 1, 2,... and m = 0, 1, 2,... are azimuthal and radial
indices, respectively. The lowest-order Laguerre— Gaussian beam
LG, like the lowest-order Hermite—Gaussian beam HG, is the

simple Gaussian beam.
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EXERCISE 3.4-1

Laguerre—Gaussian Beam as a Superposition of
Hermite—Gaussian Beams. Demonstrate that the Laguerre—
Gaussian beam LG, is equivalent to the superposition of two

Hermite— Gaussian beams, HG,, and HG, ,, with equal
amplitudes and a phase shift of 7/2, i.e., LG,, = 4 (HG,, +
JHG,,).

. /

The intensity of the Laguerre—Gaussian beam, which is
proportional to the absolute square of (3.4-1), is a function of p and
z, but not of ¢, so that it is circularly symmetric. As illustrated in
Fig. 3.4-1(a), the transverse intensity distribution for the LG, , beam
assumes a toroidal shape. Its peak value is attained at a radius of

¢ = 4/1/2 W(z), which increases with the distance z from the beam
center (much as for the Gaussian beam). Beams of any order [ + 0
are also toroidal when m = 0, and attain their peak values at radii
VvI2W(z). All beams with [ # 0 have zero intensity at the beam center



(p = 0); those with a radial index m > o take the form of multiple
rings.

Figure 3.4-1 The Laguerre-Gaussian beam LG,,.(a) The

transverse intensity distribution takes the form of a toroid. (b) The
phase component l¢, plotted for [ = 1, is a linear function of the
azimuthal angle ¢ .(c) The wavefront is a left-handed helical surface
that undergoes corkscrew-like motion as it travels in the z direction.

The phase behavior of the Laguerre—Gaussian beam has the same
dependence on p and z as does the Gaussian beam [see (3.1-7)],
with two notable exceptions: (1) the Gouy phase is enhanced by the
factor (I + 2m + 1), and (2) there is an additional phase factor «7#
that is proportional to the azimuthal angle ¢. The phase component
[4, illustrated in Fig. 3.4-1(b) for [ = 1, is associated with the phase
factor exp(—jlg) [see (3.1-23) and associated footnote]. It results in
the wavefront assuming the form of a left-handed helix that
undergoes corkscrew-like motion as the wave advances in the z
direction, as shown in Fig. 3.4-1(c). Beams with [ > 1 have
wavefronts comprising [ distinct but intertwined helices. The pitch
of each helix is IA and the F sign determines its handedness.

As discussed in Sec. 2.5A, the phase of an optical beam may be
determined by detecting its interference with an auxiliary optical
field of known form (e.g., a plane wave). The phase of a Laguerre—
Gaussian beam can be readily observed by detecting its
superposition with another Laguerre—Gaussian beam of the same
order but opposite handedness. Such a superposition, which



constitutes a form of standing wave, has an intensity proportional to
| exp(—jlg) + exp(jlp)|? = 4 cos?(l$), explicitly illustrating that the
resulting intensity is sensitive to l¢ as shown in Fig, 3.4-2. The
number of angular interference fringes is equal to 2l.

Figure 3.4-2 Transverse intensity distributions of the
superposition of two Laguerre—Gaussian beams of the same order
LGy, but opposite handedness. The dashed white lines signify the

loci of zero intensity (the nodes of the standing waves). The number
of such lines is equal to the azimuthal order [. As the azimuthal
angle ¢ moves from one node to the next, the phase changes by 2.

Laguerre—Gaussian beams may be directly generated as laser modes
or as combinations of Hermite—Gaussian laser modes, as discussed
in Exercise 3.4-1. A Gaussian beam may be converted into an
Laguerre—Gaussian beam by imparting to it the phase factor
exp(—jlg) with the help of a spiral phase plate, a dielectric slab
whose optical thickness increases linearly with ¢ [see Fig. 3.4-1(b)].
However, the method of choice for converting a Gaussian beam to a
Laguerre—Gaussian beam is to make use of a diffractive optical
element, or hologram, endowed with a fork dislocation centered on
the beam axis, as exhibited in Example 4.5-3.

Beams with spiral phase carry orbital angular momentum. This may
be understood by observing that an optical wave carries linear
momentum that points along the direction orthogonal to its
wavefronts (see Secs. 5.1 and 13.1D), which is also the direction of
the optical rays. Since rays orthogonal to the helical wavefront of a
Laguerre—Gaussian beam have azimuthal components that revolve
about the beam axis, their linear momentum is accompanied by



orbital angular momentum. This can also be visualized by
considering that refracted optical rays incident on the surface of a
spiral phase plate acquire azimuthal components [see Fig. 3.4-1(b)].
By virtue of their orbital angular momentum, Laguerre—Gaussian
beams can exert a mechanical torque on micro-objects and can thus
be used to manipulate microparticles.

Optical Vortices

An optical vortex is an optical field that exhibits a line of zero
optical intensity, such as the line along the axis of a Laguerre—
Gaussian beam with [ # o. It is also called a screw dislocation since
the phase of the field is twisted like a corkscrew about the axis of
travel. An optical vortex in a plane is a point at which the optical
field vanishes; it is also called a phase singularity. An example of
the latter is the point (x, y) = (0, 0) in the transverse plane of the
Laguerre—Gaussian beam illustrated in Fig. 3.4-1(a).

The strength of a vortex is indicated by its topological charge,
which is determined by the number of full twists that the phase
undergoes in a distance of one wavelength. For the Laguerre—
Gaussian beam, the topological charge is the azimuthal index 1,
which is indicated by the number of lines of zero intensity that
appear in the standing wave generated by the combination of two
beams of the same order but opposite handedness, as illustrated in
Fig. 3.4-2. This number also determines the orbital angular
momentum of the associated photon, as will be discussed in Sec.
13.1D.

Optical vortex beams can assume forms that are far more complex
than the simple Laguerre—Gaussian beam. Interference among
three or more randomly directed plane-wave components of similar
intensities always results in a field cross-section that contains many
vortices. Such beams often exhibit unusual and dramatic properties
— the field surrounding a vortex can, for example, tangle and form

links and knots.#



Ince—Gaussian Beams

As discussed in Sec. 3.3 and at the beginning of this section,
Hermite—Gaussian and Laguerre—Gaussian beams form complete
sets of exact solutions to the paraxial Helmholtz equation, in
Cartesian and cylindrical coordinates, respectively. A third complete

set of exact solutions, known as Ince—Gaussian (IG) beams,® exists
in elliptic cylindrical coordinates, another three-dimensional
orthogonal coordinate system. The transverse structure of these
beams is characterized by Ince polynomials, which have an intrinsic
elliptical character. Laguerre—Gaussian and Hermite—Gaussian
beams are limiting forms of Ince—Gaussian beams when the
ellipticity parameter is 0 and «, respectively.

3.5 NONDIFFRACTING BEAMS

A. Bessel Beams

In the search for beam-like waves, it is natural to attempt to
construct waves whose wavefronts are planar but whose intensity
distributions are nonuniform in the transverse plane. Consider, for
example, a wave with complex amplitude

Ur) = A{z,y)e 1. (3.5-1)

In order that this wave satisfy the Helmholtz equation (2.2-7), A2U
+ k2U = o, the quantity A(x, y) must satisfy

Vi TREA =0 (3.5-2)

where g2 1 82 — k?and V2 = & /822 + 8% /& 1S the transverse Laplacian
operator. Equation (3,5-2), known as the two-dimensional
Helmholtz equation, may be solved by employing the method of
separation of variables. Using polar coordinates (x = p cos ¢,y =p
sin ¢), the result turns out to be



— jrrds " =
Alz,y) = A Jmikrp) ™, 0,+1,£2,..., (3.5-3)

where J_ (+) is the Bessel function of the first kind and mth order,
and A,, is a constant. Solutions of (3,5-3) that are singularat p = 0
are not included.

For m = 0, the wave has complex amplitude

Ufr) = Ay Jo(krp) e 97, (3.5-4)

and therefore has planar wavefronts — the wavefront normals
(rays) are all parallel to the z axis. The intensity distribution

Fp, ¢, 2) = [Aof2 3 (krp) 1s circularly symmetric and varies with p as
illustrated in Fig, 3.5-1(a); it is independent of z so that there is no
spread of the optical power. This wave is known as the Bessel
beam.

Figure 3.5-1 (a) The intensity distribution of the Bessel beam in
the transverse plane is independent of z. The beam is nondiffracting
and therefore does not diverge. (b) Transverse intensity distribution
of a Gaussian beam for comparison with the Bessel beam.

Parameters are selected such that the peak intensities and 1/e®
widths are identical in both cases.

It is useful to compare the Bessel beam with the Gaussian beam.
Whereas the complex amplitude of the Bessel beam is an exact



solution of the Helmholtz equation, the complex amplitude of the
Gaussian beam is only an approximate solution thereof (since its
complex envelope is an exact solution of the paraxial Helmholtz
equation). The intensity distributions of these two beams are
compared graphically in Fig, 3.5-1.

It is apparent that the asymptotic behavior of these distributions in
the limit of large radial distances is significantly different. The
intensity of the Gaussian beam decreases exponentially with p as
exp[-2p%/W?3(z)]. The intensity of the Bessel beam, on the other
hand, decreases as J§(krp) = (2/7krp) cos® (krp — w/4), which is an
oscillatory function superimposed on a slow inverse-power-law
decay with p. As a consequence, the transverse RMS width of the
Gaussian beam, o = %W(z}, is finite, while the transverse RMS
width of the ideal Bessel beam is infinite for all z (see Appendix A,
Sec. A.2 for the definition of RMS width). This is a manifestation of
the tradeoff between beam size and divergence: the RMS width of
the ideal Bessel beam is infinite and its divergence is zero, just as
for the ideal plane wave.

As shown in Examples 2.4-1 and 4.3-5, the Bessel beam is associated
with a continuum of plane waves whose directions form a cone of
fixed half angle with respect to the propagation direction. It can be
implemented by use of an axicon [Fig. 1.2-12(c)]. A derivation of the
complex amplitude for the Bessel beam along with a general
discussion of nondiffracting beams from the perspective of Fourier
optics is provided in Sec. 4.3C.

A hybrid beam, called a Bessel-Gaussian beam, is a Bessel beam
modulated by a Gaussian function of the radial coordinate p. The
Gaussian serves as a window function that accelerates the slow
radial decay of the Bessel beam (see Fig. 3.5-1). The Bessel-
Gaussian beam can be generated by illuminating an axicon with a
Gaussian beam.

*B. Airy Beams



In analogy with the Bessel beam, the Airy beam arises as a
diffraction-free exact solution to the paraxial Helmholtz equation
(2.2-23). Although the shape of its transverse intensity distribution
is maintained, the beam center is transversally displaced in an
accelerated manner as it propagates along the axial direction,? as
shown in Fig. 3.5-2.

The complex envelope of the Airy beam in one dimension is
expressed as

(3.5-5)

Az, z) =21 + il ex 2 % Vex 2—3
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where Ai(x) is the Airy function, a special function that is the

solution of the Airy differential equation d?y/dx? = xy. The
parameters W, and z, are, respectively, transverse and axial scaling
factors that obey the relation W§ = Azy/w, which also applies to
the Gaussian beam [see (3.1-11)]. At z = 0 the transverse intensity
of the Airy beam, I(x, 0) = Ai* (x/W,), is distinctly asymmetrical as
illustrated on the left-hand side of Fig, 3.5-2. At an arbitrary value of
z, the intensity has the same transverse distribution except that it
exhibits an axially dependent transverse shift = = Wo22/(42)? that
follows a parabolic trajectory, r = 2?/4a with o = 422/W5, thereby
mimicking the path of a ballistic projectile. At z = 4z, for example,

the transverse shift is W, while at z = 20 z, it grows to 25 W,

which provides the rationale for the appellation accelerating
beam.




Figure 3.5-2 Transverse intensity distribution for the Airy beam
I(x, 0) (left) and I(x, z) (right).

The Airy beam may be generated by making use of an optical
Fourier-transform system, as described in Prob. 4.2-6. Applications
of the Airy beam include microscopy and prodding small particles
along curved trajectories.

Other Bessel-like and Airy-like beams with main-lobe intensity
distributions that remain nearly invariant and symmetrical as they
travel can be engineered to propagate along arbitrary trajectories in

free space (including 3D spirals).” These nondiffracting beams,
which can be partially obstructed and yet recover further down the
beam axis (so-called “self-healing”), are useful for applications such
as optical trapping and precision drilling.
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PROBLEMS

3.1-6 Beam Parameters. The light emitted from a Nd:YAG laser at
a wavelength of 1.06 um is a Gaussian beam of 1-W optical
power and beam divergence 20, = 1 mrad. Determine the beam
waist radius, the depth of focus, the maximum intensity, and
the intensity on the beam axis at a distance z = 100 ¢cm from
the beam waist.

3.1-7 Beam Identification by Two Widths. A Gaussian beam of
wavelength A, = 10.6 um (emitted by a CO,, laser) has widths
W, =1.609 mm and W, = 3.380 mm at two points separated by
a distance d = 10 cm. Determine the location of the waist and
the waist radius.

3.1-8 The Elliptic Gaussian Beam. The paraxial Helmholtz
equation admits a Gaussian beam with intensity
Hz,y, 00 = [Aol® expi-2{z*/ W, +¢*/ W )] inthe 2 = 0 plane, with the beam



waist radii W, and W,,,, in the x and y directions, respectively.

The contours of constant intensity are therefore ellipses
instead of circles. Write expressions for the beam depth of
focus, angular divergence, and radii of curvature in the x and y
directions, as functions of W, W, and the wavelength A. If
Wox = 2W,, sketch the shape of the beam spot in the z = 0
plane and in the far field (z much greater than the depths of

focus in both transverse directions).

3.2-6 Beam Focusing. An argon-ion laser produces a Gaussian
beam of wavelength A = 488 nm with waist radius W, = 0.5

mm. Design a single-lens optical system for focusing the light
to a spot of diameter 100 um. What is the shortest focal-length
lens that may be used?

3.2-7 Spot Size. A Gaussian beam of Rayleigh range z, = 50 cm and

wavelength A = 488 nm is converted into a Gaussian beam of
waist radius w; using a lens of focal length f = 5 cm at a
distance z from its waist, as illustrated in Fig, 3.2-2. Plot w; as a
function of z. Verify that in the limit z - f > z,, (3.2-10) and

(3:2-12) hold; and that in the limit z < z, (3.2-13) holds.

3.2-8 Beam Refraction. A Gaussian beam is incident from air (n =
1) into a medium with a planar boundary and refractive index n
= 1.5. The beam axis is normal to the boundary and the beam
waist lies at the boundary. Sketch the transmitted beam. If the
angular divergence of the beam in air is 1 mrad, what is the
angular divergence in the medium?

*3.2-9 Transmission of a Gaussian Beam Through a Graded-
Index Slab. The ABCD matrix of a SELFOC graded-index slab
with quadratic refractive index =y} = nofl - 1a?y* (see Sec. 1.3B)
and length dis A = cos ad, B=(1/a) sin ad, C = —a sin ad, D =
cos ad for paraxial rays along the z direction. A Gaussian beam
of wavelength A, waist radius W in free space, and axis in the

z direction enters the slab at its waist. Use the ABCD law to
determine an expression for the beam width in the y direction



as a function of d. Sketch the shape of the beam as it travels
through the medium.

3.3-2 Power Confinement in Hermite—Gaussian Beams.
Determine the ratio of the power contained within a circle of
radius W(z) in the transverse plane, to the total power, for the
Hermite—Gaussian beams HG,,, HG,,, HG,,, and HG,,. What
is the ratio of the power contained within a circle of radius
W(z) to the total power for the HG,, and HG,, beams?

3.3-3 The Donut Beam. Consider a wave that is a superposition of
two Hermite—Gaussian beams, HG,, and HG,, with equal

intensities. The two beams have independent and random
phases so that their intensities add with no interference. Show
that the total intensity is described by a donut-shaped
(toroidal) circularly symmetric function. Assuming that W, =1

mm, determine the radius of the circle of peak intensity and

the radii of the two circles of 1/e? times the peak intensity at
the beam waist.

3.3-4 Axial Phase. Consider the Hermite—Gaussian beams of all
orders, HG,,, with Rayleigh range z, = 30 cm in a medium of

refractive index n = 1. Determine the frequencies within the
band v = 10'4 £ 2 x 109 H; for which the phase retardation
between the planes z = -z, and z = z,, is an integer multiple of

o along the beam axis. These frequencies are the modes of a
resonator comprising two spherical mirrors placed at the z =
+z,, planes, as described in Sec. 11.2D.

Notes

1 The generalized Laguerre polynomials are expressible as
A few elementary examples are
The generalized



Laguerre polynomials reduce to the simple Laguerre
polynomials when [ = 0.

2 See M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J.
Padgett, Isolated Optical Vortex Knots, Nature Physics, vol. 6, pp.
118—121, 2010.

3 See M. A. Bandres and J. C. Guti”errez-Vega, Ince—Gaussian
Beams, Optics Letters, vol. 29, pp. 144—146, 2004.

4 See G. A. Siviloglou, J. Broky, A. Dogariu, and D. N.
Christodoulides, Observation of Accelerating Airy Beams, Physical
Review Letters, vol. 99, 213901, 2007.

5> See J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N.
K. Efremidis, D. N. Christodoulides, and Z. Chen, Observation of
Self-Accelerating Bessel-Like Optical Beams Along Arbitrary
Trajectories, Optics Letters, vol. 38, pp. 498—500, 2013.

6 The phase ¢(p, z) in (3.1-23), and throughout this chapter, is
related to the phase factor specified in (3.1-7), by exp(—j).

ZSee S. Feng and H. G. Winful, Physical Origin of the Gouy Phase
Shift, Optics Letters, vol. 26, pp. 485—487, 2001.
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Josef von Fraunhofer (1787—-826) developed the diffraction
grating and contributed to our understanding of diffraction. His
epitaph reads Approximavit sidera (he brought the stars closer).

Jean-Baptiste Joseph Fourier (1768—-1830) demonstrated that
periodic functions could be constructed from sums of sinusoids.
Harmonic analysis is the basis of Fourier optics; it has many
applications.

Dennis Gabor (1900-1979) invented holography and
contributed to its development. He made the first hologram in 1947
and received the Nobel Prize in 1971 for carrying out this body of
work.



Fourier optics provides a description of the propagation of light
waves based on harmonic analysis (the Fourier transform) and
linear systems. The methods of harmonic analysis have proved
useful for describing signals and systems in many disciplines.
Harmonic analysis is based on the expansion of an arbitrary
function of time f(t) in terms of a superposition (a sum or integral)
of harmonic functions of time of different frequencies (see
Appendix A, Sec. A.1). The harmonic function F(v) exp(j2zvt), which
has frequency v and complex amplitude F(v), is the building block
of the theory. Several of these functions, each with its own
amplitude F(v), are added to construct the function f(t), as
illustrated in Fig, 4.0-1 . The complex amplitude F(v), as a function
of frequency, is called the Fourier transform of f(t). This approach is
highly useful for analyzing linear systems (see Appendix B, Sec.
B.1). If the response of the system to each harmonic function is
known, the response to an arbitrary input function is readily
determined by the use of harmonic analysis at the input of the
system and superposition at the output.

£

Figure 4.0-1 An arbitrary function f(t) may be analyzed as a sum
of harmonic functions of different frequencies and complex
amplitudes.

An arbitrary complex function f(x, y) of two variables that represent
spatial coordinates in a plane, say x and y, may similarly be written
as a superposition of harmonic functions of x and y, each of the
form F(vy,v,) expl—j2a(v,x + v y)l, where F(vy,v,) 18 the complex
amplitude and v, and v, are the spatial frequencies (cycles per
unit length; typically cycles/mm) in the x and y directions,
respectively.* The harmonic function F(v,, v,) exp[—j27(v,x+v,y)] is
the two-dimensional building block of the theory. It can be used to
generate an arbitrary function of two variables f(x, y), as depicted in
Fig. 4.0-2 and explained in Appendix A, Sec. A.3.



Figure 4.0-2 An arbitrary function f(x, y) may be analyzed in
terms of a sum of harmonic functions of different spatial
frequencies and complex amplitudes, drawn here schematically as
graded blue lines.

The monochromatic plane wave Ul(x, y, z) = A exp[—j(kx + k,y +
k,z)] plays an important role in wave optics. The coefficients (k,, ky,
k,) are the components of the wavevector k, and A is a complex
constant. U(x, y, z) reduces to a spatial harmonic function of the
points in an arbitrary plane. At the z = 0 plane, for example, U(x, vy,
0) becomes the harmonic function f(x, y) = A exp[—j27(v,x + vyy)],
where v, = k, /2 and v, = k, /27 are the spatial frequencies
(cycles/mm), and k, and k, are the spatial angular frequencies
(radians/mm). There is a one-to-one correspondence between the
plane wave U(x, y, z) and the spatial harmonic function f(x,y) = U
(x, y, 0) since knowledge of k, and k,, is sufficient to determine k,
via the relation . As will be explained
subsequently, k, and k,, may not exceed w/c under usual
circumstances; i.e., the spatial frequencies v, and v, may not exceed
the inverse wavelength 1/A.

Since an arbitrary function f(x, y) can be analyzed as a superposition
of harmonic functions, an arbitrary traveling wave U (x, y, z) may be
analyzed in terms of a sum of plane waves (Fig. 4.0-3 ). The plane
wave is thus the building block used to construct a wave of arbitrary
complexity. Furthermore, if it can be determined how a linear
optical system modifies plane waves, the principle of superposition
can be used to establish the effect of the system on an arbitrary
wave.



Figure 4.0-3 The principle of Fourier optics: An arbitrary wave in
free space can be analyzed in terms of a superposition of plane
waves.

Because of the important role that Fourier analysis plays in
describing linear systems, it is useful to consider the propagation of
light through linear optical components, including free space, in
terms of a linear-systems approach. The complex amplitudes at two
planes normal to the optic (z) axis are regarded as the input and
output of the system (Fig. 4.0-4 ). A linear system may be
characterized by either its impulseresponse function, which is
the response of the system to a point (i.e., an impulse) at its input,
or by its transfer function, which is the response of the system to
a set of spatial harmonic functions (as described in Appendix B).



Figure 4.0-4 The transmission of an optical wave U (x, y, z)
through an optical system located between an input plane z = 0 and
an output plane z = d. This configuration is regarded as a linear
system whose input and output are the functions of f(x, y) = U (x, vy,
0) and g(x, y) = U (x, y, d), respectively.

This Chapter

The chapter begins with a Fourier description of the propagation of
monochromatic light in free space (Sec. 4.1). The transfer function
and impulse response function of the free-space propagation system
are determined. In Sec. 4.2 we show that a lens may be used to carry
out the spatial Fourier-transform operation. The transmission of
light through apertures is discussed in Sec. 4.3; this section
comprises a Fourier-optics approach to the diffraction of light, a
subject usually presented in introductory textbooks from the
perspective of the Huygens principle. Section 4.4 is devoted to
image formation and spatial filtering in the context of both ray and
wave optics. Sub-wavelength imaging, in the form of near-field
optical microscopy, is also considered. Finally, an introduction to
holography, the recording and reconstruction of optical waves, is
presented in Sec. 4.5. It is important to understand the basic
properties of Fourier transforms and linear systems in one and two
dimensions (as reviewed in Appendices A and B, respectively) to
follow this chapter.



4.1 PROPAGATION OF LIGHT IN FREE SPACE

A. Spatial Harmonic Functions and Plane Waves

A monochromatic plane wave of complex amplitude U (x, y,z) = A
exp[—j(k,x + kyy + k,z)] has wavevector k =(kx,ky,kz), wavelength A,
wavenumber k¥ =/&2 +k +k2 = 2n/ A, and complex envelope A. The
vector k makes angles 0, = sin"*(k,/k) and Oy = sin‘l(ky/k) with
the y—z and x—z planes, respectively, as illustrated in Fig. 4.1-1 .
Thus, if 0, = 0, there is no component of k in the x direction. The
complex amplitude at the z = 0 plane, U (x, y, 0), is a spatial
harmonic function f(x, y) = A exp[—j27(v,x + v,y)] with spatial
frequencies v, = k, /27 and v, = k, /271. The angles of the wavevector

are therefore related to the spatial frequencies of the harmonic
function by

B =sin”! Ay, By = sin~ ' Ay, (4.1-1),

Spatial Frequencies and Angles

The spatial frequency v = k/2s is specified in cycles/mm, whereas
the optical frequency v = kc/2mt = ¢/A is specified in cycles/sec or H,,
as shown in Sec. 2.2.

Recognizing A, = 1/v, and A, = 1/v, as the periods of the harmonic
functions in the x and y directions (mm/cycle), we see that the
angles 0, = sin™! (A/A,) and 0, = sin™* (A/A,)) are governed by the
ratios of the wavelength of light to the period of the harmonic
function in each direction. These geometrical relations follow from
matching the wavefronts of the wave to the periodic pattern of the
harmonic function in the z = 0 plane, as illustrated in Fig, 4.1-1 .



Figure 4.1-1 A harmonic function of spatial frequencies v, and v,
at the plane z = 0 is consistent with a plane wave traveling at angles
0, = sin”! Av, and 6, = sin™" Av,,.

If k, < k and k,, < k, so that the wavevector k is paraxial, the angles
0, and 6, are small (sin 0, ~ 6, and sin 6, ~ 6,) and

(4.1-2)

Be o2 Avg, By = s,

Spatial Frequencies and Angles (Paraxial Approximation)

The angles of inclination of the wavevector are then directly
proportional to the spatial frequencies of the corresponding
harmonic function. Apparently, there is a one-to-one
correspondence between the plane wave U (x, y, z) and the
harmonic function f(x, y). Given one, the other can be readily
determined, provided the wavelength A is known: the harmonic
function f(x, y) is obtained by sampling at the z = 0 plane, f(x, y) =
U (x, y, 0). Given the harmonic function f(x, y), on the other hand,
the wave U (x, y, z) is constructed by using the relation U (x, y, z) =

fx, y) exp(—jk,z) with

ke =4k B2 K2, k=21/A\ (4.1-3)

A condition for the validity of this correspondence is that ,
so that k, is real. This condition implies that Av, < 1and Av, < 1, so



that the angles 0, and Gy defined by (4.1-1) exist. The + and — signs

in (4.1-3) represent waves traveling in the forward and backward
directions, respectively. We shall be concerned with forward waves
only.

Spatial Spectral Analysis

When a plane wave of unity amplitude traveling in the z direction is
transmitted through a thin optical element with complex amplitude
transmittance f(x, y) = exp[-j27(v,x + v,y)] the wave is modulated

by the harmonic function, so that U (x, y, 0) = f{x, y). The incident
wave is then converted into a plane wave with a wavevector at
angles 0, = sin™! Av, and By =sin! }\vy (see Fig. 4.1-2 ). The element
thus acts much as a prism, bending the wave upward in this
illustration. If the complex amplitude transmittance is f(x, y) =

expl +j271(v,x + v,y)], the wave is converted into a plane wave whose

wavevector makes angles -6, and -6, with the z axis, so the wave is
bent downward instead.

Figure 4.1-2 A thin element whose complex amplitude
transmittance is a harmonic function of spatial frequency v, (period

A, =1/v,) bends a plane wave of wavelength A by an angle 6,. = sin™!

Av, = sin™! (A/A,). The dark blue and white stripes are used to

indicate that the element is a phase grating (changing only the
phase of the wave).

The wave-deflection property of an optical element with harmonic-
function transmittance may be understood as an interference



phenomenon. In a direction making an angle 0,, two points on the
element separated by a the period A = 1/v,, have a relative
pathlength difference of A sin 0, = (1/v,)Av, = A, i.e., equal to a

wavelength. Hence, all segments separated by a period interfere
constructively in this direction.

If the transmittance of the optical element f(x, y) is the sum of
several harmonic functions of different spatial frequencies, the
transmitted optical wave is also the sum of an equal number of
plane waves dispersed into different directions; each spatial
frequency is mapped into a corresponding direction, in accordance
with (4.1-1). The amplitude of each wave is proportional to the
amplitude of the corresponding harmonic component of f(x, y).

Examples.

= A complex amplitude transmittance of the form f(x, y) =
cos(2mv,x) = bends an incident

plane wave into components traveling at angles + sin™! (Av,),
namely in both the upward and downward directions.

= An element with a transmittance that varies as 1 + cos(2yrvyy)
behaves as a diffraction grating (see Exercise 2.4-5); the
incident wave is bent into components that travel to the right
and left, while a portion travels straight through.

= An element with transmittance f(x, y) = U [cos(271v,X)], where
U (x) is the unit step function [U (x) =1ifx>0,and U (x) = 0
if x < 0], represents a periodic set of slits with f(x, y) = 1 set in
an opaque screen [f(x, y) = 0]. This periodic function may be
analyzed via a Fourier series as a sum of harmonic functions of
spatial frequencies o, +v,, £2v,,..., corresponding to waves

traveling at angles 0, + sin™! Av,, + sin™! 2Av,,..., with
amplitudes proportional to the coefficients of the Fourier series
(in the case at hand, these vanish for even harmonics). At these

angles, the waves transmitted through the slits interfere
constructively.



More generally, if f(x, y) is a superposition integral of harmonic
functions,

(4.1-4)

with frequencies (v,, vy) and amplitudes F(v,, vy), the transmitted
wave U (x, y, z) is the superposition of plane waves,

(4.1-5)

with complex envelopes F(v,, vy) where
. Note that F(v,, vy) is the Fourier
transform of f(x, y) [see (A.3-2) in Appendix A].

Since an arbitrary function may be Fourier analyzed as a
superposition integral of the form (4.1-4), the light transmitted
through a thin optical element of arbitrary transmittance may be
written as a superposition of plane waves (see Fig. 4.1-3 ), provided
that

Figure 4.1-3 A thin optical element of amplitude transmittance f{(x,
y) decomposes an incident plane wave into many plane waves. The

plane wave traveling at the angles 0, = sin™ Av, and 0, = sin™" Av,
has a complex envelope F(v,, vy), the Fourier transform of f(x, y).

This process of “spatial spectral analysis” is akin to the angular
dispersion of different temporal-frequency components
(wavelengths) provided by a prism. Free-space propagation serves



as a natural “spatial prism,” sensitive to the spatial rather than the
temporal frequencies of the optical wave.

Amplitude Modulation

Consider a transparency with complex amplitude transmittance
Jo(x, y). If the Fourier transform Fy(v,, v,) extends over widths +Av,

and +Av, in the x and y directions, the transparency will deflect an
incident plane wave by angles 0, and 6, in the range + sin™* (AAv,)
and + sin™! (AAv,), respectively.

Consider a second transparency of complex amplitude
transmittance f(x, y) = f,(x, y) exp[—j27m(v,,x + vyoy)], where f,(x,
y) is slowly varying compared to exp[—j27(v,ox + v,0y)] so that Av,
K vy and Av, K v,,. We may regard f(x, y) as an amplitude-
modulated function with a carrier frequency v, and v,,, and
modulation function f,(x, y). The Fourier transform of f(x, y) is
Fo(Vx = Vxo» Vy — Vyo), In accordance with the frequency-shifting

y
property of the Fourier transform (see Appendix A). The

transparency will deflect a plane wave to directions centered about
the angles 0., = sin™! Av,, and Gyo =sin~! }\vyo (Fig. 4.1-4 ). This can
also be readily seen by regarding f(x, y) as a transparency of
transmittance f,(x, y) in contact with a grating or prism of
transmittance exp[—j27(v,,x + v, 0y)] that provides the angular
deflection 6., and 6,



Figure 4.1-4 Deflection of light by the transparencies f,(x, y) and
folx, y) exp(—j2mv,,x). The “carrier” harmonic function
exp(—j27mv,,Xx) acts as a prism that deflects the wave by an angle 0,

= sin™! Av,,,.

This idea may be used to record two images f;(x, y) and f,(x, y) on
the same transparency using the spatial-frequency multiplexing
scheme f(x, y) = f,(x, y) exp[—j271(vy,x + v, y)] + fo(x, y)
exp[—j271(vyox + v,,y)]. The two images may be easily separated by
illuminating the transparency with a plane wave, whereupon the
two images are deflected at different angles and are thus separated.
This principle will prove useful in holography (Sec. 4.5), where it is
often desired to separate two images recorded on the same
transparency.

Frequency Modulation

The foregoing examples relate to the transmittance of plane waves
through transparencies endowed with one or more 2D harmonic
functions that extend over the entire region of the transparency. We
now examine the transmission of a plane wave through a
transparency comprising a “collage” of several regions, the
transmittance of each of which is a harmonic function of some
spatial frequency, as illustrated in Fig, 4.1-5 . If the dimensions of
each region are much greater than the period, each region acts as a
grating or prism that deflects the wave in a particular direction, so
that different portions of the incident wavefront are deflected into



different directions. This principle may be used to create maps of
optical interconnections, as described in Sec. 24.1A.

Figure 4.1-5 Deflection of light by a transparency made of several
harmonic functions (phase gratings) of different spatial frequencies.

A transparency may also have a harmonic transmittance with a
spatial frequency that varies continuously and slowly with position
(in comparison with A), much as the frequency of a frequency-
modulated (FM) signal varies slowly with time. Consider, for
example, the phase function f(x, y) = exp[—j271¢(x, y)], where @(x,
y) is a continuous slowly varying function of x and y. In the
neighborhood of a point (x,, y,), we may use the Taylor-series
expansion @(x, y) = @(xy, Yo)+(x—x,)Vv, +(y—y0)vy, where the
derivatives v, = d¢/0x and v, = d¢/dy are evaluated at the position
(X5 Yo)- The local variation of f(x, y) with x and y is therefore
proportional to the quantity exp[—j27(v,x+ v, y)], which is a
harmonic function with spatial frequencies v, = d¢/dx and v, = d¢/
dy. Since these derivatives vary with x and y, so do the spatial
frequencies. The transparency f(x, y) = exp[—j27p(x, y)] therefore
deflects the portion of the wave at the position (x, y) by the
position-dependent angles 6, = sin™! (A¢/0x) and 6, = sin™! (Ad¢/
oy).



EXAMPLE 4.1-1.

Scanning. A thin transparency with complex amplitude
transmittance f(x, y) = exp(jorx?/Af) introduces a phase shift
271p(x, y) where @(x, y) = —x*/2Mf, so that the wave is deflected
at the position (x, y) by the angles 0, = sin™! (Ad¢p/0x) = sin™!
(-x/f) and 0, = 0. If |x/f] < 1, 6, =—x/f and the deflection angle
0, is directly proportional to the transverse distance x. This

transparency may be used to deflect a narrow beam of light.
Moreover, if the transparency is moved at a uniform speed, the
beam is deflected by a linearly increasing angle as illustrated in
Fig. 4.1-6 .

Figure 4.1-6 Making use of a frequency-modulated
transparency to scan an optical beam.

Figure 4.1-7 A transparency with transmit-tance f(x,y) =
exp[j(x*+y>)/Mf] acts as a spherical lens with focal length f.




EXAMPLE 4.1-2.

Imaging. If the transparency illustrated in Example 4.1-1 is
illuminated by a plane wave, each strip of the wave at a given
value of x is deflected by a different angle and as a result the
wavefront is altered. The local wavevector at position x bends by
an angle —x/f so that all wavevectors meet at a single line on the
optical axis a distance f from the transparency. The transparency
then acts as a cylindrical lens with a focal length f. Similarly, a
transparency with transmittance f(x, y) = exp[jzr(x® + y?)/Af] acts
as a spherical lens with focal length f, as illustrated in Fig. 4.1-7.
Indeed, this is the expression for the amplitude transmittance of
a thin lens provided in (2.4-9).

\




EXERCISE 4.1-1

Binary-Plate Cylindrical Lens. Use harmonic analysis near
the position x to show that a transparency with complex
amplitude transmittance equal to the binary function

(4.1-6)

where U (x) is the unit step function [U (x) = 1if x > 0, and U (x)
= 0 if x < 0], acts as a cylindrical lens with multiple focal lengths
equal to «, £f, £f/3, £f/5, ....

Figure 4.1-8 Binary plate as a cylindrical lens with multiple
foci.

S J

Fresnel Zone Plate

A two-dimensional generalization of the binary plate in Exercise 4.1-
11is a circularly symmetric transparency of complex amplitude
transmittance

(4.1-7)

known as the Fresnel zone plate. It is a set of ring apertures of
increasing radii, decreasing widths, and equal areas (see Fig. 4.1-9 ).
The structure serves as a spherical lens with multiple focal lengths.
A ray incident at each point is split into multiple rays, and the



transmitted rays meet at multiple foci with focal lengths o, +f, +f/3,
+f/5, ..., together with a component transmitted without deflection.

The operation of the Fresnel zone plate may also be described in
terms of interference (see Sec. 2.5B). The center of the mth ring has
a radius p,, at the mth peak of the cosine function, i.e.,

wp2 /Af = m2m. At afocal point z = f, the distance R, to the mth
ring is given by ffis
sufficiently large so that the angles subtended by the rings are
small, then R, = f +mA. Thus, the waves transmitted through

consecutive rings have pathlengths differing by a wavelength, so
that they interfere constructively at the focal point. A similar
argument applies for the other foci.

Figure 4.1-9 The Fresnel zone plate.

B. Transfer Function of Free Space

We now examine the propagation of a monochromatic optical wave
of wavelength A and complex amplitude U (x, y, z) in the free space
between the planes z = 0 and z = d, called the input and output
planes, respectively (see Fig. 4.1-10 ). Given the complex amplitude
of the wave at the input plane, f(x, y) = U (x, y, 0), we shall
determine the complex amplitude at the output plane, g(x, y) = U (x,

y, d).



Figure 4.1-10 Propagation of light between two planes is regarded
as a linear system whose input and output are the complex
amplitudes of the wave in the two planes.

We regard f(x, y) and g(x, y) as the input and output of a linear
system. The system is linear since the Helmholtz equation, which U
(x, y, z) must satisfy, is linear. The system is shift-invariant because
of the invariance of free space to displacement of the coordinate
system. A linear shift-invariant system is characterized by its
impulse response function h(x, y) or by its transfer function H(v,,

v,), as explained in Appendix B, Sec. B.2. We now proceed to
determine expressions for these functions.

The transfer function H(v,, v,) is the factor by which an input
spatial harmonic function of frequencies v, and v, is multiplied to
yield the output harmonic function. We therefore consider a
harmonic input function f(x, y) = A exp[—j2a(v,x + vyy)]. As
explained earlier, this corresponds to a plane wave U (x,y,z) = A

exp[—j(kx + k,y + k,z)] where k, = 27v,, k,, = 271v,, and

(4.1-8)
The output g(x, y) = A exp[—j(k,x + kyy + k,d)], so that we can write
H(vy, vyy) = g(x, y)/flx, y) = exp(~jk,d), from which

(4.1-9)

Transfer Function of Free Space



The transfer function H(v,, v,) is therefore a circularly symmetric
complex function of the spatial frequencies v, and v,,. Its magnitude
and phase are sketched in Fig. 4.1-11 .

For spatial frequencies for which (i.e., frequencies lying
within a circle of radius 1/A) the magnitude |H(v,, v, )| = 1 and the

phase arg{H(v,, vy)} is a function of v, and vy- A harmonic function

with such frequencies therefore undergoes a spatial phase shift as it
propagates, but its magnitude is not altered.

At higher spatial frequencies, , the quantity under the
square root in (4.1-9), is negative so that the exponent is real and the
transfer function represents an attenuation

factor; the wave is then called an evanescent wave.2, When
exceeds A" slightly, i.e., v, = A™%, the attenua tion
factor is
, which equals exp(—2s) when
the attenuation factor
decreases sharply when the spatial frequency slightly exceeds A%, as

illustrated in Fig, 4.1-11 . We may therefore regard A™! as the cutoff
spatial frequency (the spatial bandwidth) of the system. Thus,

The spatial bandwidth of light propagation in free space is
approximately A~ cycles/mm.

Features contained in spatial frequencies greater than A™!
(corresponding to details of size finer than A) cannot be transmitted

by an optical wave of wavelength A over distances much greater than
A



Figure 4.1-11 Magnitude and phase of the transfer function H(v,,
v,) for free-space propagation between two planes separated by a
distance d.

Fresnel Approximation

The expression for the transfer function in (4.1-9) may be simplified
if the input function f(x, y) contains only spatial frequencies that

are much smaller than the cutoff frequency A™%, so that
The plane-wave components of the propagating light then make
small angles 6, = Av, and 0, = Av, corresponding to paraxial rays.

Denoting , where 0 is the angle with the
optical axis, the phase factor in (4.1-9), is

(4.1-10)

Neglecting the third and higher terms of this expansion, (4.1-9) may
be approximated



(4.1-11)

Transfer Function of Free Space (Fresnel Approximation)

where H, = exp(—jkd). In this approximation, the phase is a
quadratic function of v, and Vys 88 illustrated in Fig, 4.1-12 . This
approximation is known as the Fresnel approximation.

Figure 4.1-12 The transfer function of free-space propagation for
low spatial frequencies (much less than 1/A cycles/mm) has a
constant magnitude and a quadratic phase.

The condition of validity of the Fresnel approximation is that the
third term in (4.1-10), is much smaller than s for all 6. This is
equivalent to

(4.1-12)

If a is the largest radial distance at the output plane, the largest
angle 0,, = a/d, and (4.1-12) may be written in the form [see (2.2-

18)]

(4.1-13)



Fresnel Approximation Condition of Validity
(4.1-14)

Fresnel Number

where Ny is the Fresnel number. For example, if a = 1 ¢cm, d = 100
cm, and A = 0.5 um, then 6,, = 1072 radian, Ny = 200, and Np6%/4 =
5 x 1073, In this case the Fresnel approximation is applicable.

Input-Output Relation

Given the input function f(x, y), the output function g(x, y) may be
determined as follows: (1) we determine the Fourier transform

(4.1-15)

which represents the complex envelopes of the plane-wave
components at the input plane; (2) the product H(v,, vy) F(v,, vy)
gives the complex envelopes of the plane-wave components at the
output plane; and (3) the complex amplitude at the output plane is
the sum of the contributions of these plane waves,

(4.1-16)

Using the Fresnel approximation for H(v,, vy), which is given by
(4.1-11), we have

(4.1-17)



Equations (4.1-17) and (4.1-15), serve to relate the output function
g(x, y) to the input function f(x, y).

C. Impulse Response Function of Free Space

The impulse response function h(x, y) of the system of free-space
propagation is the response g(x, y) when the input f(x, y) is a point
at the origin (0, 0). It is the inverse Fourier transform of the
transfer function H(v,, vy). Using the results of Sec. A.3 and Table
A.1-1 of Appendix A, together with k = 277/A, the inverse Fourier
transform of (4.1-11) turns out to be

(4.1-18)

Impulse Response Function Free Space (Fresnel Approximation)

where h, =(j/Ad) exp(—jkd). This function is proportional to the
complex amplitude at the z = d plane of a paraboloidal wave
centered about the origin (0, 0) [see (2.2-17)]. Thus, each point at
the input plane generates a paraboloidal wave; all such waves are
superimposed at the output plane.

Free-Space Propagation as a Convolution

An alternative procedure for relating complex amplitudes f(x, y) and
g(x, y) is to regard f(x, y) as a superposition of different points
(delta functions), each producing a paraboloidal wave. The wave
originating at the point (x’, y’) has an amplitude f(x’, y’) and is
centered about (x’, y’) so that it generates a wave with amplitude
fx’,y") h (x - x',y — y’) at the point (x, y) at the output plane. The
sum of these contributions is the two-dimensional convolution

(4.1-19)

which, in the Fresnel approximation, becomes



(4.1-20)

where h, = (j/Ad) exp(—jkd).

In summary: within the Fresnel approximation, there are two
approaches to determining the complex amplitude g(x, y) at the
output plane, given the complex amplitude f(x, y) at the input plane:
(1) Equation (4.1-20), is based on a space-domain approach in which
the input wave is expanded in terms of paraboloidal elementary
waves; and (2) Equation (4.1-17) is a frequency-domain approach in
which the input wave is expanded as a sum of plane waves.
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EXERCISE 4.1-2

Gaussian Beams Reuvisited. If the function

represents the complex amplitude of an
optical wave U (x, y, z) in the plane z = 0, show that U (x, y, z) is
the Gaussian beam displayed in (3.1-7). Use both space-and
frequency-domain methods.

. /

D. Huygens—Fresnel Principle

The Huygens—Fresnel principle states that each point on a
wavefront generates a spherical wave (Fig. 4.1-13 ). The envelope of
these secondary waves constitutes a new wavefront. Their
superposition constitutes the wave in another plane. The system’s
impulse response function for propagation between the planes z = 0
and z = d is

(4.1-21)



Figure 4.1-13 The Huygens— Fresnel principle. Each point on a
wavefront generates a spherical wave.

In the paraxial approximation, the spherical wave given by (4.1-21)
is approximated by the paraboloidal wave in (4.1-18) (see Sec. 2.2B).
Our derivation of the impulse response function is therefore
consistent with the Huygens—Fresnel principle.

4.2 OPTICAL FOURIER TRANSFORM

As has been shown in Sec. 4.1, the propagation of light in free space
is described conveniently by Fourier analysis. If the complex
amplitude of a monochromatic wave of wavelength Ainthe z = 0
plane is a function f(x, y) composed of harmonic components of
different spatial frequencies, each harmonic component
corresponds to a plane wave: the plane wave traveling at angles 0,. =

sin™! Av,, 6, = sin™! Av,, corresponds to the components with spatial
frequencies v, and v, and has an amplitude F(v,, v,), the Fourier

transform of f(x, y). This suggests that light can be used to compute
the Fourier transform of a two-dimensional function f(x, y), simply
by making a transparency with amplitude transmittance f(x, y)
through which a uniform plane wave of unity magnitude is
transmitted.

Because each of the plane waves has an infinite extent and therefore
overlaps with the other plane waves, however, it is necessary to find
a method of separating these waves. It will be shown that at a
sufficiently large distance, only a single plane wave contributes to
the total amplitude at each point at the output plane, so that the



Fourier components are eventually separated naturally. A more
practical approach is to use a lens to focus each of the plane waves
into a single point, as described subsequently.

A. Fourier Transformin the Far Field

We now proceed to show that if the propagation distance d is
sufficiently long, the only plane wave that contributes to the
complex amplitude at a point (x, y) at the output plane is the wave
with direction making angles 0, = x/d and 0, = y/d with the optical
axis (see Fig. 4.2-1 ). This is the wave with wavevector components
k. = (x/d)k and ky = (y/d)k and amplitude F(v,, vy) with v, = x/A\d
and v,, = x/Ad. The complex amplitudes g(x, y) and f(x, y) of the
wave at the z = d and z = 0 planes are related by

(4.2-1)

Free-Space Propagation as Fourier Transform (Fraunhofer
Approximation)

where F(v,, v,) is the Fourier transform of f(x, y) and h,, = (j/Ad)

exp(—jkd). Contributions of all other waves cancel out as a result of
destructive interference. This approximation is known as the
Fraunhofer approximation.



Figure 4.2-1 When the distance d is sufficiently long, the complex
amplitude at point (x, y) in the z = d plane is proportional to the
complex amplitude of the plane-wave component with angles 0, =

x/d = Av, and Gy = y/d = \v,, i.e., to the Fourier transform F(v,, vy)
of f(x, y), with v, = x/Ad and v, = y/Ad.

As noted in the following proofs, the conditions of validity of
Fraunhofer approximation are:

(4.2-2)

Fraunhofer Approximation Condition of Validity

The Fraunhofer approximation is therefore valid whenever the
Fresnel numbers Ny and  are small. The Fraunhofer
approximation is more difficult to satisfy than the Fresnel
approximation, which requires that [see (4.1-13)]. Since
0., < 11in the paraxial approximation, it is possible to satisfy the
Fresnel condition 1 for Fresnel numbers Np not necessarily

< 1.
Proofs of the Fourier Transform Property of Free-Space

Propagation in the Fraunhofer Approximation. We begin
with the relation between g(x, y) and f(x, y) in (4.1-20). The phase



in the argument of the exponent is (;1/Ad)[ (x—x")? +(y-y")?] = (s1/
AD)[(x*+y?)+(x?+y"?)—20cx’+ yy’)]. If f(x, y) is confined to a small
area of radius b, and if the distance d is sufficiently large so that the
Fresnel number N’ = b2/Ad is small, then the phase factor (;1/Ad)
(x”? + y”?) < m(b*/Ad) is negligible and (4.1-20) may be
approximated by

(4.2-3)

The factors x/Ad and y/Ad may be regarded as the frequencies v, =
x/Ad and v, = y/Ad, so that

(4.2-4)
where F(v,, vy) is the Fourier transform of f(x, y). The phase factor

given by exp[ —jm(x*+y?)/Ad] in (4.2-4) may also be neglected and
(4.2-1) obtained if we also limit our interest to points at the output
plane within a circle of radius a centered about the z-axis so that
7(x? + y?)/Ad < ma®/Ad < m1. This is applicable when the Fresnel

number Ny = a?/Ad < 1.

Another proof is based on (4.1-17), which expresses the complex
amplitude g(x, y) as an integral of plane waves of different
frequencies. If d is sufficiently large so that the phase in the
integrand is much greater than 2, it can be shown using the
method of stationary phase3 that only one value of v, contributes to
the integral. This is the value for which the derivative of the phase

with respect to v, vanishes; i.e., v, = x/Ad. Similarly, the
only value of v, that contributes to the integral is v,, = y/Ad. This
proves the assertion that only one plane wave contributes to the far
field at a given point. m
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EXERCISE 4.2-1

Conditions of Validity of the Fresnel and Fraunhofer
Approximations: A Comparison. Demonstrate that the
Fraunhofer approximation is more restrictive than the Fresnel
approximation by taking A = 0.5 um, and assuming that the
object points lie within a circular aperture of radius b = 1 cm and
the observation points lie within a circular aperture of radius a =
2 cm. Determine the range of distances d between the object
plane and the observation plane for which each of these
approximations is applicable.

Summary

In the Fraunhofer approximation, the complex amplitude g(x, y)
of a wave of wavelength A in the z = d plane is proportional to
the Fourier transform F(v,, vy) of the complex amplitude f(x, y)
in the z = 0 plane, evaluated at the spatial frequencies v, = x/Ad

and v, = y/Ad. The approximation is valid if f(x, y) at the input

plane is confined to a circle of radius b satisfying b>/Ad «< 1, and
at points at the output plane within a circle of radius a satisfying

a2/Ad < 1.

B. Fourier Transform Using a Lens

The plane-wave components that constitute a wave may also be
separated by use of a lens. A thin spherical lens transforms a plane
wave into a paraboloidal wave focused to a point in the lens focal
plane (see Sec. 2.4 and Exercise 2.4-3). If the plane wave arrives at
small angles 6, and 6,, the paraboloidal wave is centered about the

point (0.f, ny), where fis the focal length (see Fig, 4.2-2 ). The lens
therefore maps each direction (6,, 6,) into a single point (6,f, 6,f) in



the focal plane and thus separates the contributions of the different
plane waves.

Figure 4.2-2 Focusing of a plane wave into a point. A direction (6,,
Oy) is mapped into a point (x, y) = (0.f, ny). (see Exercise 2.4-3.)

In reference to the optical system shown in Fig. 4.2-3 , let f(x, y) be
the complex amplitude of the optical wave in the z = 0 plane. Light
is decomposed into plane waves, with the wave traveling at small
angles 0, = Av, and 6, = Av, having a complex amplitude
proportional to the Fourier transform F(v,, v, ). This wave is focused
by the lens into a point (x, y) in the focal plane where x = 0.f = Afv,
and y = 0,f = Afv,. The complex amplitude at point (x, y) at the
output plane is therefore proportional to the Fourier transform of
Sfx, y) evaluated at v, = x/Af and v, = y/Af, so that

(4.2-5)

To determine the proportionality factor in (4.2-5), we analyze the
input function f(x, y) into its Fourier components and trace the
plane wave corresponding to each component through the optical
system. We then superpose the contributions of these waves at the
output plane to obtain g(x, y). Assuming that these waves are
paraxial and using the Fresnel approximation, we obtain:

(4.2-6)



Figure 4.2-3 Focusing of the plane waves associated with the
harmonic Fourier components of the input function f(x, y) into
points in the focal plane. The amplitude of the plane wave with
direction (0, Hy) = (Av,, Avy) is proportional to the Fourier
transform F(v,, vy) and is focused at the point (x, y) = (0.f, Gyf) =
Afve Afvy).

where h; = H,h, = (j/Af) expl—jk(d + f)]. Thus, the coefficient of
proportionality in (4.2-5) contains a phase factor that is a quadratic
function of x and y.

Since |h;| = 1/Af it follows from (4.2-6) that the optical intensity at
the output plane is

(4.2-7)

The intensity of light at the output plane (the back focal plane of the
lens) is therefore proportional to the absolute-squared value of the
Fourier transform of the complex amplitude of the wave at the
input plane, regardless of the distance d.

The phase factor in (4.2-6), vanishes if d = f, so that

(4.2-8)

Fourier-Transform Property of a Lens



where h; = (j/Af) exp(—j2kf). In this geometry, known as the 2-f
system (see Fig. 4.2-4), the complex amplitudes at the front and
back focal planes of the lens are related by a Fourier transform, both
magnitude and phase.

Figure 4.2-4 The 2-f system. The Fourier component of f(x, y)
with spatial frequencies v, and v, generates a plane wave at angles

0, = Av, and 0, = Av, and is focused by the lens to the point (x, y) =
(f0, 19,) = (AMfvy, Afvy) so that g(x, y) is proportional to the Fourier
transform F(x/Af, y/Af).

Summary

The complex amplitude of light at a point (x, y) in the back focal
plane of a lens of focal length fis proportional to the Fourier
transform of the complex amplitude in the front focal plane
evaluated at the frequencies v, = x/Af, v, /Af. This relation is valid
in the Fresnel approximation. Without the lens, the Fourier

transformation is obtained only in the Fraunhofer
approximation, which is more restrictive.

*Proof of the Fourier Transform Property of the Lens in
the Fresnel Approximation. The proof takes the following four
steps.

1. The plane wave with angles 6, = Av, and 6, = Av, has a complex

amplitude U (x, y, 0) = F(v,, v,) exp[—j27(v,x + v y)] in the z =

o plane and U (x, y, d) = H(v,, vy) F(v,, vy) exp[—j2m(v,x +



vyy)] in the z = d plane, immediately before crossing the lens,

where is the transfer function of a
distance d of free space and H,, = exp(—jkd).

2. Upon crossing the lens, the complex amplitude is multiplied by

the lens phase factor exp[jor(x2 + y2)/Af] [the phase factor
exp(—jkA), where A is the width of the lens, has been ignored].
Thus,

(4.2-9)

This expression is simplified by writing
, with x, = Av,f; a
similar relation for y is written with y, = Av,f, so that

(4.2-10)
where

(4.2-11)
Equation (4.2-10), is recognized as the complex amplitude of a
paraboloidal wave converging toward the point (x,, y,) in the

lens focal plane, z = d +A+ f.

3. We now examine the propagation in the free space between the
lens and the output plane to determine U (x, y, d +A+ f). We
apply (4.1-20) to (4.2-10), use the relation f exp[j2m(x — x,)x’ /
M1 dx’ = Af6(x — x,), and obtain

(4.2-12)
where h, = (j/Af) exp(—jkf). Indeed, the plane wave is focused

into a single point at x, = Av,f and y, = Av,/f.

4. The last step is to integrate over all the plane waves (all v, and
v,)- By virtue of the sifting property of the delta function, 6(x -



xX,) = 6(x — Afv,) = (1/AN)6(v, — x/Af), this integral gives g(x, y)
= h,A(x/Af, y/Af). Substituting from (4.2-11) we finally obtain
(4.2-6).m

EXERCISE 4.2-2

The Inverse Fourier Transform. In the single-lens optical
system depicted in Fig, 4.2-4 , the field distribution in the front
focal plane (z = 2f) is a scaled version of the Fourier transform
of the field distribution in the back focal plane (z = 0). Verify
that if the coordinate system in the front focal plane is inverted,
i.e., (x, y) — (—x, —y), then the resultant field distribution yields
the inverse Fourier transform.

. J/

4.3 DIFFRACTION OF LIGHT

When an optical wave is transmitted through an aperture in an
opaque screen and travels some distance in free space, its intensity
distribution is called the diffraction pattern. If light were treated as
rays, the diffraction pattern would be a shadow of the aperture.
Because of the wave nature of light, however, the diffraction pattern
may deviate slightly or substantially from the aperture shadow,
depending on the distance between the aperture and observation
plane, the wavelength, and the dimensions of the aperture. An
example is illustrated in Fig. 4.3-1 . It is difficult to determine
exactly the manner in which the screen modifies the incident wave,
but the propagation in free space beyond the aperture is always
governed by the laws described earlier in this chapter.




Figure 4.3-1 Diffraction pattern of the teeth of a saw. (Adapted
from M. Cagnet, M. Franc on, and J. C. Thrierr, Atlas of Optical
Phenomena, Springer-Verlag, 1962.)

The simplest theory of diffraction is based on the assumption that
the incident wave is transmitted without change at points within the
aperture, but is reduced to zero at points on the back side of the
opaque part of the screen. If U (x, y) and f(x, y) are the complex
amplitudes of the wave immediately to the left and right of the
screen (Fig. 4.3-2 ), respectively, then in accordance with this
assumption,

(4.3-1)
where

(4.3-2)

is called the aperture function.



Figure 4.3-2 A wave U (x, y) is transmitted through an aperture of
amplitude transmittance p(x, y), generating a wave of complex
amplitude f(x, y) = U (x, y)p(x, y). After propagation a distance d in
free space, the complex amplitude is g(x, y) and the diffraction

pattern is the intensity I(x, y) = |g(x, y)|>.

Given f(x, y), the complex amplitude g(x, y) at an observation plane
a distance d from the screen may be determined using the methods
described in Secs. 4.1 and 4.2. The diffraction pattern I(x, y) = |g(x,

y)|? is known as Fraunhofer diffraction or Fresnel
diffraction, depending on whether free-space propagation is
described using the Fraunhofer approximation or the Fresnel
approximation, respectively.

Although this approach gives reasonably accurate results in most
cases, it is not exact. The validity and self-consistency of the
assumption that the complex amplitude f(x, y) vanishes at points
outside the aperture on the back of the screen are questionable
since the transmitted wave propagates in all directions and
therefore reaches those points as well. A theory of diffraction based
on the exact solution of the Helmholtz equation under the boundary
conditions imposed by the aperture is mathematically difficult. Only
a few geometrical structures have yielded exact solutions. However,
different theories of diffraction have been developed using a variety
of assumptions, leading to results with varying accuracies. Rigorous
diffraction theory is beyond the scope of this book.

A. Fraunhofer Diffraction



Fraunhofer diffraction is the theory of transmission of light through
apertures, assuming that the incident wave is multiplied by the
aperture function and that the Fraunhofer approximation
determines the propagation of light in the free space beyond the
aperture. The Fraunhofer approximation is valid if the propagation
distance d between the aperture and observation planes is
sufficiently large so that the Fresnel number , where b
is the largest radial distance within the aperture.

Assuming that the incident wave is a plane wave of intensity I;

traveling in the z direction so that
In the Fraunhofer approximation [see (4.2-1)],

(4.3-3)
where

(4.3-4)

is the Fourier transform of p(x, y) and h, = (j/Ad) exp(—jkd). The
diffraction pattern is therefore

(4.3-5)

In summary: the Fraunhofer diffraction pattern at the point (x, y) is
proportional to the squared magnitude of the Fourier transform of
the aperture function p(x, y) evaluated at the spatial frequencies v,

=x/Ad and v, = y/Ad.
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EXERCISE 4.3-1

Fraunhofer Diffraction from a Rectangular Aperture.
Verify that the Fraunhofer diffraction pattern from a rectangular
aperture, of height and width D, and D,, respectively, observed at

a distance d is

(4.3-6)

where I, = (D,D,/Ad)? I; is the peak intensity and sinc(x) =
sin(stx) /(71x). Verify that the first zeros of this pattern occur at x
= +Ad/D, and y = +Ad/D,, so that the angular divergence of the
diffracted light is given by

(4.3-7)

If D, < D,, the diffraction pattern is wider in the y direction than
in the x direction, as illustrated in Fig, 4.3-3 .

Figure 4.3-3 Fraunhofer diffraction from a rectangular
aperture. The central lobe of the pattern has half-angular widths
0, =A/D, and 0, = A/D,.




EXERCISE 4.3-2

Fraunhofer Diffraction from a Circular Aperture. Verify
that the Fraunhofer diffraction pattern from a circular aperture
of diameter D (Fig. 4.3-4).is

(4.3-8)

where I, = (1D?*/4Ad)?I; is the peak intensity and J,(-) is the
Bessel function of order 1. The Fourier transform of circularly
symmetric functions is discussed in Appendix A, Sec. A.3. The
circularly symmetric pattern (4.3-8), known as the Airy

pattern, consists of a central disk surrounded by rings. Verify
that the radius of the central disk, known as the Airy disk, is p,

= 1.22Ad/D and subtends an angle
(4.3-9)

Airy Disk Half Angle

Figure 4.3-4 The Fraunhofer diffraction pattern from a circular
aperture produces the Airy pattern with the radius of the central
disk subtending an angle 0 = 1.22A/D.




The Fraunhofer approximation is valid for distances d that are
usually extremely large. It is satisfied, for example, in
applications of long-distance free-space optical communications
such as laser radar (lidar) and satellite communications.
However, as shown in Sec. 4.2B, if a lens of focal length fis used
to focus the diffracted light, the intensity pattern in the focal
plane is proportional to the squared magnitude of the Fourier
transform of p(x, y) evaluated at v, = x/Af and v, = y/A¢. The

observed pattern is therefore identical to that obtained from
(4.3-5), with the distance d replaced by the focal length f.




EXERCISE 4.3-3

Spot Size of a Focused Optical Beam. A beam of light is
focused using a lens of focal length f with a circular aperture of
diameter D (Fig. 4.3-5 ). If the beam is approximated by a plane
wave at points within the aperture, verify that the pattern of the
focused spot is

(4.3-10)
where I, is the peak intensity. Compare the radius of the focused

spot,

(4.3-11)

to the spot size obtained when a Gaussian beam of waist radius
W, is focused by an ideal lens of infinite aperture [see (3.2-15)].

Figure 4.3-5 Focusing of a plane wave transmitted through a
circular aperture of diameter D.

- J

*B. Fresnel Diffraction

The theory of Fresnel diffraction is based on the assumption that
the incident wave is multiplied by the aperture function p(x, y) and




propagates in free space in accordance with the Fresnel
approximation. If the incident wave is a plane wave traveling in the
z-direction with intensity I;, the complex amplitude immediately

after the aperture is . Using (4.1-20), the diffraction
pattern I(x, y) = |g(x, y)|? at a distance d is

(4.3-12)
It is convenient to normalize all distances using as a unit of
distance, so that and are the normalized

distances (and similarly for y and y” ). Equation (4.3-12) then gives

(4.3-13)

The integral in (4.3-13) is the convolution of p(X, Y) and exp[—jz(X?>
+ Y?)]. The real and imaginary parts of exp(—jzX?), cos ;tX? and sin
7X?, respectively, are plotted in Fig, 4.3-6 . They oscillate at an
increasing frequency and their first lobes lie in the intervals

, respectively. The total area under the function
exp(—jztX?) is 1, with the main contribution to the area coming from
the first few lobes, since subsequent lobes cancel out. If a is the
radius of the aperture, the radius of the normalized function
p{X.Y) is o/ vAd . The result of the convolution, which depends on the
relative size of the two functions, is therefore governed by the
Fresnel number Ny = a®/Ad.



Figure 4.3-6 The real and imaginary parts of exp(—jzX?).

If the Fresnel number is large, the normalized width of the aperture

is much greater than the width of the main lobe, and the
convolution yields approximately the wider function p(X, Y). Under
this condition the Fresnel diffraction pattern is a shadow of the
aperture, as would be expected from ray optics. Note that ray optics
is applicable in the limit A — 0, which corresponds to the limit Ng
—co. In the opposite limit, when Ny is small, the Fraunhofer

approximation becomes applicable and the Fraunhofer diffraction
pattern is obtained.



EXAMPLE 4.3-1.

Fresnel Diffraction from a Slit. Assume that the aperture is
a slit of width D = 2a, so that p(x, y) = 1 when |x|< a, and 0
elsewhere. The normalized coordinate and

(4.3-14)

where Ny = a®/Ad is the Fresnel number. Substituting into (4.3-
13), we obtain I(X, Y) = I;|g(X) |3 where

(4.3-15)

This integral is usually written in terms of the Fresnel integrals

(4.3-16)

which are available in the standard computer mathematical
libraries.

The complex function g(X) may also be evaluated using Fourier-
transform techniques. Since g(x) is the convolution of a
rectangular function of width and exp(—jmrX?), its Fourier
transform (see Table A.1-1 in
Appendix A). Thus, g(X) may be computed by determining the
inverse Fourier transform of G(v,). If Ny € 1, the width of sinc
is much narrower than the width of the first lobe of

(see Fig. 4.3-6 ) so that G(v,) = and g(X) is
the rectangular function representing the aperture shadow.
The diffraction pattern from a slit is plotted in Fig, 4.3-7 for

different Fresnel numbers corresponding to different distances d
from the aperture. At very small distances (very large Ny), the




diffraction pattern is a perfect shadow of the slit. As the distance
increases (N decreases), the wave nature of light is exhibited in
the form of small oscillations around the edges of the aperture

(see also the diffraction pattern in Fig,. 4.3-1 ). For very small N,
the Fraunhofer pattern described by (4.3-6), is obtained. This is a
sinc function with the first zero subtending an angle A/D = A/2a.

Figure 4.3-7 Fresnel diffraction from a slit of width D = 2a.(a)
Shaded area is the geometrical shadow of the aperture. The
dashed line is the width of the Fraunhofer diffracted beam. (b)
Diffraction pattern at four axial positions marked by the arrows
in (a) and corresponding to the Fresnel numbers Ny = 10, 1, 0.5,
and 0.1. The shaded area represents the geometrical shadow of
the slit. The dashed lines at |x| = (A/D)d represent the width of
the Fraunhofer pattern in the far field. Where the dashed lines
coincide with the edges of the geometrical shadow, the Fresnel

number Ny = a*/Ad = 0.5.

EXAMPLE 4.3-2.




Fresnel Diffraction from a Gaussian Aperture. If the
aperture function p(x, y) is the Gaussian function

may be evaluated exactly by finding the convolution of

exp[—{z* + y* )/ W2 with h, exp[—j7(x* + y*)/Ad] using, for example,
Fourier transform techniques (see Appendix A). The resultant
diffraction pattern is

1.2 +y2

W, F°
Iz, y) =L [ml exp [—Qw] ' (43'17)
where w2(d} = W2 + 82¢° and 8, = A/xWo.

The diffraction pattern is a Gaussian function of 1/e* half-width
W(d). For small d, W (d) = W; but as d increases, W(d)
increases and approaches W(d) = 0,d when d is sufficiently

large for the Fraunhofer approximation to be applicable, so that
the angle subtended by the Fraunhofer diffraction pattern is 0.

These results are illustrated in Fig. 4.3-8 , which is analogous to
the illustration in Fig, 4.3-7 for diffraction from a slit. The wave
diffracted from a Gaussian aperture is the Gaussian beam
described in detail in Chapter 3.




\

Figure 4.3-8 Fresnel diffraction pattern for a Gaussian
aperture of radius W, at distances d such that the parameter

(ry2Wgrad, which is analogous to the Fresnel number Ny in Fig,
4.3-7,1s 10, 1, 0.5, and 0.1. These values correspond to W(d)/W,

= 1.001, 1.118, 1.414, and 5.099, respectively. The diffraction
pattern is Gaussian at all distances.

Summary

In the order of increasing distance from the aperture, the
diffraction pattern is:

1. A shadow of the aperture.

2. A Fresnel diffraction pattern, which is the convolution of
the normalized aperture function with exp[—jr(X> + Y?)].

3. A Fraunhofer diffraction pattern, which is the absolute-
squared value of the Fourier transform of the aperture
function. The far field has an angular divergence
proportional to A/D, where D is the diameter of the
aperture.




Fresnel Diffraction from a Periodic Aperture: The Talbot Effect

Fresnel diffraction from a one-dimensional periodic aperture is best
described in the Fourier domain by expanding the aperture function
p(x) in a Fourier series. If A is its period, then the Fourier expansion
has frequencies v, = m/A, where m = 0, +,, +,,.... The transfer

function of free space (4.1-11), at a distance z, is then

Hoexp (jrha) = Hoexp (jmhem®/A%) = Hyexp (12rm’2/) . (4.3-18)

where zt = 2A2/A. At z = zy, or multiples thereof, the transfer
function is simply a constant H,,, independent of the harmonic
order m. At these specific distances, then, each of the harmonic
functions comprising the aperture function p(x) is multiplied by the
same factor so that the function p(x) is reproduced. This process of
self imaging is known as the Talbot effect, and the distance zy is
called the Talbot distance. At distances z unequal to multiples of z,
the field is given by Uiz 2) = He 3.7°__ cmexplimz/A) exp {j27m’2/21) |
where the c,, are coefficients of the Fourier series expansion of p(x).
The corresponding intensity I(x, z) = |U (x, z)|? for an opaque
screen with parallel slits exhibits a carpet-like pattern, as illustrated
in Fig. 4.3:9.



Figure 4.3-9 Talbot effect. Fresnel diffraction pattern from a
periodic aperture that takes the form of parallel slits in an otherwise
opaque screen. The pattern is reproduced at distances that are
multiples of the Talbot distance zt. The result has the appearance of

a carpet with periodic patterns in x and z.

The Talbot effect is also observed for two-dimensional periodic
apertures provided that the period is the same in the x and y
directions.

C. Nondiffracting Waves

In accordance with (4.1-8) and (4.1-9), the transfer function of free-
space is exp(—jk,z), where k. = /& -% -k is a circularly symmetric
complex function of . Any two input harmonic functions
with spatial frequencies for which & is the same thus have the
same value of the transfer function. It follows that a function f(x, y)
that is a superposition of harmonic functions, all with the same
value of k;and therefore the same k,, creates a stationary wave U

(x, y, z) = f(x, y) exp(—jk,z) that maintains its transverse

distribution, and is therefore nondiffracting, as it travels through
free space, regardless of the distance z. The wavefronts of such a
wave are planes orthogonal to the z axis, and the propagation
constant is k,. Nondiffracting optical beams were considered in Sec.

3.5.



EXAMPLE 4.3-3.

Two Plane Waves. The function
exp{ +jez]] comprises two harmonic components with spatial
angular frequencies k, = +a. On propagation through free space,

each of these components is modified by the same factor
exp(—jk,z), where %, - /&2 —a?. The result is a stationary wave that

takes the form U (x, y, z) = cos(ax) exp(—jk,z), which has a
sinusoidal transverse distribution representing the interference
between two oblique plane waves at angles + sin™* (a/k,), as
provided by (2.5-7).

EXAMPLE 4.3-4.

Four Plane Waves. A plane wave traveling in the z direction
that is modulated by the function f(x, y) = cos(a,x) cos(ayy)
results in four waves, at angles + sin™* (a,/k,) and + sin™!
(ay/k,) with respect to the x and y axes, respectively. Since the
quantity is the same for all four waves, so too is

k. = k& —#. The outcome at z is thus the stationary wave U (x,
Y, z) = cos(a,x) cos(ayy) exp(—jk,z), as shown.

EXAMPLE 4.3-5.




Infinite Number of Plane Waves. Consider now a function
f(x, y) composed of several harmonic functions of angular
frequencies k, = ky cos ¢ and k,, = kp sin ¢, with fixed kybut
different ¢. The quantities # + & = &2 and & = /& —# are thus the
same for each of these functions. This superposition of waves
therefore corresponds to a stationary wave U (x, y, z) = f(x, y)
exp(—jk,z), no matter how many values of ¢ are included. A
limiting case is the superposition in which a continuum of
harmonic functions extends over all angles ¢, which yields
flz.y) = [__exp(—7 krcosd x — j kpsingd y) dd . The result is a
continuum of plane waves whose directions form a cone of half-
angle sin™! (kg /k,). This superposition wave is nothing other
than the Bessel beam U (x, y, z) = 2= (kw’m) axp{—jhk,2)
described in (3.5-4) and illustrated at right. The connection is
explicitly forged via the identity |"_exp{—jusio¢)ds = 2nFo{u}, Where
J,(u) is the Bessel function of the first kind and zeroth order.

The plane-wave superposition associated with the Bessel beam
may be implemented by making use of an axicon (see Example
2.4-1 and Sec. 3.5A).

. J/

4.4 IMAGE FORMATION

An ideal image formation system is an optical system that replicates
the distribution of light in one plane, the object plane, into another,




the image plane. Since the optical transmission process is never
perfect, the image is never an exact replica of the object. Aside from
image magnification, there is also blur resulting from imperfect
focusing and from the diffraction of optical waves. This section is
devoted to the description of image formation systems and their
fidelity. Methods of linear systems, such as the impulse response
function and the transfer function (Appendix B), are used to
characterize image formation. A simple ray-optics approach is
presented first, then a treatment based on wave optics is
subsequently developed.

A. Ray Optics of a Single-Lens Imaging System

Consider an imaging system using a lens of focal length f at
distances d, and d, from the object and image planes, respectively,
as shown in Fig. 4.4-1 . When 1/d, +1/d, = 1/f, the system is focused
so that paraxial rays emitted from each point in the object plane
reach a single corresponding point in the image plane. Within the
ray theory of light, the imaging is “ideal,” with each point of the
object producing a single point of the image. The impulse response
function of the system is an impulse function.

Figure 4.4-1 Rays in a focused imaging system.

Suppose now that the system is not in focus, as illustrated in Fig,
4.4-2 , and assume that the focusing error is



1,1 1 (4.4-1)

b
dy dy f

Focusing Error

A point in the object plane generates a patch of light in the image
plane that is a shadow of the lens aperture. The distribution of this
patch is the system’s impulse response function. For simplicity, we
shall consider an object point lying on the optical axis and
determine the distribution of light h(x, y) it generates in the image
plane.

Figure 4.4-2 (a) Rays in a defocused imaging system. (b) The
impulse response function of an imaging system with a circular
aperture of diameter D is a circle of radius p, = &d,D/2, where €1is

the focusing error.

Assume that the plane of the focused image lies at a distance d2,
satisfying the imaging equation 1/d2, +1/d, = 1/f. The shadow of a
point on the edge of the aperture at a radial distance p is a point in
the image plane with radial distance p, where the ratio py/p = (d2, -
d,)/d,, =1-d,/d,,=1-d,(1/f-1/d) =1-d,(1/d, - €) = &d,,. If
p(x, y) is the aperture function, also called the pupil function
[p(x, y) = 1 for points inside the aperture, and o elsewhere], then
h(x, y) is a scaled version of p(x, y) magnified by a factor p/p = &d.,
so that



Rz, y) Dcp( Ty ) (4.4-2)

edy’ edy

Impulse Response Function (Ray-Optics)

As an example, a circular aperture of diameter D corresponds to an
impulse response function confined to a circle of radius

py = LedyD, (4.4-3)

Blur Spot Radius

as illustrated in Fig. 4.4-2 . The radius p, of this “blur spot” is an

inverse measure of resolving power and image quality. A small
value of p, means that the system is capable of resolving fine
details. Since p, is proportional to the aperture diameter D, the
image quality may be improved by use of a small aperture. A small
aperture corresponds to a reduced sensitivity of the system to
focusing errors, so that it corresponds to an increased “depth of
focus.”

B. Wave Optics of a 4-fImaging System

Consider now the two-lens imaging system illustrated in Fig. 4.4-3 .
This system, called the 4-f system, serves as a focused imaging
system with unity magnification, as can be easily verified by ray
tracing.



Figure 4.4-3 The 4-f imaging system. If an inverted coordinate
system is used in the image plane, the magnification is unity.

The analysis of wave propagation through this system becomes
simple if we recognize it as a cascade of two Fourier-transforming
subsystems. The first subsystem (between the object plane and the
Fourier plane) performs a Fourier transform, and the second
(between the Fourier plane and the image plane) performs an
inverse Fourier transform since the coordinate system in the image
plane is inverted (see Exercise 4.2-2). As a result, in the absence of
an aperture the image is a perfect replica of the object.

Let f(x, y) be the complex amplitude transmittance of a
transparency placed in the object plane and illuminated by a plane
wave exp(—jkz) traveling in the z direction, as illustrated in Fig. 4.4-
4 , and let g(x, y) be the complex amplitude in the image plane. The
first lens system analyzes f(x, y) into its spatial Fourier transform
and separates its Fourier components so that each point in the
Fourier plane corresponds to a single spatial frequency. These
components are then recombined by the second lens system and the
object distribution is perfectly reconstructed.

The 4-f imaging system can be used as a spatial filter in which the
image g(x, y) is a filtered version of the object f(x, y). Since the
Fourier components of f(x, y) are available in the Fourier plane, a
mask may be used to adjust them selectively, blocking some
components and transmitting others, as illustrated in Fig. 4.4-5 .
The Fourier component of f(x, y) at the spatial frequency (v,, v,) is

located in the Fourier plane at the point x = Afv,, y = Afv,. To



implement a filter of transfer function H(v,, Vy)s the complex

amplitude transmittance p(x, y) of the mask must be proportional
to H(x/Af, y/Af). Thus, the transfer function of the filter realized by
a mask of transmittance p(x, y) is

H{vz,vy) = p(A fr, Afvy), (4.4-4)

Transfer Function 4-f System

where we have ignored the phase factor j exp(—j2kf) associated with
each Fourier transform operation [the argument of h; in (4.2-8)].

The Fourier transforms G(v,, vy) and F(v,, vy) of g(x, y) and f(x, y)
are related by G(v,, vy) = H(v,, vy) F(v,, vy).

Figure 4.4-4 The 4-f imaging system performs a Fourier transform

followed by an inverse Fourier transform, so that the image is a
perfect replica of the object.



Figure 4.4-5 Spatial filtering. The transparencies in the object and
Fourier planes have complex amplitude transmittances f(x, y) and
p(x, y). A plane wave traveling in the z direction is modulated by the
object transparency, Fourier transformed by the first lens,
multiplied by the transmittance of the mask in the Fourier plane,
and inverse Fourier transformed by the second lens. As a result, the
complex amplitude in the image plane g(x, y) is a filtered version of
f(x, y). The system has a transfer function H(v,, vy) = p(Afv,, Afvy).

This is a rather simple result. The transfer function has the same
shape as the pupil function. The corresponding impulse response
function h(x, y) is the inverse Fourier transform of H(v,, vy),

T [ (4’4_5)
A F) !

1
e = B P(

Impulse Response Function 4-f System

where P(v,, vy) is the Fourier transform of p(x, y).

Examples of Spatial Filters

» The ideal circularly symmetric low-pass filter has a transfer
function H(v,, vy) = 112 +v? < v2 and H{vz,1n) = 0, otherwise. It



passes spatial frequencies that are smaller than the cutoff
frequency v, and blocks higher frequencies. This filter is

implemented by a mask in the form of a circular aperture of
diameter D, with D/2= v f. For example, if D = 2 ¢cm, A = 1 um,
and f = 100 cm, the cutoff frequency (spatial bandwidth) v, =

D/2Af = 10 lines/mm. This filter eliminates spatial frequencies
that are greater than 10 lines/mm, so that the smallest size of
discernible detail in the filtered image is approximately 0.1 mm.

» The high-pass filter is the complement of the low-pass filter. It
blocks low frequencies and transmits high frequencies. The
mask is a clear transparency with an opaque central circle. The
filter output is high at regions of large rate of change and small
at regions of smooth or slow variation of the object. The filter is
therefore useful for edge enhancement in image-processing
applications.

= The vertical-pass filter blocks horizontal frequencies and
transmits vertical frequencies. Only variations in the x direction
are transmitted. If the mask is a vertical slit of width D, the
highest transmitted frequency is v, = (D/2)/f.

Examples of these filters and their effects on images are illustrated
in Fig. 4.4-6 .

C. Wave Optics of a Single-Lens Imaging System

We now consider image formation in the single-lens imaging
system illustrated in Fig. 4.4-7 , using a wave-optics approach. We
first determine the impulse response function, and then derive the
transfer function. These functions are determined by the defocusing
transmittance of the aperture in the lens plane). The pupil function
in this single-lens imaging system plays the same role of the mask
function in the 4-f imaging system described in the previous

section.



Impulse Response Function

To determine the impulse response function we consider an object
composed of a single point (an impulse) on the optical axis at the
point (0, 0), and follow the emitted optical wave as it travels to the
image plane. The resultant complex amplitude is the impulse
response function h(x, y).

An impulse in the object plane produces in the aperture plane a
spherical wave approximated by [see (4.1-18)]

Ulz, y) = by exp [—jkzg + yzl ., (4.4-6)

2d,
where h, = (j/Ad,) exp(—jkd,). Upon crossing the aperture and the
lens, U (x, y) is multiplied by the pupil function p(x, y) and the lens
quadratic phase factor exp[jk(x? + y2)/2f], becoming

2 2

i ) Plz, y). (4.4-7)

I
Ur{z,y) = Ulz,y)exp (:ik



Figure 4.4-6 Examples of object, mask, and filtered image for
three spatial filters: (a) low-pass filter; (b) high-pass filter; (c)
vertical-pass filter. Black means the transmittance is zero and white
means the transmittance is unity.

Figure 4.4-7 Single-lens imaging system.



The resultant field U, (x, y) then propagates in free space a distance
d,. In accordance with (4.1-20) it produces the impulse response
function

Rz, y) = ha /:/. Uz, o) exp l_j” (x— I’}i—;:y —yP i d (4.4-8)

into (4.4-8) and casting the integrals as a Fourier transform, we
obtain

IE 2 T
h(z,y) = hiha exp (—jw 2 ) P (E .. ﬁ) .. (4-4-9)

where P,(v,, vy) is the Fourier transform of the function

22 1 g ) (4.4-10)
,}L H

pi{z,y) =plz.y)exp (—jﬂ'e

Generalized Pupil Function

known as the generalized pupil function. The factor €is the
focusing error given by (4.4-1).

For a high-quality imaging system, the impulse response function is
a narrow function, extending only over a small range of values of x
and y. If the phase factor z(x* + y*)/Ad, in (4.4-9), is much smaller
than 1 for all x and y within this range, it can be neglected, so that

oy ) | (4.4-11)

hiz,y) = ho Py (l_dz SV

Impulse Response Function



where h, = h,h, is a constant of magnitude (1/Ad,)(1/Ad,). It

follows that the system’s impulse response function is proportional
to the Fourier transform of the generalized pupil function p,(x, y)

evaluated at v, = x/Ad, and v, = y/Ad,.

If the system is focused (€= 0), then p,(x, y) = p(x, y), and

h(I: y} == hup(ﬁidg 3 )kidg) 1 (4'4_12)

where P(v,, vy) is the Fourier transform of p(x, y). This result is
similar to the corresponding result in (4.4-5) for the 4-f system.



EXAMPLE 4.4-1.

Impulse Response Function of a Focused Imaging
System with a Circular Aperture. If the aperture is a circle
of diameter D so that Pl=.¥) = 11 ¢ =./27332 < D2 and zero

otherwise, then the impulse response function is

h{z,y) = h(0,0} M;(Efﬂjjﬂ . p=+22 e (4.4-13)

and |h(o, 0)| = (1D?/4A%d,d,). This is a circularly symmetric
function whose cross section is shown in Fig, 4.4-8 . It drops to
zero at a radius

d
ps = 12207 (4.4-14)

and oscillates slightly before it vanishes. The radius p; is

therefore a measure of the size of the blur circle. If the system is
focused at o, then d, = « and d, = f, so that

ps = L.22AF (4-4-15)

Spot Radius

where F, = f/D is the lens F-number. Thus, systems of smaller
F, (larger apertures) have better image quality. This assumes, of

course, that the larger lens does not introduce geometrical
aberrations.




Figure 4.4-8 Impulse response function of an imaging system
with a circular aperture.

- J

Transfer Function

The transfer function of a linear system can only be defined when
the system is shift invariant (see Appendix B). Evidently, the single-
lens imaging system is not shift invariant since a shift A of a point
in the object plane is accompanied by a different shift MA in the
image plane, where M = -d,/d, is the magnification.

The image is different from the object in two ways. First, the image
is a magnified replica of the object, i.e., the point (x, y) of the object
is located at a new point (Mx, My) in the image. Second, every point
is smeared into a patch as a result of defocusing or diffraction. We
can therefore think of image formation as a cascade of two systems
— a system of ideal magnification followed by a system of blur, as
depicted in Fig. 4.4-9 . By its nature, the magnification system is
shift-variant. For points near the optical axis, the blur system is
approximately shift invariant and therefore can be described by a
transfer function.

The transfer function H(v,, v,)) of the blur system is determined by
obtaining the Fourier transform of the impulse response function



H{vz, vy) & pi{Adave, Adavy), (4.4-16)

Transfer Function

where p,(x, y) is the generalized pupil function and we have ignored
a constant phase factor exp(—jkd,) exp(—jkd.,). If the system is
focused, then

vz, vy) 2 p{Adavz, Adavy), (4.4-17)

where p(x, y) is the pupil function. This result is identical to that
obtained for the 4-f imaging system [see (4.4-4)]. If the aperture is a
circle of diameter D, for example,

Figure 4.4-9 The imaging system in (a) is regarded in (b) as a
combination of an ideal imaging system with only magnification,
followed by shift-invariant blur in which each point is blurred into a
patch with a distribution equal to the impulse response function.

then the transfer function is constant within a circle of radius v,
where

0
Yo = ondy (4.4-18)

and vanishes elsewhere, as illustrated in Fig. 4.4-10 .



Figure 4.4-10 Transfer function of a focused imaging system with

a circular aperture of diameter D. The system has a spatial
bandwidth v, = D/2Ad..

If the lens is focused at infinity, i.e., d, = f,

1 (4.4-19)
2AFy’

I"'rs=

Spatial Bandwidth

where F, = f/D is the lens F-number. For example, for an F-2 lens
(F, =f/D = 2) and for A = 0.5 um, v, = 500 lines/mm. The
frequency v, is the spatial bandwidth, i.e., the highest spatial
frequency that the imaging system can transmit.

D. Near-Field Imaging

It was shown in Sec. 4.1B that the spatial bandwidth of light

propagating in free space at a wavelength A is A™! cycles/mm.
Fourier components of the object distribution with spatial

frequencies greater than A~! lead to evanescent waves that decay
rapidly and diminish at distances from the object plane of the order
of a wavelength, so that object features smaller than a wavelength
cannot be transmitted. Moreover, it was shown in Sec. 4.4C that an



imaging system using a lens with a specified F, has an impulse
response function whose radius is 1.22AF,, so that points separated
by a distance smaller than 1.22AF, cannot be discriminated [see Fig,

4.4-11 (a)]. Another imaging modality that makes use of a laser

beam focused by a lens to scan an object, as depicted in Fig, 4.4-11
(b), behaves similarly. The resolution of this system is dictated by
the size of the focused spot, which has a radius of 1.22AF,, as was

shown in Example 4.4-1. In both of these cases, therefore, object
details with dimensions much smaller than a wavelength are
washed out in the scanned image. This fundamental limit on the
resolution of image-formation systems is referred to as the
diffraction limit.

Figure 4.4-11 In a single-lens imaging system, the subwavelength
spatial details of an object are washed out (a) in an image formed by
a single lens, or (b) by making use of a focused laser-scanning
system. (¢) On the other hand, a scanning imaging system that
makes use of illumination transmitted through a subwavelength
aperture preserves the subwavelength details of the object, provided
that the object plane is placed at a subwavelength distance from the
aperture plane.

The diffraction limit may be circumvented, however. Light can be
localized to a spot with dimensions much smaller than a
wavelength, within a single plane. The difficulty is that the
evanescent waves fully decay a short distance away from that plane,
whereupon the spot diverges and acquires a size that exceeds the



wavelength. At yet greater distances, the wave ultimately becomes a
spherical wave. Hence, the diffraction limit can be circumvented if
the object is illuminated in the very vicinity of the subwavelength
spot, before the beam waist has an opportunity to grow. This may be
implemented in a scanning configuration by passing the
illumination beam through an aperture of diameter much smaller
than a wavelength, as depicted in Fig. 4.4-11 (c). The object is placed
at a distance from the aperture that is usually less than half the
diameter of the aperture so that the beam illuminates a
subwavelength-size area of the object. Upon transmission through
the object, the traveling components of the wave form a spherical
wave whose amplitude is proportional to the object transmittance at
the location of the spot illumination. The resolution of this imaging
system is therefore of the order of the aperture size, which is much
smaller than the wavelength. An image is constructed by raster-
scanning the illuminated aperture across the object and recording
the optical response via a conventional far-field imaging system.
This technique is known as near-field optical imaging or scanning
near-field optical microscopy (SNOM). Subwavelength
imaging falls in the domain of nanophotonics since the imaging
takes place over a subwavelength (nanometer) spatial scale. Other
approaches for achieving subwavelength imaging make use of
negative-index and hyperbolic materials, as considered in Sec. 8.1.

SNOM is typically implemented by sending the illumination light
through an optical fiber with an aluminum-coated tapered tip, as
illustrated in Fig. 4.4-12 . The light is guided through the fiber by
total internal reflection. As the diameter of the fiber decreases, the
light is guided by reflection from the metallic surface, which acts
like a conical mirror. As the fiber diameter grows yet smaller in the
region of the tip, the wave can no longer be guided (see Sec. 9.1) and
becomes evanescent. The distribution of the illumination wave at,
and beyond, the end of the tip is complex and is typically
determined numerically. Aperture diameters and spatial resolutions
of the order of tens of nanometers are usually achieved in SNOM
with visible light. Since the tip of the fiber scans the object at a



distance of only a few nanometers, an elaborate feedback system
must be employed to maintain the distance for a specimen of
arbitrary topography. Applications of SNOM include the non-
destructive characterization of inorganic, organic, composite, and
biological materials and nanostructures.

Figure 4.4-12 An optical fiber with a tapered metal-coated tip for
near-field imaging.

4.5 HOLOGRAPHY

Holography involves the recording and reconstruction of optical
waves. A hologram is a 2D transparency that contains a coded
record of the amplitude and phase of an optical wave originating
from a 3D object. Consider a monochromatic optical wave whose
complex amplitude in some plane, say the z = 0 plane, is U (x, y). If,
somehow, a thin optical element (call it a transparency) with
complex amplitude transmittance t(x, y) equal to U (x, y) were able

to be made, it would provide a complete record of the wave. The
wave could then be reconstructed simply by illuminating the
transparency with a uniform plane wave of unit amplitude traveling
in the z direction. The transmitted wave would have a complex
amplitude in the z = o plane U (x, y) =1 - t(x, y) = U,(x, y). The
original wave would then be reproduced at all points in the z = 0
plane, and therefore reconstructed everywhere in the space z > o.

As an example, we know that a uniform plane wave traveling at an
angle 0 with respect to the z axis in the x—z plane has a complex



amplitude U,(x, y) = exp[—jkx sin 0]. A record of this wave would be

a transparency with complex amplitude transmittance t(x, y) =
exp[—jkx sin 6]. Such a transparency acts as a prism that bends an
incident plane wave exp(—jkz) by an angle 0 (see Sec. 2.4B), thus
reproducing the original wave.

The question is how to make a transparency t(x, y) from the original
wave U,(x, y). One key impediment is that optical detectors,

including the photographic emulsions used to make transparencies,
are responsive to the optical intensity, |U,(x, y)|? and are therefore
insensitive to the phase arg{U,(x, y)}. Phase information is

obviously important and cannot be disregarded, however. For
example, if the phase of the oblique wave U,(x, y) = exp[—jkx sin 0]

were not recorded, neither would the direction of travel of the wave.
To record the phase of U,(x, y), a code must be found that

transforms phase into intensity. The recorded information could
then be optically decoded in order to reconstruct the wave.

The Holographic Code

The holographic code is based on mixing the original wave
(hereafter called the object wave) U, with a known reference

wave U, and recording their interference pattern in the z = 0 plane.

The intensity of the sum of the two waves is photographically
recorded and a transparency of complex amplitude transmittance t,
proportional to the intensity, is made [Fig. 4.5-1 (a)]. The
transmittance is therefore given by

t o |'Ur.: + Urtz = |U-:'|2 + EUO|2 + U:Ua + UrU:'.
=L+ L+ U, + U0,

=1+ 1,4+ 2+ 1.1, cos[arg{U,} — arg{U_}].

(4.5-1)

where I, and I, are, respectively, the intensities of the reference
wave and the object wave at the z = 0 plane.



Figure 4.5-1 (a) A hologram is a transparency on which the
interference pattern between the original wave (object wave) and a
reference wave is recorded. (b) The original wave is reconstructed
by illuminating the hologram with the reference wave.

The transparency, called a hologram, clearly carries coded
information pertinent to the magnitude and phase of the wave U,

In fact, as an interference pattern the transmittance t is highly
sensitive to the difference between the phases of the two waves, as
was shown in Sec. 2.5 (the temporal analog to holography is
heterodyning, discussed in Sec. 2.6). As indicated above, ordinary
photography is responsive only to the intensity of the incident wave
and therefore records no phase information.

To decode the information in the hologram and reconstruct the
object wave, the reference wave U.. is again used to illuminate the
hologram [Fig. 4.5-1 (b)]. The result is a wave with complex
amplitude

U=t c UL + U.I, + LU, + U217
(4.5-2)

in the hologram plane z = 0. The third term on the right-hand side
is the original wave multiplied by the intensity I, of the reference
wave. If L. is uniform (independent of x and y), this term constitutes
the desired reconstructed wave. But it must be separated from the
other three terms. The fourth term is a conjugated version of the
original wave modulated by . The first two terms represent the



reference wave, modulated by the sum of the intensities of the two

waves.

If the reference wave is selected to be a uniform plane wave

propagating along the = axis v7, exp{—jkz), then in the z = 0 plane
U.{z.y) = vI, is a constant independent of x and y. Dividing (4.5-2),

by gives

Ulz,y) x L + Lz, y) + VE Us(z, y} + VI Ul (2, 1)

Reconstructed Wave in Plane of Hologram

(4.5-3)

The significance of the various terms in (4.5-3), and the methods of
extracting the original wave (the third term), are clarified by means

of a number of examples.



EXAMPLE 4.5-1.

Hologram of an Oblique Plane Wave. If the object wave is
an oblique plane wave at angle 0 [Fig. 4.5-2 (a)],
Uiz, y) =T, expl—jkrsind 5 then (4_5:3) gives

L +I,+ VI, exp{—jkzsinf) + VI.T, exp{—skzsind | Since the first two terms
are constant, they correspond to a wave propagating in the z
direction (the continuance of the reference wave). The third
term corresponds to the original object wave, whereas the fourth
term represents the conjugate wave, a plane wave traveling at
an angle —0. The object wave is therefore separable from the
other waves. In fact, this hologram is nothing but a recording of
the interference pattern formed from two oblique plane waves at
an angle 0 (Sec. 2.5A). It serves as a sinusoidal diffraction
grating that splits an incident reference wave into three waves at
angles 0, 0, and -0 [see Fig. 4.5-2 (b) and Sec. 2.4B].

Figure 4.5-2 The hologram of an oblique plane wave is a
sinusoidal diffraction grating.

EXAMPLE 4.5-2.

Hologram of a Point Source. Here the object wave is a
spherical wave originating at the point r, = (0, 0, —d), as
illustrated in Fig, 4.5-3 , so that U (x, y) « exp(—jk|r —r,|)/|r -
r,|, where r = (x, y, 0). The first term of (4.5-3), corresponds to a
plane wave traveling in the z direction, whereas the third is




proportional to the amplitude of the original spherical wave
originating at (0, 0, —d). The fourth term is proportional to the
amplitude of the conjugate wave , which
is a converging spherical wave centered at the point (0, 0, d). The
second term is proportional to 1/|r — r,|* and its corresponding

wave therefore travels in the z direction with very small angular
spread since its intensity varies slowly in the transverse plane.

Figure 4.5-3 Hologram of a spherical wave originating from a
point source. The conjugate wave forms a real image of the
point.

. J/

Off-Axis Holography

One means of separating the four components of the reconstructed
wave is to ensure that they vary at well-separated spatial
frequencies, so that they have well-separated directions. This form
of spatial-frequency multiplexing (see Sec. 4.1A) is assured if the
object and reference waves are offset so that they arrive from well-
separated directions.

Let us consider the case when the object wave has a complex
amplitude U, (x, y) = f(x, y) exp(—jkx sin 0). This is a wave of
complex envelope f(x, y) modulated by a phase factor equal to that
introduced by a prism with deflection angle 0. It is assumed that f(x,
y) varies slowly so that its maximum spatial frequency v,

corresponds to an angle 0, = sin™! Av,, much smaller than 0. The



object wave therefore has directions centered about the angle 6, as
illustrated in Fig, 4.5-4 . Equation (4.5-3), gives

Uz vy o< L +1£(z.9) + VI f(z.y) exp(~jhasing) (4.5-4)
+ 'L, f*{z,y) exp(+jkz sin#).

Figure 4.5-4 Hologram of an off-axis object wave. The object wave
is separated from both the reference and conjugate waves.

The third term is evidently a replica of the object wave, which
arrives from a direction at angle 6. The presence of the phase factor
exp(+jkx sin 0) in the fourth term indicates that it is deflected in the
—0 direction. The first term corresponds to a plane wave traveling in
the z direction. The second term, usually known as the ambiguity
term, corresponds to a nonuniform plane wave in directions within
a cone of small angle 20, around the z direction. The offset of the

directions of the object and reference waves results in a natural
angular separation of the object and conjugate waves from each
other and from the other two waves if 0 > 30, thus allowing the

original wave to be recovered unambiguously. An alternative
method of reducing the effect of the ambiguity wave is to make the
intensity of the reference wave much greater than that of the object
wave. The ambiguity wave [second term of (4.5-3)] is then much
smaller than the other terms since it involves only object waves; it
is therefore relatively negligible.



Fourier-Transform Holography

The Fourier transform F(v,, v,) of a function f(x, y) may be
computed optically by use of a lens (see Sec. 4.2). If f{x, y) is the
complex amplitude in one focal plane of the lens, then F(x/Af, y/Af)
is the complex amplitude in the other focal plane, where fis the
focal length of the lens and A is the wavelength. Since the Fourier
transform is usually a complex-valued function, it cannot be
recorded directly.

The Fourier transform F(x/Af, y/Af) may be recorded
holographically by regarding it as an object wave, U (x, y) = f(x/Af,
Y/Af), mixing it with a reference wave U(Xx, y), and recording the
superposition as a hologram [Fig. 4.5-5 (a)]. Reconstruction is
achieved by illumination of the hologram with the reference wave
as usual. The reconstructed wave may be inverse Fourier
transformed using a lens so that the original function f(x, y) is
recovered [Fig, 4.5-5 (b)].

Figure 4.5-5 (a) Hologram of a wave whose complex amplitude
represents the Fourier transform of a function f(x, y).(b)
Reconstruction of f(x, y) by use of a Fourier-transform lens.

Holographic Spatial Filters

A spatial filter of transfer function H(v,, v,)) may be implemented by

use of a 4-f optical system with a mask of complex amplitude
transmittance p(x, y) = H(x/Af, y/Af) placed in the Fourier plane



(see Sec. 4.4B). Since the transfer function H(v,, v,) is usually

complex-valued, the mask transmittance p(x, y) has a phase
component and is difficult to fabricate using conventional printing
techniques. If the filter impulse response function h(x, y) is real-
valued, however, a Fourier-transform hologram of h(x, y) may be
created by holographically recording the Fourier transform U,(x, y)

= H(x/Af, y/Af), as depicted in Fig. 4.5-6 (a).

Figure 4.5-6 The VanderLugt holographic filter. (a) A hologram of
the Fourier transform of h(x, y) is recorded. (b) The Fourier
transform of f(x, y) is transmitted through the hologram and
inverse Fourier transformed by a lens. The result is a function g(x,
y) proportional to the convolution of f{x, y) and h(x, y). The overall
process provides a spatial filter with impulse response function h(x,

y).

Using the Fourier transform of the input f(x, y) as a reference, U,.(x,
y) = F(x/Af, y/Af), the hologram constructs the wave

Us(a, y)olz, v} = Flz/ M, y/Af) Hiz/Af 4/Af). (4.5-5)

The inverse Fourier transform of the reconstructed object wave,
obtained with a lens of focal length f as illustrated in Fig, 4.5-6 (b),
therefore yields a complex amplitude g(x, y) with a Fourier
transform G(v,, V) = H(vy, v)) F(vy, vy). Thus, g(x, y) is the
convolution of f(x, y) with h(x, y). The overall system, known as the



VanderLugt filter, performs the operation of convolution, which
is the basis of spatial filtering.

If the conjugate wave Uiz, y)Us{x,4) = F(z/ Af,u/ A} (z/ Af, u/ ) 1S,
instead, inverse Fourier transformed, the correlation, instead of the
convolution, of the functions f(x, y) and h(x, y) is obtained. The
operation of correlation is useful in image-processing applications,
including pattern recognition.

The Holographic Apparatus

An essential condition for the successful fabrication of a hologram
is the availability of a monochromatic light source with minimal
phase fluctuations. The presence of phase fluctuations results in the
random shifting of the interference pattern and the washing out of
the hologram. For this reason, a coherent light source (usually a
laser) is a necessary part of the apparatus. The coherence
requirements for the interference of light waves are discussed in
Chapter 12.

Figure 4.5-7 illustrates a typical experimental configuration used to
record a hologram and reconstruct the optical wave scattered from
the surface of a physical object. Using a beamsplitter, laser light is
split into two portions; one is used as the reference wave, whereas
the other is scattered from the object to form the object wave. The
optical path difference between the two waves should be as small as
possible to ensure that the two beams maintain a nonrandom phase



Figure 4.5-7 Holographic recording and reconstruction.

Since the interference pattern forming the hologram is composed of
fine lines separated by distances of the order of A/ sin 0, where 0 is
the angular offset between the reference and object waves, the
photographic film must be of high resolution and the system must
not vibrate during the exposure. The larger 0, the smaller the
distances between the hologram lines, and the more stringent these
requirements are. The object wave is reconstructed when the
recorded hologram is illuminated with the reference wave, so that a
viewer see the object as if it were actually there, with its three-
dimensional character preserved.

Volume Holography

It has been assumed so far that the hologram is a thin planar
transparency on which the interference pattern of the object and
reference waves is recorded. We now consider recording the
hologram in a relatively thick medium and show that this offers an
advantage. Consider the simple case when the object and reference
waves are plane waves with wavevectors k, and k,. The recording

medium extends between the planes z = 0 and z =A, as illustrated in
Fig. 4.5-8 . The interference pattern is now a function of x, y, and z:



Iz w,2) = VI expl—ike 1) + /o exp(—iko )| (4.5-6)

=L+ L+ 211 cos{k, - r —k, - 1)
= I, + I, + 24/T,1, cos(k, - 1),

where k;, = k,, - k.. This is a sinusoidal pattern of period A =
271/|Kk,4| and with the surfaces of constant intensity normal to the

vector kY.

Figure 4.5-8 Interference pattern when the reference and object
waves are plane waves. Since |k,| = |k,| = 271/A and |k,| = 27/A,
from the geometry of the vector diagram 2s/A = 2(271/A) sin(6/2),
so that A = A/2 sin(6/2).

For example, if the reference wave points in the z direction and the
object wave makes an angle 6 with the z axis, |k | = 2k sin(6/2) and

the period is

A

A = @2 (4.5-7)

as illustrated in Fig. 4.5-8 .

If recorded in emulsion, this pattern serves as a thick diffraction
grating, a volume hologram. The vector k is called the grating
vector. When illuminated with the reference wave as illustrated in
Fig. 4.5-9 , the parallel planes of the grating reflect the wave only
when the Bragg condition sin ¢ = A/2A is satisfied, where ¢ is the



angle between the planes of the grating and the incident reference
wave (Exercise 2.5-3). In our case ¢ = 6/2, so that sin(6/2) = A/2A.
In view of (4.5-7), the Bragg condition is indeed satisfied, so that the
reference wave is indeed reflected. As evident from the geometry,
the reflected wave is an extension of the object wave, so that the
reconstruction process is successful.

Suppose now that the hologram is illuminated with a reference
wave of different wavelength A”. Evidently, the Bragg condition,
sin(6/2) = A’/2A, will not be satisfied and the wave will not be
reflected. It follows that the object wave is reconstructed only if the
wavelength of the reconstruction source matches that of the
recording source. If light with a broad spectrum (white light) is used
as a reconstruction source, only the “correct” wavelength would be
reflected and the reconstruction process would be successful.

Figure 4.5-9 The reference wave is Bragg reflected from the thick
hologram and the object wave is reconstructed.

Although the recording process must be done with monochromatic
light, the reconstruction can be achieved with white light. This
provides a clear advantage in many applications of holography.
Other geometries for recording a reconstruction of a volume
hologram are illustrated in Fig, 4.5-10 .



Figure 4.5-10 Two geometries for recording and reconstruction of
a volume hologram. (a) This hologram is recorded with the
reference and object waves arriving from the same side, and is
reconstructed by use of a reversed reference wave; the
reconstructed wave is a conjugate wave traveling in a direction
opposite to the original object wave. (b) A reflection hologram is
recorded with the reference and object waves arriving from opposite
sides; the object wave is reconstructed by reflection from the
grating.

Another type of hologram that may be viewed with white light is the
rainbow hologram. This hologram is recorded through a narrow
slit so that the reconstructed image, of course, also appears as if
seen through a slit. However, if the wavelength of reconstruction
differs from the recording wavelength, the reconstructed wave will
appear to be coming from a displaced slit since a magnification
effect will be introduced. If white light is used for reconstruction,
the reconstructed wave appears as the object seen through many
displaced slits, each with a different wavelength (color). The result
is a rainbow of images seen through parallel slits. Each slit displays
the object with parallax effect in the direction of the slit, but not in
the orthogonal direction. Rainbow holograms enjoy wide
commercial use as displays.

Computer-Generated Holography



A computer-generated hologram is a hologram of an object
that does not physically exist. The hologram is generated by
computing, and then digitally recording, the interference pattern of
a reference wave with a mathematically defined wave that
represents light scattered from a particular virtual object. The
hologram may take the form of a mask, film, or spatial light
modulator; when illuminated by the reference wave it generates the
desired object wave. Computer-generated holography is principally
geared toward 3D visualization, including applications in CAD
(computer-aided design), gaming, and video displays.

An important application is the generation of holographic optical
elements (HOEs). One example is the hologram of a point source,
described in Example 4.5-2, which functions as a lens. A HOE that
converts a planar wave into another optical beam with a
mathematically defined complex amplitude, such as a Hermite—
Gaussian, Laguerre—Gaussian, Bessel, or Airy beam (see Secs. 3.4
and 3.5), may be created by computing and digitally recording the
interference pattern of the desired beam with a planar wave, as
described in Example 4.5-3.



EXAMPLE 4.5-3.

Holographic Optical Element for Generating a Spiral-
Phased Wave. The task at hand is to create a HOE that
converts a reference planar wave into a spiral-phased object
wave with complex amplitude U, = exp(—jl¢) at the z = 0 plane.
Here ¢ = arctan(y/x) is the azimuthal angle [see Fig. 3.4-1 (b)]
and [ = 1, 2,... is the topological charge of the associated optical
vortex, as discussed in Sec. 3.4. Choosing a reference planar
wave that propagates in the x—z plane, at an angle 6 with respect
to the z axis (see Fig, 2.5-4), gives rise to U, = exp(—jk, sin 0,) at

pattern given by

Hr y)=24+2cosl2rxiA — Ig), ¢ = arctan(y/x),

where A = A,/ sin 0.

(4.5-8)

The resultant holograms take the form of vertical sinusoidal
fringes of period A with dislocations near x = 0, as displayed in
Fig. 4.5-11 . Illuminating the recorded hologram with the
reference wave will result in the generation of a spiral-phased
wave with a helical wavefront and the associated value of [.

¥ ¥ ¥
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] =2 =3
Figure 4.5-11 Computer-generated holographic optical
elements for introducing a spiral phase into a planar wave, for
three values of I.
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PROBLEMS

4.1-3 Correspondence Between Harmonic Functions and
Plane Waves. The complex amplitudes of a monochromatic
wave of wavelength A in the z = 0 and z = d planes are f(x, y)



and g(x, y), respectively. Assuming that d = 104\, use harmonic
analysis to determine g(x, y) in the following cases:

a. flx, y) = 1;
b. fx, y) = expl(—jz/A)(x + Y)1;
c. flx, y) = cos(mx/22);

d. flx, y) = cos2(y/22);
e. f{x, y) = rect[(x/101) — 2m], m = 0, £, +,,..., where rect(x) = 1 if
|x| < V2 and o0, otherwise.

Describe the physical nature of the wave in each case.

4.1-4 Conical Confinement Angle. In Prob. 4.1-3, if f(x,y) isa
circularly symmetric function with a maximum spatial
frequency of 200 lines/mm, determine the angle of the cone
within which the wave directions are confined. Assume that A =
633 nm.

4.1-5 Logarithmic Interconnection Map. A transparency of
amplitude transmittance t(x, y) = exp[—j27¢(x)] is illuminated
with a uniform plane wave of wavelength A = 1 um. The
transmitted light is focused by an adjacent lens of focal length f
= 100 cm. What must ¢(x) be so that the ray that hits the
transparency at position x is deflected and focused to a position
x’ = In(x) for all x > 0? (Note that x and x’ are measured in
millimeters.) If the lens is removed, how should ¢(x) be
modified so that the system performs the same function? This
system may be used to perform a logarithmic coordinate
transformation, as discussed in Chapter 24 [see Exercise 24.1-
2].

4.2-3 Proof of the Lens Fourier-Transform Property.

a. Show that the convolution of f(x) and exp(—jmx2/Ad) may be
obtained via three steps: multiply f(x) by exp(—jmx2/Ad);



evaluate the Fourier transform of the product at the frequency
v, = x/Ad; and multiply the result by exp(—jzx2/Ad).

b. The Fourier transform system in Fig, 4.2-4 is a cascade of three
systems — propagation a distance fin free space, transmission
through a lens of focal length f, and propagation a distance fin
free space. Noting that propagation a distance d in free space is
equivalent to convolution with exp(—jmx2/Ad) [see (4.1-20)],
and using the result in (a), derive the lens’ Fourier-transform

4.2-4 Fourier Transform of the Line Functions. A
transparency of amplitude transmittance t(x, y) is illuminated
with a plane wave of wavelength A = 1 yum and focused with a
lens of focal length f = 100 cm. Sketch the intensity
distribution in the plane of the transparency and in the lens
focal plane in the following cases (all distances are measured in
mm):

a. t(x, y) = 6(x - y);
b. t(x, y) = 6(x + a)+ 6(x — a), a = 1 mm;
c.t(x,y) = 6(x + a)+ j6(x — a), a =1 mm;

where 6(+) is the delta function (see Appendix A, Sec. A.1).

4.2-5 Design of an Optical Fourier-Transform System.
Consider a lens used to display the Fourier transform of a two-
dimensional function with spatial frequencies between 20 and
200 lines/mm. If the wavelength of light is A = 488 nm, what
should be the focal length of the lens so that the highest and
lowest spatial frequencies are separated by a distance of 9 cm
in the Fourier plane?

*4.2-6 Generation of the Airy Beam by Use of an Optical
Fourier-Transform System. As described in Sec. 3.5B, the
Airy beam has an amplitude A(x, 0) = Ai(x/Wo) inthez =0
plane, where Ai(x) is the Airy function and Wo is a measure of



the beam width. Given that the Fourier transform of the phase
function exp(jx3/3) is equal to 277Ai(27 v,), design an optical
Fourier-transform system that generates the Airy beam using a
lens of focal length f and a mask whose amplitude
transmittance is exp(jx;/3). Determine an expression for Wo of
the beam generated in terms of f and the wavelength A.

4.3-4 Fraunhofer Diffraction from a Diffraction Grating.
Derive an expression for the Fraun-hofer diffraction pattern for
an aperture made of M = 2L +1 parallel slits of infinitesimal
widths separated by equal distances a = 104,

L
plzyt= 3. 8z —ma).
m=—L
Sketch the pattern as a function of the observation angle 0 = x/d,
where d is the observation distance.

4.3-5 Fraunhofer Diffraction with an Oblique Incident
Wave. The diffraction pattern from an aperture with aperture
function p(x, y) is proportional to | P (x/Ad, y/Ad)|?, where P
(Vs V) 18 the Fourier transform of p(x, y) and d is the distance
between the aperture and observation planes. What is the
diffraction pattern when the direction of the incident wave
makes a small angle 0, « 1, with the z-axis in the x—z plane?

*4.3-6 Fresnel Diffraction from Two Pinholes. Show that the
Fresnel diffraction pattern from two pinholes separated by a
distance 2a, i.e., p(x, y) = [6(x—a)+6(x+a)]6(y), at an
observation distance d is the periodic pattern, I(x, y) = (2/Ad)?
cos?(2max/Ad).

*4.3-7 Relation Between Fresnel and Fraunhofer

Diffraction. Show that the Fresnel diffraction pattern of the
aperture function p(x, y) is equal to the Fraunhofer diffraction

pattern of the aperture function p(x, y) exp[—jm(x* + y>)/Ad].



4.4-1 Blurring a Sinusoidal Grating. An object f(x, y) =
cos?(2smx/a) is imaged by a defocused single-lens imaging
system whose impulse response function h(x, y) = 1 within a
square of width D, and is 0 elsewhere. Derive an expression for
the distribution of the image g(x, 0) in the x direction. Derive
an expression for the contrast of the image in terms of the ratio
D/a. The contrast is defined as (max — min)/(max + min),
where max and min are the maximum and minimum values of
g(x, 0), respectively.

4.4-2 Image of a Phase Object. An imaging system has an
impulse response function h(x, y) = rect(x) 6(y). If the input

wave is
T
exp (j E) forx >0
flz,p) = 4
exp (_jE) forx < 0,

determine and sketch the intensity |g(x, y)|? of the output wave g(x,

y). Verify that even though the intensity of the input wave |f(x, y)|?
= 1, the intensity of the output wave is not uniform.

4.4-3 Optical Spatial Filtering. Consider the spatial filtering
system shown in Fig. 4.4-5 with f = 1000 mm. The system is
illuminated with a uniform plane wave of unit amplitude and
wavelength A = 1073 mm. The input transparency has
amplitude transmittance f(x, y) and the mask has amplitude
transmittance p(x, y). Write an expression relating the complex
amplitude g(x, y) of light in the image plane to f(x, y) and p(x,
y). Assuming that all distances are measured in mm, sketch
g(x, 0) in the following cases:

a. f{x, y) = 6(x - 5) and p(x, y) = rect(x);
b. f(x, y) = rect(x) and p(x, y) = sinc(x).

Determine p(x, y) such that g(x, y) = v f(x, y), where v} = 92/
0x> + 02/0y? is the transverse Laplacian operator.



4.4-4 Optical Correlation. Show how a spatial filter may be used
to perform the operation of optical correlation (see Appendix
A) between two images described by the real-valued functions
f1(x, y) and f,(x, y). Under what conditions would the complex

amplitude transmittances of the masks and transparencies
used be real-valued?

*4.4-5 Impulse Response Function of a Severely Defocused
System. Using wave optics, show that the impulse response
function of a severely defocused imaging system (where the
defocusing error €is very large) may be approximated by h(x,
y) = p(x/&d,, y/ &d,), where p(x, y) is the pupil function. Hint:
Use the method of stationary phase described on page 125
(second proof) to evaluate the integral resulting from the use
of (4.4-11) and (4.4-10). Note that this is the same result as that
predicted by the ray theory of light [see (4.4-2)].

4.4-6 Two-Point Resolution.

a. Consider the single-lens imaging system discussed in Sec. 4.4C.
Assuming a square aperture of width D, unit magnification, and
perfect focus, write an expression for the impulse response
function h(x, y).

b. Determine the response of the system to an object consisting of
two points separated by a distance b, i.e.,

He,y) = 8x}dly) + oz — bl d(y).

c. If Ad,/D = 0.1 mm, sketch the magnitude of the image g(x, 0)
as a function of x when the points are separated by a distance b
= 0.5, 1, and 2 mm. What is the minimum separation between
the two points such that the image remains discernible as two
spots instead of a single spot, i.e., has two peaks?

4.4-7 Ring Aperture.



a. A focused single-lens imaging system, with magnification M = 1
and focal length f = 100 cm has an aperture in the form of a
ring

1, a= oty < h
plz,y) = {11 otherwise, Y
where a = 5 mm and b = 6 mm. Determine the transfer
function H(v,, vy) of the system and sketch its cross section

H(v,, 0). Assume that the wavelength A = 1 ym.

b. (b) If the image plane is now moved closer to the lens so that
its distance from the lens becomes d,, = 25 cm, with the
distance between the object plane and the lens di1 as in (a), use
the ray-optics approximation to determine the impulse
response function of the imaging system h(x, y) and sketch h(x,
0).

4.5-1 Holography with a Spherical Reference Wave. The
choice of a uniform plane wave as a reference wave is not
essential to holography; other waves can be used. Assuming
that the reference wave is a spherical wave centered about the
point (0, 0, —d), determine the hologram pattern and examine
the reconstructed wave when:

a. the object wave is a plane wave traveling at an angle 6, ;
b. the object wave is a spherical wave centered at (-x,, 0, —d1).

Approximate spherical waves by paraboloidal waves.

4.5-2 Optical Correlation via Holography. A transparency with
an amplitude transmittance given by f(x, y) = fi(x — a, y)+ f2(x
+ a, y) is Fourier transformed by a lens and the intensity is
recorded on a transparency (hologram). The hologram is
subsequently illuminated with a reference wave and the
reconstructed wave is Fourier transformed with a lens to
generate the function g(x, y). Derive an expression relating g(x,



y) to fi(x, y) and f2(x, y). Show how the correlation of fi(x, y)
and f2(x, y) may be determined with this system.

Notes

1 The spatial harmonic function is defined with a minus sign in the
exponent, in contrast to the plus sign used in the definition of the
temporal harmonic function (compare (A.1-1) and (A.3-1) in
Appendix A). This sign convention is chosen to match that for the
forward-traveling plane wave set forth in (2.2-11).

2 Evanescent waves are neither forward nor backward propagating;
rather, they propagate in the transverse plane where they are
generated. We select the negative sign before the square root in
(4.1-3) because such waves must attenuate, rather than grow, in the
positive z direction absent a gain mechanism enabling them to
grow.

3 See, e.g., M. Born and E. Wolf, Principles of Optics, Cambridge
University Press, 7th expanded and corrected ed. 2002, Appendix
I11.
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James Clerk Maxwell (1831—1879) advanced the theory that
light is an electromagnetic wave phenomenon. He formulated a set
of fundamental equations of enormous importance that bear his
name.

Lord Rayleigh (John William Strutt) (1842-1919)
contributed extensively to many areas of optics, including blackbody
radiation, image formation, and scattering. He was awarded the
Nobel Prize in 1904.

It is apparent from the results presented in Chapters 2—4 that wave
optics has a far greater reach than ray optics. Remarkably, both
approaches provide similar results for many simple optical
phenomena involving paraxial waves, such as the focusing of light
by a lens and the behavior of light in graded-index media and
periodic systems. But it is also clear that wave optics offers
something that ray optics cannot: the ability to explain phenomena



such as interference and diffraction, which involveke ray optics. In
spit phase, and therefore lie hopelessly beyond the reach of a simple
construct lie of its many successes, however, wave optics, like ray
optics, is unable to quantitatively account for some simple
observations in an optics experiment, such as the division of light at
a beamsplitter. The fraction of light reflected (and transmitted)
turns out to depend on the polarization of the incident light, which
means that the light must be treated in the context of a vector,
rather than a scalar, theory. That’s where electromagnetic optics
enters the picture. In common with radio waves and X-rays, as
shown in Fig. 5.0-1, light is an electromagnetic phenomenon that is
described by a vector wave theory. Electromagnetic radiation
propagates in the form of two mutually coupled vector waves, an
electric-field wave and a magnetic-field wave. From this perspective,
the wave-optics approach set forth in Chapter 2, and developed in
Chapters 3 and 4, is merely a scalar approximation to the more
complete electromagnetic theory.

Figure 5.0-1 The electromagnetic spectrum from low frequencies
(long wavelengths) to high frequencies (short wavelengths). The
optical region, shown as shaded, is displayed in greater detail in Fig.
2.0-1.

Electromagnetic optics thus encompasses wave optics, which in
turn reduces to ray optics in the limit of short wavelengths, as
shown in Chapter 2. This hierarchy is displayed in Fig, 5.0-2.



Figure 5.0-2 Electromagnetic optics is a vector theory comprising
an electric field and a magnetic field that vary in time and space.
Wave optics is an approximation to electromagnetic optics that
relies on the wavefunction, a scalar function of time and space. Ray
optics is the limit of wave optics when the wavelength is very short.

Optical frequencies occupy a band of the electromagnetic spectrum
that extends from the infrared through the visible to the ultraviolet,
as shown in Fig. 5.0-1. The range of wavelengths that is generally
considered to lie in the optical domain extends from 10 nm to 300
um (as is shown in greater detail in Fig. 2.0-1). Because these
wavelengths are substantially shorter than those of radiowaves, or
even microwaves, the techniques involved in their generation,
transmission, and detection have traditionally been rather distinct.
In recent years, however, the march toward miniaturization has
served to blur these differences: it is now commonplace to
encounter wavelength-and subwavelength-size resonators,
antennas, waveguides, lasers, and other structures.

This Chapter

This chapter offers a brief review of those aspects of
electromagnetic theory that are of paramount importance in optics.
The fundamental theoretical construct — Maxwell’s equations — is
set forth in Sec. 5.1. The behavior of optical electromagnetic waves
in dielectric media is examined in Sec. 5.2. Together, these sections
lay out the fundamentals of electromagnetic optics and provide the
set of laws that govern the remaining sections of the chapter. These
rules simplify considerably for the special case of monochromatic



light, as discussed in Sec. 5.3. Elementary electromagnetic waves
(plane waves, dipole waves, and Gaussian beams), introduced in
Sec. 5.4, provide important examples that are often encountered in
practice. Section 5.5 is devoted to a study of the propagation of light
in dispersive media, which exhibit wavelength-dependent
absorption and refraction, as do real media. The scattering of
electromagnetic waves, considered in Sec. 5.6, plays an important
role in optics and plasmonics, as discussed in Chapter 8. Finally, in
Sec. 5.7, we consider pulse propagation in dispersive media, which
provides a basic underpinning for Chapters 10, 23, and 25.

Chapter 6, which is based on the theory of electromagnetic optics
presented in this chapter, deals explicitly with the polarization of
light and the interaction of polarized light with dielectric and
anisotropic media such as liquid crystals. The material set forth
here also forms the basis for the expositions provided in Chapters
7—11, which deal, respectively, with the optics of layered and
periodic media, metals and metamaterials, guided waves, fibers, and
resonators. Chapters 12 and 22, devoted to statistical optics and
nonlinear optics, respectively, are also based on electromagnetic
optics.

5.1 ELECTROMAGNETIC THEORY OF LIGHT

An electromagnetic field is described by two related vector fields
that are functions of position and time: the electric field &(r, )
and the magnetic field #(r, t). In general, therefore, six scalar
functions of position and time are required to describe light in free
space. Fortunately, these six functions are interrelated since they
must satisfy the celebrated set of coupled partial differential
equations known as Maxwell’s equations.

Maxwell’s Equations in Free Space

The electric-and magnetic-field vectors in free space satisfy
Maxwell’s equations:



VxH= Eaa (5 1_1)
aH

Vx&E= _#GE (51__2)

v-E=0 (5.1-3),

V=0, (5.1-4).

Maxwell’s Equations (Free Space)

where the constants ¢, = (1/36m) x 107 F/m and p, = 47t x 1077

H/m (MKS units) are, respectively, the electric permittivity and
the magnetic permeability of free space. The vector operators

and x represent the divergence and curl, respectively.
The Wave Equation

A necessary condition for € and #to satisfy Maxwell’s equations is
that each of their components satisfy the wave equation

1 #%u (5'1'5)

2 —
vﬂ—c—gﬁ—ﬂ.

Wave Equation (Free Space)

Here

€, = L 2= 3 % 107 m/s

4/ Ealin

Speed of Light (Free Space)

is the speed of light in vacuum, and the scalar function u(r,t)
represents any of the three components (e,, €, €,) of € or the three

components (., #,, H,) of .



The wave equation may be derived from Maxwell’s equations by
applying the curl operation V x to (5.1-1), making use of the vector
identity V x (V x &) = V(V - €) — V2¢, and then using (5.1-10) and (5.1-
11) to show that each component of ¢ satisfies the wave equation. A
similar procedure is followed for & Since Maxwell’s equations and
the wave equation are linear, the principle of superposition applies:
if two sets of electric and magnetic fields are solutions to these
equations separately, their sum is also a solution.

The connection between electromagnetic optics and wave optics is
now evident. The wave equation (2.1-2), which is the basis of wave
optics, is embedded in the structure of electromagnetic theory; the
speed of light is related to the electromagnetic constants €, and 1,

by (5.1-12); and the scalar wavefunction u(r, t) in Chapter 2
represents any of the six components of the electric-and magnetic-
field vectors. Electromagnetic optics reduces to wave optics in
problems for which the vector nature of the electromagnetic fields
is not of essence. As we shall see in this and the following chapters,
the vector character of light underlies polarization phenomena and
governs the amount of light reflected or transmitted through
boundaries between different media, and therefore determines the
characteristics of light propagation in waveguides, layered media,
and optical resonators.

Maxwell’s Equations in a Medium

In a medium devoid of free electric charges and currents, two
additional vector fields are required — the electric flux density
(also called the electric displacement) D(r,t) and the magnetic
flux density #(r,t). The four fields, €, o#, D, and %, are related by
Maxwell’s equations in a source-free medium:

oD
VxH = (5.1=7).

VxE=—a (5.1-8)



v-D=0 (5.1-9)

Maxwell’s Equations (Source-Free Medium)

Conductive media such as metals have free electric charges,
requiring the addition of an associated current density J to the
right-hand side of (5.1-14), as discussed in Sec. 8.2A. Maxwell’s
original formulation in 1865 comprised 20 simultaneous equations
with 20 variables; these were condensed into their present form by
Oliver Heaviside in 1885.

The relationship between the electric flux density D and the electric
field e depends on the electric properties of the medium, which are
characterized by the polarizationdensity 2. In a dielectric
medium, the polarization density is the macroscopic sum of the
electric dipole moments induced by the electric field. Similarly, the
relation between the magnetic flux density &% and the magnetic field
# depends on the magnetic properties of the medium, embodied in
the magnetization density .#, which is defined analogously to
the polarization density. The equations relating the flux densities
and the fields are

D=t +7 (5.1-11),

B=yH N,
Ho™T o Ho (5.1-12),

The vector fields P and .# are in turn related to the externally
applied electric and magnetic fields € and &by relationships that
depend on the electric and magnetic character of the medium,
respectively, as will be described in Sec. 5.2. Equations relating P
and ¢, as well as .# and #, are established once the medium is
specified. When these latter equations are substituted into
Maxwell’s equations in a source-free medium, the flux densities
disappear.



In free space, P = .4 = 0, so that D = ¢,¢ and # = y,#whereupon
(5.1-2)—(5.1-3) reduce to the free-space Maxwell’s equations, (5.1-
4)—(5.1-6).

Boundary Conditions

In a homogeneous medium, all components of the fields €, &, D and
2 are continuous functions of position. At the boundary between
two dielectric media, in the absence of free electric charges and
currents, the tangential components of the electric and magnetic
fields € and +#, and the normal components of the electric and
magnetic flux densities D and %, must be continuous (Fig, 5.1-1).

Figure 5.1-1 Boundary conditions at: (a) the interface between two
dielectric media; (b) the interface between a perfect conductor and a
dielectric material.

At the boundary between a dielectric medium and a perfectly
conductive medium, the tangential components of the electric-field
vector must vanish. Since a perfect mirror is made of a perfectly
conductive material (a metal), the component of the electric field
parallel to the surface of the mirror must be zero. This requires that
at normal incidence the electric fields of the reflected and incident
waves must have equal magnitudes and a phase shift of it so that
their sum adds up to zero.

These boundary conditions are an integral part of Maxwell’s
equations. They are used to determine the reflectance and
transmittance of waves at various boundaries (see Sec. 6.2), and the
propagation of waves in periodic dielectric structures (see Sec. 7.1)
and waveguides (see Sec. 9.2).

Intensity, Power, and Energy



The flow of electromagnetic power is governed by the vector

5= 'H
&% (5.1-13)

which is known as the Poynting vector. The direction of power
flow is along the direction of the Poynting vector, i.e., orthogonal to
both € and +# The optical intensity I(r, ) (power flow across a

unit area normal to the vector §)2 is the magnitude of the time-
averaged Poynting vector (§). The average is taken over times that
are long in comparison with an optical cycle, but short compared to
other times of interest. The wave-optics equivalent is given in (2.1-

3).

Using the vector identity V- (€ x #) = (V x &) - #H — (V x H) - €,
together with Maxwell’s equations (5.1-7)—(5.1-8), and (5.1-9)—(5.2-
1), we obtain

L8/ L, 1N L 8T AM
?~&=—E(§eot -E—E,uoﬂ{)—t-ﬁ—poﬂ{-ﬁ. (5.1-14),
The first and second terms in parentheses in (5.2-13) represent the
energy densities (per unit volume) stored in the electric and
magnetic fields, respectively. The third and fourth terms represent
the power densities associated with the material’s electric and
magnetic dipoles. Equation (5.2-15), known as the Poynting
theorem, therefore represents conservation of energy: the power
flow escaping from the surface of an incremental volume equals the
time rate of change of the energy stored inside the volume.

Momentum

An electromagnetic wave carries linear momentum, which results in
radiation pressure on objects from which the wave reflects or
scatters. In free space, the linear momentum density (per unit
volume) is a vector

. 1,
et x B =8 (5.1-15)



Linear Momentum Density

proportional to the Poynting vector §. The average momentum in a

cylinder of length ¢ and unit area is ((§))/c?) - ¢ = (§)/c. This
momentum crosses the unit area in a unit time, so that the average
rate (per unit time) of momentum flow across a unit area oriented
perpendicular to the direction of § is (§)/c.

An electromagnetic wave may also carry angular momentum and
may therefore exert torque on an object. The average rate of angular
momentum transported by an electromagnetic field is r x (§)/c. For
example, the Laguerre—Gaussian beams introduced in Sec. 3.4 have
helical wavefronts; the Poynting vector has an azimuthal
component that leads to an orbital angular momentum.

5.2 ELECTROMAGNETIC WAVES IN
DIELECTRIC MEDIA

The character of the medium is embodied in the relation between
the polarization and magnetization densities, P and . #, on the one
hand, and the electric and magnetic fields, € and 5, on the other;
these are known as the constitutive relation. In most media, the
constitutive relation separates into a pair of constitutive relations,
one between P and ¢, and another between .# and 4. The former
describes the dielectric properties of the medium, whereas the latter
describes its magnetic properties. With the notable exceptions of
magnetic materials, optically active materials, and metamaterials,
the principal emphasis in this book is on the dielectric properties.
We therefore direct our attention to the P-& relations for various
dielectric media; the .#-#relations for magnetic media obey
similar relations under similar conditions.

It is useful to regard the P-& constitutive relation as arising from a
system in which ¢ is the input and 2 is the output or response (Fig.
5.2-1). Note that € = &(r, ) and P = P(r, t) are functions of both
position and time.
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Figure 5.2-1 In response to an applied electric field e, the dielectric
medium creates a polarization density P.

Definitions

» A dielectric medium is said to be linear if the vector field
P(r, t) is linearly related to the vector field (r, t). The
principle of superposition then applies.

» The medium is said to be nondispersive if its response is
instantaneous, i.e., if P at time t is determined by ¢ at the
same time t and not by prior values of €. Nondispersiveness
is clearly an idealization since all physical systems, no
matter how rapidly they may respond, do have a response
time that is finite.

= The medium is said to be homogeneous if the relation
between P and ¢ is independent of the position r.

» The medium is said to be isotropic if the relation between
the vectors P and ¢ is independent of the direction of the
vector &, so that the medium exhibits the same behavior
from all directions. The vectors P and € must then be
parallel.

= The medium is said to be spatially nondispersive if the
relation between P and ¢ is local, i.e., if P at each position r
is influenced only by ¢ at the same position r. The medium
is assumed to be spatially nondispersive throughout this
chapter (optically active media, considered in Sec. 6.4A, are
spatially dispersive).



A. Linear, Nondispersive, Homogeneous, and Isotropic
Media

Let us first consider the simplest case of linear, nondispersive,
homogeneous, and isotropic dielectric media. The vectors P and ¢ at
every position and time are then parallel and proportional, so that

P — ¢ xE, (5.21)

where the scalar constant y is called the electric susceptibility
(Fig.5.2-2).

Figure 5.2-2 A linear, nondispersive, homogeneous, and isotropic
medium is fully characterized by a single constant, the electric
susceptibility y.

Substituting (5.2-16) in (5.2-18) shows that D and ¢ are also parallel
and proportional,

(5.2-2)
where the scalar quantity

F =ity (5.2-3)

is defined as the electric permittivity of the medium. The
relative permittivity ¢/¢, = 1 + x is also called the dielectric

constant of the medium.

Under similar conditions, the magnetic relation can be written in
the form



where u is the magnetic permeability of the medium. (5.2-4)

With the relations (5.2-19) and (5.2-2), Maxwell’s equations in (5.2-
22)—(5.2-23), relate only the two vector fields &(r, t) and 54, t),
simplifying to

a&
VxH=ez (5.2-5),
FH
VxE =—ps (5.2:6)
VoEg=? (5.2-7)
V.H =10,
(5:2-8),

Maxwell’s Equations (Linear,
Nondispersive, Homogeneous, Isotropic, Source-Free Medium)

It is apparent that (5.2-24)—(5.2-25), are identical in form to the
free-space Maxwell’s equations in (5.2-4)—(5.2-5) except that ¢
replaces ¢, and u replaces u,. Each component of € and s#'therefore
satisfies the wave equation

1 8%y (5&9)

2
Viu-age =0

Wave Equation (in a Medium)

where the speed of light in the medium is denoted c :

1 (5.2-10)
-

Speed of Light (in a Medium)



The ratio of the speed of light in free space to that in the medium,
c,/c, is defined as the refractive index n:

Cg £ M (5-2'11)

Refractive Index

where (5.2-6) provides

g = 1 (5.2-12)
? Sfola S

For a nonmagnetic material, u = u, and

2-1
ﬂ=\/§=m.~ (5.2-13),

Refractive Index (Nonmagnetic Media)

so that the refractive index is the square root of the relative
permittivity. These relations provide another point of connection
with scalar wave optics (Sec. 5.4B.

Finally, the Poynting theorem (5.2-8) based on Maxwell’s equations
(5.2-9) and (5.3-1), takes the form of a continuity equation

V.8= ow
8= —— (5.2-14)

where

W =ge&’ + 3ud’ (5.2-15)

is the energy density stored in the medium.



B. Nonlinear, Dispersive, Ihhomogeneous, or
Anisotropic Media

We now consider nonmagnetic dielectric media for which one or
more of the properties of linearity, nondispersiveness, homogeneity,
and isotropy are not satisfied.

Inhomogeneous Media

We first consider an inhomogeneous dielectric (such as a graded-
index medium) that is linear, nondispersive, and isotropic. The
simple proportionalities, P = ¢,xe and D = eg, remain intact, but the
coefficients y and ¢ become functions of position: y = x(r) and ¢ =
e(r) (Fig.5.2-3). The refractive index therefore also becomes
position dependent so that n = n(r).

Elr) () Ar)

Figure 5.2-3 An inhomogeneous (but linear, nondispersive, and
isotropic) medium 1is characterized by a position dependent
susceptibility x(r).

Beginning with Maxwell’s equations, (5.3-10)—(5.3-12), and noting
that € = «(r) is position dependent, we apply the curl operation Vx to
both sides of (5.3-13). We then use (5.3-14), to write

32 .2-16
%vx[vx£}=_iﬂ (5.216)

Wave Equation (Inhomogeneous Medium)

The magnetic field satisfies a different equation:



€ . 1 829 (5.2-17)
v x (?v x.H.‘) ——a

Wave Equation (Inhomogeneous Medium)

Equation (5.3-15) may also be written in the form

1 FE
v?£+v(E ve-f:) —Hot oz = 0. (5.2-18),

The validity of (5.3-16) can be demonstrated by employing the
following procedure. Use the identity V x (V x &) = V(V - &) — V=g,
valid for a rectilinear coordinate system. Invoke (5.3-17), which
yields V - ee = 0, together with the identity V- ce = ¢V - € + Ve - ¢,
which provides V - € = —(1/¢)Ve - €. Finally, substitute in (5,3-2) to
obtain (5,3:5).

For media with gradually varying dielectric properties, i.e., when ¢(r)
varies sufficiently slowly so that it can be assumed constant within
distances of the order of a wavelength, the second term on the left-
hand side of (5.4-1) is negligible in comparison with the first, so that

1 &2E
v2E _ Zm e~ 0, (5:2-19),

where cfr) = 1/ /i€ = c,/n(r})is spatially varying and n(r) = /<(r}/e, is
the refractive index at position r. This relation was invoked without
proof in Sec. 2.1, but it is clearly an approximate consequence of
Maxwell’s equations.

For a homogeneous dielectric medium of refractive index n
perturbed by a slowly varying spatially dependent change An, it is
often useful to write (5.4-11) in the form

ViE - C_Eﬁ = S = —tio Y AP =2enAnk, (52—20)



where c = c,/n is the speed of light in the homogenous medium.
Thus, ¢ satisfies the wave equation with a radiation source § created
by a perturbation of the polarization density VP, which in turn is
proportional to An and ¢ itself. These equations may be verified by
expanding the term 1/c¢*(r) in (5.4-13), as

and bringing the perturbation term to the right-hand side of the
equation. The term AP is the perturbation in P, as can be shown by
noting that P = ¢ ye = ¢,(¢/¢, — 1) = ¢,(n* — 1), so that AP = ¢, A(n?
— 1) = 2¢,nAne.

Anisotropic Media

The relation between the vectors P and € in an anisotropic dielectric
medium depends on the direction of the vector ¢; the requirement
that the two vectors remain parallel is not maintained. If the
medium is linear, nondispersive, and homogeneous, each
component of P is a linear combination of the three components of
e:

Ti = Z Ep x'ij E_'i (5-2_21)

¥
where the indices 7, j = 1, 2, 3 denote the x, y, and z components,
respectively.

The dielectric properties of the medium are then described by a 3 x
3 array of constants {y;;}, which are elements of what is called the

electric susceptibility tensor y (Fig. 5.2-4). A similar relation
between D and ¢ applies:

D; = Z €i €4, (52‘_22)

where {¢;;} are the elements of the electric permittivity tensor £.
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Figure 5.2-4 An anisotropic (but linear, homogeneous, and
nondispersive) medium is characterized by nine constants, the
components of the electric susceptibility tensor x;. Each component

of P is a weighted superposition of the three components of €.

The optical properties of anisotropic media are examined in Chapter
6. The relation between #(t) and #{t) for anisotropic magnetic
media takes a form similar to that of (5.4-14), under similar
assumptions.

Dispersive Media

The relation between the vectors P and ¢ in a dispersive dielectric
medium is dynamic rather than instantaneous. The vector &(t) may
be thought of as an input that induces the bound electrons in the
atoms of the medium to oscillate, which then collectively give rise
to the polarization-density vector P(t) as the output. The presence
of a time delay between the output and the input indicates that the
system possesses memory. Only when this time is short in
comparison with other times of interest can the response be
regarded as instantaneous, in which case the medium is
approximately nondispersive.

For dispersive media that are linear, homogeneous, and isotropic,
the dynamic relation between P(t) and &(t) may be described by a
linear differential equation such as that associated with a driven
harmonic oscillator: a, d*P/dt* + a, d7/dt + a, P = ¢, where q,, a,,
and a, are constants. A simple analysis along these lines (see Sec.

5.5C) provides a physical rationale for the presence of dispersion
(and absorption).



More generally, the linear-systems approach provided in Appendix B
may be used to investigate an arbitrary linear system, which is
characterized by its response to an impulse (impulse response
function). An electric-field impulse of magnitude 6(t) applied at
time t = 0 induces a time-dispersed polarization density of
magnitude ¢,x(t), where x(t) is a scalar function of time with finite

duration that begins at t = 0. Since the medium is linear, an
arbitrary electric field €(t) then induces a polarization density that is
a superposition of the effects of £(t’) for all ' < t, so that the
polarization density can be expressed as a convolution, as defined in
Appendix A:

P(t) =, [_ " x(t— ¥ E(E) dt. (5.2-23),

This dielectric medium is completely described by its impulse
response function €,x(t).

Alternatively, a dynamic linear system may be described by its
transfer function, which governs the response to harmonic inputs.
The transfer function is the Fourier transform of the impulse
response function (see Appendix B). In the example at hand, the
transfer function at frequency v is ¢,x(v), where x(v) is the Fourier

transform of y(t) so that it is a frequency-dependent susceptibility
(Fig. 5.2-5). This concept is discussed further in Secs. 5.3 and 5.5.

&1 X9 Pi1)

Figure 5.2-5 In a dispersive (but linear, homo geneous, and
isotropic) medium the relation between P(t) and &(t) is governed by
a dynamic linear system described by an impulse response function
¢,x(t) that corresponds to a frequency dependent susceptibility x(v).

For magnetic media under similar assumptions, the relation
between .#(t) and sAt) is analogous to (5.4-15).



Nonlinear Media

A nonlinear dielectric medium is defined as one in which the
relation between P and ¢ is nonlinear, in which case the wave
equation as written in (5.4-16) is not applicable. Rather, Maxwell’s
equations can be used to derive a nonlinear wave equation that
electromagnetic waves obey in a such a medium.

We first derive a general wave equation valid for homogeneous and
isotropic nonmagnetic media. Operating on Maxwell’s equation
(5:4-17), with the curl operator V x, and using the relation & =y, #

from (5.4-18) together with (5.4-19), we obtain V x(V x &) =
—-1,0%D/0t?. Making use of the vector identity V x(V x €) = V(V-g)
—V?2e and the relation D = ¢,¢ + P from (5.4-2) then yields

E a%p
ViV-E&) - VI = _Eu”oat_i —#aﬂt—g- .(5.2—24).

For homogeneous and isotropic media D = ¢g; thus V- D = 0 from
(5:4-24).1s equivalent to V - € = 0. Substituting this, along with € u,,
= 1/ from (5.4-3), into (5.4-4). therefore provides

1 P8 P (5:2-25),

2 —
'f-"'ﬁ—{:—g&}‘fg = Hogs

Wave Equation (Homogeneous and Isotropic Medium)

Equation (5.4-8), is applicable for all homogeneous and isotropic
dielectric media: nonlinear or linear, nondispersive or dispersive.

Now, if the medium is nonlinear, nondispersive, and nonmagnetic,
the polarization density P can be written as a memoryless nonlinear
function of €, say P = W(¢), valid at every position and time. (The
simplest example of such a function is P = q, € + a, €, where a, and
a, are constants.) Under these conditions (5.4-9) becomes a

nonlinear partial differential equation for the electric-field vector
e(r, 1):



2o 18%  U(E) 0-56
WV E_E?_”QT (5' )
The principle of superposition is no longer applicable by virtue of
the nonlinear nature of this wave equation. Nonlinear magnetic
materials may be similarly described.

Most dielectric media are approximately linear unless the optical
intensity is substantial, as in the case of focused laser beams.
Nonlinear optics is discussed in Chapter 22.

5.3 MONOCHROMATIC ELECTROMAGNETIC
WAVES

For the special case of monochromatic electromagnetic waves in an
optical medium, all components of the electric and magnetic fields
are harmonic functions of time with the same frequency v and
corresponding angular frequency w = 2s1v. Adopting the complex
representation used in Sec. 2.2A, these six real field components
may be expressed as

£(r,t) = Re{E(r) exp(jurt}}

31
H(r,t) = Re{H(r) exp(juwt)}, (5:31).

where E(r) and H(r) represent electric-and magnetic-field complex-
amplitude vectors, respectively. Analogous complex-amplitude
vectors P, D, M, and B are similarly associated with the real vectors
P, D, 4, and R, respectively.

Maxwell’s Equations in a Medium

Inserting (5.5-13) into Maxwell’s equations (5.5-14)—(5.5-15), and

using the relation (8/9t) &t = jo &®! for monochromatic waves of
angular frequency w, yields a set of equations obeyed by the field
complex-amplitude vectors:

V x H = jwD



VxXE=—jwB (5.3-3)(5.32),

VD=9 (5.3-4)

voE=0 (5.3:5)
Maxwell’s Equations (Source-Free Medium; Monochromatic Fields)

Similarly, (5.5-16) and (5.5-19), give rise to

D=elia b (5.3-6)

B =”0H+P[0M~ (5.3_7)

Intensity and Power

As indicated in Sec. 5.1, the flow of electromagnetic power is
governed by the time average of the Poynting vector § = € x .
Casting this expression in terms of complex amplitudes yields

8§ = Re {Ee/*} x Re {He™!} = L (Ee™t 4 E*e 91} x 1 (Het 4 H*e 1) (5.3-8)
=L (ExH* +E*x H+ & E x H + e 72 E* x H).

The terms containing the factors &2t and e7/2*! oscillate at optical
frequencies and are therefore washed out by the averaging process,
which is slow in comparison with an optical cycle. Thus,

{8) = Y{E x H* + E* x H) = (8 + 8*) = Re{S}, (5.3-9)

where the vector

S=1E x H* (5:3-10),

Complex Poynting Vector



may be regarded as a complex Poynting vector. The optical intensity
is the magnitude of the vector Re{S}.

Linear, Nondispersive, Homogeneous, and Isotropic Media

For monochromatic waves, the relations provided in (5.5-20) and
(5.5-21) become the material equations

D:EE El'ld B:#H? (5 3_11)

so that Maxwell’s equations, (5.5-23)—(5.5-24), depend solely on the
interrelated complex-amplitude vectors E and H:

V x H = jweE .(5.-3'1_2).
VxE =—jwuH (5.3-13)
V.E=0 (5.3-14),
v.H =0 (5.3-15)

Maxwell’s Equations (Linear, Nondispersive, Homogeneous,
Isotropic, Source-Free Medium; Monochromatic Light)

Substituting the electric and magnetic fields € and #given in (5.5-
25) into the wave equation (5.5-28) yields the Helmholtz equation

VI 4+ k20 =0, | k=nk,=w/iE (5.3-16).

Helmholtz Equation

where the scalar function U = U(r) represents the complex
amplitude of any of the three components (E,, E,, E,) of E or three

components (H,, Hy, H,) of H; and where ,
and c = c,/n. In the context of wave optics, the Helmholtz equation

in (2.2-7) was written in terms of the complex amplitude U(r) of the
real wavefunction u(r, t).



Inhomogeneous Media

In an inhomogeneous nonmagnetic medium, Maxwell’s equations
(5.5-3)—(5.5-4) remain applicable, but the electric permittivity of
the medium becomes position dependent, € = ¢(r). For locally
homogeneous media in which «(r) varies slowly with respect to the
wavelength, the Helmholtz equation (5.5-5) remains approximately
valid, subject to the substitutions k = n(r)k, and n{r) = +/ex)/c.-

Dispersive Media

In a dispersive dielectric medium, P(t) and &(t) are connected by the
dynamic relation provided in (5.6-1). To determine the
corresponding relation between the complex-amplitude vectors P
and E, we substitute (5.6-10) into (5.6-11), which gives rise to

P = ex(v)E (5.3-17),

where

y(v)= j:m x(t)exp(—12mit) dt (5.3-18)

is the Fourier transform of x(t).

Equation (5.6-13) can also be directly inferred from (5.6-14) by
invoking the convolution theorem: convolution in the time domain
corresponds to multiplication in the frequency domain (see Secs.
A.1 and B.1 of Appendices A and B, respectively), and recognizing E
and P as the components of € and P of frequency v. The function
¢,x(v) may therefore be regarded as the transfer function of the

linear system that relates P(t) to &(t).

The relation between D and ¢ is similar,

D =<t (5.3-19)



where

e(v) = ea[1 + x(v)]- (5.3-20)

Therefore, in dispersive media the susceptibility ¥ and the
permittivity ¢ are frequency-dependent and, in general, complex-
valued quantities. The Helmholtz equation (5.6-15), is thus readily
adapted for use in dispersive nonmagnetic media by taking

k= wy/ e(v) fo. (5.3-21)

When y(v) and «(v) are approximately constant within the
frequency band of interest, the medium may be treated as
approximately nondispersive. The implications of the complex-
valued nature of y and k in dispersive media are discussed further in
Sec. 5.5.

5.4 ELEMENTARY ELECTROMAGNETIC
WAVES

A. Plane, Dipole, and Gaussian Electromagnetic Waves

We now examine three elementary solutions to Maxwell’s
equations that are of substantial importance in optics: plane waves
and spherical (dipole) waves, which were discussed in Sec. 2.2B in
the context of wave optics, and the Gaussian beam, which was
studied in Chapter 3 using the wave-optics formalism. The medium
is assumed to be linear, homogeneous, nondispersive, and isotropic,
and the waves are assumed to be monochromatic.

The Transverse Electromagnetic (TEM) Plane Wave

Consider a monochromatic electromagnetic wave whose magnetic-
and electric-field complex-amplitude vectors are plane waves with
wavevector k (see Sec. 2.2B) so that



H(r) = Hyexp(—jk - r) (5:4-1),

E{r) = Ep exp(—jk - r), (5_4__2)
where the complex envelopes H, and E, are constant vectors. All
components of H(r) and E(r) satisfy the Helmholtz equation

provided that the magnitude of k is k = nk,, where n is the refractive
index of the medium.

We now examine the conditions that must be obeyed by H, and E,,

in order that Maxwell’s equations be satisfied. Substituting (5.6-16)
and (5.6-17) into Maxwell’s equations (5.6-18) and (5.6-19),
respectively, leads to

k){HD=—u.rEEﬂ (5 4_3)

kxEo= wpHo. (5.4-4)
The other two Maxwell’s equations, (5.6-2) and (5.6-20), are
satisfied identically since the divergence of a uniform plane wave is
Zero.

It follows from (5.6-21) that € must be perpendicular to both k and
H and from (5.6-22) that H must be perpendicular to both k and E.
Thus, E, H, and k are mutually orthogonal, as illustrated in Fig. 5.4-
1. Since E and H lie in a plane normal to the direction of
propagation k, the wave is called a transverse electromagnetic
(TEM) wave.



Figure 5.4-1 The TEM plane wave. The vectors E, H, and k are
mutually orthogonal. The wavefronts (surfaces of constant phase)
are normal to the wavevector k.

In accordance with (5.6-3), the magnitudes H, and E are related by
H, = (we/k)E,. Similarly, (5.6-4) yields H, = (k/wu)E,. For these
two equations to be consistent, we must have we/k = k/wu, or
k=wyes = w/c =nw/c, = nk,.

This is, in fact, the same condition required in order that the wave
satisfy the Helmholtz equation.

The ratio between the amplitudes of the electric and magnetic fields
is E,/H, = wu/k = cu = . /ufe. This quantity is known as the
impedance of the medium,

m |

Eo (5.4-5)
H

Impedance

For nonmagnetic media u = u,, whereupon n = ,/u, /e may be
defined in terms of the impedance of free space n, via

_ Tl (5.4-6)
n=-".

Impedance (Nonmagnetic Media)



where

To = 1/ B2 2 120 ~ 37740, (5-4-7)

E|'.'.|
The complex Poynting vector s = iE x H*[see (5.6-5)] is parallel to
the wave-vector Kk, so that the power flows along a direction normal
to the wavefronts. Its magnitude is 1 EoH§ = |Eo|*/2n, and the intensity
I is therefore given by

B (5.4-8),

I
2n

Intensity

The intensity of a TEM wave is thus seen to be proportional to the
absolute square of the complex envelope of the electric field. As an

example, an intensity of 10 W/cm? in free space corresponds to an
electric field of = 87 V/cm. Note the similarity between (5.6-7) and
the relation I = |U|?, which was defined for scalar waves in Sec.
2.2A.

Equation (5.6-8) provides that the time-averaged energy density W
= (W) of the plane wave is

W = le|Fol”, (5:4-9),

since the electric and magnetic contributions are equal, i.e.,
3¢l Ee|?/2 = LubH,? /2. The intensity in (5.6-9) and the time-averaged
energy density in (5.7-1) are therefore related by

I =W,
o (5.4-10)

indicating that the time-averaged power density flow I results from
the transport of the time-averaged energy density at the velocity of
light c. This is readily visualized by considering a cylinder of area A
and length ¢ whose axis lies parallel to the direction of propagation.



The energy stored in the cylinder, cAW, is transported across the
area in one second, confirming that the intensity (power per unit
area) is I = cW.

The linear momentum density (per unit volume) transported by a
plane wave is

The Dipole Wave

An oscillating electric dipole radiates a wave with features that
resemble the scalar spherical wave discussed in Sec. 2.2B. The
radiation frequency is determined by the frequency at which the
dipole oscillates. This electromagnetic wave is readily constructed
from an auxiliary vector field A(r), known as the vector potential,
which is often used to facilitate the solution of Maxwell’s equations
in electromagnetics. For the case at hand we set

Alr)=ap U(r)X, (5.4-11)

where a, is a constant and ¢ is a unit vector in the direction of the

dipole (the x direction). The quantity U(r) represents a scalar
spherical wave with the origin at r = o:

Ur) = —— exp(—jkr). (5.4-12)

Because U(r) satisfies the Helmholtz equation, as was established in
Sec. 2.2B, A(r) will also satisfy the Helmholtz equation VA + k,A =
0.

We now define the magnetic field in terms of the curl of this vector

1
H=—Uxa, (5.4-13),

and determine the corresponding electric field from Maxwell’s
equation (5.7-2):

E=——VxH (5.4-14),



The form of (5.7-3) and (5.7-4) ensures that V- E=0and V- H = o,
as required by (5.7-5), and (5.7-7), since the divergence of the curl of
any vector field vanishes. Because A(r) satisfies the Helmholtz
equation, it can readily be shown that the remaining Maxwell’s
equation, V x E = —jouH, is also satisfied. It is therefore clear that
(5.4-11)—(5.4-14). define a valid electromagnetic wave that satisfies
Maxwell’s equations.

Explicit expressions for E and H are obtained by carrying out the

curl operations prescribed in (5.4-13) and (5.4-14). This is

conveniently accomplished by making use of the spherical

coordinate system (r, 0, ¢) defined in Fig. 5.4-2(a), with unit vectors
. The exact results for E and H turn out to be

Figure 5.4-2 (a) Spherical coordinate system. (b) Electric- and
magnetic-field vectors and wavefronts of the electromagnetic field,
at distances r » A/2m, radiated by an oscillating electric dipole. (c)
The radiation pattern (field magnitude versus polar angle 0) is
toroidal.

1 1 - ) 1 1 -~
E(r) = 2epcos# L’PE + W} U{r)¥ + egsin ¢ ll + T + Wl U{r}e, (5.4-15)

H(r) = hysin# [1 + J%] Ur) b, (5:4-16),



where h = (jk/u)A, and e, = nH,,. It can be shown that an electric

dipole moment p pointing in the x direction radiates the wave
described in (5.4-15) and (5.4-16) with a, = juwp, so that h, =

(-w?/c)p and e, = —uw?p.

For points at distances from the origin that are much greater than a
wavelength (kr = 22tr/A > 1), the complex-amplitude vectors in (5.4-
15) and (5.4-16) may be approximated by

E(r) = egsin# U(r) a, (5_417)

H(r) = hysin# U(r) . (5.4-18)
The wavefronts are then spherical (as for the scalar spherical wave)
and, as illustrated in Fig. 5.4-2(b), the electric and magnetic fields
are orthogonal to one another and to the radial direction , with the
electric field pointing in the polar direction and the magnetic field
pointing in the azimuthal direction. Since the field strength is
proportional to sin 0, the radiation pattern is toroidal with a null in
the direction of the dipole, as shown in 5.4-2(c). In the paraxial
approximation, at points near the z axis and far from the origin,
such that 6 = ;r/2 and ¢ = 71/2, the wavefront normals are nearly
parallel to the z axis (corresponding to paraxial rays), and sin 0 = 1.

In a Cartesian coordinate system,
B = —sinf X + cost cosd ¥ + cos @ sing & =
— X+ (zf2)y/2) ¥+ (z/2) 2= —X+{z/2) i, so that

B() ~ e %+ 2 2) Ur), (5.4-19)

where U(r) is the paraxial approximation of the spherical wave, i.e.,
the paraboloidal wave discussed in Sec. 2.2B. For sufficiently large
values of z, the term (x/z) in (5.4-19) may also be neglected,
whereupon

E(r) = —epy Ur) %, (5.4-20)



H(r) ~ hoU(n)¥. (5.4-21)

In this approximation U(r) approaches (1/47z) e %2, so that a TEM
plane wave ultimately emerges, as portrayed in Fig. 2.2-4.

An electromagnetic wave that is dual to the electric-dipole wave
discussed above is radiated by a magnetic dipole with the
magnetic dipole moment .# pointing in the x direction. In the far
field (kr > 1), it has an electric field pointing in the azimuthal
direction and an orthogonal magnetic field pointing in the polar
direction, with complex-amplitude vectors given by

H{r) ~ hysind U(r) 8, (5.4-22)

E{r) == epsind U{r) IT), (5.4-23)
where /4, = (0*/c?®) 4 and e, = u(w?/c)-#. At radio frequencies, this
type of wave is radiated by electric current flowing in a loop antenna
placed in a plane orthogonal to the x axis. At optical frequencies,
tiny metal loops serve as optical antennas (Sec. 8.2D) and as
important components in metamaterials (Sec. 8.3A).

The Gaussian Beam

It was demonstrated in Sec. 3.1 that a scalar Gaussian beam is
readily obtained from a paraboloidal wave (the paraxial
approximation to a spherical wave) by replacing the coordinate z by
Z + jz,, where z, is a real constant.

The same transformation applied to the corresponding
electromagnetic wave leads to the electromagnetic vector



Gaussian beam. Replacing z in (5.4-19) by z + jz, yields

L

E(r) = eo (—f o m ’f) Utr), (5.4-24)

where U(r) now represents the scalar complex amplitude of a
Gaussian beam provided in (3.1-7). The wavefronts of the Gaussian
beam are illustrated in Fig. 5.4-3(a) (these are also shown in Fig.
3.1-7), while the E-field lines determined from (5.4-24) are
displayed in Fig. 5.4-3(b). In this case, the direction of the E field is
not spatially uniform.

Figure 5.4-3 (a) Wavefronts of the scalar Gaussian beam U(r) in
the x—z plane. (b) Electric-field lines of the electromagnetic
Gaussian beam in the x—z plane. (Adapted from H. A. Haus, Waves
and Fields in Optoelectronics, Prentice Hall, 1984, Fig. 5.3a.)

B. Relation Between Electromagnetic Optics and
Scalar Wave Optics

The paraxial scalar wave, defined in Sec. 2.2C, has wavefront
normals that form small angles with respect to the axial coordinate
z. The wavefronts behave locally as plane waves while the complex
envelope and direction of propagation vary slowly with z.



This notion is also applicable to electromagnetic waves in linear
isotropic media. A paraxial electromagnetic wave is locally
approximated by a TEM plane wave. At each point, the vectors E and
H lie in a plane that is tangential to the wavefront surfaces and
normal to the wavevector k (Fig. 5.4-4). The optical power flows
along the direction E x H, which is parallel to k and approximately
parallel to the coordinate z.

Figure 5.4-4 The paraxial electromagnetic wave. The vectors E and
H reverse directions after propagation a distance of a half
wavelength.

A paraxial scalar wave of intensity I = |U|? [see (2.2-10)] may be
associated with a paraxial electromagnetic wave of the same
intensity I = |E|?/2n [see (5.4-8)] by setting the complex amplitude
to U = E//2r7 and matching the wavefronts. As attested to by the
extensive development provided in Chapters 2—4, the scalar-wave
description of light provides a very good approximation for solving a
great many problems involving the interference, diffraction,
propagation, and imaging of paraxial waves. The Gaussian beam
with small divergence angle, considered in Chapter 3, provides a
case in point. Most features of these beams, such as their intensity,
focusing by a lens, reflection from a mirror, and interference, are
addressed satisfactorily within the context of scalar wave optics. Of
course, when polarization comes into play, wave optics is mute and
we must appeal to electromagnetic optics.

It is of interest to note that U (as defined above) and E do not
satisfy the same boundary conditions. For an electric field
tangential to the boundary between two dielectric media, for




example, E is continuous (Fig. 5.1-1), but & = E//Z5 is
discontinuous since 1 changes value at the boundary. Thus,
problems involving reflection and refraction at boundaries cannot
be addressed completely within the scalar wave theory, although the
matching of phase that leads to the law of reflection and Snell’s law
is adequately carried out within its confines (Sec. 2.4). Indeed,
calculations of reflectance and transmittance at a boundary depend
on the polarization state of the light and therefore require
electromagnetic optics (see Sec. 6.2). Similarly, problems involving
the transmission of light through dielectric waveguides require an
analysis based on electromagnetic theory, as discussed in Chapters
9 and 10.

C. Vector Beams

Maxwell’s equations in the paraxial approximation admit other
cylindrically symmetric beam solutions for which the direction of
the electric-field vector is spatially nonuniform. One example is a
beam in which the electric field is aligned in an azimuthal
orientation with respect to the beam axis, as illustrated in Fig. 5.4-

5(a),1e.,

.

Eir) =Ul{p, z) exp(—jkz)d. (5.4—25)

The scalar function U(p, z) turns out to be the Bessel-Gauss
solution to the Helmholtz equation, as discussed in Sec. 3.5A. This
beam vanishes on-axis (p = 0) and has a toroidal transverse spatial
distribution. The beam diverges in the axial direction and the spot
size increases, much like the Gaussian beam.

Yet another cylindrically-symmetric beam has an azimuthally
oriented magnetic-field vector, so that the electric-field vector is
radial, as illustrated schematically in Fig. 5.4-5(b). It also has a
spatial distribution with an on-axis null. The distribution of the
vector field of this beam bears some resemblance to the
electromagnetic field radiated by a dipole oriented along the beam
axis (see Fig. 5.4-2).



Figure 5.4-5 Vector beams with cylindrical symmetry. (a) Electric-
field vectors oriented in the azimuthal direction. (b) Electric-field
vectors oriented in the radial direction. The shading indicates the
spatial distribution of the optical intensity in the transverse plane.

It has been shown that a vector beam with radial electric-field
vector may be focused by a lens of large numerical aperture to a
spot of significantly smaller size than is possible with a
conventional scalar Gaussian beam. Clearly, applications for such
beams find a place in high-resolution microscopy. There are, it turns
out, many variations on the theme of optical vector beams and their
uses.

5.5 ABSORPTION AND DISPERSION

In this section, we consider absorption and dispersion in
nonmagnetic media.

A. Absorption

The dielectric media considered thus far have been assumed to be
fully transparent, i.e., not to absorb light. Glass is such a material in
the visible region of the optical spectrum but it is, in fact, absorptive
in the ultraviolet and infrared regions. Transmissive optical
components in those bands are fabricated from other materials:
examples are quartz and magnesium fluoride in the ultraviolet; and
germanium and barium fluoride in the infrared. Figure 5.5-1
illustrates the spectral windows within which some commonly



encountered optical materials are transparent (see Sec. 14.1D for
further discussion).

Figure 5.5-1 The white regions indicate the spectral bands within
which the specified optical materials transmit light. Selected
fluorides, glasses, and semiconductors are displayed.

In this section, we adopt a phenomenological approach to the
absorption of light in linear media. Consider a complex electric
susceptibility

X=X+, (5.5-1)

corresponding to a complex electric permittivity ¢ = ¢,(1 + x) and a
complex relative permittivity ¢/¢, = (1 + ). For monochromatic
light, the Helmholtz equation (5.3-16) for the complex amplitude
U(r) remains valid, V2U + k2U = 0, but the wavenumber k itself
becomes complex-valued:

k=wyeps =kov' 1+ x=kov/'1 +x" + 3x". (5.5-2)

where k, = w/c, is the wavenumber in free space.



Writing k in terms of real and imaginary parts, & = 8 — jia, allows 8
and a to be related to the susceptibility components x’ and x”:

k=ﬁ_j%a=kam (5 5_3)

As a result of the imaginary part of k, a plane wave with complex
amplitude U = A exp(—jkz) traveling through such a medium in the
z-direction undergoes a change in magnitude (as well as the usual
change in phase). Substituting & = 3 — jia into the exponent of this
plane wave yields U = Aexp{—L1az)exp(—3j8z). For a > 0, which
corresponds to absorption in the medium, the envelope A of the
original plane wave is attenuated by the factor exp{—3}az) so that the
intensity, which is proportional to |U|?3, is attenuated by |exp{—3az}|>
= exp(—az). The coefficient a is therefore recognized as the
absorption coefficient (also called the attenuation
coefficient) of the medium. This simple exponential decay formula
for the intensity provides the rationale for writing the imaginary
part of k as . It will be seen in Sec. 15.1A that certain media, such
as those used in lasers, can exhibit a < 0, in which case y=-ais
called the gain coefficient and the medium amplifies rather than
attenuates light.

Since the parameter f is the rate at which the phase changes with z,
it represents the propagation constant of the wave. The medium
therefore has an effective refractive index n defined by

f = nko, (5.5-4)

and the wave travels with a phase velocity ¢ = ¢, /n.

Substituting (5.5-4) into (5.5-3), thus relates the refractive index n
and the absorption coefficient a to the real and imaginary parts of
the susceptibility y’ and x”:

(5.5-5).

1
'E% = vVelto=/ 14X + X"




Absorption Coefficient and Refractive Index

Note that the square root in (5.5-5), provides two complex numbers
with opposite signs (phase difference of sr). The sign is selected such
that if x¥” is negative, i.e., the medium is absorbing, then a is
positive, i.e., the wave is attenuated. If (1 + x’) is positive, then the
complex number 1 + ¥’ + jx” is in the fourth quadrant, and its
square root can be in either the second or the fourth quadrant. By
selecting the value in the fourth quadrant, we ensure that a is
positive, and n is then also positive. Similarly, if (1 + x’) is negative,
then 1 + ¥’ + jx” is in the third quadrant, and its square root is
selected to be in the fourth quadrant so that both a and n are
positive. The impedance associated with the complex susceptibility
X, which is also complex, is given by

Ha o (5‘5_6)

impedance

Hence, in the context of our formulation, x, k, €, and n are complex
quantities while a, , and n are real.

Weakly Absorbing Media

In a weakly absorbing medium, we have the condition x” «< 1 + ¥/,

so that T+ +5x" = vIFxVT+38 = T+ (1 +518), where 6 = x”/(1 +
x"). It follows from (5.5-5), that

RAy 14X (5.5-7)

kl'-'-‘ "
X (5.5-8)

Weakly Absorbing Medium

Under these circumstances, the refractive index is determined by
the real part of the susceptibility and the absorption coefficient is

& ~ —



proportional to the imaginary part thereof. In an absorptive medium
X" is negative so that a is positive whereas in an amplifying medium
x” is positive and a is negative.

4 I

EXERCISE 5.5-1

Dilute Absorbing Medium. A nonabsorptive medium of
refractive index n, serves as host to a dilute suspension of
impurities characterized by susceptibility y = ¥’ + jx”, where y «
1 and y” « 1. Determine the overall susceptibility of the medium
and demonstrate that the refractive index and absorption
coefficient are given approximately by

i

X

nETat g (5.5-9)
knxﬂ
T (5.5-10)

Strongly Absorbing Media

In a strongly absorbing medium, |x”| >» |1 + x’|, so that (5.5-5).
yields n — ja/2k, = vix" = vV=iv/{—x"} = £55({1 - )v/(=x" , whereupon

n Rz (—x7)/2 (5.5-11)
a 72 2k () /2. (5.5-12)

Strongly Absorbing Medium

Since x” is negative for an absorbing medium, the plus sign of the
square root was selected to ensure that a is positive, and this yields
a positive value for n as well.

B. Dispersion



Dispersive media are characterized by a frequency-dependent (and
thus wavelength-dependent) susceptibility y(v), electric permittivity
e(v), refractive index n(v), and speed c,/n(v). Since the angle of

refraction in Snell’s law depends on refractive index, which is
wavelength dependent, optical components fabricated from
dispersive materials, such as prisms and lenses, bend light of
different wavelengths by different angles. This accounts for the
wavelength-resolving capabilities of refracting surfaces and for the
wavelength-dependent focusing power of lenses (and the attendant
chromatic aberration in imaging systems). Polychromatic light is
therefore refracted into a range of directions. These effects are
illustrated schematically in Fig, 5.5-2.

Figure 5.5-2 Optical components fabricated from dispersive
materials refract waves of different wavelengths by different angles
(B = blue, G = green, R = red).

Moreover, by virtue of the frequency-dependent speed of light in a
dispersive medium, each of the frequency components comprising a
short pulse of light experiences a different time delay. If the
propagation distance through a medium is substantial, as is often
the case in an optical fiber, for example, a brief light pulse at the
input will be substantially dispersed in time so that its width at the
output is increased, as illustrated in Fig, 5.5-3.



Figure 5.5-3 A dispersive medium serves to broaden a pulse of
light because the different frequency components that constitute
the pulse travel at different velocities. In this illustration, the low-
frequency component (long wavelength, denoted R) travels faster
than the high-frequency component (short wavelength, denoted B)
and therefore arrives earlier.

The wavelength dependence of the refractive index of some
common optical materials is displayed in Fig. 5.5-4.



Figure 5.5-4 Wavelength dependence of the refractive index of
selected optical materials, including glasses, crystals, and
semiconductors. The designations ‘e’ and ‘o’ represent ordinary and
extraordinary refraction, respectively, for anisotropic materials (see
Sec. 6.3).

Measures of Dispersion

Material dispersion can be quantified in a number of different ways.
For glass optical components and broad-spectrum light that covers
the visible band (white light), a commonly used measure is the
Abbe number V = (n; - 1)/(ny — nc), where ng, ng, and nc are the

refractive indices of the glass at three standard wavelengths: blue at



486.1 nm, yellow at 587.6 nm, and red at 656.3 nm, respectively. For
flint glass V = 38 whereas for fused silica V = 68.

On the other hand, if dispersion in the vicinity of a particular
wavelength A, is of interest, an often used measure is the magnitude

of the derivative dn/dA, at that wavelength. This measure is

appropriate for prisms, for example, in which the ray deflection
angle 0,is a function of n [see (1.2-6)]. The angular dispersion

d0,/dA, = (dO4/dn)(dn/dA,) is then a product of the material
dispersion factor, dn/dA,, and another factor, d0/dn, that depends

on the geometry of the prism and the refractive index of the
material of which it is made.

The effect of material dispersion on the propagation of brief pulses
of light is governed not only by the refractive index n and its first
derivative dn/dA,, but also by the second derivative ,as will

be elucidated in Sec. 5.7 and Sec. 23.3.

Absorption and Dispersion: The Kramers—Kronig Relations

Absorption and dispersion are intimately related. Indeed, a
dispersive material, i.e., a material whose refractive index is
wavelength dependent, must be absorptive and must exhibit an
absorption coefficient that is also wavelength dependent. The
relation between the absorption coefficient and the refractive index
is a result of the Kramers— Kronig relations, which relate the real
and imaginary parts of the susceptibility of a medium, yx’ (v) and y”

(v):

() == L 1) as (5:5:13),
2 ¥ ux'(s
X'(v) =~ j; Uf_{ S}z ds. (5:5:14).

Kramers—Kronig Relations



Given the real or the imaginary component of x(v) for all v, these
powerful formulas allow the complementary component to be
determined for all v. The Kramers—Kronig relations connecting y”
(v) and x’ (v) translate into relations between the absorption
coefficient a(v) and the refractive index n(v) by virtue of (5.5-5),
which relates a and n to y” and y’.

The Kramers—Kronig relations are a special Hilbert-transform pair,
as can be understood from linear systems theory (see Sec. B.1 of
Appendix B). They are applicable for all linear, shift-invariant,
causal systems with real impulse response functions. The linear
system at hand is the polarization-density response of a medium
P(t) to an applied electric field e(t) set forth in (5.2-23). Since &(t)
and P(t) are real, so too is the impulse response function ¢, x(t). As a
consequence, its Fourier transform, the transfer function ¢_x(v),

exhibits Hermitian symmetry: y(-v) = x*(v) [see Sec. A.1 of
Appendix A]. This system therefore obeys all of the conditions
required for the Kramers—Kronig relations to apply. The real and
imaginary parts of the transfer function ¢, x(v) are therefore related

by (B.1-6) and (B.1-7) and, in particular, by (5.5-13) and (5.5-14).

C. The Resonant Medium

We now set forth a simple classical microscopic theory that leads to
a complex susceptibility and provides an underlying rationale for
the presence of frequency-dependent absorption and dispersion in
an optical medium. The approach is known as the Lorentz
oscillator model. A more thorough discussion of the interaction
of light and matter is provided in Chapter 14.

Consider a dielectric medium such as a collection of resonant
atoms, in which the dynamic relation between the polarization
density P(t) and the electric field (t), considered for a single
polarization, is described by a linear second-order ordinary
differential equation of the form



d?P 4P (5:5-15)
7y —I—ﬂE +uwd P =uwie,xo L,

Resonant Dielectric Medium

where ¢, ®,, and x, are constants.

An equation of this form emerges when the motion of a bound
charge associated with a resonant atom is modeled
phenomenologically as a classical harmonic oscillator, in which the
displacement of the charge x(t) and the applied force (t) are
related by

d*z dr , F

— H g Tuhr = (5:5-10),
Here m is the mass of the bound charge, w; = +/x/m is its resonance
angular frequency, x is the elastic constant of the restoring force,

and ¢is the damping coefficient.

If the dipole moment associated with each individual atom is P =
—ex, the polarization density of the medium as a whole is related to
the displacement by P = N, = —Nex, where —e is the electronic

charge and N is the number of atoms per unit volume of the
medium. The electric field and force are related by € = #/(—e). The
quantities P and ¢ are therefore proportional to x and Z,
respectively, and comparison of (5.5-15) and (5.5-16) provides

N 2
X0 = —— (5.5-17)

€oHUIY

The applied electric field can thus be thought of as inducing a time-
dependent electric dipole moment in each atom, as portrayed in Fig,
5.5-5, and hence a time-dependent polarization density in the
medium as a whole.



Figure 5.5-5 A time-varying electric field e applied to a Lorentz-
oscillator atom induces a time-varying dipole moment P that
contributes to the overall polarization density 2.

The medium is completely characterized by its impulse response
function €,x(t), an exponentially decaying harmonic function, or

equivalently by its transfer function ¢_x(v), which is obtained by

solving (5.5-15) one frequency at a time, as follows. Substituting &(t)
= Re{E exp(jwt)} and P(t) = Re{P exp(jwt)} into (5.5-15), yields

{_wﬂ + i + ,,,,%}P = u%EaXuEs (5.5-18)

from which . Writing this relation in the
form P = ¢ ,x(v)E, and substituting w = 271v, yields an expression for

the frequency-dependent susceptibility,

vl (5:5-19),
x(w) = xuvg —v? 4 jrAv’

Susceptibility (Resonant Medium)

where v, = w,/27 is the resonance frequency and Av = (/2.

The real and imaginary parts of x(v), denoted x’(v) and x”(v)
respectively, are therefore given by

NI 10 B

= Xo [Ifg — Ugjg n {Uﬂv]ﬂ (5:5&)
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X (v) =- (5.5-21),

These equations are plotted in Fig. 5.5-6.

xie) —x"{e)

Figure 5.5-6 Real and imaginary parts of the susceptibility of a
resonant dielectric medium. The real part x’(v) is positive below
resonance, zero at resonance, and negative above resonance. The
imaginary part x”(v) is negative so that —x”(v) is positive
everywhere and has a peak value y,Q at v = v, where Q = v /Av.
The illustration portrays results for Q = 10.

At frequencies well below resonance (v < v,), x’ (v) = x, and x” (v)
= 0, so that the low-frequency susceptibility is simply y,,. At
frequencies well above resonance (v > v,), x’ (v) = x” (v) = 0 so that
the medium behaves like free space. Precisely at resonance (v = v,),
X' (vo) = 0and —x” (v,) reaches its peak value of y,Q, where Q = v,/
Av. The resonance frequency v, is usually much greater than Av so
that Q > 1. Thus, the magnitude of the peak value of —x” (v), which
is x,Q, is much larger than the magnitude of the low-frequency
value of ¥’ (v), which is x,,. The maximum and minimum values of
X' (v) are £x, Q/(2 ¥ 1/Q) and occur at frequencies v, /TF 1/3,

respectively. For large Q, x’ swings between positive and negative
values with a magnitude approximately equal to x,Q/2, i.e., one half
of the peak value of x”. The signs of y’ and y” determine the phase
of x, which simply determines the angle between the phasors P and
E.



The behavior of x(v) in the vicinity of resonance (v ~ v,) is often of

particular interest. In this region, we may use the approximation
2v,(v, — v) in the real part of the

denominator of (5.5-19), and replace v with v, in the imaginary part
thereof, to obtain

/2

X{U ~ Uﬂ) == Xo [V[I- — If} + _']‘-&Ifr'lz 1 (5.5'22)
from which
. vl 1
)‘.} (UJ A {1 Dd_ {V[J — U}z i {&U‘}rz)g (5:523)
r — =y,
) &2 T W) (5.5-24)

Susceptibility (Near Resonance)

The function y” (v) in (5.5-23), known as the Lorentzian
function, decreases to half its peak value when |v - v | = Av/2.

The parameter Av therefore represents the full-width at half-
maximum (FWHM) value of x” (v).

The behavior of x(v) far from resonance is also of interest. In the
limit [(v —v,)| » Av, the susceptibility given in (5.5-19), is
approximately real,

v (5:5-25),

x () = xp Wr

Susceptibility (Far from Resonance)
so that the medium exhibits negligible absorption.

The absorption coefficient and the refractive index of a resonant
medium may be determined by substituting the expressions for x’
(v) and x"(v), e.g., (5.5-23), and (5.5-24), into (5.5:5). Each of these



parameters generally depends on both x’ (v) and x”(v). However, in
the special case for which the resonant atoms are embedded in a
nondispersive host medium of refractive index n,, and are
sufficiently dilute so that y” (v) and x’ (v) are both « 1, this
dependence is much simpler, namely, the refractive index and the
absorption coefficient are dependent on y’ and x”, respectively.
Using the results of Exercise 5.5-1, it can be shown that these
parameters are related by:

2'?]—;'! £

afv) = — (nnco) x"{v) (5.5-26)
X )

) & no+ S5 (5.5-27)

The dependence of these quantities on v is illustrated in Fig. 5.5-7.
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Figure 5.5-7 Absorption coefficient a(v) and refractive index n(v)
of a dielectric medium of refractive index n, containing a dilute

concentration of atoms of resonance frequency v,,.

Media with Multiple Resonances

A typical dielectric medium contains multiple resonances
corresponding to different lattice and electronic vibrations. The
overall susceptibility arises from a superposition of contributions
from these resonances. Whereas the imaginary part of the
susceptibility is confined to frequencies near the resonance, the real
part contributes at all frequencies near and below resonance, as
shown in Fig. 5.5-6. This is exhibited in the frequency dependence
of the absorption coefficient and the refractive index, as illustrated



in Fig. 5.5-8. Absorption and dispersion are strongest near the
resonance frequencies. Away from the resonance frequencies, the
refractive index is constant and the medium is approximately
nondispersive and nonabsorptive. Each resonance does, however,
contribute a constant value to the refractive index at all frequencies
below its resonance frequency.
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Figure 5.5-8 Frequency dependence of the absorption coefficient
a(v) and the refractive index n(v) for a medium with three
resonances.

Other complex processes can also contribute to the absorption
coefficient and the refractive index of a material, so that different
patterns of frequency dependence emerge. Figure 5.5-9 shows an
example of the wavelength dependence of the absorption coefficient
and refractive index for a dielectric material that is essentially
transparent at visible wavelengths. The illustration shows a
decreasing refractive index with increasing wavelength in the visible
region by virtue of a nearby ultraviolet resonance. The material is
therefore more dispersive at shorter visible wavelengths where the
rate of decrease of the index is greatest. This behavior is not unlike
that exhibited in Fig, 5.5-1 and Fig. 5.5-4 for various real dielectric
materials.



Figure 5.5-9 Typical wavelength dependence of the absorption
coefficient and refractive index for a dielectric medium exhibiting
resonant absorption in the ultraviolet and infrared bands,
concomitant with low absorption in the visible band. In this

diagram the abscissa is wavelength rather than frequency.

The Sellmeier Equation

In a medium with multiple resonances, labeled i = 1, 2,..., the
susceptibility is approximately given by a sum of terms, each of the
form of (5.5-25), for frequencies far from any of the resonances.
Using the relation between the refractive index and the real
susceptibility provided in (5.2-13), n® = 1 + ¥, the dependence of n
on frequency and wavelength assumes a form known as the
Sellmeier equation:

(5:5-28)

n m1+zx.;,,v2 —1+Zm

Sellmeier Equation

The Sellmeier equation provides a good description of the refractive
index for most optically transparent materials. At wavelengths for

which A « A; the ith term becomes approximately proportional to A2,
and for A > A; it becomes approximately constant. As an example,
the dispersion in fused silica, illustrated in Example 5.7-1, is well



described by three resonances. For some materials the Sellmeier
equation is conveniently approximated by a power series.

The Sellmeier equations for a few selected materials, extracted from
measured data using a least-squares fitting algorithm, are provided
in Table 5.5-1.

Table 5.5-1 Sellmeier equations for the wavelength dependence of
the refractive indices for selected materials at room temperature.
The quantities n, and n, indicate the ordinary and extraordinary
indices of refraction, respectively, for anisotropic materials (see Sec.
6.3). The range of wavelengths where the results are valid is
indicated in the rightmost column.

Materiat Sellmeser Equation Wavelength
{(Wavelength A in pm) Range (pm)
0.636247 0.407542 0.8375.4%
- z ~
Fused silica n" =1+ 37— {0.06800 + 0 1169) + 3 _ {05060 0.21-3.71
. 10.6684A% {0.0030A* 1.5413A2
5 =1 1.36-11
! " + A2 —{0.2015)2 Yo (1.1347)2 + A% — (1104.002
7.496342 1034712
GaAs 3 _
w=dss A% — (040822 TR (27.17)° 14-11
0.01878
z _ _ 2z L
BRO e = 2.7359 + = 00199 0.013544 0.22-1.06
0.01224
2=237153 + —————— — 0.01516A%
i T 3 - 001667
1.2566.A% 33.8001 5%
2 _
KOP me =14 A2 —{0.0819132 TaEC {23.3752)2 0.4-1.06
a 1121152 5756847
n. =1+ +
A2 —{0.089026)2 A% — (28.4012)2
. 2511242 7.13334°
LiNbC 2 = 23920 0.4-3.1
¥ e + A2 — {02172 + AT — {16.502}*
F 2
n2 = 23947 + 20565 ) 14 5034

3 —{0.21002 | 32— (258157

5.6 SCATTERING OF ELECTROMAGNETIC
WAVES



Previous chapters have described the propagation of optical waves
through homogeneous media, the reflection and refraction of light
at dielectric boundaries, wave transmission through optical
components, and diffraction through apertures. In Sec. 5.5, we
considered the absorption and dispersion of light. We turn now to
the scattering of light, which plays an important role in various
domains of optics, including nanophotonics.

In particular, we examine light scattering from a homogeneous
medium containing localized inhomogeneities, irregularities,
material defects, grains, or suspended particles. Both the medium
and the scatterers are assumed to be dielectrics with linear and
isotropic optical properties. The scattering from a small metal
sphere is considered in Sec. 8.2C and various forms of light
scattering are discussed in Sec. 14.5C.

A. Born Approximation

When an optical wave traveling in a given direction in a
homogeneous medium encounters an object with different optical
properties, the wave is scattered into other directions. This effect
may be analyzed by solving Maxwell’s equations and applying the
appropriate boundary conditions. However, analytical solutions of
this problem exist only in few ideal cases. We therefore resort to a
commonly used approximate approach for solving such problems,
known as the Born approximation. It is applicable for weak
scattering, i.e., when the scattering object may be regarded as a
small perturbation to the relative permittivity (or other optical
properties) of the medium.

To introduce the Born approximation, it is convenient to first
address the scattering of a scalar wave and then to subsequently
consider an electromagnetic wave. The scalar complex amplitude
U(r) obeys the Helmholtz equation (2.2-7),

(V2 L )} U =0, (5.6-1)



where inside the scattering object the wavenumber is k(r) = k (r)
and in the host medium, which is taken to be uniform, the
wavenumber is k(r) = k. By writing k?(r) = k? + [k*(r) — k2], (5.6-1)
may be rewritten as the Helmholtz equation for the scattered
complex amplitude U(r),

(V+E) U= -5, (5.6-2)
with a source

S(r) = K (r) - K| U(x) (5:6:3).

that is localized within the volume V of the scatterer, and is zero
outside of it. As will be justified shortly, the solution to (5.6-2), is

—fk|e—r|

q dr’ (5.6-4)

A7 |r —r
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at positions r outside the volume V. However, the integral in (5.6-4),
cannot be readily evaluated to determine U/(r) since, in accordance

with (5.6-3), the source S(r’) itself depends on the wave Uy(r), which
is unknown.

If the scattering is weak, however, it is safe to assume that the
incident wave U,(r) is essentially unaffected by the process of

scattering within the volume V, in which case the complex
amplitude Uy(r) in the expression for the scattering source (5.6-3)

may be approximated by the incident complex amplitude U,(r),
whereupon

S(x) = [k(r) — K] U(x). (5.6-5)
This expression may then be used in (5.6-4) to determine the

scattered complex amplitude U(r). Implicit in the assumption of

weak scattering is the condition that a wave scattered from one
point in the scattering volume V'is not subsequently scattered from



another point, i.e., multiple scattering is a negligible second-order
effect.

It is evident from (5.6-4), that the scattered wave U(r) is then

approximately a superposition of spherical waves generated by a
continuum of point sources within the scatterer, as schematized in
Fig. 5.6-1. Each point at position r’ creates a spherical wave with
amplitude S(r’ ) given by the approximate expression (5.6-5). The
concept is similar to that of the Huygens—Fresnel principle of
diffraction described in Sec. 4.1D (see Fig. 4.1-13). In this type of
scattering, known as elastic scattering, the frequency of the
scattered light remains the same as that of the incident light.

Figure 5.6-1 Under the Born approximation, the scattered wave
U((r) is a superposition of spherical waves, each generated by a

point in the scatterer.

B. Rayleigh Scattering

Rayleigh scattering involves small scatterers. It is engendered by
variations in a medium that are introduced, for example, by the
presence of particles whose sizes are much smaller than a
wavelength or by random inhomogeneities at a scale much finer
than a wavelength.

Weak Scattering: Scalar Waves



If the contrast between the optical properties of the scattering and
surrounding media is low, i.e., if the scattering is weak, then the
Born approximation is applicable.

If we consider a single scattering object, much smaller than the
wavelength of light and located at r = 0, the source distribution in
(5.6-5) may be approximated as S(r) = U, V &(r), where 6(r)

is the delta function and k, is the wavenumber within the small
scatterer. Substituting this in the integral provided in (5.6-4) yields

_jk
g~ I

U= (B —BHVI (5.6-6)

dar

which represents a single spherical wave centered about r = 0 (the
location of the scatterer), with an amplitude proportional to that of
the incident wave U,,.

In accordance with (2.2-10), the intensity of the scattered wave is
therefore

Lo |G~ (R — k) — 1} 6
s 5 s (dmr) ™ (5:6-7)

where I, = |U,|?. Since the scalar scattered wave is isotropic, the
total scattered power P = 47tr* I becomes

1
P (K2 -K)" V7R, (5.6-8)

which reveals that the scattered power is proportional to the square
of the scatterer volume V.

Since kg and k are both proportional to w, it is clear from (5.6-8)

that the scattered power is proportional to w4 or, in terms of
wavelength,to . Known as the Rayleigh inverse fourth-
power law, this indicates that incident waves of short wavelength
undergo greater scattering than those of long wavelength. As an
example, the Rayleigh scattering of light at a wavelength of A, = 400



nm exceeds that of light at a wavelength of A, = 800 nm by the

factor 24 = 16. Rayleigh scattering from the density fluctuations of
air, which are finer than the wavelengths of light in the visible
spectral band, is responsible for the blue color of the sky. The short-
wavelength (blue) light is preferentially scattered over a large range
of angles, whereas the light arriving directly from the sun is reduced
in blue and therefore appears to have a yellowish tint. In silica-glass
optical fibers, Rayleigh scattering is responsible for the greater
attenuation of visible than infrared light, as discussed in Sec. 10.3A.

Weak Scattering: Electromagnetic Waves

The derivation of the scattered wave considered above was
predicated on a scalar complex amplitude that obeys the Helmholtz
equation (5.6-1). The scattering of an electromagnetic wave may be
formulated in a similar manner by beginning with the vector
potential A, which also satisfies the Helmholtz equation. Applying
the Born approximation, the vector potential of the scattered wave
may be expressed as a superposition of dipole waves centered at
points within the scatterer, in analogy with (5.6-4). The vector
potential A for an oscillating dipole has the distribution of a
spherical wave, with the associated electric and magnetic complex
amplitudes E and H described in Sec. 5.4A.

From an electromagnetic point-of-view, scattering can thus be
viewed as the creation, by the incident field, of a collection of
oscillating electric dipoles at all points within the scatterer, each
radiating a dipole wave.

For a single small scatterer at the origin, the scattered
electromagnetic wave is identical to that radiated by a single electric
dipole pointing along the direction of the electric field E of the

incident wave, as illustrated in Fig. 5.6-2. In the far zone (r > A), the
electric and magnetic fields of the scattered wave point in the polar
and azimuthal directions, respectively, as provided in (5.4-17) and
(5.4-18), as well as in Fig, 5.4-2. The electric-field complex
amplitude of the scattered wave is thus given by
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so that the scattered-wave intensity is

| 7 2
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L[R2 -2 Iy sin® 8, (5.6-10)

where I is given by (5.4-8). The angular distribution of the
scattered wave is thus independent of ¢ and assumes the toroidal
pattern illustrated in Fig, 5.6-2. The scattering is at a maximum
when 0 = 71/2, i.e., when the direction of the scattered wave is
orthogonal to the direction of the electric field of the incident wave.
In particular, back-scattering has the same intensity as forward-
scattering.

Figure 5.6-2 A transverse electromagnetic plane wave with electric
field E, scattered from a point object (blue circle at center) creates a

scattered electric-dipole wave Eg with a toroidal directional pattern.
The scattered intensity I « sin0, where 0 is the scattering angle.

The expression for the electromagnetic intensity given in (5.6-10),
differs from that for the scalar-wave intensity provided in (5.6-7) by

the factor sin?0. This distinction arises because the oscillating
dipole radiates a transverse electromagnetic wave, which precludes
scattering in a direction parallel to the incident electric field,
whereas scalar wave optics does not take polarization into account.

The total scattered power is calculated by integrating (5.6-10), over
the surface of a sphere. Using the incremental integration area in



spherical coordinates, r* sin 6 dO d¢, and noting that [ sin®#d8 = 45,
leads to

1
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The electromagnetic scattered power is thus 2/, of that obtained in

the scalar-wave case, as provided in (5.6-8). The results differ
because of the distinction in the integration over 6 in the two cases.
In the isotropic case the appropriate integration is f; s d# = 2,

whereas in the electromagnetic case the integration yields 4/, as
indicated above, which is a factor of 2/, smaller.

It is commonplace to characterize the strength of scattering in
terms of a scatteringcross section o, Writing the total scattered

power P, as the product

P = oulp, (5.6-12)

where I, is the incident light intensity [W/m?], it is evident that o,

may be regarded as the area of an aperture [m?] that intercepts the
incident wave and collects an amount of power equal to the actual
scattered power. Based on (5.6-11), the scattering cross section
under the Born approximation (weak scattering) and the small-
scatterer approximation (Rayleigh scattering) is therefore

1
0= o [k - V2, (5.6-13)

Let us consider a specific example: the scattering cross section of a
spherical dielectric scatterer of radius a and permittivity ¢,
embedded in a dielectric medium of permittivity ¢, under the
assumption that both media have the same magnetic perme ability
(. Substituting k¥ = wy/efi = 2/ A k, = w/em = /efe - 2n/ ,and

V = 3na® into (5.6-13), we obtain
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The scattering cross section of the spherical scatterer is thus given
by the product of its geometrical area, ;ta®, and a small
dimensionless factor Q,, known as the scattering efficiency. The

quantity Q, is proportional to the fourth power of the ratio a/A,

where A is the wavelength of light in the background medium, and
to the square of the contrast factor , where n,

and n are the refractive indices of the scatterer and the medium,
respectively. Rayleigh scattering is evidently highly dependent on
the size of the scatterer; the scattered power is proportional to the
sixth power of the radius of a spherical scatterer. Of course the
validity of these results requires that the radius of the scatterer be
small in comparison with a wavelength.

4 ™

EXAMPLE 5.6-1

Rayleigh Scattering from a Dielectric Nanosphere. Light
of wavelength A = 600 nm is scattered from a spherical
nanoparticle of radius a = 60 nm and a relative permittivity that
is 10% greater than the background value. Since the a/A = 0.1,
the small-scatterer condition is satisfied. Also, since the contrast

(8 — 6)/e = 0.1, the weak-scattering condition is satisfied. In
accordance with (5.6-14), the scattering efficiency is Q° = 4.6 x
10~4 and the scattering cross section is o, = 5.2 nm?. Hence, if
the intensity of the incident light is I, = 10° W/m?

(corresponding to a 3-mW laser beam of 100-um radius), the
scattered power is P, = 0.52 pW.

.

Strong Scattering: Nanosphere

The Born approximation is not applicable in the case of strong
scattering, i.e., when the contrast (¢, — €)/e between the relative



permittivities of the scatterer and the background is not small.
However, an alternative method, known as the quasi-
staticapproximation, may be used to determine the Rayleigh
scattered field if the scatterer is spherical and its a radius much
smaller than the optical wavelength, i.e., a nanosphere.

Again, the scattered electric-field complex amplitude E, is that

radiated by an electric dipole, as in (5.4-15) and (5.4-16). As
explained below, in the far zone the field is described by

=y . €g — £ 2.3
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dar

and the associated scattering cross section turns out to be
approximately given by

(5.6-16)

T = wa’ £, £ =

Nanosphere Cross Section

If ¢, = ¢, then ¢, + 2¢ = 3¢, whereupon the weak-scattering results are

recovered from the above equations, i.e., (5.6-15) reproduces (5.6-
9), and (5.6-16) reproduces (5.6-14).

These results may be confirmed by applying appropriate boundary
conditions at the surface of the scattering sphere (r = a), namely,
matching the tangential components of the external and internal
electric fields E, as well as the normal components of the
displacement fields D, which are products of the permittivities and
the electric fields in each medium (see Fig. 5.1-1). The internal
electric field E; within the scattering sphere is uniformly distributed,

with amplitude



3e (5:6-17),
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and with a direction that is parallel to the electric field of the
incident wave, as shown in Fig. 5.6-3.

Figure 5.6-3 Scattering of a plane wave with electric field E, from
a dielectric nanosphere of radius a « A. The scattered wave E is

identical to the wave radiated by an electric dipole, and the internal
field E; is uniform within the sphere. Boundary conditions dictate

that the polar components of E; + E, and E; are equal, and the
radial components of ¢(E, + EJ) and ¢,E; are also equal. Scattering
from a metal nanosphere is considered in Sec. 8.2C.

The external field is the sum of the incident field E, and the
scattered field E,, which is a dipole wave. Since the radius of the
sphere is taken to be much smaller than the wavelength of the light
(r « A), at the boundary r = a we have kr « 1. It follows that points
on the sphere lie in the near-field zone of the dipole wave. As a
consequence, the full expression for the electric field of the dipole
wave provided in (5.4-15) may be approximated by the 1/(jkr)?>
terms. At r = q, the radial and polar components of E, are therefore
2(jka) 2(E,, cos0) (4ta) e 7ka and (ka)~*(E,, sin@)(4ma) le7ka,
respectively. Inserting these expressions in the boundary conditions
results in (5.6-16) and (5.6-17). This solution, which is valid for long



wavelengths (A > a), i.e., low frequencies, may also be obtained by
solving the electrostatic problem of a dielectric sphere in an applied
steady electric field, which explains the appellation quasi-static
approximation.

