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are mutually orthogonal. The wavefr...

Figure 5.4-2 (a) Spherical coordinate system. (b) Electric-
and magnetic-field vectors and w...

Figure 5.4-3 (a) Wavefronts of the scalar Gaussian beam
U(r) in the x–z plane. (b) Electric-...

Figure 5.4-4 The paraxial electromagnetic wave. The
vectors E and H reverse directions after...

Figure 5.4-5 Vector beams with cylindrical symmetry. (a)
Electric-field vectors oriented in ...

Figure 5.5-1 The white regions indicate the spectral bands
within which the specified optica...

Figure 5.5-2 Optical components fabricated from dispersive
materials refract waves of differ...



Figure 5.5-3 A dispersive medium serves to broaden a
pulse of light because the different fr...

Figure 5.5-4 Wavelength dependence of the refractive
index of selected optical materials, in...

Figure 5.5-5 A time-varying electric field ε applied to a
Lorentz-oscillator atom induces a ...

Figure 5.5-6 Real and imaginary parts of the susceptibility
of a resonant dielectric medium....

Figure 5.5-7 Absorption coefficient α(ν) and refractive
index n(ν) of a dielectric medium of...

Figure 5.5-8 Frequency dependence of the absorption
coefficient α(ν) and the refractive inde...

Figure 5.5-9 Typical wavelength dependence of the
absorption coefficient and refractive inde...

Figure 5.6-1 Under the Born approximation, the scattered
wave Us(r) is a superposition of sp...

Figure 5.6-2 A transverse electromagnetic plane wave with
electric field E0 scattered from a...

Figure 5.6-3 Scattering of a plane wave with electric field
E0 from a dielectric nanosphere ...

Figure 5.6-4 Scattering and absorption from scatterers
embedded in a nonabsorbing homogenous...

Figure 5.7-1 An optical pulse traveling in a dispersive
medium that is weak enough so that i...

Figure 5.7-2 The temporal spread of an optical pulse
traveling in a dispersive medium is pro...

Figure 5.7-3 Propagation of an optical pulse through media
with normal and anomalous dispers...



Figure 5.7-4 Wavelength dependence of the optical
parameters associated with a single-resona...

Figure 5.7-5 Wavelength dependence of optical parameters
for fused silica calculated on the ...

Chapter 6

Figure 6.0-1 Trace of the time course of the electric-field
vector endpoint for monochromati...

Figure 6.1-1 (a) Rotation of the endpoint of the electric-
field vector in the x–y plane at a...

Figure 6.1-2 Polarization ellipse.

Figure 6.1-3 Linearly polarized light (also called plane
polarized light). (a) Time course o...

Figure 6.1-4 Motion of the endpoints of the electric-field
vectors for left and right circul...

Figure 6.1-5 (a) The orientation and ellipticity of the
polarization ellipse are represented geo...

Figure 6.1-6 An optical system that alters the polarization
of a plane wave.

Figure 6.1-7 The linear polarizer. The lines in the polarizer
represent the field direction ...

Figure 6.1-8 Operations of quarter-wave (π/2) and half-
wave (π) retarders on several particu...

Figure 6.2-1 Reflection and refraction at the boundary
between two dielectric media.

Figure 6.2-2 Magnitude and phase of the re-flection
coefficient as a function of the angle o...

Figure 6.2-3 Magnitude and phase of the reflection
coefficient as a function of the angle of...



Figure 6.2-4 Magnitude and phase of the reflection
coefficient as a function of the angle of...

Figure 6.2-5 Magnitude and phase of the reflection
coefficient as a function of the angle of...

Figure 6.2-6 The Brewster window transmits TM-polarized
light with no reflection loss.

Figure 6.2-7 Power reflectance of TE-and TM-polarization
plane waves at the boundary between...

Figure 6.3-1 Positional and orientational order in different
types of materials.

Figure 6.3-2 Geometrical representation of: (a) a vector;
(b) a symmetric second-rank tensor...

Figure 6.3-3 The index ellipsoid. The coordinates (x1, x2, x3)
are the principal axes while ...

Figure 6.3-4 A wave traveling along a principal axis and
polarized along another principal a...

Figure 6.3-5 A linearly polarized wave at 45° in the z = 0
plane (a) is analyzed as a superp...

Figure 6.3-6 Determination of the normal modes from the
index ellipsoid.

Figure 6.3-7 Variation of the refractive index n(θ) of the
extraordinary wave with θ (the an...

Figure 6.3-8 The vectors D, E, k, and S all lie in a single
plane, to which H and B are norm...

Figure 6.3-9 One octant of the k surface for (a) a biaxial
crystal (n1 < n2 < n3);(b) a unia...

Figure 6.3-10 Rays and wavefronts for (a) a spherical k
surface, and (b) a nonspherical k sur...



Figure 6.3-11 Intersection of the k surfaces with the y–z
plane for a positive uniaxial cryst...

Figure 6.3-12 The normal modes for a plane wave traveling
in a direction k that makes an angl...

Figure 6.3-13 Determination of the angles of refraction by
matching projections of the k vect...

Figure 6.3-14 Double refraction at normal incidence.

Figure 6.3-15 Double refraction through an anisotropic
plate. The plate serves as a polarizin...

Figure 6.4-1 (a) The rotation of the plane of polarization by
an optically active medium res...

Figure 6.4-2 (a) Polarization rotation in a medium
exhibiting the Faraday effect. (b) The se...

Figure 6.5-1 Molecular organizations of different types of
liquid crystals.

Figure 6.5-2 Molecular orientations of the twisted nematic
liquid crystal.

Figure 6.5-3 Propagation of light in a twisted nematic
liquid crystal. In this diagram the a...

Figure 6.6-1 Power transmittances of a typical dichroic
polarizer with the plane of polariza...

Figure 6.6-2 The Brewster-angle polarizer.

Figure 6.6-3 Examples of polarizing beamsplitters. The
parallel (p) and orthogonal (s) polar...

Figure 6.6-4 Controlling light intensity by means of a wave
retarder with variable retardati...

Figure 6.6-5 An optical isolator that makes use of a Faraday
rotator transmits light in one ...



Figure 6.6-6 A Faraday rotator followed by a half-wave (π)
retarder is a nonreciprocal devic...

Chapter 7

Figure 7.0-1 Periodic photonic structures in one-
dimensional (1D), two-dimensional (2D), and...

Figure 7.1-1 (a) Reflections of a single wave at the
boundaries of a multilayered medium. (b...

Figure 7.1-2 Transmission of a plane wave through a
cascade of two separated systems.

Figure 7.1-3 Antireflection coating.

Figure 7.1-4 (a) Reflections of a single incident oblique
wave at the boundaries of a multil...

Figure 7.1-5 Intensity transmittance and reflectance, 𝒯 and
ℛ = 1 − 𝒯, of the Fabry–Perot et...

Figure 7.1-6 (a) An off-axis wave transmitted through a
mirror Fabry–Perot etalon. (b) White...

Figure 7.1-7 (a) A dielectric slab used as a beamsplitter. (b)
Dependence of the intensity t...

Figure 7.1-8 Locus of frequencies ν and angles θ at which
the Bragg condition is satisfied. ...

Figure 7.1-9 Bragg grating made of N segments, each of
which is described by a matrix Mo.

Figure 7.1-10 (a) Bragg grating comprising N = 10 identical
mirrors, each with a power reflec...

Figure 7.1-11 Power reflectance as a function of frequency
for a dielectric Bragg grating com...

Figure 7.1-12 Spectral dependence of the reflectance ℛ for
the 10-segment dielectric Bragg gr...



Figure 7.1-13 Power reflectance as a function of the angle
of incidence θ at fixed frequencie...

Figure 7.2-1 (a) The Bloch mode. (b) Spatial spectrum of
the Bloch mode.

Figure 7.2-2 (a) The dispersion relation is a multivalued
periodic function with period g = ...

Figure 7.2-3 Wave-transfer matrix representation of a
periodic medium.

Figure 7.2-4 Dispersion diagram of a periodic set of
mirrors, each with intensity transmitta...

Figure 7.2-5 Dispersion diagram of an alternating-layer
periodic dielectric medium with n1 =...

Figure 7.2-6 Frequency dependence of the effective
refractive index neff , which determines ...

Figure 7.2-7 Projected dispersion diagram for an
alternating-layer periodic dielectric mediu...

Figure 7.2-8 Plot of (7.2-25), as an equality, for various
values of m. The m = 0 curve is i...

Figure 7.2-9 Dispersion relation in the vicinity of photonic
bandgaps.

Figure 7.2-10 Projected dispersion diagram for an
alternating-layer dielectric medium with n1...

Figure 7.3-1 (a) A 2D periodic structure comprising parallel
rods. (b) The rectangular latti...

Figure 7.3-2 (a) A 2D periodic structure comprising parallel
cylindrical holes. (b) The tria...

Figure 7.3-3 Calculated band structure of a 2D photonic
crystal consisting of a homogeneous ...



Figure 7.3-4 (a) A 3D periodic structure comprising
dielectric spheres. (b) The spheres are ...

Figure 7.3-5 Calculated band structure of a 3D photonic
crystal with a diamond (facecentered...

Figure 7.3-6 (a) The Yablonovite photonic crystal is
fabricated by drilling cylindrical hole...

Chapter 8

Figure 8.1-1 (a) Plane wave propagating in an ordinary
double-positive (DPS) medium. The vec...

Figure 8.1-2 (a) Total internal reflection at a boundary
between two DPS media takes place f...

Figure 8.1-3 (a) Schematic representation of an optical
surface wave traveling along the bou...

Figure 8.1-4 The boundary between two media with real
permittivities and permeabilities can ...

Figure 8.1-5 (a) Refraction at the boundary between two
positive-index media. The directions...

Figure 8.1-6 (a) Focusing of rays by a boundary between
DPS and DNG media with refractive in...

Figure 8.1-7 (a) An evanescent wave restored by a DNG
slab attenuates in air beyond the near...

Figure 8.1-8 Contours of the k surfaces in the k2–k3 plane
for a uniaxial anisotropic medium...

Figure 8.1-9 (a) A hyperbolic slab with ε3 < 0 and 0 < ε1 =
ε2 ≪ |ε3| has a planar dispersio...

Figure 8.1-10 Refraction at a boundary between an
isotropic DPS medium of refractive index ni...

Figure 8.2-1 Frequency dependence of the real part (solid
curve) and imaginary part (dashed ...



Figure 8.2-2 (a) Real and imaginary parts of the relative
effective permittivity...

Figure 8.2-3 Left: Frequency dependence of the relative
effective permittivity εc/εo, the re...

Figure 8.2-4 Surface plasmon polariton (SPP) wave at a
metal–dielectric boundary, as depicte...

Figure 8.2-5 (a) Generation of a SPP wave by use of a
prism coupler. An evanescent wave (EW)...

Figure 8.2-6 (a) Magnitude of the optical field outside a
metallic nanosphere supporting the...

Figure 8.2-7 Resonance characteristics of the scattering
cross section σs and the internal f...

Figure 8.2-8 (a) Radiowave antennas. (b) Microwave
antennas.

Figure 8.2-9 (a) Optical antennas made of metallic
structures that exhibit resonance at opti...

Figure 8.2-10 Optical antennas used to localize light in
near-field microscopy. (a) Monopole ...

Figure 8.3-1 A medium with resonant permittivity and
permeability can behave as a DNG medium...

Figure 8.3-2 Negative-permittivity metamaterial. (a)
Metallic nanosphere. (b) Metamaterial c...

Figure 8.3-3 Negative-permittivity metamaterial. (a) Thin
metallic rods of length a and radi...

Figure 8.3-4 Negative-permeability metamaterial. (a) A
metallic split ring excited by a magn...

Figure 8.3-5 Negative-index metamaterial. (a) Combined
rod and double split-ring element. (b...



Figure 8.3-6 Simplified version of a “fishnet” metal–
dielectric nanostructured composite met...

Figure 8.3-7 Hyperbolic metamaterial. Frequency
dependence of the principal components of th...

Figure 8.3-8 (a) A metasurface using an array of metallic
elements whose shapes and resonanc...

Figure 8.4-1 Geometrical transformation implementing
refraction without reflection. (a) Desi...

Figure 8.4-2 Geometrical transformation implementing
refraction at normal incidence. (a) Des...

Figure 8.4-3 Geometrical transformation implementing
cylindrical focusing. (a) Desired optic...

Figure 8.4-4 Geometrical transformation implementing
cloaking of a sphere. (a) Desired optic...

Chapter 9

Figure 9.0-1 Optical waveguides.

Figure 9.0-2 Schematic of a photonic integrated circuit that
serves as an elementary optical...

Figure 9.1-1 Planar-mirror waveguide.

Figure 9.1-2 (a) Condition of self-consistency: as a wave
reflects twice it duplicates itsel...

Figure 9.1-3 The bounce angles θm and the wavevector
components of the modes of a planar-mir...

Figure 9.1-4 Field distributions of the modes of a planar-
mirror waveguide.

Figure 9.1-5 (a) Number of modes M as a function of
angular frequency ω. Modes are not permi...

Figure 9.1-6 A plane wave bouncing at an angle θ advances
in the z direction by a distance d...



Figure 9.1-7 TE and TM polarized guided waves.

Figure 9.1-8 Variation of the intensity distribution in the
transverse direction y at differ...

Figure 9.2-1 Planar dielectric (slab) waveguide. Rays
making an angle...

Figure 9.2-2 Graphical solution of (9.2-19) to determine
the bounce angles θm of the modes o...

Figure 9.2-3 The bounce angles θm and the corresponding
components kz and ky of the wavevect...

Figure 9.2-4 Number of TE modes as a function of
frequency. Compare with Fig. 9.1-5(a) for t...

Figure 9.2-5 Field distributions for TE guided modes in a
dielectric waveguide. These result...

Figure 9.2-6 TE and TM modes in a planar dielectric
waveguide.

Figure 9.2-7 (a) Gaussian beam in a homogeneous
medium. (b) Guided mode in a dielectric wave...

Figure 9.2-8 Schematic representations of (a) the
dispersion relation for the different TE m...

Figure 9.2-9 A ray model that replaces the reflection phase
shift with an additional distanc...

Figure 9.2-10 Asymmetric planar waveguide.

Figure 9.3-1 Modes of a rectangular mirror waveguide are
characterized by a finite number of...

Figure 9.3-2 Geometry of a rectangular dielectric
waveguide. The values of kx and ky for the...

Figure 9.3-3 Various waveguide geometries. The darker the
shading, the higher the refractive...



Figure 9.3-4 Different waveguide configurations, in this
case for the embedded-strip geometr...

Figure 9.3-5 (a) Ti:LiNbO3 embedded-strip waveguide. (b)
Rib waveguide with GaAs core, AlGaA...

Figure 9.4-1 Coupling an optical beam into an optical
waveguide.

Figure 9.4-2 Focusing rays into a multimode waveguide.

Figure 9.4-3 End butt coupling from a light-emitting diode
or laser diode into a waveguide.

Figure 9.4-4 Prism and grating side couplers.

Figure 9.4-5 Coupling between two parallel planar
waveguides. At z = 0 the light is located ...

Figure 9.4-6 Periodic exchange of power between
waveguides 1 and 2: (a) Phase-mismatched cas...

Figure 9.4-7 Optical couplers: (a) switching power from
one waveguide to another; (b) a 3-dB...

Figure 9.4-8 Dependence of the power transfer ratio 𝒯 =
P2(L0)/P1(0) on the phase-mismatch p...

Figure 9.4-9 (a) Dispersion diagram of a slab waveguide
with cutoff angular frequency ωc = (...

Figure 9.5-1 Planar waveguide comprising a dielectric slab
sandwiched between two Bragg-grat...

Figure 9.5-2 Dispersion diagram of a photonic crystal with
a defect layer.

Figure 9.5-3 (a) Propagating mode in a photonic-crystal
waveguide. (b) An L-shaped photonicc...

Figure 9.6-1 Configurations and dispersion relations for
various optical and plasmonic waveg...



Figure 9.6-2 Metal‐insulator periodic structure and its
dispersion relation for light travel...

Chapter 10

Figure 10.0-1 An optical fiber is a cylindrical dielectric
waveguide with an inner core and a...

Figure 10.0-2 Geometry, refractive-index profile, and
typical rays in a step-index multimode ...

Figure 10.1-1 The trajectory of a meridional ray lies in a
plane that passes through the fibe...

Figure 10.1-2 A skewed ray lies in a plane offset from the
fiber axis by a distance R. The ra...

Figure 10.1-3 (a) The acceptance angle θa of a fiber. Rays
within the acceptance cone are gui...

Figure 10.1-4 Geometry and refractive-index profile of a
graded-index optical fiber.

Figure 10.1-5 Power-law refractive-index profile n2(r) for
various values of p.

Figure 10.1-6 Guided rays in the core of a GRIN fiber. (a) A
meridional ray confined to a mer...

Figure 10.2-1 Cylindrical fiber coordinate system.

Figure 10.2-2 Examples of the radial distribution u(r)
provided in (10.2-6) for l = 0 and l =...

Figure 10.2-3 Graphical construction for solving the
characteristic equation (10.2-14). The l...

Figure 10.2-4 Intensity distributions in the transverse
plane for several LPlm modes for a st...

Figure 10.2-5 Total number of modes M versus fiber
parameter V = 2π(a/λo)NA. Included in the ...



Figure 10.2-6 Schematic illustrations of the propagation
characteristics of the fundamental L...

Figure 10.2-7 (a) Ideal polarization-maintaining fiber. (b)
Random transfer of power between ...

Figure 10.2-8 (a) The wavevector k =(kr, kϕ, kz) in a
cylindrical coordinate system. (b) Quas...

Figure 10.2-9 Dependence of 
 the position r. At

any s...

Figure 10.2-10 The propagation constants and confinement
regions of the fiber modes. Each curv...

Figure 10.2-13 A multicore fiber (MCF) with seven cores.

Figure 10.2-14 A multicore fiber (MCF) with seven cores.

Figure 10.3-3 Ranges of attenuation coefficients for silica-
glass single-mode fibers (SMF) an...

Figure 10.3-6 Refractive-index profiles with schematic
wavelength dependences of the silica-gl...

Figure 10.3-7 Differential group delay (DGD) associated
with polarization mode dispersion (PMD...

Figure 10.3-8 Two-segment birefringent fiber.

Figure 10.3-9 Broadening of a short optical pulse after
transmission through different types o...

Figure 10.4-1 Various forms of holey fibers. (a) Solid core
(dotted circle) surrounded by a cl...

Chapter 11

Figure 11.0-1 Storage of light in optical resonators via: (a)
multiple reflections from mirro...

Figure 11.0-2 Resonator size a vs. resonance wavelength λo
for various dielectric and metalli...



Figure 11.1-1 Two-mirror planar resonator (Fabry–Perot
resonator). (a) Light rays perpendicul...

Figure 11.1-2 (a) Wave function u(r, t) for an ideal planar-
mirror mode as a function of z (f...

Figure 11.1-3 The adjacent resonance frequencies of a
planar-mirror resonator are separated b...

Figure 11.1-4 (a) A wave reflects back and forth between
the resonator mirrors, suffering a p...

Figure 11.1-5 Traveling-wave resonators. (a) Three-mirror
ring resonator. (b) Four-mirror bow...

Figure 11.1-6 (a) In the steady state, a lossless resonator...

Figure 11.1-7 Finesse of an optical resonator versus the loss
factor αrd, where αr is the eff...

Figure 11.1-8 (a) Off-axis mode in a planar-mirror
resonator. (b) Relation between mode angle...

Figure 11.2-1 Geometry of a spherical-mirror resonator. In
this illustration both mirrors are...

Figure 11.2-2 The position and inclination of a ray after m
round trips are represented by ym...

Figure 11.2-3 Resonator stability diagram. A spherical-
mirror resonator is stable if the para...

Figure 11.2-4 All paraxial rays in a symmetric confocal
resonator retrace themselves after tw...

Figure 11.2-5 Gaussian beam wavefronts (solid curves) and
beam width (dashed curve).

Figure 11.2-6 Fitting a Gaussian beam to two mirrors
separated by a distance d. Their radii o...

Figure 11.2-7 The beam width at the waist, W0, and at the
mirrors, W1 = W2, for a symmetric s...



Figure 11.2-8 Gaussian beam in a symmetric confocal
resonator with concave mirrors. The depth...

Figure 11.2-9 In a symmetric confocal resonator, the
longitudinal modes associated with two t...

Figure 11.2-10 Propagation of a wave through a spherical-
mirror resonator. The complex amplitu...

Figure 11.2-11 Percent diffraction loss per pass (half a
round trip) as a function of the Fres...

Figure 11.3-1 A two-dimensional planar-mirror resonator:
(a) ray pattern; (b) standing-wave p...

Figure 11.3-2 Dots denote the endpoints of the wavevectors
k = (ky, kz) for modes in a two-di...

Figure 11.3-3 Reflections in a circular resonator.

Figure 11.3-4 (a) Waves in a three-dimensional cubic
resonator (dx = dy = dz = d). (b) The en...

Figure 11.3-5 (a) The frequency spacing between adjacent
modes decreases as the frequency inc...

Figure 11.4-1 Modal density M(ν) for rectangular
microresonators with (a) one; (b) two; and (...

Figure 11.4-2 Micropillar, microdisk, and microtoroid
resonators.

Figure 11.4-3 (a) Whispering-gallery mode in a
microsphere resonator. (b) Ray model of the wh...

Figure 11.4-4 Coupling optical power from an optical fiber
into a microsphere resonator.

Figure 11.4-5 Photonic-crystal microresonators. (a) The
micropillar resonator as a 1D photoni...

Figure 11.4-6 Schematic of optical-field distributions in
disk resonators. (a) Photonic mode ...



Chapter 12

Figure 12.0-1 Time dependence and wavefronts of (a) a
monochromatic spherical wave, which is ...

Figure 12.0-2 Time dependence of the wavefunctions of
three random waves.

Figure 12.1-1 (a) A statistically stationary wave has an
average intensity I (r) that does no...

Figure 12.1-2 Variation of the phasor U (t) with time when
its argument is uniformly distribu...

Figure 12.1-3 Illustrations of the wavefunction, magnitude
of the complex degree of temporal ...

Figure 12.1-4 Spectral densities, plotted as a function of
wavelength, at three locations in ...

Figure 12.1-5 Two random waves together with the
magnitudes of their complex degree of tempor...

Figure 12.1-6 Light comprising wavepackets emitted at
random times has a coherence time equal...

Figure 12.1-7 Two examples of |g(r1, r2, τ)| as a function of
the separation |r1 −r2| and the...

Figure 12.1-8 Two illustrative examples of the magnitude
of the normalized mutual intensity a...

Figure 12.1-9 The fluctuations of a partially coherent plane
wave at points on any wavefront ...

Figure 12.1-10 A partially coherent spherical wave exhibits
complete spatial coherence at all ...

Figure 12.2-1 Normalized intensity I/2I0 of the sum of two
partially coherent waves of equal ...

Figure 12.2-2 The normalized intensity I/2I0, as a function
of the time delay τ, when a parti...



Figure 12.2-3 Optical coherence tomography.

Figure 12.2-4 Young’s double-pinhole interferometer
illuminated by partially coherent light. ...

Figure 12.2-5 Young’s interference fringes are washed out
if the illumination emanates from a...

Figure 12.2-6 The visibility of Young’s interference fringes
at position x is the magnitude o...

Figure 12.3-1 The absolute value of the degree of spatial
coherence is not altered by transmi...

Figure 12.3-2 An optical system is characterized by its
impulse response function h(r; r′).

Figure 12.3-3 (a) The complex amplitudes of light at the
input and output planes of an optica...

Figure 12.3-4 Single-lens imaging system.

Figure 12.3-5 Impulse response functions and transfer
functions of a single-lens, focused, di...

Figure 12.3-6 Gain of coherence by propagation is a result
of the spreading of light. Althoug...

Figure 12.3-7 Radiation from an incoherent source in free
space.

Figure 12.3-8 The magnitude of the degree of spatial
coherence of light radiated from an inco...

Figure 12.3-9 The Michelson stellar interferometer. The
angular diameter of a star is estimat...

Figure 12.4-1 Fluctuations of the electric-field vector for (a)
unpolarized light, (b) partia...

Chapter 13

Figure 13.0-1 The theory of quantum optics explains
virtually all optical phenomena. It is mo...



Figure 13.1-1 (a) Schematic of three electromagnetic modes
of different frequencies and direc...

Figure 13.1-2 Relationships among photon wavelength λo,
frequency ν, period ⊤, and energy E (...

Figure 13.1-3 A photon in the x linear polarization mode is
the same as a photon in a superpo...

Figure 13.1-4 Probability of a linearly polarized photon
passing through a polarizer. The axi...

Figure 13.1-5 A linearly polarized photon is equivalent to
the superposition of a right-and a...

Figure 13.1-6 Probabilistic reflection or transmission of a
photon at a lossless beam-splitte...

Figure 13.1-7 Young’s double-pinhole experiment with a
single photon. The interference patter...

Figure 13.1-8 Single photon in a Mach–Zehnder
interferometer.

Figure 13.2-1 Photon registrations at random localized
instants of time for a detector that i...

Figure 13.2-2 Random photon registrations exhibit a
spatial density that follows the local op...

Figure 13.2-3 (a) Constant optical power and a sample
function of the randomly arriving photo...

Figure 13.2-4 Random arrival of photons for a coherent
light source of power P. Consecutive c...

Figure 13.2-5 Semilogarithmic plot of the Poisson photon-
number distribution, p(n) vs. n, for...

Figure 13.2-6 Boltzmann probability distribution P (En)
(plotted along the abscissa) versus e...



Figure 13.2-7 Semilogarithmic plot of the Bose–Einstein
photon-number distribution, p(n) vs. ...

Figure 13.2-8 Random partitioning of a stream of photons
by a beamsplitter.

Figure 13.3-1 The real and imaginary parts of the variable a
exp(j2πνt), which govern the com...

Figure 13.3-2 Quadrature and electric-field uncertainties
for the coherent state. Representat...

Figure 13.3-3 Quadrature and electric-field uncertainties
for the vacuum state. This state is...

Figure 13.3-4 Quadrature and electric-field uncertainties
for a quadrature-squeezed state (sp...

Figure 13.3-5 Representative uncertainties for the number
state. The mode contains a fixed nu...

Chapter 14

Figure 14.1-1 Energy levels of a hydrogen atom (Z = 1; left
ordinate) and a C5+ ion (a hydroge...

Figure 14.1-2 Selected excited-state energy levels of He and
Ne atoms. Electron configurations...

Figure 14.1-3 Periodic table of the elements, with element
abbreviations and atomic numbers Z ...

Figure 14.1-4 Selected energy levels and energy bands for
Cr3+:Al2O3 (ruby) and Cr3+:BeAl2O4 (...

Figure 14.1-5 Selected energy levels of Nd3+ in YAG and in
phosphate glass. The arrows indicat...

Figure 14.1-6 Sublevels of the three manifolds associated
with Nd3+:YAG laser transitions near...

Figure 14.1-7 Vibrational energy levels of the N2 and CO2
molecules (the zero of energy is ar...



Figure 14.1-8 Structure of the Rhodamine6G ion, which
has the chemical formula . The schemati...

Figure 14.1-9 Schematic energy levels for: (a) two isolated
atoms; (b) the same two atoms aft...

Figure 14.1-10 Broadening of the discrete energy levels of
an isolated atom into energy bands ...

Figure 14.1-11 The semiconductor GaAs takes the form of a
zincblende crystal structure compris...

Figure 14.1-12 Quantized energy levels in a single-crystal
AlGaAs/GaAs multiquantum-well struc...

Figure 14.1-13 Photoluminescence from colloidal CdSe
quantum dots (with oleylamine surface cap...

Figure 14.2-1 The Boltzmann distribution P(Em), plotted on
the abscissa, specifies the probab...

Figure 14.2-2 The Fermi–Dirac distribution f(E), plotted on
the abscissa, represents the prob...

Figure 14.3-1 Spontaneous emission of a photon into the
mode of frequency v by an atomic tran...

Figure 14.3-2 Spontaneous emission into a single mode
results in an exponential decrease of t...

Figure 14.3-3 Absorption is a process whereby a photon of
energy hv induces the atom to under...

Figure 14.3-4 Stimulated emission is a process whereby a
photon of energy hv induces the atom...

Figure 14.3-5 The transition cross section σ(v) and the
lineshape function g(v).

Figure 14.3-6 An atom may spontaneously emit a photon
into any one (but only one) of the many...

Figure 14.3-7 Wavepacket emissions at random times from
a lifetime-broadened atomic system wi...



Figure 14.3-8 A sine wave interrupted at the rate fcol by
random phase jumps has a Lorentzian...

Figure 14.3-9 The average lineshape function for an
inhomogeneously broadened collection of a...

Figure 14.3-10 The frequency radiated by an atom depends
on the direction of atomic motion rel...

Figure 14.3-11 Velocity distribution and construction of the
average lineshape function for a ...

Figure 14.3-12 Spontaneous emission from an atom with
normalized lineshape function g(v) into ...

Figure 14.3-13 Velocity distribution of a beam of Na atoms
(dotted curve). A laser beam of fix...

Figure 14.4-1 Decay of the upper-level population caused
by spontaneous emission alone.

Figure 14.4-2 Semilogarithmic plot of the average energy 
of an electromagnetic mode in therm...

Figure 14.4-2 Semilogarithmic plot of the average energy E
of an electromagnetic mode in ther...

Figure 14.4-3 Frequency pendence of the energy per mode 
, the density of modes M(ν), and the ...

Figure 14.4-4 Dependence of the blackbody spectral energy
density ϱ(ν) on frequency for sever...

Figure 14.4-5 Representative thermographic images in
different temperature regions for use in...

Figure 14.5-1 (a) Cathodoluminescence from a mineral
sample reveals the presence of zoned cal...

Figure 14.5-2 Single-photon photoluminescence from
materials with different energy-level stru...

Figure 14.5-3 (a) Two-photon fluorescence. (b) Three-
photon fluorescence. (c) Up-conversion f...



Figure 14.5-4 Relative infrared detection sensitivity and
relative visible spectral intensity...

Figure 14.5-5 Several forms of light scattering: (a)
Rayleigh; (b) Raman (Stokes); (c) Raman ...

Chapter 15

Figure 15.0-1 The laser amplifier. An external power source
(the pump) excites the active med...

Figure 15.0-2 (a) An ideal amplifier is linear. It serves to
increase the amplitude of a sign...

Figure 15.1-1 The photon-flux density ϕ (photons/cm2-s)
entering an incremental cylinder cont...

Figure 15.1-2 Gain coefficient γ(ν) of a Lorentzian-
lineshape resonant laser amplifier.

Figure 15.1-3 Gain coefficient γ(ν) and phase-shift
coefficient φ(ν) for a laser amplifier wi...

Figure 15.2-1 Energy levels  and...

Figure 15.2-2 Energy levels  and ...

Figure 15.2-3 Energy levels  and ...

Figure 15.2-4 Population densities N1 and N2 of atoms in
energy levels...

Figure 15.2-5 Depletion of the steady-state population
difference N = N2 − N1 as the rate of ...

Figure 15.2-6 Energy levels and decay rates for a four-level
system. The four levels are draw...

Figure 15.2-7 Energy levels and decay rates for a three-level
system. A multitude of other en...

Figure 15.2-8 In-band pumping. The pump band  and the
uppe...



Figure 15.2-9 Examples of electrical and optical pumping.
(a) Direct current (DC) is often us...

Figure 15.3-1 Relevant energy levels for operation of the
ruby laser amplifier in the red. Th...

Figure 15.3-2 Ruby laser-amplifier configurations. (a)
Geometry used for the first laser osci...

Figure 15.3-3 Right: Relevant energy levels for a
neodymium-doped phosphate-glass four-level ...

Figure 15.3-4 (a) A bundle of amplifiers comprises eight
laser-glass plates stacked inside a ...

Figure 15.3-5 Longitudinal pumping of a rare-earth-doped
fiber amplifier. The pumping may be ...

Figure 15.3-6 Schematic of Er3+: silica-fiber energy-level
manifolds for the 4I13/2 →4I15/2 l...

Figure 15.3-7 Stimulated Raman scattering (SRS) is
schematized in the inset. Raman gain is av...

Figure 15.4-1 Dependence of the normalized saturated gain
coefficient γ(ν)/γ0(ν) on the norma...

Figure 15.4-2 Gain coefficient reduction and bandwidth
increase resulting from saturation when...

Figure 15.4-3 (a) A nonlinear (saturated) amplifier. (b)
Relation between the normalized outpu...

Figure 15.4-4 The transmittance of a saturable absorber
Y/X = ϕ(d)/ϕ(0) versus the normalized ...

Figure 15.4-5 Comparison of gain saturation in
homogeneously and in-homogeneously broadened me...

Figure 15.4-6 The gain coefficient of an inhomogeneously
broadened medium is locally saturated...



Figure 15.5-1 Spontaneous emission is a source of
amplifier noise. It is broadband, radiated i...

Chapter 16

Figure 16.0-1 An oscillator is an amplifier with positive
feedback.

Figure 16.0-2 If the initial amplifier gain is greater than the
loss, oscillation may begin. ...

Figure 16.0-3 A laser consists of an optical amplifier
(comprising an active medium) placed w...

Figure 16.1-1 Spectral dependence of the gain and phase-
shift coefficients for an optical amp...

Figure 16.1-2 Resonator modes are separated by the
frequency νF = c/2d and have linewidths δν...

Figure 16.1-3 The left-hand side of (16.1-20), ψ(ν), plotted
as a function of ν. The frequenc...

Figure 16.1-4 The laser oscillation modes fall near the cold-
resonator modes; they are pulled...

Figure 16.2-1 Determination of the steady-state laser
photon-flux density ϕ. At the time of l...

Figure 16.2-2 Steady-state values of the population
difference N, and the laser internal phot...

Figure 16.2-3 Dependence of the transmitted steady-state
photon-flux density ϕo on the mirror...

Figure 16.2-4 (a) Laser oscillation can occur only at
frequencies for which the gain coeffici...

Figure 16.2-5 Growth of oscillation in an ideal
homogeneously broadened medium. (a) Immediate...

Figure 16.2-6 The lineshape function of an
inhomogeneously broadened medium is a composite of...



Figure 16.2-7 (a) Laser oscillation occurs in an
inhomogeneously broadened medium by each mod...

Figure 16.2-8 Hole burning in a Doppler-broadened
medium. A probe wave at frequency νq satura...

Figure 16.2-9 Power in a single laser mode of frequency νq
in a Doppler-broadened medium whos...

Figure 16.2-10 The laser output for the (0, 0) transverse
mode of a spherical-mirror resonator...

Figure 16.2-11 The gains and losses for two transverse
modes, say (0, 0) and (1, 1), usually d...

Figure 16.2-12 A particular atomic line may be selected by
the use of a prism placed inside th...

Figure 16.2-13 The use of Brewster windows in a gas laser
provides a linearly polarized output...

Figure 16.2-14 Longitudinal mode selection by use of a thin
intracavity etalon. Oscillation oc...

Figure 16.2-15 Longitudinal mode selection achieved with
the help of: (a) two coupled resonato...

Figure 16.3-1 (a) Selected energy levels of Nd3+:YVO4. The
red arrow indicates the principal ...

Figure 16.3-2 (a) Energy levels pertinent to the ytterbium-
doped YAG laser transition at λo =...

Figure 16.3-3 (a) Selected energy bands of Ti3+:Al2O3. The
red arrow indicates the principal ...

Figure 16.3-4 (a) Simplified schematic of a laser-diode-
pumped fiber laser that makes use of ...

Figure 16.3-5 (a) Cascaded Stokes shifts of multiple orders.
(b) Schematic of a Raman phospho...



Figure 16.3-6 (a) A random laser relies on incoherent and
nonresonant feedback provided by mu...

Figure 16.3-7 Wavelengths and photon energies for the
extreme ultraviolet (EUV), soft-X-ray (...

Figure 16.3-8 Schematic of a free-electron laser (FEL)
oscillator. The undulator creates a pe...

Figure 16.4-1 Comparison of attainable peak laser output
powers using (a) an external modulat...

Figure 16.4-2 Gain switching. The laser pump is switched
on and off periodically.

Figure 16.4-3 Q-switching. During the off-times, energy
builds up as an accumulated populatio...

Figure 16.4-4 Cavity dumping. During the off-times, energy
builds up as an increase of the ph...

Figure 16.4-5 Variation of the population difference N(t)
and the photon-number density n(t) ...

Figure 16.4-6 Operation of a Q-switched laser. Behavior of
the threshold population differenc...

Figure 16.4-7 Graphical construction for determining Nf
from Ni, where X = Ni/Nt and Y = Nf/N...

Figure 16.4-8 Q-switched pulse shapes obtained by
numerically integrating the approximate rat...

Figure 16.4-9 Intensity of the periodic pulse train resulting
from the sum of M laser modes o...

Figure 16.4-10 The mode-locked laser pulse reflects back
and forth between the mirrors of the ...

Figure 16.4-11 (a) Spectrum of an octave-spanning optical
frequency comb. (b) Frequency-double...



Figure 16.4-12 Precise measurement of the frequency of a
CW laser by beating an octave-spannin...

Figure P16.2-7 Transmittance of a laser resonator.

Chapter 17

Figure 17.1-1 Energy bands in Si and GaAs. The bandgap
energy Eg, which separates the valence...

Figure 17.1-2 (a) Crystal-lattice potential associated with an
infinite one-dimensional colle...

Figure 17.1-3 Electrons in the conduction band and holes in
the valence band at T > 0° K.

Figure 17.1-4 Cross sections of the E–k relations for Si and
GaAs along two crystal direction...

Figure 17.1-5 The E–k relation is well-approximated by
parabolas at the bottom of the conduct...

Figure 17.1-6 Section of the periodic table relating to
semiconductors. Each column designati...

Figure 17.1-7 Dots represent bandgap energies, bandgap
wavelengths, and lattice constants for...

Figure 17.1-8 Bandgap energies, bandgap wavelengths, and
lattice constants for various II–VI ...

Figure 17.1-9 Organic semiconductors are available in two
principal varieties: (a) small orga...

Figure 17.1-10 Graphene, also referred to as h-C, is a single
layer of carbon atoms arranged i...

Figure 17.1-11 (a) Cross section of the E–k diagram (e.g., in
the direction of the k1 componen...

Figure 17.1-12 The Fermi function f(E) is the probability
that an energy level E is filled wit...



Figure 17.1-13 The concentrations of electrons and holes,
n(E) and p(E), as a function of ener...

Figure 17.1-14 Energy-band diagram, Fermi function f(E),
and concentrations of mobile electron...

Figure 17.1-15 Energy-band diagram, Fermi function f(E),
and concentrations of mobile electron...

Figure 17.1-16 A semiconductor in quasi-equilibrium. The
probability that a particular conduct...

Figure 17.1-17 Electron–hole generation and
recombination.

Figure 17.1-18 Electron–hole recombination via a trap; via
Auger recombination.

Figure 17.1-19 Energy levels and carrier concentrations for
a p-type and an n-type semiconduct...

Figure 17.1-20 A p–n junction in thermal equilibrium at T
> 0° K. The depletion-layer, energy-...

Figure 17.1-21 Energy-band diagram and carrier
concentrations for a forward-biased p–n junctio...

Figure 17.1-22 (a) Voltage and current in a p–n junction.
(b) Circuit representation of the p–...

Figure 17.1-23 Electron energy, fixed-charge density, and
electric field magnitude for a p–i–n...

Figure 17.1-24 The p–p–n double heterojunction structure.
The middle layer is of narrower band...

Figure 17.1-25 (a) Geometry of the quantum-well
structure. (b) Energy-level diagram for electr...

Figure 17.1-26 Energy levels of (a) a one-dimensional
infinite rectangular potential well, and...

Figure 17.1-27 Density of states for a quantum-well
structure (solid curve) and for a bulk sem...



Figure 17.1-28 A MQW structure fabricated from
alternating layers of materials of different ba...

Figure 17.1-29 Energy-band diagrams of MQW and
superlattice structures fabricated from alterna...

Figure 17.1-30 The density of states in different
confinement configurations. The conduction a...

Figure 17.2-1 Examples of absorption and emission of
photons in bulk semiconductors. (a) Band...

Figure 17.2-2 Observed optical absorption coefficient α
versus photon energy and wavelength f...

Figure 17.2-3 Absorption coefficient versus photon energy
and wavelength for Ge, Si, GaAs, Ga...

Figure 17.2-4 (a) The absorption of a photon results in the
generation of an electron–hole pa...

Figure 17.2-5 The density of states with which a photon of
energy hν interacts increases with...

Figure 17.2-6 Photon absorption in an indirect-bandgap
semiconductor via a vertical (k-conser...

Figure 17.2-7 Photon emission via an interband transition
in an indirect-bandgap semiconducto...

Figure 17.2-8 Spectral intensity of the direct interband
spontaneous emission rate rsp(ν) (ph...

Figure 17.2-9 Calculated absorption coefficient α(ν) (cm−1)
resulting from direct interband t...

Figure 17.2-10 Photon absorption and emission in
multiquantum-well structures. (a) Interband t...

Figure 17.2-11 Refractive index n and group index N for
GaAs as a function of the free-space w...

Chapter 18



Figure 18.0-1 A forward-biased semiconductor p–n
junction diode operated as: (a) a light-emit...

Figure 18.1-1 Spontaneous photon emission resulting from
electron–hole radiative recombinatio...

Figure 18.1-2 The spontaneous emission of a photon
resulting from the recombination of an ele...

Figure 18.1-3 Energy bands and Fermi functions for a
semiconductor in quasi-equilibrium (a) a...

Figure 18.1-4 Spectral intensity of the direct interband
injection-electroluminescence rate r...

Figure 18.1-5 Energy-band diagram of a heavily doped p–n
junction that is strongly forward bi...

Figure 18.1-6 A simple forward-biased LED. The photons
are emitted spontaneously from the jun...

Figure 18.1-7 Not all light generated in an LED with a
planar surface is able to emerge. Ray ...

Figure 18.1-8 LED-die geometries that offer enhanced
extraction efficiencies relative to the ...

Figure 18.1-9 An LED with a roughened planar surface
permits rays beyond the critical angle t...

Figure 18.1-11 Radiation patterns of surface-emitting LEDs:
(a) Lambertian spatial pattern in ...

Figure 18.1-12 A plane-parallel-reflector resonant-cavity
light-emitting diode (RCLED). Two cl...

Figure 18.1-13 Optical power at the output of an LED
versus injection (drive) current. This MQ...

Figure 18.1-14 Spectral intensities versus wavelength for
LEDs that operate in the ultraviolet...

Figure 18.1-15 Various circuits can be used as LED drivers.
These include (a) an ideal DC curr...



Figure 18.1-16 Bandgap wavelength λg, and corresponding
bandgap energy Eg, for selected elemen...

Figure 18.1-17 LED traffic signal based on III–V materials.

Figure 18.1-18 (a) Surface-emitting LED. (b) Edge-emitting
LED.

Figure 18.1-19 Saul–Lee–Burrus-type surface-emitting
InGaAsP LED for use in an optical fiber c...

Figure 18.1-20 Surface-emitting AlInGaP/InGaP 650-nm
MQW RCLED for use in short-haul, plastic-...

Figure 18.1-21 Flip-chip packaged, surface-emitting
GaN/InGaN MQW LED operating at λo = 420 nm...

Figure 18.1-22 OLED structures fabricated in the form of
(a) a horizontal stack of blue, green...

Figure 18.1-23 Evolution of the phosphor-conversion white
LED. (a) White-light emission from a...

Figure 18.1-25 A color-mixing LED comprising individually
addressable red, green, and blue die...

Figure 18.1-26 An illuminated chip-on-board (COB) device
containing 120 InGaN dies embedded in...

Figure 18.1-27 A white LED retrofit lamp contains an array
of LEDs or chip-on-board (COB) devi...

Figure 18.1-28 A 1/4-mm-thick white OLED light panel
that generates metameric white light with...

Figure 18.2-1 (a) The absorption of a photon results in the
generation of an electron–hole pa...

Figure 18.2-2 Dependence on energy of the optical joint
density of states ϱ(ν), the Fermi inv...

Figure 18.2-3 (a) Calculated gain coefficient γ0(ν) for an
InGaAsP SOA versus photon energy h...



Figure 18.2-4 Peak value of the gain coefficient γp as a
function of injected-carrier concent...

Figure 18.2-5 Optical pumping of a semiconductor optical
amplifier.

Figure 18.2-6 Geometry of a simple semiconductor optical
amplifier. Charge carriers travel pe...

Figure 18.2-7 Peak optical gain coefficient γp as a function
of current density J for the app...

Figure 18.2-8 Energy-band diagram and refractive index as
functions of position for a double-...

Figure 18.2-9 (a) E–k relations of different subbands. (b)
Optical joint density of states fo...

Figure 18.2-10 Density of states...

Figure 18.2-11 A MQW InGaAsP/InP superluminescent
diode. SLEDs can generate light with substan...

Figure 18.3-1 In its simplest configuration, a laser diode is
a forward-biased p–n junction i...

Figure 18.3-2 Spatial spread of the laser light in the
direction perpendicular to the plane o...

Figure 18.3-3 Dependence of the threshold current density
Jt on the thickness of the active l...

Figure 18.3-4 Measured (solid) and ideal (dashed) light–
current curves for: (a) a gain-guided...

Figure 18.3-5 Light–current curves for a light-emitting
diode (LED), a superluminescent diode...

Figure 18.3-6 Spectral intensity of a 1300-nm InGaAsP
index-guided buried-heterostructure las...

Figure 18.3-7 Normalized spectral intensities for a light-
emitting diode (LED), a superlumine...



Figure 18.3-8 Schematic illustration of optical-intensity
spatial distributions for the laser...

Figure 18.3-9 Angular distribution of the optical beam
emitted from an edge-emitting laser di...

Figure 18.3-10 (a) Schematic diagram of a distributed
Bragg reflector (DBR) multiquantum-well ...

Figure 18.3-11 Littman–Metcalf configuration for a tunable
external-cavity laser diode. The ou...

Figure 18.4-1 Schematic representation of several
quantum-confined laser configurations: (a) ...

Figure 18.4-2 Peak gain coefficient γp versus current
density J for SQW and bulk DH laser dio...

Figure 18.4-3 Schematic of the active region of a
multiquantum-well laser. The confinement la...

Figure 18.4-4 Schematic diagram of a strained-MQW
InGaAsP/InGaAsP ridge-waveguide laser diode...

Figure 18.4-5 Buried-heterostructure multiquantum-well
DFB laser used for optical fiber commu...

Figure 18.4-6 Schematic of the active region of a
multiquantum-wire laser. Light is ordinaril...

Figure 18.4-7 Schematic of the active region of a
multiquantum-dot laser, which often consist...

Figure 18.4-8 Schematic diagram of: (a) two stages of a
QCL with a quantum-well active region...

Figure 18.5-1 Microresonator (or microcavity) lasers,
sometimes called microlasers for short,...

Figure 18.5-2 (a) Schematic diagram of a large-area (320-
μm diameter) multiquantum-well GaAs/...

Figure 18.5-3 Spectral intensity, optical power, and angular
emission distribution of the mul...



Figure 18.5-4 VCSEL with a multiquantum-dot active
region.

Figure 18.5-5 Variations on the theme of VCSELs. (a)
VCSEL with photonic crystal for lateral ...

Figure 18.5-6 Scanning electron micrographs of an early
array of electrically pumped vertical...

Figure 18.5-7 (a) InGaAsP/InGaAsP 2D multiquantum-
well photonic-crystal laser. The InP post h...

Figure P18.1-5 (a) InGaAsP/InGaAsP 2D multiquantum-
well photonic-crystal laser. The InP post h...

Figure P18.2-3 (a) InGaAsP/InGaAsP 2D multiquantum-
well photonic-crystal laser. The InP post h...

Chapter 19

Figure 19.1-1 Photoelectric emission (a) from a metal, and
(b) from an intrinsic semiconductor...

Figure 19.1-2 (a) Photon detection in a vacuum photodiode
with a photocathode operated in refl...

Figure 19.1-3 Electron–hole pair photogeneration in an
intrinsic semiconductor.

Figure 19.1-4 Effect of surface reflection and incomplete
absorption (arising from an insuffic...

Figure 19.1-5 Responsivity R (A/W) versus wavelength λo ,
with the quantum efficiency η as a p...

Figure 19.1-6 (a) An electron–hole pair is generated at the
position x. The hole drifts to the...

Figure 19.1-7 Hole current ih(t), electron current ie(t), and
total current i(t) induced in th...

Figure 19.2-1 The photoconductive detector. (a)
Photogenerated carrier pairs move in response ...



Figure 19.2-2 Relative responsivity vs. wavelength λo (μm)
for a number of different doped-Ge ...

Figure 19.2-3 Generation of mobile charge carriers by
absorption of photons in a QWIP. The det...

Figure 19.3-1 Photons illuminating an idealized reverse-
biased p–n photodiode detector. The dr...

Figure 19.3-2 Generic photodiode and its i–V relation.

Figure 19.3-3 Photovoltaic (open-circuit) operation of a
photodiode.

Figure 19.3-4 Short-circuit operation of a photodiode.

Figure 19.3-5 Reverse-biased operation of a photodiode: (a)
without a load resistor and (b) wi...

Figure 19.3-6 The p–i–n photodiode structure, energy-band
diagram, charge distribution, and el...

Figure 19.3-7 Responsivity (A/W) vs. wavelength (μm) for
an ideal Si photodiode (η = 1) and fo...

Figure 19.3-8 (a) Structure and (b) energy-band diagram of
a Schottky-barrier photodiode forme...

Figure 19.3-9 Responsivity R (A/W) versus wavelength λo
(μm) for a number of p–i–n (solid) and...

Figure 19.4-1 Schematic representation of the
multiplication process in a conventional homojun...

Figure 19.4-2 Exponential growth of the electric current
density in a single-carrierinjection ...

Figure 19.4-3 Constancy of the sum of the electron and
hole current densities across a plane a...

Figure 19.4-4 Electron and hole current densities in a
double-carrier-multiplication APD with ...



Figure 19.4-5 Growth of the gain G with multiplication-
layer width w for several values of the...

Figure 19.4-6 Reach-through p+–π–p–n+ APD structure.
The π region is intrinsic or very lightly...

Figure 19.4-7 (a) Tracing the course of the avalanche
buildup time in a SAM APD with the help ...

Figure 19.4-8 Current–voltage characteristic for an
InGaAs/InP separate absorption and multip...

Figure 19.4-9 Structure of an AlxIn1−xAsySb1−y separate
absorption, multiplication, and charg...

Figure 19.6-1 Input and detected signals along with various
sources of noise for (a) a photod...

Figure 19.6-2 The photocurrent induced in a photodetector
circuit comprises a superposition o...

Figure 19.6-3 Each photoevent in a photodetector with gain
generates a random number Gl of ca...

Figure 19.6-4 Excess noise factor F for a conventional APD
(CAPD) with a uniform multiplicati...

Figure 19.6-5 Energy-band diagram of a low-noise
heterostructure APD with history-dependent p...

Figure 19.6-6 Energy-band diagram of a bandgap-
engineered staircase avalanche photodiode unde...

Figure 19.6-7 Modified excess noise factor F − 1 versus
mean gain...

Figure 19.6-8 A resistance R at temperature T is equivalent
to a noiseless resistor in parall...

Figure 19.6-9 A noisy receiver circuit (left) can be replaced
by a noiseless receiver circuit...

Figure 19.6-10 Resistance-limited optical receiver.



Figure 19.6-11 Signal-to-noise ratio (SNR) as a function of
the mean number of photoelectrons ...

Figure 19.6-12 SNR versus  = ηΦ/2B for a photodiod...

Figure 19.6-13 Dependence of the SNR on the APD mean
gain...

Figure 19.6-14 Double-logarithmic plot illustrating the
dependence of the SNR on the circuit b...

Figure 19.6-15 Double-logarithmic plot of receiver
sensitivity...

Figure 19.6-16 (a) Schematic illustrating errors that result
from randomness in the photon num...

Chapter 20

Figure 20.0-1 Sound can modify the effect of an optical
medium on light.

Figure 20.0-2 Variation of the refractive index of a material
accompanying a harmonic sound w...

Figure 20.0-3 Bragg diffraction: an acoustic plane wave
acts as a partial reflector of light ...

Figure 20.1-1 Reflections from layers of an inhomogeneous
medium.

Figure 20.1-2 The Bragg condition sin θℬ = q/2k is
equivalent to the vector relation kr = k +...

Figure 20.1-3 Dependence of the intensity reflectance |r|2

on the angle θ. Maximum reflection...

Figure 20.1-4 Dependence of the exact reflectance ℛe of a
Bragg reflector on the intensity of...

Figure 20.1-5 Geometry of downshifted diffraction of light
from a sound wave traveling in the...



Figure 20.1-6 Bragg diffraction from a quantum
perspective: a photon combines with a phonon t...

Figure 20.1-7 Top: Incident and reflected waves for small-
angle Bragg diffraction. Bottom: Th...

Figure 20.1-8 Diffraction of an optical beam from an
acoustic plane wave. There is only a sin...

Figure 20.1-9 Diffraction of an optical beam from an
acoustic beam. There are many plane-wave...

Figure 20.1-10 Raman–Nath diffraction of light by sound.
An optical plane wave normally incide...

Figure 20.1-11 (a) A thin acoustic beam acts as a diffraction
grating. (b) Conservation-of-mom...

Figure 20.2-1 (a) An acousto-optic modulator that uses an
electrically controlled piezoelectr...

Figure 20.2-2 Sample waveform of an amplitude-
modulated acoustic signal and its spectrum.

Figure 20.2-3 Interaction of an optical plane wave with a
modulated (multifrequency) acoustic...

Figure 20.2-4 Interaction of an optical beam of angular
divergence δθ with acoustic plane wav...

Figure 20.2-5 Scanning by changing the sound frequency
and acoustic-wave direction. The plana...

Figure 20.2-6 Scanning an optical wave by varying the
frequency of a sound beam over the freq...

Figure 20.2-7 Number of resolvable spots of an acousto-
optic scanner.

Figure 20.2-8 Each frequency component of the sound
wave deflects light in a different direct...

Figure 20.2-9 Routing an optical beam to one of N
directions. By applying an acoustic wave of...



Figure 20.2-10 Routing a light beam simultaneously in a
number of directions.

Figure 20.2-11 Routing each of two light beams in a set of
specified directions. The acoustic ...

Figure 20.2-12 The spatial light modulator modulates N
optical beams. The acoustic wave is dri...

Figure 20.2-13 An arbitrary-interconnection switch routing
each of L incoming light beams for ...

Figure 20.2-14 Several examples of dividing the time–
bandwidth region T B in the time– frequen...

Figure 20.2-15 An acousto-optic isolator.

Figure 20.3-1 Displacements associated with tensile strain
and shear.

Figure 20.3-2 A longitudinal acoustic wave traveling in the
z direction in a cubic crystal al...

Figure 20.3-3 Bragg condition (conservation of momentum
or phase-matching condition) in an an...

Figure 20.3-4 Wavevector diagrams for front and back
reflections of an optical wave from an a...

Chapter 21

Figure 21.0-1 A steady electric field applied to an electro-
optic material changes its refrac...

Figure 21.1-1 Dependence of the refractive index on the
electric field: (a) Pockels medium; (...

Figure 21.1-2 (a) Longitudinal modulator. The electrodes
may take the shape of washers or ban...

Figure 21.1-3 An integrated-photonic phase modulator
using the electro-optic effect.



Figure 21.1-4 A phase modulator placed in one branch of a
Mach–Zehnder interferometer can ser...

Figure 21.1-5 An integrated-photonic intensity modulator
(or optical switch). A Mach–Zehnder ...

Figure 21.1-6 (a) An optical intensity modulator using a
Pockels cell placed between two cros...

Figure 21.1-7 (a) An electro-optic prism. The deflection
angle θ is controlled by the applied...

Figure 21.1-8 A position switch based on electro-optic
phase retardation and double refractio...

Figure 21.1-9 (a) Exchange of power between two parallel,
weakly coupled, identical waveguide...

Figure 21.1-10 An integrated electro-optic directional
coupler.

Figure 21.1-11 Dependence of the coupling efficiency of the
directional coupler on the applied...

Figure 21.1-12 The spatial light modulator.

Figure 21.1-13 An electrically addressable array of
longitudinal electro-optic modulators.

Figure 21.1-14 An optically addressed electro-optic spatial
light modulator uses a photoconduc...

Figure 21.1-15 The Pockels readout optical modulator
(PROM).

Figure 21.2-1 The index ellipsoid. The coordinates (x1,x2,x3)
are the principal axes and n1, ...

Figure 21.2-2 The index ellipsoid of a crystal is modified
when a steady electric field is ap...

Figure 21.2-3 Modification of the index ellipsoid of a
trigonal 3m crystal such as LiNbO3 tha...



Figure 21.2-4 Modification of the index ellipsoid resulting
from the application of a steady ...

Figure 21.2-5 Modification of the index ellipsoid as a result
of applying a steady electric f...

Figure 21.3-1 The molecules of a positive uniaxial liquid
crystal rotate so their long molecu...

Figure 21.3-2 Molecular orientation of a liquid-crystal cell:
(a) in the absence of a steady ...

Figure 21.3-3 (a) Dependence of the tilt angle θ of the
liquid-crystal molecules on the norma...

Figure 21.3-4 (a) A nematic liquid-crystal cell placed
between a polarizer and a mirror funct...

Figure 21.3-5 (a) A twisted nematic liquid-crystal cell in its
twisted state. (b) In the pres...

Figure 21.3-6 A twisted nematic liquid-crystal modulator.
(a) When the electric field is abse...

Figure 21.3-7 A twisted nematic liquid-crystal cell with a
45° twist angle and a mirror provi...

Figure 21.3-8 The two allowed states of a ferroelectric
liquid-crystal cell.

Figure 21.3-9 Electrodes of a seven-bar-segment reflective-
mode LCD.

Figure 21.3-10 (a) A matrix LCD is addressed by applying
sequential scanning (S) voltage pulse...

Figure 21.3-11 An active-matrix liquid-crystal display
(AMLCD). (a) Device structure viewed fr...

Figure 21.3-12 Schematic of the Hamamatsu Parallel-
Aligned Spatial Light Modulator (PAL-SLM). ...

Figure 21.4-1 Energy-level diagram of LiNbO3 doped with
Fe ions that illustrates the processe...



Figure 21.4-2 Response of a photorefractive material to a
sinusoidal spatial light pattern.

Figure 21.4-3 Two-wave mixing is a form of dynamic
holography.

Figure 21.5-1 The Franz–Keldysh effect. (a) The bandgap
energy Eg in the absence of an extern...

Figure 21.5-2 (a) Energy-band diagrams of a quantum well
in the absence (OFF) and presence (O...

Figure P21.2-3

Figure P21.2-4
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Figure 22.1-1 The 𝒫–ε relation for (a) a linear dielectric
medium, and (b) a nonlinear medium...

Figure 22.1-2 The first Born approximation. An incident
optical field ε0 creates a source 𝒮(ε...

Figure 22.2-1 A sinusoidal electric field of angular
frequency ω in a second-order nonlinear ...

Figure 22.2-2 SHG interaction volumes. (a) For a thin
crystal, minimize A.(b) For a thick cry...

Figure 22.2-3 Optical second-harmonic generation (a) in a
bulk crystal; (b) in a doped silica...

Figure 22.2-4 The transmission of an intense beam of light
through a second-order nonlinear c...

Figure 22.2-5 Linearization of the second-order nonlinear
relation 𝒫NL = 2dε2 in the presence...

Figure 22.2-6 An example of sum-frequency generation
(SFG), also called frequency up-conversi...

Figure 22.2-7 The phase-matching condition.



Figure 22.2-8 Optical parametric devices in bulk crystals or
integrated waveguides: optical f...

Figure 22.2-9 Comparison of parametric processes in a
second-order nonlinear medium and laser...

Figure 22.2-10 Phase matching in e-e-o SHG. (a) Matching
the index of the e wave at ω with tha...

Figure 22.2-11 Tuning curves for a collinear OPO using a
BBO crystal and a 532-nm pump, which ...

Figure 22.2-12 Non-collinear Type-II second-harmonic
generation.

Figure 22.2-13 Tuning curves for non-collinear Type-I o-o-e
spontaneous parametric downconvers...

Figure 22.2-14 The factor by which the efficiency of three-
wave mixing is reduced as a result ...

Figure 22.2-15 A nonlinear crystal with periodically varying
nonlinear optical coefficient d(z...

Figure 22.2-16 Phasors of the waves radiated by
incremental elements at different positions z ...

Figure 22.2-17 Schematic of second-harmonic generation
in a periodically poled, integrated, no...

Figure 22.3-1 Third-order nonlinearity in a Kerr medium.

Figure 22.3-2 A third-order nonlinear medium acts as a
lens whose focusing power depends on t...

Figure 22.3-3 Comparison of (a) a Gaussian beam traveling
in a linear medium, and (b) a spati...

Figure 22.3-4 Four-wave mixing (FWM): (a) phase-
matching condition; (b) interaction of four p...

Figure 22.3-5 Three-wave, four-photon optical fiber
parametric amplifier (OPA).



Figure 22.3-6 Reflection of a plane wave from (a) an
ordinary mirror and (b) a phase conjugat...

Figure 22.3-7 Reflection of a spherical wave from (a) an
ordinary mirror and (b) a phase conj...

Figure 22.3-8 An optical system for degenerate four-wave
mixing using a nonlinear crystal. Th...

Figure 22.3-9 Four-wave mixing in a nonlinear medium. A
reference and object wave interfere a...

Figure 22.3-10 Optical reciprocity.

Figure 22.3-11 A phase conjugate mirror reflects a distorted
wave onto itself, so that when it...

Figure 22.3-12 An optical resonator with an ordinary
mirror and a phase conjugate mirror.

Figure 22.4-1 Second-harmonic generation. (a) A wave of
frequency ω incident on a nonlinear c...

Figure 22.4-2 The frequency up-converter; (a) wave
mixing; (b) evolution of the photon-flux d...

Figure 22.4-3 The optical parametric amplifier: (a) wave
mixing; (b) photon-flux densities of...

Figure 22.4-4 The parametric oscillator generates light at
frequencies ω1 and ω2. A pump of f...

Figure 22.5-1 Degenerate four-wave mixing. Waves 3 and 4
are intense pump waves traveling in ...

Figure 22.6-1 (a) Geometry for collinear Type-I o-o-e three-
wave mixing in a uniaxial crystal...

Figure 22.7-1 Block diagram representing the nonlinear
differential equation (22.7-10). The l...
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Figure 23.1-1 Temporal and spectral representations of an
optical pulse. (a) The real part of...

Figure 23.1-2 (a) The relation Δν = 0.44/τFWHM between
the spectral width Δν and the temporal...

Figure 23.1-3 Linearly up-chirped and down-chirped optical
pulses. (a) An up-chirped pulse ha...

Figure 23.1-4 The short-time Fourier transform of U(t) is
constructed by making use of a sequ...

Figure 23.1-5 Temporal and spectral profiles of three
Gaussian pulses of central frequency ν0...

Figure 23.1-6 The envelope of a plane-wave pulse of width
τ traveling in the z direction with...

Figure 23.1-7 (a) Four snapshots (taken at equal time
intervals) of a pulsed plane wave trave...

Figure 23.2-1 Filtering the wavefunction with a filter H(ν)
(upper figure) is equivalent to f...

Figure 23.2-2 Magnitude and phase of the envelope
transfer functions for (a) an ideal filter,...

Figure 23.2-3 Approximation of an arbitrary filter with
slowly varying transfer function as a...

Figure 23.2-4 A chirp filter with coefficient b converts an
unchirped Gaussian pulse of width...

Figure 23.2-5 Filtering a Gaussian pulse of width τ1 and
chirp parameter a1 with a chirp filt...

Figure 23.2-6 Chirped-pulse amplifier.

Figure 23.2-7 (a) An optical element exhibiting angular
dispersion. The component at frequenc...

Figure 23.2-8 Prism chirp filter.



Figure 23.2-9 The diffraction grating as a down-chirping
filter.

Figure 23.2-10 A Bragg grating with decreasing period
serves as a positive chirp filter.

Figure 23.2-11 Compression of a transform-limited pulse
by use of a quadratic phase modulator ...

Figure 23.2-12 A system for pulse shaping includes: (1)
frequency-to-space mapping — a grating...

Figure 23.2-13 Pulse shaping based on time-to-space
mapping. The system has an impulse respons...

Figure 23.3-1 Transmission of an optical pulse through a
dispersive medium is equivalent to a...

Figure 23.3-2 Prism chirp filter with adjustable chirp
coefficient.

Figure 23.3-3 Propagation of an initially unchirped
Gaussian pulse through a dispersive mediu...

Figure 23.3-4 Propagation of an initially down-chirped
Gaussian pulse (a1 = −1) through a med...

Figure 23.3-5 Pulse compression by a quadratic phase
modulator (QPM) and a medium with group ...

Figure 23.3-6 Dispersion compensation in optical fibers.

Figure 23.3-7 Dispersion compensation by use of periodic
positive QPM and negative GVD.

Figure 23.3-8 Analogy of spatial optics (left column) and
temporal optics (right column). The...

Figure 23.4-1 Pulse broadening in a single-lens imaging
system resulting from material (chrom...

Figure 23.4-2 Spreading of a pulsed beam. The long-
wavelength components (R) spread into cone...



Figure 23.4-3 A spatial Fourier-transform system couples
the temporal and spatial distributio...

Figure 23.4-4 Temporal and spatial spreading of a Gaussian
beam modulated by a Gaussian pulse...

Figure 23.4-5 Focal-plane spatiotemporal profile of the
intensity of a Gaussian beam modulate...

Figure 23.4-6 Three snapshots of the spatial distribution of
a pulse as it travels through a ...

Figure 23.5-1 A pulsed wave at the fundamental frequency
(F) and its associated second-harmon...

Figure 23.5-2 Generation of a THz pulse by
downconversion of an optical wave.

Figure 23.5-3 Chirping of an optical pulse by propagation
through a nonlinear optical Kerr me...

Figure 23.5-4 Pulse compression by a combination of a
quadratic phase modulation (QPM) (intro...

Figure 23.5-5 (a) In a linear medium with negative GVD
(anomalous dispersion), the shorter-wa...

Figure 23.5-6 Transportation analog of the soliton.

Figure 23.5-7 Simple model for a medium with negative
GVD and positive SPM.

Figure 23.5-8 Comparison of a sech function and a
Gaussian function of the same height and wi...

Figure 23.5-9 Propagation of the fundamental (N = 1)
soliton and the N = 2 soliton.

Figure 23.5-10 An optical-fiber soliton laser.

Figure 23.5-11 (a) Spatial and temporal spreading of a
pulsed beam as a result of propagation ...



Figure 23.5-12 Principal nonlinear mechanisms for
supercontinuum generation (SCG) via spectral...

Figure 23.5-13 Comparison between (a) second-harmonic
generation (SHG) and (b) high-harmonic g...

Figure 23.5-14 Simplified three-step recollisional model for
HHG. (a) A gas atom is modeled as...

Figure 23.5-15 (a) Normalized trajectories x(t)/x0 of
liberated electrons for various normaliz...

Figure 23.6-1 Response of a photodetector with impulse
response function hD(t) to optical pul...

Figure 23.6-2 Measurement of an optical pulse I(t) by use
of an optical gate controlled by a ...

Figure 23.6-3 (a) An anisotropic nonlinear Kerr gate. The
reference pulse intensity Ir(t) = |...

Figure 23.6-4 Measurement of a pulse intensity profile I(t)
by sampling individual pulses of ...

Figure 23.6-5 Measurement of the intensity profile I(t) of a
brief single-shot optical pulse ...

Figure 23.6-6 Temporal-to-spatial transformation of an
optical pulse by use of an oblique wav...

Figure 23.6-7 Measurement of a single-shot pulse by use of
non-collinear Type-II SHG (Exercis...

Figure 23.6-8 Measurement of the intensity
autocorrelation function GI(τ).

Figure 23.6-9 Measurement of spectral intensity with an
optical spectrum analyzer. (a) System...

Figure 23.6-10 Interferometric measurement of the pulse
spectral intensity. The interferogram ...



Figure 23.6-11 A spectral interferometer generates an
interferogram in the Fourier domain.

Figure 23.6-12 Self-referenced spectral interferometer.

Figure 23.6-13 Nonlinear interferometer.

Figure 23.6-14 Normalized intensity autocorrelation
function , p...

Figure 23.6-15 Measurement of the spectrogram S(ν, τ) by
frequency-resolved optical gating (FR...

Figure 23.6-16 Two implementations of frequency-resolved
optical gating (FROG): (a) Second-har...

Figure 23.6-17 (a) Measured spectrogram Sλ(λ, τ) of a 2½-
cycle, 4½-fs optical pulse with a cen...
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Figure 24.0-1 Typical interconnection distances for telecom
[wide-area networks (WANs) and me...

Figure 24.0-2 A generic N ×M system may function as a
passive interconnect, a router, or a sw...

Figure 24.0-3 Attributes of an optical beam that can be
used for modulation, multi-plexing, r...

Figure 24.1-1 Representative examples of interconnect
configurations. (a) One-to-one. (b) One...

Figure 24.1-2 (a) A 2-port unidirectional link (isolator). (b),
(c) A 3-port interconnect usi...

Figure 24.1-3 A 4-port circulator represented by two
equivalent configurations.

Figure 24.1-4 Examples of simple optical interconnects
created by conventional refractive opt...

Figure 24.1-5 Bending of an optical wave as a result of
transmission through a phase grating....



Figure 24.1-6 Holographic interconnection map created by
an array of phase gratings of differ...

Figure 24.1-7 Diffraction from a phase hologram as a
continuous interconnection system.

Figure 24.1-8 Integrated-photonic devices implementing
some of the interconnects depicted in ...

Figure 24.1-9 Fiber-optic couplers that implement some of
the interconnects displayed in Fig....

Figure 24.1-10 (a) Implementation of the 3-port
nonreciprocal interconnect of Fig. 24.1-2(c) b...

Figure 24.1-11 Schematic illustration of optical
interconnects in microelectronics and compute...

Figure 24.1-12 (a) Multiple boards interconnected via
planar waveguides in a bus configuration...

Figure 24.1-13 Schematic illustrations of optochips
mounted on printed circuit boards (PCBs). ...

Figure 24.1-14 Light sources integrated with Si CMOS chips
via heterogeneous integration (hybr...

Figure 24.1-15 (a) Interconnects between on-chip sources
and detectors via an external reflect...

Figure 24.2-1 Attribute-based routers. (a) Demultiplexer
(DMUX). (b) Multiplexer (MUX). (c) A...

Figure 24.2-2 Wavelength-division demultiplexers. (a)
Prism. (b) Diffraction grating with a l...

Figure 24.2-3 An optical add–drop multiplexer (OADM).
This version makes use of a fiber Bragg...

Figure 24.2-4 Another configuration for an OADM. This
version makes use of multiple micro-rin...

Figure 24.2-5 Wavelength-division routing
(demultiplexing) of two wavelengths by use of an in...



Figure 24.2-6 Wavelength-division routing
(demultiplexing) of four wavelengths by use of casc...

Figure 24.2-7 A multipath interferometer and the
wavelength dependence of its transmittance.

Figure 24.2-8 Wavelength-division demultiplexing using
an arrayed waveguides (AWG) router.

Figure 24.2-9 Polarization-division routing using a
polarizing beamsplitter (PBS). For beams ...

Figure 24.2-10 Phase-based routing using a Mach–Zehnder
interferometer.

Figure 24.2-11 An intensity-based 1 × 2 router using a
Mach–Zehnder interferometer in which a ...

Figure 24.2-12 Intensity-based 1 ×2 router using a
nonlinear Sagnac interferometer that serves...

Figure 24.2-13 Intensity-based 1×2 router using a
directional coupler fabricated from a nonlin...

Figure 24.3-1 Examples of space switches. (a) A 1 × 1
switch connects or disconnects two line...

Figure 24.3-2 (a)A 1 × 3 switch made from three 1 × 1
switches. (b)A 3 × 3 switch made from n...

Figure 24.3-3 (a)A 4 × 4 switch made from five 2 × 2
switches. Input line 1 is connected to o...

Figure 24.3-4 An optoelectronic crossbar switch. Incoming
optical signals carried by optical ...

Figure 24.3-5 (a) An optical scanner as a 1 × N switch. (b)
An interferometer with a phase mo...

Figure 24.3-6 A 4 × 4 crossbar switch. Each of the 16
elements is a 1 × 1 switch that transmi...

Figure 24.3-7 Examples of the deflection of light into
different directions using mechano-opt...



Figure 24.3-8 (a) MEMS popup-mirror switch. (b) MEMS
rotating-mirror switch.

Figure 24.3-9 The digital micromirror device (DMD) is an
array of micromirrors switched betwe...

Figure 24.3-10 (a)A 1 × 1 switch using an integrated-
photonic Mach–Zehnder interferometer (MZI...

Figure 24.3-11 An integrated-photonic 4 × 4 switch using
five directional couplers (A, B, C, D...

Figure 24.3-12 An array of MQW switches in a surface-
normal configuration. Operation is based ...

Figure 24.3-13 A 2 × 2 switch using four 1 × 1 SOA switches
in the broadcast-and-select config...

Figure 24.3-14 A 2 × 2 crossbar liquid-crystal switch. The
two polarization components of an i...

Figure 24.3-15 Acousto-optic switches. (a)A 1 × 2 switch.
(b)A 2 × 2 switch. (c) An L × M swit...

Figure 24.3-16 Thermo-optic Mach–Zehnder
interferometer (MZI) switch.

Figure 24.3-17 Bubble-jet switch.

Figure 24.3-18 SOA all-optical switches. (a)A 1 × 1 switch
based on cross-gain modulation (XGM...

Figure 24.3-19 An all-optical 1 × 1 switch based on
depletion resulting from parametric sum-fr...

Figure 24.3-20 An all-optical 1 × 2 switch based on cross-
phase modulation (XPM) in a highly n...

Figure 24.3-21 An all-optical 1 × 1 switch based on altering
the resonance frequency of a micr...

Figure 24.3-22 An all-optical 1 × 2 switch based on cross-
phase modulation (XPM), which alters...



Figure 24.3-23 An all-optical 1 × 1 switch based on the
frequency shift introduced by cross-ph...

Figure 24.3-24 An all-optical 1 × 1 switch based on
depletion of the signal wave caused by fou...

Figure 24.3-25 An all-optical switch using vector solitons in
a highly nonlinear fiber (HNLF)....

Figure 24.3-26 An all-optical-fiber nonlinear asymmetric
Sagnac interferometer used as a 1 × 2...

Figure 24.3-27 A reconfigurable wavelength selector.

Figure 24.3-28 A reconfigurable optical add–drop
multiplexer (ROADM).

Figure 24.3-29 Implementation of a wavelength-channel
interchange (WCI). Data bits are depicte...

Figure 24.3-30 (a) Broadcast-and-select space–wavelength
switch. (b) Arrayed waveguides (AWG) ...

Figure 24.3-31 Wavelength conversion. Data is transferred
from a beam of frequency ω1 to a bea...

Figure 24.3-32 Correspondence between time-and space-
domain switches. (a) Space-domain switch....

Figure 24.3-33 Time–space–time (TST) switch.

Figure 24.3-34 Time-division demultiplexing with N = 4.

Figure 24.3-35 Two implementations of time-division
demultiplexing using star couplers, optica...

Figure 24.3-36 An implementation of optical time-slot
interchange (TSI).

Figure 24.3-37 Programmable delay line using a fiber loop
and a crossbar switch. At time t = 0...

Figure 24.3-38 Packets and packet switches.



Figure 24.3-39 Optical correlator for recognizing the
header address.

Figure 24.3-40 Configuration of an 8 ×8 three-stage
Banyan switch. An incoming packet at input...

Figure 24.4-1 Implementation of various logic gates using
switches. The input bits are denote...

Figure 24.4-2 Input–output hysteresis relation for a
bistable system.

Figure 24.4-3 The flip-flop behavior of a bistable system. At
time 1 the output is low. A pos...

Figure 24.4-4 The bistable device as: (a) An amplifier; (b) A
thresholding device, pulse shap...

Figure 24.4-5 The bistable device as an AND logic gate. The
input Ii is I1 + I2, where I1 and...

Figure 24.4-6 An optical system whose transmittance 𝒯 is a
function of its output Io.

Figure 24.4-7 (a) Transmittance 𝒯(Io) versus output Io.
This nonmonotonic function is chosen ...

Figure 24.4-8 Expanded view of Fig. 24.4-7(c). The dotted
curve that contains point P represe...

Figure 24.4-9 An optical system with an embedded
nonlinear element NL and a feedback loop tha...

Figure 24.4-10 Intrinsic bistable device. The internal light
intensity I controls the nonlinea...

Figure 24.4-11 A Mach–Zehnder interferometer in which
one branch contains a nonlinear medium o...

Figure 24.4-12 (a) A Fabry–Perot resonator containing a
medium of nonlinear refractive index n...



Figure 24.4-13 A bistable device consisting of a saturable
absorber in a Fabry–Perot resonator...

Figure 24.4-14 A bistable device that makes use of two
semiconductor optical amplifiers, SOA 1...

Figure 24.4-15 A bistable device using two microring lasers
connected via a waveguide. The clo...
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Figure 25.0-1 Schematic of an optical fiber communication
system. An electrical signal is con...

Figure 25.1-1 (a) Step-index multimode fiber (MMF):
relatively large core diameter; uniform r...

Figure 25.1-2 Wavelength dependence of the attenuation
coefficient α (dB/km) and the material...

Figure 25.1-3 Wavelength dependence of the chromatic
dispersion coefficient 𝒟 for a conventio...

Figure 25.1-4 Buried-heterostructure MQW DFB laser used
for long-haul optical fiber communica...

Figure 25.1-5 Optical fiber amplifiers are used in three
configurations in optical fiber comm...

Figure 25.2-1 Optical fiber communication systems using
intensity modulation. (a) Analog syst...

Figure 25.2-2 Wavelength-division multiplexing (WDM).

Figure 25.2-3 Materials commonly used for optical sources,
detectors, amplifiers, and fibers,...

Figure 25.2-4 The development of optical fiber
communication systems over the years reveals a...

Figure 25.2-5 (a) Dependence of the optical power on
distance. (b) Dependence of the pulse wi...



Figure 25.2-6 Effect of bit rate on (a) receiver sensitivity,
(b) pulse width at the receiver...

Figure 25.2-7 Closing of the eye diagram (left to right) as a
result of noise and pulse broad...

Figure 25.2-8 Power budget for an attenuation-limited
fiber-optic link.

Figure 25.2-9 Power budget as a function of bit rate B0 for
an attenuation-limited fiber-opti...

Figure 25.2-10 Maximum fiber length L as a function of bit
rate B0 under attenuation-limited c...

Figure 25.2-11 Budget for the pulse temporal width in a
dispersion-limited fiber-optic link.

Figure 25.2-12 Dispersion-limited maximum fiber length L
as a function of the bit rate B0 for ...

Figure 25.2-13 Maximum fiber-optic link distance L versus
bit rate B0 for a variety of situati...

Figure 25.2-14 Compensation of attenuation by use of
optical fiber amplifiers.

Figure 25.2-15 Dispersion compensation implemented by
fiber segments of opposite dispersion.

Figure 25.2-16 Perfect dispersion compensation at λ1; and
imperfect dispersion compensation, w...

Figure 25.3-1 Amplitude modulation (AM) and frequency
modulation (FM) of the optical field.

Figure 25.3-2 Intensity modulation (IM).

Figure 25.3-3 An example of pulse code modulation (PCM).
A 4-kHz voice signal is sampled at a...

Figure 25.3-4 Examples of the binary modulation of light:
(a) ON–OFF keying intensity modulat...



Figure 25.3-5 Constellations for BPSK (1 bit), QPSK (2 bits;
also called 4-QAM), and 8-QAM (4...

Figure 25.3-6 Transmission of N signals through the same
channel by use of a multiplexer (MUX...

Figure 25.3-7 (a) In frequency-division multiplexing
(FDM), a spectral band centered about a ...

Figure 25.3-8 Hierarchy of the T-system originally
developed by the Bell telephone system for...

Figure 25.3-9 An example of CDM encoding.

Figure 25.3-10 (a) Electronic multiplexing. (b) Optical
multiplexing.

Figure 25.3-11 Wavelength-division multiplexing (WDM).
A set of electronically multiplexed dat...

Figure 25.3-12 A 40-channel DWDM system with channel
spacings of 100 GHz in the C spectral ban...

Figure 25.3-13 (a) Multiple communication channels in a
fiber bundle (FB) or in a multicore fi...

Figure 25.3-14 Space-division multiplexing (SDM) in a
multimode fiber (MMF) using an optical m...

Figure 25.3-15 Optical multiplexer (OMUX) examples for
space-division multiplexing (SDM). (a) ...

Figure 25.4-1 Coherent optical detection. A signal wave of
frequency ωs is mixed with a local...

Figure 25.4-2 The balanced homodyne receiver detects the
intensity of the sum of the signal a...

Figure 25.4-3 Coherent optical fiber communication
system. The signal is phase modulated usin...

Figure 25.4-4 QPSK coherent optical fiber communication
system. The transmitter (Tx) employs ...



Figure 25.4-5 Constellation diagrams for OOK, BPSK, and
QPSK homodyne systems. The red circle...

Figure 25.5-1 Network topologies: (a) star; (b) ring; (c)
bus; (d) mesh.

Figure 25.5-2 A network containing ring and bus sub-
networks connected by digital cross-conne...

Figure 25.5-3 Interfaces between a node and the fiber
network. (a) Opaque interface. The sign...

Figure 25.5-4 A 4-node ring network.

Figure 25.5-5 (a) A WDM broadcastand-select network and
(b) its equivalent logical connection...

Figure 25.5-6 A WDM network in the star physical
topology (a) is equivalent to the ring logic...

Figure 25.5-7 (a) A WDM multi-hop broadcast-and-select
network. (b) A two-hop connection from...

Figure 25.5-8 (a) A 5-node, 3-channel wavelength-routed
ring network. (b) Logical topology of...

Figure 25.5-9 A WDM optical transport system linking two
sets of IP routers and exchanging da...

Figure 25.5-10 An optical cross-connect (OXC) at a node
with two incoming and two outgoing fib...

Figure 25.5-11 Schematic of a 4-node, 3-channel WDM ring
network.
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Figure A.3-1 The real part, , of a
two-dimensional ha...

Figure A.3-2 (a) The circ function and (b) its two-
dimensional Fourier transform.
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Figure B.1-1 Response of a linear shift-invariant system to
impulses.

Figure B.1-2 Response of a linear shift-invariant system to
a harmonic function.

Figure B.2-1 Response of a two-dimensional linear shift-
invariant system.

Figure B.2-2 Response of a two-dimensional linear shift-
invariant system to harmonic functio...



PREFACE TO THE THIRD EDITION
Since the publication of the Second Edition in 2007, Fundamentals
of Photonics has maintained its worldwide prominence as a self-
contained, up-to-date, introductory-level textbook that features a
blend of theory and applications. It has been reprinted dozens of
times and been translated into German and Chinese, as well as
Czech and Japanese. The Third Edition incorporates many of the
scientific and technological developments in photonics that have
taken place in the past decade and strives to be cutting-edge.

Optics and Photonics

Before usage of the term photonics became commonplace at the
time of the First Edition in the early 1990s, the field was
characterized by a collection of appellations that were not always
clearly delineated. Terms such as quantum electronics,
optoelectronics, electro-optics, and lightwave technology were
widely used. Though there was a lack of agreement about the
precise meanings of these terms, there was nevertheless a vague
consensus regarding their usage. Most of these terms have since
receded from general use, although some have retained their
presence in the titles of technical journals and academic courses.

Now, more than 25 years later, the term Optics along with the term
Photonics, as well as their combination Optics & Photonics, have
prevailed. The distinction between optics and photonics remains
somewhat fuzzy, however, and there is a degree of overlap between
the two arenas. Hence, there is some arbitrariness in the manner in
which the chapters of this book are allocated to its two volumes,
Part I: Optics and Part II: Photonics. From a broad perspective, the
term Optics is taken to signify free-space and guided-wave
propagation, and to include topics such as interference, diffraction,
imaging, statistical optics, and photon optics. The term Photonics, in
contrast, is understood to include topics that rely on the interaction



of light and matter, and is dedicated to the study of devices and
systems. As the miniaturization of components and systems
continues to progress and foster emerging technologies such as
nanophotonics and biophotonics, the importance of photonics
continues to advance.

Printed and Electronic Versions

The Third Edition appears in four versions:

1. A printed version.

2. An eBook in the form of an ePDF file that mimics the printed
version.

3. An eBook in the form of a standard ePUB.

4. An eBook in the form of an enhanced ePUB with animations for
selected figures.

In its printed form, the text consists of two volumes, each of which
contains the Table of Contents and Index for both volumes along
with the Appendices and List of Symbols:

Part I: Optics, contains the first thirteen chapters.

Part II: Photonics, contains the remaining twelve chapters.

The material in the eBook versions is identical to that in the printed
version except that all 25 chapters reside in a single electronic file.
The various eBooks enjoy the following features:

Hyperlinked table of contents at the beginning of the text.

Hyperlinked table of contents as an optional sidebar.

Hyperlinked index.

Hyperlinked section titles, equations, and figures throughout.

Animations for selected figures in the enhanced ePUB.



Presentation

Exercises, examples, reading lists, and appendices. Each
chapter of the Third Edition contains exercises, problem sets, and
an extensive reading list. Examples are included throughout to
emphasize the concepts governing applications of current interest.
Appendices summarize the properties of one-and two-dimensional
Fourier transforms, linear systems, and modes of linear systems.
Important equations are highlighted by boxes and labels to facilitate
retrieval.

Symbols, notation, units, and conventions. We make use of
the symbols, notation, units, and conventions commonly used in
the photonics literature. Because of the broad spectrum of topics
covered, different fonts are often used to delineate the multiple
meanings of various symbols; a list of symbols, units, abbreviations,
and acronyms follows the appendices. We adhere to the
International System of Units (SI units). This modern form of the
metric system is based on the meter, kilogram, second, ampere,
kelvin, candela, and mole, and is coupled with a collection of
prefixes (specified on the inside back cover of the text) that indicate
multiplication or division by various powers of ten. However, the
reader is cautioned that photonics in the service of different areas of
science can make use of different conventions and symbols. In
Chapter 2, for example, we write the complex wavefunction for a
monochromatic plane wave in a form commonly used in electrical
engineering, which differs from that used in physics. Another
example arises in Chapter 6, where the definitions we use for right
(left) circularly polarized light are in accord with general usage in
optics, but are opposite those generally used in engineering. These
distinctions are often highlighted by in situ footnotes. Though the
choice of a particular convention is manifested in the form assumed
by various equations, it does not of course affect the results.

Color coding of illustrations. The color code used in
illustrations is summarized in the chart presented below. Light
beams and optical-field distributions are displayed in red (except



when light beams of multiple wavelengths are involved, as is often
the case in nonlinear optics). When optical fields are represented,
white indicates negative values but when intensity is portrayed,
white indicates zero. Acoustic beams and fields are similarly
represented, but by with green rather than red. Glass and glass
fibers are depicted in light blue; darker shades represent larger
refractive indices. Semiconductors are cast in green, with various
shades representing different doping levels. Metal and mirrors are
indicated as copper. Semiconductor energy-band diagrams are
portrayed in blue and gray whereas photonic bandgaps are
illustrated in pink.

Intended Audience

As with the previous editions, the Third Edition is meant to serve
as:

An introductory textbook for students of electrical engineering,
applied physics, physics, or optics at the senior or first-year
graduate level.

A self-contained work for self-study.

A textbook suitable for use in programs of continuing
professional development offered by industry, universities, and
professional societies.



The reader is assumed to have a background in engineering, physics,
or optics, including courses in modern physics, electricity and
magnetism, and wave motion. Some knowledge of linear systems
and elementary quantum mechanics is helpful but not essential.
The intent is to provide an introduction to optics and photonics that
emphasizes the concepts that govern applications of current
interest. The book should therefore not be considered as a
compendium encompassing all photonic devices and systems.
Indeed, some areas of photonics are not included at all, and many of
the individual chapters could easily have been expanded into free-
standing monographs.

Organization

The Third Edition comprises 25 chapters compartmentalized into
six divisions, as depicted in the diagram below.

In recognition of the different levels of mathematical sophistication
of the intended audience, we have endeavored to present difficult
concepts in two steps: at an introductory level that provides physical
insight and motivation, followed by a more advanced analysis. This
approach is exemplified by the treatment in Chapter 21 (Electro-
Optics), in which the subject is first presented using scalar notation
and then treated again using tensor notation. Sections dealing with
material of a more advanced nature are indicated by asterisks and
may be omitted if desired. Summaries are provided at points where
recapitulation is deemed useful because of the involved nature of
the material.



The form of the book is modular so that it can be used by readers
with different needs; this also provides instructors an opportunity
to select topics for different courses. Essential material from one
chapter is often briefly summarized in another to make each
chapter as self-contained as possible. At the beginning of Chapter 25
(Optical Fiber Communications), for example, relevant material
from earlier chapters describing optical fibers, light sources, optical
amplifiers, photodetectors, and photonic integrated circuits is
briefly reviewed. This places important information about the
components of such systems at the disposal of the reader in advance
of presenting system-design and performance considerations.

Contents

A principal feature of the Third Edition is a new chapter entitled
Metal and Metamaterial Optics, an area that has had a substantial
and increasing impact on photonics. The new chapter comprises
theory and applications for single-and double-negative media, metal
optics, plasmonics, metamaterial optics, and transformation optics.

All chapters have been thoroughly vetted and updated. A chapter-by-
chapter compilation of new material in the Third Edition is
provided below.

Chapter 1 (Ray Optics). Ray-optics descriptions for optical
components such as biprisms, axicons, LED light collimators,
and Fresnel lenses have been added. The connection between
characterizing an arbitrary paraxial optical system by its ray-
transfer matrix and its cardinal points has been established. A
matrix-optics analysis for imaging with an arbitrary paraxial
optical system has been included.

Chapter 2 (Wave Optics). A wave-optics analysis of
transmission through biprisms and axicons has been added. A
treatment of the Fresnel zone plate from the perspective of
interference has been introduced. An analysis of the
Michelson–Fabry–Perot (LIGO) interferometer used for the



detection of gravitational waves in the distant universe has
been incorporated.

Chapter 3 (Beam Optics). An enhanced description of
Laguerre–Gaussian beams has been provided. The basic
features of several additional optical beams have been
introduced: optical vortex, Ince–Gaussian, nondiffracting
Bessel, Bessel– Gaussian, and Airy.

Chapter 4 (Fourier Optics). An analysis of Fresnel
diffraction from a periodic aperture (Talbot effect) has been
included. Nondiffracting waves and Bessel beams have been
introduced from a Fourier-optics perspective. A discussion of
computer-generated holography has been added.

Chapter 5 (Electromagnetic Optics). A new section on the
dipole wave, the basis of near-field optics, has been
incorporated. A new section on scattering that includes
Rayleigh and Mie scattering, along with attenuation in a
medium with scatterers, has been added.

Chapter 6 (Polarization Optics). The material dealing with
the dispersion relation in anisotropic media has been reworked
to simplify the presentation.

Chapter 7 (Photonic-Crystal Optics). The behavior of the
dielectric-slab beam-splitter has been elucidated. A discussion
relating to fabrication methods for 3D photonic crystals has
been incorporated.

Chapter 8 (Metal and Metamaterial Optics). This new
chapter, entitled Metal and Metamaterial Optics, provides a
venue for the examination of single-and double-negative media,
metal optics, plasmonics, metamaterial optics, and
transformation optics. Topics considered include evanescent
waves, surface plasmon polaritons, localized surface plasmons,
nanoantennas, metasurfaces, subwavelength imaging, and
optical cloaking.



Chapter 9 (Guided-Wave Optics). A new section on
waveguide arrays that details the mutual coupling of multiple
waveguides and introduces the notion of super-modes has been
inserted. A new section on plasmonic waveguides that includes
metal–insulator–metal and metal-slab waveguides, along with
periodic metal– dielectric arrays, has been incorporated.

Chapter 10 (Fiber Optics). A discussion of multicore fibers,
fiber couplers, and photonic lanterns has been added. A brief
discussion of the applications of photonic-crystal fibers has
been provided. A new section on multimaterial fibers, including
conventional and hybrid mid-infrared fibers, specialty fibers,
multimaterial fibers, and multifunctional fibers, has been
introduced.

Chapter 11 (Resonator Optics). A section on plasmonic
resonators has been added.

Chapter 12 (Statistical Optics). The sections on optical
coherence tomography and unpolarized light have been
reorganized.

Chapter 13 (Photon Optics). A brief description of single-
photon imaging has been added. The discussion of quadrature-
squeezed and photon-number-squeezed light has been
enhanced and examples of the generation and applications of
these forms of light have been provided. A section that
describes two-photon light, entangled photons, two-photon
optics, and the generation and applications thereof, has been
incorporated. Examples of two-photon polarization, two-photon
spatial optics, and two-beam optics have been appended.

Chapter 14 (Light and Matter). The title of this chapter
was changed from Photons and Atoms to Light and Matter.
Brief descriptions of the Zeeman effect, Stark effect, and
ionization energies have been added. The discussion of
lanthanide-ion manifolds has been enhanced. Descriptions of
Doppler cooling, optical molasses, optical tweezers, optical



lattices, atom interferometry, and atom amplifiers have been
incorporated into the section on laser cooling, laser trapping,
and atom optics.

Chapter 15 (Laser Amplifiers). Descriptions of quasi-three-
level and in-band pumping have been added. The sections on
representative laser amplifiers, including ruby, neodymium-
doped glass, erbium-doped silica fiber, and Raman fiber
devices, have been enhanced.

Chapter 16 (Lasers). Descriptions of tandem pumping,
transition-ion-doped zincchalcogenide lasers, silicon Raman
lasers, and master-oscillator power-amplifiers (MOPAs) have
been added. Descriptions of inner-shell photopumping and X-
ray free-electron lasers have been incorporated. A new section
on optical frequency combs has been provided.

Chapter 17 (Semiconductor Optics). The section on
organic semiconductors has been enhanced. A discussion of
group-IV photonics, including graphene and 2D materials such
as transition-metal dichalcogenides, has been added. A brief
discussion of quantum-dot single-photon emitters has been
incorporated.

Chapter 18 (LEDs and Laser Diodes). The title of this
chapter was changed from Semiconductor Photon Sources to
LEDs and Laser Diodes. A new section on the essentials of LED
lighting has been incorporated. Brief discussions of the
following topics are now included: resonant-cavity LEDs,
silicon-photonics light sources, quantum-dot semiconductor
amplifiers, external-cavity wavelength-tunable laser diodes,
broad-area laser diodes, and laser-diode bars and stacks. A
discussion of the semiconductor-laser linewidth-enhancement
factor has been added. A new section on nanolasers has been
introduced.

Chapter 19 (Photodetectors). The title of this chapter was
changed from Semiconductor Photon Detectors to



Photodetectors. Brief discussions of the following topics have
been added: organic, plasmonic, group-IV-based, and
grapheneenhanced photodetectors; edge vs. normal
illumination; photon-trapping microstructures; SACM and
superlattice APDs; multiplied dark current; and 1/f detector
noise. New examples include multi-junction photovoltaic solar
cells; Ge-on-Si photodiodes; graphene-Si Schottky-barrier
photodiodes; and SAM, SACM, and staircase APDs. A new
section on single-photon and photon-numberresolving
detectors details the operation of SPADs, SiPMs, and TESs.

Chapter 20 (Acousto-Optics). The identical forms of the
photoelastic matrix in acousto-optics and the Kerr-effect matrix
in electro-optics has been highlighted for cubic isotropic media.

Chapter 21 (Electro-Optics). New sections on passive-and
active-matrix liquid-crystal displays have been introduced and
their operation has been elucidated. The performance of active-
matrix liquid-crystal displays (AMLCDs) has been compared
with that of active-matrix organic light-emitting displays
(AMOLEDs).

Chapter 22 (Nonlinear Optics). New material relating to
guided-wave nonlinear optics has been introduced. Quasi-phase
matching in periodically poled integrated optical waveguides,
and the associated improvement in wave-mixing efficiency, is
now considered. The section pertaining to Raman gain has been
enhanced.

Chapter 23 (Ultrafast Optics). New examples have been
incorporated that consider chirped pulse amplification in a
petawatt laser and the generation of high-energy solitons in a
photonic-crystal rod. A new section on high-harmonic
generation and attosecond optics has been added. The section
on pulse detection has been reorganized.

Chapter 24 (Optical Interconnects and Switches). The
role of optical interconnects at the inter-board, inter-chip, and



intrachip scale of computer systems is delineated. All-optical
switching now incorporates nonparametric and parametric
photonic switches that operate on the basis of manifold
nonlinear-optical effects. Photonic-crystal and plasmonic
photonic switches are discussed. The treatment of photonic
logic gates now includes an analysis of embedded bistable
systems and examples of bistability in fiber-based-
interferometric and microring laser systems.

Chapter 25 (Optical Fiber Communications). The
material on fiber-optic components has been updated and
rewritten, and the role of photonic integrated circuits is
delineated. A new section on space-division multiplexing in
multicore and multimode fibers has been added. The section on
coherent detection has been expanded and now emphasizes
digital coherent receivers with spectrally efficient coding.

Representative Courses

The different chapters of the book may be combined in various ways
for use in courses of semester or quarter duration. Representative
examples of such courses are presented below. Some of these
courses may be offered as part of a sequence. Other selections may
be made to suit the particular objectives of instructors and students.



The first six chapters of the book are suitable for an introductory
course on Optics. These may be supplemented by Chapter 12
(Statistical Optics) to introduce incoherent and partially coherent
light, and by Chapter 13 (Photon Optics) to introduce the photon.
The introductory sections of Chapters 9 and 10 (Guided-Wave
Optics and Fiber Optics, respectively) may be added to cover some
applications.

A course on Guided-Wave Optics might begin with an introduction
to wave propagation in layered and periodic media in Chapter 7
(Photonic-Crystal Optics), and could include Chapter 8 (Metal and
Metamaterial Optics). This would be followed by Chapters 9, 10,
and 11 (Guided-Wave Optics, Fiber Optics, and Resonator Optics,
respectively). The introductory sections of Chapters 21 and 24
(Electro-Optics and Optical Interconnects and Switches) would
provide additional material.



A course on Lasers could begin with Beam Optics and Resonator
Optics (Chapters 3 and 11, respectively), followed by Light and
Matter (Chapter 14). The initial portion of Photon Optics (Chapter
13) could be assigned. The heart of the course would be the material
contained in Laser Amplifiers and Lasers (Chapters 15 and 16,
respectively). The course might also include material drawn from
Semiconductor Optics and LEDs and Laser Diodes (Chapters 17 and
18, respectively). An introduction to femtosecond lasers could be
extracted from some sections of Ultrafast Optics (Chapter 23).

The chapters on Semiconductor Optics, LEDs and Laser Diodes, and
Photodetectors (Chapters 17, 18, and 19, respectively) form a
suitable basis for a course on Optoelectronics. This material would
be supplemented with optics background from earlier chapters and
could include topics such as liquid-crystal devices (Secs. 6.5 and
21.3), electroabsorption modulators (Sec. 21.5), and an introduction
to photonic devices used for switching and/or communications
(Chapters 24 and 25, respectively).



Photonic Devices is a course that would consider the devices used in
Acousto-Optics, Electro-Optics, and Nonlinear Optics (Chapters 20,
21, and 22, respectively). It might also include devices used in
optical routing and switching, as discussed in Optical Interconnects
and Switches (Chapter 24).

The material contained in Chapters 21–23 (Electro-Optics,
Nonlinear Optics, and Ultrafast Optics, respectively) is suitable for
an in-depth course on Nonlinear and Ultrafast Optics. These
chapters could be supplemented by the material pertaining to
electro-optic and all-optical switching in Chapter 24 (Optical
Interconnects and Switches).



The heart of a course on Fiber-Optic Communications would be the
material contained in Chapter 25 (Optical Fiber Communications).
Background for this course would comprise material drawn from
Chapters 9, 10, 18, and 19 (Guided-Wave Optics, Fiber Optics, LEDs
and Laser Diodes, and Photodetectors, respectively), along with
material contained in Secs. 15.3C and 15.3D (doped-fiber and
Raman fiber amplifiers, respectively). If fiber-optic networks were
to be emphasized, Sec. 24.3 (photonic switches) would be a valuable
adjunct.

Background material for a course on Optical Information
Processing would be drawn from Wave Optics and Beam Optics
(Chapters 2 and 3, respectively). The course could cover coherent
image formation and processing from Fourier Optics (Chapter 4)
along with incoherent and partially coherent imaging from
Statistical Optics (Chapter 12). The focus could then shift to devices
used for analog data processing, such as those considered in
Acousto-Optics (Chapter 20). The course could then finish with
material on switches and gates used for digital data processing, such
as those considered in Optical Interconnects and Switches (Chapter
24).
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PREFACE TO THE SECOND EDITION
Since the publication of the First Edition in 1991, Fundamentals of
Photonics has been reprinted some 20 times, translated into Czech
and Japanese, and used worldwide as a textbook and reference.
During this period, major developments in photonics have
continued apace, and have enabled technologies such as
telecommunications and applications in industry and medicine. The
Second Edition reports some of these developments, while
maintaining the size of this single-volume tome within practical
limits.

In its new organization, Fundamentals of Photonics continues to
serve as a self-contained and up-to-date introductory-level textbook,
featuring a logical blend of theory and applications. Many readers of
the First Edition have been pleased with its abundant and well-
illustrated figures. This feature has been enhanced in the Second
Edition by the introduction of full color throughout the book,
offering improved clarity and readability.

While each of the 22 chapters of the First Edition has been
thoroughly updated, the principal feature of the Second Edition is
the addition of two new chapters: one on photonic-crystal optics and
another on ultrafast optics. These deal with developments that have
had a substantial and growing impact on photonics over the past
decade.

The new chapter on photonic-crystal optics provides a
foundation for understanding the optics of layered media, including
Bragg gratings, with the help of a matrix approach. Propagation of
light in one-dimensional periodic media is examined using Bloch
modes with matrix and Fourier methods. The concept of the
photonic bandgap is introduced. Light propagation in two-and three-
dimensional photonic crystals, and the associated dispersion
relations and bandgap structures, are developed. Sections on



photonic-crystal waveguides, holey fibers, and photonic-crystal
resonators have also been added at appropriate locations in other
chapters.

The new chapter on ultrafast optics contains sections on
picosecond and femtosecond optical pulses and their
characterization, shaping, and compression, as well as their
propagation in optical fibers, in the domain of linear optics. Sections
on ultrafast nonlinear optics include pulsed parametric interactions
and optical solitons. Methods for the detection of ultrafast optical
pulses using available detectors, which are relatively slow, are
reviewed.

In addition to these two new chapters, the chapter on optical
interconnects and switches has been completely rewritten and
supplemented with topics such as wavelength and time routing and
switching, FBGs, WGRs, SOAs, TOADs, and packet switches. The
chapter on optical fiber communications has also been
significantly updated and supplemented with material on WDM
networks; it now offers concise descriptions of topics such as
dispersion compensation and management, optical amplifiers, and
soliton optical communications.

Continuing advances in device-fabrication technology have
stimulated the emergence of nanophotonics, which deals with
optical processes that take place over subwavelength (nanometer)
spatial scales. Nanophotonic devices and systems include quantum-
confined structures, such as quantum dots, nanoparticles, and
nanoscale periodic structures used to synthesize metamaterials
with exotic optical properties such as negative refractive index. They
also include configurations in which light (or its interaction with
matter) is confined to nanometer-size (rather than micrometer-
size) regions near boundaries, as in surface plasmon optics.
Evanescent fields, such as those produced at a surface where total
internal reflection occurs, also exhibit such confinement.
Evanescent fields are present in the immediate vicinity of
subwavelengthsize apertures, such as the open tip of a tapered



optical fiber. Their use allows imaging with resolution beyond the
diffraction limit and forms the basis of near-field optics. Many of
these emerging areas are described at suitable locations in the
Second Edition.

New sections have been added in the process of updating the
various chapters. New topics introduced in the early chapters
include: Laguerre–Gaussian beams; near-field imaging; the
Sellmeier equation; fast and slow light; optics of conductive media
and plasmonics; doubly negative metamaterials; the Poincaré
sphere and Stokes parameters; polarization mode dispersion;
whispering-gallery modes; microresonators; optical coherence
tomography; and photon orbital angular momentum.

In the chapters on laser optics, new topics include: rare-earth and
Raman fiber amplifiers and lasers; EUV, X-ray, and free-electron
lasers; and chemical and random lasers. In the area of
optoelectronics, new topics include: gallium nitride-based
structures and devices; superluminescent diodes; organic and
white-light LEDs; quantum-confined lasers; quantum cascade
lasers; microcavity lasers; photonic-crystal lasers; array detectors;
low-noise APDs; SPADs; and QWIPs.

The chapter on nonlinear optics has been supplemented with
material on parametric-interaction tuning curves; quasi-phase-
matching devices; two-wave mixing and cross-phase modulation;
THz generation; and other nonlinear optical phenomena associated
with narrow optical pulses, including chirp pulse amplification and
supercontinuum light generation. The chapter on electro-optics now
includes a discussion of electroabsorption modulators.

Appendix C on modes of linear systems has been expanded and
now offers an overview of the concept of modes as they appear in
numerous locations within the book. Finally, additional exercises
and problems have been provided, and these are now numbered
disjointly to avoid confusion.
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PREFACE TO THE FIRST EDITION
Optics is an old and venerable subject involving the generation,
propagation, and detection of light. Three major developments,
which have been achieved in the last thirty years, are responsible for
the rejuvenation of optics and for its increasing importance in
modern technology: the invention of the laser, the fabrication of
low-loss optical fibers, and the introduction of semiconductor
optical devices. As a result of these developments, new disciplines
have emerged and new terms describing these disciplines have
come into use: electro-optics, optoelectronics, quantum
electronics, quantumoptics, and lightwave technology.
Although there is a lack of complete agreement about the precise
usages of these terms, there is a general consensus regarding their
meanings.

Photonics

Electro-optics is generally reserved for optical devices in which
electrical effects play a role (lasers, and electro-optic modulators
and switches, for example). Optoelectronics, on the other hand,
typically refers to devices and systems that are essentially electronic
in nature but involve light (examples are light-emitting diodes,
liquid-crystal display devices, and array photodetectors). The term
quantum electronics is used in connection with devices and systems
that rely principally on the interaction of light with matter (lasers
and nonlinear optical devices used for optical amplification and
wave mixing serve as examples). Studies of the quantum and
coherence properties of light lie within the realm of quantum
optics. The term lightwave technology has been used to describe
devices and systems that are used in optical communications and
optical signal processing.

In recent years, the term photonics has come into use. This term,
which was coined in analogy with electronics, reflects the growing



tie between optics and electronics forged by the increasing role that
semiconductor materials and devices play in optical systems.
Electronics involves the control of electric-charge flow (in vacuum
or in matter); photonics involves the control of photons (in free
space or in matter). The two disciplines clearly overlap since
electrons often control the flow of photons and, conversely, photons
control the flow of electrons. The term photonics also reflects the
importance of the photon nature of light in describing the operation
of many optical devices.

Scope

This book provides an introduction to the fundamentals of
photonics. The term photonics is used broadly to encompass all of
the aforementioned areas, including the following:

The generation of coherent light by lasers, and incoherent light
by luminescence sources such as light-emitting diodes.

The transmission of light in free space, through conventional
optical components such as lenses, apertures, and imaging
systems, and through waveguides such as optical fibers.

The modulation, switching, and scanning of light by the use of
electrically, acoustically, or optically controlled devices.

The amplification and frequency conversion of light by the use
of wave interactions in nonlinear materials.

The detection of light.

These areas have found ever-increasing applications in optical
communications, signal processing, computing, sensing, display,
printing, and energy transport.

Approach and Presentation

The underpinnings of photonics are provided in a number of
chapters that offer concise introductions to:



The four theories of light (each successively more advanced
than the preceding): ray optics, wave optics, electromagnetic
optics, and photon optics.

The theory of interaction of light with matter.

The theory of semiconductor materials and their optical
properties.

These chapters serve as basic building blocks that are used in other
chapters to describe the generation of light (by lasers and light-
emitting diodes); the transmission of light (by optical beams,
diffraction, imaging, optical waveguides, and optical fibers); the
modulation and switching of light (by the use of electro-optic,
acousto-optic, and nonlinear-optic devices); and the detection of
light (by means of photodetectors). Many applications and examples
of real systems are provided so that the book is a blend theory and
practice. The final chapter is devoted to the study of fiber-optic
communications, which provides an especially rich example in
which the generation, transmission, modulation, and detection of
light are all part of a single photonic system used for the
transmission of information.

The theories of light are presented at progressively increasing levels
of difficulty. Thus light is described first as rays, then scalar waves,
then electromagnetic waves, and finally, photons. Each of these
descriptions has its domain of applicability. Our approach is to draw
from the simplest theory that adequately describes the
phenomenon or intended application. Ray optics is therefore used
to describe imaging systems and the confinement of light in
waveguides and optical resonators. Scalar wave theory provides a
description of optical beams, which are essential for the
understanding of lasers, and of Fourier optics, which is useful for
describing coherent optical systems and holography.
Electromagnetic theory provides the basis for the polarization and
dispersion of light, and the optics of guided waves, fibers, and
resonators. Photon optics serves to describe the interactions of light



with matter, explaining such processes as light generation and
detection, and light mixing in nonlinear media.

Intended Audience

Fundamentals of Photonics is meant to serve as:

An introductory textbook for students in electrical engineering
or applied physics at the senior or first-year graduate level.

A self-contained work for self-study.

A text for programs of continuing professional development
offered by industry, universities, and professional societies.

The reader is assumed to have a background in engineering or
applied physics, including courses in modern physics, electricity and
magnetism, and wave motion. Some knowledge of linear systems
and elementary quantum mechanics is helpful but not essential.
Our intent has been to provide an introduction to photonics that
emphasizes the concepts governing applications of current interest.
The book should, therefore, not be considered as a compendium
that encompasses all photonic devices and systems. Indeed, some
areas of photonics are not included at all, and many of the
individual chapters could easily have been expanded into separate
monographs.

Problems, Reading Lists, and Appendices

A set of problems is provided at the end of each chapter. Problems
are numbered in accordance with the chapter sections to which they
apply. Quite often, problems deal with ideas or applications not
mentioned in the text, analytical derivations, and numerical
computations designed to illustrate the magnitudes of important
quantities. Problems marked with asterisks are of a more advanced
nature. A number of exercises also appear within the text of each
chapter to help the reader develop a better understanding of (or to
introduce an extension of) the material.



Appendices summarize the properties of one-and two-dimensional
Fourier transforms, linear-systems theory, and modes of linear
systems (which are important in polarization devices, optical
waveguides, and resonators); these are called upon at appropriate
points throughout the book. Each chapter ends with a reading list
that includes a selection of important books, review articles, and a
few classic papers of special significance.
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Sir Isaac Newton (1642–1727) set forth a theory of optics in
which light emissions consist of collections of corpuscles that
propagate rectilinearly.

Pierre de Fermat (1601–1665) enunciated a rule, known as
Fermat’s Principle, in which light rays travels along the path of least
time relative to neighboring paths.

Light can be described as an electromagnetic wave phenomenon
governed by the same theoretical principles that govern all other
forms of electromagnetic radiation, such as radio waves and X-rays.
This conception of light is called electromagnetic optics.
Electromagnetic radiation propagates in the form of two mutually
coupled vector waves, an electric-field wave and a magnetic-field
wave. Nevertheless, it is possible to describe many optical
phenomena using a simplified scalar wave theory in which light is
described by a single scalar wavefunction. This approximate way of
treating light is called scalar wave optics, or simply wave optics.

When light waves propagate through and around objects whose
dimensions are much greater than the wavelength of the light, the
wave nature is not readily discerned and the behavior of light can be
adequately described by rays obeying a set of geometrical rules. This
model of light is called ray optics. From a mathematical
perspective, ray optics is the limit of wave optics when the
wavelength is infinitesimally small.

Thus, electromagnetic optics encompasses wave optics, which in
turn encompasses ray optics, as illustrated in Fig. 1.0-1. Ray optics
and wave optics are approximate theories that derive validity from



their successes in producing results that approximate those based
on the more rigorous electromagnetic theory.

Figure 1.0-1 The theory of quantum optics provides an explanation
for virtually all optical phenomena. The electromagnetic theory of
light (electromagnetic optics) provides the most complete treatment
of light within the confines of classical optics. Wave optics is a
scalar approximation of electromagnetic optics. Ray optics is the
limit of wave optics when the wavelength is very short.

Although electromagnetic optics provides the most complete
treatment of light within the confines of classical optics, certain
optical phenomena are characteristically quantum mechanical in
nature and cannot be explained classically. These nonclassical
phenomena are described by a quantum version of electromagnetic
theory known as quantum electrodynamics. For optical
phenomena, this theory is also referred to as quantum optics.

Historically, the theories of optics developed roughly in the
following order: (1) ray optics → (2) wave optics → (3)
electromagnetic optics → (4) quantum optics. These models are
progressively more complex and sophisticated, and were developed
successively to provide explanations for the outcomes of
increasingly subtle and precise optical experiments. The optimal
choice of a model is the simplest one that satisfactorily describes a



particular phenomenon, but it is sometimes difficult to know a
priori which model achieves this. Experience is often the best guide.

For pedagogical reasons, the initial chapters of this book follow the
historical order indicated above. Each model of light begins with a
set of postulates (provided without proof), from which a large body
of results are generated. The postulates of each model are shown to
arise as special cases of the next-higher-level model. In this chapter
we begin with ray optics.

This Chapter

Ray optics is the simplest theory of light. Light is described by rays
that travel in different optical media in accordance with a set of
geometrical rules. Ray optics is therefore also called geometrical
optics. Ray optics is an approximate theory. Although it adequately
describes most of our daily experiences with light, there are many
phenomena that ray optics cannot adequately construe (as amply
attested to by the remaining chapters of this book).

Ray optics is concerned with the locations and directions of light
rays. It is therefore useful in studying image formation — the
collection of rays from each point of an object and their redirection
by an optical component onto a corresponding point of an image.
Ray optics permits us to determine the conditions under which light
is guided within a given medium, such as a glass fiber. In isotropic
media, optical rays point in the direction of the flow of optical
energy. Ray bundles can be constructed in which the density of rays
is proportional to the density of light energy. When light is
generated isotropically from a point source, for example, the energy
associated with the rays in a given cone is proportional to the solid
angle of the cone. Rays may be traced through an optical system to
determine the optical energy crossing a given area.

This chapter begins with a set of postulates from which we derive
the simple rules that govern the propagation of light rays through
optical media. In Sec. 1.2 these rules are applied to simple optical
components, such as mirrors and planar or spherical boundaries



between different optical media. Ray propagation in
inhomogeneous (graded-index) optical media is examined in Sec.
1.3. Graded-index optics is the basis of a technology that has become
an important part of modern optics.

Optical components are often centered about an optical axis, with
respect to which the rays travel at small inclinations. Such rays are
called paraxial rays and the assumption that the rays have this
property is the basis of paraxial optics. The change in the position
and inclination of a paraxial ray as it travels through an optical
system can be efficiently described by the use of a 2 × 2-matrix
algebra. Section 1.4 is devoted to this algebraic tool, which is known
as matrix optics.

1.1 POSTULATES OF RAY OPTICS



(1.1-1)

(1.1-2)

Postulates of Ray Optics

Light travels in the form of rays. The rays are emitted by
light sources and can be observed when they reach an
optical detector.

An optical medium is characterized by a quantity n ≥ 1,
called the refractive index. The refractive index n = co/c
where co is the speed of light in free space and c is the speed
of light in the medium. Therefore, the time taken by light to
travel a distance d is d/c = nd/co. It is proportional to the
product nd, which is known as the optical pathlength.

In an inhomogeneous medium the refractive index n(r) is a
function of the position r = (x, y, z). The optical pathlength
along a given path between two points A and B is therefore

where ds is the differential element of length along the
path. The time taken by light to travel from A to B is
proportional to the optical pathlength.

Fermat’s Principle. Optical rays traveling between two
points, A and B, follow a path such that the time of travel (or
the optical pathlength) between the two points is an
extremum relative to neighboring paths. This is expressed
mathematically as

where the symbol δ, which is read “the variation of,”
signifies that the optical pathlength is either minimized or



maximized, or is a point of inflection. It is, however, usually
a minimum, in which case:

Light rays travel along the path of least time.

Sometimes the minimum time is shared by more than one path,
which are then all followed simultaneously by the rays. An
example in which the pathlength is maximized is provided in
Prob. 1.1-2.

In this chapter we use the postulates of ray optics to determine the
rules governing the propagation of light rays, their reflection and
refraction at the boundaries between different media, and their
transmission through various optical components. A wealth of
results applicable to numerous optical systems are obtained without
the need for any other assumptions or rules regarding the nature of
light.

Propagation in a Homogeneous Medium

In a homogeneous medium the refractive index is the same
everywhere, and so is the speed of light. The path of minimum time,
required by Fermat’s principle, is therefore also the path of
minimum distance. The principle of the path of minimum distance
is known as Hero’s principle. The path of minimum distance
between two points is a straight line so that in a homogeneous
medium, light rays travel in straight lines (Fig. 1.1-1).

Figure 1.1-1 Light rays travel in straight lines. Shadows are perfect
projections of stops.



Reflection from a Mirror

Mirrors are made of certain highly polished metallic surfaces, or
metallic or dielectric films deposited on a substrate such as glass.
Light reflects from mirrors in accordance with the law of reflection:

The reflected ray lies in the plane of incidence; the angle of
reflection equals the angle of incidence.

The plane of incidence is the plane formed by the incident ray and
the normal to the mirror at the point of incidence. The angles of
incidence and reflection, θ and θ', are defined in Fig. 1.1-2(a). To
prove the law of reflection we simply use Hero’s principle. Examine
a ray that travels from point A to point C after reflection from the
planar mirror in Fig. 1.1-2(b). According to Hero’s principle, for a
mirror of infinitesimal thickness, the distance  +  must be
minimum. If C″ is a mirror image of C, then  = , so that  + 

 must be a minimum. This occurs when  is a straight line,
i.e., when B coincides with B' so that θ = θ′.

Figure 1.1-2 (a) Reflection from the surface of a curved mirror. (b)
Geometrical construction to prove the law of reflection.

Reflection and Refraction at the Boundary Between Two Media

At the boundary between two media of refractive indices n1 and n2
an incident ray is split into two — a reflected ray and a refracted (or



(1.1-3)

transmitted) ray (Fig. 1.1-3). The reflected ray obeys the law of
reflection. The refracted ray obeys the law of refraction:

The refracted ray lies in the plane of incidence; the angle of
refraction θ2 is related to the angle of incidence θ1 by Snell’s law,

Snell’s Law

The proportion in which the light is reflected and refracted is not
described by ray optics.

Figure 1.1-3 Reflection and refraction at the boundary between
two media.



EXERCISE 1.1-1

Proof of Snell’s Law. The proof of Snell’s law is an exercise in
the application of Fermat’s principle. Referring to Fig. 1.1-4, we
seek to minimize the optical pathlength n1  + n2  between
points A and C. We therefore have the following optimization
problem: Minimize n1d1 sec θ1 + n2d2 sec θ2 with respect to the
angles θ1 and θ2, subject to the condition d1 tan θ1 + d2 tan θ2 =
d. Show that the solution of this constrained minimization
problem yields Snell’s law.

Figure 1.1-4 Construction to prove Snell’s law.

The three simple rules — propagation in straight lines and the laws
of reflection and refraction — are applied in Sec. 1.2 to several
geometrical configurations of mirrors and transparent optical
components, without further recourse to Fermat’s principle.

1.2 SIMPLE OPTICAL COMPONENTS
A. Mirrors
Planar Mirrors

A planar mirror reflects the rays originating from a point P1 such
that the reflected rays appear to originate from a point P2 behind the
mirror, called the image (Fig. 1.2-1).



Paraboloidal Mirrors

The surface of a paraboloidal mirror is a reflective paraboloid of
revolution. It has the useful property of focusing all incident rays
parallel to its axis to a single point, called the focus or focal point.
The distance  ≡ f defined in Fig. 1.2-2 is known as the focal
length. Paraboloidal mirrors are often used as light-collecting
elements in telescopes. They are also used to render parallel the
rays from a point source of light, such as a flashlight bulb or a light-
emitting diode, located at the focus. When used in this manner, the
device is known as a collimator.

Figure 1.2-1 Reflection of light from a planar mirror.

Figure 1.2-2 Focusing of light by a parabo-loidal mirror.

Elliptical Mirrors

An elliptical mirror reflects all the rays emitted from one of its two
foci, e.g., P1, and images them onto the other focus, P2 (Fig. 1.2-3).



In accordance with Hero’s principle, the distances traveled by the
light from P1 to P2 along any of the paths are equal.

Figure 1.2-3 Reflection from an elliptical mirror.

Spherical Mirrors

A spherical mirror is easier to fabricate than a paraboloidal mirror
or an elliptical mirror. However, it has neither the focusing property
of the paraboloidal mirror nor the imaging property of the elliptical
mirror. As illustrated in Fig. 1.2-4, parallel rays meet the axis at
different points; their envelope (the dashed curve) is called the
caustic curve. Nevertheless, parallel rays close to the axis are
approximately focused onto a single point F at distance (−R)/2 from
the mirror center C. By convention, the radius of curvature R is
negative for concave mirrors and positive for convex mirrors.

Paraxial Rays Reflected from Spherical Mirrors

Rays that make small angles (such that sin θ ≈ θ) with the mirror’s
axis are called paraxial rays. In the paraxial approximation,
where only paraxial rays are considered, a spherical mirror has a
focusing property like that of the paraboloidal mirror and an
imaging property like that of the elliptical mirror. The body of rules
that results from this approximation forms paraxial optics, also
called first-order optics or Gaussian optics.



Figure 1.2-4 Reflection of parallel rays from a concave spherical
mirror.

Figure 1.2-5 A spherical mirror approxi-mates a paraboloidal
mirror for paraxial rays.

A spherical mirror of radius R therefore acts like a paraboloidal
mirror of focal length f = R/2. This is, in fact, plausible since at
points near the axis, a parabola can be approximated by a circle with
radius equal to the parabola’s radius of curvature (Fig. 1.2-5).

All paraxial rays originating from each point on the axis of a
spherical mirror are reflected and focused onto a single
corresponding point on the axis. This can be seen (Fig. 1.2-6) by
examining a ray emitted at an angle θ1 from a point P1 at a distance
z1 away from a concave mirror of radius R, and reflecting at angle
(−θ2) to meet the axis at a point P2 that is a distance z2 away from



(1.2-1)

(1.2-2)

the mirror. The angle θ2 is negative since the ray is traveling
downward. Since the three angles of a triangle add to 180°, we have
θ1 = θ0 − θ and (−θ2)= θ0 + θ, so that (−θ2)+ θ1 = 2θ0. If θ0 is
sufficiently small, the approximation tan θ0 ≈ θ0 may be used, so
that θ0 ≈ y/(−R), from which

where y is the height of the point at which the reflection occurs.
Recall that R is negative since the mirror is concave. Similarly, if θ1
and θ2 are small, θ1 ≈ y/z1 and (−θ2)= y/z2, so that (1.2-1) yields
y/z1 + y/z2 ≈ 2y/(−R), whereupon

Figure 1.2-6 Reflection of paraxial rays from a concave spherical
mirror of radius R< 0.

This relation holds regardless of y (i.e., regardless of θ1) as long as
the approximation is valid. This means that all paraxial rays
originating from point P1 arrive at P2. The distances z1 and z2 are
measured in a coordinate system in which the z axis points to the
left. Points of negative z therefore lie to the right of the mirror.

According to (1.2-2), rays that are emitted from a point very far out
on the z axis (z1 = ∞) are focused to a point F at a distance z2 =



(1.2-3) Focal Length Spherical Mirror

(1.2-4) Imaging Equation (Paraxial Rays)

(−R)/2. This means that within the paraxial approximation, all rays
coming from infinity (parallel to the axis of the mirror) are focused
to a point at a distance f from the mirror, which is known as its focal
length:

Equation (1.2-2) is usually written in the form

which is known as the imaging equation. Both the incident and the
reflected rays must be paraxial for this Equation to hold.



EXERCISE 1.2-1

Image Formation by a Spherical Mirror. Show that,
within the paraxial approximation, rays originating from a point
P1 =(y1,z1) are reflected to a point P2 =(y2,z2), where z1 and z2
satisfy (1.2-4) and y2 = −y1z2/z1 (Fig. 1.2-7). This means that rays
from each point in the plane z = z1 meet at a single
corresponding point in the plane z = z2, so that the mirror acts as
an image-formation system with magnification −z2/z1. Negative
magnification means that the image is inverted.

Figure 1.2-7 Image formation by a spherical mirror. Four
particular rays are illustrated.

B. Planar Boundaries
The relation between the angles of refraction and incidence, θ2 and
θ1, at a planar boundary between two media of refractive indices n1
and n2 is governed by Snell’s law (1.1-3). This relation is plotted in
Fig. 1.2-8 for two cases:

External Refraction (n1 < n2). When the ray is incident from
the medium of smaller refractive index, θ2 <θ1 and the refracted
ray bends away from the boundary.

Internal Refraction (n1 >n2). If the incident ray is in a medium
of higher refractive index, θ2 >θ1 and the refracted ray bends



(1.2-5) Critical Angle

toward the boundary.

Figure 1.2-8 Relation between the angles of refraction and
incidence.

The refracted rays bend in such a way as to minimize the optical
pathlength, i.e., to increase the pathlength in the lower-index
medium at the expense of pathlength in the higher-index medium.
In both cases, when the angles are small (i.e., the rays are paraxial),
the relation between θ2 and θ1 is approximately linear, n1θ1 ≈ n2θ2,
or θ2 ≈ (n1/n2)θ1.

Total Internal Reflection

For internal refraction (n1 >n2), the angle of refraction is greater
than the angle of incidence, θ2 >θ1, so that as θ1 increases, θ2
reaches 90° when θ1 = θc, the critical angle (see Fig. 1.2-8). This
occurs when n1 sin θc = n2 sin(π/2) = n2, so that

When θ1 >θc, Snell’s law (1.1-3) cannot be satisfied and refraction
does not occur. The incident ray is then totally reflected as if the
surface were a perfect mirror [Fig. 1.2 9(a)]. This phenomenon,
called total internal reflection (TIR), is the basis of many
optical devices and systems, such as reflecting prisms [Fig. 1.2-



(1.2-6)

(1.2-7)

9(b)], light-emitting diode collimators (Fig. 1.2-14), and optical
fibers (Sec. 1.2D). Electromagnetic optics (Fresnel’s equations in
Chapter 6) reveals that all of the energy is carried by the reflected
light so that the process of total internal reflection is highly
efficient.

Figure 1.2-9 (a) Total internal reflection at a planar boundary. (b)
The reflecting prism. If n1 >  and n2 = 1 (air), then θc < 45°; since
n2 ≈ 1.5 > 2 for glass, and θ1 = 45°, the ray is totally reflected. (c)
Rays are guided by total internal reflection from the internal surface
of an optical fiber.

Prisms

A prism of apex angle α and refractive index n (Fig. 1.2-10) deflects a
ray incident at an angle θ by an angle

This Equation is arrived at by using Snell’s law twice, at the two
refracting surfaces of the prism. When α is very small (thin prism)
and θ is also very small (paraxial approximation), (1.2-6) may be
approximated by



Figure 1.2-10 (a) Ray deflection by a prism. (b) Graph of (1.2-6)
for the deflection angle θd as a function of the angle of incidence θ,
for different apex angles α and n = 1.5. When both α and θ are small
the angle of deflection θd ≈ (n − 1)α, which is approximately
independent of θ, as is evident for the α = 10° curve. When θ = 0°
and α = 45°, total internal reflection occurs, as illustrated in Fig. 1.2-
9(b).

Beamsplitters

The beamsplitter is an optical component that splits an incident ray
into a reflected ray and a transmitted ray, as illustrated in Fig. 1.2-11.
The relative proportions of light transmitted and reflected are
established by Fresnel’s equations in electromagnetic optics
(Chapter 6). Beamsplitters are also frequently used to combine two
light rays into one [Fig. 1.2-11(c)]. Beamsplitters are usually
constructed by depositing a thin semitransparent metallic or
dielectric film on a glass substrate. A thin bare glass plate, such as a
microscope slide, can also serve as a beamsplitter although the
fraction of light reflected is small. Transparent plastic materials are
often used in place of glass.



Figure 1.2-11 Beamsplitters and beam combiners.

Beam Directors

Simple optical components can be used to direct rays in particular
directions. The devices illustrated in Fig. 1.2-12 redirect incident
rays into rays tilted at fixed angles with respect to each other. The
biprism depicted in Fig. 1.2-12(a) is the juxtaposition of a prism
and an identical inverted prism. The Fresnel biprism portrayed in
Fig. 1.2-12(b) is formed from rows of adjacently placed tiny prisms.
This device is equivalent to a biprism but is thinner and lighter. The
cone-shaped optic depicted in Fig. 1.2-12(c), known as an axicon,
converts incident rays into a collection of circularly symmetric rays
directed toward its central axis in the form of a cone. It has the
same cross section as the biprism, namely an isosceles triangle.

Figure 1.2-12 (a) Biprism. (b) Fresnel biprism. (c) Plano-convex
axicon.

C. Spherical Boundaries and Lenses
We now examine the refraction of rays from a spherical boundary of
radius R between two media of refractive indices n1 and n2. By
convention, R is positive for a convex boundary and negative for a
concave boundary. The results are obtained by applying Snell’s law,



(1.2-8)

which relates the angles of incidence and refraction relative to the
normal to the surface, defined by the radius vector from the center
C. These angles are to be distinguished from the angles θ1 and θ2,
which are defined relative to the z axis. Considering only paraxial
rays making small angles with the axis of the system so that sin θ ≈
θ and tan θ ≈ θ, the following properties may be shown to hold:

A ray making an angle θ1 with the z axis and meeting the
boundary at a point of height y where it makes an angle θ0 with
the radius vector [see Fig. 1.2-13(a)] changes direction at the
boundary so that the refracted ray makes an angle θ2 with the z
axis and an angle θ3 with the radius vector. With the help of
Exercise 1.2-2, we obtain

Figure 1.2-13 Refraction at a convex spherical boundary (R> 0).

All paraxial rays originating from a point P1 =(y1,z1) in the z =
z1 plane meet at a point P2 =(y2,z2) in the z = z2 plane (see
Exercise 1.2-2), where



(1.2-9)

(1.2-10)

and

The z = z1 and z = z2 planes are said to be conjugate planes.
Every point in the first plane has a corresponding point (image)
in the second with magnification −(n1/n2)(z2/z1). Again,
negative magnification means that the image is inverted. By
convention P1 is measured in a coordinate system pointing to
the left and P2 in a coordinate system pointing to the right (e.g.,
if P2 lies to the left of the boundary, then z2 would be negative).

The similarities between these properties and those of the spherical
mirror are evident. It is important to remember that the image
formation properties described above are approximate. They hold
only for paraxial rays. Rays of large angles do not obey these
paraxial laws; the deviation results in image distortion called
aberration.



EXERCISE 1.2-2

Image Formation. Derive (1.2-8). Prove that paraxial rays
originating from P1 pass through P2 when (1.2-9) and (1.2-10) are
satisfied.

EXERCISE 1.2-3

Aberration-Free Imaging Surface. Determine the Equation
of a convex aspherical (nonspherical) surface between media of
refractive indices n1 and n2 such that all rays (not necessarily
paraxial) from an axial point P1 at a distance z1 to the left of the
surface are imaged onto an axial point P2 at a distance z2 to the
right of the surface [Fig. 1.2-13(a)]. Hint: In accordance with
Fermat’s principle the optical pathlengths between the two
points must be equal for all paths.

 



EXAMPLE 1.2-1.

Collimator for LED Light. Light emitted by an LED (Sec.
18.1) is often collimated by making use of an optic whose surface
takes the form of a paraboloid of revolution (Fig. 1.2-14). The
LED is placed at the focus of the paraboloid by inserting its
hemispherical dome (darker blue) into a recess formed in the
narrow end of the optic. Rays emanating from the sides of the
LED dome impinge on the paraboloidal boundary at angles of
incidence greater than the critical angle and are thus reflected
out of the device via total internal reflection. Rays emanating
from the central portion of the LED dome are refracted out of
the device at the spherical boundary. Optical systems that
combine reflection and refraction are known as catadioptric
systems.

Figure 1.2-14 Cross section of a collimator for LED light. LED
collimators come in many configurations but most make use of
both total internal reflection and refraction to provide rays of
light that are approximately parallel at the exit. Such devices are
often fabricated from molded acrylic or polycarbonate plastic,
which have refractive indices similar to that of glass (n ≈ 1.5).
The diameter of the narrow end of the optic illustrated is ≈ 1 cm.

Spherical Lenses

A spherical lens is bounded by two spherical surfaces. It is,
therefore, defined completely by the radii R1 and R2 of its two



(1.2-11)

(1.2-12) Focal Length Thin Spherical Lens

surfaces, its thickness Δ, and the refractive index n of the material
(Fig. 1.2-15). A glass lens in air can be regarded as a combination of
two spherical boundaries, air-to-glass and glass-to-air.

Figure 1.2-15 A biconvex spherical lens.

A ray crossing the first surface at height y and angle θ1 with the z
axis [Fig. 1.2-16(a)] is traced by applying (1.2-8) at the first surface
to obtain the inclination angle θ of the refracted ray, which we
extend until it meets the second surface. We then use (1.2-8) once
more with θ replacing θ1 to obtain the inclination angle θ2 of the ray
after refraction from the second surface. The results are in general
complex. When the lens is thin, however, it can be assumed that the
incident ray emerges from the lens at about the same height y at
which it enters. Under this assumption, the following relations
obtain:

The angles of the refracted and incident rays are related by (see
Exercise 1.2-4)

where f, called the focal length, is given by



(1.2-13) Imaging Equation

(1.2-14) Magnification

Figure 1.2-16 (a) Ray bending by a thin lens. (b) Image formation
by a thin lens.

All rays originating from a point P1 =(y1,z1) meet at a point P2 =
(y2,z2) [Fig. 1.2-16(b)] (see Exercise 1.2-4), where

and

These results are identical to those for the spherical mirror [see
(1.2-4) and Exercise 1.2-1].

These equations indicate that each point in the z = z1 plane is
imaged onto a corresponding point in the z = z2 plane with the
magnification factor −z2/z1. The magnification is unity when z1 = z2
= 2f. The focal length f of a lens therefore completely determines its
effect on paraxial rays. As indicated earlier, P1 and P2 are measured
in coordinate systems pointing to the left and right, respectively,
and the radii of curvatures R1 and R2 are positive for convex
surfaces and negative for concave surfaces. For the biconvex lens



shown in Fig. 1.2-15, R1 is positive and R2 is negative, so that the
two terms of (1.2-12) add and provide a positive f.

EXERCISE 1.2-4

Proof of the Thin Lens Formulas. Using (1.2-8), along with
the definition of the focal length given in (1.2-12), prove (1.2-11)
and (1.2-13).

It is emphasized once again that the foregoing relations hold only
for paraxial rays. The presence of nonparaxial rays results in
aberrations, as illustrated in Fig. 1.2-17.

Figure 1.2-17 Nonparaxial rays do not meet at the paraxial focus.
The dashed envelope of the refracted rays is known as the caustic
curve.

Convex and Concave Lenses

Lenses are transparent optical devices that bend rays in a manner
prescribed by the shapes of their surfaces. Most common lenses,
such as the biconvex lens considered above, are spherical lenses.
Lenses that consist of a single piece of material (glass and plastic
are favored in the visible) are called simple lenses, while lenses that
comprise multiple simple lenses, usually along a common axis, are
known as compound lenses.

The surface of a lens can be convex or concave, depending on
whether it projects out of, or recedes into the body of the lens,
respectively, or it can be planar, indicating that it has a flat surface.



A cylindrical lens is curved in only one direction; it thus has a
focal length f for rays in the y–z plane, and no focusing power for
rays in the x–z plane. A lens in which one surface is convex and the
other concave is called a meniscus lens (these are often used for
spectacles). A lens in which one or both surfaces have a shape that
is neither spherical nor cylindrical is known as an aspheric lens.

Several different types of lenses are illustrated in Fig. 1.2-18.
Biconvex and plano-convex lenses result in the convergence of rays
and are useful for image formation, as depicted in Fig. 1.2-16.
Biconcave and plano-concave lenses lead to the divergence of rays
and are used in projection and focal-length expansion. A Fresnel
lens is constructed by removing the nonrefracting portions of a
conventional lens. Hence, the Fresnel-lens equivalent [Fig. 1.2-
18(e)] of a plano-convex lens [Fig. 1.2-18(b)] is a flattened set of
concentric surfaces with identical curvature at all locations on the
surface (except at the stepwise discontinuities). The Fresnel design
allows for the construction of thin, light, and inexpensive plastic
lenses with sizes that range from meters to micrometers and short
focal lengths. Fresnel lenses can be converging, diverging, or
cylindrical.

Figure 1.2-18 Lenses: (a) Biconvex; (b) Plano-convex; (c) Concave;
(d) Planoconcave. (e) Fresnel-lens counterpart of the planoconvex
lens displayed in (b); the curvatures are the same everywhere on the
two surfaces.

D. Light Guides
Light may be guided from one location to another by use of a set of
lenses or mirrors, as illustrated schematically in Fig. 1.2-19. Since



refractive elements (such as lenses) are usually partially reflective
and since mirrors are partially absorptive, the cumulative loss of
optical power will be significant when the number of guiding
elements is large. Components in which these effects are minimized
can be fabricated (e.g., antireflection-coated lenses), but the system
is generally cumbersome and costly.

Figure 1.2-19 Guiding light: (a) lenses; (b) mirrors; (c) total
internal reflection.

An ideal mechanism for guiding light is that of total internal
reflection at the boundary between two media of different refractive
indices. Rays are reflected repeatedly without undergoing refraction.
Glass fibers of high chemical purity are used to guide light for tens
of kilometers with relatively low loss of optical power.

An optical fiber is a light conduit made of two concentric glass (or
plastic) cylinders (Fig. 1.2-20). The inner, called the core, has a
refractive index n1, and the outer, called the cladding, has a slightly
smaller refractive index, n2 <n1. Light rays traveling in the core are
totally reflected from the cladding if their angle of incidence is
greater than the critical angle, >θc = sin−1(n2/n1). The rays making
an angle θ = 90° −  with the optical axis are therefore confined in
the fiber core if θ< c, where c = 90° − θc = cos−1(n2/n1). Optical
fibers are used in optical communication systems (see Chapters 10



and 25). Some important properties of optical fibers are derived in
Exercise 1.2-5.

Figure 1.2-20 The optical fiber. Light rays are guided by multiple
total internal reflections. Here θ represents the angle measured
from the axis of the optical fiber so that its complement  = 90° − θ
is the angle of incidence at the dielectric interface.
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EXERCISE 1.2-5

Numerical Aperture and Angle of Acceptance of an
Optical Fiber. An optical fiber is illuminated by light from a
source (e.g., a light-emitting diode, LED). The refractive indices
of the core and cladding of the fiber are n1 and n2, respectively,
and the refractive index of air is 1 (see Fig. 1.2-21). Show that the
half-angle θa of the cone of rays accepted by the fiber
(transmitted through the fiber without undergoing refraction at
the cladding) is given by

The angle θa is called the acceptance angle and the parameter
NA ≡ sin θa is known as the numerical aperture of the fiber.
Calculate the numerical aperture and acceptance angle for a
silica-glass fiber with n1 = 1.475 and n2 = 1.460. Silica glass, also
known as fused silica, is amorphous silicon dioxide (SiO2). It is
widely used because of its excellent optical and mechanical
properties. Moreover, its refractive index can be readily modified
by doping (e.g., with GeO2).

Figure 1.2-21 Acceptance angle of an optical fiber.

Trapping of Light in Media of High Refractive Index

It is often difficult for light originating inside a medium of large
refractive index to be extracted into air, especially if the surfaces of



the medium are parallel. This occurs since certain rays undergo
multiple total internal reflections without ever refracting into air.
The principle is illustrated in Exercise 1.2-6.

EXERCISE 1.2-6

Light Trapped in a Light-Emitting Diode.

a. (a) Assume that light is generated in all directions inside a
material of refractive index n cut in the shape of a
parallelepiped (Fig. 1.2-22). The material is surrounded by
air with unity refractive index. This process occurs in light-
emitting diodes (see Sec. 18.1B). What is the angle of the
cone of light rays (inside the material) that will emerge
from each face? What happens to the other rays? What is
the numerical value of this angle for GaAs (n = 3.6)?

Figure 1.2-22 Trapping of light in a parallelepiped of high
refractive index.

b. Assume that when light is generated isotropically the
amount of optical power associated with the rays in a given
cone is proportional to the solid angle of the cone. Show
that the ratio of the optical power that is extracted from the
material to the total generated optical power is 
, provided that . What is the numerical value of this
ratio for GaAs?
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(1.3-3) Ray Equation

1.3 GRADED-INDEX OPTICS
A graded-index (GRIN) material has a refractive index that varies
with position in accordance with a continuous function n(r). These
materials are often fabricated by adding impurities (dopants) of
controlled concentrations. In a GRIN medium the optical rays
follow curved trajectories, instead of straight lines. By appropriate
choice of n(r), a GRIN plate can have the same effect on light rays
as a conventional optical component, such as a prism or lens.

A. The Ray Equation
To determine the trajectories of light rays in an inhomogeneous
medium with refractive index n(r), we use Fermat’s principle,

where ds is a differential length along the ray trajectory between A
and B. If the trajectory is described by the function x(s), y(s), and
z(s), where s is the length of the trajectory (Fig. 1.3-1), then using
the calculus of variations it can be shown that1 x(s), y(s), and z(s)
must satisfy three partial differential equations,

By defining the vector r(s), whose components are x(s), y(s), and
z(s), (1.3-2) may be written in the compact vector form

where  n, the gradient of n, is a vector with Cartesian components
∂n/∂x, ∂n/∂y, and ∂n/∂z. Equation (1.3-3) is known as the ray
equation.



(1.3-4) Paraxial Ray Equations

Figure 1.3-1 The ray trajectory is described parametrically by three
functions x(s), y(s), and z(s), or by two functions x(z) and y(z).

One approach to solving the ray Equation is to describe the
trajectory by two functions x(z) and y(z), write 

, and substitute in (1.3-3) to obtain two
partial differential equations for x(z) and y(z). The algebra is
generally not trivial, but it simplifies considerably when the paraxial
approximation is used.

The Paraxial Ray Equation

In the paraxial approximation, the trajectory is almost parallel to
the z axis, so that ds ≈ dz (Fig. 1.3-2). The ray equations (1.3-2) then
simplify to

Given n = n(x, y, z), these two partial differential equations may be
solved for the trajectory x(z) and y(z).

In the limiting case of a homogeneous medium for which n is
independent of x, y, z, (1.3-4) gives d2x/dz2 = 0 and d2y/dz2 = 0,
from which it follows that x and y are linear functions of z, so that
the trajectories are straight lines. More interesting cases will be
examined subsequently.
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Figure 1.3-2 Trajectory of a paraxial ray in a graded-index medium.

B. Graded-Index Optical Components
Graded-Index Slab

Consider a slab of material whose refractive index n = n(y) is
uniform in the x and z directions but varies continuously in the y
direction (Fig. 1.3-3). The trajectories of paraxial rays in the y–z
plane are described by the paraxial ray equation

from which

Given n(y) and initial conditions (y and dy/dz at z = 0), (1.3-6) can
be solved for the function y(z), which describes the ray trajectories.

Figure 1.3-3 Refraction in a graded-index slab.

 Derivation of the Paraxial Ray Equation in a Graded-
Index Slab Using Snell’s Law. Equation (1.3-6) may also be
derived by the direct use of Snell’s law (Fig. 1.3-3). Let θ(y) ≈ dy/dz
be the angle that the ray makes with the z axis at the position (y, z).



(1.3-7)

(1.3-8)

After traveling through a layer of thickness Δy the ray changes its
angle to θ(y +Δy). The two angles are related by Snell’s law where θ,
as defined in Fig. 1.3-3, is the complement of the angle of incidence
(refraction):

where we have applied the expansion f(y +Δy)= f(y)+(df/dy)Δy to
the functions f(y)= n(y) and f(y) = cos θ(y). In the limit Δy → 0,
after eliminating the term in (Δy)2, we obtain the differential
equation

For paraxial rays θ is very small so that tan θ ≈ θ. Substituting θ =
dy/dz in (1.3-8), we obtain (1.3-6). •
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EXAMPLE 1.3-1.

Slab with Parabolic Index Profile. An important particular
distribution for the graded refractive index is

This is a symmetric function of y that has its maximum value at
y = 0 (Fig. 1.3-4). A glass slab with this profile is known by the
trade name SELFOC. Usually, α is chosen to be sufficiently small
so that α2y2 « 1 for all y of interest. Under this condition, 

; i.e., n(y) is a parabolic distribution.
Also, because n(y)−n0 « n0, the fractional change of the
refractive index is very small. Taking the derivative of (1.3-9), the
right-hand side of (1.3-6) is (1/n)dn/dy = −(n0/n)2α2y ≈−α2y, so
that (1.3-6) becomes

The solutions of this Equation are harmonic functions with
period 2π/α. Assuming an initial position y(0) = y0 and an initial
slope dy/dz = θ0 at z = 0 inside the GRIN medium,

from which the slope of the trajectory is

The ray oscillates about the center of the slab with a period
(distance) 2π/α known as the pitch, as illustrated in Fig. 1.3-4.



Figure 1.3-4 Trajectory of a ray in a GRIN slab of parabolic
index profile (SELFOC).

The maximum excursion of the ray is  and the
maximum angle is θ max = αymax. The validity of this
approximate analysis is ensured if θmax « 1. If 2ymax is smaller
than the thickness of the slab, the ray remains confined and the
slab serves as a light guide. Figure 1.3-5 shows the trajectories of
a number of rays transmitted through a SELFOC slab. Note that
all rays have the same pitch. This GRIN slab may be used as a
lens, as demonstrated in Exercise 1.3-1.

Figure 1.3-5 Trajectories of rays from an external point source
in a SELFOC slab.
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EXERCISE 1.3-1

The GRIN Slab as a Lens. Show that a SELFOC slab of length
d < π/2α and refractive index given by (1.3-9) acts as a
cylindrical lens (a lens with focusing power in the y–z plane) of
focal length

Show that the principal point (defined in Fig. 1.3-6) lies at a
distance from the slab edge  ≈ (1/n0α) tan(αd/2). Sketch the
ray trajectories in the special cases d = π/α and π/2α.

Figure 1.3-6 The SELFOC slab used as a lens; F is the focal
point and H is the principal point.

Graded-Index Fibers

A graded-index fiber is a glass cylinder with a refractive index n that
varies as a function of the radial distance from its axis. In the
paraxial approximation, the ray trajectories are governed by the
paraxial ray equations (1.3-4). Consider, for example, the
distribution

Substituting (1.3-14) into (1.3-4) and assuming that α2(x+ y2) « 1 for
all x and y of interest, we obtain
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(1.3-16)

(1.3-17)

Both x and y are therefore harmonic functions of z with period 2π/
α. The initial positions (x0,y0) and angles (θx0 = dx/dz and θy0 =
dy/dz) at z = 0 determine the amplitudes and phases of these
harmonic functions. Because of the circular symmetry, there is no
loss of generality in choosing x0 = 0. The solution of (1.3-15) is then

If θx0 = 0, i.e., the incident ray lies in a meridional plane (a plane
passing through the axis of the cylinder, in this case the y–z plane),
the ray continues to lie in that plane following a sinusoidal
trajectory similar to that in the GRIN slab [Fig. 1.3-7(a)].

On the other hand, if θy0 = 0, and θx0 = αy0, then

Figure 1.3-7 (a) Meridional and (b) helical rays in a graded-index
fiber with parabolic index profile.



so that the ray follows a helical trajectory lying on the surface of a
cylinder of radius y0 [Fig. 1.3-7(b)]. In both cases the ray remains
confined within the fiber, so that the fiber serves as a light guide.
Other helical patterns are generated with different incident rays.

Graded-index fibers and their use in optical fiber communications
are discussed in Chapters 10 and 25.
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EXERCISE 1.3-2

Numerical Aperture of the Graded-Index Fiber. Consider
a graded-index fiber with the index profile provided in (1.3-14)
and radius a. A ray is incident from air into the fiber at its center,
which then makes an angle θ0 with the fiber axis in the medium
(see Fig. 1.3-8). Show, in the paraxial approximation, that the
numerical aperture is

where θa is the maximum acceptance angle for which the ray
trajectory is confined within the fiber. Compare this to the
numerical aperture of a step-index fiber such as the one
discussed in Exercise 1.2-5. To make the comparison fair, take
the refractive indices of the core and cladding of the step-index √
α2 fiber to be , respectively.

Figure 1.3-8 Acceptance angle of a graded-index optical fiber.

*C. The Eikonal Equation
The ray trajectories are often characterized by the surfaces to which
they are normal. Let S(r) be a scalar function such that its equilevel
surfaces, S(r)= constant, are everywhere normal to the rays (Fig.
1.3-9). If S(r) is known, the ray trajectories can readily be
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constructed since the normal to the equilevel surfaces at a position
r is in the direction of the gradient vector ▽S(r). The function S(r),
called the eikonal, is akin to the potential function V (r) in
electrostatics; the role of the optical rays is played by the lines of
electric field E = −▽V.

Figure 1.3-9 Ray trajectories are normal to the surfaces of
constant S(r).

To satisfy Fermat’s principle (which is the main postulate of ray
optics) the eikonal S(r) must satisfy a partial differential Equation
known as the eikonal equation,

which is usually written in the vector form

where |▽S2| = ▽S ·▽S. The proof of the eikonal Equation from
Fermat’s principle is a mathematical exercise that lies beyond the
scope of this book.2 Conversely, Fermat’s principle (and the ray
equation) can be shown to follow from the eikonal equation.
Therefore, either Fermat’s principle or the eikonal Equation may be
regarded as the principal postulate of ray optics.
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Integrating the eikonal Equation (1.3-20) along a ray trajectory
between points A and B gives

This means that the difference S(rB)−S(rA) represents the optical
pathlength between A and B. In the electrostatics analogy, the
optical pathlength plays the role of the potential difference.

To determine the ray trajectories in an inhomogeneous medium of
refractive index n(r), we can either solve the ray Equation (1.3-3), as
we have done earlier, or solve the eikonal Equation for S(r), from
which we calculate the gradient ▽S.

If the medium is homogeneous, i.e., n(r) is constant, the magnitude
of ▽S is constant, so that the wavefront normals (rays) must be
straight lines. The surfaces S(r)= constant may be parallel planes or
concentric spheres, as illustrated in Fig. 1.3-10.

Figure 1.3-10 Rays and surfaces of constant S(r) in a
homogeneous medium.

The eikonal Equation is revisited from the point-of-view of the
relation between ray optics and wave optics in Sec. 2.3.

1.4 MATRIX OPTICS



Matrix optics is a technique for tracing paraxial rays. The rays are
assumed to travel only within a single plane, so that the formalism
is applicable to systems with planar geometry and to meridional
rays in circularly symmetric systems.

A ray is described by its position and its angle with respect to the
optical axis. These variables are altered as the ray travels through
the system. In the paraxial approximation, the position and angle at
the input and output planes of an optical system are related by two
linear algebraic equations. As a result, the optical system is
described by a 2 × 2 matrix called the ray-transfer matrix.

The convenience of using matrix methods lies in the fact that the
ray-transfer matrix of a cascade of optical components (or systems)
is a product of the ray-transfer matrices of the individual
components (or systems). Matrix optics therefore provides a formal
mechanism for describing complex optical systems in the paraxial
approximation.

A. The Ray-Transfer Matrix
Consider a circularly symmetric optical system formed by a
succession of refracting and reflecting surfaces all centered about
the same axis (optical axis). The z axis lies along the optical axis and
points in the general direction in which the rays travel. Consider
rays in a plane containing the optical axes, say the y–z plane. We
proceed to trace a ray as it travels through the system, i.e., as it
crosses the transverse planes at different axial distances. A ray
crossing the transverse plane at z is completely characterized by the
coordinate of y of its crossing point and the angle θ (Fig. 1.4-1).

An optical system is a set of optical components placed between two
transverse planes at z1 and z2, referred to as the input and output
planes, respectively. The system is characterized completely by its
effect on an incoming ray of arbitrary position and direction (y1,θ1).
It steers the ray so that it has new position and direction (y2,θ2) at
the output plane (Fig. 1.4-2).
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Figure 1.4-1 A ray is characterized by its coordinate y and its angle
θ.

Figure 1.4-2 A ray enters an optical system at location z1 with
position y1 and angle θ1 and leaves at position y2 and angle θ2.

In the paraxial approximation, when all angles are sufficiently small
so that sin θ ≈ θ, the relation between (y2,θ2) and (y1,θ1) is linear
and can generally be written in the form

where A, B, C, and D are real numbers. Equations (1.4-1) and (1.4-2)
may be conveniently written in matrix form as



The matrix M, whose elements are A, B, C, and D, characterizes the
optical system completely since it permits (y2,θ2) to be determined
for any (y1,θ1). It is known as the ray-transfer matrix. As will be
seen in the examples provided in Sec. 1.4B, angles that turn out to
be negative point downward from the z axis in their direction of
travel. Radii that turn out to be negative indicate concave surfaces
whereas those that are positive indicate convex surfaces.

EXERCISE 1.4-1

Special Forms of the Ray-Transfer Matrix. Consider the
following situations in which one of the four elements of the
ray-transfer matrix vanishes:

a. Show that A = 0 represents a focusing system, in which all
rays entering the system at a particular angle, whatever
their position, leave at a single position.

b. Show that B = 0 represents an imaging system, in which all
rays entering the system at a particular position, whatever
their angle, leave at a single position.

c. What are the special features of a system for which C = 0 or
D = 0?

B. Matrices of Simple Optical Components
Free-Space Propagation

Since rays travel along straight lines in a medium of uniform
refractive index such as free space, a ray traversing a distance d is
altered in accordance with y2 = y1 + θ1d and θ2 = θ1. The ray-transfer
matrix is therefore
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Refraction at a Planar Boundary

At a planar boundary between two media of refractive indices n1 and
n2, the ray angle changes in accordance with Snell’s law n1 sin θ1 =
n2 sin θ2. In the paraxial approximation, n1θ1 ≈ n2θ2. The position of
the ray is not altered, y2 = y1. The ray-transfer matrix is

Refraction at a Spherical Boundary

The relation between θ1 and θ2 for paraxial rays refracted at a
spherical boundary between two media is provided in (1.2-8). The
ray height is not altered, y2 ≈ y1. The ray-transfer matrix is

Transmission Through a Thin Lens

The relation between θ1 and θ2 for paraxial rays transmitted through
a thin lens of focal length f is given in (1.2-11). Since the height
remains unchanged (y2 = y1), we have



(1.4-7)

(1.4-8)

(1.4-9)

Reflection from a Planar Mirror

Upon reflection from a planar mirror, the ray position is not altered,
y2 = y1. Adopting the convention that the z axis points in the general
direction of travel of the rays, i.e., toward the mirror for the incident
rays and away from it for the reflected rays, we conclude that θ2 =
θ1. The ray-transfer matrix is therefore the identity matrix

Reflection from a Spherical Mirror

Using (1.2-1), and the convention that the z axis follows the general
direction of the rays as they reflect from mirrors, we similarly
obtain

Note the similarity between the ray-transfer matrices of a spherical
mirror (1.4-9) and a thin lens (1.4-7). A mirror with radius of
curvature R bends rays in a manner that is identical to that of a thin
lens with focal length f = −R/2.

C. Matrices of Cascaded Optical Components



(1.4-10)

A cascade of N optical components or systems whose ray-transfer
matrices are M1, M2,..., MN is equivalent to a single optical system
of ray-transfer matrix

Note the order of matrix multiplication: The matrix of the system
that is crossed by the rays is first placed to the right, so that it
operates on the column matrix of the incident ray first. A sequence
of matrix multiplications is not, in general, commutative, although
it is associative.
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EXERCISE 1.4-2

A Set of Parallel Transparent Plates. Consider a set of N
parallel planar transparent plates of refractive indices n1,n2,...,nN
and thicknesses d1, d2,..., dN, placed in air (n = 1) normal to the z
axis. Using induction, show that the ray-transfer matrix is

Note that the order in which the plates are placed does not affect
the overall ray-transfer matrix. What is the ray-transfer matrix
of an inhomogeneous transparent plate of thickness d0 and
refractive index n(z)?

EXERCISE 1.4-3

A Gap Followed by a Thin Lens. Show that the ray-transfer
matrix of a distance d of free space followed by a lens of focal
length f is

EXERCISE 1.4-4

Imaging with a Thin Lens. Derive an expression for the ray-
transfer matrix of a system comprised of free space/thin
lens/free space, as shown in Fig. 1.4-3. Show that if the imaging
condition (1/d1 +1/d2 = 1/f) is satisfied, all rays originating from



a single point in the input plane reach the output plane at the
single point y2, regardless of their angles. Also show that if d2 =
f, all parallel incident rays are focused by the lens onto a single
point in the output plane.

Figure 1.4-3 Single-lens imaging system.

Imaging with an Arbitrary Paraxial Optical System

A paraxial system comprising an arbitrary set of cascaded optical
elements is characterized completely by the four elements A, B, C, D
of its ray-transfer matrix M. Alternatively, the system may be
characterized by the locations of four cardinal points: two focal
points that determine the transmission of rays between its input
and output planes. In accordance with (1.4-3), an incoming ray
parallel to the optical axis (θ1 = 0) at height y1 exits the system at
height y2 = Ay1 and angle θ2 = Cy1. This ray crosses the axis at a
point F called the back focal point, which is located a distance y2/
θ2 = A/C from the system’s back vertex V , as shown in Fig. 1.4-4(a).
The intersection of the extensions of the incoming and outgoing
rays defines the back principal point H, which lies at a distance f
= y1/θ2 = −1/C to the left of F , and is known as the back focal
length. The back principal point H is thus located at a distance h =
−1/C +A/C to the left of the back vertex V. Note that the locations of
the focal and principal points are independent of y1 as long as the
paraxial approximation is applicable.

Similarly, rays parallel to the axis but entering the system in the
opposite direction (from right to left) are focused to the front focal
point F′ and define the front principal point H′, which lies at a
distance h′ from the front vertex V′. The front focal point lies at a
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(1.4-14)

(1.4-15)

distance f to the left of H′, where f is the front focal length. These
distances may be expressed in terms of the elements of the inverse
ray-transfer matrix

via the relations −f′ = −1/C and −h′ = −1/C + A′ /C′. The
determinant of M, denoted det[M], is given by AD − BC .

In summary, the focal lengths and locations of the principal points
may be determined from the ABCD parameters by use of the
following relations:

Negative signs indicate directions opposite to those denoted by the
arrows in Fig. 1.4-4(a). The four distances may alternatively be
established by tracing two rays, parallel to the optical axis but
pointing in opposite directions, through the system. The ABCD
parameters may be determined from f, f′, h, and h′ by inverting (1.4-
14) and (1.4-15).
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Figure 1.4-4 (a) Paraxial system representing an arbitrary set of
cascaded optical elements. The designations F, V , and H represent
the focal, vertex, and principal points, respectively, whereas f and h
represent the focal length and distance from the principal point to
the vertex, respectively. Primed quantities refer to the input plane
while unprimed quantities refer to the output plane. (b) Imaging
with this system. The refractive indices of the media in which the
optical system is embedded are denoted n1 and n2, as shown.

The imaging condition is determined by considering the geometry
portrayed in Fig. 1.4-4(b). Since s2/f = f′ /s1, the imaging condition is
simply s1s2 = ff′, or equivalently (z1 − f′)(z2 − f)= ff′, which leads to

If the refractive indices of the media within which the system is
embedded are equal, then det[M]=1 and, in accordance with (1.4-
15), we have f = f. The imaging condition in (1.4-16) then reduces to
the familiar imaging Equation 1/z1 +1/z2 = 1/f [see (1.2-4)]; note,
however, that here the distances z1 and z2 are measured from the
principal points H and H, respectively.
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EXERCISE 1.4-5

Imaging with a Thick Lens. Consider a glass lens of
refractive index n, thickness d, and two spherical surfaces of
equal radii R. Determine the ray-transfer matrix of the lens
assuming that it is placed in air (unity refractive index). Show
that the back and front focal lengths are equal (f▽ = f) and that
the principal points are located at equal distances from the
vertices (h▽ = h), where

Demonstrate that the transfer matrix of the system between two
conjugate planes at distances z1 and z2 from the principal points
of the lens (i.e., at distances d1 = z1 − h▽ and d2 = z2 − h from
the vertices) that satisfies the imaging Equation yields B = 0,
indicating that it does indeed satisfy the imaging condition [see
Exercise 1.4-1(b)].

D. Periodic Optical Systems
A periodic optical system is a cascade of identical unit systems. An
example is a sequence of equally spaced identical relay lenses used
to guide light, as shown in Fig. 1.2-19(a). Another example is the
reflection of light between two mirrors that form an optical
resonator (see Sec. 11.2A); in that case, the ray repeatedly traverses
the same unit system (a round trip of reflections). Even a
homogeneous medium, such as a glass fiber, may be considered as a
periodic system if it is divided into contiguous identical segments of
equal length. We proceed to formulate a general theory of ray
propagation in periodic optical systems using matrix methods.
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(1.4-22)

(1.4-23)

(1.4-20)

(1.4-21)

Difference Equation for the Ray Position

A periodic system is composed of a cascade of identical unit systems
(stages), each with a ray-transfer matrix (A, B, C, D), as shown in
Fig. 1.4-5. A ray enters the system with initial position y0 and slope
θ0. To determine the position and slope (ym,θm) of the ray at the
exit of the mth stage, we apply the ABCD matrix m times,

We can also iteratively apply the relations

to determine (y1,θ1) from (y0,θ0), then (y2,θ2) from (y1,θ1), and so
on, using a software routine.

Figure 1.4-5 A cascade of identical optical systems.

It is of interest to derive equations that govern the dynamics of the
position ym, m = 0, 1,..., irrespective of the angle θm. This is
achieved by eliminating θm from (1.4-20) and (1.4-21). From (1.4-
20)

Replacing m with m +1 in (1.4-22) yields
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(1.4-26)

(1.4-27)

(1.4-28)

Substituting (1.4-22) and (1.4-23) into (1.4-21) gives

Recurrence Relation for Ray Position

where

and det[M] is the determinant of M.

Equation (1.4-24) is a linear difference Equation governing the ray
position ym. It can be solved iteratively by computing y2 from y0 and
y1, then y3 from y1 and y2, and so on. The quantity y1 may be
computed from y0 and θ0 by use of (1.4-20) with m = 0.

It is useful, however, to derive an explicit expression for ym by
solving the difference Equation (1.4-24). As with linear differential
equations, a solution satisfying a linear difference Equation and the
initial conditions is a unique solution. It is therefore appropriate to
make a judicious guess for the solution of (1.4-24). We use a trial
solution of the geometric form

where h is a constant. Substituting (1.4-27) into (1.4-24)
immediately shows that the trial solution is suitable provided that h
satisfies the quadratic algebraic equation

from which
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(1.4-30)

The results can be presented in a more compact form by defining
the variable

so that b = F cos φ, , and therefore h = F (cos φ ± J
sin φ)= F exp(±jφ), whereupon (1.4-27) becomes ym = y0Fm

exp(±jmφ).

A general solution may be constructed from the two solutions with
positive and negative signs by forming their linear combination. The
sum of the two exponential functions can always be written as a
harmonic (circular) function, so that

where ymax and φ0 are constants to be determined from the initial
conditions y0 and y1. In particular, setting m = 0 we obtain ymax =
y0/ sin φ0.

The parameter F is related to the determinant of the ray-transfer
matrix of the unit system by . It can be shown that
regardless of the unit system, det[M]= n1/n2, where n1 and n2 are
the refractive indices of the initial and final sections of the unit
system. This general result is easily verified for the ray-transfer
matrices of all the optical components considered in this section.
Since the determinant of a product of two matrices is the product of
their determinants, it follows that the relation det[M]= n1/n2 is
applicable to any cascade of these optical components. For example,
if det[M1]= n1/n2 and det[M2]= n2/n3, then det[M2M1]=(n2/n3)
(n1/n2)= n1/n3. In most applications the first and last stages are air
(n = 1) so that n1 = n2, which leads to det[M]=1 and F = 1. In that
case the solution for the ray position is



(1.4-32) Ray Position Periodic System

(1.4-33) Stability Condition

We shall henceforth assume that F = 1. The corresponding solution
for the ray angle is obtained by use of the relation θm =(ym+1 − A
ym)/B, which is derived from (1.4-20).

Condition for a Harmonic Trajectory

For ym to be a harmonic (instead of hyperbolic) function, φ = cos−1
b must be real. This requires that

If, instead, |b| > 1, φ is then imaginary and the solution is a
hyperbolic function (cosh or sinh), which increases without bound,
as illustrated in Fig. 1.4-6(a). A harmonic solution ensures that ym
is bounded for all m, with a maximum value of ymax. The bound |b|
≤ 1 therefore provides a condition of stability (boundedness) of the
ray trajectory.

Since ym and ym+1 are both harmonic functions, so too is the ray
angle corresponding to (1.4-32), by virtue of (1.4-22) and
trigonometric identities. Thus, θm = θmax sin(mφ + φ1), where the
constants θmax and φ1 are determined by the initial conditions. The
maximum angle θmax must be sufficiently small so that the paraxial
approximation, which underlies this analysis, is applicable.



Figure 1.4-6 Examples of trajectories in periodic optical systems:
(a) unstable trajectory (b> 1);(b) stable and periodic trajectory (φ =
6π/11; period = 11 stages); (c) stable but nonperiodic trajectory (φ =
1.5).

Condition for a Periodic Trajectory

The harmonic function (1.4-32) is periodic in m if it is possible to
find an integer s such that ym+s = ym for all m. The smallest integer
is the period. The ray then retraces its path after s stages. This
condition is satisfied if sφ = 2πq, where q is an integer. Thus, the
necessary and sufficient condition for a periodic trajectory is that
φ/2π is a rational number q/s. If φ = 6π/11, for example, then φ/2π
= 3/11 and the trajectory is periodic with period s = 11 stages. This
case is illustrated in Fig. 1.4-6(b). Periodic optical systems will be
revisited in Chapter 7.



Summary
A paraxial ray (θmax « 1) traveling through a cascade of identical
unit optical systems, each with a ray-transfer matrix with
elements (A, B, C, D) such that AD − BC = 1, follows a harmonic
(and therefore bounded) trajectory if the condition ½ (A + D)|≤
1, called the stability condition, is satisfied. The position at the
mth stage is then ym = ymax sin(mφ + φ0), m = 0, 1, 2,..., where 

. The constants ymax and φ0 are determined
from the initial positions y0 and y1 = Ay0 + Bθ0, where θ0 is the
initial ray inclination. The ray angles are related to the positions
by θm =(ym+1 − Aym)/B and follow a harmonic function θm =
θmax sin(mφ + φ1). The ray trajectory is periodic with period s if
φ/2π is a rational number q/s.
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EXAMPLE 1.4-1.

A Sequence of Equally Spaced Identical Lenses. A set of
identical lenses of focal length f separated by distance d, as
shown in Fig. 1.4-7, may be used to relay light between two
locations. The unit system, a distance of d of free space followed
by a lens, has a ray-transfer matrix given by (1.4-12); A = 1, B = d,
C = −1/f, D = 1 − d/f. The parameter  and the
determinant is unity. The condition for a stable ray trajectory,
|b|≤ 1 or −1 ≤ b ≤ 1, is therefore

so that the spacing between the lenses must be smaller than four
times the focal length. Under this condition the positions of
paraxial rays obey the harmonic function

Figure 1.4-7 A periodic sequence of lenses.

When d = 2f, φ = π/2, and φ/2π = 1/4, so that the trajectory of
an arbitrary ray is periodic with period equal to four stages.
When d = f, φ = π/3, and φ/2π = ⅙, so that the ray trajectory is
periodic and retraces itself each six stages. These cases are
illustrated in Fig. 1.4-8.



Figure 1.4-8 Examples of stable ray trajectories in a periodic
lens system: (a) d = 2f;(b) d = f.
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EXERCISE 1.4-6

A Periodic Set of Pairs of Different Lenses. Examine the
trajectories of paraxial rays through a periodic system
comprising a sequence of lens pairs with alternating focal
lengths f1 and f2, as shown in Fig. 1.4-9. Show that the ray
trajectory is bounded (stable) if

Figure 1.4-9 A periodic sequence of lens pairs.

EXERCISE 1.4-7

An Optical Resonator. Paraxial rays are reflected repeatedly
between two spherical mirrors of radii R1 and R2 separated by a
distance d (Fig. 1.4-10). Regarding this as a periodic system
whose unit system is a single round trip between the mirrors,
determine the condition of stability for the ray trajectory. Optical
resonators will be studied in detail in Chapter 11.



Figure 1.4-10 The optical resonator as a periodic optical
system.
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PROBLEMS
1.1-2 Fermat’s Principle with Maximum Time. Consider the

elliptical mirror shown in Fig. P1.1-2(a), whose foci are denoted
A and B. Geometrical properties of the ellipse dictate that the
pathlength  is identical to the pathlengths  and  for
adjacent points on the ellipse.

a. Now consider another mirror with a radius of curvature smaller
than that of the elliptical mirror, but tangent to it at P , as
displayed in Fig. P1.1-2(b). Show that the path  followed by
the light ray in traveling between points A and B is a path of
maximum time, i.e., is greater than the adjacent paths  and 

.

b. Finally, consider a mirror that crosses the ellipse, but is tangent
to it at P , as illustrated in Fig. P1.1-2(c). Show that the possible
ray paths , , and  exhibit a point of inflection.

Figure P1.1-2 (a) Reflection from an elliptical mirror. (b)
Reflection from an inscribed tangential mirror with greater
curvature. (c) Reflection from a tangential mirror with curvature
changing from concave to convex.

1.2-7 Transmission through Planar Plates.

a. Use Snell’s law to show that a ray entering a planar plate of
thickness d and refractive index n1 (placed in air; n ≈ 1)



emerges parallel to its initial direction. The ray need not be
paraxial. Derive an expression for the lateral displacement of
the ray as a function of the angle of incidence θ. Explain your
results in terms of Fermat’s principle.

b. If the plate instead comprises a stack of N parallel layers
stacked against each other with thicknesses d1, d2,..., dN and
refractive indices n1,n2,...,nN, show that the transmitted ray is
parallel to the incident ray. If θm is the angle of the ray in the
mth layer, show that nm sin θm = sin θ, m = 1, 2,....

1.2-8 Lens in Water. Determine the focal length f of a biconvex
lens with radii 20 cm and 30 cm and refractive index n = 1.5.
What is the focal length when the lens is immersed in water 

?

1.2-9 Numerical Aperture of a Cladless Fiber. Determine the
numerical aperture and the acceptance angle of an optical fiber
if the refractive index of the core is n1 = 1.46 and the cladding is
stripped out (replaced with air n2 ≈ 1).

1.2-10 Fiber Coupling Spheres. Tiny glass balls are often used as
lenses to couple light into and out of optical fibers. The fiber
end is located at a distance f from the sphere. For a sphere of
radius a = 1 mm and refractive index n = 1.8, determine f such
that a ray parallel to the optical axis at a distance y = 0.7 mm
is focused onto the fiber, as illustrated in Fig. P1.2-10.

Figure P1.2-10 Focusing light into an optical fiber with a spherical
glass ball.



1.2-11 Extraction of Light from a High-Refractive-Index
Medium. Assume that light is generated isotropically in all
directions inside a material of refractive index n = 3.7 cut in
the shape of a parallelepiped and placed in air (n = 1) (see
Exercise 1.2-6).

a. If a reflective material acting as a perfect mirror is coated on all
sides except the front side, determine the percentage of light
that may be extracted from the front side.

b. If another transparent material of refractive index n = 1.4 is
placed on the front side, would that help extract some of the
trapped light?

1.3-3 Axially Graded Plate. A plate of thickness d is oriented
normal to the z axis. The refractive index n(z) is graded in the z
direction. Show that a ray entering the plate from air at an
incidence angle θ0 in the y–z plane makes an angle θ(z) at
position z in the medium given by n(z) sin θ(z) = sin θ0. Show
that the ray emerges into air parallel to the original incident
ray. Hint: You may use the results of Prob. 1.2-7. Show that the
ray position y(z) inside the plate obeys the differential
Equation (dy/dz)2 = (n2/ sin2 θ − 1)−1.

1.3-4 Ray Trajectories in GRIN Fibers. Consider a graded-index
optical fiber with cylindrical symmetry about the z axis and
refractive index . Let (ρ, ϕ, z) be the position
vector in a cylindrical coordinate system. Rewrite the paraxial
ray equations, (1.3-4), in a cylindrical system and derive
differential equations for ρ and ϕ as functions of z.

1.4-8 Ray-Transfer Matrix of a Lens System. Determine the
ray-transfer matrix for an optical system made of a thin convex
lens of focal length f and a thin concave lens of focal length −f
separated by a distance f. Discuss the imaging properties of this
composite lens.



1.4-9 Ray-Transfer Matrix of a GRIN Plate. Determine the ray-
transfer matrix of a SELFOC plate [i.e., a graded-index material
with parabolic refractive index  of thickness d.

1.4-10 The GRIN Plate as a Periodic System. Consider the
trajectories of paraxial rays inside a SELFOC plate normal to
the z axis. This system may be regarded as a periodic system
comprising a sequence of identical contiguous plates, each of
thickness d. Using the result of Prob. 1.4-9, determine the
stability condition of the ray trajectory. Is this condition
dependent on the choice of d?

1.4-11 Recurrence Relation for a Planar-Mirror Resonator.
Consider a planar-mirror optical resonator, with mirror
separation d, as a periodic optical system. Determine the unit
ray-transfer matrix for this system, demonstrating that b = 1
and F = 1. Show that there is then only a single root to the
quadratic Equation (1.4-28) so that the ray position must then
take the form α + mβ, where α and β are constants.

1.4-12 4 × 4 Ray-Transfer Matrix for Skewed Rays. Matrix
methods may be generalized to describe skewed paraxial rays
in circularly symmetric systems, and to astigmatic (non
circularly symmetric) systems. A ray crossing the plane z = 0
is generally characterized by four variables — the coordinates
(x, y) of its position in the plane, and the angles (θx, θy) that
its projections in the x–z and y–z planes make with the z axis.
The emerging ray is also characterized by four variables that
are linearly related to the initial four variables. The optical
system may then be characterized completely, within the
paraxial approximation, by a 4 × 4 matrix.



a. Determine the 4 × 4 ray-transfer matrix of a distance d in free
space.

b. Determine the 4 × 4 ray-transfer matrix of a thin cylindrical
lens with focal length f oriented in the y direction. The
cylindrical lens has focal length f for rays in the y–z plane, and
no focusing power for rays in the x–z plane.

Notes
1. See, e.g., R. Weinstock, Calculus of Variations: With Applications
to Physics and Engineering, 1952; Dover, 1974.
2. See, e.g., M. Born and E. Wolf, Principles of Optics, Cambridge
University Press, 7th expanded and corrected ed. 2002.



Chapter 2 
WAVE OPTICS
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2.2 MONOCHROMATIC WAVES
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C. Paraxial Waves
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Christiaan Huygens (1629–1695) advanced a number of novel
concepts pertaining to the propagation of light waves.

Thomas Young (1773–1829) championed the wave theory of
light and discovered the principle of optical interference.

Light propagates in the form of waves. In free space, light waves
travel with a constant speed, co = 3.0 × 108 m/s (30 cm/ns or 0.3
mm/ps or 0.3 μm/fs or 0.3 nm/as). As illustrated in Fig. 2.0-1, the



range of optical wavelengths comprises three principal sub-regions:
infrared (0.760 to 300 μm), visible (390 to 760 nm), and ultraviolet
(10 to 390 nm). The corresponding range of optical frequencies
stretches from 1 THz in the far-infrared to 30 PHz in the extreme
ultraviolet.





Figure 2.0-1 Optical frequencies and wavelengths. The infrared (IR)
region of the spectrum comprises the near-infrared (NIR), mid-
infrared (MIR), and far-infrared (FIR) bands. The MWIR and
LWIR bands both lie within the MIR band; radiation in these
regions can penetrate the atmosphere. The ultraviolet (UV) region
comprises the near-ultraviolet (NUV), mid-ultraviolet (MUV) or
deep-ultraviolet (DUV), far-ultraviolet (FUV), and extreme-
ultraviolet (EUV or XUV) bands. The vacuum ultraviolet (VUV)
consists of the FUV and EUV bands. The ultraviolet region is also
divided into the UVA, UVB, and UVC bands, which have chemical
and biological significance. The infrared, visible, and ultraviolet
regions are gathered under the rubric “optical” since they make use
of similar types of components (e.g., lenses and mirrors). The
terahertz (THz) region occupies frequencies that stretch from 0.3
to 3 THz, corresponding to wavelengths that extend from 1 mm to
100 μm; the THz region partially overlaps the FIR band. For X-ray
wavelengths, see Fig. 16.3-7.

The wave theory of light encompasses the ray theory (Fig. 2.0-2).
Strictly speaking, ray optics is the limit of wave optics when the
wavelength is infinitesimally short. However, the wavelength need
not actually be zero for the ray-optics theory to be useful. As long as
the light waves propagate through and around objects whose
dimensions are much greater than the wavelength, the ray theory
suffices for describing most optical phenomena. Because the
wavelength of visible light is much smaller than the dimensions of
the usual objects we encounter on a daily basis, the manifestations
of the wave nature of light are usually not apparent without careful
observation.



Figure 2.0-2 Wave optics encompasses ray optics. Ray optics is the
limit of wave optics when the wavelength is very short.

This Chapter

In the context of wave optics, light is described by a scalar function,
called the wave-function, that obeys a second-order differential
equation known as the wave equation. A discussion of the physical
significance of the wavefunction is deferred to Chapter 5, where we
consider electromagnetic optics; it will become apparent there that
the wavefunction represents any of the components of the electric
or magnetic fields. The wave equation, together with a relation
between the optical power density and the wavefunction, constitute
the postulates of the scalar-wave model of light known as wave
optics. The consequences of these simple postulates are manifold
and far reaching. Wave optics constitutes a basis for describing a
host of optical phenomena that fall outside the confines of ray
optics, including interference and diffraction, as will become clear in
this and the following two chapters (Chapters 3 and 4).

Wave optics does have its limitations, however. It is not capable of
providing a complete picture of the reflection and refraction of light
at the boundaries between various media, nor can it accommodate
optical phenomena that require a vector formulation, such as
polarization effects. Those issues will be considered from a
fundamental perspective in Chapters 5–8, as will the conditions
under which scalar wave optics provides a good approximation to
electromagnetic optics.
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The chapter begins with the postulates of wave optics (Sec. 2.1). In
Secs. 2.2–2.5 we consider monochromatic waves. Elementary
waves, such as the plane wave, the spherical wave, and paraxial
waves are introduced in Sec. 2.2. Section 2.3 establishes how ray
optics is formally derived from wave optics. The interaction of
optical waves with simple optical components such as mirrors,
prisms, lenses, and various graded-index elements is examined in
Sec. 2.4. Interference, an important manifestation of the wave
nature of light, is the subject of Secs. 2.5 and 2.6, where
polychromatic and pulsed light are discussed.

2.1 POSTULATES OF WAVE OPTICS
The Wave Equation

Light propagates in the form of waves. In free space, light waves
travel with speed co. A homogeneous transparent medium such as
glass is characterized by a single constant, its refractive index n (≥
1). In a medium of refractive index n, light waves travel with a
reduced speed

Speed of Light in a Medium

An optical wave is described mathematically by a real function of
position r = (x, y, z) and time t, denoted u(r,t) and known as the
wavefunction. It satisfies a partial differential equation called the
wave equation,
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Wave Equation

where ∇2 is the Laplacian operator, which is ∇2 = ∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2 in Cartesian coordinates. Any function that satisfies (2.1-2)
represents a possible optical wave.

Because the wave equation is linear, the principle of
superposition applies: if u1(r, t) and u2(r, t) represent possible
optical waves, then u(r, t) = u1(r, t) + u2(r, t) also represents a
possible optical wave.

At the boundary between two different media, the wavefunction
changes in a way that depends on their refractive indices. However,
the laws that govern this change depend on the physical significance
assigned to the wavefunction which, as will be seen in Chapter 5, is
an electromagnetic-field component. The underlying physical origin
of the refractive index derives from electromagnetic optics (Sec.
5.5B).

The wave equation is also approximately applicable for media with
refractive indices that are position dependent, provided that the
variation is slow within distances of the order of a wavelength. The
medium is then said to be locally homogeneous. For such media, n
in (2.1-1) and c in (2.1-2) are simply replaced by the appropriate
position-dependent functions n(r) and c(r), respectively.

Intensity, Power, and Energy

The optical intensity I(r, t), defined as the optical power per unit
area (units of watts/cm2), is proportional to the average of the
squared wavefunction:
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Optical Intensity

The operation (·) denotes averaging over a time interval much
longer than the time of an optical cycle, but much shorter than any
other time of interest (such as the duration of a pulse of light). The
duration of an optical cycle is very short: 2 × 10−15 s = 2 fs for light
of wavelength 600 nm, as an example. This concept is further
elucidated in Sec. 2.6. The quantity I(r, t) is sometimes also called
the irradiance.

Although the physical significance of the wavefunction u(r, t) has
not been explicitly specified, (2.1-3) represents its connection with a
physically measurable quantity — the optical intensity. There is
some arbitrariness in the definition of the wavefunction and its
relation to the intensity. For example, (2.1-3) could have been
written without the factor 2 and the wavefunction scaled by a factor 
√2, in which case the intensity would remain the same. The choice
of the factor 2 in (2.1-3) will later prove convenient, however.

The optical power 𝒫(t) (units of watts) flowing into an area 𝒜
normal to the direction of propagation of light is the integrated
intensity

The optical energy ℰ (units of joules) collected in a given time
interval is the integral of the optical power over the time interval.

2.2 MONOCHROMATIC WAVES
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A monochromatic wave is represented by a wavefunction with
harmonic time dependence,

as illustrated in Fig. 2.2-1(a), where

Both the amplitude and phase are generally position dependent, but
the wavefunction is a harmonic function of time with frequency ν at
all positions. Optical waves have frequencies that lie in the range 3
× 1011 to 3 × 1016 Hz, as depicted in Fig. 2.0-1.

Figure 2.2-1 Representations of a monochromatic wave at a fixed
position r:(a) the wavefunction u(t) is a harmonic function of time;
(b) the complex amplitude U = a exp(jφ) is a fixed phasor; (c) the
complex wavefunction U(t) = U exp(j2πνt) is a phasor rotating with
angular velocity ω = 2πν radians/s.

A. Complex Representation and the Helmholtz
Equation
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(2.2-2)

(2.2-3)

(2.2-5)

(2.2-6)

Complex Wavefunction

It is convenient to represent the real wavefunction u(r, t) in (2.2-1)
in terms of a complex function

so that

where the symbol ∗ signifies complex conjugation. The function
U(r, t), known as the complex wavefunction, describes the wave
completely; the wavefunction u(r, t) is simply its real part. Like
the wavefunction u(r, t), the complex wavefunction U(r, t) must
also satisfy the wave equation

Wave Equation

The two functions satisfy the same boundary conditions.

Complex Amplitude

Equation (2.2-2) may be written in the form

where the time-independent factor U(r) = a(r) exp[jφ(r)] is referred
to as the complex amplitude of the wave. The wavefunction u(r,
t) is therefore related to the complex amplitude by
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(2.2-9)

At a given position r, the complex amplitude U(r) is a complex
variable [depicted in Fig. 2.2-1(b)] whose magnitude |U(r)| = a(r) is
the amplitude of the wave and whose argument arg{U(r)} = φ(r) is
the phase. The complex wavefunction U(r, t), shown in Fig. 2.2-1(c),
is represented graphically by a phasor that rotates with angular
velocity ω = 2πν radians/s. Its initial value at t = 0 is the complex
amplitude U(r).

The Helmholtz Equation

Substituting U(r, t) = U(r) exp(j2πνt) from (2.2-5) into the wave
equation (2.2-4) leads to a differential equation for the complex
amplitude U(r):

Helmholtz Equation

which is known as the Helmholtz equation, where

Wavenumber

is referred to as the wavenumber. Different solutions are obtained
from different boundary conditions.

Optical Intensity

The optical intensity is determined by inserting (2.2-1) into (2.1-3):
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Averaging (2.2-9) over a time longer than an optical period, 1/ν,
causes the second term of (2.2-9) to vanish, whereupon

Optical Intensity

The optical intensity of a monochromatic wave is the absolute
square of its complex amplitude.

The intensity of a monochromatic wave does not vary with time.

Wavefronts

The wavefronts are the surfaces of equal phase, φ(r) = constant. The
constants are often taken to be multiples of 2π so that φ(r) = 2πq,
where q is an integer. The wavefront normal at position r is parallel
to the gradient vector ∇φ(r) (a vector that has components ∂φ/∂x,
∂φ/∂y, and ∂φ/∂z in a Cartesian coordinate system). It represents
the direction at which the rate of change of the phase is maximum.
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Summary

A monochromatic wave of frequency ν is described by a
complex wavefunction U(r, t) = U(r) exp(j2πνt), which
satisfies the wave equation.

The complex amplitude U(r) satisfies the Helmholtz
equation; its magnitude |U(r)| and argument arg{U(r)} are
the amplitude and phase of the wave, respectively. The
optical intensity is I(r) = |U(r)|2. The wavefronts are the
surfaces of constant phase, φ(r) = arg{U(r)} = 2πq (q =
integer).

The wavefunction u(r, t) is the real part of the complex
wavefunction, u(r, t) = Re{U(r, t)}. The wavefunction also
satisfies the wave equation.

B. Elementary Waves
The simplest solutions of the Helmholtz equation in a
homogeneous medium are the plane wave and the spherical wave.

The Plane Wave

The plane wave has complex amplitude

where A is a complex constant called the complex envelope that
represents the strength of the wave, and k = (kx, ky, kz) is called the
wavevector.1 Substituting (2.2-11) into the Helmholtz equation
(2.2-7) yields the relation k2

x + k2
y + k2

z = k2, so that the magnitude
of the wavevector k is the wavenumber k.

Since the phase of the wave is arg{U(r)} = arg{A} − k · r, the
surfaces of constant phase (wavefronts) obey k · r = kxx + kyy + kzz
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= 2πq + arg{A} with q integer. This is the equation describing
parallel planes perpendicular to the wavevector k (hence the name
“plane wave”). Consecutive planes are separated by a distance λ =
2π/k, so that

Wavelength

where λ is called the wavelength. The plane wave has a constant
intensity I(r) = |A|2 everywhere in space so that it carries infinite
power. This wave is clearly an idealization since it exists everywhere
and at all times.

If the z axis is taken along the direction of the wavevector k, then
U(r) = A exp(−jkz) and the corresponding wavefunction obtained
from (2.2-6) is

The wavefunction is therefore periodic in time with period 1/ν, and
periodic in space with period 2π/k, which is equal to the wavelength
λ (see Fig. 2.2-2). Since the phase of the complex wavefunction,
arg{U(r, t)} = 2πν(t − z/c) + arg{A}, varies with time and position as
a function of the variable t − z/c (see Fig. 2.2-2), c is called the
phase velocity of the wave.
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Figure 2.2-2 The wavefunction of a plane wave traveling in the z
direction, schematically drawn as a graded red pattern, is a periodic
function of z with spatial period λ, and a periodic function of t with
temporal period 1/ν. The surfaces of constant phase (wavefronts)
comprise a parallel set of planes normal to the z axis. The
wavelengths displayed in Fig. 2.0-1 are in free space (λ = λo).

In a medium of refractive index n, the wave has phase velocity c =
co/n and wavelength λ = c/ν = co/nν, so that λ = λo/n where λo = co/
ν is the wavelength in free space. Thus, for a given frequency ν, the
wavelength in the medium is reduced relative to that in free space
by the factor n. As a consequence, the wavenumber k = 2π/λ is
increased relative to that in free space (ko = 2π/λo) by the factor n.

As a monochromatic wave propagates through media of different
refractive indices its frequency remains the same, but its velocity,
wavelength, and wavenumber are altered:

The Spherical Wave

Another simple solution of the Helmholtz equation (in spherical
coordinates) is the spherical wave complex amplitude
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where r is the distance from the origin, k = 2πν/c = ω/c is the
wavenumber, and A0 is a constant. The intensity I(r)= |A0|2/r2 is
inversely proportional to the square of the distance. Taking arg{A0}
= 0 for simplicity, the wavefronts are the surfaces kr = 2πq or r =
qλ, where q is an integer. These are concentric spheres separated by
a radial distance λ = 2π/k that advance radially at the phase velocity
c (Fig. 2.2-3).

Figure 2.2-3 Cross section of the wave-function of a spherical wave.
The associated wavefronts are a set of concentric spheres.

A spherical wave originating at the position r0 has a complex
amplitude U(r) = (A0/|r − r0|) exp(−jk |r − r0|). Its wavefronts are
spheres centered about r0. A wave with complex amplitude U(r)=
(A0/r) exp(+jkr) is a spherical wave traveling inwardly (toward the
origin) instead of outwardly (away from the origin).

Fresnel Approximation of the Spherical Wave: The Paraboloidal
Wave

Let us examine a spherical wave (originating at r = 0) at points r =
(x, y, z) that are sufficiently close to the z axis but far from the
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origin, so that √x2 + y2 ≪ z. The paraxial approximation of ray
optics (Sec. 1.2) would be applicable were these points the endpoints
of rays beginning at the origin. Denoting θ2 = (x2 + y2)/z2 ≪ 1, we
use an approximation based on the Taylor-series expansion:

This expression, r ≈ z + (x2 + y2)/2z, is now substituted into the
phase of U(r) in (2.2-15). A less accurate expression, r ≈ z, can be
substituted for the magnitude since it is less sensitive to errors than
is the phase. The result is known as the Fresnel approximation
of a spherical wave:

Fresnel Approximation of a Spherical Wave

This approximation plays an important role in simplifying the
theory of optical-wave transmission through apertures
(diffraction), as discussed in Chapter 4.

The complex amplitude in (2.2-17) may be viewed as representing a
plane wave A0 exp(−jkz) modulated by the factor (1/z) exp[−jk(x2 +
y2)/2z], which involves the phase k(x2 + y2)/2z. This phase factor
serves to bend the planar wavefronts of the plane wave into
paraboloidal surfaces (Fig. 2.2-4), since the equation of a paraboloid
of revolution is (x2 + y2)/z = constant. In this region the spherical
wave is well approximated by a paraboloidal wave. When z becomes
very large, the paraboloidal phase factor in (2.2-17) approaches 0 so
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that the overall phase of the wave becomes kz. Since the magnitude
A0/z varies slowly with z, the spherical wave eventually approaches
the plane wave exp(−jkz), as illustrated in Fig. 2.2-4.

Figure 2.2-4 A spherical wave may be approximated at points near
the z axis and sufficiently far from the origin by a paraboloidal
wave. For points very far from the origin, the spherical wave
approaches a plane wave.

The condition of validity for the Fresnel approximation is not
simply that θ2 ≪ 1, however. Although the third term of the series
expansion, θ4/8, may be very small in comparison with the second
and first terms, when multiplied by kz it can become comparable to
π. The approximation used in the foregoing is therefore valid when
kzθ4/8 ≪ π, or (x2 + y2)2 ≪ 4z3λ. For points (x, y) lying within a
circle of radius a centered about the z axis, the validity condition is
thus a4 ≪ 4z3λ or

where θm = a/z is the maximum angle and
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Fresnel Number

is known as the Fresnel number.

EXERCISE 2.2-1

Validity of the Fresnel Approximation. Determine the
radius of a circle within which a spherical wave of wavelength λ
= 633 nm, originating at a distance 1 m away, may be
approximated by a paraboloidal wave. Determine the maximum
angle θm and the Fresnel number NF.

C. Paraxial Waves
A wave is said to be paraxial if its wavefront normals are paraxial
rays. One way of constructing a paraxial wave is to start with a plane
wave A exp(−jkz), regard it as a “carrier” wave, and modify or
“modulate” its complex envelope A, making it a slowly varying
function of position, A(r), so that the complex amplitude of the
modulated wave becomes

The variation of the envelope A(r) and its derivative with position z
must be slow within the distance of a wavelength λ = 2π/k so that
the wave approximately maintains its underlying plane-wave
nature.

The wavefunction of a paraxial wave, u(r, t) = |A(r)| cos[2πνt − kz +
arg{A(r)}], is sketched in Fig. 2.2-5(a) as a function of z at t = 0 and
x = y = 0. It is a sinusoidal function of z with amplitude |A(0, 0, z)|
and phase arg{A(0, 0, z)}, both of which vary slowly with z. Since
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the phase arg{A(x, y, z)} changes little within the distance of a
wavelength, the planar wavefronts kz = 2πq of the carrier plane
wave bend only slightly, so that their normals form paraxial rays
[Fig. 2.2-5(b)].

Figure 2.2-5 (a) Wavefunction of a paraxial wave at point on the z
axis as a function of the axial distance z. (b) The wavefronts and
wavefront normals of a paraxial wave in the x–z plane.

The Paraxial Helmholtz Equation

For the paraxial wave (2.2-20) to satisfy the Helmholtz equation
(2.2-7), the complex envelope A(r) must satisfy another partial
differential equation that is obtained by substituting (2.2-20) into
(2.2-7). The assumption that A(r) varies slowly with respect to z
signifies that within a distance Δz = λ, the change ΔA is much
smaller than A itself, i.e., ΔA ≪ A. This inequality of complex
variables applies to the magnitudes of the real and imaginary parts
separately. Since ΔA = (∂A/∂z)Δz = (∂A/∂z)λ, it follows that ∂A/∂z
≪ A/λ = Ak/2π, so that

The derivative ∂A/∂z itself must also vary slowly within the
distance λ, so that ∂2 A/∂z2 ≪ k ∂A/∂z, which provides
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Substituting (2.2-20) into (2.2-7), and neglecting ∂2A/∂z2 in
comparison with k ∂A/∂z or k2A, leads to a partial differential
equation for the complex envelope A(r):

Paraxial Helmholtz Equation

where ∇2
T = ∂ 2/∂x2 + ∂ 2/∂y2 is the transverse Laplacian

operator.

Equation (2.2-23) is the slowly varying envelope
approximation of the Helmholtz equation. We shall simply call it
the paraxial Helmholtz equation. It bears some similarity to the
Schr¨odinger equation of quantum physics [see (14.1-1)]. The
simplest solution of the paraxial Helmholtz equation is the
paraboloidal wave (Exercise 2.2-2), which is the paraxial
approximation of a spherical wave. One of the most interesting and
useful solutions, however, is the Gaussian beam, to which
Chapter 3 is devoted.
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EXERCISE 2.2-2

The Paraboloidal Wave and the Gaussian Beam. Verify
that a paraboloidal wave with the complex envelope A(r) =
(A0/z) exp[−jk(x2 + y2)/2z] [see (2.2-17)] satisfies the paraxial
Helmholtz equation (2.2-23). Show that the wave whose
complex envelope is given by A(r) = [A1/q(z)] exp[−jk(x2 +
y2)/2q(z)], where q(z) = z + jz0 and z0 is a constant, also
satisfies the paraxial Helmholtz equation. This wave, called the
Gaussian beam, is the subject of Chapter 3. Sketch the intensity
of the Gaussian beam in the plane z = 0.

*2.3 RELATION BETWEEN WAVE OPTICS
AND RAY OPTICS
We proceed to show that ray optics emerges as the limit of wave
optics when the wavelength λo → 0. Consider a monochromatic
wave of free-space wavelength λo in a medium with refractive index
n(r) that varies sufficiently slowly with position so that the medium
may be regarded as locally homogeneous. We write the complex
amplitude in (2.2-5) in the form

where a(r) is its magnitude, −koS(r) is its phase, and ko = 2π/λo is
the free-space wavenumber. We assume that a(r) varies sufficiently
slowly with r that it may be regarded as constant within the distance
of a wavelength λo.

The wavefronts are the surfaces S(r)= constant and the wavefront
normals point in the direction of the gradient vector ∇S. In the
neighborhood of a given position r0, the wave can be locally
regarded as a plane wave with amplitude a(r0) and wavevector k



(2.3-2)

with magnitude k = n(r0)ko and direction parallel to the gradient
vector ∇S at r0. A different neighborhood exhibits a local plane wave
of different amplitude and different wavevector.

In ray optics it was shown that the optical rays are normal to the
equilevel surfaces of a function S(r) called the eikonal (see Sec.
1.3C). We therefore associate the local wavevectors (wavefront
normals) in wave optics with the ray of ray optics and recognize that
the function S(r), which is proportional to the phase of the wave, is
nothing but the eikonal of ray optics (Fig. 2.3-1). This association
has a formal mathematical basis, as will be demonstrated shortly.
With this analogy, ray optics can serve to determine the
approximate effects of optical components on the wavefront
normals, as illustrated in Fig. 2.3-1.

Figure 2.3-1 (a) The rays of ray optics are orthogonal to the
wavefronts of wave optics (see also Fig. 1.3-10). (b) The effect of a
lens on rays and wavefronts.

The Eikonal Equation

Substituting (2.3-1) into the Helmholtz equation (2.2-7) provides

where a = a(r) and S = S(r). The real and imaginary parts of the left-
hand side of (2.3-2) must both vanish. Equating the real part to zero
and using ko = 2π/λo, we obtain
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The assumption that a varies slowly over the distance λo means that 
λ2
o∇

2a/a ≪ 1, so that the second term of the right-hand side may
be neglected in the limit λo → 0, whereupon

Eikonal Equation

This is the eikonal equation (1.3-20), which may be regarded as the
main postulate of ray optics (Fermat’s principle can be derived from
the eikonal equation and vice versa).

Thus, the scalar function S(r), which is proportional to the phase in
wave optics, is the eikonal of ray optics. This is also consistent with
the observation that in ray optics S(rB) − S(rA) equals the optical
pathlength between the points rA and rB.

The eikonal equation is the limit of the Helmholtz equation when λo
→ 0. Given n(r) we may use the eikonal equation to determine S(r).
By equating the imaginary part of (2.3-2) to zero, we obtain a
relation between a and S, thereby permitting us to determine the
wavefunction.

2.4 SIMPLE OPTICAL COMPONENTS
In this section we examine the effects of optical components, such
as mirrors, transparent plates, prisms, and lenses, on optical waves.

A. Reflection and Refraction

Reflection from a Planar Mirror
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A plane wave of wavevector k1 is incident onto a planar mirror
located in free space in the z = 0 plane. A reflected plane wave of
wavevector k2 is created. The angles of incidence and reflection are
θ1 and θ2, as illustrated in Fig. 2.4-1. The sum of the two waves
satisfies the Helmholtz equation if the wavenumber is the same,
i.e., if k1 = k2 = ko. Certain boundary conditions must be satisfied at
the surface of the mirror. Since these conditions are the same at all
points (x, y), it is necessary that the phases of the two waves match,
i.e.,

Figure 2.4-1 Reflection of a plane wave from a planar mirror. Phase
matching at the surface of the mirror requires that the angles of
incidence and reflection be equal.

This phase-matching condition may also be regarded as matching of
the tangential components of the two wavevectors in the mirror
plane. Substituting r =(x, y, 0), k1 = (ko sin θ1, 0, ko cos θ1), and k2 =
(ko sin θ2, 0, −ko cos θ2) into (2.4-1), we obtain kox sin θ1 = kox sin
θ2, from which θ1 = θ2, so that the angles of incidence and reflection
must be equal. Thus, the law of reflection of optical rays is
applicable to the wavevectors of plane waves.
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Reflection and Refraction at a Planar Dielectric Boundary

We now consider a plane wave of wavevector k1 incident on a planar
boundary between two homogeneous media of refractive indices n1
and n2. The boundary lies in the z = 0 plane (Fig. 2.4-2). Refracted
and reflected plane waves of wavevectors k2 and k3 emerge. The
combination of the three waves satisfies the Helmholtz equation
everywhere if each of the waves has the appropriate wavenumber in
the medium in which it propagates (k1 = k3 = n1ko and k2 = n2k0).

Figure 2.4-2 Refraction of a plane wave at a dielectric boundary. The
wavefronts are matched at the boundary so that the distance
between wavefronts for the incident wave, λ1/ sin θ1 = λo/n1 sin θ1,
equals that for the refracted wave, λ2/ sin θ2 = λo/n2 sin θ2, from
which Snell’s law follows.

Since the boundary conditions are invariant to x and y, it is
necessary that the phases of the three waves match, i.e.,

This phase-matching condition is tantamount to matching the
tangential components of the three wavevectors at the boundary
plane. Since k1 = (n1ko sin θ1, 0, n1ko cos θ1), k3 = (n1ko sin θ3, 0,



−n1ko cos θ3), and k2 = (n2ko sin θ2, 0, n2ko cos θ2), where θ1, θ2, and
θ3 are the angles of incidence, refraction, and reflection,
respectively, it follows from (2.4-2) that θ1 = θ3 and n1 sin θ1 = n2
sin θ2. These are the laws of reflection and refraction (Snell’s law) of
ray optics, now applicable to the wavevectors.

It is not possible to determine the amplitudes of the reflected and
refracted waves using scalar wave optics since the boundary
conditions are not completely specified in this theory. This will be
achieved in Sec. 6.2 using electromagnetic optics (Chapters 5 and 6).

B. Transmission Through Optical Components
We now proceed to examine the transmission of optical waves
through transparent optical components such as plates, prisms, and
lenses. The effect of reflection at the surfaces of these components
will be ignored, since it cannot be properly accounted for using the
scalar wave theory of light. Nor can the effect of absorption in the
material, which is relegated to Sec. 5.5. The principal emphasis here
is on the phase shift introduced by these components and on the
associated wavefront bending.

Transparent Plate

Consider first the transmission of a plane wave through a
transparent plate of refractive index n and thickness d surrounded
by free space. The surfaces of the plate are the planes z = 0 and z =
d and the incident wave travels in the z direction (Fig. 2.4-3). Let
U(x, y, z) be the complex amplitude of the wave. Since external and
internal reflections are ignored, U(x, y, z) is assumed to be
continuous at the boundaries. The ratio t(x, y)= U(x, y, d)/U(x, y, 0)
therefore represents the complex amplitude transmittance of
the plate; it permits us to determine U(x, y, d) for arbitrary U(x, y,
0) at the input. The effect of reflection is considered in Sec. 6.2 and
the effect of multiple internal reflections within the plate is
examined in Sec. 11.1.
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Figure 2.4-3 Transmission of a plane wave through a transparent
plate.

Once inside the plate, the wave continues to propagate as a plane
wave with wavenumber nko, so that U(x, y, z) is proportional to
exp(−jnkoz). Thus, the ratio U(x, y, d)/U(x, y, 0) = exp(−jnkod), so
that

Transmittance Transparent Plate

The plate is seen to introduce a phase shift nkod = 2π(d/λ).

If the incident plane wave makes an angle θ with respect to the z
axis and has wavevector k (Fig. 2.4-4), the refracted and transmitted
waves are also plane waves with wavevectors k1 and k and angles θ1
and θ, respectively, where θ1 and θ are related by Snell’s law: sin θ =
n sin θ1. The complex amplitude U(x, y, z) inside the plate is now
proportional to exp(−jk1 · r) = exp[−jnko(z cos θ1 + x sin θ1)], so that
the complex amplitude transmittance of the plate U(x, y, d)/U(x, y,
0) is



Figure 2.4-4 Transmission of an oblique plane wave through a thin
transparent plate.

If the angle of incidence θ is small (i.e., if the incident wave is
paraxial), then θ1 ≈ θ/n is also small and the approximation 
cos  θ1 ≈ 1 − 1

2 θ
2
1 yields t(x, y) ≈ exp(−jnkod) exp(jkoθ2d/2n). If

the plate is sufficiently thin, and the angle θ is sufficiently small
such that koθ2d/2n ≪ 2π [or (d/λo)θ2/2n ≪ 1], then the
transmittance of the plate may be approximated by (2.4-3). Under
these conditions the transmittance of the plate is approximately
independent of the angle θ.

Thin Transparent Plate of Varying Thickness

We now determine the amplitude transmittance of a thin
transparent plate whose thickness d(x, y) varies smoothly as a
function of x and y, assuming that the incident wave is an arbitrary
paraxial wave. The plate lies between the planes z = 0 and z = d0,
which are regarded as the boundaries encasing the optical
component (Fig. 2.4-5).
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Figure 2.4-5 A transparent plate of varying thickness.

In the vicinity of the position (x, y, 0) the incident paraxial wave
may be regarded locally as a plane wave traveling along a direction
that makes a small angle with the z axis. It crosses a thin plate of
material of thickness d(x, y) surrounded by thin layers of air of total
thickness d0 − d(x, y). In accordance with the approximate relation
(2.4-3), the local transmittance is the product of the transmittances
of a thin layer of air of thickness d0 − d(x, y) and a thin layer of
material of thickness d(x, y), so that t(x, y) ≈ exp[−jnkod(x, y)]
exp[−jko(d0 − d(x, y))], from which

Transmittance Variable-Thickness Plate

where h0 = exp(−jkod0) is a constant phase factor. This relation is
valid in the paraxial approximation (where all angles θ are small)
and when the thickness d0 is sufficiently small so that (d0/λo)θ2/2n
≪ 1.



EXERCISE 2.4-1

Transmission Through a Prism. Use (2.4-5) to show that
the complex amplitude transmittance of a thin inverted prism
with small apex angle α ≪ 1 and thickness d0 (Fig. 2.4-6) is t(x,
y) = h0 exp[−j (n − 1)αkox], where h0 = exp(−jkod0). The
transmittance is independent of y since the prism extends in the
y direction. What is the effect of the prism on an incident plane
wave traveling in the z direction? Compare your results with that
obtained via the ray-optics model, as provided in (1.2-7).

Figure 2.4-6 Transmission of a plane wave through a thin prism.

Transmission Through a Biprism and an Axicon. The
biprism depicted in Fig. 1.2-12(a) comprises an inverted prism,
such as that illustrated in Fig. 2.4-6, juxtaposed with an identical
uninverted prism. Taking its thickness to be d0 and its edge
angle α ≪ 1, the results of Exercise 2.4-1 generalize to t(x, y) =
h0{exp[−j (n − 1)αkox] + exp[+j (n − 1)αkox]} = 2h0 cos [(n −
1)αkox], with h0 = exp(−jkod0). The biprism thus converts an
incident plane wave into a pair of waves that are tilted with
respect to each other. The Fresnel biprism portrayed in Fig. 1.2
12(b) behaves in the same way.
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The cone-shaped axicon shown in Fig. 1.2-12(c) is constructed by
rotating the prism cross section depicted in Fig. 2.4-6 about a
horizontal axis located at its top edge, from ϕ = −π to π. At any
angle ϕ, the cross section of this device is an isosceles triangle of
thickness d0 and edge angle α ≪ 1. Using polar coordinates and
integrating the results presented in Exercise 2.4-1 over ϕ
provides t(x, y) = h0 ∫

π

−π
exp [−j(n − 1)] α (ko cos ϕ) x − J (n

− 1) α (ko sin ϕ) y] 

dϕ = h0 ∫
π

−π
exp [−j(n − 1) α ko√x2 + y2 sin (ϕ + θ)]dϕ.

Since the integration is over 2π, the integral is independent of θ.
Given that ∫ π

−π
exp (−ju  sin  ϕ)dϕ = 2πJ0(u), where J0(u) is

the Bessel function of the first kind and zeroth order, the
amplitude transmittance may be rewritten as 
t(x, y) = 2πh0J0[(n − 1) α ko√x2 + y2]. The axicon thus
converts an incident plane wave into an infinite number of plane
waves, all directed toward its central axis in the form of a cone of
half angle (n − 1)α. This device may be used to convert a plane
wave into a Bessel beam (see Sec. 3.5A and Example 4.3-5).

Thin Lens

The general expression (2.4-5) for the complex amplitude
transmittance of a thin transparent plate of variable thickness is
now applied to the plano-convex thin lens shown in Fig. 2.4-7. Since
the lens is the cap of a sphere of radius R, the thickness at the point
(x, y) is d(x, y) = d0 − PQ = d0 − (R − QC), or
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Figure 2.4-7 A plano-convex thin lens. The lens imparts a phase
proportional to x2 + y2 to an incident plane wave, thereby
transforming it into a paraboloidal wave centered at a distance f
from the lens (see Exercise 2.4-3).

This expression may be simplified by considering only points for
which x and y are sufficiently small in comparison with R so that x2

+ y2 ≪ R2. In that case

where we have used the same Taylor-series expansion that led to
the Fresnel approximation of a spherical wave in (2.2-17). Using this
approximation in (2.4-6) then provides

Finally, substitution into (2.4-5) yields
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Transmittance Thin Lens

where

is the focal length of the lens (see Sec. 1.2C) and h0 = exp(−jnkod0)
is another constant phase factor that is usually of no significance.
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EXERCISE 2.4-2

Double-Convex Lens. Show that the complex amplitude
transmittance of the double-convex lens (also called a spherical
lens) shown in Fig. 2.4-8 is given by (2.4-9) with

Figure 2.4-8 A double-convex lens.

You may prove this either by using the general formula (2.4-5)
or by regarding the double-convex lens as a cascade of two
plano-convex lenses. Recall that, by convention, the radius of a
convex/concave surface is positive/negative, so that R1 is
positive and R2 is negative for the lens displayed in Fig. 2.4-8.
The parameter f is recognized as the focal length of the lens [see
(1.2-12)].

EXERCISE 2.4-3

Focusing of a Plane Wave by a Thin Lens. Show that when
a plane wave is transmitted through a thin lens of focal length f
in a direction parallel to the axis of the lens, it is converted into a
paraboloidal wave (the Fresnel approximation of a spherical
wave) centered about a point at a distance f from the lens, as
illustrated in Fig. 2.4-9. What is the effect of the lens on a plane
wave incident at a small angle θ?



Figure 2.4-9 A thin lens transforms a plane wave into a
paraboloidal wave.

EXERCISE 2.4-4

Imaging Property of a Lens. Show that a paraboloidal wave
centered at the point P1 (Fig. 2.4 10) is converted by a lens of
focal length f into a paraboloidal wave centered at P2, where 1/z1
+ 1/z2 = 1/f, a formula known as the imaging equation.

Figure 2.4-10 A lens transforms a paraboloidal wave into another
paraboloidal wave. The two waves are centered at distances that
satisfy the imaging equation.

Diffraction Gratings

A diffraction grating is an optical component that serves to
periodically modulate the phase or amplitude of an incident wave. It
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can be made of a transparent plate with periodically varying
thickness or periodically graded refractive index (see Sec. 2.4C).
Repetitive arrays of diffracting elements such as apertures,
obstacles, or absorbing elements (see Sec. 4.3) can also be used for
this purpose. A reflection diffraction grating is often fabricated from
a periodically ruled thin film of aluminum that has been evaporated
onto a glass substrate.

Consider a diffraction grating made of a thin transparent plate
placed in the z = 0 plane whose thickness varies periodically in the x
direction with period Λ (Fig. 2.4-11). As will be demonstrated in
Exercise 2.4-5, this plate converts an incident plane wave of
wavelength λ ≪ Λ, traveling at a small angle θi with respect to the z
axis, into several plane waves at small angles with respect to the z
axis:

Grating Equation

where q = 0, ±1, ±2,..., is called the diffraction order. Successive
diffracted waves are separated by an angle θ = λ/Λ, as shown
schematically in Fig. 2.4-11.



Figure 2.4-11 A thin transparent plate with periodically varying
thickness serves as a diffraction grating. It splits an incident plane
wave into multiple plane waves traveling in different directions.

EXERCISE 2.4-5

Transmission Through a Diffraction Grating.

(a) The thickness of a thin transparent plate varies
sinusoidally in the x direction, 
d(x, y) = 1

2 d0[1+ cos (2πx/Λ)], as illustrated in Fig. 2.4-
11. Show that the complex amplitude transmittance is t(x, y)
= h0 exp [−j 1

2 (n − 1)kod0 cos (2πx/Λ)] where 
h0 =exp [−j 1

2 (n + 1)kod0].

(b) Show that an incident plane wave traveling at a small
angle θi with respect to the z direction is transmitted in the
form of a sum of plane waves traveling at angles θq given by
(2.4-12). Hint: Expand the periodic function t(x, y) in a
Fourier series.
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Equation (2.4-12) is valid only in the paraxial approximation, when
all angles are small, and when the period Λ is much greater than the
wavelength λ. A more general analysis of a thin diffraction grating
that does not rely on the paraxial approximation reveals that an
incident plane wave at an angle θi gives rise to a collection of plane
waves at angles θq that satisfy

This result may be derived by expanding the periodic transmittance
t(x, y) as a sum of Fourier components of the form exp(−jq2πx/Λ),
where q = 0, ±1, ±2,... is the diffraction order. An incident plane
wave exp(−jkx sin θi), modulated by the harmonic component
exp(−jq2πx/Λ), generates a transmitted plane wave at the angle θq
given by exp(−jkx sin θq) ∝ exp(−jkx sin θi) exp(−jq2πx/Λ). This
leads to the phase-matching condition k sin θq = k sin θo + q2π/Λ.
Equation (2.4-13) follows since k = 2π/λ; this result is also
applicable to waves reflected from the grating.

Diffraction gratings are used as filters and spectrum analyzers.
Since the angles θq depend on the wavelength λ (and therefore on
the frequency ν), an incident polychromatic wave is separated by the
grating into its spectral components (Fig. 2.4-12). Diffraction
gratings have found numerous applications in spectroscopy.
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Figure 2.4-12 A diffraction grating directs two waves of different
wavelengths, λ1 and λ2, into two different directions, θ1 and θ2. It
therefore serves as a spectrum analyzer or a spectrometer.

C. Graded-Index Optical Components
The effect of a prism, lens, or diffraction grating on an incident
optical wave lies in the phase shift it imparts, which serves to bend
the wavefront in some prescribed manner. This phase shift is
controlled by the variation in the thickness of the material with the
transverse distance from the optical axis (linearly, quadratically, or
periodically, in the cases of a prism, lens, and diffraction grating,
respectively). The same phase shift may instead be introduced by a
transparent planar plate of fixed thickness but with varying
refractive index. This is a result of the fact that the thickness and
refractive index appear as a product in (2.4-3).

The complex amplitude transmittance of a thin transparent planar
plate of thickness d0 and graded refractive index n(x, y) is, from
(2.4-3),

Transmittance Graded-Index Thin Plate



By selecting the appropriate variation of n(x, y) with x and y, the
action of any constant-index thin optical component can be
reproduced, as demonstrated in Exercise 2.4-6.

EXERCISE 2.4-6

Graded-Index Lens. Show that a thin plate of uniform
thickness d0 (Fig. 2.4-13) and quadrati cally graded refractive
index nn(x, y) = n0[1 − 1

2 α
2(x2 + y2)], with αd0 ≪ 1, acts as a

lens of focal length f = 1/n0d0α2 (see Exercise 1.3-1).

Figure 2.4-13 A graded-index plate acts as a lens.

2.5 INTERFERENCE
When two or more optical waves are simultaneously present in the
same region of space and time, the total wavefunction is the sum of
the individual wavefunctions. This basic principle of superposition
follows from the linearity of the wave equation. For monochromatic
waves of the same frequency, the superposition principle carries
over to the complex amplitudes, which follows from the linearity of
the Helmholtz equation.

The superposition principle does not apply to the optical intensity
since the intensity of the sum of two or more waves is not
necessarily the sum of their intensities. The disparity is associated
with interference. The phenomenon of interference cannot be
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explained on the basis of ray optics since it is dependent on the
phase relationship between the superposed waves.

In this section we examine the interference between two or more
monochromatic waves of the same frequency. The interference of
waves of different frequencies is discussed in Sec. 2.6.

A. Interference of Two Waves
When two monochromatic waves with complex amplitudes U1(r)
and U2(r) are superposed, the result is a monochromatic wave of the
same frequency that has a complex amplitude

In accordance with (2.2-10), the intensities of the constituent waves
are I1 = |U1|2 and I2 = |U2|2, while the intensity of the total wave is

The explicit dependence on r has been omitted for convenience.
Substituting

into (2.5-2), where φ1 and φ2 are the phases of the two waves, we
obtain

Interference Equation

with



This relation, called the interference equation, can also be
understood in terms of the geometry of the phasor diagram
displayed in Fig. 2.5-1(a), which demonstrates that the magnitude of
the phasor U is sensitive not only to the magnitudes of the
constituent phasors but also to the phase difference φ.

Figure 2.5-1 (a) Phasor diagram for the superposition of two waves
of intensities I1 and I2 and phase difference φ = φ2 − φ1. (b)
Dependence of the total intensity I on the phase difference φ.

It is clear, therefore, that the intensity of the sum of the two waves
is not the sum of their intensities [Fig. 2.5-1(b)]; an additional term,
attributed to interference between the two waves, is present in
(2.5-4). This term may be positive or negative, corresponding to
constructive or destructive interference, respectively. If I1 = I2 = I0,
for example, then (2.5-4) yields I = 2I0(1 + cos φ) = 4I0 cos2(φ/2),
so that for φ = 0, I = 4I0 (i.e., the total intensity is four times the
intensity of each of the superposed waves). For φ = π, on the other
hand, the superposed waves cancel one another and the total
intensity I = 0. Complete cancellation of the intensity in a region of
space is generally not possible unless the intensities of the
constituent superposed waves are equal. When φ = π/2 or 3π/2, the
interference term vanishes and I = 2I0; for these special phase
relationships the total intensity is the sum of the constituent
intensities. The strong dependence of the intensity I on the phase
difference φ permits us to measure phase differences by detecting
light intensity. This principle is used in numerous optical systems.

Interference is accompanied by a spatial redistribution of the optical
intensity without a violation of power conservation. For example,
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the two waves may have uniform intensities I1 and I2 in a particular
plane, but as a result of a position-dependent phase difference φ,
the total intensity can be smaller than I1 + I2 at some positions and
larger at others, with the total power (integral of the intensity)
conserved.

Interference is not observed under ordinary lighting conditions
since the random fluctuations of the phases φ1 and φ2 cause the
phase difference φ to assume random values that are uniformly
distributed between 0 and 2π, so that cos φ averages to 0 and the
interference term washes out. Light with such randomness is said to
be partially coherent and Chapter 12 is devoted to its study. The
analysis carried out here, and in subsequent chapters prior to
Chapter 12, assume that the light is coherent, and therefore
deterministic.

Interferometers

Consider the superposition of two plane waves, each of intensity I0,
propagating in the z direction, and assume that one wave is delayed
by a distance d with respect to the other so that 
U1 = √I0 exp (−jkz) and U2 = √I0 exp [−jk(z − d)]. The
intensity I of the sum of these two waves can be determined by
substituting I1 = I2 = I0 and φ = kd = 2πd/λ into the interference
equation (2.5-4),

The dependence of I on the delay d is sketched in Fig. 2.5-2. When
the delay is an integer multiple of λ, complete constructive
interference occurs and the total intensity I = 4I0. On the other
hand, when d is an odd integer multiple of λ/2, complete destructive
interference occurs and I = 0. The average intensity is the sum of
the two intensities, i.e., 2I0.



Figure 2.5-2 Dependence of the intensity I of the superposition of
two waves, each of intensity I0, on the delay distance d. When the
delay distance is a multiple of λ, the interference is constructive;
when it is an odd multiple of λ/2, the interference is destructive.

An interferometer is an optical instrument that splits a wave into
two waves using a beamsplitter, delays them by unequal distances,
redirects them using mirrors, recombines them using another (or
the same) beamsplitter, and detects the intensity of their
superposition. Three important examples are illustrated in Fig. 2.5-
3: the Mach–Zehnder interferometer, the Michelson
interferometer, and the Sagnac interferometer.



Figure 2.5-3 Interferometers: A wave U0 is split into two waves U1
and U2 (they are shown as shaded light and dark for ease of
visualization but are actually congruent). After traveling through
different paths, the waves are recombined into a superposition wave
U = U1 + U2 whose intensity is recorded. The waves are split and
recombined using beamsplitters. In the Sagnac interferometer the
two waves travel through the same path, but in opposite directions.

Since the intensity I is sensitive to the phase φ = 2πd/λ = 2πnd/λ0 =
2πnνd/co, where d is the difference between the distances traveled
by the two waves, the interferometer can be used to measure small
changes in the distance d, the refractive index n, or the wavelength
λo (or frequency ν). For example, if d/λo = 104, a change of the
refractive index of only Δn = 10−4 corresponds to an easily
observable phase change Δφ = 2π. The phase φ also changes by a
full 2π if d changes by a wavelength λ. An incremental change of the
frequency Δν = c/d has the same effect.

Interferometers have numerous applications. These include the
determination of distance in metrological applications such as
strain measurement and surface profiling; refractive-index
measurements; and spectrometry for the analysis of polychromatic
light (see Sec. 12.2B). In the Sagnac interferometer the optical paths
are identical but opposite in direction, so that rotation of the
interferometer results in a phase shift φ proportional to the angular
velocity of rotation. This system can therefore be used as a
gyroscope. Because of its precision, optical interferometry is also



being co-opted to detect the passage of gravitational waves, as
discussed subsequently.

Finally, we demonstrate that energy conservation in an
interferometer requires that the phases of the waves reflected and
transmitted at a beamsplitter differ by π/2. Each of the
interferometers considered in Fig. 2.5-3 has an output wave U = U1
+ U2 that exits from one side of the beamsplitter and also another
output wave U ′ = U ′

1 + U ′
2 that exits from the opposite side.

Energy conservation dictates that the sum of the intensities of these
two waves must equal the intensity of the incident wave, so that if
one output wave has high intensity by virtue of constructive
interference, the other must have low intensity by virtue of
destructive interference. This complementarity can only be achieved
if the phase differences φ and φ′, associated with the components of
output waves U and U′, respectively, differ by π. Since the
components of U and the components of U′ experience the same
pathlength differences, and the same numbers of reflections from
mirrors, the π phase difference must be attributable to different
phases introduced by the beamsplitter upon reflection and
transmission. Examination of the three interferometers in Fig. 2.5-3
reveals that for one output wave, each of the components is
transmitted through the beamsplitter once and reflected from it
once, so that no phase difference is introduced. However, for the
other output wave, one component is transmitted twice and the
other is reflected twice, thereby introducing the phase difference of
π. It follows that the phases of the reflected and transmitted waves
at a beamsplitter differ by π/2. This important property of the
beamsplitter is considered in more detail in Example 7.1-6.

Interference of Two Oblique Plane Waves

Consider now the interference of two plane waves of equal
intensities: one propagating in the z direction, 
U1 = √I0 exp (−jkz); the other propagating at an angle θ with
respect to the z axis, in the x–z plane, 
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U2 = √I0 exp [−j(k  cos  θ z + k  sin  θ x)], as illustrated in Fig.
2.5-4. At the z = 0 plane the two waves have a phase difference φ =
k sin θ x, for which the interference equation (2.5-4) yields a total
intensity

This pattern varies sinusoidally with x, with period 2π/k sin θ = λ/
sin θ, as shown in Fig. 2.5-4. If θ = 30°, for example, the period is 2λ.
This suggests a method of printing a sinusoidal pattern of high
resolution for use as a diffraction grating. It also suggests a method
of monitoring the angle of arrival θ of a wave by mixing it with a
reference wave and recording the resultant intensity distribution. As
discussed in Sec. 4.5, this is the principle that lies behind
holography.

Figure 2.5-4 The interference of two plane waves traveling at an
angle θ with respect to each other results in a sinusoidal intensity
pattern in the x direction with period λ/ sin θ.



EXERCISE 2.5-1

Interference of a Plane Wave and a Spherical Wave. A
plane wave traveling along the z direction with complex
amplitude A1 exp(−jkz), and a spherical wave centered at z = 0
and approximated by the paraboloidal wave of complex
amplitude (A2/z) exp(−jkz) exp[−jk(x2 + y2)/2z] [see (2.2-17)],
interfere in the z = d plane. Derive an expression for the total
intensity I(x, y, d). Assuming that the two waves have the same
intensities at the z = d plane, verify that the locus of points of
zero intensity is a set of concentric rings, as illustrated in Fig.
2.5-5.

Figure 2.5-5 The interference of a plane wave and a spherical
wave creates a pattern of concentric rings (illustrated at the
plane z = d).

EXERCISE 2.5-2

Interference of Two Spherical Waves. Two spherical
waves of equal intensity I0, originating at the points (−a, 0, 0)
and (a, 0, 0), interfere in the plane z = d as illustrated in Fig. 2.5-
6. This double-pinhole system is similar to that used by Thomas
Young in his celebrated double-slit experiment in which he
demonstrated interference. Use the paraboloidal approximation
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for the spherical waves to show that the intensity at the plane z
= d is

where the angle subtended by the centers of the two waves at the
observation plane is θ ≈ 2a/d. The intensity pattern is periodic
with period λ/θ.

Figure 2.5-6 Interference of two spherical waves of equal
intensities originating at the points P1 and P2. The two waves can
be obtained by permitting a plane wave to impinge on two
pinholes in a screen. The light intensity at an observation plane a
large distance d from the pinholes takes the form of a sinusoidal
interference pattern, with period ≈ λ/θ, along the direction of the
line connecting the pinholes.

B. Multiple-Wave Interference
The superposition of M monochromatic waves of the same
frequency, with complex amplitudes U1, U2,..., UM, gives rise to a
wave whose frequency remains the same and whose complex
amplitude is given by U = U1 + U2 + ··· + UM. Knowledge of the
intensities of the individual waves, I1, I2,..., IM, is not sufficient to
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determine the total intensity I = |U|2 since the relative phases must
also be known. The role played by the phase is dramatically
illustrated in the following examples.

Interference of M Waves with Equal Amplitudes and Equal
Phase Differences

We first examine the interference of M waves with complex
amplitudes

The waves have equal intensities I0, and phase difference φ between
successive waves, as illustrated in Fig. 2.5-7(a). To derive an
expression for the intensity of the superposition, it is convenient to
introduce the quantity h = exp(jφ) whereupon Um = √I0h

m−1.
The complex amplitude of the superposed wave is then

which has the corresponding intensity

whence



Interference of M Waves

Figure 2.5-7 (a) The sum of M phasors of equal magnitudes and
equal phase differences. (b) The intensity I as a function of φ. The
peak intensity occurs when all the phasors are aligned; it is then M
times greater than the mean intensity Ī = MI0. In this example M
= 5.

The intensity I is evidently strongly dependent on the phase
difference φ, as illustrated in Fig. 2.5-7(b) for M = 5. When φ = 2πq,
where q is an integer, all the phasors are aligned so that the
amplitude of the total wave is M times that of an individual
component, and the intensity reaches its peak value of M2I0. The
mean intensity averaged over a uniform distribution of φ is 
Ī = (1/2π) ∫ 2π

0 Idφ = MI0, which is the same as the result
obtained in the absence of interference. The peak intensity is
therefore M times greater than the mean intensity. The sensitivity
of the intensity to the phase is therefore dramatic for large M. At its
peak value, the intensity is magnified by a factor M over the mean
but it decreases sharply as the phase difference φ deviates slightly
from 2πq. In particular, when φ = 2π/M the intensity becomes zero.
It is instructive to compare Fig. 2.5-7(b) for M = 5 with Fig. 2.5-2 for
M = 2.
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EXERCISE 2.5-3

Bragg Reflection. Consider light reflected at an angle θ from
M parallel reflecting planes separated by a distance Λ, as shown
in Fig. 2.5-8. Assume that only a small fraction of the light is
reflected from each plane, so that the amplitudes of the M
reflected waves are approximately equal. Show that the reflected
waves have a phase difference φ = k(2Λ sin θ) and that the angle
θ at which the intensity of the total reflected light is maximum
satisfies

Bragg Angle

This equation defines the Bragg angle θB. Such reflections are
encountered when light is reflected from a multilayer structure
(see Sec. 7.1) or when X-ray waves are reflected from atomic
planes in crystalline structures. It also occurs when light is
reflected from a periodic structure created by an acoustic wave
(see Chapter 20). An exact treatment of Bragg reflection is
provided in Sec. 7.1C.



Figure 2.5-8 Reflection of a plane wave from M parallel planes
separated from each other by a distance Λ. The reflected waves
interfere constructively and yield maximum intensity when the
angle θ is the Bragg angle θB. Note that θ is defined with respect
to the parallel planes.

Fresnel Zone Plate

A Fresnel zone plate comprises a set of ring apertures of
increasing radii, decreasing widths, and equal areas, as illustrated in
Fig. 2.5-9.



Figure 2.5-9 The Fresnel zone plate serves as a spherical lens with
multiple focal lengths.

The structure serves as a spherical lens with multiple focal lengths,
as may be understood from the perspective of interference. The
center of the mth ring has a radius ρm at the mth peak of the cosine
function, i.e., πρ2

m/λf = m2π [see (2.4-9)]. At a focal point z = f,
the distance Rm to the mth ring is given by R2

m = f 2 + ρ2
m, so that 

Rm = √f 2 + 2mλf. If f is sufficiently large so that the angles
subtended by the rings are small, then a Taylor-series expansion
provides Rm ≈ f + mλ. Thus, the waves transmitted through
consecutive rings have pathlengths differing by a wavelength, so
that they interfere constructively at the focal point. A similar
argument applies for the other foci. The operation of the Fresnel
zone plate may also be understood from the perspective of Fourier
optics, as explained in Sec. 4.1A.

Interference of an Infinite Number of Waves of Progressively
Smaller Amplitudes and Equal Phase Differences

We now examine the superposition of an infinite number of waves
with equal phase differences and with amplitudes that decrease at a
geometric rate:



(2.5-14)

(2.5-15)

where h = |h|ejφ, |h|<1 and I0 is the intensity of the initial wave.
The amplitude of the mth wave is smaller than that of the (m − 1)st
wave by the factor |h| and the phase differs by φ. The phasor
diagram is shown in Fig. 2.5-10(a).

Figure 2.5-10 (a) The sum of an infinite number of phasors whose
magnitudes are successively reduced at a geometric rate and whose
phase differences φ are equal. (b) Dependence of the intensity I on
the phase difference φ for two values of ℱ. Peak values occur at φ =
2πq. The full width at half maximum of each peak is approximately
2π/ℱ when ℱ ≫ 1. The sharpness of the peaks increases with
increasing ℱ.

The superposition wave has a complex amplitude

The total intensity is then
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(2.5-17)

(2.5-18)

(2.5-19)

from which

It is convenient to write this equation in the form

Intensity of an Infinite Number of Waves

where the quantity

Finesse

is a parameter known as the finesse.

The intensity I is a periodic function of φ with period 2π, as
illustrated in Fig. 2.5-10(b). It reaches its maximum value Imax
when φ = 2πq, where q is an integer. This occurs when the phasors
align to form a straight line. (This result is not unlike that displayed
in Fig. 2.5-7(b) for the interference of M waves of equal amplitudes
and equal phase differences.) When the finesse F is large (i.e., the
factor |h| is close to 1), I becomes a sharply peaked function of φ.
Consider values of φ near the φ = 0 peak, as a representative
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example. For |φ|≪ 1, sin(φ/2) ≈ φ/2 whereupon (2.5-18) can be
written as

The intensity I then decreases to half its peak value when φ = π/F,
so that the full-width at half-maximum (FWHM) of the peak
becomes

Width of Interference Pattern

In the regime F ≫ 1, we then have Δφ ≪ 2π and the assumption that
φ ≪ 1 is applicable. The finesse F is the ratio of the period 2π to the
FWHM of the peaks in the interference pattern. It is therefore a
measure of the sharpness of the interference function, i.e., the
sensitivity of the intensity to deviations of φ from the values 2πq
corresponding to the peaks.

A useful device based on this principle is the Fabry–Perot
interferometer. It consists of two parallel mirrors within which light
undergoes multiple reflections. In the course of each round trip, the
light suffers a fixed amplitude reduction |h| = |r|, arising from
losses at the mirrors, and a phase shift φ = k2d = 4πνd/c =
2πν/(c/2d) associated with the propagation, where d is the mirror
separation. The total light intensity depends on the phase shift φ in
accordance with (2.5-18), attaining maxima when φ/2 is an integer
multiple of π. The proportionality of the phase shift φ to the optical
frequency ν shows that the intensity transmission of the Fabry–
Perot device will exhibit peaks separated in frequency by c/2d. The
width of these peaks will be (c/2d)/F, where the finesse F is
governed by the loss via (2.5-19). The Fabry–Perot interferometer,



which also serves as a spectrum analyzer, is considered further in
Sec. 7.1B. It is commonly used as a resonator for lasers, as discussed
in Secs. 11.1 and 16.1A.



(2.5-22)

EXAMPLE 2.5-1.

The LIGO Interferometer. The LIGO interferometer2

comprises a Michelson interferometer (MI) with a Fabry–Perot
interferometer (FPI) embedded in each of its reflecting arms, as
illustrated in Fig. 2.5-11. The MI is sensitive to the phase
difference encountered by the optical waves that propagate
through its arms; the FPIs serve to amplify the phases in each
arm and thereby to significantly increase the sensitivity of the
overall instrument.

If the phase shift encountered in a double pass within the FPI is
denoted φ, the phase of the overall intracavity reflecting field U
is, in accordance with (2.5-15),

If φ is taken to be an integer multiple of 2π, to which is added a
very small double-pass deviation 2Δφ ≪ π, a Taylor-series
expansion of (2.5-22) yields arg{U}≈ 2Δφ |h|/(1 − |h|). This
result is closely related to the finesse of the FPI, 
F = π√|h|/(1 − |h|), as provided in (2.5-19). When |h| ≈ 1 and
the finesse is high, we have arg{U} ≈ 2Δφ · 1/(1 − |h|) and F ≈
π/(1 − |h|), so that arg{U} ≈ (2F/π)Δφ. Thus, a very small phase
deviation Δφ imposed on the FPI is amplified by the factor 2F/π,
which is large. This phase amplification results from the many
reflections of the light between the mirrors of the FPI, which
effectively increases its length and thus its sensitivity.

The interference pattern associated with the Michelson
interferometer is characterized by the two-wave interference
equation (2.5-4). If the light injected into both of its arms is of
equal intensity, i.e., if I1 = I2 = 1

2 I0, (2.5-4) becomes I = I0[1 +
cos(φ2 − φ1)]. If the interferometer is then operated at a null and
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the phases for the two arms are taken to be φ2, 1 = (2F/π)Δφ2, 1,
the LIGO interference pattern is given by

The LIGO interferometer is thus a factor of 2F/π more sensitive
to the phase difference Δφ2 − Δφ1 than is a Michelson
interferometer with the same arm lengths.

This increased sensitivity is the rationale for using the LIGO
interferometer as a gravitational-wave detector. Generated by
cataclysmic events in the distant universe, gravitational waves
impose a dynamic strain on the fabric of space, which results in
differential length variations in the orthogonal arms of the
interferometer. This in turn modulates the phase difference Δφ2
− Δφ1, resulting in an overall light intensity whose magnitude is
proportional to the gravitational-wave-induced strain.
Gravitational waves were first detected by LIGO in 2015, a
hundred years after Einstein first predicted their existence.3



Figure 2.5-11 The LIGO interferometer is a Michelson
interferometer (MI) with Fabry–Perot interferometers (FPIs)
nested in each of its arms. Each FPI in the advanced-LIGO
instrument has a length d ≈ 4 km and a finesse F ≈ 450, so that
the enhancement in sensitivity with respect to an ordinary MI is
2F/π ≈ 286. The gravitational wave observed in 2015 imparted to
the LIGO interferometer a differential spatial strain (Δd2 −
Δd1)/d ≡ Δd/d with a magnitude of roughly 5 × 10−22, which
corresponds to a differential length deviation Δd of about 2 am
(some 400 times smaller than the radius of a proton). The light
source was a 20-W Nd:YAG laser operated at λo = co/ν = 1.064
μm. The corresponding phase difference Δφ2 − Δφ1 thus had a
magnitude of 2πνΔd/co ≈ 1.8 × 10−11 rad; its oscillations were in
the audio-frequency range.

2.6 POLYCHROMATIC AND PULSED LIGHT
Since the wavefunction of monochromatic light is a harmonic
function of time extending over all time (from −∞ to ∞), it is an



(2.6-1)

(2.6-2)

idealization that cannot be met in reality. This section is devoted to
waves of arbitrary time dependence, including optical pulses of
finite time duration. Such waves are polychromatic rather than
monochromatic. A more detailed introduction to the optics of
pulsed light is provided in Chapter 23.

A. Temporal and Spectral Description
Although a polychromatic wave is described by a wavefunction u(r,
t) with nonharmonic time dependence, it may be expanded as a
superposition of harmonic functions, each of which represents a
monochromatic wave. Since we already know how monochromatic
waves propagate in free space and through various optical
components, we can determine the effect of optical systems on
polychromatic light by using the principle of superposition.

Fourier methods permit the expansion of an arbitrary function of
time u(t), representing the wavefunction u(r, t) at a fixed position r,
as a superposition integral of harmonic functions of different
frequencies, amplitudes, and phases:

where v(ν) is determined by carrying out the Fourier transform

A review of the Fourier transform and its properties is presented in
Sec. A.1 of Appendix A. The expansion in (2.6-1) extends over
positive and negative frequencies. However, since u(t) is real,
v(−ν)= v ∗(ν) (see Sec. A.1). Thus, the negative- frequency
components are not independent; they are simply conjugated
versions of the corresponding positive-frequency components.

Complex Representation



(2.6-3)

(2.6-4)

(2.6-5)

It is convenient to represent the real function u(t) in (2.6-1) by a
complex function

that includes only the positive-frequency components (multiplied
by a factor of 2), and suppresses all the negative frequencies. The
Fourier transform of U(t) is therefore a function V (ν) = 2v(ν) for ν
≥ 0, and 0 for ν < 0.

The real function u(t) can be determined from its complex
representation U(t) by simply taking the real part,

The complex function U(t) is known as the complex analytic
signal. The validity of (2.6-4) can be verified by breaking the
integral in (2.6-1) into two parts, with limits from 0 to +∞ and from
−∞ to 0. The first integral equals 1

2 U(t) by virtue of (2.6-3),
whereas the second is given by

The first step above reflects a simple change of variable from ν to
−ν, while the second step uses the symmetry relation v(−ν) = v ∗(ν).
The net result is that u(t) can be expressed as a sum of the complex
function ½ U(t) and its conjugate, confirming (2.6-4).



(2.6-6)

As a simple example, the complex representation of the real
harmonic function u(t) = cos(ωt) is the complex harmonic function
U(t) = exp(jωt). This is the complex representation introduced in
Sec. 2.2A for monochromatic waves. In fact, the complex
representation of a polychromatic wave, as described in this section,
is simply a superposition of the complex representations of each of
its monochromatic Fourier components.

The complex analytic signal corresponding to the wavefunction
u(r,t) is called the complex wavefunction u(r,t). Since each of its
Fourier components satisfies the wave equation, so too does the
complex wavefunction u(r,t),

Wave Equation

Figure 2.6-1 shows the magnitudes of the Fourier transforms of the
wavefunction u(r,t) and the complex wavefunction u(r, t). In this
illustration the optical wave is quasi-monochromatic, i.e., it has
Fourier components with frequencies confined within a narrow
band of width Δν surrounding a central frequency ν0, such that Δν
≪ ν0.



(2.6-7)

Figure 2.6-1 (a) The magnitude |v(r,ν)| of the Fourier transform of
the wavefunction u(r,t). (b) The magnitude |V (r,ν)| of the Fourier
transform of the corresponding complex wavefunction u(r,t).

Intensity of a Polychromatic Wave

The optical intensity is related to the wavefunction by (2.1-3):

For a quasi-monochromatic wave with central frequency ν0 and
spectral width Δν ≪ ν0, the average (·) is taken over a time interval
much longer than the time of an optical cycle 1/ν0 but much shorter
than 1/Δν (see Sec. 2.1). Since U(r,t) is given by (2.6-4), the term U2

in (2.6-7) has components oscillating at frequencies ≈ 2ν0.
Similarly, the components of U∗2 oscillate at frequencies ≈−2ν0.
These terms are therefore washed out by the averaging operation.
The third term, however, contains only frequency differences, which
are of the order of Δν ≪ ν0. It therefore varies slowly and is
unaffected by the time-averaging operation. Thus, the third term in
(2.6 7) survives and the light intensity becomes
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(2.6-9)

Optical Intensity

The optical intensity of a quasi-monochromatic wave is the
absolute square of its complex wavefunction.

The simplicity of this result is, in fact, the rationale for introducing
the concept of the complex wavefunction.

Pulsed Plane Wave

The simplest example of pulsed light is a pulsed plane wave. The
complex wavefunction has the form

where the complex envelope A(t) is a time-varying function and
ν0 is the central optical frequency. The monochromatic plane wave
is a special case of (2.6-9) for which A(t) is constant, i.e., U(r,t) = A
exp[j2πν0(t − z/c)] = A exp(−jk0 z) exp(jω0t), where k0 = ω0/c and
ω0 = 2πν0.

Since u(r,t) in (2.6-9) is a function of t − z/c it satisfies the wave
equation (2.6-6) regardless of the form of the function A(·)
(provided that d2A/dt2 exists). This can be verified by direct
substitution.

If A(t) is of finite duration τ, then at any fixed position z the wave
lasts for a time period τ, and at any fixed time t it extends over a
distance cτ. It is therefore a wavepacket of fixed extent traveling in
the z direction (Fig. 2.6-2). As an example, a pulse of duration τ = 1
ps extends over a distance cτ = 0.3 mm in free space.

The Fourier transform of the complex wavefunction in (2.6-9) is



(2.6-10)
where A(ν) is the Fourier transform of A(t). This may be shown by
use of the frequency translation property of the Fourier transform
(see Sec. A.1 of Appendix A). The complex envelope A(t) is often
slowly varying in comparison with an optical cycle, so that its
Fourier transform A(ν) has a spectral width Δν much smaller than
the central frequency ν0. The spectral width Δν is inversely
proportional to the temporal width τ. In particular, if A(t) is
Gaussian, then its Fourier transform A(ν) is also Gaussian. If the
temporal and spectral widths are defined as the power-RMS widths,
then their product equals 1/4π (see Sec. A.2 of Appendix A). For
example, if τ = 1 ps, then Δν = 80 GHz. If the central frequency ν0 is
5 × 1014 Hz (corresponding to λo = 0.6 μm), then Δν/ν0 = 1.6 × 10−4,
so that the light is quasi-monochromatic. Fig. 2.6-2 illustrates the
temporal, spatial, and spectral characteristics of the pulsed plane
wave in terms of the wavefunction.

Figure 2.6-2 Temporal, spatial, and spectral characteristics of a
pulsed plane wave. (a) The wavefunction at a fixed position has
duration τ. (b) The wavefunction as a function of position at times t
and t + T. The pulse travels with speed c and occupies a distance cτ.
(c) The magnitude |A(ν)| of the Fourier transform of the complex
envelope. (d) The magnitude |V (ν)| of the Fourier transform of the
complex wavefunction is centered at ν0.
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The propagation of a pulsed plane wave through a medium with
frequency-dependent refractive index (i.e., with a frequency-
dependent speed of light c = co/n) is discussed in Sec. 5.7 while
other aspects of pulsed optics are considered in Chapter 23.

B. Light Beating
The dependence of the intensity of a polychromatic wave on time
may be attributed to interference among the monochromatic
components that constitute the wave. This concept is now
demonstrated by means of two examples: interference between two
monochromatic waves and interference among a finite number of
monochromatic waves.

Interference of Two Monochromatic Waves of Different
Frequencies

An optical wave composed of two monochromatic waves of
frequencies ν1 and ν2 and intensities I1 and I2 has a complex
wavefunction at some location in space

where the phases are taken to be zero and the r dependence has
been suppressed for convenience. The intensity of the total wave is
determined by use of the interference equation (2.5-4),

The intensity therefore varies sinusoidally at the difference
frequency |ν2 − ν1|, which is known as the beat frequency. This
phenomenon goes by a number of names: light beating, optical
mixing, photomixing, optical heterodyning, and coherent
detection.



Equation (2.6-12) is analogous to (2.5-7), which describes the
spatial interference of two waves of the same frequency traveling in
different directions. This can be understood in terms of the phasor
diagram in Fig. 2.5-1. The two phasors U1 and U2 rotate at angular
frequencies ω1 = 2πν1 and ω2 = 2πν2, so that the difference angle is
φ = φ2 − φ1 = 2π(ν2 − ν1)t, in accord with (2.6-12). Waves of
different frequencies traveling in different directions exhibit
spatiotemporal interference.

In electronics, beating or mixing is said to occur when the sum of
two sinusoidal signals is detected by a nonlinear (e.g., quadratic)
device called a mixer, producing signals at the difference and sum
frequencies. This device is used in heterodyne radio receivers. In
optics, photodetectors are responsive to the optical (Sec. 19.1B), or
optical intensity which, in accordance with (2.6-8), is proportional
to the absolute square of the complex wavefunction. Optical
detectors are therefore sensitive only to the difference frequency.

Much as (2.5-7) provides the basis for determining the direction of a
wave via the spatial interference pattern at a screen, (2.6-12)
provides a way of determining the frequency of an optical wave by
measuring the temporal interference pattern at the output of a
photodetector. The use of optical beating in optical heterodyne
receivers is discussed in Sec. 25.4. Other forms of optical mixing
make use of nonlinear media to generate optical-frequency
differences and sums, as described in Chapter 22.
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EXERCISE 2.6-1

Optical Doppler Radar. As a result of the Doppler effect, a
monochromatic optical wave of frequency ν, reflected from an
object moving with a velocity component v along the line of
sight from an observer, undergoes a frequency shift Δν = ±(2v/c)
ν, depending on whether the object is moving toward (+) or away
(−) from the observer. Assuming that the original and reflected
waves are superimposed, derive an expression for the intensity
of the resultant wave. Suggest a method for measuring the
velocity of a target using such an arrangement. If one of the
mirrors of a Michelson interferometer [Fig. 2.5-3(b)] moves
with velocity ±v, use (2.5-6) to show that the beat frequency is
±(2v/c) ν.

Interference of M Monochromatic Waves with Equal Intensities
and Equally Spaced Frequencies

The interference of a large number of monochromatic waves with
equal intensities, equal phases, and equally spaced frequencies can
result in the generation of brief pulses of light. Consider an odd
number of waves, M = 2L +1, each with intensity I0 and zero phase,
and with frequencies

centered about frequency ν0 and spaced by frequency νF ≪ ν0. At a
given position, the total wave has a complex wavefunction

This represents the sum of M phasors of equal magnitudes and
successive phases that differ by φ = 2πνFt. Results for the intensity
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are immediately available from the analysis carried out in Sec. 2.5B,
which is mathematically identical to the case at hand. Referring to
(2.5-12) and Fig. 2.5-7, and using the substitution φ = 2πt/TF with
TF = 1/νF, the total intensity is

As illustrated in Fig. 2.6-3, the intensity I(t) is a periodic sequence
of optical pulses with period TF, peak intensity M2I0, and mean
intensity Ī = MI0. The peak intensity is therefore M times greater
than the mean intensity. The duration of each pulse is
approximately TF/M so that the pulses become very short when M
is large. If νF = 1 GHz, for example, then TF = 1ns; for M = 1000,
pulses of 1-ps duration are generated.

Figure 2.6-3 Time dependence of the optical intensity I(t) of a
polychromatic wave comprising M monochromatic waves of equal
intensities, equal phases, and successive frequencies that differ by
νF . The intensity I(t) is a periodic train of pulses of period TF = 1/νF

with a peak that is M times greater than the mean Ī . The duration
of each pulse is M times shorter than the period. In this example M
= 5. These graphs should be compared with those in Fig. 2.5-7. The
magnitude of the Fourier transform |V (ν)| is shown in the lower
graph.

This example provides a dramatic demonstration of how M
monochromatic waves can conspire to produce a train of very short



optical pulses. We shall see in Sec. 16.4D that the modes of a laser
can be mode-locked in the fashion described above to produce a
sequence of ultrashort laser pulses.
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PROBLEMS
2.2-3 Spherical Waves. Use a spherical coordinate system to

verify that the complex amplitude of the spherical wave (2.2-
15) satisfies the Helmholtz equation (2.2-7).

2.2-4 Intensity of a Spherical Wave. Derive an expression for
the intensity I of a spherical wave at a distance r from its center
in terms of the optical power P. What is the intensity at r = 1 m
for 𝒫 = 100 W?

2.2-5 Cylindrical Waves. Derive expressions for the complex
amplitude and intensity of a monochromatic wave whose
wavefronts are cylinders centered about the y axis.

2.2-6 Paraxial Helmholtz Equation. Derive the paraxial
Helmholtz equation (2.2-23) using the approximations in (2.2-
21) and (2.2-22).

2.2-7 Conjugate Waves. Compare a monochromatic wave with
complex amplitude U(r) to a monochromatic wave of the same
frequency but with complex amplitude U∗(r), with respect to
intensity, wavefronts, and wavefront normals. Use the plane
wave U(r)= A exp[−jk(x + y)/√2] and the spherical wave U(r)
= (A/r) exp(−jkr) as examples.



2.3-1 Wave in a GRIN Slab. Sketch the wavefronts of a wave
traveling in the graded-index SELFOC slab described in
Example 1.3-1.

2.4-7 Reflection of a Spherical Wave from a Planar Mirror. A
spherical wave is reflected from a planar mirror sufficiently far
from the wave origin so that the Fresnel approximation is
satisfied. By regarding the spherical wave locally as a plane
wave with slowly varying direction, use the law of reflection of
plane waves to determine the nature of the reflected wave.

2.4-8 Optical Pathlength. A plane wave travels in a direction
normal to a thin plate made of N thin parallel layers of
thicknesses dq and refractive indices nq, q = 1, 2,..., N. If all
reflections are ignored, determine the complex amplitude
transmittance of the plate. If the plate is replaced with a
distance d of free space, what should d be so that the same
complex amplitude transmittance is obtained? Show that this
distance is the optical pathlength defined in Sec. 1.1.

2.4-9 Diffraction Grating. Repeat Exercise 2.4-5 for a thin
transparent plate whose thickness d(x, y) is a square (instead
of sinusoidal) periodic function of x of period Λ ≫ λ. Show that
the angle θ between the diffracted waves is still given by θ ≈ λ/
Λ. If a plane wave is incident in a direction normal to the
grating, determine the amplitudes of the different diffracted
plane waves.

2.4-10 Reflectance of a Spherical Mirror. Show that the
complex amplitude reflectance r(x, y) (the ratio of the complex
amplitudes of the reflected and incident waves) of a thin
spherical mirror of radius R is given by r(x, y)= h0 exp[−jko(x2

+ y2)/R], where h0 is a constant. Compare this to the complex
amplitude transmittance of a lens of focal length f = −R/2.

2.5-4 Standing Waves. Derive an expression for the intensity I of
the superposition of two plane waves of wavelength λ traveling
in opposite directions along the z axis. Sketch I versus z.



2.5-5 Fringe Visibility. The visibility of an interference pattern
such as that described by (2.5-4) and plotted in Fig. 2.5-1 is
defined as the ratio V =(Imax − Imin)/(Imax + Imin), where Imax
and Imin are the maximum and minimum values of I. Derive an
expression for V as a function of the ratio I1/I2 of the two
interfering waves and determine the ratio I1/I2 for which the
visibility is maximum.

2.5-6 Michelson Interferometer. If one of the mirrors of the
Michelson interferometer [Fig. 2.5-3(b)] is misaligned by a
small angle Δθ, describe the shape of the interference pattern
in the detector plane. What happens to this pattern as the other
mirror moves?

2.6-2 Pulsed Spherical Wave.

a. Show that a pulsed spherical wave has a complex wavefunction
of the form U(r, t) = (1/r)a(t − r/c), where a(t) is an arbitrary
function.

b. An ultrashort optical pulse has a complex wavefunction with
central frequency corresponding to a wavelength λo = 585 nm
and a Gaussian envelope of RMS width of σt = 6 fs (1 fs = 10−15
s). How many optical cycles are contained within the pulse
width? If the pulse propagates in free space as a spherical wave
initiated at the origin at t = 0, describe the spatial distribution
of the intensity as a function of the radial distance at time t = 1
ps.

Notes
1 The complex wavefunction for a monochromatic plane wave is
written in a form commonly used in electrical engineering: U(r, t) =
A exp[j(ωt − k · r)]. In the physics literature, this same wave is
usually written as U(r, t) = A exp[−i(ωt − k · r)]; correspondence is
attained by simply replacing i with −j, where i = j = √−1. This



choice has no bearing on the final result, as is evidenced by
observing that the wavefunction u(r, t) in (2.2 13) takes the form of
a cosine function, for which cos(x) = cos(−x).
2 LIGO is an acronym for Laser Interferometer Gravitational-Wave
Observatory, a facility with dual sites in Livingston, Louisiana and
Hanford, Washington.
3 B. P. Abbott et al., Observation of Gravitational Waves from a
Binary Black Hole Merger, Physical Review Letters, vol. 116, 061102,
2016. The near-simultaneous detections at both LIGO sites, which
are separated by a distance of ≈ 3000 km and a time of ≈ 10 msec,
unequivocally confirmed the cosmological origin of the waves.
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The Gaussian beam, named after the German mathematician Carl
Friedrich Gauss (1777– 1855), is circularly symmetric and has a
radial intensity that follows the form of a Gaussian distribution.

Edmond Nicolas Laguerre (1834–1886), a French
mathematician, devised a set of polynomials useful for describing
circularly symmetric light beams with helical wavefronts and orbital
angular momentum.



Friedrich Wilhelm Bessel (1784–1846), a noted German
astronomer, established a set of functions that characterize the
radial intensity of circularly symmetric, planar-wavefront, non-
diffracting optical beams.

Can light be spatially confined and transported in free space without
angular spread? Although the wave nature of light precludes the
possibility of such idealized transport, light can, in fact, be confined
in the form of beams that come as close as possible to waves that
are spatially localized and nondiverging.

The two extremes of angular and spatial confinement are the plane
wave and the spherical wave, respectively. The wavefront normals
(rays) of a plane wave coincide with the direction of travel of the
wave so that there is no angular spread, but its energy extends
spatially over all space. The spherical wave, in contrast, originates
from a single spatial point, but its wavefront normals (rays) diverge
in all angular directions.

Waves whose wavefront normals make small angles with the z axis
are called paraxial waves. They must satisfy the paraxial Helmholtz
equation, which was derived in Sec. 2.2C. The Gaussian beam is
an important solution of this equation that exhibits the
characteristics of an optical beam, as attested to by a number of its



properties. The beam power is principally concentrated within a
small cylinder that surrounds the beam axis. The intensity
distribution in any transverse plane is a circularly symmetric
Gaussian function centered about the beam axis. The width of this
function is minimum at the beam waist and gradually becomes
larger as the distance from the waist increases in both directions.
The wavefronts are approximately planar near the beam waist, then
gradually curve as the distance from the waist increases, and
ultimately become approximately spherical far from the beam waist.
The angular divergence of the wavefront normals assumes the
minimum value permitted by the wave equation for a given beam
width. The wavefront normals are therefore much like a thin pencil
of rays. Under ideal conditions, the light from many types of lasers
takes the form of a Gaussian beam.

This Chapter

An expression for the complex amplitude of the Gaussian beam is
set forth in Sec. 3.1 and a detailed discussion of its physical
properties (intensity, power, beam width, beam divergence, depth of
focus, and phase) is provided. The shaping of Gaussian beams
(focusing, relaying, collimating, and expanding) via the use of
various optical components is the subject of Sec. 3.2. In Secs. 3.3
and 3.4 we introduce more general families of optical beams, known
as Hermite–Gaussian and Laguerre–Gaussian beams, respectively,
of which the simple Gaussian beam is a member. Finally, in Sec. 3.5
we discuss nondiffracting beams, including Bessel, Bessel–
Gaussian, and Airy beams.

3.1 THE GAUSSIAN BEAM
A. Complex Amplitude
The concept of paraxial waves was introduced in Sec. 2.2C. A
monochromatic paraxial wave is a plane wave traveling along the z
direction e−jkz (with wavenumber k = 2π/λ and wavelength λ),



(3.1-2)

(3.1-3)

(3.1-4)

(3.1-1)

modulated by a complex envelope A(r) that is a slowly varying
function of position (see Fig. 2.2-5), so that its complex amplitude is

The envelope is taken to be approximately constant within a
neighborhood of size λ, so that the wave locally maintains its plane-
wave nature but exhibits wavefront normals that are paraxial rays.

In order that the complex amplitude U(r) satisfy the Helmholtz
equation, ∇2U + k2U = 0, the complex envelope A(r) must satisfy the
paraxial Helmholtz equation (2.2-23)

where  is the transverse Laplacian operator. A
simple solution to the paraxial Helmholtz equation yields the
paraboloidal wave (see Exercise 2.2-2), for which

where A1 is a constant. The paraboloidal wave is the paraxial
approximation of the spherical wave U(r) = (A1/r) exp(−jkr) when x
and y are much smaller than z (see Sec. 2.2B).

Another solution of the paraxial Helmholtz equation leads to the
Gaussian beam. It is obtained from the paraboloidal wave by use of
a simple transformation. Since the complex envelope of the
paraboloidal wave (3.1-3) is a solution of the paraxial Helmholtz
equation (3.1-2), so too is a shifted version of it, with z − ξ replacing
z where ξ is a constant:



(3.1-5)

(3.1-6)

This represents a paraboloidal wave centered about the point z = ξ
instead of about z = 0. Equation (3.1-4) remains a solution of (3.1-2)
even when ξ is complex, but the solution acquires dramatically
different properties. In particular, when ξ is purely imaginary, say ξ
= −jz0 where z0 is real, (3.1-4) yields the complex envelope of the
Gaussian beam

Complex Envelope

The quantity q(z) is called the q-parameter of the beam and the
parameter z0 is known as the Rayleigh range.

To separate the amplitude and phase of this complex envelope, we
write the complex function 1/q(z)=1/(z + jz0) in terms of its real
and imaginary parts by defining two new real functions, R(z) and
W(z), such that

It will be shown subsequently that W(z) and R(z) are measures of
the beam width and wavefront radius of curvature, respectively.
Expressions for W(z) and R(z) as functions of z and z0 are provided
in (3.1-8) and (3.1-9). Substituting (3.1-6) into (3.1 5) and using (3.1-
1) leads directly to an expression for the complex amplitude U(r) of
the Gaussian beam:



(3.1-7)

(3.1-8)

(3.1-9)

(3.1-10)

(3.1-11)

Complex Amplitude

Beam Parameters

A new constant A0 = A1/jz0 has been defined for convenience.

The expression for the complex amplitude of the Gaussian beam
provided above is central to this chapter. It is described by two
independent parameters, A0 and z0, which are determined from the
boundary conditions. All other parameters are related to the z0 and
the wavelength λ by (3.1-8) to (3.1-11). The significance of these
parameters will become clear in the sequel.

B. Properties
Equations (3.1-7)–(3.1-11) will now be used to determine the
properties of the Gaussian beam.



(3.1-12)

(3.1-13)

Intensity

The optical intensity I(r)= |U(r)|2 is a function of the axial and
radial positions, z and  respectively

where I0 = |A0|2 . At any value of z the intensity is a Gaussian
function of the radial distance ρ — hence the appellation “Gaussian
beam.” The Gaussian function has its peak on the z axis, at ρ = 0,
and decreases monotonically as ρ increases. The beam width W(z)
of the Gaussian distribution increases with the axial distance z as
illustrated in Fig. 3.1-1.

Figure 3.1-1 Normalized Gaussian beam intensity I/I0 as a
function of the radial distance ρ at different axial distances: (a) z =
0;(b) z = z0;(c) z = 2z0.

On the beam axis (ρ = 0) the intensity in (3.1-12) reduces to



(3.1-14)

(3.1-15)

which has its maximum value I0 at z = 0 and decays gradually with
increasing z, reaching half its peak value at z = ±z0 (Fig. 3.1-2).
When |z| ≫ z0, I(0,z) ≈ , so that the intensity decreases with
distance in accordance with an inverse square law, as for spherical
and paraboloidal waves. Overall, the beam center (z = 0, ρ = 0) is
the location of the greatest intensity: I(0, 0) = I0.

Figure 3.1-2 The normalized beam intensity I/I0 at points on the
beam axis (ρ = 0) as a function of distance along the beam axis, z.

Power

The total optical power carried by the beam is the integral of the
optical intensity over any transverse plane (say at position z),

which yields

The beam power is thus half the peak intensity multiplied by the
beam area. The result is independent of z, as expected. Since optical
beams are often described by their power P, it is useful to express I0
in terms of P via (3.1-15), whereupon (3.1-12) can be rewritten in the
form



(3.1-16)

(3.1-17)

(3.1-18)

Beam Intensity

The ratio of the power carried within a circle of radius ρ0 in the
transverse plane to the total power, at position z, is

The power contained within a circle of radius ρ0 = W(z) is therefore
approximately 86% of the total power. About 99% of the power is
contained within a circle of radius 1.5 W(z).

Beam Width

At any transverse plane, the beam intensity assumes its peak value
on the beam axis, and decreases by the factor 1/e2 ≈ 0.135 at the
radial distance ρ = W(z). Since 86% of the power is carried within a
circle of radius W(z), we regard W(z) as the beam radius (or beam
width). The RMS width of the intensity distribution, on the other
hand, is  (see Appendix A, Sec. A.2, for the different
definitions of width).

The dependence of the beam width on z is governed by (3.1-8),

Beam Width (Beam Radius)



(3.1-19)

(3.1-20)

It assumes its minimum value, W0, at the plane z = 0. This is the
beam waist and W0 is thus known as the waist radius. The waist
diameter 2W0 is also called the spot size. The beam width
increases monotonically with z, and assumes the value  at z =
±z0 (Fig. 3.1-3).

Figure 3.1-3 The beam width W(z) assumes its minimum value
W0 at the beam waist (z = 0), reaches  at z = ±z0, and
increases linearly with z for large z.

Beam Divergence

For z ≫ z0 the first term of (3.1-18) may be neglected, which results
in the linear relation

As illustrated in Fig. 3.1-3, the beam then diverges as a cone of half-
angle

where we have made use of (3.1-11). Approximately 86% of the
beam power is confined within this cone, as indicated following
(3.1-17).

Rewriting (3.1-20) in terms of the spot size, the angular divergence
of the beam becomes



(3.1-21)

(3.1-22)

Divergence Angle

The divergence angle is directly proportional to the wavelength λ
and inversely proportional to the spot size 2W0. Squeezing the spot
size (beam-waist diameter) therefore leads to increased beam
divergence. It is clear that a highly directional beam is constructed
by making use of a short wavelength and a thick beam waist.

Depth of Focus

Since the beam has its minimum width at z = 0, as shown in Fig.
3.1-3, it achieves its best focus at the plane z = 0. In either direction,
the beam gradually grows “out of focus.” The axial distance within
which the beam width is no greater than a factor  times its
minimum value, so that its area is within a factor of 2 of the
minimum, is known as the depth-of-focus or confocal
parameter (Fig. 3.1-4). It is evident from (3.1-18) and (3.1-11) that
the actual depth of focus is twice the Rayleigh range:

Depth of Focus

Figure 3.1-4 Depth of focus of a Gaussian beam.



(3.1-23)

(3.1-24)

The depth of focus is therefore directly proportional to the area of
the beam at its waist, , and inversely proportional to the
wavelength, λ. A beam focused to a small spot size thus has a short
depth of focus; locating the plane of focus thus requires increased
accuracy. Small spot size and long depth of focus can be
simultaneously attained only for short wavelengths. As an example,
at λo = 633 nm (a common He– Ne laser-line wavelength), a spot
size 2W0 = 2 cm corresponds to a depth of focus 2z0 ≈ 1 km. A much
smaller spot size of 20 μm corresponds to a much shorter depth of
focus of 1 mm.

Phase

The phase of the Gaussian beam is, from (3.1-7),1

On the beam axis (ρ = 0) the phase comprises two components:

The first, kz, is the phase of a plane wave. The second represents a
phase retardation ζ(z) given by (3.1-10), which ranges from −π/2 at
z = −∞ to +π/2 at z = ∞, as illustrated in Fig. 3.1-5. This phase
retardation corresponds to an excess delay of the wavefront in
relation to a plane wave (see also Fig. 3.1-8). The total accumulated
excess retardation as the wave travels from z = −∞ to z = ∞ is π. This
phenomenon is known as the Gouy effect. It arises from the
transverse spatial confinement of the beam, which is accompanied
by a spread in its transverse wavevector components by virtue of the
Fourier transform. This results in a reduction in the axial
component of the wavevector kz from its plane-wave value 

 (see Sec. 2.2B).2



Figure 3.1-5 The function ζ(z) represents the phase retardation of
the Gaussian beam relative to a uniform plane wave at points on the
beam axis.

Wavefronts

The third component in (3.1-23) is responsible for wavefront
bending. It represents the deviation of the phase at off-axis points in
a given transverse plane from that at the axial point. The surfaces of
constant phase satisfy k[z + ρ2/2R(z)] − ζ(z)=2πq. Since ζ(z) and
R(z) are relatively slowly varying functions, they are effectively
constant at points within the beam width on each wavefront. We
may therefore write z + ρ2/2R ≈ qλ + ζλ/2π, where R = R(z) and ζ =
ζ(z). This is the equation of a paraboloidal surface with radius of
curvature R. Thus, R(z), plotted in Fig. 3.1-6, is the radius of
curvature of the wavefront at position z along the beam axis.

Figure 3.1-6 The radius of curvature R(z) of the wavefronts of a
Gaussian beam as a function of position along the beam axis. The
dashed line is the radius of curvature of a spherical wave.



As illustrated in Fig. 3.1-6, the radius of curvature R(z) is infinite at
z = 0, so that the wavefronts are planar, i.e., they have no curvature.
The radius decreases to a minimum value of 2z0 at z = z0, where the
wavefront has the greatest curvature (Fig. 3.1-7). The radius of
curvature subsequently increases as z increases further until R(z) ≈
z for z ≫ z0. The wavefronts are then approximately the same as
those of a spherical wave. The pattern of the wavefronts is identical
for negative z, except for a change in sign (Fig. 3.1-8). We have
adopted the convention that a diverging wavefront has a positive
radius of curvature whereas a converging wavefront has a negative
radius of curvature.

Figure 3.1-7 Wavefronts of a Gaussian beam.



Figure 3.1-8 Wavefronts of (a) a uniform plane wave; (b) a
spherical wave; (c) a Gaussian beam. At points near the beam
center, the Gaussian beam resembles a plane wave. At large z the
beam behaves like a spherical wave except that its phase is retarded
by π/2 (a quarter of the distance between two adjacent wavefronts).

Parameters Required to Characterize a Gaussian Beam

Assuming that the wavelength λ is known, how many parameters
are required to describe a plane wave, a spherical wave, and a
Gaussian beam? The plane wave is completely specified by its
complex amplitude and direction. The spherical wave is specified by



its complex amplitude and the location of its origin. The Gaussian
beam, in contrast, requires more parameters for its characterization
— its peak amplitude [determined by A0 in (3.1-7)], its direction (the
beam axis), the location of its waist, and one additional parameter,
such as the waist radius W0 or the Rayleigh range z0. Thus, if the
beam peak amplitude and the axis are known, two additional
parameters are required for full specification.

If the complex q-parameter, q(z)= z + jz0, is known, the distance to
the beam waist z and the Rayleigh range z0 are readily identified as
the real and imaginary parts thereof. As an example, if q(z) is 3+ j4
cm at some point on the beam axis, we infer that the beam waist lies
at a distance z = 3cm to the left of that point and that the depth of
focus is 2z0 = 8 cm. The waist radius W0 may then be determined
via (3.1-11). The quantity q(z) is therefore sufficient for
characterizing a Gaussian beam of known peak amplitude and beam
axis. Given q(z) at a single point, the linear dependence of q on z
permits it to be determined at all points: if q(z)= q1 and q(z + d)=
q2, then q2 = q1 + d. Using the example provided immediately above,
at z = 13 cmit is evident that q = 13+ j4.

If the beam width W(z) and the radius of curvature R(z) are known
at an arbitrary point on the beam axis, the beam can be fully
identified by solving (3.1-8), (3.1-9), and (3.1-11) for z, z0, and W0.
Alternatively, the beam can be identified by determining q(z) from
W(z) and R(z) using (3.1-6).



Summary: Properties of the Gaussian Beam at
Special Locations

At the location z = z0. At an axial distance z0 from the beam
waist, the wave has the following properties:

– The intensity on the beam axis is  the peak intensity.

– The beam width is a factor of  greater than the
width at the beam waist, and the beam area is larger by a
factor of 2.

– The phase on the beam axis is retarded by an angle π/4
relative to the phase of a plane wave.

– The radius of curvature of the wavefront achieves its
minimum value, R = 2z0, so that the wavefront has the
greatest curvature.

Near the beam center. At locations for which |z|≪ z0 and ρ
≪ W0, the quantity , so
that the beam intensity, which is proportional to the square
of this quantity, is approximately constant. Also, R(z) ≈ 

 and ζ(z) ≈ 0, so that the phase k[z + ρ2/2R(z)] ≈ kz(1 +
) ≈ kz, by virtue of (3.1-11) when z0 ≫ λ. The Gaussian

beam may therefore be approximated near its center by a
plane wave.

Far from the beam waist. At transverse locations within the
waist radius (ρ < W0), but far from the beam waist (z ≫ z0),
the wave behaves approximately like a spherical wave. In
this domain W(z) ≈ W0z/z0 ≫ W0 and ρ<W0, so that
exp[−ρ2/W2(z)] ≈ 1 and the beam intensity is approximately
uniform. Since R(z) ≈ z in this regime, the wavefronts are
approximately spherical. Thus, except for the Gouy phase
retardation ζ(z) ≈ π/2, the complex amplitude of the



Gaussian beam approaches that of the paraboloidal wave,
which in turn approaches that of the spherical wave in the
paraxial approximation.



EXERCISE 3.1-1

Parameters of a Gaussian Laser Beam. A 1-mW He–Ne
laser produces a Gaussian beam at a wavelength of λ = 633 nm
with a spot size 2W0 = 0.1 mm.

(a) Determine the angular divergence of the beam, its depth
of focus, and its diameter at z = 3.5 × 105 km (approximately
the distance to the moon).

(b) What is the radius of curvature of the wavefront at z = 0,
z = z0, and z = 2z0?

(c) What is the optical intensity (in W/cm2) at the beam
center (z = 0, ρ = 0) and at the axial point z = z0? Compare
this with the intensity at z = z0 of a 100-W spherical wave
produced by a small isotropically emitting light source
located at z = 0.

EXERCISE 3.1-2

Validity of the Paraxial Approximation for a Gaussian
Beam. The complex envelope A(r) of a Gaussian beam is an
exact solution of the paraxial Helmholtz equation (3.1-2), but its
corresponding complex amplitude U(r)= A(r) exp(−jkz) is only
an approximate solution of the Helmholtz equation (2.2-7). This
is because the paraxial Helmholtz equation is itself approximate.
The approximation is satisfactory if the condition (2.2-21) is
satisfied. Show that if the divergence angle θ0 of a Gaussian
beam is small (θ0 ≪ 1), the necessary condition (2.2-21) for the
validity of the paraxial Helmholtz equation is indeed satisfied.

EXERCISE 3.1-3



(3.1-25)

(3.1-26)

Determination of a Beam with Given Width and
Curvature. Consider a Gaussian beam whose width W and
radius of curvature r are known at a particular point on the beam
axis (Fig. 3.1-9). Show that the beam waist is located to the left at
a distance

and that the waist radius is

Figure 3.1-9 Given W and R, determine z and W0.

EXERCISE 3.1-4

Determination of the Width and Curvature at One Point
Given the Width and Curvature at Another Point.
Assume that the width and radius of curvature of a Gaussian
beam of wavelength λ = 1 μm at some point on the beam axis are
W1 = 1 mm and R1 = 1 m, respectively (Fig. 3.1-10). Determine
the beam width W2 and radius of curvature R2 at a distance d =
10 cm to the right.



(3.1-27)

(3.1-28)

Figure 3.1-10 Given W1, R1 and d, determine W2 and R2.

EXERCISE 3.1-5

Identification of a Beam with Known Curvatures at
Two Points. A Gaussian beam has radii of curvature R1 and R2
at two points on the beam axis separated by a distance d, as
illustrated in Fig. 3.1-11. Verify that the location of the beam
center and its depth of focus may be determined from the
relations



(3.1-29)

(3.1-30)

Figure 3.1-11 Given R1, R2, and d, determine z1, z2, z0, and W0.

C. Beam Quality
The Gaussian beam is an idealization that is only approximately
met, even in well-designed laser systems. A measure of the quality
of an optical beam is the deviation of its profile from Gaussian
form. For a beam of waist diameter 2Wm and angular divergence
2θm, a useful numerical measure of the beam quality is provided by
the -factor, which is defined as the ratio of the waist-diameter–
divergence product, 2Wm · 2θm (usually measured in units of
mm·mrad), to that expected for a Gaussian beam, which is 2W0 ·
2θ0 = 4λ/π. Thus,

If the two beams have the same waist diameter, the -factor is
simply the ratio of their angular divergences,



where θ0 = λ/πW0 = λ/πWm [see (3.1-21)]. Since the Gaussian beam
enjoys the smallest possible divergence angle of all beams with the
same waist diameter,  ≥ 1. The specification of the -factor of
an optical beam thus signifies a divergence angle that is  times
greater than that of a Gaussian beam of the same waist diameter.

Optical beams produced by commonly available Helium–Neon
lasers usually exhibit  < 1.1. For ion lasers,  is typically in the
range 1.1–1.3. Collimated TEM00 diode-laser beams usually exhibit 

 ≈1.1–1.7, whereas high-energy multimode lasers display 
factors as high as 3 or 4.

For an optical beam that is approximately Gaussian, the -factor
may be determined by making use of a charge-coupled device (CCD)
camera to measure the intensity profile of the beam at various
locations along the axis of the beam. The beam is focused, by a high-
quality lens with a long focal length and large F#, to a size that is
roughly the same as that of the CCD array [see (3.2-17)]. First, the
beam center is located by finding the plane at which the spot size is
minimized; the waist diameter 2Wm is then measured. The axial
distance from the beam center to the plane at which √ the beam
diameter increases by a factor of  provides the Rayleigh range
zm. An estimate of the angular divergence 2θm is obtained by using
the Gaussian-beam relation , which is obtained from
(3.1-11) and (3.1-20). Finally, the -factor is computed by means of
(3.1-29).

3.2 TRANSMISSION THROUGH OPTICAL
COMPONENTS
We proceed now to a discussion of the effects of various optical
components on a Gaussian beam. We demonstrate that if a
Gaussian beam is transmitted through a set of circularly symmetric
optical components aligned with the beam axis, the Gaussian beam
remains a Gaussian beam, provided that the overall system



(3.2-1)

(3.2-2)

maintains the paraxial nature of the wave. The beam is reshaped,
however — its waist and curvature are altered. The results of this
section are of importance in the design of optical instruments that
rely on Gaussian beams.

A. Transmission Through a Thin Lens
The complex amplitude transmittance of a thin lens of focal length f
is proportional to exp(jkρ2/2f) [see (2.4-9)]. When a Gaussian beam
traverses such a component, its complex amplitude, given in (3.1-7),
is multiplied by this phase factor. As a result, although the beam
width is not altered (W′ = W ), the wavefront is.

To be specific consider a Gaussian beam centered at z = 0, with
waist radius W0, transmitted through a thin lens located at position
z, as illustrated in Fig. 3.2-1. The phase of the incident wave at the
plane of the lens is kz + kρ2/2R−ζ, as prescribed by (3.1-23), where
R = R(z) and ζ = ζ(z) are given in (3.1-9) and (3.1-10), respectively.
The phase of the emerging wave therefore becomes

where

Figure 3.2-1 Transmission of a Gaussian beam through a thin lens.



(3.2-3)

(3.2-4)

(3.2-5)

(3.2-6)

(3.2-7)

We conclude that the transmitted wave is itself a Gaussian beam
with width W′ = W and radius of curvature R′, where R′ satisfies the
imaging equation 1/R−1/R′ = 1/f. The sign of R is positive since the
wavefront of the incident beam is diverging whereas the opposite is
true of R′.

The parameters of the emerging beam are determined by referring
to the outcome of Exercise 3.1-3, in which the parameters of a
Gaussian beam are determined from its width and curvature at a
given point. Equation (3.1-26) provides that the waist radius is

whereas (3.1-25) provides that the beam center is located at a
distance from the lens given by

The minus sign in (3.2-4) indicates that the beam waist lies to the
right of the lens. Substituting  and R = z[1 +
(z0/z)2] from (3.1-8) and (3.1-9) into (3.2-2) to (3.2-4) yields a set of
formulas that relate the unprimed parameters of the Gaussian beam
incident on the lens to the primed parameters of the Gaussian beam
that emerges from the lens, as represented in Fig. 3.2-1:
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(3.2-9)

(3.2-9a)

(3.2-10)

(3.2-11)

(3.2-12)

Parameter Transformation by a Lens

The magnification factor M evidently plays an important role. The
waist radius is magnified by M, the depth of focus is magnified by
M2, and the divergence angle is minified by M.

Limit of Ray Optics

Consider the limiting case in which (z − f) ≫ z0, so that the lens is
well outside the depth of focus of the incident beam (Fig. 3.2-2).
The beam may then be approximated by a spherical wave, and, in
accordance with (3.2-9) and (3.2-9a), r ≪ 1 so that M ≈ Mr. In this
case (3.2-5)–(3.2-9a) reduce to



Figure 3.2-2 Beam imaging in the ray-optics limit.

Equations (3.2-10)–(3.2-12) are precisely the relations provided by
ray optics for the location and size of a patch of light of diameter
2W0 located at a distance z to the left of a thin lens (see Sec. 1.2C).
Indeed, the magnification factor Mr is identically that based on ray
optics. Since (3.2-9) provides that M < Mr, the maximum Gaussian-
beam magnification attainable is the ray-optics limit Mr. As r2

increases, the magnification is reduced and the deviation from ray
optics widens. Equations (3.2-10)–(3.2-12) also correspond to the
results obtained from wave optics for the focusing of a spherical
wave in the paraxial approximation (see Sec. 2.4B).

B. Beam Shaping
A lens, or sequence of lenses, may be used to reshape a Gaussian
beam without compromising its Gaussian nature. Of course, graded-
index components can serve this purpose as well.

Beam Focusing

For a lens placed at the waist of a Gaussian beam, as illustrated in
Fig. 3.2-3, the appropriate parameter-transformation formulas are
obtained by simply substituting z = 0 in (3.2-5) to (3.2-9a). The
transmitted beam is then focused to a waist radius  at a distance
z′ given by



(3.2-13)

(3.2-14)

(3.2-15)

(3.2-16)

In the special case when the depth of focus of the incident beam 2z0
is much longer than the focal length f of the lens, as illustrated in
Fig. 3.2-4, (3.2-13) reduces to  Using  from
(3.1-11), along with (3.1-20), then leads to the simple result

The transmitted beam is then focused in the focal plane of the lens
as would be expected for a collimated beam of parallel rays
impinging on the lens. This result emerges because, at its waist, the
incident Gaussian beam is well approximated by a plane wave. Wave
optics provides that the focused waist radius  is directly
proportional to the wavelength and the focal length, and inversely
proportional to the radius of the incident beam. The spot size
expected from ray optics is, of course, zero, a result that is indeed
obtained from the wave-optics formulas as λ → 0.
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Figure 3.2-3 Focusing a Gaussian beam with a lens at the beam
waist.

Figure 3.2-4 Focusing a collimated beam.

In many applications, such as laser scanning, laser printing,
compact-disc (CD) burning, and laser fusion, it is desired to
generate the smallest possible spot size. It is clear from (3.2-15) that
this is achieved by making use of the shortest possible wavelength,
the thickest incident beam, and the shortest focal-length lens. Since
the lens must intercept the incident beam, its diameter D should be
at least 2W0. Taking D = 2W0, and making use of (3.2-15), the
diameter of the focused spot is given by

Focused Spot Size



where the F-number of the lens is denoted F#. A microscope
objective with small F- number is often used for this purpose. A
caveat is in order: since (3.2-15) and (3.2-16) are approximate their
validity must always be confirmed before use.
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EXERCISE 3.2-1

Beam Relaying. A Gaussian beam of radius W0 and
wavelength λ is repeatedly focused by a sequence of identical
lenses, each of focal length f and separated by a distance d (Fig.
3.2-5). The focused waist radius is equal to the incident waist
radius, i.e., . Using (3.2-6), (3.2-9), and (3.2-9a) show that
this condition can arise only if the inequality d ≤ 4f is satisfied.
Note that this is the same as the ray-confinement condition for a
sequence of lenses derived in Example 1.4-1 using ray optics.

Figure 3.2-5 Beam relaying.

EXERCISE 3.2-2

Beam Collimation. A Gaussian beam is transmitted through a
thin lens of focal length f.

(a) Show that the locations of the waists of the incident and
transmitted beams, z and z′, respectively, are related by

This relation is plotted in Fig. 3.2-6.



Figure 3.2-6 Relation between the waist locations of the
incident and transmitted beams.

(b) The beam is collimated by making the location of the new
waist z′ as distant as possible from the lens. This is achieved
by using the smallest possible ratio z0/f (short depth of
focus and long focal length). For a given ratio z0/f, show
that the optimal value of z for collimation is z = f + z0.

(c) Given λ = 1 μm, z0 = 1 cm, and f = 50 cm, determine the
optimal value of z for collimation, and the corresponding
magnification M, distance z′, and width  of the collimated
beam.

EXERCISE 3.2-3

Beam Expansion. A Gaussian beam may be expanded and
collimated by using two lenses of focal lengths f1 and f2, as
illustrated in Fig. 3.2-7. Parameters of the initial beam (W0, z0)
are modified by the first lens to  and subsequently altered
by the second lens to . The first lens, which has a short
focal length, serves to reduce the depth of focus  of the beam.
This prepares it for collimation by the second lens, which has a
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long focal length. The system functions as an inverse Keplerian
telescope.

Figure 3.2-7 Beam expansion using a two-lens system.

(a) Assuming that f1 ≪ z and z −f1 ≫ z0, use the results of
Exercise 3.2-2 to determine the optical distance d between
the lenses such that the distance z′ to the waist of the final
beam is as large as possible.

(b) Determine an expression for the overall magnification 
 of the system.

C. Reflection from a Spherical Mirror
We now examine the reflection of a Gaussian beam from a spherical
mirror. The complex amplitude reflectance of the mirror is
proportional to exp(−jkρ2/R) (see Prob. 2.4-10), where by
convention R > 0 for convex mirrors and R < 0 for concave mirrors.
The action of the mirror on a Gaussian beam of width W1 and radius
of curvature R1 is therefore to reflect the beam and to modify its
phase by the factor −kρ2/R, while leaving the beam width unaltered.
The reflected beam therefore remains Gaussian, with parameters
W2 and R2 given by



(3.2-20)

Equation (3.2-20) is identical to (3.2-2) provided f = −R/2. Thus, the
Gaussian beam is modified in precisely the same way as it is by a
lens, except for a reversal of the direction of propagation.

Three special cases, illustrated in Fig. 3.2-8, are of interest:

Figure 3.2-8 Reflection of a Gaussian beam with radius of
curvature R1 from a mirror with radius of curvature R:(a) R = ∞;(b)
R1 = ∞;(c) R1 = −R. The dashed curves show the effects of replacing
the mirror by a lens of focal length f = −R/2.

If the mirror is planar, i.e., R = ∞, then R2 = R1, so that the
mirror reverses the direction of the beam without altering its
curvature, as illustrated in Fig. 3.2-8(a).

If R1 = ∞, i.e., if the beam waist lies on the mirror, then R2 =
R/2. If the mirror is concave (R< 0), R2 < 0 so that the reflected
beam acquires a negative curvature and the wavefronts
converge. The mirror then focuses the beam to a smaller spot
size, as illustrated in Fig. 3.2-8(b).

If R1 = −R, i.e., if the incident beam has the same curvature as
the mirror, then R2 = R. The wavefronts of both the incident
and reflected waves then coincide with the mirror and the wave
retraces its path as shown in Fig. 3.2-8(c). This is expected
since the wavefront normals are also normal to the mirror so
that the mirror reflects the wave back onto itself. In the
illustration in Fig. 3.2-8(c) the mirror is concave (R < 0); the



incident wave is diverging (R1 > 0) and the reflected wave is
converging (R2 < 0).

EXERCISE 3.2-4

Variable-Reflectance Mirrors. A spherical mirror of radius
R has a variable power reflectance characterized by 

, which is a Gaussian function of the
radial distance ρ. The reflectance is unity on axis and falls by a
factor 1/e2 when ρ = Wm. Determine the effect of the mirror on a
Gaussian beam with radius of curvature R1 and beam width W1
at the mirror.

*D. Transmission Through an Arbitrary Optical System
In the paraxial ray-optics approximation, an optical system is
completely characterized by the 2 × 2 ray-transfer matrix relating
the position and inclination of the transmitted ray to those of the
incident ray (see Sec. 1.4). We now consider how an arbitrary
paraxial optical system, characterized by a matrix M of elements (A,
B, C, D), modifies a Gaussian beam (Fig. 3.2-9).

Figure 3.2-9 Modification of a Gaussian beam by an arbitrary
paraxial system described by an ABCD matrix.

The ABCD Law

The q-parameters, q1 and q2, of the incident and transmitted
Gaussian beams at the input and output planes of a paraxial optical
system described by the (A, B, C, D) matrix are related by



(3.2-21)
The ABCD Law

(3.2-22)

(3.2-23)

Because the complex q-parameter identifies the width W and radius
of curvature R of the Gaussian beam (see Exercise 3.1-3), this
simple expression, called the ABCD law, governs the effect of an
arbitrary paraxial system on a Gaussian beam. The ABCD law will be
established by verification in special cases; its generality will
ultimately be proved by induction.

Transmission Through Free Space

When the optical system is a distance d of free space (or of any
homogeneous medium), the elements of the ray-transfer matrix M
are A = 1, B = d, C = 0, D = 1 [see (1.44)]. Since it has been
established earlier that q = z + jz0 in free space, the q-parameter is
modified by the optical system in accordance with q2 = q1 + d. This
is, in fact, is equal to (1 · q1 + d)/(0 · q1 + 1) so that the ABCD law is
seen to apply.

Transmission Through a Thin Optical Component

An arbitrary thin optical component does not affect the ray position
so that

but does alter the inclination angle in accordance with

as illustrated in Fig. 3.2-10. Thus, A = 1 and B = 0, but C and D are
arbitrary. However, in all of the thin optical components described
in Sec. 1.4B, D = n1/n2. By virtue of the vanishing thickness of the
component, the beam width does not change, i.e.,



(3.2-25)

(3.2-26)

(3.2-24)
Moreover, if the beams at the input and output planes of the
component are approximated by spherical waves of radii R1 and R2,
respectively, then in the paraxial approximation, when θ1 and θ2 are
small, θ1 ≈ y1/R1 and θ2 ≈ y2/R2. Substituting these expressions into
(3.2-23), with the help of (3.2-22) we obtain

Using (3.1-6), which is the expression for q as a function of R and W
, and noting that D = n1/n2 = λ2/λ1, (3.2-24) and (3.2-25) can be
combined into a single equation,

from which q2 = (1 · q1 + 0)/(Cq1 + D), so that the ABCD law again
applies.

Invariance of the ABCD Law to Cascading

If the ABCD law is applicable to each of two optical systems with
matrices Mi = (Ai, Bi, Ci, Di), i = 1, 2, it must also apply to a system
comprising their cascade (a system with matrix M = M2M1). This
may be shown by straightforward substitution.

Figure 3.2-10 Modification of a Gaussian beam by a thin optical
component.

Generality of the ABCD Law



Since the ABCD law applies to thin optical components as well as to
propagation in a homogeneous medium, it also applies to any
combination thereof. All of the paraxial optical systems of interest
are combinations of propagation in homogeneous media and thin
optical components such as thin lenses and mirrors. It is therefore
apparent that the ABCD law is applicable to all of these systems.
Furthermore, since an inhomogeneous continuously varying
medium may be regarded as a cascade of incremental thin elements
followed by incremental distances, we conclude that the ABCD law
applies to these systems as well, provided that all rays (wavefront
normals) remain paraxial.

EXERCISE 3.2-5

Transmission of a Gaussian Beam Through a
Transparent Plate. Use the ABCD law to examine the
transmission of a Gaussian beam from air, through a
transparent plate of refractive index n and thickness d, and again
into air. Assume that the beam axis is normal to the plate.

3.3 HERMITE–GAUSSIAN BEAMS
The Gaussian beam is not the only beam-like solution of the
paraxial Helmholtz equation (3.1-2). Of particular interest are
solutions that exhibit non-Gaussian intensity distributions but
share the wavefronts of the Gaussian beam. Such beams have the
salutary feature of being able to match the curvatures of spherical
mirrors of large radius, such as those that form an optical resonator,
and reflect between them without being altered. Such self-
reproducing waves are called the modes of the resonator (see
Appendix C). The optics of resonators is discussed in Chapter 11.

Consider a Gaussian beam of complex envelope [see (3.1-5)]
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(3.3-2)

(3.3-3)

where q(z)= z + jz0. Expressions for the beam width W(z) and the
wavefront radius of curvature R(z) are provided in (3.1-8) and (3.1-
9), respectively. Now consider a second wave whose complex
envelope is a modulated version of the Gaussian beam,

where 𝒳(·), 𝒴(·), and 𝒵(·) are real functions. This wave, should it be
shown to exist, has the following two properties:

1. The phase is the same as that of the underlying Gaussian wave,
except for an excess phase 𝒵(z) that is independent of x and y.
If 𝒵(z) is a slowly varying function of z, both waves have
wavefronts with the same radius of curvature R(z). These two
waves are therefore focused by thin lenses and mirrors in
precisely the same manner.

2. The magnitude

where A0 = A1/jz0, is a function of x/W(z) and y/W(z) whose
widths in the x and y directions vary with z in accordance with
the same scaling factor W(z). As z increases, the intensity
distribution in the transverse plane remains fixed, except for a
magnification factor W(z). This distribution is a Gaussian
function modulated in the x and y directions by the functions
𝒳2(·) and 𝒴2(·), respectively.

The modulated wave therefore represents a beam of non-Gaussian
intensity distribution, but it shares the same wavefronts and
angular divergence as the underlying Gaussian wave.
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(3.3-5a)

(3.3-5b)

(3.3-5c)

The existence of this wave is assured if three real functions 𝒳(·),
𝒴(·), and 𝒵(z) can be found such that (3.3-2) satisfies the paraxial
Helmholtz equation (3.1-2). Substituting (3.3-2) into (3.1-2), using
the fact that AG itself satisfies (3.1-2), and defining two new
variables  we obtain

Since the left-hand side of this equation is the sum of three terms,
each of which is a function of a single independent variable, u, v,
and z, respectively, each of these terms must be constant. Equating
the first term to the constant −2μ1 and the second to −2μ2, the third
must be equal to 2(μ1 + μ2). This technique of “separation of
variables” permits us to reduce the partial differential equation (3.3-
4) into three ordinary differential equations, for 𝒳(u), 𝒴(v), and
𝒵(z), respectively:

where we have made use of the expression for W(z) given in (3.1-8)
and (3.1-11).

Equation (3.3-5a) represents an eigenvalue problem (see Appendix
C) whose eigen values are μl = l, where l = 0, 1, 2,... and whose
eigenfunctions are the Hermite polynomials 

 These polynomials are defined by the
recurrence relation
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(3.3-6)

(3.3-7)

(3.3-8)

(3.3-9)

with

Thus,

Similarly, the solutions of (3.3-5b) are μ2 = m and 
 where m = 0, 1, 2,.... There is therefore a

family of solutions labeled by the indices (l, m). Substituting μ1 = l
and μ2 = m in (3.3-5c), and integrating, we obtain

where ζ(z) = tan−1(z/z0). The excess phase 𝒵(z) thus varies slowly
between −(l + m) π/2 and +(l + m) π/2, as z varies between −∞ and
∞ (see (3.1-10) and Fig. 3.1-5).

Complex Amplitude

Finally, substitution into (3.3-2) yields an expression for the
complex envelope of the beam labeled by the indices (l, m).
Rearranging terms and multiplying by exp(−jkz) provides the
complex amplitude

Hermite–Gaussian Beam

where



(3.3-11)

(3.3-12)

is known as the Hermite–Gaussian function of order l, and Al,m
is a constant.

Since  the Hermite–Gaussian function of order 0 is simply
the Gaussian function. Continuing to higher order, 

 is an odd function,  is
even,  is odd, and so on. These functions
are displayed schematically in Fig. 3.3-1.

Figure 3.3-1 Low-order Hermite–Gaussian functions: 

An optical wave with complex amplitude given by (3.3-10) is known
as a Hermite–Gaussian beam of order (l, m), which is often
denoted HGlm. The Hermite–Gaussian beam of order (0, 0), namely
HG00, is the simple Gaussian beam.

Intensity Distribution

The optical intensity of the HGlm Hermite–Gaussian beam, Il,m =
|Ul,m|2, is given by

Figure 3.3-2 illustrates the dependence of the intensity on the
normalized transverse distances  for
several values of l and m. Beams of higher order have larger widths
than those of lower order, as is evident in Fig. 3.3-1. Regardless of



the order, however, the width of the beam is proportional to W(z);
thus, as z increases, the transverse spatial extent of the intensity
pattern is magnified by the factor W(z)/W0 but otherwise maintains
its profile. The only circularly symmetric member of the family of
Hermite–Gaussian beams is the elementary Gaussian beam itself.

Figure 3.3-2 Intensity distributions of several low-order Hermite–
Gaussian beams, HGlm, in the transverse plane. The HG00 beam is
the elementary Gaussian beam displayed in Fig. 3.1-1.

The Hermite–Gaussian beam defined in (3.3-10) may be
generalized by ascribing different beam widths to its x and y
components, Wx(z) and Wy(z), respectively, thereby defining the
elliptic Hermite–Gaussian beam. Because (3.3-10) is a
separable function of x and y, this constitutes yet another exact
solution of the paraxial Helmholtz equation. A special case is the
elliptic Gaussian beam that appears in Prob. 3.1-8; it exhibits
elliptical, rather than circular, contours of constant intensity.

3.4 LAGUERRE–GAUSSIAN BEAMS
Laguerre–Gaussian Beams

The Hermite–Gaussian beams form a complete set of solutions to
the paraxial Helmholtz equation. Any other solution can be written
as a superposition of these beams. An alternate complete set of
solutions, known as Laguerre–Gaussian beams, is obtained by
writing the paraxial Helmholtz equation in cylindrical coordinates
(ρ, ϕ, z) and then using the separation-of-variables technique in ρ
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and ϕ, rather than in x and y. The complex amplitude of the
Laguerre–Gaussian beam, denoted LGlm, can be expressed as

where the  represent generalized Laguerre polynomials,3 and
where W(z), R(z), ζ(z), and W0 are given by (3.1-8)–(3.1-11). The
integers l = 0, 1, 2,... and m = 0, 1, 2,... are azimuthal and radial
indices, respectively. The lowest-order Laguerre– Gaussian beam
LG00, like the lowest-order Hermite–Gaussian beam HG00, is the
simple Gaussian beam.

EXERCISE 3.4-1

Laguerre–Gaussian Beam as a Superposition of
Hermite–Gaussian Beams. Demonstrate that the Laguerre–
Gaussian beam LG10 is equivalent to the superposition of two
Hermite– Gaussian beams, HG01 and HG10, with equal
amplitudes and a phase shift of π/2, i.e., LG10 ≡  (HG01 +
jHG10).

The intensity of the Laguerre–Gaussian beam, which is
proportional to the absolute square of (3.4-1), is a function of ρ and
z, but not of ϕ, so that it is circularly symmetric. As illustrated in
Fig. 3.4-1(a), the transverse intensity distribution for the LG10 beam
assumes a toroidal shape. Its peak value is attained at a radius of 

 which increases with the distance z from the beam
center (much as for the Gaussian beam). Beams of any order l ≠ 0
are also toroidal when m = 0, and attain their peak values at radii 

. All beams with l ≠ 0 have zero intensity at the beam center



(ρ = 0); those with a radial index m > 0 take the form of multiple
rings.

Figure 3.4-1 The Laguerre–Gaussian beam LG10.(a) The
transverse intensity distribution takes the form of a toroid. (b) The
phase component lϕ, plotted for l = 1, is a linear function of the
azimuthal angle ϕ .(c) The wavefront is a left-handed helical surface
that undergoes corkscrew-like motion as it travels in the z direction.

The phase behavior of the Laguerre–Gaussian beam has the same
dependence on ρ and z as does the Gaussian beam [see (3.1-7)],
with two notable exceptions: (1) the Gouy phase is enhanced by the
factor (l + 2m + 1), and (2) there is an additional phase factor 
that is proportional to the azimuthal angle ϕ. The phase component
lϕ, illustrated in Fig. 3.4-1(b) for l = 1, is associated with the phase
factor exp(−jlϕ) [see (3.1-23) and associated footnote]. It results in
the wavefront assuming the form of a left-handed helix that
undergoes corkscrew-like motion as the wave advances in the z
direction, as shown in Fig. 3.4-1(c). Beams with l > 1 have
wavefronts comprising l distinct but intertwined helices. The pitch
of each helix is lλ and the  sign determines its handedness.

As discussed in Sec. 2.5A, the phase of an optical beam may be
determined by detecting its interference with an auxiliary optical
field of known form (e.g., a plane wave). The phase of a Laguerre–
Gaussian beam can be readily observed by detecting its
superposition with another Laguerre–Gaussian beam of the same
order but opposite handedness. Such a superposition, which



constitutes a form of standing wave, has an intensity proportional to
| exp(−jlϕ) + exp(jlϕ)|2 = 4 cos2(lϕ), explicitly illustrating that the
resulting intensity is sensitive to lϕ as shown in Fig. 3.4-2. The
number of angular interference fringes is equal to 2l.

Figure 3.4-2 Transverse intensity distributions of the
superposition of two Laguerre–Gaussian beams of the same order
LGlm but opposite handedness. The dashed white lines signify the
loci of zero intensity (the nodes of the standing waves). The number
of such lines is equal to the azimuthal order l. As the azimuthal
angle ϕ moves from one node to the next, the phase changes by 2π.

Laguerre–Gaussian beams may be directly generated as laser modes
or as combinations of Hermite–Gaussian laser modes, as discussed
in Exercise 3.4-1. A Gaussian beam may be converted into an
Laguerre–Gaussian beam by imparting to it the phase factor
exp(−jlϕ) with the help of a spiral phase plate, a dielectric slab
whose optical thickness increases linearly with ϕ [see Fig. 3.4-1(b)].
However, the method of choice for converting a Gaussian beam to a
Laguerre–Gaussian beam is to make use of a diffractive optical
element, or hologram, endowed with a fork dislocation centered on
the beam axis, as exhibited in Example 4.5-3.

Beams with spiral phase carry orbital angular momentum. This may
be understood by observing that an optical wave carries linear
momentum that points along the direction orthogonal to its
wavefronts (see Secs. 5.1 and 13.1D), which is also the direction of
the optical rays. Since rays orthogonal to the helical wavefront of a
Laguerre–Gaussian beam have azimuthal components that revolve
about the beam axis, their linear momentum is accompanied by



orbital angular momentum. This can also be visualized by
considering that refracted optical rays incident on the surface of a
spiral phase plate acquire azimuthal components [see Fig. 3.4-1(b)].
By virtue of their orbital angular momentum, Laguerre–Gaussian
beams can exert a mechanical torque on micro-objects and can thus
be used to manipulate microparticles.

Optical Vortices

An optical vortex is an optical field that exhibits a line of zero
optical intensity, such as the line along the axis of a Laguerre–
Gaussian beam with l ≠ 0. It is also called a screw dislocation since
the phase of the field is twisted like a corkscrew about the axis of
travel. An optical vortex in a plane is a point at which the optical
field vanishes; it is also called a phase singularity. An example of
the latter is the point (x, y) = (0, 0) in the transverse plane of the
Laguerre–Gaussian beam illustrated in Fig. 3.4-1(a).

The strength of a vortex is indicated by its topological charge,
which is determined by the number of full twists that the phase
undergoes in a distance of one wavelength. For the Laguerre–
Gaussian beam, the topological charge is the azimuthal index l,
which is indicated by the number of lines of zero intensity that
appear in the standing wave generated by the combination of two
beams of the same order but opposite handedness, as illustrated in
Fig. 3.4-2. This number also determines the orbital angular
momentum of the associated photon, as will be discussed in Sec.
13.1D.

Optical vortex beams can assume forms that are far more complex
than the simple Laguerre–Gaussian beam. Interference among
three or more randomly directed plane-wave components of similar
intensities always results in a field cross-section that contains many
vortices. Such beams often exhibit unusual and dramatic properties
— the field surrounding a vortex can, for example, tangle and form
links and knots.4
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Ince–Gaussian Beams

As discussed in Sec. 3.3 and at the beginning of this section,
Hermite–Gaussian and Laguerre–Gaussian beams form complete
sets of exact solutions to the paraxial Helmholtz equation, in
Cartesian and cylindrical coordinates, respectively. A third complete
set of exact solutions, known as Ince–Gaussian (IG) beams,5 exists
in elliptic cylindrical coordinates, another three-dimensional
orthogonal coordinate system. The transverse structure of these
beams is characterized by Ince polynomials, which have an intrinsic
elliptical character. Laguerre–Gaussian and Hermite–Gaussian
beams are limiting forms of Ince–Gaussian beams when the
ellipticity parameter is 0 and ∞, respectively.

3.5 NONDIFFRACTING BEAMS
A. Bessel Beams
In the search for beam-like waves, it is natural to attempt to
construct waves whose wavefronts are planar but whose intensity
distributions are nonuniform in the transverse plane. Consider, for
example, a wave with complex amplitude

In order that this wave satisfy the Helmholtz equation (2.2-7), Δ2U
+ k2U = 0, the quantity A(x, y) must satisfy

where  is the transverse Laplacian
operator. Equation (3.5-2), known as the two-dimensional
Helmholtz equation, may be solved by employing the method of
separation of variables. Using polar coordinates (x = ρ cos ϕ, y = ρ
sin ϕ), the result turns out to be
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where Jm(·) is the Bessel function of the first kind and mth order,
and Am is a constant. Solutions of (3.5-3) that are singular at ρ = 0
are not included.

For m = 0, the wave has complex amplitude

and therefore has planar wavefronts — the wavefront normals
(rays) are all parallel to the z axis. The intensity distribution 

 is circularly symmetric and varies with ρ as
illustrated in Fig. 3.5-1(a); it is independent of z so that there is no
spread of the optical power. This wave is known as the Bessel
beam.

Figure 3.5-1 (a) The intensity distribution of the Bessel beam in
the transverse plane is independent of z. The beam is nondiffracting
and therefore does not diverge. (b) Transverse intensity distribution
of a Gaussian beam for comparison with the Bessel beam.
Parameters are selected such that the peak intensities and 1/e2

widths are identical in both cases.

It is useful to compare the Bessel beam with the Gaussian beam.
Whereas the complex amplitude of the Bessel beam is an exact



solution of the Helmholtz equation, the complex amplitude of the
Gaussian beam is only an approximate solution thereof (since its
complex envelope is an exact solution of the paraxial Helmholtz
equation). The intensity distributions of these two beams are
compared graphically in Fig. 3.5-1.

It is apparent that the asymptotic behavior of these distributions in
the limit of large radial distances is significantly different. The
intensity of the Gaussian beam decreases exponentially with ρ as
exp[−2ρ2/W2(z)]. The intensity of the Bessel beam, on the other
hand, decreases as  which is an
oscillatory function superimposed on a slow inverse-power-law
decay with ρ. As a consequence, the transverse RMS width of the
Gaussian beam,  is finite, while the transverse RMS
width of the ideal Bessel beam is infinite for all z (see Appendix A,
Sec. A.2 for the definition of RMS width). This is a manifestation of
the tradeoff between beam size and divergence: the RMS width of
the ideal Bessel beam is infinite and its divergence is zero, just as
for the ideal plane wave.

As shown in Examples 2.4-1 and 4.3-5, the Bessel beam is associated
with a continuum of plane waves whose directions form a cone of
fixed half angle with respect to the propagation direction. It can be
implemented by use of an axicon [Fig. 1.2-12(c)]. A derivation of the
complex amplitude for the Bessel beam along with a general
discussion of nondiffracting beams from the perspective of Fourier
optics is provided in Sec. 4.3C.

A hybrid beam, called a Bessel–Gaussian beam, is a Bessel beam
modulated by a Gaussian function of the radial coordinate ρ. The
Gaussian serves as a window function that accelerates the slow
radial decay of the Bessel beam (see Fig. 3.5-1). The Bessel–
Gaussian beam can be generated by illuminating an axicon with a
Gaussian beam.

*B. Airy Beams



(3.5-5)

In analogy with the Bessel beam, the Airy beam arises as a
diffraction-free exact solution to the paraxial Helmholtz equation
(2.2-23). Although the shape of its transverse intensity distribution
is maintained, the beam center is transversally displaced in an
accelerated manner as it propagates along the axial direction,6 as
shown in Fig. 3.5-2.

The complex envelope of the Airy beam in one dimension is
expressed as

where Ai(x) is the Airy function, a special function that is the
solution of the Airy differential equation d2y/dx2 = xy. The
parameters W0 and z0 are, respectively, transverse and axial scaling
factors that obey the relation  which also applies to
the Gaussian beam [see (3.1-11)]. At z = 0 the transverse intensity
of the Airy beam, I(x, 0) = Ai2 (x/W0), is distinctly asymmetrical as
illustrated on the left-hand side of Fig. 3.5-2. At an arbitrary value of
z, the intensity has the same transverse distribution except that it
exhibits an axially dependent transverse shift  that
follows a parabolic trajectory,  thereby
mimicking the path of a ballistic projectile. At z = 4z0, for example,
the transverse shift is W0 while at z = 20 z0 it grows to 25 W0,
which provides the rationale for the appellation accelerating
beam.



Figure 3.5-2 Transverse intensity distribution for the Airy beam
I(x, 0) (left) and I(x, z) (right).

The Airy beam may be generated by making use of an optical
Fourier-transform system, as described in Prob. 4.2-6. Applications
of the Airy beam include microscopy and prodding small particles
along curved trajectories.

Other Bessel-like and Airy-like beams with main-lobe intensity
distributions that remain nearly invariant and symmetrical as they
travel can be engineered to propagate along arbitrary trajectories in
free space (including 3D spirals).7 These nondiffracting beams,
which can be partially obstructed and yet recover further down the
beam axis (so-called “self-healing”), are useful for applications such
as optical trapping and precision drilling.

READING LIST
Books

See also the reading list on lasers in Chapter 16.

J. Secor, R. Alfano, and S. Ashrafi, Complex Light, IOP Publishing,
2017.

F. M. Dickey, ed., Laser Beam Shaping: Theory and Techniques,
CRC Press/Taylor & Francis, 2nd ed. 2014.



A. N. Oraevsky, Gaussian Beams and Optical Resonators, Nova
Science, 1996.

Articles

M. J. Padgett, Orbital Angular Momentum 25 Years On, Optics
Express, vol. 25, pp. 11265–11274, 2017.

J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K.
Efremidis, D. N. Christodoulides, and Z. Chen, Observation of Self-
Accelerating Bessel-Like Optical Beams Along Arbitrary
Trajectories, Optics Letters, vol. 38, pp. 498–500, 2013.

A. Dudley, M. Lavery, M. Padgett, and A. Forbes, Unraveling Bessel
Beams, Optics & Photonics News, vol. 24, no. 6, pp. 22–29, 2013.

A. M. Yao and M. J. Padgett, Orbital Angular Momentum: Origins,
Behavior and Applications, Advances in Optics and Photonics, vol.
3, pp. 161–204, 2011.

M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett,
Isolated Optical Vortex Knots, Nature Physics, vol. 6, pp. 118–121,
2010.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, Singular Optics:
Optical Vortices and Polarization Singularities, in E. Wolf, ed.,
Progress in Optics, Elsevier, 2009, vol. 53, pp. 293–363.

J. Vickers, M. Burch, R. Vyas, and S. Singh, Phase and Interference
Properties of Optical Vortex Beams, Journal of the Optical Society
of America A, vol. 25, pp. 823–827, 2008.

M. Martinelli and P. Martelli, Laguerre Mathematics in Optical
Communications, Optics & Photonics News, vol. 19, no. 2, pp. 30–
35, 2008.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides,
Observation of Accelerating Airy Beams, Physical Review Letters,
vol. 99, 213901, 2007.

M. A. Bandres and J. C. Guti´errez-Vega, Ince–Gaussian Modes of
the Paraxial Wave Equation and Stable Resonators, Journal of the



Optical Society of America, vol. 21, pp. 873–880, 2004.

F. Gori, G. Guattari, and C. Padovani, Bessel–Gauss Beams, Optics
Communications, vol. 64, pp. 491–495, 1987.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Diffraction-Free Beams,
Physical Review Letters, vol. 58, pp. 1499–1501, 1987.

Special issue on propagation and scattering of beam fields, Journal
of the Optical Society of America A, vol. 3, no. 4, 1986.

H. Kogelnik and T. Li, Laser Beams and Resonators, Proceedings of
the IEEE, vol. 54, pp. 1312– 1329, 1966.

G. D. Boyd and J. P. Gordon, Confocal Multimode Resonator for
Millimeter Through Optical Wavelength Masers, Bell System
Technical Journal, vol. 40, pp. 489–508, 1961.

A. G. Fox and T. Li, Resonant Modes in a Maser Interferometer, Bell
System Technical Journal, vol. 40, pp. 453–488, 1961.

PROBLEMS
3.1-6 Beam Parameters. The light emitted from a Nd:YAG laser at

a wavelength of 1.06 μm is a Gaussian beam of 1-W optical
power and beam divergence 2θ0 = 1 mrad. Determine the beam
waist radius, the depth of focus, the maximum intensity, and
the intensity on the beam axis at a distance z = 100 cm from
the beam waist.

3.1-7 Beam Identification by Two Widths. A Gaussian beam of
wavelength λo = 10.6 μm (emitted by a CO2 laser) has widths
W1 = 1.699 mm and W2 = 3.380 mm at two points separated by
a distance d = 10 cm. Determine the location of the waist and
the waist radius.

3.1-8 The Elliptic Gaussian Beam. The paraxial Helmholtz
equation admits a Gaussian beam with intensity 

 plane, with the beam



waist radii W0x and W0y in the x and y directions, respectively.
The contours of constant intensity are therefore ellipses
instead of circles. Write expressions for the beam depth of
focus, angular divergence, and radii of curvature in the x and y
directions, as functions of W0x, W0y, and the wavelength λ. If
W0x = 2W0y, sketch the shape of the beam spot in the z = 0
plane and in the far field (z much greater than the depths of
focus in both transverse directions).

3.2-6 Beam Focusing. An argon-ion laser produces a Gaussian
beam of wavelength λ = 488 nm with waist radius W0 = 0.5
mm. Design a single-lens optical system for focusing the light
to a spot of diameter 100 μm. What is the shortest focal-length
lens that may be used?

3.2-7 Spot Size. A Gaussian beam of Rayleigh range z0 = 50 cm and
wavelength λ = 488 nm is converted into a Gaussian beam of
waist radius  using a lens of focal length f = 5 cm at a
distance z from its waist, as illustrated in Fig. 3.2-2. Plot  as a
function of z. Verify that in the limit z − f ≫ z0, (3.2-10) and
(3.2-12) hold; and that in the limit z ≪ z0, (3.2-13) holds.

3.2-8 Beam Refraction. A Gaussian beam is incident from air (n =
1) into a medium with a planar boundary and refractive index n
= 1.5. The beam axis is normal to the boundary and the beam
waist lies at the boundary. Sketch the transmitted beam. If the
angular divergence of the beam in air is 1 mrad, what is the
angular divergence in the medium?

*3.2-9 Transmission of a Gaussian Beam Through a Graded-
Index Slab. The ABCD matrix of a SELFOC graded-index slab
with quadratic refractive index  (see Sec. 1.3B)
and length d is A = cos αd, B = (1/α) sin αd, C = −α sin αd, D =
cos αd for paraxial rays along the z direction. A Gaussian beam
of wavelength λo, waist radius W0 in free space, and axis in the
z direction enters the slab at its waist. Use the ABCD law to
determine an expression for the beam width in the y direction



as a function of d. Sketch the shape of the beam as it travels
through the medium.

3.3-2 Power Confinement in Hermite–Gaussian Beams.
Determine the ratio of the power contained within a circle of
radius W(z) in the transverse plane, to the total power, for the
Hermite–Gaussian beams HG00, HG01, HG10, and HG11. What
is the ratio of the power contained within a circle of radius
W(z) to the total power for the HG00 and HG11 beams?

3.3-3 The Donut Beam. Consider a wave that is a superposition of
two Hermite–Gaussian beams, HG01 and HG10, with equal
intensities. The two beams have independent and random
phases so that their intensities add with no interference. Show
that the total intensity is described by a donut-shaped
(toroidal) circularly symmetric function. Assuming that W0 = 1
mm, determine the radius of the circle of peak intensity and
the radii of the two circles of 1/e2 times the peak intensity at
the beam waist.

3.3-4 Axial Phase. Consider the Hermite–Gaussian beams of all
orders, HGlm, with Rayleigh range z0 = 30 cm in a medium of
refractive index n = 1. Determine the frequencies within the
band ν = 1014 ± 2 × 109 HZ for which the phase retardation
between the planes z = −z0 and z = z0 is an integer multiple of
π along the beam axis. These frequencies are the modes of a
resonator comprising two spherical mirrors placed at the z =
±z0 planes, as described in Sec. 11.2D.

Notes
1 The generalized Laguerre polynomials are expressible as 

 A few elementary examples are 
 The generalized



Laguerre polynomials  reduce to the simple Laguerre
polynomials  when l = 0.
2 See M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J.
Padgett, Isolated Optical Vortex Knots, Nature Physics, vol. 6, pp.
118–121, 2010.
3 See M. A. Bandres and J. C. Guti´errez-Vega, Ince–Gaussian
Beams, Optics Letters, vol. 29, pp. 144–146, 2004.
4 See G. A. Siviloglou, J. Broky, A. Dogariu, and D. N.
Christodoulides, Observation of Accelerating Airy Beams, Physical
Review Letters, vol. 99, 213901, 2007.
5 See J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N.
K. Efremidis, D. N. Christodoulides, and Z. Chen, Observation of
Self-Accelerating Bessel-Like Optical Beams Along Arbitrary
Trajectories, Optics Letters, vol. 38, pp. 498–500, 2013.
6 The phase φ(ρ, z) in (3.1-23), and throughout this chapter, is
related to the phase factor specified in (3.1-7) by exp(−jφ).
7 See S. Feng and H. G. Winful, Physical Origin of the Gouy Phase
Shift, Optics Letters, vol. 26, pp. 485–487, 2001.
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Josef von Fraunhofer (1787–826) developed the diffraction
grating and contributed to our understanding of diffraction. His
epitaph reads Approximavit sidera (he brought the stars closer).

Jean-Baptiste Joseph Fourier (1768–1830) demonstrated that
periodic functions could be constructed from sums of sinusoids.
Harmonic analysis is the basis of Fourier optics; it has many
applications.

Dennis Gabor (1900–1979) invented holography and
contributed to its development. He made the first hologram in 1947
and received the Nobel Prize in 1971 for carrying out this body of
work.



Fourier optics provides a description of the propagation of light
waves based on harmonic analysis (the Fourier transform) and
linear systems. The methods of harmonic analysis have proved
useful for describing signals and systems in many disciplines.
Harmonic analysis is based on the expansion of an arbitrary
function of time f(t) in terms of a superposition (a sum or integral)
of harmonic functions of time of different frequencies (see
Appendix A, Sec. A.1). The harmonic function F(ν) exp(j2πνt), which
has frequency ν and complex amplitude F(ν), is the building block
of the theory. Several of these functions, each with its own
amplitude F(ν), are added to construct the function f(t), as
illustrated in Fig. 4.0-1 . The complex amplitude F(ν), as a function
of frequency, is called the Fourier transform of f(t). This approach is
highly useful for analyzing linear systems (see Appendix B, Sec.
B.1). If the response of the system to each harmonic function is
known, the response to an arbitrary input function is readily
determined by the use of harmonic analysis at the input of the
system and superposition at the output.

Figure 4.0-1 An arbitrary function f(t) may be analyzed as a sum
of harmonic functions of different frequencies and complex
amplitudes.

An arbitrary complex function f(x, y) of two variables that represent
spatial coordinates in a plane, say x and y, may similarly be written
as a superposition of harmonic functions of x and y, each of the
form F(νx,νy) exp[−j2π(νxx + νyy)], where F(νx,νy) is the complex
amplitude and νx and νy are the spatial frequencies (cycles per
unit length; typically cycles/mm) in the x and y directions,
respectively.1 The harmonic function F(νx, νy) exp[−j2π(νxx+νyy)] is
the two-dimensional building block of the theory. It can be used to
generate an arbitrary function of two variables f(x, y), as depicted in
Fig. 4.0-2 and explained in Appendix A, Sec. A.3.



Figure 4.0-2 An arbitrary function f(x, y) may be analyzed in
terms of a sum of harmonic functions of different spatial
frequencies and complex amplitudes, drawn here schematically as
graded blue lines.

The monochromatic plane wave U(x, y, z) = A exp[−j(kxx + kyy +
kzz)] plays an important role in wave optics. The coefficients (kx, ky,
kz) are the components of the wavevector k, and A is a complex
constant. U(x, y, z) reduces to a spatial harmonic function of the
points in an arbitrary plane. At the z = 0 plane, for example, U(x, y,
0) becomes the harmonic function f(x, y) = A exp[−j2π(νxx + νyy)],
where νx = kx/2π and νy = ky/2π are the spatial frequencies
(cycles/mm), and kx and ky are the spatial angular frequencies
(radians/mm). There is a one-to-one correspondence between the
plane wave U(x, y, z) and the spatial harmonic function f(x, y) = U
(x, y, 0) since knowledge of kx and ky is sufficient to determine kz
via the relation . As will be explained
subsequently, kx and ky may not exceed ω/c under usual
circumstances; i.e., the spatial frequencies νx and νy may not exceed
the inverse wavelength 1/λ.

Since an arbitrary function f(x, y) can be analyzed as a superposition
of harmonic functions, an arbitrary traveling wave U (x, y, z) may be
analyzed in terms of a sum of plane waves (Fig. 4.0-3 ). The plane
wave is thus the building block used to construct a wave of arbitrary
complexity. Furthermore, if it can be determined how a linear
optical system modifies plane waves, the principle of superposition
can be used to establish the effect of the system on an arbitrary
wave.



Figure 4.0-3 The principle of Fourier optics: An arbitrary wave in
free space can be analyzed in terms of a superposition of plane
waves.

Because of the important role that Fourier analysis plays in
describing linear systems, it is useful to consider the propagation of
light through linear optical components, including free space, in
terms of a linear-systems approach. The complex amplitudes at two
planes normal to the optic (z) axis are regarded as the input and
output of the system (Fig. 4.0-4 ). A linear system may be
characterized by either its impulseresponse function, which is
the response of the system to a point (i.e., an impulse) at its input,
or by its transfer function, which is the response of the system to
a set of spatial harmonic functions (as described in Appendix B).



Figure 4.0-4 The transmission of an optical wave U (x, y, z)
through an optical system located between an input plane z = 0 and
an output plane z = d. This configuration is regarded as a linear
system whose input and output are the functions of f(x, y) = U (x, y,
0) and g(x, y) = U (x, y, d), respectively.

This Chapter

The chapter begins with a Fourier description of the propagation of
monochromatic light in free space (Sec. 4.1). The transfer function
and impulse response function of the free-space propagation system
are determined. In Sec. 4.2 we show that a lens may be used to carry
out the spatial Fourier-transform operation. The transmission of
light through apertures is discussed in Sec. 4.3; this section
comprises a Fourier-optics approach to the diffraction of light, a
subject usually presented in introductory textbooks from the
perspective of the Huygens principle. Section 4.4 is devoted to
image formation and spatial filtering in the context of both ray and
wave optics. Sub-wavelength imaging, in the form of near-field
optical microscopy, is also considered. Finally, an introduction to
holography, the recording and reconstruction of optical waves, is
presented in Sec. 4.5. It is important to understand the basic
properties of Fourier transforms and linear systems in one and two
dimensions (as reviewed in Appendices A and B, respectively) to
follow this chapter.



(4.1-1)

4.1 PROPAGATION OF LIGHT IN FREE SPACE
A. Spatial Harmonic Functions and Plane Waves
A monochromatic plane wave of complex amplitude U (x, y, z) = A
exp[−j(kxx + kyy + kzz)] has wavevector k =(kx,ky,kz), wavelength λ,
wavenumber , and complex envelope A. The
vector k makes angles θx = sin−1(kx/k) and θy = sin−1(ky/k) with
the y–z and x–z planes, respectively, as illustrated in Fig. 4.1-1 .
Thus, if θx = 0, there is no component of k in the x direction. The
complex amplitude at the z = 0 plane, U (x, y, 0), is a spatial
harmonic function f(x, y) = A exp[−j2π(νxx + νyy)] with spatial
frequencies νx = kx/2π and νy = ky/2π. The angles of the wavevector
are therefore related to the spatial frequencies of the harmonic
function by

Spatial Frequencies and Angles

The spatial frequency ν = k/2π is specified in cycles/mm, whereas
the optical frequency ν = kc/2π = c/λ is specified in cycles/sec or Hz,
as shown in Sec. 2.2.

Recognizing Λx = 1/νx and Λy = 1/νy as the periods of the harmonic
functions in the x and y directions (mm/cycle), we see that the
angles θx = sin−1 (λ/Λx) and θy = sin−1 (λ/Λy) are governed by the
ratios of the wavelength of light to the period of the harmonic
function in each direction. These geometrical relations follow from
matching the wavefronts of the wave to the periodic pattern of the
harmonic function in the z = 0 plane, as illustrated in Fig. 4.1-1 .



(4.1-2)

(4.1-3)

Figure 4.1-1 A harmonic function of spatial frequencies νx and νy
at the plane z = 0 is consistent with a plane wave traveling at angles
θx = sin−1 λνx and θy = sin−1 λνy.

If kx ≪ k and ky ≪ k, so that the wavevector k is paraxial, the angles
θx and θy are small (sin θx ≈ θx and sin θy ≈ θy) and

Spatial Frequencies and Angles (Paraxial Approximation)

The angles of inclination of the wavevector are then directly
proportional to the spatial frequencies of the corresponding
harmonic function. Apparently, there is a one-to-one
correspondence between the plane wave U (x, y, z) and the
harmonic function f(x, y). Given one, the other can be readily
determined, provided the wavelength λ is known: the harmonic
function f(x, y) is obtained by sampling at the z = 0 plane, f(x, y) =
U (x, y, 0). Given the harmonic function f(x, y), on the other hand,
the wave U (x, y, z) is constructed by using the relation U (x, y, z) =
f(x, y) exp(−jkzz) with

A condition for the validity of this correspondence is that ,
so that kz is real. This condition implies that λνx < 1 and λνy < 1, so



that the angles θx and θy defined by (4.1-1) exist. The + and − signs
in (4.1-3) represent waves traveling in the forward and backward
directions, respectively. We shall be concerned with forward waves
only.

Spatial Spectral Analysis

When a plane wave of unity amplitude traveling in the z direction is
transmitted through a thin optical element with complex amplitude
transmittance f(x, y) = exp[−j2π(νxx + νyy)] the wave is modulated
by the harmonic function, so that U (x, y, 0) = f(x, y). The incident
wave is then converted into a plane wave with a wavevector at
angles θx = sin−1 λνx and θy = sin−1 λνy (see Fig. 4.1-2 ). The element
thus acts much as a prism, bending the wave upward in this
illustration. If the complex amplitude transmittance is f(x, y) =
exp[+j2π(νxx + νyy)], the wave is converted into a plane wave whose
wavevector makes angles −θx and −θy with the z axis, so the wave is
bent downward instead.

Figure 4.1-2 A thin element whose complex amplitude
transmittance is a harmonic function of spatial frequency νx (period
Λx = 1/νx) bends a plane wave of wavelength λ by an angle θx = sin−1

λνx = sin−1 (λ/Λx). The dark blue and white stripes are used to
indicate that the element is a phase grating (changing only the
phase of the wave).

The wave-deflection property of an optical element with harmonic-
function transmittance may be understood as an interference



phenomenon. In a direction making an angle θx, two points on the
element separated by a the period Λ = 1/νx, have a relative
pathlength difference of Λ sin θx = (1/νx)λνx = λ, i.e., equal to a
wavelength. Hence, all segments separated by a period interfere
constructively in this direction.

If the transmittance of the optical element f(x, y) is the sum of
several harmonic functions of different spatial frequencies, the
transmitted optical wave is also the sum of an equal number of
plane waves dispersed into different directions; each spatial
frequency is mapped into a corresponding direction, in accordance
with (4.1-1). The amplitude of each wave is proportional to the
amplitude of the corresponding harmonic component of f(x, y).

Examples.

A complex amplitude transmittance of the form f(x, y) =
cos(2πνxx) =  bends an incident
plane wave into components traveling at angles ± sin−1 (λνx),
namely in both the upward and downward directions.

An element with a transmittance that varies as 1 + cos(2πνyy)
behaves as a diffraction grating (see Exercise 2.4-5); the
incident wave is bent into components that travel to the right
and left, while a portion travels straight through.

An element with transmittance f(x, y) = 𝒰 [cos(2πνxx)], where
𝒰 (x) is the unit step function [𝒰 (x) = 1 if x > 0, and 𝒰 (x) = 0
if x < 0], represents a periodic set of slits with f(x, y) = 1 set in
an opaque screen [f(x, y) = 0]. This periodic function may be
analyzed via a Fourier series as a sum of harmonic functions of
spatial frequencies 0, ±νx, ±2νx,..., corresponding to waves
traveling at angles 0, ± sin−1 λνx, ± sin−1 2λνx,..., with
amplitudes proportional to the coefficients of the Fourier series
(in the case at hand, these vanish for even harmonics). At these
angles, the waves transmitted through the slits interfere
constructively.
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(4.1-5)

More generally, if f(x, y) is a superposition integral of harmonic
functions,

with frequencies (νx, νy) and amplitudes F(νx, νy), the transmitted
wave U (x, y, z) is the superposition of plane waves,

with complex envelopes F(νx, νy) where 
. Note that F(νx, νy) is the Fourier

transform of f(x, y) [see (A.3-2) in Appendix A].

Since an arbitrary function may be Fourier analyzed as a
superposition integral of the form (4.1-4), the light transmitted
through a thin optical element of arbitrary transmittance may be
written as a superposition of plane waves (see Fig. 4.1-3 ), provided
that .

Figure 4.1-3 A thin optical element of amplitude transmittance f(x,
y) decomposes an incident plane wave into many plane waves. The
plane wave traveling at the angles θx = sin−1 λνx and θy = sin−1 λνy
has a complex envelope F(νx, νy), the Fourier transform of f(x, y).

This process of “spatial spectral analysis” is akin to the angular
dispersion of different temporal-frequency components
(wavelengths) provided by a prism. Free-space propagation serves



as a natural “spatial prism,” sensitive to the spatial rather than the
temporal frequencies of the optical wave.

Amplitude Modulation

Consider a transparency with complex amplitude transmittance
f0(x, y). If the Fourier transform F0(νx, νy) extends over widths ±Δνx
and ±Δνy in the x and y directions, the transparency will deflect an
incident plane wave by angles θx and θy in the range ± sin−1 (λΔνx)
and ± sin−1 (λΔνy), respectively.

Consider a second transparency of complex amplitude
transmittance f(x, y) = f0(x, y) exp[−j2π(νx0x + νy0y)], where f0(x,
y) is slowly varying compared to exp[−j2π(νx0x + νy0y)] so that Δνx
≪ νx0 and Δνy ≪ νy0. We may regard f(x, y) as an amplitude-
modulated function with a carrier frequency νx0 and νy0 and
modulation function f0(x, y). The Fourier transform of f(x, y) is
F0(νx − νx0, νy − νy0), in accordance with the frequency-shifting
property of the Fourier transform (see Appendix A). The
transparency will deflect a plane wave to directions centered about
the angles θx0 = sin−1 λνx0 and θy0 = sin−1 λνy0 (Fig. 4.1-4 ). This can
also be readily seen by regarding f(x, y) as a transparency of
transmittance f0(x, y) in contact with a grating or prism of
transmittance exp[−j2π(νx0x + νy0y)] that provides the angular
deflection θx0 and θy0.



Figure 4.1-4 Deflection of light by the transparencies f0(x, y) and
f0(x, y) exp(−j2πνx0x). The “carrier” harmonic function
exp(−j2πνx0x) acts as a prism that deflects the wave by an angle θx0

= sin−1 λνx0.

This idea may be used to record two images f1(x, y) and f2(x, y) on
the same transparency using the spatial-frequency multiplexing
scheme f(x, y) = f1(x, y) exp[−j2π(νx1x + νy1y)] + f2(x, y)
exp[−j2π(νx2x + νy2y)]. The two images may be easily separated by
illuminating the transparency with a plane wave, whereupon the
two images are deflected at different angles and are thus separated.
This principle will prove useful in holography (Sec. 4.5), where it is
often desired to separate two images recorded on the same
transparency.

Frequency Modulation

The foregoing examples relate to the transmittance of plane waves
through transparencies endowed with one or more 2D harmonic
functions that extend over the entire region of the transparency. We
now examine the transmission of a plane wave through a
transparency comprising a “collage” of several regions, the
transmittance of each of which is a harmonic function of some
spatial frequency, as illustrated in Fig. 4.1-5 . If the dimensions of
each region are much greater than the period, each region acts as a
grating or prism that deflects the wave in a particular direction, so
that different portions of the incident wavefront are deflected into



different directions. This principle may be used to create maps of
optical interconnections, as described in Sec. 24.1A.

Figure 4.1-5 Deflection of light by a transparency made of several
harmonic functions (phase gratings) of different spatial frequencies.

A transparency may also have a harmonic transmittance with a
spatial frequency that varies continuously and slowly with position
(in comparison with λ), much as the frequency of a frequency-
modulated (FM) signal varies slowly with time. Consider, for
example, the phase function f(x, y) = exp[−j2πφ(x, y)], where φ(x,
y) is a continuous slowly varying function of x and y. In the
neighborhood of a point (x0, y0), we may use the Taylor-series
expansion φ(x, y) ≈ φ(x0, y0)+(x−x0)νx +(y−y0)νy, where the
derivatives νx = ∂φ/∂x and νy = ∂φ/∂y are evaluated at the position
(x0, y0). The local variation of f(x, y) with x and y is therefore
proportional to the quantity exp[−j2π(νxx+ νyy)], which is a
harmonic function with spatial frequencies νx = ∂φ/∂x and νy = ∂φ/
∂y. Since these derivatives vary with x and y, so do the spatial
frequencies. The transparency f(x, y) = exp[−j2πφ(x, y)] therefore
deflects the portion of the wave at the position (x, y) by the
position-dependent angles θx = sin−1 (λ∂φ/∂x) and θy = sin−1 (λ∂φ/
∂y).



EXAMPLE 4.1-1.

Scanning. A thin transparency with complex amplitude
transmittance f(x, y) = exp(jπx2/λf) introduces a phase shift
2πφ(x, y) where φ(x, y) = −x2/2λf, so that the wave is deflected
at the position (x, y) by the angles θx = sin−1 (λ∂φ/∂x) = sin−1

(−x/f) and θy = 0. If |x/f|≪ 1, θx ≈−x/f and the deflection angle
θx is directly proportional to the transverse distance x. This
transparency may be used to deflect a narrow beam of light.
Moreover, if the transparency is moved at a uniform speed, the
beam is deflected by a linearly increasing angle as illustrated in
Fig. 4.1-6 .

Figure 4.1-6 Making use of a frequency-modulated
transparency to scan an optical beam.

Figure 4.1-7 A transparency with transmit-tance f(x,y) =
exp[jπ(x2+y2)/λf] acts as a spherical lens with focal length f.



EXAMPLE 4.1-2.

Imaging. If the transparency illustrated in Example 4.1-1 is
illuminated by a plane wave, each strip of the wave at a given
value of x is deflected by a different angle and as a result the
wavefront is altered. The local wavevector at position x bends by
an angle −x/f so that all wavevectors meet at a single line on the
optical axis a distance f from the transparency. The transparency
then acts as a cylindrical lens with a focal length f. Similarly, a
transparency with transmittance f(x, y) = exp[jπ(x2 + y2)/λf] acts
as a spherical lens with focal length f, as illustrated in Fig. 4.1-7.
Indeed, this is the expression for the amplitude transmittance of
a thin lens provided in (2.4-9).



(4.1-6)

(4.1-7)

EXERCISE 4.1-1

Binary-Plate Cylindrical Lens. Use harmonic analysis near
the position x to show that a transparency with complex
amplitude transmittance equal to the binary function

where 𝒰 (x) is the unit step function [𝒰 (x) = 1 if x ≥ 0, and 𝒰 (x)
= 0 if x < 0], acts as a cylindrical lens with multiple focal lengths
equal to ∞, ±f, ±f/3, ±f/5, ....

Figure 4.1-8 Binary plate as a cylindrical lens with multiple
foci.

Fresnel Zone Plate

A two-dimensional generalization of the binary plate in Exercise 4.1-
1 is a circularly symmetric transparency of complex amplitude
transmittance

known as the Fresnel zone plate. It is a set of ring apertures of
increasing radii, decreasing widths, and equal areas (see Fig. 4.1-9 ).
The structure serves as a spherical lens with multiple focal lengths.
A ray incident at each point is split into multiple rays, and the



transmitted rays meet at multiple foci with focal lengths ∞, ±f, ±f/3,
±f/5, ..., together with a component transmitted without deflection.

The operation of the Fresnel zone plate may also be described in
terms of interference (see Sec. 2.5B). The center of the mth ring has
a radius ρm at the mth peak of the cosine function, i.e., 

. At a focal point z = f, the distance Rm to the mth
ring is given by . If f is
sufficiently large so that the angles subtended by the rings are
small, then Rm ≈ f +mλ. Thus, the waves transmitted through
consecutive rings have pathlengths differing by a wavelength, so
that they interfere constructively at the focal point. A similar
argument applies for the other foci.

Figure 4.1-9 The Fresnel zone plate.

B. Transfer Function of Free Space
We now examine the propagation of a monochromatic optical wave
of wavelength λ and complex amplitude U (x, y, z) in the free space
between the planes z = 0 and z = d, called the input and output
planes, respectively (see Fig. 4.1-10 ). Given the complex amplitude
of the wave at the input plane, f(x, y) = U (x, y, 0), we shall
determine the complex amplitude at the output plane, g(x, y) = U (x,
y, d).



(4.1-9)

(4.1-8)

Figure 4.1-10 Propagation of light between two planes is regarded
as a linear system whose input and output are the complex
amplitudes of the wave in the two planes.

We regard f(x, y) and g(x, y) as the input and output of a linear
system. The system is linear since the Helmholtz equation, which U
(x, y, z) must satisfy, is linear. The system is shift-invariant because
of the invariance of free space to displacement of the coordinate
system. A linear shift-invariant system is characterized by its
impulse response function h(x, y) or by its transfer function H(νx,
νy), as explained in Appendix B, Sec. B.2. We now proceed to
determine expressions for these functions.

The transfer function H(νx, νy) is the factor by which an input
spatial harmonic function of frequencies νx and νy is multiplied to
yield the output harmonic function. We therefore consider a
harmonic input function f(x, y) = A exp[−j2π(νxx + νyy)]. As
explained earlier, this corresponds to a plane wave U (x, y, z) = A
exp[−j(kxx + kyy + kzz)] where kx = 2πνx, ky = 2πνy, and

The output g(x, y) = A exp[−j(kxx + kyy + kzd)], so that we can write
H(νx, νy) = g(x, y)/f(x, y) = exp(−jkzd), from which

Transfer Function of Free Space



The transfer function H(νx, νy) is therefore a circularly symmetric
complex function of the spatial frequencies νx and νy. Its magnitude
and phase are sketched in Fig. 4.1-11 .

For spatial frequencies for which  (i.e., frequencies lying
within a circle of radius 1/λ) the magnitude |H(νx, νy)| = 1 and the
phase arg{H(νx, νy)} is a function of νx and νy. A harmonic function
with such frequencies therefore undergoes a spatial phase shift as it
propagates, but its magnitude is not altered.

At higher spatial frequencies, , the quantity under the
square root in (4.1-9) is negative so that the exponent is real and the
transfer function   represents an attenuation
factor; the wave is then called an evanescent wave.2. When 

 exceeds λ−1 slightly, i.e., νρ ≈ λ−1, the attenua tion
factor is  

, which equals exp(−2π) when  
 the attenuation factor

decreases sharply when the spatial frequency slightly exceeds λ−1, as
illustrated in Fig. 4.1-11 . We may therefore regard λ−1 as the cutoff
spatial frequency (the spatial bandwidth) of the system. Thus,

The spatial bandwidth of light propagation in free space is
approximately λ−1 cycles/mm.

Features contained in spatial frequencies greater than λ−1

(corresponding to details of size finer than λ) cannot be transmitted
by an optical wave of wavelength λ over distances much greater than
λ.



(4.1-10)

Figure 4.1-11 Magnitude and phase of the transfer function H(νx,
νy) for free-space propagation between two planes separated by a
distance d.

Fresnel Approximation

The expression for the transfer function in (4.1-9) may be simplified
if the input function f(x, y) contains only spatial frequencies that
are much smaller than the cutoff frequency λ−1, so that .
The plane-wave components of the propagating light then make
small angles θx ≈ λνx and θy ≈ λνy corresponding to paraxial rays.

Denoting , where θ is the angle with the
optical axis, the phase factor in (4.1-9) is

Neglecting the third and higher terms of this expansion, (4.1-9) may
be approximated



(4.1-11)

(4.1-12)

(4.1-13)

Transfer Function of Free Space (Fresnel Approximation)

where H0 = exp(−jkd). In this approximation, the phase is a
quadratic function of νx and νy, as illustrated in Fig. 4.1-12 . This
approximation is known as the Fresnel approximation.

Figure 4.1-12 The transfer function of free-space propagation for
low spatial frequencies (much less than 1/λ cycles/mm) has a
constant magnitude and a quadratic phase.

The condition of validity of the Fresnel approximation is that the
third term in (4.1-10) is much smaller than π for all θ. This is
equivalent to

If a is the largest radial distance at the output plane, the largest
angle θm ≈ a/d, and (4.1-12) may be written in the form [see (2.2-
18)]
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Fresnel Approximation Condition of Validity

Fresnel Number

where NF is the Fresnel number. For example, if a = 1 cm, d = 100
cm, and λ = 0.5 μm, then θm = 10−2 radian, NF = 200, and NFθ2/4 =
5 × 10−3. In this case the Fresnel approximation is applicable.

Input–Output Relation

Given the input function f(x, y), the output function g(x, y) may be
determined as follows: (1) we determine the Fourier transform

which represents the complex envelopes of the plane-wave
components at the input plane; (2) the product H(νx, νy) F(νx, νy)
gives the complex envelopes of the plane-wave components at the
output plane; and (3) the complex amplitude at the output plane is
the sum of the contributions of these plane waves,

Using the Fresnel approximation for H(νx, νy), which is given by
(4.1-11), we have



(4.1-18)

(4.1-19)

Equations (4.1-17) and (4.1-15) serve to relate the output function
g(x, y) to the input function f(x, y).

C. Impulse Response Function of Free Space
The impulse response function h(x, y) of the system of free-space
propagation is the response g(x, y) when the input f(x, y) is a point
at the origin (0, 0). It is the inverse Fourier transform of the
transfer function H(νx, νy). Using the results of Sec. A.3 and Table
A.1-1 of Appendix A, together with k = 2π/λ, the inverse Fourier
transform of (4.1-11) turns out to be

Impulse Response Function Free Space (Fresnel Approximation)

where h0 =(j/λd) exp(−jkd). This function is proportional to the
complex amplitude at the z = d plane of a paraboloidal wave
centered about the origin (0, 0) [see (2.2-17)]. Thus, each point at
the input plane generates a paraboloidal wave; all such waves are
superimposed at the output plane.

Free-Space Propagation as a Convolution

An alternative procedure for relating complex amplitudes f(x, y) and
g(x, y) is to regard f(x, y) as a superposition of different points
(delta functions), each producing a paraboloidal wave. The wave
originating at the point (x′, y′) has an amplitude f(x′, y′) and is
centered about (x′, y′) so that it generates a wave with amplitude
f(x′, y′) h (x − x′, y − y′) at the point (x, y) at the output plane. The
sum of these contributions is the two-dimensional convolution

which, in the Fresnel approximation, becomes



(4.1-20)

(4.1-21)

where h0 = (j/λd) exp(−jkd).

In summary: within the Fresnel approximation, there are two
approaches to determining the complex amplitude g(x, y) at the
output plane, given the complex amplitude f(x, y) at the input plane:
(1) Equation (4.1-20) is based on a space-domain approach in which
the input wave is expanded in terms of paraboloidal elementary
waves; and (2) Equation (4.1-17) is a frequency-domain approach in
which the input wave is expanded as a sum of plane waves.

EXERCISE 4.1-2

Gaussian Beams Revisited. If the function 
 represents the complex amplitude of an

optical wave U (x, y, z) in the plane z = 0, show that U (x, y, z) is
the Gaussian beam displayed in (3.1-7). Use both space-and
frequency-domain methods.

D. Huygens–Fresnel Principle
The Huygens–Fresnel principle states that each point on a
wavefront generates a spherical wave (Fig. 4.1-13 ). The envelope of
these secondary waves constitutes a new wavefront. Their
superposition constitutes the wave in another plane. The system’s
impulse response function for propagation between the planes z = 0
and z = d is



Figure 4.1-13 The Huygens– Fresnel principle. Each point on a
wavefront generates a spherical wave.

In the paraxial approximation, the spherical wave given by (4.1-21)
is approximated by the paraboloidal wave in (4.1-18) (see Sec. 2.2B).
Our derivation of the impulse response function is therefore
consistent with the Huygens–Fresnel principle.

4.2 OPTICAL FOURIER TRANSFORM
As has been shown in Sec. 4.1, the propagation of light in free space
is described conveniently by Fourier analysis. If the complex
amplitude of a monochromatic wave of wavelength λ in the z = 0
plane is a function f(x, y) composed of harmonic components of
different spatial frequencies, each harmonic component
corresponds to a plane wave: the plane wave traveling at angles θx =
sin−1 λνx, θy = sin−1 λνy corresponds to the components with spatial
frequencies νx and νy and has an amplitude F(νx, νy), the Fourier
transform of f(x, y). This suggests that light can be used to compute
the Fourier transform of a two-dimensional function f(x, y), simply
by making a transparency with amplitude transmittance f(x, y)
through which a uniform plane wave of unity magnitude is
transmitted.

Because each of the plane waves has an infinite extent and therefore
overlaps with the other plane waves, however, it is necessary to find
a method of separating these waves. It will be shown that at a
sufficiently large distance, only a single plane wave contributes to
the total amplitude at each point at the output plane, so that the



(4.2-1)

Fourier components are eventually separated naturally. A more
practical approach is to use a lens to focus each of the plane waves
into a single point, as described subsequently.

A. Fourier Transform in the Far Field
We now proceed to show that if the propagation distance d is
sufficiently long, the only plane wave that contributes to the
complex amplitude at a point (x, y) at the output plane is the wave
with direction making angles θx ≈ x/d and θy ≈ y/d with the optical
axis (see Fig. 4.2-1 ). This is the wave with wavevector components
kx ≈ (x/d)k and ky ≈ (y/d)k and amplitude F(νx, νy) with νx = x/λd
and νy = x/λd. The complex amplitudes g(x, y) and f(x, y) of the
wave at the z = d and z = 0 planes are related by

Free-Space Propagation as Fourier Transform (Fraunhofer
Approximation)

where F(νx, νy) is the Fourier transform of f(x, y) and h0 = (j/λd)
exp(−jkd). Contributions of all other waves cancel out as a result of
destructive interference. This approximation is known as the
Fraunhofer approximation.



(4.2-2)

Figure 4.2-1 When the distance d is sufficiently long, the complex
amplitude at point (x, y) in the z = d plane is proportional to the
complex amplitude of the plane-wave component with angles θx ≈
x/d ≈ λνx and θy ≈ y/d ≈ λνy, i.e., to the Fourier transform F(νx, νy)
of f(x, y), with νx = x/λd and νy = y/λd.

As noted in the following proofs, the conditions of validity of
Fraunhofer approximation are:

Fraunhofer Approximation Condition of Validity 

The Fraunhofer approximation is therefore valid whenever the
Fresnel numbers NF and  are small. The Fraunhofer
approximation is more difficult to satisfy than the Fresnel
approximation, which requires that  [see (4.1-13)]. Since
θm ≪ 1 in the paraxial approximation, it is possible to satisfy the
Fresnel condition  1 for Fresnel numbers NF not necessarily
≪ 1.

 Proofs of the Fourier Transform Property of Free-Space
Propagation in the Fraunhofer Approximation. We begin
with the relation between g(x, y) and f(x, y) in (4.1-20). The phase



(4.2-3)

(4.2-4)

in the argument of the exponent is (π/λd)[(x−x′)2 +(y−y′)2] = (π/
λd)[(x2+y2)+(x′2+y′2)−2(xx′+ yy′)]. If f(x, y) is confined to a small
area of radius b, and if the distance d is sufficiently large so that the
Fresnel number N′F = b2/λd is small, then the phase factor (π/λd)
(x′2 + y′2) ≤ π(b2/λd) is negligible and (4.1-20) may be
approximated by

The factors x/λd and y/λd may be regarded as the frequencies νx =
x/λd and νy = y/λd, so that

where F(νx, νy) is the Fourier transform of f(x, y). The phase factor
given by exp[−jπ(x2+y2)/λd] in (4.2-4) may also be neglected and
(4.2-1) obtained if we also limit our interest to points at the output
plane within a circle of radius a centered about the z-axis so that
π(x2 + y2)/λd ≤ πa2/λd ≪ π. This is applicable when the Fresnel
number NF = a2/λd ≪ 1.

Another proof is based on (4.1-17), which expresses the complex
amplitude g(x, y) as an integral of plane waves of different
frequencies. If d is sufficiently large so that the phase in the
integrand is much greater than 2π, it can be shown using the
method of stationary phase3 that only one value of νx contributes to
the integral. This is the value for which the derivative of the phase 

 with respect to νx vanishes; i.e., νx = x/λd. Similarly, the
only value of νy that contributes to the integral is νy = y/λd. This
proves the assertion that only one plane wave contributes to the far
field at a given point. 



EXERCISE 4.2-1

Conditions of Validity of the Fresnel and Fraunhofer
Approximations: A Comparison. Demonstrate that the
Fraunhofer approximation is more restrictive than the Fresnel
approximation by taking λ = 0.5 μm, and assuming that the
object points lie within a circular aperture of radius b = 1 cm and
the observation points lie within a circular aperture of radius a =
2 cm. Determine the range of distances d between the object
plane and the observation plane for which each of these
approximations is applicable.

Summary
In the Fraunhofer approximation, the complex amplitude g(x, y)
of a wave of wavelength λ in the z = d plane is proportional to
the Fourier transform F(νx, νy) of the complex amplitude f(x, y)
in the z = 0 plane, evaluated at the spatial frequencies νx = x/λd
and νy = y/λd. The approximation is valid if f(x, y) at the input
plane is confined to a circle of radius b satisfying b2/λd ≪ 1, and
at points at the output plane within a circle of radius a satisfying
a2/λd ≪ 1.

B. Fourier Transform Using a Lens
The plane-wave components that constitute a wave may also be
separated by use of a lens. A thin spherical lens transforms a plane
wave into a paraboloidal wave focused to a point in the lens focal
plane (see Sec. 2.4 and Exercise 2.4-3). If the plane wave arrives at
small angles θx and θy, the paraboloidal wave is centered about the
point (θxf, θyf), where f is the focal length (see Fig. 4.2-2 ). The lens
therefore maps each direction (θx, θy) into a single point (θxf, θyf) in



(4.2-5)

(4.2-6)

the focal plane and thus separates the contributions of the different
plane waves.

Figure 4.2-2 Focusing of a plane wave into a point. A direction (θx,
θy) is mapped into a point (x, y) = (θxf, θyf). (see Exercise 2.4-3.)

In reference to the optical system shown in Fig. 4.2-3 , let f(x, y) be
the complex amplitude of the optical wave in the z = 0 plane. Light
is decomposed into plane waves, with the wave traveling at small
angles θx = λνx and θy = λνy having a complex amplitude
proportional to the Fourier transform F(νx, νy). This wave is focused
by the lens into a point (x, y) in the focal plane where x = θxf = λfνx
and y = θyf = λfνy. The complex amplitude at point (x, y) at the
output plane is therefore proportional to the Fourier transform of
f(x, y) evaluated at νx = x/λf and νy = y/λf, so that

To determine the proportionality factor in (4.2-5), we analyze the
input function f(x, y) into its Fourier components and trace the
plane wave corresponding to each component through the optical
system. We then superpose the contributions of these waves at the
output plane to obtain g(x, y). Assuming that these waves are
paraxial and using the Fresnel approximation, we obtain:
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Figure 4.2-3 Focusing of the plane waves associated with the
harmonic Fourier components of the input function f(x, y) into
points in the focal plane. The amplitude of the plane wave with
direction (θx, θy) = (λνx, λνy) is proportional to the Fourier
transform F(νx, νy) and is focused at the point (x, y) = (θxf, θyf) =
(λfνx, λfνy).

where hl = H0h0 = (j/λf) exp[−jk(d + f)]. Thus, the coefficient of
proportionality in (4.2-5) contains a phase factor that is a quadratic
function of x and y.

Since |hl| = 1/λf it follows from (4.2-6) that the optical intensity at
the output plane is

The intensity of light at the output plane (the back focal plane of the
lens) is therefore proportional to the absolute-squared value of the
Fourier transform of the complex amplitude of the wave at the
input plane, regardless of the distance d.

The phase factor in (4.2-6) vanishes if d = f, so that

Fourier-Transform Property of a Lens



where hl = (j/λf) exp(−j2kf). In this geometry, known as the 2-f
system (see Fig. 4.2-4), the complex amplitudes at the front and
back focal planes of the lens are related by a Fourier transform, both
magnitude and phase.

Figure 4.2-4 The 2-f system. The Fourier component of f(x, y)
with spatial frequencies νx and νy generates a plane wave at angles
θx = λνx and θy = λνy and is focused by the lens to the point (x, y) =
(fθx, fθy) = (λfνx, λfνy) so that g(x, y) is proportional to the Fourier
transform F(x/λf, y/λf).

Summary
The complex amplitude of light at a point (x, y) in the back focal
plane of a lens of focal length f is proportional to the Fourier
transform of the complex amplitude in the front focal plane
evaluated at the frequencies νx = x/λf, νy/λf. This relation is valid
in the Fresnel approximation. Without the lens, the Fourier
transformation is obtained only in the Fraunhofer
approximation, which is more restrictive.

 *Proof of the Fourier Transform Property of the Lens in
the Fresnel Approximation. The proof takes the following four
steps.

1. The plane wave with angles θx = λνx and θy = λνy has a complex
amplitude U (x, y, 0) = F(νx, νy) exp[−j2π(νxx + νyy)] in the z =
0 plane and U (x, y, d) = H(νx, νy) F(νx, νy) exp[−j2π(νxx +
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(4.2-10)

(4.2-11)
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νyy)] in the z = d plane, immediately before crossing the lens,
where  is the transfer function of a
distance d of free space and H0 = exp(−jkd).

2. Upon crossing the lens, the complex amplitude is multiplied by
the lens phase factor exp[jπ(x2 + y2)/λf] [the phase factor
exp(−jkΔ), where Δ is the width of the lens, has been ignored].
Thus,

This expression is simplified by writing 
, with x0 = λνxf; a

similar relation for y is written with y0 = λνyf, so that

where

Equation (4.2-10) is recognized as the complex amplitude of a
paraboloidal wave converging toward the point (x0, y0) in the
lens focal plane, z = d +Δ+ f.

3. We now examine the propagation in the free space between the
lens and the output plane to determine U (x, y, d +Δ+ f). We
apply (4.1-20) to (4.2-10), use the relation f exp[j2π(x − x0)x′ /
λf] dx′ = λfδ(x − x0), and obtain

where h0 = (j/λf) exp(−jkf). Indeed, the plane wave is focused
into a single point at x0 = λνxf and y0 = λνyf.

4. The last step is to integrate over all the plane waves (all νx and
νy). By virtue of the sifting property of the delta function, δ(x −



x0) = δ(x − λfνx) = (1/λf)δ(νx − x/λf), this integral gives g(x, y)
= h0A(x/λf, y/λf). Substituting from (4.2-11) we finally obtain
(4.2-6). 

EXERCISE 4.2-2

The Inverse Fourier Transform. In the single-lens optical
system depicted in Fig. 4.2-4 , the field distribution in the front
focal plane (z = 2f) is a scaled version of the Fourier transform
of the field distribution in the back focal plane (z = 0). Verify
that if the coordinate system in the front focal plane is inverted,
i.e., (x, y) → (−x, −y), then the resultant field distribution yields
the inverse Fourier transform.

4.3 DIFFRACTION OF LIGHT
When an optical wave is transmitted through an aperture in an
opaque screen and travels some distance in free space, its intensity
distribution is called the diffraction pattern. If light were treated as
rays, the diffraction pattern would be a shadow of the aperture.
Because of the wave nature of light, however, the diffraction pattern
may deviate slightly or substantially from the aperture shadow,
depending on the distance between the aperture and observation
plane, the wavelength, and the dimensions of the aperture. An
example is illustrated in Fig. 4.3-1 . It is difficult to determine
exactly the manner in which the screen modifies the incident wave,
but the propagation in free space beyond the aperture is always
governed by the laws described earlier in this chapter.
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Figure 4.3-1 Diffraction pattern of the teeth of a saw. (Adapted
from M. Cagnet, M. Franc¸on, and J. C. Thrierr, Atlas of Optical
Phenomena, Springer-Verlag, 1962.)

The simplest theory of diffraction is based on the assumption that
the incident wave is transmitted without change at points within the
aperture, but is reduced to zero at points on the back side of the
opaque part of the screen. If U (x, y) and f(x, y) are the complex
amplitudes of the wave immediately to the left and right of the
screen (Fig. 4.3-2 ), respectively, then in accordance with this
assumption,

where

is called the aperture function.



Figure 4.3-2 A wave U (x, y) is transmitted through an aperture of
amplitude transmittance p(x, y), generating a wave of complex
amplitude f(x, y) = U (x, y)p(x, y). After propagation a distance d in
free space, the complex amplitude is g(x, y) and the diffraction
pattern is the intensity I(x, y) = |g(x, y)|2.

Given f(x, y), the complex amplitude g(x, y) at an observation plane
a distance d from the screen may be determined using the methods
described in Secs. 4.1 and 4.2. The diffraction pattern I(x, y) = |g(x,
y)|2 is known as Fraunhofer diffraction or Fresnel
diffraction, depending on whether free-space propagation is
described using the Fraunhofer approximation or the Fresnel
approximation, respectively.

Although this approach gives reasonably accurate results in most
cases, it is not exact. The validity and self-consistency of the
assumption that the complex amplitude f(x, y) vanishes at points
outside the aperture on the back of the screen are questionable
since the transmitted wave propagates in all directions and
therefore reaches those points as well. A theory of diffraction based
on the exact solution of the Helmholtz equation under the boundary
conditions imposed by the aperture is mathematically difficult. Only
a few geometrical structures have yielded exact solutions. However,
different theories of diffraction have been developed using a variety
of assumptions, leading to results with varying accuracies. Rigorous
diffraction theory is beyond the scope of this book.

A. Fraunhofer Diffraction
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Fraunhofer diffraction is the theory of transmission of light through
apertures, assuming that the incident wave is multiplied by the
aperture function and that the Fraunhofer approximation
determines the propagation of light in the free space beyond the
aperture. The Fraunhofer approximation is valid if the propagation
distance d between the aperture and observation planes is
sufficiently large so that the Fresnel number , where b
is the largest radial distance within the aperture.

Assuming that the incident wave is a plane wave of intensity Ii
traveling in the z direction so that .
In the Fraunhofer approximation [see (4.2-1)],

where

is the Fourier transform of p(x, y) and h0 = (j/λd) exp(−jkd). The
diffraction pattern is therefore

In summary: the Fraunhofer diffraction pattern at the point (x, y) is
proportional to the squared magnitude of the Fourier transform of
the aperture function p(x, y) evaluated at the spatial frequencies νx
= x/λd and νy = y/λd.
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EXERCISE 4.3-1

Fraunhofer Diffraction from a Rectangular Aperture.
Verify that the Fraunhofer diffraction pattern from a rectangular
aperture, of height and width Dx and Dy respectively, observed at
a distance d is

where Io = (DxDy/λd)2 Ii is the peak intensity and sinc(x) ≡
sin(πx)/(πx). Verify that the first zeros of this pattern occur at x
= ±λd/Dx and y = ±λd/Dy, so that the angular divergence of the
diffracted light is given by

If Dy < Dx, the diffraction pattern is wider in the y direction than
in the x direction, as illustrated in Fig. 4.3-3 .

Figure 4.3-3 Fraunhofer diffraction from a rectangular
aperture. The central lobe of the pattern has half-angular widths
θx = λ/Dx and θy = λ/Dy.
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EXERCISE 4.3-2

Fraunhofer Diffraction from a Circular Aperture. Verify
that the Fraunhofer diffraction pattern from a circular aperture
of diameter D (Fig. 4.3-4) is

where Io = (πD2/4λd)2Ii is the peak intensity and J1(·) is the
Bessel function of order 1. The Fourier transform of circularly
symmetric functions is discussed in Appendix A, Sec. A.3. The
circularly symmetric pattern (4.3-8), known as the Airy
pattern, consists of a central disk surrounded by rings. Verify
that the radius of the central disk, known as the Airy disk, is ρs
= 1.22λd/D and subtends an angle

Airy Disk Half Angle

Figure 4.3-4 The Fraunhofer diffraction pattern from a circular
aperture produces the Airy pattern with the radius of the central
disk subtending an angle θ = 1.22λ/D.



The Fraunhofer approximation is valid for distances d that are
usually extremely large. It is satisfied, for example, in
applications of long-distance free-space optical communications
such as laser radar (lidar) and satellite communications.
However, as shown in Sec. 4.2B, if a lens of focal length f is used
to focus the diffracted light, the intensity pattern in the focal
plane is proportional to the squared magnitude of the Fourier
transform of p(x, y) evaluated at νx = x/λf and νy = y/λf . The
observed pattern is therefore identical to that obtained from
(4.3-5), with the distance d replaced by the focal length f.
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EXERCISE 4.3-3

Spot Size of a Focused Optical Beam. A beam of light is
focused using a lens of focal length f with a circular aperture of
diameter D (Fig. 4.3-5 ). If the beam is approximated by a plane
wave at points within the aperture, verify that the pattern of the
focused spot is

where Io is the peak intensity. Compare the radius of the focused
spot,

to the spot size obtained when a Gaussian beam of waist radius
W0 is focused by an ideal lens of infinite aperture [see (3.2-15)].

Figure 4.3-5 Focusing of a plane wave transmitted through a
circular aperture of diameter D.

*B. Fresnel Diffraction
The theory of Fresnel diffraction is based on the assumption that
the incident wave is multiplied by the aperture function p(x, y) and
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propagates in free space in accordance with the Fresnel
approximation. If the incident wave is a plane wave traveling in the
z-direction with intensity Ii, the complex amplitude immediately
after the aperture is . Using (4.1-20), the diffraction
pattern I(x, y) = |g(x, y)|2 at a distance d is

It is convenient to normalize all distances using  as a unit of
distance, so that  and  are the normalized
distances (and similarly for y and y′ ). Equation (4.3-12) then gives

The integral in (4.3-13) is the convolution of p(X, Y) and exp[−jπ(X2

+ Y2)]. The real and imaginary parts of exp(−jπX2), cos πX2 and sin
πX2, respectively, are plotted in Fig. 4.3-6 . They oscillate at an
increasing frequency and their first lobes lie in the intervals 

, respectively. The total area under the function
exp(−jπX2) is 1, with the main contribution to the area coming from
the first few lobes, since subsequent lobes cancel out. If a is the
radius of the aperture, the radius of the normalized function 

. The result of the convolution, which depends on the
relative size of the two functions, is therefore governed by the
Fresnel number NF = a2/λd.



Figure 4.3-6 The real and imaginary parts of exp(−jπX2).

If the Fresnel number is large, the normalized width of the aperture 
 is much greater than the width of the main lobe, and the

convolution yields approximately the wider function p(X, Y). Under
this condition the Fresnel diffraction pattern is a shadow of the
aperture, as would be expected from ray optics. Note that ray optics
is applicable in the limit λ → 0, which corresponds to the limit NF
→∞. In the opposite limit, when NF is small, the Fraunhofer
approximation becomes applicable and the Fraunhofer diffraction
pattern is obtained.
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EXAMPLE 4.3-1.

Fresnel Diffraction from a Slit. Assume that the aperture is
a slit of width D = 2a, so that p(x, y) = 1 when |x|≤ a, and 0
elsewhere. The normalized coordinate  and

where NF = a2/λd is the Fresnel number. Substituting into (4.3-
13), we obtain I(X, Y) = Ii|g(X)|2, where

This integral is usually written in terms of the Fresnel integrals

which are available in the standard computer mathematical
libraries.

The complex function g(X) may also be evaluated using Fourier-
transform techniques. Since g(x) is the convolution of a
rectangular function of width  and exp(−jπX2), its Fourier
transform  (see Table A.1-1 in
Appendix A). Thus, g(X) may be computed by determining the
inverse Fourier transform of G(νx). If NF ∈ 1, the width of sinc 

 is much narrower than the width of the first lobe of 
 (see Fig. 4.3-6 ) so that G(νx) ≈  and g(X) is

the rectangular function representing the aperture shadow.

The diffraction pattern from a slit is plotted in Fig. 4.3-7 for
different Fresnel numbers corresponding to different distances d
from the aperture. At very small distances (very large NF), the



diffraction pattern is a perfect shadow of the slit. As the distance
increases (NF decreases), the wave nature of light is exhibited in
the form of small oscillations around the edges of the aperture
(see also the diffraction pattern in Fig. 4.3-1 ). For very small NF,
the Fraunhofer pattern described by (4.3-6) is obtained. This is a
sinc function with the first zero subtending an angle λ/D = λ/2a.

Figure 4.3-7 Fresnel diffraction from a slit of width D = 2a.(a)
Shaded area is the geometrical shadow of the aperture. The
dashed line is the width of the Fraunhofer diffracted beam. (b)
Diffraction pattern at four axial positions marked by the arrows
in (a) and corresponding to the Fresnel numbers NF = 10, 1, 0.5,
and 0.1. The shaded area represents the geometrical shadow of
the slit. The dashed lines at |x| = (λ/D)d represent the width of
the Fraunhofer pattern in the far field. Where the dashed lines
coincide with the edges of the geometrical shadow, the Fresnel
number NF = a2/λd = 0.5.

EXAMPLE 4.3-2.
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Fresnel Diffraction from a Gaussian Aperture. If the
aperture function p(x, y) is the Gaussian function 

, the Fresnel diffraction equation (4.3-12)
may be evaluated exactly by finding the convolution of 

 with h0 exp[−jπ(x2 + y2)/λd] using, for example,
Fourier transform techniques (see Appendix A). The resultant
diffraction pattern is

where .

The diffraction pattern is a Gaussian function of 1/e2 half-width
W(d). For small d, W (d) ≈ W0; but as d increases, W(d)
increases and approaches W(d) ≈ θ0d when d is sufficiently
large for the Fraunhofer approximation to be applicable, so that
the angle subtended by the Fraunhofer diffraction pattern is θ0.
These results are illustrated in Fig. 4.3-8 , which is analogous to
the illustration in Fig. 4.3-7 for diffraction from a slit. The wave
diffracted from a Gaussian aperture is the Gaussian beam
described in detail in Chapter 3.



Figure 4.3-8 Fresnel diffraction pattern for a Gaussian
aperture of radius W0 at distances d such that the parameter 

, which is analogous to the Fresnel number NF in Fig.
4.3-7 , is 10, 1, 0.5, and 0.1. These values correspond to W(d)/W0
= 1.001, 1.118, 1.414, and 5.099, respectively. The diffraction
pattern is Gaussian at all distances.

Summary
In the order of increasing distance from the aperture, the
diffraction pattern is:

1. A shadow of the aperture.

2. A Fresnel diffraction pattern, which is the convolution of
the normalized aperture function with exp[−jπ(X2 + Y2)].

3. A Fraunhofer diffraction pattern, which is the absolute-
squared value of the Fourier transform of the aperture
function. The far field has an angular divergence
proportional to λ/D, where D is the diameter of the
aperture.
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Fresnel Diffraction from a Periodic Aperture: The Talbot Effect

Fresnel diffraction from a one-dimensional periodic aperture is best
described in the Fourier domain by expanding the aperture function
p(x) in a Fourier series. If Λ is its period, then the Fourier expansion
has frequencies νx = m/Λ, where m = 0, ±1, ±2,.... The transfer
function of free space (4.1-11), at a distance z, is then

where zT = 2Λ2/λ. At z = zT, or multiples thereof, the transfer
function is simply a constant H0, independent of the harmonic
order m. At these specific distances, then, each of the harmonic
functions comprising the aperture function p(x) is multiplied by the
same factor so that the function p(x) is reproduced. This process of
self imaging is known as the Talbot effect, and the distance zT is
called the Talbot distance. At distances z unequal to multiples of zT,
the field is given by ,
where the cm are coefficients of the Fourier series expansion of p(x).
The corresponding intensity I(x, z) = |U (x, z)|2 for an opaque
screen with parallel slits exhibits a carpet-like pattern, as illustrated
in Fig. 4.3-9.



Figure 4.3-9 Talbot effect. Fresnel diffraction pattern from a
periodic aperture that takes the form of parallel slits in an otherwise
opaque screen. The pattern is reproduced at distances that are
multiples of the Talbot distance zT. The result has the appearance of
a carpet with periodic patterns in x and z.

The Talbot effect is also observed for two-dimensional periodic
apertures provided that the period is the same in the x and y
directions.

C. Nondiffracting Waves
In accordance with (4.1-8) and (4.1-9), the transfer function of free-
space is exp(−jkzz), where  is a circularly symmetric
complex function of . Any two input harmonic functions
with spatial frequencies for which  is the same thus have the
same value of the transfer function. It follows that a function f(x, y)
that is a superposition of harmonic functions, all with the same
value of kT and therefore the same kz, creates a stationary wave U
(x, y, z) = f(x, y) exp(−jkzz) that maintains its transverse
distribution, and is therefore nondiffracting, as it travels through
free space, regardless of the distance z. The wavefronts of such a
wave are planes orthogonal to the z axis, and the propagation
constant is kz. Nondiffracting optical beams were considered in Sec.
3.5.



EXAMPLE 4.3-3.

Two Plane Waves. The function 
 comprises two harmonic components with spatial

angular frequencies kx = ±α. On propagation through free space,
each of these components is modified by the same factor
exp(−jkzz), where . The result is a stationary wave that
takes the form U (x, y, z) = cos(αx) exp(−jkzz), which has a
sinusoidal transverse distribution representing the interference
between two oblique plane waves at angles ± sin−1 (α/ko), as
provided by (2.5-7).

EXAMPLE 4.3-4.

Four Plane Waves. A plane wave traveling in the z direction
that is modulated by the function f(x, y) = cos(αxx) cos(αyy)
results in four waves, at angles ± sin−1 (αx/ko) and ± sin−1

(αy/ko) with respect to the x and y axes, respectively. Since the
quantity  is the same for all four waves, so too is 

. The outcome at z is thus the stationary wave U (x,
y, z) = cos(αxx) cos(αyy) exp(−jkzz), as shown.

EXAMPLE 4.3-5.



Infinite Number of Plane Waves. Consider now a function
f(x, y) composed of several harmonic functions of angular
frequencies kx = kT cos ϕ and ky = kT sin ϕ, with fixed kT but
different ϕ. The quantities  are thus the
same for each of these functions. This superposition of waves
therefore corresponds to a stationary wave U (x, y, z) = f(x, y)
exp(−jkzz), no matter how many values of ϕ are included. A
limiting case is the superposition in which a continuum of
harmonic functions extends over all angles ϕ, which yields 

. The result is a
continuum of plane waves whose directions form a cone of half-
angle sin−1 (kT /ko). This superposition wave is nothing other
than the Bessel beam U (x, y, z) = 
described in (3.5-4) and illustrated at right. The connection is
explicitly forged via the identity , where
J0(u) is the Bessel function of the first kind and zeroth order.

The plane-wave superposition associated with the Bessel beam
may be implemented by making use of an axicon (see Example
2.4-1 and Sec. 3.5A).

4.4 IMAGE FORMATION
An ideal image formation system is an optical system that replicates
the distribution of light in one plane, the object plane, into another,



the image plane. Since the optical transmission process is never
perfect, the image is never an exact replica of the object. Aside from
image magnification, there is also blur resulting from imperfect
focusing and from the diffraction of optical waves. This section is
devoted to the description of image formation systems and their
fidelity. Methods of linear systems, such as the impulse response
function and the transfer function (Appendix B), are used to
characterize image formation. A simple ray-optics approach is
presented first, then a treatment based on wave optics is
subsequently developed.

A. Ray Optics of a Single-Lens Imaging System
Consider an imaging system using a lens of focal length f at
distances d1 and d2 from the object and image planes, respectively,
as shown in Fig. 4.4-1 . When 1/d1 +1/d2 = 1/f, the system is focused
so that paraxial rays emitted from each point in the object plane
reach a single corresponding point in the image plane. Within the
ray theory of light, the imaging is “ideal,” with each point of the
object producing a single point of the image. The impulse response
function of the system is an impulse function.

Figure 4.4-1 Rays in a focused imaging system.

Suppose now that the system is not in focus, as illustrated in Fig.
4.4-2 , and assume that the focusing error is
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Focusing Error

A point in the object plane generates a patch of light in the image
plane that is a shadow of the lens aperture. The distribution of this
patch is the system’s impulse response function. For simplicity, we
shall consider an object point lying on the optical axis and
determine the distribution of light h(x, y) it generates in the image
plane.

Figure 4.4-2 (a) Rays in a defocused imaging system. (b) The
impulse response function of an imaging system with a circular
aperture of diameter D is a circle of radius ρs = ∈d2D/2, where ∈ is
the focusing error.

Assume that the plane of the focused image lies at a distance d2o
satisfying the imaging equation 1/d2o +1/d1 = 1/f. The shadow of a
point on the edge of the aperture at a radial distance ρ is a point in
the image plane with radial distance ρs where the ratio ρs/ρ = (d2o −
d2)/d2o = 1 − d2/d2o = 1 − d2(1/f − 1/d1) = 1 − d2(1/d2 − ∈) = ∈d2. If
p(x, y) is the aperture function, also called the pupil function
[p(x, y) = 1 for points inside the aperture, and 0 elsewhere], then
h(x, y) is a scaled version of p(x, y) magnified by a factor ρs/ρ = ∈d2,
so that
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Impulse Response Function (Ray-Optics)

As an example, a circular aperture of diameter D corresponds to an
impulse response function confined to a circle of radius

Blur Spot Radius

as illustrated in Fig. 4.4-2 . The radius ρs of this “blur spot” is an
inverse measure of resolving power and image quality. A small
value of ρs means that the system is capable of resolving fine
details. Since ρs is proportional to the aperture diameter D, the
image quality may be improved by use of a small aperture. A small
aperture corresponds to a reduced sensitivity of the system to
focusing errors, so that it corresponds to an increased “depth of
focus.”

B. Wave Optics of a 4-f Imaging System
Consider now the two-lens imaging system illustrated in Fig. 4.4-3 .
This system, called the 4-f system, serves as a focused imaging
system with unity magnification, as can be easily verified by ray
tracing.



Figure 4.4-3 The 4-f imaging system. If an inverted coordinate
system is used in the image plane, the magnification is unity.

The analysis of wave propagation through this system becomes
simple if we recognize it as a cascade of two Fourier-transforming
subsystems. The first subsystem (between the object plane and the
Fourier plane) performs a Fourier transform, and the second
(between the Fourier plane and the image plane) performs an
inverse Fourier transform since the coordinate system in the image
plane is inverted (see Exercise 4.2-2). As a result, in the absence of
an aperture the image is a perfect replica of the object.

Let f(x, y) be the complex amplitude transmittance of a
transparency placed in the object plane and illuminated by a plane
wave exp(−jkz) traveling in the z direction, as illustrated in Fig. 4.4-
4 , and let g(x, y) be the complex amplitude in the image plane. The
first lens system analyzes f(x, y) into its spatial Fourier transform
and separates its Fourier components so that each point in the
Fourier plane corresponds to a single spatial frequency. These
components are then recombined by the second lens system and the
object distribution is perfectly reconstructed.

The 4-f imaging system can be used as a spatial filter in which the
image g(x, y) is a filtered version of the object f(x, y). Since the
Fourier components of f(x, y) are available in the Fourier plane, a
mask may be used to adjust them selectively, blocking some
components and transmitting others, as illustrated in Fig. 4.4-5 .
The Fourier component of f(x, y) at the spatial frequency (νx, νy) is
located in the Fourier plane at the point x = λfνx, y = λfνy. To
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implement a filter of transfer function H(νx, νy), the complex
amplitude transmittance p(x, y) of the mask must be proportional
to H(x/λf, y/λf). Thus, the transfer function of the filter realized by
a mask of transmittance p(x, y) is

Transfer Function 4-f System

where we have ignored the phase factor j exp(−j2kf) associated with
each Fourier transform operation [the argument of hl in (4.2-8)].
The Fourier transforms G(νx, νy) and F(νx, νy) of g(x, y) and f(x, y)
are related by G(νx, νy) = H(νx, νy) F(νx, νy).

Figure 4.4-4 The 4-f imaging system performs a Fourier transform
followed by an inverse Fourier transform, so that the image is a
perfect replica of the object.
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Figure 4.4-5 Spatial filtering. The transparencies in the object and
Fourier planes have complex amplitude transmittances f(x, y) and
p(x, y). A plane wave traveling in the z direction is modulated by the
object transparency, Fourier transformed by the first lens,
multiplied by the transmittance of the mask in the Fourier plane,
and inverse Fourier transformed by the second lens. As a result, the
complex amplitude in the image plane g(x, y) is a filtered version of
f(x, y). The system has a transfer function H(νx, νy) = p(λfνx, λfνy).

This is a rather simple result. The transfer function has the same
shape as the pupil function. The corresponding impulse response
function h(x, y) is the inverse Fourier transform of H(νx, νy),

Impulse Response Function 4-f System

where P(νx, νy) is the Fourier transform of p(x, y).

Examples of Spatial Filters

The ideal circularly symmetric low-pass filter has a transfer
function H(νx, νy) = , otherwise. It



passes spatial frequencies that are smaller than the cutoff
frequency νs and blocks higher frequencies. This filter is
implemented by a mask in the form of a circular aperture of
diameter D, with D/2= νsλf. For example, if D = 2 cm, λ = 1 μm,
and f = 100 cm, the cutoff frequency (spatial bandwidth) νs =
D/2λf = 10 lines/mm. This filter eliminates spatial frequencies
that are greater than 10 lines/mm, so that the smallest size of
discernible detail in the filtered image is approximately 0.1 mm.

The high-pass filter is the complement of the low-pass filter. It
blocks low frequencies and transmits high frequencies. The
mask is a clear transparency with an opaque central circle. The
filter output is high at regions of large rate of change and small
at regions of smooth or slow variation of the object. The filter is
therefore useful for edge enhancement in image-processing
applications.

The vertical-pass filter blocks horizontal frequencies and
transmits vertical frequencies. Only variations in the x direction
are transmitted. If the mask is a vertical slit of width D, the
highest transmitted frequency is νy = (D/2)/λf.

Examples of these filters and their effects on images are illustrated
in Fig. 4.4-6 .

C. Wave Optics of a Single-Lens Imaging System
We now consider image formation in the single-lens imaging
system illustrated in Fig. 4.4-7 , using a wave-optics approach. We
first determine the impulse response function, and then derive the
transfer function. These functions are determined by the defocusing
error ∈, given by (4.4-1), and by the pupil function p(x, y) (the
transmittance of the aperture in the lens plane). The pupil function
in this single-lens imaging system plays the same role of the mask
function in the 4-f imaging system described in the previous
section.
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Impulse Response Function

To determine the impulse response function we consider an object
composed of a single point (an impulse) on the optical axis at the
point (0, 0), and follow the emitted optical wave as it travels to the
image plane. The resultant complex amplitude is the impulse
response function h(x, y).

An impulse in the object plane produces in the aperture plane a
spherical wave approximated by [see (4.1-18)]

where h1 = (j/λd1) exp(−jkd1). Upon crossing the aperture and the
lens, U (x, y) is multiplied by the pupil function p(x, y) and the lens
quadratic phase factor exp[jk(x2 + y2)/2f], becoming



Figure 4.4-6 Examples of object, mask, and filtered image for
three spatial filters: (a) low-pass filter; (b) high-pass filter; (c)
vertical-pass filter. Black means the transmittance is zero and white
means the transmittance is unity.

Figure 4.4-7 Single-lens imaging system.
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The resultant field U1(x, y) then propagates in free space a distance
d2. In accordance with (4.1-20) it produces the impulse response
function

where h2 = (j/λd2) exp(−jkd2). Substituting from (4.4-6) and (4.4-7)
into (4.4-8) and casting the integrals as a Fourier transform, we
obtain

where P1(νx, νy) is the Fourier transform of the function

Generalized Pupil Function

known as the generalized pupil function. The factor ∈ is the
focusing error given by (4.4-1).

For a high-quality imaging system, the impulse response function is
a narrow function, extending only over a small range of values of x
and y. If the phase factor π(x2 + y2)/λd2 in (4.4-9) is much smaller
than 1 for all x and y within this range, it can be neglected, so that

Impulse Response Function
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where h0 = h1h2 is a constant of magnitude (1/λd1)(1/λd2). It
follows that the system’s impulse response function is proportional
to the Fourier transform of the generalized pupil function p1(x, y)
evaluated at νx = x/λd2 and νy = y/λd2.

If the system is focused (∈ = 0), then p1(x, y) = p(x, y), and

where P(νx, νy) is the Fourier transform of p(x, y). This result is
similar to the corresponding result in (4.4-5) for the 4-f system.
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EXAMPLE 4.4-1.

Impulse Response Function of a Focused Imaging
System with a Circular Aperture. If the aperture is a circle
of diameter D so that  and zero
otherwise, then the impulse response function is

and |h(0, 0)| = (πD2/4λ2d1d2). This is a circularly symmetric
function whose cross section is shown in Fig. 4.4-8 . It drops to
zero at a radius

and oscillates slightly before it vanishes. The radius ρs is
therefore a measure of the size of the blur circle. If the system is
focused at ∞, then d1 = ∞ and d2 = f, so that

Spot Radius

where F# = f/D is the lens F-number. Thus, systems of smaller
F# (larger apertures) have better image quality. This assumes, of
course, that the larger lens does not introduce geometrical
aberrations.



Figure 4.4-8 Impulse response function of an imaging system
with a circular aperture.

Transfer Function

The transfer function of a linear system can only be defined when
the system is shift invariant (see Appendix B). Evidently, the single-
lens imaging system is not shift invariant since a shift Δ of a point
in the object plane is accompanied by a different shift MΔ in the
image plane, where M = −d2/d1 is the magnification.

The image is different from the object in two ways. First, the image
is a magnified replica of the object, i.e., the point (x, y) of the object
is located at a new point (Mx, My) in the image. Second, every point
is smeared into a patch as a result of defocusing or diffraction. We
can therefore think of image formation as a cascade of two systems
— a system of ideal magnification followed by a system of blur, as
depicted in Fig. 4.4-9 . By its nature, the magnification system is
shift-variant. For points near the optical axis, the blur system is
approximately shift invariant and therefore can be described by a
transfer function.

The transfer function H(νx, νy) of the blur system is determined by
obtaining the Fourier transform of the impulse response function
h(x, y) in (4.4-11). The result is
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Transfer Function

where p1(x, y) is the generalized pupil function and we have ignored
a constant phase factor exp(−jkd1) exp(−jkd2). If the system is
focused, then

where p(x, y) is the pupil function. This result is identical to that
obtained for the 4-f imaging system [see (4.4-4)]. If the aperture is a
circle of diameter D, for example,

Figure 4.4-9 The imaging system in (a) is regarded in (b) as a
combination of an ideal imaging system with only magnification,
followed by shift-invariant blur in which each point is blurred into a
patch with a distribution equal to the impulse response function.

then the transfer function is constant within a circle of radius νs,
where

and vanishes elsewhere, as illustrated in Fig. 4.4-10 .
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Figure 4.4-10 Transfer function of a focused imaging system with
a circular aperture of diameter D. The system has a spatial
bandwidth νs = D/2λd2.

If the lens is focused at infinity, i.e., d2 = f,

Spatial Bandwidth

where F# = f/D is the lens F-number. For example, for an F-2 lens
(F# = f/D = 2) and for λ = 0.5 μm, νs = 500 lines/mm. The
frequency νs is the spatial bandwidth, i.e., the highest spatial
frequency that the imaging system can transmit.

D. Near-Field Imaging
It was shown in Sec. 4.1B that the spatial bandwidth of light
propagating in free space at a wavelength λ is λ−1 cycles/mm.
Fourier components of the object distribution with spatial
frequencies greater than λ−1 lead to evanescent waves that decay
rapidly and diminish at distances from the object plane of the order
of a wavelength, so that object features smaller than a wavelength
cannot be transmitted. Moreover, it was shown in Sec. 4.4C that an



imaging system using a lens with a specified F# has an impulse
response function whose radius is 1.22λF#, so that points separated
by a distance smaller than 1.22λF# cannot be discriminated [see Fig.
4.4-11 (a)]. Another imaging modality that makes use of a laser
beam focused by a lens to scan an object, as depicted in Fig. 4.4-11
(b), behaves similarly. The resolution of this system is dictated by
the size of the focused spot, which has a radius of 1.22λF#, as was
shown in Example 4.4-1. In both of these cases, therefore, object
details with dimensions much smaller than a wavelength are
washed out in the scanned image. This fundamental limit on the
resolution of image-formation systems is referred to as the
diffraction limit.

Figure 4.4-11 In a single-lens imaging system, the subwavelength
spatial details of an object are washed out (a) in an image formed by
a single lens, or (b) by making use of a focused laser-scanning
system. (c) On the other hand, a scanning imaging system that
makes use of illumination transmitted through a subwavelength
aperture preserves the subwavelength details of the object, provided
that the object plane is placed at a subwavelength distance from the
aperture plane.

The diffraction limit may be circumvented, however. Light can be
localized to a spot with dimensions much smaller than a
wavelength, within a single plane. The difficulty is that the
evanescent waves fully decay a short distance away from that plane,
whereupon the spot diverges and acquires a size that exceeds the



wavelength. At yet greater distances, the wave ultimately becomes a
spherical wave. Hence, the diffraction limit can be circumvented if
the object is illuminated in the very vicinity of the subwavelength
spot, before the beam waist has an opportunity to grow. This may be
implemented in a scanning configuration by passing the
illumination beam through an aperture of diameter much smaller
than a wavelength, as depicted in Fig. 4.4-11 (c). The object is placed
at a distance from the aperture that is usually less than half the
diameter of the aperture so that the beam illuminates a
subwavelength-size area of the object. Upon transmission through
the object, the traveling components of the wave form a spherical
wave whose amplitude is proportional to the object transmittance at
the location of the spot illumination. The resolution of this imaging
system is therefore of the order of the aperture size, which is much
smaller than the wavelength. An image is constructed by raster-
scanning the illuminated aperture across the object and recording
the optical response via a conventional far-field imaging system.
This technique is known as near-field optical imaging or scanning
near-field optical microscopy (SNOM). Subwavelength
imaging falls in the domain of nanophotonics since the imaging
takes place over a subwavelength (nanometer) spatial scale. Other
approaches for achieving subwavelength imaging make use of
negative-index and hyperbolic materials, as considered in Sec. 8.1.

SNOM is typically implemented by sending the illumination light
through an optical fiber with an aluminum-coated tapered tip, as
illustrated in Fig. 4.4-12 . The light is guided through the fiber by
total internal reflection. As the diameter of the fiber decreases, the
light is guided by reflection from the metallic surface, which acts
like a conical mirror. As the fiber diameter grows yet smaller in the
region of the tip, the wave can no longer be guided (see Sec. 9.1) and
becomes evanescent. The distribution of the illumination wave at,
and beyond, the end of the tip is complex and is typically
determined numerically. Aperture diameters and spatial resolutions
of the order of tens of nanometers are usually achieved in SNOM
with visible light. Since the tip of the fiber scans the object at a



distance of only a few nanometers, an elaborate feedback system
must be employed to maintain the distance for a specimen of
arbitrary topography. Applications of SNOM include the non-
destructive characterization of inorganic, organic, composite, and
biological materials and nanostructures.

Figure 4.4-12 An optical fiber with a tapered metal-coated tip for
near-field imaging.

4.5 HOLOGRAPHY
Holography involves the recording and reconstruction of optical
waves. A hologram is a 2D transparency that contains a coded
record of the amplitude and phase of an optical wave originating
from a 3D object. Consider a monochromatic optical wave whose
complex amplitude in some plane, say the z = 0 plane, is Uo(x, y). If,
somehow, a thin optical element (call it a transparency) with
complex amplitude transmittance t(x, y) equal to Uo(x, y) were able
to be made, it would provide a complete record of the wave. The
wave could then be reconstructed simply by illuminating the
transparency with a uniform plane wave of unit amplitude traveling
in the z direction. The transmitted wave would have a complex
amplitude in the z = 0 plane U (x, y) = 1 · t(x, y) = Uo(x, y). The
original wave would then be reproduced at all points in the z = 0
plane, and therefore reconstructed everywhere in the space z > 0.

As an example, we know that a uniform plane wave traveling at an
angle θ with respect to the z axis in the x–z plane has a complex
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amplitude Uo(x, y) = exp[−jkx sin θ]. A record of this wave would be
a transparency with complex amplitude transmittance t(x, y) =
exp[−jkx sin θ]. Such a transparency acts as a prism that bends an
incident plane wave exp(−jkz) by an angle θ (see Sec. 2.4B), thus
reproducing the original wave.

The question is how to make a transparency t(x, y) from the original
wave Uo(x, y). One key impediment is that optical detectors,
including the photographic emulsions used to make transparencies,
are responsive to the optical intensity, |Uo(x, y)|2, and are therefore
insensitive to the phase arg{Uo(x, y)}. Phase information is
obviously important and cannot be disregarded, however. For
example, if the phase of the oblique wave Uo(x, y) = exp[−jkx sin θ]
were not recorded, neither would the direction of travel of the wave.
To record the phase of Uo(x, y), a code must be found that
transforms phase into intensity. The recorded information could
then be optically decoded in order to reconstruct the wave.

The Holographic Code

The holographic code is based on mixing the original wave
(hereafter called the object wave) Uo with a known reference
wave Ur and recording their interference pattern in the z = 0 plane.
The intensity of the sum of the two waves is photographically
recorded and a transparency of complex amplitude transmittance t,
proportional to the intensity, is made [Fig. 4.5-1 (a)]. The
transmittance is therefore given by

where Ir and Io are, respectively, the intensities of the reference
wave and the object wave at the z = 0 plane.
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Figure 4.5-1 (a) A hologram is a transparency on which the
interference pattern between the original wave (object wave) and a
reference wave is recorded. (b) The original wave is reconstructed
by illuminating the hologram with the reference wave.

The transparency, called a hologram, clearly carries coded
information pertinent to the magnitude and phase of the wave Uo.
In fact, as an interference pattern the transmittance t is highly
sensitive to the difference between the phases of the two waves, as
was shown in Sec. 2.5 (the temporal analog to holography is
heterodyning, discussed in Sec. 2.6). As indicated above, ordinary
photography is responsive only to the intensity of the incident wave
and therefore records no phase information.

To decode the information in the hologram and reconstruct the
object wave, the reference wave Ur is again used to illuminate the
hologram [Fig. 4.5-1 (b)]. The result is a wave with complex
amplitude

in the hologram plane z = 0. The third term on the right-hand side
is the original wave multiplied by the intensity Ir of the reference
wave. If Ir is uniform (independent of x and y), this term constitutes
the desired reconstructed wave. But it must be separated from the
other three terms. The fourth term is a conjugated version of the
original wave modulated by . The first two terms represent the
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reference wave, modulated by the sum of the intensities of the two
waves.

If the reference wave is selected to be a uniform plane wave
propagating along the , then in the z = 0 plane 

 is a constant independent of x and y. Dividing (4.5-2)
by  gives

Reconstructed Wave in Plane of Hologram

The significance of the various terms in (4.5-3), and the methods of
extracting the original wave (the third term), are clarified by means
of a number of examples.



EXAMPLE 4.5-1.

Hologram of an Oblique Plane Wave. If the object wave is
an oblique plane wave at angle θ [Fig. 4.5-2 (a)], 

, then (4.5-3) gives  
. Since the first two terms

are constant, they correspond to a wave propagating in the z
direction (the continuance of the reference wave). The third
term corresponds to the original object wave, whereas the fourth
term represents the conjugate wave, a plane wave traveling at
an angle −θ. The object wave is therefore separable from the
other waves. In fact, this hologram is nothing but a recording of
the interference pattern formed from two oblique plane waves at
an angle θ (Sec. 2.5A). It serves as a sinusoidal diffraction
grating that splits an incident reference wave into three waves at
angles 0, θ, and −θ [see Fig. 4.5-2 (b) and Sec. 2.4B].

Figure 4.5-2 The hologram of an oblique plane wave is a
sinusoidal diffraction grating.

EXAMPLE 4.5-2.

Hologram of a Point Source. Here the object wave is a
spherical wave originating at the point r0 = (0, 0, −d), as
illustrated in Fig. 4.5-3 , so that Uo(x, y) ∝ exp(−jk|r − r0|)/|r −
r0|, where r = (x, y, 0). The first term of (4.5-3) corresponds to a
plane wave traveling in the z direction, whereas the third is



proportional to the amplitude of the original spherical wave
originating at (0, 0, −d). The fourth term is proportional to the
amplitude of the conjugate wave , which
is a converging spherical wave centered at the point (0, 0, d). The
second term is proportional to 1/|r − r0|2 and its corresponding
wave therefore travels in the z direction with very small angular
spread since its intensity varies slowly in the transverse plane.

Figure 4.5-3 Hologram of a spherical wave originating from a
point source. The conjugate wave forms a real image of the
point.

Off-Axis Holography

One means of separating the four components of the reconstructed
wave is to ensure that they vary at well-separated spatial
frequencies, so that they have well-separated directions. This form
of spatial-frequency multiplexing (see Sec. 4.1A) is assured if the
object and reference waves are offset so that they arrive from well-
separated directions.

Let us consider the case when the object wave has a complex
amplitude Uo(x, y) = f(x, y) exp(−jkx sin θ). This is a wave of
complex envelope f(x, y) modulated by a phase factor equal to that
introduced by a prism with deflection angle θ. It is assumed that f(x,
y) varies slowly so that its maximum spatial frequency νs

corresponds to an angle θs = sin−1 λν,s much smaller than θ. The
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object wave therefore has directions centered about the angle θ, as
illustrated in Fig. 4.5-4 . Equation (4.5-3) gives

Figure 4.5-4 Hologram of an off-axis object wave. The object wave
is separated from both the reference and conjugate waves.

The third term is evidently a replica of the object wave, which
arrives from a direction at angle θ. The presence of the phase factor
exp(+jkx sin θ) in the fourth term indicates that it is deflected in the
−θ direction. The first term corresponds to a plane wave traveling in
the z direction. The second term, usually known as the ambiguity
term, corresponds to a nonuniform plane wave in directions within
a cone of small angle 2θs around the z direction. The offset of the
directions of the object and reference waves results in a natural
angular separation of the object and conjugate waves from each
other and from the other two waves if θ > 3θs, thus allowing the
original wave to be recovered unambiguously. An alternative
method of reducing the effect of the ambiguity wave is to make the
intensity of the reference wave much greater than that of the object
wave. The ambiguity wave [second term of (4.5-3)] is then much
smaller than the other terms since it involves only object waves; it
is therefore relatively negligible.



Fourier-Transform Holography

The Fourier transform F(νx, νy) of a function f(x, y) may be
computed optically by use of a lens (see Sec. 4.2). If f(x, y) is the
complex amplitude in one focal plane of the lens, then F(x/λf, y/λf)
is the complex amplitude in the other focal plane, where f is the
focal length of the lens and λ is the wavelength. Since the Fourier
transform is usually a complex-valued function, it cannot be
recorded directly.

The Fourier transform F(x/λf, y/λf) may be recorded
holographically by regarding it as an object wave, Uo(x, y) = f(x/λf,
y/λf), mixing it with a reference wave Uf(x, y), and recording the
superposition as a hologram [Fig. 4.5-5 (a)]. Reconstruction is
achieved by illumination of the hologram with the reference wave
as usual. The reconstructed wave may be inverse Fourier
transformed using a lens so that the original function f(x, y) is
recovered [Fig. 4.5-5 (b)].

Figure 4.5-5 (a) Hologram of a wave whose complex amplitude
represents the Fourier transform of a function f(x, y).(b)
Reconstruction of f(x, y) by use of a Fourier-transform lens.

Holographic Spatial Filters

A spatial filter of transfer function H(νx, νy) may be implemented by
use of a 4-f optical system with a mask of complex amplitude
transmittance p(x, y) = H(x/λf, y/λf) placed in the Fourier plane
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(see Sec. 4.4B). Since the transfer function H(νx, νy) is usually
complex-valued, the mask transmittance p(x, y) has a phase
component and is difficult to fabricate using conventional printing
techniques. If the filter impulse response function h(x, y) is real-
valued, however, a Fourier-transform hologram of h(x, y) may be
created by holographically recording the Fourier transform Uo(x, y)
= H(x/λf, y/λf), as depicted in Fig. 4.5-6 (a).

Figure 4.5-6 The VanderLugt holographic filter. (a) A hologram of
the Fourier transform of h(x, y) is recorded. (b) The Fourier
transform of f(x, y) is transmitted through the hologram and
inverse Fourier transformed by a lens. The result is a function g(x,
y) proportional to the convolution of f(x, y) and h(x, y). The overall
process provides a spatial filter with impulse response function h(x,
y).

Using the Fourier transform of the input f(x, y) as a reference, Ur(x,
y) = F(x/λf, y/λf), the hologram constructs the wave

The inverse Fourier transform of the reconstructed object wave,
obtained with a lens of focal length f as illustrated in Fig. 4.5-6 (b),
therefore yields a complex amplitude g(x, y) with a Fourier
transform G(νx, νy) = H(νx, νy) F(νx, νy). Thus, g(x, y) is the
convolution of f(x, y) with h(x, y). The overall system, known as the



VanderLugt filter, performs the operation of convolution, which
is the basis of spatial filtering.

If the conjugate wave  is,
instead, inverse Fourier transformed, the correlation, instead of the
convolution, of the functions f(x, y) and h(x, y) is obtained. The
operation of correlation is useful in image-processing applications,
including pattern recognition.

The Holographic Apparatus

An essential condition for the successful fabrication of a hologram
is the availability of a monochromatic light source with minimal
phase fluctuations. The presence of phase fluctuations results in the
random shifting of the interference pattern and the washing out of
the hologram. For this reason, a coherent light source (usually a
laser) is a necessary part of the apparatus. The coherence
requirements for the interference of light waves are discussed in
Chapter 12.

Figure 4.5-7 illustrates a typical experimental configuration used to
record a hologram and reconstruct the optical wave scattered from
the surface of a physical object. Using a beamsplitter, laser light is
split into two portions; one is used as the reference wave, whereas
the other is scattered from the object to form the object wave. The
optical path difference between the two waves should be as small as
possible to ensure that the two beams maintain a nonrandom phase
difference [the term arg{Ur}− arg{Uo} in (4.5-1)].



Figure 4.5-7 Holographic recording and reconstruction.

Since the interference pattern forming the hologram is composed of
fine lines separated by distances of the order of λ/ sin θ, where θ is
the angular offset between the reference and object waves, the
photographic film must be of high resolution and the system must
not vibrate during the exposure. The larger θ, the smaller the
distances between the hologram lines, and the more stringent these
requirements are. The object wave is reconstructed when the
recorded hologram is illuminated with the reference wave, so that a
viewer see the object as if it were actually there, with its three-
dimensional character preserved.

Volume Holography

It has been assumed so far that the hologram is a thin planar
transparency on which the interference pattern of the object and
reference waves is recorded. We now consider recording the
hologram in a relatively thick medium and show that this offers an
advantage. Consider the simple case when the object and reference
waves are plane waves with wavevectors kr and ko. The recording
medium extends between the planes z = 0 and z =Δ, as illustrated in
Fig. 4.5-8 . The interference pattern is now a function of x, y, and z:
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where kg = ko − kr. This is a sinusoidal pattern of period Λ =
2π/|kg| and with the surfaces of constant intensity normal to the
vector kg.

Figure 4.5-8 Interference pattern when the reference and object
waves are plane waves. Since |kr| = |ko| = 2π/λ and |kg| = 2π/Λ,
from the geometry of the vector diagram 2π/Λ = 2(2π/λ) sin(θ/2),
so that Λ = λ/2 sin(θ/2).

For example, if the reference wave points in the z direction and the
object wave makes an angle θ with the z axis, |kg| = 2k sin(θ/2) and
the period is

as illustrated in Fig. 4.5-8 .

If recorded in emulsion, this pattern serves as a thick diffraction
grating, a volume hologram. The vector kg is called the grating
vector. When illuminated with the reference wave as illustrated in
Fig. 4.5-9 , the parallel planes of the grating reflect the wave only
when the Bragg condition sin ϕ = λ/2Λ is satisfied, where ϕ is the



angle between the planes of the grating and the incident reference
wave (Exercise 2.5-3). In our case ϕ = θ/2, so that sin(θ/2) = λ/2Λ.
In view of (4.5-7), the Bragg condition is indeed satisfied, so that the
reference wave is indeed reflected. As evident from the geometry,
the reflected wave is an extension of the object wave, so that the
reconstruction process is successful.

Suppose now that the hologram is illuminated with a reference
wave of different wavelength λ′ . Evidently, the Bragg condition,
sin(θ/2) = λ′/2Λ, will not be satisfied and the wave will not be
reflected. It follows that the object wave is reconstructed only if the
wavelength of the reconstruction source matches that of the
recording source. If light with a broad spectrum (white light) is used
as a reconstruction source, only the “correct” wavelength would be
reflected and the reconstruction process would be successful.

Figure 4.5-9 The reference wave is Bragg reflected from the thick
hologram and the object wave is reconstructed.

Although the recording process must be done with monochromatic
light, the reconstruction can be achieved with white light. This
provides a clear advantage in many applications of holography.
Other geometries for recording a reconstruction of a volume
hologram are illustrated in Fig. 4.5-10 .



Figure 4.5-10 Two geometries for recording and reconstruction of
a volume hologram. (a) This hologram is recorded with the
reference and object waves arriving from the same side, and is
reconstructed by use of a reversed reference wave; the
reconstructed wave is a conjugate wave traveling in a direction
opposite to the original object wave. (b) A reflection hologram is
recorded with the reference and object waves arriving from opposite
sides; the object wave is reconstructed by reflection from the
grating.

Another type of hologram that may be viewed with white light is the
rainbow hologram. This hologram is recorded through a narrow
slit so that the reconstructed image, of course, also appears as if
seen through a slit. However, if the wavelength of reconstruction
differs from the recording wavelength, the reconstructed wave will
appear to be coming from a displaced slit since a magnification
effect will be introduced. If white light is used for reconstruction,
the reconstructed wave appears as the object seen through many
displaced slits, each with a different wavelength (color). The result
is a rainbow of images seen through parallel slits. Each slit displays
the object with parallax effect in the direction of the slit, but not in
the orthogonal direction. Rainbow holograms enjoy wide
commercial use as displays.

Computer-Generated Holography



A computer-generated hologram is a hologram of an object
that does not physically exist. The hologram is generated by
computing, and then digitally recording, the interference pattern of
a reference wave with a mathematically defined wave that
represents light scattered from a particular virtual object. The
hologram may take the form of a mask, film, or spatial light
modulator; when illuminated by the reference wave it generates the
desired object wave. Computer-generated holography is principally
geared toward 3D visualization, including applications in CAD
(computer-aided design), gaming, and video displays.

An important application is the generation of holographic optical
elements (HOEs). One example is the hologram of a point source,
described in Example 4.5-2, which functions as a lens. A HOE that
converts a planar wave into another optical beam with a
mathematically defined complex amplitude, such as a Hermite–
Gaussian, Laguerre–Gaussian, Bessel, or Airy beam (see Secs. 3.4
and 3.5), may be created by computing and digitally recording the
interference pattern of the desired beam with a planar wave, as
described in Example 4.5-3.
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EXAMPLE 4.5-3.

Holographic Optical Element for Generating a Spiral-
Phased Wave. The task at hand is to create a HOE that
converts a reference planar wave into a spiral-phased object
wave with complex amplitude Uo = exp(−jlϕ) at the z = 0 plane.
Here ϕ = arctan(y/x) is the azimuthal angle [see Fig. 3.4-1 (b)]
and l = 1, 2,... is the topological charge of the associated optical
vortex, as discussed in Sec. 3.4. Choosing a reference planar
wave that propagates in the x–z plane, at an angle θ with respect
to the z axis (see Fig. 2.5-4), gives rise to Ur = exp(−jko sin θx) at
the z = 0 plane. Making use of (4.5-1) thus yields an interference
pattern given by

where Λ = λo/ sin θ.

The resultant holograms take the form of vertical sinusoidal
fringes of period Λ with dislocations near x = 0, as displayed in
Fig. 4.5-11 . Illuminating the recorded hologram with the
reference wave will result in the generation of a spiral-phased
wave with a helical wavefront and the associated value of l.

Figure 4.5-11 Computer-generated holographic optical
elements for introducing a spiral phase into a planar wave, for
three values of l.
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PROBLEMS
4.1-3 Correspondence Between Harmonic Functions and

Plane Waves. The complex amplitudes of a monochromatic
wave of wavelength λ in the z = 0 and z = d planes are f(x, y)



and g(x, y), respectively. Assuming that d = 104λ, use harmonic
analysis to determine g(x, y) in the following cases:

a. f(x, y) = 1;

b. f(x, y) = exp[(−jπ/λ)(x + y)];

c. f(x, y) = cos(πx/2λ);

d. f(x, y) = cos2(πy/2λ);

e. f(x, y) = rect[(x/10λ) − 2m], m = 0, ±1, ±2,..., where rect(x) = 1 if
|x| ≤ ½ and 0, otherwise.

Describe the physical nature of the wave in each case.

4.1-4 Conical Confinement Angle. In Prob. 4.1-3, if f(x, y) is a
circularly symmetric function with a maximum spatial
frequency of 200 lines/mm, determine the angle of the cone
within which the wave directions are confined. Assume that λ =
633 nm.

4.1-5 Logarithmic Interconnection Map. A transparency of
amplitude transmittance t(x, y) = exp[−j2πϕ(x)] is illuminated
with a uniform plane wave of wavelength λ = 1 μm. The
transmitted light is focused by an adjacent lens of focal length f
= 100 cm. What must ϕ(x) be so that the ray that hits the
transparency at position x is deflected and focused to a position
x′ = ln(x) for all x > 0? (Note that x and x′ are measured in
millimeters.) If the lens is removed, how should ϕ(x) be
modified so that the system performs the same function? This
system may be used to perform a logarithmic coordinate
transformation, as discussed in Chapter 24 [see Exercise 24.1-
2].

4.2-3 Proof of the Lens Fourier-Transform Property.

a. Show that the convolution of f(x) and exp(−jπx2/λd) may be
obtained via three steps: multiply f(x) by exp(−jπx2/λd);



evaluate the Fourier transform of the product at the frequency
νx = x/λd; and multiply the result by exp(−jπx2/λd).

b. The Fourier transform system in Fig. 4.2-4 is a cascade of three
systems — propagation a distance f in free space, transmission
through a lens of focal length f, and propagation a distance f in
free space. Noting that propagation a distance d in free space is
equivalent to convolution with exp(−jπx2/λd) [see (4.1-20)],
and using the result in (a), derive the lens’ Fourier-transform
equation (4.2-8). For simplicity ignore the y dependence.

4.2-4 Fourier Transform of the Line Functions. A
transparency of amplitude transmittance t(x, y) is illuminated
with a plane wave of wavelength λ = 1 μm and focused with a
lens of focal length f = 100 cm. Sketch the intensity
distribution in the plane of the transparency and in the lens
focal plane in the following cases (all distances are measured in
mm):

a. t(x, y) = δ(x − y);

b. t(x, y) = δ(x + a)+ δ(x − a), a = 1 mm;

c. t(x, y) = δ(x + a)+ jδ(x − a), a = 1 mm;

where δ(·) is the delta function (see Appendix A, Sec. A.1).

4.2-5 Design of an Optical Fourier-Transform System.
Consider a lens used to display the Fourier transform of a two-
dimensional function with spatial frequencies between 20 and
200 lines/mm. If the wavelength of light is λ = 488 nm, what
should be the focal length of the lens so that the highest and
lowest spatial frequencies are separated by a distance of 9 cm
in the Fourier plane?

*4.2-6 Generation of the Airy Beam by Use of an Optical
Fourier-Transform System. As described in Sec. 3.5B, the
Airy beam has an amplitude A(x, 0) = Ai(x/W0) in the z = 0
plane, where Ai(x) is the Airy function and W0 is a measure of



the beam width. Given that the Fourier transform of the phase
function exp(jx3/3) is equal to 2πAi(2π νx), design an optical
Fourier-transform system that generates the Airy beam using a
lens of focal length f and a mask whose amplitude
transmittance is exp(jx3/3). Determine an expression for W0 of
the beam generated in terms of f and the wavelength λ.

4.3-4 Fraunhofer Diffraction from a Diffraction Grating.
Derive an expression for the Fraun-hofer diffraction pattern for
an aperture made of M = 2L +1 parallel slits of infinitesimal
widths separated by equal distances a = 10λ,

Sketch the pattern as a function of the observation angle θ = x/d,
where d is the observation distance.

4.3-5 Fraunhofer Diffraction with an Oblique Incident
Wave. The diffraction pattern from an aperture with aperture
function p(x, y) is proportional to |P (x/λd, y/λd)|2, where 𝒫
(νx, νy) is the Fourier transform of p(x, y) and d is the distance
between the aperture and observation planes. What is the
diffraction pattern when the direction of the incident wave
makes a small angle θx ≪ 1, with the z-axis in the x–z plane?

*4.3-6 Fresnel Diffraction from Two Pinholes. Show that the
Fresnel diffraction pattern from two pinholes separated by a
distance 2a, i.e., p(x, y) = [δ(x−a)+δ(x+a)]δ(y), at an
observation distance d is the periodic pattern, I(x, y) = (2/λd)2

cos2(2πax/λd).

*4.3-7 Relation Between Fresnel and Fraunhofer
Diffraction. Show that the Fresnel diffraction pattern of the
aperture function p(x, y) is equal to the Fraunhofer diffraction
pattern of the aperture function p(x, y) exp[−jπ(x2 + y2)/λd].



4.4-1 Blurring a Sinusoidal Grating. An object f(x, y) =
cos2(2πx/a) is imaged by a defocused single-lens imaging
system whose impulse response function h(x, y) = 1 within a
square of width D, and is 0 elsewhere. Derive an expression for
the distribution of the image g(x, 0) in the x direction. Derive
an expression for the contrast of the image in terms of the ratio
D/a. The contrast is defined as (max − min)/(max + min),
where max and min are the maximum and minimum values of
g(x, 0), respectively.

4.4-2 Image of a Phase Object. An imaging system has an
impulse response function h(x, y) = rect(x) δ(y). If the input
wave is

determine and sketch the intensity |g(x, y)|2 of the output wave g(x,
y). Verify that even though the intensity of the input wave |f(x, y)|2

= 1, the intensity of the output wave is not uniform.

4.4-3 Optical Spatial Filtering. Consider the spatial filtering
system shown in Fig. 4.4-5 with f = 1000 mm. The system is
illuminated with a uniform plane wave of unit amplitude and
wavelength λ = 10−3 mm. The input transparency has
amplitude transmittance f(x, y) and the mask has amplitude
transmittance p(x, y). Write an expression relating the complex
amplitude g(x, y) of light in the image plane to f(x, y) and p(x,
y). Assuming that all distances are measured in mm, sketch
g(x, 0) in the following cases:

a. f(x, y) = δ(x − 5) and p(x, y) = rect(x);

b. f(x, y) = rect(x) and p(x, y) = sinc(x).

Determine p(x, y) such that g(x, y) =  f(x, y), where  = ∂2/
∂x2 + ∂2/∂y2 is the transverse Laplacian operator.



4.4-4 Optical Correlation. Show how a spatial filter may be used
to perform the operation of optical correlation (see Appendix
A) between two images described by the real-valued functions
f1(x, y) and f2(x, y). Under what conditions would the complex
amplitude transmittances of the masks and transparencies
used be real-valued?

*4.4-5 Impulse Response Function of a Severely Defocused
System. Using wave optics, show that the impulse response
function of a severely defocused imaging system (where the
defocusing error ∈ is very large) may be approximated by h(x,
y) = p(x/∈d2, y/∈d2), where p(x, y) is the pupil function. Hint:
Use the method of stationary phase described on page 125
(second proof) to evaluate the integral resulting from the use
of (4.4-11) and (4.4-10). Note that this is the same result as that
predicted by the ray theory of light [see (4.4-2)].

4.4-6 Two-Point Resolution.

a. Consider the single-lens imaging system discussed in Sec. 4.4C.
Assuming a square aperture of width D, unit magnification, and
perfect focus, write an expression for the impulse response
function h(x, y).

b. Determine the response of the system to an object consisting of
two points separated by a distance b, i.e.,

c. If λd2/D = 0.1 mm, sketch the magnitude of the image g(x, 0)
as a function of x when the points are separated by a distance b
= 0.5, 1, and 2 mm. What is the minimum separation between
the two points such that the image remains discernible as two
spots instead of a single spot, i.e., has two peaks?

4.4-7 Ring Aperture.



a. A focused single-lens imaging system, with magnification M = 1
and focal length f = 100 cm has an aperture in the form of a
ring

where a = 5 mm and b = 6 mm. Determine the transfer
function H(νx, νy) of the system and sketch its cross section
H(νx, 0). Assume that the wavelength λ = 1 μm.

b. (b) If the image plane is now moved closer to the lens so that
its distance from the lens becomes d2 = 25 cm, with the
distance between the object plane and the lens d1 as in (a), use
the ray-optics approximation to determine the impulse
response function of the imaging system h(x, y) and sketch h(x,
0).

4.5-1 Holography with a Spherical Reference Wave. The
choice of a uniform plane wave as a reference wave is not
essential to holography; other waves can be used. Assuming
that the reference wave is a spherical wave centered about the
point (0, 0, −d), determine the hologram pattern and examine
the reconstructed wave when:

a. the object wave is a plane wave traveling at an angle θx;

b. the object wave is a spherical wave centered at (−x0, 0, −d1).

Approximate spherical waves by paraboloidal waves.

4.5-2 Optical Correlation via Holography. A transparency with
an amplitude transmittance given by f(x, y) = f1(x − a, y)+ f2(x
+ a, y) is Fourier transformed by a lens and the intensity is
recorded on a transparency (hologram). The hologram is
subsequently illuminated with a reference wave and the
reconstructed wave is Fourier transformed with a lens to
generate the function g(x, y). Derive an expression relating g(x,



y) to f1(x, y) and f2(x, y). Show how the correlation of f1(x, y)
and f2(x, y) may be determined with this system.

Notes
1 The spatial harmonic function is defined with a minus sign in the
exponent, in contrast to the plus sign used in the definition of the
temporal harmonic function (compare (A.1-1) and (A.3-1) in
Appendix A). This sign convention is chosen to match that for the
forward-traveling plane wave set forth in (2.2-11).
2 Evanescent waves are neither forward nor backward propagating;
rather, they propagate in the transverse plane where they are
generated. We select the negative sign before the square root in
(4.1-3) because such waves must attenuate, rather than grow, in the
positive z direction absent a gain mechanism enabling them to
grow.
3 See, e.g., M. Born and E. Wolf, Principles of Optics, Cambridge
University Press, 7th expanded and corrected ed. 2002, Appendix
III.
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James Clerk Maxwell (1831–1879) advanced the theory that
light is an electromagnetic wave phenomenon. He formulated a set
of fundamental equations of enormous importance that bear his
name.

Lord Rayleigh (John William Strutt) (1842–1919)
contributed extensively to many areas of optics, including blackbody
radiation, image formation, and scattering. He was awarded the
Nobel Prize in 1904.

It is apparent from the results presented in Chapters 2–4 that wave
optics has a far greater reach than ray optics. Remarkably, both
approaches provide similar results for many simple optical
phenomena involving paraxial waves, such as the focusing of light
by a lens and the behavior of light in graded-index media and
periodic systems. But it is also clear that wave optics offers
something that ray optics cannot: the ability to explain phenomena



such as interference and diffraction, which involveke ray optics. In
spit phase, and therefore lie hopelessly beyond the reach of a simple
construct lie of its many successes, however, wave optics, like ray
optics, is unable to quantitatively account for some simple
observations in an optics experiment, such as the division of light at
a beamsplitter. The fraction of light reflected (and transmitted)
turns out to depend on the polarization of the incident light, which
means that the light must be treated in the context of a vector,
rather than a scalar, theory. That’s where electromagnetic optics
enters the picture. In common with radio waves and X-rays, as
shown in Fig. 5.0-1, light is an electromagnetic phenomenon that is
described by a vector wave theory. Electromagnetic radiation
propagates in the form of two mutually coupled vector waves, an
electric-field wave and a magnetic-field wave. From this perspective,
the wave-optics approach set forth in Chapter 2, and developed in
Chapters 3 and 4, is merely a scalar approximation to the more
complete electromagnetic theory.

Figure 5.0-1 The electromagnetic spectrum from low frequencies
(long wavelengths) to high frequencies (short wavelengths). The
optical region, shown as shaded, is displayed in greater detail in Fig.
2.0-1.

Electromagnetic optics thus encompasses wave optics, which in
turn reduces to ray optics in the limit of short wavelengths, as
shown in Chapter 2. This hierarchy is displayed in Fig. 5.0-2.



Figure 5.0-2 Electromagnetic optics is a vector theory comprising
an electric field and a magnetic field that vary in time and space.
Wave optics is an approximation to electromagnetic optics that
relies on the wavefunction, a scalar function of time and space. Ray
optics is the limit of wave optics when the wavelength is very short.

Optical frequencies occupy a band of the electromagnetic spectrum
that extends from the infrared through the visible to the ultraviolet,
as shown in Fig. 5.0-1. The range of wavelengths that is generally
considered to lie in the optical domain extends from 10 nm to 300
μm (as is shown in greater detail in Fig. 2.0-1). Because these
wavelengths are substantially shorter than those of radiowaves, or
even microwaves, the techniques involved in their generation,
transmission, and detection have traditionally been rather distinct.
In recent years, however, the march toward miniaturization has
served to blur these differences: it is now commonplace to
encounter wavelength-and subwavelength-size resonators,
antennas, waveguides, lasers, and other structures.

This Chapter

This chapter offers a brief review of those aspects of
electromagnetic theory that are of paramount importance in optics.
The fundamental theoretical construct — Maxwell’s equations — is
set forth in Sec. 5.1. The behavior of optical electromagnetic waves
in dielectric media is examined in Sec. 5.2. Together, these sections
lay out the fundamentals of electromagnetic optics and provide the
set of laws that govern the remaining sections of the chapter. These
rules simplify considerably for the special case of monochromatic



light, as discussed in Sec. 5.3. Elementary electromagnetic waves
(plane waves, dipole waves, and Gaussian beams), introduced in
Sec. 5.4, provide important examples that are often encountered in
practice. Section 5.5 is devoted to a study of the propagation of light
in dispersive media, which exhibit wavelength-dependent
absorption and refraction, as do real media. The scattering of
electromagnetic waves, considered in Sec. 5.6, plays an important
role in optics and plasmonics, as discussed in Chapter 8. Finally, in
Sec. 5.7, we consider pulse propagation in dispersive media, which
provides a basic underpinning for Chapters 10, 23, and 25.

Chapter 6, which is based on the theory of electromagnetic optics
presented in this chapter, deals explicitly with the polarization of
light and the interaction of polarized light with dielectric and
anisotropic media such as liquid crystals. The material set forth
here also forms the basis for the expositions provided in Chapters
7–11, which deal, respectively, with the optics of layered and
periodic media, metals and metamaterials, guided waves, fibers, and
resonators. Chapters 12 and 22, devoted to statistical optics and
nonlinear optics, respectively, are also based on electromagnetic
optics.

5.1 ELECTROMAGNETIC THEORY OF LIGHT
An electromagnetic field is described by two related vector fields
that are functions of position and time: the electric field ε(r, t)
and the magnetic field (r, t). In general, therefore, six scalar
functions of position and time are required to describe light in free
space. Fortunately, these six functions are interrelated since they
must satisfy the celebrated set of coupled partial differential
equations known as Maxwell’s equations.

Maxwell’s Equations in Free Space

The electric-and magnetic-field vectors in free space satisfy
Maxwell’s equations:



(5.1-1)

(5.1-2)

(5.1-3)

(5.1-4)

(5.1-5)

(5.1-6)

Maxwell’s Equations (Free Space)

where the constants ϵo ≈ (1/36π) × 10−9 F/m and μo = 4π × 10−7

H/m (MKS units) are, respectively, the electric permittivity and
the magnetic permeability of free space. The vector operators ·
and × represent the divergence and curl, respectively.1

The Wave Equation

A necessary condition for 𝛆 and ℋ to satisfy Maxwell’s equations is
that each of their components satisfy the wave equation

Wave Equation (Free Space)

Here

Speed of Light (Free Space)

is the speed of light in vacuum, and the scalar function u(r,t)
represents any of the three components (εx, εy, εz) of ε or the three
components (ℋx, ℋy, ℋz) of ℋ.



(5.1-7)

(5.1-8)

The wave equation may be derived from Maxwell’s equations by
applying the curl operation ∇ × to (5.1-1), making use of the vector
identity ∇ × (∇ × ε) = ∇(∇ · ε) − ∇2ε, and then using (5.1-10) and (5.1-
11) to show that each component of ε satisfies the wave equation. A
similar procedure is followed for ℋ. Since Maxwell’s equations and
the wave equation are linear, the principle of superposition applies:
if two sets of electric and magnetic fields are solutions to these
equations separately, their sum is also a solution.

The connection between electromagnetic optics and wave optics is
now evident. The wave equation (2.1-2), which is the basis of wave
optics, is embedded in the structure of electromagnetic theory; the
speed of light is related to the electromagnetic constants ϵo and μo
by (5.1-12); and the scalar wavefunction u(r, t) in Chapter 2
represents any of the six components of the electric-and magnetic-
field vectors. Electromagnetic optics reduces to wave optics in
problems for which the vector nature of the electromagnetic fields
is not of essence. As we shall see in this and the following chapters,
the vector character of light underlies polarization phenomena and
governs the amount of light reflected or transmitted through
boundaries between different media, and therefore determines the
characteristics of light propagation in waveguides, layered media,
and optical resonators.

Maxwell’s Equations in a Medium

In a medium devoid of free electric charges and currents, two
additional vector fields are required — the electric flux density
(also called the electric displacement) 𝒟(r,t) and the magnetic
flux density ℬ(r,t). The four fields, ε, ℋ, 𝒟, and ℬ, are related by
Maxwell’s equations in a source-free medium:



(5.1-9)

(5.1-10)

(5.1-11)

(5.1-12)

Maxwell’s Equations (Source-Free Medium)

Conductive media such as metals have free electric charges,
requiring the addition of an associated current density 𝒥 to the
right-hand side of (5.1-14), as discussed in Sec. 8.2A. Maxwell’s
original formulation in 1865 comprised 20 simultaneous equations
with 20 variables; these were condensed into their present form by
Oliver Heaviside in 1885.

The relationship between the electric flux density 𝒟 and the electric
field ε depends on the electric properties of the medium, which are
characterized by the polarizationdensity 𝒫. In a dielectric
medium, the polarization density is the macroscopic sum of the
electric dipole moments induced by the electric field. Similarly, the
relation between the magnetic flux density ℬ and the magnetic field
ℋ depends on the magnetic properties of the medium, embodied in
the magnetization density ℳ, which is defined analogously to
the polarization density. The equations relating the flux densities
and the fields are

The vector fields 𝒫 and ℳ are in turn related to the externally
applied electric and magnetic fields ε and ℋ by relationships that
depend on the electric and magnetic character of the medium,
respectively, as will be described in Sec. 5.2. Equations relating 𝒫
and ε, as well as ℳ and ℋ, are established once the medium is
specified. When these latter equations are substituted into
Maxwell’s equations in a source-free medium, the flux densities
disappear.



In free space, 𝒫 = ℳ = 0, so that 𝒟 = ϵoε and ℬ = μoℋ whereupon
(5.1-2)–(5.1-3) reduce to the free-space Maxwell’s equations, (5.1-
4)–(5.1-6).

Boundary Conditions

In a homogeneous medium, all components of the fields ε, ℋ, 𝒟 and
ℬ are continuous functions of position. At the boundary between
two dielectric media, in the absence of free electric charges and
currents, the tangential components of the electric and magnetic
fields ε and ℋ, and the normal components of the electric and
magnetic flux densities 𝒟 and ℬ, must be continuous (Fig. 5.1-1).

Figure 5.1-1 Boundary conditions at: (a) the interface between two
dielectric media; (b) the interface between a perfect conductor and a
dielectric material.

At the boundary between a dielectric medium and a perfectly
conductive medium, the tangential components of the electric-field
vector must vanish. Since a perfect mirror is made of a perfectly
conductive material (a metal), the component of the electric field
parallel to the surface of the mirror must be zero. This requires that
at normal incidence the electric fields of the reflected and incident
waves must have equal magnitudes and a phase shift of π so that
their sum adds up to zero.

These boundary conditions are an integral part of Maxwell’s
equations. They are used to determine the reflectance and
transmittance of waves at various boundaries (see Sec. 6.2), and the
propagation of waves in periodic dielectric structures (see Sec. 7.1)
and waveguides (see Sec. 9.2).

Intensity, Power, and Energy



(5.1-14)

(5.1-13)

(5.1-15)

The flow of electromagnetic power is governed by the vector

which is known as the Poynting vector. The direction of power
flow is along the direction of the Poynting vector, i.e., orthogonal to
both ε and ℋ. The optical intensity I(r, t) (power flow across a
unit area normal to the vector 𝒮)2 is the magnitude of the time-
averaged Poynting vector (𝒮). The average is taken over times that
are long in comparison with an optical cycle, but short compared to
other times of interest. The wave-optics equivalent is given in (2.1-
3).

Using the vector identity ∇· (ε × ℋ) = (∇ × ε) · ℋ − (∇ × ℋ) · ε,
together with Maxwell’s equations (5.1-7)–(5.1-8) and (5.1-9)–(5.2-
1), we obtain

The first and second terms in parentheses in (5.2-13) represent the
energy densities (per unit volume) stored in the electric and
magnetic fields, respectively. The third and fourth terms represent
the power densities associated with the material’s electric and
magnetic dipoles. Equation (5.2-15), known as the Poynting
theorem, therefore represents conservation of energy: the power
flow escaping from the surface of an incremental volume equals the
time rate of change of the energy stored inside the volume.

Momentum

An electromagnetic wave carries linear momentum, which results in
radiation pressure on objects from which the wave reflects or
scatters. In free space, the linear momentum density (per unit
volume) is a vector



Linear Momentum Density

proportional to the Poynting vector 𝒮. The average momentum in a
cylinder of length c and unit area is ((𝒮))/c2) · c = (𝒮)/c. This
momentum crosses the unit area in a unit time, so that the average
rate (per unit time) of momentum flow across a unit area oriented
perpendicular to the direction of 𝒮 is (𝒮)/c.

An electromagnetic wave may also carry angular momentum and
may therefore exert torque on an object. The average rate of angular
momentum transported by an electromagnetic field is r × (𝒮)/c. For
example, the Laguerre–Gaussian beams introduced in Sec. 3.4 have
helical wavefronts; the Poynting vector has an azimuthal
component that leads to an orbital angular momentum.

5.2 ELECTROMAGNETIC WAVES IN
DIELECTRIC MEDIA
The character of the medium is embodied in the relation between
the polarization and magnetization densities, 𝒫 and ℳ, on the one
hand, and the electric and magnetic fields, ε and ℋ, on the other;
these are known as the constitutive relation. In most media, the
constitutive relation separates into a pair of constitutive relations,
one between 𝒫 and ε, and another between ℳ and ℋ. The former
describes the dielectric properties of the medium, whereas the latter
describes its magnetic properties. With the notable exceptions of
magnetic materials, optically active materials, and metamaterials,
the principal emphasis in this book is on the dielectric properties.
We therefore direct our attention to the 𝒫-ℰ relations for various
dielectric media; the ℳ-ℋ relations for magnetic media obey
similar relations under similar conditions.

It is useful to regard the 𝒫-ℰ constitutive relation as arising from a
system in which ε is the input and 𝒫 is the output or response (Fig.
5.2-1). Note that ε = ε(r, t) and 𝒫 = 𝒫(r, t) are functions of both
position and time.



Figure 5.2-1 In response to an applied electric field ε, the dielectric
medium creates a polarization density 𝒫.

Definitions

A dielectric medium is said to be linear if the vector field
𝒫(r, t) is linearly related to the vector field ε(r, t). The
principle of superposition then applies.

The medium is said to be nondispersive if its response is
instantaneous, i.e., if 𝒫 at time t is determined by ε at the
same time t and not by prior values of ε. Nondispersiveness
is clearly an idealization since all physical systems, no
matter how rapidly they may respond, do have a response
time that is finite.

The medium is said to be homogeneous if the relation
between 𝒫 and ε is independent of the position r.

The medium is said to be isotropic if the relation between
the vectors 𝒫 and ε is independent of the direction of the
vector ε, so that the medium exhibits the same behavior
from all directions. The vectors 𝒫 and ε must then be
parallel.

The medium is said to be spatially nondispersive if the
relation between 𝒫 and ε is local, i.e., if 𝒫 at each position r
is influenced only by ε at the same position r. The medium
is assumed to be spatially nondispersive throughout this
chapter (optically active media, considered in Sec. 6.4A, are
spatially dispersive).
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A. Linear, Nondispersive, Homogeneous, and Isotropic
Media
Let us first consider the simplest case of linear, nondispersive,
homogeneous, and isotropic dielectric media. The vectors 𝒫 and ε at
every position and time are then parallel and proportional, so that

where the scalar constant χ is called the electric susceptibility
(Fig. 5.2-2).

Figure 5.2-2 A linear, nondispersive, homogeneous, and isotropic
medium is fully characterized by a single constant, the electric
susceptibility χ.

Substituting (5.2-16) in (5.2-18) shows that 𝒟 and ε are also parallel
and proportional,

where the scalar quantity

is defined as the electric permittivity of the medium. The
relative permittivity ϵ/ϵo = 1 + χ is also called the dielectric
constant of the medium.

Under similar conditions, the magnetic relation can be written in
the form
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(5.2-6)

(5.2-9)

(5.2-10)

(5.2-4)

(5.2-7)

(5.2-8)

where μ is the magnetic permeability of the medium.

With the relations (5.2-19) and (5.2-2), Maxwell’s equations in (5.2-
22)–(5.2-23) relate only the two vector fields ε(r, t) and ℋ(r, t),
simplifying to

Maxwell’s Equations (Linear,
Nondispersive, Homogeneous, Isotropic, Source-Free Medium)

It is apparent that (5.2-24)–(5.2-25) are identical in form to the
free-space Maxwell’s equations in (5.2-4)–(5.2-5) except that ϵ
replaces ϵo and μ replaces μo. Each component of ε and ℋ therefore
satisfies the wave equation

Wave Equation (in a Medium)

where the speed of light in the medium is denoted c :

Speed of Light (in a Medium)
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The ratio of the speed of light in free space to that in the medium,
co/c, is defined as the refractive index n:

Refractive Index

where (5.2-6) provides

For a nonmagnetic material, μ = μo and

Refractive Index (Nonmagnetic Media)

so that the refractive index is the square root of the relative
permittivity. These relations provide another point of connection
with scalar wave optics (Sec. 5.4B.

Finally, the Poynting theorem (5.2-8) based on Maxwell’s equations
(5.2-9) and (5.3-1) takes the form of a continuity equation

where

is the energy density stored in the medium.



(5.2-16)

B. Nonlinear, Dispersive, Inhomogeneous, or
Anisotropic Media
We now consider nonmagnetic dielectric media for which one or
more of the properties of linearity, nondispersiveness, homogeneity,
and isotropy are not satisfied.

Inhomogeneous Media

We first consider an inhomogeneous dielectric (such as a graded-
index medium) that is linear, nondispersive, and isotropic. The
simple proportionalities, 𝒫 = ϵoχε and 𝒟 = ϵε, remain intact, but the
coefficients χ and ϵ become functions of position: χ = χ(r) and ϵ =
ϵ(r) (Fig. 5.2-3). The refractive index therefore also becomes
position dependent so that n = n(r).

Figure 5.2-3 An inhomogeneous (but linear, nondispersive, and
isotropic) medium is characterized by a position dependent
susceptibility χ(r).

Beginning with Maxwell’s equations, (5.3-10)–(5.3-12), and noting
that ϵ = ϵ(r) is position dependent, we apply the curl operation ∇× to
both sides of (5.3-13). We then use (5.3-14) to write

Wave Equation (Inhomogeneous Medium)

The magnetic field satisfies a different equation:



(5.2-17)

(5.2-18)

(5.2-19)

(5.2-20)

Wave Equation (Inhomogeneous Medium)

Equation (5.3-15) may also be written in the form

The validity of (5.3-16) can be demonstrated by employing the
following procedure. Use the identity ∇ × (∇ × ε) = ∇(∇ · ε) − ∇2ε,
valid for a rectilinear coordinate system. Invoke (5.3-17), which
yields ∇ · ϵε = 0, together with the identity ∇ · ϵε = ϵ∇ · ε + ∇ϵ · ε,
which provides ∇ · ε = −(1/ϵ)∇ϵ · ε. Finally, substitute in (5.3-2) to
obtain (5.3-5).

For media with gradually varying dielectric properties, i.e., when ϵ(r)
varies sufficiently slowly so that it can be assumed constant within
distances of the order of a wavelength, the second term on the left-
hand side of (5.4-1) is negligible in comparison with the first, so that

where  is spatially varying and  is
the refractive index at position r. This relation was invoked without
proof in Sec. 2.1, but it is clearly an approximate consequence of
Maxwell’s equations.

For a homogeneous dielectric medium of refractive index n
perturbed by a slowly varying spatially dependent change Δn, it is
often useful to write (5.4-11) in the form
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where c = co/n is the speed of light in the homogenous medium.
Thus, ε satisfies the wave equation with a radiation source 𝒮 created
by a perturbation of the polarization density ∇𝒫, which in turn is
proportional to Δn and ε itself. These equations may be verified by
expanding the term 1/c2(r) in (5.4-13) as 
and bringing the perturbation term to the right-hand side of the
equation. The term Δ𝒫 is the perturbation in 𝒫, as can be shown by
noting that 𝒫 = ϵoχε = ϵo(ϵ/ϵo − 1)ε = ϵo(n2 − 1)ε, so that Δ𝒫 = ϵoΔ(n2

− 1)ε = 2ϵonΔnε.

Anisotropic Media

The relation between the vectors 𝒫 and ε in an anisotropic dielectric
medium depends on the direction of the vector ε; the requirement
that the two vectors remain parallel is not maintained. If the
medium is linear, nondispersive, and homogeneous, each
component of 𝒫 is a linear combination of the three components of
ε:

where the indices i, j = 1, 2, 3 denote the x, y, and z components,
respectively.

The dielectric properties of the medium are then described by a 3 ×
3 array of constants {χij}, which are elements of what is called the
electric susceptibility tensor χ (Fig. 5.2-4). A similar relation
between 𝒟 and ε applies:

where {ϵij} are the elements of the electric permittivity tensor £.



Figure 5.2-4 An anisotropic (but linear, homogeneous, and
nondispersive) medium is characterized by nine constants, the
components of the electric susceptibility tensor χij. Each component
of 𝒫 is a weighted superposition of the three components of ε.

The optical properties of anisotropic media are examined in Chapter
6. The relation between ℬ(t) and ℋ(t) for anisotropic magnetic
media takes a form similar to that of (5.4-14), under similar
assumptions.

Dispersive Media

The relation between the vectors 𝒫 and ε in a dispersive dielectric
medium is dynamic rather than instantaneous. The vector ε(t) may
be thought of as an input that induces the bound electrons in the
atoms of the medium to oscillate, which then collectively give rise
to the polarization-density vector 𝒫(t) as the output. The presence
of a time delay between the output and the input indicates that the
system possesses memory. Only when this time is short in
comparison with other times of interest can the response be
regarded as instantaneous, in which case the medium is
approximately nondispersive.

For dispersive media that are linear, homogeneous, and isotropic,
the dynamic relation between 𝒫(t) and ε(t) may be described by a
linear differential equation such as that associated with a driven
harmonic oscillator: a1 d2𝒫/dt2 + a2 d𝒫/dt + a3 𝒫 = ε, where a1, a2,
and a3 are constants. A simple analysis along these lines (see Sec.
5.5C) provides a physical rationale for the presence of dispersion
(and absorption).
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More generally, the linear-systems approach provided in Appendix B
may be used to investigate an arbitrary linear system, which is
characterized by its response to an impulse (impulse response
function). An electric-field impulse of magnitude δ(t) applied at
time t = 0 induces a time-dispersed polarization density of
magnitude ϵoχ(t), where χ(t) is a scalar function of time with finite
duration that begins at t = 0. Since the medium is linear, an
arbitrary electric field ε(t) then induces a polarization density that is
a superposition of the effects of ε(t′) for all t′ ≤ t, so that the
polarization density can be expressed as a convolution, as defined in
Appendix A:

This dielectric medium is completely described by its impulse
response function ϵoχ(t).

Alternatively, a dynamic linear system may be described by its
transfer function, which governs the response to harmonic inputs.
The transfer function is the Fourier transform of the impulse
response function (see Appendix B). In the example at hand, the
transfer function at frequency ν is ϵoχ(ν), where χ(ν) is the Fourier
transform of χ(t) so that it is a frequency-dependent susceptibility
(Fig. 5.2-5). This concept is discussed further in Secs. 5.3 and 5.5.

Figure 5.2-5 In a dispersive (but linear, homo geneous, and
isotropic) medium the relation between 𝒫(t) and ε(t) is governed by
a dynamic linear system described by an impulse response function
ϵoχ(t) that corresponds to a frequency dependent susceptibility χ(ν).

For magnetic media under similar assumptions, the relation
between ℳ(t) and ℋ(t) is analogous to (5.4-15).
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Nonlinear Media

A nonlinear dielectric medium is defined as one in which the
relation between 𝒫 and ε is nonlinear, in which case the wave
equation as written in (5.4-16) is not applicable. Rather, Maxwell’s
equations can be used to derive a nonlinear wave equation that
electromagnetic waves obey in a such a medium.

We first derive a general wave equation valid for homogeneous and
isotropic nonmagnetic media. Operating on Maxwell’s equation
(5.4-17) with the curl operator ∇ ×, and using the relation ℬ = μoℋ
from (5.4-18) together with (5.4-19), we obtain ∇ ×(∇ × ε) =
−μo∂2𝒟/∂t2. Making use of the vector identity ∇ ×(∇ × ε) = ∇(∇·ε)
−∇2ε and the relation 𝒟 = ϵoε + 𝒫 from (5.4-2) then yields

For homogeneous and isotropic media 𝒟 = ϵε; thus ∇ · 𝒟 = 0 from
(5.4-24) is equivalent to ∇ · ε = 0. Substituting this, along with ϵoμo
=  from (5.4-3), into (5.4-4) therefore provides

Wave Equation (Homogeneous and Isotropic Medium)

Equation (5.4-8) is applicable for all homogeneous and isotropic
dielectric media: nonlinear or linear, nondispersive or dispersive.

Now, if the medium is nonlinear, nondispersive, and nonmagnetic,
the polarization density 𝒫 can be written as a memoryless nonlinear
function of ε, say 𝒫 = Ψ(ε), valid at every position and time. (The
simplest example of such a function is 𝒫 = a1 ε + a2 ε2, where a1 and
a2 are constants.) Under these conditions (5.4-9) becomes a
nonlinear partial differential equation for the electric-field vector
ε(r, t):
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(5.3-1)

The principle of superposition is no longer applicable by virtue of
the nonlinear nature of this wave equation. Nonlinear magnetic
materials may be similarly described.

Most dielectric media are approximately linear unless the optical
intensity is substantial, as in the case of focused laser beams.
Nonlinear optics is discussed in Chapter 22.

5.3 MONOCHROMATIC ELECTROMAGNETIC
WAVES
For the special case of monochromatic electromagnetic waves in an
optical medium, all components of the electric and magnetic fields
are harmonic functions of time with the same frequency ν and
corresponding angular frequency ω = 2πν. Adopting the complex
representation used in Sec. 2.2A, these six real field components
may be expressed as

where E(r) and H(r) represent electric-and magnetic-field complex-
amplitude vectors, respectively. Analogous complex-amplitude
vectors P, D, M, and B are similarly associated with the real vectors
𝒫, 𝒟, ℳ, and ℬ, respectively.

Maxwell’s Equations in a Medium

Inserting (5.5-13) into Maxwell’s equations (5.5-14)–(5.5-15), and
using the relation (∂/∂t) ejωt = jω ejωt for monochromatic waves of
angular frequency ω, yields a set of equations obeyed by the field
complex-amplitude vectors:
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(5.3-7)

Maxwell’s Equations (Source-Free Medium; Monochromatic Fields)

Similarly, (5.5-16) and (5.5-19) give rise to

Intensity and Power

As indicated in Sec. 5.1, the flow of electromagnetic power is
governed by the time average of the Poynting vector 𝒮 = ε × ℋ.
Casting this expression in terms of complex amplitudes yields

The terms containing the factors ej2ωt and e−j2ωt oscillate at optical
frequencies and are therefore washed out by the averaging process,
which is slow in comparison with an optical cycle. Thus,

where the vector

Complex Poynting Vector
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may be regarded as a complex Poynting vector. The optical intensity
is the magnitude of the vector Re{S}.

Linear, Nondispersive, Homogeneous, and Isotropic Media

For monochromatic waves, the relations provided in (5.5-20) and
(5.5-21) become the material equations

so that Maxwell’s equations, (5.5-23)–(5.5-24), depend solely on the
interrelated complex-amplitude vectors E and H:

Maxwell’s Equations (Linear, Nondispersive, Homogeneous,
Isotropic, Source-Free Medium; Monochromatic Light)

Substituting the electric and magnetic fields ε and ℋ given in (5.5-
25) into the wave equation (5.5-28) yields the Helmholtz equation

Helmholtz Equation

where the scalar function U = U(r) represents the complex
amplitude of any of the three components (Ex, Ey, Ez) of E or three
components (Hx, Hy, Hz) of H; and where ,
and c = co/n. In the context of wave optics, the Helmholtz equation
in (2.2-7) was written in terms of the complex amplitude U(r) of the
real wavefunction u(r, t).
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Inhomogeneous Media

In an inhomogeneous nonmagnetic medium, Maxwell’s equations
(5.5-3)–(5.5-4) remain applicable, but the electric permittivity of
the medium becomes position dependent, ϵ = ϵ(r). For locally
homogeneous media in which ϵ(r) varies slowly with respect to the
wavelength, the Helmholtz equation (5.5-5) remains approximately
valid, subject to the substitutions k = n(r)ko and .

Dispersive Media

In a dispersive dielectric medium, 𝒫(t) and ε(t) are connected by the
dynamic relation provided in (5.6-1). To determine the
corresponding relation between the complex-amplitude vectors P
and E, we substitute (5.6-10) into (5.6-11), which gives rise to

where

is the Fourier transform of χ(t).

Equation (5.6-13) can also be directly inferred from (5.6-14) by
invoking the convolution theorem: convolution in the time domain
corresponds to multiplication in the frequency domain (see Secs.
A.1 and B.1 of Appendices A and B, respectively), and recognizing E
and P as the components of ε and 𝒫 of frequency ν. The function
ϵoχ(ν) may therefore be regarded as the transfer function of the
linear system that relates 𝒫(t) to ε(t).

The relation between 𝒟 and ε is similar,
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where

Therefore, in dispersive media the susceptibility χ and the
permittivity ϵ are frequency-dependent and, in general, complex-
valued quantities. The Helmholtz equation (5.6-15) is thus readily
adapted for use in dispersive nonmagnetic media by taking

When χ(ν) and ϵ(ν) are approximately constant within the
frequency band of interest, the medium may be treated as
approximately nondispersive. The implications of the complex-
valued nature of χ and k in dispersive media are discussed further in
Sec. 5.5.

5.4 ELEMENTARY ELECTROMAGNETIC
WAVES
A. Plane, Dipole, and Gaussian Electromagnetic Waves
We now examine three elementary solutions to Maxwell’s
equations that are of substantial importance in optics: plane waves
and spherical (dipole) waves, which were discussed in Sec. 2.2B in
the context of wave optics, and the Gaussian beam, which was
studied in Chapter 3 using the wave-optics formalism. The medium
is assumed to be linear, homogeneous, nondispersive, and isotropic,
and the waves are assumed to be monochromatic.

The Transverse Electromagnetic (TEM) Plane Wave

Consider a monochromatic electromagnetic wave whose magnetic-
and electric-field complex-amplitude vectors are plane waves with
wavevector k (see Sec. 2.2B) so that



(5.4-1)
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where the complex envelopes H0 and E0 are constant vectors. All
components of H(r) and E(r) satisfy the Helmholtz equation
provided that the magnitude of k is k = nko, where n is the refractive
index of the medium.

We now examine the conditions that must be obeyed by H0 and E0
in order that Maxwell’s equations be satisfied. Substituting (5.6-16)
and (5.6-17) into Maxwell’s equations (5.6-18) and (5.6-19),
respectively, leads to

The other two Maxwell’s equations, (5.6-2) and (5.6-20), are
satisfied identically since the divergence of a uniform plane wave is
zero.

It follows from (5.6-21) that ε must be perpendicular to both k and
H and from (5.6-22) that H must be perpendicular to both k and E.
Thus, E, H, and k are mutually orthogonal, as illustrated in Fig. 5.4-
1. Since E and H lie in a plane normal to the direction of
propagation k, the wave is called a transverse electromagnetic
(TEM) wave.



 (5.4-5)

(5.4-6)

Figure 5.4-1 The TEM plane wave. The vectors E, H, and k are
mutually orthogonal. The wavefronts (surfaces of constant phase)
are normal to the wavevector k.

In accordance with (5.6-3), the magnitudes H0 and E0 are related by
H0 = (ωϵ/k)E0. Similarly, (5.6-4) yields H0 = (k/ωμ)E0. For these
two equations to be consistent, we must have ωϵ/k = k/ωμ, or 

 = ω/c = nω/co = nko.

This is, in fact, the same condition required in order that the wave
satisfy the Helmholtz equation.

The ratio between the amplitudes of the electric and magnetic fields
is E0/H0 = ωμ/k = cμ = . This quantity is known as the
impedance of the medium,

Impedance

For nonmagnetic media μ = μo, whereupon η =  may be
defined in terms of the impedance of free space ηo via

Impedance (Nonmagnetic Media)
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where

The complex Poynting vector  [see (5.6-5)] is parallel to
the wave-vector k, so that the power flows along a direction normal
to the wavefronts. Its magnitude is , and the intensity
I is therefore given by

Intensity

The intensity of a TEM wave is thus seen to be proportional to the
absolute square of the complex envelope of the electric field. As an
example, an intensity of 10 W/cm2 in free space corresponds to an
electric field of ≈ 87 V/cm. Note the similarity between (5.6-7) and
the relation I = |U|2, which was defined for scalar waves in Sec.
2.2A.

Equation (5.6-8) provides that the time-averaged energy density W
= (𝒲) of the plane wave is

since the electric and magnetic contributions are equal, i.e., 
. The intensity in (5.6-9) and the time-averaged

energy density in (5.7-1) are therefore related by

indicating that the time-averaged power density flow I results from
the transport of the time-averaged energy density at the velocity of
light c. This is readily visualized by considering a cylinder of area A
and length c whose axis lies parallel to the direction of propagation.
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The energy stored in the cylinder, cAW, is transported across the
area in one second, confirming that the intensity (power per unit
area) is I = cW.

The linear momentum density (per unit volume) transported by a
plane wave is .

The Dipole Wave

An oscillating electric dipole radiates a wave with features that
resemble the scalar spherical wave discussed in Sec. 2.2B. The
radiation frequency is determined by the frequency at which the
dipole oscillates. This electromagnetic wave is readily constructed
from an auxiliary vector field A(r), known as the vector potential,
which is often used to facilitate the solution of Maxwell’s equations
in electromagnetics. For the case at hand we set

where a0 is a constant and  is a unit vector in the direction of the
dipole (the x direction). The quantity U(r) represents a scalar
spherical wave with the origin at r = 0:

Because U(r) satisfies the Helmholtz equation, as was established in
Sec. 2.2B, A(r) will also satisfy the Helmholtz equation ∇2A + k2A =
0.

We now define the magnetic field in terms of the curl of this vector

and determine the corresponding electric field from Maxwell’s
equation (5.7-2):
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The form of (5.7-3) and (5.7-4) ensures that ∇ · E = 0 and ∇ · H = 0,
as required by (5.7-5) and (5.7-7), since the divergence of the curl of
any vector field vanishes. Because A(r) satisfies the Helmholtz
equation, it can readily be shown that the remaining Maxwell’s
equation, ∇ × E = −jωμH, is also satisfied. It is therefore clear that
(5.4-11)–(5.4-14) define a valid electromagnetic wave that satisfies
Maxwell’s equations.

Explicit expressions for E and H are obtained by carrying out the
curl operations prescribed in (5.4-13) and (5.4-14). This is
conveniently accomplished by making use of the spherical
coordinate system (r, θ, ϕ) defined in Fig. 5.4-2(a), with unit vectors 

. The exact results for E and H turn out to be

Figure 5.4-2 (a) Spherical coordinate system. (b) Electric- and
magnetic-field vectors and wavefronts of the electromagnetic field,
at distances r ≫ λ/2π, radiated by an oscillating electric dipole. (c)
The radiation pattern (field magnitude versus polar angle θ) is
toroidal.
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where h0 = (jk/μ)A0 and e0 = ηH0. It can be shown that an electric
dipole moment ρ pointing in the x direction radiates the wave
described in (5.4-15) and (5.4-16) with a0 = jμωρ, so that h0 =
(−ω2/c)ρ and e0 = −μω2ρ.

For points at distances from the origin that are much greater than a
wavelength (kr = 2πr/λ ≫ 1), the complex-amplitude vectors in (5.4-
15) and (5.4-16) may be approximated by

The wavefronts are then spherical (as for the scalar spherical wave)
and, as illustrated in Fig. 5.4-2(b), the electric and magnetic fields
are orthogonal to one another and to the radial direction , with the
electric field pointing in the polar direction and the magnetic field
pointing in the azimuthal direction. Since the field strength is
proportional to sin θ, the radiation pattern is toroidal with a null in
the direction of the dipole, as shown in 5.4-2(c). In the paraxial
approximation, at points near the z axis and far from the origin,
such that θ ≈ π/2 and ϕ ≈ π/2, the wavefront normals are nearly
parallel to the z axis (corresponding to paraxial rays), and sin θ ≈ 1.

In a Cartesian coordinate system, 
 

, so that

where U(r) is the paraxial approximation of the spherical wave, i.e.,
the paraboloidal wave discussed in Sec. 2.2B. For sufficiently large
values of z, the term (x/z) in (5.4-19) may also be neglected,
whereupon
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In this approximation U(r) approaches (1/4πz) e−jkz, so that a TEM
plane wave ultimately emerges, as portrayed in Fig. 2.2-4.

An electromagnetic wave that is dual to the electric-dipole wave
discussed above is radiated by a magnetic dipole with the
magnetic dipole moment ℳ pointing in the x direction. In the far
field (kr ≫ 1), it has an electric field pointing in the azimuthal
direction and an orthogonal magnetic field pointing in the polar
direction, with complex-amplitude vectors given by

where 𝒽0 = (ω2/c2)ℳ and e0 = μ(ω2/c)ℳ. At radio frequencies, this
type of wave is radiated by electric current flowing in a loop antenna
placed in a plane orthogonal to the x axis. At optical frequencies,
tiny metal loops serve as optical antennas (Sec. 8.2D) and as
important components in metamaterials (Sec. 8.3A).

The Gaussian Beam

It was demonstrated in Sec. 3.1 that a scalar Gaussian beam is
readily obtained from a paraboloidal wave (the paraxial
approximation to a spherical wave) by replacing the coordinate z by
z + jz0, where z0 is a real constant.

The same transformation applied to the corresponding
electromagnetic wave leads to the electromagnetic vector
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Gaussian beam. Replacing z in (5.4-19) by z + jz0 yields

where U(r) now represents the scalar complex amplitude of a
Gaussian beam provided in (3.1-7). The wavefronts of the Gaussian
beam are illustrated in Fig. 5.4-3(a) (these are also shown in Fig.
3.1-7), while the E-field lines determined from (5.4-24) are
displayed in Fig. 5.4-3(b). In this case, the direction of the E field is
not spatially uniform.

Figure 5.4-3 (a) Wavefronts of the scalar Gaussian beam U(r) in
the x–z plane. (b) Electric-field lines of the electromagnetic
Gaussian beam in the x–z plane. (Adapted from H. A. Haus, Waves
and Fields in Optoelectronics, Prentice Hall, 1984, Fig. 5.3a.)

B. Relation Between Electromagnetic Optics and
Scalar Wave Optics
The paraxial scalar wave, defined in Sec. 2.2C, has wavefront
normals that form small angles with respect to the axial coordinate
z. The wavefronts behave locally as plane waves while the complex
envelope and direction of propagation vary slowly with z.



This notion is also applicable to electromagnetic waves in linear
isotropic media. A paraxial electromagnetic wave is locally
approximated by a TEM plane wave. At each point, the vectors E and
H lie in a plane that is tangential to the wavefront surfaces and
normal to the wavevector k (Fig. 5.4-4). The optical power flows
along the direction E × H, which is parallel to k and approximately
parallel to the coordinate z.

Figure 5.4-4 The paraxial electromagnetic wave. The vectors E and
H reverse directions after propagation a distance of a half
wavelength.

A paraxial scalar wave of intensity I = |U|2 [see (2.2-10)] may be
associated with a paraxial electromagnetic wave of the same
intensity I = |E|2/2η [see (5.4-8)] by setting the complex amplitude
to  and matching the wavefronts. As attested to by the
extensive development provided in Chapters 2–4, the scalar-wave
description of light provides a very good approximation for solving a
great many problems involving the interference, diffraction,
propagation, and imaging of paraxial waves. The Gaussian beam
with small divergence angle, considered in Chapter 3, provides a
case in point. Most features of these beams, such as their intensity,
focusing by a lens, reflection from a mirror, and interference, are
addressed satisfactorily within the context of scalar wave optics. Of
course, when polarization comes into play, wave optics is mute and
we must appeal to electromagnetic optics.

It is of interest to note that U (as defined above) and E do not
satisfy the same boundary conditions. For an electric field
tangential to the boundary between two dielectric media, for
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example, E is continuous (Fig. 5.1-1), but  is
discontinuous since η changes value at the boundary. Thus,
problems involving reflection and refraction at boundaries cannot
be addressed completely within the scalar wave theory, although the
matching of phase that leads to the law of reflection and Snell’s law
is adequately carried out within its confines (Sec. 2.4). Indeed,
calculations of reflectance and transmittance at a boundary depend
on the polarization state of the light and therefore require
electromagnetic optics (see Sec. 6.2). Similarly, problems involving
the transmission of light through dielectric waveguides require an
analysis based on electromagnetic theory, as discussed in Chapters
9 and 10.

C. Vector Beams
Maxwell’s equations in the paraxial approximation admit other
cylindrically symmetric beam solutions for which the direction of
the electric-field vector is spatially nonuniform. One example is a
beam in which the electric field is aligned in an azimuthal
orientation with respect to the beam axis, as illustrated in Fig. 5.4-
5(a), i.e.,

The scalar function U(ρ, z) turns out to be the Bessel–Gauss
solution to the Helmholtz equation, as discussed in Sec. 3.5A. This
beam vanishes on-axis (ρ = 0) and has a toroidal transverse spatial
distribution. The beam diverges in the axial direction and the spot
size increases, much like the Gaussian beam.

Yet another cylindrically-symmetric beam has an azimuthally
oriented magnetic-field vector, so that the electric-field vector is
radial, as illustrated schematically in Fig. 5.4-5(b). It also has a
spatial distribution with an on-axis null. The distribution of the
vector field of this beam bears some resemblance to the
electromagnetic field radiated by a dipole oriented along the beam
axis (see Fig. 5.4-2).



Figure 5.4-5 Vector beams with cylindrical symmetry. (a) Electric-
field vectors oriented in the azimuthal direction. (b) Electric-field
vectors oriented in the radial direction. The shading indicates the
spatial distribution of the optical intensity in the transverse plane.

It has been shown that a vector beam with radial electric-field
vector may be focused by a lens of large numerical aperture to a
spot of significantly smaller size than is possible with a
conventional scalar Gaussian beam. Clearly, applications for such
beams find a place in high-resolution microscopy. There are, it turns
out, many variations on the theme of optical vector beams and their
uses.

5.5 ABSORPTION AND DISPERSION
In this section, we consider absorption and dispersion in
nonmagnetic media.

A. Absorption
The dielectric media considered thus far have been assumed to be
fully transparent, i.e., not to absorb light. Glass is such a material in
the visible region of the optical spectrum but it is, in fact, absorptive
in the ultraviolet and infrared regions. Transmissive optical
components in those bands are fabricated from other materials:
examples are quartz and magnesium fluoride in the ultraviolet; and
germanium and barium fluoride in the infrared. Figure 5.5-1
illustrates the spectral windows within which some commonly
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encountered optical materials are transparent (see Sec. 14.1D for
further discussion).

Figure 5.5-1 The white regions indicate the spectral bands within
which the specified optical materials transmit light. Selected
fluorides, glasses, and semiconductors are displayed.

In this section, we adopt a phenomenological approach to the
absorption of light in linear media. Consider a complex electric
susceptibility

corresponding to a complex electric permittivity ϵ = ϵo(1 + χ) and a
complex relative permittivity ϵ/ϵo = (1 + χ). For monochromatic
light, the Helmholtz equation (5.3-16) for the complex amplitude
U(r) remains valid, ∇2U + k2U = 0, but the wavenumber k itself
becomes complex-valued:

where ko = ω/co is the wavenumber in free space.
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Writing k in terms of real and imaginary parts, , allows β
and α to be related to the susceptibility components χ′ and χ″:

As a result of the imaginary part of k, a plane wave with complex
amplitude U = A exp(−jkz) traveling through such a medium in the
z-direction undergoes a change in magnitude (as well as the usual
change in phase). Substituting  into the exponent of this
plane wave yields . For α > 0, which
corresponds to absorption in the medium, the envelope A of the
original plane wave is attenuated by the factor  so that the
intensity, which is proportional to |U|2, is attenuated by | |2

= exp(−αz). The coefficient α is therefore recognized as the
absorption coefficient (also called the attenuation
coefficient) of the medium. This simple exponential decay formula
for the intensity provides the rationale for writing the imaginary
part of k as . It will be seen in Sec. 15.1A that certain media, such
as those used in lasers, can exhibit α < 0, in which case γ ≡ −α is
called the gain coefficient and the medium amplifies rather than
attenuates light.

Since the parameter β is the rate at which the phase changes with z,
it represents the propagation constant of the wave. The medium
therefore has an effective refractive index n defined by

and the wave travels with a phase velocity c = co/n.

Substituting (5.5-4) into (5.5-3) thus relates the refractive index n
and the absorption coefficient α to the real and imaginary parts of
the susceptibility χ′ and χ″:
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Absorption Coefficient and Refractive Index

Note that the square root in (5.5-5) provides two complex numbers
with opposite signs (phase difference of π). The sign is selected such
that if χ″ is negative, i.e., the medium is absorbing, then α is
positive, i.e., the wave is attenuated. If (1 + χ′) is positive, then the
complex number 1 + χ′ + jχ″ is in the fourth quadrant, and its
square root can be in either the second or the fourth quadrant. By
selecting the value in the fourth quadrant, we ensure that α is
positive, and n is then also positive. Similarly, if (1 + χ′) is negative,
then 1 + χ′ + jχ″ is in the third quadrant, and its square root is
selected to be in the fourth quadrant so that both α and n are
positive. The impedance associated with the complex susceptibility
χ, which is also complex, is given by

impedance

Hence, in the context of our formulation, χ, k, ε, and η are complex
quantities while α, β, and n are real.

Weakly Absorbing Media

In a weakly absorbing medium, we have the condition χ″ ≪ 1 + χ′,
so that , where δ = χ″/(1 +
χ′). It follows from (5.5-5) that

Weakly Absorbing Medium

Under these circumstances, the refractive index is determined by
the real part of the susceptibility and the absorption coefficient is
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proportional to the imaginary part thereof. In an absorptive medium
χ″ is negative so that α is positive whereas in an amplifying medium
χ″ is positive and α is negative.

EXERCISE 5.5-1

Dilute Absorbing Medium. A nonabsorptive medium of
refractive index n0 serves as host to a dilute suspension of
impurities characterized by susceptibility χ = χ′ + jχ″, where χ ≪
1 and χ″ ≪ 1. Determine the overall susceptibility of the medium
and demonstrate that the refractive index and absorption
coefficient are given approximately by

Strongly Absorbing Media

In a strongly absorbing medium, |χ″| ≫ |1 + χ′|, so that (5.5-5)
yields n − jα/2ko ≈ , whereupon

Strongly Absorbing Medium

Since χ″ is negative for an absorbing medium, the plus sign of the
square root was selected to ensure that α is positive, and this yields
a positive value for n as well.

B. Dispersion



Dispersive media are characterized by a frequency-dependent (and
thus wavelength-dependent) susceptibility χ(ν), electric permittivity
ϵ(ν), refractive index n(ν), and speed co/n(ν). Since the angle of
refraction in Snell’s law depends on refractive index, which is
wavelength dependent, optical components fabricated from
dispersive materials, such as prisms and lenses, bend light of
different wavelengths by different angles. This accounts for the
wavelength-resolving capabilities of refracting surfaces and for the
wavelength-dependent focusing power of lenses (and the attendant
chromatic aberration in imaging systems). Polychromatic light is
therefore refracted into a range of directions. These effects are
illustrated schematically in Fig. 5.5-2.

Figure 5.5-2 Optical components fabricated from dispersive
materials refract waves of different wavelengths by different angles
(B = blue, G = green, R = red).

Moreover, by virtue of the frequency-dependent speed of light in a
dispersive medium, each of the frequency components comprising a
short pulse of light experiences a different time delay. If the
propagation distance through a medium is substantial, as is often
the case in an optical fiber, for example, a brief light pulse at the
input will be substantially dispersed in time so that its width at the
output is increased, as illustrated in Fig. 5.5-3.



Figure 5.5-3 A dispersive medium serves to broaden a pulse of
light because the different frequency components that constitute
the pulse travel at different velocities. In this illustration, the low-
frequency component (long wavelength, denoted R) travels faster
than the high-frequency component (short wavelength, denoted B)
and therefore arrives earlier.

The wavelength dependence of the refractive index of some
common optical materials is displayed in Fig. 5.5-4.



Figure 5.5-4 Wavelength dependence of the refractive index of
selected optical materials, including glasses, crystals, and
semiconductors. The designations ‘e’ and ‘o’ represent ordinary and
extraordinary refraction, respectively, for anisotropic materials (see
Sec. 6.3).

Measures of Dispersion

Material dispersion can be quantified in a number of different ways.
For glass optical components and broad-spectrum light that covers
the visible band (white light), a commonly used measure is the
Abbe number 𝕍 = (nd − 1)/(nF − nC), where nF, nd, and nC are the
refractive indices of the glass at three standard wavelengths: blue at
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486.1 nm, yellow at 587.6 nm, and red at 656.3 nm, respectively. For
flint glass 𝕍 ≈ 38 whereas for fused silica 𝕍 ≈ 68.

On the other hand, if dispersion in the vicinity of a particular
wavelength λo is of interest, an often used measure is the magnitude
of the derivative dn/dλo at that wavelength. This measure is
appropriate for prisms, for example, in which the ray deflection
angle θd is a function of n [see (1.2-6)]. The angular dispersion
dθd/dλo = (dθd/dn)(dn/dλo) is then a product of the material
dispersion factor, dn/dλo, and another factor, dθd/dn, that depends
on the geometry of the prism and the refractive index of the
material of which it is made.

The effect of material dispersion on the propagation of brief pulses
of light is governed not only by the refractive index n and its first
derivative dn/dλo, but also by the second derivative , as will
be elucidated in Sec. 5.7 and Sec. 23.3.

Absorption and Dispersion: The Kramers–Kronig Relations

Absorption and dispersion are intimately related. Indeed, a
dispersive material, i.e., a material whose refractive index is
wavelength dependent, must be absorptive and must exhibit an
absorption coefficient that is also wavelength dependent. The
relation between the absorption coefficient and the refractive index
is a result of the Kramers– Kronig relations, which relate the real
and imaginary parts of the susceptibility of a medium, χ′ (ν) and χ″
(ν):

Kramers–Kronig Relations



Given the real or the imaginary component of χ(ν) for all ν, these
powerful formulas allow the complementary component to be
determined for all ν. The Kramers–Kronig relations connecting χ″
(ν) and χ′ (ν) translate into relations between the absorption
coefficient α(ν) and the refractive index n(ν) by virtue of (5.5-5),
which relates α and n to χ″ and χ′.

The Kramers–Kronig relations are a special Hilbert-transform pair,
as can be understood from linear systems theory (see Sec. B.1 of
Appendix B). They are applicable for all linear, shift-invariant,
causal systems with real impulse response functions. The linear
system at hand is the polarization-density response of a medium
𝒫(t) to an applied electric field ε(t) set forth in (5.2-23). Since ε(t)
and 𝒫(t) are real, so too is the impulse response function ϵoχ(t). As a
consequence, its Fourier transform, the transfer function ϵoχ(ν),
exhibits Hermitian symmetry: χ(−ν) = χ*(ν) [see Sec. A.1 of
Appendix A]. This system therefore obeys all of the conditions
required for the Kramers–Kronig relations to apply. The real and
imaginary parts of the transfer function ϵoχ(ν) are therefore related
by (B.1-6) and (B.1-7) and, in particular, by (5.5-13) and (5.5-14).

C. The Resonant Medium
We now set forth a simple classical microscopic theory that leads to
a complex susceptibility and provides an underlying rationale for
the presence of frequency-dependent absorption and dispersion in
an optical medium. The approach is known as the Lorentz
oscillator model. A more thorough discussion of the interaction
of light and matter is provided in Chapter 14.

Consider a dielectric medium such as a collection of resonant
atoms, in which the dynamic relation between the polarization
density 𝒫(t) and the electric field ε(t), considered for a single
polarization, is described by a linear second-order ordinary
differential equation of the form
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Resonant Dielectric Medium

where ζ, ω0, and χ0 are constants.

An equation of this form emerges when the motion of a bound
charge associated with a resonant atom is modeled
phenomenologically as a classical harmonic oscillator, in which the
displacement of the charge x(t) and the applied force ℱ(t) are
related by

Here m is the mass of the bound charge,  is its resonance
angular frequency, κ is the elastic constant of the restoring force,
and ζ is the damping coefficient.

If the dipole moment associated with each individual atom is 𝒫 =
−ex, the polarization density of the medium as a whole is related to
the displacement by 𝒫 = N𝒫 = −Nex, where −e is the electronic
charge and N is the number of atoms per unit volume of the
medium. The electric field and force are related by ε = ℱ/(−e). The
quantities 𝒫 and ε are therefore proportional to x and ℱ,
respectively, and comparison of (5.5-15) and (5.5-16) provides

The applied electric field can thus be thought of as inducing a time-
dependent electric dipole moment in each atom, as portrayed in Fig.
5.5-5, and hence a time-dependent polarization density in the
medium as a whole.
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Figure 5.5-5 A time-varying electric field ε applied to a Lorentz-
oscillator atom induces a time-varying dipole moment 𝒫 that
contributes to the overall polarization density 𝒫.

The medium is completely characterized by its impulse response
function ϵoχ(t), an exponentially decaying harmonic function, or
equivalently by its transfer function ϵoχ(ν), which is obtained by
solving (5.5-15) one frequency at a time, as follows. Substituting ε(t)
= Re{E exp(jωt)} and 𝒫(t) = Re{P exp(jωt)} into (5.5-15) yields

from which . Writing this relation in the
form P = ϵoχ(ν)E, and substituting ω = 2πν, yields an expression for
the frequency-dependent susceptibility,

Susceptibility (Resonant Medium)

where ν0 = ω0/2π is the resonance frequency and Δν = ζ/2π.

The real and imaginary parts of χ(ν), denoted χ′(ν) and χ″(ν)
respectively, are therefore given by



(5.5-21)

These equations are plotted in Fig. 5.5-6.

Figure 5.5-6 Real and imaginary parts of the susceptibility of a
resonant dielectric medium. The real part χ′(ν) is positive below
resonance, zero at resonance, and negative above resonance. The
imaginary part χ″(ν) is negative so that −χ″(ν) is positive
everywhere and has a peak value χ0Q at ν = ν0, where Q = ν0/Δν.
The illustration portrays results for Q = 10.

At frequencies well below resonance (ν ≪ ν0), χ′ (ν) ≈ χ0 and χ″ (ν)
≈ 0, so that the low-frequency susceptibility is simply χ0. At
frequencies well above resonance (ν ≫ ν0), χ′ (ν) ≈ χ″ (ν) ≈ 0 so that
the medium behaves like free space. Precisely at resonance (ν = ν0),
χ′ (ν0) = 0 and −χ″ (ν0) reaches its peak value of χ0Q, where Q = ν0/
Δν. The resonance frequency ν0 is usually much greater than Δν so
that Q ≫ 1. Thus, the magnitude of the peak value of −χ″ (ν), which
is χ0Q, is much larger than the magnitude of the low-frequency
value of χ′ (ν), which is χ0. The maximum and minimum values of
χ′ (ν) are ±χ0 Q/(2 ∓ 1/Q) and occur at frequencies ,
respectively. For large Q, χ′ swings between positive and negative
values with a magnitude approximately equal to χ0Q/2, i.e., one half
of the peak value of χ″. The signs of χ′ and χ″ determine the phase
of χ, which simply determines the angle between the phasors P and
E.
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The behavior of χ(ν) in the vicinity of resonance (ν ∼ ν0) is often of
particular interest. In this region, we may use the approximation 

 2ν0(ν0 − ν) in the real part of the
denominator of (5.5-19), and replace ν with ν0 in the imaginary part
thereof, to obtain

from which

Susceptibility (Near Resonance)

The function χ″ (ν) in (5.5-23), known as the Lorentzian
function, decreases to half its peak value when |ν − ν0| = Δν/2.
The parameter Δν therefore represents the full-width at half-
maximum (FWHM) value of χ″ (ν).

The behavior of χ(ν) far from resonance is also of interest. In the
limit |(ν −ν0)| ≫ Δν, the susceptibility given in (5.5-19) is
approximately real,

Susceptibility (Far from Resonance)

so that the medium exhibits negligible absorption.

The absorption coefficient and the refractive index of a resonant
medium may be determined by substituting the expressions for χ′
(ν) and χ″(ν), e.g., (5.5-23) and (5.5-24) into (5.5-5). Each of these
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parameters generally depends on both χ′ (ν) and χ″(ν). However, in
the special case for which the resonant atoms are embedded in a
nondispersive host medium of refractive index n0, and are
sufficiently dilute so that χ″ (ν) and χ′ (ν) are both ≪ 1, this
dependence is much simpler, namely, the refractive index and the
absorption coefficient are dependent on χ′ and χ″, respectively.
Using the results of Exercise 5.5-1, it can be shown that these
parameters are related by:

The dependence of these quantities on ν is illustrated in Fig. 5.5-7.

Figure 5.5-7 Absorption coefficient α(ν) and refractive index n(ν)
of a dielectric medium of refractive index n0 containing a dilute
concentration of atoms of resonance frequency ν0.

Media with Multiple Resonances

A typical dielectric medium contains multiple resonances
corresponding to different lattice and electronic vibrations. The
overall susceptibility arises from a superposition of contributions
from these resonances. Whereas the imaginary part of the
susceptibility is confined to frequencies near the resonance, the real
part contributes at all frequencies near and below resonance, as
shown in Fig. 5.5-6. This is exhibited in the frequency dependence
of the absorption coefficient and the refractive index, as illustrated



in Fig. 5.5-8. Absorption and dispersion are strongest near the
resonance frequencies. Away from the resonance frequencies, the
refractive index is constant and the medium is approximately
nondispersive and nonabsorptive. Each resonance does, however,
contribute a constant value to the refractive index at all frequencies
below its resonance frequency.

Figure 5.5-8 Frequency dependence of the absorption coefficient
α(ν) and the refractive index n(ν) for a medium with three
resonances.

Other complex processes can also contribute to the absorption
coefficient and the refractive index of a material, so that different
patterns of frequency dependence emerge. Figure 5.5-9 shows an
example of the wavelength dependence of the absorption coefficient
and refractive index for a dielectric material that is essentially
transparent at visible wavelengths. The illustration shows a
decreasing refractive index with increasing wavelength in the visible
region by virtue of a nearby ultraviolet resonance. The material is
therefore more dispersive at shorter visible wavelengths where the
rate of decrease of the index is greatest. This behavior is not unlike
that exhibited in Fig. 5.5-1 and Fig. 5.5-4 for various real dielectric
materials.



(5.5-28)

Figure 5.5-9 Typical wavelength dependence of the absorption
coefficient and refractive index for a dielectric medium exhibiting
resonant absorption in the ultraviolet and infrared bands,
concomitant with low absorption in the visible band. In this
diagram the abscissa is wavelength rather than frequency.

The Sellmeier Equation

In a medium with multiple resonances, labeled i = 1, 2,..., the
susceptibility is approximately given by a sum of terms, each of the
form of (5.5-25), for frequencies far from any of the resonances.
Using the relation between the refractive index and the real
susceptibility provided in (5.2-13), n2 = 1 + χ, the dependence of n
on frequency and wavelength assumes a form known as the
Sellmeier equation:

Sellmeier Equation

The Sellmeier equation provides a good description of the refractive
index for most optically transparent materials. At wavelengths for
which λ ≪ λi the ith term becomes approximately proportional to λ2,
and for λ ≫ λi it becomes approximately constant. As an example,
the dispersion in fused silica, illustrated in Example 5.7-1, is well



described by three resonances. For some materials the Sellmeier
equation is conveniently approximated by a power series.

The Sellmeier equations for a few selected materials, extracted from
measured data using a least-squares fitting algorithm, are provided
in Table 5.5-1.

Table 5.5-1 Sellmeier equations for the wavelength dependence of
the refractive indices for selected materials at room temperature.
The quantities no and ne indicate the ordinary and extraordinary
indices of refraction, respectively, for anisotropic materials (see Sec.
6.3). The range of wavelengths where the results are valid is
indicated in the rightmost column.

5.6 SCATTERING OF ELECTROMAGNETIC
WAVES
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Previous chapters have described the propagation of optical waves
through homogeneous media, the reflection and refraction of light
at dielectric boundaries, wave transmission through optical
components, and diffraction through apertures. In Sec. 5.5, we
considered the absorption and dispersion of light. We turn now to
the scattering of light, which plays an important role in various
domains of optics, including nanophotonics.

In particular, we examine light scattering from a homogeneous
medium containing localized inhomogeneities, irregularities,
material defects, grains, or suspended particles. Both the medium
and the scatterers are assumed to be dielectrics with linear and
isotropic optical properties. The scattering from a small metal
sphere is considered in Sec. 8.2C and various forms of light
scattering are discussed in Sec. 14.5C.

A. Born Approximation
When an optical wave traveling in a given direction in a
homogeneous medium encounters an object with different optical
properties, the wave is scattered into other directions. This effect
may be analyzed by solving Maxwell’s equations and applying the
appropriate boundary conditions. However, analytical solutions of
this problem exist only in few ideal cases. We therefore resort to a
commonly used approximate approach for solving such problems,
known as the Born approximation. It is applicable for weak
scattering, i.e., when the scattering object may be regarded as a
small perturbation to the relative permittivity (or other optical
properties) of the medium.

To introduce the Born approximation, it is convenient to first
address the scattering of a scalar wave and then to subsequently
consider an electromagnetic wave. The scalar complex amplitude
U(r) obeys the Helmholtz equation (2.2-7),
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where inside the scattering object the wavenumber is k(r) = ks(r)
and in the host medium, which is taken to be uniform, the
wavenumber is k(r) = k. By writing k2(r) = k2 + [k2(r) − k2], (5.6-1)
may be rewritten as the Helmholtz equation for the scattered
complex amplitude Us(r),

with a source

that is localized within the volume V of the scatterer, and is zero
outside of it. As will be justified shortly, the solution to (5.6-2) is

at positions r outside the volume V. However, the integral in (5.6-4)
cannot be readily evaluated to determine Us(r) since, in accordance
with (5.6-3), the source S(r′) itself depends on the wave Us(r), which
is unknown.

If the scattering is weak, however, it is safe to assume that the
incident wave U0(r) is essentially unaffected by the process of
scattering within the volume V, in which case the complex
amplitude Us(r) in the expression for the scattering source (5.6-3)
may be approximated by the incident complex amplitude U0(r),
whereupon

This expression may then be used in (5.6-4) to determine the
scattered complex amplitude Us(r). Implicit in the assumption of
weak scattering is the condition that a wave scattered from one
point in the scattering volume V is not subsequently scattered from



another point, i.e., multiple scattering is a negligible second-order
effect.

It is evident from (5.6-4) that the scattered wave Us(r) is then
approximately a superposition of spherical waves generated by a
continuum of point sources within the scatterer, as schematized in
Fig. 5.6-1. Each point at position r′ creates a spherical wave with
amplitude S(r′ ) given by the approximate expression (5.6-5). The
concept is similar to that of the Huygens–Fresnel principle of
diffraction described in Sec. 4.1D (see Fig. 4.1-13). In this type of
scattering, known as elastic scattering, the frequency of the
scattered light remains the same as that of the incident light.

Figure 5.6-1 Under the Born approximation, the scattered wave
Us(r) is a superposition of spherical waves, each generated by a
point in the scatterer.

B. Rayleigh Scattering
Rayleigh scattering involves small scatterers. It is engendered by
variations in a medium that are introduced, for example, by the
presence of particles whose sizes are much smaller than a
wavelength or by random inhomogeneities at a scale much finer
than a wavelength.

Weak Scattering: Scalar Waves
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If the contrast between the optical properties of the scattering and
surrounding media is low, i.e., if the scattering is weak, then the
Born approximation is applicable.

If we consider a single scattering object, much smaller than the
wavelength of light and located at r = 0, the source distribution in
(5.6-5) may be approximated as S(r) ≈  U0 V δ(r), where δ(r)
is the delta function and ks is the wavenumber within the small
scatterer. Substituting this in the integral provided in (5.6-4) yields

which represents a single spherical wave centered about r = 0 (the
location of the scatterer), with an amplitude proportional to that of
the incident wave U0.

In accordance with (2.2-10), the intensity of the scattered wave is
therefore

where I0 = |U0|2. Since the scalar scattered wave is isotropic, the
total scattered power Ps = 4πr2 Is becomes

which reveals that the scattered power is proportional to the square
of the scatterer volume V.

Since ks and k are both proportional to ω, it is clear from (5.6-8)
that the scattered power is proportional to ω4 or, in terms of
wavelength, to . Known as the Rayleigh inverse fourth-
power law, this indicates that incident waves of short wavelength
undergo greater scattering than those of long wavelength. As an
example, the Rayleigh scattering of light at a wavelength of λo = 400



nm exceeds that of light at a wavelength of λo = 800 nm by the
factor 24 = 16. Rayleigh scattering from the density fluctuations of
air, which are finer than the wavelengths of light in the visible
spectral band, is responsible for the blue color of the sky. The short-
wavelength (blue) light is preferentially scattered over a large range
of angles, whereas the light arriving directly from the sun is reduced
in blue and therefore appears to have a yellowish tint. In silica-glass
optical fibers, Rayleigh scattering is responsible for the greater
attenuation of visible than infrared light, as discussed in Sec. 10.3A.

Weak Scattering: Electromagnetic Waves

The derivation of the scattered wave considered above was
predicated on a scalar complex amplitude that obeys the Helmholtz
equation (5.6-1). The scattering of an electromagnetic wave may be
formulated in a similar manner by beginning with the vector
potential A, which also satisfies the Helmholtz equation. Applying
the Born approximation, the vector potential of the scattered wave
may be expressed as a superposition of dipole waves centered at
points within the scatterer, in analogy with (5.6-4). The vector
potential A for an oscillating dipole has the distribution of a
spherical wave, with the associated electric and magnetic complex
amplitudes E and H described in Sec. 5.4A.

From an electromagnetic point-of-view, scattering can thus be
viewed as the creation, by the incident field, of a collection of
oscillating electric dipoles at all points within the scatterer, each
radiating a dipole wave.

For a single small scatterer at the origin, the scattered
electromagnetic wave is identical to that radiated by a single electric
dipole pointing along the direction of the electric field E0 of the
incident wave, as illustrated in Fig. 5.6-2. In the far zone (r ≫ λ), the
electric and magnetic fields of the scattered wave point in the polar
and azimuthal directions, respectively, as provided in (5.4-17) and
(5.4-18), as well as in Fig. 5.4-2. The electric-field complex
amplitude of the scattered wave is thus given by



(5.6-9)

(5.6-10)

so that the scattered-wave intensity is

where I0 is given by (5.4-8). The angular distribution of the
scattered wave is thus independent of ϕ and assumes the toroidal
pattern illustrated in Fig. 5.6-2. The scattering is at a maximum
when θ = π/2, i.e., when the direction of the scattered wave is
orthogonal to the direction of the electric field of the incident wave.
In particular, back-scattering has the same intensity as forward-
scattering.

Figure 5.6-2 A transverse electromagnetic plane wave with electric
field E0 scattered from a point object (blue circle at center) creates a
scattered electric-dipole wave Es with a toroidal directional pattern.
The scattered intensity Is ∝ sin2θ, where θ is the scattering angle.

The expression for the electromagnetic intensity given in (5.6-10)
differs from that for the scalar-wave intensity provided in (5.6-7) by
the factor sin2θ. This distinction arises because the oscillating
dipole radiates a transverse electromagnetic wave, which precludes
scattering in a direction parallel to the incident electric field,
whereas scalar wave optics does not take polarization into account.

The total scattered power is calculated by integrating (5.6-10) over
the surface of a sphere. Using the incremental integration area in



(5.6-11)

(5.6-13)

(5.6-12)

spherical coordinates, r2 sin θ dθ dϕ, and noting that ,
leads to

The electromagnetic scattered power is thus 2/3 of that obtained in
the scalar-wave case, as provided in (5.6-8). The results differ
because of the distinction in the integration over θ in the two cases.
In the isotropic case the appropriate integration is  = 2,
whereas in the electromagnetic case the integration yields 4/3, as
indicated above, which is a factor of 2/3 smaller.

It is commonplace to characterize the strength of scattering in
terms of a scatteringcross section σs. Writing the total scattered
power Ps as the product

where I0 is the incident light intensity [W/m2], it is evident that σs

may be regarded as the area of an aperture [m2] that intercepts the
incident wave and collects an amount of power equal to the actual
scattered power. Based on (5.6-11), the scattering cross section
under the Born approximation (weak scattering) and the small-
scatterer approximation (Rayleigh scattering) is therefore

Let us consider a specific example: the scattering cross section of a
spherical dielectric scatterer of radius a and permittivity ϵs
embedded in a dielectric medium of permittivity ϵ, under the
assumption that both media have the same magnetic perme ability
μ. Substituting , , and 

 into (5.6-13), we obtain



(5.6-14)

The scattering cross section of the spherical scatterer is thus given
by the product of its geometrical area, πa2, and a small
dimensionless factor Qs, known as the scattering efficiency. The
quantity Qs is proportional to the fourth power of the ratio a/λ,
where λ is the wavelength of light in the background medium, and
to the square of the contrast factor , where ns
and n are the refractive indices of the scatterer and the medium,
respectively. Rayleigh scattering is evidently highly dependent on
the size of the scatterer; the scattered power is proportional to the
sixth power of the radius of a spherical scatterer. Of course the
validity of these results requires that the radius of the scatterer be
small in comparison with a wavelength.

EXAMPLE 5.6-1

Rayleigh Scattering from a Dielectric Nanosphere. Light
of wavelength λ = 600 nm is scattered from a spherical
nanoparticle of radius a = 60 nm and a relative permittivity that
is 10% greater than the background value. Since the a/λ = 0.1,
the small-scatterer condition is satisfied. Also, since the contrast
(ϵs − ϵ)/ϵ = 0.1, the weak-scattering condition is satisfied. In
accordance with (5.6-14), the scattering efficiency is Qs ≈ 4.6 ×
10−4 and the scattering cross section is σs ≈ 5.2 nm2. Hence, if
the intensity of the incident light is I0 ≈ 105 W/m2

(corresponding to a 3-mW laser beam of 100-μm radius), the
scattered power is Ps ≈ 0.52 pW.

Strong Scattering: Nanosphere

The Born approximation is not applicable in the case of strong
scattering, i.e., when the contrast (ϵs − ϵ)/ϵ between the relative



(5.6-15)

(5.6-16)

permittivities of the scatterer and the background is not small.
However, an alternative method, known as the quasi-
staticapproximation, may be used to determine the Rayleigh
scattered field if the scatterer is spherical and its a radius much
smaller than the optical wavelength, i.e., a nanosphere.

Again, the scattered electric-field complex amplitude Es is that
radiated by an electric dipole, as in (5.4-15) and (5.4-16). As
explained below, in the far zone the field is described by

and the associated scattering cross section turns out to be
approximately given by

Nanosphere Cross Section

If ϵs ≈ ϵ, then ϵs + 2ϵ ≈ 3ϵ, whereupon the weak-scattering results are
recovered from the above equations, i.e., (5.6-15) reproduces (5.6-
9), and (5.6-16) reproduces (5.6-14).

These results may be confirmed by applying appropriate boundary
conditions at the surface of the scattering sphere (r = a), namely,
matching the tangential components of the external and internal
electric fields E, as well as the normal components of the
displacement fields D, which are products of the permittivities and
the electric fields in each medium (see Fig. 5.1-1). The internal
electric field Ei within the scattering sphere is uniformly distributed,
with amplitude



(5.6-17)

Nanosphere Internal Field

and with a direction that is parallel to the electric field of the
incident wave, as shown in Fig. 5.6-3.

Figure 5.6-3 Scattering of a plane wave with electric field E0 from
a dielectric nanosphere of radius a ≪ λ. The scattered wave Es is
identical to the wave radiated by an electric dipole, and the internal
field Ei is uniform within the sphere. Boundary conditions dictate
that the polar components of E0 + Es and Ei are equal, and the
radial components of ϵ(E0 + Es) and ϵsEi are also equal. Scattering
from a metal nanosphere is considered in Sec. 8.2C.

The external field is the sum of the incident field E0 and the
scattered field Es, which is a dipole wave. Since the radius of the
sphere is taken to be much smaller than the wavelength of the light
(r ≪ λ), at the boundary r = a we have kr ≪ 1. It follows that points
on the sphere lie in the near-field zone of the dipole wave. As a
consequence, the full expression for the electric field of the dipole
wave provided in (5.4-15) may be approximated by the 1/(jkr)2

terms. At r = a, the radial and polar components of Es are therefore
2(jka)−2(Es0 cosθ)(4πa)−1e−jka and (jka)−2(Es0 sinθ)(4πa)−1e−jka,
respectively. Inserting these expressions in the boundary conditions
results in (5.6-16) and (5.6-17). This solution, which is valid for long



wavelengths (λ ≫ a), i.e., low frequencies, may also be obtained by
solving the electrostatic problem of a dielectric sphere in an applied
steady electric field, which explains the appellation quasi-static
approximation.

C. Mie Scattering
For weak scattering, the Born approximation is applicable for
scatterers of all sizes, including those with dimensions comparable
to, or larger than, the wavelength of the incident light. The scattered
wave is formulated as an integral of dipole waves centered at points
within the scatterer, and with amplitudes proportional to the local
value of , as set forth in Sec. 5.6A. The resultant scattering
pattern is sensitive to the size and shape of the scatterer.

If the Born approximation cannot be used because the scattering is
not sufficiently weak, the problem can be solved analytically for a
few special shapes, such as spheres. This is known as Mie
scattering. Quadrupole solutions, which are terms of order higher
than the dipole solutions to the Helmholtz equation that we have
considered thus far, become important for large spheres, which
renders the mathematical analysis more complicated. The
directional pattern of the scattering assumes complex, and often
asymmetric, shapes so that scattering in the forward direction can
become stronger than that in the backward direction. For spheres
that are large in comparison with the wavelength, the scattered
power turns out to be proportional to the square of the particle
diameter, rather than to the sixth power as for Rayleigh scattering.

Moveover, the strength of Mie scattering is roughly independent of
wavelength, in contrast to Rayleigh scattering, so all wavelengths in
white light are scattered approximately equally. Mie scattering from
the water droplets suspended in clouds, which are comparable in
size to the visible wavelengths comprising sunlight, is responsible
for their white (or gray) color. It is also responsible for the white
glare around light sources (such as automobile headlights) in the
presence of mist and fog.



(5.6-18)

D. Attenuation in a Medium with Scatterers
Although the intensity that is Rayleigh scattered from a single
scatterer is very small, the cumulative effect of a large number of
scatterers distributed within a medium can result in significant
attenuation. A wave propagating through a homogeneous medium
with an average of Ns identical scatterers per unit volume, each with
scattering cross section σs, is attenuated exponentially at a rate αs,
known as the scattering coefficient:

Scattering Coefficient

This result is derived by considering a plane wave of intensity I
traveling along the z axis of a cylinder with unit cross-sectional area
and incremental length Δz, as illustrated in Fig. 5.6-4. The
incremental slice contains Ns Δz scatterers, each of which scatters a
small amount of power σsI away from the z direction. In passing
through this slice, the intensity therefore decreases by the
increment ΔI = −(Ns Δz)σsI. In the limit as Δz → 0, this yields dI/dz
= −αsI, where αs = Nsσs, so that the intensity of the wave decays
exponentially at the rate αs, thereby decreasing by the factor
exp(−αsz) upon traveling a distance z.

Figure 5.6-4 Scattering and absorption from scatterers embedded
in a nonabsorbing homogenous medium results in wave extinction.

Medium with Absorbing Scatterers
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If the scatterers are absorptive as well, then additional attenuation
is encountered as the wave passes through the medium. The overall
attenuation coefficient, also called the intensity extinction
coefficient,3 is the sum of the absorption coefficient αa and the
scattering coefficient αs, i.e., α = αa + αs.

We proceed to derive an expression for the absorption coefficient αa
for a nonabsorbing homogeneous medium of real permittivity ϵ in
which a concentration of Ns spherical scatterers per unit volume,
each of complex permittivity ϵs and volume V, is embedded. The
absorptive nature of the scatterers is embodied in the imaginary
part of ϵs. The complex effective permittivity of the composite
medium (the host medium and the embedded scatterers) is denoted
ϵe. The wavenumbers of the composite and host media are 

 and , which are complex and real, respectively.
Based on (5.5-3) we can therefore write .

An approximate expression for ϵe is provided by the weighted
average based on the volume fraction occupied by the scatterers, f =
NsV:

This expression is valid for a dilute medium (f ≪ 1) with weak
scattering (ϵs ≈ ϵ) and small scatterers. For small spherical
scatterers of arbitrary concentration, and for arbitrary values of ϵs

and ϵ, the Maxwell-Garnett mixing rule is applicable:4

This relation may be derived by noting that the average electric field
is  = fEi + (1 − f)E0 and the average displacement is 

, where Ei and E0 are the internal and external
fields, respectively. Using (5.6-17), which provides E0/Ei = (ϵs +
2ϵ)/3ϵ, and forming the ratio , yields the desired result. In a



(5.6-22)
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dilute medium of small spherical scatterers, for which f ≪ 1, (5.6-
20) takes the simpler form

If, additionally, the scattering is weak (ϵs ≈ ϵ), then (5.6-21) reduces
to the weighted-average formula (5.6-19).

If the scatterers are small and dilute, but not necessarily weak, then
ϵe = ϵ + Δϵ, where Δϵ ≪ ϵ. In this case, αa/2 = 

  so
that αa ≈ −k Im {(ϵe − ϵ)/ϵ}. With k = 2π/λ and f = NsV = Ns4πa3/3
for spherical scatterers of radius a, use of (5.6-21) leads to the
approximate result

Absorption Coefficient

where σa is the absorption cross section and the dimensionless
factor Qa is the absorption efficiency. Note that if we use the
weighted-average formula (5.6-19) for ϵe, which is valid for dilute,
weak, and small scatterers, we obtain an expression for αa identical
to that provided in (5.6-22) except that the factor ϵs + 2ϵ in Qa is
replaced by 3ϵ. The overall attenuation coefficient α = αa + αs is
obtained by combining the results provided in (5.6-22), (5.6-16), and
(5.6-18).

5.7 PULSE PROPAGATION IN DISPERSIVE
MEDIA
The propagation of pulses of light in dispersive media is important
in many applications including optical fiber communication



(5.7-1)

systems, as will be discussed in detail in Chapters 10, 23, and 25. As
indicated above, a dispersive medium is characterized by a
frequency-dependent refractive index and absorption coefficient, so
that monochromatic waves of different frequencies travel through
the medium with different velocities and undergo different
attenuations. Since a pulse of light comprises a sum of many
monochromatic waves, each of which is modified differently, the
pulse is delayed and broadened (dispersed in time); in general its
shape is also altered. In this section we provide a simplified analysis
of these effects; a detailed description is deferred to Chapter 23.

Group Velocity

Consider a pulsed plane wave traveling in the z direction through a
lossless dispersive medium with refractive index n(ω). Following
the example set forth in Sec. 2.6, assume that the initial complex
wavefunction at z = 0 is U(0, t) = 𝒜(t) exp(jω0t), where ω0 is the
central angular frequency and 𝒜(t) is the complex envelope of the
wave. It will be shown below that if the dispersion is weak, i.e., if n
varies slowly within the spectral bandwidth of the wave, then the
complex wavefunction at a distance z is approximately U(z, t) = 𝒜(t
− z/v) exp[jω0(t − z/c)], where c = co/n(ω0) is the speed of light in
the medium at the central frequency, and v is the velocity at which
the envelope travels (see Fig. 5.7-1). The parameter v, called the
group velocity, is given by

Group Velocity

where β = ωn(ω)/co is the frequency-dependent propagation
constant and the derivative in (5.7-1), which is often denoted β′, is
evaluated at the central frequency ω0. The group velocity is a
characteristic of the dispersive medium, and generally varies with



the central frequency. The corresponding time delay τd = z/v is
called the group delay.

Figure 5.7-1 An optical pulse traveling in a dispersive medium that
is weak enough so that its group velocity is frequency independent.
The envelope travels with group velocity v while the underlying
wave travels with phase velocity c.

Since the phase factor exp[jω0(t − z/c)] is a function of t − z/c, the
speed of light c, given by 1/c = β(ω0)/ω0, is often called the phase
velocity. In an ideal (nondispersive) medium, β(ω) = ω/c
whereupon v = c and the group and phase velocities are identical.



(5.7-2)

□ Derivation of the Formula for the Group Velocity. The
proof of (5.7-1) relies on a Fourier decomposition of the
envelope 𝒜(t) into its constituent harmonic functions. A
component of frequency Ω, assumed to have a Fourier
amplitude A(Ω), corresponds to a monochromatic wave of
frequency ω = ω0 + Ω traveling with propagation constant β(ω0
+ Ω). This component of the pulsed plane wave therefore travels
as A(Ω) exp{−j[β(ω0 + Ω)]z} exp[j(ω0 + Ω)t]. If β(ω) varies
slowly near the central frequency ω0, it may be approximately
linearized via a two-term Taylor series expansion: β(ω0 + Ω) ≈
β(ω0) + Ωdβ/dω = ω0/c + Ω/v. The Ω component of the
complex wavefunction may therefore be approximated by A(Ω)
exp[jΩ(t − z/v)] exp[jω0(t − z/c)]. It follows that, upon traveling
a distance z, the envelope of the Fourier component A(Ω)
exp(jΩt) becomes A(Ω) exp[jΩ(t − z/v)] for every value of Ω;
thus the pulse envelope 𝒜(t) becomes 𝒜(t − z/v). The pulse
therefore travels at the group velocity v = 1/(dβ/dω), in
accordance with (5.7-1). ▪

Since the index of refraction of most materials is typically measured
and tabulated as a function of optical wavelength rather than
frequency, it is convenient to express the group velocity v in terms
of n(λo). Using the relations β = ωn(λo)/co = 2πn(λo)/λo and λo =
2πco/ω in (5.7-1), along with the chain rule dβ/dω = (dβ/dλo)
(dλo/dω), provides

Group Velocity and Group Index

The derivative dn/dλo in (5.7-2) is evaluated at the central
wavelength λ0. The parameter N is often called the group index.
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(5.7-4)

(5.7-5)

Group Velocity Dispersion (GVD)

Since the group velocity v = 1/(dβ/dω) is itself often frequency
dependent, different frequency components of the pulse undergo
different delays τd = z/v. As a result, the pulse spreads in time. This
phenomenon is known as group velocity dispersion (GVD). To
estimate the spread associated with GVD it suffices to note that,
upon traveling a distance z, two identical pulses of central
frequencies ν and ν + δν suffer a differential group delay

where the quantity

Dispersion Coefficient

is called the dispersion coefficient and β″ ≡ d2β/dω2|ω0. This
effect is actually associated with the higher-order terms in the
Taylor series expansion of β(ω) that were neglected in the
derivation of the group velocity carried out above; a more complete
treatment will be provided in Chapter 23.

If the pulse has an initial spectral width σν (Hz), in accordance with
(5.7-3) a good estimate of its temporal spread is then provided by

Pulse Spread

The dispersion coefficient Dν is a measure of the pulse-time
broadening per unit distance per unit spectral width (s/m-Hz). This
temporal broadening process is illustrated schematically in Fig. 5.7-



(5.7-6)

(5.7-7)

(5.7-8)

2. If the refractive index is specified in terms of the wavelength,
n(λo), then (5.7-2) and (5.7-4) give

Dispersion Coefficient (s/m-Hz)

Figure 5.7-2 The temporal spread of an optical pulse traveling in a
dispersive medium is proportional to the product of the dispersion
coefficient Dν, the spectral width σν, and the distance traveled z.

It is also common to define a dispersion coefficient Dλ in terms of
the wavelength5 instead of the frequency. Using Dλ dλ = Dν dν
yields Dλ = Dν dν/dλo = , which leads directly to

Dispersion Coefficient (s/m-nm)

In analogy with (5.7-5), for a source of spectral width σλ the
temporal broadening of a pulse of light is

Pulse Spread



As discussed in Secs. 10.3, 23.3, and 25.1, Dλ is usually specified in
units of ps/kmnm in fiber-optics applications: the pulse broadening
is measured in picoseconds, the length of the medium in
kilometers, and the source spectral width in nanometers.

Normal and Anomalous Dispersion

Although the sign of the dispersion coefficient Dν (or Dλ) does not
affect the pulse-broadening rate, it does affect the phase of the
complex envelope of the optical pulse. As such, the sign can play an
important role in pulse propagation through media consisting of
cascades of materials with different dispersion properties, as
examined in Chapter 23. If Dν > 0 (Dλ < 0), the medium is said to
exhibit normal dispersion. In this case, the travel time for higher-
frequency components is greater than the travel time for lower-
frequency components so that shorter-wavelength components of
the pulse arrive later than longer-wavelength components, as
illustrated schematically in Fig. 5.7-3. If Dν < 0 (Dλ > 0), the
medium is said to exhibit anomalous dispersion, in which case the
shorter-wavelength components travel faster and arrive earlier.
Most glasses exhibit normal dispersion in the visible region of the
spectrum; at longer wavelengths, however, the dispersion often
becomes anomalous.



Figure 5.7-3 Propagation of an optical pulse through media with
normal and anomalous dispersion. In a medium with normal
dispersion the shorter-wavelength components of the pulse (B)
arrive later that those with longer wavelength (R). A medium with
anomalous dispersion exhibits the opposite behavior. The pulses are
said to be chirped since the instantaneous frequency is time varying.

Single-Resonance Medium

The group velocity and dispersion coefficient for an optical pulse
propagating through a single-resonance medium is determined by
substituting (5.5-20) and (5.5-21) into (5.5-5) and making use of
(5.7-2) and (5.7-7). To illustrate the behavior of the pulse in this
medium, the wavelength dependence of the refractive index n, the
group index N, and the dispersion coefficient Dλ, are plotted in Fig.
5.7-4 as a function of normalized wavelength λ/λ0, for a medium
with parameters χ0 = 0.05 and Δν/ν0 = 0.1.



Figure 5.7-4 Wavelength dependence of the optical parameters
associated with a single-resonance medium plotted as a function of
the wavelength normalized to the wavelength at the resonance
frequency, λ/λ0: the refractive index n = co/c (dots indicate points of
inflection), the group index N = co/v (dots indicate maxima), and
the dispersion coefficient Dλ (dots indicate zeros). The parameters
N and Dλ are not meaningful near resonance (shaded area).

In the vicinity of the resonance (shaded area in figure), n varies
sufficiently rapidly with wavelength that the parameters N and Dλ,
which are defined on the basis of a Taylor-series approximation
comprising a few terms, cease to be meaningful. Away from the
resonance, on both sides thereof, the refractive index decreases
monotonically with increasing wavelength and exhibits points of
inflection (indicated by dots). The first derivative of the refractive
index achieves local maxima at these locations so that the group
index N attains its maximum values there. Moreover, the second
derivative vanishes at these points so that the dispersion coefficient
changes sign. As the wavelength approaches the resonance
wavelength from below, the dispersion changes from anomalous to
normal; the reverse is true as the wavelength approaches resonance
from above, as is evident in Fig. 5.7-4.

Fast and Slow Light in Resonant Media



As is evident in Fig. 5.7-4, in a resonant medium the refractive index
n and the group index N undergo rapid changes near the resonance
frequency, and may be substantially greater or smaller than unity.
Consequently, the phase velocity c = co/n and the group velocity v =
co/N may be significantly less than, or greater than, the velocity of
light in free space, co. The group index, and hence the group
velocity, may even be negative. This raises the question of a
potential conflict with causality and the special theory of relativity,
which provides that information cannot be transmitted at a velocity
greater than co. It turns out that there is no such conflict since
neither the group velocity nor the phase velocity corresponds to the
information velocity, which is the speed at which information is
transmitted between two points. The information velocity may be
determined by tracing the propagation of a nonanalytic point on the
pulse, for example, the onset of a rectangular pulse. It cannot
exceed co.

The concepts of phase and group velocity were considered earlier in
the context of an optical pulse traveling in a weakly dispersive
medium, i.e., a medium with propagation constant β(ω) that is
approximately linear in the vicinity of the central frequency of the
pulse, ω0. After traveling a distance z, the pulse is delayed by a time
z/v and is modulated by a phase factor exp(−jω0z/c). This phase,
which travels at the phase velocity c, carries no information. It is the
group velocity v that governs the time of “arrival” of the pulse.
Since, in this approximation, the pulse envelope maintains its shape
as it travels (Fig. 5.7-1), the group velocity is a good approximation
of the information velocity. In the resonant medium, this occurs at
wavelengths far from resonance, where the group index is greater
than unity and the group velocity is less than co.

At frequencies closer to resonance, higher-order dispersion terms
become appreciable. In the presence of second-order dispersion
(GVD), but negligible higher-order dispersion, a Gaussian pulse, for
example, remains Gaussian, albeit with an increased width; its peak
travels at the group velocity v. However, since the Gaussian pulse



has a continuous profile and infinite support (i.e., extends over all
time), the velocity at which the peak travels is not necessarily the
information velocity; indeed, it can be greater than the free-space
speed of light.

In the immediate vicinity of resonance, where the group velocity
can be significantly greater than co and can even be negative (Fig.
5.7-4), higher-order dispersion terms must be considered. The pulse
shape can then be significantly altered and the group velocity can no
longer be considered as a possible information velocity. For
sufficiently short distances, however, the pulse may travel without a
significant alteration in shape, and this may occur at a group
velocity significantly higher than co. The pulse can also travel at a
negative group velocity, signifying that a point on the pulse,
identified by a peak for example, arrives at the end of the medium
before the corresponding point on the input pulse even enters the
medium In the opposite limit of slow light, certain special
resonance media permit the group velocity of light to be made
exceedingly small so that a light pulse may be substantially slowed
or even halted. It should be emphasized, however, that in none of
these situations does the information velocity exceed co.

Since fast-and slow-light phenomena can only be observed near
resonance, where the absorption coefficient is large (and frequency
dependent), a mechanism for optical amplification is necessary, and
nonlinear effects are often exploited to enhance this phenomenon.



EXAMPLE 5.7-1

Dispersion in a Multi-Resonance Medium: Fused Silica.
In the region between 0.21 and 3.71 μm, the wavelength
dependence of the refractive index n for fused silica at room
temperature is well characterized by the Sellmeier equation (5.5-
28). Expressing all wavelengths in μm, this is achieved using
three resonance wavelengths at λ1 = 0.06840 μm, λ2 = 0.1162
μm, and λ3 = 9.8962 μm, with weights χ01 = 0.6962, χ02 = 0.4079,
and χ03 = 0.8975, respectively. Expressions for the group index N
and the dispersion coefficient Dλ are readily derived from this
equation by means of (5.7-2) and (5.7-7). The results of this
calculation in the 600–1600-nm wavelength range are presented
in Fig. 5.7-5.

Figure 5.7-5 Wavelength dependence of optical parameters for
fused silica calculated on the basis of the Sellmeier equation
(5.5-28): the refractive index n = co/c (dot indicates point of
inflection), the group index N = co/v (dot indicates minimum),
and the dispersion coefficient Dλ (dot indicates zero).



The refractive index n is seen to decrease monotonically with
increasing wavelength, and to exhibit a point of inflection at λo =
1.276 μm. At this wavelength, the group index N is minimum so
that the group velocity v = co/N is maximum. Since the
dispersion coefficient Dλ is proportional to the second derivative
of n with respect to λo, it vanishes at this wavelength. Zero
dispersion coefficient signifies minimal pulse broadening. At
wavelengths shorter than 1.276 μm, Dλ < 0 and the medium
exhibits normal dispersion whereas at longer wavelengths, Dλ >
0 and the dispersion is anomalous. The presence of a zero-
dispersion wavelength offers significant advantages in the design
of optical fiber communication systems in which optical pulses
carry information, as will become evident in Secs. 10.3, 25.1, and
25.3. The silica-glass fibers used in such systems are doped and
exhibit zero dispersion close to 1.312 μm. The group index N is
seen to be larger than the refractive index n by ∼ 2%, as is
common in many materials.
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PROBLEMS
5.1-1 An Electromagnetic Wave. An electromagnetic wave in free

space has an electric-field vector ε = f(t − z/co) , where  is a
unit vector in the x direction, and f(t) = exp(−t2/τ2) exp(j2πν0t),
where τ is a constant. Describe the physical nature of this wave
and determine an expression for the magnetic-field vector.

5.2-1 Dielectric Media. Identify the media described by the
following equations, with respect to linearity, dispersiveness,
spatial dispersiveness, and homogeneity. Assume that all media
are isotropic.

a. 𝒫 = ϵoχε − a∇ × ε,

b. 𝒫 + a𝒫2 = ϵoε,

c. a1 ∂2𝒫/∂t2 + a2 ∂𝒫/∂t + 𝒫 = ϵoχε,

d. 𝒫 = ϵo{a1 + a2 exp[−(x2 + y2)]}ε,

where χ, a, a1, and a2 are constants.

5.3-1 Traveling Standing Wave. The electric-field complex-
amplitude vector for a monochromatic wave of wavelength λo
traveling in free space is E(r) = E0 sin(βy) exp(−jβz) .

a. Determine a relation between β and λo.



b. Derive an expression for the magnetic-field complex-amplitude
vector H(r).

c. Determine the direction of the flow of optical power.

d. This wave may be regarded as the sum of two TEM plane
waves. Determine their directions of propagation.

5.4-1 Electric Field of Focused Light.

a. 1 W of optical power is focused uniformly on a flat target of size
0.1 × 0.1 mm2 placed in free space. Determine the peak value of
the electric field E0 (V/m). Assume that the optical wave is
approximated as a TEM plane wave within the area of the
target.

b. Determine the electric field at the center of a Gaussian beam
(the point on the beam axis located at the beam waist) if the
beam power is 1 W and the beam waist radius W0 = 0.1 mm
(refer to Sec. 3.1).

5.5-2 Amplitude-Modulated Wave in a Dispersive Medium.
An amplitude-modulated wave whose complex wavefunction
takes the form 𝒜(t) = [1 + m cos(2πfst)] exp(j2πν0t) at z = 0,
where fs ≪ ν0, travels a distance z through a dispersive medium
of propagation constant β(ν) and negligible attenuation. If
β(ν0) = β0, β(ν0 − fs) = β1, and β(ν0 + fs) = β2, derive an
expression for the complex envelope of the transmitted wave as
a function of β0, β1, β2, and z. Show that at certain distances z
the wave is amplitude modulated with no phase modulation.

5.7-1 Group Velocity Dispersion in a Medium Described by
the Sellmeier Equation.

a. Derive expressions for the group index N and the group velocity
dispersion coefficient Dλ for a medium whose refractive index
is described by the Sellmeier equation (5.5-28).



b. Plot the wavelength dependence of n, N, and Dλ for fused silica
in the region between 0.25 and 3.5 μm. Make use of the
parameters provided in Table 5.5-1 (and in Example 5.7-1).
Verify the curves provided in Fig. 5.7-5.

c. Construct a similar collection of plots for GaAs in the region
between 1.5 and 10.5 μm. As indicated in Table 5.5-1, in the
wavelength region between 1.4 and 11 μm, at room
temperature, GaAs is characterized by a 3-term Sellmeier
equation with resonance wavelengths at 0 μm, 0.4082 μm, and
37.17 μm, with associated weights given by 3.5, 7.4969, and
1.9347, respectively. Compare and contrast the behavior of the
dispersion properties of fused silica with those of GaAs.

5.7-2 Refractive Index of Air. The refractive index of air can be
precisely measured with the help of a Michelson
interferometer and a tunable light source. At atmospheric
pressure, and a temperature of 20° C, the refractive index of air
differs from unity by n − 1 = 2.672 × 10−4 at a wavelength of
0.76 μm, by n − 1 = 2.669 × 10−4 at a wavelength of 0.81 μm,
and by n − 1 = 2.665 × 10−4 at a wavelength of 0.86 μm.

a. Using a quadratic fit to these data, determine the wavelength
dependence of the group velocity.

b. Obtain an expression for the dispersion coefficient Dλ in
ps/km-nm and compare your result with that for a silica optical
fiber.

Notes
1 In a Cartesian coordinate system ∇ · ε = ∂εx/∂x + ∂εy/∂y + ∂εz /∂z
whereas ∇ × ε is a vector with Cartesian components (∂εz/∂y − ∂εy/
∂z), (∂εx/∂z − ∂εz/∂x), and (∂εy/∂x − ∂εx/∂y).



2 For a discussion of this interpretation, see M. Born and E. Wolf,
Principles of Optics, Cambridge University Press, 7th expanded and
corrected ed. 2002, pp. 7–10.
3 The field extinction coefficient, in contrast, is the rate at which the
field, rather than the intensity, decreases.
4 See J. C. Maxwell Garnett, XII. Colours in Metal Glasses and in
Metallic Films, Philosophical Transactions of the Royal Society A,
vol. 203, pp. 385–420, 1904; M. Born and E. Wolf, Principles of
Optics, Cambridge University Press, 7th expanded and corrected ed.
2002.
5 An alternative definition of the dispersion coefficient, M = −Dλ, is
also widely used in the literature.
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The French physicist Augustin-Jean Fresnel (1788–1827) put
forth a transverse wave theory of light. Equations describing the
partial reflection and refraction of light are named in his honor.
Fresnel also made important contributions to the theory of light
diffraction.

Sir George Gabriel Stokes (1819–1903), an Irish
mathematician and physicist, developed a description of light that
encompasses intensity as well as state of polarization. He also made
seminal contributions to wave optics, fluorescence, and optical
aberrations.

The polarization of light at a given position in space is determined
by the path taken by its electric-field vector ε(r,t) in time. In a
simple medium, this vector lies in a plane tangential to the
wavefront at that position. For monochromatic light, any two
orthogonal components of the complex-amplitude vector E(r) in
that plane vary sinusoidally in time, with amplitudes and phases
that generally differ, so that the endpoint of the vector E(r) traces
out an ellipse. Since the directions of the wavefront normals are



generally position-dependent, so too are the tangential planes, along
with the orientations and shapes of the ellipses, as illustrated in Fig.
6.0-1(a).

For a plane wave, however, the wavefronts are parallel transverse
planes and the polarization ellipses are the same everywhere, as
illustrated in Fig. 6.0-1(b), although the field vectors need not be
parallel at any given time. A plane wave is therefore described by a
single ellipse and is said to be elliptically polarized. The
orientation and ellipticity of the polarization ellipse determine the
state of polarization of the plane wave, while its size is established
by the optical intensity. When the ellipse reduces to a straight line
or becomes a circle, the wave is said to be linearly polarized or
circularly polarized, respectively.

Figure 6.0-1 Trace of the time course of the electric-field vector
endpoint for monochromatic light at several positions. (a) Arbitrary
wave. (b) Plane or paraxial wave traveling in the z direction.

In paraxial optics, light propagates along directions that lie within a
narrow cone centered about the optical axis (the z axis). Waves are
approximately transverse electromagnetic (TEM) in character and
the electric-field vectors therefore lie approximately in transverse
planes, with negligible axial components. From the perspective of
polarization, paraxial waves may be approximated by plane waves
and described by a single polarization ellipse (or line or circle).



Polarization plays an important role in the interaction of light with
matter as attested to by the following examples:

The proportion of light reflected at the boundary between two
materials depends on the polarization of the incident wave.

The proportion of light absorbed by certain materials is
polarization-dependent.

Light scattering from matter is generally polarization-sensitive.

The refractive index of anisotropic materials depends on the
polarization. Waves with different polarizations travel at
different velocities and undergo different phase shifts, so that
the polarization ellipse is modified as the wave advances
(linearly polarized light can be transformed into circularly
polarized light, as a simple example). This feature finds use in
the design of many optical devices.

The polarization plane of linearly polarized light is rotated by
passage through certain materials, including optically active
media, liquid crystals, and some substances in the presence of
an external magnetic field.

This Chapter

This chapter is devoted to a description of elementary polarization
phenomena and a number of their applications. Elliptically
polarized light is introduced in Sec. 6.1 using a matrix formalism
that is convenient for describing polarization devices. Section 6.2
describes the effect of polarization on the reflection and refraction
of light at boundaries between dielectric media. The propagation of
light through anisotropic media (crystals), optically active media,
and liquid crystals are the topics of Secs. 6.3, 6.4, and 6.5,
respectively. Finally, elementary polarization devices (such as
polarizers, retarders, rotators, and isolators) are discussed in Sec.
6.6. Polarization is important for understanding how light behaves
in photonic crystals, metals, and metamaterials (Chapters 7 and 8),
and how light is guided (Chapters 9 and 10) and stored (Chapter 11).
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The polarization properties of random light are considered in Sec.
12.4. Polarization clearly plays a central role in many areas of optics
and photonics.

6.1 POLARIZATION OF LIGHT
A. Polarization
Consider a monochromatic plane wave of frequency ν and angular
frequency ω = 2πν traveling in the z direction with velocity c. The
electric field lies in the x–y plane and is generally described by

where the complex envelope

is a vector with complex components Ax and Ay. To describe the
polarization of this wave, we trace the endpoint of the vector ε(z, t)
at each position z as a function of time.

Polarization Ellipse

Expressing Ax and Ay in terms of their magnitudes and phases, Ax =
Ax exp(jφx) and Ay = ay exp(jφy), and substituting into (6.1-2) and
(6.1-1) we obtain

where



(6.1-5)

are the x and y components of the electric-field vector ε(z, t). The
components εx and εy are periodic functions of (t − z/c) that
oscillate at frequency ν. Equations (6.1-4) are the parametric
equations of the ellipse

where φ = φy − φx is the phase difference.

At a fixed value of z, the tip of the electric-field vector rotates
periodically in the x–y plane, tracing out this ellipse. At a fixed time
t, the locus of the tip of the electric-field vector traces out a helical
trajectory in space that lies on the surface of an elliptical cylinder
(see Fig. 6.1-1). The electric field rotates as the wave advances,
repeating its motion periodically for each distance corresponding to
a wavelength λ = c/ν.

Figure 6.1-1 (a) Rotation of the endpoint of the electric-field
vector in the x–y plane at a fixed position z.(b) Trajectory of the
endpoint of the electric-field vector as the wave advances.

The state of polarization of the wave is determined by the
orientation and shape of the polarization ellipse, which is
characterized by the two angles defined in Fig. 6.1-2: the angle ψ
determines the direction of the major axis, whereas the angle χ
determines the ellipticity, namely the ratio of the minor to major
axes of the ellipse b/a. These angles depend on the ratio of the
complex-envelope magnitudes R = αy/αx , and on the phase
difference φ = φy − φx , in accordance with the following relations:
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Figure 6.1-2 Polarization ellipse.

Equations (6.1-6) and (6.1-7) may be derived by finding the angle ψ
that achieves a transformation of the coordinate system of εx and εy
in (6.1-5) such that the rotated ellipse has no cross term. The size of
the ellipse is determined by the intensity of the wave, which is
proportional to .

Linearly Polarized Light

If one of the components vanishes (αx = 0, for example), the light is
linearly polarized (LP) in the direction of the other component
(the y direction). The wave is also linearly polarized if the phase
difference φ = 0 or π, since (6.1-5) then yields εy = ±(αy/αx)εx,
which is the equation of a straight line of slope ±αy/αx (the + and −
signs correspond to φ = 0 and π, respectively). In these cases, the
elliptical cylinder in Fig. 6.1-1(b) collapses to a plane, as illustrated
in Fig. 6.1-3. The wave is therefore also said to have planar
polarizationz. As an example, if αx = αy, the plane of polarization
makes an angle of 45° with respect to the x axis. If αx = 0, on the
other hand, the plane of polarization is the y–z plane.



Figure 6.1-3 Linearly polarized light (also called plane polarized
light). (a) Time course of the field at a fixed position z.(b) Endpoint
of the electric-field vector at position z at a fixed time t.

Circularly Polarized Light

If φ = ±π/2 and αx = αy = α0, (6.1-4) gives εx = α0 cos[ω(t − z/c)+
φx] and εy = ∈α0 sin[ω(t − z/c)+ φx], from which ,
which is the equation of a circle. The elliptical cylinder in Fig. 6.1-
1(b) becomes a circular cylinder and the wave is said to be circularly
polarized. In the case φ = −π/2, the electric field at a fixed position z
rotates in a counterclockwise direction when viewed from the
direction toward which the wave is approaching. The light is then
said to be left circularly polarized (LCP) [Fig. 6.1-4(a)]. The
case φ =+π/2 corresponds to clockwise rotation and right
circularly polarized (RCP) light.1 In the left circular case, the
locus traced by the endpoint of the electric-field vector at different
positions is a left-handed helix, as illustrated in Fig. 6.1-4(b). For
right circular polarization, it is a right-handed helix. The helical path
of the endpoint of the electric-field vector for the plane-wave
circularly polarized light considered here is to be distinguished from
the helical wavefront of the Laguerre–Gaussian beam discussed in
Sec. 3.4 [Fig. 3.4-1(c)].



Figure 6.1-4 Motion of the endpoints of the electric-field vectors
for left and right circularly polarized plane waves. (a) Time course at
a fixed position z.(b) Trajectories of the endpoints.

Poincaré Sphere and Stokes Parameters

As indicated above, the state of polarization of a light wave can be
described by two real parameters: the magnitude ratio R = αy/αx
and the phase difference φ = φy − φx. These are sometimes lumped
into a single complex number r exp(jφ), called the complex
polarization ratio. Alternatively, we may characterize the state of
polarization by the two angles ψ and χ, which represent the
orientation and ellipticity of the polarization ellipse, respectively, as
defined in Fig. 6.1-2.

The Poincaré sphere (see Fig. 6.1-5) is a geometrical construct in
which the state of polarization is represented by a point on the
surface of a sphere of unit radius, with coordinates (r = 1, θ = 90° −
2χ, ϕ = 2ψ) in a spherical coordinate system. Each point on the
sphere represents a polarization state. For example, points on the
equator (χ = 0°) represent states of linear polarization, with the two
points 2ψ = 0° and 2ψ = 180° representing linear polarization along
the x and y axes, respectively. The north and south poles (2χ =
±90°) represent right-handed and left-handed circular polarization,
respectively. Other points on the surface of the sphere represent
states of ellipticl polarization.
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Figure 6.1-5 (a) The orientation and ellipticity of the polarization
ellipse are represented geometrically as a point on the surface of the
Poincar´e sphere. (b) Points on the Poincar´e sphere representing
linearly polarized (LP) light at various angles with the x direction, as
well as right-circularly polarized (RCP) and left-circularly polarized
(LCP) light. Points in the interior of the sphere represent partially
polarized light (the point at the origin of the sphere represents
unpolarized light), as illustrated in Fig. 12.4-1.

The two real quantities (R,φ), or equivalently the angles (χ , ψ),
describe the state of polarization but contain no information about
the intensity of the wave. Another representation that does contain
such information is the Stokes vector. This is a set of four real
numbers (S0, S1, S2, S3), called the Stokes parameters. The first of
these, , is proportional to the optical intensity whereas
the other three, (S1, S2, S3), are the Cartesian coordinates of the
point on the Poincaré sphere, 

, multiplied by S0, so that
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Using (6.1-6) and (6.1-7), together with a few trigonometric
identities, the Stokes parameters in (6.1-8) may be expressed in
terms of the field parameters (αx αy,φ), and in terms of the
components of the complex envelope (Ax, Ay), as:

Stokes Parameters

Since , only three of the four components of the
Stokes vector are independent; they completely define the intensity
and the state of polarization of the light. A generalization of the
Stokes parameters suitable for describing partially coherent light is
presented in Sec. 12.4.

We conclude that there are a number of equivalent representations
for describing the state of polarization of an optical field: (1) the
polarization ellipse; (2) the Poincar´e sphere; and (3) the Stokes
vector. Yet another equivalent representation, the Jones vector, is
introduced in the following section.

B. Matrix Representation

The Jones Vector

As indicated above, a monochromatic plane wave of frequency ν
traveling in the z direction is completely characterized by the
complex envelopes Ax = αx exp(jφx) and Ay = αy exp(jφy) of the x
and y components of the electric-field vector. These complex
quantities may be written in the form of a column matrix known as
the Jones vector:
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Given J, we can determine the total intensity of the wave, 
, and use the ratio  and the

phase difference φ = φy − φx = arg{Ay}− arg{Ax} to determine the
orientation and shape of the polarization ellipse, as well as the
Poincar´e sphere and the Stokes parameters.

The Jones vectors for some special polarization states are provided
in Table 6.1-1. The intensity in each case has been normalized so
that |Axz|2 +|Ay|2 = 1 and the phase of the x component is taken to
be φx = 0.

Table 6.1-1 Jones vectors of linearly polarized (LP) and right-and
left-circularly polarized (RCP, LCP) light.

Orthogonal Polarizations

Two polarization states represented by the Jones vectors J1 and J2
are said to be orthogonal if the inner product between J1 and J2 is
zero. The inner product is defined by

where A1x and A1y are the elements of J1 and A2x and A2y are the
elements of J2. An example of orthogonal Jones vectors are the
linearly polarized waves in the x and y directions, or any other pair



of orthogonal directions. Another example is provided by right and
left circularly polarized waves.

Expansion of Arbitrary Polarization as a Superposition of Two
Orthogonal Polarizations

An arbitrary Jones vector J can always be analyzed as a weighted
superposition of two orthogonal Jones vectors, say J1 and J2, that
form the expansion basis; thus J = α1J1 + α2J2. If J1 and J2 are
normalized such that (J1, J1)=(J2, J2)=1, the expansion coefficients
are the inner products α1 =(J, J1) and α2 =(J, J2).
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EXAMPLE 6.1-1.

Expansions in Linearly Polarized and Circularly
Polarized Bases. Using the x and y linearly polarized vectors 

 and  as an expansion basis, the expansion coefficients for a

Jones vector of components Ax and Ay with |Ax|2 + |Ay|2 = 1 are,
by definition, α1 = Ax and α2 = Ay. The same polarization state
may be expanded in other bases.

In a basis of linearly polarized vectors at angles 45° and
135°, i.e.,  and J2 = , the expansion
coefficients α1 and α2 are:

Similarly, if the right and left circularly polarized waves 
and  are used as an expansion basis, the coefficients α1

and α2 are:

For example, a linearly polarized wave with a plane of
polarization that makes an angle θ with the x axis (i.e., Ax =
cos θz and Ay = sin θ) is equivalent to a superposition of
right and left circularly polarized waves with coefficients 

 and , respectively. A linearly polarized wave
therefore equals a weighted sum of right and left circularly
polarized waves.
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EXERCISE 6.1-1

Measurement of the Stokes Parameters. Show that the
Stokes parameters defined in (6.1-9) for light with Jones vector
components Ax and Ay are given by

where A45 and A135 are the coefficients of expansion in a basis of
linearly polarized vectors at angles 45° and 135° as in (6.1-12),
and AR and AL are the coefficients of expansion in a basis of the
right and left circularly polarized waves set forth in (6.1-13).
Suggest a method of measuring the Stokes parameters for light
of arbitrary polarization.

Matrix Representation of Polarization Devices

Consider the transmission of a plane wave of arbitrary polarization
through an optical system that maintains the plane-wave nature of
the wave, but alters its polarization, as illustrated schematically in
Fig. 6.1-6. The system is assumed to be linear, so that the principle
of superposition of optical fields is obeyed. Two examples of such
systems are the reflection of light from a planar boundary between
two media, and the transmission of light through a plate with
anisotropic optical properties.
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Figure 6.1-6 An optical system that alters the polarization of a
plane wave.

The complex envelopes of the two electric-field components of the
input (incident) wave, A1x and A1y, and those of the output
(transmitted or reflected) wave, A2x and A2y, are in general related
by the weighted superpositions

where T11, T12, T21, and T22 are constants describing the device.
Equations (6.1-15) are general relations that all linear optical
polarization devices must satisfy.

The linear relations in (6.1-15) may conveniently be written in
matrix notation by defining a 2 × 2 matrix T with elements T11, T12,
T21, and T22 so that

If the input and output waves are described by the Jones vectors J1
and J2, respectively, then (6.1-16) may be written in the compact
matrix form

The matrix T, called the Jones matrix, describes the optical
system, whereas the vectors J1 and J2 describe the input and output
waves.



(6.1-18)

The structure of the Jones matrix T of a given optical system
determines its effect on the polarization state and intensity of the
wave. The following is a compilation of the Jones matrices of some
systems with simple characteristics. Physical devices that have such
characteristics will be discussed subsequently in this chapter.

Linear polarizers.
The system represented by the Jones matrix

Linear Polarizer Along x Direction

transforms a wave of components (A1x, A1y) into a wave of
components (A1x, 0) by eliminating the y component, thereby
yielding a wave polarized along the x direction, as illustrated in Fig.
6.1-7. The system is a linear polarizer with its transmission axis
pointing in the x direction.

Figure 6.1-7 The linear polarizer. The lines in the polarizer
represent the field direction that is permitted to pass.

Wave retarders.
The system represented by the matrix
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Wave-Retarder (Fast Axis Along x Direction)

transforms a wave with field components (A1x, A1y) into another
with components , thereby delaying the y component by
a phase Γ while leaving the x component unchanged. It is therefore
called a wave retarder. The x and y axes are called the fast and
slow axes of the retarder, respectively.

The simple application of matrix algebra permits the results
illustrated in Fig. 6.1-8 to be understood:

Figure 6.1-8 Operations of quarter-wave (π/2) and half-wave (π)
retarders on several particular states of polarization are shown in
(a) and (b), respectively. F and S represent the fast and slow axes of
the retarder, respectively.

When Γ = π/2, the retarder (called a quarter-wave retarder
and described by the Jones matrix ) converts the linearly

polarized wave  into the left circularly polarized wave ,
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and converts the right circularly polarized wave  into the

linearly polarized wave .

When Γ = π, the retarder (called a half-wave retarder and
described by the Jones matrix ) converts the linearly

polarized wave  into the linearly polarized wave , thereby

rotating the plane of polarization by 90°. The half-wave retarder
converts the right circularly polarized wave  into the left

circularly polarized wave .

Polarization rotators.
While a wave retarder can transform a wave with one form of
polarization into another, a polarization rotator always
maintains the linear polarization of a wave but rotates the plane of
polarization by a particular angle. The Jones matrix

Polarization Rotator

represents a device that converts a linearly polarized wave  into

another linearly polarized wave , where , where . It
therefore rotates the plane of polarization of a linearly polarized
wave by an angle θ.

Cascaded Polarization Devices

The action of cascaded optical systems on polarized light may be
conveniently determined by using conventional matrix
multiplication formulas. A system characterized by the Jones matrix
T1 followed by another characterized by T2 are equivalent to a single
system characterized by the product matrix T = T2T1. The matrix of
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the system through which light is first transmitted must stand to
the right in the matrix product since it is the first to affect the input
Jones vector.

EXERCISE 6.1-2

Cascaded Wave Retarders. Show that two cascaded quarter-
wave retarders with parallel fast axes are equivalent to a half-
wave retarder. What is the result if the fast axes are orthogonal?

Coordinate Transformation

The elements of the Jones vectors and Jones matrices are
dependent on the choice of the coordinate system. However, if these
elements are known in one coordinate system, they can be
determined in another coordinate system by using matrix methods.
If J is the Jones vector in the x–y coordinate system, then in a new
coordinate system x′–y′, with the x′ direction making an angle θ
with the x direction, the Jones vector J′ is given by

where R(θ) is the coordinate-transformation matrix

Coordinate Transformation

This can be verified by relating the components of the electric field
in the two coordinate systems.

The Jones matrix T, which represents an optical system, is similarly
transformed into T′, in accordance with the matrix relations
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where R(−θ) is given by (6.1-22) with −θ replacing θ. The matrix
R(−θ) is the inverse of R(θ), so that R(−θ) R(θ) is a unit matrix.
Equation (6.1-23) can be obtained by using the relation J2 = TJ1 and
the transformation J′ = R(θ) J2 = R(θ) TJ1. Since J1 = R(−θ) J′, we
have J′2 = R(θ) TR(−θ) J′1; since J′2 = T′ J′1, (6.1-23) follows.

EXERCISE 6.1-3

Jones Matrix of a Rotated Half-Wave Retarder. Show
that the Jones matrix of a half-wave retarder whose fast axis
makes an angle θ with the x axis is

Half-Wave Retarder at Angle θ

Derive (6.1-25) using (6.1-19), (6.1-22), and (6.1-24).
Demonstrate that if θ = 22.5°, the output waves are proportional
to the sum and difference of the input waves.

Normal Modes

The normal modes of a polarization system are the states of
polarization that are not changed when the wave is transmitted
through the system (see Appendix C). These states have Jones
vectors satisfying



where μ is constant. The normal modes are therefore the
eigenvectors of the Jones matrix T, and the values of μ are the
corresponding eigenvalues. Since the matrix T is of size 2 × 2 there
are only two independent normal modes, TJ1 = μ1J1 and ∗ TJ2 =
μ2J2. If the matrix T is a Hermitian, i.e., if T12 = T*21, the normal
modes are orthogonal: (J1, J2)=0. The normal modes are usually
used as an expansion basis, so that an arbitrary input wave J may be
expanded as a superposition of normal modes: J = α1J1 + α2J2. The
response of the system may then be easily evaluated since TJ =
T(α1J1 + α2J2)= α1TJ1 + α2TJ2 = α1μ1J1 + α2μ2J2 (see Appendix C).

EXERCISE 6.1-4

Normal Modes of Simple Polarization Systems.

a. Show that the normal modes of the linear polarizer are
linearly polarized waves.

b. Show that the normal modes of the wave retarder are
linearly polarized waves.

c. Show that the normal modes of the polarization rotator are
right and left circularly polarized waves.

What are the eigenvalues of the systems described above?

6.2 REFLECTION AND REFRACTION
In this section we examine the reflection and refraction of a
monochromatic plane wave of arbitrary polarization incident at a
planar boundary between two dielectric media. The media are
assumed to be linear, homogeneous, and isotropic with impedances
η1 and η2, and refractive indices n1 and n2. The incident, refracted,
and reflected waves are labeled with the subscripts 1, 2, and 3,
respectively, as illustrated in Fig. 6.2-1.
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As shown in Sec. 2.4A, the wavefronts of these waves are matched at
the boundary if the angles of reflection and incidence are equal, θ3 =
θ1, and if the angles of refraction and incidence satisfy Snell’s law,

To relate the amplitudes and polarizations of the three waves, we
associate with each wave an x–y coordinate system in a plane
normal to the direction of propagation (Fig. 6.2-1). The electric-field
envelopes of these waves are described by the Jones vectors

We proceed to determine the relations between J2 and J1 and
between J3 and J1. These relations are written in the form of
matrices J2 = tJ1 and J3 = rJ1, where t and r are 2 × 2 Jones
matrices describing the transmission and reflection of the wave,
respectively.

The elements of the transmission and reflection matrices may be
determined by imposing the boundary conditions required by
electromagnetic theory, namely the continuity at the boundary of
the tangential components of E and H and the normal components
of 𝒟 and B. The electric field associated with each wave is
orthogonal to the magnetic field; the ratio of their envelopes is the
characteristic impedance, which is η1 for the incident and reflected
waves and η2 for the transmitted wave. The result is a set of
equations that are solved to obtain relations between the
components of the electric fields of the three waves.

The algebra involved is reduced substantially if we observe that the
two normal modes for this system are linearly polarized waves with
polarizations along the x and y directions. This may be proved if we
show that an incident, a reflected, and a refracted wave with their
electric-field vectors pointing in the x direction are self-consistent
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with the boundary conditions, and similarly for three waves linearly
polarized in the y direction. This is indeed the case. The x and y
polarized waves are therefore uncoupled.

Figure 6.2-1 Reflection and refraction at the boundary between
two dielectric media.

The x -polarized mode is called the transverse electric (TE)
polarization or the orthogonal polarization, since the electric
fields are orthogonal to the plane of incidence. The y -polarized
mode is called the transverse magneticw (TM) polarization since
the magnetic field is orthogonal to the plane of incidence, or the
parallel polarization since the electric fields are parallel to the
plane of incidence. The orthogonal and parallel polarizations are
also called the s (for the German senkrecht, meaning
“perpendicular”) and p (for “parallel”) polarizations, respectively.
The y axes in Fig. 6.2-1 are arbitrarily defined such that their
components parallel to the boundary between the dielectrics all
point in the same direction.

The independence of the x and y polarizations implies that the
Jones matrices t and r are diagonal,

so that
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The coefficients tx and ty are the complex amplitude transmittances
for the TE and TM polarizations, respectively; rx and ry are the
analogous complex amplitude reflectances.

Applying the boundary conditions (i.e., equating the tangential
components of the electric fields and the tangential components of
the magnetic fields at both sides of the boundary) in each of the TE
and TM cases, we obtain the following expressions for the complex-
amplitude reflectances and transmittances:

TE Polarization

TM Polarization Reflection & Transmission

The characteristic impedance  is complex if ε and/ or μ are
complex, as is the case for lossy or conductive media. For nonlossy,
nonmagnetic, dielectric media,  is real, where 
and n is the refractive index. In this case, the reflection and
transmission coefficients in (6.2-6) and (6.2-7) yield the Fresnel
equations:

TE Polarization
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TM Polarization Fresnel Equations

Given n1, n2, and θ1, the reflection coefficients can be determined
from the Fresnel equations by first determining θ2 using Snell’s law,
(6.2-1), from which

Since the quantities under the square-root signs in (6.2-10) can be
negative, the reflection and transmission coefficients are in general
complex. The magnitudes |rx| and |ry|, and the phase shifts φx =
arg{rx} and φy = arg{ry}, are plotted in Figs. 6.2-2 to 6.2-5 for the
two polarizations, as functions of the angle of incidence θ1. Plots are
provided for external reflection (n1 <n2) as well as for internal
reflection (n1 > n2).

TE Polarization

The dependence of the reflection coefficient rx on θ1 for the TE-
polarized wave is given by (6.2-8):

External reflection (n1 < n2).

The reflection coefficient rx is always real and negative,
corresponding to a phase shift φx = π. The magnitude |rx| =(n2
−n1)/(n1 + n2) at θ1 = 0 (normal incidence) and increases to unity at
θ1 = 90° (grazing incidence), as shown in Fig. 6.2-2.
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Figure 6.2-2 Magnitude and phase of the re-flection coefficient as
a function of the angle of incidence for external reflection of the TE-
polarized wave (n2/n1=1.5).

Internal reflection (n1 > n2).

For small θ1 the reflection coefficient is real and positive. Its
magnitude is (n1 − n2)/(n1 + n2) when θ1 = 0°, and increases
gradually to a value of unity, which is attained when θ1 equals the
critical angle θc = sin−1(n2/n1). For θ1 >θc, the magnitude of rx
remains at unity, which corresponds to total internal reflection. This
may be shown by using (6.2-10) to write2 

, and substituting into
(6.2-8). Total internal reflection is accompanied by a phase shift φx
= arg{rx} given by

The phase shift φx increases from 0 at θ1 = θc to π at θ1 = 90°, as
illustrated in Fig. 6.2-3. This phase plays an important role in
dielectric waveguides (see Sec. 9.2). An evanescent wave is created
in the vicinity of the boundary when total internal reflection occurs.



(6.2-12)

Figure 6.2-3 Magnitude and phase of the reflection coefficient as a
function of the angle of incidence for internal reflection of the TE-
polarized wave (n1/n2=1.5).

TM Polarization

Similarly, the dependence of the reflection coefficient ry on θ1 for
the TM-polarized wave is provided by (6.2-9):

External reflection (n1 < n2).

The reflection coefficient ry is always real, as shown in Fig. 6.2-4. It
assumes a negative value of (n1 − n2)/(n1 + n2) at θ1 = 0 (normal
incidence). Its magnitude then decreases until it vanishes when n1
sec θ1 = n2 sec θ2, at an angle θ1 = θB, known as the Brewster
angle:

Brewster Angle

(see Prob. 6.2-4 for other properties of the Brewster angle). For θ1 >
θB, ry reverses sign (φy goes from π to 0) and its magnitude
gradually increases until it approaches unity at θ1 = 90°. The
absence of reflection of the TM wave at the Brewster angle is useful
for making polarizers (see Sec. 6.6).
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Figure 6.2-4 Magnitude and phase of the reflection coefficient as a
function of the angle of incidence for external reflection of the TM-
polarized wave (n2/n1 = 1.5).

Internal reflection (n1 > n2).

At θ1 = 0°, the reflection coefficient ry is positive and has magnitude
(n1 − n2)/(n1 + n2), as illustrated in Fig. 6.2-5. As θ1 increases, the
magnitude decreases until it vanishes at the Brewster angle θB =
tan−1(n2/n1). As θ1 increases beyond θB, ry becomes negative and its
magnitude increases until it reaches unity at the critical angle θc.
For θ1 > θc the wave undergoes total internal reflection
accompanied by a phase shift φy = arg{ry} given by

TM-Reflection Phase Shift

At normal incidence, evidently, the reflection coefficient is r =(n1
−n2)/(n1 + n2), whether the reflection is TE or TM, or external or
internal.



Figure 6.2-5 Magnitude and phase of the reflection coefficient as a
function of the angle of incidence for internal reflection of the TM-
polarized wave (n1/n2 = 1.5).

EXERCISE 6.2-1

Brewster Windows. At what angle is a TM-polarized beam of
light transmitted through a glass plate of refractive index n = 1.5
placed in air (n = 1) without suffering reflection losses at either
surface? Such plates, known as Brewster windows (Fig. 6.2-6),
are used in lasers, as described in Sec. 16.2D.

Figure 6.2-6 The Brewster window transmits TM-polarized
light with no reflection loss.

Power Reflectance and Transmittance

The reflection and transmission coefficients r and t represent ratios
of complex amplitudes. The power reflectance ℛ and power
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transmittance 𝒯 are defined as the ratios of power flow (along a
direction normal to the boundary) of the reflected and transmitted
waves to that of the incident wave. Because the reflected and
incident waves propagate in the same medium and make the same
angle with the normal to the surface, it follows that

For both TE and TM polarizations, and for both external and
internal reflection, the power reflectance at normal incidence is
therefore

Power Reflectance at Normal Incidence

At the boundary between glass (n = 1.5) and air (n = 1), for example,
ℛ = 0.04, so that 4% of the light is reflected at normal incidence. At
the boundary between GaAs (n = 3.6) and air (n = 1), r ≈ 0.32, so
that 32% of the light is reflected at normal incidence. However, at
oblique angles the reflectance can be much greater or much smaller
than 32%, as illustrated in Fig. 6.2-7.

Figure 6.2-7 Power reflectance of TE-and TM-polarization plane
waves at the boundary between air (n = 1) and GaAs (n = 3.6), as a
function of the angle of incidence θ.
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The power transmittance 𝒯 is determined by invoking the
conservation of power, so that in the absence of absorption loss the
transmittance is simply

It is important to note, however, that 𝒯 is generally not equal to |t|2

since the power travels at different angles and with different
impedances in the two media. For a wave traveling at an angle θ in a
medium of refractive index n, the power flow in the direction
normal to the boundary is (|ε|2/2η) cos θ =(|ε|2/2ηo) n cos θ. It
follows that

Reflectance from a plate.
The power reflectance at normal incidence from a plate with two
surfaces is described by ℛ(1 + 𝒯2) since the power reflected from
the far surface involves a double transmission through the near
surface. For a glass plate in air, the overall reflectance is ℛ(1 +
𝒯2)=0.04[1 + (0.96)2] ≈ 0.077, so that about 7.7% of the incident
light power is reflected. However, this calculation does not include
interference effects, which are washed out when the light is
incoherent (see Sec.12.2), nor does it account for multiple
reflections inside the plate. Optical transmission and reflectance
from multiple boundaries in layered media are described in detail in
Sec. 7.1.

6.3 OPTICS OF ANISOTROPIC MEDIA
A dielectric medium is said to be anisotropic if its macroscopic
optical properties depend on direction. The macroscopic properties
of a material are, of course, ultimately governed by its microscopic
properties: the shape and orientation of the individual molecules



and the organization of their centers in space. Optical materials
have different kinds of positional and orientational types of order,
which may be described as follows (see Fig. 6.3-1):

Figure 6.3-1 Positional and orientational order in different types of
materials.

If the molecules are located at totally random positions in
space, and are themselves isotropic or oriented along random
directions, the medium is isotropic. Gases, liquids, and
amorphous solids follow this prescription.

If the structure takes the form of disjointed crystalline grains
that are randomly oriented with respect to each other, the
material is said to be polycrystalline. The individual grains are,
in general, anisotropic, but their averaged macroscopic behavior
is isotropic.

If the molecules are organized in space according to a regular
periodic pattern and they are oriented in the same direction, as
in crystals, the medium is, in general, anisotropic.

If the molecules are anisotropic and their orientations are not
totally random, the medium is anisotropic, even if their
positions are totally random. This is the case for liquid crystals,
which have orientational order but lack complete positional
order.

A. Refractive Indices
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Permittivity Tensor

In a linear anisotropic dielectric medium (a crystal, for example),
each component of the electric flux density D is a linear
combination of the three components of the electric field,

The indices i, j = 1, 2, 3 refer to the x, y, and z components,
respectively, as described in Sec. 5.2B. The dielectric properties of
the medium are therefore characterized by a 3 × 3 array of nine
coefficients, {εij}, that form the electric permittivity tensor ε,
which is a tensor of second rank. The material equation (6.3-1) is
usually written in the symbolic form

For most dielectric media, the electric permittivity tensor is
symmetric, i.e., εij = εji. This means that the relation between the
vectors D and E is reciprocal, i.e., their ratio remains the same if
their directions are exchanged. This symmetry is obeyed for
dielectric nonmagnetic materials that do not exhibit optical activity,
and in the absence of an external magnetic field (Sec. 6.4). With this
symmetry, the medium is characterized by only six independent
numbers in an arbitrary coordinate system. For crystals of certain
symmetries, even fewer coefficients suffice since some vanish and
some are related.

Geometrical Representation of Vectors and Tensors

A vector, such as the electric field E, for example, describes a
physical variable with magnitude and direction. It is represented
geometrically by an arrow pointing in that particular direction,
whose length is proportional to the magnitude of the vector [Fig.
6.3-2(a)]. A vector, which is a tensor of first rank, is represented
numerically by three numbers: its projections on the three axes of a
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particular coordinate system. Though these components depend on
the choice of the coordinate system, the magnitude and direction of
the vector in physical space are independent of the choice of the
coordinate system. A scalar, which is described by a single number,
is a tensor of zero rank.

Figure 6.3-2 Geometrical representation of: (a) a vector; (b) a
symmetric second-rank tensor.

A second-rank tensor is a rule that relates two vectors. In a given
coordinate system, it is represented numerically by nine numbers.
Changing the coordinate system yields a different set of nine
numbers, but the physical nature of the rule is unchanged. A useful
geometrical representation [Fig. 6.3-2(b)] of a symmetric second-
rank tensor (the permittivity tensor ε, for example), is a quadratic
surface (an ellipsoid) defined by

which is known as the quadric representation. This surface is
invariant to the choice of the coordinate system; if the coordinate
system is rotated, both xi and εij are altered but the ellipsoid
remains intact in physical space. The ellipsoid has six degrees of
freedom and carries all information about the symmetric second-
rank tensor. In the principal coordinate system, εij is diagonal and
the ellipsoid assumes a particularly simple form:
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Its principal axes are those of the tensor, and its axes have half-
lengths . and .

Principal Axes and Principal Refractive Indices

The elements of the permittivity tensor depend on how the
coordinate system is chosen relative to the crystal structure.
However, a coordinate system can always be found for which the
off-diagonal elements of εij vanish, so that

where , and . According to (6.3-1), E and D are
parallel along these particular directions so that if, for example, E
points in the x direction, then so too must D. This coordinate
system defines the principal axes and principal planes of the
crystal. Throughout the remainder of this chapter, the coordinate
system x, y, z, which is equivalently denoted x1, x2, x3, is assumed to
lie along the principal axes of the crystal. This choice simplifies all
analyses without loss of generality. The permittivities ϵ1, ϵ2, and ϵ3
correspond to refractive indices

respectively, where εo is the permittivity of free space; these are
known as the principal refractive indices.

Biaxial, Uniaxial, and Isotropic Crystals

Crystals in which the three principal refractive indices are different
are termed biaxial. For crystals with certain symmetries, namely a
single axis of threefold, fourfold, or sixfold symmetry, two of the
refractive indices are equal (n1 = n2) and the crystal is called
uniaxial. In this case, the indices are usually denoted n1 = n2 = no
and n3 = ne, which are known as the ordinary and extraordinary
indices, respectively, for reasons that will become clear shortly. The
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crystal is said to be positive uniaxial if ne > no, and negative
uniaxial if ne <no. The z axis of a uniaxial crystal is called the
optic axis. In certain crystals with even greater symmetry (those
with cubic unit cells, for example), all three indices are equal and
the medium is optically isotropic.

Impermeability Tensor

The relation D = ϵE can be inverted and written in the form E =
ϵ−1D, where ϵ−1 is the inverse of the tensor ε. It is also useful to
define the electric impermeability tensor η = εoϵ−1 (not to be
confused with the impedance of the medium η), so that ϵoE = ηD.
Since ϵ is symmetric, so too is η. Both tensors, ϵ and η, share the
same principal axes. In the principal coordinate system, η is
diagonal with principal values , and .
Either tensor, ϵ or η, fully describes the optical properties of the
crystal.

Index Ellipsoid

The index ellipsoid (also called the optical indicatrixz) is the
quadric representation of the electric impermeability tensor 
:

If the principal axes were to be used as the coordinate system, we
would obtain

Index Ellipsoid

with principal values , and , and axes of half-lengths n1,
n2, and n3.



The optical properties of the crystal (the directions of the principal
axes and the values of the principal refractive indices) are therefore
completely described by the index ellipsoid (Fig. 6.3-3). For a
uniaxial crystal, the index ellipsoid reduces to an ellipsoid of
revolution; for an isotropic medium it becomes a sphere.

Figure 6.3-3 The index ellipsoid. The coordinates (x1, x2, x3) are
the principal axes while (n1, n2, n3) are the principal refractive
indices of the crystal.

B. Propagation Along a Principal Axis
The rules that govern the propagation of light in crystals under
general conditions are rather complex. However, they become
relatively simple if the light is a plane wave traveling along one of
the principal axes of the crystal. We begin with this case.

Normal Modes

Let x–y–z be a coordinate system that coincides with the principal
axes of a crystal. A plane wave traveling in the z direction and
linearly polarized along the x direction [Fig. 6.3-4(a)] travels with
phase velocity co/n1 (wavenumber k = n1ko) without changing its
polarization. The reason for this is that the electric field has only
one component, E1 pointed along the x direction, so that D is also in
the x direction with ; the wave equation derived from
Maxwell’s equations therefore provides a velocity of light given by 

. Similarly, a plane wave traveling in the z direction



and linearly polarized along the y direction [Fig. 6.3-4(b)] travels
with phase velocity co/n2, thereby experiencing a refractive index n2.
Thus, the normal modes for propagation in the z direction are
linearly polarized waves in the x and y directions. These waves are
said to be normal modes because their velocities and polarizations
are maintained as they propagate (see Appendix C). Other cases in
which the wave propagates along one of the principal axes and is
linearly polarized along another are treated similarly [Fig. 6.3-4(c)].

Figure 6.3-4 A wave traveling along a principal axis and polarized
along another principal axis has phase velocity co/n1, co/n2, or co/n3,
when the electric-field vector points in the x, y, or z directions,
respectively. (a) k = n1ko;(b) k = n2ko;(c) k = n3ko.

Polarization Along an Arbitrary Direction

We now consider a wave traveling along one principal axis (the z
axis, for example) that is linearly polarized along an arbitrary
direction in the x–y plane. This case is addressed by analyzing the
wave as a sum of the normal modes, namely the linearly polarized
waves in the x and y directions. These two components travel with
different phase velocities, co/n1 and co/n2, respectively. They
therefore undergo different phase shifts, φx = n1kod and φy = n2kod,
respectively, after propagating a distance d. Their phase retardation
is thus φ = φy − φx =(n2 − n1)kod. Recombination of the two
components yields an elliptically polarized wave, as explained in
Sec. 6.1 and illustrated in Fig. 6.3-5. Such a crystal can therefore
serve as a wave retarder, a device in which two orthogonal



polarizations travel at different phase velocities so that one is
retarded with respect to the other (see Fig. 6.1-8).

Figure 6.3-5 A linearly polarized wave at 45° in the z = 0 plane (a)
is analyzed as a superposition of two linearly polarized components
in the x and y directions (normal modes), which travel at velocities
co/n1 and co/n2 [(b) and (c), respectively]. As a result of phase
retardation, the wave is converted from plane polarization to
elliptical polarization (a). It is therefore clear that the initial linearly
polarized wave is not a normal mode of the system.

C. Propagation in an Arbitrary Direction
We now consider the general case of a plane wave traveling in an
anisotropic crystal in an arbitrary direction defined by the unit
vector û. We demonstrate that the two normal modes are linearly
polarized waves. The refractive indices na and nb, and the directions
of polarization of these modes, may be determined by use of a
procedure based on the index ellipsoid:



Index-Ellipsoid Construction for Determining
Normal Modes
Figure 6.3-6 illustrates a geometrical construction for
determining the polarizations and refractive indices na and nb of
the normal modes of a wave traveling in the direction of the unit
vector û in an anisotropic material characterized by the index
ellipsoid:

Figure 6.3-6 Determination of the normal modes from the
index ellipsoid.

Draw a plane passing through the origin of the index
ellipsoid, normal to û. The intersection of the plane with
the ellipsoid is an ellipse called the index ellipse.

The half-lengths of the major and minor axes of the index
ellipse are the refractive indices na and nb of the two normal
modes.

The directions of the major and minor axes of the index
ellipse are the directions of the vectors Da and Db for the
normal modes. These directions are orthogonal.
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The vectors Ea and Eb may be determined from Da and Db
with the help of (6.3-5).

 Proof of the Index-Ellipsoid Construction for
Determining the Normal Modes. To determine the normal
modes (see Sec. 6.1B) for a plane wave traveling in the direction u,
we cast Maxwell’s equations (5.3-2)–(5.3-5), and the material
equation D = ϵE given in (6.3-2), as an eigenvalue problem. Since all
fields are assumed to vary with the position r as exp(−jk · r), where
k = kû, Maxwell’s equations (5.4-3) and (5.4-4) reduce to

Substituting (6.3-10) into (6.3-9) leads to

Using E = ϵ−1D, we obtain

This is an eigenvalue equation that D must satisfy. Working with 𝒟
is convenient since we know that it lies in a plane normal to the
wave direction û.

We now simplify (6.3-12) by using η = εoϵ−1, k = kû, n = k/ko, and
k2

o = ω2μoϵo to obtain

The operation −û × (û × ηD) may be interpreted as a projection of
the vector ηD onto a plane normal to û. We may therefore rewrite
(6.3-13) in the form
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where Pu is an operator representing projection. Equation (6.3-14)
is an eigenvalue equation for the operator Puη , with eigenvalue
1/n2 and eigenvector D. The two eigenvalues,  and , and two
corresponding eigenvectors, Da and Db, which are orthogonal,
represent the two normal modes.

The eigenvalue problem (6.3-14) has a simple geometrical
interpretation. The tensor η is represented geometrically by its
quadric representation, the index ellipsoid. The operator Puη
represents projection onto a plane normal to û. Solving the
eigenvalue problem in (6.3-14) is thus equivalent to finding the
principal axes of the ellipse formed by the intersection of the plane
normal to û with the index ellipsoid. This is precisely the
construction set forth in Fig. 6.3-6 for determining the normal
modes. 

Special Case: Uniaxial Crystals

In uniaxial crystals (n1 = n2 = no and n3 = ne) the index ellipsoid of
Fig. 6.3-6 is an ellipsoid of revolution. For a wave whose direction of
travel û forms an angle θ with the optic axis, the index ellipse has
half-lengths no and n(θ), where n(θ) is determined from the index-
ellipsoid equation by making the substitutions x1 = n(θ) cos θ, x2 =
0, and x3 = −n(θ) sin θ. The result is

Refractive Index of Extraordinary Wave

so that the normal modes have refractive indices nb = no and na =
n(θ). The first mode, called the ordinary wave, has a refractive
index no regardless of θ. In accordance with the ellipse shown in Fig.



6.3-7, the second mode, called the extraordinary wave, has a
refractive index n(θ) that varies from no when θ = 0°, to ne when θ =
90° . The vector D of the ordinary wave is normal to the plane
defined by the optic axis (z axis) and the direction of wave
propagation k, and the vectors E and D are parallel. The
extraordinary wave, on the other hand, has a vector D that is normal
to k and lies in the k–z plane, and E is not parallel to D, as shown in
Fig. 6.3-7.

Figure 6.3-7 Variation of the refractive index n(θ) of the
extraordinary wave with θ (the angle between the direction of
propagation and the optic axis) in a uniaxial crystal, and directions
of the electromagnetic fields of the ordinary (o) and extraordinary
(e) waves. The circle with a dot at the center located at the origin
signifies that the direction of the vector is out of the plane of the
paper, toward the reader.

D. Dispersion Relation, Rays, Wavefronts, and Energy
Transport
We now examine other properties of waves in anisotropic media
including the dispersion relation (the relation between ω and k).

The optical wave is characterized by the wavevector k, the field
vectors E, D, H, and B, and the complex Poynting vector 

 (direction of power flow).

These vectors are related by (6.3-9) and (6.3-10). It follows from
(6.3-9) that 𝒟 is normal to both k and H. Equation (6.3-10)
similarly indicates that H is normal to both k and E. These
geometrical conditions are illustrated in Fig. 6.3-8, which also
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shows the complex Poynting vector S, which is orthogonal to both E
and H. Thus, D, E, k, and S lie in one plane to which H and B are
normal. In this plane D ⊥ k and S ⊥ E; but D is not necessarily
parallel to E, and S is not necessarily parallel to k.

Figure 6.3-8 The vectors D, E, k, and S all lie in a single plane, to
which H and B are normal. Also D ⊥ k and E ⊥ S. The wavefronts
are orthogonal to k.

Dispersion Relation: The k Surface

Using the relation D = ϵE in (6.3-11), we obtain

This vector equation, which E must satisfy, translates to three linear
homogeneous equations for the components E1, E2, and E3 along
the principal axes, written in the

where (k1, k2, k3) are the components of k, ko = ω/co, and (n1, n2,
n3) are the principal refractive indices given by (6.3-6). A nontrivial
solution to these equations obtains when the determinant of the
matrix is set to zero, which yields
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Dispersion Relation k Surface

where  and . This relation is known as the
dispersion relation. It is the equation of a surface ω = ω(k1, k2,
k3) in the k1, k2, k3 space, known as the normal surface or the k
surface.

The k surface is a centrosymmetric surface comprising two sheets,
each corresponding to a solution (a normal mode). It can be shown
that the k surface intersects each of the principal planes in an
ellipse and a circle, as illustrated in Fig. 6.3-9. For biaxial crystals
(n1 < n2 < n3), the two sheets meet at four points, defining two optic
axes. In the uniaxial case (n1 = n2 = no, n3 = ne), the two sheets
become a sphere and an ellipsoid of revolution that meet at only
two points, thereby defining a single optic axis (the z axis). In the
isotropic case (n1 = n2 = n3 = n), the two sheets degenerate into a
single sphere.

Figure 6.3-9 One octant of the k surface for (a) a biaxial crystal
(n1 < n2 < n3);(b) a uniaxial crystal (n1 = n2 = no, n3 = nez);and (c)
an isotropic crystal (n1 = n2 = n3 = n).
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Determining Properties of the Normal Modes from the k Surface

Much like the index ellipsoid, the k surface can be used to
determine the normal modes for waves propagating in any
prescribed direction, but it also provides physical insight into a
collection of other properties of these modes, as considered below:

Refractive indices.
The intersection of the prescribed direction û =(u1,u2,u3) of the
wave with the k surface is a point at a distance from the origin equal
to the wavenumber k = nω/co, from which the refractive index n
and the corresponding phase velocity c = ω/k may be determined. In
fact, associated with each direction are two intersections
corresponding to two wavenumbers and two refractive indices for
the two normal modes. Substituting (k1, k2, k3)=(u1k, u2k, u3k) into
(6.3-18) yields

This is a fourth-order equation in k (or second order in k2). It has
four solutions, ±ka and ±kb, of which only the two positive values
are meaningful, since the negative values represent a reversed
direction of propagation. The problem is therefore solved: the
wavenumbers of the normal modes are ka and kb and the refractive
indices are na = ka/ko and nb = kb/ko.

Polarization.
To find the directions of polarization of the two normal modes, we
determine the components (k1, k2, k3)=(ku1, ku2, ku3) and the
elements of the matrix in (6.3-17) for each of the two wavenumbers
k = ka and k = kb. We then solve two of the three equations in (6.3-
17) to establish the ratios E1/E3 and E2/E3, from which we find the
directions of the corresponding fields Ea and Eb. Note that Ea and



Eb for the two modes are not necessarily orthogonal, whereas Da
and Db are.

Group velocity.
The group velocity may also be determined from the k surface. In
analogy with the group velocity v = dω/dk that governs the
propagation of light pulses (wavepackets), as discussed in Sec. 5.7,
the group velocity for rays (localized beams or spatial wavepackets)
is the vector v = ∇kω(k), the gradient of ω with respect to k. Since
the k surface is the surface ω(k1, k2, k3)= constant, v must be
normal to the k surface. Thus, rays travel along directions normal to
the k surface. The wavefronts are perpendicular to the wavevector k
since the phase of the wave is k · r. The wavefront normals are
therefore parallel to the wavevector k.

Energy transport.
The complex Poynting vector  is also normal to the k
surface. This can be demonstrated by choosing a value for ω and
considering two vectors k and k + Δk that lie on the k surface.
Taking the differentials of (6.3-9) and (6.3-10), and using certain
vector identities, shows that Δk · S = 0, so that S is normal to the k
surface. Consequently, S is also parallel to the group velocity vector
v.

Optical rays.
If the k surface is a sphere, as it is for isotropic media, the vectors
k, S, and v are all parallel, indicating that rays are parallel to the
wavevector k and energy flows in the same direction, as illustrated
in Fig. 6.3-10(a). On the other hand, if the k surface is not normal to
the wavevector k, as illustrated in Fig. 6.3-10(b), the rays and the
direction of energy transport are not orthogonal to the wavefronts.
Rays then have the “extraordinary” property of traveling at an
oblique angle to their wavefronts [Fig. 6.3-10(b)].
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Figure 6.3-10 Rays and wavefronts for (a) a spherical k surface,
and (b) a nonspherical k surface.

Special Case: Uniaxial Crystals

In uniaxial crystals (n1 = n2 = no and n3 = ne), the equation of the k
surface ω = ω(k1, k2, k3) simplifies to

This equation has two solutions: a sphere, corresponding to the
leftmost factor vanishing:

and an ellipsoid of revolution, corresponding to the rightmost factor
vanishing:

Because of symmetry about the z axis (optic axis), there is no loss of
generality in assuming that the vector k lies in the y–z plane. Its
direction is then characterized by the angle θ it makes with the optic
axis. It is thus convenient to draw the k-surfaces only in the y–z
plane, as a circle and an ellipse, as shown in Fig. 6.3-11.



Figure 6.3-11 Intersection of the k surfaces with the y–z plane for
a positive uniaxial crystal (ne > no).

Given the direction û of the vector k, the wavenumber k is
determined by finding the intersection with the k surfaces. The two
solutions define the two normal modes, the ordinary and
extraordinary waves. The ordinary wave has wavenumber k = noko
regardless of the direction of û, whereas the extraordinary wave has
wavenumber n(θ)ko, where n(θ) is given by (6.3-15), thereby
confirming earlier results obtained from the index-ellipsoid
geometrical construction. The directions of the rays, wave-fronts,
energy flow, and field vectors E and D for the ordinary and
extraordinary waves in a uniaxial crystal are illustrated in Fig. 6.3-
12.



Figure 6.3-12 The normal modes for a plane wave traveling in a
direction k that makes an angle θ with the optic axis z of a uniaxial
crystal are: (a) An ordinary wave of refractive index no polarized in a
direction normal to the k–z plane. (b) An extraordinary wave of
refractive index n(θ) [given by (6.3-15)] polarized in the k–z plane
along a direction tangential to the ellipse (the k surface) at the point
of its intersection with k. This wave is “extraordinary” in the
following ways: D is not parallel to E but both lie in the k–z plane,
and S is not parallel to k so that power does not flow along the
direction of k; the rays are therefore not normal to the wavefronts
so that the wave travels “sideways.”

E. Double Refraction

Refraction of Plane Waves

We now examine the refraction of a plane wave at the boundary
between an isotropic medium (say air, n = 1) and an anisotropic
medium (a crystal). The key principle that governs the refraction of
waves for this configuration is that the wavefronts of the incident
and refracted waves must be matched at the boundary. Because the
anisotropic medium supports two modes with distinctly different
phase velocities, and therefore different indices of refraction, an
incident wave gives rise to two refracted waves with different
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directions and different polarizations. The effect is known as
double refraction or birefringence.

The phase-matching condition requires that Snell’s law be obeyed,
i.e.,

where θ1 and θ are the angles of incidence and refraction,
respectively. In an anisotropic medium, however, the wavenumber k
= n(θ)ko is itself a function of θ, so that

where θa is the angle between the optic axis and the normal to the
surface, so that θa +θ is the angle the refracted ray makes with the
optic axis. Equation (6.3-24) is a modified version of Snell’s law. To
solve (6.3-23), we draw the intersection of the k surface with the
plane of incidence and search for an angle θ for which (6.3-23) is
satisfied. Two solutions, corresponding to the two normal modes,
are expected. The polarization state of the incident light governs the
distribution of energy among the two refracted waves.

Take, for example, a uniaxial crystal and a plane of incidence
parallel to the optic axis. The k surfaces intersect the plane of
incidence in a circle and an ellipse (Fig. 6.3-13). The two refracted
waves that satisfy the phase-matching condition are determined by
satisfying (6.3-24):

An ordinary wave of orthogonal polarization (TE) at an angle θ
= θo, for which

An extraordinary wave of parallel polarization (TM) at an angle
θ = θe, for which



(6.3-26)where n(θ) is given by (6.3-15).

If the incident wave carries the two polarizations, the two refracted
waves will emerge, as shown in Fig. 6.3-13.

Figure 6.3-13 Determination of the angles of refraction by
matching projections of the k vectors in air and in a uniaxial crystal.

Refraction of Rays

The analysis immediately above dealt with the refraction of plane
waves. The refraction of rays is different in an anisotropic medium,
since rays do not necessarily travel in directions normal to the
wavefronts. In air, before entering the crystal, the wavefronts are
normal to the rays. The refracted wave must have a wavevector that
satisfies the phase-matching condition, so that Snell’s law (6.3-24)
is applicable, with the angle of refraction θ determining the
direction of k. However, since the direction of k is not the direction
of the ray, Snell’s law is not applicable to rays in anisotropic media.



Figure 6.3-14 Double refraction at normal incidence.

An example that dramatizes the deviation from Snell’s law is that of
normal incidence into a uniaxial crystal whose optic axis is neither
parallel nor perpendicular to the crystal boundary. The incident
wave has a k vector normal to the boundary. To ensure phase
matching, the refracted waves must also have wavevectors in the
same direction. Intersections with the k surface yield two points
corresponding to two waves. The ordinary ray is parallel to k. But
the extraordinary ray points in the direction of the normal to the k
surface, at an angle θs with the normal to the crystal boundary, as
illustrated in Fig. 6.3-14. Thus, normal incidence creates oblique
refraction. The principle of phase matching is maintained, however:
wavefronts of both refracted rays are parallel to the crystal
boundary and to the wavefront of the incident ray.

When light rays are transmitted through a plate of anisotropic
material as described above, the two rays refracted at the first
surface refract again at the second surface, creating two laterally
separated rays with orthogonal polarizations, as illustrated in Fig.
6.3-15.
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Figure 6.3-15 Double refraction through an anisotropic plate. The
plate serves as a polarizing beamsplitter.

6.4 OPTICAL ACTIVITY AND MAGNETO-
OPTICS
A. Optical Activity
Certain materials act as natural polarization rotators, a property
known as optical activity. Their normal modes are waves that are
circularly, rather than linearly polarized; waves with right-and left-
circular polarizations travel at different phase velocities.

We demonstrate below that an optically active medium with right-
and left-circularpolarization phase velocities co/n+ and co/n− acts as
a polarization rotator with an angle of rotation π(n− − n+)d/λo that
is proportional to the thickness of the medium d. The rotatory
power (rotation angle per unit length) of the optically active
medium is therefore

Rotatory Power

The direction in which the polarization plane rotates is the same as
that of the circularly polarized component with the greater phase
velocity (smaller refractive index). If n+ < n−, ρ is positive and the
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rotation is in the same direction as the electric-field vector of the
right circularly polarized wave [clockwise when viewed from the
direction toward which the wave is approaching, as illustrated in
Fig. 6.4-1(a)]. Such materials are said to be dextrorotatory,
whereas those for which n+ > n− are termed levorotatory.

 Derivation of the Rotatory Power. Equation (6.4-1) may be
derived by decomposing the incident linearly polarized wave into a
sum of right and left circularly polarized components of equal
amplitudes (see Example 6.1-1),

where θ is the initial angle of the plane of polarization. After
propagating a distance d through the medium, the phase shifts
encountered by the right and left circularly polarized waves are φ+ =
2πn+d/λo and φ− = 2πn−d/λo, respectively, resulting in a Jones
vector

where  and . This Jones vector
represents a linearly polarized wave with the plane of polarization
rotated by an angle φ/2 = π(n− − n+)d/λo, as provided in (6.4-1).

Optical activity occurs in materials with an intrinsically helical
structure. Examples include selenium, tellurium, tellurium oxide
(TeO2), quartz (α-SiO2), and cinnabar (HgS). Optically active liquids
consist of so-called chiral molecules, which come in distinct left-and
right-handed mirror-image forms. Many organic compounds, such
as amino acids and sugars, exhibit optical activity. Almost all amino
acids are levorotatory, whereas common sugars come in both forms:
dextrose (d-glucose) and levulose (fructose) are dextrorotatory and
levorotatory, respectively, as their names imply. The rotatory power
and sense of rotation for solutions of such substances are therefore



sensitive to both the concentration and structure of the solute. A
saccharimeter is used to determine the optical activity of sugar
solutions, from which the sugar concentration is calculated.

Figure 6.4-1 (a) The rotation of the plane of polarization by an
optically active medium results from the difference in the velocities
for the two circular polarizations. In this illustration, the right
circularly polarized wave (R) is faster than the left circularly
polarized wave (L), i.e., n+ < n−, so that ρ is positive and the
material is dextrorotatory. (b) If the wave in (a) is reflected after
traversing the medium, the plane of polarization rotates in the
opposite direction so that the wave retraces itself.

Material Equations

A time-varying magnetic flux density B applied to an optically active
structure induces a circulating current, by virtue of its helical
character, that sets up an electric dipole moment (and hence a
polarization) proportional to jωB = −∇ × E. The optically active
medium is therefore spatially dispersive; i.e., the relation between
D(r) and E(r) is not local. D(r) at position r is determined not only
by E(r), but also by E(r′) at points r′ in the immediate vicinity of r,
since it is dependent on the spatial derivatives contained in ∇ ×
E(r). For a plane wave, we have E(r) = E exp(−jk · r) and ∇ × E =
−jk × E, so that the electric permittivity tensor is dependent on the
wavevector k. Spatial dispersiveness is analogous to temporal
dispersiveness, which has its origin in the noninstantaneous
response of the medium (see Sec. 5.2). While the permittivity of a
medium exhibiting temporal dispersion depends on the frequency
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ω, that of a medium exhibiting spatial dispersion depends on the
wavevector k.

An optically active medium is described by the k-dependent material
equation

where ξ is a pseudoscalar whose sign depends on the handedness of
the coordinate system. This relation is a first-order approximation
of the k dependence of the permittivity tensor, under appropriate
symmetry conditions.3 The first term represents the response of an
isotropic dielectric medium whereas the second term accounts for
the optical activity, as will be shown subsequently. This D–E
relation is often written in the form

where G = ξk is a pseudovector known as the gyration vector. In
such media the vector D is clearly not parallel to E since the vector
G × E in (6.4-5) is perpendicular to E.

Normal Modes of the Optically Active Medium

We proceed to show that the two normal modes of the medium
described by (6.4-5) are circularly polarized waves, and we
determine the velocities co/n+ and co/n− in terms of the constant G
= ξk.

We assume that the wave propagates in the z direction, so that k =
(0, 0, k) and thus G = (0, 0, G). Equation (6.4-5) may then be
written in matrix form as
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where n = ε/εo. The diagonal elements in (6.4-6) correspond to
propagation in an isotropic medium with refractive index n, whereas
the off-diagonal elements, proportional to G, represent the optical
activity.

To prove that the normal modes are circularly polarized, consider
the two circularly polarized waves with electric-field vectors E = (E0,
±jE0, 0). The + and − signs correspond to right and left circularly
polarized waves, respectively. Substitution in (6.4-6) yields D = (D0,
± jD0, 0), where D0 = εo(n2 ± G)E0. It follows that , where

Hence, for either of the two circularly polarized waves the vector D
is parallel to the vector E. Equation (6.3-11) is satisfied if the
wavenumber k = n±ko. Thus, the right and left circularly polarized
waves propagate without changing their state of polarization, with
refractive indices n+ and n−, respectively. They are therefore the
normal modes for this medium.

EXERCISE 6.4-1

Rotatory Power of an Optically Active Medium. Show
that if G ≪ n, the rotatory power of an optically active medium
(rotation of the polarization plane per unit length) is
approximately given by

The rotatory power is strongly dependent on the wavelength. Since
G is proportional to k, as indicated by (6.4-5), it is inversely
proportional to the wavelength λo. Thus, the rotatory power in (6.4-
8) is inversely proportional to . Moreover, the refractive index n is
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itself wavelength dependent. By way of example, the rotatory power
ρ of quartz is ≈ 31 deg/mm at λo = 500 nm and ≈ 22 deg/mm at λo =
600 nm; for silver thiogallate (AgGaS2), ρ is ≈ 700 deg/mm at 490
nm and ≈ 500 deg/mm at 500 nm.

B. Magneto-Optics: The Faraday Effect
Many materials act as polarization rotators in the presence of a
static magnetic field, a property known as the Faraday effect. The
angle of rotation is then proportional to the thickness of the
material, and the rotatory power ρ (rotation angle per unit length) is
proportional to the component of the magnetic flux density B in the
direction of the wave propagation,

where V is called the Verdet constant.

The sense of rotation is governed by the direction of the magnetic
field: for V > 0, the rotation is in the direction of a right-handed
screw pointing in the direction of the magnetic field [Fig. 6.4-2(a)].
In contrast to optical activity, however, the sense of rotation does
not reverse with the reversal of the direction of propagation of the
wave. Thus, when a wave travels through a Faraday rotator and then
reflects back onto itself, traveling once more through the rotator in
the opposite direction, it undergoes twice the rotation [Fig. 6.4-
2(b)]. Materials that exhibit the Faraday effect include glasses as
well as yttrium iron garnet (YIG), terbium gallium garnet (TGG),
and terbium aluminum garnet (TbAlG). The Verdet constant of
TbAlG is V ≈ −1.16 min/Oe-cm at λo = 500 nm. Thin films of these
ferrimagnetic materials are used to make compact devices.
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Figure 6.4-2 (a) Polarization rotation in a medium exhibiting the
Faraday effect. (b) The sense of rotation is invariant to the direction
of travel of the wave.

Material Equations

In magneto-optic materials, the electric permittivity tensor ϵ is
altered by the application of a static magnetic field H, so that ϵ =
ϵ(H). This effect originates from the interaction of the static
magnetic field with the motion of the electrons in the material in
response to an optical electric field E. For the Faraday effect, in
particular, the material equation is

with

Here, B = μH is the static magnetic flux density, and γB is a
constant of the medium known as the magnetogyration
coefficient.

Equation (6.4-10) is identical to (6.4-5) so that the vector G = γBB
in Faraday rotators plays the role of the gyration vector G = ξk in
optically active media. For the Faraday effect, however, G does not
depend on k, so that reversing the direction of propagation does not
reverse the sense of rotation of the plane of polarization. This
property is useful for constructing optical isolators, as explained in
Sec. 6.6D.
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With this analogy, and using (6.4-8), we conclude that the rotatory
power of the Faraday medium is ρ ≈ −πG/λon = −πγBB/λon, from
which the Verdet constant (rotatory power per unit magnetic flux
density) is seen to be

The Verdet constant is clearly a function of the wavelength λo.

6.5 OPTICS OF LIQUID CRYSTALS
Liquid Crystals

A liquid crystal comprises a collection of elongated organic
molecules that are typically cigar-shaped. The molecules lack
positional order (like liquids) but possess orientational order (like
crystals). There are three types (phases) of liquid crystals, as
illustrated in Fig. 6.5-1:

Figure 6.5-1 Molecular organizations of different types of liquid
crystals.

In nematic liquid crystals the orientations of the molecules
tend to be the same but their positions are totally random.

In smectic liquid crystals the orientations of the molecules
are the same, but their centers are stacked in parallel layers



within which they have random positions; they therefore have
positional order only in one dimension.

The cholesteric liquid crystal is a distorted form of its
nematic cousin in which the orientations undergo helical
rotation about an axis.

Liquid crystallinity, which was discovered in 1888, is a fluid state of
matter; it is intermediate between liquid and solid. The molecules
are able to change orientation when subjected to a force. When a
thin layer of liquid crystal is placed between two parallel glass plates
that are rubbed together, for example, the molecules orient
themselves along the direction of rubbing.

Twisted nematic liquid crystals are nematic liquid crystals on
which a twist (similar to the twist that exists naturally in the
cholesteric phase) is externally imposed. This can be achieved, for
example, by placing a thin layer of nematic liquid crystal between
two glass plates that are polished in perpendicular directions, as
schematized in Fig. 6.5-2. This section is devoted to a discussion of
the optical properties of twisted nematic liquid crystals, which are
widely used in photonics, e.g., for liquid-crystal displays. The
electro-optic properties of twisted nematic liquid crystals, and their
use as optical modulators and switches, are described in Sec. 21.3.

Figure 6.5-2 Molecular orientations of the twisted nematic liquid
crystal.

Optical Properties of Twisted Nematic Liquid Crystals
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The twisted nematic liquid crystal is an optically inhomogeneous
and anisotropic medium that acts locally as a uniaxial crystal, with
the optic axis parallel to the elongated direction. The optical
properties are conveniently analyzed by considering the material to
be divided into thin layers perpendicular to the axis of twist, each of
which acts as a uniaxial crystal; the optic axis is taken to rotate
gradually, in a helical fashion, along the axis of twist (Fig. 6.5-3).
The cumulative effects of these layers on the transmitted wave is
then calculated. We show that, under certain conditions, the twisted
nematic liquid crystal acts as a polarization rotator in which the
plane of polarization rotates in alignment with the molecular twist.

Figure 6.5-3 Propagation of light in a twisted nematic liquid
crystal. In this diagram the angle of twist is 90°.

Consider the propagation of light along the axis of twist (the z axis)
of a twisted nematic liquid crystal and assume that the twist angle θ
varies linearly with z,

where α is the twist coefficient (degrees per unit length). The optic
axis is therefore parallel to the x–y plane and makes an angle θ with
the x direction. The ordinary and extraordinary refractive indices are
no and ne, respectively (typically, ne > no), and the phase-retardation
coefficient (retardation per unit length) is
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The liquid-crystal cell is completely characterized by the twist
coefficient α and the retardation coefficient β.

In practice, β ≫ α so that many cycles of phase retardation are
introduced before the optic axis rotates appreciably. We show below
that if this condition is satisfied, and the incident wave at z = 0 is
linearly polarized in the x direction, then the wave maintains its
linearly polarized state but the plane of polarization rotates in
alignment with the molecular twist, so that the angle of rotation is θ
= αz and the total rotation in a crystal of length d is the angle of
twist αd. The liquid-crystal cell then serves as a polarization rotator
with rotatory power α. The polarization-rotation property of the
twisted nematic liquid crystal is useful for making display devices,
as explained in Sec. 21.3.

Proof that the Twisted Nematic Liquid Crystal Acts as a
Polarization Rotator. We proceed to show that the twisted
nematic liquid crystal acts as a polarization rotator if β ≫ α. We
divide the overall width of the cell d into N incremental layers of
equal widths Δz = d/N. The mth layer, located at the distance z = zm
= mΔz, m = 1, 2,…,N, is a wave retarder whose slow axis (the optic
axis) makes an angle θm = mΔθ with the x axis, where Δθ = αΔz. It
therefore has a Jones matrix [see (6.1-24)]

where

is the Jones matrix of a wave retarder whose axis is along the x
direction and R(θ) is the coordinate rotation matrix in (6.1-22).

It is convenient to rewrite Tr in terms of the phase-retardation
coefficient β = (ne − no)ko,



(6.5-5)

(6.5-6)

(6.5-7)

(6.5-8)

(6.5-9)

where φ = (no + ne)ko/2. Since multiplying the Jones vector by a
constant phase factor does not affect the state of polarization, we
simply ignore the prefactor exp(−jφΔz) in (6.5-5).

The overall Jones matrix of the device is the product

Using (6.5-3) and noting that R(θm) R(−θm−1) = R(θm − θm−1)=
R(Δθ), we obtain

Substituting from (6.5-5) and (6.1-22), we obtain

Using (6.5-7) and (6.5-8), the Jones matrix T of the device can, in
principle, be determined in terms of the parameters α, β, and d = N
Δz.

For α ≪ β, we may assume that the incremental rotation matrix
R(Δθ) is approximately the identity matrix, whereupon

so that



(6.5-10)

This Jones matrix represents a wave retarder of retardation βd with
the slow axis along the x direction, followed by a polarization rotator
with rotation angle αd. If the original wave is linearly polarized
along the x direction, the wave retarder imparts only a phase shift;
the device then simply rotates the polarization by an angle αd equal
to the twist angle. A wave linearly polarized along the y direction is
rotated by the same angle.

6.6 POLARIZATION DEVICES
This section offers a brief description of a number of devices that
are used to modify the state of polarization of light. The basic
principles underlying the operation of these devices have been set
forth earlier in this chapter.

A. Polarizers
A linear polarizer is a device that transmits the component of the
electric field that lies along the direction of its transmission axis
while blocking the orthogonal component. The blocking action may
be achieved by selective absorption, selective reflection from
isotropic media, or selective reflection/refraction in anisotropic
media.

Polarization by Selective Absorption (Dichroism)

The absorption of light by certain anisotropic media, called
dichroic materials, depends on the direction of the incident
electric field (Fig. 6.6-1). These materials generally have anisotropic
molecular structures whose response is sensitive to the direction of
the electric field. The most common dichroic material is Polaroid
H-sheet, invented in 1938 and still in common use. It is fabricated
from a sheet of iodine-impregnated polyvinyl alcohol that is heated
and stretched in a particular direction. The analogous device in the



infrared is the wire-grid polarizer, which comprises a planar
configuration of closely spaced fine wires stretched in a single
direction. The component of the incident electric field in the
direction of the wires is absorbed whereas the component
perpendicular to the wires passes through.

Figure 6.6-1 Power transmittances of a typical dichroic polarizer
with the plane of polarization of the light aligned for maximum and
minimum transmittance, as indicated.

Polarization by Selective Reflection

The reflectance of light at the boundary between two isotropic
dielectric materials is dependent on its polarization, as discussed in
Sec. 6.2. At the Brewster angle of incidence, in particular, the
reflectance of TM-polarized light vanishes so that it is totally
refracted (Fig. 6.2-4). At this angle, therefore, only TE-polarized
light is reflected, so that the reflector serves as a polarizer, as
depicted in Fig. 6.6-2.



Figure 6.6-2 The Brewster-angle polarizer.

Polarization by Selective Refraction (Polarizing Beamsplitters)

When light enters an anisotropic crystal, the ordinary and
extraordinary waves refract at different angles and gradually
separate from each other (see Sec. 6.3E and Fig. 6.3-15). This
provides an effective means for obtaining polarized light from
unpolarized light, and it is commonly used. These devices usually
consist of two cemented prisms comprising anisotropic (uniaxial)
materials, often with different orientations, as illustrated by the
examples in Fig. 6.6-3. These prisms therefore serve as polarizing
beamsplitters.



Figure 6.6-3 Examples of polarizing beamsplitters. The parallel (p)
and orthogonal (s) polarization components of a beam are separated
by refraction or reflection at the boundary between two uniaxial
crystals whose optic axes (OA) have different orientations. In this
illustration, the crystals are negative uniaxial (no > ne), such as
calcite. (a) In the Wollaston prism the p component is extraordinary
in the first crystal and ordinary in the second, while the opposite is
true for the s component, so that they undergo different angles of
refraction. (b) In the Rochon prism, the p component is transmitted
without refraction since it is ordinary in both crystals, while the s
component is refracted since it is ordinary in the first crystal and
extraordinary in the second. (c) The operation of the Glan-
Thompson prism is based on total internal reflection at the
boundary between the first crystal and the cement layer. This occurs
for only the p polarization since it is an ordinary wave with the
higher refractive index. The s component is transmitted. The Glan–
Thompson device has the merit of providing a large angular
separation between the emerging waves.

B. Wave Retarders
A wave retarder serves to convert a wave with one form of
polarization into another form. It is characterized by its retardation
Γ and its fast and slow axes (see Sec. 6.1B). The normal modes are
linearly polarized waves polarized along the directions of the axes.
The velocities of the two waves differ so that transmission through
the retarder imparts a relative phase shift Γ to these modes.

Wave retarders are often constructed from anisotropic crystals in
the form of plates. As explained in Sec. 6.3B, when light travels



(6.6-1)

along a principal axis of a crystal (say the z axis), the normal modes
are linearly polarized waves pointing along the two other principal
axes (the x and y axes). These modes experience the principal
refractive indices n1 and n2, and thus travel at velocities co/n1 and
co/n2, respectively. If n1 < n2, the x axis is the fast axis. If the plate
has thickness d, the phase retardation is Γ = (n2 − n1)kod = 2π(n2 −
n1)d/λo. The retardation is thus directly proportional to the
thickness d of the plate and inversely proportional to the
wavelength λo (note, however, that n2 − n1 is itself wavelength
dependent).

The refractive indices of a thin sheet of mica, for example, are 1.599
and 1.594 at λo = 633 nm, so that Γ/d ≈ 15.8π rad/mm. A sheet of
thickness 63.3 μm yields Γ ≈ π and thus serves as a half-wave
retarder.

Light Intensity Control via a Wave Retarder and Two Polarizers

Consider a wave retarder of retardation Γ placed between two
crossed polarizers whose axes are oriented at 45° with respect to the
axes of the retarder, as illustrated in Fig. 6.6-4. The power (or
intensity) transmittance of this system is

which may be established by making use of Jones matrices or by
examining the polarization ellipse of the retarded light as a function
of Γ, and then determining the component that lies in the direction
of the output polarizer, as illustrated in Fig. 6.6-4. If Γ = 0 no light is
transmitted through the system since the polarizers are orthogonal.
On the other hand, if Γ = π all of the light is transmitted since the
retarder then rotates the plane of polarization 90° whereupon it
matches the transmission axis of the second polarizer.



Figure 6.6-4 Controlling light intensity by means of a wave
retarder with variable retardation Γ placed between two crossed
polarizers.

The intensity of the transmitted light is thus readily controlled by
altering the retardation Γ. This can be achieved, for example, by
deliberately changing the indices n1 and n2 by application of an
external DC electric field to the retarder. This is the basic principle
that underlies the operation of electro-optic modulators, as
discussed in Chapter 21.

Furthermore, since Γ depends on d, slight variations in the
thickness of a sample can be monitored by examining the pattern of
the transmitted light. Moreover, since Γ is wavelength dependent,
the transmittance of the system is frequency sensitive. Though it
can be used as a filter, the selectivity is not sharp. Other
configurations using wave retarders and polarizers can be used to
construct narrowband transmission filters.

C. Polarization Rotators
A polarization rotator serves to rotate the plane of polarization of
linearly polarized light by a fixed angle, while maintaining its
linearly polarized nature. Optically active media and materials
exhibiting the Faraday effect act as polarization rotators, as
discussed in Sec. 6.4. The twisted nematic liquid crystal also acts as
a polarization rotator under certain conditions, as shown in Sec. 6.5.

If a polarization rotator is placed between two polarizers, the
amount of light transmitted depends on the rotation angle. The
intensity of the light can therefore be controlled (modulated) if the



angle of rotation is externally changed (e.g., by varying the magnetic
flux density applied to a Faraday rotator or by changing the
molecular orientation of a liquid crystal by means of an applied
electric field). Electro-optic modulation of light and liquid-crystal
display devices are discussed in Chapter 21.

D. Nonreciprocal Polarization Devices
A device whose effect on the polarization state is invariant to
reversal of the direction of propagation is said to be reciprocal. If a
wave is transmitted through such a device in one direction and the
emerging wave is retransmitted in the opposite direction, then it
retraces the changes in the polarization state and arrives at the
input in the very same initial polarization state. Devices that do not
have this directional invariance are termed nonreciprocal. All of
the polarization systems described in this chapter are reciprocal,
with the exception of the Faraday rotator (Sec. 6.4B). A number of
useful nonreciprocal polarization devices may be implemented by
combining the Faraday rotator with other reciprocal polarization
components (see Sec. 24.1C).

Optical Isolator

An optical isolator is a device that transmits light in only one
direction, thereby acting as a “one-way valve.” Optical isolators are
useful for preventing reflected light from returning back to the
source. Such feedback can have deleterious effects on the operation
of certain devices, such as laser diodes.

An optical isolator is constructed by placing a Faraday rotator
between two polarizers whose axes make a 45° angle with respect to
each other. The magnetic flux density applied to the rotator is
adjusted so that it rotates the polarization by 45° in the direction of
a right-handed screw pointing in the z direction [Fig. 6.6-5(a)].
Light traveling through the system in the forward direction (from
left to right) thus crosses polarizer A, rotates 45°, and is thence
transmitted through polarizer B. Linearly polarized light with the



polarization plane at 45° but traveling through the system in the
backward direction [from right to left in Fig. 6.6-5(b)] successfully
crosses polarizer B. However, on passing through the Faraday
rotator, the plane of polarization rotates an additional 45° and is
therefore blocked by polarizer A. Since the backward light might be
generated by reflection of the forward wave from subsequent
surfaces, the isolator serves to protect its source from reflected
light.

Note that the Faraday rotator is a necessary component of the
optical isolator. An optically active, or liquid-crystal, polarization
rotator cannot be used in its place. In those reciprocal components,
the sense of rotation is such that the polarization of the reflected
wave retraces that of the incident wave so that the light would be
transmitted back through the polarizers to the source.

Figure 6.6-5 An optical isolator that makes use of a Faraday
rotator transmits light in one direction. (a) A wave traveling in the
forward direction is transmitted. (b) A wave traveling in the
backward (or reverse) direction is blocked.

Faraday-rotator isolators constructed from yttrium iron garnet
(YIG) or terbium gallium garnet (TGG) offer attenuations of the
backward wave of up to 90 dB over a relatively wide wavelength
range. Thin films of these materials placed in permanent magnetic
fields are used to make compact optical isolators.

Nonreciprocal Polarization Rotation



The combination of a 45° Faraday rotator and a half-wave retarder is
another useful nonreciprocal device. As illustrated in Fig. 6.6-6(a),
the state of polarization of a forward-traveling linearly polarized
wave, with its plane of polarization oriented at 22.5° with the fast
axis of the retarder, maintains its state of polarization upon
transmission through the device (since it undergoes 45° rotation by
the Faraday rotator, followed by −45° rotation by the retarder).
However, for a wave traveling in the reverse direction, the plane of
polarization is rotated by 45° + 45° = 90°, as can be readily seen in
Fig. 6.6-6(b). This device may therefore be used in combination with
a polarizing beamsplitter to deflect the backward-traveling wave
away from the source of the forward-traveling wave so that it can be
accessed independently. A system of this kind can be useful for
implementing nonreciprocal interconnects, such as optical
circulators, as portrayed in Fig. 24.1-10(b).

Figure 6.6-6 A Faraday rotator followed by a half-wave (π)
retarder is a nonreciprocal device that: (a) maintains the
polarization state of a linearly polarized forward-traveling wave, but
(b) rotates the plane of polarization of the backward-traveling wave
by 90°.
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PROBLEMS
6.1-5 Orthogonal Polarizations. Show that if two elliptically

polarized states are orthogonal, the major axes of their ellipses
are perpendicular and the senses of rotation are opposite.

6.1-6 Rotating a Polarization Rotator. Show that the Jones
matrix of a polarization rotator is invariant to rotation of the
coordinate system.

6.1-7 Jones Matrix of a Polarizer. Show that the Jones matrix of
a linear polarizer whose transmission axis makes an angle θ
with the x axis is

Derive this result using (6.1-18), (6.1-22), and (6.1-24).

6.1-8 Half-Wave Retarder. Consider linearly polarized light
passed through a half-wave retarder. If the polarization plane
makes an angle θ with the fast axis of the retarder, show that
the transmitted light is linearly polarized at an angle −θ, i.e., it
is rotated by an angle 2θ. Why is the half-wave retarder not
equivalent to a polarization rotator?

6.1-9 Wave Retarders in Tandem. Write the Jones matrices for:

a. A π/2 wave retarder with the fast axis along the x direction.

b. A π wave retarder with the fast axis at 45° to the x direction.

c. A π/2 wave retarder with the fast axis along the y direction.

If these three retarders are cascaded (placed in tandem), with
(c) following (b) following (a), show that the resulting device



introduces a 90° rotation. What happens if the order of the
three retarders is reversed?

6.1-10 Reflection of Circularly Polarized Light. Show that
circularly polarized light changes handedness (right becomes
left, and vice versa), upon reflection from a mirror.

6.1-11 Anti-Glare Screen. A self-luminous object is viewed
through a glass window. An antiglare screen is used to
eliminate glare caused by the reflection of background light
from the surfaces of the window. Show that such a screen may
be constructed from a combination of a linear polarizer and a
quarter-wave retarder whose axes are at 45° with respect to the
transmission axis of the polarizer. Can the screen be regarded
as an optical isolator?

6.2-2 Derivation of Fresnel Equations. Derive the reflection
equation (6.2-6), which is used to derive the Fresnel equation
(6.2-8) for TE polarization. How would you go about obtaining
the reflection coefficient if the incident light took the form of a
beam rather than a plane wave?

6.2-3 Reflectance of Glass. A plane wave is incident from air (n =
1) onto a glass plate (n = 1.5) at an angle of incidence of 45°.
Determine the power reflectances of the TE and TM waves.
What is the average reflectance for unpolarized light (light
carrying TE and TM waves of equal intensities)?

6.2-4 Refraction at the Brewster Angle. Use the condition n1
sec θ1 = n2 sec θ2 and Snell’s law, n1 sin θ1 = n2 sin θ2, to derive
(6.2-12) for the Brewster angle. Also show that at the Brewster
angle, θ1 + θ2 = 90°, so that the directions of the reflected and
refracted waves are orthogonal, and hence the electric field of
the refracted TM wave is parallel to the direction of the
reflected wave. The reflection of light may be regarded as a
scattering process in which the refracted wave acts as a source
of radiation generating the reflected wave. At the Brewster
angle, this source oscillates in a direction parallel to the



direction of propagation of the reflected wave, so that radiation
cannot occur and no TM light is reflected.

6.2-5 Retardation Associated with Total Internal Reflection.
Determine the phase retardation between the TE and TM
waves that is introduced by total internal reflection at the
boundary between glass (n = 1.5) and air (n = 1) at an angle of
incidence θ = 1.2 θc, where θc is the critical angle.

6.2-6 Goos–Hänchen Shift. Consider two TE plane waves
undergoing total internal reflection at angles θ and θ + dθ,
where dθ is an incremental angle. If the phase retardation
introduced between the reflected waves is written in the form
dφ = ξ dθ, find an expression for the coefficient ξ. Sketch the
interference patterns of the two incident waves and the two
reflected waves and verify that they are shifted by a lateral
distance proportional to ξ. When the incident wave is a beam
(composed of many plane-wave components), the reflected
beam is displaced laterally by a distance proportional to ξ. This
is known as the Goos–Hänchen effect.

6.2-7 Reflection from an Absorptive Medium. Use Maxwell’s
equations and appropriate boundary conditions to show that
the complex amplitude reflectance at the boundary between
free space and a medium with refractive index n and absorption
coefficient α, at normal incidence, is r = [(n − jαc/2ω) − 1]/[(n
− jαc/2ω) + 1].

6.3-1 Maximum Retardation in Quartz. Quartz is a positive
uniaxial crystal with ne = 1.553 and no = 1.544. (a) Determine
the retardation per mm at λo = 633 nm when the crystal is
oriented such that retardation is maximized. (b) At what
thickness(es) does the crystal act as a quarter-wave retarder?

6.3-2 Maximum Extraordinary Effect. Determine the direction
of propagation in quartz (ne = 1.553 and no = 1.544) at which
the angle between the wavevector k and the Poynting vector S
(which is also the direction of ray propagation) is maximum.



6.3-3 Double Refraction. An unpolarized plane wave is incident
from free space onto a quartz crystal (ne = 1.553 and no = 1.544)
at an angle of incidence 30°. The optic axis lies in the plane of
incidence and is perpendicular to the direction of the incident
wave before it enters the crystal. Determine the directions of
the wavevectors and the rays of the two refracted components.

6.3-4 Lateral Shift in Double Refraction. What is the optimum
geometry for maximizing the lateral shift between the refracted
ordinary and extraordinary beams in a positive uniaxial crystal?
Indicate all pertinent angles and directions.

6.3-5 Transmission Through a LiNbO3 Plate. Examine the
transmission of an unpolarized He–Ne laser beam (λo = 633
nm) normally incident on a LiNbO3 plate (ne = 2.29, no = 2.20)
of thickness 1 cm, cut such that its optic axis makes an angle
45° with the normal to the plate. Determine the lateral shift at
the output of the plate and the retardation between the
ordinary and extraordinary beams.

*6.3-6 Conical Refraction. When the wavevector k points along
an optic axis of a biaxial crystal an unusual situation occurs.
The two sheets of the k surface meet and the surface can be
approximated by a conical surface. Consider a ray normally
incident on the surface of a biaxial crystal for which one of its
optic axes is also normal to the surface. Show that multiple
refraction occurs with the refracted rays forming a cone. This
effect is known as conical refraction. What happens when
the conical rays refract from the parallel surface of the crystal
into air?

6.6-1 Circular Dichroism. Certain materials have different
absorption coefficients for right and left circularly polarized
light, a property known as circular dichroism. Determine
the Jones matrix for a device that converts light with any state
of polarization into right circularly polarized light.



6.6-2 Polarization Rotation by a Sequence of Linear
Polarizers. A wave that is linearly polarized in the x direction
is transmitted through a sequence of N linear polarizers whose
transmission axes are inclined by angles mθ (m = 1, 2,…,N; θ =
π/2N) with respect to the x axis. Show that the transmitted
light is linearly polarized in the y direction but its amplitude is
reduced by the factor cosNθ. What happens in the limit as N →
∞? Hint: Use Jones matrices and note that

where R(θ) is the coordinate transformation matrix.

Notes
1 This convention is used in most optics textbooks. The opposite
designation is often used in the engineering literature: in the case of
right (left) circularly polarized light, the electric-field vector at a
fixed position rotates counterclockwise (clockwise) when viewed
from the direction toward which the wave is approaching.
2. The choice of the minus sign for the square root is consistent
with the derivation that leads to the Fresnel equation.
3. See, e.g., L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii,
Electrodynamics of Continuous Media, Butterworth–Heinemann,
2nd English ed. 1984, reprinted with corrections 2004, Chapter 12.



Chapter 7 
PHOTONIC-CRYSTAL OPTICS

7.1 OPTICS OF DIELECTRIC LAYERED MEDIA

A. Matrix Theory of Multilayer Optics

B. Fabry–Perot Etalon

C. Bragg Grating

7.2 ONE-DIMENSIONAL PHOTONIC CRYSTALS

A. Bloch Modes

B. Matrix Optics of Periodic Media

C. Fourier Optics of Periodic Media

D. Boundaries Between Periodic and Homogeneous Media

7.3 TWO- AND THREE-DIMENSIONAL PHOTONIC
CRYSTALS

A. Two-Dimensional Photonic Crystals

*B. Three-Dimensional Photonic Crystals

Felix Bloch (1905–1983) developed a theory that describes
electron waves in the periodic structure of solids.



Eli Yablonovitch (born 1946) coinvented the concept of the
photonic bandgap; he made the first photonic-bandgap crystal.

Sajeev John (born 1957) invoked the notion of photon
localization and coinvented the photonic-bandgap concept.

The propagation of light in homogeneous media and its reflection
and refraction at the boundaries between different media are a
principal concern of optics, as described in the earlier chapters of
this book. Photonic devices often comprise multiple layers of
different materials arranged, for example, to suppress or enhance
reflectance or to alter the spectral or the polarization characteristics
of light. Multilayered and stratified media are also found in natural
physical and biological systems and are responsible for the distinct
colors of some insects and butterfly wings. Multilayered media can
also be periodic, i.e., comprise identical dielectric structures
replicated in a one-, two-, or three-dimensional periodic
arrangement, as illustrated in Fig. 7.0-1. One-dimensional periodic
structures include stacks of identical parallel planar multi-layer
segments. These are often used as gratings that reflect optical waves
incident at certain angles, or as filters that selectively reflect waves



of certain frequencies. Two-dimensional periodic structures include
sets of parallel rods as well as sets of parallel cylindrical holes, such
as those used to modify the characteristics of optical fibers known
as holey fibers (see Sec. 10.4). Three-dimensional periodic
structures comprise arrays of cubes, spheres, or holes of various
shapes, organized in lattice structures much like those found in
natural crystals. Photonic crystals are a special class of optical
metamaterials, which are considered in Chapter 8.

Figure 7.0-1 Periodic photonic structures in one-dimensional (1D),
two-dimensional (2D), and three-dimensional (3D) configurations.

Optical waves, which are inherently periodic, interact with periodic
media in a unique way, particularly when the scale of the periodicity
is of the same order as that of the wavelength. For example, spectral
bands emerge in which light waves cannot propagate through the
medium without severe attenuation. Waves with frequencies lying
within these forbidden bands, called photonic bandgaps, behave
in a manner akin to total internal reflection, but are applicable for
all directions. The dissolution of the transmitted wave is a result of
destructive interference among the waves scattered by elements of
the periodic structure in the forward direction. Remarkably, this
effect extends over finite spectral bands, rather than occurring for
just single frequencies.

This phenomenon is analogous to the electronic properties of
crystalline solids such as semiconductors. In that case, the periodic
wave associated with an electron travels in a periodic crystal lattice,
and energy bandgaps often materialize. Because of this analogy, the



(7.0-1)

(7.0-2) Generalized Helmholtz Equations

photonic periodic structures have come to be called photonic
crystals. Photonic crystals enjoy a whole raft of applications,
including use as waveguides, fibers, resonators, lasers, filters,
routers, switches, gates, and sensors; other applications are in the
offing.

An electromagnetic-optics analysis is usually required to describe
the optical properties of inhomogeneous media such as
multilayered and periodic materials. For in-homogeneous dielectric
media, as we know from Sec. 5.2B, the permittivity ∈(r) is spatially
varying and the wave equation takes the general forms of (5.2-16)
and (5.2-17). For a harmonic wave of angular frequency ω, this leads
to generalized Helmholtz equations for the electric and the
magnetic fields expressible as

where η(r) = ∈o/∈(r) is the electric impermeability (see Sec. 6.3A).
One of these equations may be solved for either the electric or the
magnetic field, and the other field may be directly determined by
use of Maxwell’s equations. Note that (7.0-1) and (7.0-2) are cast in
the form of an eigenvalue problem: a differential operator applied
on the field function equals a constant multiplied by the field
function. The eigenvalues are  and the eigenfunctions provide
the spatial distributions of the modes of the propagating field (see
Appendix C). For reasons to be explained in Secs. 7.2C and 7.3, we
work with the magnetic-field equation (7.0-2) rather than the
electric-field equation (7.0-1).

For multilayered media, ∈(r) is piecewise constant, i.e., it is uniform
within any given layer but changes from one layer to another. Wave
propagation can then be studied by using the known properties of
optical waves in homogeneous media, together with the appropriate



boundary conditions that dictate the laws of reflection and
transmission.

Periodic dielectric media are characterized by periodic values of ∈(r)
and η(r). This periodicity imposes certain conditions on the optical
wave. For example, the propagation constant deviates from simply
proportionality to the angular frequency ω, as for a homogeneous
medium. While the modes of propagation in a homogeneous
medium are plane waves of the form exp(−jk · r), the modes of the
periodic medium, known as Bloch modes, are traveling waves
modulated by standing waves.

This Chapter

Previous chapters have focused on the optics of thin optical
components that are well separated, such as thin lenses, planar
gratings, and image-bearing films across which the light travels.
This chapter addresses the optics of bulk media comprising multiple
dielectric layers and periodic 1D, 2D, and 3D photonic structures.
Section 7.1, in which 1D layered media are considered, serves as a
prelude to periodic media and photonic crystals. A matrix approach
offers a systematic treatment of the multiple reflections that occur
at the multiple boundaries of the medium. Section 7.2 introduces
photonic crystals in their simplest form — 1D periodic structures.
Matrix methods are adopted to determine the dispersion relation
and the band structure. An alternate approach, based on a Fourier-
series representation of the periodic functions associated with the
medium and the wave, is also presented. These results are
generalized in Sec. 7.3 to two- and three-dimensional photonic
crystals.

Throughout this chapter, the various media are assumed to be
isotropic, and therefore described by a scalar permittivity ∈,
although reflection and refraction at boundaries have inherent
polarization-sensitive characteristics.

Photonic Crystals in Other Chapters



By virtue of their omnidirectional reflection property, photonic
crystals can be used as “perfect” dielectric mirrors. A slab of
homogeneous medium embedded in a photonic crystal may be used
to guide light by multiple reflections from the boundaries.
Applications to optical waveguides are described in Sec. 9.5.
Similarly, light may be guided through an optical fiber with a
homogeneous core embedded in a cladding of the same material,
but with cylindrical holes drilled parallel to the fiber axis. Such
“holey” fibers, described in Sec. 10.4, offer a number of salutary
features not present in ordinary optical fibers. A cavity burrowed in
a photonic crystal may function as an optical resonator since it has
perfectly reflecting walls at frequencies within the photonic
bandgap. Photonic-crystal microresonators and lasers will be
described briefly in Secs. 11.4D and 18.5C, respectively.

7.1 OPTICS OF DIELECTRIC LAYERED
MEDIA
A. Matrix Theory of Multilayer Optics
A plane wave normally incident on a layered medium undergoes
reflections and transmissions at the layer boundaries, which in turn
undergo their own reflections and transmissions in an unending
process, as illustrated in Fig. 7.1-1(a). The complex amplitudes of
the transmitted and reflected waves may be determined by use of
the Fresnel equations at each boundary (see Sec. 6.2); the overall
transmittance and reflectance of the medium can, in principle, be
calculated by superposition of these individual waves. This
technique was used in Sec. 2.5B to determine the transmittance of
the Fabry–Perot interferometer.



Figure 7.1-1 (a) Reflections of a single wave at the boundaries of a
multilayered medium. (b) In each layer, the forward waves are
lumped into a forward collected wave U(+) while the backward
waves are lumped into a backward collected wave U(−).

When the number of layers is large, tracking the infinite number of
“micro” reflections and transmissions can be tedious. An alternative
“macro” approach is based on the recognition that within each layer
there are two types of waves: forward waves traveling to the right,
and backward waves traveling to the left. The sums of these waves
add up to a single forward collected wave U(+) and a single backward
collected wave U(−) at any point, as illustrated in Fig. 7.1-1(b).
Determining the wave propagation in a layered medium is then
equivalent to determining the amplitudes of this pair of waves
everywhere. The complex amplitudes of the four waves on the two
sides of a boundary may be related by imposing the appropriate
boundary conditions, or by simply using the Fresnel equations of
reflection and transmission.

Wave-Transfer Matrix

Tracking the complex amplitudes of the forward and backward
waves through the boundaries of a multilayered medium is
facilitated by use of matrix methods. Consider two arbitrary planes
within a given optical system, denoted plane 1 and plane 2. The
amplitudes of the forward and backward collected waves at plane 

 and , respectively, are represented by a column matrix of



(7.1-1)

(7.1-2)

dimension 2, and similarly for plane 2. These two column matrices
are related by the matrix equation

The matrix M, whose elements are A, B, C, and D, is called the
wave-transfer matrix (or transmission matrix). It depends on the
optical properties of the layered medium between the two planes.

A multilayered medium is conveniently divided into a concatenation
of basic elements described by known wave-transfer matrices, say
M1, M2,. . . , MN. The amplitudes of the forward and backward
collected waves at the two ends of the overall medium are then
related by a single matrix that is the matrix product

where the elements 1, 2,…, N are numbered from left to right as
shown in the figure. The wave-transfer matrix cascade formula
provided in (7.1-2) is identical to the ray-transfer matrix cascade
formula given in (1.4-10), and it proves equally useful.

Scattering Matrix

An alternative to the wave-transfer matrix that relates the four
complex amplitudes  at the two edges of a layered medium is
the scattering matrix, or S matrix. It is often used to describe
transmission lines, microwave circuits, and scattering systems. In
this case, the outgoing waves are expressed in terms of the
incoming waves,



(7.1-3)

where the elements of the S matrix are denoted t12, r21, r12, and t21.
Unlike the wave-transfer matrix, these elements have direct
physical significance. The quantities t12 and r12 are the forward
amplitude transmittance and reflectance (i.e., the transmittance and
reflectance of a wave incident from the left), respectively, while t21
and r21 are the amplitude transmittance and reflectance in the
backward direction (i.e., a wave coming from the right), respectively.
The subscript 12, for example, signifies that the light is incident
from medium 1 into medium 2. This can be easily verified by noting
that if there is no backward wave at plane 2, so that , we
obtain  and . Similarly, if there is no forward
wave at plane 1, so that , we obtain  and 

.

A distinct advantage of the S-matrix formalism is that its elements
are directly related to the physical parameters of the system. On the
other hand, a disadvantage is that the S matrix of a cascade of
elements is not the product of the S matrices of the constituent
elements. A useful systematic procedure for analyzing a cascaded
system therefore draws on both the wave-transfer and scattering
matrix approaches: we use the handy multiplication formula of the
M matrices and then convert to the S matrix to determine the
overall transmittance and reflectance of the cascaded system.
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EXAMPLE 7.1-1.

Propagation Through a Homogeneous Medium.

For a homogeneous layer of width d and refractive index n, the
complex amplitudes of the collected waves at the planes
indicated by the arrows are related by  and 

, where φ = nkod so that in this case the wave-
transfer matrix and the scattering matrix are:

Relation between Scattering Matrix and Wave-Transfer Matrix

The elements of the M and S matrices are related by manipulating
the defining equations (7.1-1) and (7.1-3), whereupon the following
conversion equations emerge:

Matrix Conversion Relations

These equations are not valid in the limiting cases when t21 = 0 or 𝒟
= 0.



Summary
Matrix wave optics offers a systematic procedure for
determining the amplitude transmittance and reflectance of a
stack of dielectric layers with prescribed thicknesses and
refractive indices:

The stack is divided into a cascade of elements
encompassing boundaries with homogeneous layers
between them.

The M matrix is determined for each element. This may be
achieved by using the Fresnel formulas for transmission
and reflection to determine its S matrix, and then using the
conversion relation (7.1-5) to calculate the corresponding M
matrix.

The M matrix for the full stack of elements is obtained by
simply multiplying the M matrices for the individual
elements, in accordance with the wave-transfer matrix
formula provided in (7.1-2).

Finally, the S matrix for the full stack is determined by
conversion from the overall M matrix via (7.1-6). The
elements of the S matrix then directly yield the amplitude
transmittance and reflectance for the full stack of dielectric
layers.

Two Cascaded Systems: Airy Formulas

Matrix methods may be used to derive explicit expressions for
elements of the scattering matrix of a composite system in terms of
elements of the scattering matrices of the constituent systems.
Consider a wave transmitted through a system described by an S
matrix with elements t12, r21, r12, and t21, followed by another system
with S matrix elements t23, r32, r23, and t32. By multiplying the two
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associated M matrices, and then converting the result to an S
matrix, the following formulas for the overall forward transmittance
and reflectance can be derived:

If the two cascaded systems are mediated by propagation through a
homogeneous medium, as illustrated in Fig. 7.1-2, then by use of the
wave-transfer matrix in (7.1-4), with the phase φ = nkod, where d is
the propagation distance and n is the refractive index of the
medium, the following formulas for the overall transmittance and
reflectance, known as the Airy formulas, may be derived:

Airy Formulas

Figure 7.1-2 Transmission of a plane wave through a cascade of
two separated systems.

The Airy formulas may also be derived by tracking the multiple
transmissions and reflections experienced by an incident wave
between the two systems and adding up their amplitudes, as
portrayed in Fig. 7.1-2. A plane wave of complex amplitude Ui
incident on the first system produces an initial internal wave of
amplitude , which reflects back and forth between the
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two subsystems producing additional internal waves , all
traveling in the forward direction. The amplitude of the overall
transmitted wave Ut is related to the total internal amplitude  

, where ϕ = nkod. The overall
amplitude transmittance is therefore 

. Since 
, where h = r21r23 exp(−j2ϕ) is

the round-trip multiplication factor, the overall amplitude
transmittance t13 yields the Airy formula in (7.1-8).

Conservation Relations for Lossless Media

If the medium between planes 1 and 2 is nonlossy, then the
incoming and outgoing optical powers must be equal. Furthermore,
if the media at the input and output planes have the same
impedance and refractive index, then these powers are represented
by the squared magnitudes of the complex amplitudes . In this
case, conservation of power dictates that 

 for any combination of incoming
amplitudes. By choosing the incoming amplitudes  and  to be
(1,0), (0,1), and (1,1), the conservation formula above yields three
equations that relate the elements of the S matrix. These equations
can be used to prove the following formulas:

Equations (7.1-9) relate the magnitudes of the elements of the S
matrix for lossless media whose input and output planes see the
same refractive index, whereas (7.1-10) relates their arguments.

The formulas in (7.1-9) and (7.1-10) translate to the following
relations among the elements of the M matrix:
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(7.1-11)(7.1-12)

(7.1-15)

These results can be derived by substituting the conservation
relations for lossless media, (7.1-9) and (7.1-10), into the conversion
relations between the wave-transfer and scattering matrices, (7.1-5)
and (7.1-6).

EXAMPLE 7.1-2.

Single Dielectric Boundary.

Consider a system comprising a single boundary. In accordance
with the Fresnel equations (Sec. 6.2), the transmittance and
reflectance at a boundary between two media of refractive
indices n1 and n2 are governed by the S matrix

Substituting (7.1-13) into (7.1-5) yields the M matrix

Lossless Symmetric Systems

For lossless systems with reciprocal symmetry, namely systems
whose transmission/reflection in the forward and backward
directions are identical, we have t21 = t12 ≡ t and r21 = r12 ≡ r. In this
case, (7.1-9) and (7.1-10) yield

indicating that the phases associated with transmission and
reflection differ by π/2. Under these conditions, the elements of the
M matrix satisfy the following relations:



(7.1-17) Lossless Symmetric System

(7.1-18)

(7.1-16)
The S and M matrices then take the simple form

and the system is described by two complex numbers t and r, related
by (7.1-15).

Only relative phases are significant in such systems, so we may
assume without loss of generality that arg{t} = 0. It then follows
from (7.1-15) that arg{r} = ±π/2 so that r = ±j|r|, whereupon the
matrices in (7.1-17) take the simpler forms

These equations are commonly used to describe lossless symmetric
systems such as beamsplitters (e.g., cube and pellicle beamsplitters)
and integrated-optic couplers.

Moreover, if the system is balanced, i.e., if , we have 
.
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EXAMPLE 7.1-3.

Dielectric Slab. Consider a lossless symmetric system
comprising a cascade of three subsystems: a boundary between
media of refractive indices n1 and n2, followed by travel through
a medium of index n2, followed in turn by a boundary between
media with indices n2 and n1. By virtue of the results provided in
(7.1-2) and Example 7.1-2, the overall M matrix is then a product
of the three constituent M matrices, with the matrix
multiplication taking place in reverse order:

Here φ = n2kod where d is the width of the slab. The elements of
this matrix M, which are given by

satisfy the properties of a lossless symmetric system, as
described by (7.1-16). Expressions for t and r are determined
directly from (7.1-20) and (7.1-21):

The intensity transmittance |t|2, and the intensity reflectance
|r|2 = 1−|t|2, are periodic functions of the phase φ, with period π.
The magnitude of the phase difference between r and t is always
maintained at π/2, regardless of the value of φ, but its sign
changes as sin φ switches its sign every π interval. It is worthy of



note that the expressions provided in (7.1-20) and (7.1-21) can
also be directly derived by regarding the system as a combination
of two boundaries mediated by propagation through a distance
in a medium, and using the Airy formula (7.1-8) with t12 = t32 =
2n1/(n1 + n2), t21 = t23 = 2n2/(n1 + n2), and r12 = r32 = −r21 = −r23
=(n1 − n2)/(n1 + n2).

EXERCISE 7.1-1

Quarter-Wave Film as an Antireflection Coating.
Specially designed thin dielectric films are often used to reduce
or eliminate reflection at the boundary between two media of
different refractive indices. Consider a thin film of refractive
index n2 and thickness d sandwiched between media of
refractive indices n1 and n3. Derive an expression for the B
element of the M matrix for this multilayer medium. Show that
light incident from medium 1 has zero reflectance if d = λ/4 and 

, where λ = λo/n2.

Figure 7.1-3 Antireflection coating.

Off-Axis Waves in Layered Media

When an oblique wave is incident on a layered medium, the
transmitted and reflected waves, along with their reflections and
transmissions in turn, bounce back and forth between the layers, as
illustrated by its real part as shown in Fig. 7.1-4(a). The laws of
reflection and refraction ensure that, within the same layer, all of
the forward waves are parallel, and all of the backward waves are
parallel. Moreover, within any given layer the forward and backward



waves travel at the same angle, when measured from the +z and −z
directions, respectively.

Figure 7.1-4 (a) Reflections of a single incident oblique wave at
the boundaries of a multilayered medium. (b) In each layer, the
forward waves are lumped into a collected forward wave while the
backward waves are lumped into a collected backward wave.

The “macro” approach that was used earlier for normally incident
waves is similarly applicable for oblique waves. The distinction is
that the Fresnel transmittances and reflectances at a boundary, t12,
r21, r12, and t21, are angle-dependent as well as polarization-
dependent (see Sec. 6.2).

The simplest example is propagation a distance d through a
homogeneous medium of refractive index n, at an angle θ measured
from the z axis. The wave-transfer matrix M is then given by (7.1-4),
where the phase is now φ = nkod cos θ. Two other examples are
presented below.
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EXAMPLE 7.1-4.

Single Boundary: Oblique TE Wave. A wave transmitted
through a planar boundary between media of refractive indices
n1 and n2 at angles θ1 and θ2, satisfying Snell’s law (n1 sin θ1 = n2
sin θ2), is described by an S matrix determined from the Fresnel
equations (6.2-8) and (6.2-9), and its corresponding M matrix:

These expressions are applicable for both TE and TM polarized
waves with the following definitions:

EXAMPLE 7.1-5.

Dielectric Slab: Off-Axis Wave. We now consider an oblique
wave traveling through the system described in Example 7.1-3: a
slab of thickness d and refractive index n2 in a medium of
refractive index n1. The wave-transfer matrix for an oblique wave
is a generalization of the on-axis result:
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where , and, as in Example 7.1-4,  and 
 for the TE polarization, and  and 

for the TM polarization.

The expression for the matrix M in (7.1-25) is identical to that
provided in (7.1-19), which describes the on-axis system, except
that the parameters n1, n2, and φ are replaced by the angle-and
polarization-dependent parameters  and , and by the angle-
dependent parameter , respectively. Note that the factors a12
and a21, which appear in (7.1-24) at each boundary, cancel out
since a12a21 = 1. With these substitutions, the expressions
developed in (7.1-22) for the on-axis transmittance and
reflectance in Example 7.1-3 generalize to the following off-axis,
polarization-dependent formulas:

B. Fabry–Perot Etalon
The Fabry–Perot etalon was introduced in Sec. 2.5B; it is an
interferometer comprising two parallel and highly reflective mirrors
that transmit light only at a set of specific, uniformly spaced
frequencies, which depend on the optical pathlength between the
mirrors. It is used both as a filter and as a spectrum analyzer, and is
controlled by varying the pathlength, e.g., by moving one of the
mirrors with respect to the other. It is also used as an optical
resonator, as discussed in Sec. 11.1. In this section, we examine this
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multilayer device using the matrix methods developed in this
chapter.

Mirror Fabry–Perot Etalon

Consider two lossless partially reflective mirrors with amplitude
transmittances t1 and t2, and amplitude reflectances r1 and r2,
separated by a distance d filled with a medium of refractive index n.
The overall system is described by the matrix product

where φ = nkod. Since the system is lossless and symmetric, M
takes the simplified form provided in (7.1-17) and the amplitude
transmittance t is therefore the inverse of the 𝒟 element of M, so
that

This relation may also be derived by direct use of the Airy formula
(7.1-8).

As a result, the intensity transmittance of the etalon is

This expression is similar to (2.5-16) for the intensity of an infinite
number of waves with equal phase differences, and with amplitudes
that decrease at a geometric rate, as described in Sec. 2.5B.
Assuming that arg{r1r2} = 0, (7.1-29) can be written in the form1

where
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and

The parameter ℱ, called the finesse, is a monotonic increasing
function of the reflectance product r1r2, and is a measure of the
quality of the etalon. For example, if r1r2 = 0.99, then ℱ ≈ 313.

As described in Sec. 2.5B, the transmittance 𝒯 is a periodic function
of φ, now with period π. It reaches its maximum value of 𝒯max
which equals unity if |r1| = |r2|, when φ is an integer multiple of π.
When the finesse ℱ is large (i.e., when |r1r2| ≈ 1), 𝒯 becomes a
sharply peaked function of φ of approximate width π/ℱ. Thus, the
higher the finesse ℱ, the sharper the peaks of the transmittance as a
function of the phase φ.

The phase φ = nkod =(ω/c)d is proportional to the frequency, so
that the condition φ = π corresponds to ω = ωF , or ν = νF , where

Free Spectral Range

is called the free spectral range. It follows that the transmittance
as a function of frequency, 𝒯(ν), is a periodic function of period νF,
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Transmittance (Fabry–Perot Etalon)

as illustrated in Fig. 7.1-5. It reaches its peak value of 𝒯max at the
resonance frequencies νq = qνF, where q is an integer. When the
finesse ℱ » 1, 𝒯(ν) drops sharply as the frequency deviates slightly
from νq, so that 𝒯(ν) takes the form of a comb-like function. The
spectral width of each of these high-transmittance lines is

i.e., is a factor of ℱ smaller than the spacing between the resonance
frequencies.

Figure 7.1-5 Intensity transmittance and reflectance, 𝒯 and ℛ = 1
− 𝒯, of the Fabry–Perot etalon as a function of frequency ν.

The Fabry–Perot etalon may be used as a sharply tuned optical filter
or a spectrum analyzer. Because of the periodic nature of the
spectral response, however, the spectral width of the measured light
must be narrower than the free spectral range νF = c/2d in order to
avoid ambiguity. The filter is tuned (i.e., the resonance frequencies
are shifted) by adjusting the distance d between the mirrors. A
slight change in mirror spacing Δd shifts the resonance frequency νq

= qc/2d by a relatively large amount Δνq = −(qc/2d2)Δd = −νqΔd/d.
Although the frequency spacing νF also changes, it is by the far
smaller amount −νF Δd/d. As an example, a mirror separation of d =
1.5 cm leads to a free spectral range νF = 10 GHz when n = 1. For a
typical optical frequency of ν = 1014 Hz, corresponding to q = 104, a
change of d by a factor of 10−4 (Δd = 1.5 μm) translates the peak
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frequency by Δνq = 10 GHz, whereas the free spectral range is
altered by only 1 MHz, becoming 9.999 GHz.

Applications of the Fabry–Perot etalon as a resonator are described
in Sec. 11.1.

Off-Axis Transmittance of the Fabry–Perot Etalon

For an oblique wave traveling at an angle θ with the axis of a mirror
etalon, the amplitude transmittance is given by (7.1-28) with the
phase φ replaced by . It follows that the intensity
transmittance in (7.1-34) is generalized to

in the off-axis case.

Maximum transmittance occurs at frequencies for which

Resonance Condition

If the finesse of the etalon is large, transmission occurs at these
frequencies and is almost completely blocked at all other
frequencies. The plot of this relation provided in Fig. 7.1-6(c) shows
that at each angle θ only a set of discrete frequencies are
transmitted. Likewise, a wave at frequency ν is transmitted at only a
set of angles, so that a cone of incident broad-spectrum (white) light
creates a set of concentric rings spread like a rainbow, as illustrated
in Fig. 7.1-6(b). For incident light with a spectral width smaller than
the free spectral range νF , each frequency component corresponds
to one and only one angle, so that the etalon can be used as a
spectrum analyzer.



Figure 7.1-6 (a) An off-axis wave transmitted through a mirror
Fabry–Perot etalon. (b) White light from a point source transmitted
through the etalon creates a set of concentric rings of different
frequencies (colors). (c) Frequencies and angles that satisfy the
condition of peak transmittance, as set forth in (7.1-37).
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EXAMPLE 7.1-6.

The Dielectric-Slab Beamsplitter. The transmittance and
reflectance of a dielectric slab of width d and refractive index n2
surrounded by a medium of refractive index n1 are given in (7.1-
26). If the wave is incident at an angle θ1, then for TE
polarization we have , as in
Example 7.1-4, with sin θ2 =(n1/n2) sin θ1. This expression
reproduces (7.1-28) for the Fabry–Perot etalon if we substitute 

. It follows that the
expressions for the intensity transmittance of the mirror etalon,
(7.1-30) and (7.1-34), are also applicable for the dielectric slab.
Using (7.1-32), the finesse of the slab is thus given by

Large values of ℱ are typically not obtained in slab etalons. As an
example, for n1 = 1.5 (the refractive index of SiO2) and n2 = 3.5
(the refractive index of Si), and an angle of incidence θ1 = 45°,
the finesse ℱ = 1.89. As illustrated in Fig. 7.1-7, the dependence
of 𝒯 and ℛ on the phase , which is proportional to the
frequency, does not exhibit the sharp peaks observed in etalons
with highly reflective mirrors (see, e.g., the illustration in Fig.
7.1-5). Higher values of ℱ are obtained by coating the surfaces of
the slab to enhance internal reflection.

The dielectric slab may be used as a beamsplitter. If the slab
width d = 1 mm, for example, the range between two consecutive
transmittance peaks  corresponds to a frequency
of ≈ 45 GHz. As illustrated in Fig. 7.1-7, the transmittance and
reflectance near the center of this interval are reasonably flat.
Since beamsplitters are routinely used in interferometers, it is
important to be cognizant of the relation between the phases of
the reflected and transmitted waves. As illustrated in the figure,



the relative phase between the reflected and transmitted waves
is always ±π/2, with the sign changing at points of peak
transmittance.

Figure 7.1-7 (a) A dielectric slab used as a beamsplitter. (b)
Dependence of the intensity transmittance and reflectance (𝒯
and ℛ, respectively) on the phase 
(refractive index of SiO2), n2 = 3.5 (refractive index of Si), and an
angle of incidence θ1 = 45°. Transmission peaks and reflectance
minima occur at , where q is an integer. (c) The relative
phase between the reflected and transmitted waves is ±π/2; the
sign switches at .

C. Bragg Grating
The Bragg grating was introduced in Exercise 2.5-3 as a set of
uniformly spaced parallel partially reflective planar mirrors. Such a
structure has angular and frequency selectivity that is useful in
many applications. In this section, we generalize the definition of
the Bragg grating to include a set of N uniformly spaced identical
multilayer segments, and develop a theory for light reflection based
on matrix wave optics. Devices fabricated according to this
prescription include distributed Bragg reflectors (DBRs) and
fiber Bragg gratings (FBGs), which are often used in resonators and
lasers.

Simplified Theory
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The reflectance of the Bragg grating was determined in Exercise 2.5-
3 under two assumptions: (1) the mirrors are weakly reflective so
that the incident wave is not depleted as it propagates; and (2)
secondary reflections (i.e., reflections of the reflected waves) are
negligible. In this approximation, the reflectance ℛN of an N-mirror
grating is related to the reflectance ℛ of a single mirror by the
relation2

As described in Sec. 2.5B, the factor sin2 Nφ/sin2 φ represents the
intensity of the sum of N phasors of unit amplitude and phase
difference 2φ. This function has a peak value of N2 when the Bragg
condition is satisfied, i.e., when 2φ equals q2π, where q = 0, 1, 2,….
It drops away from these values sharply, with a width that is
inversely proportional to N. In this simplified model, the intensity
of the total reflected wave is, at most, a factor of N2 greater than the
intensity of the wave reflected from a single segment.

For a Bragg grating comprising partially reflective mirrors separated
from each other by a distance Λ and a round-trip phase 2φ = 2kΛ
cos θ, where θ is the angle of incidence. Therefore, maximum
reflection occurs when 2kΛ cos θ = 2qπ or

Bragg Condition

where
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Bragg Frequency

is the Bragg frequency.

Figure 7.1-8 Locus of frequencies ν and angles θ at which the
Bragg condition is satisfied. For example, if ν = 1.5 νB (dot-dash
line), we have θ = 48.2°. This corresponds to a Bragg angle θℬ =
41.8° (measured from the plane of the grating.)

At normal incidence (θ = 0°), peak reflectance occurs at frequencies
that are integer multiples of the Bragg frequency, i.e., ν = qνℬ. At
frequencies such that ν < νℬ, the Bragg condition cannot be
satisfied at any angle. At frequencies , the Bragg
condition is satisfied at one angle θ = cos−1(λ/2Λ) = cos−1(νℬ/ν).
The complement of this angle, θℬ = π/2 − θ, is the Bragg angle (see
(2.5-13) and Fig. 2.5-8),

Bragg Angle

At frequencies ν ≥ 2νℬ, the Bragg condition is satisfied at more than
one angle. Figure 7.1-8 illustrates the spectral and angular
dependence of reflections from a Bragg grating, based on the
simplified theory.
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Matrix Theory

We now use the matrix approach introduced in the previous section
to develop an exact theory of Bragg reflection that includes multiple
transmissions and reflections, as well as depletion of the incident
wave. It turns out that the collaborative effects of the reflections,
and the reflections of reflections, can lead to enhancement of the
total reflected wave, and a phenomenon whereby total reflection
occurs not only at single frequencies that are multiples of νℬ/ cos θ,
but over extended spectral bands surrounding these frequencies!

Consider a grating comprising a stack of N identical generic
segments (Fig. 7.1-9), each described by a unimodular wave-transfer
matrix Mo satisfying the conservation relations for a lossless,
symmetrical system, so that

where t and r are complex amplitude transmittance and reflectance
satisfying the conditions set forth in (7.1-15), and 𝒯 = |t|2 and ℛ =
|r|2 are the corresponding intensity transmittance and reflectance.

Figure 7.1-9 Bragg grating made of N segments, each of which is
described by a matrix Mo.

In accordance with (7.1-2), the wave-transfer matrix M for the N
segments is simply the product . Since Mo is unimodular, i.e.,
det Mo = 1, it satisfies the property

where
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(7.1-47)

(7.1-48)

(7.1-49)

(7.1-50)

and I is the identity matrix. Equation (7.1-44) may be proved by
induction (i.e., demonstrating that this relation is valid for N
segments if it is valid for N − 1 segments; this may be done by direct
substitution with the help of trigonometric identities).

Since the N-segment system is also lossless and symmetric, its
matrix may be written in the form

where tN and rN are the N-segment amplitude transmittance and
reflectance, respectively. Substituting from (7.1-43) and (7.1-47) into
(7.1-44), and comparing the diagonal and off-diagonal elements of
the matrices on both sides of the equation, leads to

These two equations define tN and rN in terms of t and r.

The intensity transmittance 𝒯N = |tN |2 is obtained by taking the
absolute-squared value of (7.1-49) and using the relation ℛ = 1 − 𝒯,

It follows that the power reflectance ℛN = 1 − 𝒯N is given by
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Bragg-Grating Reflectance

Summary
The reflectance ℛN of a medium comprising N identical
segments is related to the single-segment reflectance ℛ by the
nonlinear relation (7.1-51), which contains a factor ΨN that
results from the interference effects associated with collective
reflections from the N segments of the grating. Defined by (7.1-
45), ΨN depends on the number of segments N and on an
additional parameter Φ that is related to the single-segment
complex amplitude transmittance t via (7.1-46).

The dependence of ℛN on ℛ, described by (7.1-51), takes simpler
forms in certain limits. If the single-segment reflectance is very
small, i.e., ℛ « 1, and if  is not too large so that  R « 1, then
(7.1-51) may be approximated by:

This relation is now similar in form to the approximate relation (7.1-
39), with Φ playing the role of the phase φ.

In the opposite limit for which  » 1, the reflectance 
. This nonlinear relation between ℛN and ℛ

exhibits saturation and is typical of systems with feedback, which in
this case results from multiple internal reflections at the segment
boundaries. Ultimately, if , then ℛN approaches its
maximum value of unity, so that the N-segment device acts as
perfect mirror even though the single segment is only partially



reflective. A large interference factor ΨN accelerates the rise of ℛN
to unity as ℛ increases.

The interference factor ΨN, which depends on Φ = cos−1(Re{1/t})
via (7.1-45), has two distinct regimes: (1) a normal regime for which
Φ is real and the grating exhibits partial reflection/transmission
(including zero reflection, or total transmission); and (2) an
anomalous regime for which Φ is complex and ΨN can be extremely
large, corresponding to total reflection.

Partial-and Zero-Reflection Regime

This regime is defined by the condition | Re{1/t}| ⩽ 1, which
ensures that Φ = cos−1(Re{1/t}) is real. In this case, ℛN depends on
ℛ and ΨN in accordance with (7.1-45) and (7.1-51). Maximum
reflectance occurs when ΨN has its maximum value of N. In this
case, ℛN = N2ℛ/(1 − ℛ + N2ℛ). Therefore, ℛN cannot exactly
equal unity unless ℛ = 1, exactly. For example, for N = 10, if ℛ =
0.5, then the maximum value of ℛN ≈ 0.99.

Zero reflectance, or total transmittance, is possible, even if the
reflectance R of the individual segment is substantial. This occurs
when ΨN = 0, i.e., when sin NΦ = 0, or Φ = qπ/N for q = 0, 1,…,N −1.
The N frequencies at which this complete transparency occurs are
resonance frequencies of the grating. The phenomenon represents
some form of tunneling through the individually reflective
segments.

Total-Reflection Regime

In this regime, |Re{1/t}| = | cos Φ| > 1 so that Φ is a complex
variable Φ=ΦR + jΦI. Using the identity cos(ΦR + jΦI) = cosΦR cosh
ΦI − J sin ΦR sinh ΦI, and equating the real and imaginary parts of
both sides of (7.1-46), we obtain sin ΦR = 0 so that ΦR = mπ and cos
ΦR = +1, or −1, when m is an even or odd integer, respectively,
which results in
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Total-Reflection Regime

The factor ΨN = sin NΦ/ sin Φ then becomes

Total-Reflection Regime

where the ± sign is the sign of the factor cos(Nmπ)/ cos(mπ). Since
sinh(·) increases exponentially with N for large N, |ΨN | can be
much greater than N. In this case, in accordance with (7.1-51), the
reflectance ℛN ≈ 1 and the grating acts as a total reflector. The
forward waves become evanescent and do not penetrate the
multisegment medium, much as occurs with total internal
reflection.

Because Φ depends on t, which depends on the frequency ν, the two
regimes correspond to distinct spectral bands, as illustrated in the
following examples. The spectral bands associated with the total-
reflection regime are called stop bands since they represent bands
within which light transmission is almost completely blocked. The
other regime corresponds to passbands. Total transmission (zero
reflection) occurs at specific resonance frequencies within the
passbands.
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EXAMPLE 7.1-7.

Stack of Partially Reflective Mirrors. Consider a grating
made of a stack of N identical partially reflective mirrors
(beamsplitters) that are mutually separated by a distance Λ and
embedded in a homogeneous medium of refractive index n, as
illustrated in Fig. 7.1-10(a). A single segment comprises a
distance Λ in a homogeneous medium, followed by a partially
reflective mirror of amplitude transmittance t and amplitude
reflectance r.

The wave-transfer matrix Mo for this segment is determined by
multiplying the matrix in (7.1-18) by the matrix in (7.1-4):

where νB = c/2Λ is the Bragg frequency. This provides t = |t|ejφ,
and therefore Φ via

The relationships between Φ and φ, and between ΦI and φ, are
nonlinear and unusual, as illustrated in Fig. 7.1-10(b). The
corresponding dependence of the power reflectance ℛN on φ is
shown in Fig. 7.1-10(c). In the normal regime (indicated by the
shaded regions), Φ is real and the reflectance exhibits multiple
peaks with zeros between. None of the peaks approaches unity,
despite the fact that ΨN reaches a maximum value of N = 10.

The situation is quite different in the total-reflection regime
(unshaded regions), where Φ is complex. The factor ΨN reaches
a value ≈ 3000 at the center of the band (φ = π) when |t|2 = 0.5.



These regions represent ranges of φ where total reflection occurs
(ℛN ≈ 1). Since φ is proportional to the frequency ν, Fig. 7.1-
10(c) is actually a display of the spectral reflectance, and the
unshaded regions correspond to the stop bands.

Figure 7.1-10 (a) Bragg grating comprising N = 10 identical
mirrors, each with a power reflectance |r|2 = 0.5.(b) Dependence
of Φ on the inter-mirror phase delay φ = nkoΛ. Within the
shaded regions, Φ is complex and its imaginary part ΦI is
represented by the dashed curves. (c) Reflectance ℛ as a
function of frequency (in units of the Bragg frequency νB =
c/2Λ). Within the stop bands, the reflectance is approximately
unity.

EXAMPLE 7.1-8.

Dielectric Bragg Grating. A grating is made of N identical
dielectric layers of refractive index n2, each of width d2, buried in
a medium of refractive index n1 and separated by a distance d1,
as illustrated in Fig. 7.1-11. This multisegment system is a stack
of N identical double layers, each of the type described in
Example 7.1-3. The A = 1/t* element of the wave-transfer matrix
Mo is given by (7.1-20), from which



(7.1-58)

where φ1 = n1kod1 and φ2 = n2kod2 are the phases introduced by
the two layers of a segment. This result can be used in
conjunction with (7.1-45), (7.1-46), (7.1-51), (7.1-53), and (7.1-54)
to determine the reflectance of the grating.

The spectral dependence of the reflectance can be computed as a
function of ν by noting that , where 

 is the average refractive index. The
Bragg frequency νℬ is the frequency at which the single-segment
round-trip phase 2ko(n1d1 + n2d2) = 2π. The phase difference φ1
− φ2 = ζπν/νℬ, with ζ = (n1d1 − n2d2)/(n1d1 + n2d2), is also
proportional to the frequency. Figure 7.1-11(b) provides an
example of the spectral reflectance as a function of ν.

Figure 7.1-11 Power reflectance as a function of frequency for a
dielectric Bragg grating comprising N = 10 segments, each of
which has two layers of thickness d1 = d2 and refractive indices
n1 = 1.5 and n2 = 3.5. The grating is placed in a medium with
matching refractive index n1. The reflectance is approximately
unity within the stop bands centered about multiples of νℬ =
c/2Λ, where c = co/  and  is the mean refractive index.

EXAMPLE 7.1-9.

Dielectric Bragg Grating: Oblique Incidence. The results
in Example 7.1-8 may be generalized to oblique waves with angle
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of incidence θ1 in medium 1, corresponding to angle θ2 in layer 2,
where n1 sin θ1 = n2 sin θ2. In this case, (7.1-58) becomes

where  and  and 
 for TE polarization; and  and ñ2 = ñ2 sec θ2

for TM polarization. This relation may be used to compute the
spectral reflectance at any angle of incidence. Figure 7.1-12
illustrates the dependence of the power reflectance ℛN on
frequency and the angle of incidence for both TE and TM
polarization for a high-contrast grating. The range of angles over
which unity reflectance obtains increases with increasing
refractive-index contrast ratio n2/n1.

Figure 7.1-12 Spectral dependence of the reflectance ℛ for the
10-segment dielectric Bragg grating displayed in Fig. 7.1-11, at
various angles of incidence θ1 and for TE and TM polarizations.

Bragg Grating in an Unmatched Medium



(7.1-60)

In the previous analysis, the Bragg grating was assumed to be made
of N identical segments. If each segment is made of multiple
dielectric layers, this requires that grating be placed in a matched
medium, i.e., a medium with a refractive index equal to that of the
front layer, so that the incident light undergoes no additional
reflection at the front boundary, and reflects at the back boundary
as if it were entering another layer of the grating. The device
described in Example 7.1-8 meets this condition.

In most applications, the grating is placed in an unmatched
medium, such as air, and boundary effects must be accounted for.
This may be accomplished by writing the wave-transfer matrix M of
the composite system, including all boundaries, and finding the
corresponding scattering matrix S by use of the conversion relation.
The reflectance of the composite system may be readily determined
from S.

If  is the wave-transfer matrix of an N-segment grating in a
medium matched to the front layer, then the overall wave transfer
function takes the form

where Mi is the wave-transfer matrix of the entrance boundary, and
Me is the wave-transfer matrix of the Nth segment with a boundary
into the unmatched medium.



EXAMPLE 7.1-10.

Reflectance of a Dielectric Bragg Grating in an
Unmatched Medium. An N-segment Bragg grating is made of
alternating layers of refractive indices n1 and n2, and widths d1
and d2, placed in a medium of refractive index n0. We wish to
determine the reflectance for a wave incident at an angle θ0 in
the external medium, corresponding to angles θ1 and θ2 in the
first and second layer of each segment, as determined by Snell’s
law (n1 sin θ1 = n2 sin θ2).

In this case, (7.1-60) may be used with the following wave-
transfer matrices: (1) Mi represents a boundary between media
of refractive indices n0 and n1, as described in Example 7.1-4; (2)
Mo represents a single segment of the grating, as described in
Example 7.1-5; (3) Me represents propagation a distance d1 in a
medium with refractive index n1 followed by a slab of width d2
and refractive index n2, with boundary into a medium of
refractive index n0. Once the M matrix is determined, we use the
conversion relation (7.1-6) to determine the corresponding
scattering matrix S. The overall reflectance is the element r12 in
(7.1-4).
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Figure 7.1-13 Power reflectance as a function of the angle of
incidence θ at fixed frequencies for the grating described in Fig.
7.1-11. (a) Grating is placed in a matched medium (n = n1). (b)
Grating is placed in air (n = 1). In air, the grating has unity
reflectance at all angles, for both TE and TM polarizations, at
frequencies in the band 0.97νℬ to 1.18 νℬ.

7.2 ONE-DIMENSIONAL PHOTONIC
CRYSTALS
One-dimensional (1D) photonic crystals are dielectric structures
whose optical properties vary periodically in one direction, called
the axis of periodicity, and are constant in the orthogonal directions.
These structures exhibit unique optical properties, particularly
when the period is of the same order of magnitude as the
wavelength. If the axis of periodicity is taken to be the z direction,
then optical parameters such as the permittivity ϵ(z) and the
impermeability η(z) = ϵo/ϵ(z) are periodic functions of z, satisfying

for all z, where Λ is the period. Wave propagation in such periodic
media may be studied by solving the generalized Helmholtz
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equations (7.0-2), for periodic η(z).

For an on-axis wave traveling along the z axis and polarized in the x
direction, the electric and the magnetic field components Ex and Hy
are functions of z, independent of x and y, so that (7.0-2) becomes

For an off-axis wave, i.e., a wave traveling in an arbitrary direction
in the x–z plane, the generalized Helmholtz equation has a more
complex form. For example, for a TM-polarized off-axis wave, the
magnetic field points in the y direction and (7.0-2) gives:

Note that (7.2-2) and (7.2-3) are cast in the form of an eigenvalue
problem from which the modes Hy(x, z) can be determined.

Before embarking on finding solutions to these eigenvalue
problems, we first examine the conditions imposed on the
propagating modes by the translational symmetry associated with
the periodicity.

A. Bloch Modes
Consider first a homogeneous medium, which is invariant to an
arbitrary translation of the coordinate system. For this medium, an
optical mode is a wave that is unaltered by such a translation; it
changes only by a multiplicative constant of unity magnitude (a
phase factor). The plane wave exp(−jkz) is such a mode since, upon
translation by a distance d, it becomes exp[−jk(z + d)] = exp(−jkd)
exp(−jkz). The phase factor exp(−jkd) is the eigenvalue of the
translation operation, as discussed in Appendix C.

On-Axis Bloch Modes
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Consider now a 1D periodic medium, which is invariant to
translation by the distance Λ along the axis of periodicity. Its optical
modes are waves that maintain their form upon such translation,
changing only by a phase factor. As explained in Appendix C, these
modes must have the form

Bloch Mode

where U represents any of the field components Ex, Ey, Hx, or Hy; K
is a constant, and pK (z) is a periodic function of period Λ. This form
satisfies the condition that a translation Λ alters the wave by only a
phase factor exp(−jKΛ) since the periodic function is unaltered by
such translation. This optical wave is known as a Bloch mode, and
the parameter K, which specifies the mode and its associated
periodic function pK(z), is called the Bloch wavenumber.

The Bloch mode is thus a plane wave exp(−jKz) with propagation
constant K, modulated by a periodic function pK(z), which has the
character of a standing wave, as illustrated by its real part displayed
in Fig. 7.2-1(a). Since a periodic function of period Λ can be
expanded in a Fourier series as a superposition of harmonic
functions of the form exp(−jmgz), m = 0, ±1, ±2,…, with

it follows that the Bloch wave is a superposition of plane waves of
multiple spatial frequencies K + mg. The fundamental spatial
frequency g of the periodic structure and its harmonics mg, added
to the Bloch wavenumber K, constitute the spatial spectrum of the
Bloch wave, as shown in Fig. 7.2-1(b). The spatial frequency shift
introduced by the periodic medium is analogous to the temporal
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frequency (Doppler) shift introduced by reflection from a moving
object.

Figure 7.2-1 (a) The Bloch mode. (b) Spatial spectrum of the Bloch
mode.

Two modes with Bloch wavenumbers K and K′ = K + g are
equivalent since they correspond to the same phase factor,
exp(−jK′Λ) = exp(−jK Λ) exp(−j2π)= exp(−jKΛ). This is also evident
since the factor exp(−jgz) is itself periodic and can be lumped with
the periodic function pK(z). Therefore, for a complete specification
of all modes, we need only consider values of K in a spatial-
frequency interval of width g = 2π/Λ. The interval [−g/2, g/2] =
[−π/Λ, π/Λ], known as the first Brillouin zone, is a commonly
used construct.

Off-Axis Bloch Modes

Off-axis optical modes traveling at some angles in the x–z plane
assume the Bloch form

Off-Axis Bloch Mode

The uniformity of the medium in the x direction constrains the x
dependence of the optical mode to the harmonic form exp(−jkxx),
posing no other restriction on the transverse component kx of the
wavevector. At a location where the refractive index is n, kx = nko
sin θ, where θ is the inclination angle of the wave with respect to
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the z axis. As the wave travels through the various layers of the
inhomogeneous medium, this angle changes, but in view of Snell’s
law, n sin θ and kx are unaltered.

Normal-to-Axis Bloch Modes

When the angle of incidence in the densest medium is greater than
the critical angle, the modes do not travel along the axis of
periodicity (the z direction). Rather, they are normal-to-axis modes
traveling along the lateral x direction that take the Bloch form (7.2-
6) with K = 0,

Normal-to-Axis Bloch Mode

where p0(z) is a periodic function representing a standing wave
along the axis of periodicity.

Eigenvalue Problem, Dispersion Relation, and Photonic
Bandgaps

Now that we have established the mathematical form of the modes,
as imposed by the translational symmetry of the periodic medium,
the next step is to solve the eigenvalue problem described by the
generalized Helmholtz equation. For a mode with a Bloch
wavenumber K, the eigenvalues  provide a discrete set of
frequencies ω. These values are used to construct the ω-K
dispersion relation. The eigenfunctions help us determine the Bloch
periodic functions pK (z) for each of the values of ω associated with
each K.

The ω-K relation is a periodic multivalued function of K with period
g, the fundamental spatial frequency of the periodic structure; it is
often plotted over the Brillouin zone [−g/2 < k ≤ g/2], as illustrated
schematically in Fig. 7.2-2(a). When visualized as a monotonically



increasing function of k, it appears as a continuous function with
discrete jumps at values of K equal to integer multiples of g/2.
These discontinuities correspond to the photonic bandgaps, which
are spectral bands not crossed by the dispersion lines, so that no
propagating modes exist.

The origin of the discontinuities in the dispersion relation lies in the
special symmetry that emerges when k = g/2, i.e., when the period
of the medium equals exactly half the period of the traveling wave.
Consider the two modes with k = ±g/2 and Bloch periodic functions
pK (z) = p±g/2(z). Since these modes travel with the same
wavenumber, but in opposite directions, i.e. see inverted versions of
the medium, p−g/2(z) = pg/2(−z). But these two modes are in fact
one and the same, because their Bloch wavenumbers differ by g. It
therefore follows that at the edge of a Brillouin zone, there are two
Bloch periodic functions that are inverted versions of one another.
Since the medium is inhomogeneous or piecewise homogeneous
within a unit cell, these two distinct functions interact with the
medium differently, and therefore have two distinct eigenvalues,
i.e., distinct values of ω. This explains the discontinuity that
emerges as the continuous ω-K line crosses the boundary of the
Brillouin zone. A similar argument explains the discontinuities that
occur when K equals other integer multiples of g/2.

The variational principle (see Appendix C) is helpful in pointing out
certain features of these eigenfunctions. Based on this principle, the
eigenfunctions of a Hermitian operator are orthogonal distributions
that minimize the variational energy. The variational energy
associated with the linear operator ℒ in the eigenvalue equation
(7.0-2) is . By use of Maxwell’s equations, it can be
shown that (H, ℒH) = (H, ∇ × [η(r) × H]) = ∫ |D(r)|2/ϵ(r)dr, so
that minimization of Ev is achieved by distributions for which
higher displacement fields D(r) are located at positions of lower 1/
ϵ(r), i.e. higher refractive index. For example, if the periodic
medium is made of two alternating dielectric layers, as illustrated in
Fig. 7.2-2(b), then at a discontinuity the eigenfunction of the lower



frequency concentrates its displacement field in the layer with the
greater refractive index, whereas the eigenfunction of the higher
frequency has an inverted distribution for which the displacement
field is concentrated in the layer with the lower refractive index.

Figure 7.2-2 (a) The dispersion relation is a multivalued periodic
function with period g = 2π/Λ and discontinuities at k equals
integer multiples of g/2. (b) Bloch functions at the points A and B at
the edge of the Brillouin zone for an alternating dielectric-layer
periodic medium with n2 >n1.

The challenging problem now is the solution of the eigenvalue
problem associated with the Helmholtz equation. There are two
approaches:

The first approach is based on expanding the periodic function
η(z) of the medium and the periodic function pK (z) of the
Bloch mode in Fourier series and converting the Helmholtz
differential equation into a set of algebraic equation cast in the
form of a matrix eigenvalue problem, which are solved
numerically. This approach is called the Fourier Optics
approach.

The second approach is applicable to layered (piecewise
homogeneous) media with planar boundaries. Instead of
solving the Helmholtz equation, we make direct use of the laws
of propagation and reflection/refraction at boundaries, which
are known consequences of Maxwell’s equations. We then use
the matrix methods developed for multilayer media in Sec. 7.1A
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and applied to Bragg gratings in Sec. 7.1C. This Matrix Optics
approach leads to a 2 × 2 matrix eigenvalue problem from
which the dispersion relation and the Bloch modes are
determined.

The matrix-optics approach is discussed next, and the Fourier-optics
approach is examined in Sec. 7.2C.

B. Matrix Optics of Periodic Media
A one-dimensional periodic medium comprises identical segments,
called unit cells, that are repeated periodically along one direction
(the z axis) and separated by the period Λ (Fig. 7.2-3). Each unit cell
contains a succession of lossless dielectric layers or partially
reflective mirrors in some order, forming a symmetric system
represented by a generic unimodular wave-transfer matrix

where t and r are complex amplitude transmittance and reflectance
satisfying the conditions set forth in (7.1-17), and 𝒯 = |t|2 and ℛ =
|r|2 are the corresponding intensity transmittance and reflectance.
The medium is a Bragg grating, like that described in Sec. 7.1C, with
an infinite number of segments. A wave traveling through the
medium undergoes multiple transmissions and reflections that add
up to one forward and one backward wave at every plane. We now
use the matrix method developed in Sec. 7.1A to determine the
Bloch modes.
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Figure 7.2-3 Wave-transfer matrix representation of a periodic
medium.

Let  be the complex amplitudes of the forward and backward
waves at the initial position z = mΛ of unit cell m. Knowing these
amplitudes, the amplitudes elsewhere within the cell can be
determined by straightforward application of the appropriate wave-
transfer matrices, as described in Sec. 7.1. We therefore direct our
attention to the dynamics of the amplitudes  as they vary from
one cell to the next. These dynamics are described by the recurrence
relations

which can be used to determine the amplitudes at a particular cell if
the amplitudes at the previous cell are known.

Eigenvalue Problem and Bloch Modes

By definition, the modes of the periodic medium are self-
reproducing waves, for which

after transmission through a distance Λ (in this case a unit cell), the
magnitudes of the forward and backward waves remain unchanged
and the phases are altered by a common shift Φ, called the Bloch
phase. The corresponding Bloch wavenumber is K = Φ/Λ, so that
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Bloch Phase

Determination of the complex amplitudes  and the phase Φ =
KΛ that satisfy the self-reproduction condition (7.2-10) can be cast
as an eigenvalue problem. This is accomplished by using (7.2-9)
with m = 0 to write (7.2-10) in the form

This is an eigenvalue problem for the 2 × 2 unit-cell matrix Mo. The
factor e−jΦ  is the eigenvalue and the vector with components 
and  is the eigenvector.

The eigenvalues are determined by equating the determinant of the
matrix Mo − e−jΦI to zero. Noting that |t|2 + |r|2 = 1, the solution to
the ensuing quadratic equation yields 

, from which

Equation (7.2-13) is identical to (7.1-46) for the Bragg grating. This
is gratifying inasmuch as the periodic medium at hand is an
extended Bragg grating with an infinite number of segments.

Since Mo is a 2 × 2 matrix, it has two eigenvalues. Hence, only two
of the multiple solutions of (7.2-13) are independent. Since the
cos−1(·) function is even, the two solutions within the interval [−π,
π] have equal magnitudes and opposite signs. They correspond to
Bloch modes traveling in the forward and backward directions.
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Other solutions obtained by adding multiples of 2π are not
independent since they are irrelevant to the phase factor e−jΦ.

The associated eigenvectors of Mo are therefore

as can be ascertained by operating on the right-hand side of (7.2-14)
with the Mo matrix; the result is again the right-hand side of (7.2-
14) to within a constant.

The periodic function pK (z) associated with the Bloch wave can be
determined by propagating the amplitudes  and  through the
unit cell. For example, if the initial layer in the unit cell is a
homogeneous medium of refractive index n1 and width d1, then the
wave at distance z into this layer is

Using (7.2-14) and (7.2-11), (7.2-15) then provides

The waves in (7.2-16) may be propagated further into the
subsequent layers within the cell by using the appropriate M
matrices.

Dispersion Relation and Photonic Band Structure

The dispersion relation is an equation relating the Bloch
wavenumber K and the angular frequency ω. Equation (7.2-13),
which provides the eigenvalues exp(−jΦ) of the unit-cell matrix, is
the progenitor of the dispersion relation for the 1D periodic
medium. The phase Φ = KΛ is proportional to K , and t = t(ω) is
related to ω through the phase delay associated with propagation
through the unit cell, so that (7.2-13), written in the form



(7.2-17)

Dispersion Relation

is the ω − K dispersion relation. Here, g = 2π/Λ is the fundamental
spatial frequency of the periodic medium.

The function cos(2πK/g) is a periodic function of K of period g =
2π/Λ, so that for a given ω, (7.2-17) has multiple solutions.
However, solutions separated by the period g are not independent
since they lead to identical Bloch waves. It is therefore common to
limit the domain of the dispersion relation to a period with values of
K in the interval [−g/2, g/2] or [−π/Λ, π/Λ], which is the Brillouin
zone. This corresponds precisely to limiting the phase Φ to the
interval [−π, π]. Also, since cos(2πK/g) is an even function of K, at
each value ω there are two independent values of k of equal
magnitudes and opposite signs within the Brillouin zone. They
correspond to independent Bloch modes traveling in the forward
and backward directions.

The dispersion relation exhibits multiple spectral bands classified
into two regimes:

Propagation regime. Spectral bands within which K is real
correspond to propagating modes. Defined by the condition |
Re{1/t(ω)}| ≤ 1, these bands are numbered, 1, 2, . . . , starting
with the lowest-frequency band.

Photonic-bandgap regime. Spectral bands within which K is
complex correspond to evanescent waves that are rapidly
attenuated. Defined by the condition | Re{1/t(ω)}| > 1, these
bands correspond to the stop bands of the diffraction grating
discussed in Sec. 7.1C. They are also called photonic
bandgaps (PBG) or forbidden gaps since propagating
modes do not exist.



The dispersion relation is often plotted with K measured in units of
g = 2π/Λ, the fundamental spatial frequency of the periodic
structure, whereas ω is measured in units of the Bragg frequency
ωℬ = πc/Λ, where c = co/  and  is the average refractive index of
the periodic medium. The ratio ωℬ/(g/2) = c, which is the slope of
the dispersion relation ω = cK for propagation in a homogeneous
medium with the average refractive index.



(7.2-18)

EXAMPLE 7.2-1.

Periodic Stack of Partially Reflective Mirrors. The
dispersion relation for a wave traveling along the axis of a
periodic stack of identical partially reflective lossless mirrors
with power reflectance |r|2 and intensity transmittance |t|2 = 1
−|r|2, separated by a distance Λ, is determined directly from
Example 7.1-7. Using the results obtained there, namely t = |t|ejφ

with φ = nkoΛ = (ω/c)Λ, in conjunction with (7.2-13), provides
the dispersion relation

where g = 2π/Λ, and ωℬ = cπ/Λ is the Bragg frequency. This
result is plotted in Fig. 7.2-4.



(7.2-19)

Figure 7.2-4 Dispersion diagram of a periodic set of mirrors,
each with intensity transmittance |t|2 = 0.5, separated by a
distance Λ. Here, ωℬ = πc/Λ and g = 2π/Λ. The dotted straight
lines represent propagation in a homogeneous medium for
which ω/K = ωℬ (g/2) = c.

The photonic bandgaps, which correspond to frequency regions
where (7.2-18) does not admit a real solution, are centered at
ωℬ, 2ωℬ, . . . . These frequency regions do not permit
propagating modes; rather, they correspond to the stop bands
that exhibit unity reflectance in Fig. 7.1-10. In this system, the
onset of the lowest photonic bandgap is at ω = 0.

EXAMPLE 7.2-2.

Alternating Dielectric Layers. A periodic medium
comprises alternating dielectric layers of refractive indices n1
and n2, with corresponding widths d1 and d2, and period Λ = d1 +
d2. This system is the dielectric Bragg grating described in
Example 7.1-8 with N = ∞. For a wave traveling along the axis of
periodicity, Re{1/t} = Re{A} is given by (7.1-58). Using the
relations φ1 + φ2 = ko(n1d1 + n2d2) = πω/ωℬ and φ1 − φ2 = ζπω/
ωℬ, where  is the Bragg frequency, 

 is the average refractive index and ζ =(n1d1 −
n2d2)/(n1d1 + n2d2), (7.2-13) provides the dispersion relation

where t12t21 = 4n1n2/(n1 + n2)2 and |r12|2 =(n2 − n1)2/(n1 + n2)2.



An example of this dispersion relation is plotted in Fig. 7.2-5 for
dielectric materials with n1 = 1.5 and n2 = 3.5, and d1 = d2. As
with the periodic stack of partially reflective mirrors considered
in Example 7.2-1, the photonic bandgaps are centered at the
frequencies ωℬ and its multiples, and occur at either the center
of the Brillouin zone (K = 0) or at its edge (K = g/2). In this case,
however, the frequency region surrounding ω = 0 admits
propagating modes instead of a forbidden gap. Dielectric
materials with lower contrast have bandgaps of smaller width,
but the bandgaps exist no matter how small the contrast.

Figure 7.2-5 Dispersion diagram of an alternating-layer
periodic dielectric medium with n1 = 1.5 and n2 = 3.5, and d1 =
d2. Here,  and g = 2π/Λ. The dotted straight lines
represent propagation in a homogeneous medium of mean
refractive index c.

Phase and Group Velocities



The propagation constant K corresponds to a phase velocity ω/K
and an effective refractive index neff = coK/ω. The group velocity v =
dω/dK, which governs pulse propagation in the medium, is
associated with an effective group index Neff = codK/dω (see
Sec.5.7). These indices can be determined at any point on the ω-K
dispersion curve by finding the slope dω/dK, and the ratio ω/K, i.e.,
the slope of a line joining the point with the origin. Figure 7.2-6 is a
schematic illustration of a dispersion relation of an alternating-layer
dielectric periodic medium, together with the effective index and
group index, at frequencies extending over two photonic bands with
a photonic bandgap in-between.

At low frequencies within the first photonic band, neff is
approximately equal to the average refractive index . This is
expected since at long wavelengths the material behaves as a
homogeneous medium with the average refractive index. With
increase of frequency, neff increases above , reaching its highest
value at the band edge. At the bottom of the second band, neff is
smaller than  but increases at higher frequencies, approaching  in
the middle of the band.

Figure 7.2-6 Frequency dependence of the effective refractive
index neff , which determines the phase velocity, and the effective
group index Neff, which determines the group velocity.

This drop of neff from a value above average just below the bandgap
to a value below average just above the bandgap is attributed to the
significantly different spatial distributions of the corresponding
Bloch modes, which are orthogonal. The mode at the top of the



lower band, has greater energy in the dielectric layers with the
higher refractive index, so that its effective index is greater than the
average. For the mode at the bottom of the upper band, greater
energy is localized in the layers with the lower refractive index, and
the effective index is therefore lower than the average.

The frequency dependence of the effective group index follows a
different pattern, as shown in Fig. 7.2-6. As the edges of the bandgap
are approached, from below or above, this index increases
substantially, so that the group velocity is much smaller, i.e., optical
pulses are very slow near the edges of the bandgap.

Off-Axis Dispersion Relation and Band Structure

The dispersion relation for off-axis waves may be determined by
using the same equation, cos(KΛ) = Re{1/t(ω)}, where Re{1/t(ω)}
now depends on the angles of incidence within the layers of each
segment and on the state of polarization (TE or TM). For example,
for a periodic medium made of alternating dielectric layers,
Re{1/t(ω)}takes the more general form in (7.1-59).

Since the same transverse component kx of the wavevector
determines the angles of incidence at the two layers (kx = n1ko sin θ1
= n2ko sin θ2), it is more convenient to express the dispersion
relation as a function of kx, in the form of a three-dimensional
surface ω = ω(K, kx). Every value of kx yields a dispersion diagram
with bands and bandgaps similar to those of Fig. 7.2-5.

A simpler representation of the ω(K, kx) 3D surface is the
projected dispersion diagram, which displays in a two-
dimensional plot of the edges of the bands and bandgaps at each
value of kx, for both TE and TM polarizations, as illustrated in Fig.
7.2-7. This figure is constructed by determining the ranges of
angular frequencies over which photonic bands and bandgaps exist
in the dispersion diagram for a particular value of kx, and then
projecting these onto corresponding vertical lines at that value of kx
in the projected dispersion diagram. The loci of all such vertical



lines for the bands at different values of kx correspond to the shaded
(green) areas displayed in Fig. 7.2-7; the unshaded (white) areas
represent the bandgaps.

In this diagram, each angle of incidence is represented by a straight
line passing through the origin. For example, the incidence angle θ1
in layer 1 corresponds to the line kx =(ω/c1) sin θ1, i.e., ω =(c1/ sin
θ1)kx, where c1 = co/n1. The line ω = c1kx, called the light line
corresponds to θ1 = 90°. Similar lines may be drawn for the
incidence angles in medium 2; Fig. 7.2-7 shows only the light line ω
= c2kx, assuming that n2 > n1, i.e., c2 < c1. Points in the region
bounded by the two light lines represent normal-to-axis modes,
which travel in the lateral direction by undergoing total reflection in
the denser medium (medium 2).



Figure 7.2-7 Projected dispersion diagram for an alternating-layer
periodic dielectric medium with n1 = 1.5, n2 = 3.5, and d1 = d2 = Λ/2.
Here,  and g = 2π/Λ. Photonic bands are shaded
(green). The dashed lines represent fixed angles of incidence θ1 in
layer 1, including the Brewster angle θB = 66.8°. Points within the
region bounded by the light lines ω = c1kx and ω = c2kx represent
normal-to-axis waves.

The question arises as to whether there exists a frequency range
over which propagation is forbidden at all angles of incidence θ1 and
θ2 and for both polarizations. This could occur if the forbidden gaps
at all values of kx between the lines kx = 0 and kx = ω/c2, and for
both polarizations, were to align in such a way as to create a
common or complete photonic bandgap. This is clearly not the
case in the example in Fig. 7.2-7. It turns out that this is not
possible; complete photonic bandgaps cannot exist within 1D
periodic structures. However, they can occur in 2D and 3D periodic
structures, as we shall see in Sec. 7.3.

Indeed, there is one special case in which a photonic bandgap
cannot occur at all, and that is an oblique TM wave propagating at
the Brewster angle θB = tan−1(n2/n1) in layer 1. As shown in Fig. 7.2-
7, the line at the Brewster angle does not pass through a gap. This is
not surprising since at this angle, the reflectance of a unit cell is
zero, and the forward and backward waves are uncoupled so that the
collective effect that leads to total reflection is absent.

C. Fourier Optics of Periodic Media
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(7.2-22)

The matrix analysis of periodic media presented in the previous
section is applicable to layered (i.e., piecewise homogeneous)
media. A more general approach, applicable for arbitrary periodic
media, including continuous media, is based on a Fourier-series
representation of periodic functions and conversion of the
Helmholtz equation into a set of algebraic equations whose solution
provides the dispersion relation and the Bloch modes. This
approach can also be generalized to 2D and 3D periodic media, as
will be shown in Sec. 7.3.

A wave traveling along the axis of a 1D periodic medium (the z axis)
and polarized in the x direction is described by the generalized
Helmholtz equation (7.2-2). Since η(z) is periodic with period Λ, it
can be expanded in a Fourier series,

where g = 2π/Λ is the spatial frequency (rad/mm) of the periodic
structure and ηℓ is the Fourier coefficient representing the ℓth
harmonic. The impermeability η(z) is real, so that .

The periodic portion of the Bloch wave pK (z) in (7.2-4) may also be
expanded in a Fourier series,

whereupon the Bloch wave representation of the magnetic field may
be written as

For brevity, the dependence of the Fourier coefficients {Cm} on the
Bloch wavenumber K is suppressed. Substituting these expansions



(7.2-23)

into the Helmholtz equation (7.2-2) and equating harmonic terms
of the same spatial frequency, we obtain

where m = 0, ± 1, ± 2,….

The differential equation (7.2-2) has now been converted into a set
of linear equations (7.2-23) for the unknown Fourier coefficients
{Cm}. These equations may be cast in the form of a matrix
eigenvalue problem. For each K, the eigenvalues  correspond
to multiple values of ω, from which the ω-K dispersion relation may
be constructed. The eigenvectors are sets of {Cm} coefficients, which
determine the periodic function pK (z) of the Bloch mode for each K.

Posed as an eigenvalue problem for a matrix F with elements Fmℓ,
this set of coupled equations may be solved using standard
numerical techniques. Since , the matrix F is Hermitian,
i.e., . Note that if we were to use the electric-field
Helmholtz equation instead of the magnetic-field Helmholtz
equation (7.2-2), we would obtain another matrix representation of
the eigenvalue problem, but the matrix would be non-Hermitian,
and therefore more difficult to solve. This is the rationale for
working with the Helmholtz equation for the magnetic field.3

Approximate Solution of the Eigenvalue Problem

In (7.2-23), the harmonics of the optical wave are coupled via the
harmonics of the periodic medium. An optical-wave harmonic of
spatial frequency k + ℓg mixes with a medium harmonic of spatial
frequency (m − ℓ)g and contributes to the optical-wave harmonic of
spatial frequency (K + ℓg) + (m − ℓ)g = K + mg.

The conditions under which strong coupling emerges can be
determined by separating out the mth term in (7.2-23), which leads
to



(7.2-24)

(7.2-25)

where  is an average refractive index of the medium.
Strong coupling between the mth harmonic of the wave and other
harmonics exists if the denominator in (7.2-24) is small, i.e.,

This equation represents a resonance condition for interaction
between the harmonics. It can also be regarded as a phase-
matching condition.

Figure 7.2-8 is a plot of (7.2-25) as an equality. For each value of m,
the ω-K relation is a V-shaped curve. The intersection points of
these curves represent common values of ω and K at which (7.2-25)
is simultaneously satisfied for two harmonics. The intersections
between the m = 0 curve (dashed) and the curves for m = −1, m =
−2, …, are marked by filled circles; they correspond to the lowest-
order bandgaps 1, 2, . . ., respectively. At each intersection point, K is
an integer multiple of ½g, and ω 2 is an integer multiple of the
Bragg frequency . This
corresponds to the Bragg wavelength λℬ = 2Λ in the medium, and
therefore to total reflection. Unmarked intersections in Fig. 7.2-8
are not independent since each of these has the same ω as a marked
intersection, and a value of k differing by a reciprocal lattice
constant g.
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(7.2-28)

Figure 7.2-8 Plot of (7.2-25), as an equality, for various values of
m. The m = 0 curve is indicated as dashed. Strong coupling between
the harmonics of the optical wave and those of the medium occurs
at the intersection points 1, 2,. . . , which correspond to the lowest-
order bandgaps.

The lowest-order bandgap occurs at the intersection of the m = 0
and m = −1 curves (point 1 in Fig. 7.2-8). In this case, only the
coefficients C0 and C−1 are strongly coupled, so that (7.2-24) yields
two coupled equations

where . These equations are self-consistent if

Dispersion Relation

A plot of this equation (Fig. 7.2-9) yields the ω-K dispersion relation
near the edge of the bandgap, where the equation is valid. For 
, (7.2-28) yields two frequencies,
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representing the edges of the first photonic bandgap. The center of
the bandgap is at the Bragg frequency .
The ratio of the gap width to the midgap frequency, which is called
the gap-midgap ratio, grows with increasing impermeability
contrast ratio |η1|/η0.

Figure 7.2-9 Dispersion relation in the vicinity of photonic
bandgaps.

A similar procedure can be followed to determine the spectral width
of higher-order bandgaps. The width of the mth bandgap is
determined by a formula identical to (7.2-29), but the ratio |ηm|/η0
replaces |η1|/η0, so that higher bandgaps are governed by higher
spatial harmonics of the periodic function η(z).

Off-Axis Waves

The dispersion relation for off-axis waves may be determined by use
of the same Fourier expansion technique. For a TM-polarized off-
axis wave traveling in an arbitrary direction in the x–z plane, the
Helmholtz equation is given by (7.2-3). The Bloch wave is a
generalization of (7.2-22) obtained via (7.2-6),
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Carrying out calculations similar to the on-axis case, leads to the
following set of algebraic equations for the Cm coefficients:

Equation (7.2-31) is a generalization of (7.2-23) for the off-axis
wave. The dispersion relation may be determined by solving this
matrix eigenvalue problem for the set of frequencies ω associated
with each pair of values of K and kx.

D. Boundaries Between Periodic and Homogeneous
Media
The study of light wave propagation in periodic media has so far
been limited to determining the dispersion relation and its
associated band structure, as well as estimating the phase and group
velocity of such waves. By definition, the periodic medium extend
indefinitely in all directions. The next step is to examine reflection
and transmission at boundaries between periodic and homogeneous
media. We first examine reflection from a single boundary and
subsequently consider a slab of periodic medium embedded in a
homogeneous medium. Other configurations made of
homogeneous structures such slabs or holes embedded in extended
periodic media are described in Sec. 10.4 and Sec. 11.4D.

Omnidirectional Reflection at a Single Boundary

We examine the reflection and transmission of an optical wave at
the boundary between a semi-infinite homogeneous medium and a
semi-infinite one-dimensional periodic medium, as portrayed in Fig.
7.2-10. We demonstrate that, under certain conditions and within a
specified range of angular frequencies, the periodic medium acts as
a perfect mirror, totally reflecting waves incident from any direction
and with any polarization!



Wave transmission and reflection at the boundary between two
media is governed by the phase-matching condition. At the
boundary between two homogeneous media, for example, the
transverse components of the wavevector kx must be the same on
both sides of the boundary. Since kx = k sin θ =(ω/co)n sin θ, this
condition means that the product n sin θ is invariant. This is the
origin of Snell’s law of refraction, as explained in Sec. 2.4A.

Similarly, for a wave incident from a homogeneous medium into a
one-dimensional periodic medium, kx must remain the same. Thus,
if the incident wave has angular frequency ω and angle of incidence
θ, we have kx =(ω/co)n sin θ, where n is the refractive index of the
homogeneous medium. Knowing kx and ω, we can use the
dispersion relation ω = ω(K, kx) for the periodic medium at the
appropriate polarization to determine the Bloch wavenumber K. If
the angular frequency ω lies within a forbidden gap at this value of
kx, the incident wave will not propagate into the periodic medium
but will, instead, be totally reflected. This process is repeated for all
frequencies, angles of incidence, and polarizations of the incident
wave.

We now consider the possibility that the boundary acts as an
omnidirectional reflector (a perfect mirror). For this purpose, we
use the projected dispersion diagram, which displays the bandgaps
for each value of kx, as illustrated in the example provided in Fig.
7.2-10. On the same diagram, we delineate by a red dashed line the
ω-kx region that can be accessed by waves entering from the
homogeneous medium. This region is defined by the equation kx =
(ω/co)n sin θ, which dictates that kx < (ω/co3)n or ω > (co/n)kx; it is
thus bounded by the line , known
as the light line. This line corresponds to an angle θ = 90° in the
surrounding medium.

Figure 7.2-10 reproduces Fig. 7.2-7 with the light lines added, and
the permissible ω-kx regions within the light lines highlighted.
Waves incident from the homogeneous medium at all angles, and



both polarizations, are represented by points within this region;
points outside this region are not accessible by waves incident from
the homogeneous medium regardless of their angle of incidence or
polarization. The spectral band bounded by the angular frequencies
ω1 and ω2, as defined in Fig. 7.2-10, is of particular interest
inasmuch as all ω-kx points lying in this band are within a photonic
bandgap. In this spectral band, therefore, no incident wave,
regardless of its angle or polarization, can be matched with a
propagating wave in the periodic medium — the boundary then acts
as a perfect omnidirectional reflector. Also illustrated in Fig. 7.2-10
is a second spectral band, at higher angular frequencies, that
behaves in the same way.

Slab of Periodic Material in a Homogeneous Medium

A slab of 1D periodic material embedded in a homogeneous medium
is nothing but a 1D Bragg grating with a finite number of segments.
Reflection and transmission from the Bragg grating has already
been examined in Sec. 7.1C.

One would expect that a Bragg grating with a large, but finite,
number of segments N captures the basic properties of a periodic
medium made of the same unit cell. This is in fact the case since the
passbands and stop bands of the grating are mathematically
identical to the photonic bands and bandgaps of the extended
periodic medium. However, the spectral transmittance and
reflectance of the Bragg grating, which exhibit oscillatory properties
sensitive to the size of the grating and the presence of its
boundaries, do not have their counterparts in the extended periodic
structure.



Figure 7.2-10 Projected dispersion diagram for an alternating-
layer dielectric medium with n1 = 1.5, n2 = 3.5, and d1 = d2 = Λ/2.
The dotted lines (red) are light lines for a homogeneous medium
with refractive index n = 1. In the spectral band between ω1 and ω2,
the medium acts as a perfect omnidirectional reflector for all
polarizations. A similar band is shown at higher angular
frequencies.

Likewise, the phase and group velocities and the associated effective
refractive indices determined from the dispersion relation in the
extended periodic medium do not have direct counterparts in the
finite-size Bragg grating. Nevertheless, such parameters can be
defined for a grating by determining the complex amplitude
transmittance t(ω) and matching it with an effective homogeneous
medium of the same total thickness d such that arg{tN} = (ω/co)neff
d. An effective group index Neff = neff + ωdneff/dω is then
determined [see (5.7-2)]. The dependence of these effective indices



on frequency is different from that shown in Fig. 7.2-6 for the
extended periodic medium in that it exhibits oscillations within the
passbands. However, for sufficiently large N, say greater than 100,
these oscillations are washed out and the effective indices become
nearly the same as those of the extended periodic medium.

Another configuration of interest is a slab of homogeneous medium
embedded in a periodic medium. In this configuration, the light may
be trapped in the slab by omnidirectional reflection from the
surrounding periodic medium, so that the slab becomes an optical
waveguide. This configuration is discussed in Sec. 9.5.

7.3 TWO- AND THREE-DIMENSIONAL
PHOTONIC CRYSTALS
The concepts introduced in Sec. 7.2 for the study of optical-wave
propagation in 1D periodic media can be readily generalized to 2D
and 3D structures. These include Bloch waves as the modes of the
periodic medium and ω-K dispersion relations with photonic bands
and bandgaps. In contrast to 1D structures, 2D photonic crystals
have complete 2D photonic bandgaps, i.e., common bandgaps for
waves of both polarization traveling in any direction in the plane of
periodicity. However, complete 3D photonic bandgaps, i.e., common
bandgaps for all directions and polarizations, can be achieved only
in 3D photonic crystals. The mathematical treatment of 2D and 3D
periodic media is more elaborate and the visualization of the
dispersion diagrams is more difficult because of the additional
degrees of freedom involved, but the concepts are essentially the
same as those encountered for 1D periodic media. This section
begins with a simple treatment of 2D structures followed by a more
detailed 3D treatment.

A. Two-Dimensional Photonic Crystals

2D Periodic Structures



(7.3-2)

(7.3-1)

(7.3-3)

Consider a 2D periodic structure such as a set of identical parallel
rods, tubes, or veins embedded in a homogeneous host medium
[Fig. 7.3-1(a)] and organized at the points of a rectangular lattice, as
illustrated in Fig. 7.3-1(b). The impermeability η(x, y) = ϵo/ϵ(x, y) is
periodic in the transverse directions, x and y, and uniform in the
axial direction z. If a1 and a2 are the periods in the x and y
directions, then η(x, y) satisfies the translational symmetry relation

for all integers m1 and m2. This periodic function is represented as a
2D Fourier series,

where g1 = 2π/a1 and g2 = 2π/a2 are fundamental spatial
frequencies (radians/mm) in the x and y directions, and ℓ1g1 and
ℓ2g2 are their harmonics. The coefficients ηℓ1,ℓ2 depend on the actual
profile of the periodic function, e.g., the size of the rods.

The 2D Fourier transform of the periodic function is composed of
points (delta functions) on a rectilinear lattice, as shown in Fig. 7.3-
1(c). This Fourier-domain lattice is known to solid-state physicists
as the reciprocal lattice.

What are the optical modes of a medium with such symmetry? The
answer is a simple generalization of the 1D case given in (7.2-4). For
waves traveling in a direction parallel to the x–y plane, the modes
are 2D Bloch waves,

where pKx,Ky (x, y) is a periodic function with the same periods as
the medium. The wave is specified by a pair of Bloch wavenumbers
(Kx, Ky). Another wave with Bloch wavenumbers (Kx + g1, Ky + g2)



is not a new mode. As shown in Fig. 7.3-1(c) a complete set of
modes in the Fourier plane has Bloch wavenumbers located at
points in a rectangle defined by 

, which is the first Brillouin
zone.

Other symmetries may be used to reduce the set of independent
Bloch wavevectors within the Brillouin zone. When all symmetries
are included, the result is an area called the irreducible Brillouin
zone. For example, the rotational symmetry inherent in the square
lattice results in an irreducible Brillouin zone in the form of a
triangle, as shown in Fig 7.3-1(d).

2D Skew-Periodic Structures

An example of another class of 2D periodic structures is a set of
parallel cylindrical holes placed at the points of a triangular lattice,
as illustrated in Fig. 7.3-2(a). Since the lattice points are skewed
(not aligned with x and y axis), we use two primitive vectors a1 and
a2 [Fig. 7.3-2(b)] to generate the lattice via the lattice vector R =
m1a1 + m2a2, where m1 and m2 are integers. We also define a
position vector rT =(x, y) so that the periodic function ϵ(rT) ≡ ϵ(x, y)
satisfies the translational symmetry relation ϵ(rT + R ) = ϵ(rT) (the
subscript “T” indicates transverse).

The 2D Fourier series of such a function is a set of points on a
reciprocal lattice defined by the vectors g1 and g2, which are
orthogonal to a1 and a2, respectively, and have magnitudes g1 =
2π/a1 sin θ and g2 = 2π/a2 sin θ, where θ is the angle between a1 and
a2. The 2D reciprocal lattice is also a triangular lattice generated by
the vector G = ℓ1g1 + ℓ2g2, where ℓ1 and ℓ2 are integers, as illustrated
in Fig. 7.3-2(c).



(7.3-4)

Figure 7.3-1 (a) A 2D periodic structure comprising parallel rods.
(b) The rectangular lattice at which the rods are placed. (c) The 2D
Fourier transform of the lattice points is another set of points
forming a reciprocal lattice with periods g1 = 2π/a1 and g2 = 2π/a2.
The shaded (yellow) area is the Brillouin zone. (d) For a square
lattice (a1 = a2 = a), the irreducible Brillouin zone is the triangle
ΓMX.

Figure 7.3-2 (a) A 2D periodic structure comprising parallel
cylindrical holes. (b) The triangular lattice at which the holes are
placed. In this diagram the magnitudes a1 = a2 = a and θ = 120°. (c)
Reciprocal lattice; the shaded (yellow) area is the Brillouin zone, a
hexagon. (d) The irreducible Brillouin zone is the triangle ΓMK.

For waves traveling in a direction parallel to the x–y plane, the
Bloch modes are



where KT =(Kx, ky) is the Bloch wavevector and  is a 2D
periodic function on the same lattice. Two Bloch modes with Bloch
wavevectors KT and KT + G are equivalent. To cover a complete set
of Bloch wavevectors, we therefore need only consider vectors
within the Brillouin zone shown in Fig. 7.3-2(c).

The dispersion relation can be determined by ensuring that the
Bloch wave in (7.3-3) or (7.3-4) satisfies the generalized Helmholtz
equation. The calculations are facilitated by use of a Fourier series
approach, as was done in the 1D case and as will be described (in a
more general form) in the 3D case.



EXAMPLE 7.3-1.

Cylindrical Holes on a Triangular Lattice. A 2D photonic
crystal comprises a homogeneous medium (n = 3.6) with air-
filled cylindrical holes of radius 0.48 a organized at the points of
a triangular lattice with lattice constant a. The calculated
dispersion relation, shown in Fig. 7.3-3, for TE and TM waves
traveling in the plane of periodicity (kz = 0) exhibits a complete
2D photonic bandgap at frequencies near the angular frequency
ω0 = πco/a.4 As in the 1D case, the gap can be made wider by use
of materials with greater refractive-index contrast. Indeed, most
geometries exhibit photonic bandgaps if the constituent
materials have sufficiently high contrast.

This photonic-crystal structure finds use as a “holey” optical
fiber, which has a number of salutary properties (see Sec. 10.4).
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Figure 7.3-3 Calculated band structure of a 2D photonic crystal
consisting of a homogeneous medium (n = 3.6) with air-filled
cylindrical holes of radius 0.48 a organized at the points of a
triangular lattice with lattice constant a. The abscissa spans
Bloch wavevectors defined by points on the periphery of the
irreducible Brillouin zone, the ΓMK triangle. The ordinate is
plotted in units of ω0 = πco/a. The wave travels in the plane of
periodicity and has TE polarization (left) and TM polarization
(right). The complete 2D photonic bandgap in the vicinity of ω0
is highlighted.

For an oblique wave traveling at an angle with respect to the x–y
plane, the Bloch wave in (7.3-4) becomes

where kz is a constant. The band structure then takes the form of a
set of surfaces of ω = ω(KT, kz).

A complete 3D photonic bandgap is a range of frequencies ω crossed
by none of these surfaces, i.e., values of ω that are not obtained by
any combination of real KT and kz. While a complete 2D photonic
bandgap exists for kz = 0, as illustrated by the example in Fig. 7.3-3,
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(7.3-6)

a photonic bandgap for all off-axis waves is not attainable in 2D
periodic structures.

*B. Three-Dimensional Photonic Crystals

Crystal Structure

A 3D photonic crystal is generated by the placement of copies of a
basic dielectric structure, such as a sphere or a cube, at points of a
3D lattice generated by the lattice vectors R = m1a1 + m2a2 + m3a3,
where m1, m2, and m3 are integers, and a1, a2, and a3 are primitive
vectors defining the lattice unit cell. The overall structure is periodic
and its physical properties, such as the permittivity ϵ(r) and the
impermeability η(r) = ϵo/ϵ(r), are invariant to translation by R, so
that

for all positions r.

This periodic function may therefore be expanded in a 3D Fourier
series,

where G = ℓ1g1 + ℓ2g2 + e3g3 is a vector defined by the primitive
vectors g1, g2, and g3, of another lattice, the reciprocal lattice, and
ℓ1, ℓ2, and ℓ3, are integers. The g vectors are related to the a vectors
via

so that g1 · a1 = 2π , g1 · a2 = 0 , and g1 · a3 = 0, i.e., g1 is orthogonal
to a2 and a3 and its length is inversely proportional to a1. Similar
properties apply to g2 and g3. It can also be shown that G · R = 2π.



If a1, a2, and a3 are mutually orthogonal, then g1, g2, and g3 are also
mutually orthogonal and the magnitudes g1 = 2π/a1, g2 = 2π/a2, and
g3 = 2π/a3 are the spatial frequencies associated with the
periodicities in the three directions, respectively. An example of a
3D crystal lattice and its corresponding reciprocal lattice is shown in
Fig. 7.3-4.

Figure 7.3-4 (a) A 3D periodic structure comprising dielectric
spheres. (b) The spheres are placed at the points of a diamond (face-
centered cubic) lattice for which , ,
and , where a is the lattice constant. (c) The
corresponding reciprocal lattice is a body-centered cubic lattice with
a Brillouin zone indicated by the shaded volume, known as a
Wigner–Seitz cell. (d) The irreducible Brillouin zone is the
polyhedron whose corner points are marked by the crystallographic
symbols ΓXULKW.

Bloch Modes

The modes of a 3D periodic medium are waves that maintain their
shape upon translation by a lattice vector R, changing only by a
multiplicative constant of unity magnitude. These modes have the
Bloch form pK(r) exp(−jK · r) where pK(r) is a 3D periodic function,
with the periodicity described by the same lattice vector R; K is the
Bloch wavevector; and  is a unit vector in the direction of
polarization. The Bloch mode is a traveling plane wave exp(−jK · r)
modulated by a periodic function pK(r). Translation by R results in
multiplication by a phase factor exp(−jK · R), which depends on K.
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Two modes with Bloch wavevectors k and K′ = k + G are equivalent
since exp(−jK′ · R) = exp(−jK · R), i.e., translation by R is
equivalent to multiplication by the same phase factor. This is
because exp(−jG · R) = exp(−j2π) = 1. Therefore, for the complete
specification of all modes, we need only consider values of k within
a finite volume of the reciprocal lattice, the Brillouin zone. The
Brillouin zone is the volume of points that are closer to one specific
reciprocal lattice point (the origin of the zone, denoted Γ) than to
any other lattice point. Other symmetries of the lattice permit
further reduction of that volume to the irreducible Brillouin zone,
as illustrated by the example in Fig. 7.3-4.

Photonic Band Structure

To determine the ω-K dispersion relation for a 3D periodic medium,
we begin with the eigenvalue problem described by the generalized
Helmholtz equation (7.0-2). One approach for solving this problem
is to generalize the Fourier method that was introduced in Sec. 7.2C
for 1D periodic structures. By expanding the periodic functions η(r)
and pK(r) in Fourier series, the differential equation (7.0-2) is
converted into a set of algebraic equations leading to a matrix
eigenvalue problem that can be solved numerically using matrix
methods. As discussed at the end of Sec. 7.2C, we work with the
magnetic field to ensure Hermiticity of the matrix representation.

Expanding the periodic function pK(r) in the Bloch wave into a 3D
Fourier series

we write the magnetic-field vector in the Bloch form

For notational simplicity, the dependence of the Fourier coefficients
CG on the Bloch wavevector k is not explicitly indicated.
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Substituting (7.3-7) and (7.3-10) into (7.0-2), using the relation 
, and equating harmonic terms

of the same spatial frequency yields

Forming a dot product with  on both sides, and using the vector
identity A · (B × C) = −(B × A) · C leads to

The Helmholtz differential equation has now been converted into a
set of linear equations for the Fourier coefficients {CG}. Since η(z)
is real,  and the matrix FGG′ is Hermitian. Hence, (7.3-
12) represents an eigenvalue problem for a Hermitian matrix. For
each Bloch wavevector K, the eigenvalues  provide multiple
values of ω, which are used to construct the ω-K diagram and the
photonic band structure. The eigenvectors {CG} determine the
periodic function pK(r) of the Bloch wave.

Examples of Structures

Spherical holes on a diamond lattice.
An example of a 3D photonic crystal that has been shown to exhibit
a complete 3D photonic bandgap comprises air spheres embedded
in a high-index material at the points of a diamond (face-centered
cubic) lattice (see Fig. 7.3-4). The radii of the air spheres are
sufficiently large such that the spheres overlap, thereby creating
intersecting veins. The calculated band structure, shown in Fig. 7.3-
5, has a relatively wide complete 3D photonic bandgap between the
two lowest bands. Silicon photonic crystals with an inverse-opal
structure have been fabricated by inserting silicon into the voids of
a self-assembled opal template comprising close-packed silica



spheres; these are connected by small “necks” formed during
sintering. As a final step the silica template is removed.5

Figure 7.3-5 Calculated band structure of a 3D photonic crystal
with a diamond (facecentered cubic) lattice of lattice constant a. The
structure comprises air spheres of radius 0.325 a embedded in a
homogeneous material of refractive index n = 3.6. The complete
photonic bandgap extends from approximately ω0 = πco/a to 1.32 ω0
(see footnote on page 294).

Yablonovite.
The first experimental observation of a complete 3D photonic
bandgap was made by Eli Yablonovitch and colleagues in 1991 using
a variant of the diamond lattice structure now known as
Yablonovite.6 This slanted-pore structure is fabricated by drilling a
periodic array of cylindrical holes at specified angles in a dielectric
slab. Three holes are drilled at each point of a 2D triangular lattice
at the surface of the slab; the directions of the holes are parallel to
three of the axes of the diamond lattice, as shown in Fig. 7.3-6(a).
This structure exhibits a complete 3D photonic bandgap with a gap-
midgap ratio of 0.19 when the refractive index of the material is n =
3.6.

Woodpile.



Another 3D photonic-crystal structure, which is simpler to fabricate,
is made of a 1D periodic stack of alternating layers, each of which is
itself a 2D photonic crystal. For example, the woodpile structure
illustrated in Fig. 7.3-6(b) uses layers of parallel logs with a stacking
sequence that repeats itself every four layers. The orientation of the
logs in adjacent layers is rotated 90°, and the logs are shifted by half
the pitch every two layers. The resulting structure has a face-
centered-tetragonal lattice symmetry. Fabricated using silicon
micromachining, with a minimum feature size of 180 nm, this
structure manifested a complete 3D photonic bandgap in the
wavelength range λ = 1.35–1.95 μm.7

Figure 7.3-6 (a) The Yablonovite photonic crystal is fabricated by
drilling cylindrical holes through a dielectric slab. At each point of a
2D triangular lattice at the surface, three holes are drilled along
directions that make an angle of 35° with the normal and are
separated azimuthally by 120°. (b) The woodpile photonic crystal
comprises alternating layers of parallel rods, with adjacent layers
oriented at 90°. (c) The holes-and-poles structure consists of
alternating layers of 2D periodic structures: a layer of parallel
cylindrical holes on a hexagonal lattice, followed by a layer of
parallel rods lined up to fit between the holes.

Holes and poles.
Yet another example is the holes-and-poles structure illustrated in
Fig. 7.3-6(c). Here, two complementary types of 2D-periodic



photonic-crystal slabs are used: dielectric rods in air and air holes in
a dielectric. Fabricated in silicon, this structure exhibited a stop-
band for all tilt angles in the λ = 1.15–1.6 μm telecommunications
band.8

Both the holes-and-poles and the woodpile structures offer the
opportunity to introduce arbitrary point defects, such as a missing
hole or rod, thereby providing means for fabricating devices such as
photonic-crystal waveguides (Sec. 9.5), photonic-crystal resonators
(Sec. 11.4D), and specially controlled light emitters9 (Sec. 18.5C).
Indeed, the ability to insert a defect at will may well be the most
valuable feature of 2D and 3D photonic structures since 1D periodic
media serve admirably as omnidirectional reflectors.

Fabrication Methods

In the early 1990s, photonic crystals were fabricated using
adaptations of conventional semiconductor nanofabrication
techniques. A decade later, by the early 2000s, a host of new
(“bottom-up” and “top-down”) techniques for the fabrication of 3D
photonic crystals had been developed and implemented with
varying degrees of success. The most prominent of these are
colloidal self-assembly, holographic lithography, and direct writing
via 3D multiphoton microlithography.

Submicrometer colloidal spheres of uniform size tend to
spontaneously assemble on a face-centered cubic lattice. The
resulting material is a synthetic opal, which serves as a template
that can be impregnated with a semiconductor material such as
silicon. Subsequent removal of the template yields a 3D photonic
crystal, known as inverse opal, that consists of the semiconductor
material containing periodic spheres of air. A challenge in using this
method is growing the initial opal without forming polycrystalline
segments, which suffer from deleterious lattice defects.

In the 3D holographic-lithography approach, multiple laser beams
generate interference patterns that illuminate a film of photoresist.
Highly exposed regions of the photoresist become insoluble and the



unexposed regions are washed away. The result is a periodic
structure of cross-linked polymer containing air-filled voids. The
use of liquid-crystal spatial light modulators to govern the phase
properties of the various beams offers (dynamically tunable)
interference patterns of arbitrary form. Four beams, generated by a
single laser, are sufficient to create any desired photonic band
structure.

In 3D multiphoton microlithography, femtosecond laser pulses are
delivered via a lens to a particular location in a specially designed
transparent polymeric material. The laser power is set at a level that
effects multiphoton polymerization only in the vicinity of the focal
region of the lens, where the optical intensity is sufficiently high
(see Sec. 14.5B). The light is able to reach that region without
polymerizing the intervening material because its intensity lies
below the polymerization threshold outside the focal region. The
photonic-crystal structure is fabricated by moving the focal point of
the lens to all desired locations, thereby writing the three-
dimensional microstructure. The strong thresholding behavior of
the polymerization nonlinearity serves to enhance the resolution of
the process beyond the diffraction limit.

Novel variations accommodate the fabrication of electrically
responsive and graded-index (GRIN) photonic crystals.
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PROBLEMS
7.1-2 Beamsplitter Slab. A lossless, dielectric slab of refractive

index n and width d, oriented at 45° with respect to an incident
beam, is used as a beamsplitter. Derive expressions for the
transmittance and reflectance for TM polarization and sketch
their spectral dependence. Compare the results with those
expected for TE polarization, as provided in Example 7.1-6.



7.1-3 Air Gap in Glass. Determine the transmittance through a
thin planar air gap of width d = λ/2 in glass of refractive index
n. Assume (a) normal incidence, and (b) a TE wave incident at
an angle greater than the critical angle. Can the wave penetrate
(tunnel) through the gap?

7.1-4 Multilayer Device in an Unmatched Medium. The
complex amplitude reflectance of a multilayer device is rm
when it is placed in a medium with refractive index n1
matching its front layer. If the device is instead placed in a
medium with refractive index n, show that the amplitude
reflectance is r =(rb + rm)/(1 + rbrm), where rb =(n − n1)/(n +
n1) is the reflectance of the new boundary. Determine r in each
of the following limiting cases: rb = 0, rb = 1, rm = 0, and rm = 1.

7.1-5 Quarter-Wave Film: Angular Dependence of
Reflectance. Consider the quarter-wave antireflection coating
described in Exercise 7.1-1. Derive an expression for the
reflectance as a function of the angle of incidence.

7.1-6 Transmittance of a Fabry–Perot Etalon. The
transmittance of a symmetric Fabry–Perot etalon was
measured by using light from a tunable monochromatic light
source. The transmittance versus frequency exhibits periodic
peaks of period 150 MHz, each of width (FWHM) 5 MHz.
Assuming that the medium within the resonator mirrors is a
gas with n = 1, determine the length and finesse of the
resonator. Assuming further that the only source of loss is
associated with the mirrors, find their reflectances.

7.1-7 Quarter-Wave and Half-Wave Stacks. Derive expressions
for the reflectance of a stack of N double layers of dielectric
materials of equal optical thickness, n1d1 = n2d2, equal to λo/4
and λo/2.

7.1-8 GaAs/AlAs Bragg Grating Reflector. A Bragg grating
reflector comprises N units of alternating layers of GaAs (n1 =



3.57) and AlAs (n2 = 2.94) of widths d1 and d2 equal to a
quarter wavelength in each medium. The grating is placed in an
extended GaAs medium. Calculate and plot the transmittance
and reflectance of the grating as functions of N, for N = 1, 2,…,
10, at a frequency equal to the Bragg frequency.

7.1-9 Bragg Grating: Angular and Spectral Dependence of
Reflectance. Based on matrix algebra, determine the wave-
transfer matrix and the reflectance of an N-layer alternating-
layer dielectric Bragg grating. Use your program to verify the
graphs presented in Fig. 7.1-12 and Fig. 7.1-13 for the spectral
and angular dependence of the reflectance, respectively.

7.2-1 Gap–Midgap Ratio. Using a Fourier optics approach,
determine the Bragg frequency and the gap–midgap ratio for
the lowest bandgap of a 1D periodic structure comprising a
stack of dielectric layers of equal optical thickness, with n1 = 1.5
and n2 = 3.5, and period Λ = 2 μm. Assume that the wave
travels along the axis of periodicity. Repeat the process for n1 =
3.4 and n2 = 3.6. Compare your results.

7.2-2 Off-Axis Wave in 1D Periodic Medium. Derive equations
analogous to those provided in (7.2-24)–(7.2-28) for an off-axis
wave traveling through a 1D periodic medium with a transverse
wavevector kx.

7.2-3 Normal-to-Axis Wave in a 1D Periodic Medium. Use the
results of Prob. 7.2-2 to show that there are no bandgaps for a
wave traveling along the lateral direction of a 1D periodic
medium, i.e., for K = 0.

7.2-4 Omnidirectional Reflector. A periodic stack of double
layers of dielectric materials with n1d1 = n2d2, n2 = 2n1 and Λ =
d1 + d2 is to be used as an omnidirectional reflector in air. Plot
the projected dispersion relation showing the light line for air
(a diagram similar to Fig. 7.2-10). Determine the frequency
range (in units of ωℬ) for omnidirectional reflection.



Notes
1 Equation (7.1-30), in which φ = nkod, reproduces (2.5-18), in
which φ = 2nkod.
2 In Exercise 2.5-3, the quantity φ denotes the phase between
successive phasors whereas here that phase is denoted 2φ since it
represents a round trip.
3 It can be shown that the differential operator in the generalized
magnetic-field Helmholtz equation (7.0-2) is Hermitian whereas
that in the electric-field Helmholtz equation (7.0-2) is non-
Hermitian.
4 See S. G. Johnson and J. D. Joannopoulos, Block-Iterative
Frequency-Domain Methods for Maxwell’s Equations in a
Planewave Basis, Optics Express, vol. 8, pp. 173–190, 2001.
5 See A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W.
Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin,
O. Toader, and H. M. van Driel, Large-Scale Synthesis of a Silicon
Photonic Crystal with a Complete Three-Dimensional Bandgap Near
1.5 Micrometres, Nature, vol. 405, pp. 437–440, 2000.
6 See E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic Band
Structures: The Face-Centered Cubic Case Employing Non-Spherical
Atoms, Physical Review Letters, vol. 67, pp. 2295–2298, 1991.
7 See J. G. Fleming and S.-Y. Lin, Three-Dimensional Photonic
Crystal with a Stop Band from 1.35 to 1.95 μm, Optics Letters, vol.
24, pp. 49–51, 1999.
8 See M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D.
Joannopoulos, E. P. Ippen, and H. I. Smith, A Three-Dimensional
Optical Photonic Crystal with Designed Point Defects, Nature, vol.
429, pp. 538–542, 2004.
9 See S. P. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda,
Control of Light Emission by 3D Photonic Crystals, Science, vol.
305, pp. 227–229, 2004.
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*C. Hyperbolic Media
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Paul Karl Ludwig Drude (1863–1906), a German physicist,
worked toward integrating optics with Maxwell’s electromagnetics.
He forged a theory, commonly known as the Drude model, for
describing the behavior of electrons in metals.

Viktor Georgievich Veselago (born 1929), a Russian physicist,
established theoretically in the 1960s that materials whose electric
permittivity and magnetic permeability were both negative would
exhibit unexpected and unusual properties.

Sir John Pendry (born 1943), a British theoretical physicist,
showed in 2000 that a slab of negative-index material acts as a lens
with theoretically perfect focus. In 2006, he proposed the use of
transformation optics for creating invisibility cloaks.

Visible light cannot propagate through highly conductive media
such as metals. When a light beam crosses the boundary into such a
medium, its intensity rapidly diminishes within a short distance
known as the penetration depth, which can be substantially smaller
than a wavelength. A metallic surface acts rather like a mirror from
which light is fully reflected back into the contiguous dielectric
medium whence it came.



In the previous chapters of this book, metallic components have
indeed played the role of simple mirrors. It turns out, however, that
metals can support light waves, provided that they travel along the
boundaries of the metal, in regions confined to sub-wavelength
dimensions. Such light waves travel along a metal surface in the
form of a guided surface wave. It may propagate on, but not in,
metal wires, and it may be guided by subwavelength metallic
structures configured as integrated-photonic circuits. Such
structures may also serve as resonators within which light may be
confined, or from which light can scatter strongly at specific
resonance frequencies.

Advances in nanotechnology permit such subwavelength metallic
structures to be embedded and distributed within dielectric
materials to form synthetic photonic materials known as
metamaterials. Unavailable in nature, these materials have the
merit that they may be endowed with highly useful optical
properties. Metamaterials offer numerous novel applications and
have come to play an important role in photonics.

Metals and metamaterials possess a number of unique optical
characteristics:

A metal–dielectric boundary can serve as a waveguide that
supports an optical wave traveling along the boundary. Such a
surface wave, known as a surface plasmon polariton
(SPP), is highly confined to the vicinity of the boundary and is
accompanied by an electric-charge-density longitudinal wave (a
plasma wave) of the same frequency that concomitantly travels
along the metal surface. The tight confinement and short
wavelength of SPPs can provide a significant increase in local
field intensity. Biosensing applications are predicated on the
sensitivity of the SPP to the properties of the surrounding
dielectric media.

Metallic structures of subwavelength dimensions (e.g.,
nanospheres) embedded in dielectric media support plasmonic



oscillations at their boundaries. These oscillations, called
localized surface plasmons (LSPs), exhibit resonance
when the excitation frequency matches the resonance
frequency of the structure, which typically falls in the visible or
ultraviolet region of the spectrum. As a result of resonantly
enhanced absorption and scattering, such nanoparticles can
exhibit intense colors in the visible, both in transmission and
reflection. This metal-optics technology, known as
plasmonics, finds use in applications ranging from fabricating
stained glass to probing the dielectric properties of a host
medium.

Metallic nanostructures may be fabricated in the form of circuit
elements and nanoantennas that are analogous to their
radiowave and microwave counterparts, but that operate in the
infrared and visible. This plasmonics technology seeks to
couple the domains of highly integrated compact electronics
(dimensions < 100 nm) and optical-frequency ultrafast
photonics (bandwidths > 100 THz), and is expected to find use
in applications such as intrachip interconnects.

An array of metallic structures printed at the boundary between
two dielectric media creates a metasurface, which exhibits
unique optical properties that are dictated by the shape of the
elements and the geometrical configuration of the array.
Behaving much like arrays of optical antennas, metasurfaces
bend light in unusual ways that do not obey the ordinary laws
of reflection and refraction prevailing at dielectric boundaries.

Materials with embedded metallic and dielectric structures of
subwavelength dimensions, distributed at wavelength or
subwavelength distances throughout the volume, exhibit novel
electrical and magnetic properties that result from electric
charges and currents induced in the constituent conductive
metal components. Such metamaterials may be engineered to
exhibit remarkable optical properties such as negative



refractive index, whereby a negative angle of refraction is
imparted at a boundary with a conventional dielectric medium.

Metamaterials may be designed with spatially varying (graded)
properties that transform optical waves in unusual ways so that
they can, for example, wrap around objects and render them
invisible. A particularly intriguing application is optical
cloaking.

The optical properties of metals and metamaterials are described by
the electromagnetic theory of light introduced in Chapter 5, just as
for dielectric media. The principal distinction is that the electric
permittivity ε and the magnetic permeability μ may take on negative
values for metals and metamaterials. Materials in which one of
these parameters is negative are referred to as single-negative
(SNG) media, while those in which both are negative are known as
double-negative (DNG) media. Conventional lossless dielectric
media are double-positive (DPS) media.

This Chapter

The chapter opens with an introductory section that examines some
of the optical properties of SNG and DNG media (Sec. 8.1). The
existence of surface guided waves at a DPS-SNG boundary is
demonstrated, negative refraction at a DPS-DNG boundary is
highlighted, and some of the potential applications of negative-
refractive-index materials are described.

Section 8.2 provides an introduction to metal optics and plasmonics.
It begins by presenting a physical model for the optics of metals, the
Drude model, and shows that a metal can behave as a SNG
material under certain conditions. SPP waves at a metal–dielectric
boundary are examined. The Rayleigh scattering of light from a
metal nanosphere is considered and contrasted with Rayleigh
scattering from a dielectric sphere (as discussed in Sec. 5.6B).
Optical antennas are briefly described.

Section 8.3 considers metamaterial optics. It deals with the various
shapes and organizational patterns of metal objects that can be



embedded in a dielectric medium, or on a dielectric surface, to
endow it with particular macroscopic properties: ε(ω) and μ(ω) with
real and imaginary components of desired signs. Of special interest
is the design of negative-refractive-index media.

Section 8.4 introduces transformation optics, a mathematical tool
that facilitates the design of special graded optical materials that
guide light along desired trajectories. The goal is often to fabricate
metamaterials that effect a desired result, such as creating
trajectories that bypass an object so that it is rendered invisible
(cloaked).

Since metamaterial optics, one of the principal topics of this
chapter, involves the interaction of light with components of
subwavelength (nanometer) scale, it lies in the domain of
nanophotonics, also called nano-optics. Previous chapters, in
contrast, have focused principally on the propagation of light
through dielectric materials and components with dimensions
substantially greater than the wavelength of light, which is the
domain of bulk optics.

Upcoming chapters on guided-wave optics (Chapter 9), fiber optics
(Chapter 10), and resonator optics (Chapter 11), have traditionally
dealt with light propagating through structures whose dimensions
are of the order of micrometers, a domain known as micro-optics.
In recent years, however, the reach of nano-optics, via plasmonics,
has penetrated these domains, as illustrated by the following
examples: The ability of metal–dielectric structures to support
surface plasmon polaritons at subwavelength spatial scales has led
to the use of plasmonic waveguides, as reported in Chapter 9.
Similarly, the ability of metallic structures of subwavelength
dimensions to support localized surface plasmons at their
boundaries with dielectrics has led to the development of plasmonic
resonators and plasmonic nanolasers, considered in Chapters 11 and
18, respectively.

8.1 SINGLE- AND DOUBLE-NEGATIVE MEDIA



As described in Chapter 5, the propagation of an electromagnetic
wave through a linear, isotropic medium is governed by the electric
permittivity ε and magnetic permeability μ of the material. In
general, these quantities are frequency-dependent and complex-
valued. Wave properties, such as the propagation constant, velocity,
attenuation coefficient, impedance, and dispersion relation, can be
readily determined from ε and μ. The signs of the real and
imaginary components of ε and μ at a given frequency govern the
various regimes of wave propagation:

For media in which μ is real and positive (indicating that there
is neither magnetic absorption nor amplification), the wave-
propagation characteristics depend on the signs of the real and
imaginary parts of ε, as set forth in Chapter 5:

– If ε is real, the medium exhibits neither dielectric
absorption nor gain (it is lossless and passive), and waves
propagate without attenuation, as described in Secs. 5.1–5.4.

– In the presence of absorption (Sec. 5.5), ε is complex and
Im{ε} ≡ ε″ is negative, but Re{ε} ≡ ε″ can be either positive
or negative. For the resonant medium described in Sec.
5.5C, for example, the imaginary part of the electric
susceptibility, Im{χ} ≡ χ″, is negative (see Fig. 5.5-6) and
therefore so too is ε″ = εoχ″. The behavior of the real part of
the susceptibility χ′, also displayed in Fig. 5.5-6, is such that
ε′ = εo(1 + χ′) is positive for frequencies below the resonance
frequency but may be negative above the resonance
frequency.

– For an active medium that exhibits gain, such as a laser
medium, χ″ is positive (gain represents negative absorption;
see Sec. 15.1A). In this case, ε″ is positive, while ε′ may be
either positive or negative.

Similarly, for media with real and positive ε, the magnetic
properties, described by μ, dictate the nature of wave



propagation. Magnetic media, including media with metal
components that carry induced electric currents and generate
magnetic fields, generally have complex values of μ, with real
and imaginary parts that may be either positive or negative.

In the most general case, the manner in which the signs of the
real and imaginary components of ε and μ dictate the
characteristics of wave propagation is more subtle.

In the exposition that follows, we confine ourselves principally to
lossless and passive media, in which there is neither absorption nor
gain, indicating that we are, for example, away from dielectric and
magnetic resonances. Under these circumstances, both ε and μ are
real, and their signs may be positive or negative at a given
frequency. Four regimes ensue:

Double-positive (DPS) materials (both ε and μ are positive).
These materials are transparent and have positive refractive
index. Ordinary dielectric media fall into this category.

Single-negative (SNG) materials (either ε or μ is negative).
These materials are opaque but they support optical surface
waves at boundaries with DPS materials. As will become
apparent in Sec. 8.2, metals such as gold and silver exhibit
negative ε while maintaining positive μ in the infrared and
visible spectral regions. Ferrites have positive ε and negative μ
at microwave frequencies.

Double-negative (DNG) materials (both ε and μ are negative).
These materials, also called left-handed media for reasons
that will become apparent in the sequel, are transparent and
have negative refractive index, signifying that the application of
Snell’s law at a DPS-DNG boundary results in a negative angle
of refraction. The ramifications of this property for optical
components with multiple boundaries are most interesting.
Metamaterials may be designed to exhibit such properties in
specific frequency bands.
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DPS, SNG, and DNG media are defined by the signs of ε and μ.

We begin by examining the optical properties of linear, lossless,
passive media in the DPS, SNG, and DNG regimes. The
ramifications of the presence of loss in a DNG medium are
considered at the end of Sec. 8.1A. Initially we pay little heed to
whether such media exist naturally or must be fabricated
synthetically; this issue is addressed in Secs. 8.2 and 8.3.

A. Wave Propagation in SNG and DNG Media
The propagation of a monochromatic electromagnetic wave in a
linear, homogeneous, and isotropic medium with electric
permittivity ε and magnetic permeability μ is described in Secs. 5.3
and 5.4. Maxwell’s equations (5.3-12)–(5.3-15), along with the
Helmholtz equation (5.3-16), are applicable for arbitrary complex ε
and μ, regardless of the signs of their real and imaginary parts.

For simplicity, we consider a monochromatic plane wave with
electric and magnetic complex-amplitude vectors given by E(r)= E0
exp(−jk · r) and H(r)= H0 exp(−jk · r), respectively, and with
wavevector k. Maxwell’s equations then require

in accordance with (5.4-1)–(5.4-4). The associated wavenumber
(magnitude of the vector k) is
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and the impedance (ratio of the magnitudes of E0 and H0) is given
by

as specified in (5.4-5). Equation (8.1-1) indicates that E0 is
orthogonal to both k and H0, while (8.1-2) indicates that H0 is
orthogonal to both k and E0, so that the three vectors form a
mutually orthogonal set. For fixed orthogonal directions of the
fields E0 and H0, the wavevector k is thus orthogonal to the plane
defined by these field vectors, but its actual direction depends on
the signs of ε and μ, as we shall see shortly.

Since k is in general complex, we write k = β − jγ, where β and γ are
real, so that

The propagation constant β = ω/c determines both the wave velocity
c = co/n and the refractive index n, whereas γ represents the field
attenuation coefficient ( , where α is the intensity attenuation
coefficient; see Sec. 5.5A).

We now consider the implications of these equations for media in
which ε and μ are real, where either or both may be negative.

DPS Medium

The double-positive (DPS) medium provides a simple and familiar
benchmark. Both ε and μ are positive, so that k and η are real,
whereupon

As discussed in Sec. 5.4A, such media support transverse
electromagnetic (TEM) waves for which the vectors E0, H0, and k
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are mutually orthogonal and form a right-handed system, as
illustrated in Fig. 8.1-1(a). The Poynting vector  points
along the same direction as the wave vector k, and the intensity of
the wave (power flow per unit area) is given by I = Re{S} =
|E0|2/2η.

SNG Medium

In a single-negative (SNG) medium, either ε or μ is negative so that
k and η are both imaginary, whereupon (8.1-5) provides

These parameters correspond to an exponentially decaying field that
behaves as exp(−γz), where z is the propagation distance. Since β =
0, a SNG medium does not support propagating waves. The optical
intensity is attenuated by the factor e−1 at a depth 

. The quantity dp is known as the
penetration depth or skin depth.1 The imaginary impedance η
indicates that there is a π/2 phase shift between the electric and
magnetic fields. Moreover, the Poynting vector  is
imaginary so that the intensity I = Re{S} = 0, indicating that no
power is transported through such a medium.

DNG Medium

In a double-negative (DNG) medium, both ε and μ are negative so
that (8.1-5) leads to , which is real, whereupon

indicating that the refractive index is negative. Since γ = 0, the
medium sustains wave propagation without attenuation. The choice
of signs for the square roots in (8.1-8) is established by examining
the directions of the vectors E0, H0, and k, which may be
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determined directly from Maxwell’s equations. For the DNG
medium, (8.1-1) and (8.1-2) yield

As with the DPS medium, the vectors E0, H0, and k are mutually
orthogonal. However, the reversal of signs in (8.1-9) and (8.1-10),
relative to those in (8.1-1) and (8.1-2) for the DPS medium, is
tantamount to exchanging the roles of the electric and magnetic
fields.

Figure 8.1-1 illustrates the directions of flow of the wavefronts and
power in DPS and DNG media. Comparing Figs. 8.1-1(a) and (c), it is
apparent that E0, H0, and k in a DPS medium form the usual right-
handed set of vectors, whereas in a DNG medium they form a left-
handed set (the medium is then said to be left-handed). This has
profound implications since it signifies that in a DNG medium the
complex Poynting vector  introduced in (5.3-10) is
antiparallel to the wavevector k. Since the impedance η positive, the
wavenumber k is taken to be negative, and therefore so too is the
refractive index n, as stipulated in (8.1-8). The DNG material is
therefore a negative-index material (NIM). The implications of
negative refractive index will be considered in Sec. 8.1B.



Figure 8.1-1 (a) Plane wave propagating in an ordinary double-
positive (DPS) medium. The vectors E, H, and k form a right-
handed set and the wavefronts travel in the same direction as the
power flow. (b) Plane wave propagating in a double-negative (DNG)
medium. The vectors E, H, and k form a left-handed set and the
wavefronts travel in a direction opposite to that of the power flow.
(c) Equivalent representation to that depicted in (b), obtained by
effecting a 90° rotation about the horizontal (S and k) axis that
renders E vertical, followed by a 180° rotation about the new
vertical (E) axis.

Media with Complex ε and μ

The prospects of ε and μ both being real and negative at some
frequency are remote. For example, if both parameters are described
by a resonant-medium model, such as that considered in Sec. 5.5C,
then throughout the frequency range over which the real part is
negative, the imaginary part cannot be zero, by virtue of the
Kramers–Kronig relations (see Sec. 5.5B and Sec. B.1 of Appendix
B). It turns out, however, that left-handedness, and thus negative
refractive index, can be exhibited in conjunction with absorption.

For absorptive media, ε = ε′ + jε″ and μ = μ′ + jμ″ are complex with
negative imaginary parts ε″ and μ″, respectively. We now
demonstrate that if the real parts, ε′ and μ′, are both negative, the
medium is indeed left-handed even for nonvanishing ε″ and μ″. As
previously, consider a wave exp(−jβz) exp(−γz) with positive γ so
that it decays along the +z direction. The propagation constant β
may be obtained by writing (8.1-5) in the form (β −jγ)2 = ω2(ε′ + jε″)
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(με + jμ″) and then matching the imaginary parts to obtain 2γβ =
ω2(−μ″ ε′ − ε″ μ′). If both ε′ and μ′ are negative, then β is negative,
and so too is the refractive index. The wavefront then travels in the
−z direction, opposite to the direction of decay. We now proceed to
show that the power flow is always in the same direction as the
power decay, so that the direction of the wavevector is opposite to
that of the power flow and the medium is left-handed.

Power flow is determined by the Poynting vector . Since
E0 = ηH0, where  is the characteristic impedance, and since
Re{η} is always positive for passive media, the power flow must be
in the +z direction for the field configuration shown in Fig. 8.1-1(c).
It can be explicitly shown that Re{η} > 0 by writing 

; since ε″ and μ″ are both negative, we have π <
arg{ε} < 2π and π < arg{μ} < 2π whereupon 

.

Although the condition that the real part of both ε and μ be negative
is sufficient for achieving left handedness, it is not necessary. It is
possible for left-handedness to be exhibited for an absorptive
medium with only one of the two parameters, ε′ or μ′, being
negative, indicating that the class of left-handed media transcends
that of double-negative media. The definitive necessary and
sufficient condition for left-handedness turns out to be2

Materials for which both ε and μ are real, but only one is negative,
do not satisfy (8.1-11) and therefore cannot be left-handed. Nor do
media for which one of the material parameters, ε or μ, is real and
positive, whatever the real and imaginary values of the other. It is
clear, then, that nonmagnetic materials cannot be left-handed.

B. Waves at Boundaries Between DPS, SNG, and DNG
Media



We now consider waves at boundaries between DPS and SNG
media, and between DPS and DNG media.

Reflection at a DPS-SNG Boundary

A wave from an ordinary DPS medium that impinges on its
boundary with a SNG medium is fully reflected since it cannot
propagate through the latter. Since the impedance of the DPS
medium is real, and that of the SNG medium is imaginary, the
magnitude of the reflection coefficient must be unity (see Sec. 6.2).
Such reflection is accompanied by the creation of an evanescent
field in the SNG medium; this bears a resemblance to total internal
reflection at the boundary between two dielectric (DPS) media.
However, total internal reflection occurs only for angles of
incidence greater than the critical angle whereas reflection at the
DPS–SNG boundary is total regardless of the angle of incidence, as
illustrated in Fig. 8.1-2. Reflection at the DPS–SNG boundary is
therefore more akin to that at a perfect mirror.

Figure 8.1-2 (a) Total internal reflection at a boundary between
two DPS media takes place for angles of incidence greater than the
critical angle θc. (b) Total reflection at a DPS–SNG boundary occurs
for all angles of incidence. In both cases, an evanescent wave is
created in the vicinity of the boundary.

Surface Waves at a DPS-SNG Boundary

In the limit of grazing incidence (angle of incidence approaching
90°) at a DPS–SNG boundary, a surface wave may be created that
propagates along the boundary but is evanescent on both sides of it.
As a specific example, consider the boundary between a medium
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with positive electric permittivity ε1 (medium 1) and another with
negative permittivity ε2 (medium 2). Both media are assumed to
have the same (positive) magnetic permeability μ and both are
lossless and passive so that ε1, ε2, and μ are real.

We proceed to demonstrate that such a DPS–SNG boundary can
support a surface guided wave that travels along the boundary
without changing its shape, as illustrated in Fig. 8.1-3(a). We
assume that the wave is a TM wave, for which the magnetic field is
parallel to the boundary and orthogonal to the direction of
propagation. Each of the three field components Hx, εy, and Ez
varies as

where β is a common propagation constant and γ1 and γ2 are
positive field extinction coefficients. To satisfy the Helmholz
equation (5.3-16) in each medium, we must have
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Figure 8.1-3 (a) Schematic representation of an optical surface
wave traveling along the boundary between a medium of positive
electric permittivity (DPS medium, such as a dielectric material)
and another of negative permittivity (SNG medium, such as a metal
below the plasma frequency). The associated longitudinal surface-
charge wave is shown in dark blue; the width of each segment
represents its wavelength, which is given by 2π/β. (b) The electric
field Ey as a function of the distance y from the boundary. (c)
Electric and magnetic field lines and the associated charge. The
plasmon wave penetrates to a depth d1 and d2 in the DPS and SNG
media, respectively, and extends a distance db along the boundary.

The amplitudes of the three field components in each medium are
related by Maxwell’s equations, and the amplitudes in different
media are related by the boundary conditions. Since the Hx
component must be continuous, this component has a common
amplitude, say H0, in both media. Maxwell’s equations (8.1-1)
dictate that the amplitudes of the Ey components in the two media
are (−β/ωε1)H0 and (−β/ωε2)H0. The condition that Dy = εEy is
continuous at the boundary is therefore automatically satisfied. The
amplitudes of the Ez components are (−γ1/jωε1)H0 in medium 1 and
(γ2/jωε2)H0 in medium 2. Since the Ez components must be
continuous at the boundary, it follows that



(8.1-16)

(8.1-17)

Because γ1 and γ2 are positive, this can only be attained if ε1 and ε2
have opposite signs. We therefore conclude that such a surface wave
cannot exist at the boundary between two media with positive
electric permittivities, but may exist if the media have electric
permittivities of opposite sign.

Since εEy is continuous and ε changes sign at the boundary, Ey must
also reverse sign at the boundary, as shown in Fig. 8.1-3(b). This in
turn requires the existence of surface electric charge in the form of
a charge-density longitudinal wave that oscillates at the optical
frequency ω. The field lines and the charge distribution are
illustrated in Fig. 8.1-3(c). The combination of the charge-density
wave and the optical wave is known as a surface plasmon
polariton (SPP).3

The properties of the SPP surface wave may be deduced from γ1 and
γ2, in accordance with (8.1-14):

where  is the free-space wavenumber; and nb and εb are,
respectively, the refractive index and electric permittivity associated
with the SPP (the subscript “b” signifies “boundary”). For the
surface wave to be a traveling wave, β must be real, which requires
that εb be positive. This is possible only if |ε2| > ε1, in which case the
SPP surface wave exists. This same condition also renders γ1 and γ2
positive, as required. The properties of the surface wave,
summarized below, are substantially influenced by the ratio |ε2|/ε1:

The velocity is co/nb, and the propagation wavelength, called
the plasmon wavelength, is λo/nb. If |ε2| ≈ ε1, then nb is large,



(8.1-18)

(8.1-19)

the wave is slow, and the plasmon wavelength is much smaller
than the free-space wavelength λo.

The field extinction coefficient in the SNG medium, γ2, is
greater than that in the DNG medium, γ1, by the factor |ε2|/ε1,
which is greater than unity. The penetration depth in the SNG
medium, d2 = 1/2γ2, is therefore always smaller than that in the
DPS medium, d1 = 1/2γ1, by the same factor, as depicted in Fig.
8.1-3. If |ε2| ≈ ε1, then ε1 + ε2 is small and both penetration
depths are significantly smaller than the free-space wavelength
λo so that the SPP is highly confined to the boundary. This is a
remarkable property that can be exploited in many applications.

The optical power flow in the two media may be determined
from Re{S}, where  is the complex Poynting vector
[see (5.3-10)]. Since the components Hx and Ez are out of phase
by 90°, there is no power flow in the y direction. The power
flows in the z and −z directions in the DPS and SNG media,
respectively, with intensities given by the magnitude of Re{S}:

The powers in the two media (areas under the I1(y) and I2(y)
distributions) are:

so that the net power flow P1 − P2 is proportional to [(ε1γ1)−1 −
(|ε2|γ2)−1], which, in view of (8.1-15), is proportional to .
Therefore, in the limit of |ε2| ≈ ε1, the net power flow
approaches zero.



EXAMPLE 8.1-1.

SPP Wave. The boundary between two media with equal
(positive) magnetic permeabilities μ1 = μ2, and with
permittivities ε1 = 1.41 εo and ε2 = −47 εo, supports a SPP wave at
a free-space wavelength λo = 1000 nm with the following
characteristics:

Summary: SPP Waves at a DPS-SNG Boundary
If the condition −ε2 > ε1 is satisfied, the boundary between a DPS
medium and a SNG medium with negative permittivity supports
a TM optical surface wave along with an associated longitudinal
surface-charge wave; the combination is a surface plasmon
polariton (SPP). Because the penetration depths of the SPP into
the two media are substantially smaller than an optical
wavelength, the SPP is tightly confined to the boundary,
resulting in a significant increase in local field intensity. The SPP
has the distinct merit that it can be manipulated at the
nanometer spatial scale while oscillating at an optical frequency.
Using a similar analysis, it can be shown that the boundary
between a DPS medium and a SNG medium with negative
permeability supports a TE surface wave if the condition −μ2 >
μ1 is satisfied. It can also be shown, as illustrated
diagrammatically in Fig. 8.1-4, that the boundary between two
SNG media may support a surface wave if E1 and E2 are of
opposite signs, μ1 and μ2 are also of opposite signs, and a
number of other conditions on the magnitudes of these
parameters are satisfied. Surface waves are not supported at the
boundary between two DPS media nor at the boundary between
two DNG media.
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Figure 8.1-4 The boundary between two media with real
permittivities and permeabilities can support TM or TE surface
waves for values of the ratios ε2/ε1 and μ2/μ1 that fall in the shaded
regions. Example 8.1-1 corresponds to μ2/μ1 = 1 and ε2/ε1 < −1.

SPP at boundary between DPS medium and lossy SNG medium.
The result for a lossless SNG medium may be extended to a lossy
medium by taking ε2 to be complex , with negative real
part , while maintaining μ1 = μ2 and ε1 real and positive. Equations
(8.1-16) and (8.1-17) for the parameters of the SPP wave in the
lossless medium remain valid with slight modifications: the
parameters β, εb, γ1, and γ2 become complex. Following the
approach used in writing (5.5-5) and (8.1-5), we rewrite (8.1-16) as

where γb is the amplitude attenuation coefficient of the traveling
SPP wave. It is clear that the SPP-wave refractive index then
becomes . Equation (8.1-20) can be used to calculate
the velocity of the SPP wave co/nb, the plasmon wavelength λo/nb,
the intensity attenuation coefficient αb = 2γb, and the propagation
length db = 1/αb = 1/2γb. Equation (8.1-17) can be used to calculate
the complex parameters γ1 and γ2, from which the penetration
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depths on both sides of the boundary, d1 = 1/2 Re{γ1} and d2 = 1/2
Re{γ2}, may be determined. The dimensions of the plasmon wave
are d1 and d2 in the transverse direction, and db along the boundary.

EXAMPLE 8.1-2.

SPP at Gold-Si3N4 Interface. At a free-space wavelength λo =
1000 nm, the permittivities of Si3N4 and gold are ε1 = 1.41 εo and
ε2 =(−47 + j3.4) εo, respectively. These values are identical to
those set forth in Example 8.1-1 except that we now
accommodate a small imaginary component of ε2. An SPP wave
propagating at the gold-Si3N4 interface thus has approximately
the same values of nb, d1, and d2 as those cited in Example 8.1-1.
The propagation length, on the other hand, is determined by the
imaginary component of ε2 via

With the help of (8.1-20) we obtain

which leads to db = 59.3 μm for λo = 1 μm.

Negative Refraction at a DPS-DNG Boundary

The refraction of light at the boundary between two ordinary
dielectric (DPS) media obeys Snell’s law, n1 sin θ1 = n2 sin θ2, which
results from matching the components of the wavevectors k1 and k2
along the direction of the boundary [Figs. 8.1-5(a) and 2.4-2]. If one
of the media, say medium 2, is instead a DNG medium with
negative refractive index n2 then we have n1 sin θ1 = −|n2| sin θ2,
which reveals that the angle of refraction θ2 must be negative and
the refracted and incident rays both lie on same side of the normal
to the boundary. This outcome also can be understood as arising



from matching the components of the wavevectors k1 and k2 along
the direction of the boundary [Fig. 8.1-5(b)].

It is thus clear that the optics of planar boundaries and lenses is
altered significantly when a DPS medium is replaced by a DNG
medium. Indeed, a convex lens of DNG material behaves like a
concave lens of DPS material, and vice-versa. Also unexpected is the
observation that a planar boundary between positive-and negative-
index materials possesses focusing power, as illustrated in Fig. 8.1-
6(a) for the special case n2 = −n1, which provides θ2 = −θ1. The
planar boundary then acts on optical rays in the same way as does a
convex spherical boundary between two DPS media, as depicted in
Fig. 1.2-13: it forms an uninverted image with unity magnification.
Moreover, for DPS and DNG media with permittivities and
permeabilities that have the same magnitudes (ε2 = −ε1 and μ2 =
−μ1), the impedances  and  are of equal
magnitude and sign, so that no reflection occurs at the boundary, at
any inclination, regardless of the polarization.

Figure 8.1-5 (a) Refraction at the boundary between two positive-
index media. The directions of S2 and k2 are the same. (b)
Refraction at the boundary between positive-and negative-index
media. The directions of S2 and k2 are opposite. In both cases, the
projections of the wavevectors k1 and k2 along the boundary are
equal in magnitude and parallel in direction.



NIM Slab as a Near-Field Imaging System

A slab of DNG material (NIM) with parameters ε = −εo, μ = −μo, n =
−1, and η = ηo, located in free space, acts as a lens. As illustrated in
Fig. 8.1-6(b), each of the two DPS-DNG boundaries has focusing
power so that one image is formed inside the slab and another
beyond it. For a slab of width d0, the imaging equation is simply d1
+ d2 = d0. Since the impedances match at the boundaries, no
reflection occurs and the NIM slab has unity transmittance.

Figure 8.1-6 (a) Focusing of rays by a boundary between DPS and
DNG media with refractive indices of equal magnitudes. The
boundary forms an upright image inside the DNG medium. (b)
Image formation using a slab with negative index n = −1 in free
space. Each boundary has focusing power so that images are formed
both inside and outside the slab. (c) Transmission of a propagating
wave (spatial frequency smaller than the inverse wavelength), and
an evanescent wave (spatial frequency greater than the inverse
wavelength), through the slab. (d) The amplitude of an evanescent
wave associated with a harmonic component of an object
distribution with spatial frequency greater than the inverse
wavelength is attenuated in free space but is amplified by the DNG
medium so that its amplitude is restored in the image plane. A
semilogarithmic sketch is provided.

As an imaging system, the NIM slab also has the remarkable
property of forming an image of the object field distribution with
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subwavelength resolution, i.e., it offers imaging details finer than
the wavelength (i.e., spatial frequencies greater than the inverse
wavelength). As explained in Sec. 4.4D, imaging systems that make
use of ordinary optics cannot transmit these high spatial
frequencies since they correspond to attenuated evanescent waves.
This remarkable property of the NIM slab means that, in principle,
it is a “perfect lens” (also called a “superlens”).4

The NIM slab offers resolution that exceeds the diffraction limit, as
we now demonstrate with the help of the Fourier-optics approach
described in Chapter 4. Referring to the illustration provided in Fig.
8.1-6(c), the transfer function for the propagation of a wave a
distance d1 through free space is

where (νx, νy) = (kx/2π, ky/2π) are the spatial frequencies [see (4.1-
9)]. Similarly, propagation a distance d0 through a DNG medium is
described by the transfer function , where 

. The third segment of the imaging system portrayed in Fig.
8.1-6(c) is propagation a distance d2 through free space, which has
the transfer function H2(νx, νy) = exp(−jkzd2). The overall transfer
function of this imaging system is thus the product H = H1H0H2.
When the imaging equation d1 + d2 = d0 is satisfied, H becomes
unity, which reveals that the system is an all-pass spatial filter and
hence provides “perfect” imaging.

However, these three transfer functions have distinctly different
behaviors for spatial frequencies that lie below and above λ−1 (i.e.,
for spatial frequencies smaller and larger than those for which 

; see Fig. 4.1-11). Below λ−1, the quantities under the
square-root signs in (8.1-22) are positive so that all transfer
functions are phase factors. In this domain, the phase of the
function H0 has a sign opposite to those of the free-space functions
H1 and H2 so that the NIM phase factor compensates the phase
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shifts introduced by the two stretches of free space. The net result is
a propagating wave [Fig. 8.1-6(c)].

For spatial frequencies larger than λ−1, in contrast, the wavevector
components5 kz and  become imaginary, 

, whereupon

where γ is real. The factors H1 and H2 then represent attenuated
evanescent waves, whereas H0 represents an amplified evanescent
wave. Consequently, the high spatial frequencies that are severely
attenuated by propagation through free space, both before and after
the slab, are amplified by an equal factor in the DNG medium, and
are therefore fully restored [Fig. 8.1-6(d)]. Amplification of the
evanescent wave in the NIM is not inconsistent with conservation
of energy.

While the perfect restoration of an evanescent field that has
diminished significantly as a result of exponential decay is possible
in principle, slight energy dissipation in the NIM slab (evidenced by
a small imaginary part of ε or μ) may thwart the restoration process.
The distance from the object to the slab, the thickness of the slab,
and the overall distance between the object and image planes, must
be small in comparison with the wavelength, particularly if the
spatial frequencies to be recovered are much higher than the
inverse wavelength. This requirement means that the NIM slab is a
near-field imaging system.

Far-field imaging with subwavelength resolution.
However, evanescent waves restored in the near field of the DNG
slab may be converted into propagating waves, which can then be
used to produce an image in the far field. This conversion may be
implemented by making use of a periodic element of high spatial



frequency, such as a nanoscale corrugation on the exit surface of the
slab, as illustrated in Fig. 8.1-7. When an evanescent wave
exp(−jkxx) of high spatial frequency kx is modulated by a harmonic
function exp(jqx) of high spatial frequency q, the result is a
propagating wave exp[−j(kx − q)x] of lower spatial frequency |kx −
q|, provided that |kx − q| < ko. The far-field image formed by the
downconverted spatial frequencies may, in principle, be processed
to obtain a perfect replica of the original spatial distribution.

Figure 8.1-7 (a) An evanescent wave restored by a DNG slab
attenuates in air beyond the near field. (b) An evanescent wave
restored by a NIM slab can be converted into a propagating wave by
making use of a periodic surface (grating) at the boundary.

*C. Hyperbolic Media
Anisotropic media may have permittivity and permeability tensors
with positive or negative principal values. The designation of the
medium as DPS, SNG, or DNG is then dependent on the direction of
propagation of the wave as well as on its polarization. To
demonstrate one facet of this rich behavior, we consider media
endowed with isotropic magnetic properties and positive
permeability μ, but with anisotropic dielectric properties.

Wave propagation in anisotropic media was described in Sec. 6.3 for
media with positive principal values of the electric permittivity
tensor ε, namely ε1, ε2 and ε3. If these parameters take on mixed
signs instead, wave propagation exhibits a number of unusual
properties. For simplicity, we consider the special case of a uniaxial
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medium with ε1 = ε2 > 0, and compare wave propagation in media
with positive and negative ε3.

As shown in Sec. 6.3, the dispersion surfaces, also called the k
surfaces or surfaces of constant ω(k), are, for the ordinary wave, a
sphere of radius

where , and, for the extraordinary wave, a quadric surface

as provided in (6.3-21) and (6.3-22), respectively.

Considering the two cases at hand, we find:

When ε3 is positive, the extraordinary k surface is an ellipsoid
of revolution, as displayed in Figs. 6.3-11(b) and 8.1-8(a). The
ordinary and extraordinary waves have refractive indices no and
n(θ), respectively, where n(θ), which is given by (6.3-15), varies
between no and , as the angle θ varies between 0 and
90°.

When ε3 is negative, the extraordinary k surface is instead a
hyperboloid of revolution (in two sheets), as portrayed in Fig.
8.1-8(b), and the material is known as a hyperbolic medium.
The refractive index n(θ) for an extraordinary wave at an angle
θ in the k2–k3 plane is then given by

where . As θ increases from 0 to θmax =
tan−1(ne/no), the refractive index n(θ) increases from no to ∞, as
can be discerned from Fig. 8.1-8(b), signifying that the



wavelength in the medium becomes progressively smaller and
the wave slows to a halt at θ = θmax.

Figure 8.1-8 Contours of the k surfaces in the k2–k3 plane for a
uniaxial anisotropic medium with principal values of the dielectric
tensor ε1 = ε2 > 0 in two cases: (a) ε3 > 0, and (b) ε3 < 0. The
contours are shown only for the extraordinary waves (for the
ordinary waves, they are spheres in both cases). (a) The k contour is
an ellipse and the medium is DPS for all directions of propagation.
(b) The k contour is a hyperbola and the waves can propagate only
in directions that lie within a cone of half-angle θmax. Outside this
cone, the medium acts like a SNG medium, which does not support
propagating waves.

The Hyperbolic Slab as a Far-Field Imaging System with
Subwavelength Resolution

An important property of a hyperbolic medium is that for a plane
wave with wavevector components (k1, k2, k3), no matter how large
k1 and k2, there is a real value of k3 that satisfies (8.1-25) when ε3 is
negative, indicating that the wave can propagate through the
medium. This signifies that spatial frequencies greater than an
inverse wavelength in any plane do not correspond to evanescent
waves, as they do for ordinary media (see Sec. 4.1B), but rather can
be transmitted over long distances. Although propagation is



accompanied by Fresnel diffraction, the hyperbolic medium has a
transfer function with no spatial frequency cutoff.

Moreover, Fresnel diffraction may be significantly reduced in a
hyperbolic medium. If n0 ≪ ne, then θmax = tan−1(ne/no) approaches
π/2, whereupon the hyperboloid of revolution in Fig. 8.1-8(b)
flattens and becomes approximately planar, corresponding to a
constant k3 = noko, for all k1 and k2. The transfer function
exp(−jk3z) associated with propagation in the slab is then
independent of the spatial frequencies (k1, k2) of the input-field
distribution. A point in the input plane is thus imaged to a point in
the output plane, and propagation may be described by ray optics.
The slab then acts as perfect near-field imaging system (i.e., one
with subwavelength resolution), as illustrated in Fig. 8.1-9(a).
Furthermore, the slab may be curved in such a way that the image is
geometrically magnified, as shown in Fig. 8.1-9(b). If the spatial-
frequency components of the magnified image become smaller than
the inverse wavelength, they generate propagating waves that may
be captured with the help of a conventional lens, thereby forming a
far-field image. A cylindrical slab such as this is known as a
hyperlens.



Figure 8.1-9 (a) A hyperbolic slab with ε3 < 0 and 0 < ε1 = ε2 ≪ |
ε3| has a planar dispersion relation (k3 = constant) so that
propagation along the optic axis (z direction) is diffraction-free. (b)
A hyperbolic slab curved to form an inhomogeneous cylindrical
structure, with the local optic axis pointing in the radial direction,
acts as a magnifier of subwavelength details. If the details of the
magnified image are larger than the wavelength, it produces
propagating waves in the outer medium.

Refraction at the Boundary of a Hyperbolic Medium

Refraction at a boundary between two media may be determined by
drawing the k surfaces for the two media and matching the
components of k along the boundary (see, e.g., the analysis of
double refraction in Sec. 6.3E). The k surfaces for a boundary
between an isotropic DPS medium and a hyperbolic medium are
shown in Fig. 8.1-10(a), with only the extraordinary wave displayed
for the hyperbolic medium.



Figure 8.1-10 Refraction at a boundary between an isotropic DPS
medium of refractive index ni and a uniaxial hyperbolic medium
with refractive indices no and ne. (a) The k surface for the isotropic
medium is a sphere, and that for the extraordinary wave of the
hyperbolic medium is a hyperboloid of revolution. A form of
negative refraction is evident since the Poynting vector S of the
incident wave points upward whereas that of the refracted wave
points downward. (b) Angle of refraction θ as a function of the angle
of incidence θi for no = 0.8 ni and ne = 1.25 ni. For the ordinary wave,
refraction occurs for angles of incidence θi smaller than the critical
angle θc. For the extraordinary wave, refraction occurs for all angles
θi, but the angle of refraction is limited to θ < θmax.

Because the k component along the boundary for the hyperbolic
medium extends from 0 to ∞, it is always possible to find a match
with that for any wave incident from the DPS medium, as may be
confirmed by solving the matching equation, ni sin θi = n(θ) sin θ,
together with (8.1-26). Total internal reflection therefore does not
occur at this boundary. A plot of the angle of refraction θ as a
function of the angle of incidence θi is displayed in Fig. 8.1-10(b).
This type of all-angle refraction is consistent with the
observation that the extraordinary wave in the hyperbolic medium
cannot be evanescent.

8.2 METAL OPTICS: PLASMONICS
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A. Optical Properties of Metals

Conductive Media

Conductive media such as metals, semiconductors, doped
dielectrics, and ionized gases have free electric charges and an
associated electric current density 𝒥. In such materials, the first of
the source-free Maxwell’s equations, (5.1-7), must be modified by
including the current density 𝒥 along with the displacement current
density ∂𝒟/∂t, so that

The three other source-free Maxwell’s equations, (5.1-8)–(5.1-10),
remain unmodified, with μ = μo, since naturally occurring materials
do not exhibit magnetic effects that vary at optical frequencies.

For a monochromatic wave of angular frequency ω, (8.2-1) takes the
form

If the medium has linear dielectric properties, the electric flux
density is given by D = εE = εo(1 + χ)E. Similarly, if the medium has
linear conductive properties, and the conductivity is denoted σ, the
electric current density is proportional to the electric field,

which is a form of Ohm’s law. Under these conditions, the right-
hand side of (8.2-2) becomes (jωε + σ)E = jω(ε + σ/jω)E, so that

where the effective electric permittivity εc is given by
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Effective Permittivity

The effective permittivity εc is a complex, frequency-dependent
parameter that represents a combination of the dielectric and
conductive properties of the medium. Since the second term in (8.2-
5) varies inversely with frequency, the contribution of the
conductive component diminishes with increasing frequency.

Since (8.2-4) takes the same form as the analogous equation for a
dielectric medium, (5.3-12), the laws of wave propagation derived in
Secs. 5.3–5.5 are applicable even in the presence of conductivity.
Hence, the wavenumber in (5.5-2) and (5.5-3) takes the form 

, the impedance in (5.5-6) becomes , and
the refractive index n and field attenuation coefficient  in
(5.5-5) are determined from the complex equation

where .

The ratio σ/ωε in (8.2-6) has two limiting regimes. When σ/ωε ≪ 1,
dielectric effects dominate and conductive effects constitute only a
minor correction to the wavenumber. When σ/ωε ≫ 1, in contrast,
conductive effects dominate and εc ≈ σ/jω. We can use the Taylor-
series expansion  for x ≪ 1, along with the identity 

, to obtain approximate expressions for the wave
parameters when σ is real and frequency-independent. The results
are provided in Table 8.2-1 for both limiting regimes:



Table 8.2-1 Refractive index n, attenuation coefficient α, and
impedance η for a medium with real-valued, frequency-independent
conductivity σ, in the limits of small and large values of σ/ωε. These
equations are not applicable when the conductivity σ is complex
and/or frequency-dependent, as discussed in the next section in
connection with the Drude model.

It is apparent from Table 8.2-1 that at a fixed frequency ω, the
attenuation coefficient α is proportional to the conductivity σ for
small values of σ, but becomes proportional σ to  for large values
of σ. The impedance η, initially real and independent of σ,
eventually acquires a 45° phase shift and becomes inversely
proportional to  as σ becomes large. In this limit, η itself becomes
small so that the material becomes highly reflective at the boundary
with a non-conductive medium.

For a fixed value of σ at low frequencies, the refractive index n is
proportional to , whereas the attenuation coefficient α and the
impedance η are directly proportional to . As ω increases to a
value such that the ratio σ/ωε becomes very small, all three of the
wave propagation parameters become frequency independent and
the material behaves as a nondispersive dielectric medium with
loss.

For a perfect conductor, σ → ∞ so that α → ∞ and the penetration
depth dp = 1/α → 0. Also, η → 0 so that at the boundary with a
dielectric medium the power reflectance ℛ → 1; the material then
behaves as a perfect mirror.

As discussed in the next section, the conductivities of real metals at
optical frequencies are often complex-valued and frequency-
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dependent, in which case the results provided in Table 8.2-1 are not
applicable. Under those conditions, the frequency dependencies of
the wave parameters can differ considerably from those presented
in the table.

Metals: The Drude Model

When the relation between 𝒥 and ∊ is dynamic rather than static,
the conductivity σ must be frequency-dependent with a finite
bandwidth and a finite response time. Treating the conduction
electrons as an ideal gas of independent particles that move freely
between scattering events, the Drude model (also called the
Drude–Lorentz model) prescribes a frequency-dependent
complex conductivity of the form

where σ0 is the low-frequency conductivity and τ is a scattering time
(or collision time). For sufficiently low frequencies such that ω ≪ 1/
τ, σ ≈ σ0 is real and frequency-independent, in which case the
results provided in Table 8.2-1 apply.

If the medium has free-space-like dielectric properties with no other
losses (ε = εo), inserting (8.2-10) into (8.2-5) leads to a relative
effective permittivity given by

where ζ = 1/τ is the scattering rate (collision frequency). The
plasma frequency ωp (strictly speaking, the plasma angular
frequency) is defined as

and the free-space plasma wavelength λp is
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Some lossless media exhibit dielectric properties that differ from
those of free space, as manifested by a residual frequency-
independent relative permittivity 1 + χm that persists to frequencies
ω ≫ ωp. In this case, the relative effective permittivity in (8.2-11)
becomes

Observed values of ωp, λp, τ, and ζ for a number of metals are
provided in Table 8.2-2.

Table 8.2-2 Plasma frequency ωp, free-space plasma wavelength
λp, scattering time τ, and scattering rate ζ = 1/τ, for Al, Ag, Au, and
Cu.a

ωp (rad/s) λp (nm) τ (fs) ζ (s−1)

Al 1.83 × 1016 103 5.10 1.96 × 1014

Ag 1.37 × 1016 138 31.3 0.32 × 1014

Au 1.35 × 1016 139 9.25 1.08 × 1014

Cu 1.33 × 1016 142 6.90 1.45 × 1014

aSee, e.g., E. J. Zeman and G. C. Schatz, An Accurate Electromagnetic Theory Study of
Surface Enhancement Factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd, Journal of
Physical Chemistry, vol. 91, pp. 634–643, 1987.

These results are related to those for the resonant medium
described by the Lorentz oscillator model, which treats the motion
of an electron bound to a nucleus as a harmonic oscillator (see Sec.
5.5C). However, here the electrons are free and there is no restoring
force so that the elastic constant κ = 0 and the resonance frequency 

. The Lorentz-model equation of motion (5.5-16) then
becomes , and the corresponding polarization
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density 𝒫 = −Nex obeys the equation ,
where N is the electron density of the medium. For a field
oscillating at an angular frequency ω, this gives rise to −ω2P + jωζP
=(Ne2/m)E, which leads to a susceptibility

where

Plasma Frequency Drude Model

Equation (8.2-15), together with the relation εc = εo(1 + χ) for a
medium with free-space dielectric properties, leads to (8.2-11) and
(8.2-12), provided that

Equation (8.2-15) is a special case of (5.5-19) for the Lorentz
resonant medium, with ω0 = 0 and ζ = Δω = 2πΔν, where Δν is the
spectral width. A comparison of the frequency dependence of the
real and imaginary parts of the relative permittivity εr = εc/εo for a
Lorentz dielectric resonant medium, based on (5.5-19), or (5.5-20)
and (5.5-21), and for a Drude metal based on (8.2-11), is provided in
Fig. 8.2-1.



Figure 8.2-1 Frequency dependence of the real part (solid curve)
and imaginary part (dashed curve) of the relative effective
permittivity . (a) Dielectric resonant medium
described by the Lorenz model, (5.5-20) and (5.5-21), with
resonance frequency ω0, Q = ω0/Δω = 10, and χo = 1. (b) Metal
described by the Drude model (8.2-11) with plasma frequency ωp,
ωpτ = 10, and ε = εo. The real part of the permittivity is negative for 

.



EXAMPLE 8.2-1.

Permittivity and Reflectance of Silver. As an example of
the range of validity of the Drude model, Fig. 8.2-2(a) displays
the measured relative effective permittivity εr = εc/εo for silver
(dashed curves) along with the best-fitting functions (solid
curves) consistent with the Drude model [see, e.g., Fig. 8.2-1(b)].
The experimental permittivities and reflectances for various
metals, as functions of wavelength, are available from a number
of sources.6 It is apparent from Fig. 8.2-2(a) that the Drude-
model relative permittivity provided in (8.2-14) fits the
experimental data quite well over the 450–600-nm wavelength
range, but is clearly inadequate at shorter wavelengths. The best-
fitting model parameters over the wavelength range displayed
(200–600 nm) are χm = 4.45, ωp = 1.47 × 1016 rad/s (λp = 128
nm), and τ = 12 fs (ζ = 0.84 × 1014 s−1). These values differ from
those presented in Table 8.2-2 because of the constraints
inherent in this analysis.

In Fig. 8.2-2(b), the measured power reflectance for light
normally incident on the Ag-air boundary (dashed curve) is
compared with the reflectance calculated on the basis of the
Drude model (solid curve) using the relation ,
where  are the impedances of Ag and air,
respectively [see (6.2-8)]. The fit is quite good over the 400–600
nm wavelength range, where Ag exhibits near-perfect reflectance
(as it does at longer wavelengths). Other metals exhibit similar
behavior. Gold and copper also have free-space plasma
wavelengths that lie well into the ultraviolet (see Table 8.2-2)
and those metals do not become good reflectors until the
wavelength exceeds ∼550 nm (thereby explaining their reddish
color). The origin of this behavior is interband absorption, i.e.,
absorption by bound electrons, which is not accommodated in
the Drude free-electron model (see Prob. 8.2-3). Aluminum, in
contrast, hews quite closely to the predictions of the Drude



model, exhibiting near-unity reflectance over a wavelength range
that stretches from 200 nm to beyond 10 μm.

Figure 8.2-2 (a) Real and imaginary parts of the relative
effective permittivity  as a function of wavelength for
Ag. The dashed curves represent experimental values whereas
the solid curves are fits to the Drude model. (b) Power
reflectance ℛ vs. wavelength at the Ag-air boundary. The dashed
curve is the experimental reflectance while the solid curve is the
calculated reflectance based on the Drude model. Note that the
wavelength decreases from left to right (corresponding to
increasing frequency); the free-space plasma wavelength λp lies
beyond the right edges of the graphs.

Simplified Drude model.
We now consider the behavior of the Drude model for angular
frequencies sufficiently high such that ω ≫ 1/τ (ω ≫ ζ), which is
equivalent to neglecting damping (ζ → 0) in (5.5-16). Under these
conditions, (8.2-10) becomes σ ≈ σ0/jωτ, which is imaginary, and
(8.2-14), with χm = 0, reduces to the effective permittivity for the
simplified Drude model, which is real:
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Effective Permittivity Simplified Drude Model

It is clear from (8.2-18) that the presence of conductivity in the
medium serves to suppress the permittivity to a value below εo and
to impart to it a functional form that is inversely proportional to the
square of the frequency.

The simplified Drude model is useful for describing the optical
behavior of metals in the near-infrared and visible regions of the
spectrum [see Fig. 2.0-1]. For wavelengths shorter than ∼ 1μm,
which corresponds to an angular frequency ω = 2πν = 1.9 × 1015

rad/s, ω ≫ ζ for the metals listed in Table 8.2-2.

In summary, for frequencies that are sufficiently high such that
ω ≫ 1/τ, the simplified Drude model for a metal is a special case
of the Lorentz model for a dielectric medium in which there is
neither a restoring force (κ = 0) nor damping (ζ = 0). The
permittivity (8.2-18) is real and negative for frequencies below
the plasma frequency ωp, where the metal behaves as a SNG
medium, and real and positive for frequencies above ωp, where
the metal behaves as a DPS medium.

Wave propagation in a medium described by the simplified Drude
model is characterized by a propagation constant 

 and a dispersion relation

Dispersion Relation Simplified Drude Model



as illustrated in Fig. 8.2-3. The corresponding relative permittivity
εc/εo, refractive index n, and attenuation coefficient α are also
displayed in the figure.

It is evident from Fig. 8.2-3 that wave propagation in a metal
described by the simplified Drude model exhibits distinctly different
behavior below, at, and above the plasma frequency ωp:

At frequencies below the plasma frequency (ω < ωp), the
effective permittivity Ec is negative. The metal then behaves as
a SNG medium with imaginary wavenumber, ,
which corresponds to attenuation without propagation. This
spectral region may therefore be regarded as a forbidden
band. The attenuation coefficient  decreases
monotonically with increasing frequency and vanishes at the
plasma frequency. The free electrons then undergo longitudinal
collective oscillations that take the form of plasmons, the
quanta of the plasma wave (much as photons are the quanta of
the electromagnetic wave). The negative permittivity
corresponds to an imaginary impedance, which indicates that
total reflection occurs at the boundary with a DPS medium (see
Sec. 6.2), provided that λo > λp. Doped semiconductors, in
contrast, are not reflective in the visible region. This is because
the plasma frequency of such materials lies in the infrared
since the free-electron density N is far smaller than that in
metals [see (8.2-16)]. Although the Drude model provides a
good starting point for determining the optical properties of
metals and doped semiconductors, it is by no means the final
word, as was illustrated in Example 8.2-1.



Figure 8.2-3 Left: Frequency dependence of the relative
effective permittivity εc/εo, the refractive index n, and the
attenuation coefficient α for a medium described by the
simplified Drude model. Right: The dispersion relation 

. Metals support propagating optical waves, known
as bulk plasmon polaritons (BPPs), but only when the
frequency of the wave falls in the plasmonic band (which
comprises frequencies greater than the plasma frequency ωp).

At frequencies above the plasma frequency (ω > ωp), the
effective permittivity is positive and real so that the medium
behaves like a lossless dielectric material, albeit with unique
dispersion characteristics. The propagation constant becomes 

, while the refractive index  lies below
unity and is very small near the plasma frequency. This spectral
band is referred to as the plasmonic band and waves that
travel through the metal in this band are called bulk plasmon
polaritons (BPPs).
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B. Metal–Dielectric Boundary: Surface Plasmon
Polaritons
Since a metal behaves as a SNG medium at optical frequencies
below the plasma frequency (ω < ωp), it can support a surface
plasmon polariton (SPP) wave at the boundary with an ordinary
dielectric (DPS) medium. As indicated in Sec. 8.1B, a SPP is a guided
optical surface wave accompanied by a longitudinal electron-density
wave that oscillates at the optical frequency. Because the SPP hugs
the metal–dielectric boundary over distances far smaller than an
optical wavelength, it can be controlled and manipulated at
nanometer spatial scales without sacrificing its optical temporal
frequency. The tight binding of the wave to the boundary carries a
concomitant enhancement of the local field intensity.

In this section we apply the analysis of SPP waves at a DPS-SNG
boundary, developed in Sec. 8.1B, to a metal–dielectric boundary.
Specifically, we combine the effective permittivity of a metal
described by the simplified Drude model, set forth in (8.2-18), with
the general wave-parameter results summarized in (8.1-16) and
(8.1-17). Based on the analysis provided in Sec. 8.1B, a SPP wave can
exist at the boundary provided that the magnitude of the
permittivity of the SNG medium |ε2| is greater than that of the DPS
medium ε1. If the metal is described by the simplified Drude model,
(8.2-18) reveals that its effective permittivity is ,
from which it is clear that the material behaves as a SNG medium if
ω < ωp. As illustrated in Fig. 8.2-4(a), the condition |ε2| > ε1 is
equivalent to the condition ω < ωs, where

with εr1 = ε1/εo representing the relative permittivity of the
dielectric medium. The frequency band over which a SPP wave can
be supported, ω < ωs, is smaller than that over which the simple
Drude metal behaves as a SNG medium, 0 < ω < ωp.
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After working through the algebra involved in combining (8.1-16)
and (8.2-18), it turns out that β, nb, and εb obey (8.2-21). Equation
(8.2-22) is carried over intact from (8.1-17). Again, 

 represents the free-space wavenumber, and the
penetration depth is given by dp = 1/2γ.

SPP Wave Metal–Dielectric

As illustrated in Fig. 8.2-4, the behavior of the parameters provided
in (8.2-21) differs for the three salient frequency bands:

For ω < ωs, the simple Drude metal behaves as a SNG medium,
and SPP waves may be guided along its boundary with a
dielectric medium. The frequency band ω < ωs lies within the
forbidden band of the bulk metal, 0 < ω < ωp, in which bulk
propagating waves are not permitted. The properties of the SPP
wave are dependent on the ratio |ε2|/ε1, which is a
monotonically decreasing function of the ratio ω/ωs, and
approaches the critical value of unity when ω = ωs. Forging a
comparison with waves in the bulk dielectric medium, the SPP
velocity co/nb is smaller and the plasmon wavelength λo/nb is
shorter. This is also evident from the dispersion curve displayed
in Fig. 8.2-4(c) since β > ω/c1 for the SPP wave. In accordance
with (8.1-17), the penetration depth in the metal, d2 = 1/2γ2, is
smaller than that in the dielectric, d1 = 1/2γ1, and both are
smaller than the wavelength in the bulk dielectric medium. As
ω/ωs increases, the SPP slows and the associated plasmon
wavelength decreases. As explained in Sec. 8.1B, the SPP also



becomes more localized, exhibiting smaller penetration depths
in both the metal and the dielectric. At ω/ωs = 1, the
permittivities of the metal and dielectric become equal in
magnitude and opposite in sign (ε1 + ε2 = 0), whereupon the
velocity of the SPP becomes zero.

For ωs < ω < ωp, the simple Drude metal is a SNG medium, but
SPP waves are not permitted since |ε2| < ε1. Hence, bulk waves
propagating in the dielectric medium are totally reflected from
the DPS-SNG boundary at all angles of incidence.

For ω > ωp, the simple Drude metal acts as a DPS medium.
DPS-DPS boundaries cannot support SPP waves. However,
much like a dielectric medium, the bulk metal supports
propagating waves, namely bulk plasmon polaritons (BPPs). At
these high frequencies, the reflection and refraction of waves at
the metal– dielectric boundary comply with the conventional
laws obeyed by two dielectric media. Total internal reflection
occurs, but only for angles of incidence greater than the critical
angle.



Figure 8.2-4 Surface plasmon polariton (SPP) wave at a metal–
dielectric boundary, as depicted in Fig. 8.1-3. (a) Frequency
dependence of the permittivities of the dielectric and metallic
media, ε1 and ε2, respectively. The condition |ε2| > ε1, required for
the existence of the SPP wave, is satisfied for ω < ωs. (b) Frequency
dependence of the effective permittivity εb of the SPP wave. The
wave velocity is co/nb, where . (c) Dispersion relations for
the BPP (bulk plasmon polariton) and SPP waves. These plots were
computed from (8.2-19) and (8.2-21), respectively, using εr1 = 2.25
(the relative permittivity of glass), so that . Light
lines in free space and in the bulk dielectric medium are shown as
dotted red.



EXAMPLE 8.2-2.

SPP at Ag-Air and Ag-SiO2 Boundaries. SPP waves are
supported at the boundaries of dielectrics with metals such as
silver (Ag) and gold (Au). For an optical wave of free-space
wavelength λo = 800 nm, the permittivity of Ag is ε2 ≈ −32.6 εo.7

The plasma frequency of Ag, ωp = 1.37 × 1016 s−1, corresponds to
a free-space plasma wavelength λp = 2πco/ωp = 138 nm (see
Table 8.2-2). At a Ag-air boundary (ε1 = εo), (8.2-20) provides
that the free-space wavelength corresponding to ωs is 

. SPP waves must therefore have a
free-space wavelength longer than 195 nm to be viable. In
accordance with (8.2-21) and (8.2-22), a SPP wave of frequency
corresponding to a free-space wavelength λo = 800 nm at this
boundary has the following properties:

At a Ag-SiO2 boundary (ε1 = 3.9 εo at λo = 800 nm), the free-
space plasma wavelengths corresponding to ωp and ωs are λp =
138 nm and λs = 305 nm, respectively. At this boundary, a SPP
wave of frequency corresponding to a free-space wavelength λo =
800 nm has the following properties:

Comparing the results for both dielectric media, it is apparent
that the higher-index material, SiO2, results in a SPP wave with
lower velocity, shorter wavelength, and shallower penetration
into both the Ag and the dielectric medium. Moreover, d2 < d1
for both air and SiO2, confirming the deeper penetration into the
dielectric side of the boundary, as depicted in Figs. 8.1-3 and 8.2-
4.
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Generation and Detection of Surface Plasmon Polaritons

Since the propagation constant of a SPP wave traveling along a
metal–dielectric boundary is greater than that of an ordinary optical
wave of the same frequency propagating in the dielectric medium
[see Fig. 8.2-4(c)], it is difficult to couple the two waves. One way in
which this can be achieved, however, is to couple an evanescent
wave, generated by total reflection at a metal–dielectric boundary,
to the SPP wave at the opposite metal–dielectric boundary, as
portrayed in the prism-coupler configuration shown in Fig. 8.2-5(a).
A similar approach is used to couple light into a waveguide via a
prism, as will become clear in Fig. 9.4-4.

The coupling takes place only when the two waves are phase
matched, i.e., when their propagation constants are precisely equal.
From the interior of a prism of refractive index np, this condition is
satisfied at an angle of incidence θp = θr, where npko sin θr = β. The
parameter β is the propagation constant of the SPP wave, given in
(8.2-21) and (8.2-20), which is dependent on the refractive index 

 of the dielectric medium adjacent to the remote side of
the metallic film [which is represented in Fig. 8.2-5(a) as air]. It is
straightforward to verify that this condition is met at an angle of
incidence θr given by

When the phase-matching condition is satisfied, optical power is
transferred to launch the SPP wave via a form of frustrated total
internal reflection (FTIR), so that the power of the reflected
optical wave at the boundary of the prism diminishes significantly.
The change in reflectance is manifested as a sharp, resonance-like
function of the incidence angle, as portrayed in Fig. 8.2-5(b). Since
the angle θr depends on n1, it is sensitive to changes in the physical
environment surrounding the metal film, which determine n1. This
measurement technique, known as surface plasmon resonance



(SPR) spectroscopy, has found extensive use for chemical and
biological sensing applications; examples are gas detection and the
measurement of molecular adsorption. Another method of exciting
an SPP wave is to scatter light from a periodic subwavelength
structure (grating) deposited on the metallic surface, which
contributes a spatial-frequency component that compensates for the
propagation-constant mismatch.

Figure 8.2-5 (a) Generation of a SPP wave by use of a prism
coupler. An evanescent wave (EW) generated by total internal
reflection of an optical wave at the prism–metal boundary excites a
SPP wave at the opposite metal–dielectric boundary. (b)
Dependence of the reflectance of the optical wave on the angle of
incidence θp. When the phase-matching condition is satisfied, at θp
= θr, a SPP wave is launched, which results in a decrease of the
reflected-wave intensity. A slight change in the refractive index n1
alters θr in accordance with (8.2-23), which gives rise to the dashed
curve. The system thus serves as a precise sensor.

The detection of an SPP wave may be achieved by converting it into
a proportional optical wave, using a prism coupler or grating
operated in a reverse conversion process.

C. The Metallic Nanosphere: Localized Surface
Plasmons
A metallic structure of subwavelength dimensions supports
plasmonic oscillations at its (external or internal) boundary with a
dielectric medium. Examples of such structures are metallic



nanospheres, nanodisks, and other nanoparticles. These oscillations
are known as localized surface plasmon polaritons, or simply
localized surface plasmons (LSPs). When the excitation
frequency matches the resonance frequency of the structure, the
result is a surface plasmon resonance (SPR). A LSP is to be
distinguished from a long-range SPP, which is a SPP wave that
propagates along an extended metal–dielectric boundary, as
described in Sec. 8.2B. Similarly, the surface plasmon resonance
frequency is to be distinguished from the plasma frequency of the
metal, although they are related. Gold and silver nanoparticles have
plasmon resonance frequencies that lie in the visible region of the
spectrum, whereas the associated plasma frequencies of these
metals lie well into the ultraviolet. By virtue of the curved surfaces
of nanoparticles, SPRs may be excited by direct-light illumination.
The resultant intense colors exhibited by such particles, both in
transmission and in reflection, are attributable to resonantly
enhanced scattering and absorption.

The Metallic Nanosphere

A metallic nanosphere embedded in a surrounding dielectric
medium supports LSP oscillations. The distribution of the optical
field is obtained by solving Maxwell’s equations in the metal and
dielectric, which have negative and positive permittivities,
respectively, and accommodating surface charges and the
appropriate boundary conditions. The field distribution of the
lowest-order plasmonic mode is depicted in Fig. 8.2-6.
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Figure 8.2-6 (a) Magnitude of the optical field outside a metallic
nanosphere supporting the lowest-order plasmonic mode of this
resonator. The internal field is not shown. (b) Field lines of a
plasmonic mode excited by an incident plane wave.

The metallic nanosphere is a resonant scatterer. It is clear from the
theory of Rayleigh scattering provided in Sec. 5.6B that a plane wave
with electric field E0 incident on a small sphere creates a parallel
internal field Ei, which in turn generates an oscillating electric
dipole that radiates a scattered dipole wave Es (see Fig. 5.6-3). In
accordance with (5.6-12), the total scattered optical power is Ps =
σsI0, where σs is the scattering cross section and I0 is the intensity of
the incident wave. Equations (5.6-16) and (5.6-17), which are
applicable when the radius-to-wavelength ratio a/λ ≪ 1, reveal that
σs depends on the permittivities εs and ε of the nanosphere and the
surrounding medium, respectively, as well as on a/λ:

For a metal described by the simplified Drude model, the effective
permittivity of the metallic medium is given by , as
provided in (8.2-18); εs is thus negative or positive, depending on
whether ω lies below or above the plasma frequency ωp,
respectively. It follows that the denominator (εs + 2ε) of (8.2-24)
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and (8.2-25) can be either negative or positive, but vanishes when εs
= −2ε, where σs and Ei increase without limit. The LSP resonance
frequency at which this occurs is established by setting 

, which gives rise to

LSP Resonance Frequency

with εr = ε/εo. The surface plasmon resonance frequency ω0 is to be
distinguished from both the plasma frequency of the metal ωp [see
(8.2-16)], and the maximum frequency at which a SPP can exist ωs
[see (8.2-20)], although all three are closely related.

At frequencies near ω0, the scattering cross section σs and the
internal field Ei are substantially enhanced, as depicted in Fig. 8.2-7,
which displays σs and Ei as functions of ω. Below resonance (ω <
ω0), the dipole created by the incident field points in the same
direction as the incident field, while the internal field is in the
opposite direction, i.e., out of phase since Ei/E0 is negative. The
opposite situation prevails above resonance (ω > ω0), as it does for
the dielectric nanosphere (Fig. 5.6-3). In the vicinity of resonance,
both the internal field Ei and the scattered field Es in the near-field
zone can be significantly enhanced with respect to the incident field
E0. This field enhancement is accompanied by spatial localization of
electromechanical energy at a scale that corresponds to the size of
the nanosphere.
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Figure 8.2-7 Resonance characteristics of the scattering cross
section σs and the internal field Ei for a metallic nanosphere
described by the simplified Drude model in air (εr = 1). In
accordance with (8.2-26), the resonance frequency is ,
where ωp is the plasma frequency of the metal. Below resonance,
the internal field is opposite in direction to the incident external
field (out of phase), whereas above resonance it is in the same
direction (in phase).

The simplified Drude model used to generate the graphs presented
in Fig. 8.2-7 assumes that the metal has no absorption; this
idealization is the origin of the infinite cross section and infinite
internal field at resonance. Of course, real metals have finite
resisitivity and finite absorption, which is mathematically
accommodated by introducing an imaginary component into the
permittivity. Denoting the complex permittivity as ,
resonance occurs when the real parts of the denominators in (8.2-
24) and (8.2-25) vanish, namely when . Use of the complex
permittivity thus results in residual denominators of , rather than
zero, which gives rise to a finite value of σs at resonance:

Aside from being a resonant scatterer, the metallic nanosphere is
also a resonant absorber. As discussed in Sec. 5.6D, the Rayleigh
scattering of an incident wave by a nanosphere of complex
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permittivity εs in a surrounding medium of real permittivity ε is
accompanied by absorption. Both absorption and scattering
contribute to the attenuation (extinction) of the incident wave. In
accordance with (5.6-22), the absorption cross section of a small,
spherical scatterer of radius a, σa = πa2 Qa, exhibits the same
resonance condition as the scattering cross section σs set forth in
(8.2-24), namely . Substituting  into (5.6-22) leads
to an absorption efficiency Qa given by

At resonance, the denominator on the right becomes simply ,
which leads to a peak value of the absorption coefficient given by 

. The larger the resistivity of the metal, which is
represented by , the broader the resonance profile and the smaller
the peak values of σa and σs.

Metallic nanospheres whose localized surface plasmon (LSP)
resonance frequencies lie in the visible and ultraviolet bands are
used in applications that exploit their wavelength-selective
absorption and scattering resonances, along with the attendant field
enhancement and localization. Nanospheres embedded in stained
glass, for example, produce brilliant colors as a result of the
extinction of specific wavelengths; an example is provided by the
North Rose Window at Notre Dame Cathedral in Paris, pictured at
right. As another example, the dependence of the LSP resonance
frequency on the relative permittivity εr of the host medium gives
rise to a sensor responsive to the dielectric properties of the
surrounding medium; a host medium with increased permittivity
results in a decreased resonance frequency and an increased
resonance wavelength, as is understood from (8.2-26).



The North Rose Window at Notre Dame Cathedral in Paris dates
from 1260. Metallic nanostructures embedded in the stained glass
exhibit plasmonic resonances with dramatic optical characteristics.
(Adapted from a photograph by Krzysztof Mizera, August 30, 2008,
Wikimedia Commons.)

D. Optical Antennas
An antenna is an electrically conductive structure that converts an
oscillating electric current into an electromagnetic field, and vice
versa. It is a key component in transmitters and receivers of
electromagnetic radiation. At radiowave and microwave frequencies,
antennas take the form of metallic wires, poles, loops, and
microstrips whose dimensions are of the order of the wavelength
[Fig. 8.2-8(a)]. Antennas such as these are resonant structures. A
monopole antenna comprising a metal pole of length L mounted on
a conducting plate, for example, has a resonance frequency c/4L,
corresponding to a wavelength λ = 4L. Equivalently, a dipole
antenna comprising two poles separated by a small gap, each pole of
length L, exhibits resonance when L = λ/4.

An antenna may also take the form of an electrically conductive
structure that intercepts an electromagnetic wave and alters its
angular distribution [Fig. 8.2-8(b)]. At microwave frequencies,
these include the horn antenna (a metallic horn connected to the
end of a waveguide) and the dish antenna (a paraboloidal metal
surface with the end of a waveguide situated at its focus). These
antennas are not necessarily resonant and their dimensions may be
substantially greater than the wavelength of the radiation.



Figure 8.2-8 (a) Radiowave antennas. (b) Microwave antennas.

Figure 8.2-9 (a) Optical antennas made of metallic structures that
exhibit resonance at optical frequencies. (b) Non-resonant optical
antennas.

Resonant optical antennas may be constructed by fabricating
metallic structures similar to those used for radiowave antennas,
but with scaled-down dimensions [Fig. 8.2-9(a)]. However, since
the length of an optical quarter-wave dipole antenna lies in the
nanometer region, fabrication can be challenging. At optical
frequencies, the optical field interacts with metallic antennas such
as these via SPP waves, which have propagation wavelengths that
are even smaller than the free-space optical wavelength. These
plasmonic antennas operate as scatterers that convert the
incoming light into localized SPP waves that in turn radiate light
with a modified spatial distribution.

Optical antennas in the non-resonant category include the metal-
coated tapered optical-fiber tip used in near-field microscopy and
the paraboloidal mirror used in telescopes, as illustrated in Fig. 8.2-
9(b). The dimensions of these optical antennas are typically far
greater than the optical wavelength.



An example of an optical antenna that exhibits resonance is
provided by an incoming planar optical wave illuminating a metallic
nanosphere and exciting a localized SPP wave, which in turn
radiates an optical dipole wave as discussed in Sec. 8.2C. At the
resonance frequency, the field in the vicinity of the nanosphere is
enhanced and localized, and the scattering cross-section increases
sharply so that more of the incoming light is captured and scattered.
The nanosphere thus functions as a resonant optical antenna. Other
metallic structures with nanoscale dimensions, such as the split
ring and the double split ring shown in Fig. 8.2-9(a), also exhibit
resonances at optical frequencies; their resonance properties are
shape- and material-dependent.

Resonant optical antennas may be used to localize and couple light
into small absorbers, such as single molecules. In the near-field
microscopy arrangement depicted in Fig. 8.2-10(a), for example, a
metal rod on a conducting pedestal may be placed at the end of a
tapered optical fiber to create a monopole antenna. A nanosphere at
the end of a pointed glass tip, as illustrated in Fig. 8.2-10(b), carries
out a similar function. In general, a resonant optical antenna placed
between an emitter and an absorber can serve to enhance their
interaction by facilitating the processes of radiation and detection.

Figure 8.2-10 Optical antennas used to localize light in near-field
microscopy. (a) Monopole antenna at the end of a tapered fiber. (b)
Nanosphere antenna at the end of a glass tip.

The greatest challenge in modeling the interaction of an optical
wave with a metallic structure arises for structures whose
dimensions are comparable with the optical wavelength (∼μm).
This typically requires a complete analysis incorporating the



electromagnetic fields and electric-charge distributions.
Conventional bulk optical structures, which have far larger
dimensions, are readily analyzed using the usual techniques of
optics. At the opposite extreme, metallic nanostructures are handled
quite well with effective-circuit models, as will become evident in
Sec. 8.3A.

8.3 METAMATERIAL OPTICS
Optical metamaterials are synthetic composite materials
constructed with carefully designed spatial patterns and with
dimensions that are smaller than the optical wavelength. They owe
their special optical properties to the atomic and molecular
structures of the constituent materials as well as to the geometry
and dimensions of the spatial patterns in relation to the wavelength.
They can be engineered to have distinct and unusual optical
properties that are not available in natural materials. Metamaterials
form the basis for various exotic optical devices.

Photonic crystals, considered in Chapter 7, are a special class of
optical metamaterials. These periodic dielectric structures exhibit
photonic bandgaps similar to the electronic bandgaps observed in
semiconductor materials. Another special class of metamaterials,
described in this section, makes use of metallic elements of
subwavelength dimensions, such as rods and rings, that are
embedded in dielectric media and organized in periodic or random
patterns at a subwavelength spatial scale. The shapes of these
building blocks, and the patterns in which they are arranged, are
designed so that the effective electric and magnetic material
parameters, ε and μ respectively, are rendered either positive or
negative. This in turn allows the synthesis of SNG and DNG
materials, with their attendant special optical properties, as detailed
in Sec. 8.1.

When the metallic elements exhibit resonance, the effective
behavior of ε and μ can display the familiar frequency dependence



of the susceptibility of a resonant medium, portrayed in Fig. 5.5-6.
At frequencies above the resonance frequency, as shown in Fig. 8.3-
1, the real part can be negative so that the medium can be SNG or
DNG. Although the imaginary part, corresponding to attenuation, is
significant near resonance, a narrow band with negative real part
can persist at sufficiently high frequencies where the attenuation is
minimal.

Since μ = μo at optical frequencies for naturally occurring
nonmagnetic materials, DNG (negative-index) media cannot be
readily created without the use of metamaterials. The fabrication of
optical DNG metamaterials is undeniably challenging. First, the
metallic elements must be of subwavelength dimensions so that
resonance frequencies lie in the optical band. This requires
nanoscale fabrication technology. Second, the electric and magnetic
resonance frequencies must be sufficiently close to each other so
that the bands of negative ε and μ align, as depicted in Fig. 8.3-1. A
great deal of effort has been directed toward addressing these
challenges since the field of metamaterials has come to the fore.
The principles underlying metamaterials also offer promise in the
domains of acoustics, mechanics, and thermodynamics.

Figure 8.3-1 A medium with resonant permittivity and
permeability can behave as a DNG medium in a frequency band
above both resonance frequencies (shaded area).



We consider three-dimensional optical metamaterials, and
metamaterials of reduced dimensionality, known as metasurfaces,
in turn.

A. Metamaterials
The effective electromagnetic parameters ε and μ for metamaterials
comprising three-dimensional distributions of metallic elements
embedded in a dielectric host material may be determined by
making use of approximate models, complex analytical techniques,
or numerical methods. Approximate models include the effective-
medium approach and the effective-circuit approach. The effective-
medium approach based on the use of the Maxwell-Garnett formula
described in Sec. 5.6D is, strictly speaking, applicable only for
nanospheres. However, it is widely used in practice for metallic
particles of other shapes as well.

The effective-circuit approach, on the other hand, is applicable for
metallic elements of various shapes, provided they are sufficiently
small. The dielectric/magnetic properties of a natural material are
usually determined by summing the electric/magnetic dipoles of the
constituent atoms induced by the applied electric/magnetic fields.
This enables the polarization and magnetization densities to be
determined, and thence the electric permittivity ε and magnetic
permeability μ. A similar approach may be adopted for
metamaterials, in which each constituent element, regarded as a
Rayleigh scatterer, is modeled by electric and/or magnetic dipoles.
To determine the electric and magnetic dipole moments, metallic
structures of subwavelength dimensions are considered as electric
circuit elements, an approach known as the point-dipole
approximation.

Larger elements may be modeled using Mie scattering theory (see
Sec. 5.6C), in which the dipole contributions become the leading
terms of multipole series expansions. More complex circuit models
can also be used. However, when metallic nanoparticles are
juxtaposed in sufficiently close proximity, such that their localized
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plasmonic fields overlap, the foregoing approximations fail to
account for element-to-element interactions and inter-element
resonances. Such effects may be accommodated via the circuit
approach by considering mutual couplings between neighboring
elements, such as mutual inductances, and by treating the
composite circuits as transmission lines or circuit networks. When
approximations such as these fail, numerical methods offer a
fallback position.

We proceed to examine several approximate models based on both
the effective-medium and effective-circuit approaches. The models
we consider describe metamaterials exhibiting negative permittivity,
negative permeability, negative index, as well as hyperbolic
properties.

Negative-Permittivity Metamaterial: Metallic Nanospheres in a
Dielectric Medium

As described in Sec. 5.6D and illustrated in (5.6-20),

where f is the volume fraction of the inclusions (filling ratio).



(8.3-2)

(8.3-3)

(8.3-4)

Figure 8.3-2 Negative-permittivity metamaterial. (a) Metallic
nanosphere. (b) Metamaterial comprising uniformly distributed
metallic nanospheres embedded in a dielectric medium. (c) The
effective permittivity εe has a pole at the resonance frequency ω0
and a zero at ω1. Since εe is negative in the band lying between ω0 <
ω < ω1, this metamaterial is single-negative (SNG) if μ is positive.

For metallic elements described by the simplified Drude model, in
accordance with (8.2-18) we have , where ωp is the
plasma frequency, so that (8.3-1) yields

where

and where εr = ε/εo is the relative permittivity of the host medium,
which is assumed to be frequency-independent.

As shown in Fig. 8.3-2(c), the effective permittivity εe has a pole at
ω0 and a zero at ω1. Since εr0 > εr, the resonance frequency ω0 falls
below that of the isolated nanosphere, which is given by (8.2-26).
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Also, since εr1 < εr0, we see that ω1 > ω0, so that εe is negative within
the spectral band between ω0 and ω1, which lies below the plasma
frequency ωp of the metal. With μ positive, this metamaterial is
therefore single-negative (SNG), much like a homogeneous metal
below its plasma frequency [see Fig. 8.2-1(b)].

Negative-Permittivity Metamaterial: Thin Metallic Rods
Isotropically Distributed in a Dielectric Medium

The inductance L of a cylindrical metallic rod of length a and radius
w (a ≫ w) [Fig. 8.3-3(a)] is given by L ≈ (μoa/2π) [ln(2a/w) − 3/4;].
The effective electric permittivity of a medium comprising parallel
rods separated by a distance a, as depicted in Fig. 8.3-3(b), is
determined by observing that an electric field E along a rod develops
a voltage V = aE between its two ends. This in turn generates an
electric current i = V/jωL in the inductor, which corresponds to a
charge q = i/jω and an electric dipole moment 𝒫 = qa. Since the
number of rods per unit volume is N = 1/a3, the polarization density
is given by P = N𝒫 = 𝒫/a3. The effective susceptibility of the
medium is thus χe = P/εoE and the effective permittivity is εe = εo(1
+ χe).

Combining these equations leads to an expression for the effective
permittivity that is identical in form to that of a simple Drude metal,

with a plasma frequency ωp determined by the dimensions of the
rod, a and w, via its inductance L, where we have assumed that the
dielectric medium has the permittivity of free space. With μ
positive, this metamaterial is thus single-negative (SNG). Though
the rod is assumed to be a perfect conductor in the calculations set
forth above, loss is readily accommodated by adding a resistance R
to the impedance jωL of the rod.



Figure 8.3-3 Negative-permittivity metamaterial. (a) Thin metallic
rods of length a and radius w, oriented in (b) three orthogonal
directions at every point of a cubic lattice of dimension a, create an
isotropic metamaterial. (c) The effective electric permittivity εe has
a frequency dependence identical to that of the simplified Drude
model. This metamaterial is thus single-negative (SNG), provided
that μ is positive.

Negative-Permeability Metamaterial: Split-Ring Metallic
Elements in a Dielectric Medium

A metallic split ring [Fig. 8.3-4(a)], modeled as an inductor L in
series with a capacitor C (the open section of the ring), forms a
resonant circuit of resonance frequency . When the size
of the split ring is  nm and the gap is  nm, ω0 lies in the
optical region of the spectrum.

The effective magnetic permeability μe of a metamaterial consisting
of a collection of such split rings, organized uniformly and in three
directions at the vertices of a periodic lattice, as shown in Fig. 8.3-
4(b), may be established by calculating the magnetic dipole moment
ℳ induced by a magnetic field H applied along an axis normal to the
plane of the ring [Fig. 8.3-4(a)]. The voltage V induced in the loop is
equal to the rate of change of the magnetic flux so that V =
−jωμoAH, where A is the area of the ring. This voltage generates an
electric current i = V/Z, where the circuit impedance is Z = jωL + 1/
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ωjC. This electric current in turn results in a magnetic dipole
moment ℳ = Ai.

A density of N split rings per unit volume gives rise to a
magnetization density M = Nℳ so that the effective magnetic
permeability μe = μo(H + M)/H is given by

The inductance of the ring is L ≈ μob [ln(8b/a) − 7/4], where b and
a are the ring and wire radii, respectively (b ≫ a). As displayed in
Fig. 8.3-4(c), μe exhibits a resonance at ω0 and a zero at ω1, and is
negative in the intervening region. For a positive electric
permittivity ε, this structure behaves as a single-negative (SNG)
metamaterial. The frequency dependence of μe revealed in (8.3-6) is
the same as that of the effective permittivity εe for metallic
nanospheres set forth in (8.3-2).

Figure 8.3-4 Negative-permeability metamaterial. (a) A metallic
split ring excited by a magnetic field exhibits a magnetic dipole
moment m. (b) An isotropic metamaterial fabricated by configuring
such split rings in three directions at the vertices of a cubic lattice.
(c) The frequency dependence of the effective magnetic
permeability μe exhibits a pole at ω0, a zero at ω1, and is negative in
the intervening range. When ε is positive, this structure serves as a
single-negative (SNG) metamaterial.



Negative-Index Metamaterials

The negative electric permittivity of the metallic-rod metamaterial
[Fig. 8.3-3(c)] may be combined with the negative magnetic
permeability of the metallic split-ring metamaterial [Fig. 8.3-4(c)]
to create a double-negative (DNG) metamaterial that serves as a
negative-index material (NIM). Implementation is achieved by
repeating the combined rod and double split-ring element, displayed
in Fig. 8.3-5(a), in two directions, as illustrated in Fig. 8.3-5(b). This
approach requires oblique incidence of the wave, as indicated, so
that surface plasmon resonances (SPR) can be excited with out-of-
plane magnetic fields. This design was first experimentally
demonstrated in the microwave region, and its dimensions were
subsequently scaled down for operation at optical frequencies.

Figure 8.3-5 Negative-index metamaterial. (a) Combined rod and
double split-ring element. (b) DNG metamaterial comprising an
array of the elements shown in (a), oriented along two orthogonal
directions. For waves traveling along directions in the horizontal
plane, the medium is double-negative, and the refractive index is
negative, at frequencies above the permittivity and permeability
resonances, as schematized in Fig. 8.3-1.

Alternative designs for optical NIMs that are easier to fabricate have
subsequently been developed. One such design is a “fishnet” metal–
dielectric multilayer structure, a simplified version of which is
illustrated in Fig. 8.3-6. In this configuration, the optical wave is
normally incident on the fishnet surface and the electric and
magnetic fields are aligned with the metal strips, as shown. The



strips aligned with the electric field are responsible for the negative
permittivity. The strips aligned with the magnetic field support anti-
symmetric resonant modes between pairs of coupled strips, which
results in negative permeability above the resonance frequency.
Fishnet nanostructures serve as NIMs that operate in the visible
region.

Figure 8.3-6 Simplified version of a “fishnet” metal–dielectric
nanostructured composite metamaterial consisting of a stacked
network of intersecting subwavelength plasmonic waveguides. The
structure serves as a negative-index material (NIM) in the visible
region of the spectrum.

*Hyperbolic Metamaterial: Parallel Metallic Rods in a Dielectric
Medium

As described in Sec. 8.1C, an anisotropic medium is said to be
hyperbolic if the effective principal values of its permittivity (or
permeability) tensor have mixed signs. We demonstrate that an
array of parallel metallic rods embedded in a dielectric medium of
permittivity ε, such as those illustrated in Fig. 8.3-7, may exhibit
hyperbolic behavior when the rods have extreme anisotropy by
virtue of a large aspect ratio.

For this purpose, we use the effective-medium approach to write
expressions for the principal values of the permittivity tensor along
the x, y, z directions (denoted 1, 2, 3, respectively). An analysis
similar to that carried out for the dielectric sphere, the result of
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which is provided in (5.6-17), reveals that the ratio of internal and
external fields for a dielectric cylinder takes the form Ei/E0 = 2ε/(εs
+ ε). Using the Maxwell–Garnett mixing rule then yields effective
permittivities for fields in the plane of the cross section, and along
the axial direction (where Ei/E0 = 1), that are given by:

Making use of the simplified Drude model (8.2-18) for εs,
combining the results for metallic nanospheres (8.3-2)–(8.3-4) and
metallic rods (8.3-5), and using (8.2-20), we obtain the following
expressions for the permittivity principal values:

where

with εr = ε/εo.

The effective ordinary permittivity εe1 = εe2 exhibits a pole at the
resonance frequency ω0 and a zero at ω1, while the effective
extraordinary permittivity εe3 varies from negative values at low
frequencies to positive values at high frequencies, passing through
zero at ω3, much like a pure metal. As illustrated in Fig. 8.3-7, an
extensive frequency band exists for which εe1 = εe2 and εe3 have
opposite signs, so that the anisotropic medium is hyperbolic. Within



this band, the material behaves like a dielectric in one direction and
a metal in the orthogonal direction.

Figure 8.3-7 Hyperbolic metamaterial. Frequency dependence of
the principal components of the effective electric permittivity tensor
for a metamaterial comprising parallel metallic rods described by
the simplified Drude model embedded in a host medium of
permittivity ε. The ordinary effective permittivities εe1 = εe2 have
resonance frequencies ω0 and exhibit positive values below
resonance. The extraordinary effective permittivity εe3 is negative in
the frequency range ω < ω3. The spectral band over which the
effective medium is hyperbolic is delineated by the shaded region,
where εe1 = εe2 and εe3 have opposite signs.

B. Metasurfaces
Metasurfaces are metamaterials whose dimensionality is reduced
from three to two. Examples are ultrathin arrays of subwavelength-
scale metallic elements, deposited in periodic, aperiodic, or random
patterns, on the surface of a dielectric substrate. Complementary
metasurfaces comprise arrays of subwavelength-scale dielectric
elements, such as holes and their separations, arrayed on an
ultrathin metallic surface. The shapes of the individual elements,
and the geometry of their layout on the surface, endow
metasurfaces with distinctive optical properties that are a
consequence of the coupling of light and SPP waves generated at the
metal–dielectric boundary.



Metasurface as a Phase Modulator

As explained in Sec. 2.4, a wave traveling in the z direction, on
transmission through a dielectric plate of fixed thickness d and
graded refractive index n(x, y) in the x–y plane, undergoes a
spatially varying phase shift φ(x, y)= n(x, y)kod, which modifies its
wavefront [see (2.4-14)]. Achieving a phase shift of 2π requires a
local thickness equal to the wavelength of light in the medium. A
planar metasurface has the merit that it can introduce a phase shift
of similar magnitude with far less thickness. The metallic elements
of the metasurface function much like optical antennas that modify
the optical wavefront. A resonant antenna acts as a scatterer that
introduces a frequency-dependent phase shift that ranges from
−π/2 to π/2 for frequencies below to above resonance, respectively.

A spatially varying phase shift φ(x, y) may be implemented by
making use of a metasurface comprising elements of spatially
graded sizes and geometries that correspond to spatially varying
resonance frequencies. An incoming wave of fixed frequency is then
subjected to a spatially varying phase shift so that the metasurface
acts as a phase modulator. An example is provided in Fig. 8.3-8(a).
Since the metasurface is ultra thin, it may be modeled
mathematically as an optical component that introduces a spatially
varying phase discontinuity (i.e., a phase shift that takes place over
a distance d → 0).



Figure 8.3-8 (a) A metasurface using an array of metallic
elements whose shapes and resonance frequencies vary in the x
direction. The shapes of the elements are engineered such that the
phase shift they introduce is a linear function φ = qx for one of the
polarization components. (b) Negative reflection and negative
refraction at a boundary between two media of refractive indices n1
and n2 by virtue of the presence of the metasurface portrayed in (a)
between the two media. (c) Phase-matching condition for the
incident and refracted waves, and for the incident and reflected
waves, at the metasurface boundary.

The phase modulation introduced by such a metasurface may
modify an incoming optical wave in any of the many ways described
in Sec. 2.4. A salutary feature of this approach is that the wave
undergoes minimal spatial spread (diffraction) as it crosses the
infinitesimally thin metasurface. Consider, for example, a phase
φ(x, y) that varies linearly along the metasurface at a rate q, so that
φ = qx. The complex amplitude of the incoming wave is then
modulated by the factor exp(−jqx), which is a periodic function of
the spatial frequency νx = q/2π, as explained in Sec. 4.1A. An
incoming plane wave of wavevector k1 will then generate refracted
and reflected plane waves with wavevectors k2 and k3, respectively.

To ensure phase matching at both sides of the surface, as depicted
in Fig. 8.3-8(c), the component of the vector k2 parallel to the
surface must match that of k1 +q, where q is a vector of magnitude
q pointing in the x direction. Likewise, for the reflected wave, the
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component of the vector k3 along the surface must match that of k1
+ q. Hence, if the metasurface lies at the boundary between two
ordinary media of refractive indices n1 and n2, its presence causes
the conventional Snell’s law of refraction and reflection to assume
the following modified form:

Metasurface Refraction

Metasurface Reflection

where θ1, θ2, and θ3 are the angles of incidence, refraction, and
reflection, respectively.

With appropriate choice of the magnitude and sign of q, the
presence of the metasurface can result in negative reflection and
negative refraction at the boundary, as illustrated in Fig. 8.3-8(b).
Equations (8.3-12) and (8.3-13) properly reduce to Snell’s law when
q = 0.

For a phase discontinuity φ(x) that varies slowly with the position x,
the derivative q = dφ/dx may be regarded as the local spatial
frequency at x. This quantity determines the local tilt imparted to an
incoming wavefront, and thus the angles of reflection and refraction
as a function of x. This approach can clearly be generalized to
metasurfaces that introduce a two-dimensional phase discontinuity
φ(x, y). In that case, the vector q = ∇φ represents the magnitude
and direction of the local spatial frequency of the phase modulation.
The metasurface can therefore be designed to introduced desired
local tilts of the wavefront in both the x–z and y–z planes, much
like an antenna array or an optical phase plate. The metasurface can
also be engineered to introduce position-dependent amplitude
modulation, imparted by the shape of the local elements. The
combination of phase and amplitude modulation can serve as a
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hologram with complex transmittance that is designed to simulate
the wavefront of light generated by an object.

Extraordinary Optical Transmission Through Subwavelength
Holes in a Metallic Film

A metasurface consisting of a periodic array of subwavelength holes
and separations perforated in a planar metallic film may exhibit
extraordinarily high optical-power transmittance at certain
wavelengths and angles of incidence. The power transmittance 𝒯(λ,
θ), as a function of the wavelength λ and the angle of incidence θ, is
found to exhibit sharp peaks with values that significantly exceed
those predicated on the basis of conventional diffraction theory.
Indeed, if 𝒯h is the total hole area per unit area of the film, the peak
values of the transmittance 𝒯(λ, 0) for a plane wave traveling in a
direction orthogonal to the film may exceed 𝒯h by orders of
magnitude.

This phenomenon is attributable to the generation of SPP waves
through the holes and the attendant radiation of light by the
oscillating charges created in the metallic film. The array of
subwavelength holes in the metal film should thus be considered as
an active radiating element, rather than as a passive geometrical
aperture through which the light is transmitted.

Maximum transmission occurs at frequencies for which the
incident optical wave and the excited SPP wave are phase matched.
For a periodic array of holes in the form of a square lattice with
period a0, the phase-matching condition is

where  is the propagation constant of the SPP wave
[see (8.2-21)]; k⊥ = (2π/λ) sin θ is the component of the wavevector
of the incident light in the plane of the array; gx = gy = 2π/a0 are the
fundamental spatial frequencies of the periodic array; and mx and
my are integers representing associated spatial harmonics (the



scattering order). The transmittance 𝒯(λ, θ) as a function of the
angle of incidence θ also exhibits photonic band gaps,8 much like
those observed in photonic crystals, which are three-dimensional
periodic dielectric structures of subwavelength dimensions (see Sec.
7.3).

Similar extraordinary optical transmission is expected for holes in a
perfect conductor, rather than a real metal. The medium is then
characterized by an effective dielectric function that has a plasmon
form, with a plasma frequency dictated by the geometry of the
holes.9

*8.4 TRANSFORMATION OPTICS
In other chapters of this book, graded-index optics is considered
from an analysis perspective, with a mandate to determine how
light propagates in a medium endowed with particular dielectric
and magnetic properties. Examples are provided in the context of
ray optics, wave optics, and electromagnetic optics:

Graded-index (GRIN) materials allow optical rays to follow
curved trajectories governed by the profile of the refractive
index n(r) (Sec. 1.3).

The trajectories of scalar waves in GRIN materials can be
described in terms of the Eikonal equation (Secs. 2.3 and
10.2C).

For isotropic materials with graded electric permittivity ε(r)
and magnetic permeability μ(r), Maxwell’s equations give rise
to the generalized Helmholtz equations (5.2-16) and (5.2-17);
these equations were solved in Chapter 7 for layered and
periodic structures such as photonic crystals.

The optics of anisotropic graded media are described by
Maxwell’s equations with position-dependent tensors ε(r) and
μ(r); the solution requires full vector analysis.



GRIN optics is useful for fabricating a variety of optical
components, including GRIN lenses (Sec. 10.1B).

In this section, in contrast, we consider graded-index optics from a
synthesis or design perspective, where the goal is to determine the
dielectric and magnetic properties of a medium that realize a
desired pattern of light propagation. The synthesis problem is more
challenging than the analysis problem in two respects: (1) the
required mathematical tools are more advanced; and (2) physical
implementation of the graded medium often requires the use of
metamaterials constructed from components that are available,
configured in a particular spatial arrangement, and amenable to
being fabricated with current technology.

A. Transformation Optics
Transformation optics is a mathematical tool that facilitates the
design of optical materials that guide light along desired
trajectories. The underlying concept relies on a geometrical
transformation that converts simple trajectories into desired ones.
In order that Maxwell’s equations remain valid, the optical
parameters associated with the transformed equivalent system
must also be modified, and this establishes the character of the
required optical material. As a simple example of such equivalence,
a local compression of the coordinate system by a scaling factor is
equivalent to a local increase of the refractive index by the same
factor, so that the optical pathlength (product of length and
refractive index) remains unchanged.

A three-step design procedure provides a guide:

Begin with a pilot physical system for which the optical
trajectories are known, such as a homogeneous and isotropic
material.

Find a coordinate transformation that converts these
trajectories to the desired ones.
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Determine the transformed physical parameters of the
equivalent material. The new material will implement the
desired optical trajectories in the original coordinate system.

Since geometrical transformations generally involve changes of
directions and introduce direction-dependent scaling, the
transformed parameters are generally both anisotropic and spatially
varying.

Transformation Principle

Let {εij} and {μij} be the elements of the permittivity and
permeability tensors of the original material in the original
coordinate system (x1, x2, x3). The elements of the permittivity and
permeability tensors of the equivalent material (denoted by the
superscript “e”) in the transformed coordinate system (u1, u2, u3)
are then related to the original elements by the matrix equations10

Here A is the 3 × 3 Jacobian transformation matrix, whose
elements are the partial derivatives

The quantity AT is the transpose of A, and ε and μ are 3 × 3
matrices whose elements are {εij} and {μij}, respectively. Since A is
generally dependent on (x1, x2, x3), the equivalent material is
generally inhomogeneous, even if the original material is
homogeneous.

In the special case for which the original material is both
homogeneous and isotropic, say free space, then ε and μ are
diagonal with equal diagonal elements εo and μo, respectively,
whereupon
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The tensors εe and μe are then identical except for a scaling factor.
Under these conditions the impedance, which depends on their
ratio, remains unchanged for all polarizations, which in turn implies
that the equivalent medium introduces no reflection at any
boundary with free space.

We provide a number of examples to illustrate the transformation
principle:
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EXAMPLE 8.4-1.

Refraction Without Reflection. In this example, we design
an optical material implementing ray trajectories that refract
without reflection at a planar surface, as shown in Fig. 8.4-1(a).

We begin with an initial homogeneous medium, say free space,
with rays that follow parallel straight trajectories at an angle θ1,
as shown in Fig. 8.4-1(b). We now apply a geometrical
transformation that stretches the coordinate system by a scale
factor s along the x3 direction in the region x3 > 0. The desired
refraction is achieved by choosing s as the ratio of the initial and
desired slopes, s = tan θ1/tan θ2 [Fig. 8.4-1(c)]. This
transformation is implemented by the relations

This type of scaling of the Cartesian coordinate system, in which
the directions of the axes do not change, converts a cube into a
cuboid. Based on (8.4-2), the Jacobian matrix A is diagonal with
diagonal elements (1, 1, s−1) and determinant det A = s−1, so that
(8.4-3) provides

Since the matrices εe and μe are diagonal, the anisotropic
material has principal axes pointing along the axes of the
coordinate system. The principal values are: ε1 = sεo, ε2 = sεo,
and ε3 = s−1εo together with μ1 = sμo, μ2 = sμo, and μ3 = s−1μo.



Figure 8.4-1 Geometrical transformation implementing
refraction without reflection. (a) Desired optical trajectories. (b)
Free space with straight-line optical trajectories. (c) Stretching
the coordinate system by the factor s for x3 > 0 causes the rays to
change slope and follow the desired trajectories. (d) Equivalent
anisotropic, homogeneous material that causes the rays to
change slope in an identical way.

The parameters of the equivalent material may also be obtained
by matching the phase shift encountered when a plane wave
crosses the stretched free-space segment with that encountered
when the wave is transmitted through an unstretched segment
filled with the new material. To determine the parameters, we
consider three waves in turn, each with the electric field along
one of the coordinates:

– Wave 1 is a plane wave traveling along the x3 direction
with electric and magnetic fields in the x1 and x2 directions,
respectively. The appropriate permittivity and permeability
are thus ε1 and μ2 so that ,
corresponding to a refractive index n1 = s. The phase shift
accumulated over the distance d is therefore skod, as
expected, and the impedance is .

– Wave 2 is also taken to travel along the x3 direction but
the electric and magnetic fields are now in the x2 and −x1
directions, respectively. This wave also travels with a
refractive index n2 = s and has an impedance η2 = ηo.
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– Wave 3 travels along the x2 direction with electric and
magnetic fields in the x3 and x1 directions, respectively. The
appropriate permittivity and permeability are ε3 and μ1 so
that  corresponding to a refractive
index n3 = 1. The phase shift is kod, as expected, since there
is no stretching in the x2 direction. The impedance is 

.

Using these results, we conclude that the final design is a
piecewise homogeneous medium with free space in the left half
plane and an anisotropic uniaxial material in the right half plane
[>Fig. 8.4-1(d)]. The anisotropic material is birefringent with n1
= s, n2 = s, and n3 = 1, but it introduces no reflection at the
boundary with free space since the impedances are the same as
that of free space: η1 = η2 = ηo.

Two factors distinguish refraction at the boundary of the
synthesized anisotropic medium from conventional refraction at
the boundary of a homogeneous and isotropic medium: (1) the
refraction is not accompanied by reflection; and (2) the
relationship between the angle of refraction and the angle of
incidence, s tan θ2 = tan θ1, differs from Snell’s law.

EXAMPLE 8.4-2. Refraction at Normal Incidence. We
next consider the design of an optical material that implements
refraction by an angle θ at a normal planar surface, as depicted
in Fig. 8.4-2(a). This type of refraction cannot occur at the
boundary between two isotropic dielectric materials, but can
occur at the boundary between an isotropic and an anisotropic
material, as described in Sec. 6.3E.

We begin with a pilot system of free space with ray trajectories
along horizontal parallel straight lines [Fig. 8.4-2(b)], and
implement the coordinate transformation
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for x3 > 0, with s = tan θ. This deflects the trajectories, as
desired, by shearing along the x2 direction [Fig. 8.4-1(c)]. The
permittivity and permeability tensors of the equivalent
anisotropic material corresponding to this coordinate
transformation, as determined by use of (8.4-2) and (8.4-3), are:

This represents a homogeneous, but anisotropic, medium. When
placed in the x3 > 0 region, it introduces the desired refraction at
normal incidence [Fig. 8.4-2(d)].

Figure 8.4-2 Geometrical transformation implementing
refraction at normal incidence. (a) Desired optical trajectories.
(b) Free space with horizontal straight-line optical trajectories.
(c) Shearing the coordinate system along the x2 direction for x3 >
0 refracts the trajectories as desired. (d) Equivalent anisotropic
material that exhibits identical refraction.

EXAMPLE 8.4-3.

Cylindrical Focusing. In this case, parallel straight-line
trajectories are to be refracted at a planar boundary such that
they all meet at a common focal point at a distance f from the
boundary, as shown in Fig. 8.4-3(a).

We begin with the straight trajectories shown in Fig. 8.4-3(b) in
a Cartesian coordinate system and apply the coordinate
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transformation

for x3 > 0. The result is a cylindrical coordinate system centered
at (u2 = 0, u3 = f), as shown in Fig. 8.4-3(c). This transformation
converts a line x2 = a in the plane x1 = 0 in the original
coordinate system into a line u2 = (f − u3) tan(a/f) in the new
coordinate system. It also converts a line x3 = b in the plane x1 =
0 into a circle  of radius (f − b) centered at the
point (u2, u3) = (0, f). Based on (8.4-1) and (8.4-2), the
transformation yields the diagonal matrix

The permittivity and permeability tensors of the equivalent
medium therefore have principal axes along the (x1, x2, x3) axes,
with principal values that are dependent on the position x3, i.e.,
the equivalent material is graded along the x3 direction with
larger anisotropy near the focal line [Fig. 8.4-3(d)].
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Figure 8.4-3 Geometrical transformation implementing
cylindrical focusing. (a) Desired optical trajectories. (b) Free
space with Cartesian coordinate system and parallel straight-line
optical trajectories. (c) Conversion to a cylindrical coordinate
system centered at x3 = f for x3 > 0 produces the desired
trajectories. (d) Equivalent anisotropic material with identical
trajectories.

B. Invisibility Cloaks
An invisibility cloak is a device that guides light around an object
such that the object appears transparent, and therefore invisible.
For example, the trajectories shown in Fig. 8.4-4(a) avoid a sphere
of radius a, emerging as if they had followed straight lines and
passed right through it.

Following the prescribed design steps for transformation optics, we
begin with the straight-line trajectories shown in Fig. 8.4-4(b) in a
Cartesian-coordinate system (x1, x2, x3). We next convert to a
coordinate system (u1, u2, u3) such that points of a sphere with
radius  are mapped to points of a sphere of radius 

, thereby avoiding the sphere of radius a, as
desired. This is accomplished for all points r < b, where b > a, via
the linear relation
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As r varies from 0 to b, u varies from a to b so that points of the
sphere 0 < r < b in the original coordinate system are mapped into
points in a spherical shell a < u < b in the new coordinate system.
This mapping may also be written as u = s(r)r, where

is a position-dependent scaling factor.

When applied isotropically, this scaling produces the coordinate
transformation

As can be shown by simple substitution, points on the straight line
x2 = f in the plane x1 = 0 are mapped into the curved trajectory

in the u2–u3 plane. The red curved trajectories shown in Fig. 8.4-4
are computed from (8.4-13) for four values of f. The grid shown in
Fig. 8.4-4(c) within the shell a < u < b is computed by use of (8.4-
13) and a similar equation determined by mapping the straight lines
x3 = f in the plane x1 = 0 into the u2–u3 plane. The parameters of the
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Figure 8.4-4 Geometrical transformation implementing cloaking
of a sphere. (a) Desired optical trajectories. (b) Free space with
Cartesian coordinate system and parallel straight-line optical
trajectories. (c) Coordinate system transformation mapping points
inside the sphere to points within a spherical shell outside the
sphere, thereby producing the desired trajectories. (d) Equivalent
anisotropic material with identical trajectories.

equivalent material to be placed in the a < r < b spherical shell
shown in Fig. 8.4-4(d) may be determined by use of (8.4-1) and
(8.4-2) together with (8.4-12). The result is

Clearly, the dielectric and magnetic properties of the material in the
spherical shell are both inhomogeneous and anisotropic. For
example, at points on the x1 axis (u, 0, 0), we have

At these points, the principal axes are aligned with the Cartesian
coordinates (x1, x2, x3). The principal value ε1 varies from 0 to εo(b −
a)/b as u varies from a to b, while the principal values ε2 and ε3 are
fixed at the value εob/(b − a). Similar results apply for μ.

At optical wavelengths, the implementation of invisibility cloaks via
metamaterials requires the use of advanced nanofabrication



technologies such as electron-beam or focused ion-beam
lithography. The constituent dielectric and magnetic elements,
which have various shapes and dimensions, must be intricately
designed and precisely laid out. Since such elements are highly
resonant, the electromagnetic properties of the metamaterial
depend strongly on wavelength so that such devices typically
operate only over narrow spectral bandwidths.
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PROBLEMS
8.1-1 SPP at Boundary Between DPS Medium and Lossy SNG

Medium. Consider a DPS-SNG boundary with μ1 = μ2 = μo and
ε1 real and positive, and with  complex with  real and
negative. Given that , demonstrate that the plasmon
wavelength λo/nb and the propagation length db may be
calculated with the help of the following approximate formulas:

8.1-2 NIM Slab as a Near-Field Imaging System. Demonstrate
the near-field imaging capability of a slab of refractive index n
= −2 in air (n = 1) by constructing a graph similar to that
displayed in Fig. 8.1-6(b), and by determining the imaging
equation. Find the reflection and transmission coefficients for
a wave normally incident on the boundaries of the slab. Sketch
the amplitude of an evanescent wave transmitted through the
slab by constructing a profile similar to that portrayed in Fig.
8.1-6(d).

8.1-3 Subwavelength-Resolution Near-Field Imaging with a
Lossy NIM Slab. Consider a slab of refractive index n = −2 in
air (n = 1). An evanescent wave entering the slab from air is
amplified by the slab material, as demonstrated in Prob. 8.1-2.
If the material is lossy, there will also be attenuation. If the
attenuation coefficient γ = 0.1ko, where ko = 2π/λo is the
wavenumber in free space, determine the spatial angular



frequency kx (in units of ko) at which the amplification will be
smaller than the attenuation? What is the corresponding
resolution in units of wavelength? Assume that ky = 0.

*8.1-4 Type-II Hyperbolic Medium. For the hyperbolic medium
described in Sec. 8.1C, ε1 and ε2 are positive, while ε3 is
negative. This is called a Type-I hyperbolic medium. Find the k
surface for a Type-II hyperbolic medium, in which ε1 and ε2 are
negative, while ε3 is positive. Show that a Type-II hyperbolic
medium also supports propagating waves with very short
wavelengths, but can be highly reflective.

8.2-1 Group Velocity in a Metal. For a medium described by the
simplified Drude model with effective permittivity (8.2-18),
show that the product of the phase velocity and the group
velocity is .

8.2-2 Prism Coupler for Exciting a SPP Wave. A SPP wave is to
be generated at the interface between air and a 60-nm-thick
layer of Ag by making use of a SiN prism (refractive index n =
2.0) that abuts the opposite face of the Ag layer (see Fig. 8.2-5).
At a free-space wavelength λo = 700 nm, the relative
permittivity of Ag is −20 + J 1.3. Calculate the angle of
incidence of the light inside the prism required to couple to the
Ag-air SPP. Assume that the dispersion relation of the SPP
wave at the Ag-air interface is undisturbed by the presence of
the prism.

8.2-3 Silver Nanosphere in Glass. Consider a silver nanosphere
of radius a = 10 nm embedded in glass (n = 1.45). Calculate and
plot the scattering efficiency Qs, the absorption efficiency Qa,
and the normalized internal field Ei/E0 as functions of the free-
space wavelength λo over the 350–1000-nm wavelength range.
Identify the resonance frequency and determine the scattering
and absorption coefficients, αs and αa, respectively, at
resonance. Use the fitted modified-Drude relative-permittivity
function for bulk Ag:



where ζ = 0.00229 ωp, ωL = 0.575 ωp, and ζL = 0.124 ωp . The
quantity ωp corresponds to a free-space plasma wavelength λp =
135.2 nm. This model incorporates an interband absorption
(bound-electron) contribution to the complex permittivity.

8.3-1 Negative-Permittivity Metamaterial: Silver
Nanospheres in Water. Use the Maxwell-Garnett mixing
rule (5.6-20) to calculate and plot the real and imaginary parts
of the effective permittivity εe of water with inclusions of silver
nanospheres [see Fig. 8.3-2(b)], as a function of the free-space
wavelength λo, over the wavelength range from 250 to 1000
nm. Use the relative-permittivity function of Ag defined in
Prob. 8.2-3 and take the refractive index of water to be constant
at n = 1.33. Assume that the volume fraction f = 3%. Identify
wavelength ranges within which the real part of εe is negative.
Investigate the effects of changing both f and n.

*8.3-2 Layered Metal–Dielectric Hyperbolic Metamaterial.
Planar layers of metal are alternately stacked with layers of
dielectric material. The anisotropic medium has an effective
dielectric tensor with components ε1 = ε2 in the plane of the
layers and ε3 in the orthogonal direction. Use an effective-
medium approximation,

where εm and εd are the permittivities of the metal and dielectric
layers, respectively, and dm and dd are their thicknesses. With the
help of the simplified Drude-model expression for εm, show that
this structure can behave as a hyperbolic material. Identify which of
the components, ε1 or ε3, is negative. Sketch the k surface.

Notes



1. The penetration depth is sometimes defined as the distance over
which the field, rather than the intensity, is attenuated by a factor
e−1, in which case .
2. See R. A. Depine and A. Lakhtakia, A New Condition to Identify
Isotropic Dielectric–Magnetic Materials Displaying Negative Phase
Velocity, Microwave and Optical Technology Letters, vol. 41, pp.
315–316, 2004.
3. A plasma is a collection of positive ions and free electrons whose
overall net charge is approximately zero. A plasmon is a
quasiparticle (a quantum) of the plasma oscillation, just as a photon
is a quantum of the electromagnetic field. A polariton is a
quasiparticle that results from the coupling of the electromagnetic
field (photons) with the electric or magnetic excitation of a material.
Surface plasmon polaritons result from the coupling of photons
with surface plasmons.
4. See J. B. Pendry, Negative Refraction Makes a Perfect Lens,
Physical Review Letters, vol. 85, pp. 3966–3969, 2000.
5. The choice of the minus sign for kz, which is allowed by virtue of
(4.1-3), ensures consistency with the development provided in Sec.
4.1B.
6. The experimental data presented in Fig. 8.2-2 were drawn from P.
B. Johnson and R. W. Christy, Optical Constants of the Noble
Metals, Physical Review B, vol. 6, pp. 4370–4379, 1972.
7. The experimental value for the permittivity of Ag at a free-space
wavelength of λo = 800 nm is ε2 = (−32.6 + J 0.5) εo. The calculated
value of the effective permittivity at this wavelength, based on (8.2-
18) for the simplified Drude model (no damping), provides ,
in close agreement with the experimental value.
8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff,
Extraordinary Optical Transmission Through Sub-Wavelength Hole
Arrays, Nature, vol. 391, pp. 667–669, 1998.
9. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, Surfaces
with Holes in Them: New Plasmonic Metamaterials, Journal of



Optics A: Pure and Applied Optics, vol. 7, pp. S97–S101, 2005.
10. See, e.g., J. B. Pendry, Y. Luo, and R. Zhao, Transforming the
Optical Landscape, Science, vol. 348, pp. 521–524, 2015.
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Jean-Daniel Colladon (1802–1893)



John Tyndall (1820–1893)

Total internal reflection, the basis of guided-wave optics, was first
demonstrated in water jets in the mid-1800s by the Swiss physicist
Jean-Daniel Colladon and by the Irish-born physicist John Tyndall.

Traditional optical instruments and systems make use of bulk
optics, in which light is transmitted between different locations in
the form of beams that are collimated, relayed, focused, and
scanned by mirrors, lenses, and prisms. The beams diffract and
broaden as they propagate although they can be refocused by the
use of lenses and mirrors. However, the bulk optical components
that comprise such systems are often large and unwieldy, and
objects in the paths of the beams can obstruct or scatter them.

In many circumstances it is advantageous to transmit optical beams
through dielectric conduits rather than through free space. The
technology for achieving this is known as guided-wave optics. It
was initially developed to provide long-distance light transmission
without the necessity of using relay lenses. This technology now has
many important applications. A few examples are: carrying light
over long distances for optical fiber communications, biomedical
imaging where light must reach awkward locations, and connecting
components within miniaturized optical and optoelectronic devices
and systems.

The underlying principle of optical confinement is straightforward.
A medium of refractive index n1, embedded in a medium of lower



refractive index n2 < n1, acts as a light “trap” within which optical
rays remain confined by multiple total internal reflections at the
boundaries. Because this effect facilitates the confinement of light
generated inside a medium of high refractive index [see Exercise
(1.2-6)], it can be exploited in making light conduits — guides that
transport light from one location to another. An optical
waveguide is a light conduit consisting of a slab, strip, or cylinder
of dielectric material embedded in another dielectric material of
lower refractive index (Fig. 9.0-1). The light is transported through
the inner medium without radiating into the surrounding medium.
The most widely used of these waveguides is the optical fiber,
comprising two concentric cylinders of low-loss dielectric material
such as glass (see Chapter 10). Other forms of optical waveguides
make use of photonic crystals (Chapter 7) and metal–dielectric
structures (Chapter 8).

Figure 9.0-1 Optical waveguides.

Integrated photonics, also known as integrated optics, is the
technology of combining, on a single substrate (“chip”), various
optical devices and components useful for generating, focusing,
splitting, combining, isolating, polarizing, coupling, switching,
modulating, and detecting light. Optical waveguides provide the
links among these components. Such chips, called photonic
integrated circuits (PICs), are optical versions of electronic
integrated circuits. An example of a transceiver
(transmitter/receiver) chip is schematized in Fig. 9.0-2. Integrated
photonics serves to miniaturize optics in much the same way that
silicon integrated circuits have miniaturized electronics.



Figure 9.0-2 Schematic of a photonic integrated circuit that serves
as an elementary optical transceiver (transmitter/receiver).
Received light enters via a waveguide and is directed to a
photodiode where it is detected. Light from a laser diode is guided,
modulated, and coupled into a fiber for transmission.

This Chapter

The basic theory of optical waveguides is presented in this and the
following chapter. In this chapter, we consider rectangular
waveguides, which are used extensively in integrated photonics.
Chapter 10 deals with cylindrical waveguides, i.e., optical fibers. If
reflectors are placed at the two ends of a short waveguide, the result
is a structure that traps and stores light — an optical resonator.
These devices, which are essential to the operation of lasers, are
described in Chapter 11. Various integrated-photonic components
and devices (such as laser diodes, detectors, modulators,
interconnects, and switches) are considered in the chapters that
deal specifically with those components and devices. Photonic
integrated circuits based on silicon photonics are addressed in Sec.
25.1E. Optical fiber communication systems are discussed in detail
in Chapter 25.

9.1 PLANAR-MIRROR WAVEGUIDES
We begin by examining wave propagation in a waveguide
comprising two parallel infinite planar mirrors separated by a
distance d (Fig. 9.1-1). The mirrors are assumed to reflect light



without loss. A ray of light, say in the y–z plane, making an angle θ
with the mirrors reflects and bounces between them without loss of
energy. The ray is thus guided along the z direction.

Figure 9.1-1 Planar-mirror waveguide.

This waveguide appears to provide a perfect conduit for light rays. It
is not used in practical applications, however, principally because of
the difficulty and cost of fabricating low-loss mirrors. Nevertheless,
we study this simple example in detail because it provides a
valuable pedagogical introduction to the dielectric waveguide, which
we examine in Sec. 9.2, and to the optical resonator, which is the
subject of Chapter 11.

Waveguide Modes

The ray-optics picture of light being guided by multiple reflections
cannot explain a number of important effects that require the use of
electromagnetic theory. A simple approach for carrying out an
electromagnetic analysis is to associate with each optical ray a
transverse electromagnetic (TEM) plane wave. The total
electromagnetic field is then the sum of these plane waves.

Consider a monochromatic TEM plane wave of wavelength λ = λo/n,
wavenumber κ = nκo, and phase velocity c = co/n, where n is the
refractive index of the medium between the mirrors. The wave is
polarized in the x direction and its wavevector lies in the y–z plane
at an angle θ with the z axis (Fig. 9.1-1). Like the optical ray, the
wave reflects from the upper mirror, travels at an angle −θ, reflects
from the lower mirror, and travels once more at an angle θ, and so



(9.1-10)

(9.1-2)
Bounce Angles

on. Since the electric-field vector is parallel to the mirror, each
reflection is accompanied by a phase shift π for a perfect mirror, but
the amplitude and polarization are not changed. The π phase shift
ensures that the sum of each wave and its own reflection vanishes
so that the total field is zero at the mirrors. At each point within the
waveguide we have TEM waves traveling upward at an angle θ and
others traveling downward at an angle −θ; all waves are polarized in
the x direction.

We now impose a self-consistency condition by requiring that as the
wave reflects twice, it reproduces itself [see Fig. 9.1-2(a)], so that we
have only two distinct plane waves. Fields that satisfy this condition
are called the modes (or eigenfunctions) of the waveguide (see
Appendix C). Modes are fields that maintain the same transverse
distribution and polarization at all locations along the waveguide
axis. We shall see that self-consistency guarantees this shape
invariance. In connection with Fig. 9.1-2, the phase shift Δφ
encountered by the original wave in traveling from A to B must be
equal to, or differ by an integer multiple of 2π, from that
encountered when the wave reflects, travels from A to C, and
reflects once more. Accounting for a phase shift of π at each
reflection, we have , where q = 0, 1,
2,..., so that . The geometry portrayed in Fig.
9.1-2(a), together with the identity cos(2x) = 1 − 2sin 2 x, provides 

 = 2d sin θ, where d is the distance between the mirrors.
Thus, 2π(2d sin θ)/λ = 2π(q + 1) so that

where m = q + 1. The self-consistency condition is therefore
satisfied only for certain bounce angles θ = θm satisfying



(9.1-3)
Wavevector 

Transverse Component

Each integer m corresponds to a bounce angle θm, and the
corresponding field is called the mth mode. The m = 1 mode has the
smallest angle, θ1 = sin −1(λ/2d); modes with larger m are composed
of more oblique plane-wave components.

Figure 9.1-2 (a) Condition of self-consistency: as a wave reflects
twice it duplicates itself. (b) At angles for which self-consistency is
satisfied, the two waves interfere and create a pattern that does not
change with z.

When the self-consistency condition is satisfied, the phases of the
upward and downward plane waves at points on the z axis differ by
half the round-trip phase shift qπ, q = 0, 1,..., or (m − 1)π, m = 1,
2,..., so that they add for odd m and subtract for even m.

Since the y component of the propagation constant is given by ky =
nko sin θ, it is quantized to the values kym = nko sin θm = (2π/λ) sin
θm. Using (9.1-1), we obtain

so that the kym are spaced by π/d. Equation
(9.1-12) states that the phase shift encountered when a wave travels
a distance 2d (one round trip) in the y direction, with propagation
constant kym, must be a multiple of 2π.

Propagation Constants



(9.1-4)
Propagation Constants

A guided wave is composed of two distinct plane waves traveling in
the y–z plane at angles ±θ with the z axis. Their wavevectors have
components (0, ky, kz) and (0, −ky, kz). Their sum or difference
therefore varies with z as exp(−jkzz), so that the propagation
constant of the guided wave is β ≡ kz = k cos θ. Thus, β is quantized
to the values βm = k cos θm, from which  = k2(1 − sin 2 θm). Using
(9.1-13), we obtain

Higher-order (more oblique) modes travel with smaller propagation
constants. The values of θm, kym, and βm for the different modes are
illustrated in Fig. 9.1-3.

Figure 9.1-3 The bounce angles θm and the wavevector
components of the modes of a planar-mirror waveguide (indicated
by dots). The transverse components kym = k sin θm are spaced
uniformly at multiples of π/d, but the bounce angles θm and the
propagation constants βm are not equally spaced. Mode m = 1 has
the smallest bounce angle and the largest propagation constant.

Field Distributions



(9.1-6)

(9.1-7)

(9.1-8)

(9.1-5)

The complex amplitude of the total field in the waveguide is the
superposition of the two bouncing TEM plane waves. If Am

exp(−jkymy − jβmz) is the upward wave, then ej(m−1)π Am
exp(+jkymy − jβmz) wave, then must be the downward wave [at y =
0, the two waves differ by a phase shift (m − 1)π]. There are
therefore symmetric modes, for which the two plane-wave
components are added, and anti-symmetric modes, for which they
are subtracted. The total field turns out to be Ex(y, z) = 2Am
cos(kymy) exp(−jβmz) for odd modes and 2jAm sin(kymy)
exp(−jβmz) for even modes.

Using (9.1-14) we write the complex amplitude of the electric field
in the form

where

with  and , for odd m and even m, respectively.
The functions um(y) have been normalized to satisfy

Thus, am is the amplitude of mode m. It can be shown that the
functions um(y) also satisfy

i.e., they are orthogonal in the [−d/2, d/2] interval.



The transverse distributions um(y) are plotted in Fig. 9.1-4. Each
mode can be viewed as a standing wave in the y direction, traveling
in the z direction. Modes of large m vary in the transverse plane at a
greater rate ky and travel with a smaller propagation constant β. The
field vanishes at y = ±d/2 for all modes, so that the boundary
conditions at the surface of the mirrors are always satisfied.

Figure 9.1-4 Field distributions of the modes of a planar-mirror
waveguide.

Since we assumed at the outset that the bouncing TEM plane wave
is polarized in the x direction, the total electric field is also in the x
direction and the guided wave is a transverse-electric (TE) wave.
Transverse magnetic (TM) waves are analyzed in a similar fashion
as will be seen subsequently.

EXERCISE 9.1-1

Optical Power. Show that the optical power flow in the z
direction associated with the TE mode Ex(y, z) = amum(y)
exp(−jβmz) is (|am|2/2η) cos θm, where η = ηo/n and  is
the impedance of free space.

Number of Modes

Since sin θm = mλ/2d, m = 1, 2,..., and taking sin θm < 1, the
maximum allowed value of m is the greatest integer smaller than
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1/(λ/2d),

The symbol = denotes that 2d/λ is reduced to the nearest integer. As
examples, when 2d/λ = 0.9, 1, and 1.1, we have M = 0, 0, and 1,
respectively. Thus, M is the number of modes of the waveguide.
Light can be transmitted through the waveguide in one, two, or
many modes. The actual number of modes that carry optical power
depends on the source of excitation, but the maximum number is
M.

The number of modes increases with increasing ratio of the mirror
separation to the wavelength. Under conditions such that 2d/λ ≤ 1,
corresponding to d ≤ λ/2, M is seen to be 0, which indicates that the
self-consistency condition cannot be met and the waveguide cannot
support any modes. The wavelength λc = 2d is called the cutoff
wavelength of the waveguide. It is the longest wavelength that can
be guided by the structure. It corresponds to the cutoff frequency

or the cutoff angular frequency ωc = 2πνc = πc/d, the lowest
frequency of light that can be guided by the waveguide. If 1 < 2d/λ ≤
2 (i.e., d ≤ λ < 2d or νc ≤ ν < 2νc), only one mode is allowed. The
structure is then said to be a single-mode waveguide. If d = 5
μm, for example, the waveguide has a cutoff wavelength λc = 10 μm;
it supports a single mode for 5 μm ≤ λ < 10 μm, and more modes for
λ < 5 μm. Equation (9.1-18) can also be written in terms of the
frequency ν, M = ν/νc = ω/ωc, so that the number of modes
increases by unity when the angular frequency ω is incremented by
ωc, as illustrated in Fig. 9.1-5(a).
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Figure 9.1-5 (a) Number of modes M as a function of angular
frequency ω. Modes are not permitted for angular frequencies
below the cutoff, ωc = πc/d. M increments by unity as ω increases
by ωc. (b) Dispersion relation. A forbidden band exists for angular
frequencies below ωc. (c) Group velocities of the modes as a
function of angular frequency.

Dispersion Relation

The relation between the propagation constant β and the angular
frequency ω is an important characteristic of the waveguide, known
as the dispersion relation. For a homogeneous medium, the
dispersion relation is simply ω = cβ. For mode m of a planar-mirror
waveguide, βm and ω are related by (9.1-2) so that

This relation may be written in terms of the cutoff angular
frequency ωc = 2πνc = πc/d as

As shown in Fig. 9.1-5(b) for m = 1, 2,..., the propagation constant β
for mode m is zero at angular frequency ω = mωc, increases
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monotonically with angular frequency, and ultimately approaches
the linear relation β = ω/c for sufficiently large values of β.

Group Velocities

In a medium with a given ω-β dispersion relation, a pulse of light
(wavepacket) that has an angular frequency centered at ω travels
with a velocity v = dω/dβ, known as the group velocity (see Sec.
5.7). Taking the derivative of (9.1-3) and assuming that c is
independent of ω (i.e., ignoring dispersion in the waveguide
material), we obtain 2βm dβm/dω = 2ω/c2, so that dω/dβm = c2βm/
ω = c2k cos θm/ω = c cos θm, from which the group velocity of mode
m is

It follows that more oblique modes travel with smaller group
velocities since they are delayed by the longer paths of the
zigzagging process. The dependence of the group velocity on angular
frequency is illustrated in Fig. 9.1-5(c), which shows that for each
mode, the group velocity increases monotonically from 0 to c as the
angular frequency increases above the mode cutoff frequency.

Equation (9.1-4) may also be obtained geometrically by examining
the plane wave as it bounces between the mirrors and determining
the distance advanced in the z direction and the time taken by the
zigzagging process. For the trip from the bottom mirror to the top
mirror (Fig. 9.1-6) we have



Figure 9.1-6 A plane wave bouncing at an angle θ advances in the z
direction by a distance d cot θ in a time d csc θ/c. The velocity is c
cos θ.

TM Modes

Only TE modes (electric field in the x direction) have been
considered to this point. TM modes (magnetic field in the x
direction) can also be supported by the mirror waveguide. They can
be studied by means of a TEM plane wave with the magnetic field in
the x direction, traveling at an angle θ and reflecting from the two
mirrors (Fig. 9.1-7). The electric-field complex amplitude then has
components in the y and z directions. Since the z component is
parallel to the mirror, it behaves precisely like the x component of
the TE mode (i.e., it undergoes a phase shift π at each reflection and
vanishes at the mirrors). When the self-consistency condition is
applied to this component the result is mathematically identical to
that of the TE case. The angles θ, the transverse wavevector
components ky, and the propagation constants β of the TM modes
associated with this component are identical to those of the TE
modes. There are  TM modes (and a total of 2M modes)
supported by the waveguide.

Figure 9.1-7 TE and TM polarized guided waves.
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The z component of the electric-field complex amplitude of mode
m, as previously, is the sum of an upward plane wave Am

exp(−jkymy) exp(−jβmz) and a downward plane wave ej(m−1)πAm
exp(jkymy) exp (−jβmz), with equal amplitudes and phase shift (m −
1)π, so that

where  and  for odd and even m, respectively.
Since the electric-field vector of a TEM plane wave is normal to its
direction of propagation, it makes an angle π/2 + θm with the z axis
for the upward wave, and π/2 − θm for the downward wave.

The y components of the electric field of these waves are

so that

Satisfaction of the boundary conditions is assured because Ez(y, z)
vanishes at the mirrors. The magnetic field component Hx(y, z) may
be similarly determined by noting that the ratio of the electric to the
magnetic fields of a TEM wave is the impedance of the medium η.
The resultant fields Ey(y, z), Ez(y, z), and Hx(y, z) do, of course,
satisfy Maxwell’s equations.

Multimode Fields



For light to be guided by the mirrors, it is not necessary that it have
the distribution of one of the modes. In fact, a field satisfying the
boundary conditions (vanishing at the mirrors) but otherwise
having an arbitrary distribution in the transverse plane can be
guided by the waveguide. The optical power, however, is then
divided among the modes. Since different modes travel with
different propagation constants and different group velocities, the
transverse distribution of the field will alter as it travels through the
waveguide. Fig. 9.1-8 illustrates how the transverse distribution of a
single mode is invariant to propagation, whereas the multimode
distribution varies with z (the illustration is for the intensity
distribution).

Figure 9.1-8 Variation of the intensity distribution in the
transverse direction y at different axial distances z. (a) The electric-
field complex amplitude in mode 1 is E(y, z) = u1 (y) exp(−jβ1z),
where . The intensity does not vary with z. (b) The
complex amplitude in mode 2 is E(y, z) = u2(y) exp(−jβ2z), where 

. The intensity does not vary with z. (c) The
complex amplitude in a mixture of modes 1 and 2, E(y, z) = u1(y)
exp(−jβ1z) + u2(y) exp(−jβ2z). Since β1 ≠ β2, the intensity
distribution changes with z.

An arbitrary field polarized in the x direction and satisfying the
boundary conditions can be written as a weighted superposition of
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the TE modes,

where am, the superposition weights, are the amplitudes of the
different modes.

EXERCISE 9.1-2

Optical Power in a Multimode Field. Show that the optical
power flow in the z direction associated with the multimode
field in (9.1-9) is the sum of the powers (|am|2/2η) cos θm
carried by each of the modes.

9.2 PLANAR DIELECTRIC WAVEGUIDES
A planar dielectric waveguide is a slab of dielectric material
surrounded by media of lower refractive indices. The light is guided
inside the slab by total internal reflection. In thin-film devices the
slab is called the “film” and the upper and lower media are called
the “cover” and the “substrate,” respectively. The inner medium and
outer media may also be called the “core” and the “cladding” of the
waveguide, respectively. In this section we study the propagation of
light in a symmetric planar dielectric waveguide made of a slab of
width d and refractive index n1 surrounded by a cladding of smaller
refractive index n2, as illustrated in Fig. 9.2-1. All materials are
assumed to be lossless.



Figure 9.2-1 Planar dielectric (slab) waveguide. Rays making an
angle  = cos −1(n2/n1) are guided by total internal reflection.

Light rays making angles θ with the z axis, in the y–z plane,
undergo multiple total internal reflections at the slab boundaries,
provided that θ is smaller than the complement of the critical angle 

 = π/2 − sin −1(n2/n1) = cos −1(n2/n1) [see (1.2-5) and Figs. 6.2-3
and 6.2-5]. They travel in the z direction by bouncing between the
slab surfaces without loss of power. Rays making larger angles
refract, losing a portion of their power at each reflection, and
eventually vanish.

To determine the waveguide modes, a formal approach may be
pursued by developing solutions to Maxwell’s equations in the inner
and outer media with the appropriate boundary conditions imposed
(see Prob. 9.2-6). We shall instead write the solution in terms of
TEM plane waves bouncing between the surfaces of the slab. By
imposing the self-consistency condition, we determine the bounce
angles of the waveguide modes from which the propagation
constants, field distributions, and group velocities are determined.
The analysis is analogous to that used in the previous section for
the planar-mirror waveguide.

A. Waveguide Modes
Assume that the field in the slab is in the form of a monochromatic
TEM plane wave of wavelength λ = λo/n1 bouncing back and forth at
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an angle θ smaller than the complementary critical angle . The
wave travels with a phase velocity c1 = co/n1, has a wavenumber
n1ko, and has wavevector components kx = 0, ky = n1ko sin θ, and kz
= n1ko cos θ. To determine the modes we impose the self-
consistency condition that a wave reproduces itself after each round
trip.

In one round trip, the twice-reflected wave lags behind the original
wave by a distance  = 2d sin θ, as in Fig. 9.1-2. There is also a
phase φr introduced by each internal reflection at the dielectric
boundary (see Sec. 6.2). For self-consistency, the phase shift
between the two waves must be zero or a multiple of 2π,

or

The only difference between this condition and the corresponding
condition in the mirror waveguide, (9.2-1) and (9.2-10), is that the
phase shift π introduced by the mirror is replaced here by the phase
shift φr introduced at the dielectric boundary.

The reflection phase shift φr is a function of the angle θ. It also
depends on the polarization of the incident wave, TE or TM. In the
TE case (the electric field is in the x direction), substituting θ1 = π/2
− θ and θc = π/2 −  in (6.2-11) gives

so that φr varies from π to 0 as θ varies from 0 to . Rewriting (9.2-
11) in the form tan(πd sin θ/λ − mπ/2) = tan(φr/2) and using (9.2-
12), we obtain
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This is a transcendental equation in one variable, sin θ. Its solutions
yield the bounce angles θm of the modes. A graphic solution is
instructive. The right-and left-hand sides of (9.2-13) are plotted in
Fig. 9.2-2 as functions of sin θ. Solutions are given by the
intersection points. The right-hand side, tan(φr/2), is a monotonic
decreasing function of sin θ that reaches 0 when sin θ = sin . The
left-hand side generates two families of curves, tan[(πd/λ) sin θ]
and cot[(πd/λ) sin θ], when m is even and odd, respectively. The
intersection points determine the angles θm of the modes. The
bounce angles of the modes of a mirror waveguide of mirror
separation d may be obtained from this diagram by using φr = π or,
equivalently, tan(φr/2) = ∞. For comparison, these angles are
marked by open circles.
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Figure 9.2-2 Graphical solution of (9.2-19) to determine the
bounce angles θm of the modes of a planar dielectric waveguide. The
right-hand side (RHS) and left-hand side (LHS) of (9.2-2) are
plotted versus sin θ. The intersection points, marked by filled
circles, determine sin θm. Each branch of the tan or cot function on
the left-hand side corresponds to a mode. In this plot sin  =
8(λ/2d) and the number of modes is M = 9. The open circles mark
sin θm = mλ/2d, which provide the bounce angles of the modes of a
planar-mirror waveguide of the same dimensions.

The angles θm lie between 0 and . They correspond to wavevectors
with components (0, n1ko sin θm, n1ko cos θm). The z components
are the propagation constants

Since cos θm lies between 1 and cos  = n2/n1, βm lies between n2ko
and n1ko, as illustrated in Fig. 9.2-3.
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Figure 9.2-3 The bounce angles θm and the corresponding
components kz and ky of the wavevector of the waveguide modes
are indicated by dots. The angles θm lie between 0 and , and the
propagation constants βm lie between n2ko and n1ko. These results
should be compared with those shown in Fig. 9.1-3 for the planar-
mirror waveguide.

The bounce angles θm and the propagation constants βm of TM
modes can be found by using the same equation (9.2-20), but with
the phase shift φr given by (6.2-13). Similar results are obtained.

Number of Modes

To determine the number of TE modes supported by the dielectric
waveguide we examine the diagram in Fig. 9.2-2. The abscissa is
divided into equal intervals of width λ/2d, each of which contains a
mode marked by a filled circle. This extends over angles for which
sin θ ≤ sin . The number of TE modes is therefore the smallest
integer greater than sin /(λ/2d), so that

The symbol ≐ denotes that sin /(λ/2d) is increased to the nearest
integer. For example, if sin /(λ/2d) = 0.9, 1, or 1.1, then M = 1, 2,
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and 2, respectively. Substituting cos  = n2/n1 into (9.2-22), we
obtain

where

is the numerical aperture of the waveguide (the NA is the sine of the
angle of acceptance of rays from air into the slab; see Exercise 1.2-
5). If d/λo = 10, n1 = 1.47, and n2 = 1.46, for example, then  = 6.7°,
NA = 0.171, and M = 4 TE modes. A similar expression can be
obtained for the TM modes.

When λ/2d > sin  or (2d/λo)NA < 1, only one mode is allowed. The
waveguide is then a single-mode waveguide. This occurs when the
slab is sufficiently thin or the wavelength is sufficiently long. Unlike
the mirror waveguide, the dielectric waveguide has no absolute
cutoff wavelength (or cutoff frequency). In a dielectric waveguide
there is at least one TE mode, since the fundamental mode m = 0 is
always allowed. Each of the modes m = 1, 2,... has its own cutoff
wavelength, however.

Stated in terms of frequency, the condition for single-mode
operation is that ν < νc, or ω < ωc, where the mode cutoff frequency
is



The number of modes is then M ≐ ν/νc = ω/ωc, which is the relation
illustrated in Fig. 9.2-4. M is incremented by unity as ω increases by
ωc. Identical expressions for the number of TM modes are obtained
via a similar derivation.

Figure 9.2-4 Number of TE modes as a function of frequency.
Compare with Fig. 9.1-5(a) for the planar-mirror waveguide. There
is no forbidden band in the case at hand.

EXAMPLE 9.2-1

Number of Modes in an AlGaAs Waveguide. Consider a
waveguide fabricated by sandwiching a layer of AlxGa1 − xAs
between two layers of AlyGa1 − yAs. The refractive index of this
ternary semiconductor depends on the relative proportions of Al
and Ga. Assume that x and y are chosen such that n1 = 3.50 and
n1 − n2 = 0.05 at an operating wavelength of λo = 0.9 μm. If the
core has width d = 10 μm, in accordance with (9.2-24) and (9.2-
25) there will be M = 14 supported TE modes. Only a single
mode is allowed when d < 0.76 μm.

B. Field Distributions
We now determine the field distributions of the TE modes.
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Internal Field

The field inside the slab is composed of two TEM plane waves
traveling at angles θm and −θm with the z axis with wavevector
components (0, ±n1ko sin θm, n1ko cos θm). They have the same
amplitude and phase shift mπ (half that of a round trip) at the
center of the slab. The electric-field complex amplitude is therefore
Ex(y, z) = amum(y) exp (−jβmz), where βm = n1ko cos θm is the
propagation constant, am is a constant,

and λ = λo/n1. Note that although the field is harmonic, it does not
vanish at the slab boundary. As m increases, sin θm increases, so
that higher-order modes vary more rapidly with y.

External Field

The external field must match the internal field at all boundary
points y = ±d/2. It is therefore clear that it must vary with z as
exp(−jβmz). Substituting the field Ex(y, z) = amum(y) exp(−jβmz)
into the Helmholtz equation  = 0 leads to

where

Since βm > n2ko for guided modes (See Fig. 9.2-3), , so that
(9.2-3) is satisfied by the exponential functions exp(−γmy) and
exp(γmy). Since the field must decay away from the slab, we choose
exp(−γmy) in the upper medium and exp(γmy) in the lower medium
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The decay rate γm is the field extinction coefficient. The wave is said
to be an evanescent wave. Substituting βm = n1ko cos θm and cos 

 = n2/n1 into (9.2-4), we obtain

As the mode number m increases, θm increases, and γm decreases.
Higher-order modes therefore penetrate deeper into the cover and
substrate.

To determine the proportionality constants in (9.2-6) and (9.2-7),
we match the internal and external fields at y = d/2 and use the
normalization

This gives an expression for um(y) valid for all y. These functions
are illustrated in Fig. 9.2-5. As in the mirror waveguide, all of the
um(y) are orthogonal, i.e.,
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Figure 9.2-5 Field distributions for TE guided modes in a dielectric
waveguide. These results should be compared with those shown in
Fig. 9.1-4 for the planar-mirror waveguide.

An arbitrary TE field in the dielectric waveguide can be written as a
superposition of these modes:

where am is the amplitude of mode m.

EXERCISE 9.2-1

Confinement Factor. The power confinement factor is the
ratio of power in the slab to the total power

Derive an expression for Γm as a function of the angle θm and
the ratio d/λ. Demonstrate that the lowest-order mode (smallest
θm) has the highest power confinement factor.

The field distributions of the TM modes may be similarly
determined (Fig. 9.2-6). Since it is parallel to the slab boundary, the
z component of the electric field behaves similarly to the x
component of the TE electric field. The analysis may start by
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determining Ez(y, z). Using the properties of the constituent TEM
waves, the other components Ey(y, z) and Hx(y, z) may readily be
determined, as was done for mirror waveguides. Alternatively,
Maxwell’s equations may be used to determine these fields.

Figure 9.2-6 TE and TM modes in a planar dielectric waveguide.

The field distribution of the lowest-order TE mode (m = 0) is
similar in shape to that of the Gaussian beam (see Chapter 3).
However, unlike the Gaussian beam, guided light does not spread in
the transverse direction as it propagates in the axial direction (see
Fig. 9.2-7). In a waveguide, the tendency of light to diffract is
compensated by the guiding action of the medium.

Figure 9.2-7 (a) Gaussian beam in a homogeneous medium. (b)
Guided mode in a dielectric waveguide.

C. Dispersion Relation and Group Velocities
The dispersion relation (ω versus β) is obtained by writing the self-
consistency equation (9.2-8) in terms of β and ω. Since 

, (9.3-3) gives
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Since cos θ = β/(ω/c1) and cos  = n2/n1 = c1/c2, (9.4-10) becomes

Substituting (9.4-11) into (9.4-18) we obtain

This relation may be plotted by rewriting it in parametric form,

in terms of the effective refractive index n defined in (9.4-19),
where ωc/2π = co/2dNA is the mode-cutoff angular frequency. As
shown in the schematic plot in Fig. 9.2-8(a), the dispersion
relations for the different modes lie between the lines ω = c2β and ω
= c1β, the light lines representing propagation in homogeneous
media with the refractive indices of the surrounding medium and
the slab, respectively. As the frequency increases above the mode
cutoff frequency, the dispersion relation moves from the light line
of the surrounding medium toward the light line of the slab, i.e., the
effective refractive index n increases from n2 to n1. This effect is
indicative of a stronger confinement of waves of shorter wavelength
in the medium of higher refractive index.

The group velocity is obtained from the dispersion relation by
determining the slope v = dω/dβ for each of the guided modes. The
dependence of the group velocity on the angular frequency is
illustrated schematically in Fig. 9.2-8(b). As the angular frequency
increases above the mode cutoff frequency for each mode, the group
velocity decreases from its maximum value c2, reaches a minimum
value slightly below c1, and then asymptotically returns back toward



c1. The group velocities of the allowed modes thus range from c2 to a
value slightly below c1.

Figure 9.2-8 Schematic representations of (a) the dispersion
relation for the different TE modes, m = 0, 1, 2,...; and (b) the
frequency dependence of the group velocity, which is the derivative
of the dispersion relation, v = dω/dβ.

In propagating through a multimode waveguide, optical pulses
spread in time since the modes have different velocities, an effect
called modal dispersion. In a single-mode waveguide, an optical
pulse spreads as a result of the dependence of the group velocity on
frequency. This effect is called group velocity dispersion (GVD).
As shown in Sec. 5.7, GVD occurs in homogeneous materials by
virtue of the frequency dependence of the refractive index of the
material. Moreover, GVD occurs in waveguides even in the absence
of material dispersion. It is then a consequence of the frequency
dependence of the propagation coefficients, which are determined
by the dependence of wave confinement on wavelength. As
illustrated in Fig. 9.2-8(b), each mode has a particular angular
frequency at which the group velocity changes slowly with
frequency (the point at which v reaches its minimum value so that
its derivative with respect to ω is zero). At this frequency, the GVD
coefficient is zero and pulse spreading is negligible.
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An approximate expression for the group velocity may be obtained
by taking the total derivative of (9.4-2) with respect to β,

Substituting dω/dβ = v, ky/(ω/c1) = sin θ, and ky/β = tan θ, and
introducing the new parameters

we obtain

As we recall from (9.4-21) and Fig. 9.1-6 for the planar-mirror
waveguide, d cot θ is the distance traveled in the z direction as a ray
travels once between the two boundaries. This takes a time d csc
θ/c1. The ratio d cot θ/(d csc θ)/c1 = c1 cos θ yields the group
velocity for the mirror waveguide. The expression (9.4-4) for the
group velocity in a dielectric waveguide indicates that the ray travels
an additional distance Δz = ∂φr/∂β, a trip that lasts a time Δτ =
−∂φr/∂ω. We can think of this as an effective penetration of the ray
into the cladding, or as an effective lateral shift of the ray, as shown
in Fig. 9.2-9. The penetration of a ray undergoing total internal
reflection is known as the Goos–Hänchen effect (see Prob. 6.2-
6). Using (9.4-6) it can be shown that Δz/Δτ = ω/β = c1/ cos θ.



Figure 9.2-9 A ray model that replaces the reflection phase shift
with an additional distance Δz traversed at velocity c1/ cos θ.



EXERCISE 9.2-2

The Asymmetric Planar Waveguide. Examine the TE field
in an asymmetric planar waveguide consisting of a dielectric slab
of width d and refractive index n1 placed on a substrate of lower
refractive index n2 and covered with a medium of refractive
index n3 < n2 < n1, as illustrated in Fig. 9.2-10.

a. Determine an expression for the maximum inclination
angle θ of plane waves undergoing total internal reflection,
and the corresponding numerical aperture NA of the
waveguide.

b. Write an expression for the self-consistency condition,
similar to (9.4-7).

c. Determine an approximate expression for the number of
modes M (valid when M is very large).

Figure 9.2-10 Asymmetric planar waveguide.

9.3 TWO-DIMENSIONAL WAVEGUIDES
The planar-mirror waveguide and the planar dielectric waveguide
studied in the preceding two sections confine light in one transverse
direction (the y direction) while guiding it along the z direction.
Two-dimensional waveguides confine light in the two transverse
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directions (the x and y directions). The principle of operation and
the underlying modal structure of two-dimensional waveguides is
basically the same as planar waveguides; only the mathematical
description is lengthier. This section is a brief description of the
nature of modes in two-dimensional waveguides. Details can be
found in specialized books. Chapter 10 is devoted to an important
example of two-dimensional waveguides, the cylindrical dielectric
waveguide used in optical fibers.

Rectangular Mirror Waveguide

The simplest generalization of the planar waveguide is the
rectangular waveguide (Fig. 9.3-1). If the walls of the waveguide are
mirrors, then, as in the planar case, light is guided by multiple
reflections at all angles. For simplicity, we assume that the cross
section of the waveguide is a square of width d. If a plane wave of
wavevector (kx, ky, kz) and its multiple reflections are to exist self-
consistently inside the wave guide, it must satisfy the conditions:

which are obvious generalizations of (9.6-1).
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Figure 9.3-1 Modes of a rectangular mirror waveguide are
characterized by a finite number of discrete values of kx and ky
represented by dots.

The propagation constant β = kz can be determined from kx and ky
by using the relation . The three components of the
wavevector therefore have discrete values, yielding a finite number
of modes. Each mode is identified by two indices mx and my
(instead of one index m). All positive integer values of mx and my
are allowed as long as , as illustrated in Fig. 9.3-1.

The number of modes M can be easily determined by counting the
number of dots within a quarter circle of radius nko in the ky versus
kx diagram (Fig. 9.3-1). If this number is large, it may be
approximated by the ratio of the area π(nko)2/4 to the area of a unit
cell (π/d)2:

Since there are two polarizations per mode, the total number of
modes is actually 2M. Comparing this to the number of modes in a
one-dimensional mirror waveguide, M ≈ 2d/λ, we see that increase
of the dimensionality yields approximately the square of the



number of modes. The number of modes is a measure of the
degrees of freedom. When we add a second dimension we simply
multiply the number of degrees of freedom.

The field distributions associated with these modes are
generalizations of those in the planar case. Patterns such as those in
Fig. 9.1-4 are obtained in each of the x and y directions depending
on the mode indices mx and my.

Rectangular Dielectric Waveguide

A dielectric cylinder of refractive index n1 with square cross section
of width d is embedded in a medium of slightly lower refractive
index n2. The waveguide nodes can be determined using a similar
theory. Components of the wavevector (kx, ky, kz) must satisfy the
condition , where  = cos −1(n2/n1), so that kx and
ky lie in the area shown in Fig. 9.3-2. The values of kx and ky for the
different modes can be obtained from a self-consistency condition
in which the phase shifts at the dielectric boundary are included, as
was done in the planar case.

Figure 9.3-2 Geometry of a rectangular dielectric waveguide. The
values of kx and ky for the waveguide modes are marked by dots.



(9.3-3)
Number of TE Modes

Unlike the mirror waveguide, kx and ky of the modes are not
uniformly spaced. However, two consecutive values of kx (or ky) are
separated by an average value of π/d (the same as for the mirror
waveguide). The number of modes can therefore be approximated
by counting the number of dots in the inner circle in the ky versus
kx diagram of Fig. 9.3-2, assuming an average spacing of π/d. The
result is M ≈ (π/4)(n1ko sin )2/(π/d)2, from which

where  is the numerical aperture. The approximation is
satisfactory when M is large. There is also an identical number M of
TM modes. The number of modes is roughly the square of that for
the planar dielectric waveguide (9.6-2).

Geometries for Channel Waveguides

As illustrated in Fig. 9.3-3, channel waveguides can take many
forms. Representative examples include immersed-strip (or buried
channel), embedded-strip, ridge, rib, and strip-loaded geometries.
Exact analysis for many of these geometries can be rather complex,
but approximations serve well. The reader is referred to specialized
texts for details pertaining to this topic.

Figure 9.3-3 Various waveguide geometries. The darker the
shading, the higher the refractive index.



Waveguides may also be fabricated in a variety of configurations, as
illustrated in Fig. 9.3-4 for the embedded-strip geometry. S-bends
are used to offset the propagation axis. The Y-branch plays the role
of a beamsplitter or beam combiner. A pair of Y-branches may be
used to construct a Mach–Zehnder interferometer. Two waveguides
in close proximity, or intersecting with each other, can exchange
power and be used as directional couplers, as will become apparent
in Sec. 9.4B.

Figure 9.3-4 Different waveguide configurations, in this case for
the embedded-strip geometry.

Materials

The earliest optical waveguides were fabricated from electro-optic
materials, principally lithium niobate (LiNbO3). As shown in Fig.
9.3-5(a), an embedded-strip waveguide using this material may be
fabricated by indiffusing titanium (Ti) in a lithium niobate substrate
to increase its refractive index in the region of the strip.

Semiconductors are also commonly used. A GaAs rib waveguide
may be fabricated by using layers of GaAs and AlGaAs, which has
lower refractive index [Fig. 9.3-5(b)]. Another semiconductor
material of substantial importance in optical waveguides is InP. Its
refractive index may be controlled by making use of n-type and p-
type dopants, or by using the quaternary semiconductor InGaAsP
with various mixing ratios. The ridge waveguide illustrated in Fig.
9.3-5(c) offers strong optical confinement because it is surrounded
on three sides by lower index materials — air on two sides and
InGaAsP of a different composition on the third.



Figure 9.3-5 (a) Ti:LiNbO3 embedded-strip waveguide. (b) Rib
waveguide with GaAs core, AlGaAs lower cladding, and GaAs
substrate. (c) InGaAsP ridge waveguide with air and lower-index
InGaAsP cladding. (d) SOI rib waveguide with Si core, silica lower
cladding, and Si substrate compatible with CMOS electronics
technology.

Waveguides may also be fabricated from silicon-on-insulator
(SOI), usually silica-on-silicon (SiO2/Si), by making use of
standard silicon and oxide etching tools. Since the refractive index
of Si is ≈ 3.5, and that of silica is < 1.5, this combination of materials
exhibits a large refractive-index difference Δn. A typical SOI
structure takes the form of a Si rib waveguide atop a layer of silica,
which serves as a lower cladding, supported by a silicon substrate
[Fig. 9.3-5(d)]. Silicon processing and fabrication has been
extraordinarily well developed by the microelectronics industry, and
compatibility with complementary metal-oxide-
semiconductor (CMOS) fabrication technology offers an
important advantage. This approach lies in the domain of silicon
photonics (Sec. 25.1E).

Glass waveguides fabricated by ion exchange, as well as polymer
waveguides, are also emerging as viable technologies.

The ability to modulate the refractive index is an important
requirement for materials used in integrated-photonic devices such
as light modulators and switches, as will become evident in
Chapters 21 and 24.
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9.4 OPTICAL COUPLING IN WAVEGUIDES
A. Input Couplers

Mode Excitation

As indicated in previous sections, light propagates in a waveguide in
the form of modes. The complex amplitude of the optical field is
generally a superposition of these modes,

where am is the amplitude, um(y) is the transverse distribution
(assumed to be real), and βm is the propagation constant of mode m.

The amplitudes of the different modes depend on the nature of the
light source used to excite the waveguide. If the source has a
distribution that is a perfect match to a specific mode, only that
mode will be excited. In general, a source of arbitrary distribution
s(y) excites different modes at different levels. The fraction of
power transferred from the source to mode m depends on the
degree of similarity between s(y) and um(y). To establish this, we
write s(y) as an expansion (a weighted superposition) of the
orthogonal functions um(y),

where the coefficient al, which represents the amplitude of the
excited mode l, is

This expression can be derived by multiplying both sides of (9.6-3)
by ul(y), integrat ∞ ing with respect to y, and using the
orthogonality relation  for l ≠ m along with the



normalization condition. The coefficient al represents the degree of
similarity (or correlation) between the source distribution s(y) and
the mode distribution ul(y).

Input Couplers

Light may be coupled into a waveguide by directly focusing it at one
end (Fig. 9.4-1). To excite a given mode, the transverse distribution
of the incident light s(y) should match that of the mode. The
polarization of the incident light must also match that of the desired
mode. Because of the small dimensions of the waveguide slab,
focusing and alignment are usually difficult and coupling using this
method is inefficient.

Figure 9.4-1 Coupling an optical beam into an optical waveguide.

In a multimode waveguide, the amount of coupling can be assessed
by using a ray-optics approach (Fig. 9.4-2). The guided rays within
the waveguide are confined to an angle  = cos −1(n2/n1). Because
of refraction at the input to the waveguide, this corresponds to an
external angle θa satisfying NA = sin θa = n1 sin  = 

, where NA is the numerical aperture of the
wave guide (see Exercise 1.2-5). For maximum coupling efficiency
the incident light should be focused within the angle θa.



Figure 9.4-2 Focusing rays into a multimode waveguide.

Light may also be coupled from a semiconductor source (a light-
emitting diode or a laser diode) into a waveguide by simply aligning
the ends of the source and the waveguide, leaving a small space that
is selected for maximum coupling (Fig. 9.4-3). In light-emitting
diodes, light originates from a semiconductor junction region and is
emitted in all directions. In a laser diode, the emitted light is
confined in a waveguide of its own (light-emitting diodes and laser
diodes are described in Chapter 18). Other methods of coupling light
into waveguides include the use of prisms, diffraction gratings, and
other waveguides, as discussed below.

Figure 9.4-3 End butt coupling from a light-emitting diode or laser
diode into a waveguide.

Prism and Grating Side Couplers

Can optical power be coupled into a guided mode of a waveguide by
use of a source wave entering from the side at some angle θi in the
cladding, as shown in Fig. 9.4-4(a)? The condition for such coupling
is that the axial component of the wavevector of the incident wave,
n2ko cos θi, equals the propagation constant βm of the guided mode.
Since βm > n2ko (see Fig. 9.4-4), it is not possible to achieve the
required phase-matching condition βm = n2ko cos θi. The axial



component of the wavevector of the incident wave is simply too
small. However, the problem may be alleviated by use of a prism or
a grating.

Figure 9.4-4 Prism and grating side couplers.

As illustrated in Fig. 9.4-4(b), a prism of refractive index np > n2 is
placed at a small distance dp from the waveguide slab. The incident
wave is refracted into the prism where it undergoes total internal
reflection at an angle θp. The incident and reflected waves form a
wave traveling in the z direction with propagation constant βp = np
ko cos θp. The transverse field distribution extends into the space
separating the prism and the slab as an exponentially decaying
evanescent wave. If the distance dp is sufficiently small, the wave
couples to a mode of the slab waveguide with a matching
propagation constant βm ≈ βp = np ko cos θp. Since np > n2, phase
matching is possible, and if an appropriate interaction distance is
selected, frustrated total internal reflection ensues and significant
power can be coupled into the waveguide. The operation may also
be reversed to make an output coupler, extracting light from the
slab waveguide into free space. This is the same approach as that
used to excite a surface plasmon polariton wave at a metal–
dielectric boundary, as illustrated in Fig. 8.2-5.

The grating [Fig. 9.4-4(c)] addresses the phase-matching problem
by modifying the wavevector of the incoming wave. A grating with
period Λ modulates the incoming wave by phase factors 2πq/Λz,
where q = ±1, ±2, .... These are equivalent to changes of the axial
component of the wavevector by factors 2πq/Λ. The phase-matching



condition can now be satisfied if n2 ko cos θi + 2πq/Λ = βm, with q =
1, for example. The grating may even be designed to enhance the q =
1 component.

B. Coupled Waveguides
If two waveguides are sufficiently close such that their fields
overlap, light can be coupled from one into the other. Optical power
can then be transferred between the waveguides, an effect that can
be used to make optical couplers and switches. The basic principle
of waveguide coupling is presented here; couplers and switches are
discussed in Chapters 24 and 25.

Consider two parallel planar waveguides made of two slabs of
widths d, separation 2a, and refractive indices n1 and n2, embedded
in a medium of refraction index n that is slightly smaller than n1
and n2, as illustrated in Fig. 9.4-5. Each of the waveguides is
assumed to be single-mode. The separation between the waveguides
is such that the optical field outside the slab of one waveguide (in
the absence of the other) overlaps slightly with the slab of the other
waveguide.



Figure 9.4-5 Coupling between two parallel planar waveguides. At
z = 0 the light is located principally in the upper waveguide
(waveguide 1); at z = L0/2 the light is divided equally between the
two waveguides; and at z = L0 the light is located principally in the
lower waveguide (waveguide 2). The distance L0 at which the power
is completely transferred from one waveguide to the other is called
the coupling length or transfer distance.

The formal approach to studying the propagation of light in this
structure is to write Maxwell’s equations for the different regions
and use the boundary conditions to determine the modes of the
overall system. These modes are different from those of each of the
waveguides in isolation. An exact analysis is not easy and is beyond
the scope of this book. For weak coupling, however, a simplified
approximate theory, known as coupled-mode theory, is often
satisfactory.

Coupled-mode theory assumes that the mode of each waveguide is
determined as if the other waveguide were absent. In the presence
of both waveguides, the modes are taken to remain approximately
unchanged, say u1(y) exp(−jβ1z) and u2(y) exp(−jβ2z). Coupling is
assumed to modify only the amplitudes of these modes without
affecting either their transverse spatial distributions or their
propagation constants. The amplitudes of the modes of waveguides
1 and 2 are therefore functions of z, a1(z), and a2(z). The theory is
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Coupled-Mode 

Equations

(9.4-5)

directed toward determining a1(z) and a2(z) under appropriate
boundary conditions.

Coupling can be regarded as a scattering effect. The field of
waveguide 1 is scattered from waveguide 2, creating a source of light
that changes the amplitude of the field in waveguide 2. The field of
waveguide 2 has a similar effect on waveguide 1. An analysis of this
mutual interaction leads to two coupled differential equations that
govern the variation of the amplitudes a1(z) and a2(z).

It can be shown (see the derivation at the end of this section) that
the amplitudes a1(z) and a2(z) are governed by two coupled first-
order differential equations

where

is the phase mismatch per unit length and

are coupling coefficients. We see from (9.4-4) that the rate of
variation of a1 is proportional to a2, and vice versa. The coefficient
of proportionality is the product of the coupling coefficient and the
phase mismatch factor exp(j Δβ z).

The coupled-mode equations in (9.4-4) may be solved by beginning
with harmonic trial solutions of the form a1(z) = b1 exp(jγz)
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(9.4-9a)

(9.4-9b)

(9.4-9c)

(9.4-10a)

(9.4-8a)

(9.4-8b)

exp(jΔβz/2) and a2(z) = b2 exp(jγz) exp(−jΔβz/2), where b1 and b2
are constants. These solution satisfy (9.4-4) provided that the
following condition is satisfied:

Since γ has two possible values, we modify the trial solutions to be
superpositions of exp(jγz) and exp(−jγz), or of sin(γz) and cos(γz),
where γ is the positive value of the square root in (9.4-7). The
weights of the superposition are established from the boundary
values a1(0) and a2(0). The final outcome is

where

are elements of a transmission matrix T that relates the output and
input fields.

If we assume that no light enters waveguide 2 so that a2(0) = 0,
then the optical powers P1(z) ∝ |a1(z)|2 and P2(z) ∝ |a2(z)|2 are
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Thus, power is exchanged periodically between the two waveguides,
as illustrated in Fig. 9.4-6(a). The period is π/γ.

Figure 9.4-6 Periodic exchange of power between waveguides 1
and 2: (a) Phase-mismatched case; (b) phase-matched case.

When the waveguides are identical, i.e., n1 = n2, β1 = β2, and Δβ = 0,
the two guided waves are said to be phase matched. In this case, γ =
𝒞, 𝒞12 = 𝒞21 = 𝒞, and the transmission matrix takes the simpler form

Equations (9.4-10) then simplify to

The exchange of power between the waveguides can then be
complete, as illustrated in Fig. 9.4-6(b).

We thus have a device capable of coupling any desired fraction of
optical power from one waveguide into another. At a distance z = L0
= π/2𝒞, called the coupling length or the transfer distance, the
power is transferred completely from waveguide 1 into waveguide 2



(9.4-13)
Power-Transfer 

Ratio

[Fig. 9.4-7(a)]. At a distance L0/2, half the power is transferred, so
that the device acts as a 3-dB coupler, i.e., a 50/50 beamsplitter [Fig.
9.4-7(b)].

Figure 9.4-7 Optical couplers: (a) switching power from one
waveguide to another; (b) a 3-dB coupler.

Switching by Control of Phase Mismatch

A waveguide coupler of fixed length, L0 = π/2𝒞 for example, changes
its power-transfer ratio if a small phase mismatch Δβ is introduced.
Using (9.4-10b) and (9.4-7), the power-transfer ratio 𝒯 =
P2(L0)/P1(0) may be written as a function of Δβ,

where sinc(x) = sin(πx)/(πx). Figure 9.4-8 illustrates the
dependence of the power-transfer ratio 𝒯 on the mismatch
parameter Δβ L0. The ratio achieves a maximum value of unity at Δβ
L0 = 0, decreases with increasing Δβ L0, and then vanishes when 

.



Figure 9.4-8 Dependence of the power transfer ratio 𝒯 =
P2(L0)/P1(0) on the phase-mismatch parameter Δβ L0. The
waveguide length is chosen such that for Δβ = 0 (the phase-matched
case), maximum power is transferred to waveguide 2, i.e., 𝒯 = 1.

The dependence of the transferred power on the phase mismatch
can be utilized in making electrically activated directional couplers.
If the mismatch Δβ L0 is switched between 0 and , the light is
switched from waveguide 2 to waveguide 1. Electrical control of Δβ
can be achieved if the material of the waveguides is electro-optic
(i.e., if its refractive index can be altered by applying an electric
field). Such devices will be examined in Secs. 21.1D and 24.3B in
connection with electro-optic switches.
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◻ *Derivation of the Coupled Wave Equations. We
proceed to derive the differential equations (9.4-4) that govern
the amplitudes a1(z) and a2(z) of the coupled modes. When the
two waveguides are not interacting they carry optical fields
whose complex amplitudes are of the form

The amplitudes a1 and a2 are then constant. In the presence of
coupling, we assume that the amplitudes a1 and a2 become
functions of z but the transverse functions u1(y) and u2(y), and
the propagation constants β1 and β2, are not altered. The
amplitudes a1 and a2 are assumed to be slowly varying functions
of z in comparison with the distance β−1 (the inverse of the
propagation constant, β1 or β2), which is of the order of
magnitude of the wavelength of light.

The presence of waveguide 2 is regarded as a perturbation of the
medium outside waveguide 1 in the form of a slab of refractive
index n2 − n and width d at a distance 2a. The excess refractive
index (n2 − n) and the field E2 correspond to an excess
polarization density P =(ϵ2 − ϵ)E2 = ϵo(  − n2)E2, which creates a
source of optical radiation into waveguide 1 [see (5.2-25)] 𝒮1 =
−μo∂2𝒫/∂t2 with complex amplitude

Here ϵ2 and ϵ are the electric permittivities associated with the
refractive indices n2 and n, respectively, and k2 = n2ko. This
source is present only in the slab of waveguide 2.
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To determine the effect of such a source on the field in
waveguide 1, we write the Helmholtz equation in the presence of
a source as

We similarly write the Helmholtz equation for the wave in
waveguide 2 with a source generated as a result of the field in
waveguide 1,

where k1 = n1ko. Equations (9.4-16) are two coupled partial
different equations that we solve to determine E1 and E2. This
type of perturbation analysis is valid only for weakly coupled
waveguides.

We now write E1(y, z) = a1(z) e1(y, z) and E2(y, z) = a2(z) e2(y,
z), where e1(y, z) = u1(y) exp(−jβ1z) and e2(y, z) = u2(y)
exp(−jβ2z) and note that e1 and e2 must satisfy the Helmholtz
equations,

where k1 = n1ko and k2 = n2ko for points inside the slabs of
waveguides 1 and 2, respectively, and k1 = k2 = nko elsewhere.
Substituting E1 = a1e1 into (9.4-16a), we obtain

Noting that a1 varies slowly, whereas e1 varies rapidly with z, we
neglect the first term of (9.4-18) in comparison with the second.
The ratio between these terms is [(d𝛙/dz)e1]/[2𝛙de1/dz]=
[(d𝛙/dz)e1]/[2𝛙(−jβ1e1)] = j(d𝛙/𝛙)/2β1 dz where 𝛙 = da1/dz.
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The approximation is valid if d𝛙/𝛙 ≪ β1 dz, i.e., if the variation
in a1(z) is slow in comparison with the length .

We proceed by substituting e1 = u1 exp(−jβ1z) and e2 = u2
exp(−jβ2z) into (9.4-18). Neglecting the first term leads to

Multiplying both sides of (9.4-19) by u1(y), integrating with
respect to y, and using the fact that  is normalized so that its
integral is unity, we finally obtain

where 𝒞21 is given by (9.4-6). A similar equation is obtained by
repeating the procedure for waveguide 2. These equations yield
the coupled differential equations (9.4-4). ◼

*C. Waveguide Arrays
The foregoing analysis of light propagation in a pair of weakly
coupled waveguides, as presented in Sec. 9.4B, may be generalized
to light propagation in waveguide arrays. Consider an array of N
identical parallel slab waveguides separated by equal distances,
under the assumption that the coupling is sufficiently weak so that
only next-neighbor coupling is significant.

If an(z) represents the complex amplitude of light in the nth
waveguide, then the set of N coupled-mode equations can be written
as

where 𝒞 is the coupling coefficient and a0 = aN + 1 = 0. If the
amplitudes are represented by a vector a of dimension N,
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comprising the elements {an}, then (9.4-21) may be expressed in
matrix form as da/dz = −jHa, where H is an N × N matrix whose
elements are Hnm = 𝒞 for m = n ± 1, and zero otherwise. The
solution to this equation is a(z) = T a(0), where T = exp(−jzH) is
the transmission matrix.

The transmission of light through such an array is best described in
terms of modes (see Appendix C). The modes of the waveguide
array, known as supermodes, are to be distinguished from the
modes of individual isolated waveguides. The supermodes are
determined by diagonalizing the matrix H. This N × N matrix has N
eigenvalues λr, and corresponding eigenvectors br comprising the
elements {brn}, given by

The related transmission matrix T = exp(−jzH) has eigenvalues
exp(−jλrz) and the same eigenvectors br corresponding to N modes.
If the initial amplitudes {an(0)} are equal to the amplitudes {brn} of
the rth mode, they evolve in accordance with the simple relation
an(z) = an(0)e−jλrz, independent of the other modes. The associated
optical fields then propagate with a single propagation constant βr =
β0 + λr, where β0 is the propagation constant in an isolated
waveguide. Since −2𝒞 ≤ λr ≤ 2𝒞, the propagation constants of the
modes lie in the range β0 − 2𝒞 ≤ βr ≤ β0 + 2𝒞.

An arbitrary input distribution {an(0)} to the waveguide array can
be expressed as a superpositions of the modes, ,
where  are the superposition weights. The
amplitudes at a distance z are then given by



The modal analysis enables us to determine an(z) for arbitrary
an(0).

EXAMPLE 9.4-1

Supermodes of Two Coupled Waveguides. For an array of
two coupled waveguides  and the transmission
matrix T = exp (−jzH) = , which reproduces (9.4-11).
The two modes have eigenvalues λr = ±𝒞 and corresponding
propagation constants β0 ± 𝒞. The eigenvectors are  and 

, corresponding to equal or opposite excitation of the two
waveguides. An input field at a single waveguide, say 

, excites both supermodes, which have
different propagation constants, and the result is an exchange of
power between the two waveguides.

Periodic Waveguides

In the limit of large N, the waveguide array may be regarded as a
periodic medium and the theory presented in Sec. 7.2 may be readily
applied. In particular, it is instructive to compare the dispersion
diagram for light propagation in an isolated slab dielectric
waveguide to that for light propagation in an array with a finite
number of parallel slab waveguides, and to a periodic dielectric
medium comprising an infinite set of such waveguides. These
diagrams are presented in Fig. 9.4-9. In the single-slab waveguide
[Fig. 9.4-9(a)], light travels in modes, each with a dispersion curve
lying in the region between the light lines ω = c1β and ω = c2β. At
any frequency, there is at least one mode. In an array of N
waveguides [Fig. 9.4-9(b)], each dispersion curve splits into N
curves, representing the supermodes. The shapes of these curves
are dependent on the coupling coefficient 𝒞, which is frequency
dependent in accordance with (9.4-6). In the periodic waveguide
[Fig. 9.4-9(c)], the dispersion curves broaden into bands that lie



between the light lines, and the bands are separated by photonic
bandgaps.

Figure 9.4-9 (a) Dispersion diagram of a slab waveguide with
cutoff angular frequency ωc = (π/d)(co/NA), as displayed in Fig. 9.2-
8(a). (b) Dispersion diagram of the supermodes of a waveguide
array. (c) Dispersion diagram of a periodic waveguide with period Λ,
spatial frequency g = 2π/Λ, and Bragg angular frequency 

, as shown in Fig. 7.2-7. Here, the waves travel in the z
direction, which is parallel to the layers, and the higher-index
medium is denoted n1. In Fig. 7.2-7, in contrast, the direction
parallel to the layers is the x direction and the higher-index medium
is denoted n2.

9.5 PHOTONIC-CRYSTAL WAVEGUIDES
Bragg-Grating Waveguide

We have seen earlier in this chapter that light may be guided by
bouncing between two parallel reflectors — e.g., planar mirrors as
described in Sec. 9.1; or planar dielectric boundaries at which the
light undergoes total internal reflection, as described in Sec. 9.2.
Alternatively, Bragg grating reflectors (see Sec. 7.1C) may be used to



guide light, as illustrated in Fig. 9.5-1. The Bragg grating reflector
(BGR) is a stack of alternating dielectric layers that has special
angle-and frequency-dependent reflectance. For a given angle, the
reflectance is close to unity at frequencies within a stop band.
Similarly, at a given frequency, the reflectance is close to unity
within a range of angles, but omnidirectional reflection is also
possible. Thus, a wave with a given frequency can be guided through
the waveguide by repeated reflections within a range of bounce
angles. Within this angular range, the self-consistency condition is
satisfied at a discrete set of angles, each corresponding to a
propagating mode. The field distribution of a propagating mode is
confined principally to the slab; decaying (evanescent) tails reach
into the adjacent grating layers, as illustrated in Fig. 9.5-1.

Figure 9.5-1 Planar waveguide comprising a dielectric slab
sandwiched between two Bragg-grating reflectors (BGRs).

Bragg-Grating Waveguide as a Photonic Crystal with a Defect
Layer

If the upper and lower gratings of a Bragg-grating waveguide are
identical, and the slab thickness is comparable to the thickness of
the periodic layers constituting the gratings, then the entire
medium may be regarded as a 1D periodic structure, i.e., a 1D
photonic crystal, but with a defect. For example, the device shown
in Fig. 9.5-1 is periodic everywhere except for the slab, which is a
layer of different thickness and/or different refractive index; the
slab may therefore be viewed as a “defective” layer. As described in
Sec. 7.2, a perfect photonic crystal has a dispersion relation, or



energy-band diagram, containing bandgaps within which no
propagating modes exist. In the presence of the “defective” layer,
however, a mode whose frequency lies within the bandgap may
exist, but it is confined primarily within that layer. Such a mode
corresponds to a frequency in the dispersion diagram that lies
within the photonic bandgap, as illustrated in Fig. 9.5-2. Such a
frequency is the analog of a defect energy level that lies within the
bandgap of a semiconductor crystal.

Figure 9.5-2 Dispersion diagram of a photonic crystal with a defect
layer.

2D Photonic-Crystal Waveguides

Waveguides may also be created by introducing a path of defects in
a 2D photonic crystal. In the example illustrated in Fig. 9.5-3(a), a
2D photonic crystal comprising a set of parallel cylindrical holes,
placed in a dielectric material at the points of a periodic triangular
lattice, exhibits a complete photonic bandgap for waves traveling
along directions parallel to the plane of periodicity (normal to the
cylindrical holes). The defect waveguide may take the form of a line
of absent holes. A wave entering the waveguide at frequencies
within the photonic bandgap does not leak into the surrounding
periodic media so that the light is guided through the waveguide. A
schematic profile of the propagating mode is illustrated in Fig. 9.5-
3(a).



Figure 9.5-3 (a) Propagating mode in a photonic-crystal
waveguide. (b) An L-shaped photoniccrystal waveguide.

Moreover, because of the omnidirectional nature of the photonic
bandgap, light may be guided through photonic-crystal waveguides
with sharp bends and corners without losing energy into the
surrounding medium, as illustrated by the L-shaped waveguide
configuration shown in Fig. 9.5-3(b). Such behavior is not possible
with conventional dielectric waveguides based on total internal
reflection.

9.6 PLASMONIC WAVEGUIDES
As demonstrated earlier in this chapter, it is difficult to confine a
propagating wave to dimensions much smaller than its wavelength
(see also Sec. 4.4D). For the perfect-mirror waveguide described in
Sec. 9.1, it is demonstrated in Fig. 9.6-1(a) that a wave of wavelength
λ can be guided if the mirror separation d > λ/2, but it cannot be
guided if d is smaller. For the dielectric waveguide described in Sec.
9.2, it was shown that if the slab width d is reduced below λ/2, only
a single guided mode is supported, and as d is further reduced, the
guided wave spreads substantially outside the slab and into the
surrounding dielectric medium (see Fig. 9.2-5).



Figure 9.6-1 Configurations and dispersion relations for various
optical and plasmonic waveguides. (a) A perfect-mirror waveguide
supports optical guided modes if its width d > λ/2, i.e., if ω > ωc
where ωc = πc/d is the cutoff frequency. (b) A metal‐dielectric‐
metal waveguide of width d < λ/2 does not support optical guided
modes, but does support independent surface plasmon polariton
(SPP) waves at the two boundaries if ω < ωs, where 
is the plasma frequency of the metal, and ϵr1 = ϵ1/ϵo is the relative
permittivity of the dielectric. (c) A metal‐insulator‐metal (MIM)
waveguide of width d ≪ λ supports a symmetric guided mode ω(+)

for ωs < ω < ωp, and an anti-symmetric mode ω(−) for ω < ωs. (d) A
thin-metal slab of width d ≪ λ, called a metal-slab waveguide,
supports two guided modes, one below ωs and the other that
extends slightly above ωs). For the plots in (c) and (d), d = λp/10,
where λp = 2πco/ωp, and ϵr1 = 2.25, so that ωs = 0.55 ωp. The dashed
blue curves represent the dispersion relation for the single-
boundary SPP wave. In (a)–(d) the dotted red lines are the
dielectric-medium light lines ω = cβ.

Light can, however, be confined and guided at subwavelength
spatial scales by making use of metallic structures. As shown in Sec.
8.2B, a metal‐dielectric boundary supports a surface wave, called a
surface plasmon polariton (SPP), that is tightly confined to the
boundary, with penetration depths on both sides of the boundary
that are much smaller than the wavelength [see Fig. 9.6-1(b)]. It will
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become apparent below that an optical wave may be guided within
an ultrathin dielectric slab embedded in metal cladding if its width
is much smaller than the wavelength, as illustrated in Fig. 9.6-1(c).
Under these conditions, the SPP waves at the two boundaries couple
with each other and combine into modes that extend through the
dielectric medium. Similarly, an ultrathin metallic film can guide an
optical wave of subwavelength scale [Fig. 9.6-1(d)].

Other metal‐dielectric structures with more complex configurations
may also be constructed to guide light through various optical
circuits. As discussed in Sec. 8.2, this branch of integrated photonics
is called plasmonics. The propagation lengths of plasmonic
waveguides are limited by metallic losses.

Metal‐Insulator‐Metal Waveguide

A dielectric slab surrounded by metal claddings forms a metal‐
dielectric‐metal, or metal‐insulator‐metal (MIM) waveguide. If
the slab thickness is greater than twice the penetration depth of the
SPP waves at the boundaries [see (8.2-22)], the structure supports
two independent SPP waves [Fig. 9.6-1(b)]. For a thinner dielectric
slab, these surface waves overlap and couple, splitting the SPP
dispersion curve into two branches and thereby creating two distinct
guided modes, labeled ω(−) and ω(+) in Fig. 9.6-1(c). These modes
correspond to anti-symmetric and symmetric field distributions,
respectively.

The dispersion relations for these two modes may be derived by
matching the boundary conditions at the metal‐dielectric interfaces,
much as was done for the dielectric waveguide (Sec. 9.2). The result
for the TM wave is similar to (9.2-4) for the dielectric waveguide:

with



(9.6-2)

(9.6-3)

where ϵ1 and ϵ2 are the permittivities of the dielectric and
metal materials, respectively. This dispersion relation is
plotted in Fig. 9.6-1(c) for a metal described by the Drude model, 

, where ωp is the bulk-metal plasma frequency. Note
that the upper branch of the dispersion curve crosses the light line,
indicating that the wave travels at a phase velocity greater than the
velocity of light c in the dielectric medium.

Since the two branches of the dispersion relation extend over the
frequency range 0 < ω < ωp a wave at any frequency ω < ωp can be
guided in dielectric slabs that are significantly smaller than the
wavelength. Modes at near-infrared wavelengths, for example, can
be localized at the nanometer scale.

Metal-Slab Waveguide

Similarly, a thin metallic film of width d ≪ λ embedded in a
dielectric medium can serve as a plasmonic waveguide [Fig. 9.6-
1(d)]. If the film thickness is smaller than the penetration depth of
the SPP waves from the boundaries into the metal, then these waves
overlap and coalesce into two distinct waveguide modes. Again, the
dispersion relation may be obtained by matching the boundary
conditions, yielding

where γ1 and γ2 are given by (9.6-2) and, as before, ϵ1 and ϵ2 are the
permittivities of the dielectric and metal materials, respectively. The
Drude model for the metal is again characterized by .
Note that (9.6-3) is the same as (9.6-1) except that the subscripts 1
and 2 are interchanged on the left-hand sides of both equations.
This dispersion relation is plotted in Fig. 9.6-1(d). As with the MIM
waveguide considered above, the dispersion relation for the SPP at a
single metal‐dielectric boundary splits into two branches,
corresponding to symmetric and anti-symmetric modes; in this case
both lie below the light line for the bulk dielectric material ω = cβ.



*Periodic Metal‐Dielectric Arrays

A periodic structure comprising an array of metal‐dielectric slabs
functions as a photonic crystal. In analogy with the all-dielectric
arrays discussed in Chapter 7, and illustrated in Figs. 9.4-9(a) and
(c), the dispersion curve of the single metal‐dielectric boundary
depicted as the dashed blue curve in Fig. 9.6-2(b) splits to create
bands, as shown. The frequency ω of a mode with propagation
constant β may only lie within two separated spectral bands, both of
which are within the range ω < ωp.

Figure 9.6-2 Metal‐insulator periodic structure and its dispersion
relation for light traveling in the direction of the layers. Two bands
lie within the ω < ωp frequency range. The dashed blue curve in (b)
is the dispersion relation for the single-boundary SPP wave and the
dotted red lines are the free-space and dielectric-medium light lines.
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PROBLEMS
9.1-3 Field Distribution.

a. Demonstrate that a single TEM plane wave Ex(y, z) = A
exp(−jkyy) exp(−jβz) cannot satisfy the boundary conditions,
Ex(±d/2, z) = 0 at all z, for the mirror waveguide illustrated in
Fig. 9.1-1.

b. Show that the sum of two TEM plane waves written as Ex(y, z)
= A1 exp(−jky1y) exp(−jβ1z) + A2 exp(−jky2y) exp(−jβ2z) does
not satisfy the boundary conditions if A1 = ±A2, β1 = β2, and ky1
= −ky2 = mπ/d where m = 1, 2,... .

9.1-4 Modal Dispersion. Light of wavelength λo = 0.633 μm is
transmitted through a mirror waveguide of mirror separation d
= 10 μm and n = 1. Determine the number of TE and TM
modes. Determine the group velocities of the fastest and the
slowest modes. If a narrow pulse of light is carried by all modes
for a distance 1 m in the waveguide, how much does the pulse
spread as a result of the differences of the group velocities?

9.2-3 Parameters of a Dielectric Waveguide. Light of free-
space wavelength λo = 0.87 μm is guided by a thin planar film
of width d = 2 μm and refractive index n1 = 1.6 surrounded by a
medium of refractive index n2 = 1.4.

a. Determine the critical angle θc and its complement , the
numerical aperture NA, and the maximum acceptance angle for



light originating in air (n = 1).

b. Determine the number of TE modes.

c. Determine the bounce angle θ and the group velocity v of the m
= 0 TE mode.

9.2-4 Effect of Cladding. Redo Prob. 9.2-3 under the proviso that
the thin film is suspended in air (n2 = 1). Compare the results.

9.2-5 Field Distribution. The transverse distribution um(y) of the
electric-field complex amplitude of a TE mode in a slab
waveguide is given by (9.2-10) and (9.2-13). Derive an
expression for the ratio of the proportionality constants. Plot
the distribution of the m = 0 TE mode for a slab waveguide
with parameters n1 = 1.48, n2 = 1.46, d = 0.5 μm, and λo = 0.85
μm, and determine its confinement factor (percentage of power
in the slab).

9.2-6 Derivation of the Field Distributions Using Maxwell’s
Equations. Assuming that the electric field in a symmetric
dielectric waveguide is harmonic within the slab and
exponential outside the slab and has a propagation constant β
in both media, we may write Ex(y, z) = u(y)e−jβz, where

Satisfying the Helmholtz equation requires  and 
. Use Maxwell’s equations to derive expressions

for Hy(y, z) and Hz(y, z). Show that the boundary conditions
are satisfied if β, γ, and ky take the values βm, γm, and kym
derived in the text and verify the self-consistency condition
(9.2-4).

9.2-7 Single-Mode Waveguide. What is the largest thickness d of
a planar symmetric dielectric waveguide with refractive indices
n1 = 1.50 and n2 = 1.46 for which there is only one TE mode at



λo = 1.3 μm? What is the number of modes if a waveguide with
this thickness is used at λo = 0.85 μm instead?

9.2-8 Mode Cutoff. Show that the cutoff condition for TE mode m
> 0 in a symmetric slab waveguide with n1 ≈ n2 is
approximately , where Δn = n1 − n2.

9.2-9 TM Mode Bounce Angles. Derive an expression for the
bounce angles of the TM modes similar to (9.2-4). Generate a
plot similar to Fig. 9.2-2 for TM modes in a waveguide with sin

 = 0.3 and λ/2d = 0.1. What is the number of TM modes?

9.3-1 Modes of a Rectangular Dielectric Waveguide. A
rectangular dielectric waveguide has a square cross section of
area 10−2 mm2 and numerical aperture NA = 0.1. Use (9.3-3) to
plot the number of TE modes as a function of frequency ν.
Compare your results with Fig. 9.2-4.

9.4-1 Coupling Coefficient Between Two Slabs.

a. Use (9.4-6) to determine the coupling coefficient between two
identical slab waveguides of width d = 0.5 μm, spacing 2a = 1.0
μm, and refractive indices n1 = n2 = 1.48, in a medium of
refractive index n = 1.46, at λo = 0.85 μm. Assume that both
waveguides are operating in the m = 0 TE mode and use the
results of Prob. 9.2-5 to determine the transverse distributions.

b. Determine the length of the waveguides that makes the device
act as a 3-dB coupler.

*9.6-1 Silver-Slab Waveguide. Calculate and plot the dispersion
relation for the symmetric and anti-symmetric modes of a
silver-slab waveguide of thickness d = 20 nm in a host medium
of frequency-independent refractive index n2 = 2. Assume that
the permittivity of silver is described by the Drude model (8.2-
18), with a plasma frequency ωp corresponding to a free-space
wavelength of 138 nm. Determine the properties (velocity,
propagation wavelength, and penetration depths) of the



symmetric mode at a free-space wavelength of 400 nm.
Compare these properties with those of a SPP propagating on a
single interface between silver and the same host medium.
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Working at Corning in the early 1970s, Peter C. Schultz (born
1942), left, Donald B. Keck (born 1941), center, and Robert D.
Maurer (born 1924), right, developed ultra-low-loss silica-glass
optical fibers that permitted light to propagate over exceptionally
long distances, thereby paving the way for worldwide optical fiber
communications. Billions of kilometers of optical fiber span the
globe.

Fiber optics is an enabling technology for telecommunications, data
transmission, and information science. The availability of ultra-low-
loss optical fibers is, in large part, responsible for the commercial
viability of optical fiber communications.

An optical fiber is a cylindrical dielectric waveguide fabricated from
a low-loss material such as silica glass. It has a central core in which
the light is guided, embedded in an outer cladding of slightly lower
refractive index (Fig. 10.0-1). Light rays in the core incident on the
core–cladding boundary at angles greater than the critical angle
undergo total internal reflection and are thereby guided through the
core without refraction into the cladding and without loss. Rays at
greater inclination to the fiber axis lose a portion of their power into
the cladding at each reflection and are not guided.



Figure 10.0-1 An optical fiber is a cylindrical dielectric waveguide
with an inner core and an outer cladding of refractive index lower
than that of the core.

Technological advances in the fabrication of optical fibers over the
past several decades allow light to be guided through 1 km of silica-
glass fiber with a loss as low as ≈ 0.15 dB (≈ 3.4%) at the wavelength
of maximum transparency. Because of this low loss, silica-glass
optical fibers long ago replaced copper coaxial cables as the
preferred transmission medium for terrestrial and sub-oceanic voice
as well as for data communications. In recent years, optical fibers
have transcended their monolithic silica-glass origins and have
come to play a central role in the arenas of sensing, security,
transportation, defense, and biomedicine. This has been facilitated
by the development of photonic-crystal, specialty, multimaterial,
and multifunctional optical fibers.

In this chapter we introduce the principles of light transmission in
optical fibers. These principles are essentially the same as those
applicable to planar dielectric waveguides (Chapter 9); the most
notable distinction is that optical fibers have cylindrical geometry.
In both types of waveguide, light propagates in the form of modes.
Each mode travels along the axis of the waveguide with a distinct
propagation constant and group velocity, maintaining its transverse
spatial distribution and polarization. When the core diameter is
small, only a single mode is supported and the optical fiber is said to
be a single-mode fiber.

Optical fibers with large core diameters are multimode fibers.
One of the difficulties associated with the propagation of light in
multimode fibers arises from the differences among the group
velocities of the modes. This results in a spread of travel times and
leads to the broadening of a light pulse as it travels through the



fiber. This effect, called modal dispersion, limits the rate at which
adjacent pulses can be launched without resulting in pulse overlap
at the far end of the fiber. Modal dispersion therefore limits the
speed at which multimode optical fiber communication systems can
operate.

Modal dispersion can be reduced by grading the refractive index of
the fiber core from a maximum value at its center to a minimum
value at the core–cladding boundary. The fiber is then called a
graded-index fiber, or GRIN fiber, whereas conventional fibers
with constant refractive indices in the core and the cladding are
known as step-index fibers. In a graded-index fiber the travel
velocity increases with radial distance from the core axis (since the
refractive index decreases). Although rays of greater inclination to
the fiber axis must travel farther, they travel faster. This permits the
travel times of the different modes to be equalized.

Optical fibers are thus classified as step-index or graded-index, and
multimode or single-mode, as illustrated in Fig. 10.0-2.

Figure 10.0-2 Geometry, refractive-index profile, and typical rays
in a step-index multimode fiber (MMF), a single-mode fiber (SMF),
and a graded-index multimode fiber (GRIN MMF).

This Chapter
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The chapter begins with ray-optics descriptions of step-index and
graded-index fibers (Sec. 10.1). An electromagnetic-optics approach,
which highlights the nature of optical modes and single-mode
propagation, follows in Sec. 10.2. In the simplified approximate
approach set forth in Sec. 10.2C, the field is treated as a quasi-plane
wave in analogy with the bouncing plane-wave construct for planar
dielectric waveguides considered in Sec. 9.2. The optical properties
of the fiber material (often fused silica), including attenuation and
material dispersion as well as modal, waveguide, polarization-mode,
and nonlinear dispersion, are presented in Sec. 10.3. Holey and
photonic-crystal fibers, which have more complex refractive-index
profiles, along with unusual dispersion characteristics, are
introduced in Sec. 10.4. Finally, multimaterial and multifunctional
fibers, including mid-infrared and specialty fibers, are considered in
Sec. 10.5. We return to a discussion of fiber optics in Chapters 23
and 25, which are devoted to ultrafast optics and optical fiber
communications, respectively.

10.1 GUIDED RAYS
A. Step-Index Fibers
A step-index fiber is a cylindrical dielectric waveguide specified by
the refractive indices of its core and cladding, n1 and n2,
respectively, and their radii a and b (see Fig. 10.0-1). Examples of
standard core-to-cladding diameter ratios (in units of μm/μm) are
2a/2b = 8/125, 50/125, 62.5/125, 85/125, and 100/140. The
refractive indices of the core and cladding differ only slightly, so
that the fractional refractive-index change is small:

Most fibers used in currently implemented optical fiber
communication systems are made of fused silica glass (SiO2) of
high chemical purity. Slight changes in the refractive index are



effected by adding low concentrations of doping materials (e.g.,
titanium, germanium, boron). The refractive index n1 ranges from
1.44 to 1.46, depending on the wavelength, and Δ typically lies
between 0.001 and 0.02.

An optical ray in a step-index fiber is guided by total internal
reflections within the fiber core if its angle of incidence at the core–
cladding boundary is greater than the critical angle θc =
sin−1(n2/n1), and remains so as the ray bounces.

Meridional Rays

Meridional rays, which are rays confined to planes that pass
through the fiber axis, have a particularly simple guiding condition,
as illustrated in Fig. 10.1-1. These rays intersect the fiber axis and
reflect in the same plane without changing their angle of incidence,
behaving as if they were in a planar waveguide. Meridional rays are
guided if the angle θ they make with the fiber axis is smaller than
the complement of the critical angle, i.e., if θ <  = π/2 − θc =
cos−1(n2/n1). Since n1 ≈ n2,  is usually small and the guided rays
are approximately paraxial.

Figure 10.1-1 The trajectory of a meridional ray lies in a plane that
passes through the fiber axis. The ray is guided if θ <  =
cos−1(n2/n1).

Skewed Rays

An arbitrary ray is identified by its plane of incidence, which is a
plane parallel to the fiber axis through which the ray passes, and by
the angle with that axis, as illustrated in Fig. 10.1-2. The plane of
incidence intersects the core–cladding cylindrical boundary at an
angle ϕ with respect to the normal to the boundary and lies at a
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distance R from the fiber axis. The ray is identified by its angle θ
with the fiber axis and by the angle ϕ of its plane. When ϕ ≠ 0 (R ≠
0) the ray is said to be skewed. For meridional rays ϕ = 0 and R = 0.

A skewed ray reflects repeatedly into planes that make the same
angle ϕ with the core–cladding boundary; it follows a helical
trajectory confined within a cylindrical shell of inner and outer radii
R and a, respectively, as illustrated in Fig. 10.1-2. The projection of
the trajectory onto the transverse (x–y) plane is a regular polygon
that is not necessarily closed. The condition for a skewed ray to
always undergo total internal reflection is that its angle with the z
axis be smaller than the complementary critical angle, i.e., θ < .

Figure 10.1-2 A skewed ray lies in a plane offset from the fiber axis
by a distance R. The ray is identified by the angles θ and ϕ. It follows
a helical trajectory confined within a cylindrical shell with inner and
outer radii R and a, respectively. The projection of the ray on the
transverse plane is a regular polygon that is not necessarily closed.

Numerical Aperture

A ray incident from air into the fiber becomes a guided ray if, upon
refraction into the core, it makes an angle θ with the fiber axis that
is smaller than . As shown in Fig. 10.1-3(a), if Snell’s law is applied
at the air–core boundary, the angle θa in air corresponding to the
angle  in the core is obtained from 1 · sin θa = n1 sin , which leads
to sin  (see Exercise
1.2-5). The acceptance angle of the fiber is therefore
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Numerical Aperture

where the numerical aperture (NA) of the fiber is given by

since n1 − n2 = n1Δ and n1 + n2 ≈ 2n1.

The acceptance angle θa of the fiber determines the cone of external
rays that are guided by the fiber. Rays incident at angles greater
than θa are refracted into the fiber but are guided only for a short
distance since they do not undergo total internal reflection. The
numerical aperture therefore describes the light-gathering capacity
of the fiber, as illustrated in Fig. 10.1-3(b).

When the guided rays arrive at the terminus of the fiber, they are
refracted back into a cone of angle θa. The acceptance angle is thus a
crucial design parameter for coupling light into and out of a fiber.

Figure 10.1-3 (a) The acceptance angle θa of a fiber. Rays within
the acceptance cone are guided by total internal reflection. The
numerical aperture NA = sin θa. The angles θa and  are typically
quite small; they are exaggerated here for clarity. (b) The light-
gathering capacity of a large NA fiber is greater than that of a small
NA fiber.



EXAMPLE 10.1-1. Cladded and Uncladded Fibers. In a
silica-glass fiber with n1 = 1.46 and Δ = (n1 − n2)/n1 = 0.01, the
complementary critical angle  = cos−1(n2/n1) = 8.1°, and the
acceptance angle θa = 11.9°, corresponding to a numerical
aperture NA = 0.206. By comparison, a fiber with silica-glass
core (n1 = 1.46) and a cladding with a much smaller refractive
index n2 = 1.064 has  = 43.2°, θa = 90°, and NA = 1. Rays
incident from all directions are guided since they reflect within a
cone of angle  = 43.2° inside the core. Likewise, for an
uncladded fiber (n2 = 1),  = 46.8°, and rays incident from air at
any angle are also refracted into guided rays. Although its light-
gathering capacity is high, the uncladded fiber is generally not
suitable for use as an optical waveguide because of the large
number of modes it supports, as will be explained subsequently.

B. Graded-Index Fibers
Index grading is an ingenious method for reducing the pulse
spreading caused by differences in the group velocities of the modes
in a multimode fiber. The core of a graded-index (GRIN) fiber has a
refractive index that varies; it is highest in the center of the fiber
and decreases gradually to its lowest value where the core meets the
cladding. The phase velocity of light is therefore minimum at the
center and increases gradually with radial distance. Rays of the most
axial mode thus travel the shortest distance, but they do so at the
smallest phase velocity. Rays of the most oblique mode zigzag at a
greater angle and travel a longer distance, but mostly in a medium
where the phase velocity is high. The disparities in distances are
thus compensated by opposite disparities in the phase velocities. As
a consequence, the differences in the travel times associated with a
light pulse are reduced. In this section we examine the propagation
of light in GRIN fibers.
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The core refractive index of a GRIN fiber is a function n(r) of the
radial position r. As illustrated in Fig. 10.1-4, the largest value of
n(r) is at the core center, n(0) = n1, while the smallest value occurs
at the core radius, n(a) = n2. The cladding refractive index is
maintained constant at n2.

Figure 10.1-4 Geometry and refractive-index profile of a graded-
index optical fiber.

A versatile refractive-index profile that exhibits this generic
behavior is described by the power-law function

where

The grade profile parameter p determines the steepness of the
profile. As illustrated in Fig. 10.1-5, n2(r) is a linear function of r for
p = 1 and a quadratic function for p = 2. The quantity n2(r) becomes
increasingly steep as p becomes larger, and ultimately approaches a
step function for p →∞. The step-index fiber is thus a special case of
the GRIN fiber.



Figure 10.1-5 Power-law refractive-index profile n2(r) for various
values of p.

The transmission of light rays through a GRIN medium with
parabolic-index profile was discussed in Sec. 1.3. Rays in meridional
planes follow oscillatory planar trajectories, whereas skewed rays
follow helical trajectories. For an arbitrary refractive-index profile,
the turning points form cylindrical caustic surfaces, as illustrated in
Fig. 10.1-6. Guided rays are confined within the core and do not
reach the cladding.

Figure 10.1-6 Guided rays in the core of a GRIN fiber. (a) A
meridional ray confined to a meridional plane inside a cylinder of
radius R0.(b) A skewed ray follows a helical trajectory confined
within two cylindrical shells of radii rl and Rl. For a parabolic-index
profile, the trajectory projects to a stationary ellipse, as in Fig. 1.3-7.

The numerical aperture of a GRIN optical fiber may be determined
by identifying the largest angle of the incident ray that is guided
within the GRIN core without reaching the cladding. For meridional



rays in a GRIN fiber with parabolic profile, the numerical aperture
is given by (10.1-3) (see Exercise 1.3-2).

10.2 GUIDED WAVES
We now proceed to develop an electromagnetic-optics theory of
light propagation in fibers. We seek to determine the electric and
magnetic fields of guided waves by using Maxwell’s equations and
the boundary conditions imposed by the cylindrical dielectric core
and cladding. As with all waveguides, there are certain special
solutions, known as modes (see Appendix C), each of which has a
distinct propagation constant, a characteristic field distribution in
the transverse plane, and two independent polarization states. Since
an exact solution is rather difficult, a number of approximations will
be used.

Helmholtz Equation

The optical fiber is a dielectric medium with refractive index n(r). In
a step-index fiber, n(r) = n1 in the core (r < a) and n(r) = n2 in the
cladding (r > a). In a GRIN fiber, n(r) is a continuous function in
the core and has a constant value n(r) = n2 in the cladding. In either
case, we assume that the outer radius b of the cladding is
sufficiently large so that it can be taken to be infinite when
considering guided light in the core and near the core–cladding
boundary.

Each of the components of the monochromatic electric and
magnetic fields obeys the Helmholtz equation, ,
where ko = 2π/λo. This equation is obeyed exactly in each of the two
regions of the step-index fiber, and is obeyed approximately within
the core of the GRIN fiber if n(r) varies slowly within a wavelength
(see Sec. 5.3). In a cylindrical coordinate system (see Fig. 10.2-1) the
Helmholtz equation is written as
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Figure 10.2-1 Cylindrical fiber coordinate system.

where U = U(r, ϕ, z). The guided modes are waves traveling in the z
direction with propagation constant β, so that the z dependence of U
is of the form e−jβz. They are periodic in the angle ϕ with period 2π,
so that they take the harmonic form e−jlϕ, where l is an integer.
Substituting

into (10.2-1) leads to an ordinary differential equation for the radial
profile u(r):

A. Step-Index Fibers
As we discovered in Sec. 9.2B, the wave is guided (or bound) if the
propagation constant is smaller than the wavenumber in the core (β
< n1ko) and greater than the wavenumber in the cladding (β > n2ko).
It is therefore convenient to define the quantities

and
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(10.2-6)

(10.2-4b)
so that, for guided waves,  are positive and kT and γ are real.
Equation (10.2-3) may then be written in the core and cladding
separately:

Equations (10.2-5) are well-known differential equations whose
solutions comprise the family of Bessel functions. Excluding
functions that approach ∞ at r = 0 in the core, or at r →∞ in the
cladding, we obtain the bounded solutions:

where Jl(x) is the Bessel function of the first kind and order l, and
Kl(x) is the modified Bessel function of the second kind and order l.
The function Jl(x) oscillates like the sine or cosine function but with
a decaying amplitude. The function Kl(x) decays exponentially at
large x. Two representative examples of the radial distribution u(r)
are displayed in Fig. 10.2-2.
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Figure 10.2-2 Examples of the radial distribution u(r) provided in
(10.2-6) for l = 0 and l = 3. The shaded and unshaded areas
represent the fiber core and cladding, respectively. The parameters
kT and γ, and the two proportionality constants in (10.2-6), have
been selected such that u(r) is continuous and has a continuous
derivative at r = a. Larger values of kT and γ lead to a greater
number of oscillations in u(r).

The parameters kT and γ determine the rate of change of u(r) in the
core and in the cladding, respectively. A large value of kT means
more oscillation of the radial distribution in the core. A large value
of γ means more rapid decay and therefore smaller penetration of
the wave into the cladding. As can be seen from (10.2-4), the sum of
the squares of kT and γ is a constant:

so that as kT increases, γ decreases and the field penetrates more
deeply into the cladding. For those values of kT that exceed NA·\ko,
the quantity γ becomes imaginary and the wave ceases to be bound
to the core.

Fiber V Parameter

It is convenient to normalize kT and γ by defining the quantities

In view of (10.2-7), we have
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V Parameter

(10.2-9)
where V = NA · koa, from which

It is important to recall that for the wave to be guided, X must be
smaller than V.

As we shall see shortly, V is an important parameter that governs
the number of modes of the fiber and their propagation constants. It
is called the fiber parameter or the V parameter. It is directly
proportional to the radius-to-wavelength ratio a/λo, and to the
numerical aperture NA. Equation (10.2-10) is not unlike (9.2-7) for
the number of TE modes in a planar dielectric waveguide.

Modes

We now consider the boundary conditions. We begin by writing the
axial components of the electric- and magnetic-field complex
amplitudes, Ez and Hz, in the form of (10.2-2). The condition that
these components must be continuous at the core–cladding
boundary r = a establishes a relation between the coefficients of
proportionality in (10.2-6), so that we have only one unknown for Ez
and one unknown for Hz. With the help of Maxwell’s equations, 

 and  [see (5.312) and (5.3-13),
respectively], the remaining four components, Eϕ, Hϕ, Er, and Hr,
are determined in terms of Ez and Hz. Continuity of Eϕ and Hϕ at r =
a yields two additional equations. One equation relates the two
unknown coefficients of proportionality in Ez and Hz; the other
provides a condition that the propagation constant β must satisfy.
This condition, called the characteristic equation or dispersion
relation, is an equation for β with the ratio a/λo and the fiber
indices n1, n2 as known parameters.



(10.2-11)

For each azimuthal index l, the characteristic equation has multiple
solutions yielding discrete propagation constants βlm, m = 1, 2,...,
each solution representing a mode. The corresponding values of kT
and γ, which govern the spatial distributions in the core and in the
cladding, respectively, are determined by using (10.2-4) and are
denoted kTlm and γlm. A mode is therefore described by the indices l
and m, characterizing its azimuthal and radial distributions,
respectively. The function u(r) depends on both l and m; l = 0
corresponds to meridional rays. Moreover, there are two
independent configurations of the E and H vectors for each mode,
corresponding to the two states of polarization. The classification
and labeling of these configurations are generally quite involved
(details are provided in specialized books in the reading list).

Characteristic Equation (Weakly Guiding Fiber)

Most fibers are weakly guiding (i.e., n1 ≈ n2 or Δ ≪ 1) so that the
guided rays are paraxial, i.e., approximately parallel to the fiber axis.
The longitudinal components of the electric and magnetic fields are
then far weaker than the transverse components and the guided
waves are approximately transverse electromagnetic (TEM) in
nature. The linear polarization in the x and y directions then form
orthogonal states of polarization. The linearly polarized (LP) mode
with indices (l, m) is usually labeled as the LPlm mode. The two
polarizations of mode (l, m) travel with the same propagation
constant and have the same spatial distribution.

For weakly guiding fibers the characteristic equation obtained using
the procedure outlined earlier turns out to be approximately
equivalent to the conditions that the scalar function u(r) in (10.2-6)
is continuous and has a continuous derivative at r = a. These two
conditions are satisfied if

The derivatives  of the Bessel functions satisfy the identities
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Characteristic 

Equation

Substituting these identities into (10.2-11) and using the normalized
parameters X = kTa and Y = γa leads to the characteristic equation

Given V and l, the characteristic equation contains a single
unknown variable X . Note that J−l(x) = (−1)lJl(x) and K−l(x) = Kl(x),
so that the equation remains unchanged if l is replaced by −l.

The characteristic equation may be solved graphically by plotting its
right- and left-hand sides (RHS and LHS, respectively) versus X and
finding the intersections. As illustrated in Fig. 10.2-3 for l = 0, the
LHS has multiple branches whereas the right-hand side decreases
monotonically with increasing X until it vanishes at X = V (Y = 0).
There are therefore multiple intersections in the interval 0 < X ≤ V.
Each intersection point corresponds to a fiber mode with a distinct
value of X. These values are denoted Xlm, m = 1, 2,..., Ml in order of
increasing X. Once the Xlm are found, (10.2-8), (10.2-4), and (10.2-
6) allow us to determine the corresponding transverse propagation
constants kTlm, the decay parameters γlm, the propagation constants
βlm, and the radial distribution functions ulm(r). The graph in Fig.
10.2-3 is similar in character to that in Fig. 9.2-2, which governs the
modes of a planar dielectric waveguide.



Figure 10.2-3 Graphical construction for solving the characteristic
equation (10.2-14). The left-and right-hand sides are plotted as
functions of X. The intersection points are the solutions. The left-
hand side (LHS) has multiple branches intersecting the abscissa at
the roots of Jl±1(X). The right-hand side (RHS) intersects each
branch once and meets the abscissa at X = V. The number of modes
therefore equals the number of roots of Jl±1(X) that are smaller
than V. In this plot l = 0, V = 10, and either the − or + signs in (10.2-
14) may be used.

Each mode has a distinct radial distribution. As examples, the two
radial distributions u(r) illustrated in Fig. 10.2-2 correspond to the
LP01 mode (l = 0, m = 1) in a fiber with V = 5, and the LP34 mode (l
= 3, m = 4) in a fiber with V = 25, respectively. Modes with l > 0
exist in pairs with azimuthal dependencies given by exp(±jlϕ), in
analogy with the Laguerre–Gaussian optical beam discussed in Sec.
3.4. Since the (l, m) and (−l, m) modes have the same propagation
constants, the azimuthal behavior of the modes is revealed by
examining the transverse intensity distribution of their equal-
weight superpositions, as is understood from the commentary
associated with Fig. 3.4-2. Specifically, the complex amplitude of the
sum is proportional to ulm(r) cos lϕ exp(−jβlmz); the intensity,
which is proportional to , is illustrated in Fig. 10.2-4 for
several LPlm modes.



Figure 10.2-4 Intensity distributions in the transverse plane for
several LPlm modes for a step-index fiber with fiber parameter V =
10. The white circles depict core–cladding boundaries. The intensity
distribution of the fundamental LP01 mode resembles that of the
Gaussian beam displayed in Fig. 3.1-1. Each panel represents a
superposition of a pair of modes with values of l that are identical
but opposite in sign. The intensity distributions are proportional to
cos2 lϕ and thus display 2l azimuthal interference fringes.

Mode Cutoff

It is evident from the graphical construction in Fig. 10.2-3 that as V
increases, the number of intersections (modes) increases since the
left-hand side of the characteristic equation (10.2-14) is
independent of V , whereas the right-hand side moves rightward as
V increases. Considering the minus signs in the characteristic
equation, branches of the left-hand side intersect the abscissa when
Jl−1(X) = 0. These roots are denoted xlm, m = 1, 2,.... The number of
modes Ml is therefore equal to the number of roots of Jl−1(X) that
are smaller than V. The (l, m) mode is allowed if V > xlm. The mode
reaches its cutoff point when V = xlm. As V decreases, the (l, m − 1)
mode also reaches its cutoff point whereupon a new root is reached,
and so on. The smallest root of Jl−1(X) is x01 = 0 for l = 0 and the
next smallest is x11 = 2.405 for l = 1. The numerical values of some
of these roots are provided in Table 10.2-1.

Table 10.2-1 Cutoff V parameter for low-order LPlm modes.a

l m = 1 2 3 4 5



(10.2-15)Single-Mode Condition

(10.2-16)Cutoff Frequency

0 0 3.832 7.016 10.174 13.324
1 2.405 5.520 8.654 11.792 14.931
2 3.832 7.016 10.174 13.324 16.471
3 5.136 8.417 11.620 14.796 17.960
4 6.380 9.761 13.015 16.224 19.409
5 7.588 11.065 14.373 17.616 20.218
6 8.772 12.339 15.700 18.980 22.218

aThe cutoffs of the l = 0 modes occur at the roots of J−1(X)= −J1(X). The l = 1 modes
are cut off at the roots of J0(X), and so on.

When V < 2.405 all modes, with the exception of the fundamental
LP01 mode, are cut off. The fiber then operates as a single-mode
waveguide. The condition for single-mode operation is therefore

Since V is proportional to the optical frequency [see (10.2-10)], the
cutoff condition for the fundamental mode provided in (10.2-15)
yields a corresponding cutoff frequency:

By comparison, in accordance with (9.2-9), the cutoff frequency of
the lowest-order mode in a dielectric slab waveguide of width d is νc
= (1/NA)(co/2d).

Number of Modes

A plot of the number of modes Ml as a function of V therefore takes
the form of a staircase function that increases by unity at each of
the roots xlm of the Bessel function Jl−1(X). A composite count of



the total number of modes M (for all values of l), as a function of V,
is provided in Fig. 10.2-5. Each root must be counted twice since, for
each mode of azimuthal index l > 0, there is a corresponding mode
−l that is identical except for opposite polarity of the angle ϕ
(corresponding to rays with helical trajectories of opposite senses),
as can be seen by using the plus signs in the characteristic equation.
Moreover, each mode has two states of polarization and must
therefore be counted twice.

Figure 10.2-5 Total number of modes M versus fiber parameter V
= 2π(a/λo)NA. Included in the count are two helical polarities for
each mode with l > 0 as well as two polarizations per mode. For V <
2.405, there is only a single mode, the fundamental LP01 mode with
two polarizations. For V = 4, modes LP11 and LP21 come into play,
each with two helicities, along with LP01 and LP02 with zero
helicities; accommodating the two polarizations in each mode leads
to a total of 12 modes. The dotted curve is the relation  set
forth in (10.2-18), which provides an approximate result for the
number of modes when V ≫ 1.



(10.2-18)Number of Modes (V ≫ 1)

(10.2-17)

Though there are no explicit exact formulas for the roots of Jl(X),
for X ≫ l2 we can write  in which case
the roots are approximately given by 

. This relation may be used to
estimate the number of modes for fibers with large V parameter and
consequently a large number of modes. When m is large the cutoff
points of modes (l, m), which are the roots of Jl±1(X), are

For fixed l, these roots are uniformly spaced at a distance π, in
which case the number of roots Ml satisfies , from which 

 then decreases linearly with increasing l, beginning
with  and ending at  when l = lmax, where lmax
= 2V /π. Accommodating the two degrees of freedom associated
with positive and negative l for l > 0, and the two polarizations for
each index (l, m), leads to a total number of modes given by 

 With the help of the relationl 
we obtain the approximate expression 

However, this expression underestimates the actual number of
modes by virtue of the fact that Ml includes lower-order modes for
which the separation distances are less than π, as evinced in Table
10.2-1. As illustrated in Fig. 10.2-5, a good fit to the exact number of
modes is provided by the approximation

an expression that obtains in the quasi-plane-wave approach, as
shown in Sec. 10.2C [see (10.2-35)].

Based on (10.2-18), when V is large the approximate number of
modes in the circular waveguide is given by 

. This expression is analogous to that for
the number of modes in a square dielectric waveguide of cross



(10.2-19)Propagation Constants 
0 < Xlm < V

sectional area d2, in which case  when both TE
and TM polarizations are accommodated [see (9.3-3)].

EXAMPLE 10.2-1. Number of Modes. A silica-glass fiber
with n1 = 1.452 and Δ = 0.01 has a numerical aperture 

 and the core radius a = 20
μm, then V = 2π(a/λo)NA ≈ 16.6. There are therefore
approximately  modes. If the cladding is stripped
away so that the core is in direct contact with air, n2 = 1 and NA
= 1, whereupon V ≈ 81.1 and approximately 3,286 modes are
allowed.

Propagation Constants and Group Velocities

As indicated earlier, the propagation constants can be determined by
solving the characteristic equation (10.2-14) for the Xlm and using
(10.2-4a) and (10.2-8) to obtain 

 we have 
 we use the

expansion  to obtain

For fibers with large V , corresponding to a large number of modes,
Xlm spans the range 0 < Xlm < V so that βlm varies approximately
between n1ko and n1ko(1 − Δ) ≈ n2ko, as predicted by ray optics.

To determine the group velocity of the (l, m) mode, vlm = dω/dβlm,
we express βlm as an explicit function of ω by substituting n1ko =
ω/c1 and V = a(ω/co)NA into (10.2-19), and then calculating
(dβlm/dω)−1. Assuming that c1 and Δ are independent of ω, and



(10.2-20)Group Velocities
0 < X lm < V

using the approximation (1 + δ)−1 ≈ 1 − δ for |δ| ≪ 1, the group
velocity becomes

For V ≫ 1, the group velocity varies approximately between c1 and
c1(1 − Δ) = c1(n2/n1). In this case, the group velocities of the low-
order modes are approximately equal to the phase velocity of the
core material, whereas those of the high-order modes are smaller.

The fractional group-velocity change between the fastest and the
slowest mode is roughly equal to Δ, the fractional refractive index
change of the fiber. Fibers with large Δ, although endowed with a
large NA and therefore large light-gathering capacity, also have a
large number of modes, large modal dispersion, and consequently
high pulse-spreading rates. These effects are particularly severe if
the cladding is removed altogether.

B. Single-Mode Fibers
As discussed earlier, a fiber with core radius a and numerical
aperture NA operates as a single-mode fiber in the fundamental
LP01 mode if V = 2π(a/λo)NA < 2.405. Single-mode operation is
therefore achieved via a small core diameter and small numerical
aperture (indicating that n2 is close to n1), or by operating at a
sufficiently low optical frequency [below the cutoff frequency νc =
(1/NA)(co/2.61a)].

The fundamental LP01 mode has a bell-shaped spatial distribution
(Figs. 10.2-2 and 10.2-4 for l = 0) similar to that of the simple
Gaussian beam (Fig. 3.1-1). It provides the greatest confinement of
light power within the core.



EXAMPLE 10.2-2. Single-Mode Operation. A silica-glass
fiber with n1 = 1.447 and Δ = 0.01 (NA = 0.205) operates at λo =
1.3 μm as a single-mode fiber if V = 2π(a/λo)NA < 2.405, i.e., if
the core diameter 2a< 4.86 μm. If Δ is reduced to 0.0025, single-
mode operation is maintained for a diameter 2a< 9.72 μm.

The dependence of the effective refractive index n = β/ko on the V
parameter for the fundamental mode is displayed in Fig. 10.2-6(a),
and the corresponding dispersion relation (ω versus β) is illustrated
in Fig. 10.2-6(b). As the V parameter increases, i.e., as the frequency
increases or the fiber diameter increases, the effective refractive
index n increases from n2 to n1. This is expected since the mode is
more confined in the core at shorter wavelengths.

Figure 10.2-6 Schematic illustrations of the propagation
characteristics of the fundamental LP01 mode. (a) Effective
refractive index n = β/ko as a function of the V parameter. (b)
Dispersion relation (ω versus β01).

There are numerous advantages of using single-mode fibers in
optical fiber communication systems. As explained earlier, the
modes of a multimode fiber travel at different group velocities so
that a short-duration pulse of multimode light suffers a range of
delays and therefore spreads in time. Quantitative measures of
modal dispersion are examined in Sec. 10.3B. In a single-mode fiber,
on the other hand, there is only one mode with a single group
velocity, so that a short pulse of light arrives without delay



distortion. As explained in Sec. 10.3B, pulse spreading in single-
mode fibers does nevertheless result from other dispersive
mechanisms, but these are significantly smaller than modal
dispersion.

Moreover, as shown in Sec. 10.3A, the rate of power attenuation is
lower in a single-mode fiber than in a multimode fiber. This,
together with the smaller rate of pulse spreading, permits
substantially higher data rates to be transmitted over single-mode
fibers than over multimode fibers. This topic is addressed further in
Chapters 23 and 25.

Another difficulty with the use of multimode fibers stems from the
random interference of the modes. As a result of uncontrollable
imperfections, strains, and temperature fluctuations, each mode
undergoes a random phase shift so that the sum of the complex
amplitudes of the modes exhibits an intensity that is random in
time and space. This randomness is known as modal noise or
speckle. This effect is similar to the fading of radio signals
resulting from multiple-path transmission. In a single-mode fiber
there is only one path and therefore no modal noise.

Polarization-Maintaining Fibers

In a fiber with circular cross section, each mode has two
independent states of polarization with the same propagation
constant. Thus, the fundamental LP01 mode in a single-mode
weakly guiding fiber may be polarized in the x or y direction; the
two orthogonal polarizations have the same propagation constant
and the same group velocity.

In principle, there should be no exchange of power between the two
polarization components. If the power of the light source is
delivered exclusively into one polarization, the power should remain
in that polarization. In practice, however, slight random
imperfections and uncontrollable strains in the fiber result in
random power transfer between the two polarizations, as illustrated
in Fig. 10.2-7.



Figure 10.2-7 (a) Ideal polarization-maintaining fiber. (b) Random
transfer of power between two polarizations in a conventional fiber.

Such coupling is facilitated because the two polarizations have the
same propagation constant and their phases are therefore matched.
Thus, linearly polarized light at the fiber input is generally
transformed into elliptically polarized light at the fiber output. In
spite of the fact that the total optical power remains fixed (see Fig.
10.2-7), the ellipticity of the received light fluctuates randomly with
time as a result of fluctuations in the material strain and
temperature, and of the source wavelength. The randomization of
the power division between the two polarization components poses
no difficulty if the object is solely to transmit light power, provided
that the total power is collected.

However, in many areas where fiber optics is used, e.g., in
integrated-photonic devices, optical sensors based on
interferometric techniques, and coherent optical communications,
the fiber must transmit the complex amplitude (magnitude and
phase) of a specific polarization. Polarization-maintaining fibers are
required for such applications. To construct a polarization-
maintaining fiber, the circular symmetry of the conventional fiber
must be abandoned, for example by using fibers with elliptical cross
section or stress-induced anisotropy of the refractive index. This
eliminates the polarization degeneracy, thereby making the
propagation constants of the two polarizations different. The
introduction of such phase mismatch serves to reduce the coupling
efficiency.
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*C. Quasi-Plane Waves in Step-Index and Graded-Index
Fibers
As shown in Sec. 10.1A, the modes of a step-index fiber are
determined by writing the Helmholtz equation (10.2-1) with n =
n(r), solving for the spatial distributions of the field components,
and using Maxwell’s equations and the boundary conditions to
obtain the characteristic equation. However, carrying out this
procedure for a graded-index fiber is generally a difficult
proposition.

In this section we rely instead on an approximate approach based on
picturing the field distribution as a quasi-plane wave traveling
within the core, approximately along the trajectory of an optical ray.
A quasi-plane wave is a wave that is locally identical to a plane wave,
but slowly changes its direction and amplitude as it travels. This
approach permits us to maintain the simplicity of ray optics while at
the same time retaining the phase associated with the wave, so that
the self-consistency condition for determining the propagation
constants of the guided modes can be used (as was done for the
planar dielectric waveguide in Sec. 9.2). This approximate
technique, which makes use of the WKB (Wentzel–Kramers–
Brillouin) method, is applicable only for fibers with a large number
of modes (large V parameter). This approach also allows us to
conveniently compare the behavior of step-index and graded-index
fibers.

Quasi-Plane Waves

Consider a solution of the Helmholtz equation (10.2-1) that takes
the form of a quasi-plane wave (see Sec. 2.3)

where a(r) and S(r) are real functions of position that are slowly
varying in comparison with the wavelength λo = 2π/ko. It is known
from (2.3-4) that S(r) approximately satisfies the eikonal equation |
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(10.2-24)Quasi-Plane Wave

(10.2-25)

∇S|2 ≈ n2, and that the rays travel in the direction of the gradient ∇S.
If we take koS(r) = kos (r)+ lϕ + βz, where s (r) is a slowly varying
function of r, the eikonal equation yields

The local spatial frequency of the wave in the radial direction is the
partial derivative of the phase koS(r) with respect to r,

so that (10.2-21) becomes

Quasi-Plane Wave

and (10.2-22) provides

Defining kϕ = l/r so that exp(−jlϕ) = exp(−jkϕrϕ), and kz = β, (10.2-
25) yields . The quasi-plane wave therefore has a
local wavevector k with magnitude n(r)ko and cylindrical-coordinate
components (kr, kϕ, kz). Since n(r) and kϕ are functions of r, kr is
also generally position dependent. The direction of k changes slowly
with r (see Fig. 10.2-8), and follows a helical trajectory similar to
that of the skewed ray shown earlier in Fig. 10.1-6(b).
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Figure 10.2-8 (a) The wavevector k =(kr, kϕ, kz) in a cylindrical
coordinate system. (b) Quasi-plane wave following the direction of a
ray.

To establish the region of the core within which the wave is bound,
we determine the values of r for which kr is real, or  For given
values of l and β we plot  as a function of r.
The term  is first plotted as a function of r [thick solid curve
in Fig. 10.2-9(a)]. The term l2/r2 is then subtracted, yielding the
dashed curve. The value of β2 is marked by the thin solid vertical
line. It follows that  is represented by the difference between the
dashed curve and the thin solid line, i.e., by the shaded area.
Regions where  is positive and negative are indicated by + and −
signs, respectively.

For the step-index fiber, we have n(r) = n1 for r < a, and n(r) = n2
for r > a. In this case the quasi-plane wave is guided in the core by
reflecting from the core– cladding boundary at r = a. As illustrated
in Fig. 10.2-9(a), the region of confinement is then rl < r < a, where

The wave bounces back and forth helically like the skewed ray
illustrated in Fig. 10.1-2. In the cladding (r > a), and near the center
of the core (r < rl),  is negative so that kr is imaginary; the wave
therefore decays exponentially in these regions. Note that rl
depends on β. For large β (or large l), rl is large so that the wave is
confined to a thin cylindrical shell near the boundary of the core.
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For the graded-index fiber illustrated in Fig. 10.2-9(b), kr is real in
the region rl < r < Rl, where rl and Rl are the roots of the equation

It follows that the wave is essentially confined within a cylindrical
shell of radii rl and Rl, just as for the helical ray trajectory shown in
Fig. 10.1-6(b).

Figure 10.2-9 Dependence of 
 the position r. At any  is

the width of the shaded area with the + and − signs denoting
positive and negative values of ,respectively. (a) Step-index fiber: 

 is position in the region rl < r < a (b) Graded-index fiber:  is
positive in the region positive in the region rl < r < Rl.

Modes

The modes of the fiber are determined by imposing the self-
consistency condition that the wave reproduce itself after one
helical period of travel between rl and Rl and back. The azimuthal
pathlength corresponding to an angle 2π must correspond to a
multiple of 2π phase shift, i.e., kϕ2πr = 2πl; l = 0, ± 1, ±2,.... This
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condition is evidently satisfied since kϕ = l/r. Furthermore, since the
component kr vanishes at rl and Rl, the phase shift encountered in
traveling between these turning points must be a multiple of π,
much like the case of a standing wave between two mirrors. Thus,

where Rl = a for the step-index fiber. This condition provides the
characteristic equation from which the propagation constants βlm of
the modes are determined. These values are represented
schematically in Fig. 10.2-10; the mode m = l has the largest value
of β (approximately n1ko) whereas the mode m = Ml has the
smallest value (approximately n2ko). The WKB method, which is
applicable for oscillatory solutions between turning points, yields
more accurate results: the quantities l2 and m above are replaced by
l2 + 1/4 and m + 1/4 , corrections that are particularly important for
small values of l and m.
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Figure 10.2-10 The propagation constants and confinement
regions of the fiber modes. Each curve corresponds to an index l,
which stretches from 0 to 6 in this plot. Each mode (corresponding
to a certain value of m) is schematically indicated by two dots
connected by a dashed vertical line. The ordinates of the dots denote
the radii rl and Rl of the cylindrical shell within which the mode is
confined. Values on the abscissa are the squared propagation
constants of the modes, β2 .

Number of Modes

The total number of modes can be determined by adding the
number of modes Ml for l = 0, 1,..., lmax. We approach this
computation using a different procedure, however. We first
determine the number qβ of modes with propagation constants
greater than a given value β. For each l, the number of modes Ml(β)
with propagation constant greater than β is the number of multiples
of 2π the integral in (10.2-28) yields, i.e.,

where rl and Rl are the radii of confinement corresponding to the
propagation constant β, as provided in (10.2-27). Clearly, rl and Rl
depend on β, and Rl = a for the step-index fiber.
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The total number of modes with propagation constant greater than
β is therefore

where lmax(β) is the maximum value of l that yields a bound mode
with propagation constants greater than β, i.e., for which the peak
value of the function n2(r)  − l2/r2 is greater than β2. The grand-
total mode count M is qβ for β = n2ko. The factor of 4 in (10.2-30)
accommodates the two possible polarities of the angle ϕ,
corresponding to positive and negative helical trajectories for each
(l, m), and the two possible polarizations. If the number of modes is
sufficiently large, we can replace the summation in (10.2-30) by an
integration, whereupon

For fibers with power-law refractive-index profiles, we insert (10.1-
4) into (10.2-29), and thence into (10.2-31). Evaluation of the
integral then yields

with

where Δ = (n1 − n2)/n1 and V = 2π(a/λo)NA is the fiber V parameter.
Since qβ ≈ M at β = n2ko, M is indeed the total number of modes.

For step-index fibers (p →∞), (10.2-32) and (10.2-33) become
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and

respectively. This expression for M is the same as
that set forth in (10.2-18), which was found to be a good fit to the
exact number as a function of V , as shown in Fig. 10.2-5.

Propagation Constants

The propagation constant βq for mode q is obtained by inverting
(10.2-32):

where the index qβ has been replaced by q, and β has been replaced
by βq. Since Δ ≪ 1, the approximation  (applicable for
|δ|≪ 1) can be applied to (10.2-36), yielding

The propagation constant βq therefore decreases from ≈ n1ko (for q
= 1) to n2ko (for q = M), as illustrated in Fig. 10.2-11. For the step-
index fiber (p →∞), (10.2-36) reduces to

which mimics the behavior of (10.2-19).
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Figure 10.2-11 Dependence of the propagation constants βq on the
mode index q = 1, 2,..., M for (a) a step-index fiber (p →∞) and (b)
an optimal graded-index fiber (p = 2).

Group Velocities

To determine the group velocity vq = dω/dβq, we write βq as a
function of ω by substituting (10.2-33) into (10.2-37), substituting
n1ko = ω/c1 into the result, and evaluating vq =(dβq/dω)−1. With the
help of the approximation (1 + δ)−1 ≈ 1 − δ (valid for |δ| ≪ 1), and
assuming that c1 and Δ are independent of ω (i.e., ignoring material
dispersion), we obtain

For the step-index fiber (p →∞), (10.2-39) yields

The group velocity thus varies from approximately c1 to c1(1 − Δ), as
illustrated in Fig. 10.2-12(a). The form of this equation harks back
to (10.2-20).
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Figure 10.2-12 Group velocities vq of the modes of (a) a step-
index fiber (p →∞) and (b) an optimal graded-index fiber (p = 2).

Optimal Index Profile

Equation (10.2-39) indicates that the grade profile parameter p = 2
yields a group velocity vq ≈ c1 for all q, so that all modes travel at
approximately the same velocity c1. This highlights the advantage of
the graded-index fiber for multimode transmission.

To determine the group velocity with better accuracy, we return to
the derivation of vq from (10.2-36) for p = 2. Carrying the Taylor-
series expansion to three terms instead of two, i.e., 

 gives rise to

Thus, the group velocities vary from approximately c1 at q = 1 to
approximately c1(1 − Δ2/2) at q = M. Comparison with the results
for the step-index fiber is provided in Fig. 10.2-12. The group-
velocity difference for the parabolically graded fiber is Δ2/2, which is
substantially smaller than the group-velocity difference Δ for the
step-index fiber. Under ideal conditions, the graded-index fiber
therefore reduces the group-velocity difference by a factor Δ/2, thus
realizing its intended purpose of equalizing the modal velocities.
However, since the analysis leading to (10.2-41) is based on a
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number of approximations, this improvement factor is only a rough
estimate — indeed it is not fully attained in practice.

The number of modes M in a graded-index fiber with grade profile
parameter p is specified by (10.2-33). For p = 2, this becomes

Comparing this with the result for the step-index fiber provided in
(10.2-35), , reveals that the number of modes in an optimal
graded-index fiber is roughly half that in a step-index fiber with the
same parameters n1, n2, and a.

D. Multicore Fibers and Fiber Couplers

Multicore Fibers

A multicore fiber (MCF) is a fiber with multiple cores embedded
in a common cladding (Fig. 10.2-13). The application in which such
a fiber is to be used determines the number of cores, the manner in
which the cores are arranged, their diameters, and their separations
(pitch). Cores with small (large) diameter function as single-mode
(multimode) waveguides, respectively. Cores that are sufficiently
well separated exhibit minimal inter-core crosstalk and hence
behave as independent waveguides. MCFs find use in high-capacity
optical networks, in inter-chip communications in datacenters, and
as sensors since they respond differentially to mechanical changes
(e.g., bending).

Figure 10.2-13 A multicore fiber (MCF) with seven cores.

Multicore Couplers



Optical fiber couplers are important components of optical fiber
systems. Multicore couplers are used to connect one or more
fibers at the input of the device to one or more fibers at its output.
Several examples implementing various coupling configurations are
illustrated in Fig. 10.2-14 (additional examples are provided in Sec.
24.1B). It should be pointed out, however, that other technologies
are also useful for achieving coupling, as discussed in Sec. 24.1A.

A key consideration in the design of an optical fiber coupler is the
optical loss that it introduces; the reduction of insertion loss is
particularly challenging for single-mode fibers. In certain
applications, it is desired to render the distribution of optical power
at the output fibers of the coupler insensitive to particular wave
properties, such as wavelength or polarization. In other
applications, the coupler may be deliberately designed so that
coupling is governed by one of these properties, such as different
wavelengths or polarizations being directed to different output
fibers, as considered in Sec. 24.1.

Figure 10.2-14 Multicore fiber-optic couplers. (a) Dual-core fiber
used as a splitter or a combiner. (b) Fan-out and fan-in couplers
using a conical fused taper to connect a single-core fiber (SCF) to a
multicore fiber (MCF). (c) A 3-dB coupler using a dual-core fiber
incorporating a biconical fused taper. Adjacent fibers are weakly
coupled, which allows light to gradually migrate from one fiber to
the other, much as in the integrated-photonic coupler displayed in
Fig. 9.4-7(b).

Photonic Lantern



A photonic lantern is a fiber-optic coupler that connects a single
multimode fiber (MMF) to multiple single-mode fibers (SMFs). As
illustrated in Fig. 10.2-15, working our way from right to left, a
collection of SMFs are fused into a single glass body, thereby
forming a multicore fiber (MCF). This body in turn is tapered in
cross section and connected to a single-core MMF at the narrow end
of the taper. The device is reciprocal and can be used in either a fan-
out or a fan-in configuration.

Figure 10.2-15 A photonic lantern provides an interface between
the modes of one multi-mode fiber (MMF) and many single-mode
fibers (SMFs). It can be operated in a fan-out configuration, in
which light travels from left to right, or in a fan-in configuration, in
which light travels from right to left.

When operated in a fan-out configuration, incoming light excites
the modes of the MMF, and each mode in turn excites several, or
all, of the multiple cores in the tapered region. Within the narrow
portion of the tapered region, the cores are weakly coupled and thus
behave as an array of coupled single-mode waveguides, wherein the
light in one waveguide can migrate into neighboring waveguides
(see Sec. 9.4C). In the wider portion of the tapered region, the cores
are sufficiently separated so that they form a MCF comprising
independent single-mode waveguides that serve to feed the
outgoing SMFs.

While this structure may be used as a simple fan-out coupler that
distributes the power entering the MMF among the outgoing SMFs,
much like the fan-out configuration depicted in Fig. 10.2-14(b), it
has additional capabilities. Ideally, each of the MMF modes would
couple to one, and only one, of the SMFs, whereupon the device



would serve as a demultiplexer separating the information carried
by each of the incoming modes into distinct SMF channels (or, in
the case of the reciprocal fan-in configuration, as a multiplexer).
Unfortunately, however, at the entrance to the taper, and
throughout its narrow region where the constituent fibers are not
well separated, each of the MMF modes couples to more than one of
the SMFs, thereby obviating such a one-to-one correspondence.

Nevertheless, the resultant mixing of information can be undone
using computational methods. The relation between the complex
amplitudes of the output waves in the SMFs and those of the modes
in the input MMF is mathematically represented by a matrix with
appropriate weights for such a linear superposition. This matrix is
established by the geometry of the taper and the transmission
through the array of coupled waveguides, as described in Sec. 9.4C
for waveguide arrays. If this matrix is able to be determined, then
matrix inversion can be used to computationally extract the
information carried by the MMF modes from the complex
amplitudes of the outgoing light in the SMFs.

Photonic lanterns find use in optical fiber communication systems
in which MMF modes serve as individual communication channels
(spatial-mode multiplexing is considered in Sec. 25.3B). Fan-out
lanterns may also be used to distribute light carried by one MMF to
several SMFs for processing by optical components designed for
single-mode operation, such as single-mode fiber Bragg grating
(FBG) spectral filters or optical amplifiers, before being recombined
and directed to another MMF via a fan-in lantern. An example of the
use of a photonic lantern in astronomical instrumentation relies on
directing the multimode light delivered by a telescope to a set of
single-mode fiber filters for spectral filtering.

10.3 ATTENUATION AND DISPERSION
Attenuation and dispersion limit the performance of the optical-
fiber medium as a data-transmission channel. Attenuation,



(10.3-1)

associated with losses of various kinds, limits the magnitude of the
optical power transmitted. Dispersion, which is responsible for the
temporal spread of optical pulses, limits the rate at which data-
carrying pulses may be transmitted.

A. Attenuation

Attenuation Coefficient

The power of a light beam traveling through an optical fiber
decreases exponentially with distance as a result of absorption and
scattering. The associated attenuation coefficient is
conventionally defined in units of decibels per kilometer (dB/km)
and is denoted by the symbol α,

where  = P(L)/P(0) is the power transmission ratio (the ratio
of transmitted to incident power) for a fiber of length L km. The
conversion of a ratio to dB units is illustrated in Fig. 10.3-1. An
attenuation of 3 dB/km, for example, corresponds to a power
transmission of  = 0.5 through a fiber of length L = 1 km.

Figure 10.3-1 The dB value of a ratio. For example, 3 dB is
equivalent to a ratio of 0.5; 10 dB corresponds to  = 0.1; and 20 dB
corresponds to  = 0.01.

For light traveling through a cascade of lossy systems, the overall
transmission ratio is the product of the constituent transmission
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ratios. By virtue of the logarithmic relation in (10.3-1), the overall
loss in dB thus becomes the sum of the constituent dB losses. For a
propagation distance of z km, the loss is αz dB. The associated
power transmission ratio, which is obtained by inverting (10.3-1), is
then

Equation (10.3-2) applies when the quantity α is specified in units
of dB/km. If, instead, the attenuation coefficient α is specified in
units of km−1, we have

where α ≈ 0.23 α. For components other than optical fibers, the
attenuation coefficient α is usually specified in units of cm−1 in
which case the power attenuation is described by (10.3-3) with z
specified in cm.

Absorption

The attenuation coefficient α of fused silica (SiO2) is strongly
dependent on wavelength, as illustrated in Fig. 10.3-2. This material
has two strong absorption bands: a mid-infrared absorption band
resulting from vibrational transitions and an ultraviolet absorption
band arising from electronic and molecular transitions. The tails of
these bands form a window in the near infrared region of the
spectrum in which there is little intrinsic absorption.



Figure 10.3-2 Attenuation coefficient α of silica glass versus free-
space wavelength λo. There is a local minimum at 1.3 μm (α ≈ 0.3
dB/km) and an absolute minimum at 1.55 μm (α ≈ 0:15 dB/km).

Scattering

Rayleigh scattering is another intrinsic effect that contributes to
the attenuation of light in glass. The random localized variations of
the molecular positions in the glass itself create random
inhomogeneities in the refractive index that act as tiny scattering
centers. The amplitude of the scattered field is proportional to ω2,
where ω is the angular frequency of the light.1 As discussed in Sec.
5.6B, the scattered intensity is therefore proportional to ω4, or to 1/
λ4

0, so that short wavelengths are scattered more than long
wavelengths. Light in the visible region of the spectrum is therefore
scattered more than light in the infrared.

The functional form of Rayleigh scattering, which decreases with
wavelength as 1/λ4

0, is known as the Rayleigh inverse fourth-
power law. In the visible region of the spectrum, Rayleigh
scattering is a more significant source of loss than is the tail of the
ultraviolet absorption band, as shown in Fig. 10.3-2. However,
Rayleigh loss becomes negligible in comparison with infrared
absorption in silica glass for wavelengths greater than ≈ 1.6 μm.



We conclude that the transparent window in silica glass is bounded
by Rayleigh scattering on the short-wavelength side and by infrared
absorption on the long-wavelength side (indicated by the dashed
curves in Fig. 10.3-2). Near-infrared communication systems using
silica-glass fibers are deliberately designed to operate in this
window.

Extrinsic Effects

Aside from these intrinsic effects there are extrinsic absorption
bands that result from the presence of impurities in silica glass,
principally metallic ions (e.g., Fe, Cu, Cr, and Ni) and OH radicals
associated with water vapor dissolved in the glass. Most metal
impurities can be readily removed. Initially, OH impurities proved
to be more difficult to eliminate but methods were ultimately
developed to do so. Wavelengths at which glass fibers are used for
optical fiber communications were traditionally selected to avoid
the OH absorption bands.

Light-scattering losses may also be accentuated when dopants are
added, as they often are for purposes of index grading. The
attenuation coefficient for guided light in glass fibers depends on
the absorption and scattering in the core and cladding materials.
Each mode has a different penetration depth into the cladding,
causing the rays to travel different effective distances and rendering
the attenuation coefficient mode-dependent. It is generally higher
for higher-order modes. Single-mode fibers therefore typically have
smaller attenuation coefficients than multimode fibers (Fig. 10.3-3).
Losses are also introduced by small random variations in the
geometry of the fiber and by bends.



Figure 10.3-3 Ranges of attenuation coefficients for silica-glass
single-mode fibers (SMF) and multimode fibers (MMF).

B. Dispersion
When a short pulse of light travels through an optical fiber, its
power is “dispersed” in time so that the pulse spreads into a wider
time interval. There are five principal sources of dispersion in
optical fibers:

Modal dispersion

Material dispersion

Waveguide dispersion

Polarization mode dispersion

Nonlinear dispersion

The combined contributions of these effects to the spread of pulses
in time are not necessarily additive, as will be understood in the
sequel.

Modal Dispersion
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Modal dispersion occurs in multimode fibers as a result of the
differences in the group velocities of the various modes. A single
impulse of light entering an M-mode fiber at z = 0 disperses into M
pulses whose differential delay increases as a function of z. For a
fiber of length L, the time delays engendered by the different
velocities are τq = L/vq, q = 1,..., M, where vq is the group velocity of
mode q. If vmin and vmax are the smallest and largest group
velocities, respectively, the received pulse spreads over a time
interval L/vmin − L/vmax. Since the modes are usually not excited
equally, the overall shape of the received pulse generally has a
smooth envelope, as illustrated in Fig. 10.3-4. An estimate of the
overall pulse duration (assuming a triangular envelope and using
the FWHM definition of the width) is , which
represents the modal-dispersion response time of the fiber.

Figure 10.3-4 Pulse spreading caused by modal dispersion.

In a step-index fiber with a large number of modes, vmin ≈ c1(1 − Δ)
and vmax ≈ c1 [see Sec. 10.2C and Fig. 10.2-12(a)]. Since (1 − Δ)−1 ≈ 1
+ Δ for Δ ≪ 1, the response time turns out to be a fraction Δ/2 of the
delay time L/c1:

Modal dispersion is far smaller in graded-index (GRIN) fibers than
in step-index fibers since the group velocities are equalized and the
differences between the delay times of the modes, τq = L/vq, are
reduced. It was shown in Sec. 10.2C and in Fig. 10.2-12(b) that a
graded-index fiber with an optimal index profile and a large number
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of modes has vmax ≈ c1 and vmin ≈ c1(1 − Δ2/2). The response time in
this case is therefore a factor of Δ/2 smaller than that in a step-
index fiber:

EXAMPLE 10.3-1. Multimode Pulse Broadening Rate. In
a step-index fiber with Δ = 0.01 and n = 1.46, pulses spread at a
rate of approximately στ /L = Δ/2c1 = n1Δ/2co ≈ 24 ns/km. In a
100-km fiber, therefore, an impulse spreads to a width of ≈ 2.4
μs. If the same fiber is optimally index-graded, the pulse
broadening rate is approximately n1Δ2/4co ≈ 122 ps/kM, a
substantial reduction.

The pulse broadening arising from modal dispersion is proportional
to the fiber length L in both step-index and GRIN fibers. Because of
mode coupling, however, this dependence does not necessarily
apply for fibers longer than a certain critical length. Coupling occurs
among modes that have approximately the same propagation
constants as a result of small imperfections in the fiber, such as
random irregularities at its surface or inhomogeneities in its
refractive index. This permits optical power to be exchanged
between the modes. Under certain conditions, the response time στ
of mode-coupled fibers is proportional to L for small fiber lengths
and to  when a critical length is exceeded, whereupon the pulses
are broadened at a reduced rate.2

Material Dispersion

Glass is a dispersive mediuM, i.e., its refractive index is a function
of wavelength. As discussed in Sec. 5.7, an optical pulse travels in a
dispersive medium of refractive index n with a group velocity v =
co/N, where N = n − λo dn/dλo. Since the pulse is a wavepacket
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comprising a collection of components of different wavelengths,
each traveling at a different group velocity, its width spreads. The
temporal duration of an optical impulse of spectral width σλ (nm),
after traveling a distance L through a dispersive material, is 

. This leads to a response
time [see (5.7-2), (5.7-7), and (5.7-8)]

where the material dispersion coefficient Dλ is

The response time increases linearly with the distance L. Usually, L
is measured in km, στ in ps, and σλ in nm, so that Dλ has units of
ps/km-nm. This type of dispersion is called material dispersion.

The wavelength dependence of the dispersion coefficient Dλ for a
silica-glass fiber is displayed in Fig. 10.3-5. At wavelengths shorter
than 1.3 μm the dispersion coefficient is negative, so that
wavepackets of long wavelength travel faster than those of short
wavelength. At a wavelength λo = 0.87 μm, for example, the
dispersion coefficient Dλ is approximately −80 ps/km-nm. At λo =
1.55 μm, on the other hand, Dλ ≈ +17 ps/km-nm. At λo ≈ 1.312 μm
the dispersion coefficient vanishes, so that στ in (10.3-6) vanishes. A
more precise expression for στ that incorporates the spread of the
spectral width σλ about λo = 1.312 μm yields a very small, but
nonzero, width.



Figure 10.3-5 Observed dispersion coefficient Dλ for silica-glass
fiber as a function of the wavelength λo. The result differs slightly
from that calculated for bulk fused silica (see Fig. 5.7-5).

EXAMPLE 10.3-2. Pulse Broadening Associated with
Material Dispersion. The dispersion coefficient Dλ for a
silica-glass fiber is approximately −80 ps/km-nm at λo = 0.87
μm. For a source of spectral linewidth σλ = 50 nm (generated by
an LED, for example) the pulse-spread rate in a single-mode
fiber with no other sources of dispersion is |Dλ|σλ = 4 ns/km. An
impulse of light traveling a distance L = 100 km in the fiber is
therefore broadened to a width στ = |Dλ|σλL = 0.4 μs. The
response time of the fiber is thus στ = 0.4 μs. As another
example, an impulse with narrower spectral linewidth σλ = 2 nm
(generated by a laser diode, for example), operating near 1.3 μm
where the dispersion coefficient is 1 ps/km-nM, spreads at a rate
of only 2 ps/km. In this case, therefore, a 100-km fiber has a
substantially shorter response time, στ = 0.2 ns.

Combined Material and Modal Dispersion

The effect of material dispersion on pulse broadening in multimode
fibers may be determined by returning to the original equations for
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the propagation constants βq of the modes and determining the
group velocities vq =(dβq/dω)−1 with n1 and n2 provided as
functions of ω. Consider, for example, the propagation constants of
a graded-index fiber with a large number of modes, which are given
by (10.2-37) and (10.2-33). Although n1 and n2 are dependent on ω,
it is reasonable to assume that the ratio Δ = (n1 − n2)/n1 is
approximately independent of ω. Using this approximation and
evaluating vq =(dβq/dω)−1, we obtain

where N1 =(d/dω)(ωn1)= n1−λo(dn1/dλo) is the group index of the
core material. Under this approximation, the earlier expression
(10.2-39) for vq remains intact, except that the refractive index n1 is
replaced with the group index N1. For a step-index fiber (p →∞), the
group velocities of the modes vary from co/N1 to (co/N1)(1 − Δ), so
that the response time is

This expression should be compared with (10.3-4), which is
applicable in the absence of material dispersion.
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EXERCISE 10.3-1

Optimal Grade Profile Parameter. Use (10.2-37) and (10.2-
33) to derive the following expression for the group velocity vq
when both n1 and Δ are wavelength dependent:

with ps = 2(n1/N1)(ω/Δ) dΔ/dω. What is the optimal value of the
grade profile parameter p for minimizing modal dispersion?

Waveguide Dispersion

The group velocities of the modes in a waveguide are dependent on
the wavelength even if material dispersion is negligible. This
dependence, known as waveguide dispersion, results from the
dependence of the field distribution in the fiber on the ratio of the
core radius to the wavelength (a/λo). The relative portions of optical
power in the core and cladding thus depend on λo. Since the phase
velocities in the core and cladding differ, the group velocity of the
mode is altered. Waveguide dispersion is particularly important in
single-mode fibers where modal dispersion is not present, and at
wavelengths for which material dispersion is small (near λo = 1.3
μm in silica glass), since it then dominates.

As discussed in Sec. 10.2A, the group velocity v =(dβ/dω)−1 and the
propagation constant β are determined from the characteristic
equation, which is governed by the fiber V parameter, V = 2π(a/
λo)NA = (a · NA/co)ω. In the absence of material dispersion (i.e.,
when NA is independent of ω), V is directly proportional to ω, so
that
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The pulse broadening associated with a source of spectral width σλ
is related to the time delay L/v by στ = |(d/dλo)(L/v)|σλ. Thus,

where the waveguide dispersion coefficient Dw is given by

Substituting (10.3-11) into (10.3-13) leads to

Thus, the group velocity is inversely proportional to dβ/dV and the
waveguide dispersion coefficient is proportional to V2d2β/dV2. The
dependence of β on V is displayed in Fig. 10.2-6(a) for the
fundamental LP01 mode. Since β varies nonlinearly with V, the
waveguide dispersion coefficient Dw is itself a function of V and is
therefore also a function of the wavelength.† The dependence of Dw
on λo may be controlled by altering the radius of the core or, for
graded-index fibers, the index grading profile.

Combined Material and Waveguide Dispersion (Chromatic
Dispersion)

The combined effects of material dispersion and waveguide
dispersion (which we refer to as chromatic dispersion) may be
determined by including the wavelength dependence of the
refractive indices, n1 and n2 and therefore NA, when determining
dβ/dω from the characteristic equation. Although generally smaller
than material dispersion, waveguide dispersion does shift the
wavelength at which the total chromatic dispersion is minimum.



Since chromatic dispersion limits the performance of single-mode
fibers, more advanced fiber designs aim at reducing this effect by
using graded-index cores with refractive-index profiles selected such
that the wavelength at which waveguide dispersion compensates
material dispersion is shifted to the wavelength at which the fiber is
to be used (Fig. 10.3-6).

Figure 10.3-6 Refractive-index profiles with schematic wavelength
dependences of the silica-glass material dispersion coefficient
(dashed curves) and the combined material and waveguide
dispersion coefficients (solid curves) for (a) dispersion-shifted fiber
(DSF); (b) dispersion-flattened fiber (DFF); and (c) dispersion-
compensating fiber (DCF).

Dispersion-shifted fibers have been successfully fabricated by using
a linearly tapered core refractive index and a reduced core radius, as
illustrated in Fig. 10.36(a). This technique can be used to shift the
zero-chromatic-dispersion wavelength from 1.3 μm to 1.55 μm,



where silica-glass fiber has its lowest attenuation. Other grading
profiles have been developed for which the chromatic dispersion
vanishes at two wavelengths and is reduced for intermediate
wavelengths. These fibers, called dispersion-flattened, have been
implemented by using a quadruple-clad layered grading, as
illustrated in Fig. 10.3-6(b). Note, however, that the process of index
grading itself introduces losses since dopants are used.

Fibers with other refractive index profiles may be engineered such
that the combined material and waveguide dispersion coefficient is
proportional to that of a conventional step-index fiber but has the
opposite sign. This can be achieved over an extended wavelength
band, as illustrated in Fig. 10.3-6(c). The pulse spread introduced by
a conventional fiber can then be reversed by concatenating the two
types of fiber. A fiber with a reversed dispersion coefficient is
known as a dispersion-compensatingfiber (DCF). A short
segment of the DCF may be used to compensate the dispersion
introduced by a long segment of conventional fiber.

Polarization Mode Dispersion (PMD)

As indicated earlier, the fundamental spatial mode (LP01) of an
optical fiber has two polarization modes, say linearly polarized in
the x and y directions. If the fiber has perfect circular symmetry
about its axis, and its material is perfectly isotropic, then the two
polarization modes are degenerate, i.e., they travel with the same
velocity. However, fibers exposed to real environmental conditions
exhibit a small birefringence that varies randomly along their
length. This is caused by slight variations in the refractive indices
and fiber cross-section ellipticity. Although the effects of such
inhomogeneities and anisotropies on the polarization modes, and
on the dispersion of optical pulses, are generally difficult to assess,
we consider these effects in terms of simple models.

Consider first a fiber modeled as a homogeneous anisotropic
medium with principal axes in the x and y directions and principal
refractive indices nx and ny. The third principal axis lies along the
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fiber axis (the z direction). The fiber material is assumed to be
dispersive so that nx and ny are frequency dependent, but the
principal axes are taken to be frequency independent within the
spectral band of interest. If the input pulse is linearly polarized in
the x direction, over a length of fiber L it will undergo a group delay
τx = NxL/co; if it is linearly polarized in the y direction, the group
delay will be τy = NyL/co. Here, Nx and Ny are the group indices
associated with nx and ny (see Sec. 5.7). A pulse in a polarization
state that includes both linear polarizations will undergo a
differential group delay (DGD) δτ = |τy − τx| given by

where ΔN = |Ny − Nx|. Upon propagation, therefore, the pulse will
split into two orthogonally polarized components whose centers will
separate in time as the pulses travel (see Fig. 10.3-7). The DGD
corresponds to polarization mode dispersion (PMD) that increases
linearly with the fiber length at the rate ΔN/co, which is usually
expressed in units of ps/km.

Figure 10.3-7 Differential group delay (DGD) associated with
polarization mode dispersion (PMD).

Since a long fiber is typically exposed to environmental and
structural factors that vary along its axis, the simple model
considered above is often inadequate, however. Under these
conditions, a more realistic model comprises a sequence of short
homogeneous fiber segments, each with its own principal axes and
principal indices. The principal axes are taken to be slightly



(10.3-16)Polarization Mode Dispersion

misaligned (rotated) from one segment to the next. Such a cascaded
system is generally described by a 2 × 2 Jones matrix T, which is a
product of the Jones matrices of the individual segments (see Sec.
6.1B). The polarization modes of the combined system are the
eigenvectors of T and are not necessarily linearly polarized modes.
If the fiber is taken to be lossless, the matrix T is unitary. Its
eigenvalues are then phase factors exp(jφ1) and exp(jφ2), which
may be written in the form exp(jn1koL) and exp(jn2koL), where n1
and n2 are the effective refractive indices of the two polarization
modes and L is the fiber length. The propagation of light through
such a length of fiber may then be determined by analyzing the
input wave into components along the two polarization modes;
these components travel with effective refractive indices n1 and n2.

Since the fiber is dispersive, T is frequency dependent and so too are
the indices n1 and n2 of the modes, as well as their corresponding
group indices N1 and N2. An input pulse with a polarization state
that is the same as that of the fiber’s first polarization mode travels
with an effective group index N1. Similarly, if the pulse is in the
second polarization mode, it travels with an effective group index
N2. However, an input pulse with a component in each of the fiber’s
polarization modes suffers DGD, as provided in (10.3-15), with ΔN =
|N1 − N2|.

A statistical model describing the random variations in the
magnitude and orientation of birefringence along the length of the
fiber leads to an expression of the RMS value of the pulse
broadening associated with DGD. This turns out to be proportional
to √ L instead of L,

where DPMD is a dispersion parameter typically ranging from 0.1 to 1
ps/ .



Aside from DGD, higher-order dispersion effects are also present.
Each of the polarization modes is spread by group velocity
dispersion (GVD) with dispersion coefficients proportional to the
second derivative of its refractive index (see Sec. 5.7).

Another higher-order effect relates to the coupled nature of the
spectral and polarization properties of the system. Since the matrix
T is frequency dependent, not only are the eigenvalues (i.e., the
principal indices n1 and n2) frequency dependent, but so too are the
eigenvectors (i.e., the polarization modes). If the pulse spectral
width is sufficiently narrow (i.e., the pulse is not too short), we may
approximately use the polarization modes at the central frequency.
For ultrashort pulses, however, a more detailed analysis that
includes a combined polarization and spectral description of the
system is required. Polarization states may be found such that the
group delays are frequency insensitive so that their associated GVD
is minimal. However, these are not eigenvectors of the Jones matrix
so that the input and output polarization states are not the same.†



EXERCISE 10.3-2

Differential Group Delay in a Two-Segment Fiber.
Consider the propagation of an optical pulse through a fiber of
length 1 km comprising two segments of equal length. Each
segment is a single-mode anisotropic fiber with principal group
indices Nx = 1.462 and Ny = 1.463. The corresponding group
velocity dispersion coefficients are Dx = Dy = 20 ps/km-nm. The
principal axes of one segment are at an angle of 45° with respect
to the other, as illustrated in Fig. 10.3-8.

(a) If the input pulse has a width of 100 ps and is linearly
polarized at 45° with respect to the fiber x and y directions,
sketch the temporal profile of the pulse at the output end of
the fiber. Assume that the pulse source has a spectral
linewidth of 50 nm.

(b) Determine the polarization modes of the full fiber and
determine the temporal profile of the output pulse if the
input pulse is in one of the polarization modes.

Figure 10.3-8 Two-segment birefringent fiber.

Nonlinear Dispersion

Yet another dispersion effect occurs when the intensity of light in
the core of the fiber is sufficiently high, since the refractive index
then becomes intensity dependent and the material exhibits
nonlinear behavior. Since the phase is proportional to the refractive
index, the high-intensity portions of an optical pulse undergo phase
shifts different from the low-intensity portions, resulting in
instantaneous frequencies shifted by different amounts. This



nonlinear effect, called self-phase modulation (SPM),
contributes to pulse dispersion. Under certain conditions, SPM can
compensate the group velocity dispersion (GVD) associated with
material dispersion, and the pulse can travel without altering its
temporal profile. Such a guided wave is known as a soliton.
Nonlinear optics is introduced in Chapter 22 and optical solitons are
discussed in Chapter 23.



Summary

The propagation of pulses in optical fibers is governed by
attenuation and several types of dispersion. Figure 10.3-9
provides a schematic illustration in which the profiles of pulses
traveling through different types of fibers are compared.

In a multimode fiber (MMF), modal dispersion dominates
the width of the pulse received at the terminus of the fiber.
It is governed by the disparity in the group delays of the
individual modes.

In a single-mode fiber (SMF), there is no modal dispersion
and the transmission of optical pulses is limited by
combined material and waveguide dispersion (called
chromatic dispersion). The width of the output pulse is
governed by group velocity dispersion (GVD).

Material dispersion is usually much stronger than
waveguide dispersion. However, at wavelengths where
material dispersion is small, waveguide dispersion becomes
important. Fibers with special index profiles may then be
used to alter the chromatic-dispersion characteristics,
creating dispersion-flattened, dispersion-shifted, and
dispersion-compensating fibers.

Pulse propagation in long single-mode fibers for which
chromatic dispersion is negligible is dominated by
polarization mode dispersion (PMD). Small anisotropic
changes in the fiber, caused, for example, by environmental
conditions, alter the polarization modes so that the input
pulse travels in two polarization modes with different group
indices. This differential group delay (DGD) results in a
small pulse spread.

Under certain conditions an intense pulse, called an optical
soliton, can render a fiber nonlinear and travel through it
without broadening. This results from a balance between



material dispersion and self-phase modulation (the
dependence of the refractive index on the light intensity), as
discussed in Chapter 23.

Figure 10.3-9 Broadening of a short optical pulse after
transmission through different types of optical fibers. (a) Modal
dispersion in a multimode fiber (MMF). (b) Material and waveguide
dispersion (chromatic dispersion) in a single-mode fiber (SMF). (c)
Polarization mode dispersion (PMD) in a SMF. (d) Soliton
transmission in a nonlinear SMF.

10.4 HOLEY AND PHOTONIC-CRYSTAL
FIBERS
A holey fiber is a fiber that contains multiple cylindrical air holes
parallel to, and along the length of, its axis. Usually fabricated from
pure silica glass, its holes are organized in a regular periodic pattern.
As illustrated in Fig. 10.4-1, the core of the fiber is defined by a
defect, or fault, in the periodic structure, such as a missing hole, a



hole of a different size, or an extra hole. The holes are characterized
by the spacing between their centers Λ, and their diameters d. The
quantity Λ, which is also called the pitch, is typically in the range
1–10 μm. It is not necessary to include dopants in the glass. Holey
fibers guide optical waves via one of two mechanisms: effective-
index guidance or photonic-bandgap guidance, which we
consider in turn below.

Figure 10.4-1 Various forms of holey fibers. (a) Solid core (dotted
circle) surrounded by a cladding of the same material but suffused
with an array of cylindrical air holes with diameters much smaller
than a wavelength. The average refractive index of the cladding is
lower than that of the core. (b) Photonic-crystal holey fiber with
cladding that contains a periodic array of large air holes and a solid
core (dotted circle). (c) Photonic-crystal holey fiber with cladding
that contains a periodic array of large air holes and a core that is an
air hole of a different size (dotted circle).

Effective-Index Guidance

If the hole diameter is much smaller than the wavelength of light (d
≪ λ), then the periodic cladding behaves approximately as a
homogeneous medium whose effective refractive index n2 is
equal to the average refractive index of the holey material [see Fig.
10.4-1(a)]. Waveguiding is then achieved by making use of a solid
core with index n1 > n2, so that the light is guided by total internal
reflection as with conventional optical fibers. In this configuration,
the holes serve merely as distributed “negative dopants” that reduce



the refractive index of the cladding below that of the solid core. The
holes can therefore be randomly, rather than periodically, arrayed
and they need not be axially continuous.

If the size of the holes is not much smaller than the wavelength,
then the holey cladding must be treated as a two-dimensional
periodic medium [Fig. 10.4-1(b)]. The effective refractive index n2 is
then given by the average refractive index, weighted by the optical
intensity distribution in the medium, and is therefore strongly
dependent on the wavelength, as well as on the size and the
geometry of the holes. Since waves of shorter wavelength are more
confined in the medium of higher refractive index, the effective
refractive index of the cladding n2(λ) is a decreasing function of the
wavelength. A similar effect occurs in a 1D photonic crystal, for
which the effective refractive index is an increasing function of
frequency at frequencies in the lowest photonic band (see Fig. 7.2-
6). The holey fiber is therefore endowed with strong waveguide
dispersion, which can be a useful feature.

One consequence of the waveguide dispersion is that the holey fiber
may operate as a single-mode structure over a broad range of
wavelengths, possibly stretching from the infrared to the
ultraviolet.3 This property, called endless single-mode guidance,
results when the V parameter of the fiber,  is
approximately independent of λ. This condition arises when the
effective index n2(λ) decreases with increasing λ in such a way that 

 For a conventional optical fiber, in contrast, V is
inversely proportional to λ so that single-mode behavior at a
particular wavelength (V < 2.405) morphs into multimode behavior
for wavelengths that are sufficiently short such that V exceeds
2.405.

Another interesting feature is the feasibility of achieving large
mode-area (LMA) single-mode operation. Optical fibers with large
mode areas are useful for applications requiring the delivery of high
optical powers. In a conventional optical fiber the condition for
single-mode operation [V = 2π(a/λo)NA < 2.405] can be met for a



large core diameter 2a by making use of a small numerical aperture.
Similarly, in holey fibers the guided-mode size can be increased by
increasing the hole-to-hole spacing Λ (thereby increasing the core
diameter) and concomitantly using holes of smaller diameter d
(thereby reducing the numerical aperture and allowing the field to
penetrate farther into the cladding). Dramatic increases in mode
area for relatively small changes in hole size have been observed
and mode areas several order of magnitudes greater than those in
conventional optical fibers have been reported.

Photonic-Bandgap Guidance

The cladding of a holey fiber may be regarded as a two-dimensional
photonic crystal. The triangular-hole microstructure shown in Fig.
10.4-1(b), for example, has a dispersion diagram endowed with
photonic bandgaps, as shown in Fig. 7.3-3 and discussed in Sec.
7.3A. If the optical frequency lies within the photonic bandgap,
propagation through the cladding is prohibited and the fiber serves
as a photonic-crystal waveguide (see Sec. 9.5).

A photonic-crystal fiber (PCF) may have a solid or hollow core,
as illustrated in Figs. 10.4-1(b) and (c), respectively. Fibers with
hollow cores cannot operate by means of effective-index guidance,
i.e., guidance cannot be based on total internal reflection. In any
case, there are a number of merits to using hollow-core PCFs: (1) A
guided wave traveling in an air-core PCF suffers lower losses as well
as reduced nonlinear effects and can thus carry greater optical
power; (2) light in the mid-ultraviolet region that would cause
damage and degradation in solid-core fibers can be guided and
transmitted; (3) light can be guided at wavelengths where
transparent materials are not available; and (4) atoms, molecules,
gases, and other subwavelength structures can be placed within the
hollow core.

Applications

Photonic-crystal fibers offer many unique design possibilities and
applications. As an example, dispersion flattening over broad



wavelength ranges can be achieved, and the dispersion can be
shifted to wavelengths below that at which the material dispersion
is zero. PCFs support the propagation of high-intensity femtosecond
pulses and their compression to sub-carrier-cycle durations. Long
interaction lengths and tight confinement permit nonlinear optical
effects such as low-threshold stimulated Raman scattering,
harmonic generation, and electromagnetic-induced transparency to
be investigated. The birefringence properties of such fibers can be
tailored in interesting and useful ways. Acousto-optic interactions
can be fostered and examined. PCFs can be used to construct
broadband (mid infrared to mid ultraviolet) supercontinuum
sources, mode-locked fiber soliton lasers, and powerful fiber lasers
operating over a broad range of wavelengths.

Photonic-crystal fibers can be readily used as dynamic sensors for
strain, temperature, and electric field. Pressure and heat serve to
modify the sizes of the air holes, which in turn modifies their
optical properties. Hollow-core fibers can be used to inspect,
characterize, manipulate, trap, and accelerate objects such as living
cells, colloids, clusters, and nm-size particles. Gases, liquids, or
metabolites can be diffused into a hollow-core PCF, where light is
trapped, thereby allowing ultrasensitive optical measurements to be
carried out. Moreover, the hollow channels within the PCFs can be
filled with materials such as metals, semiconductors, or soft glasses.
This allows nanometer-scale features to be incorporated in the
fibers, thereby leading to devices with both fiber-optic and
plasmonic features.

10.5 FIBER MATERIALS
As discussed throughout this chapter, a principal use of optical
fibers is for near-infrared optical fiber communications and data-
transmission systems. The preeminent material for fabricating
these fibers is silica glass since this medium exhibits low loss in the
1.3–1.6-μm telecommunications band, as described in Sec. 10.3A.
Specialty fibers, which are optical fibers endowed with at least



one special property that distinguishes them from standard silica-
glass optical fibers, are also used in a many applications. Such fibers
may, for example, be double-clad, polarization-maintaining,
radiation-resistant, or doped with laser-active rare-earth ions.

Mid-Infrared Fibers

Interest in fiber optics extends beyond the near-infrared region. The
mid infrared, for example, offers a substantial number of material
choices, including fluoride, germanate, tellurite, and chalcogenide
glasses. Of these, the chalcogenides (which include sulfides,
selenides, and tellurides) exhibit the broadest transparency
windows. The melting/processing temperatures of these so called
soft glasses are substantially lower than that of silica glass so they
can be conveniently used to fabricate infrared fibers via thermal
fiber drawing; indeed, fibers fabricated from these three glasses are
commercially available.

Interest in these materials is significant since the Rayleigh inverse
fourth-power law (see Secs. 5.6B and 10.3A) predicts a reduction of
Rayleigh scattering, and absorption further into the infrared, than
that in silica glass. The attenuation arising from Rayleigh scattering
in fluoride-glass infrared fibers, for example, is expected to be
approximately ten times smaller than that for silica-glass optical
fibers, reaching a minimum of ≈ 0.01 dB/km at λo ≈ 2.5 μm. This
issue is, of course, significant only when extrinsic loss mechanisms
do not dominate transmission loss.

In spite of the extensive choice of optical fiber materials in the mid
infrared, in the current state of technology the optical and
mechanical properties of these fibers are substantially inferior to
those of conventional silica optical fibers. With the notable
exception of fluoride-glass fibers, most mid-infrared fibers exhibit
transmission losses in the dB/m range, whereas silica-glass fibers
are far more transparent with losses in the dB/km range. The use of
most mid-infrared fibers is thus currently limited to applications
that involve fiber lengths of the order of meters rather than



kilometers, i.e., to short-haul applications such as sensing,
metrology, biomedicine, and the delivery of infrared-laser power.
These limitations are ultimately expected to be overcome, however.

Multimaterial and Multifunctional Fibers

Hybrid mid-infrared fibers. The ability to co-draw fibers
comprising heterogeneous materials has led to the development of
hybrid fibers that offer promise for ameliorating some of the optical
and mechanical shortcomings of conventional mid-infrared fibers
discussed above. Several examples of hybrid mid-infrared fibers
are:4 (1) Step-index fibers comprising a chalcogenide glass core with
claddings of polymer (as a protective jacket), silica-glass, or
tellurite-glass; (2) Step-index fibers comprising a semiconductor
crystalline core such as InSb, ZnSe, Si, or Ge, with borosilicate-glass
or silica-glass cladding. In connection with photonic-crystal fibers
(PCFs), as discussed in Sec. 10.4, examples are: (3) Chalcogenide or
fluoride glass solid-core PCFs; and (4) Silica or chalcogenide
hollow-core PCFs.

Multimaterial fibers. Multimaterial fibers comprise
combinations of materials. As alluded to in Sec. 10.4, optical fibers
have been developed that incorporate not only glasses, but also
conductors, semiconductors, insulators, and gases, along with more
specialized materials such as liquid crystals and piezoelectric media.
Nowadays, thermally drawn fibers that are kilometers long can be
internally structured with elaborate macroscopic device
architectures that incorporate these materials. Moreover, the
ultimate composition of a fiber can differ from that of the initial
materials by virtue of chemical reactions initiated by the heating
and drawing processes (e.g., initial ingredients of aluminum metal
and silica glass can result in a fiber whose core is crystalline
silicon). Multimaterial fibers can be configured to sense light,
sound, and/or heat impinging on their lateral surfaces. They can
also be operated in reverse, i.e., to emit light and sound.



Multifunctional fibers and fiber assemblies. Multifunctional
fibers, on the other hand, accommodate multitudinal
functionalities. Beyond integrating multiple functional components
into individual fibers, large-scale fiber arrays and fiber textiles can
be fabricated. Multimaterial and multifunctional fibers and fiber
assemblies offer a panoply of functionalities: photonic, electronic,
mechanical, thermal, acoustic, chemical, and biomedical. Moreover,
subwavelength internal structures of nanometer length scales can
be organized within fibers of kilometer length scales, resulting in
devices that merge fiber-optic and plasmonic features.

Examples. Some examples of multimaterial and multifunctional
fibers are:5

An axially pumped photonic-bandgap fiber laser, comprising a
core of organic dye dissolved in a solid host as the gain
mediuM, that emits light radially.

Fibers engineered to detect sound by incorporating a
piezoelectric plastic component along the length of the fiber (a
pressure wave induces a charge in the piezoelectric material).

Fibers designed to detect heat by incorporating a
semiconductor component along the length of the fiber
(temperature modifies the conductivity).

A flexible nonimaging textile camera woven from fibers that
incorporate a photoconductive-semiconductor or
photoconductive-glass component along the length of the fiber
(light modifies the conductivity).

A textile display woven from fibers that incorporate liquid-
crystal channels (an applied field serves to block or transmit
light).

A multifunctional polymer-fiber probe that allows concurrent
optical, electrical, and chemical interactions with a cell in a
neural circuit.6
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PROBLEMS
10.1-1 Coupling Efficiency.

(a) A source emits light with optical power P0 and a
distribution I(θ) = (1/π)P0 cos θ, where I(θ) is the power



per unit solid angle in the direction making an angle θ
with the axis of a fiber. Show that the power collected by
the fiber is P = (NA)2P0, so that the coupling efficiency is
(NA)2, where NA is the numerical aperture of the fiber.

(b) If the source is a planar light-emitting diode of refractive
index ns bonded to the fiber, and the fiber cross-sectional
area is larger than the LED emitting area, calculate the
numerical aperture of the fiber and the coupling
efficiency when n1 = 1.46, n2 = 1.455, and ns = 3.5.

10.1-2 Numerical Aperture of a Graded-Index Fiber. Compare
the numerical apertures of a step-index fiber with n1 = 1.45 and
Δ = 0.01 and a graded-index fiber with n1 = 1.45, Δ = 0.01, and a
parabolic refractive-index profile (p = 2). (See Exercise 1.3-2.)

10.2-1 Modes. A step-index fiber has radius a = 5 μm, core
refractive index n1 = 1.45, and fractional refractive-index
change Δ = 0.002. Determine the shortest wavelength λc for
which the fiber is a single-mode waveguide. If the wavelength
is changed to λc/2, identify the indices (l, m) of all the guided
modes.

10.2-2 Modal Dispersion. A step-index fiber of numerical aperture
NA = 0.16, core radius a = 45 μm, and core refractive index n1 =
1.45 is used at λo = 1.3 μm, where material dispersion is
negligible. If a light pulse of very short duration enters the fiber
at t = 0 and travels a distance 1 km, sketch the shape of the
received pulse:

(a) using ray optics and assuming that only meridional rays
are allowed;

(b) using wave optics and assuming that only meridional (l =
0) modes are allowed.

10.2-3 Propagation Constants and Group Velocities. A step-
index fiber with refractive indices n1 = 1.444 and n2 = 1.443



operates at λo = 1.55 μm. Determine the core radius at which
the fiber V parameter is 10. Use Fig. 10.2-3 to estimate the
propagation constants of all the guided modes with l = 0. If the
core radius is now changed so that V = 4, use Fig. 10.26(a) to
determine the phase velocity, the propagation constant, and the
group velocity of the LP01 mode. Ignore the effect of material
dispersion.

*10.2-4 Propagation Constants and Wavevector (Step-Index
Fiber). A step-index fiber of radius a = 20 μm and refractive
indices n1 = 1.47 and n2 = 1.46 operates at λo = 1.55 μm. Using
the quasi-plane wave theory and considering only guided
modes with l = 1:

(a) determine the smallest and largest propagation constants;

(b) for the mode with the smallest propagation constant,
determine the radii of the cylindrical shell within which
the wave is confined, and determine the components of
the wavevector k at r = 5 μm.

*10.2-5 Propagation Constants and Wavevector (Graded-
Index Fiber). Carry out the same calculations as in Prob. 10.2-
4, but for a graded-index fiber with parabolic profile (p = 2).

10.3-3 Scattering Loss. At a wavelength of λo = 820 nm, the
absorption loss of a fiber is 0.25 dB/km and the scattering loss
is 2.25 dB/km. If the fiber is instead used at λo = 600 nm, and
calorimetric measurements of the heat generated by light
absorption reveal a loss of 2 dB/kM, estimate the total
attenuation at λo = 600 nm.

10.3-4 Modal Dispersion in Step-Index Fibers. Determine the
core radius of a multimode step-index fiber with a numerical
aperture NA = 0.1 if the number of modes M = 5000 when the
wavelength is 0.87 μm. If the core refractive index n1 = 1.445,
the group index N1 = 1.456, and Δ are approximately



independent of wavelength, determine the modal-dispersion
response time στ for a 2-km-long fiber.

10.3-5 Modal Dispersion in Graded-Index Fibers. Consider a
graded-index fiber with a/λo = 10, n1 = 1.45, Δ=0.01, and power-
law profile with index p. Determine the number of modes M,
and the modal-dispersion pulse-broadening rate στ /L, for p =
1.9, 2, 2.1, ∞.

10.3-6 Pulse Propagation. Consider a pulse of initial temporal
width τ0 transmitted through a graded-index fiber of length L
km and power-law refractive-index profile with index p. The
peak refractive index n1 is wavelength-dependent with Dλ = −
(λo/co) d2n1/dλ2

o, Δ is approximately independent of
wavelength, σλ is the spectral width of the source, and λo is the
operating wavelength. Discuss the effect of increasing each of
the following parameters on the temporal width of the received
pulse: L, τ0, p, |Dλ|, σλ, and λo.

Notes
1 The scattering medium creates a polarization density , which
corresponds to a source of radiation proportional to d2 /dt2 = −ω2 ;
see (5.2-25).
2 See, e.g., J. E. Midwinter, Optical Fibers for Transmission, Wiley,
1979; Krieger, reissued 1992.
† For further details on this topic, see the reading list, particularly
the seminal articles by D. Gloge.
† For further details on this topic, see C. D. Poole and R. E. Wagner,
Phenomenological Approach to Polarization Dispersion in Long
Single-Mode Fibers, Electronics Letters, vol. 22, pp. 1029-1030,
1986.
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Charles Fabry (1867–1945)

Alfred Perot (1863–1925)

Working together, the French physicists Charles Fabry and Alfred
Perot constructed an optical resonator for use as an interferometer.
Now known as the Fabry–Perot etalon, it is used extensively in
lasers.

An optical resonator is the optical counterpart of an electronic
resonant circuit. It confines and stores light at resonance
frequencies determined by its configuration. It is conveniently
viewed as an optical transmission system that incorporates
feedback: light is repeatedly reflected, or circulates, within its
boundaries. Various optical-resonator configurations are depicted in
Fig. 11.0-1. The simplest of these, the Fabry–Perot resonator,
comprises two parallel planar mirrors; light is repeatedly reflected
between them while experiencing little loss. Other mirror



configurations include spherical mirrors, ring arrangements, and
rectangular two- and three-dimensional resonators.

Figure 11.0-1 Storage of light in optical resonators via: (a) multiple
reflections from mirrors; (b) propagation through closed-loop
optical fibers and integrated-photonic waveguides; (c) trapping of
light within defects in photonic crystals; (d) multiple Fresnel
reflections at semiconductor–air boundaries; (e) reflections from
periodic structures such as distributed Bragg reflectors (DBRs); (f)
whispering-gallery mode reflections near the surfaces of dielectric
microresonators such as disks, toroids, and spheres; and (g)
localized surface plasmon oscillations in metallic nanospheres.

Fiber-ring resonators and integrated-optic-ring resonators
are widely used. Light can also be trapped in defects within
dielectric photonic-bandgap periodic structures, forming photonic-
crystal resonators. Guided-wave Fabry–Perot resonators
make use of Fresnel reflection at the boundaries between
semiconductors and air. Periodic dielectric structures such as
distributed Bragg reflectors (DBRs) can serve in lieu of conventional
mirrors in Fabry–Perot resonators, providing feedback in structures



such as micropillar resonators. Dielectric resonators make
use of total internal reflection, in place of conventional reflection, at
the boundary between low-loss dielectric materials. Microdisks,
microtoroids, and microspheres support light that circulates via
reflection at near-grazing incidence, in what are known as
whispering-gallery modes. The confined rays skim around the inside
rim of the resonator with an angle of incidence that is always
greater than the critical angle so they do not refract out of the
resonator. Plasmonic resonators are metallic structures of
subwavelength dimensions, such as nanodisks and nanospheres,
that support surface plasmon polariton waves and localized surface
plasmon oscillations.

The size of an optical resonator can be of the same order of
magnitude as its resonance wavelength, as with microresonators.
But optical resonators can also be orders of magnitude larger than
the resonance wavelength, as with bulk mirror resonators; or orders
of magnitude smaller, as with metallic nanospheres. Figure 11.0-2
displays the relationship between resonator size and resonance
wavelength for a number of electromagnetic resonators. Optical
resonators are frequently characterized by two key parameters,
representing the degrees of temporal and spatial light confinement,
respectively:

1. The quality factor Q, which is proportional to the storage time
of the resonator in units of optical period; a large value of Q
indicates strong temporal confinement;

2. The modal volume V, which is the volume occupied by the
confined optical mode; this measure is of particular interest for
microresonators in which a small value of V indicates tight
spatial confinement.



Figure 11.0-2 Resonator size a vs. resonance wavelength λo for
various dielectric and metallic electromagnetic resonators. The size-
to-wavelength ratio belongs to one of three regimes: a/λo > 1
(unshaded region), a/λo ≈ 1 (dotted diagonal), and a/λo < 1 (shaded
region). Metallic-nanosphere and electronic resonators lie well
within the shaded region.

Because of their frequency selectivity, optical resonators can also
serve as optical filters or spectrum analyzers (Sec. 7.1B). Their most
important use, however, is as a “container” within which laser light
can be generated and built up. The laser medium (Sec. 16.1A)
amplifies light inside the optical resonator while the resonator
determines, in part, the frequency and spatial distribution of the
laser beam that is generated. Because resonators have the capacity
to store energy, they can also be used to produce pulses of laser
energy (Sec. 16.4A). Lasers are discussed in Chapters 16 and 18, and



the material presented in this chapter is essential to their
understanding.

This Chapter

The theoretical approaches considered in previous chapters are
useful for describing the operation of optical resonators:

1. The simplest approach is based on Ray Optics (Chapter 1);
optical rays are traced as they repeatedly reflect within the
resonator and geometrical conditions are established that
assure that the rays are confined.

2. Wave Optics (Chapter 2) is used to determine the modes of a
resonator, i.e., the resonance frequencies and wavefunctions of
the optical waves that are permitted to exist self-consistently
within the resonator.

3. The study of Beam Optics (Chapter 3) is useful for
understanding the behavior of spherical-mirror resonators; the
modes of a resonator with spherical mirrors give rise to
Gaussian and Laguerre–Gaussian optical beams.

4. Fourier Optics and the theory of light propagation and
diffraction (Chapter 4) determine how the finite sizes of
resonator mirrors affect resonator loss and the spatial
characteristics of the ensuing modes.

5. Electromagnetic Optics (Chapter 5) provides a treatment of
scattering that is fundamental to understanding the resonant
feedback in coherent random lasers.

6. Polarization Optics (Chapter 6) sets forth the Fresnel relations,
which establish the reflectances at the boundaries between
semiconductors and air in guided-wave Fabry–Perot
resonators.

7. Photonic-Crystal Optics, including the optics of multilayer
media (Chapter 7), is important for describing optical
resonators that make use of multiple dielectric layers and



periodic media (e.g., distributed Bragg reflectors and photonic
crystals) in lieu of conventional mirrors.

8. The analysis of oscillating electric charges (localized surface
plasmons) in metals, considered in the Optics of Metals and
Metamaterials (Chapter 8), is crucial for understanding the
behavior of nanoresonators such as the metallic nanosphere.

9. The methods used in Guided-Wave Optics (Chapter 9) for
determining the modes of planar-mirror and planar dielectric
waveguides are similar to those required for the analysis of
resonator modes.

10. Fiber Optics (Chapter 10) provides an analysis of the modes
supported by optical fibers; the fiber laser resonator is an
optical fiber bounded by end reflectors that result in the
repeated reflection and confinement of the propagating light.

The optical resonator evidently provides a comprehensive venue for
applying the theories of light discussed in earlier chapters. We begin
with a study of planar-mirror resonators in Sec. 11.1 and spherical-
mirror resonators in Sec. 11.2. We then introduce two- and three-
dimensional resonators in Sec. 11.3 and finally consider
microresonators and nanoresonators in Sec. 11.4.

11.1 PLANAR-MIRROR RESONATORS
A. Resonator Modes
In this section we examine the modes of an optical resonator
constructed from two parallel, highly reflective, flat mirrors
separated by a distance d (Fig. 11.1-1). This simple one-dimensional
resonator is known as a Fabry–Perot resonator. We first
consider an idealized version of this resonator in which the mirrors
are lossless; the effect of losses is included subsequently.



(11.1-1)

Figure 11.1-1 Two-mirror planar resonator (Fabry–Perot
resonator). (a) Light rays perpendicular to the mirrors reflect back
and forth without escaping. (b) Rays that are only slightly inclined
eventually escape. Rays also escape if the mirrors are not perfectly
parallel.

Resonator Modes as Standing Waves

As discussed in Secs. 2.2, 5.3, and 5.4, a monochromatic wave of
frequency ν has a wave function

u(r, t) = Re{U(r) exp(j2πνt)},

representing a transverse component of the electric field. The
complex amplitude U(r) satisfies the Helmholtz equation,  +
k2U(r) = 0, where k = 2πν/c is the wavenumber and c is the speed of
light in the medium. The resonator modes are the solutions to the
Helmholtz equation under the appropriate boundary conditions. For
the lossless planar-mirror resonator, the transverse components of
the electric field vanish at the mirror surfaces (see Sec. 5.1), so that
U(r) = 0 at the planes z = 0 and z = d in Fig. 11.1-2.
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Figure 11.1-2 (a) Wave function u(r, t) for an ideal planar-mirror
mode as a function of z (for x = y = 0), portrayed at several different
times. In this illustration, 14 half-wavelengths match the length of
the resonator so that the mode number q = d/(λ/2) = 14. (b) Spatial
distribution of the magnitude |u(r, t)| as a function of x and z (for y
= 0) at a particular time, represented on a color scale where red
represents a large magnitude and white represents zero.

The standing wave U(r) = A sin kz, where A is a constant, satisfies
the Helmholtz equation and vanishes at z = 0 and z = d if k satisfies
the condition kd = qπ, where q is an integer. This restricts k to the
values

so that the modes have complex amplitudes

U(r) = Aq sin kqz,

where the Aq are constants. Negative values of q do not constitute
independent modes since sin k−qz = − sin kqz. Furthermore, the
value q = 0 is associated with a mode that carries no energy since k0
= 0 and sin k0z = 0. The modes of the resonator are therefore the
standing waves Aq sin kqz, where the positive integer q = 1, 2, ... is
called the mode number. An arbitrary wave inside the resonator
can be written in terms of a superposition of the resonator modes:
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(11.1-5)

(11.1-6)
Frequency Spacing 
of Resonator Modes

(11.1-7)

It follows from (11.1-2) that the associated frequencies ν = ck/2π are
restricted to the discrete values

which are the resonance frequencies. As illustrated in Fig. 11.1-3,
adjacent resonance frequencies are separated by a constant
frequency difference, known as the free spectral range:

The associated resonance wavelengths are λq = c/νq = 2d/q. The
round-trip distance traversed at resonance must therefore precisely
equal an integer number of wavelengths:

2d = qλq,   q = 1, 2, ....

It is important to keep in mind that c = co/n is the speed of light in
the medium between the two mirrors, and that the λq represent
wavelengths within that medium.



(11.1-8)

Figure 11.1-3 The adjacent resonance frequencies of a planar-
mirror resonator are separated by νF = c/2d = co/2nd, as illustrated
by two examples: (a) A 30-cm long resonator (d = 30 cm) with air
between the mirrors (n = 1) has a frequency spacing between modes
given by νF = 500 MHz. (b) A much shorter resonator with d = 3 μm
has νF = 50 THz, so that the first mode has a frequency
corresponding to a wavelength of 6 μm and there are only two
modes within the 700–900-nm optical band, which occupies a
frequency range of 95 THz.

Resonator Modes as Traveling Waves

Alternatively, the resonator modes can be determined by following a
wave as it travels back and forth between the two mirrors [Fig. 11.1-
4(a)]. A mode is a wave that reproduces itself after a single round
trip (see Appendix C). The phase shift imparted by a single round
trip of propagation (a distance 2d), φ = k2d = 4πνd/c, must
therefore be a multiple of 2π:

φ = k2d = q2π,   q = 1, 2, ... .

This result is not altered by an additional phase shift of 2π, which
can be imparted by reflections at the two mirrors (see Sec. 6.2). As
expected, we therefore obtain kd = qπ, as in (11.1-2), and the same
resonance frequencies as set forth in (11.1-5). Equation (11.1-8) may
be viewed as a condition of positive feedback in the system
displayed in Fig. 11.1-4(b); this requires that the output of the
system be fed back in phase with the input.
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Figure 11.1-4 (a) A wave reflects back and forth between the
resonator mirrors, suffering a phase shift φ on each round trip. (b)
Block diagram of an optical feedback system with a phase delay φ.
(c) Phasor diagram representing the sum U = U0 + U1 + ··· for φ ≠
q2π and for φ = q2π.

We now demonstrate that only self-reproducing waves, or
combinations thereof, can exist within the resonator under steady-
state conditions. Consider a monochromatic plane wave of complex
amplitude U0 at point  traveling to the right along the axis of the
resonator [see Fig. 11.1-4(a)]. The wave is reflected from mirror 2
and propagates back to mirror 1 where it is again reflected. Its
amplitude then becomes U1. Yet another round trip results in a
wave of complex amplitude U2, and so on ad infinitum. Because the
original wave U0 is monochromatic, it is “eternal.” Indeed, all of the
partial waves, U0, U1, U2, ... are monochromatic and perpetually
coexist. Moreover, their magnitudes are identical because it has
been assumed that there is no loss associated with reflection and
propagation. The total wave U is therefore represented by the sum
of an infinite number of phasors of equal magnitude,

U = U0 + U1 + U2 + ···,

as shown in Figs. 11.1-4(b) and (c).

The phase difference of two consecutive phasors imparted by a
single round trip of propagation is φ = k2d. If the magnitude of the



initial phasor is infinitesimal, the magnitude of each of these
phasors must also be infinitesimal. The magnitude of the sum of
this infinite number of infinitesimal phasors is itself infinitesimal
unless they are aligned, i.e., unless π = q2π, as illustrated at the
bottom of Fig. 11.1-4(c). Thus, an infinitesimal initial wave can
result in the buildup of finite power in the resonator, but only if φ =
q2π.

Traveling-Wave Resonators

In a traveling-wave resonator, an optical mode travels in one
direction along a closed path representing a round trip and retraces
itself without reversing direction. Examples are the ring
resonator and the bow-tie resonator illustrated in Fig. 11.1-5.
The resonance frequencies of the modes may be obtained by
equating the round-trip phase shift to 2π. Each of the set of modes
traveling in the clockwise direction has a corresponding mode of the
same resonance frequency traveling in the counterclockwise
direction, and the matching modes are said to be degenerate.
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Density of Modes 

(1D Resonator)

EXERCISE 11.1-1

Resonance Frequencies of a Traveling-Wave
Resonator. Derive expressions for the resonance frequencies
νq and their frequency spacing νF for the three-mirror ring and
the four-mirror bow-tie resonator shown in Fig. 11.1-5. Assume
that each mirror reflection introduces a phase shift of π.

Figure 11.1-5 Traveling-wave resonators. (a) Three-mirror ring
resonator. (b) Four-mirror bow-tie resonator.

Density of Modes

The number of modes per unit frequency is the inverse of the
frequency spacing between modes, i.e., 1/νF = 2d/c in each of the
two orthogonal polarizations. The density of modes M(ν), which is
the number of modes per unit frequency per unit length of the
resonator, is therefore

The number of modes in a resonator of length d, in the frequency
interval Δν, is thus (4/c)dΔν. This represents the number of degrees
of freedom for the optical waves existing in the resonator, i.e., the
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number of independent ways in which these waves may be
arranged.

Losses and Resonance Spectral Width

The strict condition on the frequencies of optical waves that are
permitted to exist inside a resonator is relaxed when the resonator
has losses. Consider again Fig. 11.1-4(a) and follow the initial wave
inside the resonator, U0, in its excursions between the two mirrors.
As discussed above, the result is the infinite sum of phasors shown
in Fig. 11.1-4(c) and the phase difference imparted by propagation
through a single round trip is

φ = 2kd = 4πνd/c.

Reflection at the two mirrors can impart an additional phase shift,
usually 2π.

However, in the presence of loss the phasors are not all of equal
magnitude. Two successive phasors are related by a complex round-
trip amplitude attenuation factor h = |r|e−jφ resulting from losses
associated with the two mirror reflections and the absorption in the
medium (the corresponding intensity attenuation factor for a round
trip is |r|2 with |r| < 1). Thus, U1 = hU0 and, in fact, U2 is related to
U1 by this same complex factor h, as are all consecutive phasor
pairs. The net result is the superposition of an infinite number of
waves, each distinguished from the previous one by a constant
phase shift and an amplitude that is geometrically reduced. It is
readily seen that U = U0 + U1 + U2 + ··· = U0 + hU0 + h2U0 + ··· =
U0(1 + h + h2 + ···) = U0/(1 − h). The net result, U = U0/(1 − h), is
easily understood in terms of the simple feedback configuration
pictured in Fig. 11.1-4(b).

The intensity of the light in the resonator is therefore given by
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(11.1-13)

(11.1-14)
Finesse

which can be written as

Here, I0 = |U0|2 is the intensity of the initial wave, and the finesse
of the resonator is

Again, |r| is the magnitude of the round-trip attenuation factor.

The treatment offered above is nearly identical to that provided
earlier in Sec. 2.5B, where the complex round-trip amplitude
attenuation factor was chosen to be h = |h|e+jφ. In the current
context we instead select this factor to be h = |r|e−jk2d = |r|e−jφ by
dint of the fact that successive phasors arise from the delay of the
wave as it bounces between the mirrors. This distinction is
superficial, however, and has no bearing on the results.

Indeed, (11.1-13) is identical to (2.5-18), which is plotted in Fig. 2.5-
10(b). The intensity I(φ) is a periodic function of φ with period 2π.
For large , I(φ) has sharp peaks centered about the values φ = q2π,
which correspond to the alignment of all phasors. The peaks have a
full-width at half-maximum (FWHM) described by Δφ ≈ 2π/ , in
accordance with (2.5-21).

The internal resonator intensity I(φ) in (11.1-13) can alternately be
expressed as a function of the optical frequency of an internal
monochromatic wave, I(ν), by virtue of (11.1-11), which shows that
φ = 4πνd/c. This function then takes the form
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(11.1-16)

with νF = c/2d. This result is displayed in Fig. 11.1-6 and indeed it
mirrors that depicted in Figs. 2.5-10 and 7.1-5. The maximum
internal intensity I = Imax is attained when the second term in the
denominator is zero, i.e., at the resonance frequencies

ν = νq = qνF,   q = 1, 2, ... .

The minimum intensity, attained at the midpoints between the
resonances, is

When the finesse is large (  ≫ 1), it is clear that the spectral
response of the resonator is sharply peaked about the resonance
frequencies and Imin/Imax is small. In that case, the FWHM of the
resonance peaks is δν ≈ νF/  since δν = (c/4πd)Δφ and Δφ ≈ 2π/  in
accordance with (2.5-21). This simple result provides the rationale
for the definition of the finesse given in (11.1-14).
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Frequency Spacing

(11.1-19)
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Figure 11.1-6 (a) In the steady state, a lossless resonator (  = ∞)
sustains light waves only at the precise resonance frequencies νq.
(b) A lossy resonator best sustains waves in the immediate vicinity
of the resonance frequencies, but it can sustain waves at other
frequencies as well.

In short, the spectral response of the Fabry–Perot optical resonator
is characterized by two parameters:

The frequency spacing νF between adjacent resonator modes:

The spectral width δν of the individual resonator modes:

Equation (11.1-19) is valid in the usual case when  ≫ 1. The
spectral width δν is inversely proportional to the finesse . As
the loss increases,  decreases and δν therefore increases.

Sources of Resonator Loss
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The two principal sources of loss in optical resonators are:

Losses arising from imperfect reflection at the mirrors. There
are two underlying sources of reduced reflection: (1) a partially
transmitting mirror is often deliberately used in a resonator to
permit laser light generated in the resonator to escape through
it; and (2) the finite size of the mirrors causes a fraction of the
light to leak around them and thereby to be lost. This latter
effect also modifies the spatial distribution of the reflected
wave by truncating it to the size of the mirror. The reflected
light produces a diffraction pattern at the opposite mirror that
is again truncated. Such diffraction loss may be regarded as an
effective reduction of the mirror reflectance. Further details
regarding diffraction loss are provided in Sec. 11.2E.

Losses attributable to absorption and scattering that occurs in
the medium between the mirrors. The round-trip power
attenuation factor associated with these effects is exp(−2αsd),
where αs is the loss coefficient of the medium associated with
absorption and scattering.

For mirrors of reflectances  and , the wave intensity
decreases by the factor  as a result of the two reflections
associated with a single round trip. These are referred to as “lumped
losses” since they occur only at the discrete locations where the
mirrors are located. Accounting also for the “distributed losses” that
take place within the intervening medium yields a round-trip
intensity attenuation factor

which is usually written in the form

where αr is an effective overall distributed-loss coefficient. Equating
(11.1-20) and (11.1-21), and taking the natural logarithm of both
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(11.1-25)
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sides, allows αr to be written in terms of the distributed and lumped
loss parameters, αs and , respectively:

This can also be written as

where the quantities

represent the effective distributed-loss coefficients associated with
mirrors 1 and 2, respectively.

These loss coefficients can be cast in a simpler form for mirrors of
high reflectance. If  ≈ 1, then ln(1/ ) = − ln( ) = − ln[1 − (1 − )]
≈ 1 − , where we have used the Taylor-series approximation ln(1 −
Δ) ≈−Δ, which is valid for |Δ| ≪ 1. This allows us to write

Similarly, if  ≈ 1, we have αm2 ≈ (1 − )/2d. If, furthermore,  = 
 =  ≈ 1, then

The finesse  can be expressed as a function of the effective loss
coefficient αr by substituting (11.1-21) in (11.1-14). The result is
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which is plotted in Fig. 11.1-7. It is clear that the finesse decreases as
the loss increases. If the loss factor αrd ≪ 1, then exp(−αrd) ≈ 1 −
αrd, whereupon

The finesse is thus inversely proportional to the loss factor αrd in
this limit.

Figure 11.1-7 Finesse of an optical resonator versus the loss factor
αrd, where αr is the effective overall distributed-loss coefficient. The
round-trip intensity attenuation factor |r|2 = exp(−2αrd) is shown
on the upper abscissa.
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EXERCISE 11.1-2

Resonator Modes and Spectral Width. Determine the
frequency spacing, and spectral width, of the modes of a Fabry–
Perot resonator whose mirrors have power reflectances of 0.98
and 0.99 and are separated by a distance d = 100 cm. Assume
that the medium has refractive index n = 1 and negligible losses.
Is the approximation used to derive (11.1-28) appropriate in this
case?

Photon Lifetime

The relationship between the resonance linewidth and resonator
loss may be viewed as a manifestation of the time–frequency
uncertainty relation, as we now demonstrate. Substituting (11.1-18)
and (11.1-28) in (11.1-19), we obtain

Because αr is the loss per unit length, cαr represents the loss per
unit time. Defining the characteristic decay time

as the resonator lifetime or photon lifetime, we obtain

The time–frequency uncertainty product is thus δν · τp = 1/2π.
Resonance-line broadening may therefore be considered to be a
consequence of optical-energy decay arising from resonator losses.
An electric field that decays as exp(−t/2τp), corresponding to an
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energy that decays as exp(−t/τp), has a Fourier transform that is
proportional to 1/(1 + j4πντp), which has a (FWHM) spectral width
δν = 1/2πτp (see Sec. 14.3D).

Quality Factor Q

The quality factor Q is often used to characterize electrical
resonance circuits and microwave resonators. This parameter is
defined as

Large values of Q are associated with low-loss resonators. A series
RLC circuit has resonance frequency ν0 ≈  and quality factor
Q = 2πν0L/R, where R, L, and C are the resistance, inductance, and
capacitance of the resonance circuit, respectively.

The quality factor of an optical resonator is determined by observing
that the stored energy E is lost at the rate cαrE (per unit time),
which is equivalent to the rate cαrE/ν0 (per cycle of the optical
field), so that

Since δν ≈ cαr/2π in accordance with (11.1-29), we have

By virtue of (11.1-33), the quality factor is related to the resonator
lifetime (photon lifetime) τp = 1/cαr via

Q = 2πν0τp.

The quality factor Q is thus understood to be the storage time of the
resonator in units of the optical period T = 1/ν0.
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Finally, combining (11.1-19) and (11.1-34) leads to a relationship
between Q and the finesse  of the resonator:

Since optical resonator frequencies ν0 are typically much greater
than the mode spacing νF, we have Q ≫ . Moreover, the quality
factor of an optical resonator is typically far greater than that of a
resonator at microwave frequencies.

Summary

Two parameters are convenient for characterizing the losses
in an optical resonator: the loss coefficient αr (cm−1) and
the photon lifetime τp = 1/cαr (s).

Two dimensionless parameters characterize the quality of
an optical resonator of length d operated at frequency ν0:
the finesse  ≈ π/αrd and the quality factor Q = 2πν0τp.

Two frequencies describe the spectral characteristics of an
optical resonator: the frequency spacing between the modes
νF = c/2d, known as the free spectral range, and the spectral
width δν ≈ νF/ .

B. Off-Axis Resonator Modes
An optical resonator with perfectly parallel planar mirrors of infinite
dimensions can also support oblique, or off-axis, modes. A plane
wave traveling at an angle θ with respect to the axis of the resonator
(the z direction) bounces back and forth between lossless mirrors
[see Fig. 11.1-8(a)] as a guided wave traveling in the transverse
direction (the x direction). Such guided waves were described in Sec.
9.1.
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Figure 11.1-8 (a) Off-axis mode in a planar-mirror resonator. (b)
Relation between mode angles and resonance frequencies. (c) Off-
axis modes at a fixed frequency ν > νF. (d) Resonance frequencies of
an off-axis mode at a prescribed angle θ.

The boundary conditions at the mirrors dictate that the axial
component of the propagation constant, kz = k cos θ, is an integer
multiple of π/d. However, no such condition is imposed on the
transverse component kx since the resonator is open in the x
direction. Since k = 2πν/c, the condition k cos θ = qπ/d, where q is
an integer, can be written in the form

ν = q νF sec θ,   q = 1, 2, ...,

where νF = c/2d. This relation, which is plotted in Fig 11.1-8(b), is
equivalent to the self-consistency condition for guided modes in
planar-mirror waveguides (see Sec. 9.1). It is also identical to the
condition (7.1-37) for the peak transmittance of an oblique wave
through a Fabry–Perot etalon. As illustrated in Fig 11.1-8(c), at a
given frequency ν, there are modes at a discrete set of angles θq that
satisfy the condition cos θq = qνF/ν. These are the complements of
the bounce angles of the guided modes of a waveguide. Also, at any
fixed angle θ, the modal frequencies are νq = qνF sec θ, as illustrated
in Fig 11.1-8(d). The larger the inclination angle, the greater the
spacing between the modal frequencies.



11.2 SPHERICAL-MIRROR RESONATORS
The planar-mirror resonator configuration discussed in the
preceding section is highly sensitive to misalignment. If the mirrors
are not perfectly parallel, or the rays are not perfectly normal to the
mirror surfaces, they undergo a sequence of lateral displacements
that eventually causes them to wander out of the resonator [see Fig.
11.1-1(b)]. Spherical-mirror resonators, in contrast, provide a more
stable configuration for the confinement of light that renders them
less sensitive to misalignment under appropriate geometrical
conditions.

A spherical-mirror resonator is constructed from two spherical
mirrors of radii R1 and R2, separated by a distance d (Fig. 11.2-1). A
line connecting the centers of the mirrors defines the optical axis (z
axis), about which the system exhibits circular symmetry. Each of
the mirrors can be concave (R < 0) or convex (R > 0). The planar-
mirror resonator is a special case for which R1 = R2 = ∞. We first
make use of the results set forth in Sec. 1.4D and examine the
conditions required for ray confinement. Then, using the results
derived in Chapter 3, we determine the resonator modes and
resonance frequencies. Finally, we briefly discuss the implications
of finite mirror size.

Figure 11.2-1 Geometry of a spherical-mirror resonator. In this
illustration both mirrors are concave (their radii of curvature are
negative).

A. Ray Confinement
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We begin with ray optics to determine the conditions of
confinement for light rays in a spherical-mirror resonator. We
consider only meridional rays (rays lying in a plane that passes
through the optical axis) and limit our consideration to paraxial rays
(rays that make small angles with the optical axis). The matrix-
optics methods introduced in Sec. 1.4, which are valid only for
meridional and paraxial rays in a circularly symmetric system, are
thus suitable for studying the trajectories of these rays as they
travel inside the resonator.

A resonator is a periodic optical system, since a ray travels through
the same system after a round trip of two reflections. We may
therefore make use of the analysis of periodic optical systems
presented in Sec. 1.4D. Let ym and θm be the position and
inclination of an optical ray after m round trips, as illustrated in Fig.
11.2-2. Given ym and θm, we determine ym+1 and θm+1 by tracing the
ray through the system.

For paraxial rays, where all angles are small, the relation between
(ym+1, θm+1) and (ym, θm) is linear and can be written in matrix
form as [see (1.4-3)]

Beginning at the left of Fig. 11.2-2 with y0 and θ0, the round-trip ray-
transfer matrix for the ray pattern shown is



(11.2-3)

Figure 11.2-2 The position and inclination of a ray after m round
trips are represented by ym and θm, respectively, where m = 0, 1, 2,
.... In this diagram, θ1 < 0 since the ray is directed downward. Angles
are exaggerated for the purposes of illustration; all rays are paraxial
so that sin θ ≈ tan θ ≈ θ and the propagation distance of all rays
between the mirrors is ≈ d.

This cascade of ray-transfer matrices represents, from right to left
[see (1.4-4) and (1.4-9)]:

Propagation a distance d through free space

Reflection from a mirror of radius R2

Propagation a distance d through free space

Reflection from a mirror of radius R1

As shown in Sec. 1.4D, the solution of the difference equation (11.2-
1) is ym = ymaxFm sin(mφ + φ0), where F2 = AD − BC, φ =
cos−1(b/F), b = (A + D)/2, and ymax and φ0 are constants
determined from the initial position and inclination of the ray. For
the case at hand F = 1, so that
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Confinement Condition

The solution (11.2-3) is harmonic, and therefore bounded, provided
φ = cos−1 b is real. This is ensured if |b| ≤ 1, i.e., if −1 ≤ b ≤ 1, so that

It is convenient to write this confinement condition in terms of
the quantities g1 = 1 + d/R1 and g2 = 1 + d/R2, which are known as
the g-parameters:

The resonator is said to be stable when this condition is satisfied.
This result also emerges from wave optics, as will be demonstrated
subsequently [see (11.2-17)].

When the confinement condition (11.2-6) is not satisfied, φ is
imaginary so that ym in (11.2-3) becomes a hyperbolic sine function
of m and increases without bound. The resonator is then said to be
unstable. At the boundary of the confinement condition (when the
inequalities are equalities), the resonator is said to be
conditionally stable.

A useful graphical representation of the confinement condition (Fig.
11.2-3) identifies each combination (g1, g2) of the two g-parameters
of a resonator as a point in a g2 versus g1 diagram. The left
inequality in (11.2-6) is equivalent to {g1 ≥ 0 and g2 ≥ 0; or g1 ≤ 0
and g2 ≤ 0} so that all stable points (g1, g2) must lie in the first or
third quadrants. The right inequality in (11.2-6) signifies that stable
points (g1, g2) must lie in a region bounded by the hyperbola g1 g2 =
1. The unshaded area in Fig. 11.2-3 represents the region for which
both inequalities are satisfied, indicating that the resonator is
stable.
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Confinement Condition 
(Symmetric Resonator)

Figure 11.2-3 Resonator stability diagram. A spherical-mirror
resonator is stable if the parameters g1 = 1 + d/R1 and g2 = 1 + d/R2
lie in the unshaded regions, which are bounded by the lines g1 = 0
and g2 = 0, and the hyperbola g2 = 1/g1. R is negative for a concave
mirror and positive for a convex mirror. Commonly used resonator
configurations are indicated by letters and are sketched at the right;
shaded areas represent collections of rays perpendicular to the
mirrors. All symmetric resonators lie along the line g2 = g1.

Symmetric resonators, by definition, have identical mirrors (R1 =
R2 = R) so that g1 = g2 = g. Resonators in this class are thus
represented in Fig. 11.2-3 by points lying along the line g2 = g1. The
condition of stability then becomes g2 ≤ 1, or −1 ≤ 1 + d/R ≤ 1,
which implies



To satisfy (11.2-7) a stable symmetric resonator must use concave
mirrors (R < 0) whose radii are greater than half the resonator
length. Three examples within this class are of special interest:
d/(−R) = 0, 1, and 2, corresponding to planar, confocal, and
concentric resonators, respectively.

In the symmetric confocal resonator, (−R) = d so that the
center of curvature of each mirror lies on the other. Thus, b = −1
and φ = π so that the ray position in (11.2-3) is prescribed to be ym =
ymax sin(mπ + φ0), i.e., ym = (−1)my0. Rays initiated at position y0,
at any inclination, are thus imaged to position y1 = −y0, and then
reimaged again to position y2 = y0, and so on, repeatedly. Each ray
thus retraces itself after two round trips (Fig. 11.2-4). All paraxial
rays are therefore confined, whatever their original position and
inclination. This is a substantial improvement in comparison with
the planar-mirror resonator, for which only rays of zero inclination
retrace themselves as schematized in Fig. 11.1-1.

Figure 11.2-4 All paraxial rays in a symmetric confocal resonator
retrace themselves after two round trips, whatever their original
position and inclination. Angles are exaggerated in this drawing for
purposes of illustration.



Summary
The confinement condition for paraxial rays in a spherical-
mirror resonator, comprising mirrors of radii R1 and R2
separated by a distance d, is 0 ≤ g1 g2 ≤ 1, where g1 = 1 + d/R1
and g2 = 1 + d/R2. The confinement condition for symmetric
resonators is 0 ≤ d/(−R) ≤ 2; this condition governs planar,
symmetric confocal, and symmetric concentric mirror
configurations.

EXERCISE 11.2-1

Maximum Resonator Length for Confined Rays. A
resonator is constructed using concave mirrors of radii 50 cm
and 100 cm. Determine the maximum resonator length for
which rays satisfy the confinement condition.

B. Gaussian Modes
Although the ray-optics approach considered in the preceding
section is useful for determining the geometrical conditions under
which rays are confined, it cannot provide information about the
resonance frequencies and spatial intensity distributions of the
resonator modes. For those quantities we must appeal to wave
optics. We now proceed to show that Gaussian beams are solutions
of the paraxial Helmholtz equation for the boundary conditions
imposed by a pair of spherical mirrors in a resonator configuration.
More generally, we demonstrate that Hermite–Gaussian beams are
modes of the spherical-mirror resonator. In the course of our
analysis, we obtain expressions for the resonance frequencies and
spatial intensity distributions of the resonator modes.

Gaussian Beams
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As discussed in Chapter 3, the Gaussian beam is a circularly
symmetric wave whose energy is confined about its axis (the z axis)
and whose wavefront normals are paraxial rays (Fig. 11.2-5). In
accordance with (3.1-12), at an axial distance z from the beam waist,
the beam intensity I varies in the transverse x−y plane as the
Gaussian distribution I = I0[W0/W(z)]2 exp[−2(x2 + y2)/W2(z)]. Its
width is given by (3.1-8):

where z0 is the distance, known as the Rayleigh range, at which the
beam wavefronts are most curved. The beam width (radius) W(z)
increases in both directions from its minimum value W0 at the
beam waist (z = 0). The radius of curvature of the wavefronts, given
by (3.1-9),

decreases from ∞ at z = 0, to a minimum value at z = z0, and
thereafter grows linearly with z for large z. For z > 0, the wave
diverges and R(z) > 0; for z < 0, the wave converges and R(z) < 0.
The Rayleigh range z0 is related to the beam waist radius W0 by
(3.1-11):

The depth of focus is 2z0, i.e., twice the Rayleigh range.



Figure 11.2-5 Gaussian beam wavefronts (solid curves) and beam
width (dashed curve).

The Gaussian Beam is a Mode of the Spherical-Mirror
Resonator

A Gaussian beam reflected from a spherical mirror will retrace the
incident beam if the radius of curvature of its wavefront is the same
as that of the mirror radius (see Sec. 3.2C). Hence, if the radii of
curvature of the wavefronts of a Gaussian beam, at planes separated
by a distance d, match the radii of two mirrors separated by the
same distance d, a beam incident on the first mirror will reflect and
retrace itself to the second mirror, where it once again will reflect
and retrace itself back to the first mirror, and so on. The beam can
then exist self-consistently within that spherical-mirror resonator,
satisfying the Helmholtz equation and the boundary conditions
imposed by the mirrors. Provided that the phase also retraces itself,
as discussed in Sec. 11.2C, the Gaussian beam is then said to be a
mode of the spherical-mirror resonator.

We now proceed to determine the Gaussian beam that matches a
spherical-mirror resonator, whose mirrors have radii of curvature
R1 and R2 and are separated by the distance d. The task is illustrated
in Fig. 11.2-6 for the special case when both mirrors are concave (R1
< 0 and R2 < 0).
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Figure 11.2-6 Fitting a Gaussian beam to two mirrors separated by
a distance d. Their radii of curvature are R1 and R2. Both mirrors are
taken to be concave so that R1 and R2 are negative, as is z1.

The z axis is defined by the centers of the mirrors. The center of the
beam, which is yet to be determined, is assumed to be located at the
origin z = 0; mirrors R1 and R2 are located at positions z1 and

respectively. A negative value for z1 indicates that the center of the
beam lies to the right of mirror 1; a positive value indicates that it
lies to the left. The values of z1 and z2 are determined by matching
the radius of curvature of the beam, R(z) = z + , to the radii R1 at
z1 and R2 at z2. Careful attention must be paid to the signs. If both
mirrors are concave, they have negative radii. But the beam radius
of curvature was defined to be positive for z > 0 (at mirror 2) and
negative for z < 0 (at mirror 1). We therefore equate R1 = R(z1), but
−R2 = R(z2), to obtain

Solving (11.2-11), (11.2-12), and (11.2-13) for z1, z2, and z0 leads to
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which accord with (3.1-27) and (3.1-28) (if R2 is replaced with −R2).

Having determined the location of the beam center and the depth of
focus 2z0, everything about the beam is known (see Sec. 3.1B). The
waist radius is W0 = , and the beam radii at the mirrors are

In order that the solution (11.2-14)–(11.2-15) indeed represents a
Gaussian beam, z0 must be real. An imaginary value of z0 would
signify that the Gaussian beam is a paraboloidal wave, which is an
unconfined solution of the paraxial Helmholtz equation (see Sec.
3.1A). Using (11.2-15), it is not difficult to show that the condition 

 is equivalent to

This is precisely the confinement condition derived from ray optics
as set forth in (11.2-5).

EXERCISE 11.2-2

A Plano-Concave Resonator. If mirror 1 is planar (R1 = ∞),
determine the confinement condition and the depth of focus, as
well as the beam width at the waist and at each of the mirrors, as
a function of d/|R2|.

Gaussian Mode of a Symmetric Spherical-Mirror Resonator

The results provided in (11.2-11)–(11.2-15) simplify considerably for
symmetric resonators with concave mirrors. Substituting R1 = R2 =



(11.2-18)

(11.2-19)

(11.2-20)

(11.2-21)

−|R| into (11.2-14) provides z1 = −d/2 and z2 = d/2. The beam
center thus lies at the center of the resonator, and

The confinement condition (11.2-17) becomes

Given a resonator of fixed mirror separation d, we now examine the
effect of increasing mirror curvature on the beam radius at the waist
W0, and at the mirrors W1 = W2. (Increasing curvature corresponds
to increasing d/|R| since the radius of curvature diminishes as the
curvature increases.) The results are illustrated in Fig. 11.2-7. For a
planar-mirror resonator, d/|R| = 0, so that W0 and W1 are infinite,
corresponding to a plane wave rather than a Gaussian beam. As
d/|R| increases, W0 decreases until it vanishes for the concentric
resonator (d/|R| = 2); at this point W1 = W2 = ∞ and W0 = 0. In this
limit, the resonator supports a spherical wave instead of a Gaussian
beam.
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Figure 11.2-7 The beam width at the waist, W0, and at the mirrors,
W1 = W2, for a symmetric spherical-mirror resonator with concave
mirrors, as a function of the ratio d/|R|. The planar-mirror
resonator corresponds to d/|R| = 0. Symmetric confocal and
concentric resonators correspond to d/|R| = 1 and d/|R| = 2,
respectively.

The width of the beam at the mirrors attains its minimum value, W1
= W2 = , when d/|R| = 1, i.e., for the symmetric confocal
resonator. In this case

The depth of focus 2z0 is then equal to the length of the resonator d,
as shown in Fig. 11.2-8. This explains why the parameter 2z0 is
sometimes called the confocal parameter. A long resonator has a
long depth of focus. The waist radius is proportional to the square
root of the mirror spacing. A Gaussian beam at λ0 = 633 nm (a He–
Ne laser wavelength) in a resonator with d = 100 cm, for example,
has a waist radius W0 =  = 0.32 mm, whereas a 25-cm-long
resonator supports a Gaussian beam with a waist radius that is half
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as big at the same wavelength: 0.16 mm. The width of the beam at
each of the mirrors is greater than it is at the waist by a factor of .

Figure 11.2-8 Gaussian beam in a symmetric confocal resonator
with concave mirrors. The depth of focus 2z0 equals the length of
the resonator d. The beam width at the mirrors is a factor of 
greater than that at the waist.

C. Resonance Frequencies
As indicated in Sec. 11.2B, a Gaussian beam is a mode of the
spherical-mirror resonator provided that the wavefront normals
reflect back onto themselves, always retracing the same path, and
that the phase retraces itself as well.

The phase of a Gaussian beam, in accordance with (3.1-23), is

where ζ(z) = tan−1(z/z0) and ρ2 = x2 + y2. At points on the optical
axis (ρ = 0), φ(0, z) = kz − ζ(z), so that the phase retardation
relative to a plane wave is ζ(z). At the locations of the mirrors, z1
and z2, we therefore have
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Resonance Frequencies 
   Gaussian Modes

Because the mirror surface coincides with the wavefronts, all points
on each mirror share the same phase. As the beam propagates from
mirror 1 to mirror 2, its phase changes by

where

As the traveling wave completes a round trip between the two
mirrors, therefore, its phase changes by 2kd − 2Δζ.

In order that the beam truly retrace itself, the round-trip phase
change must be zero or a multiple of ±2π, i.e., 2kd − 2Δζ = 2πq, q =
0, ±1, ±2, .... Using the substitutions k = 2πν/c and νF = c/2d, the
frequencies νq that satisfy this condition are

The frequency spacing of adjacent modes is therefore νF = c/2d,
which is identical to the result obtained in Sec. 11.1A for the planar-
mirror resonator. For spherical-mirror resonators, this frequency
spacing is evidently independent of the curvatures of the mirrors.
The second term in (11.2-30), which does depend on the mirror
curvatures, simply represents a displacement of all resonance
frequencies.
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EXERCISE 11.2-3

Resonance Frequencies of a Confocal Resonator. A
symmetric confocal resonator has a length d = 30 cm, and the
medium has refractive index n = 1. Determine the frequency
spacing νF and the displacement frequency (Δζ/π) νF. Determine
all resonance frequencies that lie within the band 5 × 1014 ± 2 ×
109 Hz.

D. Hermite–Gaussian Modes
In Sec. 3.3 it was shown that the Gaussian beam is not the only
beam-like solution of the paraxial Helmholtz equation. The family
of Hermite–Gaussian beams also provides solutions. Although a
Hermite–Gaussian beam of order (l, m) has an amplitude
distribution that differs from that of the Gaussian beam, their
wavefronts are identical. As a result, the design of a resonator that
“matches” a given beam (or the design of a beam that “fits” a given
resonator) is the same as for the Gaussian beam, whatever the
values of (l, m). It follows that all members of the family of
Hermite–Gaussian beams represent modes of the spherical-mirror
resonator.

The resonance frequencies of the (l, m) mode do, however, depend
on the indices (l, m). This is because of the dependence of the Gouy
phase shift on l and m. As is evident from (3.3-10), the phase of the
(l, m) mode on the beam axis is

Again, the phase shift encountered by a traveling wave undergoing a
single round trip through a resonator of length d must be set equal
to zero or an integer multiple of ±2π in order that the beam retrace
itself. Thus,
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  Resonance Frequencies 
Hermite–Gaussian Modes

where, as previously, Δζ = ζ(z2) − ζ(z1) and z1, z2 represent the
positions of the two mirrors. With k = 2πν/c and νF = c/2d, this
yields the resonance frequencies

Modes of different q, but the same (l, m), have identical intensity
distributions [see (3.3-12)]. They are known as longitudinal or
axial modes. The indices (l, m) label different spatial dependencies
on the transverse coordinates x, y; these therefore represent
different transverse modes, as illustrated in Fig. 3.3-2.

Equation (11.2-33) dictates that the resonance frequencies of the
Hermite–Gaussian modes satisfy the following properties:

Longitudinal modes corresponding to a given transverse mode
have resonance frequencies spaced by νF = c/2d since νl,m,q+1 −
νl,m,q = νF. This result is the same as that obtained for the (0,0)
Gaussian mode and for the planar-mirror resonator.

All transverse modes, for which the sum of the indices l + m is
the same, have the same resonance frequencies.

Two transverse modes (l, m), (l′, m′) corresponding to the same
longitudinal mode q have resonance frequencies spaced by

This expression determines the frequency shift between the
sets of longitudinal modes of indices (l, m) and (l′, m′).



EXERCISE 11.2-4

Resonance Frequencies of the Symmetric Confocal
Resonator. Show that for a symmetric confocal resonator, the
longitudinal modes associated with different transverse modes
are either the same, or are displaced by νF/2, as illustrated in Fig.
11.2-9.

Figure 11.2-9 In a symmetric confocal resonator, the
longitudinal modes associated with two transverse modes of
indices (l, m) and (l′, m′) are either aligned or displaced by half a
longitudinal mode spacing.

*E. Finite Apertures and Diffraction Loss
Since Gaussian and Hermite–Gaussian beams have infinite
transverse extent whereas the resonator mirrors are of finite extent,
a portion of the optical power leaks around the mirrors and escapes
from the resonator on each pass. An estimate of the power loss may
be obtained by calculating the fractional power of the beam that is
not intercepted by the mirror. If the beam is Gaussian with width W
and the mirror is circular with radius a = 2W, for example, a small
fraction, exp(−2a2/W2) ≈ 3.35 × 10−4, of the beam power escapes on
each pass [see (3.1-17)], the remainder being reflected (or
transmitted through the mirror). Higher-order transverse modes



suffer greater losses since they have greater spatial extent in the
transverse plane.

When the mirror radius a is smaller than 2W, the losses are greater.
The resonator modes are then less well described by Gaussian and
Hermite–Gaussian beams. The problem of determining the modes
of a spherical-mirror resonator with finite-size mirrors is difficult. A
wave is a mode if it retraces its amplitude (to within a multiplicative
constant) and reproduces its phase (to within an integer multiple of
2π) after completing a round trip through the resonator. One oft-
used method for determining the modes involves following a wave
repeatedly as it bounces through the resonator, thereby determining
its amplitude and phase, much as we determined the position and
inclination of a ray bouncing within a resonator. After many round
trips this process converges to one of the modes.

The configuration for implementing this approach in a spherical-
mirror resonator is schematized in Fig. 11.2-10.

Figure 11.2-10 Propagation of a wave through a spherical-mirror
resonator. The complex amplitude U1(x, y) corresponds to a mode if
it reproduces itself after a round trip, i.e., if U2(x, y) = μU1(x, y) and
arg{μ} = q2π.

If U1(x, y) is the complex amplitude of a wave immediately to the
right of mirror 1 in Fig. 11.2-10, and if U2(x, y) is the complex
amplitude after one round trip of travel through the resonator, then
U1(x, y) is a mode provided that U2(x, y) = μU1(x, y) and provided
that arg{μ} is an integer multiple of 2π (i.e., μ is real and positive).
After a single round trip, the mode intensity is attenuated by the
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factor μ2, and the phase is reproduced. The methods of Fourier
optics (Chapter 4) may be used to determine U2(x, y) from U1(x, y).
These quantities may be regarded as the output and input,
respectively, of a linear system (see Appendix B) characterized by an
impulse response function h(x, y; x′, y′), so that

If the impulse response function h is known, the modes can be
determined by solving the eigenvalue problem described by the
integral equation (see Appendix C)

The solutions determine the eigenfunctions Ul,m(x, y), and the
eigenvalues μl,m, labeled by the indices (l, m). The eigenfunctions
are the modes and the eigenvalues are the round-trip multiplicative
factors. The squared magnitude |μl,m|2 is the round-trip intensity
reduction factor for the (l, m) mode. Clearly, when the mirrors are
infinite in size and the paraxial approximation is satisfied, the
modes reduce to the family of Hermite–Gaussian beams discussed
earlier.

It remains to determine h(x, y; x′, y′) and to solve the integral
equation (11.2-36). A single pass inside the resonator involves
traveling a distance d, truncation by the mirror aperture, and
reflection by the mirror. The remaining pass, needed to comprise a
single round trip, is similar. The impulse response function h(x, y;
x′, y′) can then be determined by applying the theory of Fresnel
diffraction (Sec. 4.3B). In general, however, the modes and their
associated losses can be determined only by numerically solving the
integral equation (11.2-36). An iterative numerical solution begins
with an initial guess U1, from which U2 is computed and passed



through the system one more round trip, and so on until the process
converges.

This technique has been used to determine the losses associated
with the various modes of a spherical-mirror resonator with circular
mirror apertures of radius a. The results are illustrated in Fig. 11.2-
11 for a symmetric confocal resonator. The loss is governed by a
single parameter, the Fresnel number NF = a2/λd. This is because
the Fresnel number governs Fresnel diffraction between the two
mirrors, as discussed in Sec. 4.3B. For the symmetric confocal
resonator described by (11.2-23) and (11.2-24), the beam width at
the mirrors is W = , so that λd = πW2, from which the Fresnel
number is readily determined to be NF = a2/πW2. NF is therefore
proportional to the ratio a2/W2; a higher Fresnel number
corresponds to a smaller loss. From Fig. 11.2-11 we find that the loss
per pass of the lowest-order symmetricconfocal-resonator mode (l,
m) = (0, 0) is about 0.1% when NF ≈ 0.94. This Fresnel number
corresponds to a/W = 1.72. If the beam were Gaussian with width
W, the percentage of power contained outside a circle of radius a =
1.72 W would be exp(−2a2/W2) ≈ 0.27%. This is larger than the 0.1%
loss per pass for the actual resonator mode. Higher-order modes
suffer from greater losses because of their greater spatial extent.



Figure 11.2-11 Percent diffraction loss per pass (half a round trip)
as a function of the Fresnel number NF = a2/λd for the (0, 0), (1, 0),
and (2, 0) modes in a symmetric confocal resonator. (Adapted from
A. E. Siegman, Lasers, University Science, 1986, Fig. 19.19 left.)

11.3 TWO- AND THREE-DIMENSIONAL
RESONATORS
A. Two-Dimensional Rectangular Resonators
A two-dimensional (2D) planar-mirror resonator is constructed
from two orthogonal pairs of parallel mirrors, e.g., a pair normal to
the z axis and another pair normal to the y axis. Light is confined in
the z−y plane by a sequence of ray reflections, as illustrated in Fig.
11.3-1(a).
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Figure 11.3-1 A two-dimensional planar-mirror resonator: (a) ray
pattern; (b) standing-wave pattern with mode numbers qy = 3 and
qz = 2. The curves represent the modal amplitudes while the
brightness pattern depicts intensity.

The boundary conditions establish the resonator modes, much as
for the one-dimensional Fabry–Perot resonator. If the mirror
spacing is d, then for standing waves the components of the
wavevector k = (ky, kz) are restricted to the values

where qy and qz are mode numbers for the y and z directions,
respectively. These conditions are a generalization of (11.1-2). Each
pair of integers (qy, qz) represents a resonator mode U(r) ∝
sin(qyπy/d) sin(qzπz/d), as illustrated in Fig. 11.3-1(b). The lowest-
order mode is (1, 1) since the modes (qy, 0) and (0, qz) have zero
amplitude, i.e., U(r) = 0. Modes are conveniently represented by
dots that indicate their values of ky and kz on a periodic lattice of
spacing π/d (Fig. 11.3-2).
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Figure 11.3-2 Dots denote the endpoints of the wavevectors k =
(ky, kz) for modes in a two-dimensional resonator.

The wavenumber k of a mode is the distance of the dot from the
origin. The associated frequency of the mode is ν = ck/2π. The
frequencies of the resonator modes are thus determined from

so that

where q = (qy, qz).

The number of modes in a given frequency band, ν1 < ν < ν2, is
established by drawing two circles, of radii k1 = 2πν1/c and k2 =
2πν2/c in the k diagram of Fig. 11.3-2, and counting the number of
dots that lie within the annulus. This procedure converts the
allowed values of the vector k into allowed values of the frequency
ν.
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EXERCISE 11.3-1

Density of Modes in a Two-Dimensional Resonator.

a. Determine an approximate expression for the number of
modes in a two-dimensional resonator with frequencies
lying between 0 and ν, assuming that 2πν/c ≫ π/d, i.e., d ≫
λ/2, and allowing for two orthogonal polarizations per
mode.

b. Show that the number of modes per unit area lying within
the frequency interval between ν and ν + dν is M(ν)dν,
where the density of modes M(ν) (modes per unit area per
unit frequency) at frequency ν is given by

The resonator modes described thus far in this section are in-plane
modes, traveling in the plane of the 2D resonator (the y−z plane).
Off-plane modes have a propagation constant with a component in
the orthogonal direction (the x direction). These are guided modes
traveling along the axis of a 2D waveguide such as that described in
Sec. 9.3. Whereas the ky and kz components of the wavevector take
discrete values dictated by the boundary conditions, the kx
component takes continuous values since the 2D resonator is open
in the x direction.

B. Circular Resonators and Whispering-Gallery Modes
Light may be confined in a two-dimensional circular resonator by
repeated reflections from the circular boundary. As illustrated in
Fig. 11.3-3, a ray that self-reproduces after N reflections traces a
path with round-trip pathlength Nd, where d = 2a sin(π/N) and a is
the radius. For a traveling-wave mode, the resonance frequencies
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are determined by equating the round-trip pathlength to an integer
number of wavelengths, as in (11.1-7). Ignoring the phase shift
associated with each reflection, this leads to Nd = qλ = qc/ν, i.e., to
resonant frequencies νq = qc/Nd, where q = 1, 2, .... The spacing
between these frequencies is therefore νF = c/Nd.

For N = 2, we have νF = c/2d = c/4a, which is identical to (11.1-5).
Similarly, N = 3 yields νF = c/3d = , which coincides with the
result for the three-mirror resonator (Exercise 11.1-1). In the limit N
→ ∞, the pathlength Nd approaches the cylindrical circumference
2πa and the corresponding spacing of the resonance frequencies
becomes

The rays then hug the interior boundary of the resonator, reflecting
at near-grazing incidence, as illustrated in Fig. 11.3-3. Such optical
modes are known as whispering-gallery modes (WGM). The
optical modes then behave similarly to acoustic modes in the
familiar acoustical whispering gallery, so-named because of the ease
with which an acoustic whisper can bounce along the convex
surface of a church dome or gallery.

Figure 11.3-3 Reflections in a circular resonator.

Two-dimensional resonators with other cross sections are also used.
For example, the circular cross section can be squeezed into a
stadium-shaped structure. This oblong configuration supports bow-
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tie modes [see Fig. 11.1-5(b)] in which the ray executes a round-trip
path comprising localized reflections from the four locations on the
perimeter of the resonator that match the curvature of a
conventional spherical-mirror confocal resonator (see Sec. 11.2A).

C. Three-Dimensional Rectangular Resonators
A three-dimensional (3D) planar-mirror resonator is constructed
from three pairs of parallel mirrors forming the walls of a closed
rectangular box of dimensions dx, dy, and dz. The structure is a
three-dimensional resonator, as depicted in Fig. 11.3-4(a). Standing-
wave solutions within the resonator require that the components of
the wavevector k = (kx, ky, kz) are discretized to obey

where qx, qy, and qz are positive integers representing the respective
mode numbers. Each mode q, which is characterized by the three
integers (qx, qy, qz), is represented by a dot in (kx, ky, kz)-space. The
spacing between these dots in a given direction is inversely
proportional to the width of the resonator along that direction.
Figure 11.3-4(b) illustrates the concept of the k-space for a cubic
resonator with dx = dy = dz = d.
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Figure 11.3-4 (a) Waves in a three-dimensional cubic resonator
(dx = dy = dz = d). (b) The endpoints of the wavevectors (kx, ky, kz)
of the modes in a three-dimensional resonator are marked by dots.
The wavenumber k of a mode is the distance from the origin to the
dot. Each point in k-space occupies a volume (π/d)3. All modes of
frequency smaller than ν lie inside the positive octant of a sphere of
radius k = 2πν/c.

The values of the wavenumbers k, and the corresponding resonance
frequencies ν, satisfy

The surface of constant frequency ν is a sphere of radius k = 2πν/c.
The resonance frequencies are determined from (11.3-6) and (11.3-
7):

where



(11.3-9)

are frequency spacings that are inversely proportional to the
resonator widths in the x, y, and z direction, respectively. For
resonators whose dimensions are much greater than a wavelength,
the frequency spacing is much smaller than the optical frequency.
For example, for d = 1 cm and n = 1, νF = 15 GHz. This is not so for
microresonators, however, as will be discussed in Sec. 11.4.

Density of Modes

When all dimensions of the resonator are much greater than a
wavelength, the frequency spacing νF = c/2d is small, and it is
analytically difficult to enumerate the modes. In this case, it is
useful to resort to a continuous approximation and introduce the
concept of density of modes, the validity of which depends on the
relative values of the bandwidth of interest and the frequency
interval between successive modes.

The number of modes lying in the frequency interval between 0 and
ν corresponds to the number of points lying in the volume of the
positive octant of a sphere of radius k in the k diagram [Fig. 11.3-
4(b)]. The number of modes in the positive octant of a sphere of
radius k is . The initial factor of 2
accounts for the two possible polarizations of each mode, whereas
the denominator (π/d)3 represents the volume in k-space per point.
It follows that the number of modes with wavenumbers between k
and k + Δk, per unit volume, is ϱ(k)Δk = [(d/dk)(k3/3π2)]Δk = (k2/
π2)Δk, so that the density of modes in k-space is ϱ(k) = k2/π2. It is
worthy of mention that this derivation is identical to that used for
determining the density of allowed quantum states for electron
waves confined within perfectly reflecting walls in a bulk
semiconductor [see Sec. 17.1C and (17.1-6)].

Since k = 2πν/c, the number of modes lying between 0 and ν is
[(2πν/c)3/3π2]d3 = (8πν3/3c3)d3. The number of modes in the
incremental frequency interval lying between ν and ν +Δν is
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therefore given by (d/dν)[(8πν3/3c3)d3]Δν = (8πν2/c3)d3Δν. The
density of modes M(ν), i.e., the number of modes per unit volume
of the resonator, per unit bandwidth surrounding the frequency ν, is
thus

This formula was used by Rayleigh and Jeans in connection with
the spectrum of blackbody radiation (see Sec. 14.4B). The quantity
M(ν) is a quadratically increasing function of frequency so that the
number of modes within a fixed bandwidth Δν increases with the
frequency ν in the manner indicated in Fig. 11.3-5. As an example, at
ν = 3 × 1014 (λo = 1 μm), M(ν) = 0.08 modes/cm3-Hz. Within a
frequency band of width 1 GHz, there are therefore ≈ 8 × 107

modes/cm3. The number of modes per unit volume within an
arbitrary frequency interval ν1 < ν < ν2 is simply the integral 

.

Figure 11.3-5 (a) The frequency spacing between adjacent modes
decreases as the frequency increases. (b) The density of modes M(ν)
for a three-dimensional optical resonator is a quadratically
increasing function of frequency.

The density of modes in two and three dimensions were derived on
the basis of square and cubic geometry, respectively. Nevertheless,



the results are applicable for arbitrary geometries, provided that the
resonator dimensions are large in comparison with the wavelength.

11.4 MICRORESONATORS AND
NANORESONATORS
Microresonators are resonators in which one or more of the
spatial dimensions assumes the size of a few wavelengths of light or
smaller. The term microcavity resonator, or microcavity for
short, is usually reserved for a microresonator that has small
dimensions in all spatial directions, so that the modes exhibit large
spacings in all directions of k-space and the resonance frequencies
are sparse. However, these terms are often used interchangeably.

The absence of resonance modes in extended spectral bands can
inhibit the emission of light from sources placed within a
microcavity. At the same time, the emission of light into particular
modes of a high-Q, small-volume microcavity can be enhanced
relative to emission into ordinary optical modes, as described in Sec.
14.3E. These effects can be important in the operation of resonant-
cavity light-emitting diodes (RCLEDs) and microcavity lasers (see
Secs. 18.1B and 18.5, respectively).

Microresonators can be fabricated using dielectric materials
configured in various geometries, such as (1) micropillars with
Bragg-grating reflectors; (2) microdisks and microspheres in which
light reflects near the surface in whispering-gallery modes; (3)
microtoroids, which resemble small fiber rings; and (4) 2D photonic
crystals containing light-trapping defects that function as
microcavities. These technologies embrace two principal design
objectives:

The reduction of the modal volume V, the spatial integral of the
optical energy density  of the mode, normalized to the
maximum energy density.

The enhancement of the quality factor Q.



Spatial confinement is improved by fabricating microresonators
with special geometries, while enhancement of temporal
confinement is realized by making use of low-loss materials and
low-leakage configurations. Typical modal volumes and quality
factors for these structures are summarized in Table 11.4-1.

Table 11.4-1 Normalized modal volume V/λ3 and quality factor Q
for various microresonators.

Micropillar Microdisk Microtoroid Microsphere Photonic-
Crystal

V/λ3 5 5 103 103 1

Q 103 104 108 1010 104

An exact analysis of the resonator modes of dielectric
microresonators requires the full electromagnetic theory. The
Helmholtz equation is solved in a coordinate system suitable for the
geometry of the structure, and appropriate boundary conditions are
applied to the electric and magnetic fields at the planar, cylindrical,
or spherical boundaries. The solution yields the resonance
frequencies of the modes and their spatial distributions, which may
be used to determine the modal volume for each mode. Since the
analysis is complex for all practical geometries, numerical solutions
are often necessary.

In the next section, we describe some of the properties of a simple
rectangular (box) microresonator whose walls are made of perfect
mirrors. A simple analysis of the modes of such a structure provides
the resonance frequencies and the spatial distributions of the
modes. High-Q microresonators do not make use of mirrors
because of their relatively high losses, and the box structure is also
not among the geometries typically used in practical
microresonators. Nevertheless, the analysis is useful for elucidating
the relation between the resonance frequencies and the dimensions
of the resonator, and for illustrating the frequency dependence of
the density of modes for boxes with different aspect ratios.



A. Rectangular Microresonators
The simplest microresonator structure is a rectangular (box)
resonator made of planar parallel mirrors. The modes are then
sinusoidal standing waves in all three directions and the resonance
frequencies are given by (11.3-8). When the dimensions of the box
are small, only the lowest order modes lie within the optical band.
For a cubic resonator, the resonance frequencies are provided in
Table 11.4-2 in units of νF = c/2d. As an example, if d = 1 μm and the
medium has refractive index n = 1.5, we obtain νF = 100 THz. The
frequencies of the lowest-order modes then correspond to the free-
space wavelengths λo = 2.13, 1.73, 1.34, 1.22, 1.06, 1.00, and 0.87μm,
which are widely spaced.

Table 11.4-2 Resonance frequencies for the lowest-order modes of
a cubic microcavity resonator.

Mode (qx

qy qz)(a)
(011)(3) (111)(1) (012)(6) (112)(3) (022)(3) (122)(3) (222)(1)

Frequency
(units of
νF)

1.41 1.73 2.24 2.45 2.83 3 3.46

aSuperscripts in parentheses indicate the modal degeneracy, i.e., the number of modes of
the same resonance frequency. As an example, three modes have the same resonance
frequency 1.41 νF: (011), (101), and (110).

If the resonator has a mixture of dimensions both small and large,
as with a box of large aspect ratio, the modes are placed at the
points of an anisotropic grid in k-space [see Fig. 11.3-4(b)]. The grid
is finely divided along the directions of the large dimensions and
coarsely divided along the directions of the small dimensions. Mode
counting may then be implemented by use of a continuous
approximation only in those directions for which the grid is fine.
The resultant modal density is displayed in Fig. 11.4-1 for various
cases.



Figure 11.4-1 Modal density M(ν) for rectangular microresonators
with (a) one; (b) two; and (c) three sides of small dimension dS ≪ d.
The frequency spacing associated with the small dimension is νF =
c/2dS. When all dimensions are small, as in (c), the resonance
frequencies are discrete and their values are those provided in Table
11.4-2 for the cubic microcavity resonator. The result shown in (b)
represents a combination of discrete modes associated with a 2D
microresonator and continuous modes associated with a 1D large
resonator, which has a uniform modal density [see (11.1-10)]. The
result provided in (a) illustrates a combination of discrete modes
associated with a 1D microresonator and a continuum of modes
associated with a 2D large resonator, which has a modal density that
is linearly proportional to frequency [see (11.3-4)].

B. Micropillars, Microdisks, and Microtoroids
Dielectric microresonators have been fabricated in a number of
configurations, including micropillars, microdisks, and
microtoroids, as illustrated in Fig. 11.4-2. Light is confined in these
structures by total internal reflection (see Fig. 11.3-3).



Figure 11.4-2 Micropillar, microdisk, and microtoroid resonators.

The micropillar, or micropost, resonator is a cylinder of high-
refractive-index material sandwiched between dielectric layers
comprising distributed Bragg-grating reflectors, as illustrated in Fig.
11.4-2(a). Light is confined in the axial direction by reflection from
the DBRs, as in a Fabry–Perot resonator; light is confined in the
lateral direction by total internal reflection from the walls of the
cylinder. Micropillars are typically fabricated from compound
semiconductors via conventional lithographic and etching
processes; DBR layers are often made of AlAs/GaAs or
AlGaAs/GaAs. The pillar itself can contain an active region such as a
multiquantum-well structure that provides optical gain when
pumped (Sec. 18.5A).

The microdisk resonator displayed in Fig. 11.4-2(b) is a circular
resonator in which light travels at near-grazing incidence in
whispering-gallery modes and is confined by total internal reflection
from the circular boundary (see Sec. 11.3B). Micropillar and
microdisk diameters usually range from 1 μm to tens of μm and
their quality factors Q are substantially larger than those of mirror
resonators since their losses are significantly lower (Table 11.4-1).
Microdisk resonators fabricated from semiconductor materials are
widely used as microdisk lasers because of their many salutary
features (Sec. 18.5B).

The microtoroid dielectric microresonator illustrated in Fig. 11.4-
2(c) is much like a fiber-ring resonator, in which the resonator
modes are circulating guided waves. These microresonators are
often fabricated from silica and are supported on a silicon chip by a
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silicon pillar. The toroid is formed by surface tension while the
material is in a molten state; the outer boundary thus assumes a
near atomic-scale surface finish and has significantly lower
scattering losses than the microdisk resonator. Silica toroidal
microresonators-on-a-chip exhibit exceptionally high values of the
quality factor, Q > 108 (Table 11.4-1).

C. Microspheres
Dielectric microspheres are used as three-dimensional optical
microresonators. Certain modes are guided along trajectories
(orbits) that are tightly confined near a great circle of the sphere,
resulting in whispering-gallery modes.

The modes of a dielectric sphere may be determined by solving the
Helmholtz equation (5.3-16) for the electric and magnetic-field
vectors, together with the appropriate boundary conditions. These
modes are similar to the wavefunctions of an electron in a hydrogen
atom (see Sec. 14.1A) because of the spherical symmetry of both
problems, but there are also differences in view of the vector nature
of the electromagnetic field.

The electric and magnetic vector fields are directly related to a scalar
potential function U that satisfies the Helmholtz equation.1 For a
sphere of radius a and refractive index n, located in air, the
separation-of-variables method in a spherical coordinate system (r,
θ, ϕ) results in a solution of the form

where Jℓ(·) is the Bessel function of the first kind of order ℓ,  is
the Hankel function of the first kind of order ℓ,  is the adjoint
Legendre function, and m and ℓ are nonnegative integers. The
boundary conditions at r = a yield a characteristic equation that
provides a discrete set of values for ko, corresponding to the



resonance frequencies. These are indexed by a third integer n. In
addition, there are two polarization modes — an E mode for which
Hr = 0 and an H mode for which Er = 0.

The modes are generally oscillatory functions of r, θ, and ϕ
characterized by the radial, polar, and azimuthal mode numbers n, ℓ,
and m, respectively. There are n maxima in the radial direction
within the sphere. The number of field maxima in the azimuthal
direction is 2ℓ, while the number of field maxima in the polar
direction (between the two poles) is ℓ − m + 1.

The fundamental mode (n = 1, m = ℓ) has a single peak in the radial
direction within the sphere, and a single peak in the polar direction
at θ = π/2. For large m = ℓ, the modes are highly confined near the
equator. This is because  vanishes rapidly at angles
slightly different from θ = π/2, and Jℓ(nkor) is small everywhere
within the sphere except for a sharp peak near r = a. The mode
therefore represents an optical beam traveling along the equator, as
shown in Fig. 11.4-3(a), much like the whispering-gallery modes of
the disk resonator displayed in Fig. 11.3-3. For sufficiently large ℓ =
m, the resonance frequencies of these modes are approximately
equal to νℓ ≈ ℓ c/2πa. This is to be expected since the angular mode
number ℓ is close to the number of wavelengths that comprise the
optical length of the equator.

The whispering-gallery mode may be viewed from a ray-optics
perspective in terms of quasi-plane waves with wavevectors parallel
to the local rays (see Sec. 2.3 and Fig. 10.2-8) that zigzag near the
equator, as shown in Fig. 11.4-3(b). The wavevector k has magnitude
k =  and azimuthal component kϕ = m/a. The inclination
angle of the zigzagging rays is smallest  for the fundamental
mode m = ℓ, while the m = 0 mode has a 90° inclination.



Figure 11.4-3 (a) Whispering-gallery mode in a microsphere
resonator. (b) Ray model of the whispering-gallery mode.

Microspheres fabricated from low-loss fused silica have been used
as optical resonators with ultrahigh values of Q. Like the toroidal
resonator depicted in Fig. 11.4-2(c), the shape and surface finish of
the sphere are determined by the surface tension in the molten
state during fabrication; the result is near atomic perfection in the
surface finish. The reduced surface scattering losses lead to
remarkably high quality factors, Q > 1010 (see Table 11.4-1). Optical
power may be coupled into the sphere via an optical fiber that is
locally stripped of its cladding, as illustrated in Fig. 11.4-4.

Figure 11.4-4 Coupling optical power from an optical fiber into a
microsphere resonator.

D. Photonic-Crystal Microcavities
As described in Chapter 7, photonic crystals are periodic dielectric
structures exhibiting photonic bandgaps, i.e., spectral bands within
which light cannot propagate. The Bragg grating reflector (BGR) is
an example of a 1D photonic crystal that serves as a reflector for
frequencies within a photonic bandgap. The micropillar resonator



shown in Fig. 11.4-2(a), for example, uses BGRs in lieu of mirrors. If
the height of the microresonator equals one or just a few periods of
the BGR, as illustrated in Fig. 11.4-5(a), the structure may also be
regarded as an extended photonic crystal with the cavity acting as a
defect in the crystal structure. The resonator is then called a
photoniccrystal resonator.

Figure 11.4-5 Photonic-crystal microresonators. (a) The
micropillar resonator as a 1D photonic crystal in which the
microcavity acts as a defect. (b) A 2D photonic-crystal resonator
may be fabricated by drilling holes in a dielectric slab at the points
of a planar hexagonal lattice; a missing hole serves as the
microcavity.

This concept is also applicable to 2D photonic crystals. As
schematized in Fig. 11.4-5(b), a defect in the 2D periodic crystal
structure is a local alteration such as a missing hole in a periodic
array of air holes drilled in a slab. For wavelengths that fall within
the photonic-crystal bandgap, the periodic structure surrounding
the defect does not support light propagation, so that light is
trapped within the defect, much like electrons or holes are trapped
by a defect in a semiconductor crystal. The defect then serves as a
microcavity resonator. Stated differently, the defect produces new
resonance frequencies that lie within the bandgap and correspond
to optical modes that have spatial distributions centered within the
microcavity and that decay rapidly in the surrounding photonic
crystal.

Two-dimensional photonic crystals can be fabricated by using
electron-beam lithography and reactive ion etching in



semiconductor materials. Microcavities of dimensions close to a
period of the photonic crystal, which can be of the order of a
wavelength of light, can support modal volumes as small as λ3.
Hence, photonic-crystal microcavities have the smallest normalized
modal volumes of the family of microresonators (see Table 11.4-1).
The quality factors Q can be as high as 104. Because of these
features, photonic-crystal resonators are often co-opted for use in
photonic-crystal microcavity lasers (Sec. 18.5C).

E. Plasmonic Resonators: Metallic Nanodisks and
Nanospheres
Metallic electromagnetic resonators are routinely used at
microwave and radio frequencies. As illustrated in Fig. 11.0-2,
microwave cavity resonators have dimensions that are close to the
resonance wavelength (cm), whereas radio-frequency resonant
circuits, comprising metallic capacitors and inductors, have
dimensions (cm) much smaller than the resonance wavelength (m).

Plasmonic resonators contain metallic structures of subwavelength
dimensions that operate at optical frequencies by supporting
surface plasmon polariton (SPP) waves or localized surface plasmon
(LSP) oscillations at their boundaries with dielectric media (Secs.
8.2B and 8.2C, respectively). They can take the form of nanodisks,
nanospheres, or other nanoparticles. Their dimensions (∼10 nm)
can be much smaller than the resonance wavelength (∼μm), while
maintaining a size-to-wavelength ratio (∼10−2) not unlike that of
the radio-frequency electronic resonator portrayed in Fig. 11.0-2.

The mathematical modeling of structures whose dimensions are
much larger than the resonance wavelength, such as resonators
with large mirrors, is readily achieved by making use of
electromagnetic optics. The electric and magnetic fields are then of
paramount importance, and these are the quantities that we
customarily encounter in the optics literature. At the opposite
extreme, metallic structures whose dimensions are much smaller
than the resonance wavelength can be well-modeled in terms of



electrical voltages and currents. The key elements in this domain
are lumped electrical components such as inductors and capacitors,
as encountered in the electrical-engineering literature — as a simple
example, the resonance frequency of the electronic resonator
portrayed in Fig. 11.0-2 is ω0 = . Metallic structures whose
dimensions are comparable to the resonance wavelength pose the
greatest challenge in terms of modeling because the analysis must
then generally be carried out in terms of voltages and currents as
well as fields.

Metallic Nanodisk

A metallic cylinder with an interior dielectric material supports
whispering-gallery photonic modes of light that reflect at the
metallic boundary, as displayed in Fig. 11.4-6(a). This disk resonator
also supports plasmonic modes in the form of SPP waves (Sec.
8.2B) at the interior boundary, as illustrated in Fig. 11.4-6(b). The
internal optical field of the plasmonic mode is more tightly confined
near the boundary than is the field of the photonic mode. Moreover,
since the plasmonic wave penetrates more deeply into the metal
than does the photonic mode, it suffers greater losses and the
resonator exhibits a smaller quality factor Q. By comparison, a
dielectric disk resonator (Sec. 11.3B) supports whispering-gallery
modes with evanescent optical fields that extend into the exterior
dielectric medium, as shown in Fig. 11.4-6(c).



Figure 11.4-6 Schematic of optical-field distributions in disk
resonators. (a) Photonic mode in a metal–dielectric disk: light is
confined to the interior by multiple reflections at the metallic
boundary. (b) Plasmonic mode in a metal–dielectric disk: a SPP
wave travels along the interior boundary. (c) Photonic mode in a
dielectric–dielectric disk: light is confined by total internal
reflection at the boundary.

Nominal values for the normalized modal volume and quality factor
of a plasmonic mode in a metal–dielectric disk resonator with a
diameter of 100 nm are V/λ3 ∼ 10−4 and Q ∼ 10, respectively.2 These
values are substantially below those for photoniccrystal
microcavities (see Table 11.4-1). Nevertheless, structures of this
kind find use in surface plasmon polariton disk and ring nanolasers
(Sec. 18.6).

Metallic Nanosphere

As discussed in Sec. 8.2C, a metallic nanosphere embedded in a
dielectric medium supports resonant localized surface plasmon
(LSP) oscillations. When the nanosphere is illuminated by an
optical wave, the scattered field, as well as the internal field, are
substantially enhanced at frequencies near resonance. This field
enhancement is accompanied by spatial localization of energy at the
nanoscale, so that the nanosphere serves as a nanoresonator. Since
metals are relatively lossy, however, the resonator quality factor Q
is far lower than that of dielectric resonators. Nevertheless, a metal
nanosphere embedded in a specialized dielectric medium can serve
as a localized surface plasmon nanolaser (Sec. 18.6).
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PROBLEMS
11.1-3 Resonance Frequencies of a Resonator with an

Etalon.

a. Determine the spacing between adjacent resonance frequencies
in a resonator constructed of two parallel planar mirrors
separated by a distance d = 15 cm in air (n = 1).

b. A transparent plate of thickness d1 = 2.5 cm and refractive
index n = 1.5 is placed inside the resonator and is tilted slightly
to prevent light reflected from the plate from reaching the
mirrors. Determine the spacing between the resonance
frequencies of the resonator.

11.1-4 Mirrorless Resonators. Laser diodes are often fabricated
from crystals whose surfaces are cleaved along crystal planes.
These surfaces act as reflectors by virtue of Fresnel reflection,



and therefore serve as the mirrors of a Fabry–Perot resonator.
An expression for the power reflectance is provided in (6.2-15).
Consider a crystal placed in air (n = 1) whose refractive index n
= 3.6 and loss coefficient αs = 1 cm−1. The light reflects between
two parallel surfaces separated by a distance d = 0.2 mm.
Determine the spacing between resonance frequencies νF, the
overall distributed loss coefficient αr, the finesse , the spectral
width of a mode δν, and the quality factor Q. If the free-space
wavelength of the generated light is λo = 1.55 μm, estimate the
longitudinal mode number q.

11.1-5 Fabry–Perot Etalon with Bragg Grating Reflectors. A
Fabry–Perot etalon is made by sandwiching a layer of GaAs
between two of the GaAs/AlAs Bragg grating reflectors
described in Prob. 7.1-8. Determine the finesse  of the
resonator and quality factor Q. Determine the transmittance of
a Bragg grating reflector comprised of N = 10 alternating layers
of GaAs (n1 = 3.6) and AlAs (n2 = 3.2) of widths d1 and d2 equal
to a quarter wavelength in each medium. Assume that the light
is incident from an extended GaAs medium.

11.1-6 Optical Energy Decay Time. How much time does it take
for the optical energy stored in a resonator of finesse  = 100,
length d = 50 cm, and refractive index n = 1, to decay to one-
half of its initial value?

11.2-5 Stability of Spherical-Mirror Resonators.

a. Can a resonator with two convex mirrors ever be stable?

b. Can a resonator with one convex and one concave mirror ever
be stable?

11.2-6 A Planar-Mirror Resonator Containing a Lens. A lens
of focal length f is placed inside a planar-mirror resonator
constructed of two flat mirrors separated by a distance d. The
lens is located at a distance d/2 from each of the mirrors.



a. Determine the ray-transfer matrix for a ray that begins at one
of the mirrors and travels a round trip inside the resonator.

b. Determine the condition of stability of the resonator.

c. Under stable conditions sketch the Gaussian beam that fits this
resonator.

11.2-7 Self-Reproducing Rays in a Symmetric Resonator.
Consider a symmetric resonator using two concave mirrors of
radii R separated by a distance d = 3|R|/2. After how many
round trips through the resonator will a ray retrace its path?

11.2-8 Ray Position in Unstable Resonators. Show that for an
unstable resonator the ray position after m round trips is given
by ym = , where α1 and α2 are constants. Here 

, and . Hint: Use
the results in Sec. 1.4D.

11.2-9 Ray Position in Unstable Symmetric Resonators.
Verify that a symmetric resonator using two concave mirrors of
radii R = −30 cm separated by a distance d = 65 cm is unstable.
Find the position y1 of a ray that begins at one of the mirrors, at
position y0 = 0 with an angle θ0 = 0.1°, and undergoes one
round trip. If the mirrors have 5-cm-diameter apertures, after
how many round trips does the ray leave the resonator? Plot
ym, m = 2, 3, . . ., for d = 50 cm and d = 65 cm. You may use the
results of Prob. 11.2-8.

11.2-10 Gaussian-Beam Standing Waves. Consider a wave
formed by the sum of two identical Gaussian beams
propagating in the +z and −z directions. Show that the result is
a standing wave. Using the boundary conditions at two ideal
mirrors placed such that they coincide with the wavefronts,
derive the resonance frequencies (11.2-30).

11.2-11 Gaussian Beam in a Symmetric Confocal Resonator.
A symmetric confocal resonator with mirror spacing d = 16 cm,



mirror reflectances 0.995, and n = 1 is used in a laser operating
at λo = 1 μm.

a. Find the radii of curvature of the mirrors.

b. Find the waist of the (0, 0) (Gaussian) mode.

c. Sketch the intensity distribution of the (1, 0) modes at one of
the mirrors and determine the distance between its two peaks.

d. Determine the resonance frequencies of the (0, 0) and (1, 0)
modes.

e. Assuming that losses arise only from imperfect mirror
reflectances, determine the distributed resonator loss
coefficient αr.

*11.2-12 Diffraction Loss in a Symmetric Confocal
Resonator. The percent diffraction loss per pass for the
different low-order modes of a symmetric confocal resonator is
given in Fig. 11.2-11, as a function of the Fresnel number NF =
a2/λd (where d is the mirror spacing and a is the radius of the
mirror aperture). Using the parameters provided in Prob. 11.2-
11, determine the mirror radius for which the loss per pass of
the (1, 0) mode is 1%.

11.3-2 Number of Modes in Resonators of Different
Dimensions. Consider light of wavelength λo = 1.06 μm and
spectral width Δν = 120 GHz. How many modes have
frequencies within this linewidth in the following resonators (n
= 1):

a. A one-dimensional resonator of length d = 10 cm?

b. A 10 cm × 10 cm two-dimensional resonator?

c. A 10 cm × 10 cm × 10 cm three-dimensional resonator?

Notes



1 For a detailed mathematical description, see, for example, A. N.
Oraevsky, Whispering-Gallery Waves, Kvantovaya Elektronika
(Quantum Electronics), vol. 32, pp. 377–400, 2002.
2 See, e.g., M. Kuttge, F. Javier García de Abajo, and A. Polman,
Ultrasmall Mode Volume Plasmonic Nanodisk Resonators, Nano
Letters, vol. 10, pp. 1537–1541, 2010.



Chapter 12
STATISTICAL OPTICS

12.1 STATISTICAL PROPERTIES OF RANDOM LIGHT

A. Optical Intensity

B. Temporal Coherence and Spectrum

C. Spatial Coherence

D. Longitudinal Coherence

12.2 INTERFERENCE OF PARTIALLY COHERENT LIGHT

A. Interference of Two Partially Coherent Waves

B. Interferometry and Temporal Coherence

C. Interferometry and Spatial Coherence

*12.3 TRANSMISSION OF PARTIALLY COHERENT LIGHT

A. Propagation of Partially Coherent Light

B. Image Formation with Incoherent Light

C. Gain of Spatial Coherence by Propagation

12.4 PARTIAL POLARIZATION

 



The book Principles of Optics, first published in 1959 by Max Born
and Emil Wolf, drew attention to the importance of coherence in
optics. Emil Wolf is responsible for many advances in the theory of
optical coherence.

Statistical optics is the study of the properties of random light.
Randomness in light arises because of unpredictable fluctuations in
the source of light itself or in the medium through which it
propagates. Natural light, such as that radiated by a hot object (e.g.,
the sun) is random in time because it comprises a superposition of
emissions from a very large number of atoms that radiate
independently, and with different frequencies and phases.
Randomness in light can also arise as a result of scattering from a
rough surface, or transmission through a ground-glass diffuser or a
turbulent fluid, which impart random spatial variations to the
optical wavefront. The study of the random fluctuations of light is
also known as the theory of optical coherence.

In earlier chapters it was assumed that light is deterministic or
“coherent.” As discussed in Sec. 2.2, an example of coherent light is
the monochromatic wavefunction u(r, t)= Re{U (r) exp(j2πνt)}, for
which the complex amplitude U (r) is a deterministic complex
function, e.g., U (r) = (A0/r) exp(−jkr) for a spherical wave. The
dependence of the wavefunction on time and position is then
perfectly periodic and predictable [Fig. 12.0-1(a)]. For random light,
in contrast, the dependence of the wavefunction on time and
position is not totally predictable and generally requires statistical
methods for its characterization [Fig. 12.0-1(b)].



Figure 12.0-1 Time dependence and wavefronts of (a) a
monochromatic spherical wave, which is an example of coherent
light; (b) random light.

How can we go about extracting meaningful measures from the
fluctuations of a random optical wave that will permit us to
characterize it and distinguish it from other random waves?
Examine, for instance, the three random optical waves displayed in
Fig. 12.0-2, whose wavefunctions at some position vary with time as
shown. A good beginning is to observe that wave (b) is more
“intense” than wave (a), and that the envelope of wave (c) fluctuates
“faster” than the envelopes of the other two waves.

Figure 12.0-2 Time dependence of the wavefunctions of three
random waves.

To translate these casual qualitative observations into quantitative
measures, we use the concept of statistical averaging to define a
number of (nonrandom) measures of a wave. Because the random
function u(r,t) satisfies certain laws (the wave equation and
boundary conditions) its statistical averages must also satisfy
certain laws. The theory of optical coherence is concerned with the



definitions of these statistical averages, the laws that govern them,
and the measures by means of which light is classified as
coherent, incoherent, or, in general, partially coherent.

This Chapter

This chapter serves as an introduction to the theory of optical
coherence. Familiarity with the theory of random fields (random
functions of many variables — space and time) is useful for fully
understanding the theory of partial coherence. However, the
notions presented in this chapter are limited in scope, so that
knowledge of the concept of statistical averaging suffices.

In Sec. 12.1 we define two statistical averages used to describe
random light: the optical intensity and the mutual coherence
function. Temporal and spatial coherence are delineated, and the
connection between temporal coherence and monochromaticity is
established. The examples of partially coherent light provided in
Sec. 12.1 reveal that spatially coherent light need not be temporally
coherent, and that monochromatic light need not be spatially
coherent. One of the basic manifestations of the coherence of light
is its ability to produce visible interference fringes. Section 12.2 is
devoted to the laws of interference obeyed by random light. The
propagation of partially coherent light in free space, and its
transmission through various optical systems (including image-
formation systems) is the subject of Sec. 12.3. The theory of
polarization of random light (partial polarization), which relies on
statistical averaging of the components of the optical field vector, is
introduced in Sec. 12.4. With the exception of this latter section, our
exposition is framed in the context of scalar wave optics.

12.1 STATISTICAL PROPERTIES OF RANDOM
LIGHT
An arbitrary optical wave is described by a wavefunction u(r, t) =
Re{U (r, t)}, where U (r, t) is the complex wavefunction. For



(12.1-1)

(12.1-1)

example, U (r, t) may take the form U (r) exp(j2πνt) for
monochromatic light, or it may comprise a sum of such functions
with many different values of ν for polychromatic light (see Sec.
2.6A for a discussion of the complex wavefunction). For random
light, both functions, u(r, t) and U (r, t), are random and are
characterized by a number of statistical averages that are introduced
in this section.

A. Optical Intensity
As discussed in Secs. 2.2A and 2.6A, the intensity I (r, t) of coherent
(deterministic) light is related to the absolute square of the complex
wavefunction U (r, t) via

For pulsed light, the intensity is time varying whereas for
monochromatic deterministic light it is independent of time.

For random light, U (r, t) is a random function of time and position.
The intensity |U (r, t)|2 is therefore also random. The average
intensity is then defined as

Average Intensity

where the symbol ⟨·⟩ denotes an ensemble average over many
realizations of the random function. Thus, although a random wave
that is repeatedly reproduced under the same conditions leads to a
different wavefunction on each trial, the average intensity at each
time and position is determined by making use of (12.1-2). We
denote I (r, t) the intensity of the light (with the modifier average
implied), when there is no ambiguity in meaning. The unaveraged
quantity |U (r, t)|2, in contrast, is called the random intensity or
instantaneous intensity. For deterministic light, the averaging



operation is superfluous since all trials produce exactly the same
wavefunction, whereupon (12.12) is equivalent to (12.1-1).

The average intensity may be time independent or it may be a
function of time, as illustrated in Figs. 12.1-1(a) and (b),
respectively. The former case applies when the optical wave is
statistically stationary, i.e., when its statistical averages are
invariant to time. The instantaneous intensity |U (r, t)|2 then
fluctuates randomly with time, but its average is constant. We
denote the average intensity in this case by I (r). It is clear that
stationarity does not necessarily mean constancy; rather it signifies
constancy of the average properties. An example of stationary
random light is that emitted by an ordinary incandescent lamp
whose filament is heated by a constant electric current. The average
intensity I (r) is then a function of distance from the lamp, but it
does not vary with time. On the other hand, the random intensity |U
(r, t)|2 fluctuates with both position and time, as illustrated in Fig.
12.1-1(a).

Figure 12.1-1 (a) A statistically stationary wave has an average
intensity I (r) that does not vary with time. (b) A statistically
nonstationary wave has an average intensity I (r, t) that varies with
time. These plots represent, for example, the intensity of light
produced by an incandescent lamp driven by (a) a constant electric
current, and (b) a pulse of electric current.

When the light is stationary, the statistical averaging operation over
many realizations of the wave, as prescribed by (12.1-2), is usually



(12.1-3)

(12.1-4)

equivalent to time averaging over a long time duration, which is
written as

B. Temporal Coherence and Spectrum
Consider the fluctuations of stationary light at a fixed position r, as
a function of time. The stationary random function U (r, t) has a
constant intensity I (r)= 〈|U (r, t)|2〉. For brevity, we need not
explicitly indicate the r dependence since r is fixed, so that we may
write U (r, t) = U (t) and I (r) = I.

The random fluctuations of U (t) are characterized by a time scale
representing the “memory” of the random function. After this time,
the process “forgets” itself, so that fluctuations at points separated
by a time interval longer than this memory time are independent.
The function appears to be relatively smooth within its memory
time, but “rough” or “erratic” when examined over longer time
scales as portrayed in Fig. 12.0-2. A quantitative measure of this
temporal behavior is established by defining a statistical average
called the autocorrelation function. This function describes the
extent to which the wavefunction fluctuates in unison at two
instants of time separated by a given time delay, and thus serves to
establish the time scale of the process that characterizes the
wavefunction.

Temporal Coherence Function

The autocorrelation function of a stationary complex random
function U (t) is defined as the average of the product of U∗(t) and
U (t + τ), as a function of the time delay τ,



(12.1-5)

Temporal Coherence Function

or

(see Sec. A.1 in Appendix A).

To understand the significance of the definition in (12.1-4), consider
the case in which the average value of the complex wavefunction (U
(t)) = 0. This is applicable when the phase of the phasor U (t) is
equally likely to have any value between 0 and 2π, as illustrated in
Fig. 12.1-2. The phase of the product U* (t) U (t + τ) is the angle
between phasors U (t) and U (t + τ). If these two quantities are
uncorrelated, the angle between their phasors varies randomly
between 0 and 2π. The phasor U* (t) U (t + τ) then has a totally
uncertain angle, so that it is equally likely to take any direction,
making its average, the autocorrelation function G(τ), vanish. On
the other hand if, for a given value of τ, U (t) and U (t + τ) are
correlated, their phasors will maintain some relationship. Their
fluctuations are then linked together so that the product phasor U*
(t) U (t + τ) will have a preferred direction and its average G(τ) will
not vanish.

Figure 12.1-2 Variation of the phasor U (t) with time when its
argument is uniformly distributed between 0 and 2π. The average
values of its real and imaginary parts are zero, so that (U (t)) = 0.



(12.1-7)

(12.1-8)

(12.1-9)

(12.1-6)

In the language of optical coherence theory, the autocorrelation
function G(τ) is known as the temporal coherence function. It
is easy to show that G(τ) is a function with Hermitian symmetry,
G(−τ) = G* (τ), and that the intensity I, defined by (12.12), is equal
to G(τ) when τ = 0 :

Degree of Temporal Coherence

The temporal coherence function G(τ) carries information about
both the intensity I = G(0) and the degree of correlation
(coherence) of stationary light. A measure of coherence that is
insensitive to the intensity is provided by the normalized
autocorrelation function,

Complex Degree of 
Temporal Coherence

which is called the complex degree of temporal coherence. Its
absolute value cannot exceed unity,

The value of |g(τ)| is a measure of the degree of correlation
between U (t) and U (t + τ). When the light is deterministic and
monochromatic, i.e., when U (t) = A0 exp(j2πν0t) where A0 is a
constant, (12.1-7) yields

so that |g(τ)| = 1 for all τ. The variables U (t) and U (t + τ) are then
completely correlated for all time delays τ. For most sources of light,



(12.1-10)

|g(τ)| decreases from its maximum value |g(0)| = 1 as τ increases,
and the fluctuations become uncorrelated for sufficiently large τ.

Coherence Time

If |g(τ)| decreases monotonically with time delay, the value τc at
which it drops to a prescribed value (1/2 or 1/e, for example) serves
as a measure of the memory time of the fluctuations. The quantity
τc is known as the coherence time (see Fig. 12.1-3).

Figure 12.1-3 Illustrations of the wavefunction, magnitude of the
complex degree of temporal coherence |g(τ)|, and coherence time τc
for an optical field with (a) short coherence time and (b) long
coherence time. The amplitudes and phases of the wavefunctions
vary randomly with time constants approximately equal to τc (which
is greater than the duration of an optical cycle). Within the
coherence time, the wave is rather predictable and can be
approximated by a sinusoid. However, given the amplitude and
phase of the wave at a particular time, the amplitude and phase at
times beyond the coherence time cannot be predicted.

For τ < τc the fluctuations are “strongly” correlated whereas for τ >
τc they are “weakly” correlated. In general, τc is the width of the
function |g(τ)|. Although the definition of the width of a function
can take many forms (see Sec. A.2 of Appendix A), the power-
equivalent width is commonly used as the definition of coherence
time:
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Coherence Time

[see (A.2-8) and note that g(0) = 1].

EXERCISE 12.1-1

Coherence Time. Verify that the following expressions for the
complex degree of temporal coherence are consistent with the
definition of τc given in (12.1-10):

By what factor does |g(τ)| drop as τ increases from 0 to τc in
each case?

The coherence time of monochromatic light is infinite since |g(τ)| =
1 everywhere. Light for which the coherence time τc is much longer
than differences of the time delays encountered in an optical system
of interest is effectively completely coherent. Thus, light is
effectively coherent if the distance cτc is much greater than all
optical pathlength differences encountered. This distance is known
as the coherence length:

Coherence Length

Power Spectral Density

To determine the average spectrum of random light, we carry out a
Fourier decomposition of the random function U (t). The amplitude
of the component with frequency ν is the Fourier transform (see
Appendix A)
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The average energy per unit area of those components with
frequencies in the interval between ν and ν + dν is (|V (ν)|2) dν, so
that (|V (ν)|2) represents the energy spectral density of the light
(energy per unit area per unit frequency). Note that the complex
wave function U (t) has been defined so that V (ν) = 0 for negative ν
(see Sec. 2.6A).

Since a truly stationary function U (t) is eternal and carries infinite
energy, we consider instead the power spectral density. We first
determine the energy spectral density of the function U (t) observed
over a window of time width ⊤ by finding the truncated Fourier
transform

and we then determine the energy spectral density (|V⊤ (ν)|2). The

power spectral density is the energy per unit time (1/⊤))|V⊤ (ν)|2).
We can now extend the time window to infinity by taking the limit
⊤ →∞, which yields the power spectral density:

S(ν) is nonzero only for positive frequencies. Because U (t) was
defined such that |U (t)|2 represents power per unit area, or
intensity (W/cm2), S(ν) dν represents the average power per unit
area carried by frequencies between ν and ν + dν, so that S(ν)
actually represents the intensity spectral density (W/cm2-Hz). It
is often referred to simply as the spectral density or the
spectrum. The total average intensity is the integral



(12.1-17)

The autocorrelation function G(τ), defined by (12.1-4), and the
spectral density S(ν) defined by (12.1-15) can be shown to form a
Fourier transform pair (see Prob. 12.1-5),

Power Spectral Density

This relation is known as the Wiener–Khinchin theorem.

An optical wave representing a color image, such as that illustrated
in Fig. 12.1-4, has a spectrum that varies with position r; each
spectral profile shown corresponds to a perceived color.

Figure 12.1-4 Spectral densities, plotted as a function of
wavelength, at three locations in a color image (Georgia O’Keeffe,
Red Canna, 1919, High Museum of Art, Atlanta).

Spectral Width

The spectrum of light is often confined to a narrow band centered
about a central frequency ν0. The spectral width, or linewidth, of
light is the width Δν of the spectral density S(ν). Because of the
Fourier-transform relation between S(ν) and G(τ), their widths are
inversely related. As illustrated in Fig. 12.1-5, a light source of broad
spectral width has a short coherence time, whereas a light source of



narrow spectral width has a long coherence time. In the limiting
case of monochromatic light, G(τ) = I exp(j2πν0τ), so that the
corresponding intensity spectral density S(ν) = Iδ(ν −ν0) contains
only a single frequency component ν0, in which case τc = ∞ and Δν =
0. The coherence time of a source of light can be increased by
passing it through an optical filter to reduce its spectral width. The
resultant gain of coherence comes at the expense of a reduction of
its intensity.

Figure 12.1-5 Two random waves together with the magnitudes of
their complex degree of temporal coherence and their spectral
densities. The widths of S(ν) and |g(τ)| are inversely related.

There are several definitions for spectral width (see Appendix A,
Sec. A.2). The most common is the full-width at half-maximum
(FWHM) of the function S(ν), which we denote ΔνFWHM ≡ Δν. The
relation between ΔνFWHM and the coherence time τc depends on the
spectral profile of the source, as indicated in Table 12.1-1.

Table 12.1-1 Relation between spectral width ΔνFWHM and
coherence time τc for light with several different spectral profiles.

Spectral Profile Rectangular Lorentzian Gaussian

Spectral Width ΔνFWHM

An alternative convenient definition of the spectral width is



(12.1-18)

(12.1-19)

Using the definition provided in (12.1-18) it can be shown that

Spectral Width

regardless of the spectral profile (see Exercise 12.1-2). As an
example, if S(ν) is a rectangular function extending over a frequency
interval from ν0 − B/2 to ν0 + B/2, then (12.1-18) yields Δνc = B. For
this profile, the coherence time τc = 1/B, so that (12.1-19) is obeyed.
The two definitions of bandwidth, Δνc and ΔνFWHM, differ by a factor
that ranges from 0.32 to 1 for the spectral profiles presented in
Table 12.1-1.

EXERCISE 12.1-2

Relation Between Spectral Width and Coherence Time.
Show that the coherence time τc defined in (12.1-10) is related to
the spectral width Δνc defined in (12.1-18) by the simple inverse
relation τc = 1/Δνc. Hint: Use the definitions of Δνc and τc, the
Fourier-transform relation between S(ν) and G(τ), and
Parseval’s theorem provided in (A.1-7) [Appendix A].

Representative spectral widths for several different sources of light,
along with their associated coherence times and coherence lengths,
are provided in Table 12.1-2.



Table 12.1-2 Spectral widths Δνc for various sources of light
together with their coherence times τc and coherence lengths in free
space lc = coτc.

Source Δνc (Hz) τc = 1/
Δνc

lc =
coτc

Filtered sunlight (λo = 0.4–0.8 μm) 3.74 ×
1014

2.67 fs 800
nm

Light-emitting diode (λo = 1 μm, Δλo =
50 nm)

1.5 ×
1013

67     fs 20 μm

Low-pressure sodium lamp 5 × 1011 2     ps 600
μm

Multimode He–Ne laser (λo = 633 nm) 1.5 × 109 0.67 ns 20 cm

Single-mode He–Ne laser (λo = 633 nm) 1 × 106 1     μs 300 m



(12.1-20)

EXAMPLE 12.1-1. A Wave Comprising a Random
Sequence of Wavepackets. Light emitted from an incoherent
source may be modeled as a sequence of wavepackets emitted at
random times (Fig. 12.1-6).1 Each wavepacket is taken to have a
random phase since it is emitted by a different atom.

Figure 12.1-6 Light comprising wavepackets emitted at random
times has a coherence time equal to the duration of a
wavepacket.

The individual wavepackets may be sinusoidal with an
exponentially decaying envelope, for example, so that at a given
position a wavepacket emitted at t = 0 has a complex
wavefunction given by

The emission times are totally random, and the random
independent phases of the different emissions are included in
Ap. The statistical properties of the total field may be determined
by performing the necessary averaging operations using the
rules of mathematical statistics. The result is a complex degree
of coherence given by g(τ) = exp(−|τ|/τc) exp(j2πν0τ), whose
magnitude is a double-sided exponential function. The
corresponding power spectral density is Lorentzian, S(ν) =
(Δν/2π)/[(ν − ν0)2 + (Δν/2)2], where Δν = 1/πτc (see Table A.1-1
in Appendix A). The coherence time τc in this case turns out to
be exactly the width of a wavepacket. The statement that this
light is correlated within the coherence time therefore signifies
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that it is correlated within the duration of an individual
wavepacket.

C. Spatial Coherence

Mutual Coherence Function

An important descriptor of the spatial and temporal fluctuations of
the random function U (r, t) is the cross-correlation function of U
(r1,t) and U (r2, t) at pairs of positions r1 and r2:

Mutual Coherence Function

This function of the two positions and the time delay τ is known as
the mutual coherence function. Its normalized form is known
as the complex degree of coherence:

Complex Degree of Coherence

When the two points coincide so that r1 = r2 = r, (12.1-21) and (12.1-
22) reproduce the temporal coherence function and the complex
degree of temporal coherence at the position r, as provided in (12.1-
4) and (12.1-7), respectively. When τ = 0 as well, we recover the
intensity I (r) = G(r, r, 0) at the position r. The analogous cross-
correlation functions in the quantum theory of optical coherence
are defined in terms of operators rather than fields and the averages
are carried out with respect to the quantum state of the light, in
accordance with the precepts of quantum optics (Sec. 13.3).
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The complex degree of coherence g(r1, r2, τ) is the cross-correlation
coefficient of the random variables U* (r1, t) and U (r2, t + τ). As
with the complex degree of temporal coherence [see (12.1-8)], its
absolute value is bounded between zero and unity:

This quantity is therefore considered a measure of the degree of
correlation between the fluctuations at r1 and those at r2 at a time τ
later.

When the two phasors U (r1, t) and U (r2, t) fluctuate independently
and their phases are totally random (each having a phase that is
equally probable between 0 and 2π), |g(r1, r2, τ)| = 0 since the
average of the product U* (r1, t) U (r2, t + τ) vanishes. The light
fluctuations at the two points are then uncorrelated. The other
limit, |g(r1, r2, τ)| = 1, obtains when the light fluctuations at r1, and
at r2 a time τ later, are fully correlated. Note that |g(r1, r2, 0)| is not
necessarily unity; however, by definition |g(r, r, 0)| = 1.

The dependence of g(r1, r2, τ) on the positions and on the time delay
characterizes the spatial and temporal coherence of light. Two
examples of the dependence of |g(r1, r2, τ)| on the distance |r1−r2|
and on the time delay τ are illustrated in Fig. 12.1-7. The temporal
and spatial fluctuations of light are interrelated since light
propagates in waves and the complex wavefunction U (r, t) must
satisfy the wave equation. This imposes certain conditions on the
mutual coherence function (see Exercise 12.1-3). To illustrate this
point, consider, for example, a plane wave of random light traveling
in the z direction at velocity c in a homogeneous and nondispersive
medium. Fluctuations at the points r1 = (0, 0, z1) and r2 = (0, 0, z2)
are completely correlated when the time delay is τ = τ0 ≡|z2 − z1|/c,
whereupon |g(r1, r2, τ0)| = 1. Considered as a function of τ, |g(r1, r2,
τ)| then has its maximum value at τ = τ0, as illustrated in Fig.
12.17(b). This example will be revisited in Sec. 12.1D.
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Figure 12.1-7 Two examples of |g(r1, r2, τ)| as a function of the
separation |r1 −r2| and the time delay τ. In (a) the maximum
correlation for a given |r1 − r2| occurs at τ = 0, whereas in (b) the
maximum correlation occurs at |r1 − r2| = cτ.

EXERCISE 12.1-3

Differential Equations Governing the Mutual
Coherence Function. In free space, U (r, t) must satisfy the
wave equation, ∇2U − (1/c2)∂2U/∂t2 = 0. Use the definition (12.1-
21) to show that the mutual coherence function G(r1, r2, τ)
satisfies a pair of partial differential equations known as the
Wolf equations,

where  and  are the Laplacian operators with respect to r1
and r2, respectively.

Mutual Intensity

The spatial correlation of light may be assessed by examining the
dependence of the mutual coherence function on position at a
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specified fixed time delay τ. In many situations the point τ = 0 is the
most appropriate to consider, as in the example illustrated in Fig.
12.1-7(a). The mutual coherence function at τ = 0 is known as the
mutual intensity,

and is usually denoted by G(r1, r2) for simplicity. The diagonal
values of the mutual intensity (r1 = r2 = r) yield the intensity I (r) =
G(r, r). It is sometimes appropriate to use values of τ other than τ =
0, however, as the example in Fig. 12.1-7(b) illustrates.

When the optical pathlength differences encountered in an optical
system are much shorter than the coherence length lc = cτc, the
light effectively possesses complete temporal coherence, in which
case the mutual coherence function is a harmonic function of time
[see (12.1-10)],

where ν0 = ω0/2π is the central frequency. The light is then referred
to as quasi-monochromatic and the mutual intensity G(r1, r2)
completely describes the spatial coherence.

At τ = 0, the complex degree of coherence g(r1, r2, 0) is called the
normalized mutual intensity and is denoted g(r1, r2):

Normalized Mutual Intensity

The magnitude |g(r1, r2)| is bounded between zero and unity and is
regarded as a measure of the degree of spatial coherence when the
time delay τ = 0. If the complex wavefunction U (r, t) is



deterministic, |g(r1, r2)| = 1 for all r1 and r2, and the light is
completely correlated everywhere.

Coherence Area

In a given plane, in the vicinity of a given position r2, the spatial
coherence of quasi-monochromatic light is described by |g(r1, r2)|
as a function of the distance |r1 − r2|. This function is unity when r1
= r2 and decreases (but not necessarily monotonically) as |r1 − r2|
increases. The area scanned by the point r1 within which the
function |g(r1, r2)| is greater than some prescribed value (1/2 or 1/e,
for example) is called the coherence area Ac. It represents the
spatial extent of |g(r1, r2)| as a function of r1 for a fixed value of r2,
as illustrated in Fig. 12.1-8. In the ideal limit of coherent light, the
coherence area is infinite.

Figure 12.1-8 Two illustrative examples of the magnitude of the
normalized mutual intensity as a function of r1 in the vicinity of a
fixed point r2. The coherence area in (a) is smaller than that in (b).

The coherence area is an important parameter for characterizing
random light, but it must be viewed in relation to other pertinent
dimensions of the optical system under consideration. For example,
if the coherence area is greater than the size of an aperture through
which the light is transmitted, we have |g(r1, r2)|≈ 1 at all points of
interest, so that the light may be regarded as coherent (just as if Ac
were infinite). Similarly, if the coherence area is smaller than the
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spatial resolution of the optical system, it can be regarded as
infinitesimal, i.e., g(r1, r2) ≈ 0 for practically all r1 ≠ r2. In this limit,
the light is said to be incoherent.

Light emitted from an extended radiating hot surface has a
coherence area of the order of λ2, where λ is the central wavelength,
so that in most practical cases such light may be regarded as
incoherent. Complete coherence and incoherence are therefore seen
to be idealizations that represent the two limits of partial coherence.

Cross-Spectral Density

The mutual coherence function G(r1, r2, τ) describes the spatial
correlation at each time delay τ. The time delay τ = 0 is selected to
define the mutual intensity G(r1, r2) = G(r1, r2, 0), which is suitable
for describing the spatial coherence of quasi-monochromatic light.
A useful alternative is to describe coherence in the frequency
domain by examining the spatial correlation at a fixed frequency.
The cross-spectral density (or the cross-power spectrum) is
defined as the Fourier transform of G(r1, r2, τ) with respect to τ:

Cross-Spectral Density

When r1 = r2 = r, the cross-spectral density becomes the power-
spectral density S(ν) at position r, as defined in (12.1-17).

The normalized cross-spectral density is defined by

Its magnitude can be shown to be bounded between zero and unity,
so that it serves as a measure of the degree of spatial coherence at
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the frequency ν. It represents the degree of correlation of the
fluctuation components of frequency ν at positions r1 and r2.

In certain cases, the cross-spectral density factors into a product of a
function of position and another of frequency, S(r1, r2, ν) = G(r1, r2)
s(ν), so that the spatial and spectral properties are separable. The
light is then said to be cross-spectrally pure. The mutual coherence
function must then also factor into a product of a function of
position and another of time, G(r1, r2, τ) = G(r1, r2)g(τ), where g(τ)
is the inverse Fourier transform of s(ν). If the factorization parts are
selected such thats ∫ s(ν) dν = 1, then G(r1, r2) = G(r1, r2, 0), so that
G(r1, r2) is nothing but the mutual intensity. Cross-spectrally pure
light has two important properties:

1. At a single position r, S(r, r,ν) = G(r, r)s(ν) = I (r)s(ν). The
spectrum has the same profile at all positions. If the light
represents a visible image, it would appear to have the same
color everywhere but the brightness would vary.

2. The normalized cross-spectral density

is independent of frequency. In this case the normalized
mutual intensity g(r1, r2) describes the spatial coherence at all
frequencies.

D. Longitudinal Coherence
In this section the concept of longitudinal coherence is introduced
by taking examples of random waves with fixed wavefronts, such as
plane and spherical waves.

Partially Coherent Plane Wave

Consider a plane wave
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traveling in the z direction in a homogeneous medium with velocity
c, as considered in Sec. 2.6A. The complex wavefunction U (r, t)
satisfies the wave equation for an arbitrary function a(t). If a(t) is a
random function, U (r, t) represents partially coherent light. The
mutual coherence function defined in (12.1-21) is then

where z1 and z2 are the z components of r1 and r2 and Ga(τ) = (a*(t)
a(t + τ))is the autocorrelation function of a(t), which is assumed to
be independent of t [see Fig. 12.1-7(b)].

The intensity I (r) = G(r, r, 0) = Ga(0) is constant everywhere in
space. Temporal coherence is characterized by the time function
G(r, r,τ) = Ga(τ) exp(jω0τ), which is independent of position. The
complex degree of coherence is g(r, r,τ) = ga(τ) exp(jω0τ), where
ga(τ) = Ga(τ)/Ga(0). The width of |ga(τ)| = |g(r, r,τ)|, defined by an
expression similar to (12.1-10), is the coherence time τc. It is the
same at all positions.

The power spectral density is the Fourier transform of G(r, r, τ) with
respect to τ. From (12.1-32), S(ν) is seen to be equal to the Fourier
transform of Ga(τ) shifted by a frequency ν0 (in accordance with the
frequency shift property of the Fourier transform defined in
Appendix A, Sec. A.1). The wave therefore has the same power
spectral density everywhere in space.

The spatial coherence properties are described by

and its normalized version
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If the two points r1 and r2 lie in the same transverse plane, i.e., z1 =
z2, then |g(r1, r2, 0)| = |ga(0)| = 1. This means that fluctuations at
points on a wavefront (a plane normal to the z axis) are completely
correlated; the coherence area in any transverse plane is infinite
(see Fig. 12.1-9). On the other hand, fluctuations at two points
separated by an axial distance z2−z1 such that |z2 −z1|/c > τc, or |z2
−z1| >lc where lc = cτc is the coherence length, are approximately
uncorrelated.

Figure 12.1-9 The fluctuations of a partially coherent plane wave
at points on any wavefront (transverse plane) are completely
correlated, whereas those at points on wavefronts separated by an
axial distance greater than the coherence length lc = cτc are
approximately uncorrelated.

We conclude that the partially coherent plane wave is spatially
coherent across each transverse plane, but only partially coherent in
the axial direction. The axial (longitudinal) spatial coherence of the
wave has a one-to-one correspondence with the temporal
coherence. The relationship of the coherence length lc = cτc to the
maximum optical path difference in the system lmax governs the
role played by coherence. If lc ≫ lmax, the wave is effectively
completely coherent. The coherence lengths of various light sources
were provided in Table 12.1-2.



The intensity I (r) = Ga(0)/r2 varies in accordance with an inverse-
square law. The coherence time τc is the width of the function
|ga(τ)| = |Ga(τ)/Ga(0)|. It is the same everywhere in space, as is the
power spectral density. For τ = 0, fluctuations at all points on a
spherical wavefront are completely correlated, whereas fluctuations
at points on two wavefronts separated by the radial distance |r2 −
r1| ≫ lc = cτc are uncorrelated (see Fig. 12.1-10).

An arbitrary partially coherent wave transmitted through a pinhole
generates a partially coherent spherical wave. This process therefore
imparts spatial coherence to the incident wave (points on any
sphere centered about the pinhole become completely correlated).
However, the wave remains temporally partially coherent. Points at
different distances from the pinhole are only partially correlated.
The pinhole imparts spatial coherence, but not temporal coherence,
to the wave.

Figure 12.1-10 A partially coherent spherical wave exhibits
complete spatial coherence at all points on a wavefront, while points
on wavefronts separated by a distance greater than the coherence
length lc = cτc are approximately uncorrelated.

Suppose now that an optical filter of very narrow spectral width is
placed at the pinhole, causing the transmitted wave to become
approximately monochromatic. The wave will then have complete
temporal as well as spatial coherence. Spatial coherence is imparted
by the pinhole, which acts as a spatial filter, while temporal
coherence is introduced by the narrowband filter. The price paid for
obtaining such an ideally coherent wave is, of course, the loss of
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optical energy associated with the temporal and spatial filtering
processes.

12.2 INTERFERENCE OF PARTIALLY
COHERENT LIGHT
The interference of coherent light was discussed in Sec. 2.5. This
section is devoted to the interference of partially coherent light.

A. Interference of Two Partially Coherent Waves
The statistical properties of two partially coherent waves U1 and U2
are characterized not only by their own mutual coherence functions
but also by a measure of the degree to which their fluctuations are
correlated. At a given position r and time t, the intensities of the two
waves are I1 = (|U1|2) and I2 = (|U2|2), whereas their cross-
correlation is described by the statistical average G12 = (U1

*U2),
along with its normalized version

When the two waves are superposed, the average intensity of their
sum is

We thus obtain

Interference Equation
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where φ = arg{g12} is the phase of g12. The third term on the right-
hand side of (12.2-3) represents optical interference.

It is useful to consider two limits of this equation:

1. For two completely correlated waves with g12 = exp(jφ) and
|g12| = 1, we recover the interference equation (2.5-4) for two
coherent waves of phase difference φ.

2. For two uncorrelated waves with g12 = 0, the result is I = I1 + I2
and there is no interference.

In the general case, the normalized intensity versus the phase φ
assumes the form of a sinusoidal pattern, as shown in Fig. 12.2-1.
The strength of the interference is measured by the visibility V
(also called the modulation depth or the contrast of the
interference pattern):

where Imax and Imin are, respectively, the maximum and minimum
values that I takes as φ is varied. Since cos φ stretches between 1
and −1, inserting (12.2-3) into (12.2-4) yields

The visibility is therefore proportional to the absolute value of the
normalized cross-correlation |g12|. In the special case when I1 = I2,
this simplifies to

Visibility
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Figure 12.2-1 Normalized intensity I/2I0 of the sum of two
partially coherent waves of equal intensities (I1 = I2 = I0), as a
function of the phase φ of their normalized cross-correlation g12.
This sinusoidal pattern has visibility V = |g12|.

The interference equation (12.2-3) will now be considered in a
number of specific contexts to highlight the effects that temporal
and spatial coherence have on the interference of partially coherent
light.

B. Interferometry and Temporal Coherence
Consider a partially coherent wave U (t) with intensity I0 and
complex degree of temporal coherence g(τ) = (U* (t)U (t+τ))/I0. If U
(t) is simply added to a replica of itself that is delayed by the time τ,
U (t+τ), what is the intensity I of the superposition?

Using the interference formula (12.2-2) with U1* = U (t), U2 = U (t+
τ), I1 = I2 = I0, and g12 = (U*U2)/I0 = (U* (t)U (t + τ))/I0 = g(τ), we
obtain

where φ(τ) = arg{g(τ)}. It is thus apparent that the ability of a wave
to interfere with a time delayed replica of itself is governed by its
complex degree of temporal coherence at that time delay.

Implementing the addition of a wave with a time-delayed replica of
itself may be achieved by using a beamsplitter to generate two
identical waves, one of which is made to traverse a longer optical
path than the other, and then recombining them at another (or the
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same) beamsplitter. This can be effected, for example, with the help
of a Mach–Zehnder or a Michelson interferometer (see Fig. 2.5-3).

Consider, as an example, the partially coherent plane wave
introduced in Sec. 12.1D [see (12.1-31)], whose complex degree of
temporal coherence is g(τ) = ga(τ) exp(jω0τ). The spectral width of
the wave is Δνc = 1/τc, where τc (the width of |ga(τ)|) is the
coherence time. Substituting this into (12.2-7), we obtain

where φa(τ) = arg{ga(τ)}.

This relation between I and τ, which is known as an
interferogram, is illustrated in Fig. 12.2-2. Assuming that Δνc = 1/
τc ≪ ν0, the functions |ga(τ)| and φa(τ) vary slowly in comparison
with the period 1/ν0. The visibility of this interferogram in the
vicinity of a particular time delay τ is V = |g(τ)| = |ga(τ)|. It has a
peak value of unity near τ = 0 and vanishes for τ ≫ τc , i.e., when the
optical path difference is much greater than the coherence length lc
= cτc. For the Michelson interferometer illustrated in Fig. 12.2-2, τ =
2(d2 − d1)/c. Interference occurs only when the optical path
difference is smaller than the coherence length.

Figure 12.2-2 The normalized intensity I/2I0, as a function of the
time delay τ, when a partially coherent plane wave is introduced
into a Michelson interferometer. The visibility is a measure of the
magnitude of the complex degree of temporal coherence.
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The magnitude of the complex degree of temporal coherence of a
wave, |g(τ)|, may therefore be measured by monitoring the visibility
of the interference pattern as a function of time delay. The phase of
g(τ) may be measured by observing the locations of the peaks of the
pattern.

Fourier-Transform Spectroscopy

It is revealing to write (12.2-7) in terms of the power spectral
density of the wave S(ν). Using the Fourier-transform relation
between G(τ) and S(ν),

substituting into (12.2-7), and noting that S(ν) is real and that 
S(ν) dν = I0, we obtain

This equation can be interpreted as representing a weighted
superposition of interferograms produced by each of the
monochromatic components of the wave. Each component ν
produces an interferogram with period 1/ν and unity visibility, but
the composite interferogram exhibits reduced visibility by virtue of
the different periods.

Equation (12.2-10) suggests that the spectral density S(ν) of a light
source can be determined by measuring the interferogram I versus τ
and then inverting the result by means of Fourier-transform
methods. This technique is known as Fourier-transform
spectroscopy.

Optical Coherence Tomography

Optical coherence tomography (OCT) is an interferometric
technique for profiling a multilayered medium, i.e., for measuring
the reflectance and depth of each of its boundaries. In its simplest
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form, known as time-domain OCT, it makes use of a partially
coherent light source of short coherence length and a Michelson
interferometer. As illustrated in Fig. 12.2-3, a replica of the original
wave, delayed by a movable mirror, is superposed with a collection
of waves reflected from the multiple boundaries of the sample.
Information about the sample profile is carried by the
interferogram, which is the intensity measured at the detector as
the movable mirror is translated. By virtue of the short coherence
length of the source, the interferogram comprises sets of fringes
centered at path delays of the movable mirror that match those of
the reflecting boundaries.

Figure 12.2-3 Optical coherence tomography.

Let U (t − τ) be the wave reflected from the movable mirror, with its
associated time delay τ = d/co, and let riU (t − τi), i = 1, 2,..., be the
waves reflected from the boundaries of the sample, where ri
represents the amplitude reflectance at the ith boundary; the
associated time delays are designated τi. For a symmetric
beamsplitter, the average intensity is then I (τ) = ⟨|U (t − τ)+ Σi riU
(t − τi)|2⟩, which may be written in normalized form as

since the complex degree of temporal coherence of the source is
characterized by g(τ) = (U* (t) U (t + τ))\(U* (t)U (t)).
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The left-most summation on the right-hand side of (12.2-11) is of
paramount importance since it represents interference between the
reference wave from the movable mirror and each of the waves
reflected from the sample boundaries. The right-most summation
represents interference terms associated with pairs of reflections
from the sample; since these terms are independent of the path
delay of the movable mirror, τ = d/c, they may be regarded as
background contributions and ignored.

For a light source of central frequency ν0, we have g(τ) = ga(τ)
exp(jω0τ), where the width of ga(τ) is the coherence time τc.
Equation (12.2-11) then becomes

I/2I0 ≈ 1+ ri |ga(τ − τi)| cos [ω0(τ − τi)+ φa(τ − τi)] , (12.2-12)

where φa(τ) = arg{ga(τ)}. If the source is of short coherence length,
the function ga(τ) is narrow. As illustrated in Fig. 12.2-3, the
reflection from each sample boundary then generates a distinct set
of interference fringes of brief duration τc, centered about its
corresponding time delay. Measurement of the OCT interferogram
therefore permits the reflectance at each boundary, as well as the
width of each of the sample layers, to be determined.

Optical coherence tomography has proven to be an effective imaging
technique in clinical medicine as well as in engineering. It can also
be carried out in a frequency-domain OCT configuration in the
spirit of Fourier-transform spectroscopy. A particularly useful
configuration makes use of a narrowband optical source whose
frequency is swept in time (e.g., a wavelength-swept laser); this
approach offers improved detection sensitivity and data-acquisition
rates.

C. Interferometry and Spatial Coherence



The effect of spatial coherence on interference is demonstrated by
considering the Young’s double-pinhole interference experiment
discussed in Exercise 2.5-2 for coherent light. A partially coherent
optical wave U (r, t) illuminates an opaque screen with two pinholes
located at positions r1 and r2. The wave has mutual coherence
function G(r1, r2, τ) = ⟨U* (r1, t) U (r2, t + τ)⟩ and complex degree of
coherence g(r1, r2, τ). The intensities at the pinholes are assumed to
be equal.

Light is diffracted in the form of two spherical waves centered at the
pinholes. The two waves interfere, and the intensity I of their sum is
observed at a point r in the observation plane, at a distance d from
the screen that is sufficiently large so that the paraboloidal
approximation is applicable. In Cartesian coordinates, as shown in
Fig. 12.2-4, r1 = (−a, 0, 0), r2 = (a, 0, 0), and r = (x, 0, d). The
intensity is observed as a function of x. An important geometrical
parameter is the angle θ ≈ 2a/d subtended by the two pinholes.

Figure 12.2-4 Young’s double-pinhole interferometer illuminated
by partially coherent light. The incident wave is quasi-
monochromatic and has a normalized mutual intensity at the
pinholes described by g(r1, r2). The normalized intensity I/2I0 in the
observation plane, at a large distance from the pinhole plane, is a
sinusoidal function of x with period λ/θ and visibility V = |g(r1, r2)|.
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In the paraboloidal (Fresnel) approximation [see (2.2-17)], the two
diffracted spherical waves are approximately related to U (r, t) by

and have approximately equal intensities, I1 = I2 = I0. The
normalized cross-correlation between the two waves at r is

where the difference in the time delays encountered by the two
waves is given by

Substituting (12.2-14) into the interference formula (12.2-3) gives
rise to an observed intensity I ≡ I (x):

where φx = arg{g(r1, r2, τx)}. This equation describes the pattern of
intensity observed as a function of position x in the observation
plane, in terms of the magnitude and phase of the complex degree
of coherence at the pinholes at time delay τx = θx/c.

Quasi-Monochromatic Light

Moreover, if the light is quasi-monochromatic with central
frequency ν0 = ω0/2π, i.e., if g(r1, r2, τ) ≈ g(r1, r2) exp(jω0τ), then
(12.2-16) provides
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where λ = c/ν0, V = |g(r1, r2)|, τx = θx/c, and φ = arg{g(r1, r2)}. The
interference-fringe pattern is then sinusoidal with spatial period λ/θ
and visibility V. In analogy with the temporal case, the visibility of
the interference pattern is equal to the magnitude of the complex
degree of spatial coherence at the two pinholes (Fig. 12.2-4). The
locations of the peaks depend on the phase φ.

If the incident wave in a Young’s interferometer is a coherent plane
wave traveling in the z direction, U (r, t) = exp(−jkz) exp(jω0t), then
g(r1, r2) = 1, whereupon |g(r1, r2)| = 1 and arg{g(r1, r2)} = 0. The
interference pattern then has unity visibility and a peak at x = 0.
However, if the illumination is, instead, a tilted plane wave arriving
from a direction in the x–z plane that makes a small angle θx with
respect to the z axis, i.e., U (r, t) ≈ exp[−j(kz + kθxx)] exp(jω0t),
then g(r1, r2) = exp(−jkθx2a). The visibility remains at V = 1, but the
tilt results in a phase shift φ = −kθx2a = −2πθx2a/λ, so that the
interference pattern is shifted laterally by a fraction (2aθx/λ) of a
period. When φ = 2π, the pattern is shifted by one period.

Interference with Light from an Extended Source

Suppose now that the incident light is a collection of independent
plane waves arriving from a source that subtends an angle θs at the
plane of the pinhole (Fig. 12.2-5). The phase shift φ then takes
values in the range ±2π(θs/2)2a/λ = ±2πθsa/λ and the fringe pattern
is a superposition of displaced sinusoids. If θs = λ/2a, then φ takes
on values in the range ±π, which is sufficient to wash out the
interference pattern and thereby reduce its visibility to zero.
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Figure 12.2-5 Young’s interference fringes are washed out if the
illumination emanates from a source of angular diameter θs > λ/2a.
If the distance 2a is smaller than λ/θs, the fringes become visible.

We conclude that the degree of spatial coherence at the two
pinholes is very small when the angle subtended by the source is θs
≥ λ/2a. Consequently, a measure of the coherence distance in the
plane of the screen is

Coherence Distance

and a measure of the coherence area of light emitted from a source
subtending an angle θs is described by

The angle subtended by the sun, for example, is 0.5°, so that the
coherence distance for filtered sunlight of wavelength λ is ρc ≈ λ/θs
≈ 115λ. At λ = 0.5 μm, ρc ≈ 57.5 μm.

A more rigorous analysis (see Sec. 12.3C) reveals that the transverse
coherence distance ρc for a circular incoherent light source of
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uniform intensity is

Effect of Spectral Width on Interference

Finally, we examine the effect of the spectral width of the light on
interference in the Young’s double-pinhole interferometer. The
power spectral density of the incident wave is assumed to be a
narrow function of width Δνc centered about ν0, and Δνc ≪ ν0. The
complex degree of coherence then takes the form

where ga(r1, r2, τ) is a slowly varying function of τ (in comparison
with the period 1/ν0). Substituting (12.2-21) into (12.2-16), we
obtain

where Vx = |ga(r1, r2, τx)|, φx = arg{ga(r1, r2, τx)}, τx = θx/c, and λ =
c/ν0.

The resulting interference pattern is sinusoidal with period λ/θ but
with varying visibility Vx and varying phase φx, specified by the
magnitude and phase of the complex degree of coherence at the two
pinholes, respectively, evaluated at the time delay τx = θx/c. If
|ga(r1, r2, τ)| = 1 at τ = 0 and decreases with increasing τ, vanishing
for τ ≫ τc, then the visibility Vx = 1 at x = 0 and decreases with
increasing x, vanishing for x ≫ xc = cτc/θ. The interference pattern
is then visible over a distance



where lc = cτc is the coherence length and θ is the angle subtended
by the two pinholes (Fig. 12.2-6).

Figure 12.2-6 The visibility of Young’s interference fringes at
position x is the magnitude of the complex degree of coherence at
the pinholes, at a time delay τx = θx/c. For spatially coherent light
the number of observable fringes is the ratio of the coherence
length to the central wavelength, or, equivalently, the ratio of the
central frequency to the spectral linewidth.

The number of observable fringes is thus xc/(λ/θ) = lc/λ = cτc/λ =
ν0/Δνc. It is thus equal to the ratio of the coherence length to the
central wavelength, lc/λ, or the ratio of the central frequency to the
linewidth, ν0/Δνc. Clearly, if |g(r1, r2, 0)| < 1, i.e., if the source is not
spatially coherent, the visibility will be further reduced and even
fewer fringes will be observable.

*12.3 TRANSMISSION OF PARTIALLY
COHERENT LIGHT
The transmission of coherent light through thin optical
components, apertures, and free space was discussed in Chapters 2
and 4. In this section we revisit this discussion for quasi-
monochromatic partially coherent light. We assume that the
spectral width of the light is sufficiently small so that the coherence
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length lc = cτc = c/Δνc is much greater than the differences of optical
pathlengths in the system. The mutual coherence function may
then be approximated by G(r1, r2, τ) ≈ G(r1, r2) exp(j2πν0τ), where
G(r1, r2) is the mutual intensity and ν0 is the central frequency.

We observe at the outset that the laws of transmission applicable to
the deterministic function U (r) representing coherent light are also
applicable to the random function U (r) representing partially
coherent light. However, for partially coherent light our interest is
in the laws that govern statistical averages: the intensity I (r) and
the mutual intensity G(r1, r2).

A. Propagation of Partially Coherent Light

Transmission Through Thin Optical Components

When a partially coherent wave is transmitted through a thin
optical component characterized by an amplitude transmittance t(x,
y), the incident and transmitted waves are related by U2(r) =
t(r)U1(r) where r = (x, y) is the position in the plane of the
component (see Fig. 12.3-1). Using the definition of the mutual
intensity, G(r1, r2) = (U* (r1)U (r2)), we obtain

where G1(r1, r2) and G2(r1, r2) are the mutual intensities of the
incident and transmitted light, respectively.
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Figure 12.3-1 The absolute value of the degree of spatial coherence
is not altered by transmission through a thin optical component.

Since the intensity at position r is equal to the mutual intensity at r1
= r2 = r, we have

The normalized mutual intensities defined by (12.1-27) therefore
satisfy

Although transmission through a thin optical component may
change the intensity of partially coherent light, it does not alter the
magnitude of its degree of spatial coherence. Of course, if the
complex amplitude transmittance of the component itself were
random, the coherence of the transmitted light would be altered
accordingly.

Transmission Through an Arbitrary Optical System

We next consider transmission through an arbitrary optical system
— one that includes propagation in free space and thick optical
components. It was shown in Chapter 4 that the complex amplitude
U2(r) at a point r′ = (x′, y′) in the output plane of such a system is
generally a weighted superposition integral comprising
contributions from the complex amplitudes U1(r) at points r∈ =
(x',y') in the input plane,
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where h(r; r′) is the impulse response function of the system (see
Fig. 12.3-2). Equation (12.3-4) is a double integral with respect to r′
= (x′ ,y′) that extends over the entire input plane.

Figure 12.3-2 An optical system is characterized by its impulse
response function h(r; r′).

To translate this relation between the random complex-amplitude
functions U2(r) and U1(r) into a relation between their mutual
intensities, we substitute (12.3-4) into the definition G2(r1, r2) =
⟨U2* (r1) U2(r2)⟩ and use the definition G1(r1, r2) = ⟨U1*(r1) U1(r2)⟩ to
obtain

Mutual Intensity

If the mutual intensity G1(r1, r2) of the input light, and the impulse
response function h(r; r′) of the system are known, the mutual
intensity of the output light G2(r1, r2) is readily determined by
computing the integrals in (12.3-5).

The intensity of the output light is obtained by using the definition
I2(r) = G2(r, r), which, with the help of (12.3-5), reduces to
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Image Intensity

Thus, to determine the intensity of the output light, we must know
the mutual intensity of the input light. Knowledge of the input
intensity I1(r) by itself is generally not sufficient to determine the
output intensity I2(r).

B. Image Formation with Incoherent Light
We now consider the special case when the input light is
incoherent. The mutual intensity G1(r1, r2) then vanishes when r2 is
only slightly separated from r1, so that the coherence distance is
much smaller than other pertinent dimensions in the system (for
example, the resolution distance of an imaging system). According
to (12.1-27), the mutual intensity may then be written in the form
G1(r1, r2) = , where g(r1 − r2) is a very narrow
function. When using this expression for G1(r1, r2) in the integrals
in (12.3-5) and (12.3-6), it is convenient to approximate g(r1 − r2) by
a delta function, g(r1 − r2) = σδ(r1 − r2), where σ = ∫ g(r) dr is the
area under g(r), whereupon

Since the mutual intensity must remain finite and δ(0) →∞, this
equation cannot be used in general. However, it is suitable for
evaluating integrals such as that in (12.3-6). Substituting (12.3-7)
into (12.3-6), the delta function reduces the double integral to a
single integral, which provides
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Imaging Equation 
(Incoherent Illumination)

where

Impulse Response Function 
(Incoherent Illumination)

Under these conditions, the relation between the intensities at the
input and output planes describes a linear system of impulse
response function hi(r; r'), which is also known as the point-
spread function. When the input light is completely incoherent,
therefore, the intensity of the light at each point r on the output
plane is a weighted superposition of contributions from the
intensities at many points r′ on the input plane; there is no
interference and the intensities simply add (Fig. 12.3-3). This is to
be contrasted with the completely coherent system, in which the
complex amplitudes, rather than intensities, are related by a
superposition integral, as evidenced in (12.3-4).
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Figure 12.3-3 (a) The complex amplitudes of light at the input and
output planes of an optical system illuminated by coherent light are
related by a linear system with impulse response function h(r; r′).
(b) The intensities of light at the input and output planes of an
optical system illuminated by incoherent light are related by a linear
system with impulse response function hi(r; r′) = σ|h(r; r′)|2

In many optical systems, the impulse response function h(r; r′) is a
function of r − r, say h(r − r′). The system is then said to be shift
invariant or isoplanatic (see Appendix B, Sec. B.2). In this case
hi(r; r′) = hi(r−r′). The integrals in (12.3-4) and (12.3-8) then
represent two-dimensional convolutions and the systems can be
described by transfer functions H(νx,νy) and Hi(νx,νy), which are the
Fourier transforms of h(r) = h(x, y) and hi(r) = hi(x, y),
respectively.

As an example, we apply the relations set forth above to an imaging
system. The impulse response function of the single-lens focused
imaging system illustrated in Fig. 12.3-4 was considered in Sec. 4.4C
with coherent illumination. It was shown that, in the Fresnel
approximation, it can be expressed as [see (4.4-12)]

where P (νx,νy) is the Fourier transform of the pupil function p(x, y)
and d2 is the distance from the lens to the image plane. The pupil
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function is unity within the aperture and zero elsewhere.

Figure 12.3-4 Single-lens imaging system.

When the illumination is quasi-monochromatic and spatially
incoherent, the intensities of the light at the object and image
planes are linearly related by a system with impulse response
function

where λ is the wavelength corresponding to the central frequency
ν0.
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EXAMPLE 12.3-1. Coherent and Incoherent Imaging
Systems with Circular Apertures. If the aperture in Fig.
12.3-4 is a circle of radius a (diameter 𝒟 = 2a), the pupil function
p(x, y) = 1 for x, y inside the circle, and 0 elsewhere. Its Fourier
transform is (see Appendix A, Sec. A.3)

where J1(·) is the Bessel function of order 1. The impulse
response function of the coherent system is obtained by
substituting into (12.3-10),

where

which accords with the result reported in Example 4.4-1 [see
(4.4-13)].

For incoherent illumination, the impulse response function is
therefore

The impulse response functions h(x, y) and hi(x, y) are
illustrated in the top row of Fig. 12.3-5. Both functions reach
their first zero when 2πνsρ = 3.832, or ρ = ρs ≈ 3.832/2πνs =
3.832 λ/πθ, from which we obtain the two-point resolution



(12.3-17)

Two-Point Resolution

Thus, the image of a point (impulse) at the input plane is a patch
of intensity hi(x, y) and radius ρs. When the input distribution
comprises two points (impulses) separated by a distance ρs, the
image of one point vanishes at the center of the image of the
other point. The distance ρs is therefore a measure of the
resolution of the imaging system.

Figure 12.3-5 Impulse response functions and transfer
functions of a single-lens, focused, diffraction-limited imaging
system with a circular aperture and lens F# under (a) coherent,
and (b) incoherent illumination.

The transfer functions of linear systems with the impulse
response functions h(x, y) and hi(x, y) are, respectively, the
Fourier transforms (see Appendix A, Sec. A.3),

and



(12.3-18)

(12.3-19)

where . Both functions have been normalized such
that their values are unity at νρ = 0. These functions are
illustrated in the bottom row of Fig. 12.3-5. For coherent
illumination, the transfer function is flat and has a cutoff
frequency νs = θ/2λ lines/mm. For incoherent illumination, the
transfer function decreases approximately linearly with the
spatial frequency and has a cutoff frequency 2νs = θ/λ lines/mm.

If the object is placed at infinity so that d1 = ∞, we have d2 = f,
where f is the focal length of the lens. The angle θ = 2a/f is then
the inverse of the lens F -number since F# = f/2a. The cutoff
frequencies νs and 2νs are thus related to the lens F -number by
[see (4.4-19)]

It should not be concluded, however, that incoherent
illumination is superior to coherent illumination because it has
twice the spatial bandwidth. The transfer functions for the two
systems should not be compared directly since one describes
imaging of the complex amplitude while the other describes
imaging of the intensity.

C. Gain of Spatial Coherence by Propagation
Equation (12.3-5) describes the change of the mutual intensity
when the light propagates through an optical system of impulse
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response function h(r; r′ ). When the input light is incoherent, the
mutual intensity G1(r1, r2) may be approximated by (12.3-7),
whereupon the double integral in (12.3-5) reduces to

Mutual Intensity

It is evident that the transmitted light is no longer incoherent. In
general, light gains spatial coherence by the mere act of
propagation. This can be understood as follows. Although light
fluctuations at different points of the input plane are uncorrelated,
the radiation from each point spreads and overlaps with that from
neighboring points. The light reaching two points at the output
plane originates from many points at the input plane, some of
which are common (see Fig. 12.3-6). These common contributions
engender partial correlation between fluctuations at the output
points.

This phenomenon is not unlike the transmission of an uncorrelated
time signal (white noise) through a low-pass filter. The filter
smoothes the function and reduces its spectral bandwidth, so that
its coherence time increases and it is no longer uncorrelated. The
propagation of light through an optical system is a form of spatial
filtering that reduces the spatial bandwidth and therefore increases
the coherence area.
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Figure 12.3-6 Gain of coherence by propagation is a result of the
spreading of light. Although the light is completely uncorrelated at
the source, the light fluctuations at points 1 and 2 share a common
origin, the dark shaded area, and are therefore partially correlated.

van Cittert–Zernike Theorem

There is a mathematical identity between the expressions for the
gain of coherence of initially incoherent light propagating through
an optical system, and the change of the amplitude of coherent light
traveling through the same system. With respect to (12.3-20), if the
observation point r1 is fixed at the origin 0, for example, and the
mutual intensity G2(0, r2) is examined as a function of r2, then

Defining U2(r2) = G2(0, r2) and U1(r) = σh* (0; r)I1(r), (12.3-21) may
be written in the familiar form

which is nothing other than the integral (12.3-4) that governs the
propagation of coherent light. Thus, the observed mutual intensity
G(0, r2) at the output of an optical system whose input is incoherent
is mathematically identical to the observed complex amplitude of a
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coherent wave U1(r) = σh* (0; r)I1(r) presented at the input of the
same system.

As an example, assume that the incoherent input wave has uniform
intensity and extends over an aperture p(r)[p(r) = 1 within the
aperture and zero elsewhere] so that I1(r) = p(r); and assume also
that the optical system is free space so that h(r'; r) = exp(−jk|r′ −
r|)/|r′ − r|. The mutual intensity G2(0, r2) is then identical to the
amplitude U2(r2) obtained when a coherent wave with input
amplitude U1(r) = σh* (0; r)p(r) = σp(r) exp(jkr)/r is transmitted
through the same system. This is a spherical wave converging to the
point 0 at the output plane and transmitted through the aperture.

This connection between the gain of spatial coherence of incoherent
light, and the diffraction of coherent light, traveling through the
same system is known as the Van Cittert–Zernike theorem.

Gain of Coherence in Free Space

Consider an optical system comprising free-space propagation
between two parallel planes separated by a distance d (Fig. 12.3-7).
Light at the input plane is quasi-monochromatic and spatially
incoherent, and has intensity I (x, y) extending over a finite area.
The impulse response function is then described by the Fresnel
diffraction formula [see (4.1-18)]:

where r = (x, y, d) and r′ = (x′, y′, 0) are the coordinates of points at
the output and input planes, respectively, and h0 = (j/λd)
exp(−j2πd/λ) is a constant.
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Figure 12.3-7 Radiation from an incoherent source in free space.

We determine the mutual coherence function G(x1, y1, x2, y2) at two
points (x1, y1) and (x2, y2) in the output plane, by substituting (12.3-
23) into (12.3-20) to obtain

where σ1 = σ|h0|2 = σ/λ2d2 is another constant. Given I (x, y), one
can easily determine |G(x1, y1, x2, y2)| in terms of the two-
dimensional Fourier transform of I (x, y),

evaluated at νx = (x2 − x1)/λd and νy = (y2 − y1)/λd. The magnitude
of the corresponding normalized mutual intensity is then

This Fourier transform-relation between the intensity profile of an
incoherent source and the degree of spatial coherence of its far field
is similar to the Fourier-transform relation between the amplitude
of coherent light at the input and output planes (see Sec. 4.2A). The
similarity is expected in view of the Van Cittert–Zernike theorem.



The implications of (12.3-26) are profound. If the area of the source,
i.e., the spatial extent of I (x, y), is small, its Fourier transform 𝒥
(νx,νy) is wide, so that the mutual intensity at the output plane
extends over a wide area and the area of coherence at the output
plane is large. In the extreme limit in which light at the input plane
originates from a point, the area of coherence is infinite and the
radiated field is spatially completely coherent. This confirms our
earlier discussions in Sec. 12.1D with respect to the coherence of
spherical waves. On the other hand, if the input light originates
from a large extended source, the propagated light has a small area
of coherence.
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EXAMPLE 12.3-2. Radiation from an Incoherent
Circular Source. For input light with uniform intensity I (x, y)
= I0 confined to a circular aperture of radius a, (12.3-26) yields

where ρ =  is the distance between the two
points, θs = 2a/d is the angle subtended by the source, and J1(·)
is the Bessel function. This relation is plotted in Fig. 12.3-8. The
Bessel function reaches its first zero when its argument is 3.832.
We can therefore define the area of coherence as a circle of
radius ρc = 3.832(λ/πθs), so that

Coherence Distance

A similar result, (12.2-18), was obtained using a less rigorous
analysis. The area of coherence is inversely proportional to . An
incoherent light source of wavelength λ = 0.6 μm and radius 1
cm observed at a distance d = 100 m, for example, has a
coherence distance ρc ≈ 3.7 mm.



Figure 12.3-8 The magnitude of the degree of spatial coherence
of light radiated from an incoherent circular light source
subtending an angle θs, as a function of the separation ρ.

Measurement of the Angular Diameter of Stars: The Michelson
Stellar Interferometer

Equation (12.3-28) is the basis of a method for measuring the
angular diameters of stars. If the star is regarded as an incoherent
disk of diameter 2a with uniform brilliance, then at an observation
plane a distance d away from the star, the coherence function
decreases to 0 when the separation between the two observation
points reaches ρc = 1.22λ/θs. Measuring ρc at a given value of λ
permits us to determine the angular diameter θs = 2a/d.

As an example, taking the angular diameter of the sun to be 0.5° , θs

= 8.7 × 10−3 radians, and assuming that the intensity is uniform, we
obtain ρc = 140λ. For λ = 0.5 μm, we have ρc = 70 μm. To observe
interference fringes in a Young double-slit apparatus, the slits
would have to be separated by a distance smaller than 70 μm. Stars
of smaller angular diameter have correspondingly larger areas of
coherence. For example, the first star whose angular diameter was
measured using this technique (α-Orion) has an angular diameter θs
= 22.6 × 10−8, so that at λ = 0.57 μm, we have ρc = 3.1m. A Young
interferometer can be modified to accommodate such large slit
separations by using movable mirrors, as shown in Fig. 12.3-9.
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Figure 12.3-9 The Michelson stellar interferometer. The angular
diameter of a star is estimated by measuring the mutual intensity at
two points with variable separation ρ using a Young double-slit
interferometer. The distance ρ between mirrors M1 and M2 is varied
and the visibility of the interference fringes is measured. When ρ =
ρc = 1.22λ/θs, the visibility is 0.

12.4 PARTIAL POLARIZATION
As we have seen in Chapter 6, the scalar wave theory of light is often
inadequate and a vector theory that includes the polarization of
light is required. This section provides a brief discussion of the
statistical theory of random light, including the effects of
polarization. The theory of partial polarization is based on
characterizing the components of the optical field vector by
correlations and cross-correlations similar to those defined earlier
in this chapter.

To simplify the presentation, we shall not be concerned with spatial
effects. We therefore limit ourselves to light described by a
transverse electromagnetic (TEM) plane wave traveling in the z
direction. The electric-field vector has two components, in the x and
y directions, with complex wavefunctions Ux (t) and Uy (t) that are
generally random. Each function is characterized by its
autocorrelation function (the temporal coherence function),
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An additional descriptor of the wave is the cross-correlation
function of Ux(t) and Uy(t),

The normalized function

is the cross-correlation coefficient of Ux (t) and Uy (t + τ). It
satisfies the inequality 0 ≤|gxy (τ)|≤ 1. When the two components
are uncorrelated at all times, |gxy(τ)| = 0; when they are completely
correlated at all times, |gxy (τ)| = 1.

The spectral properties are, in general, tied to the polarization
properties and the autocorrelation and cross-correlation functions
can have different dependencies on τ. However, for quasi-
monochromatic light, all dependencies on τ in (12.4-1)–(12.4-4) are
approximately of the form exp(j2πν0τ), so that the polarization
properties are described by the values at τ = 0. The three numbers
Gxx (0), Gyy (0), and Gxy (0), hereafter denoted Gxx, Gyy, and Gxy,
are then used to describe the polarization of the wave. Note that Gxx
= Ix and Gyy = Iy are real numbers that represent the intensities of
the x and y components, but Gxy is complex and Gyx = G*xy, as can
easily be verified from the definition.

Coherency Matrix

It is convenient to write the four variables Gxx, Gxy, Gyx, and Gyy in
the form of a 2 × 2 Hermitian matrix
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called the coherency matrix. The diagonal elements are the
intensities Ix and Iy, whereas the off-diagonal elements are the
cross-correlations. The trace of the matrix, given by Tr G = Ix + Iy ≡
Ī, is the total intensity.

The coherency matrix may also be written in terms of the Jones
vector, J =  defined in terms of the complex wavefunctions and
complex amplitudes (instead of in terms of the complex envelopes
as in Sec. 6.1B),

where the superscript T denotes the transpose of a matrix, and Ux
and Uy denote Ux (t) and Uy (t), respectively.

The Jones vector is transformed by polarization devices, such as
polarizers and retarders, in accordance with the rule J′ = TJ [see
(6.1-17)], where T is the Jones matrix representing the device [see
(6.1-18) to (6.1-25)]. The coherency matrix is therefore transformed
in accordance with G′ = ⟨T*J*(TJ)⊤⟩ = ⟨T*J*J⊤T⊤⟩ = T*⟨J*J⊤⟩T⊤,
so that

We thus have a formalism for determining the effect of polarization
devices on the coherency matrix of partially polarized light.

Stokes Parameters and Poincaré-Sphere Representation

The Stokes parameters were defined in Sec. 6.1A for coherent light
as a set of four real parameters related to the products of the x and y
components of the complex envelope [see (6.1-9)]. This definition is
readily generalized to partially coherent light as an average of these
products:
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Stokes Parameters

Thus, the Stokes parameters are directly related to elements of the
coherency matrix G. The first parameter, S0, is simply the sum of
the diagonal elements, which is the total intensity Ī. The second, S1,
is the difference of the diagonal elements, i.e., the difference
between the intensities of the two polarization components. The
third and fourth, S2 and S3, respectively, are proportional to the real
and imaginary parts of the off-diagonal element, i.e., the cross-
correlation function. Using these relations, it can be readily shown
that the inequality |Gxy|2 ≤ Gxx Gyy leads to the condition 

. For coherent light, these inequalities become
equalities.

The state of polarization of partially polarized light may be
represented geometrically on the Poincaré sphere (Fig. 6.1-5) as a
point whose Cartesian coordinates are (S1/S0, S2/S0, S3/S0). Since 

, such a point lies inside, or on, the surface of the
sphere.

To understand the significance of the coherency matrix and the
Stokes parameters, we next examine two limiting cases.

Unpolarized Light

Light of intensity Ī is said to be unpolarized if its two components
have the same intensity and are uncorrelated, i.e., Ix = Iy ≡  Ī and
Gxy = 0. The coherency matrix is then
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Unpolarized Light

By use of (12.4-7) and (6.1-22), it can be shown that (12.4-9) is
invariant to rotation of the coordinate system, so that the two
components always have equal intensities and are uncorrelated.
Unpolarized light therefore has an electric-field vector that is
statistically isotropic; it is equally likely to have any direction in the
x–y plane, as illustrated in Fig. 12.4-1(a). Analogous results for
partially polarized and right-circularly polarized (RCP) light are
displayed in Figs. 12.4-1(b) and 12.4-1(c), respectively.

Figure 12.4-1 Fluctuations of the electric-field vector for (a)
unpolarized light, (b) partially polarized light, and (c) polarized light
with circular polarization. (d) Poincaré-sphere representation for
unpolarized light (at the origin), partially polarized light (in the
interior), and elliptically polarized light (on the surface).

When passed through a polarizer, unpolarized light becomes
linearly polarized, but it remains random with an average intensity 

 Ī. A wave retarder has no effect on unpolarized light since it only
introduces a phase shift between two components that have a
totally random phase to begin with. Similarly, unpolarized light
transmitted through a polarization rotator remains unpolarized.
These effects may be formally derived by use of (12.4-7) and (12.4-9)
together with (6.1-18), (6.1-19), and (6.1-20), respectively.
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The Stokes parameters describing unpolarized light are (S0, S1, S2,
S3) = (Ī, 0, 0, 0) as can be readily shown by use of (12.4-8) and
(12.4-9). The corresponding representation on the Poincaré sphere
is a point with Cartesian coordinates (S1/S0, S2/S0, S3/S0) = (0, 0, 0)
so that the point is located at the origin of the sphere [Fig. 12.4-
1(d)].

Polarized Light

If the cross-correlation coefficient gxy = Gxy/  has unity
magnitude, |gxy| = 1, the two components of the optical field are
perfectly correlated and the light is said to be completely polarized
(or simply polarized). The coherency matrix then takes the form

where φ is the argument of gxy. Defining Ux =  and Uy = ,
we have

where J is a Jones matrix with components Ux and Uy. Thus, G has
the same form as the coherency matrix of a coherent wave. Using
the Jones vectors provided in Table 6.1-1, we can determine the
coherency matrices for different states of polarization. Two
examples are:

The Stokes parameters corresponding to (12.4-11) satisfy the
relation , so that polarized light is represented by a
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point on the surface of, rather than inside, the Poincaré sphere [Fig.
12.4-1(d)].

It is instructive to examine the distinction between unpolarized
light and circularly polarized light. In both cases the intensities of
the x and y components are equal (Ix = Iy). For circularly polarized
light the two components are completely correlated, but for
unpolarized light they are uncorrelated. Circularly polarized light
may be transformed into linearly polarized light by the use of a
wave retarder, but unpolarized light remains unpolarized upon
passage through such a device. Circularly polarized light is
represented by a point at the north or south pole of the Poincaré
sphere, while unpolarized light is represented by a point at the
origin [Fig. 12.4-1(d)].

Degree of Polarization

Partial polarization is a general state of random polarization that
lies between the two ideal limits of unpolarized and polarized light.
One measure of the degree of polarization 𝕡 is defined in terms
of the determinant and the trace of the coherency matrix:

This measure is meaningful because of the following
considerations:

It satisfies the inequality 0 ≤ 𝕡 ≤ 1.

For polarized light, 𝕡 has its highest value of 1, as can readily be
seen by substituting |gxy| = 1 into (12.4-13). For unpolarized
light it has its lowest value 𝕡 = 0, since Ix = Iy and gxy = 0.



(12.4-14)

It is invariant to rotation of the coordinate system (since the
determinant and the trace of a matrix are invariant to unitary
transformations).

The degree of polarization in (12.4-13) may also be expressed in
terms of the Stokes parameters as:

so that in the Poincaré-sphere representation [Fig. 12.4-1(d)], it
is equal to the distance from the origin of the sphere.

It can be shown (Exercise 12.4-1) that a partially polarized wave
can always be regarded as a mixture of two uncorrelated waves:
a completely polarized wave and an unpolarized wave, with the
ratio of the intensity of the polarized component to the total
intensity equal to the degree of polarization 𝕡.

EXERCISE 12.4-1

Partially Polarized Light. Demonstrate that the
superposition of unpolarized light of intensity (Ix + Iy)(1−𝕡),
and linearly polarized light with intensity (Ix + Iy)𝕡, where 𝕡 is
given by (12.4-13), yields light whose x and y components have
intensities Ix and Iy and normalized cross-correlation |gxy|.
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12.1-4 Lorentzian Spectrum. A light-emitting diode (LED) emits
light of Lorentzian spectrum with a linewidth Δν  (FWHM) = 1013 Hz
centered about a frequency corresponding to a wavelength λo = 0.7
μm. Determine the linewidth Δλo (in units of nm), the coherence
time τc, and the coherence length lc. What is the maximum time
delay within which the magnitude of the complex degree of
temporal coherence |g(τ)| is greater than 0.5?

12.1-5 Proof of the Wiener–Khinchin Theorem. Use the
definitions in (12.1-4), (12.1-14), and (12.1-15) to prove that the
spectral density S(ν) is the Fourier transform of the autocorrelation
function G(τ). Prove that the intensity I is the integral of the power
spectral density S(ν).

12.1-6 Mutual Intensity. The mutual intensity of an optical wave
at points on the x axis is given by

where I0, W0, and ρc are constants. Sketch the intensity distribution
as a function of x. Derive an expression for the normalized mutual
intensity g(x1, x2) and sketch it as a function of x1 − x2. What is the
physical meaning of the parameters I0, W0, and ρc?

12.1-7 Mutual Coherence Function. An optical wave has a
mutual coherence function at points on the x axis,

where U (x1, x2) = 5 × 1014 S−1 for x1 + x2 > 0, and 6 × 1014 S−1 for x1
+ x2 < 0, ρc = 1 mm, and τc = 1 μs. Determine the intensity, the
power spectral density, the coherence length, and the coherence
distance in the transverse plane. Which of these quantities is
position dependent? If this wave were recorded on color film, what
would the recorded image look like?



12.1-8 Coherence Length. Show that light of narrow spectral
width has a coherence length lc ≈ λ2/Δλ, where Δλ is the linewidth
in wavelength units. Show that for light of broad uniform spectrum
extending between the wavelengths λmin and λmax = 2λmin, the
coherence length lc = λmax.

12.1-9 Effect of Spectral Width on Spatial Coherence. A point
source at the origin (0, 0, 0) of a Cartesian coordinate system emits
light with a Lorentzian spectrum and coherence time τc = 10 ps.
Determine an expression for the normalized mutual intensity of the
light at the points (0, 0, d) and (x, 0, d), where d = 10 cm. Sketch the
magnitude of the normalized mutual intensity as a function of x.

12.1-10 Gaussian Mutual Intensity. An optical wave in free space
has a mutual coherence function G(r1, r2, τ) = J(r1 − r2) exp(j2πν0τ).

a. Show that the function J(r) must satisfy the Helmholtz
equation ∇2J + ko

2J = 0, where ko = 2πν0/c.

b. An approximate solution of the Helmholtz equation is the
Gaussian-beam solution

where q(z) = z + jz0 and z0 is a constant. This solution has been
studied extensively in Chapter 3 in connection with Gaussian
beams. Determine an expression for the coherence area near
the z axis and show that it increases with |z|, so that the wave
gains coherence with propagation away from the origin.

12.2-1 Effect of Spectral Width on Fringe Visibility. Light from
a sodium lamp of Lorentzian spectral linewidth Δν = 5 × 1011 Hz is
used in a Michelson interferometer. Determine the maximum
pathlength difference for which the visibility of the interferogram 

.



12.2-2 Number of Observable Fringes in Young’s
Interferometer. Determine the number of observable fringes in
Young’s interferometer if each of the sources in Table 12.1-2 is used.
Assume full spatial coherence in all cases.

12.2-3 Spectrum of a Superposition of Two Waves. An optical
wave is a superposition of two waves U1(t) and U2(t) with identical
spectra S1(ν) = S2(ν), which are Gaussian with spectral width Δν and
central frequency ν0. The waves are not necessarily uncorrelated.
Determine an expression for the power spectral density S(ν) of the
superposition U (t) = U1(t)+ U2(t). Explore the possibility that S(ν)
is also Gaussian, with a shifted central frequency ν1 ≠ ν0. If this
were possible, our faith in using the Doppler shift as a method to
determine the velocity of stars would be shaken, since frequency
shifts could originate from something other than the Doppler effect.

*12.3-1 Partially Coherent Gaussian Beam. A quasi-
monochromatic light wave of wavelength λ travels in free space in
the z direction. Its intensity in the z = 0 plane is a Gaussian
function I (x) = I0 exp(−2x2/W0

2) and its normalized mutual
intensity is also a Gaussian function g(x1, x2) = exp[−(x1 − x2)2/ρ2

c].
Show that the intensity at a distance z satisfying conditions of the
Fraunhofer approximation is also a Gaussian function Iz(x) ∝
exp[−2x2/W2(z)] and derive an expression for the beam width W(z)
as a function of z and the parameters W0, ρc, and λ. Discuss the
effect of spatial coherence on beam divergence.

*12.3-2 Fourier-Transform Lens. Quasi-monochromatic spatially
incoherent light of uniform intensity illuminates a transparency of
intensity transmittance f (x, y) and the emerging light is transmitted
between the front and back focal planes of a lens. Determine an
expression for the intensity of the observed light. Compare your
results with the case of coherent light in which the lens performs
the Fourier transform (see Sec. 4.2).



*12.3-3 Light from Two-Point Incoherent Source. A spatially
incoherent quasi-monochromatic source of light emits only at two
points separated by a distance 2a. Determine an expression for the
normalized mutual intensity at a distance d from the source (use
the Fraunhofer approximation).

*12.3-4 Coherence of Light Transmitted Through a Fourier-
Transform Optical System. Light from a quasi-monochromatic
spatially incoherent source with uniform intensity is transmitted
through a thin slit of width 2a and travels between the front and
back focal planes of a lens. Determine an expression for the
normalized mutual intensity in the back focal plane.

12.4-2 Partially Polarized Light. The intensities of the two
components of a partially polarized wave are , and the
argument of the cross-correlation coefficient gxy is π/2.

a. Plot the degree of polarization 𝕡 versus the magnitude of the
cross-correlation coefficient |gxy|.

b. Determine the coherency matrix if 𝕡 = 0, 0.5, and 1, and
describe the nature of the light in each case.

c. If the light is transmitted through a polarizer with its axis in the
x direction, what is the intensity of the light transmitted?

Note
1See B. E. A. Saleh, D. Stoler, and M. C. Teich, Coherence and
Photon Statistics for Optical Fields Generated by Poisson Random
Emissions, Physical Review A, vol. 27, pp. 360–374, 1983.
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Max Planck (1858–1947) suggested that the emission and
absorption of light by matter takes the form of quanta of energy.

Albert Einstein (1879–1955) advanced the hypothesis that light
itself comprises quanta of energy.

Electromagnetic optics, introduced in Chapter 5, provides the most
complete treatment of light within the confines of classical optics.
It encompasses wave optics, which in turn encompasses ray optics
(Fig. 13.0-1). Though classical electromagnetic theory is capable of
providing explanations for the preponderance of effects in optics, as
attested to by the earlier chapters of this book, it nevertheless fails
to account for certain optical phenomena. This failure, which
became evident in about 1900, ultimately led to the formulation of a
quantum electromagnetic theory known as quantum
electrodynamics (QED). When applied to optical phenomena,
QED is usually called quantum optics. Quantum optics properly
describes almost all known optical phenomena.



Figure 13.0-1 The theory of quantum optics explains virtually all
optical phenomena. It is more general than electromagnetic optics,
which was shown earlier to encompass wave optics and ray optics.

In the mathematical framework of quantum electrodynamics, the
vectors E and H that are used to describe the electric and magnetic
fields of classical electromagnetic optics, respectively, are promoted
to operators in a Hilbert space. These operators are assumed to
satisfy certain operator equations and commutation relations that
govern their time dynamics and interdependence. Though the
equations of QED describe the interactions of electromagnetic fields
with matter in much the same way as Maxwell’s equations, QED
leads to results that are uniquely quantum in nature. In spite of its
vast successes, quantum optics is nevertheless not the final arbiter
of all optical effects. That distinction currently belongs to the
electroweak theory, which combines quantum electrodynamics
with the theory of weak interactions.1 Continuing efforts are
underway to combine electroweak theory with the theories of strong
and gravitational interactions in an attempt to forge a general
unified theory that accommodates all four fundamental forces of
nature, as they are currently understood.

This Chapter

A formal treatment of quantum optics is beyond the scope of this
book. Nevertheless, it is possible to describe many of the quantum
properties of light, and its interaction with matter, by
supplementing electromagnetic optics with several simple
relationships drawn from quantum optics; these embody the
corpuscularity, localization, and fluctuations of quantum fields and



energy. This set of rules, which we call photonoptics, permits us
to deal with optical phenomena that lie beyond the reach of classical
theory, while retaining classical optics as a limiting case. However,
photon optics is not capable of accommodating all of the optical
effects that can be explained by quantum optics.

In Sec. 13.1 we introduce the concept of the photon and examine its
properties. Using electromagnetic optics as a point of departure, we
impose a number of rules that govern the behavior of photon
energy, polarization, position, momentum, interference, and time.
These rules, which are deceptively simple, form the basis of photon
optics and have far-reaching implications. This is followed, in Sec.
13.2, by a discussion of the properties of collections of photons and
photon streams. The number of photons emitted by a fixed-
intensity light source in a sequence of fixed time intervals is almost
always random, with statistical properties that depend on the nature
of the source. The photon-number statistics for commonly
encountered optical sources, such as lasers and thermal radiators,
are set forth. The effect of simple optical components, such as
beamsplitters and filters, on the randomness of photon streams is
also examined. In Sec. 13.3, we study the random fluctuations of the
magnitude, phase, and photon number associated with the
electromagnetic field from the perspective of quantum optics. We
provide a brief introduction to coherent, quadrature-squeezed,
photon-numbersqueezed, and entangled-photon states of light, and
indicate several generation mechanisms and applications. The
interactions of photons with atoms and semiconductors are
described in Secs. 14.3 and 17.2, respectively.

13.1 THE PHOTON
From a quantum perspective, light consists of particles called
photons. A photon carries electromagnetic energy and momentum,
as well as intrinsic angular momentum (or spin) associated with its
polarization properties. It can also carry orbital angular momentum.
The photon has zero rest mass and travels at co, the speed of light in



vacuum; its speed in dielectric materials is reduced to c < co. A
photon concomitantly has a wavelike character that determines its
localization properties in space and time, and governs how it
interferes and diffracts.

The notion of the photon initially grew out of an attempt by Max
Planck in 1900 to resolve a long-standing conundrum concerning
the spectrum of blackbody radiation emanating from a cavity held at
a fixed temperature T (this topic is discussed in Sec. 14.4B). Planck
ultimately resolved the problem by assuming that the allowed
energies of the atoms in the walls of the cavity were quantized to
discrete values. In 1905, Albert Einstein proposed that the
quantization be imposed directly on the energy of the
electromagnetic radiation, rather than on the atoms, which led to
the concept of the photon. This enabled Einstein to successfully
explain the photoelectric effect (this topic is discussed in Sec.
19.1A). The term “photon” was introduced by Gilbert Lewis in 1926.

The concept of the photon and the rules of photon optics are
introduced by considering light inside an optical resonator (cavity).
This is a convenient choice because it restricts the space under
consideration to a simple geometry. However, the presence of the
resonator turns out not to be an important feature of the argument;
the results can be shown to be independent of the form of the
resonator, and even of its presence.

Electromagnetic-Optics Theory of Light in a Resonator

In accordance with electromagnetic optics, light inside a lossless
resonator of volume V is completely characterized by an
electromagnetic field that takes the form of a superposition of
discrete orthogonal modes of different spatial distributions,
different frequencies, and different polarizations. The electric-field
vector, ε(r, t) = Re{E(r, t)}, can therefore be expressed in terms of
the complex electric field E(r, t) via



(13.1-1)

(13.1-2)

(13.1-3)

The qth mode has complex envelope Aq, frequency νq, polarization
along the direction of the unit vector , and a spatial distribution
characterized by the complex function Uq(r), which is normalized
such that ∫V |Uq(r)|2 dr = 1. The expansion functions Uq(r),
exp(j2πνqt), and  are not unique; other choices are available,
including those comprising polychromatic modes.

In a cubic resonator of dimension d, a convenient choice for the
spatial expansion functions is the set of standing waves

where the integers qx, qy, and qz are usually specified in the form
(qx, qy, qz) [Sec. 11.3C and Fig. 13.1-1(a)]. In accordance with (5.4-9),
the energy density associated with mode q is , so that
the energy contained in mode q is

where V is the modal volume. In classical electromagnetic theory,
the energy Eq can assume any nonnegative value, no matter how
small, and the total energy is the sum of the energies in all modes.



Figure 13.1-1 (a) Schematic of three electromagnetic modes of
different frequencies and directions in a cubic resonator. (b)
Allowed energy levels of three modes in the context of photon
optics. Modes 1, 2, and 3 have frequencies ν1, ν2, and ν3, respectively.
In the example presented in the figure, modes 1, 2, and 3 contain n
= 2, 1, and 3 photons, respectively, as represented by the filled
circles.

Photon-Optics Theory of Light in a Resonator

The electromagnetic-optics theory described above is maintained in
photon optics, but a restriction is placed on the energy that each
mode is permitted to carry. Rather than assuming a continuous
range, with no minimum allowed value, the modal energy is
restricted to discrete values separated by a fixed energy hν, where ν
is the frequency of the mode [Fig. 13.1-1(b)]. The energy of a mode
is thus quantized, with only integral units of this fixed energy
permitted. Each unit of energy is carried by a single photon and the
mode may carry an arbitrary number of photons.



(13.1-4)

(13.1-5)

Light in a resonator comprises a set of modes, each of which
contains an integral number of identical photons. Characteristics
of the mode, such as its frequency, spatial distribution, direction
of propagation, and polarization, are assigned to the photons.

A. Photon Energy
Photon optics provides that the energy of an electromagnetic mode
is quantized to discrete levels separated by the energy of a photon
[Fig. 13.1-1(b)]. The energy of a photon in a mode of frequency ν is

Photon Energy

where h = 6.6261 × 10−34 J·s is Planck’s constant and ∊ ≡ h/2π.
Energy may be added to, or taken from this mode only in units of
hν.

A mode containing zero photons nevertheless carries energy E0 = 
hν, which is called the zero-point energy and is associated with
the fluctuations of the vacuum state (Fig. 13.3-3). When it carries
n photons, a mode therefore has total energy

This expression is identical to that for the energy levels of a
quantum-mechanical harmonic oscillator, as provided in (13.3-4);
the connection will be established in Sec. 13.3. In most experiments,
the zero-point energy is not directly observable because only energy
differences [e.g., E2 − E1 in (13.1-5)] are measured. However, the
zero-point energy is not innocuous since it constitutes a source of
noise (“shot noise”) that limits the sensitivity of certain precision
measurements. This will become evident in Sec. 13.3B, where we
will demonstrate how the vacuum state can be manipulated



(13.1-6)

(“squeezed”) by configuring an experiment in a particular way so as
to reduce the deleterious effects of vacuum-state fluctuations. Zero-
point fluctuations are also responsible for the process of
spontaneous emission from an atom, as discussed in Sec. 14.3.
Moreover, are the origin of the Casimir effect, a small attractive
force that acts between two parallel uncharged conducting plates
located in close proximity.

The order of magnitude of the photon energy is readily estimated.
An infrared photon of wavelength λo = 1 μm in free space has a
frequency ν ≈ 3 × 1014 Hz, by virtue of the relation λoν = co, and a
period T = 1/ν. Its energy is thus hν ≈ 1.99 × 10−19 J. In units of
electron volts, the photon energy becomes hν/e = (1.99 × 10−19)/(1.6
× 10−19) = 1.24 eV; this is equivalent to the kinetic energy imparted
to an electron when it is accelerated through a potential difference
of 1.24 V. Another example is provided by a microwave photon with
a wavelength of 1 cm; the photon energy is then 104 times smaller,
namely hν = 1.24 × 10−4 eV. A convenient conversion formula
between wavelength (μm) and photon energy (eV) is therefore
expressible as

The reciprocal wavelength is also frequently used as a unit of
energy, often in chemistry. It is specified in cm−1 and is determined
by expressing the wavelength in cm and simply taking the inverse.
Thus, 1 cm−1 corresponds to 1.24/10 000 eV and 1 eV corresponds to
8065 cm−1. Conversions among photon wavelength, frequency,
period, and energy are illustrated in Fig. 13.1-2.

Because the photon energy increases with frequency, the particle
nature of light becomes increasingly prevalent as the frequency of
the radiation increases. X-rays and gamma-rays almost always
behave like particles, and wavelike effects such as diffraction and



interference are difficult to discern. In contrast, radio waves almost
always behave like waves. The frequency of light in the optical
region is such that both particle-like and wavelike behavior are
readily observed, thus spurring the need for photon optics.

Figure 13.1-2 Relationships among photon wavelength λo,
frequency ν, period ⊤, and energy E (specified in units of eV, J, and
reciprocal wavelength 1/λo in cm−1). A photon of free-space
wavelength λo = 1 μm has frequency ν = 300 THz, period ⊤ = 3.33
fs, and energy E = 1.24 eV = 199 zJ = 104 cm−1. At room temperature
(T = 300° K), the thermal energy kT = 26 meV = 4.17 zJ = 210 cm−1.
Two spectral domains are indicated: 1) optics & photonics, and 2)
electronics.

B. Photon Polarization
As indicated earlier, light is characterized by a set of modes of
different frequencies, directions, and polarizations, each occupied
by an integral number of photons. For each monochromatic plane
wave traveling in a particular direction, there are two polarization
modes. The polarization of a photon is that of the mode it occupies.
For example, the photon may be linearly polarized in the x direction,
or right circularly polarized. Since the polarization modes of free
space are degenerate, they are not unique. One may use modes with
linear polarization in the x and y directions, linear polarization in
two other orthogonal directions, say x' and y', or right-and left-
circular polarizations. The choice of a particular set is a matter of
convenience. A problem arises when a photon occupying a given



(13.1-7)

mode (say linear polarization in the x direction) is to be observed in
a different set of modes (say linear polarization in the x' and y'
directions). Since the photon energy cannot be split between the
two modes, a probabilistic interpretation is called for.

In classical electromagnetic optics, the state of polarization of a
plane wave is described by a Jones vector, whose components (Ax,
Ay) are the components of the complex envelope in the x and y
directions, respectively (Sec. 6.1A). The same wave may also be
represented in a different coordinate system (x′, y′), e.g., one that
makes a 45° angle with the initial coordinate system, by a Jones
vector with components

as described in Sec. 6.1B. Therefore, a wave that is linearly polarized
in the x direction is described by a Jones vector with components
(A0, 0) in the x–y coordinate system, where A0 is the complex
envelope. In the (x′, y′) coordinate system, the Jones vector has
components ( ).

The state of polarization of a single photon is described by a
Jones vector with complex components (Ax, Ay), normalized
such that |Ax|2 + |Ay|2 = 1. The coefficients Ax and Ay are
interpreted as complex probability amplitudes, and their squared
magnitudes, |Ax|2 and |Ay|2, represent the probabilities that the
photon is observed in the x and y linear polarization modes,
respectively.

The components (Ax, Ay) are transformed from one coordinate
system to another in the same manner as ordinary Jones vectors,
and the new components represent complex probability amplitudes
in the new modes. Thus, a single photon may exist, probabilistically,



in more than one mode. This concept is illustrated by the following
examples.

Linearly Polarized Photon

A photon is linearly polarized in the x direction. In terms of the x–y
linearly polarized modes, the photon is described by a Jones vector
with components (1, 0). In a set of linearly polarized modes in the x'
and y' directions at 45°, these components are ( ) so that the
probabilities of observing the photon in a linear polarization mode
along the x' or y′ directions are both 1/2 . This is illustrated
schematically in Fig. 13.1-3.

Figure 13.1-3 A photon in the x linear polarization mode is the
same as a photon in a superposition of the x' and y' linear
polarization modes, each with probability 1/2 .



EXAMPLE 13.1-1.

Transmission of a Linearly Polarized Photon Through a
Polarizer. Consider the transmission of a photon that is
linearly polarized in the x direction through a linear polarizer
whose transmission axis is along the x' direction at an angle θ, as
illustrated in Fig. 13.1-4. The polarizer transmits light that is
linearly polarized in the x′ direction but blocks light in the
orthogonal y′ direction. The probability that the photon is
transmitted through the polarizer is determined by writing the
Jones vector of the photon polarization state in the x′ − y′
coordinate system as (cos θ, − sin θ) [see (6.1-21) and (6.1-22)].
The probability of observing the photon in the mode with x′
linear polarization is therefore cos2 θ, which represents the
probability of passage of the photon through the polarizer: p(θ)
= cos2 θ. The probability that the photon is blocked is therefore 1
− p (θ) = sin2 θ. Classical polarization optics reveals that the
intensity transmittance of a polarizer in this same configuration
is cos2 θ (Prob. 6.1-7). We conclude that the probability of
transmission of a single photon is identical to the classical
transmittance, i.e., p(θ)= T(θ).

Figure 13.1-4 Probability of a linearly polarized photon passing
through a polarizer. The axis of the polarizer is at an angle θ with
respect to the photon polarization.

Circularly Polarized Photon



A circularly polarized photon is described by a Jones vector that has
components , where the + and − signs correspond to right-
and left-handed polarization, respectively. This description is based
on an x–y coordinate system, i.e., linearly polarized modes.
Therefore, the probability of the photon passing through a linear
polarizer pointing in either the x or y direction is 1/2. It can also be
shown that this result prevails whatever the direction of the linear
polarizer. The circularly polarized photon may be regarded as
equivalent to the probabilistic superposition of one photon with
linear polarization in the x direction and another in the y direction,
each with probability 1/2.

Right-and left-circular polarizations may also be used as modes (as
a coordinate system). In that description, a linearly polarized
photon may be regarded as a probabilistic superposition of right-and
left-circularly polarized photons, each with probability 1/2, as
illustrated in Fig. 13.1-5.

Figure 13.1-5 A linearly polarized photon is equivalent to the
superposition of a right-and a left-circularly polarized photon, each
with probability 1/2.

C. Photon Position
Associated with each photon of frequency ν is a wave described by
the complex wavefunction U(r) exp(j2πνt) of the mode. However,
when a photon impinges on a detector of small area dA located
normal to the direction of propagation, at the position r, its
indivisibility causes it to be either wholly detected or not detected at
all. The location at which the photon is registered is not precisely
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determined. Rather, it is governed by the optical intensity I(r) ∝
|U(r)|2, in accordance with the following probabilistic law:

The probability p(r) dA of observing a photon at the position r
within an incremental area dA, at any time, is proportional to the
local optical intensity I(r) ∝ |U(r)|2, so that

The photon is therefore more likely to be found at those locations
where the intensity is high. A photon in a mode described by a
standing wave with the intensity distribution I(x, y, z) ∝ sin2(πz/d),
where 0 ≤ z ≤ d, for example, is most likely to be detected at z =
d/2, but will never be detected at z = 0 or z = d. In contrast to
waves, which are extended in space, and particles, which are
localized in space, optical photons behave as extended and localized
entities. This behavior is called wave–particle duality. The
localized nature of photons becomes evident when they are
detected.



EXERCISE 13.1-1

Photon in a Gaussian Beam.

a. Consider a single photon described by a Gaussian beam (the
TEM0,0 mode of a spherical-mirror resonator; see Secs. 3.1B,
5.4A, and 11.2B). What is the probability of detecting the
photon at a point within a circle whose radius is the waist
radius of the beam W0? Recall from (3.1-12) that at the
waist, I(ρ, z = 0) ∝ exp(−2ρ2/W0

2), where ρ is the radial
coordinate.

b. If the beam carries a large number n of independent
photons, estimate the average number of photons that lie
within this circle.

Transmission of a Single Photon Through a Beamsplitter

An ideal beamsplitter is an optical device that losslessly splits a
beam of light into two beams that emerge at right angles. It is
characterized by an intensity transmittance  and an intensity
reflectance  = 1− . The intensity of the transmitted wave It and the
intensity of the reflected wave Ir can be calculated from the
intensity of the incident wave I using the electromagnetic relations
It = I and Ir = (1 − )I.

Because a photon is indivisible, it must choose between the two
possible directions permitted by the beamsplitter. A single photon
incident on the device will follow these directions in accordance
with the probabilistic photon-position rule (13.1-8). The probability
that the photon is transmitted is proportional to It and is therefore
equal to the transmittance  = It/I. The probability that it is
reflected is 1 −  = Ir/I. From the point of view of probability, the
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problem is identical to that of flipping a biased coin. Figure 13.1-6
illustrates the process.

Figure 13.1-6 Probabilistic reflection or transmission of a photon
at a lossless beam-splitter.

Single-Photon Imaging

As described in Sec. 4.4 and in (A.3-3) of Appendix A, a coherent
imaging system is characterized by an impulse response function
h(x, y; x',y′) that links its output and input fields, Uo(x, y) and Ui(x,
y), respectively, via the two-dimensional convolution

The very same relationship characterizes the single-photon
wavefunctions at the output and input of a single-photon imaging
system, where |Uo(x)|2 represents the probability density function
of the photon position in the image plane.

D. Photon Momentum
In classical electromagnetic optics, as discussed in Sec. 5.4A, an
electromagnetic plane wave carries a linear momentum density
(W/c) , where W is the energy density (per unit volume) and  is a
unit vector in the direction of the wavevector k.

In photon optics, the linear momentum of a photon is 
where  is the photon energy, so that:
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(13.1-12)

The linear momentum associated with a photon in a plane-wave
mode of wavevector k is

Photon Momentum

The magnitude of the momentum is p = ℏk = ℏω/c = ℏ2π/λ, so
that

*Momentum of a Localized Wave

A wave more general than a plane wave, with a complex
wavefunction of the form U(r) exp(j2πνt), can be expanded as a sum
of plane waves of different wavevectors by using the techniques of
Fourier optics (Chapter 4). The component with wavevector k may
be written in the form A(k) exp(−jk · r) exp(j2πνt), where A(k) is its
amplitude.

The momentum of a photon described by an arbitrary complex
wavefunction U(r) exp(j2πνt) is uncertain. It assumes the value

with probability proportional to |A(k)|2, where A(k) is the
amplitude of the plane-wave Fourier component of U(r) with
wavevector k.

If f(x, y)= U(x, y, 0) is the complex amplitude at the z = 0 plane, the
plane-wave Fourier component with wavevector k =(kx,ky,kz) has
an amplitude A(k)= F (kx/2π, ky/2π), where F (νx,νy) is the two-
dimensional Fourier transform of f(x, y), as described in Chapter 4.
Because the functions f(x, y) and F (νx, νy) form a Fourier transform
pair, their widths are inversely related and satisfy the position–



direction relation provided in (A.2-6) of Appendix A. The
uncertainty relation between the position of the photon and the
direction of its momentum is established because the position of
the photon at the z = 0 plane is probabilistically determined by
|U(r)|2 = |f(x, y)|2, and the direction of its momentum is
probabilistically determined by |A(k)|2 = |F (kx/2π, ky/2π)|2. Thus
if, at the plane z = 0, σx is the positional uncertainty in the x
direction, and σθ = sin−1(σkx/k) ≈ (λ/2π)σkx is the angular
uncertainty about the z axis (which is assumed to be ≪ 1), then the
uncertainty relation σxσkx ≥ 1/2 is equivalent to σxσθ ≥ λ/4π.

A plane-wave photon has a known momentum (fixed direction and
magnitude), so that σθ = 0, but its position is totally uncertain (σx =
∞); it is equally likely to be detected anywhere in the z = 0 plane.
When a plane-wave photon passes through an aperture, its position
becomes localized at the expense of a spread in the direction of its
momentum. The position–direction uncertainty of the photon
therefore parallels the theory of diffraction described in Sec. 4.3. At
the other extreme from the plane wave is the spherical-wave
photon. It is well localized in position (at the center of the wave),
but the direction of its momentum is totally uncertain.

Radiation Pressure

Because a photon carries momentum, and momentum is conserved,
the atom emitting the photon experiences a recoil of magnitude
hν/c. The momentum associated with a photon can also be
transferred to an object, giving rise to a force that results in
mechanical motion. As an example, light beams can be used to
deflect atomic beams or to contain collections of atoms or small
dielectric particles (Sec. 14.3F). The term radiation pressure is
often used to describe this phenomenon (pressure = force/area).
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EXERCISE 13.1-2

Photon-Momentum Recoil. Determine the recoil velocity
imparted to a 198Hg atom that emits a photon of energy 4.88 eV.
Compare this with the root-mean-square thermal velocity v of
the atom at a temperature T = 300° K (this is obtained by setting
the average kinetic energy equal to the average thermal energy, 

, where k = 1.38 × 10−23 J/K is Boltzmann’s constant).

Photon Spin Angular Momentum

The intrinsic spin angular momentum of a photon associated
with circular polarization is characterized by an electric-field vector
that rotates in a circle normal to the direction of propagation.
Because the photon travels at the speed of light, the projection of its
spin vector lies either parallel or antiparallel to the wavevector, so
that its helicity is quantized to two values,

Photon Spin

where the plus (minus) signs are associated with right-handed (left-
handed) circular polarization, respectively. Linearly polarized
photons have equal probability of exhibiting parallel and
antiparallel spin. Just as photons can transfer linear momentum to
an object, so too can circularly polarized photons exert a torque on
an object. A circularly polarized photon will, for example, exert a
torque on a half-wave plate.

Bosons and fermions.
Fundamental particles are divided into two broad classes: Bosons,
such as photons and other force-carrier particles, have a spin that is
an integer multiple of ℏ, as do quasiparticles such as plasmons,



polaritons, and phonons. In contrast fermions, such as electrons,
protons, neutrons, and other material particles, have a spin that is a
half-integer multiple of ℏ.

Photon Orbital Angular Momentum

Aside from the spin angular momentum associated with
polarization, an electromagnetic wave may carry angular
momentum by virtue of the twisting of its wavefront about the axis
of propagation. For example, the Laguerre–Gaussian beam
described by the complex wavefunction Ul,m(ρ, ϕ, z) in (3.4-1),
which has an azimuthal phase dependence exp(−jlϕ) and therefore a
helical wavefront, has an angular momentum (for l ≠ 0) that is
independent of its state of polarization. To distinguish this from
spin angular momentum, it is referred to as orbital angular
momentum. A photon in such a spatial mode possesses an orbital
angular momentum L = lℏ.

Another example is provided by a photon in a whispering-gallery
mode (WGM) of a cylindrical resonator (Sec. 11.3B). In the context
of ray optics, the mode is described by a ray tracing the cross-
sectional circular boundary of the resonator. In the context of wave
optics, the wavelength satisfies the resonance condition 2πa = qλ,
where a is the radius of the circle and q = 1, 2,.... The linear
momentum of the photon is p = ℏk = ℏ2π/λ = qℏ/a, and its angular
momentum is therefore ap = qℏ. Similarly, a photon in a WGM
mode of a microsphere resonator (Sec. 11.4C) of radius a has an
angular momentum L = ℓℏ, where the integer ℓ is associated with the
resonance wavelength for an optical path that traces a great circle.
The quantity ℓ may be regarded as an angular-momentum quantum
number similar to that used to describe the hydrogen atom (Sec.
14.1A).

E. Photon Interference
Young’s double-pinhole interference experiment is generally
invoked to demonstrate the wave nature of light (Exercise 2.5-2). In
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fact, Young’s experiment can be carried out even when there is only
a single photon in the apparatus at a given time. The outcome of
this experiment can be understood in the context of photon optics
by using the photon-position rule. The intensity at the observation
plane is calculated using wave optics and the result is converted to a
probability density function that specifies the random position of
the detected photon. The interference arises from phase differences
associated with the two possible paths.

Consider a plane wave illuminating a screen with two pinholes
separated by a distance 2a, as portrayed in Fig. 13.1-7 (see also Fig.
2.5-6). The line joining the holes defines the x axis. Two spherical
waves are generated that interfere at the observation plane. As is
understood from Exercise 2.5-2, in the paraboloidal-wave
approximation, these give rise to a sinusoidal intensity that behaves
in accordance with

Here I0 is the intensity of each of the waves individually at the
observation plane, λ is the wavelength, and θ is the angle subtended
by the two pinholes at the observation plane (Fig. 13.1-7). The result
provided in (13.1-14) describes the intensity pattern that is
experimentally observed for classical light.



Figure 13.1-7 Young’s double-pinhole experiment with a single
photon. The interference pattern I(x) determines the probability
density of detecting the photon at position x.

Now, if only a single photon is present in the apparatus, in
accordance with (13.1-8) the probability of detecting it at position x
is proportional to I(x). It is most likely to be detected at those values
of x for which I(x) is a maximum and it will never be detected at
values of x for which I(x) = 0. If a histogram of the locations of the
detected photon is constructed by repeating the experiment many
times, as Taylor did in 1909, the classical interference pattern
obtained by carrying out the experiment only once with a strong
beam of light emerges. The classical interference pattern does
indeed represent the probability density of the position at which a
single photon is observed.

The occurrence of the interference is a result of the extended nature
of the photon, which permits it to pass through both holes of the
apparatus. This endows the photon with knowledge of the geometry
of the entire experiment when it reaches the observation plane,
where it is detected as a single entity. If one of the holes were to be
covered, the interference pattern would disappear.



EXERCISE 13.1-3

Single Photon in a Mach–Zehnder Interferometer.
Consider a plane wave of light of wavelength λ that is split into
two parts at a beamsplitter (Sec. 13.1C) and recombined in a
Mach– Zehnder interferometer, as shown in Fig. 13.1-8 [see also
Fig. 2.5-3(a)]. If the wave contains only a single photon, plot the
probability of finding it at the detector as a function of d/λ (for 0
≤ d/λ ≤ 1), where d is the difference between the two optical
paths of the light. Assume that the mirrors and beamsplitters are
perfectly flat and lossless, and that the beamsplitters have 

. Where might the photon be located when the
probability of finding it at the detector is not unity?

Figure 13.1-8 Single photon in a Mach–Zehnder
interferometer.

F. Photon Time
The modal expansion provided in (13.1-1) comprises
monochromatic modes that are “eternal” harmonic functions of
time; a photon in a monochromatic mode is equally likely to be
detected at any time. As indicated earlier, however, a modal
expansion of the radiation inside (or outside) a resonator is not
unique. A more general expansion comprises polychromatic modes
such as time-localized wavepackets (Sec. 2.6A). The probability of
detecting a photon described by the complex wavefunction U(r,t), at
any position and in the incremental time interval between t and t +
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dt, is proportional to I(r, t) dt ∝|U (r, t)|2 dt. The photon-position
rule of photon optics presented in (13.1-8) may therefore be
generalized to include photon time localization:

The probability p(r, t) dA dt of observing a photon at position r
within an incre mental area dA, and during an incremental time
interval dt following time t, is proportional to the optical
intensity of the mode at r and t, i.e.,

Photon Position and Time

Time–Energy Uncertainty

The time during which a photon in a monochromatic mode of
frequency ν may be detected is totally uncertain, whereas the value
of its frequency ν (and its energy hν) is absolutely certain. In
contrast, a photon in a wavepacket mode with an intensity function
I(t) of duration σt must be localized within this time. Bounding the
photon time in this way engenders an uncertainty in its frequency
(and energy) by virtue of the properties of the Fourier transform,
and the result is a polychromatic photon. Suppressing the r
dependence for simplicity, the frequency uncertainty is readily
determined by carrying out a Fourier-transform expansion of U(t)
in terms of its harmonic components,

where V (ν) is the Fourier transform of U(t) (Sec. A.1 of Appendix
A). The width σν  of |V (ν)|2 represents the spectral width. If σt is the
power-RMS width of the function |U(t)|2, then σt and σν must
satisfy the duration–bandwidth reciprocity relation σν σt ≥ 1/4π or,
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equivalently, σωσt ≥ 1/2 (the definitions of σt and σν that lead to this
uncertainty relation are provided in Sec. A.2 of Appendix A).

The energy of the photon ℏω cannot then be specified to an accuracy
better than σE = ℏσω. It follows that the energy uncertainty of a
photon, and the time during which it may be detected, must satisfy

Time−Energy Uncertainty

which is known as the time–energy uncertainty relation. This
relation is analogous to that between position and wavenumber
(momentum), which sets a limit on the precision with which the
position and momentum of a photon can be simultaneously
specified. The average energy  of this polychromatic photon is 

.

To summarize: a monochromatic photon (σν → 0) has an eternal
duration within which it can be observed (σt → ∞). In contrast, a
photon associated with an optical wavepacket is localized in time
and is thus polychromatic with a corresponding energy uncertainty.
Thus, a wavepacket photon can be viewed as a confined traveling
packet of energy.
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EXERCISE 13.1-4

Single Photon in a Gaussian Wavepacket. Consider a
plane-wave wavepacket (Sec. 2.6A) containing a single photon
traveling in the z direction, with complex wavefunction

where

a. Show that the uncertainties in its time and z position are σt
= τ and σz = cσt, respectively.

b. Show that the uncertainties in its energy and momentum
satisfy the minimum uncertainty relations:

Equation (13.1-21) is the minimum-uncertainty limit of the
Heisenberg position–momentum uncertainty relation
provided in (A.2-7) of Appendix A.
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Summary
Electromagnetic radiation may be described in terms of a sum of
modes, e.g., monochromatic uniform plane waves of the form

Each plane wave has two orthogonal polarization states (e.g.,
vertical/horizontal linearly polarized, right/left circularly
polarized) represented by the vectors . When the energy of a
mode is measured, the result is an integer (in general, random)
number of energy quanta (photons). Each of the photons
associated with the mode q has the following properties:

Energy E = hνq.

Momentum p = ℏkq.

Helicity (spin angular momentum) 𝕊 = ±ℏ, if it is circularly
polarized.

The photon is equally likely to be found anywhere in space,
and at any time, since the wavefunction of the mode is a
monochromatic plane wave.

The choice of modes is not unique. A modal expansion in terms
of non-monochromatic (quasi-monochromatic), non-plane
waves, is also possible:

Each of the photons associated with the mode q then has the
following properties:

The photon position and time are governed by the complex
wavefunction Uq(r, t). The probability of observing the



photon at position r within an incremental area dA, and
during an incremental time interval dt following time t, is
proportional to |Uq(r, t)|2 dA dt.

If Uq(r, t) has a finite time duration σt, i.e., if the photon is
localized in time, then the photon energy hνq has an
uncertainty hσν ≥ h/4πσt.

If Uq(r, t) has a finite spatial extent in the transverse (z = 0)
plane, i.e., if the photon is localized in the x direction, for
example, then the direction of photon momentum is
uncertain. The spread in photon momentum can be
determined by analyzing Uq(r, t) as a sum of plane waves,
the wave with wavevector k corresponding to photon
momentum ℏk. Spatial localization of the photon in the
transverse plane results in an increase in the uncertainty of
the photon-momentum direction.

13.2 PHOTON STREAMS
In Sec. 13.1 we concentrated on the properties and behavior of single
photons. We now consider the properties of collections of photons.
As a result of the processes by which photons are created (e.g.,
atomic emissions, as discussed in Chapter 14), the number of
photons occupying any mode is generally random. Photon streams
often contain numerous propagating modes, each carrying a random
number of photons. If an experiment is carried out in which a weak
stream of photons falls on a photosensitive surface, the individual
photons are registered (detected) at random localized instants of
time and at random points in space, in accordance with (13.1-15).
(This space–time process can be discerned by viewing a barely
illuminated object with the naked, dark-adapted eye.)

The temporal and spatial behavior of the photon registrations can
be examined individually. The temporal pattern can be highlighted



by making use of a detector that integrates light over a finite area A,
but has good temporal resolution (e.g., a photodiode), as illustrated
in Fig. 13.2-1. According to (13.1-15), the probability of detecting a
photon in the incremental time interval between t and t + dt is
proportional to , which is the optical power at time t.
The photons are registered at random times.

Figure 13.2-1 Photon registrations at random localized instants of
time for a detector that integrates light over an area A.

The spatial pattern of photon registrations, on the other hand, is
readily manifested by making use of a detector that integrates light
over a fixed exposure time ⊤ but has good spatial resolution (e.g.,
photographic film). In accordance with (13.1-15), the probability of
detecting a photon in an incremental area dA surrounding the point
r is then proportional to , which is the integrated local
intensity. The photons are registered at random locations, as
illustrated by the grainy image of Max Planck provided in Fig. 13.2-
2. This image was obtained by rephotographing, under very low light
conditions, the image of Max Planck presented on page 514. Each
white dot in the photograph represents a random photon
registration; the density of these registrations follows the local
intensity.
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Figure 13.2-2 Random photon registrations exhibit a spatial
density that follows the local optical intensity. This image of Max
Planck, illuminated by a sparse stream of photons, should be
compared with that on page 514, illuminated with high-intensity
light.

A. Photon Flow
We begin by introducing a number of definitions that relate the
mean flow of photons to classical electromagnetic intensity, power,
and energy. These definitions are inspired by (13.1-15), which
dictates the position and time at which a single-photon detection
occurs. We then turn to randomness in the photon flow and
consider the photon-number statistics for different sources of light.
Finally, we consider the random partitioning of a photon stream by
a beamsplitter or photodetector.

Mean Photon-Flux Density

Monochromatic light of frequency ν and constant classical intensity
I(r) (watts/cm2) carries a mean photon-flux density

Mean Photon-Flux Density
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Since each photon carries energy hν, this equation provides a
straightforward conversion from a classical measure (units of
energy/s-cm2) into a quantum measure (units of photons/s-cm2).
For quasi-monochromatic light of central frequency , all photons
have approximately the same energy , so that the mean photon-
flux density can be approximately expressed as

Typical values of ϕ(r) for some commonly encountered sources of
light are provided in Table 13.2-1. It is clear from these numbers
that trillions of photons rain down on each square centimeter of us
each second.

Table 13.2-1 Mean photon-flux density for various sources of light.

Source Mean Photon-Flux Density (photons/s-cm2)

Starlight 106

Moonlight 108

Twilight 1010

Indoor light 1012

Sunlight 1014

Laser lighta 1022

aA 10-mW He–Ne laser beam at λo = 633 nm focused to a 20-μm-diameter spot.

Mean Photon Flux

The mean photon flux Φ (units of photons/s) is obtained by
integrating the mean photon-flux density over a specified area,
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Mean Photon Flux

where the optical power (watts) is defined as

and  is again the average energy of a photon. As an example, 1 nW
of optical power at a wavelength λo = 0.2 μm delivers to an object an
average photon flux Φ ≈ 109 photons/s. Roughly speaking, one
photon thus strikes the object every nanosecond, i.e.,

A photon of wavelength λo = 1 μm carries one-fifth as much energy,
in which case 1 nW corresponds to an average of 5 photons/ns.

Mean Number of Photons

The mean number of photons  detected in the area A and in the
time interval ⊤ is obtained by multiplying the mean photon flux Φ
in (13.2-3) by the time duration, whereupon

Mean Photon Number

where E = PT is the optical energy (joules).
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To summarize, the relations between the classical and quantum
measures of photon flow are:

Classical Quantum
Optical intensity I(r) Photon-flux density

Optical power P Photon flux
Optical energy E Photon number

Spectral Densities

For polychromatic light of nonnegligible bandwidth, it is useful to
define spectral densities of the classical intensity, power, and
energy, and their respective quantum counterparts: spectral photon-
flux density, spectral photon flux, and spectral photon number:

Classical Quantum

Iν (W/cm2-Hz) ϕν = Iν /hν (photons/s-cm2-Hz)

Pν (W/Hz) Φν = Pν /hν (photons/s-Hz)

Eν (J/Hz) (photons/Hz)

As an example, Pν dν represents the optical power in the
frequency range between ν and ν + dν while Φν dν represents the
flux of photons in that frequency range.

Time-Varying Light

If the light intensity is time varying, it follows that the mean
photon-flux density given in (13.2-1) is a function of time, i.e.,

Mean Photon-Flux Density
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The mean photon flux and optical power are then also functions of
time,

Mean Photon Flux

where

Consequently, the mean number of photons registered in a time
interval between t = 0 and ⊤ , which is obtained by integrating the
photon flux, also varies with time,

Mean Photon Number

where the mean optical energy (intensity integrated over time and
area) is given by

B. Randomness of Photon Flow
When the classical intensity I (r, t) is constant, the time and
position at which a single photon is detected are governed by (13.1-
15), which provides that the probability density of detecting that
photon at the space–time point (r, t) is proportional to I (r, t). The
classical electromagnetic intensity I (r, t) governs the behavior of
photon streams as well as single photons, but the interpretation
ascribed to I (r, t) differs:



For photon streams, the classical intensity I(r, t) determines the
mean photonflux density ϕ(r, t). The fluctuations of ϕ(r, t) are
determined by the properties of the light source that emits the
photons.

Consider a detector that integrates over space, such as that
illustrated in Fig. 13.2-1. If the intensity I is constant in time, then
so too is the power P. The mean photon-flux density is then 
and the mean photon flux is . Nevertheless, the times at
which the photons arrive are random, as illustrated schematically in
Fig. 13-23(a); the statistical properties are determined by the nature
of the source emitting the photons, as set forth in Sec. 13.2C. An
example of how random photon arrivals might arise may be
understood from the following example. Consider a source of
optical power P = 1 nW that emits at a wavelength λo = 1 μm so it
delivers an average photon flux of Φ = 5 photons/ns or 0.005
photons/ps. Since only integral numbers of photons may be
detected, this signifies that if 105 time intervals are examined, each
of duration T = 1 ps, then most intervals will be empty (zero
photons will be registered), about 500 intervals will contain one
photon, and very few intervals will contain two or more photons.

If the optical power P (t) does vary with time, the mean density of
photon detections will follow the function P (t), as schematically
illustrated in Fig. 13.2-3(b). The mean photon flux 
accommodates the fact that there are more photon arrivals when
the power is large than when it is small. This variation is in addition
to the fluctuations in photon occurrence times associated with the
character of the source.



Figure 13.2-3 (a) Constant optical power and a sample function of
the randomly arriving photons, whose statistical properties are
determined by the nature of the source. (b) Time-varying optical
power and a sample function of the randomly arriving photons,
whose statistical properties are determined both by the fluctuations
of the optical power and by the nature of the source, as considered
in Sec. 13.2C.

The image of Max Planck in Fig. 13.2-2 illustrates analogous
behavior in the spatial domain. The locations of the detected
photons generally follow the classical intensity distribution, with a
high photon density where the intensity is large and a low photon
density where the intensity is small. But there is considerable
graininess (noise) in the image corresponding to the fluctuations in
photon occurrence positions associated with the source of
illumination. These fluctuations are most discernible when the
mean photon-flux density is small, as is the case in Fig. 13.2-2.
When the mean photon-flux density becomes large everywhere, as
it is in the image of Max Planck on page 514, the graininess
disappears and the classical intensity distribution is recovered.

C. Photon-Number Statistics
An understanding of photon-number statistics is important for
applications such as the reduction of noise in weak images and the
optimization of optical information transmission. In an optical fiber
communications system, for example, information is carried in the
form of pulses of light (Chapter 25). Only the mean number of
photons per pulse is controllable at the source; the actual number of
photons emitted is unpredictable and varies from pulse to pulse,
resulting in errors in the transmission of information.



The statistical distribution of the number of photons depends on
the nature of the light source and must generally be treated in the
context of quantum optics, as described briefly in Sec. 13.3. Under
certain conditions, however, the arrival of photons may be regarded
as the independent occurrences of a sequence of random events at a
rate equal to the photon flux, which is proportional to the optical
power. The optical power may be deterministic (as with coherent
light) or a time-varying random process (as with partially coherent
light). For partially coherent light (Chapter 12), the power
fluctuations are correlated, so that the photon arrivals will no longer
form a sequence of independent events and the photon statistics are
significantly altered.

Coherent Light

Coherent light has constant optical power P. The corresponding
mean photon flux  (photons/s) is also constant, but the
actual photon registration times are random, as portrayed
schematically in Fig. 13.2-4. Given a time interval of duration ⊤,
called the counting time, let the n signify the number of detected
photons, called the photon number. We already know from (13.2-
6) that the mean photon number is . We now seek
to establish the photon-number distribution p(n), i.e., the
probability p(0) of detecting zero photons, the probability p(1) of
detecting one photon, etc., in the counting time ⊤ .

Figure 13.2-4 Random arrival of photons for a coherent light
source of power P. Consecutive counting times of duration ⊤ are
indicated. Though the optical power is constant, the photon number
n observed in each counting time is random.

An expression for the photon-number distribution, p(n) vs. n,
suitable for coherent light can be derived under the assumption that



(13.2-12)

the photon registrations are statistically independent events, as
derived below. The result, known as the Poisson distribution,
takes the form

Poisson Distribution

Equation (13.2-12) is displayed on a semilogarithmic plot in Fig.
13.2-5 for several values of the mean photon number .

Figure 13.2-5 Semilogarithmic plot of the Poisson photon-number
distribution, p(n) vs. n, for several values of the mean photon
number . The curves become progressively broader as  increases.

The Poisson photon-number distribution is suitable for describing
the photon statistics of the coherent light emitted by an ideal,
amplitude-stabilized, single-mode laser operated well above its
threshold of oscillation (Chapter 16). This same result emerges in
the context of quantum optics (Sec. 13.3A). Moreover, the Poisson
distribution provides a good approximation for describing the
photon statistics of a number of other sources of light, such as
multimode thermal light.

□ Derivation of the Poisson Distribution. Divide the time
interval T shown in Fig. 13.2-4 into a large number N of
subintervals, each of sufficiently short duration T/N such that each
subinterval carries one photon with probability p = /N and zero
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photons with probability 1−p. The probability of finding n
independent photons in the N subintervals, like the flips of a biased
coin, then follows the binomial distribution:

In the limit as the number of subintervals N → ∞, we have 
, and , which yields (13.2-

12). 

Photon-Number Mean and Variance

The mean and variance are typically used to characterize a random
variable. The mean photon number is expressed as

while the variance, which is the average of the squared deviation
from the mean, is given by

The standard deviation σn, which is the square root of the variance,
is a measure of the width of the distribution. The quantities p(n), ,
and σn are collectively called photon-number statistics. Though
the distribution p(n) contains information beyond the mean and
variance, these two parameters provide a rough outline of its nature.

It is not difficult to show, by inserting (13.2-12) into (13.2-13) and
(13.2-14), that the mean of the Poisson distribution is indeed  and
that its variance is equal to its mean:



(13.2-15)

(13.2-16)

(13.2-17)

Variance Poisson Distribution

Taking  = 100, for example, the standard deviation is σn = 10,
which signifies that the observation of 100 photons on average is
accompanied by an uncertainty of roughly ±10 photons.

Signal-to-Noise Ratio

Photon-number randomness constitutes a fundamental source of
noise that must be contended with when using light to transmit a
signal. A useful measure of the performance of an information
transmission system is the photon-number-based signal-tonoise
ratio (SNR). Representing the signal by its mean  , and the noise
by its standard deviation σn, the SNR is defined as

If the light obeys Poisson photon-number statistics, then 
from (13.2-15), so that

Signal-to-Noise Ratio Poisson Distribution

The Poisson signal-to-noise ratio increases linearly with the mean
photon number.

Though the SNR is a useful measure of the randomness of a signal,
in some applications it is necessary to make use of the full
probability distribution. For example, an important measure of the
performance of a digital fiber optic communications system is the
probability of error. If such a system is used to transmit information
using bits with a mean photon number of, say , (13.2-12)
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dictates that the probability of no photons being received is p(0) ≈ 2
× 10−9. Since the receipt of zero photons represents an error, as
discussed in Sec. 25.2B, the full probability distribution is required
to calculate system performance.

Thermal Light

When the photon arrival times are not independent, as is the case
for thermal light, the photon-number statistics differ from Poisson.
Thermal light is generated in an optical resonator whose walls are
maintained at a fixed temperature T and whose atoms emit photons
into the modes of the resonator. In accordance with the laws of
statistical mechanics under conditions of thermal equilibrium, the
probability of occupancy of energy level En in a system satisfies the
Boltzmann probability distribution

Boltzmann Distribution

This exponential distribution is sketched in Fig. 13.2-6 with P (En)
plotted along the abscissa. The occupancy of each energy level is
random and higher energies are relatively less probable than lower
energies. The distribution is parameterized by kT , where k is
Boltzmann’s constant (k = 1.38 × 10−23 J/°K). At T = 300° K
(room temperature), kT = 26 meV = 4.14 zJ = 209 cm−1, as
illustrated in Fig. 13.1-2. The origin of the Boltzmann distribution is
discussed in Sec. 14.2.
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Figure 13.2-6 Boltzmann probability distribution P (En) (plotted
along the abscissa) versus energy En (plotted along the ordinate) for
two values of the temperature T . The lower the temperature, the
less likely that higher energy levels are occupied. The allowed
energy levels of a collection of photons in a mode of frequency ν are
illustrated at left.

We now assume that the collection of photons in a mode of
frequency ν inside the resonator behaves as a gas in thermal
equilibrium at temperature T that obeys the Boltzmann
distribution, and that the mode has allowed energy levels given by
En = (n +½)hν, as provided in (13.1-5). It then follows that the
probability of finding n photons in the mode is given by

Normalizing (13.2-19) so that it sums to unity, i.e., imposing the
condition  1, provides the normalization constant [1 −
exp(−hν/kT)]. The zero-point energy E0 = hν disappears into the
normalization and does not affect the results.

The probability distribution for the number of photons n in a
resonator mode of frequency ν given in (13.2-19) is most simply
written in terms of the mean photon number  as
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(13.2-21)

Bose–Einstein Distribution

where

which has been determined from (13.2-13). It is reassuring that
(13.2-21) accords with the mean photon number calculated in (14.4-
7) for a collection of photons interacting with atoms in thermal
equilibrium, as will be seen in Sec. 14.4A. In the parlance of
probability theory, the distribution displayed in (13.2-20) is known
as the geometric distribution since p(n) is a geometrically
decreasing function of n. In the physics literature, it is generally
referred to as the Bose–Einstein distribution since it was first
set forth by Bose based on a statistical argument for counting the
states of indistinguishable particles such as photons. Einstein
recognized that (13.2-20) was also applicable for describing bosons
whose numbers are conserved, and he predicted the possibility of a
condensation to the lowest energy state in a bosonic atomic gas
cooled below a critical temperature (Sec. 14.3F).

The Bose–Einstein distribution is displayed on a semilogarithmic
plot in Fig. 13.2-7 for several values of the mean photon number 
[or, equivalently, several values of the temperature T via (13.2-21)].
Its exponential character is apparent from the straight-line behavior
on this semilogarithmic plot. Comparing Fig. 13.2-7 with Fig. 13.2-5
for the Poisson distribution demonstrates that the photon-number
distributions for thermal light decrease monotonically from n = 0
and are far broader than those for coherent light.
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Figure 13.2-7 Semilogarithmic plot of the Bose–Einstein photon-
number distribution, p(n) vs. n, for several values of the mean
photon number . The curves broaden substantially as  increases.

The photon-number variance of the Bose–Einstein distribution,
which is readily calculated via (13.2-14), turns out to be

Variance Bose–Einstein Distribution

where  is the photon-number mean. Comparing the Bose–Einstein
and Poisson variances given in (13.2-22) and (13.2-15), respectively,
reveals that, for  > 1, the former grows quadratically with  while
the latter grows linearly. The photon-number fluctuations of the
Bose–Einstein distribution are clearly far greater than those of the
Poisson distribution, as is apparent in the comparison of Figs. 13.2-7
and 13.2-5. This large variability is consistent with the random
nature of thermal light, as described in Sec. 12.1. The noisiness of
the Bose–Einstein distribution is crisply highlighted in its signal-to-
noise ratio, which, in accordance with (13.2-16), is given by

The Bose–Einstein SNR always remains smaller than unity no
matter how large , confirming that thermal light is generally too
noisy to be used for the transmission of information.
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EXERCISE 13.2-1

Average Energy of a Resonator Mode in Thermal
Equilibrium. Show that the average energy of a resonator
mode of frequency ν, under conditions of thermal equilibrium at
temperature T , is given by

Sketch the dependence of  on hν for several values of kT. Use a
Taylor-series expansion of the denominator to obtain an
expression for  in the limit hν/kT ≪ 1. Explain the result on a
physical basis.

*Doubly Stochastic Photon-Number Statistics

As indicated earlier, coherent light has constant intensity I(r, t),
constant optical power P, and constant photon flux . The
arriving photons behave as independent events with a Poisson
photon-number distribution , where the mean photon
number  is constant. However, if the light is partially
coherent and its intensity varies in time, then so too does the optical
power [as portrayed in Fig. 13.2-3(b)], the photon flux, and the
mean photon number . In accordance with (13.2-10) and (13.2-11),
in that case the mean photon number, which we denote as w rather
than  for notational convenience, can be expressed as

The integrated intensity w, which has units of mean photon number
and is thus dimensionless, varies in time for partially coherent light.

Variations in the mean photon number arising from intensity
fluctuations cause the photon-number distribution to depart from
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Poisson behavior, as we now show. If the fluctuations of w are
described by a probability density function p(w), the new photon-
number probability distribution is obtained by averaging the
Poisson distribution conditioned on w being constant, p(n|w)=
wne−w/n!, over the permitted values of w dictated by p(w). The alert
reader will notice that we have co-opted the symbol n for the new
photon number. The resultant photon-number distribution then
takes the form

Mandel’s Formula

which is known as Mandel’s formula. Equation (13.2-26) is a
doubly stochastic photon-number distribution by virtue of
its two contributing sources of randomness: 1) the random arrivals
of the photons themselves, which locally behave in Poisson fashion;
and 2) the integrated-intensity fluctuations arising from the
partially coherent nature of the illumination. An underlying
sequence of random photon arrivals that leads to doubly stochastic
photon-number statistics is known as a doubly stochastic
Poisson process (DSPP).

The photon-number mean and variance for the doubly stochastic
photon-number distribution are obtained by using (13.2-13) and
(13.2-14) in conjunction with (13.226); the results are

and

respectively. Here  signifies the variance of w. The photon-
number variance thus comprises two contributions: 1) the basic
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Poisson contribution ; and 2) a (positive) contribution arising
from the intensity fluctuations. It is worth noting that the theory of
photon statistics presented here is applicable only for classical
light; a more general theory encompassing nonclassical light
requires a quantum approach (Sec. 13.3).

An instructive example makes use of an integrated intensity that
obeys the exponential probability density function

Equation (13.2-29) is appropriate for quasi-monochromatic light
whose independent and identically distributed real and imaginary
complex-field-amplitude components are Gaussian. It is applicable
for a source of light whose spectral width is sufficiently small such
that its coherence time τc is much greater than the counting time T,
and whose coherence area Ac is much greater than the detector
integration area A (see Chapter 12). The photon-number
distribution p(n) that corresponds to (13.2-29) is determined by
substituting this result into (13.2-26) and evaluating the integral.
The outcome turns out to be the Bose–Einstein distribution given
in (13.2-20). Hence, the photon statistics of the Gaussian-
distributed optical field described above are identical to those of
single-mode thermal light. Multimode thermal light emerges when
the counting time T and photodetector integration area A are not
small (Probs. 13.2-6–13.2-8).

D. Random Partitioning of Photon Streams
A photon stream is said to be partitioned when it is subjected to the
removal of some of its photons. The process is called random
partitioning when the removed photons are diverted and random
selection when they are annihilated. There are numerous ways in
which this can occur. Perhaps the simplest example of random
partitioning is provided by an ideal lossless beamsplitter. Photons
are randomly selected to exit either of the two output ports (Fig.



13.2-8). An example of random selection is provided by the action of
a photodetector. Photons incident on the photosensitive material
are selected either to be absorbed and create photoelectrons or to
pass through it and be lost.

Figure 13.2-8 Random partitioning of a stream of photons by a
beamsplitter.

We restrict the treatment presented here to situations in which the
probability of each photon being partitioned behaves in accordance
with an independent Bernoulli trial (coin toss). In terms of the
beamsplitter, this is satisfied if a photon stream impinges on only
one of its input ports (Fig. 13.2-8). This eliminates the possibility of
interference, which in general invalidates the independent-trial
assumption (see, e.g., Example 13.3-3). The results derived below
apply to both random partitioning and random selection.

Consider a lossless beamsplitter of transmittance  and reflectance 
. The result of a single photon impinging on this device

was examined in Sec. 13.1C, where it was shown that the probability
of a photon being transmitted is equal to the transmittance of the
beamsplitter  and the probability of the photon being reflected is
equal to 1 −  (Fig. 13.1-6). We now consider a photon stream of
mean flux Φ is incident on the beamsplitter, so that a mean number
of photons  impinges on it in the time interval T . The mean
number of transmitted and reflected photons is then  and 
, respectively.

We proceed to determine how the photon-number statistics of the
incident photon stream are modified upon partitioning. If the
incident stream consists of precisely n photons, the probability p(m)
that m photons are transmitted is the same as that of flipping a
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biased coin n times and obtaining m heads, when the probability of
obtaining a head is . From elementary probability theory we know
that p(m) is characterized by the binomial distribution

where . By symmetry, the results for the reflected
photons are identical, with 1 −  replacing . The statistics of the
binomial distribution yield the mean number of transmitted
photons

and its variance

The signal-to-noise ratio specified in (13.2-16) is thus 
, which increases linearly with the mean

number of transmitted photons . When the incident wave is
strong, the photons will therefore be partitioned between the
transmitted and reflected beams in good agreement with  and (1 − 

), respectively, confirming that the classical-optics result is
recovered.

The expressions provided above for a fixed number of incident
photons permit the photon-number statistics of the partitioned
stream to be determined. The calculation proceeds by recognizing
that in the general case the number of photons n at the input to the
beamsplitter is random rather than fixed. Let the probability be
p0(n) that in a specified time interval there are n photons present at
the beamsplitter input. The photon-number probability distribution
for the transmitted stream will then be a weighted sum of binomial
distributions, with the weighting established by the probability of n
photons being present. The photon-number distribution p(m) at the
output of the beamsplitter, for an input photon-number distribution
p0(n), is therefore , where the observation of m
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photons conditioned on n being fixed is the binomial distribution 
. Finally, then, we obtain a formula that yields

p(m) in terms of p0(n) and :

Photon-Number Distribution Under Random Partitioning

This formula is also applicable for the detection of photons, as
considered in Sec. 19.6A.

When the input photon-number distribution p0(n) is Poisson (for
coherent light) or Bose–Einstein (for single-mode thermal light),
the results turn out to be quite simple: the form of the partitioned
photon-number distribution p(m) exactly matches that of the
incident photon-number distribution p0(n). Thus, single-mode laser
light transmitted through a beamsplitter remains Poisson and
thermal light remains Bose–Einstein, although of course the
photon-number mean is reduced by the factor . In contrast,
photon-number-squeezed light (Sec. 13.3C) does not retain its form
under random partitioning, a property that is responsible for its lack
of robustness. In particular, number-state light, which comprises a
deterministic photon number, obeys the binomial photon-number
distribution after partitioning.

The signal-to-noise ratio for m is readily determined for partitioned
photon streams. For coherent light and single-mode thermal light,
the results are, respectively,
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Since  ≤ 1 it is clear that random partitioning decreases the signal-
to-noise ratio. Another way of stating this is to say that random
partitioning introduces noise.

*13.3 QUANTUM STATES OF LIGHT
The number of photons in an electromagnetic mode is generally a
random quantity. In this section it will be shown that in the context
of quantum optics the electric field itself is also generally random.
Consider a monochromatic plane-wave electromagnetic mode in a
volume V , described by the electric field ε(r, t)= Re{E(r, t)}, where

According to classical electromagnetic optics, as provided in (13.1-3),
the energy of the mode is fixed at . We define a complex
variable a , such that , thereby allowing |a|2 to be
interpreted as the energy of the mode in units of photon number.
The electric field may then be written as

where the complex variable a determines the complex amplitude of
the field.

In classical electromagnetic optics, a exp(j2πνt) is a rotating phasor
whose projection on the real axis determines the sinusoidal electric
field, as portrayed in Fig. 13.3-1. The real and imaginary parts of a =
x + jp, which are x = Re{a} and p = Im{a}, respectively, are termed
the quadrature components of the phasor a because they are a
quarter cycle (90°) out of phase with each other. They determine
the amplitude and phase of the sine wave that represents the
temporal variation of the electric field. The rotating phasor a
exp(j2πνt) also describes the motion of a harmonic oscillator; the
real component x is proportional to position and the imaginary



component p to momentum. From a mathematical point of view,
then, a classical monochromatic mode of the electromagnetic field
and a classical harmonic oscillator behave identically. A parallel
argument can be constructed to show that a quantum
monochromatic electromagnetic mode and a one-dimensional
quantum-mechanical harmonic oscillator also have identical
behavior. To facilitate the comparison, we review the quantum
theory of a simple harmonic oscillator before proceeding.

Figure 13.3-1 The real and imaginary parts of the variable a
exp(j2πνt), which govern the complex amplitude of a classical
electromagnetic mode of frequency ν. The time dynamics are
identical to those of a classical harmonic oscillator with angular
frequency ω = 2πν.

Quantum Theory of the Harmonic Oscillator

A particle of mass m, position x, momentum p, and potential energy 
, where κ is the elastic constant, represents a one-

dimensional harmonic oscillator of total energy  and
oscillation frequency . Without loss of generality, we take
m = 1 so that the energy is .

In accordance with the laws of quantum mechanics, the behavior of
this quantum system in a stationary state is described by a complex
wavefunction ψ(x) that satisfies the time-independent Schr¨odinger
equation [see (14.1-3)],
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where E is the energy of the particle. The solutions of the
Schrödinger equation for the harmonic oscillator, for which 

, give rise to discrete energy values given by

Adjacent energy levels are seen to be separated by a quantum of
energy . The corresponding wavefunctions ψn(x) are
normalized Hermite–Gaussian functions,

where ℍn(x) is the Hermite polynomial of order n [see (3.3-6)–(3.3-
8) and (3.3-11)].

An arbitrary wavefunction ψ(x) may be expanded in terms of the set
of orthonormal eigenfunctions {ψn(x)} in terms of the
superposition . Given the wavefunction ψ(x), which
governs the state of the system, the behavior of the particle is
determined as follows:

The probability p(n) that the harmonic oscillator carries n
quanta of energy is given by the coefficient |cn|2.

The probability density of finding the particle at the position x
is given by |ψ(x)|2.

The probability density that the momentum of the particle is p
is given by |ϕ(p)|2, where ϕ(p) is proportional to the inverse
Fourier transform of ψ(x) evaluated at the (spatial) frequency
p/h,
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As shown in Sec. A.2 of Appendix A, the Fourier-transform
relation between ψ(x) and ϕ(p) indicates that there is an
uncertainty relation between the power-RMS widths of x and
p/h given by

This is the well-known Heisenberg position–momentum
uncertainty relation provided in (A.2-7) of Appendix A.

Analogy Between an Optical Mode and a Harmonic Oscillator

The energy of an electromagnetic mode is hν|a|2 = hν(x2 + p2). The
analogy with a harmonic oscillator of energy  is
established by effecting the connections

The modal energy then becomes , which
leads to the harmonic-oscillator energy levels provided in (13.3-4).
Because the analogy is complete, we conclude that the energy of a
quantum, monochromatic electromagnetic mode, like that of a one-
dimensional, quantum-mechanical harmonic oscillator, is quantized
to the values , as initially suggested in (13.1-5). With
proper scaling normalization factors, the behavior of the position
and momentum of the harmonic oscillator, x and p, also describe
the quadrature components of the electromagnetic field, x and p,
respectively.
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Properties of a Quantum Electromagnetic Mode
An quantum electromagnetic mode of frequency ν is described
by a complex wavefunction ψ(x) that governs the uncertainties
of the quadrature components x and p of the electromagnetic
field, as well as the statistics of the number of photons in the
mode.

The probability p(n) that the mode contains n photons is
given by |cn|2, where the cn are coefficients of the expansion
of ψ(x) in terms of the eigenfunctions 

.

The probability density functions of the quadrature
components x and p are given by |ψ(x)|2 and |ϕ(p)|2,
respectively, where ψ(x) and ϕ(p) are related by

This equation is derived from (13.3-6) by use of the
transformation (13.3-8) and by noting that |ψ(x)|2 and |
ϕ(p)|2 integrate to unity.

The uncertainty relation between the power-RMS widths of
the quadrature components is given by

Quadrature Uncertainty

so that these components cannot be simultaneously
determined with arbitrary precision.
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A. Coherent States
The quadrature uncertainty product σx σp attains its minimum value
of 1/4 when the function ψ(x) is Gaussian (Sec. A.2 of Appendix A).
In that case

so that its Fourier transform is also Gaussian,

Here, αx and αp are arbitrary values that represent the means of x
and p, respectively. The quadrature uncertainties, determined from
|ψ(x)|2 and |ϕ(p)|2, are then given by

Under these conditions the electromagnetic field is said to be in a
coherent state. The one-standard-deviation range of uncertainty
in the quadrature components x and p, as well as in the complex
amplitude a and in the electric field ε(t), are illustrated in Fig. 13.3-2
for coherent-state light. The uncertainties are most pronounced
when αx and αp are small. The squared-magnitude coefficients |cn|2

for the expansion of ψ(x) in the Hermite–Gaussian basis are 
, where , so the photon-number distribution

p(n) is Poisson, as suggested in the discussion surrounding (13.2-
12). Unlike its status in electromagnetic optics, in the context of
quantum optics coherent-state light is not deterministic. The
coherent state is generated by an ideal, amplitude-stabilized, single-
mode laser operated well above its threshold of oscillation.



Figure 13.3-2 Quadrature and electric-field uncertainties for the
coherent state. Representative values of ε(t) ∝ a exp(j2πνt) are
traced for several arbitrary points within the uncertainty circle; the
coefficient of proportionality is chosen to be unity for convenience.

Figure 13.3-3 displays the quadrature uncertainties and time
behavior of the electric field for the coherent state when αx = αp = 0,
which is called the vacuum state.

B. Quadrature-Squeezed States
Though the uncertainty product σx σp cannot be reduced below its
minimum value of 1/4 , the uncertainty of one of the quadrature
components can be reduced (“squeezed”) below 1/2 but this entails
increased uncertainty in the other component. This form of light,
which is distinctly nonclassical, is said to be quadrature-
squeezed. For example, a state for which ψ(x) is a Gaussian
function with a squeezed width σx = 1/2s, where s > 1, corresponds
to a Gaussian function ϕ(p) with a stretched width σp = s/2. The
product σx σp maintains its minimum value of 1/4 , but the
uncertainty circle of the phasor a for the coherent state (Fig. 13.3-2)
is squeezed into an ellipse, as displayed in Fig. 13.3-4.

The particular quadrature-squeezed state illustrated in Fig. 13.3-4 is
known as an amplitude-squeezed state since the phasor amplitude
uncertainty is reduced at the expense of its phase uncertainty. The
asymmetry in the uncertainties of the two quadratures is
manifested in the time course of the electric field by periodic
occurrences of decreased uncertainty, followed each quarter cycle



later by occurrences of increased uncertainty. If the field is
measured only at those times when its uncertainty is minimal, its
noise will be reduced below that of the coherent state. The selection
of those times may be achieved by heterodyning the squeezed field
with a coherent optical field of appropriate phase (heterodyne
receivers are discussed in Sec. 25.4).

Figure 13.3-3 Quadrature and electric-field uncertainties for the
vacuum state. This state is a limiting case for both the coherent
state (αx = αp = 0) and the number state (n = 0). The mode the
carries zero photons and has only the residual zero-point energy .
The circle of uncertainty is squeezed into an ellipse for the squeezed
vacuum state; however, squeezing the vacuum endows it with a
finite mean photon number.



Figure 13.3-4 Quadrature and electric-field uncertainties for a
quadrature-squeezed state (specifically, an amplitude-squeezed
state). The uncertainty circle associated with the coherent state (Fig.
13.3-2) is squeezed into an ellipse of the same area. If the
uncertainty ellipse were to be rotated by 90°, so that its long axis lay
along the phasor rather than perpendicular to it, the result would be
a phase-squeezed state since the phase uncertainty would then be
reduced at the expense of the amplitude uncertainty. The squeezed
vacuum state takes the form of an ellipse at the origin.

Generation and applications of quadrature-squeezed light.
Though not robust in the face of optical losses, quadrature-squeezed
light has garnered an important niche in precision measurements
because of the reduced noisiness of one of its quadratures. The
textbook example is the merit of using quadrature-squeezed light in
the LIGO gravitational-wave interferometer. In the interferometer
configuration considered in Example 2.5-1, for example, all
beamsplitter ports are covered by impinging light beams except for
the output port, which is exposed to the normal vacuum. Improved
interferometer sensitivity is obtained by injecting squeezed vacuum
(of appropriate phase) into the output port.2 Quadrature-squeezed
light may be generated in a number of ways, including via optical
parametric downconversion in a cavity (Sec. 22.2C).

C. Photon-Number-Squeezed States
Quadrature-squeezed light exhibits reduced uncertainty in one of its
quadrature field components relative to that of the coherent state.



Another form of nonclassical light is photon-number-squeezed
light, also referred to as intensity-squeezed or sub-Poisson
light. This form of light has a photon-number variance that is
squeezed below the coherent-state (Poisson) value, i.e., .
Photon-number fluctuations obeying this relation are nonclassical
since (13.2-28) cannot be satisfied.

An electromagnetic mode described by the harmonic oscillator
eigenstate ψ(x)= ψn0(x) provides an example of photon-number-
squeezed light. This state is referred to as the number state
because p(n)= |cn|2 = 1 for a fixed number of photons n = n0; the
number state is also called the Fock state. Since the number of
photons carried by the mode is deterministic, we have  = n0 and
σn

2 = 0. The case n0 = 1 corresponds to a single photon in the mode.
The uncertainties associated with number-state light are illustrated
in Fig. 13.3-5. Though the quadrature components as well as the
phasor magnitude and phase are all uncertain, the photon number
is fixed. For n0 = 0, the number state reduces to the vacuum state
displayed in Fig. 13.3-3. Photonnumber-squeezing can also be
generated using other states, e.g., the binomial state (Prob. 13.3-1).

Figure 13.3-5 Representative uncertainties for the number state.
The mode contains a fixed number of photons, n = n0. This state is
photon-number-squeezed but not quadrature-squeezed.

Generation and applications of photon-number-squeezed light.
Just as with quadrature-squeezed light, losses adversely affect
photon-number-squeezed light (Sec. 13.2D). Nevertheless, this form



of nonclassical light enjoys a range of applications in quantum
information processing, communications, computing, and
cryptography. Photon-number-squeezed light may be generated via
mechanisms that include: 1) the use of feedback to impart
anticorrelations to an otherwise Poisson sequence of photons; 2)
sub-Poisson excitation (e.g., via a stream of electrons subject to
space charge) of an atom or other entity that emits a single photon
in response to the excitation; 3) conversion from two-photon light
whereby the arrival of one photon of a pair serves to herald the
presence of its simultaneously arriving companion, as described in
Sec. 13.3D; and 4) emission from a quantum dot, defect, or similar
entity embedded in a photonic structure, as considered in Sec. 17.2E.

D. Two-Photon Light
Two-photon light, yet another form of nonclassical light, is
described by a joint wave-function that represents its joint
probability amplitude. For example, its spatial properties are
described by the wavefunction U(x1, x2), where |U(x1, x2)|2 is the
joint probability density of finding the photons at positions x1 and x2
in the transverse plane. The corresponding directional (or spatial-
frequency) properties are described by the two-dimensional Fourier
transform of U(x1, x2), which is denoted V(νx1, νx2). The joint
probability density of finding photons with wavevectors k1 and k2

(momenta ħk1 and ħk2) is given by |V(νx1, νx2)|2, where kx1 = 2πνx1
and kx2 = 2πνx2 are the transverse components of the wavevectors.
The temporal and spectral properties are similarly described by the
joint wavefunctions U (t1, t2) and its two-dimensional Fourier
transform V (ν1, ν2).

While the polarization state of classical or single-photon light is
described by the Jones vector , that of two-photon light is

described by a 2 × 2 joint matrix , where the first and

second subscripts denote the polarizations of the first and second



(13.3-15)

(13.3-16)

(13.3-14)

photons, respectively. For example, |Ayx|2 represents the probability
of detecting the first and second photons in the y (vertical or V) and
x (horizontal or H) polarizations, respectively.

Entangled Photons

If the two photons are independent, their joint wavefunction factors
into a product of the individual wavefunctions. In that case

so that the probability of detecting the two photons also factors,
indicating that the positions of the two photons are statistically
independent and uncorrelated.

If the joint wavefunction is not factorable into a product, however,
the photons are said to be entangled. An extreme case is the
wavefunction

which describes two photons that are always detected at the same
position (x1 = x2), although that position is random with probability
density |Us(x1)|2. In that case, the photons are said to be
maximally entangled. The Fourier transform of (13.3-15) is

where Vs(νx) is the one-dimensional Fourier transform of Us(x). The
transverse components of the wavevector are then anticorrelated
(kx1 = −kx2), indicating that the photon directions are also
anticorrelated.



(13.3-17)

An example of two photons that are maximally entangled in
polarization is provided by the polarization state

There are then two polarization possibilities and they have equal
probabilities: photon 1 is y polarized and photon 2 is x polarized, or
vice-versa. Each photon can be either vertically or horizontally
polarized, but if one is vertically polarized, the other must be
horizontally polarized. In the quantum-optics literature, the photon
pair is said to be in a VH+HV superposition state, where V and H
represent the vertical (y) and horizontal (x) polarizations,
respectively. An entangled photon pair is also called a biphoton
and two-photon light is sometimes called twin-beam light.

Generation and applications of two-photon light.
Entangled two-photon light may be generated by means of
spontaneous parametric downconversion (SPDC), a
nonlinear optical process whereby some fraction of a beam of
photons incident on a nonlinear optical crystal are split into pairs of
photons, while conserving energy and momentum (Sec. 22.2C).
Given that the energy of a photon is E = ħω, conservation of energy
dictates that the frequency of the incident photon (called the pump)
must equal the sum of the energies of the two downconverted
photons (called the signal and idler), i.e., 

. If the pump is
monochromatic, ωp is fixed and ω1 and ω2 are anticorrelated
variables. By virtue of the Fourier-transform relation between the
spectral and temporal wavefunctions, this implies that the emission
times are fully correlated, i.e., t1 = t2.

Similarly, given that the momentum of a photon is p = ħk,
conservation of momentum dictates that the pump wavevector



must equal the sum of the wavevectors of the two downconverted
photons, i.e., kp = k1 + k2. If the pump is a plane-wave traveling
along the axial (z) direction, the transverse components k1x and k2x
of the wavevectors of the generated photons must then sum to zero.
Thus, 0 = k1x + k2x or k2x = −k1x, revealing that these components
are anticorrelated; the positions from which the two photons are
emitted are thus correlated, i.e., x1 = x2. This two-photon
wavefunction thus assumes the form specified in (13.3-15), where
Us(x) is determined by the dimensions and optical properties of the
nonlinear crystal in which the entangled photons are generated.
Downconverted photons can also exhibit polarization entanglement
if the nonlinear process requires that they have orthogonal
polarizations. SPDC is useful for generating entangled two-photon
light in crystal-based bulk optics (Example 22.2-3) as well as in
monolithic semiconductor chips. Hollow-core photonic-crystal
fibers (Sec. 10.4) filled with noble gases such as argon can also be
configured to generate two-photon light via a modulation
instability.

Two-photon light can be used to generate single-photon light by
using the arrival of one member of the photon pair to herald the
presence of the other. Entangled photons find use in applications
such as secure quantum communications, cryptography, sensing,
and imaging. Entanglement can be distributed over long distances —
satellite-based entanglement distribution has been achieved for
locations on earth separated by more than 1200 km.

Two-Photon Optics

The transmission of two-photon light through a linear optical
system obeys equations based on classical optics, as we proceed to
describe.

Polarization optics.
When a classical plane wave whose polarization described by the
Jones vector Ji is transmitted through a polarization element with



(13.3-19)

(13.3-18)

Jones matrix T, the Jones vector of the outgoing wave is Jo = TJi
(Sec. 6.1B). This relation, which is also applicable for single-photon
light, is readily generalized to two-photon light by applying the
matrix T twice, once for each photon, which gives rise to

where the superscript T signifies the matrix transpose.

EXAMPLE 13.3-1.

Polarization Rotator. The Jones matrix of a 45° polarization
rotator is  [see (6.1-20)]. Upon transmission through
such a device, polarization-entangled photons described by the
VH+HV Jones vector  [see (13.3-17)] are characterized
by . This Jones vector represents entangled photons in
the VV−HH state, for which the outgoing photons must be of the
same polarization; the probability that they are of orthogonal
polarization is zero. It can be demonstrated that maximally
entangled light remains maximally entangled when subjected to
polarization rotation for an arbitrary angle.

Spatial optics.
When a classical wave with wavefunction Ui(x, y) is transmitted
through an optical system with impulse response function h(x, y;
x',y′ ), the outgoing wave Uo(x, y) is described by the integral (13.1-
9), which also applies for single-photon light. This result may be
generalized to two-photon light by applying the impulse response
function twice, once for each photon. Ignoring the y dependence for
simplicity, we then have



where the subscripts 1 and 2 denote photons 1 and 2, respectively.
Note that (13.3-19) is analogous to (12.3-5) in Sec. 12.3A, which
describes the propagation of partially coherent light with mutual
intensity G(x1, x2) through a linear optical system. But note also
that the conjugation in (12.3-5) is absent in (13.3-19).

EXAMPLE 13.3-2.

Fourier-Transform System. For a 2-f optical system that
implements a Fourier-transform operation (Sec. 4.2B), i.e., h(x;
x′) ∝ exp(−jxx′/λf), where λ is the wavelength and f is the focal
length of the lens, we have Uo(x1, x2) ∝ Vi(x1/λf, x2/λf), where
Vi(νx1, νx2) is the two-dimensional Fourier transform of Ui(x1,
x2). The 2-f system manifests the directional, or momentum,
characteristics of two-photon light. Correlated photons are
converted by the Fourier-transforming lens into anticorrelated
photons.

Two-beam optics.
Two-photon light in the form of two beams, labeled a and b, is
described by a 2 × 2 joint matrix , where, for example,

|Aba|2 is the probability that the first and second photons are found
in beams b and a, respectively. If the two beams are mixed at a
lossless device characterized by a scattering matrix S (see Sec. 7.1A),
the outgoing pair of beams of two-photon light is described by the
matrix Jo = SJiST, a relation that assumes the same form as (13.3-
18).



EXAMPLE 13.3-3.

Hong–Ou–Mandel (HOM) Interferometer. A lossless
symmetric beamsplitter is characterized by the scattering matrix 

, as provided in (7.1-18). For incoming light described
by , indicating that there is a single photon in each
beam, we obtain . This reveals that the
outgoing photons always emerge together as a pair, out of one or
the other port, and there is zero probability that each photon
emerges from a different port.3 Hence, the two indistinguishable
photons that were initially separate, each entering a different
input port of the beamsplitter, exit the beamsplitter “stuck
together” from one of the (randomly chosen) output ports. This
outcome may be understood by observing that there are two
paths the input photons could follow at the beamsplitter for
them to emerge from different output ports — both could
undergo reflection or both could undergo transmission.
However, the probability amplitudes for these two possibilities
are equal since the photons are indistinguishable, and they
cancel because of the phase shift associated with reflection at
the beamsplitter. Hence, the only remaining possibilities are that
the photons emerge together from the same output port. The
beamsplitter thus serves to convert two indistinguishable
photons at its input ports into two entangled photons at its
output ports, since the two photons always emerge from the
same output port, although which port is random. This form of
two-photon interference, known as Hong–Ou–Mandel
interference, is widely used in quantum optics, quantum
information, and quantum imaging.



Applications of two-photon optics.
Optical systems employing two-photon light find application in a
number of areas. An example in the domain of imaging is provided
by quantum optical coherence tomography4 (QOCT), a two-photon
interferometric technique that allows a multilayered medium to be
axially sectioned. This imaging modality makes use of two
indistinguishable photons; a Hong–Ou–Mandel interferometer in
which one of the photons is reflected from a movable mirror while
the other is reflected from the sample before being presented to the
two input ports of the beamsplitter; and a pair of photodetectors
connected to register the photon-coincidence rate at the output
ports of the beamsplitter. The depths of the reflective layers in the
sample are revealed by determining the path delays of the movable
mirror that lead to dips in the coincidence rate, thereby indicating
the presence of HOM interference. QOCT is the two-photon analog
of optical coherence tomography (OCT), discussed in Sec. 12.2B,
which makes use of partially coherent light of short coherence
length; a Michelson interferometer in which one the mirrors is
replaced by the sample; and a photodetector responsive to intensity
(Fig. 12.2-3). For OCT, the depths of the reflective layers in the
sample are revealed by determining the path delays of the movable
mirror that lead to interference fringes in the intensity. Though
QOCT is more complex to implement than OCT, it has the merit
that it is immune to even-order group velocity dispersion (GVD) in
the sample, which serves to increase the attainable resolution and
sectioning depth; the technique simultaneously permits the GVD
coefficients of the media that comprise the sample to be
determined.

The implementation of two-photon optical systems has been
substantially advanced by the development of integrated
quantum photonics, a platform in which on-chip quantum
circuits generate and manipulate quantum states of light such as
single photons, entangled photons, and complex states in which
entanglement is shared among multiple modes.
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PROBLEMS



13.1-5 Photon Energy.

a. What voltage should be applied to an electrode to accelerate an
electron from zero velocity such that it acquires the same
energy as a photon of wavelength λo = 0.87 μm?

b. A photon of wavelength 1.06 μm is combined with a photon of
wavelength 10.6 μm to create a photon whose energy is the sum
of the energies of the two photons. What is the wavelength of
the resultant photon? This process, known as sum-frequency
generation, is illustrated in Fig. 22.2-6.

13.1-6 Position of a Single Photon at a Screen. Consider
monochromatic light of wavelength λo incident on an infinite
screen in the plane z = 0, with an intensity I(ρ)= I0 exp(−ρ/ρ0),
where . Assume that the intensity of the source is
reduced to a level at which only a single photon strikes the
screen.

a. Find the probability that the photon strikes the screen within a
radius ρ0 of the origin.

b. If the incident light contains exactly 106 photons, how many
photons strike within a circle of radius ρ0 on average?

13.1-7 Photon Momentum. Compare the magnitude of the total
momentum in all of the photons in a 10-J laser pulse with that
of:

a. a 1-g mass moving at a velocity of 1 cm/s.

b. an electron moving at a velocity co/10.

*13.1-8 Momentum of a Photon in a Gaussian Beam.

a. What is the probability that the momentum vector of a photon
associated with a Gaussian beam of waist radius W0 lies within



the beam divergence angle θ0? Refer to Sec. 3.1 for definitions.

b. Does the relation p = E/co hold in this case? Explain.

13.1-9 Levitation by Light Pressure. An isolated hydrogen atom
has mass 1.67 × 10−27 kg.

a. Find the gravitational force on this hydrogen atom near the
surface of the earth (assume that at sea level the gravitational
acceleration constant g = 9.8m/s 2).

b. Let an upwardly directed laser beam emitting 1-eV photons be
focused in such a way that the full momentum of each of its
photons is transferred to the atom. Find the average upward
force on the atom provided by one photon striking each second.

c. Find the number of photons that must strike the atom per
second, and the corresponding optical power, for it not to fall
under the effect of gravity, assuming ideal conditions in
vacuum.

d. How many photons per second would be required to keep the
atom from falling if it were perfectly reflecting?

*13.1-10 Single Photon in a Fabry–Perot Resonator. Consider
a Fabry–Perot resonator of length d = 1cm that contains
nonabsorbing material of refractive index n = 1.5 and perfectly
reflecting mirrors. Assume that there is exactly one photon in
the mode described by the standing wave sin(105πx/d).

a. Determine the photon wavelength and energy (in eV).

b. Estimate the uncertainty in the photon’s position and
momentum (magnitude and direc tion). Compare with the
value obtained from the relation σxσp = ħ/2.

13.1-11 Single-Photon Beating (Time Interference). Consider
a detector illuminated by a poly-chromatic plane wave
consisting of two superposed monochromatic waves traveling



in the same direction. The constituent waves have complex
wavefunctions given by

with frequencies ν1 and ν2 and intensities I1 and I2, respectively. In
accordance with √ Sec. 2.6B, the intensity of this wave is given by 

. Assume that the two constituent plane
waves have equal intensities (I1 = I2) and that the wave is
sufficiently weak so that only a single polychromatic photon reaches
the detector during the time interval T = 1/|ν2 − ν1|.

a. Sketch the probability density p(t) for detecting the photon in
the interval 0 ≤ t ≤ 1/|ν2 − ν1|. At what time instant during T is
the probability density zero that the photon will be detected?

b. An attempt to discover from which of the two constituent
waves the photon arrives entails an energy measurement with a
precision better than

Use the time–energy uncertainty relation to show that the time
required for such a measurement is of the order of the beat-
frequency period. This signifies that the very process of
measurement washes out the interference and thereby
precludes the measurement from being made.

13.1-12 Photon Momentum Exchange at a Beamsplitter.
Consider a single photon, in a mode described by a plane wave,
impinging on a lossless beamsplitter. What is the momentum
vector of the photon before it impinges on the mirror? What
are the possible values of the momentum vector of the photon,
and the probabilities of observing these values, after passage
through the beamsplitter?

13.2-2 Photon Flux. Demonstrate that the power of a
monochromatic optical beam that carries an average of one



photon per optical cycle is inversely proportional to the square
of the wavelength.

13.2-3 The Poisson Distribution. Verify that the Poisson
probability distribution provided in (13.2-12) is normalized to
unity and has mean  and variance .

13.2-4 Photon Statistics of a Coherent Gaussian Beam.
Assume that a 100-pW single-mode He–Ne laser emits light at
633 nm in a TEM00 Gaussian beam (Sec. 3.1).

a. What is the mean number of photons crossing a circle of radius
equal to the waist radius of the beam W0 in a time T = 100 ns?

b. What is the root-mean-square value of the number of photons
in (a)?

c. What is the probability that the number of photons is zero in
(a)?

13.2-5 The Bose–Einstein Distribution.

a. Verify that the Bose–Einstein probability distribution provided
in (13.2-20) is normalized and has mean  and variance 

.

b. If a stream of photons obeying Bose–Einstein statistics
contains an average of Φ = 1 photon per nanosecond, what is
the probability that zero photons will be detected in a 20-ns
time interval?

*13.2-6 The Negative–Binomial Distribution. It is well known
in the literature of probability theory that the sum of М
identically distributed random variables, each with a geometric
(Bose–Einstein) distribution, obeys the negative binomial
distribution with overall mean ,



Verify that the negative-binomial distribution reduces to the Bose–
Einstein distribution for М = 1 and to the Poisson distribution as М
→ ∞.

*13.2-7 Photon-Number Statistics for Multimode Thermal
Light in a Cavity. Consider M modes of thermal radiation
sufficiently close to each other in frequency that each can be
considered to be occupied in accordance with a Bose–Einstein
distribution of the same mean photon number 1/[exp(hν/kT) −
1]. Show that the variance of the total number of photons n is
related to its mean by

which indicates that multimode thermal light has less variance than
does single-mode thermal light. The presence of the multiple modes
provides averaging, thereby reducing the noisiness of the light.

*13.2-8 Photon-Number Statistics for a Beam of Multimode
Thermal Light. A multimode thermal light source that
carries M identical modes, each with an exponentially
distributed (random) integrated rate, has an overall probability
density p(w) describable by the gamma density

Use Mandel’s formula (13.2-26) to show that the resulting photon-
number distribution assumes the form of the negative-
binomial distribution defined in Prob. 13.2-6.

*13.2-9 Mean and Variance of the Doubly Stochastic Poisson
Distribution. Prove (13.2-27) and (13.2-28).

*13.2-10 Random Partitioning of Coherent Light.

a. Use (13.2-33) to show that the photon-number distribution of
randomly partitioned coherent light retains its Poisson form.



b. Show explicitly that the mean photon number for light reflected
from a lossless beam-splitter is (1 − ) .

c. Prove (13.2-34) for coherent light.

13.2-11 Random Partitioning of Single-Mode Thermal Light.

a. Use (13.2-33) to show that the photon-number distribution of
randomly partitioned single-mode thermal light retains its
Bose–Einstein form.

b. Show explicitly that the mean photon number for light reflected
from a lossless beam-splitter is (1 − ) .

c. Prove (13.2-35) for single-mode thermal light.

*13.2-12 Exponential Decay of Mean Photon Number in an
Absorber.

a. Consider an absorptive material of thickness d and absorption
coefficient α (cm−1). If the average number of photons entering
the material is , write a differential equation to find the
average number of photons (x) at position x, where x is the
depth into the material (0 ≤ x ≤ d).

b. Solve the differential equation. State why your result turns out
to be the exponential decay law obtained in electromagnetic
optics (Sec. 5.5A).

c. If the incident light is coherent, write an expression for the
photon-number distribution p(n) at an arbitrary position x into
the absorber.

d. What is the probability that a single photon incident on the
absorber survives passage through it?

*13.3-1 Statistics of the Binomial Photon-Number
Distribution. The binomial probability distribution, which is
written as



describes the photon-number statistics for certain sources of
photon-number-squeezed light.5

a. Indicate a plausible mechanism whereby number-state light is
converted into light described by binomial photon statistics.

b. Prove that the binomial probability distribution is normalized
to unity.

c. Find the photon-number mean  and the photon-number
variance  of the binomial probability distribution in terms of
its two parameters, p and M.

d. Find an expression for the SNR in terms of  and p. Evaluate
the SNR for the limiting cases p → 0 and p → 1. What is the
nature of the light corresponding to those two limits?

*13.3-2 Noisiness of the Uniform Photon-Number
Distribution. Consider a light source that generates a photon
stream with the discrete-uniform photon-number distribution

a. Verify that the distribution is normalized to unity and has mean
. Calculate the photon-number variance  and the signal-to-

noise ratio (SNR) and compare these quantities with those for
the Bose–Einstein and Poisson distributions of the same mean.

b. In terms of SNR, would this source be quieter or noisier than
an ideal single-mode laser when  < 2? When  = 2? When  >
2?

c. By what factor is the SNR for this light larger than that for
single-mode thermal light?



d. Suggest a mechanism for generating light with this photon-
number distribution.

Useful formulas:

Notes
1 For example, parity-nonconserving small rotations of the plane of
polarization of light upon passage through certain materials cannot
be accommodated by quantum electrodynamics but are successfully
explained by electroweak theory; see, e.g., P. A. Vetter, D. M.
Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson,
Precise Test of Electroweak Theory from a New Measurement of
Parity Nonconservation in Atomic Thallium, Physical Review
Letters, vol. 74, pp. 2658–2661, 1995.
2 See, e.g., M. C. Teich and B. E. A. Saleh, Squeezed and
Antibunched Light, Physics Today, vol. 43, no. 6, pp. 26–34, 1990.
3 See C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of
Subpicosecond Time Intervals Between Two Photons by
Interference, Physical Review Letters, vol. 59, pp. 2044–2046, 1987.
4 See M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich,
Dispersion-Cancelled and Dispersion-Sensitive Quantum Optical
Coherence Tomography, Optics Express, vol. 12, pp. 1353–1362,
2004.
5 See D. Stoler, B. E. A. Saleh, and M. C. Teich, Binomial States of
the Quantized Radiation Field, Optica Acta (Journal of Modern
Optics), vol. 32, pp. 345–355, 1985.



FUNDAMENTALS OF
PHOTONICS



Part II: Photonics
(Chapters 14–25)



Chapter 14 
LIGHT AND MATTER

14.1 ENERGY LEVELS

A. Atoms

B. Ions and Doped Dielectric Media

C. Molecules

D. Solids

14.2 OCCUPATION OF ENERGY LEVELS

A. Boltzmann Distribution

B. Fermi–Dirac Distribution

14.3 INTERACTIONS OF PHOTONS WITH ATOMS

A. Interaction of Single-Mode Light with an Atom

B. Spontaneous Emission

C. Stimulated Emission and Absorption

D. Line Broadening

*E. Enhanced Spontaneous Emission

*F. Laser Cooling, Laser Trapping, and Atom Optics

14.4 THERMAL LIGHT

A. Thermal Equilibrium Between Photons and Atoms

B. Blackbody Radiation Spectrum

14.5 LUMINESCENCE AND SCATTERING
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C. Scattering

Niels Bohr (1885-1962)

Albert Einstein (1879-1955)

Bohr and Einstein laid the theoretical foundations for describing the
interaction of light with matter.

Light interacts with matter because matter contains electric charges.
The time-varying electric field of light interacts with the electric
charges and dipoles of atoms, molecules, and solids. A photon may
interact with an atom (or ion) if its energy matches the difference
between two atomic energy levels. The allowed energy levels and
energy bands of matter are determined by the rules of quantum
mechanics. If the atom is initially in the lower energy level, the
photon may impart its energy to the atom and thereby raise it to the
higher level; the photon is then said to be absorbed (or annihilated).
Alternatively, if the atom is in the higher energy level, the photon
may stimulate the atom to undergo a transition to the lower level,
resulting in the emission (or creation) of a second photon whose



energy is equal to the difference between the atomic energy levels.
Under appropriate circumstances, stimulated emission can lead to
laser action.

Thermal excitations cause the atoms of matter to constantly
undergo upward and downward transitions among their allowed
energy levels via the absorption and emission of photons. For
blackbodies in thermal equilibrium, under steady-state conditions
the resulting collection of photons and atoms produces thermal
light. All blackbodies whose temperatures lie above absolute zero
radiate thermal light, which has a distribution of frequencies known
as the blackbody radiation spectrum. As the temperature of the
object increases, the higher atomic energy levels become
increasingly populated, causing the peak of the blackbody radiation
spectrum to shift toward higher frequencies (shorter wavelengths).

Photon emission may also be instigated by external sources of
energy other than thermal excitations. Exposure to sound waves,
electric currents, ultraviolet radiation, and chemical reactions can
cause materials to emit light called luminescence. Light can also
interact with atoms via scattering and dispersive (gradient or dipole)
forces. A photon incident on a material that has its direction and
energy altered via scattering often serves to elucidate the internal
energy levels of the material, such as those associated with
molecular vibrations. Yet other processes can also result in the
emission of light; examples include charged particles traveling
faster than the velocity of light in a medium (Čerenkov radiation)
and the deceleration of charged particles as they penetrate matter
(Bremsstrahlung).

This Chapter

The purpose of this chapter is to introduce the laws responsible for
the generation of laser, thermal, and luminescence light. The
chapter begins with a brief review of the generic energy levels
associated with different types of matter (Sec. 14.1) and the
occupation of these energy levels (Sec. 14.2). In Sec. 14.3 we discuss



(14.1-1)

the absorption and emission of photons by an atom; those results
form the basis of the operation of laser amplifiers and oscillators, as
set forth in Chapters 15 and 16, respectively. The interaction of
many photons with many atoms, under conditions of thermal
equilibrium and steady state, is considered in Sec. 14.4. Finally, an
overview of luminescence and light scattering is provided in Sec.
14.5.

14.1 ENERGY LEVELS
The atoms of matter may exist in relative isolation, as in the case of
a dilute atomic gas, or they may interact with neighboring atoms to
form molecules, liquids, and solids. The constituents of matter obey
the laws of quantum mechanics.

The behavior of a single nonrelativistic particle of mass m (an
electron, for example) in a potential is governed by a complex
wavefunction Ψ(r, t) that satisfies the Schrödinger equation1

The potential energy V (r, t) characterizes the environment of the
particle, including contributions from externally applied fields. The
partial differential equation displayed in (14.1-1) thus has an
enormous variety of solutions, depending on the form of V (r, t).
Systems that comprise multiple particles, such as atoms, ions,
molecules, liquids, and solids, obey a more complex version of this
equation in which the potential energy contains terms that
accommodate interactions among the particles. Equation (14.1-1) is
mathematically similar to the paraxial Helmholtz equation of wave
optics (2.2-23) and to the paraxial slowly varying envelope equation
of ultrafast optics (23.1-24).

The Born postulate of quantum mechanics specifies that the
probability of finding the particle within an incremental volume dV



(14.1-3)

(14.1-2)

surrounding the position r, in the time interval between t and t + dt,
is

p(r, t) dV dt = |Ψ(r, t)|2 dV dt.

Equation (14.1-2) resembles (13.1-15) for the probability of finding a
photon within an incremental area and time.

In the absence of a time-varying potential, the allowed energy levels
E of the particle are determined by using the technique of
separation of variables. This leads to a solution of (14.1-1) of the
form Ψ(r, t)= Ψ(r) exp[j(E/ħ)t], where Ψ(r) satisfies the time-
independent Schrödinger equation

Equation (14.1-3), which is similar to the Helmholtz equation (2.2-
7), may be regarded as an eigenvalue problem for which the allowed
values of the energy E are the eigenvalues, while the solutions Ψ(r)
are the eigenfunctions (Appendix C).

Systems of multiple particles obey a generalized form of (14.1-3).
The solutions provide the allowed values of the energy E of the
system. These values can be discrete (as for an atom), or continuous
(as for a free particle), or can comprise sets of densely packed
discrete levels called bands (as for a semiconductor). The presence
of thermal excitation, or of an external field such as light
illuminating the material, can induce the system to move from one
of its energy levels to another. This provides a means by which the
system can exchange energy with the outside world.

In the following sections we schematically illustrate typical energy-
level structures for selected atoms, ions, molecules, and solids.

A. Atoms
Atomic energy levels are established by the potential energies of the
electrons in the presence of the atomic nucleus and the other
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electrons, as well as by interactions involving the orbital and spin
angular momenta, which are usually much weaker than those
involving charges. Isolated atoms such as Ne, Cu, and Cd, among
others, serve as active laser media.

Hydrogen

Energy levels. The energy levels of a hydrogen-like atom
comprising a nucleus of charge +Ze, where Z is the atomic
number (Z = 1 for H), and a single electron of charge −e and mass
m0, are determined by inserting the Coulomb potential energy,
V(r)= –Ze2/4πϵºr, in the time-independent Schrödinger equation
(14.1-3). Since V(r) is a function of the radial coordinate alone, the
Laplacian may be written in spherical coordinates, whereupon the
partial differential equation splits into three ordinary differential
equations via separation of variables. This leads to a ready solution
for the eigenvalue problem, in which the eigenvalues comprise an
infinite number of discrete energy levels with values

where the reduced mass of the atom Mr replaces the electron mass
m0 to accommodate the finite mass of the nucleus. The energy
levels in (14.1-4), which are characterized by a single quantum
number n called the principal quantum number, are displayed in
Fig. 14.1-1 for H and C5+.



Figure 14.1-1 Energy levels of a hydrogen atom (Z = 1; left
ordinate) and a C5+ ion (a hydrogen-like atom with Z = 6; right
ordinate). In this depiction, the arbitrary zero of energy is placed at
the ground-state level (n = 1), which lies ≈ 13.6 eV below the
ionization energy level (n= ∞) for hydrogen and ≈ 489.8 eV below
the ionization energy level for C5+ . The n = 3 to n = 2 transition for
C5+, indicated by the red vertical arrow, corresponds to the extreme-
ultraviolet laser transition at 18.2 nm, as discussed in Sec. 16.3F.

Bohr theory. In the context of the Bohr atom associated with the
old quantum theory, the energy levels provided in (14.1-4) can be
obtained by equating the Coulomb force of attraction to the
centrifugal force required to keep the electron in a circular orbit,
while assuming that the electron orbital angular momentum is
quantized to integer multiples of ℏ. The radii of these Bohr orbits
turn out to be rn = (4πεo)n2ħ2/m0Ze2 , n=1, 2, 3,.... The radius of the
lowest angular-momentum Bohr orbit for hydrogen, a0 ≡ r{n=1,
Z=1} ≈ 0.053 nm, is known as the Bohr radius.

The associated Bohr period is given by T0 = 2πa2
0m0/ħ ≈ 150 as.

Quantum numbers. The eigenfunctions of the Schrödinger
equation take the form of a product of three functions, 

, where n= 1, 2, 3,... is the principal



quantum number; ℓ = 0, 1, 2,..., n − 1 is the azimuthal
quantum number; and m=0, ±1, ±2,..., ±ℓ is the magnetic
quantum number. Here, the ℝnℓ(r) represent associated Laguerre
functions (which are related to the generalized Laguerre
polynomials discussed in the footnote on page 103); the Θℓm(Θ) are
associated Legendre functions; and the Φm(ϕ) are phase functions.
These solutions bear some similarity to those for the microsphere
microresonator discussed in Sec. 11.4C. Incorporating the intrinsic
spin of the electron requires a fourth quantum number known as
the spin quantum number: s= ±½ .

Fine structure, hyperfine structure, and relativistic effects.
The electromagnetic interaction between the magnetic dipole
moment associated with the electron spin and the magnetic field
generated by the orbital angular momentum of the electron rotating
about the nucleus is referred to as spin–orbit coupling. It serves
to split the otherwise degenerate energy levels of the hydrogen atom
into closely spaced, but distinct, components called fine structure.
The electron spin and its orbital angular momentum also interact
with the nuclear magnetic dipole moment to produce yet finer
splittings, called hyperfine structure. Other interactions (e.g.,
spin–spin coupling) are also present, but are negligible. All of these
effects cause the energy levels of hydrogen to differ slightly from
those specified in (14.1-4). Relativistic shifts of the energy levels,
which are small but measurable, can be accommodated by using the
relativistically invariant Dirac equation in place of the
nonrelativistic Schrödinger equation. The Dirac equation also
intrinsically gives rise to the existence of electron spin and
antiparticles such as the positron.

Multielectron Atoms

Shells and subshells. Multielectron atoms comprise a nucleus of
charge +Ze surrounded by z electrons, each of charge −e. As the
atomic number z increases, the occupation of successive single-
electron states proceeds by minimizing the total energy while



satisfying the Pauli exclusion principle, which provides that, as
fermions, no two electrons may have the same set of four quantum
numbers. The electron states thus fill in the form of shells,
designated by the principal quantum number n, each of which has
the capacity to hold a specific number of electrons. Within each
shell are constituent subshells, designated by the azimuthal
quantum number ℓ, as specified in spectroscopic notation (s, p, d, f,
g, h, i,... correspond to ℓ = 0, 1, 2, 3, 4, 5, 6,..., respectively). The
electron configuration nℓu represents the arrangement of
electrons in the subshells; the superscript u indicates the number of
electrons present in each. For example, the configuration for the
ground state of He (Z = 2) is 1s2, its two electrons just filling the
n=1 shell, for which ℓ = 0. Low-lying excited-state configurations of
He in which one of the electrons has been excited to the n = 2 shell
include 1s2s and 1s2p. For Ne (Z = 10), the ground-state
configuration is 1s22s22p6; its 10 electrons just fill the n = 1 and n =
2 shells, which accommodate 2 and 8 electrons, respectively.

Energy levels. The energy levels of multielectron atoms can be
approximately determined by using the Schrödinger theory, which is
suitable for atoms in which relativistic effects are insignificant.
Because of the myriad Coulomb interactions inherent in a collection
of electrons, the Schrödinger equation is typically solved via an
approximate, self-consistent approach called the Hartree method.
Each electron is considered to move independently in a spherically
symmetric net potential, which is taken to be the sum of the
spherically symmetric attractive Coulomb potential arising from the
nucleus and a spherically symmetric repulsive potential
representing the average effect of the Coulomb forces from all other
electrons. The Z-electron Schrödinger equation then splits into Z
single-electron Schrödinger equations with an overall eigenfunction
that is a product of the individual-electron eigenfunctions, and a
total energy that is the sum of the energies of the individual
electrons. Finally, perturbation theory is used to accommodate the
deviations from spherical symmetry of the repulsive potential and
for interactions involving electron spin. The resultant single-



electron eigenfunctions are closely related to those for the hydrogen
atom and are written in the same form. However, energy formulas
similar to (14.1-4) exist only for optically active electrons such as
the valence electrons in alkali atoms.

Electron configuration and term symbol. Electron
configurations often have corresponding collections of closely
spaced energy sublevels that comprise manifolds, as displayed
schematically in Fig. 14.1-2 for Ne. These fine-structure splittings
are principally a consequence of spin–orbit coupling, which
introduces level shifts that are typically 1 part in 104 for H and grow
larger as the atomic number Z increases (hyperfine shifts are a
factor of 103 smaller and relativistic effects can be safely ignored).
For the lighter multielectron atoms, the total orbital angular
momentum L and the total spin angular momentum 𝒮 are good
quantum numbers and the interaction between them, known as
Russell–Saunders or L𝒮 coupling, is responsible for the spin–orbit
coupling. Atomic states are then well described by term symbols
of the form 2𝒮+1L𝒥, which display the various angular momenta: 𝒮 is
the total spin angular-momentum quantum number and 2𝒮 + 1 is
the spin multiplicity (e.g., triplet, singlet); L is the total orbital
angular-momentum quantum number in spectroscopic notation
(uppercase letters S, P, D, F,... represent L = 0, 1, 2, 3,...,
respectively); and 𝒥 is the total overall angular-momentum
quantum number. The term symbol for an atom is often displayed
just after the electron configuration. For example, the lowest-lying
excited states of He are denoted 1s2s3S1 and 1s2s 1S0, with triplet
and singlet multiplicities, respectively, as shown in Fig. 14.1-2.
When all occupied subshells are filled (as is the case for the ground
states of the noble gases as well as for a number of other atoms
such as Cd and Yb), the term symbol is 1S0.



Figure 14.1-2 Selected excited-state energy levels of He and Ne
atoms. Electron configurations and term symbols are indicated (by
convention, the electron-configuration prefix for Ne, 1s,2s2,
corresponding to filled subshells, is suppressed). The energy
spacings between the fine-structure splittings, which are illustrated
schematically, are greatly exaggerated. The Ne transitions marked
by red arrows correspond to the wavelengths 3.39 μm and 632.8 nm,
as indicated. These common Ne laser transitions lie in the mid-
infrared and visible, respectively (Secs. 15.3E and 16.3G). The close
energy matches between the excited He and Ne energy levels, which
are fortuitous, facilitate excitation of the Ne atoms via collisions in a
gas-discharge tube — hence the moniker “He–Ne laser.”

Periodic table. The larger the value of the principal quantum
number n, the less tightly bound are the electrons to the atom
because of the moderation of the nuclear potential by the Coulomb
screening provided by the inner electrons. As a result, shells
typically fill in the order n = 1, 2, 3, 4, .... Similarly, the larger the
value of ℓ, the less tightly bound are the electrons because the
electron probability density progressively shifts toward the atomic
periphery. Hence, subshells typically fill in the order s, p, d, f, .... As
a consequence of these successive filling processes, many properties
of the elements are periodic functions of Z, as exemplified by the
periodic table displayed in Fig. 14.1-3. Successive rows of the table



correspond to consecutive values of the principal quantum number
n.

Each column of the table contains a group of elements whose
physical and chemical properties bear a certain similarity to each
other because they contain the same number of electrons in their
outermost shells (valence electrons). Column 18 , for example,
comprises the noble gases, including He and Ne, which are
monoatomic and chemically inert because they have filled outer
shells and a large energy difference between their filled p subshells
and the next higher s subshells. Columns  1  and 17 , in contrast,
comprise elements that are highly active chemically and easily form
molecules. Each alkali-metal atom in column  1 , for example,
contains a lone outer electron that it will readily share with any
nearby halogen atom in column 17 , which needs just such a lone
electron to complete its outer shell.



Figure 14.1-3 Periodic table of the elements, with element
abbreviations and atomic numbers Z indicated. Each successive row
of the table, called a period, comprises elements containing
electrons that reside in shells designated by the principal quantum
number n indicated by the arabic numeral at left. Each column of
the table, called a group, comprises elements with similar physical
and chemical properties, and is designated by an encircled arabic
numeral at top. The roman numerals are an older, but still widely
used system for designating the groups; it remains prevalent in
semiconductor physics. The lanthanide and actinide series depicted
in the lower portion of the figure reside in rows 6 and 7, and
comprise the successive additions of electrons to the inner 4f and 5f
subshells, respectively. The rare-earth elements comprise the
elements in the lanthanide series (except for La itself) plus Sc and
Y. Elements that take the form of gases, liquids, and solids at room
temperature are indicated in blue, yellow, and silver, respectively.

In general, multielectron atoms exhibit an enormous variety of
allowed energy levels. Even though optical transitions typically
involve only valence electrons, the sheer abundance of energy levels
gives rise to a cornucopia of energy differences, many of which



serve as viable laser wavelengths (Secs. 15.3E and 16.3G indicate but
a few). The energy differences between the excited atomic levels of
Ne displayed in Fig. 14.1-2, for example, extend to several eV, which
covers the infrared and optical regions of the spectrum.

Relative atomic mass. The nucleus of an element of fixed atomic
number Z contains Z protons and an assembly of neutrons.
Different isotopes of a given element all contain Z protons, but
different numbers of neutrons. Naturally occurring elements often
comprise a collection of isotopes; the abundance-weighted relative
atomic mass of a particular sample of the element is denoted Ar.
Mononuclidic elements, such as  Na, have a single naturally
occurring (or strongly dominant) isotope. Just as elementary
particles are either bosons or fermions (Sec. 13.1D), so too are
composite particles such as atoms. If the total number of
constituent fermions (electrons, protons, and neutrons) in the atom
is even (odd), it is a composite boson (fermion), and has integer
(half-integer) spin. Examples of bosonic atoms are 
examples of fermionic atoms are . Bosons and
fermions obey Bose–Einstein and Fermi–Dirac statistics,
respectively.

External fields. The application of an external magnetic or electric
field to an atom serves to split and modify otherwise degenerate
energy levels via the Zeeman effect and Stark effect,
respectively. The Zeeman effect results from the interaction of an
external magnetic field with the overall magnetic dipole moment of
an atom (including its orbital and spin components). The Stark
effect, which is the electric-field analog of the Zeeman effect, results
from the interaction of an external electric field with the induced
electric dipole moment of the atom. Splittings resulting from an
applied AC electric field are said to arise from the AC Stark effect.
The magnitudes of both the Zeeman and Stark energy splittings
increase with increasing field strength. Both effects play important
roles in laser cooling and trapping, as well as in other applications.



Ionization energies. The ionization energy of a neutral atom is
the energy necessary to remove its most loosely bound valence
electron to the vacuum, leaving behind a cation. In each row of the
periodic table presented in Fig. 14.1-3, the ionization energy
generally increases as one moves to the right, exhibiting a minimum
for the alkali metal in column  1  (which has only a single electron
outside a closed shell), and a maximum for the noble gas in column
18  (which has a closed shell). The energy of the electron in the
ground state of hydrogen, for example, is −13.6 eV with respect to
the vacuum level (Fig. 14.1-1), so the ionization energy of hydrogen
is W = 13.6 eV. It is also possible to ionize a multielectron atom by
removing an inner-shell electron, which has a far higher ionization
energy; and to create highly ionized multielectron atoms, in which
multiple electrons are removed (Sec. 16.3F).

B. Ions and Doped Dielectric Media
The removal of one or more electrons from an atom leaves behind a
residual cation with its own electron configuration and term
symbol. Though the energy levels associated with the core electrons
remain the same as those of the parent atom, the subshells in which
the optically active electrons reside are unique to the ion, as are
their energy levels. Much as with multielectron atoms, ions offer an
enormous variety of energy levels and potential laser wavelengths.
Among the earliest lasers to be developed were ionic gas lasers that
relied on the energy levels of noble-gas ions such as Ar+ and Kr+,
created from their respective neutral atoms in a gas-discharge tube
(Sec. 16.3E). Solid-state lasers that relied on the energy levels of
lanthanide-metal ions, such as Nd3+ substituting for a small fraction
of the Y3+ ions in a Y3Al5O12 crystal, were developed in the very
same year (1964). However, by virtue of their superior performance
and robustness, solid-state lasers have nearly totally eclipsed ionic
gas lasers, except in the most specialized of applications.

Much as with atoms, the energy levels of the laser ions are
established via quantum-mechanical calculations or, as is more



often the case in practice, empirically. Transition-metal and
lanthanide-metal ions are generally used as dopants for solid-state
laser amplifiers and lasers (Secs. 15.3 and 16.3A). The host media
are usually insulating ionic or covalent dielectrics that are
transparent in a particular region of the spectrum, with suitable
optical, thermal, and mechanical properties. The optical properties
of dielectric materials were considered in Sec. 5.5C in the context of
the Lorentz oscillator model, which is suitable for characterizing
transparent host materials.

The extent to which the energy levels of an active laser ion remain
unaffected by the host medium is determined principally by how
well the ion’s optically active electrons are shielded from the host’s
neighboring lattice atoms. It will become clear that the energy levels
of transition-metal ions are substantially modified by the local field
effects of the host whereas those of lanthanide-metal (rare-earth)
and actinide-metal ions are scarcely affected. By way of example, we
will consider the energy levels of four well-known laser systems: 1)
Cr3+:Al2O3 (ruby); 2) Cr3+:BeAl2O4 (alexandrite); 3) Nd3+:Y3Al5O12

(Nd3+:YAG); and 4) Nd3+:glass.

Transition-Metal Ions

The most commonly encountered transition-metal ion dopants for
lasers are the trivalent ions Ti3+ and Cr3+, although some lasers
make use of Cr2+, Cr4+, Ni2+, Co2+, as well as other ions. The
ground-state electron configurations and term symbols for some of
these ions, and for their respective elements, are presented in Table
14.1-1. It is evident from the table that the optically active electrons
for the transition-metal ions reside in the 3d subshell.



Table 14.1-1 Selected transition-metal, lanthanide-metal (rare-
earth), and actinide-metal ions used in solid-state lasers. Ground-
state electron configurations and term symbols for isolated atoms
and ions are provided.

aBy convention, the electron configurations for filled subshells are omitted; this includes

those for the 5s2 5p6 filled subshells in the n= 5 shell of the lanthanides and those for the

6s2 6p6 filled subshells in the n = 6 shell of the actinides.

Ruby and alexandrite. We now proceed to examine the energy

levels of two dielectric media doped with Cr
3+

, namely ruby and
alexandrite (Fig. 14.1-4). Ruby is celebrated because it was the
material from which the first laser was made (page 657), whereas
alexandrite received considerable early attention because its output
is tunable over a range of wavelengths. The energy levels of
Ti:sapphire, perhaps the most important transition-ion laser
material, will be considered in Sec. 16.3A.

Ruby (Cr3+:Al2O3) is chromium aluminum oxide. It is a dielectric
medium with refractive index n ≈ 1.76 that is composed principally
of sapphire (Al2O3, also called aluminum oxide, alumina, and
corundum), in which a small fraction of the Al3+ ions (≈ 0.05%) are
replaced by Cr3+ ions. Alexandrite (Cr3+:BeAl2O4) is formed by
doping a small amount of chromium oxide (≈ 0.1%) into a



chrysoberyl (BeAl2O4) host. This material has a refractive index that
is close to that of ruby, n ≈ 1.75; however chrysoberyl is biaxial
whereas sapphire is uniaxial.





Figure 14.1-4 Selected energy levels and energy bands for
Cr3+:Al2O3 (ruby) and Cr3+:BeAl2O4 (alexandrite). The red arrows
represent laser transitions. Each laser emits light at a characteristic
fixed wavelength (694 nm for ruby and 680 nm for alexandrite).
However alexandrite also lases over a range of additional
wavelengths. The dark-to-light shading of the lower laser band in
alexandrite indicates a decrease in relative occupancy. Because of
the important role of the crystal field in determining the energy
levels of transition-metal ions in dielectric hosts, group-theoretical
symbols, rather than term symbols, are generally used to designate
them.

Since the 3d electrons of the Cr3+ ions in both materials are exposed
to neighboring ions, the energy levels of these materials are
determined in large part by the surrounding crystal fields and
therefore depend substantially on the host material. In particular,
each chromium ion is surrounded by oxygen atoms in a
configuration that subjects it to a significant spatially varying
potential. Best represented in the context of crystal-field theory
(or ligand-field theory), this potential, along with that of the Cr3+

nucleus, determine the energy levels of ruby and alexandrite via the
Schrödinger equation. As a consequence, the energy levels of
transition-metal ions in a dielectric host are generally designated by
group-theoretical symbols (e.g., 2E and 4A2) rather than by term
symbols.

The resultant energies are a mixture of discrete levels and energy
bands, some of which are shown in Fig. 14.1-4. The energy levels of
the two materials are quite distinct even though they share the
same dopant ion. In particular, the 4A2 energy band in alexandrite
comprises a collection of vibronic states (shaded-blue region) that
result from coupling between the electronic energy levels and the
lattice vibrations of the crystal. Consequently, alexandrite is tunable
over a (limited) range of wavelengths whereas ruby is not (Sec.
15.3E). Nevertheless, alexandrite also lases at a characteristic
wavelength (680 nm) that is not too far from that of ruby (694 nm).



Lanthanide-Metal Ions
The lanthanide elements comprise the series from 58Ce to 71Lu
that reside in row 6 of the periodic table (Fig. 14.1-3). These
elements, plus 21Sc and 39Y, are often called rare earths because
they were long ago thought to be rare (they are in fact rarely rare).
The lanthanide elements are constructed by successively adding
electrons to the 4f subshell, which lies within the filled 5s25p6 and
6s2 subshells, as shown in Table 14.1-1. The lanthanides usually
exist as trivalent cations, in which case the configuration of their
valence electrons takes the form 4fu, with u varying from 1 (Ce3+) to
14 (Lu3+).

The lanthanide ions Nd3+, Er3+, Tm3+, and Yb3+ are particularly
important for laser amplifiers and oscillators. The electron
configurations and term symbols for these trivalent ions, and their
respective elements, are provided in Table 14.1-1. Nd 3+:glass and
Er3+:silica-glass fibers are widely used as laser amplifiers, as will be
highlighted in Secs. 15.3B and 15.3C, respectively. Nd 3+:YVO4,
Nd3+:YAG, and Yb3+:YAG often serve as laser oscillators, as
discussed in Sec. 16.3A. Among the other lanthanides, Pr3+ and Ho3+

also find use as active laser ions. Two or more lanthanide ions are
frequently used to co-dope laser media in order to improve
performance.

Nd3+:YAG and Nd3+:glass. The energy levels of trivalent
lanthanide ions in a dielectric host and in isolation are quite similar.
This results from the fact that the optically active 4f electrons are
well shielded from the external effects of the lattice by the filled 5s
and 5p subshells (Table 14.1-1). This is in sharp contrast to the
behavior of transition-metal ions; unlike ruby and alexandrite,
lanthanide-ion energy levels are rather independent of the host
material. This is illustrated in Fig. 14.1-5 for Nd3+ in two hosts that
are quite different: YAG and phosphate glass. The main near-
infrared laser-transition wavelengths in the two materials,



corresponding to the energy differences between the 4F3/2 and 4I11/2

levels, are in close alignment: 1.064 μm for Nd3+:YAG and 1.053 μm
for Nd3+:glass.

Figure 14.1-5 Selected energy levels of Nd3+ in YAG and in
phosphate glass. The arrows indicate the principal near-infrared
laser transition, which has a wavelength of 1.064 μm in YAG and
1.053 μm in phosphate glass. The energy levels of both materials are
rather similar at the scale of this figure. Since the energy levels of
the dopant ions are scarcely affected by the host, ionic term symbols
are used to designate them (Table 14.1-1). A magnified view of the
manifolds for Nd3+:YAG, provided in Fig. 14.1-6, shows the multiple
sublevels.

Lanthanide-ion manifolds. However, the energies of the
sublevels within the lanthanide-ion manifolds do depend on the
host material. Nd3+:YAG and Nd3+:glass exhibit quite different
sublevel structures because of differences in their local field
environments. Incorporating Nd3+ ions in a crystal such as YAG
results in homogeneous broadening, whereas embedding them in a
less structured material such as phosphate glass results in
inhomogeneous broadening (Sec. 14.3D). The sharp Nd3+:YAG
sublevels are clearly visible in Fig. 14.1-6, which offers a greatly



magnified view of Fig. 14.1-5. For a glass host, these narrow
sublevels are smeared into bands.

Figure 14.1-6 Sublevels of the three manifolds associated with
Nd3+:YAG laser transitions near 1.06 μm: (a) groun state 4I9/2; (b)
lower laser level 4I11/2;(c) upper laser level 4F3/2. The specific
energies of the sublevels depend on the host material; they are
smeared into bands for hosts such as glass, where inhomogeneous
broadening prevails.

The number of distinct sublevels within each of the manifolds
displayed in Fig. 14.16 is determined by the value of g/2, where g =
2𝒥 + 1. Here g is the degeneracy parameter and 𝒥 is the total
overall angular-momentum quantum number, which is provided in
the term symbol 2S+1L𝒥, as discussed in Sec. 14.1A for atoms. For the

three Nd3+:YAG manifolds displayed in Fig. 14.1-6, the numbers of
distinct sublevels are (2𝒥 + 1)/2=5, 6, and 2, respectively. The
celebrated 1.06415-μm laser line is associated with a transition
between the upper sublevel in the 4F3/2 manifold at 1.4269 eV and
the third-from-bottom sublevel in the 4I11/2 manifold at 0.2616 eV.
(When frequency doubled, this transition provides the well-known
source of green light at 532 nm.)

Actinide-Metal Ions



The actinide elements residing in row 7 of the periodic table (Fig.
14.1-3) are constructed by incrementing the number of electrons in
the 5f subshell. The optically active 5f electrons in the actinide ions
are shielded from the host lattice by the filled 6s and 6p subshells
(Table 14.1-1). The chemical behavior of the actinides is thus similar
to that of their lanthanide homologs. The U3+:CaF2 laser, developed
just months after the ruby laser was demonstrated in 1960, operates
on the 4I11/2 → 4I9/2 transition of U3+ at λo ≈ 2.49 μm. Neodymium
lies immediately above uranium in the periodic table; both Nd3+ and
U3+ share the same f3 ground-state electron configuration and 4I9/2
term symbol (Table 14.1-1). While the development of actinide-ion-
doped laser materials was impeded by their relative rarity and by the
radioactive nature of many of their isotopes, the advancement of
lanthanide-ion-doped laser materials such as Nd3+:CaF2 proceeded
apace. Nevertheless, U3+:CaF2 was the first four-level laser ever
operated.

C. Molecules
Molecules can be formed by the combination of two or more atoms.
A stable molecule emerges when the sharing of valence electrons by
the constituent atoms results in a reduction of the overall energy.
Molecular bonds take several forms and differ widely in their
strengths. Two important forms of molecular bonding are covalent
bonding and ionic bonding. In the simplest view of the covalent
bond, the negatively charged electrons of the constituent atoms are
simultaneously attracted by the positive charges of two or more
atoms. For the ionic bond, on the other hand, an electron is
essentially transferred from one constituent atom to another,
resulting in an electrostatic attraction between them. Weak residual
bonding between molecules that arises neither from covalent nor
ionic bonding is known as van der Waals bonding. Such bonding
often arises from the interaction of molecular dipoles and may be
attractive or repulsive.



(14.1-5)

Molecular energy levels are determined in part by the nature of the
bonding and the potential energies associated with the interatomic
forces that bind the atoms. The energy levels of a molecule are
typically associated with three more-or-less distinct features, whose
transitions typically fall in different wavelength regions: rotational
transitions lie in the microwave and far infrared, vibrational
transitions lie in the infrared, and electronic transitions lie in the
visible and ultraviolet. Since the time scales of these features differ
considerably, to first approximation they may be analyzed
separately. Molecules ranging from simple gases to dyes in a solvent
serve as active laser media (Sec. 16.3E).

Rotating Diatomic Molecule
The rotation of a diatomic molecule with moment of inertia 𝒥 about
its center of mass can be considered as the rotation of a rigid rotor
about an axis perpendicular to its internuclear axis. The classical
rotational energy for such a system is Er = L2/2𝒥, where L is the
angular momentum of the system about the axis of rotation. In
accordance with the laws of quantum mechanics, the square-
magnitude of the angular momentum of such a system is quantized
according to L2 = r(r + 1)ħ2, where r is the rotational quantum
number. The allowed energy levels of the rotating diatomic
molecule are thus

The energy separations ℏω of rotational energy levels typically lie in
the range between 10−4 and 10−2 eV, corresponding to photons in
the microwave and far-infrared regions of the spectrum. This energy
spacing increases with increasing quantum number r, in contrast to
the spacing between successive electronic energy levels of
hydrogen-like atoms, which decrease with increasing quantum
number in accordance with (14.1-4).



(14.1-6)

Vibrating Diatomic Molecule

The vibrations of a diatomic molecule (e.g., N2, CO, HCl) are
governed by an intramolecular attraction and a restoring force that
is approximately proportional to the change in internuclear distance
x. The system may therefore be modeled as two masses, M1 and M2,
joined by a spring, with reduced mass Mr = M1M2/(M1 + M2). A
molecular spring constant k can be defined such that the potential
energy is V (x)=  The molecular vibrations (e.g., for the N2
molecule portrayed in Fig. 14.1-7) therefore take on the energy
levels of a quantum-mechanical harmonic oscillator. As discussed in
Sec. 13.3, the levels are quantized in accordance with

where  is the (angular) oscillation frequency,  is the
zero-point energy, and v is the vibrational quantum number.
Equation (14.1-6) matches the expression for the allowed energies
of a mode of the electromagnetic field provided in (13.1-5). Typical
values of  for molecular vibrations lie in the range between 0.05
and 0.5 eV, corresponding to the mid-infrared region of the
spectrum (as for the N2 vibrational energy levels displayed in Fig.
14.1-7).

Unlike the energy levels of the hydrogen atom, and those of the
rotating diatomic molecule, the vibrational energy levels of the
diatomic molecule are equally spaced. In practice, however, the
potential-energy curves for most molecules become anharmonic as
the energy increases (Sec. 22.7), which results in a diminution of
the energy-level separations as v increases. In the course of
undergoing a vibrational transition, the molecule may
simultaneously alter its rotational state, whereupon both v and r
change in the vibrational–rotational spectrum.



Figure 14.1-7 Vibrational energy levels of the N2 and CO2
molecules (the zero of energy is arbitrarily set at v = 0). The allowed
energy levels for the three modes of vibration of CO2, antisymmetric
stretch (A), symmetric stretch (S), and bending (B), are displayed
schematically. A triplet of quantum numbers (vSvBvA) characterize
the excitation of the modes. The transitions indicated by red arrows
represent laser emission at the iconic CO2 mid-infrared laser
wavelengths λo = 10.6 μm and 9.6 μm, as indicated. A manifold of
finely spaced rotational energy levels (not shown) is associated with
each vibrational level. The close energy match between the excited
(v = 1) N2 and (001) CO2 energy levels, which is fortuitous,
facilitates collisional excitation of the CO2 molecules in a gas-
discharge tube.

Vibrating Triatomic Molecule

A triatomic molecule of particular interest in photonics is carbon
dioxide, which serves as a useful laser medium for generating high
optical powers in the mid-infrared region. Since it comprises three
atoms and is linear, the CO2 molecule may undergo independent
vibrations of three kinds, as illustrated in Fig. 14.1-7: asymmetric
stretch (A), symmetric stretch (S), and bending (B). These normal
modes exhibit the features of quantum-mechanical harmonic



oscillators, each with its own spring constant, value of hw, and
equally spaced energy levels. The expression for the energy of the
molecule is thus a sum of three terms, each of the form of (14.1-6),
and the excitation of the system is characterized by a triplet of
vibrational quantum numbers: (vSvBvA). The transitions indicated
by the red arrows in Fig. 14.1-7 represent energy exchanges between
normal modes that lead to photon emission at the well-known CO2
laser wavelengths near 

 (Secs. 15.3E and
16.3G). As with diatomic molecules, each vibrational level is split
into a manifold of closely spaced rotational levels (not shown),
whose energies are given approximately by (14.1-5).

Dye Molecule

Organic dyes are large and complex molecules. As a result, they may
undergo joint electronic, vibrational, and rotational transitions; they
therefore have a vast array of energy levels that comprise both
singlet (S) and triplet (T) multiplicities. In the singlet state, the spin
of the excited electron is antiparallel to that of the remainder of the
dye molecule, whereas in the triplet state the spins are parallel.
Energy-level differences correspond to wavelengths covering broad
swaths of the optical and ultraviolet regions. Figure 14.1-8 portrays
the structure of Rhodamine-6G, which becomes an ion when
dissolved in a solution of water or alcohol, along with an
idealization of its energy-level structure. This particular dye served
as a welcome medium during the formative years of laser
development since it lased in the yellow region of the spectrum and
could be tuned over a reasonable wavelength range. The organic dye
laser is briefly discussed in Sec. 16.3E.



Figure 14.1-8 Structure of the Rhodamine6G ion, which has the
chemical formula . The schematic at left illustrates a laser
transition between two singlet manifolds with slightly different
configurations, as indicated by their horizontal offset. Vibrational
and rotational energy levels are represented by thick and thin
horizontal lines, respectively.

D. Solids
The atoms (or molecules) of solids lie in close proximity to each
other and typically coalesce into a periodic arrangement comprising
a crystal lattice. The strength of the forces holding the atoms
together is roughly of the same magnitude as the forces that bind
atoms into molecules. Consequently, the energy levels of solids are
determined not only by the potentials associated with individual
atoms, but also by the potentials associated with neighboring lattice
atoms. Though noncrystalline solids, such as glasses and plastics,
have orderly structures similar to those of crystals, they extend only
over a short range.

Four principal types of bonding occur in ordinary solids: ionic,
covalent, metallic, and molecular. Ionic solids (such as CaF2)



comprise a crystalline array of positive and negative ions held
together by electrostatic attraction. Since there are no free electrons
to carry current, these materials are insulators. They are generally
transparent in the visible region of the spectrum since their
bandgaps usually lie in the ultraviolet (Fig. 5.5-1). Covalent solids,
like covalently bound molecules, consist of atoms bound by shared
valence electrons. They are often insulators and can be transparent
(such as diamond) or opaque (such as graphite) in the visible
region. Covalent solids can also be semiconductors (such GaAs),
which are opaque in the visible and transparent in the infrared (Fig.
5.5-1). Metallic solids have delocalized valence electrons that are
shared by all of the positive ions, moving in their combined
potential. The ability of the electrons to wander through metallic
crystals is responsible for their high electrical conductivities. Metals
strongly reflect light and are opaque in the visible. Molecular
solids (or van der Waals solids) contain small, non-polar
covalent molecules held together by van der Waals forces, which are
far weaker than those involved in other kinds of binding.

Energy bands. It is instructive to examine how the energy levels of
an isolated atom are modified as it comes into close contact with
neighboring atoms in the course of forming a crystal lattice. Isolated
atoms and molecules (e.g., those in gases) exhibit discrete energy
levels (see Figs. 14.1-1, 14.1-2, 14.1-7, 14.1-8, for example). Each
individual atom in a collection of such identical isolated atoms has
an identical set of discrete energy levels. As these atoms are brought
into proximity to form a solid, exchange interactions (arising from
the quantum-mechanical requirement of indistinguishability for
identical particles), along with the presence of fields of varying
strengths from neighboring atoms, become increasingly important.
The initially sharp energy levels associated with the valence
electrons of isolated atoms gradually broaden into collections of
numerous densely spaced energy levels that form energy bands.
This process is illustrated in Fig. 14.1-9, where electron energy levels
are illustrated schematically for two isolated atoms (a); for a
molecule containing two such atoms (b); and for a rudimentary 1D



lattice comprising five such atoms (c). The lowest-lying energy
levels remain sharp because the electrons in the inner subshells are
shielded from the influence of nearby atoms, but the initially sharp
energy levels associated with the outer atomic electrons become
bands as the atoms enter into close proximity and degeneracies are
removed by Stark splitting.

Figure 14.1-9 Schematic energy levels for: (a) two isolated atoms;
(b) the same two atoms after having been brought into close contact
and forming a diatomic molecule; and (c) five identical atoms in
close proximity having formed a rudimentary 1D crystal.

This picture is elaborated in Fig. 14.1-10, where we schematically
compare the energy levels of an isolated atom and three different
kinds of solids that comprise lattices of such atoms: a metal, a
semiconductor, and an insulator. The lowest-lying energy levels of
these solids, denoted in this example by the electron configurations
1s, 2s, and 2p, resemble those of the isolated atom because the inner
electrons are shielded from interatomic forces. In contrast, the
discrete higher energy levels of the atomic valence electrons,
denoted 3s and 3p here, are split into densely packed energy bands
in the solids. The lowest-lying unoccupied, or partially occupied,
energy band is called the conduction band while the highest-lying
fully occupied energy band is known as the valence band. These
two bands are separated by a forbidden band, with an energy
extent Eg known as the bandgap energy. As with electrons in
individual atoms, the Pauli exclusion principle applies to the



electrons in solids so that the lowest-lying energy bands are
occupied first.

Figure 14.1-10 Broadening of the discrete energy levels of an
isolated atom into energy bands when atoms in close proximity
form a solid. Fully occupied bands are darkly shaded, unoccupied
bands are lightly shaded, and partially occupied bands are both
lightly and darkly shaded. The forbidden band is shown as white.
Typical values for the room-temperature conductivity σ for metals,
semiconductors, and insulators are 108 (Ω-m)−1 , 10−4–105 (Ω-m)−1,
and 10−10 (Ω-m)−1 , respectively.

Metals, semiconductors, and insulators. Metals comprise the
greatest preponderance of elements in the periodic table (Fig. 14.1-
3). They have a partially occupied conduction band at all
temperatures (lightly and darkly shaded region in Fig. 14.1-10). The
availability of many unoccupied states in this band is responsible
for their high electrical conductivity (Sec. 8.2A). Semimetals, in
contrast, have overlapping valence and conduction bands.

Intrinsic semiconductors have an occupied valence band (dark
shading in Fig. 14.1-10) and an unoccupied conduction band (light
shading) at T = 0° K. Since there are no available free states in the
valence band, and no electrons in the conduction band, the
conductivity of an ideal intrinsic semiconductor at T = 0° K is zero.



As the temperature of the semiconductor rises above absolute zero,
however, an increasing number of electrons from the valence band
gain sufficient thermal energy to enter the conduction band and
thereby to contribute to the conductivity of the material.

Insulators also have a fully occupied valence band (dark shading in
Fig. 14.1-10) and an unoccupied conduction band (light shading).
They are distinguished from semiconductors by their larger bandgap
energy, which is typically greater than about 3 eV. As an example,
the bandgap energy for silicon (a semiconductor) is Eg ≈ 1.1 eV
whereas that for diamond (an insulator) is Eg ≈ 5.5 eV. Above
absolute zero, fewer electrons in insulators have the requisite
thermal energy to surmount the bandgap energy and contribute to
the conductivity of the material. It should be pointed out, however,
that the degree of band overlap also plays a role in determining
whether a material is a metal, semiconductor, or insulator.

Semiconductors

Semiconductors find widespread use in photonics. They serve as
sources such as light-emitting diodes and laser diodes, waveguides,
modulators, switches, and detectors, and play many other important
roles as well. We proceed to provide a brief introduction to the
energy levels of inorganic bulk semiconductors, quantum wells,
quantum wires, and quantum dots. A more extensive exposition
relating to the properties of semiconductors, including organic
semiconductors, is provided in Sec. 17.1.

Bulk semiconductors. The binary semiconductor GaAs was early
on found to be useful in photonics. This material takes the form of a
zincblende structure comprising two face-centered-cubic lattices,
one of Ga atoms and the other of As atoms, displaced from each
other by 1/4 the length of a body diagonal (Fig. 14.1-11). Four
molecules of GaAs are present in the conventional cell, which is a
cube. Each atom is surrounded by four atoms of the opposite type,
equally spaced and located at the corners of a regular tetrahedron.



Figure 14.1-11 The semiconductor GaAs takes the form of a
zincblende crystal structure comprising two face-centered-cubic
lattices, one of Ga and the other of As. The higher energy levels are
closely spaced and form bands. The zero of energy is (arbitrarily)
defined at the top edge of the valence band. The GaAs laser diode
operates on the electron transition between the conduction and
valence bands, in the near-infrared region of the spectrum.

Semiconductors have many closely spaced allowed electron energy
levels that take the form of bands, as displayed in Fig. 14.1-11 for
GaAs. The bandgap energy Eg, which is the energy separating the
valence and conduction bands, is 1.42 eV at room temperature. The
Ga and As (3d) core levels are quite sharp, as displayed in Fig. 14.1-
11. The valence band of GaAs is formed from the 4s and 4p levels (in
analogy with the schematic in Fig. 14.1-10).

Quantum wells. Crystal-growth techniques such as molecular-
beam epitaxy and vapor-phase epitaxy can be used to grow materials
with specially designed band structures. In semiconductor
quantum-well structures, the energy bandgap is engineered to
vary with position in a specified manner, leading to materials with



unique electronic and optical properties. An example is the
multiquantum-well structure illustrated in Fig. 14.1-12. This
particular structure comprises ultrathin (2-to 15-nm-thick) layers of
GaAs alternating with thin (20-nm-thick) layers of AlGaAs. The
bandgap of the GaAs is smaller than that of the AlGaAs. For motion
perpendicular to the layer, the allowed energy levels for electrons in
the conduction band, and for holes in the valence band, are discrete
and well separated, like those of the square-well potential in
quantum mechanics (Exercise 17.1-5); the lowest energy levels are
shown schematically in each of the quantum wells in Fig. 14.1-12.

The AlGaAs barrier regions can also be made ultrathin (< 1 nm), in
which case the electrons in adjacent wells can readily couple to each
other via quantum-mechanical tunneling, whereupon the discrete
energy levels broaden into miniature bands called minibands. The
material is then called a superlattice structure because the
associated lattice is “super to” (i.e., larger than) that of the atomic
crystal lattice, which gives rise to minibands rather than the natural
full-size energy bands associated with the atomic lattice. Quantum
wells are discussed further in Secs. 17.1G, 18.2D, and 18.4A.

Figure 14.1-12 Quantized energy levels in a single-crystal
AlGaAs/GaAs multiquantum-well structure. The well widths can be
periodic or arbitrary (as shown).

Quantum wires. A semiconductor material that takes the form of
a thin wire surrounded by a material of wider bandgap is known as a
quantum wire. The wire acts as a potential well that narrowly
confines electrons (and holes) in the two lateral directions but not
in the direction along the axis of the wire. Quantum wires are



readily made from III–V and II–VI semiconductors such as InP and
CdSe, respectively; they usually have rectangular or circular cross
section. Nanotubes and nanowires fabricated from a broad variety of
materials can behave as quantum wires. Carbon nanotubes are
cylindrical carbon molecules with diameters of one or a few nm in
which the carbon molecules organize themselves into thin hollow
ropes held together by van der Waals forces. Single-or multiwalled
nanotubes exhibit unique optical, mechanical, and electrical
properties. They can behave as semiconductors or highly conductive
metals, depending on the details of their structure. There are a
multitude of uses for carbon nanotubes in photonics, ranging from
filaments for incandescent light sources to photovoltaic detectors.
Quantum wires are discussed further in Secs. 17.1G and 18.4B.

Quantum dots. Also known as nanocrystals or quantum boxes,
quantum dots are semiconductor particles whose dimensions
typically fall in the range of 1 to 50 nm. Quantum dots can be
fabricated from many different kinds of semiconductors and in
many geometrical shapes (e.g., cubes, spheres, hemispheres, disks,
and pyramids), depending on the growth conditions. They are often
embedded in semiconductor materials with larger bandgaps or in
glasses or polymers. Robust techniques for growing quantum dots
continue to be developed. When fabricated using molecular-beam
epitaxy (MBE) or chemical-vapor deposition (CVD), they can
assume the form of disk-shaped structures, in which the electron
motion is restricted to a plane and is characterized by 2D atomic-
like shell structures not unlike those associated with the toroidal
resonators considered in Sec. 11.4B. Quantum dots can also be
created via electron-beam lithography; a pattern is etched onto a
semiconductor chip and conducting metal is deposited onto the
pattern. Quantum dots can also be readily grown in a beaker using
wet chemistry. Self-assembled quantum dots, with typical
dimensions in the range of 10–50 nm, are formed from colloidal
nanocrystals provided in liquid suspension or dispersed in a plastic
composite. Chemical synthesis yields near-perfect crystalline
clusters that range from several hundred to several tens-of-



thousands of atoms and assume various shapes, again depending on
the growth conditions. They can be deposited onto substrates or
incorporated directly into devices designed to accommodate them.
Self-assembly can also be achieved by means of epitaxial synthesis,
which can yield strained quantum-dot layers designed to improve
device characteristics. Arrays and self-assembled stacks of quantum
dots are readily fabricated.

The sizes of quantum dots, and thus the number of atoms they
contain, varies over a broad range; a 10-nm cube of GaAs contains
some 40 000 atoms. All electrons belong to the dot as a whole; the
number of electrons can be as small as just a few or as large as
millions. The energy levels of a quantum dot are those of its
excitons, namely the electron–hole pairs generated within, and
confined to, the dot. As with atoms, a series of sharp energy levels
results from tight electron confinement; quantum dots are in fact
often called artificial atoms. Unlike atoms, however, a quantum
dot fabricated from a given material has the property that its energy
levels are strongly dependent on its size. Much as with the energy
levels of an electron in a quantum well (Exercise 17.1-5), tight
confinement in a small quantum dot corresponds to large energy-
level differences and short transition wavelengths. The wavelength
of an emitted photon consequently decreases along with the size of
the quantum dot. The color of light elicited from a CdSe quantum
dot by photoexcitation, for example, can be gradually tuned from
the red region of the spectrum for a 5-nm-diameter dot to the violet
region for a 1.5-nmdiameter dot; the trend is illustrated in Fig. 14.1-
13. The photoexcitation wavelength is arbitrary, as long as it is
shorter than the emission wavelength. Quantum dots fabricated
from InP luminesce in the near infrared, whereas those fabricated
from InAs emit across the 1300–1600-nm silica-fiber-based
telecommunications band. Photoexcited Si quantum dots also emit
over a broad spectral range that extends from the infrared to the
visible (Example 17.2-2). Quantum dots can also be fabricated from
organic compounds.



Figure 14.1-13 Photoluminescence from colloidal CdSe quantum
dots (with oleylamine surface capping molecules) dispersed in
nhexane, in response to ultraviolet excitation at λo = 365 nm.
Quantum-confinement effects allow the emission color to be tuned
with quantum-dot size (courtesy Dong-Kyun Seo, Arizona State
University).

Quantum dots overcoated with a semiconductor material of higher-
bandgap are known as core–shell quantum dots, whereas those
overcoated with multiple semiconductors of alternating higher and
lower bandgaps are known as quantum-well– quantum dots. Such
overcoatings can substantially improve the tunability and photo-
luminescence efficiency of the nanostructure. Ordered
arrangements of quantum dots, known as quantum-dot solids,
can be grown by a number of methods, including the self-assembly
of nanocrystals into a close-packed configuration. In the same way
that tunneling can occur in multiquantum-well superlattices, so too
can it occur in quantum-dot solids known as nanocrystal
superlattices.

When quantum-dot structures are brought into contact with
electrodes, they can serve as miniature photonic devices. By
constructing arrays of quantum dots of different sizes in specially
designed configurations, they can sustain currents and operate over
broad, or specially chosen, wavelength ranges. Quantum dots are
useful as spectral tags in biological, commercial, and military
applications. As discussed in Chapters 18 and 19, they also find use
in a broad array of photonic devices such as light-emitting diodes,
semiconductor optical amplifiers, laser diodes, single-photon
sources, memory elements, photodetectors, solar cells, flat-panel
displays, backlighting sources, and as absorbers in materials where
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it is desirable to filter out ultraviolet light. Quantum dots are
discussed further in Secs. 17.1G and 18.4C.

14.2 OCCUPATION OF ENERGY LEVELS
As indicated earlier, each atom or molecule in a collection
continuously undergoes random transitions among its different
energy levels. These transitions are characterized by the rules of
statistical physics. Temperature is the principal determinant of both
the average behavior and the fluctuations in energy-level occupancy.

A. Boltzmann Distribution
Consider a collection of distinguishable objects, such as atoms or
molecules that form a dilute gas. Each atom is in one of its allowed
energy levels E1, E2,.... If the system is in thermal equilibrium at
temperature T (i.e., if the atoms are kept in contact with a thermal
bath maintained at temperature T and their motion reaches a steady
state in which the fluctuations are, on average, invariant to time),
the probability P(Em) that an arbitrary atom is in energy level Em is
given by the Boltzmann distribution

where k is the Boltzmann constant. The coefficient of
proportionality is chosen such  The occupation
probability P(Em) vs. Em is an exponentially  decreasing
function of Em, as displayed in Fig. 14.2-1.



Figure 14.2-1 The Boltzmann distribution P(Em), plotted on the
abscissa, specifies the probability that energy level Em of an
arbitrary atom is occupied; it is an exponentially decreasing
function of Em.

The origin of Boltzmann distribution can be understood by
considering a system of many identical entities that share a fixed
total energy E . The entities are isolated from their surroundings but
are in thermal equilibrium, exchanging energy among themselves
via a bath at temperature T. The divisions of energy are taken to be
distinguishable if they involve different energy states, and all
possible divisions of the total energy are assumed to occur with
equal probability. If one of the entities takes a large share of the
total energy, less is available for the remaining constituents so there
are fewer possible divisions. Consequently, large energies are less
probable than small energies. A quantitative description is provided
by considering two entities. The probability of finding one with
energy E1 and the other with energy E2 is the product P(E1)P(E2)
because they are independent. If the sum of the energies of the two
entities is fixed at the value E1 + E2, then P(E1)P(E2) must be a
function of (E1 + E2), which uniquely specifies an exponential
function. The equipartition energy kT for the two degrees of
freedom associated with a harmonic mode leads directly to the
Boltzmann distribution.
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Consider the Boltzmann distribution in the context of a large
number of atoms N. If Nm is the number of atoms occupying energy
level Em, the fraction Nm/N ≈ P(Em). If N1 atoms occupy level 1 and
N2 atoms occupy a higher level 2, the population ratio is, on average,

This quantity depends on the temperature T . At T = 0° K, all atoms
are in the lowest energy level (ground state). As the temperature
increases the populations of the higher energy levels grow. Under
equilibrium conditions, the average population of a given energy
level is always greater than that of a higher-lying level. This
condition need not hold under non-equilibrium conditions,
however, in which case a higher energy level can have a greater
average population than a lower energy level. This latter state of
affairs, known as a population inversion, provides the basis for
laser action (Sec. 15.1A).

It was assumed in the foregoing that there is a unique way in which
an atom can find itself in one of its energy levels. It is sometimes
the case, however, that two or more states (e.g., different states of
angular momentum) correspond to the same energy. To account for
such degenerate states, (14.2-2) can be written in the more general
form

where the degeneracy parameters g2 and g1 represent the numbers
of states corresponding to the energy levels E2 and E1, respectively.

B. Fermi–Dirac Distribution
Fermions subject to the Pauli exclusion principle, such as electrons
with overlapping wavefunctions in a multielectron atom or in a
semiconductor, obey Fermi–Dirac statistics. The probability of
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occupancy of a state of energy E is then described by the Fermi–
Dirac distribution (or Fermi function),

where Ef is called the Fermi energy (Fig. 14.2-2).

Figure 14.2-2 The Fermi–Dirac distribution f(E), plotted on the
abscissa, represents the probability of occupancy of a state of energy
E . This distribution is applicable for a system containing particles
with overlapping wavefunctions in which the Pauli exclusion
principle applies. The Fermi–Dirac distribution is well
approximated by the Boltzmann distribution P(Em) for E ≫ Ef ,
where the occupancy probability is low.

The occupancy probability decreases monotonically with increasing
E, and falls to a value of 1/2 at the Fermi energy E = Ef. States for
which f(E) = 1 are definitely occupied. It is important to recognize
that the Fermi–Dirac distribution f(E) is a sequence of probabilities
with values lying between 0 and 1 for all values of E, rather than a
probability density function. However, for E ≫ Ef , the occupancy
probability is low and (14.2-4) reveals that the Fermi–Dirac
distribution then reduces to the Boltzmann probability distribution

P(E ) ∝ exp(−E/kT),



as illustrated in Fig. 14.2-2. This condition is generally applicable for
valence electrons in the outer subshells of atoms and ions so that
optically active electrons are populated in accordance with the
Boltzmann distribution. The Fermi function is considered in more
detail in Chapter 17.

Bosons such as photons (Sec. 13.2C) and atoms in a Bose–Einstein
condensate (Sec. 14.3F) obey the Bose–Einstein distribution.

14.3 INTERACTIONS OF PHOTONS WITH
ATOMS
A. Interaction of Single-Mode Light with an Atom
An atom may emit (create) or absorb (annihilate) a photon by
undergoing a downward or upward transition between pairs of its
energy levels, while conserving energy in the process. This section is
devoted to describing the laws that govern such emissions and
absorptions. The interactions of photons with electrons and holes in
semiconductors is considered in Sec. 17.2.

Interaction Between an Atom and an Electromagnetic Mode

Consider the energy levels E1 and E2 of an atom placed in an optical
resonator of volume V that can sustain a number of electromagnetic
modes. We are particularly interested in the interaction between the
atom and the photons of a prescribed radiation mode of frequency v
≈ v0, where hv0 = E2 − E1, since photons of this energy match the
atomic energy-level difference. A formal study of such interactions
relies on quantum electrodynamics; we present the key results that
emerge from such an analysis below, without proof.

Three forms of interaction are possible — spontaneous emission,
absorption, and stimulated emission, which we consider in turn.

Spontaneous Emission
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If the atom is initially in the upper energy level, it may decay
spontaneously to the lower energy level and release its energy in the
form of a photon (Fig. 14.3-1). The photon energy hv is added to the
energy of the electromagnetic mode. The process is called
spontaneous emission because the transition is independent of
the number of photons that may already be in the mode.

Figure 14.3-1 Spontaneous emission of a photon into the mode of
frequency v by an atomic transition from energy level 2 to energy
level 1. The photon energy hv ≈ E2 − E1.

In a cavity of volume V, the probability density (per second), or rate,
for this spontaneous transition depends on v in a way that
characterizes that atomic transition,

Spontaneous Emission 
into a Prescribed Mode

The quantity σ(v), known as the transition cross section, is a
function of v centered about the atomic resonance frequency v0.
The significance of this designation will become apparent
subsequently, but it is clear that σ has dimensions of cm2 (since the
dimensions of psp, c, and V are s−1, cm/s, and cm3, respectively). In
principle, σ(v) can be determined from the Schrödinger equation
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but the calculations are generally sufficiently complex that it is
usually determined empirically. Equation (14.3-1) applies separately
to every mode, with a transition cross section σ that depends on the
angle θ between the dipole moment of the atom and the field
direction of the mode, in accordance with

The maximum cross section  is attained when the dipole
moment and field align.

The term “probability density” signifies that the probability of an
emission taking place in an incremental time interval between t and
t +Δt is simply psp Δt. Because it is a probability density, psp can
have a numerical value greater than 1 s−1, although of course pspΔt
must always be smaller than 1. Thus, if there are a large number N
of such atoms, a fraction of approximately ΔN =(psp Δt)N atoms will
undergo this transition within the time interval Δt. Consequently,
we can write dN/dt = −psp N, indicating that the number of atoms
N(t) = N(0) exp(−pspt) decays exponentially with time constant
1/psp, as illustrated in Fig. 14.3-2.

Figure 14.3-2 Spontaneous emission into a single mode results in
an exponential decrease of the number of excited atoms, with time
constant 1/psp.

Absorption
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If the atom is initially in the lower energy level and the radiation
mode contains a photon, the photon may be annihilated and the
atom concomitantly raised to the upper energy level (Fig. 14.3-3).
This process, which is induced by the photon, is called absorption. It
can occur only when the mode contains a photon.

Figure 14.3-3 Absorption is a process whereby a photon of energy
hv induces the atom to undergo an upward transition from level 1 to
level 2.

The probability density for the absorption of a photon from a given
mode of frequency v, in a cavity of volume V, is governed by the
same law that governs spontaneous emission into that mode,
namely

However, if there are n photons in the mode, the probability density
that the atom absorbs one photon is n times greater since the events
are mutually exclusive, i.e.,

Absorption of One Photon 
from a Mode with n Photons

Stimulated Emission

Finally, if the atom is in the upper energy level and the mode
contains a photon, the atom may be induced to emit another photon
into the same mode. This process, known as stimulated emission,
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is the inverse of absorption. The presence of a photon in a mode of
specified frequency, propagation direction, and polarization
stimulates the emission of a duplicate (“clone”) photon with
precisely the same characteristics as the original (Fig. 14.3-4). This
photon amplification process is the phenomenon that underlies the
operation of laser amplifiers and lasers, as will be elucidated in
subsequent chapters.

Figure 14.3-4 Stimulated emission is a process whereby a photon
of energy hv induces the atom to emit a clone photon as it
undergoes a downward transition from level 2 to level 1.

The probability density pst that this process occurs in a cavity of
volume V is governed by the same law that governs spontaneous
emission and absorption:

If the mode originally carries n photons, the probability density that
the atom is stimulated to emit an additional photon is, just as in the
case of absorption,

Stimulated Emission of One 
Photon into a Mode with n Photons

Under certain circumstances, as will be elucidated in Sec. 15.2B, the
effective transition cross sections σ(v) specified in (14.3-4) and
(14.3-6) for absorption and stimulated emission, respectively, differ;
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they are then denoted σab(v) and σem(v), respectively, in which case
Pst ≠ Pab. When the two cross sections are equal, however, we use a
= common notation for both probability densities: Wi ≡ Pst = Pab.

Inasmuch as spontaneous emission is present in addition to
stimulated emission, combining (14.3-1) and (14.3-6) leads to an
overall probability density of the atom emitting a photon into the
mode that is described by psp + Pst =(n + 1)(c/V)σ(v).

From a quantum-electrodynamic point of view, spontaneous
emission may be regarded as stimulated emission induced by the
zero-point fluctuations associated with the mode (Sec. 13.1A).
Because the zero-point energy plays no role in absorption, however,
Pab is proportional to n rather than to (n + 1).

The three possible interactions between an atom and a radiation
mode in a cavity (spontaneous emission, absorption, and stimulated
emission) obey the fundamental relations set forth above. These
formulas should be regarded as the rules that govern the
interactions between photons and atoms in the context of laser
physics. They are to be used in conjunction with the rules of photon
optics set forth in Chapter 13. We now proceed to discuss some of
the consequences of these rather simple relations.

Lineshape Function and Transition Strength

It is clear from the foregoing that the transition cross section σ(v)
characterizes the interaction of the atom with the radiation mode.
Its shape governs the relative magnitude of the interaction of the
atom with photons over a range of frequencies, while its area,

known as the transition strength or oscillator strength,
represents the strength of the interaction. The area S, which has
units of cm2-Hz, can be readily separated from the shape (profile) of
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σ(v by defining a normalized lineshape function g(v)= σ(v)/S,
which has unity area,  and units of Hz−1. The transition
cross section can then be written in terms of its strength and profile
as

σ(v)= Sg(v).

The lineshape function g(v) is centered about the resonance
frequency v0, where σ(v) is largest, and decreases sharply as v
deviates from v0. Transitions are therefore most likely to occur for
photons of frequency v ≈ v0. The width of the function g(v) is
known as the transition linewidth Δv, which is usually defined as
the full-width at half-maximum (FWHM) value of g(v) (Sec. A.2 of
Appendix A). Since the area of g(v) is unity, its width is inversely
proportional to its central value,

Δv ∝ 1/g(v0).

It is also useful to define a peak cross section at the resonance
frequency: σ0 ≡ σ(v0). As illustrated in Fig. 14.3-5, the transition
cross section σ(v) is then characterized by four features: 1) its
height σ0; 2) its width Δv; 3) its area S; and 4) its profile g(v).

Figure 14.3-5 The transition cross section σ(v) and the lineshape
function g(v).

B. Spontaneous Emission
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Total Spontaneous Emission into All Modes

Equation (14.3-1) provides the probability density psp for
spontaneous emission into a prescribed mode of frequency v,
without regard to whether the mode contains photons. As indicated
in (11.3-10), the density of modes for a three-dimensional cavity
increases quadratically with frequency as M(v) = 8πv2/c3. This
quantity approximates the number of modes of frequency v, per
unit volume of the cavity per unit bandwidth, provided that the
number of modes is sufficiently large so that a continuous
approximation is suitable for counting the modes. An atom may
spontaneously emit one photon of frequency v into any of these
modes, as shown schematically in Fig. 14.3-6.

Figure 14.3-6 An atom may spontaneously emit a photon into any
one (but only one) of the many optical modes with frequencies v ≈
v0.

The probability density for spontaneous emission into any available
mode is therefore given by the probability density for spontaneous
emission into a specific mode, weighted by the modal density. Since
modes at each frequency have an isotropic distribution of
directions, each with two polarizations, we must make use of the
average transition cross section . If θ is the angle between the
dipole moment of the atom and the field direction, (14.3-2) provides
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since  represents an average in 3D space. The
overall spontaneous-emission probability density therefore
becomes

Because the function  is sharply peaked, it is narrow in
comparison with the quadratic function M(v) = 8πv2/c3. Since 
is centered about v0, M(v) is approximately constant with a value
M(v0), and can thus be removed from the integral. The probability
density of spontaneous emission of one photon into any mode is
therefore

where λ = c/v0 is the wavelength of the light in the medium and 
 We define a time constant tsp, known as the

spontaneous lifetime of the 2 → 1 transition,

such that 1/tsp ≡ Psp, so

Spontaneous Emission of 
One Photon into Any Mode

which is independent of the cavity volume V. Using this, (14.3-12)
provides
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which enables the transition strength to be determined from an
empirical measurement of the spontaneous lifetime tsp. For a
simple transition, such as between the first excited state and the
ground state of atomic hydrogen, we find that tsp ≈ 10−8 s; however,
tsp can vary over a very broad range, from femtoseconds to seconds
(see, e.g., Table 15.3-1).

Equation (14.3-14) is useful because a first-principles calculation of
S would require intimate knowledge about the quantum-mechanical
behavior of the system, which is not always available.

EXERCISE 14.3-1

Frequency of Spontaneously Emitted Photons. Show that
the probability density for an excited atom spontaneously
emitting a photon of frequency between v and v + dv is Psp(v) dv
= (1/tsp)g(v) dv. Explain why the spectrum of spontaneous
emission from an atom is proportional to its lineshape function
g(v) after a large number of photons have been emitted.

Relation Between Transition Cross Section and Spontaneous
Lifetime

Using (14.3-14) together with the relation  = Sg(v) shows that
the average transition cross section is related to the spontaneous
lifetime and the lineshape function via

Average Transition 
Cross Section
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a relationship known as the Füchtbauer–Ladenburg equation. The
average transition cross section at the central frequency v0 is
therefore

Because g(v0) is inversely proportional to Δv, for a given value of tsp
the peak transition cross section σ0 is inversely proportional to the
linewidth Δv, in accordance with (14.3-9).

C. Stimulated Emission and Absorption

Transitions Induced by Monochromatic Light

We now consider the interaction of single-mode light with an atom
when a stream of photons impinges on it, rather than when it
resides in a resonator of volume V as considered above. Let
monochromatic light of frequency v, intensity I, and mean photon-
flux density (photons/cm2-s)

interact with an atom whose resonance frequency is v0. We wish to
determine the probability densities for stimulated emission and
absorption, Wi ≡ Pst = Pab, in this configuration.

The number of photons n involved in the interaction process is
determined by constructing a volume in the form of a cylinder of
base area A, height c × 1 s, and volume V = cA. The axis of the
cylinder is parallel to k, the direction of propagation of the light. The
photon flux that crosses the cylinder base is Φ = ϕA (photons/s).
Because photons travel at the speed of light c, all of the photons
within the volume of the cylinder cross its base within one second.
It follows that, at any time, the cylinder contains n = ϕA = ϕV/c
photons so that
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To determine Wi, we substitute (14.3-18) into (14.3-4) or (14.3-6) to
obtain

It is apparent that σ(v) is the coefficient of proportionality between
the probability density of an induced transition and the photon-flux
density. This relationship informs us that the appellation “transition
cross section” is apt: ϕ is the photon-flux density (cm−2·s−1) while
σ(v) is the effective cross-sectional area of the atom (cm2), so that
ϕσ(v) represents the probability density (s−1) that a photon in the
stream is “captured” by the “cross section” of the atom for the
purpose of stimulated emission or absorption.

It is clear from (14.3-4), (14.3-6), and (14.3-11) that the probability
densities for absorption, stimulated emission, and spontaneous
emission are all proportional to σ(v). As discussed above, stimulated
emission involves decay only into those modes that contain
photons. Though the expression for  set forth in (14.3-15) was
obtained for spontaneous emission into multiple modes, it is
convenient to make use of it in conjunction with (14.3-19) to
determine the probability density for induced transitions as well,
since tsp is readily determined experimentally.

The use of the quantity  instead of σ(v) in (14.3-15) is a result of
averaging over the angle between the dipole moment of the atom
and the field direction [see (14.3-2) and (14.3-10)]; it is appropriate
for spontaneous emission into all modes. However, when such
averaging is not called for, such as in the case of stimulated
emission into a particular mode and a fixed angle θ, σ(v) and σ0 are
used in place of  and 0. Any required change in σ(v) associated
with averaging for a particular induced-transition configuration can
be readily accommodated by modifying tsp, which is then referred to
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as the effective spontaneous lifetime. For simplicity, we shall
henceforth not distinguish between tsp for spontaneous emission
and its effective value for stimulated emission.

Transitions Induced by Broadband Light

Consider now an atom in a cavity of volume V containing
multimode polychromatic light of spectral energy density ϱ(v)
(energy per unit bandwidth per unit volume) that is broadband in
comparison with the atomic linewidth. The average number of
photons in the frequency band from v to v + dv is [ϱ(v)V/hv] dv;
each of these has a probability density (c/V)σ(v) of initiating an
atomic transition. As with spontaneous emission, the modes at each
frequency are taken to be isotropically distributed in direction, each
with two polarizations, so that the overall probability of absorption
or stimulated emission is

Since the radiation is broadband, the function ∈(v) varies slowly in
comparison with the sharply peaked transition cross section σ(v).
We can therefore replace ∈(v)/hv under the integral with ∈(v0)/hv0,
which leads to

Using (14.3-14), we therefore have

where λ = c/v0 is the wavelength in the medium at the central
frequency v0. Defining
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which represents the mean number of photons per mode, allows us
to write (14.3-22) in the convenient form

The interpretation of n as the mean number of photons per mode
follows from the form of the ratio [see (14.3-12), (14.3-21), and
(14.3-22)]

the quantity ϱ(v0)/hv0 represents the mean number of photons per
unit volume in the vicinity of the frequency v0 while M(v0) is the
number of modes per unit volume in the vicinity of v0. The
probability density Wi is thus a factor of  greater than that for
spontaneous emission, since each mode contains an average of 
photons.

Einstein 𝔸 and 𝔹 Coefficients

Though Einstein did not have knowledge of (14.3-22), in 1917 he
carried out an important analysis of the energy exchange between
atoms and radiation that permitted him to obtain general
expressions for the probability densities of spontaneous and
stimulated transitions. He assumed that the atoms interacted with
broadband radiation of spectral energy density ϱ(v), under
conditions of thermal equilibrium, and obtained the following
expressions:
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Einstein’s Postulates

(14.3-28)

(14.3-29)

(14.3-30)

The constants 𝔸 and 𝔹 are known as the Einstein 𝔸 and 𝔹
coefficients.

Comparison with (14.3-13) and (14.3-22) reveals that the 𝔸 and 𝔹
coefficients correspond to

which are associated with spontaneous and stimulated transitions,
respectively. The ratio is given by

The relation between the 𝔸 and 𝔹 coefficients is a result of the
microscopic (rather than macroscopic) probability laws of
interaction between an atom and the photons of each mode. We
shall present an analysis similar to that provided by Einstein in Sec.
14.4.



EXAMPLE 14.3-1. Comparison Between Rates of
Spontaneous and Stimulated Emission. Whereas the rate
of spontaneous emission for an atom in the upper state is
constant at 𝔸 = 1/tsp, the rate of stimulated emission in the
presence of broadband light, 𝔹ϱ(v0), is proportional to the
spectral energy density of the light, ϱ(v0). The two rates are
equal when ϱ(v0) = 𝔸/𝔹 = 8πh/λ3; for larger values of the
spectral energy density, the rate of stimulated emission exceeds
that of spontaneous emission. If λ = 1 μm, for example, 𝔸/𝔹 =
1.66 × 10−14 J/m3-Hz. This corresponds to an intensity spectral
density cϱ(v0) ≈ 5 × 10−6 W/m2-Hz in free space. Thus, for a
linewidth Δv = 107 Hz, the optical intensity at which the
stimulated emission rate equals the spontaneous emission rate
is 50 W/m2 or 5 mW/cm2.
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Summary
An atomic transition may be considered in terms of its
resonance frequency v0 = (E2 − E1)/h, spontaneous lifetime tsp,
and lineshape function g(v), which has linewidth Δv. The
average transition cross section is

Spontaneous Emission

If the atom is in the upper level and in a cavity of volume V ,
the probability density (per second) of emitting
spontaneously into one prescribed mode of frequency v is

The probability density of spontaneous emission into any of
the available modes is

The probability density of emitting into modes lying only in
the frequency band between v and v + dv is Psp dv =
(1/tsp)g(v) dv.

Stimulated Emission and Absorption

If the atom in the cavity is in the upper level and a radiation
mode contains n photons of frequency v, the probability
density of emitting a photon into that mode is
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If the atom is instead in the lower level, and a mode
contains n photons, the probability density of absorption of
a photon from that mode is also given by (14.3-6).

If instead of being in a cavity, the atom is illuminated by a
monochromatic beam of light of frequency v, with mean
photon-flux density ϕ (photons per second per unit area),
the probability density of stimulated emission (if the atom
is in the upper level) or absorption (if the atom is in the
lower level) is

If the light illuminating the atom is polychromatic, but
narrowband in comparison with the atomic linewidth, and
has a mean spectral photon-flux density ϕv (photons per
second per unit area per unit frequency), the probability
density of stimulated emission/absorption is

If the light illuminating the atom has a spectral energy
density ϱ(v) that is broadband in comparison with the
atomic linewidth, the probability density of stimulated
emission/absorption is

where 𝔹 = λ3/8πhtsp is the Einstein 𝔹 coefficient.

In all of these formulas, c = co/n is the velocity of light and λ
= λo/n is the wavelength of light in the atomic medium, and
n is the refractive index.

D. Line Broadening



Because the lineshape function g(v) plays an important role in
atom–photon interactions, we provide in a brief discussion of some
of the mechanisms that lead to line broadening. The same lineshape
function applies for spontaneous emission, absorption, and
stimulated emission.

Lifetime Broadening

Atoms can undergo transitions between energy levels by both
radiative and nonradiative means. Radiative transitions are
associated with photon absorption and emission, whereas
nonradiative transitions permit energy transfer to take place via
mechanisms such as lattice vibrations, inelastic collisions among
the constituent atoms, and inelastic collisions with the walls of the
vessel. Each atomic energy level has a lifetime τ, which is the
inverse of the rate at which its population decays, radiatively or
nonradiatively, to all lower levels.

The lifetime τ2 of energy level 2 shown in Fig. 14.3-1, for example,
represents the inverse of the rate at which the population of that
level decays to level 1 and to all other lower energy levels (none of
which are shown in the figure), by either radiative or nonradiative
means. Since 1/tsp is the radiative decay rate from level 2 to level 1,
the overall decay rate 1/τ2 must be greater, i.e., 1/τ2 ≥ 1/tsp, thus
corresponding to a shorter decay time, τ2 ≤ tsp. The lifetime τ1 of
level 1 is defined similarly. Clearly, if level 1 is the lowest allowed
energy level (the ground state), then it will never decay and τ1 = ∞.

Lifetime broadening is, in essence, a Fourier transform effect. The
lifetime τ of an energy level is related to the time uncertainty of the
occupation of that level. As shown in Sec. A.1 of Appendix A, the
Fourier transform of an exponentially decaying harmonic field e−t/2τ

ej2πv0t, which has an energy that decays as e–t/τ with time constant τ,
is proportional to 1/[1 + j4π(v − v0)τ]. The full-width at half-
maximum (FWHM) of the absolute square of this Lorentzian
function of frequency is Δv = 1/2πτ. This spectral uncertainty
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corresponds to an energy uncertainty ΔE = hΔv = h/2πτ. We
conclude that a lifetime-broadened energy level with lifetime τ has
an energy spread ΔE = h/2πτ, provided that the decay process can be
modeled as a simple exponential. In this picture, spontaneous
emission can be viewed in terms of a damped harmonic oscillator
that generates an exponentially decaying harmonic function, as
embodied in the Lorentz oscillator model presented in Sec. 5.5C.

Hence, if the energy spreads of levels 1 and 2 are ΔE1 = h/2πτ1 and
ΔE2 = h/2πτ2, respectively, the spread in the energy difference
corresponding to the transition between the two levels is

where τ is the transition lifetime and  The
corresponding spread of the transition frequency, which is called
the lifetime-broadening linewidth, is therefore

This spread is centered about the frequency v0 =(E2 − E1)/h, and the
lineshape function has a Lorentzian profile:

More generally, the lifetime broadening associated with an atom or
a collection of atoms may be modeled in the following manner.
Each of the photons emitted in the course of a transition is
represented by a wavepacket of central frequency v0 (the transition
resonance frequency), with an exponentially decaying field envelope
with decay time 2τ, which corresponds to an energy decay time
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equal to the transition lifetime τ. As illustrated in Fig. 14.3-7, the
radiated light is taken to be a sequence of such wavepackets emitted
at random times. As discussed in Example 12.1-1, this corresponds
to random (partially coherent) light with a spectral intensity that is
described precisely by the Lorentzian function given in (14.3-34),
with Δv = 1/2πτ.

Figure 14.3-7 Wavepacket emissions at random times from a
lifetime-broadened atomic system with transition lifetime τ . The
light emitted has a Lorentzian spectral intensity of width Δv =
1/2πτ.

The value of the Lorentzian lineshape function at the central
frequency v0 is

so that the peak transition cross section, given by (14.3-16),
becomes

The largest transition cross section occurs under ideal conditions
when the decay is entirely radiative so that τ2 = tsp and 1/τ1 = 0
(which is the case when level 1 is the ground state from which no
decay is possible). From (14.3-33), we then have Δv = 1/2πtsp,
whereupon
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indicating that the peak cross section is of the order of one square
wavelength. When level 1 is not the ground state, or when
nonradiative transitions are significant, we have Δv ≫ 1/2πtsp in
which case  can be significantly smaller than λ2/2π. For example,
for optical transitions in the range λ = 0.1 to 10 μm, values of λ2/2π
lie between 10−11 and 10−7 cm2, whereas observed values of σ0

generally fall in the range between 10−20 and 10−12 cm2 (see, e.g.,
Table 15.3-1).

Collision Broadening

Collisions in which energy is exchanged, called inelastic collisions,
result in transitions between atomic energy levels. This affects the
decay rates and lifetimes of all levels involved and modifies the
linewidth of the radiated field considered above.

Collisions that do not involve an exchange of energy, called elastic
collisions, also modify the linewidth of the radiated field, but in a
different way. An elastic collision imparts a random phase shift to
the wavefunction associated with the energy level, which in turn
results in a random phase shift of the radiated field at each collision
time. As illustrated in Fig. 14.3-8, a sine wave whose phase is
modified by a random shift at random times (the collision times)
exhibits spectral broadening. The spectrum of such a randomly
dephased function can be determined by appealing to the theory of
random processes. The result turns out to again be Lorentzian, with
a width Δv = fcol/π, where fcol is the collision rate (mean number of
collisions per second). Both lifetime and collision broadening are
therefore accommodated by a Lorentzian lineshape function with an
overall linewidth that is the sum of the individual linewidths:



Figure 14.3-8 A sine wave interrupted at the rate fcol by random
phase jumps has a Lorentzian spectrum of width Δv = fcol/π.

Inhomogeneous Broadening

Lifetime and collision broadening are examples of homogeneous
broadening mechanisms in which the interacting atoms of a
medium are all taken to be identical, with the same lineshape
functions and center frequencies. For some media, however,
different subsets of interacting atoms exhibit different behavior,
either because of differences in the local environment or because of
their dynamical behavior. The distinction is highlighted by
examining the sublevels in the Nd3+-ion manifolds discussed in Sec.
14.1B. Incorporating Nd3+ in a crystal such as YAG, which gives rise
to homogeneous broadening, leads to energy sublevels that are
distinct and narrow (Fig. 14.1-6). In contrast, these sublevels are
smeared into bands when Nd3+ is embedded in a less structured
material such as glass, which gives rise to inhomogeneous
broadening. The origin of the distinction in this case is the
random value of the electric field at different locations in the glass,
which imparts position-dependent Stark shifts to the energy levels
of the embedded Nd3+ ions that results in broadening. Analogously,
different subsets of the excited active ions in the Ar+-ion gas laser
travel at different velocities and in different directions, resulting in
a distribution of the lineshape-function center frequencies by virtue
of the Doppler effect.

For inhomogeneously broadened media, we can define an average
lineshape function
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where (·) represents an average with respect to the variable β, which
labels the subset of atoms with lineshape function gβ (v). The
average lineshape function is obtained by weighting the gβ(v),
which are known as spectral packets, by the fraction of the atomic
population endowed with the property β, as pictured in Fig. 14.3-9.

Figure 14.3-9 The average lineshape function for an
inhomogeneously broadened collection of atoms.

A commonly encountered inhomogeneous broadening mechanism
is Doppler broadening. As a result of the Doppler effect, an atom
moving with velocity v along a given direction exhibits a lineshape
function that is shifted by the frequency ±(v/c)v0 when viewed
along that direction, where v0 is its central frequency. The shift is in
the direction of higher frequency (+ sign) if the atom is moving
toward the observer, and in the direction of lower frequency (−
sign) if it is moving away. For an arbitrary direction of observation,
the frequency shift is ±(v||/c)v0, where v|| is the component of
velocity parallel to the direction of observation. Since a collection of
atoms in a gas exhibits a distribution of velocities, as depicted in
Fig. 14.3-10, the light they emit exhibits a range of frequencies that
is known as Doppler broadening.
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Figure 14.3-10 The frequency radiated by an atom depends on the
direction of atomic motion relative to the direction of observation.
Radiation from atom 1 has a higher frequency than that from atoms
3 and 4 since the atom is moving toward the observer. Radiation
from atom 2 has a lower frequency since it is moving away from the
observer.

For Doppler broadening, the velocity ν therefore plays the role of
the parameter β and (v)= ⟨gv (v)⟩. As illustrated in Fig. 14.3-11, if
p(ν) dν is the probability that the velocity of a given atom lies
between ν and ν + dν, the overall inhomogeneous Doppler-
broadened lineshape function is

Figure 14.3-11 Velocity distribution and construction of the
average lineshape function for a Doppler-broadened atomic system.
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EXERCISE 14.3-2

Doppler-Broadened Lineshape Function.

(a) A collection of atoms in a gas has a component of velocity v
along a particular direction that obeys the Gaussian
probability density function

where σν
2 = kT/M and M is the atomic mass. If each atom

has a Lorentzian natural lineshape function of width Δν and
central frequency v0, derive an expression for the average
lineshape function (ν).

(b) Show that if Δν ≪ v0σν/c, (v) may be approximated by the
Gaussian lineshape function

where

The full-width at half-maximum (FWHM) Doppler
linewidth ΔνD is then

(c) Compute the Doppler linewidth ΔνD for the λo = 632.8-nm
laser transition in Ne and compare it with that for the λo =
10.6-μm laser transition in CO2, assuming that Δv ≪ v0σv/c
and T = 300° K. The relative atomic mass for Ne is Ar ≈ 20,
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the analogous quantity for CO2 is ≈ 12 + 16 + 16 = 44, and
the proton mass mp = 1.67 × 10−27 kg.

(d) Show that the maximum value of the transition cross
section for the Gaussian lineshape function in (14.3-42) is

Compare this with (14.3-36) for the Lorentzian lineshape
function.

Some atom–photon interactions exhibit broadening that is
intermediate between pure homogeneous and pure inhomogeneous.
Such mixed broadening can be modeled by an intermediate
lineshape function such as the Voigt profile.

*E. Enhanced Spontaneous Emission
All of the results presented thus far in Sec. 14.3 are predicated on
the assumption that Δν ≫ δv, i.e., that the atomic linewidth Δv is far
greater than the width of an electromagnetic mode δv. This
condition is usually, but not always, obeyed. In the opposite limit,
when the atomic linewidth is far smaller than the width of an
electromagnetic mode (Fig. 14.3-12), an enhancement of the
spontaneous emission probability density can be achieved,
particularly in high-Q microcavities, as we proceed to demonstrate.
The enhancement of spontaneous emission is desirable for the
operation of certain microcavity sources, as discussed in Sec. 18.5.
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Figure 14.3-12 Spontaneous emission from an atom with
normalized lineshape function g(v) into a broader normalized
Lorentzian cavity mode ρ(v). The lineshapefunction and cavity-
mode center frequencies are designated by v0 and vq, respectively,
while their widths are specified by Δv and δv. We consider the case
where v0 = vq and Δv ≪ δv.

Consider the spontaneous emission of an atom with resonance
frequency v0 into an electromagnetic mode with center frequency vq
= v0 in the regime Δv ≪ δv, as portrayed in Fig. 14.3-12. In
accordance with (14.3-11), when the dipole moment of the atom is
aligned with the field direction of the mode, the probability density
for spontaneous emission into a single cavity mode ρ(v) is given by

since  and , as provided in (14.3-10) and
(14.3-15), respectively. Inasmuch as the lineshape function g(ν) is
normalized, and the height of the normalized Lorentzian lineshape
function of the cavity mode is 2Q/πνq, where Q = νq/δν, we obtain

The net result is an enhancement of the spontaneous emission
probability density relative to that in free space by a quantity known
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as the Purcell factor:

The Purcell factor in (14.3-48) exhibits the following features:

The factor of 3 is a result of the alignment of the dipole
moment of the atom and the field direction of the mode.

The quantity λ3/V , which is the ratio of the cubed wavelength
to the cavity volume, is substantially enhanced in a microcavity.

A high value of Q, i.e., a sharp cavity mode, enhances the
Purcell factor; however, as Q increases, δν = νq/Q decreases, so
that ultimately the condition Δν ≪ δν is violated.

Finally, we note that as ν0 deviates from νq, the height of the cavity
mode at ν0 becomes smaller and the enhancement of spontaneous
emission ultimately becomes a suppression of spontaneous
emission.

*F. Laser Cooling, Laser Trapping, and Atom Optics
The forces exerted by light on material media (Sec. 13.1D) can be
used to reduce the velocity spread of a low-density collection of
neutral atoms or ions (laser cooling) and to confine them to a
reduced volume of space (laser trapping). Atomic beams, and
atoms confined to traps, are used in atom optics and atom
interferometry to carry out highly precise measurements. Cooled
and trapped atoms in the form of Bose– Einstein condensates,
along with trapped Fermi gases, offer fundamental insights into the
quantum nature of matter.

Laser Cooling



A number of schemes exist for the laser cooling of ions and neutral
atoms. Some make use of the external degrees of freedom of the
atom, such as its position and momentum, while others rely on the
dynamical interplay between its external and internal degrees of
freedom, such as its electronic configuration and spin. Both
absorptive (scattering) and dispersive (gradient or dipole) forces can
play a role. Laser cooling has also been extended beyond neutral
atoms toward more complex systems such as molecules and small
macroscopic objects. Applications of laser cooling include precision
metrology, high-resolution spectroscopy, and quantum science.

Doppler cooling. One of the simplest laser-cooling schemes,
known as Doppler cooling, relies on a beam of atoms moving
toward a narrow-linewidth laser beam whose center frequency is
tuned slightly below the atomic line center. Following photon
absorption by the subset of atoms whose Doppler-shifted frequency
matches the photon frequency, an atom can return to the ground
state via either stimulated emission or spontaneous emission. If it
returns by stimulated emission, the momentum of the emitted
photon is the same as that of the absorbed photon, leaving the atom
with no net change of momentum. If it returns by spontaneous
emission, on the other hand, the direction of the photon emission is
random so that repeated absorptions and emissions result in a net
decrease of the atom’s momentum in the direction pointing toward
the laser beam. The result of this absorptive effect is a decrease in
the velocity of that subset of atoms, as shown schematically in Fig.
14.3-13. Other subsets of atoms can be cooled by changing the laser
frequency or by using alternative techniques such as a broadband
laser or an inhomogeneous magnetic field that modifies the atomic-
line center frequency (a “Zeeman slower”).



Figure 14.3-13 Velocity distribution of a beam of Na atoms (dotted
curve). A laser beam of fixed frequency serves to transfer atoms in a
narrow velocity range to an even narrower velocity range centered at
a lower velocity, thereby Doppler cooling the atomic beam (solid
curve). (Adapted from W. D. Phillips, Laser Cooling and Trapping of
Neutral Atoms, Reviews of Modern Physics, vol. 70, pp. 721–741,
1998, Fig. 3 ©1998 by the American Physical Society.)

Optical molasses. When three pairs of orthogonally oriented,
counterpropagating laser beams are used for 3D Doppler cooling
a collection of atoms, each atom encounters a velocity-dependent
viscous-damping force regardless of the direction in which it moves.
The laser beams are said to behave like optical molasses since
they strongly resists the velocity spread of the atoms, though there
is no restoring force to push the atoms to the center of the
apparatus. The calculated Doppler-cooling limit for an idealized
two-level system is in the vicinity of several hundred µK.

Sisyphus cooling. Doppler cooling is widely used but other
approaches allow atoms and ions to be cooled to temperatures
orders of magnitude below the Doppler-cooling limit. Atoms can
undergo polarization gradient cooling or Sisyphus cooling by
making use of a set of orthogonal, linearly polarized,
counterpropagating laser beams that produce a standing wave
whose polarization varies on a subwavelength scale. Atoms in such
a standing wave experience a combination of a position-dependent
AC Stark shift (light shift), a gradient or dipole force, and optical
pumping that allow the temperature to be reduced to the single-



photon recoil limit associated with the atomic emission of a single
photon (Exercise 13.1-2). Temperatures in the few µK regime, well
below the Doppler-cooling limit, are obtained.

Evaporative cooling. It is also possible to reduce temperatures
below the single-photon recoil limit. One approach for doing so,
known as evaporative cooling, operates by gradually reducing the
trap depth so that atoms with energies exceeding this depth escape,
leaving behind less energetic atoms. A reduced temperature results
when thermal equilibrium is reestablished by subsequent collisions.
Another subrecoil cooling technique can be implemented by making
use of velocity-sensitive coherent population trapping.
Physical insight into this process can be obtained by considering the
velocity of the atom in terms of a random walk that obeys Lévy
statistics. Careful design of sub-recoil cooling configurations allows
temperatures to be reduced to a few nK, corresponding to atomic
velocities smaller than cm/s. Cooling to tens of pK has been
achieved in gravity-free environments.

Laser Trapping

Laser trapping, often combined with laser cooling, can be used to
confine, manipulate, and study ions, neutral atoms, molecules,
dielectric particles, biological cells, and small macroscopic objects.
Laser trapping and cooling is useful in quantum and nonlinear
optics; a single atom and a single photon can be trapped together to
implement cavity quantum electrodynamics in its most elemental
configuration. It also allows light to be shed on the physics of cold-
atom collisions and microfluidics and enables Bose– Einstein
condensates and atom lasers to be created.

Optical tweezers. Optical tweezers are widely used for
confining and manipulating particles that range in size from single
atoms to small biological structures. Developed in the 1980s and
originally called a “single-beam gradient force trap,” they can be
used in zero, one, two, or three dimensions. Optical tweezers make
use of focused laser beams to physically contain samples via



scattering and gradient forces at levels that extend from fN to pN.
The particle recoil associated with Rayleigh scattering (Sec. 5.6B),
and ray optics, provide suitable descriptions for the confinement
mechanisms when the trapped particle sizes are, respectively, much
smaller than, and much larger than, the optical wavelength. For
homogeneous spherical particles, Mie scattering theory (Sec. 5.6C)
provides accurate numerical results for arbitrary particle sizes and
refractive indices. The confining laser beams can also impart torque
to a trapped particle by transferring spin angular momentum if the
beams are circularly polarized, or orbital angular momentum if they
are structured. Examples of the application of optical tweezers at
the extremes of small and large trapped particles are, respectively:
1) the confinement of a single Å-size neutral atom, thereby enabling
it to be cooled to its three-dimensional vibrational ground state; and
2) the confinement and manipulation of μm-size objects such as
living organisms and DNA molecules. Variations on the theme, such
as magnetic tweezers and acoustic tweezers, have also been
implemented.

Magneto-optical traps. The atoms in optical molasses may also
be spatially confined by incorporating a magneto-optical trap
(MOT) that makes use of an inhomogeneous magnetic field. This
gives rise to Zeeman splitting of the atomic energy levels and results
in a net position-dependent scattering force that directs the atoms
to the location where the three pairs of laser beams intersect. The
net result is cooling and trapping.

Optical lattices. As indicated above, polarization gradient cooling
leads to the localization of atoms at a spatial scale finer than the
wavelength of light. In essence, the standing waves produced by
counterpropagating laser beams in 1D, 2D, or 3D behave as optical
lattices comprising potential wells in which atoms are trapped and
well-localized by the interaction of the AC electric field and the
induced atomic dipole moment (AC Stark effect). The well depth of
the optical lattice can be modified by altering the laser power, while
its periodicity can be tuned by changing the laser wavelength or the
relative angle between the laser beams. Moreover, an auxiliary laser



field can facilitate trapping in a lattice potential whose features are
far smaller than the wavelength of the lasers. Limiting the atomic
positions in this manner achieves laser cooling and trapping in a
lattice. Optical lattices are important for attaining motional control
of collections of single neutral atoms. They can be used, for
example, to hold atoms whose optical transition can serve as a
highly accurate atomic clock (e.g., fermionic 87Sr), or they can be
loaded with deterministic arrays of atoms. Optical lattices have
allowed simplified artificial crystals to be generated, whose
properties are tunable, thereby bringing clarity to fundamental
features of importance in condensed-matter physics.

Atom Optics

Atom optics is concerned with the study of beams of moving
neutral atoms and the matter waves associated with them. As with
optical waves, matter waves exhibit phenomena such as reflection,
refraction, diffraction, scattering, and interference. The role of the
optical wavelength λ is played by the de Broglie wavelength λdB,
which is related to the momentum p of the atoms by λdB = h/p,
where h is Planck’s constant. This expression is the same as that
provided in (13.1-11) for photons; however, the atomic momentum p
= mv is orders of magnitude greater than the photon momentum,
so that λdB ≪ λ. As an example, the de Broglie wavelength for
thermal Na atoms,  pm (see Exercise 13.1-2), is
some 30 000 times smaller than the wavelength of visible light. The
coherence length for a thermal atomic beam is also short, lc ≈ 100
pm.

Atom interferometry. Atom interferometry can be conducted
with atoms in beams, magneto-optical traps, or Bose–Einstein
condensates. Cooled and trapped atoms are important components
in the arsenal of atom optics since they offer reduced atomic
momentum and uncertainty. Ultracold atoms can exhibit de Broglie
wavelengths as long as 1 μm and coherence lengths that can extend
up to lc ≈ 10 μm. Matter-wave interferometry is thus akin to optical



interferometry with partially coherent light (Sec. 12.2). Optical
transitions in single atoms confined in optical lattices often serve as
atomic clocks. Atom interferometers are useful for the precise
measurement of acceleration, rotation, and gravity, as well as for
the determination of various atomic and material properties. Unlike
photons, however, atoms can interact strongly so that matter-wave
interferometry is often nonlinear.

Bose–Einstein Condensates and Atom Amplifiers

Bose–Einstein condensates. A gas comprising bosonic atoms in
thermal equilibrium can be treated as a quantum collection of
indistinguishable particles described by the Bose–Einstein
distribution presented in (13.2-20) and Fig. 13.2-7, much as for a
photon gas in thermal equilibrium. A Bose–Einstein condensate
(BEC) can be formed when a bosonic-atom gas is cooled to a
temperature sufficiently low that the particle kinetic energy
decreases to a negligible value and λdB becomes comparable to the
interatomic separation. The atomic wavepackets then overlap
sufficiently so that they can be considered as condensing into a
single quantum state that minimizes the system’s free energy (the
gas must be sufficiently dilute so that it does not condense into a
liquid or solid as it is cooled). Particles in that state then act
collectively as a coherent wave. A gas of 23Na atoms cooled below
about 1 µK, for example, can form a BEC that contains somewhere
between 102 and 108 atoms and has a spatial extent of tens of μm.
The interference exhibited by two separate Bose–Einstein
condensates clearly illustrates the wavelike properties of matter on
a macroscopic scale. The mathematical description of a BEC in
terms of quantized matter waves is not unlike that of quantized
electromagnetic waves in a nonlinear refractive medium.

Miniaturization has led to the production of BECs on specially
designed electronic microchips known as atom chips. Cooled
atoms extracted from optical molasses in an MOT are transferred to
a magnetic trap on the chip created by electric currents.



Evaporative cooling is instigated by radiowaves generated by the
chip, causing a BEC to be formed. An atom-chip BEC is being
installed in the International Space Station, where the absence of
gravity is expected to enable temperatures to be reduced to the pK
level. BECs provide a path to the generation of synthesized forms of
quantum matter and are expected to offer atom interferometry with
unprecedented accuracy.

Atom amplifiers. An atom amplifier relies on increasing the
number of atoms in a beam passed through a BEC atomic cloud that
serves as the active medium. The atom amplifier converts atomic
waves in the active medium into atomic waves that assume the
same quantum state as the wave to be amplified. One way to
achieve this is by pumping the BEC with a laser whose photons are
scattered by atoms in the BEC at the precise angles that permits
recoiling condensate atoms to augment the input matter wave,
while conserving momentum and energy. Such devices could in
principle be used to improve the performance of atom
interferometers. However, since atoms are conserved and cannot be
created on demand, amplified atom beams are typically weak. The
laser amplifier, in contrast, relies on photons, which are readily
created in large numbers on demand, thereby allowing amplified
laser light to be made highly intense. Another distinction between
laser and BEC amplifiers is that the laser active medium comprises
noninteracting photons in a distinctly nonequilibrium state whereas
the BEC active medium comprises interacting atoms in
thermodynamic equilibrium.

14.4 THERMAL LIGHT
Under conditions of thermal equilibrium, and in the absence of
other external energy sources, a universal form of radiation known
as thermal light or blackbody radiation is emitted from a
blackbody (these objects are so-named because they absorb all of
the light incident on them). In this section we determine the
properties of thermal light by examining the interactions among a



collection of photons and atoms in thermal equilibrium. We also
show how the thermal light emitted from an object can be used to
image it.

A. Thermal Equilibrium Between Photons and Atoms
A macroscopic rate-equation approach that balances spontaneous
emission, absorption, and stimulated emission, under conditions of
thermal equilibrium, leads to the spectral energy density of thermal
light. The point of departure for our analysis is (14.3-13) and (14.3-
24), which govern spontaneous emission and induced transitions,
respectively, in the presence of broadband light. Consider a cavity of
unit volume whose walls consist of large numbers of atoms with
two energy levels, denoted 1 and 2, that are separated by an energy
difference hv. The cavity, which is maintained at temperature T ,
supports broadband radiation that can be observed through a small
hole. Let N1(t) and N2(t) represent the numbers of atoms per unit
volume occupying energy levels 1 and 2, at time t, respectively. Since
some of the atoms are initially in level 2, as ensured by the finite
temperature, spontaneous emission creates radiation in the cavity.
This radiation in turn can induce absorption and stimulated
emission. The three processes coexist and it is assumed that steady-
state (equilibrium) conditions are attained. We assume that an
average of  photons occupies each of the radiation modes whose
frequencies lie within the atomic linewidth, as established in (14.3-
24).

We first consider spontaneous emission alone. The probability that
a single atom in the upper level undergoes spontaneous emission
into any of the modes, within the time increment from t to t + Δt, is
PspΔt = Δt/tsp. There are N2(t) such atoms so that the average
number of emitted photons within Δt is N2(t)Δt/tsp. This is also the
number of atoms that depart from level 2 during the time interval
Δt. Hence, the (negative) rate of increase of N2(t) arising from
spontaneous emission is described by the differential equation



(14.4-1)

(14.4-2)

(14.4-3)

The solution, N2(t)= N2(0) exp(−t/tsp), is an exponentially decaying
function of time, as displayed in Fig. 14.4-1. Given sufficient time,
the number of atoms in the upper level N2 decays to zero with time
constant tsp. The energy is carried off by the spontaneously emitted
photons.

Figure 14.4-1 Decay of the upper-level population caused by
spontaneous emission alone.

We now incorporate absorption and stimulated emission, which
contribute to changes in the populations. Since there are N1 atoms
capable of absorption, the rate of increase of the population of
atoms in the upper energy level arising from absorption is, based on
(14.3-24),

Similarly, stimulated emission gives rise to a (negative) rate of
increase of atoms in the upper state, expressed as

The rates of atomic absorption and stimulated emission are both
proportional to  , the average number of photons in each mode.



(14.4-4)
Rate Equation

(14.4-5)

(14.4-6)

(14.4-7)

Combining (14.4-1), (14.4-2), and (14.4-3) to accommodate
spontaneous emission, absorption, and stimulated emission
together, yields the rate equation

This equation ignores transitions into or out of level 2 that arise
from other effects, such as interactions with other energy levels,
nonradiative transitions, and external sources of excitation. Steady-
state operation demands that dN2/dt = 0, which leads to

Clearly, N2/N1 ≤ 1. If we now make use of the fact that the atoms are
in thermal equilibrium, (14.2-2) dictates that their populations obey
the Boltzmann distribution:

Substituting (14.4-6) into (14.4-5) leads to a mean number of
photons per mode near frequency ν given by

The foregoing derivation is predicated on the interaction of two
energy levels coupled by absorption, as well as by stimulated and
spontaneous emission, at a frequency near ν. The applicability of
(14.4-7) is, however, far broader. This may be understood by
considering a cavity whose walls are made of solid materials that
possess a continuum of energy levels at all energy separations, and
therefore all values of ν. Atoms in the walls spontaneously emit into
the cavity. The emitted light subsequently interacts with the atoms



(14.4-8)
Average Energy of a 

Mode in Thermal Equilibrium

in the walls, giving rise to absorption and stimulated emission. If
the walls are maintained at temperature T, the combined system of
atoms and radiation reaches thermal equilibrium, whatever the
nature of the walls and the shape of the cavity.

Equation (14.4-7) is identical to (13.2-21) — the expression for the
mean photon number in a mode of thermal light for which the
occupation of the modal energy levels follows the distribution p(n)
∝ exp(−nhν/kT ). This indicates a self-consistency in our analysis.
Photons interacting with atoms in thermal equilibrium at
temperature T are themselves in thermal equilibrium at the same
temperature T (Sec. 13.2C). A collection of such photons is often
termed a “photon gas.”

B. Blackbody Radiation Spectrum
Based on the discussion provided in Sec. 14.4A, the average energy 

 of a radiation mode is simply hv, where  is given by (14.4-7),
which leads to

The dependence of  on ν, which is identical to that set forth in
(13.2-24), is portrayed in Fig. 14.4-2.



(14.4-9)

Figure 14.4-2 Semilogarithmic plot of the average energy  of an
electromagnetic mode in thermal equilibrium at temperature T, as a
function of the mode frequency ν. At T = 300° K, kT/h = 6.25 THz,
which corresponds to a wavelength of 48 μm.

Multiplying the average energy per mode  by the 3D modal
density M(ν)= 8πν2/c3 provided in (11.3-10) gives rise to a spectral
energy density (ν)= M(ν)  (energy per unit bandwidth per unit
cavity volume) that takes the form

Spectral Energy Density 
for Blackbody Radiation



Figure 14.4-2 Semilogarithmic plot of the average energy E of an
electromagnetic mode in thermal equilibrium at temperature T, as a
function of the mode frequency ν. At T = 300° K, kT/h = 6.25 THz,
which corresponds to a wavelength of 48 μm.

This formula, known as the blackbody radiation spectrum or
Planck spectrum, is plotted in Fig. 14.4-3 as a function of
frequency on double-linear coordinates. A plot with temperature as
a parameter is shown in the iconic graph provided in Fig. 14.4-4.

Figure 14.4-3 Frequency pendence of the energy per mode , the
density of modes M(ν), and the spectral energy density (ν) = M(ν)

 for blackbody radiation, on double-linear coordinates.



Figure 14.4-4 Dependence of the blackbody spectral energy
density ϱ(ν) on frequency for several different temperatures, on
double-logarithmic coordinates.

As the blackbody temperature is altered, the mean number of
photons in the cavity changes in accordance with (14.4-7) since
photons can emerge from, or disappear into, the walls of the cavity.
Though they are bosons, the photons in a blackbody cavity are not
conserved and thus do not form a Bose–Einstein condensate.
Bosonic atoms, on the other hand, are conserved so they can form a
BEC when the temperature is reduced below a critical value (Sec.
14.3F).

The spectrum of blackbody radiation played a central role in the
discovery of the photon nature of light. Based on classical
electromagnetic theory, the modal density for a three-dimensional
cavity was long known to be given by M(ν) = 8πν2/c3, as provided in
(11.3-10). Moreover, the equipartition law in classical statistical
mechanics specified that the average energy per mode was constant
at  = kT, independent of the modal frequency. This led to a
theoretical expression for the blackbody spectrum, (ν) = M(ν)  =
8πν2kT/c3, known as the Rayleigh–Jeans formula, but it failed



to agree with experiment in a significant way. Max Planck resolved
the dilemma in 1900 by observing that imposing quantization on
the allowed energies of the atoms in the walls of the cavity led
instead to (14.4-9), a result that agreed with experiment. Einstein
subsequently built on Planck’s approach and proposed that the
quantization be imposed directly on the energy of the
electromagnetic radiation, which led to the concept of the photon.
The Rayleigh–Jeans formula is recovered from (14.4-9) in the
classical limit hν ≪ kT by making use of the approximation
exp(hν/kT) ≈ 1 + hν/kT .

EXERCISE 14.4-1

Frequency of Maximum Blackbody Energy Density.
Using the blackbody radiation law (ν), show that the frequency
νp at which the spectral energy density is maximum satisfies the
equation 3(1 − e−x) = x, where x = hvp/kT . Find x approximately
and determine νp at T = 300° K.

The total power radiated by a blackbody increases with temperature
as T4, a result known as the Stefan–Boltzmann law (Prob. 14.4-
7). Although they are not perfect blackbodies, planets and stars emit
light with a spectral character that approximately follows (14.4-9).
The temperature of the sun and earth, which can be estimated using
the Stefan–Boltzmann law, turn out to be T ≈ 5800° K and T ≈ 300°
K, respectively.

Thermography

The blackbody spectral energy-density formula (14.4-9) is useful for
generating maps (images) of the temperature distribution of
thermal objects. This is achieved by using a camera that is sensitive
in the wavelength region of the object’s thermal emissions (Fig.
14.4-4). Hot objects, such as the sun, emit most strongly in the
visible region, whereas objects of moderate temperature, such as
the earth and humans, typically radiate in the mid-infrared region.



Cold objects radiate in the far-infrared. The imaging of thermal
objects by means of their self-radiation is known as
thermography. Thermographic cameras contain an array of
photodetectors sensitive in a particular region of the spectrum (Sec.
19.5). The technique is often used in the wavelength region 0.7 μm
⩽ λo ⩽ 300 μm, corresponding to 12° K ⩽ T ⩽ 5200° K. Though
thermography is facilitated at higher temperatures by the T4

dependence of the total radiated power, the representative images
presented in Fig. 14.4-5 illustrate the broad range of temperatures
that can be accessed.

Figure 14.4-5 Representative thermographic images in different
temperature regions for use in industrial-systems analysis (left);
search and rescue (center); and cosmology (right).

Thermography is used to garner information about objects and
scenes that exhibit temperature variations. Different local
temperatures are typically displayed as false colors. The technique
finds use in industrial applications, such as monitoring the
overheating of circuit boards and the evolution of oil spills. It is of
assistance in search-and-rescue missions for humans and animals,
even when they are concealed in dense foliage at night.
Thermography is also used in clinical medicine since skin-surface
temperature is a diagnostic for blood-flow blockages and tumors.
Environmental applications include fire-fighting and forestry. The
technique is invaluable in astronomy and cosmology since it allows
astronomical objects, such as cooler red stars and red giants, to be
imaged in the near infrared; planets, comets, and asteroids to be



seen in the mid-infrared; and central galactic regions and emissions
from cold dust to be imaged in the far-infrared.

14.5 LUMINESCENCE AND SCATTERING
Thermal excitation is not the only external source of energy that can
result in the emission of light from a material system that is excited
to a higher energy level and then decays back to its ground state.
Other sources of excitation, such as electron beams, chemical
reactions, and electric fields, can also result in light being emitted.
So too can excitation in the form of one or more photons via a
process known as photoluminescence. Nonthermal radiators that
operate on this principle are generically called luminescent
radiators and the radiation process is known as luminescence.

While photoluminescence involves the absorption and subsequent
emission of photons, light can also scatter from a material system in
a resonant or nonresonant manner. Linear and nonlinear scattering,
such as Rayleigh and Raman scattering, respectively, play important
roles in optics and photonics.

A. Forms of Luminescence
The form of the luminescence is classified according to the source
of excitation, as indicated by the examples provided below and
illustrated in Fig. 14.5-1. It is also worthy of mention that most
lasers operate by amplifying luminescence radiation via stimulated
emission; the initial source of light is most often
photoluminescence, collision-induced luminescence, or
electroluminescence (Chapters 15–18).

Cathodoluminescence. The emission of light from a material as
a result of excitation by energetic electrons. Examples are the
images at the face of a cathode-ray tube or an image intensifier,
which are induced in phosphors at the screen by the electrons.
Cathodoluminescence is frequently used for assaying the
composition of a material because of two salutary features: 1) the



depth of penetration into the sample can be modified by changing
the electron energy, and 2) different material components give rise
to emission at different wavelengths. The light is termed
betaluminescence when the exciting electrons are the result of
nuclear beta decay.

Figure 14.5-1 (a) Cathodoluminescence from a mineral sample
reveals the presence of zoned calcite and saddle dolomite in
boxwork breccia. The edge dimension is 1.3 mm and the electron
energy is 22 keV (courtesy Charles M. Onasch, Bowling Green State
University). (b) Multibubble sonoluminescence created by an
ultrasonic horn immersed in liquid (courtesy Kenneth S. Suslick,
University of Illinois at Urbana–Champaign). (c)
Chemiluminescence from a lightstick. (d) The deep-sea
scyphomedusa Atolla vanhoeffeni (diameter ≈ 3 cm) is abundant
throughout the world and produces bioluminescence when
disturbed (courtesy Edith A. Widder, Ocean Research &
Conservation Association). (e) The electric field across a pair of
parallel wires held at different potentials elicits electroluminescence
from a powdered material coating them. (f) Photoluminescence
from colloidal CdSe quantum dots dispersed in hexane following
illumination by ultraviolet light (see Fig. 14.1-13).



Sonoluminescence. The emission of light induced by acoustic
cavitation, namely the formation, growth, and collapse of bubbles in
a liquid irradiated with high-intensity sound or ultrasound. The
light comprises brief flashes (duration ≈ 100 ps) emitted when the
collapsing bubbles reach minimum size (≈ 1 μm).
Sonoluminescence is generally observed from clouds of bubbles
although it is possible to generate single-bubble sonoluminescence
with a stable period and position by trapping single bubbles in an
acoustic standing wave.

Chemiluminescence. The emission of light via a chemical
reaction. Chemiluminescence is observed under those relatively
rare circumstances when the reaction between two or more
chemicals releases sufficient energy to populate the excited state of
a reaction product. Lightsticks, used for illumination in underwater
and military environments, are an example: they glow when the seal
between two compartments containing different chemicals is
broken and the chemicals are permitted to mix. The color of the
emitted light is determined by the dye incorporated in the chemical
mixture. Chemiluminescence is responsible for the operation of
chemical lasers (Sec. 16.3E).

Bioluminescence. Chemiluminescence produced by living
organisms such as fireflies and jellyfish. Bioluminescence provides
a means of communication; indeed, some organisms such as
fireflies synchronize their flashes. Most deep-sea marine organisms
produce bioluminescence as a matter of course, often in the blue–
green region of the spectrum where seawater is most transparent,
but also at other wavelengths. An important technique employed in
biology makes use of genetic engineering to insert a jellyfish gene
that expresses the green fluorescent protein (GFP) adjacent to a
gene in another species that expresses a protein under study. When
this latter protein is generated, it is automatically attached to the
bioluminescent indicator protein, thereby allowing the effects of the
protein of interest to be optically tracked in vivo.



Electroluminescence. The emission of light resulting from the
application of an electric field to a material. An important example
is injection electroluminescence, which occurs when an electric
current is injected into a forward-biased semiconductor p–n
junction such as that used in a light-emitting diode. The
recombination of electrons from the conduction band with holes
from the valence band results in the emission of photons (Sec.
18.1A).

Photoluminescence. The emission of light by a sample following
the absorption of optical photons. An example is the glow emitted
by some materials after exposure to ultraviolet light.
Photoluminescence, which is discussed in greater detail in the next
section, is a useful tool for investigating the properties of
semiconductor materials. It underlies the operation of white-light
LEDs and many lasers. Photoluminescence is termed
radioluminescence when the exciting photons are in the X-ray or
gamma-ray region.

Fluorescence and Phosphorescence

Luminescence that appears within a brief time following excitation
is also called fluorescence; typical fluorescence lifetimes lie in the
range of picoseconds to microseconds. In the context of an organic
material such as a dye molecule (Fig. 14.1-8), fluorescence arises
when the radiative transitions are spin-allowed, i.e., when they take
place between states with the same multiplicity (singlet→singlet or
triplet→triplet). Luminescence that is delayed following excitation
is also called phosphorescence; typical phosphorescence lifetimes
are milliseconds or longer. For an organic material,
phosphorescence arises when the radiative transitions are spin-
forbidden (e.g., triplet → singlet).

B. Photoluminescence

Single-Photon Photoluminescence



Photoluminescence occurs when a system excited to a higher energy
level by the absorption of a photon spontaneously decays to a lower
energy level, emitting a photon in the process. To conserve energy,
the emitted photon cannot have more energy than the exciting
photon. Several examples of transitions that lead to
photoluminescence are depicted in Fig. 14.5-2. Nonradiative
downward transitions can participate in the process, as shown by
the dashed vertical lines in Figs. 14.5-2(b) and (c). Intermediate
downward nonradiative transitions, followed by upward
nonradiative transitions, can also occur, as illustrated in Fig. 14.5-
2(d). Photoluminescence occurs naturally in many materials,
including inorganic molecules and crystals, noble gases, aromatic
molecules, and semiconductors.

Figure 14.5-2 Single-photon photoluminescence from materials
with different energy-level structures. Solid and dashed vertical
lines represent radiative and nonradiative transitions, respectively.

Photoluminescence has many uses, including:

The reduction of photon frequency, e.g., the conversion of an
ultraviolet photon into a visible photon.

The conversion of an ultraviolet photon into a pair of visible
photons, a process known as quantum cutting.

The delay of photon emission by storage of the excited electron
in a long-lived intermediate state such as a trap.

The generation of metameric white light by phosphor-
conversion LEDs, wherein blue LED photons irradiate a yellow



phosphor; the combination of blue and yellow appears white to
the eye (Sec. 18.1F).

The use as a seed for optically pumped lasers.

Multiphoton Photoluminescence

Photoluminescence can also occur when a system is excited to a
higher energy level by the absorption of more than one photon,
followed by the emission of a single photon via spontaneous
emission to a lower energy level. The exciting photons can have the
same, or different, energies and the emitted photon can have an
energy greater than that of one of the exciting photons.

Multiphoton fluorescence microscopy. Two or more photons
of the same energy can conspire to raise a material to a higher
energy level, where it undergoes photo-luminescence
(fluorescence), as shown schematically in Figs. 14.5-3(a) and (b).
Two-photon fluorescence, illustrated in Fig. 14.5-3(a), is the basis of
an imaging technique known as two-photon microscopy (2PM)
[originally called two-photon laser scanning microscopy (TPLSM)].
A photoluminescent compound, known as a fluorophore, is attached
to specific locations in a biological sample, for example by
chemistry, viral injection, or genetic engineering. A pair of photons
(each of energy hν1) arriving at the location of the fluorophore
can be absorbed and result in the emission of a single fluorescence
photon (of energy hν2 > hν1), thereby providing structural
imaging of the fluorophore locations within the sample, as a
function of time. The emission takes place within the lifetime of the
fluorophore, which typically is in the range of nanoseconds. Making
use of an activity-sensitive fluorophore allows functional
imaging to be concomitantly carried out.



Figure 14.5-3 (a) Two-photon fluorescence. (b) Three-photon
fluorescence. (c) Up-conversion fluorescence. Nonradiative
relaxation (dashed vertical lines) is presumed to take part in all of
these examples. Other scenarios are also possible.

The probability of observing two independently arriving photons at
a given position and time is the square of observing a single such
photon. Thus, by virtue of (13.1-15), the two-photon absorption rate
at position r and time t, as well as the fluorescence-photon emission
rate, behaves as a quadratic function of the incident intensity, i.e., it
is proportional to I2(r, t). An advantage of 2PM derives from this
quadratic dependence: a focused excitation beam results in
absorption that is localized to the immediate vicinity of the focal
point since two-photon absorption occurs preferentially at locations
where the intensity is greatest. In comparison with ordinary (single-
photon) fluorescence microscopy [Fig. 14.5-2(b)], the region from
which fluorescence is observed is thereby sharpened, yielding
enhanced resolution; this is also accompanied by a reduction of the
background light arising from out-of-focus fluorescence. Another
important advantage of 2PM in the domain of biology is the
increased excitation wavelength, which penetrates more deeply into
biological tissue. To ensure that the peak intensity is sufficiently
high to engender two-photon absorption, and that the average
intensity is sufficiently low to avoid damage to delicate tissue, the
excitation is usually provided by a mode-locked laser that generates
femtosecond-duration optical pulses with high peak power and low
average power.



Multiphoton microscopy (MPM) operates in much the same way as
two-photon microscopy, except that k independent photons, rather
than two, conspire to effect each absorption, so that the
fluorescence-photon emission rate varies as Ik(r, t). In particular,
three-photon microscopy (3PM) is a valuable technique for
carrying out in-vivo, noninvasive, high-resolution imaging in brain
tissue. In comparison with 2PM, the I3(r, t) behavior of the
fluorescence-photon emission rate, together with the longer
excitation wavelength [compare Figs. 14.5-3(a) and (b)], result in
deeper penetration into brain tissue and improved performance.
Three-photon microscopy requires optical pulses of sufficiently high
energy, short duration, and long wavelength. Optimal wavelengths
for brain-tissue imaging lie in the vicinity of 1300 nm for blue and
green fluorophores and 1700 nm for orange and red fluorophores.
Structural and functional imaging of populations of neurons deep
within the intact mammalian brain has been effected by using a
calcium-sensitive GFP fluorophore that is sensitive to neural
activity, in conjunction with 1300-nm ultrafast pulses generated by
a noncollinear optical parametric amplifier. Deep-brain 3PM
imaging has also been conducted by making use of a red
fluorophore excited by 1675-nm optical solitons generated in a
photoniccrystal rod (Example 23.5-3).

3D multiphoton microlithography. A approach complementary
to multiphoton fluorescence microscopy is useful for fabricating
micro-objects. A lens delivers femtosecond-duration high-intensity
optical pulses to a particular location in a specially designed
transparent polymeric material. The intensity of the light is
sufficient to effect multiphoton polymerization only in the vicinity
of the focal region of the lens; its intensity before reaching the focal
region is insufficient to polymerize the intervening material.
Moving the focal point of the lens about allows any desired three-
dimensional microstructure to be written. As an additional benefit,
in practice the strong thresholding behavior of the polymerization
nonlinearity serves to further increase the resolution of the
microstructure (see, e.g., Sec. 7.3B).



Up-conversion fluorescence. Multiphoton photoluminescence
can also take place when the two photons that conspire to excite the
system have different energies, as illustrated in Fig. 14.5-3(c). This
scheme is useful for converting infrared photons to visible ones. An
infrared photon of low energy (hν1) teams up with a more energetic
auxiliary photon (hν2) to excite a system such as a single ion or
atom, which then produces a luminescence photon at or near the
sum energy (hν3 = hν1 + hν2).

Up-conversion fluorescence via sequential absorption can be
observed most easily in materials containing traps that can store the
electron elevated by the first photon for a time sufficient for the
second photon to arrive and boost the system to its upper state.
Phosphors doped with rare-earth ions such as Er3+ are often used.
In some materials, the traps can be charged to their intermediate
state in minutes by exposing the material to daylight or fluorescent
light, thereby providing the auxiliary photons of energy hν2. The
arrival of an infrared signal photon of energy hν1 then releases an
electron from the trap, which results in the emission of a visible
luminescence photon with an energy at or near h(ν1 + ν2). Up-
conversion fluorescence can also occur via more complex processes,
such as collective emission from two nearby ions that have both
been excited.

A practical up-conversion-fluorescence device used in the laboratory
often takes the form of a small reflective or transmissive card with
an active area of about 5 cm × 5 cm, known as an infrared sensor
card. Upconverting powder is laminated between a pair of stiff
transparent plastic sheets to form the card. Upconverting powder
can also be dispersed in a block of polymer for three-dimensional
viewing. Though the conversion efficiency of these devices is
typically quite small, they are nevertheless useful for visually
viewing the spatial distribution of an infrared beam, such as that
produced by an infrared laser. The relative infrared detection
sensitivity and the visible emission spectral intensity of a
commercially available card are portrayed in Fig. 14.5-4.



Figure 14.5-4 Relative infrared detection sensitivity and relative
visible spectral intensity for up-conversion fluorescence from a
commercially available infrared sensor card.

C. Scattering
Photoluminescence, as considered in Sec. 14.5B, involves the
resonant absorption of a photon via a transition between the ground
state and a real excited state; the subsequent relaxation of the
excited state back to the ground state results in the emission of a
luminescence photon. Absorption and subsequent re-emission from
a real upper state are the defining characteristics of luminescence,
fluorescence, and phosphorescence.

Light scattering processes can involve transitions that occur via
virtual states. Since they are often nonresonant interactions, light
can be scattered over a broad range of frequencies. We consider in
turn three scattering processes of importance in optics and
photonics, as portrayed in Fig. 14.5-5: Rayleigh, Raman, and
Brillouin scattering. Scattering is inherent and unavoidable, and
usually undesirable, but it also proves useful for providing
information about the characteristics of the scattering medium and
for creating useful sources of light.

Rayleigh Scattering

Rayleigh scattering is a process whereby a medium causes an
incident photon to change direction. It entails an energy-conserving
(elastic) interaction so that the scattered photon has the same
energy as the incident photon, as schematized in Fig. 14.5-5(a).



Rayleigh scattering occurs in gases, liquids, and solids. It is
engendered by variations in a medium that are finer than the
wavelength of light, such as random density fluctuations in air or
random refractive-index inhomogeneities in glass (Sec. 10.3A). It
can also be brought about by the presence of particles whose sizes
are much smaller than the wavelength of light, such as electrons,
atoms, molecules, or nanoparticles. As discussed in Sec. 5.6B, the
scattered intensity is proportional to ν4, and thus to , where ν
and λo are the frequency and wavelength of the illumination,
respectively. Short wavelengths thus undergo greater scattering
than long wavelengths; Rayleigh

Figure 14.5-5 Several forms of light scattering: (a) Rayleigh; (b)
Raman (Stokes); (c) Raman (anti-Stokes); and (d) Brillouin. Dashed
horizontal lines indicate virtual states and therefore nonresonant
scattering.

scattering is responsible for the blue color of the sky. Scattering
from spherical particles larger than ≈ λo/10 is known as Mie
scattering; its strength does not depend strongly on the
wavelength of the illumination. Mie scattering is responsible, as an
example, for the white glare around a light source in the presence of
mist or fog (Sec. 5.6C).

Raman Scattering

Raman scattering is a process by means of which a photon of
frequency hν1, following an inelastic interaction with a material,
emerges either at a lower frequency hνS = hν1 − hνR (Stokes



scattering) or at a higher frequency hνA = hν1 + hνR (anti-Stokes
scattering), as displayed in Figs. 14.5-5(b) and (c), respectively.
Raman scattering occurs in gases, liquids, and solids. Unlike
Rayleigh scattering, Raman scattering is inelastic; the alteration of
photon frequency is brought about by an exchange of energy hνR
with a rotational and/or vibrational mode of a molecule or solid. In
Stokes scattering, the photon imparts energy to the material
system, whereas the reverse occurs in anti-Stokes scattering. In
general, the spectrum of light scattered from a material contains a
Rayleigh-scattered component, at the incident frequency, together
with red-shifted and blue-shifted sidebands corresponding to
inelastically scattered Stokes and anti-Stokes components,
respectively. Though the sideband power is typically weak for
nonresonant interactions, lying a factor of 10−7 below that of the
incident light, Raman scattering is useful for characterizing
materials. In crystalline materials, the vibrational spectrum is
generally discrete and the Raman lines are narrow. Glasses, in
contrast, have broad vibrational spectra that in turn give rise to
broad Raman spectra. Brillouin scattering, portrayed in Fig. 14.5-
5(d), is similar to Raman scattering except that the exchange of
energy hνB takes place with acoustic, rather than vibrational, modes
of the medium.

Stimulated Raman Scattering

Stimulated Raman scattering (SRS) can take place when a
signal photon enters a nonlinear optical medium together with a
pump photon of higher frequency (inset in Fig. 15.3-7). The signal
photon stimulates the emission of a second signal photon, which is
obtained by Stokes-shifting the pump photon so that its frequency
precisely matches that of the input signal photon. The surplus
energy of the pump photon is transferred to the vibrational modes
of the medium. The process bears some similarity to stimulated
emission, but the Raman interaction is a third-order nonlinear
optical process (Sec. 22.3B).



Stimulated Raman scattering is useful for making optical amplifiers
(Sec. 15.3D) and lasers (Sec. 16.3C). Raman amplifiers and Raman
lasers have the distinct merit that the bandwidth over which they
can operate is governed by the vibrational spectrum of the material
rather than by the linewidth of a transition. The vibrational
spectrum of glass is particularly broad, so that a length of glass
optical fiber can serve as a fiber amplifier or fiber laser that is
tunable over a range of hundreds of nm. Raman optical amplifiers
and Raman fiber lasers are used in dense wavelength-division-
multiplexed optical fiber communication systems (Sec. 25.3C).

Stimulated Raman scattering is also useful as a spectroscopic tool
since it can reveal the underlying vibrational characteristics of a
material. The sensitivity of Raman-based spectroscopy can be
enhanced by making use of coherent anti-Stokes Raman
scattering (CARS), which uses two pump lasers whose frequency
difference is resonant with the vibrational frequency of the material
under investigation, thereby increasing the efficiency of wave
mixing.

In another important application, Raman processes are useful for
generating broadband light in optical fibers. A pump gives rise to
Raman-scattered spontaneous emission that is amplified via
stimulated Raman scattering as the light and pump propagate
through the fiber. For an optical fiber of sufficient length, and a
pump of sufficient strength, the resulting Raman spectrum initiates
yet further Raman frequency conversion, resulting in the
production of broadband (supercontinuum) light (Sec. 23.5C).
Stabilization of the process can be achieved by making use of a
resonator. Stimulated Brillouin scattering is similar to SRS
except that acoustic vibrations, rather than molecular vibrations, are
involved.
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PROBLEMS
14.3-3 Comparison of Stimulated and Spontaneous

Emission. An atom with two energy levels corresponding to a
transition with characteristics λo = 0.7 μm, tsp = 3 ms, Δν = 50
GHz, and Lorentzian lineshape, is placed in a resonator of
volume V = 100 cm3 and refractive index n = 1. Two radiation



modes (one at the center frequency ν0 and the other at ν0 + Δν)
are each excited with 1000 photons. Determine the probability
density for stimulated emission (or absorption). If N2 such
atoms are excited to energy level 2, determine the time
constant for the decay of N2 due to stimulated and
spontaneous emission. Find the number of photons that
should be present (instead of 1000) in order for the decay rate
due to stimulated emission to equal that due to spontaneous
emission?

14.3-4 Spontaneous Emission into Prescribed Modes.

(a) Consider a 1-μm3 cubic cavity containing a medium of
refractive index n = 1. Consulting Sec. 11.4, determine the mode
numbers (q1, q2, q3) of the lowest-and next-higherfrequency
modes. Show that these frequencies are 260 and 367 THz,
respectively.

(b) Now consider a single excited atom in the cavity when it
contains zero photons. Let psp1 be the probability density (s−1)
that the atom spontaneously emits a photon into the (2, 1, 1)
mode, and let psp2 be the probability density that the atom
spontaneously emits a photon with frequency 367 THz.
Determine the ratio psp2/psp1.

14.4-2 Rate Equations for Broadband Radiation. A resonator
of unit volume contains atoms with two energy levels whose
associated transition has resonance frequency ν0 and linewidth
Δν. There are N1 and N2 atoms in the lower and upper levels, 1
and 2, respectively, and a total of  photons in each of the
modes within a broad frequency band surrounding ν0. Photons
are lost from the resonator at a rate 1/τp as a result of imperfect
reflection at the cavity walls. Assuming that there are no
nonradiative transitions between levels 2 and 1, write the rate
equations for N2 and .



14.4-3 Inhibited Spontaneous Emission. Consider a two-
dimensional blackbody radiator (e.g., a square plate of area A)
in thermal equilibrium at temperature T.

(a) Determine the density of modes M(ν) and the spectral
energy density (i.e., the energy in the frequency range between
ν and ν + dν per unit area) of the emitted radiation ϱ(ν) (see
Sec. 11.3).

(b) Find the probability density of spontaneous emission Psp for
an atom located in a cavity that permits radiation only in two
dimensions. Such a cavity may be made, for example, by using
photonic-crystal omnidirectional reflectors above and below a
slab.

14.4-4 Comparison of Stimulated and Spontaneous
Emission in Blackbody Radiation. Find the temperature of
a thermal-equilibrium blackbody cavity emitting a spectral
energy density ϱ(ν) when the rates of stimulated and
spontaneous emission from the atoms in the cavity walls are
equal at λo = 1 μm.

14.4-5 Wien’s Law. Show that the wavelength spectral energy
density ϱλ(λ) [ϱλ(λ) dλ is the energy per unit volume in the
wavelength region between λ and λ + dλ] is given by

  so that ϱλ(λ)/ϱν (ν)= c/λ2. Show also that the wavelength λp at
which the spectral energy density is maximum satisfies the
equation 5(1 − e−y)= y, where y = hc/λpkT, demonstrating the
validity of the relationship λpT = constant (Wien’s law) is
satisfied.

  Find λpT approximately. Show that λp ≠ c/νp, where νp is the
frequency at which = the blackbody energy density ϱ(ν) is



maximum (Exercise 14.4-1). The shapes and peak locations of
density functions are dependent on the representation chosen.

14.4-6 Spectral Energy Density of One-Dimensional
Blackbody Radiation. Consider a one-dimensional
blackbody radiator of length L in thermal equilibrium at
temperature T .

(a) Determine the density of modes M(ν) (number of modes
per unit frequency per unit length) in one dimension.

(b) Using the average density  of a mode of frequency ν,
determine the spectral energy density (i.e., the energy in the
frequency range between ν and ν + dν per unit length) of the
blackbody radiation ϱ(ν). Sketch ϱ(ν) versus ν.

14.4-7 Stefan–Boltzmann Law. Use the conventional expression
for the spectral energy density for blackbody radiation provided
in (14.4-9) to confirm that the total power radiated is
proportional to T4, in accord with the Stefan–Boltzmann law.
Determine the proportionality ) ∞ constant. Hint: 

*14.5-1 Statistics of Cathodoluminescence Light. Consider a
beam of electrons impinging on the phosphor of a cathode-ray tube.
Let  be the mean number of electrons striking a unit area of the
phosphor in unit time. If the number m of electrons arriving in a
fixed time is random with a Poisson distribution, and the number of
photons emitted per electron is also Poisson distributed but with
mean , find the overall distribution p(n) of the emitted
cathodoluminescence photons. The result is known as the Neyman
Type-A distribution.2 Determine expressions for the mean  and
the variance . Hint: Use conditional probability.

Notes



1 The Schrödinger equation is cast in a form commonly used in
electrical engineering. As explained in the footnote on page 47,
correspondence with the form usually used in the physics literature
is attained by simply √ replacing −j with i, where j = i = . Of
course, this choice has no bearing on the final results.
2 See M. C. Teich, Role of the Doubly Stochastic Neyman Type-A and
Thomas Counting Distributions in Photon Detection, Applied
Optics, vol. 20, pp. 2457–2467, 1981.
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Charles H. Townes (1915–2015)



Nikolai G. Basov (1922–2001)

Aleksandr M. Prokhorov (1916–2002)

Townes, Basov, and Prokhorov developed the principle of Light
Amplification by Stimulated Emission of Radiation (LASER). They
received the Nobel Prize for this work in 1964.

A coherent optical amplifier is a device that increases the amplitude of
an optical field while maintaining its phase. If the optical field at the input
to such an amplifier is monochromatic, the output will also be
monochromatic with the same frequency. The output amplitude is
increased relative to the input while the phase remains unchanged or is
shifted by a fixed amount. In contrast, an incoherent optical amplifier
increases the intensity of an optical wave without preserving its phase.
Coherent optical amplifiers play an important role in applications ranging
from the amplification of weak optical pulses, such as those that have
traveled through a long length of optical fiber, to the generation of high-
intensity optical pulses, such as those required to achieve laser fusion.
Understanding the operation of optical amplifiers serves as a prelude to
understanding the operation of optical oscillators, considered in Chapter
16.

The underlying principle for achieving the coherent amplification of light is
Light Amplification by Stimulated Emission of Radiation, which forms the
acronym LASER. Stimulated emission (Sec. 14.3) allows a photon in a



given mode to induce an atom with an electron in an upper energy level to
undergo a transition to a lower energy level and, in the process, to emit a
clone photon into the same mode as the initial photon. A clone photon has
the same frequency, direction, and polarization as the initial photon. These
two photons in turn serve to stimulate the emission of two additional
photons, and so on, while preserving these properties. The result is laser
amplification. Because stimulated emission can occur only when the
photon energy is nearly equal to the energy difference between the upper
and lower energy levels, the light-amplification process is restricted to a
band of frequencies determined by the atomic-transition linewidth.
Though the presentation throughout this chapter is couched in terms of
“atoms” and “atomic energy levels,” these appellations are to be more
broadly understood as “active medium” and “laser energy levels,”
respectively.

Light transmitted through matter in thermal equilibrium is attenuated.
This is because absorption by a large population of atoms in the lower
energy level is more prevalent than stimulated emission by the smaller
population of atoms in the upper level. An essential ingredient for
achieving laser amplification is the presence of a greater number of atoms
in the upper energy level than in the lower level, a non-equilibrium
situation (Sec. 14.2). Achieving such a population inversion requires a
source of power, called a pump, that excites the atoms from the lower to
the higher energy level, as illustrated in Fig. 15.0-1.

Figure 15.0-1 The laser amplifier. An external power source (the pump)
excites the active medium (represented by a collection of atoms) so that it
has a population inversion. Photons interact with the atoms. When
stimulated emission is more prevalent than absorption, the medium acts as
a coherent laser amplifier.

Laser amplification differs in a number of respects from electronic
amplification. Electronic amplifiers rely on devices in which small changes



of an injected electric current (or applied voltage) result in large changes in
the rate of flow of charge carriers, such as electrons and holes in a
semiconductor field-effect transistor (FET) or bipolar junction transistor.
Tuned electronic amplifiers make use of a resonant circuit or resonator
(e.g., a capacitor/inductor or a metal cavity — see Fig. 11.0-2) to limit the
gain of the amplifier to the band of frequencies of interest. In contrast,
atomic, molecular, ionic, and solid-state laser amplifiers rely on differences
in their allowed energy levels to provide the principal frequency-selection
mechanism. These entities act as natural resonators that select the
frequency of operation and bandwidth of the amplifier. Optical resonators
are often used to provide auxiliary frequency tuning.

The properties of an ideal optical or electronic coherent amplifier are
illustrated schematically in Fig. 15.0-2(a). It comprises a linear system that
increases the amplitude of the input signal by a fixed factor, the amplifier
gain. A sinusoidal input leads to a sinusoidal output at the same frequency,
but with a larger amplitude. The gain of the ideal amplifier is constant for
all frequencies within the amplifier spectral bandwidth. The amplifier may
impart to the input signal a phase shift that varies linearly with frequency,
corresponding to a time delay at the output with respect to the input (Sec.
B.1 of Appendix B).

Figure 15.0-2 (a) An ideal amplifier is linear. It serves to increase the
amplitude of a signal (whose frequencies lie within its bandwidth) by a
constant gain factor, and possibly introduces a linear phase shift. (b) A real
amplifier typically has a gain and phase shift that are functions of
frequency. For large values of the input, the output signal saturates and the
real amplifier exhibits nonlinearity.

A real coherent amplifier, on the other hand, delivers a gain and phase shift
that are frequency-dependent, typically in the manner illustrated in Fig.
15.0-2(b). The gain and phase shift determine the transfer function of the
amplifier. For a sufficiently large input amplitude, a real amplifier



generally exhibits saturation, a form of nonlinear behavior in which the
output amplitude does not increase in proportion to the input amplitude.
Saturation introduces harmonic components into the output, provided that
the amplifier bandwidth is sufficiently broad to allow them to pass. A real
amplifier also introduces noise, so that a random fluctuating component is
present at the output, regardless of the input.

An amplifier is thus characterized by the following features:

Gain

Bandwidth

Phase shift

Power source

Nonlinearity and gain saturation

Noise

This Chapter

In this chapter, we discuss the features listed above in turn. In Sec. 15.1 the
theory of laser amplification is developed, and expressions for the amplifier
gain, spectral bandwidth, and phase shift are obtained. The mechanisms by
means of which a power source pumps the active medium and achieves a
population inversion are examined in Sec. 15.2. A number of representative
laser amplifiers are considered in Sec. 15.3. Sections 15.4 and 15.5 are
devoted to nonlinearity and noise in the amplification process, respectively.
The material in this chapter relies on the exposition of the interaction of
photons with atoms set forth in Sec. 14.3.

15.1 THEORY OF LASER AMPLIFICATION
A monochromatic optical plane wave traveling in the z direction with
frequency ν, electric field ε(z) = Re{E(z) exp(j2πνt)}, complex amplitude
E(z), intensity I(z) = |E(z)|2/2η, and photon-flux density ϕ(z)= I(z)/hν
(photons per second per unit area) will interact with an atomic medium,
provided that the atoms of the medium have two energy levels whose
energy difference nearly matches the photon energy hν. The numbers of
atoms per unit volume in the lower and upper energy levels are denoted N1
and N2, respectively. The wave is amplified with a gain coefficient γ(ν) (per



(15.1-1)

unit length) and undergoes a phase shift φ(ν) (per unit length). We
proceed to determine expressions for γ(ν) and φ(ν). Positive γ(ν)
corresponds to amplification; negative γ(ν) corresponds to attenuation.

A. Gain and Bandwidth
In accordance with Sec. 14.3, three forms of photon–atom interaction take
place. If the atom is in the lower energy level, the photon may be absorbed.
If it is in the upper energy level, a clone photon may be emitted by the
process of stimulated emission. These two processes lead to attenuation
and amplification, respectively. The third form of interaction, spontaneous
emission, in which an atom in the upper energy level emits a photon
independently of the presence of other photons, is responsible for
amplifier noise (Sec. 15.5).

The probability density (s−1) that an unexcited atom absorbs a single
photon is, according to (14.3-19) and (14.3-15),

where σ(ν) = (λ2/8πtsp) g(ν) is the transition cross section at the frequency
ν, g(ν) is the normalized lineshape function, tsp is the effective
spontaneous lifetime for stimulated emission, and λ is the wavelength of
light in the medium. The probability density for stimulated emission is the
same as that for absorption.

Gain Coefficient

The average density of absorbed photons (number of photons per unit time
per unit volume) is N1Wi. Similarly, the average density of clone photons
generated as a result of stimulated emission is N2Wi. The net number of
photons gained per second per unit volume is therefore NWi, where N = N2
− N1 is the population density difference, which is often simply referred to
as the population difference. If N is positive, a population inversion
exists, in which case the medium can act as an amplifier and the photon-
flux density of a wave passing through the medium can increase. If N is
negative, the medium acts as an attenuator and the photon-flux density
decreases. If N = 0, the medium is transparent.

Since the incident photons travel in the z direction, the stimulated-
emission photons also travel in that direction, as illustrated in Fig. 15.1-1.



(15.1-2)

(15.1-3)

(15.1-4)

An external pump providing a population inversion (N > 0) then causes the
photon-flux density ϕ(z) to increase with z. Because emitted photons
stimulate further emissions, the growth at any position z is proportional to
the population at that position; ϕ(z) thus increases exponentially.

Figure 15.1-1 The photon-flux density ϕ (photons/cm2-s) entering an
incremental cylinder containing excited atoms grows to ϕ + dϕ after
traveling a distance dz.

To demonstrate this process explicitly, consider an incremental cylinder of
length dz and unit area, as shown in Fig. 15.1-1 . If ϕ(z) and ϕ(z) + dϕ(z) are
the photon-flux densities entering and exiting the incremental cylinder,
respectively, then dϕ(z) must be the photon-flux density emitted from
within the cylinder. This incremental number of photons per unit area per
unit time, dϕ(z), is simply the number of photons gained per unit time per
unit volume, NWi, multiplied by the thickness of the cylinder dz:

With the help of (15.1-1), (15.1-2) can be written in the form of a
differential equation,

where

Gain Coefficient



(15.1-5)

(15.1-6)

(15.1-7)

The coefficient γ(ν) represents the net gain in the photon-flux density per
unit length of the medium. The solution of (15.1-3) is the exponentially
increasing function

Since the optical intensity I(z) = hνϕ(z), (15.1-5) can also be written in
terms of I as

Thus, γ(ν) also represents the gain in the intensity per unit length of the
medium.

The amplifier gain coefficient γ(ν) is seen to be proportional to the
population difference N = N2 − N1. Though N was taken to be positive in
the example provided above, the derivation is valid whatever the sign of N.
In the absence of a population inversion, N is negative (N2 < N1) and so too
is the gain coefficient. The medium will then attenuate (rather than
amplify) light traveling in the z direction, in accordance with the
exponentially decreasing function ϕ(z) = ϕ(0) exp[−α(ν) z], where the
attenuation coefficient α(ν) = −γ(ν) = −N σ(ν). Hence, a medium in
thermal equilibrium provides attenuation and cannot provide laser
amplification.

Gain

For an interaction region of total length d (Fig. 15.1-1), the overall gain of
the laser amplifier G(ν) is defined as the ratio of the photon-flux density at
the output to that at the input, i.e., G(ν) = ϕ(d)/ϕ(0), so that

Amplifier Gain

Bandwidth

The dependence of the gain coefficient γ(ν) on the frequency of the
incident light ν is contained in its proportionality to the lineshape function
g(ν), as given in (15.14). The latter is centered about the atomic resonance



(15.1-8)

(15.1-9)

frequency ν0 = (E2 − E1)/h, where E2 and E1 are the atomic energy levels,
and is of width Δν. Since stimulated emission and absorption are governed
by the atomic transition, the laser amplifier is a resonant device, with a
resonance frequency and bandwidth determined by the lineshape function
of the atomic transition. The linewidth Δν is measured either in units of
frequency (Hz) or in units of wavelength (nm), which are related by Δλ = |
Δ(co/ν)| =(co/ν2)Δν =(λ2

o/co)Δν. Thus, a linewidth Δν = 1 THz at λo = 0.6
μm corresponds to Δλ = 1.2 nm.

If the lineshape function is Lorentzian, for example, (14.3-34) provides

The gain coefficient is then also Lorentzian with the same width, i.e.,

as illustrated in Fig. 15.1-2, where γ(ν0) = N(λ2/4π2tspΔν) is the gain
coefficient at the central frequency ν0.

Figure 15.1-2 Gain coefficient γ(ν) of a Lorentzian-lineshape resonant
laser amplifier.



EXERCISE 15.1-1

Attenuation and Gain in a Ruby Laser Amplifier.

a. Consider a ruby (Cr3+:Al2O3) crystal with two energy levels
separated by an energy difference corresponding to a free-space
wavelength λo = 694.3 nm. The transition has a Lorentzian
lineshape function of width Δν = 330 GHz, a spontaneous lifetime
tsp = 3 ms, and ruby has a refractive index n = 1.76 (Table 15.3-1). If
N1 + N2 = Na = 1022 cm−3, determine the population difference N =
N2 − N1 and the attenuation coefficient at the line center α(ν0)
under conditions of thermal equilibrium at T = 300° K, so that the
Boltzmann distribution (Sec. 14.2) is obeyed.

b. What value should the population difference N assume to achieve
a gain coefficient γ(ν0) = 0.5 cm−1 at the central frequency?

c. How long should the ruby crystal be to provide an overall gain of 4
at the central frequency when γ(ν0) = 0.5 cm−1?

B. Phase Shift
Because the gain of the resonant medium is frequency dependent, the
medium is dispersive (Sec. 5.5) and a frequency-dependent phase shift
must be associated with its gain. The phase shift imparted by the laser
amplifier can be determined by considering the interaction of light with
matter in terms of the electric field rather than the photon-flux density or
the intensity, as we have done in the foregoing. We proceed instead with an
alternative approach, in which the mathematical properties of a causal
system are used to determine the phase shift. For homogeneously
broadened media, the phase-shift coefficient φ(ν) (phase shift per unit
length of the amplifier medium) is related to the gain coefficient γ(ν) by
the Hilbert transform (Sec. B.1 of Appendix B), so that knowledge of γ(ν) at
all frequencies uniquely determines φ(ν).

The optical intensity and the complex amplitude of the field are related by
I(z) = |E(z)|2/2η. Since I(z) = I(0) exp[γ(ν) z] in accordance with (15.1-6),
the field complex amplitude must obey the relation
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(15.1-10)
where φ(ν) is the phase-shift coefficient. The field complex amplitude
evaluated at z + Δz is therefore

where we have made use of a Taylor-series to approximate the exponential
functions. The incremental change in the electric field, ΔE(z) = E(z + Δz) −
E(z), therefore satisfies the equation

This incremental amplifier may thus be regarded as a linear system whose
input and output are E(z) and ΔE(z)/Δz, respectively, and whose transfer
function is

Because this incremental amplifier represents a physical system, it must be
causal. But the real and imaginary parts of the transfer function of a linear
causal system are related by the Hilbert transform (Sec. B.1 of Appendix B).
It follows that −φ(ν) is the Hilbert transform of 1

2
γ(ν) so that the amplifier

phase shift coefficient is determined by its gain coefficient. A simple
example is provided by a Lorentzian atomic lineshape function with narrow
width Δν ≪ ν0, for which the gain coefficient γ(ν) is given by (15.1-9). The
corresponding phase shift coefficient φ(ν) is provided in (B.1-13) of Sec.
B.1,

Phase-Shift Coefficient 
(Lorentzian Lineshape)



The Lorentzian gain and phase-shift coefficients are plotted in Fig. 15.1-3 as
functions of frequency. At resonance, the gain coefficient is maximum and
the phase-shift coefficient is zero. The phase-shift coefficient is negative
for frequencies below resonance and positive for frequencies above
resonance.

Figure 15.1-3 Gain coefficient γ(ν) and phase-shift coefficient φ(ν) for a
laser amplifier with a Lorentzian line-shape function.

15.2 AMPLIFIER PUMPING
Like other amplifiers, laser amplifiers require an external source of power
to provide the energy required to augment the input signal. The pump
supplies this power via a mechanism that excites the electrons in the
atoms, causing them to move from lower to higher atomic energy levels. To
achieve amplification, the pump must provide a population inversion on
the transition of interest (N = N2−N1 > 0). The mechanics of pumping
often involves the use of ancillary energy levels. As an example, the
pumping of atoms from level , into level , to achieve amplification on
the  transition, might be most readily achieved by pumping atoms
from level  into level  and then relying on lifetime-based decay from
level  to populate level .

As discussed at the end of Sec. 15.2B, pumping may be achieved in many
ways, e.g., by optical, electrical, or chemical means. To attain the
continuous-wave (CW) operation of a laser amplifier, the rates of
excitation and decay of the various energy levels participating in the
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process must be balanced to maintain a steady-state inverted population on
the →  transition.

A. Rate Equations
The equations that describe the rates of change of the population densities
N1 and N2 as a result of pumping, as well as radiative and nonradiative
transitions, are called rate equations. They are not unlike the first-order
differential equations presented in Sec. 14.4, but selective external
pumping is now part of the process so that thermal-equilibrium conditions
no longer prevail.

Consider the schematic energy-level diagram of Fig. 15.2-1. We focus on
levels  and , which have overall lifetimes τ1 and τ2, respectively, which
accommodate transitions to lower energy levels. The lifetime of level  has
two contributions — τ21 is associated with decay from  to  while τ20 is
associated with decay from  to all other lower levels. When several
modes of decay are possible, the overall transition rate is a sum of the
component transition rates. Since the rates are inversely proportional to
the decay times, the reciprocals of the decay times must be summed:

Multiple modes of decay therefore shorten the overall lifetime (i.e., they
render the decay more rapid). Aside from the radiative spontaneous
emission component tsp in τ21, a nonradiative contribution τnr may also be
present (arising, for example, from a depopulating collision of the atom
with the wall of the container), so that

If an unpumped system such as that illustrated in Fig. 15.2-1 is allowed to
reach steady state, the population densities N1 and N2 will vanish by virtue
of all of the electrons having ultimately decayed to lower energy levels.



Figure 15.2-1 Energy levels  and , along with their decay times.

Steady-state populations of levels  and  can be maintained, however, if
the energy levels above level  are continuously excited by pumping and
ultimately populate level , as shown in the more realistic energy-level
diagram of Fig. 15.2-2. Pumping serves to bring atoms out of level  and
into level , at rates R1 and R2 (per unit volume per unit time),
respectively, as shown in simplified form in Fig. 15.2-3. As a result, levels 

 and  can achieve nonzero steady-state populations.

Figure 15.2-2 Energy levels  and , together with surrounding higher
and lower energy levels, in the presence of pumping.

Figure 15.2-3 Energy levels  and  and their decay times. By means of
pumping, the population density of level  is increased at the rate R2 while
that of level  is decreased at the rate R1.

We now proceed to write the rate equations for this system both in the
absence, and in the presence, of amplifier radiation (the radiation resonant
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with the →  transition).

Rate Equations in the Absence of Amplifier Radiation

The rates of increase of the population densities of levels  and  arising
from pumping and decay are, respectively,

Under steady-state conditions (dN1/dt = dN2/dt = 0), (15.2-3) and (15.2-4)
can be solved for N1 and N2, which provides a population difference N = N2
− N1 given by

Steady-State Population Difference 
(Absence of Amplifier Radiation)

where the symbol N0 represents the steady-state population difference N in
the absence of amplifier radiation.

In accordance with (15.1-4), a large gain coefficient requires a large
population difference, i.e., a large positive value of N0. Equation (15.2-5)
demonstrates that this may be achieved by:

Large R1 and R2.

Long τ2 (but tsp, which contributes to τ2 through τ21, must be
sufficiently short so as to make the radiative transition rate large, as
will be seen subsequently).

Short τ1 if R1 < (τ2/τ21)R2.

The physical rationales that underlie these conditions make good sense.
The upper level should be strongly pumped and decay slowly so that it
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retains its population. The lower level should strongly depump so that it
quickly disposes of its population. Ideally, it is desirable to have τ21 ≈ tsp ≪
τ20 so that τ2 ≈ tsp and τ1 ≪ tsp. Under these conditions, (15.2-5) simplifies
to

In the absence of depumping (R1 = 0), or when R1 ≪ (tsp/τ1)R2, this result
further simplifies to

EXERCISE 15.2-1

Optical Pumping. Assume that R1 = 0 and that R2 is realized by
exciting atoms from the ground state E = 0 to level  using photons of
frequency E2/h absorbed with transition probability W. Assume that τ2
≈ tsp and τ1 ≪ tsp so that in steady state N1 ≈ 0 and N0 ≈ R2tsp. If Na is
the total population of levels , , and , show that R2 ≈ (Na −
2N0)W, so that the population difference is N0 ≈ NatspW/(1 + 2tspW).

Rate Equations in the Presence of Amplifier Radiation

The presence of radiation near the resonance frequency ν0 enables
transitions between levels  and  to take place via stimulated emission
and absorption. These processes are characterized by the probability
density Wi = ϕσ(ν), as provided in (15.1-1) and illustrated in Fig. 15.2-4. At
this juncture, we assume for simplicity that σ(ν), and therefore Wi, are
identical for absorption and emission. This assumption is not valid in
general, however, as will be discussed subsequently.

Extending the rate equations (15.2-3) and (15.2-4) to include the
population loss and gain associated with amplifier radiation yields
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Figure 15.2-4 Population densities N1 and N2 of atoms in energy levels 
and , respectively, are determined by three processes: decay (at rates 1/τ1
and 1/τ2, respectively, which includes the effects of spontaneous emission),
depumping and pumping (at rates R1 and R2, respectively), and absorption
and stimulated emission (at the same rate Wi with corresponding time
constant W−1

i).

The population density of level  is decreased by stimulated emission
from level  to level  and increased by absorption from level  to level 

. The spontaneous emission contribution is contained in τ21. The
population densities are generally specified in units of cm−3 · s−1. Under
steady-state conditions (dN1/dt = dN2/dt = 0), (15.2-8) and (15.2-9) are
readily solved for N1 and N2, which leads to a population difference N = N2
− N1 given by

Steady-State Population Difference 
(Presence of Amplifier Radiation)

where N0 is the steady-state population difference in the absence of
amplifier radiation provided in (15.2-5). The characteristic time τs, given by

Saturation Time Constant

is always positive since τ2 ≤ τ21.



In the absence of amplifier radiation, Wi = 0 so that (15.2-10) reverts to N
= N0, as expected. Because τs is positive, the steady-state population
difference in the presence of amplifier radiation always has a smaller
absolute value than in its absence, i.e., |N|≤|N0|. If the radiation is
sufficiently weak so that τsWi ≪ 1 (the small-signal approximation), it
suffices to take N ≈ N0. As the amplifier radiation becomes stronger, Wi
increases and ultimately N → 0, regardless of the initial sign of N0, as
shown in Fig. 15.2-5. This result emerges because stimulated emission and
absorption dominate the interaction when Wi is very large and they have
equal probability densities. It is apparent that even very strong radiation
cannot convert a negative population difference into a positive one, nor
vice versa. The quantity τs plays the role of a saturation time constant,
as is evident from Fig. 15.2-5.

Figure 15.2-5 Depletion of the steady-state population difference N = N2
− N1 as the rate of absorption and stimulated emission Wi increases. When
Wi = 1/τs, N is reduced by a factor of 2 from its value when Wi = 0.

EXERCISE 15.2-2

Saturation Time Constant. Show that if tsp ≪ τnr (where τnr is the
nonradiative part of the lifetime τ21 of the  transition) and τ1 ≪ tsp
≪ τ20, then τs ≈ tsp.

B. Pumping Schemes



We proceed to examine a number of pumping schemes used to achieve
laser amplification via a population inversion on the  transition. We
consider four pumping systems in turn: 1) four-level pumping; 2) three-
level pumping; 3) quasi-three-level pumping; and 4) in-band pumping.
With the exception of three-level pumping, all of these schemes are widely
used in practice.

Four-Level Pumping

In the four-level pumping arrangement, displayed in Fig. 15.2-6, level 
lies above the ground state (designated as the lowest energy level . In
thermal equilibrium, level  will be virtually unpopulated provided that E1
≫ kT, a situation that is, of course, desirable since it enhances the
population inversion.

Figure 15.2-6 Energy levels and decay rates for a four-level system. The
four levels are drawn from a multitude of levels (not shown). The rate of
pumping into level , and out of level , are taken to be the same. In a
four-level system, level  is assumed to be unpopulated in thermal
equilibrium. A quasi-three-level system has the same configuration except
that level  is sufficiently close to the ground state  that it retains
population in thermal equilibrium. The majority of laser amplifiers and
lasers encountered in practice are four-level or quasi-three-level systems.

Pumping is achieved by making use of an energy level (or collection of
energy levels) that lies above level ; we designate this as level . The 

 transition has a short we designate this as level →  lifetime
(decay occurs rapidly) so there is little population accumulation in level .
Level  is long-lived, so that it accumulates population, whereas level  is
short-lived so that it sheds population; a population inversion is thereby
established between levels  and . All told, four energy levels are
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involved in the process but the optical interaction of interest takes place
between levels  and .

An external source of energy (e.g., photons at frequency ν ≈ E3/h) pumps
atoms from level  to level  at a rate R. If the decay from level  to level 

 is sufficiently rapid, it may be taken to be instantaneous, whereupon
pumping to level  is equivalent to pumping to level  at the rate R2= R.
The situation is then the same as that shown in Fig. 15.2-4 so that the
expressions in (15.2-10) and (15.2-11) apply. With respect to the value of N0
to be used in these expressions, atoms are neither pumped into nor out of
level  in the four-level system, so that R1 = 0. In the absence of amplifier
radiation (Wi = ϕ = 0), therefore, the steady-state population difference is
given by (15.2-5) with R1 = 0, i.e.,

Also, in most four-level systems, the nonradiative decay component in the 
 transition is negligible (tsp ≪ τnr) and τ1 ≪ tsp ≪ τ20 (Exercise 15.2-

2), so that

whereupon (15.2-10) becomes

Implicit in the preceding derivation is the assumption that the pumping
rate R is independent of the population difference N = N2 − N1. This is not
always the case, however, because the population densities of the ground
state and level , Ng and N3 respectively, are related to N1 and N2 by

Ng + N1 + N2 + N3 = Na,

where the total atomic density in the system, Na, is a constant. If the
pumping involves a transition between the ground state and level  with
transition probability W, then R =(Ng − N3)W . If levels  and  are short-
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lived, then N1 ≈ N3 ≈ 0, whereupon Ng + N2 ≈ Na so that Ng ≈ Na − N2 ≈ Na
− N. Under these conditions, the pumping rate can be approximated as

which reveals that the pumping rate is a linearly decreasing function of the
population difference N and is thus clearly not independent of it. This
arises because the population inversion established between levels  and 

 reduces the number of atoms available to be pumped. Substituting (15.2-
17) into (15.2-15) and reorganizing terms leads to

Finally, then, the population difference can be written in the generic form
of (15.2-10):

where N0 and τs, rather than being expressed as (15.2-13) and (15.2-14),
become

For weak pumping (W ≪ 1/tsp), N0 ≈ tspNaW is proportional to the
pumping transition probability density W , and τs ≈ tsp, so that (15.2-13)
and (15.2-14) reemerge. However, as the pumping strength increases, N0
decreases and ultimately saturates, while τs decreases.

Three-Level Pumping
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A three-level pumping arrangement, in contrast, makes use of the
ground state (E1 = 0) as the lower laser level , as depicted in Fig. 15.2-7.
Again, an auxiliary third level (designated ) is involved and the 
decay is rapid so that there is no buildup of population in level . The 

 decay is slow (τ32 ≪ τ31) so that the pumping serves to populate level 
, the upper laser level, which is long-lived and therefore accumulates

population. Atoms are pumped from level  to level  (e.g., by absorbing
light at frequency ν ≈ E3/h) at a rate R; the fast (nonradiative) decay
effectively pumps level  at the rate R2 = R. The thermally excited
population of level  is assumed to be negligible.

Figure 15.2-7 Energy levels and decay rates for a three-level system. A
multitude of other energy levels exist, but they are not germane to the
considerations at hand. It is assumed that the rate of pumping into level 
is the same as the rate of pumping out of level .

It is not difficult to see that under rapid  decay, the three-level system
displayed in Fig. 15.2-7 is a special case of the system shown in Fig. 15.2-4
(provided that R is independent of N) with the parameters

To avoid algebraic problems in connection with the value τ1 = ∞, rather
than substituting these special values into (15.2-10) and (15.2-11), we
return to the original rate equations (in the presence of radiation), (15.2-8)
and (15.2-9). In steady state, both of these equations provide the same
result:

It is not possible to determine both N1 and N2 from a single equation
relating them. However, knowledge of the total atomic density Na in levels 

, , and  provides an auxiliary condition that does permit N1 and N2 to
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be determined. Since τ32 is very short, level  retains a negligible steady-
state population; all of the atoms that are raised to it immediately decay to
level . Thus,

N1 + N2 ≈ Na,

which enables us to solve (15.2-23) for N1 and N2 and thereby to determine
the population difference N = N2 − N1 and the saturation time τs. The result
may be cast in the usual form of (15.2-10), N = N0/(1 + τsWi), where now

N0 = 2R τ21 − Na

τs = 2τ21.

When nonradiative decay from level  to level  is negligible (i.e., tsp ≪
τnr), τ21 may be replaced by tsp, whereupon

N0 ≈ 2R tsp − Na

τs ≈ 2tsp.

The dependence of the pumping rate R on the population difference N can
be included in the analysis of the three-level system by writing R =
(N1−N3)W , N3 ≈ 0, and N1 = 1

2
(Na − N), from which we obtain R ≈ 1

2
(Na −

N)W . Substituting this in the principal equation N = (2Rtsp − Na)/(1
+2tspWi), and reorganizing terms, we can write the population difference in
the usual form,

but now with



(15.2-31)

Just as with the results for the four-level scheme presented in (15.2-20)
and (15.2-21), N0 and τs saturate as the pumping transition probability W
increases.

Comparison of Three- and Four-Level Pumping

It is of interest to compare (15.2-27) and (15.2-28) for three-level pumping
with the analogous results (15.2-13) and (15.2-14) for four-level pumping.
Attaining a population inversion (N > 0 and therefore N0 > 0) in the three-
level system requires a pumping rate R > Na/2tsp. Thus, just to make the
population density N2 equal to N1 (i.e., N0 = 0) requires a substantial pump
power density, E3Na/2tsp. The large population in the ground state (which
is the lowest laser level) is an inherent obstacle to achieving a population
inversion in a three-level system. This impediment is avoided in a four-
level system, where level  is normally empty since τ1 is short. The
saturation time constant τs ≈ tsp for the four-level pumping scheme is half
that for the three-level scheme.

EXERCISE 15.2-3

Pumping Power in Three- and Four-Level Systems.

(a) Determine the pumping transition probability W required to
achieve a zero population difference in a three- and a four-level
laser amplifier.

(b) If the pumping transition probability W = 2/tsp in the three-level
system, and W = 1/2tsp in the four-level system, show that N0 =
Na/3. Compare the pumping powers required to achieve this
population difference.

Quasi-Three-Level Pumping

Quasi-three-level pumping is a scheme intermediate between four-
level and three-level pumping. As displayed in Fig. 15.2-6, its configuration
is identical to that of four-level pumping; the sole distinction is that the



lower laser level  is sufficiently close to the ground state  that it retains
some population in thermal equilibrium. As with the four-level system,
pumping is achieved via auxiliary level ; the  transition is rapid; the
upper laser level  is long-lived; a population inversion is established
between levels  and ; and the lower laser level  is short-lived.
However, because of the residual population in level , reabsorption at the
transition frequency makes the task of achieving a population inversion
more challenging than in four-level pumping. Many lasers operate via
quasi-three-level pumping.

In-Band Pumping

It is not possible to create a steady-state population inversion using an
idealized two-level system and direct optical pumping. This is a
consequence of the fact that the pump creates as much stimulated
emission as absorption so that, at best, the populations can equalize; this
can be readily understood from the rate-equation analysis discussed in
Prob. 15.2-4. To circumvent this limitation, pumping schemes typically rely
on an auxiliary level  to funnel population to the upper laser level , as
discussed earlier in connection with four-level, three-level, and quasi-
three-level pumping.

However, narrow isolated energy levels, such as those portrayed in Figs.
15.2-6 and 15.2-7, are idealizations. Though they are suitable for
formulating laser rate equations and for understanding how three- and
four-level pumping schemes operate, the energy levels in real materials
often comprise collections of sublevels. An example is provided by the well-
known Nd3+:YAG laser transition at 1.064 μm portrayed in Fig. 14.1-5. As
shown in far greater detail in Fig. 14.1-6, the levels designated by the term
symbols 4I9/2, 4I11/2, and 4F3/2, corresponding to laser levels , , and ,
respectively, consist of manifolds that contain collections of multiple
sublevels.

The presence of these sublevels within each level makes it possible to nest
the pump band  and upper laser level  within a single manifold, and the
lower laser level  and ground state , within another. This scheme,
illustrated in Fig. 15.2-8, is known as in-band pumping. It is also
referred to as quasi-two-level pumping since the pair of manifolds
superficially resembles a two-level system. Pumping and laser action are
readily implemented at distinct frequencies in this pumping scheme. Since
the frequency of the pump νp is greater than that of the laser νs, as depicted



in Fig. 15.2-8, the pump preferentially raises ions to the higher sublevels of
the upper manifold. The active ions quickly thermalize (over a time scale of
ps), and fall to the lower sublevels where they are available for laser-
induced stimulated emission. They are then immune to pump-induced
stimulated emission as well as to laser-induced reabsorption since the
higher sublevels of the lower manifold are only weakly populated at
normal temperatures. Since the processes of absorption and emission
access different sublevels within the manifolds, the transition cross
sections for the two processes generally differ, and therefore so do the
probability densities Wi for absorption and stimulated emission. The
effective absorption cross section and effective emission cross
section are denoted σab(ν) and σem(ν), respectively.

Figure 15.2-8 In-band pumping. The pump band  and the upper laser
level  are nested within the upper manifold while the lower laser level 
and the ground state  are nested within the lower manifold. The pump
and laser photons have energies hνp and hνs, respectively. The absorption
spectrum is on the high-frequency side of the emission spectrum so that a
population inversion can be implemented by strong pumping at a
frequency higher than the peak of the emission spectrum. The effective
absorption and emission cross sections, σab(ν) and σem(ν), respectively,
generally differ.

In-band pumping is widely used. It can be employed in four-level systems
such as Nd3+:YAG and Nd3+:glass, where the lower laser level is well above
the ground state, as well as in quasi-three-level systems such as Yb3+:YAG,
where the lower laser level is near the ground state. In the latter case, the
energies of the pump and laser photons are quite close to each other so
that the fraction of pump photon energy lost in the course of generating a
lower-frequency laser photon is small. This fraction, known as the
quantum defect, is given by



(15.2-32)q = 1 − νs/νp.

The smaller the quantum defect q, the higher the pumping efficiency.
Though in-band pumping enjoys the benefit of a small quantum defect, the
gain of such systems can be adversely affected by the presence of pump-
induced stimulated emission and signal-induced reabsorption, as discussed
above.

Pumping Methods

Many techniques are available for pumping laser amplifiers and lasers, the
most common of which make use of electrical and optical means. Electrical
pumping can be implemented by passing a current, or an electron or ion
beam, through a medium. In laser diodes, electrical pumping is realized by
injecting charge carriers in the form of electrons and holes (Sec. 18.3).
Solid insulating laser media such as crystals, doped glasses, and doped
ceramics usually make use of optical pumping; indeed, lasers are often
used to pump laser amplifiers and other lasers. The efficiency of pumping
varies considerably, depending on the form of pumping and the system
under consideration. Electrical pumping is generally highly efficient,
particularly for laser diodes, whereas optical pumping can be quite
inefficient if an appreciable fraction of pump photons are lost and/or if
their energy is not fully utilized (e.g., if the quantum defect q is large).

Several common methods of electrical and optical pumping are illustrated
schematically in Fig. 15.2-9.



Figure 15.2-9 Examples of electrical and optical pumping. (a) Direct
current (DC) is often used to pump gas lasers. The current may be passed
either along the laser axis, creating a longitudinal discharge, or transversely
to it. (b) Radio-frequency (RF) discharges are also used for pumping gas
lasers. (c) Xe flashlamps or Kr CW arc lamps can be used to optically pump
ruby and rare-earth-doped solid-state laser amplifiers and lasers. (d)
Semiconductor laser diodes, which are themselves electrically pumped, are
widely used for pumping Er3+:silica-fiber laser amplifiers and other rare-
earth-doped fiber amplifiers. (e) An array of laser diodes is generally used
for the efficient optical pumping of Nd3+:YVO4 and other solid-state laser
amplifiers and lasers, as well as for fiber lasers.

Pumping schemes that excite various forms of luminescence radiation are
discussed in Sec. 14.5A. As will become apparent in Sec. 16.3, a variety of
schemes aside from electrical and optical pumping find use in laser
amplifiers and lasers. Chemical lasers make use of chemical reactions that
lead to reaction products in excited states. Atomic X-ray lasers and
amplifiers rely on focused laser-beam heating to create a plasma of ionized
atoms in excited states. Relativistic electron beams serve as pumps for
free-electron laser amplifiers and lasers. Nuclear pumping makes use of a
stream of high-energy X-rays or other particles derived from nuclear
reactions, radioisotopes, or a nuclear detonation.

15.3 REPRESENTATIVE LASER AMPLIFIERS
Laser amplification can take place in a great variety of materials. The
energy-level diagrams for a number of representative atoms, ions,



molecules, solids, and doped dielectrics that exhibit laser action are
displayed in Sec. 14.1. Practical laser systems usually involve a plethora of
interacting energy levels that influence the population densities associated
with the transition of interest, , as illustrated in Fig. 15.2-2.
Nevertheless, the essential principles of laser-amplifier operation may be
codified in terms of the pumping schemes set forth in Sec. 15.2.

This is illustrated by several laser systems that we consider in turn: the
three-level ruby laser amplifier, the four-level neodymium-doped glass
laser amplifier, and the quasi-three-level erbium-doped silica-fiber laser
amplifier. The neodymium-doped glass and erbium-doped silica-fiber
amplifiers are also amenable to in-band pumping. Most laser amplifiers
and lasers operate on the basis of four-level, quasi-three-level, or in-band
pumping schemes, but three-level ruby is of interest for historical and
didactic reasons. All three of the laser amplifiers discussed here are doped
dielectrics and hence are optically pumped. We also consider an optically
pumped amplifier that operates on the basis of stimulated Raman
scattering, rather than stimulated emission. All of these amplifiers also
operate as laser oscillators (Sec. 16.3). The semiconductor optical amplifier,
which is almost always electrically pumped, is described in Sec. 18.2.

Many laser amplifiers are used as power amplifiers (also called
postamplifiers), in which the amplifier is used to increase the power of a
high-quality, but low-power laser oscillator called a seed laser or master-
oscillator. Such systems, known as master-oscillator power-
amplifiers (MOPAs), offer a number of advantages that will be
elucidated in Sec. 16.3B. They find use in applications such as cable
television (CATV), where strong, clean signals must be generated before
being fanned out into multiple fiber channels. MOPAs comprise various
combinations of different types of lasers and amplifiers, including diode-
pumped solid-state, semiconductor, and fiber devices. In the special case
when a fiber amplifier serves as the power amplifier, a MOPA is also
referred to as a master-oscillator fiber-amplifier (MOFA).

Other laser amplifiers are used as in-line amplifiers (also called line
amplifiers). An example is provided by the erbium-doped silica-fiber
amplifier, which serves to boost optical signals in-line as they traverse
long-haul optical fiber communication links (Sec. 25.1C). Yet another
amplifier configuration is the optical preamplifier, which boosts a signal
before it is sent to another amplifier or to a photodetector (Fig. 25.1-5).



Laser amplifiers are often operated in the saturation regime to reduce
noise (Sec. 15.4).

A. Ruby
Ruby is a dielectric medium with refractive index n ≈ 1.76. It consists of
sapphire (Al2O3) in which chromium ions (Cr3+) replace a small percentage
(≈ 0.05%) of the aluminum ions (Sec. 14.1B). Though ruby was the first
material in which laser action was observed (see page 657), it is rarely used
and hence serves principally as a didactic example.

As in most materials that support laser action, stimulated emission can
take place on a variety of transitions in ruby. The energy levels pertinent to
the well-known red ruby-laser transition are displayed in Fig. 15.3-1 (which
is a more fully annotated version of Fig. 14.1-4). Operation is on the basis
of a three-level pumping scheme. Level  is the ground state and lower
laser level. Level , the upper laser level, comprises a pair of closely
spaced, discrete sublevels that are not resolved in Fig. 15.3-1; the transition
from the lower of these sublevels (known as R1) to the ground state is
responsible for the ruby-red laser radiation at λo = 694.3 nm. Level 
comprises two broad pump bands, centered at approximately 550 nm
(green) and 400 nm (violet), that serve to populate the upper laser level via
rapid decay. These absorption bands are responsible for the reddish color
of ruby as white light passes through it. The energy levels portrayed in Fig.
15.3-1 are designated by group-theoretical symbols rather than by term
symbols for Cr3+ (Table 14.1-1) since the energy levels of transition-
metalion doped materials are determined in large part by the crystal field
associated with the host medium, as discussed in Sec. 14.1B. For ruby, the
result is clearly a mixture of discrete energy levels and energy bands.



Figure 15.3-1 Relevant energy levels for operation of the ruby laser
amplifier in the red. The energy levels are designated by group-theoretical
symbols for reasons discussed in the text. The three interacting energy
levels are indicated by encircled numbers. Level  comprises two broad
pump bands, centered in the green and violet. These serve to populate the
upper laser level , consisting of upper and lower sublevels R2 and R1,
respectively (these are not resolved at the scale of the figure). Level  is
the lower laser level and ground state. Stimulated emission on the
transition from the R1 line in level  to level  gives rise to the well-
known red laser light at λo = 694.3 nm.

As illustrated in Fig. 15.3-2, a ruby rod may be optically pumped from level 
 to level  by surrounding it with a helical flashlamp. A more efficient

pumping configuration places the ruby rod, along with a linear flashlamp,
at the foci of a reflecting cylinder of elliptical cross section (Fig. 1.2-3). The
flashlamp emits a pulse of white light, a portion of which is absorbed by
level , which is quite broad, resulting in the excitation of a fraction of the
Cr3+ ions to level . These ions rapidly decay from level  to level  with
a time constant τ32 of the order of ps. The excited ions remain in level 
for a substantial period of time since the  transition lifetime τ21 ≈ 3
ms is relatively long (nonradiative decay is negligible so that τ21 ≈ tsp). The
ruby-laser system therefore complies with the three-level time-constant
requirements dictated by Fig. 15.2-7. The transition has a homogeneously
broadened linewidth Δν ≈ 330 GHz that arises principally from elastic
electron scattering from lattice vibrations (phonons). A number of key
characteristics of the ruby-laser transition and the ruby-laser oscillator are
provided in Tables 15.3-1 and 16.3-1, respectively.



Figure 15.3-2 Ruby laser-amplifier configurations. (a) Geometry used for
the first laser oscillator built by Maiman in 1960 (see Chapter 16). (b)
High-efficiency pumping geometry using a linear flashlamp in a reflecting
elliptical cylinder.

B. Neodymium-Doped Glass
Neodymium-doped phosphate glass, a dielectric of refractive index n ≈
1.50, can be manufactured in large volumes with high optical quality and
excellent optical finish. Glass is isotropic and can be doped in a
homogeneous fashion. Exceptionally large Nd3+:glass amplifiers can
therefore be fabricated and used to generate extremely powerful optical
pulses. Since glass has limited thermal conductivity, however, such pulses
are usually generated with low duty cycle to provide ample time for the
glass to dissipate heat between pulses.

The energy levels of a neodymium-doped phosphate-glass laser amplifier
are displayed in Fig. 15.3-3 (this is an expanded version of Fig. 14.1-5).
Levels , , and  of this four-level laser system represent the ground
state, lower laser level, and upper laser level, respectively. Stimulated
emission occurs on the  laser transition, at λo = 1.053 μm in the near
infrared. The energy levels are designated by means of term symbols for
the Nd3+ ion (Table 14.1-1), as discussed in Sec. 14.1B. Level  comprises
four pump bands, each about 30 nm wide and centered near 805 nm (near
infrared), 745 nm (red), 585 nm (yellow), and 520 nm (green). The spectral
profile of a Xe flashlamp suitable for pumping this amplifier is also shown
in Fig. 15.3-3.



Figure 15.3-3 Right: Relevant energy levels for a neodymium-doped
phosphate-glass four-level laser amplifier that operates at 1.053 μm on the
4F3/2 → 4I11/2 transition. Level  comprises four pump bands (centered in
the near infrared, red, yellow, and green) that serve to populate the upper
laser level . The lower laser level and ground state are denoted  and ,
respectively. The energy levels are labeled with Nd3+-ion term symbols.
Left: Spectral profile of the emission from a broadband Xe flashlamp
suitable for pumping this amplifier.

The neodymium-doped glass laser amplifier operates in the following way.
The absorption of flashlamp light by the four pump bands excites ions
from level  to level . These excited ions decay rapidly (time constant
τ32) and populate the metastable upper laser level , which has a relatively
long lifetime (tsp = 370 μs). Stimulated emission on the  transition
provides laser amplification at λo = 1.053 μm. Level  has a short lifetime
(τ1 ≈ 300 ps) and lies at an energy ≈ 0.24 eV above the ground state;
because this is substantially larger than the thermal energy at room
temperature, kT ≈ 0.026 eV, the thermal population in the lower laser level
is negligible. These features comport with the time-constant requirements
specified in Fig. 15.2-6 for a four-level system. The  laser transition is
inhomogeneously broadened as a result of the amorphous nature of the
glass, which presents a different environment at each ionic location. The
sublevels in the manifolds are thus smeared into bands, as discussed in
connection with Fig. 14.1-6; this gives rise to a large room-temperature
linewidth of Δν ≈ 7 THz (see Tables 15.3-1 and 16.3-1).



EXAMPLE 15.3-1. High-Power Neodymium-Doped Glass
Laser Amplifiers at the NIF.

The neodymium-doped glass laser amplifier plays a central role at the
National Ignition Facility (NIF), located at the Lawrence Livermore
National Laboratory (LLNL) in Livermore, California. Such amplifiers
are widely used in experiments designed to achieve controlled
thermonuclear fusion in an encapsulated fuel target since they are
capable of generating optical pulses with enormous energies and peak
powers. The NIF system marshals thousands of such amplifiers in a
facility that occupies a ten-story building the size of a sports stadium.

The optical configuration at the NIF takes the form of a master-
oscillator power-amplifier (MOPA) (Sec. 16.3B). The initial optical
pulse is provided by a highly stable diode-pumped Yb3+-doped fiber
master-oscillator (seed laser) that generates a 1-nJ pulse with a
duration of ≈ 5 ns. In a simplified description, this pulse is split and
sent via optical fibers to 48 laser preamplifiers that boost the overall
pulse energy to 10 J. At the same time, the spatial profiles of the beams
are reshaped so they assume 18 mm × 18 mm square cross sections,
which enables the individual glass amplifiers to be tightly packed into
compact configurations. Each of these 48 beams is then split into four
beams, resulting in 192 main beamlines. Each beamline is endowed
with a power amplifier and a main amplifier, through which the pulse
makes four roundtrips.

The Nd3+-doped phosphate-glass laser amplifiers used in the 192 main
NIF beamlines have the energy-level diagram, and use flashlamps with
the spectral profile, illustrated in Fig. 15.3-3. There are four clusters of
such laser amplifiers, each consisting of 6 amplifier bundles; each
bundle in turn contains 8 amplifying laser-glass plates stacked inside a
flashlamp-pumped cavity, as illustrated in Fig. 15.3-4. Each of the 192
beamlines contains 16 separate amplification stages, so the overall
system contains 3072 phosphate-glass laser-amplifier plates. The plates
are rectangular, rather than square, since they are mounted at the
Brewster angle to the direction of beam propagation to minimize
Fresnel reflection and maximize flashlamp coupling. The laser
amplifiers boost the pulse energy in each of the 192 beams to 20 kJ, so
that the pulse energy is 4 MJ for the combined beam. For a 4-ns
duration pulse, this corresponds to a peak power of 1 PW. The overall



amplification provided by this exceptional MOPA is thus G ≈ 4 × 1015.
The optical arrangement of the system is such that the distance
traveled by each optical pulse from the seed laser to the target is 1.5
km, entailing a travel time of 5 μs. The beam can be fired several times
per day without creating undue heating.

Figure 15.3-4 (a) A bundle of amplifiers comprises eight laser-glass
plates stacked inside a flashlamp-pumped cavity at the National
Ignition Facility (NIF) at LLNL. Each plate, which is made of specially
formulated phosphate laser glass with a neodymium doping level ≈ 2
mol% (Schott LG-770 or Hoya LHG-8), measures 3.4 cm × 46 cm × 81
cm and weighs 42 kg. The height of the eight-amplifier bundle is ≈ 2 m.
Six such bundles make up a cluster, and four clusters comprise the 192
individual beamlines at the NIF. Each beamline in turn contains 16
separate amplification stages, so the overall system contains 3072 glass
laser-amplifier plates. The purplish color of the glass, when illuminated
by white light and viewed in transmission, is a result of the red, yellow,
and green absorption bands of the neodymium-doped phosphate glass
portrayed in Fig. 15.3-3. (b) Top view of the linear flashlamps and
amplifying Nd3+:glass laser plates in a bundle. The system contains 7
680 flashlamps.

Laser-diode in-band pumping. The Nd3+-doped glass laser amplifiers
considered in Example 15.3-1 can be pumped with far greater efficiency by
replacing the flash-lamps with laser-diode arrays, which efficiently convert
electrical power to optical power. Together with the substantially reduced
quantum defect associated with laser-diode pumping, this gives rise to a
factor of 20 improvement in the overall efficiency of amplifier operation.
The net result is a substantial decrease in heating, which in turn permits



operation at a far higher repetition rate. An example of laser-diode in-band
pumping is provided by the HAPLS petawatt laser system considered in
Example 23.2-3. The power-amplifier portion of the pump laser for HAPLS
contains a collection of neodymium-doped, phosphate-glass, laser-
amplifier slabs similar to those used at the NIF. The slabs are pumped by
AlGaAs laser-diode arrays that deliver high-power optical pulses at a
repetition rate of 10 pulses/s. In-band pumping at 888 nm on the 4I9/2 →
4F3/2 Nd3+ transition results in the ions in the lower manifold being
directly pumped into the upper manifold. In-band pumping is suitable even
though the discrete sublevels within the manifolds are smeared into bands
for this inhomogeneously broadened medium.

C. Erbium-Doped Silica Fiber
Rare-earth-doped fiber amplifiers. Optical fiber amplifiers (OFAs) are
useful devices that offer the concomitant advantages of optical
amplification and single-mode guided-wave confinement. In rare-earth-
doped fiber amplifiers (REFAs), both the signal and pump are
introduced into a doped glass fiber. The pump excites the ions to a higher
energy level, usually via quasi-three-level or in-band pumping, thereby
enabling signal amplification via downward stimulated-emission
transitions. Active rare-earth ions typically incorporated in REFAs include
Er3+, Yb3+, Tm3+, Nd3+, Pr3+, and Ho3+. Since the fiber must be transparent
in the wavelength range of interest, a variety of glasses are used: e.g.,
silicates, phosphates, fluorides, germanates, tellurites, and chalcogenides
(Sec. 10.5). Along with the active ion, the composition of the glass plays a
contributing role in determining the absorption and emission transition
cross sections, transition bandwidth, metastable-state lifetimes, maximum
attainable dopant concentrations, fiber nonlinearities, and refractive index
of the laser medium. REFAs usually operate in the near infrared and make
use of silicate-based fibers because of their superior optical and mechanical
properties. In particular, doped silica glasses, such as phosphosilicates,
germanosilicates, and aluminosilicates, facilitate energy transfer and
accommodate higher dopant concentrations than pure silica glass. Strong
optical confinement and long fiber lengths endow REFAs with many
salutary features.

REFA pumping configurations. Pumping may be implemented by
longitudinally coupling light into the amplifying fiber, usually via dichroic
couplers. As illustrated in Fig. 15.3-5, the pump light may be injected: (a) in



the same direction as the signal (the forward direction); (b) in the opposite
direction from the signal (the backward direction); or (c) in both directions
(bidirectionally).

Figure 15.3-5 Longitudinal pumping of a rare-earth-doped fiber amplifier.
The pumping may be (a) in the forward direction; (b) in the backward
direction; or (c) bidirectional. Erbium-doped silica-fiber amplifiers are
often pumped by fiber-coupled, strained-layer, InGaAs laser-diode arrays
operated at λo = 980 nm. Similar pumping schemes are used for Raman
fiber amplifiers (Sec. 15.3D).

Amplified spontaneous emission (ASE), a fundamental source of noise in
optical amplifiers (Sec. 15.5), plays an important role in determining the
optimal pumping configuration; if ASE is negligible, the direction of
pumping is immaterial. In the presence of substantial ASE losses in quasi-
three-level fiber amplifiers, analysis reveals that backward pumping can
reduce these losses and increase amplifier efficiency. ASE can also be
diminished by making use of a cascade of fiber amplifiers and inserting
filters between successive stages to reduce the ASE. Nevertheless, the
advantage of backward over forward pumping diminishes as the signal
power increases to a level where gain saturation sets in. If the criterion of
importance is low-noise operation, rather than high efficiency, forward
pumping is often the optimal choice.

Erbium-doped fiber amplifiers. Though rare-earth-doped fiber
amplifiers find application in many contexts, their most important use is in
optical fiber communication systems. The Er3+ ion exhibits a broad laser
transition near λo = 1550 nm that fortuitously falls in the wavelength
region of minimum loss for silica optical fibers (Fig. 10.3-2). Since these
fibers underlie optical fiber communications, erbium-dopedfiber
amplifiers (EDFAs) find extensive use in these systems (Sec. 25.1C).
EDFAs exhibit many desirable properties, such as high gain, high output
power, high efficiency, broad bandwidth, low insertion loss, low noise, and
polarization insensitivity.



As illustrated in Fig. 15.3-6, the 980-nm-pumped Er3+: silica-fiber amplifier
operates on the 4I13/2 → 4I15/2 transition at a wavelength in the vicinity of
λo = 1550 nm. It behaves as a quasi-three-level system at T = 300° k and as
a four-level system when cooled to T = 77° K, in which case the thermal
population in the lower manifold is reduced. Several key parameters
related to this transition, and to the laser oscillator that makes use of it, are
summarized in Tables 15.3-1 and 16.3-1, respectively. Appealing features of
this laser transition include a long excited-state spontaneous lifetime (tsp ≈
10 ms), the absence of intermediate energy levels between the excited and
ground states, and the absence of excited-state absorption. Since Er3+ is a
lanthanide-metal ion (Table 14.1-1), the host in which the ions are
embedded plays a limited role in determining the energies of the
manifolds, as explained in Sec. 14.1B. The broadening is a mixture of
homogeneous (phonon-mediated) and inhomogeneous (arising from local
field variations in the glass). Ytterbium is usually added to erbium as a co-
dopant since the larger cross section of Yb3+ results in more efficient
absorption of the pump photons at 980 nm; the energy is then transferred
to the Er3+ ions, elevating them to the 4I11/2 level as if they had directly
absorbed the pump photons. The role of ytterbium in this context is
analogous to the role of He in the He–Ne laser (Fig. 14.1-2).



Figure 15.3-6 Schematic of Er3+: silica-fiber energy-level manifolds for
the 4I13/2 →4I15/2 laser transition near 1550 nm. When pumped at 980 nm,
this laser amplifier behaves as a quasi-three-level system at room
temperature; the three interacting energy levels are indicated by encircled
numbers. Laser amplification can also be implemented on this transition
via in-band pumping at 1480 nm. Operation as a four-level system is also
possible on the 4I11/2 → 4I13/2 transition, at a wavelength in the vicinity of
2.9 μm.

EDFAs can exhibit gains in excess of 50 dB with tens of mW of pump
power. As a specific example, a gain of ≈ 30 dB is obtained by launching ≈ 5
mW of pump power at 980 nm into a roughly 50-m length of silica fiber
containing ≈ 300 ppm (by weight) of Er2O3. The highest gain efficiencies
hover at about ≈ 10 dB/mW. Signal output powers in excess of 100 W can
be generated since the output power increases in proportion to the pump
power. The available bandwidth is Δλ ≈ 40 nm, corresponding to Δν ≈ 5.3
THz, which accommodates the C (conventional) telecommunications band
that extends from 1530 to 1565 nm (Fig. 25.1-2). The L (long)
telecommunications band, which stretches from 1565 to 1625 nm, can also
be accommodated by choosing different optimization parameters for the
EDFA. The large gain–bandwidth product offered by these amplifiers
makes them ideal for use in wavelength-division multiplexing (WDM)
systems (Sec. 25.3C). The 37% quantum defect [see (15.2-32)] associated
with the quasi-three-level pumping scheme portrayed in Fig. 15.3-6 can be
reduced by making use of in-band pumping at 1480 nm on the 4I13/2 →
4I15/2 laser transition. Pumping can then be implemented by using



InGaAsP laser diodes or a Raman fiber laser (Sec. 16.3C). High-power
EDFAs can be simultaneously pumped at 980 and 1480 nm.

The introduction of feedback readily converts fiber amplification into
oscillation, as discussed in Sec. 16.3B. When the pump power is high, as is
often the case in fiber laser oscillators, double-clad fiber
configurations are usually used to avoid deleterious nonlinear optical
effects in the fiber core (Fig. 16.3-4).

Thulium-and praseodymium-doped fiber amplifiers. Other rare-
earth-doped fiber amplifiers useful for optical fiber communications
include Tm3+-doped multi-component-silicate-glass REFAs operating in
the 1460–1530-nm S (short) telecommunications band and Pr3+-doped
REFAs operating in the 1300-nm O (original) band. However, neither of
these REFAs offer the exceptional gain and efficiency of Er3+-doped
devices. Other classes of commonly used optical amplifiers include Raman
fiber amplifiers (RFAs), which are discussed and compared with EDFAs in
Sec. 15.3D, and semiconductor optical amplifiers (SOAs), which are
examined in Sec. 18.2D.

Summary
The Er3+: silica-fiber amplifier is widely used for optical fiber
communications by virtue of its many salutary features:

High gain

High output power

High efficiency

Broad bandwidth

Low insertion loss

Low noise

Polarization insensitivity

D. Raman Fiber Amplifiers
The class of optical fiber amplifiers (OFAs) extends beyond erbium-doped
and rare-earth-doped devices. An important version of the OFA, known as



the Raman fiber amplifier (RFA), relies on stimulated Raman
scattering. The RFA thus operates on the basis of principles other than a
population inversion and stimulated emission.

As discussed in Sec. 14.5C, stimulated Raman scattering (SRS) occurs
when a pump photon of energy hνp, together with a signal photon of lower
energy hνs, enter a nonlinear optical medium such as an optical fiber. The
nonresonant version of the process is illustrated in the inset in Fig. 15.3-7;
the dashed horizontal line represents a virtual state. The signal photon
stimulates the emission of a clone signal photon, which is obtained by
Stokes-shifting the pump photon by the Raman energy hνR so that the
energy of the clone photon precisely matches that of the incident signal
photon. The surplus energy from the pump photon is transferred to the
vibrational modes of the glass fiber. As is clear from (22.3-15), the strength
of the effect, which is embodied in the Raman gain coefficient γR , depends
on the nonlinear properties of the glass fiber. It is proportional to the
pump intensity Ip = P/A, where P is the pump power and A is the
interaction area. The polarization of SRS is the same as that of the exciting
field.

Figure 15.3-7 Stimulated Raman scattering (SRS) is schematized in the
inset. Raman gain is available over a range of Stokes frequencies
determined by the vibrational characteristics of the medium. In
germanium-doped silica fiber, the peak Raman gain coefficient lies at a
frequency below that of the pump by νR ≈ 13 THz and has a bandwidth Δν
≈ 12.5 THz. (Gain curve adapted from R. H. Stolen, C. Lee, and R. K. Jain,
Development of the Stimulated Raman Spectrum in Single-Mode Silica
Fibers, Journal of the Optical Society of America B, vol. 1, pp. 652–657,
1984, Fig. 5.)



RFAs can be either distributed or lumped. In the distributed Raman
fiber amplifier, the signal and pump are both sent through the
transmission fiber, which serves as the gain medium. The lumped
Raman fiber amplifier, in contrast, makes use of a short length of
highly nonlinear fiber dedicated to providing gain. The core is generally
made small to increase the pump intensity Ip and thereby to reduce the
length of fiber required, which can be considerable.

Raman fiber amplifiers offer substantially broader bandwidths than
EDFAs. The bandwidth over which Raman amplification obtains is
governed by the vibrational spectrum of the glass host rather than by a
transition linewidth, as in stimulated-emission lasers. Silicate, germanate,
phosphate, and borate glasses exhibit very different SRS spectra and
magnitudes. As is evident in Fig. 15.3-7, the dominant peak in the Raman
gain coefficient for germanium-doped silica fiber is Stokes shifted from the
pump frequency by approximately νR = 13 THz, corresponding to about 100
nm at λo = 1550 nm. The bandwidth over which substantial Raman gain is
available is of about the same magnitude as the shift of the peak, namely
Δν ≈ 12.5 THz, again corresponding to about Δλ ≈ 100 nm at 1550 nm.
Phosphosilicate glass fibers offer even greater Stokes shifts (Example 16.3-
3).

RFA pumping can be achieved by making use of polarization-diverse laser
diodes, fiber lasers, or Raman fiber lasers, operated at a wavelength about
100 nm below that desired for amplification (if the medium is germanium-
doped silica fiber). As with the EDFA, the pump may be injected in the
forward direction, in the backward direction, or bidirectionally (Fig. 15.3-
5); backward pumping is generally employed since it reduces the noise
transferred from the pump to the signal. Combining multiple pumps at
different frequencies can substantially broaden the available bandwidth
since the Stokes shift is linked to the pump frequency. In principle, Raman
amplification can be employed over the entire region of fiber transparency.

Raman fiber amplifiers offer gains reaching 20 dB. The RFA gain efficiency
in germanium-doped silica fiber is ≈ 0.02 dB/mW, which is to be compared
with a gain efficiency ≈ 10 dB/mW for an EDFA. Hence, the pump power
required for achieving useful levels of Raman gain in such a distributed
amplifier is typically hundreds of mW, far greater than that required for an
EDFA. In lumped Raman amplifiers, pump powers in excess of 1 W can be
used. Unlike EDFAs, polarization-diverse pumping is required since the



Raman gain is maximized when the signal and pump beams have the same
polarization.

Though RFA efficiencies are substantially lower than those offered by
EDFAs, they can be measurably enhanced by combining gain and
dispersion compensation to accommodate the different frequencies of the
signal and pump pulses in a single fiber. RFAs are also sometimes used in
conjunction with EDFAs; hybrid amplifiers that make use of low-noise
Raman amplification together with high-power erbium-doped fiber
amplification can accommodate larger repeater spacings and increased
system capacity, but this comes at the expense of increased electrical power
consumption. Raman fiber amplifiers are particularly useful in those
telecommunications windows where EDFAs and other REFAs are
unavailable or inefficient.

Brillouin fiber amplifiers. These devices make use of stimulated
Brillouin scattering (SBS) [Fig. 14.5-5(d)] and behave in a manner
analogous to that of Raman fiber amplifiers, but the interaction is with
acoustic rather than optical phonons. Hence, the Brillouin frequency shift
and bandwidth are orders of magnitude smaller than the Raman frequency
shift and bandwidth in the same material. In silica fibers, for example the
Brillouin shift and bandwidth are roughly 10 GHz and 100 MHz,
respectively, whereas the Raman shift and bandwidth are both of the order
of 13 THz.



Summary
The Raman fiber amplifier enjoys both advantages and disadvantages
in comparison with the erbium-doped fiber amplifier:

Advantages of the RFA relative to the EDFA:

Wider bandwidth

Bandwidth extendable by use of multiple pumps

Operation over a broad range of wavelengths

Arbitrary fiber host

Compatible with existing fiber links

Lower noise

Higher saturation power

Disadvantages of the RFA relative to the EDFA:

Lower gain

Greater pump power required

Lower efficiency

Longer fiber lengths required

Sensitivity to signal polarization

Stringent requirements for fiber and splice maintenance

E. Tabulation of Selected Laser Transitions
In practice, the most widely used laser amplifiers are solid-state, rare-
earth-doped fiber, and Raman fiber devices, as exemplified by the examples
considered in Secs. 15.3B, 15.3C, and 15.3D, respectively. However, laser
amplification can also be provided by gases, dyes, exciplexes, ionized
atoms, free-electron systems, and semiconductors. Table 15.3-1 provides a
list of the wavelengths, cross sections, spontaneous lifetimes, transition
linewidths, and refractive indices for a number of representative laser
transitions that operate in spectral regions stretching from the infrared to



the X-ray domains. It is evident that the values of λo, σ0, tsp, and Δν vary
over a broad range.



Table 15.3-1 Characteristics of some familiar laser transitions.

Laser
Medium

Transition
Wavelengtha

λo (nm)

Transition
Cross

Sectionb

σ0 (cm2)

Spontaneous
Lifetime

tsp

Transition
Linewidthc

Δν

Refractive
Index

n

Cu+ (Kα) 0.154 7 × 10−18  2 fs 500
THz

H ≈ 1  

Ne+ (Kα) 1.46 1 × 10−16 130 fs 65
THz

H ≈ 1  

C5+ 18.2 5 × 10−16  12 ps 1 THz I ≈ 1  

ArF Exciplex 193 3 × 10−16  10 ns 10
THz

I ≈ 1  

Ar+ 515 3 × 10−12  10 ns 3.5
GHz

I ≈ 1  

Rhodamine-
6G dye

560–640 2 × 10−16   5 ns 40
THz

H/I  1.40

Ne (He–Ne) 633 3 × 10−13 250 ns 1.5
GHz

I ≈ 1  

Cr3+:Al2O3
(ruby)

694 2 × 10−20 3 ms 330
GHz

H  1.76

Cr3+:BeAl2O4
(alexandrite)

700–820 7 × 10−21 260 μs 25
THz

H  1.75

Ti3+:Al2O3 700–1050 3 × 10−19  3.9 μs 100
THz

H  1.76

Yb3+:YAG 1030 2 × 10−20   1 ms 5 THz H  1.82

Nd3+:Glass
(phosphate)

1053 4 × 10−20 370 μs 7 THz I  1.50

Nd3+:YAG 1064 3 × 10−19 230 μs 150
GHz

H  1.82

Nd3+:YVO4 1064 3 × 10−18 90 μs 260
GHz

H  2.0

Cr4+:Mg2SiO4 1100–1400 1 × 10−19   3 μs 50 H  1.65



(forsterite) THz

InGaAsPd 1300–1600 2 × 10−16  2.5 ns 10
THz

H  3.54

Er3+:Silica
fiber

1550 6 × 10−21  10 ms 5 THz H/I  1.46

Cr2+:ZnS 1900–3000 1 × 10−18   5 μs 40
THz

H  2.27

CO2 10 600 3 × 10−18 3 s 60
MHz

I ≈ 1  

aThe free-space wavelength shown in the table represents the most commonly used transition in
each laser medium. The He–Ne gas laser system, for example, is most often used on the red-
orange line at 0.633 μm, but it is also extensively used at 0.543, 1.15, and 3.39 μm (it also has
laser transitions at hundreds of other wavelengths stretching to ≈ 100 μm).

bThe value reported is the peak of the effective emission cross section σem(ν).

cValues reported for gases such as CO2 are typical for low-pressure operation (the atomic
linewidth in a gas depends on its pressure because of collision broadening, which is
homogeneous). H and I  indicate line broadening dominated by homogeneous and
inhomogeneous mechanisms, respectively.

dValues are for In0.72Ga0.28As0.6P0.4 assuming an injected carrier concentration of Δn = 1.8 ×

1018 cm−3 (see Examples 18.2-1–18.2-3).

15.4 AMPLIFIER NONLINEARITY
A. Saturated Gain in Homogeneously Broadened Media
Gain Coefficient

The following relationships have been established in earlier sections of this
chapter: 1) the gain coefficient γ(ν) of a laser medium depends on the
population difference N, in accordance with (15.1-4); 2) N is in turn
governed by the pumping rate R, in accordance with (15.2-15); 3) N also
depends on the transition rate Wi, in accordance with (15.2-10); and 4) the
probability density Wi in turn depends on the radiation photon-flux density
ϕ, in accordance with (15.1-1). It follows that the gain coefficient of a laser
medium is dependent on the photon-flux density to be amplified. This is
the origin of amplifier nonlinearity and gain saturation, as we now
demonstrate.
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Substituting (15.1-1) into (15.2-10) yields

where

thereby providing an expression for the dependence of the population
difference N on the photon-flux density ϕ. Now, substituting (15.4-1) into
the expression for the gain coefficient (15.1-4) leads directly to the
saturated gain coefficient for homogeneously broadened media:

where

The gain coefficient thus decreases as the photon-flux density ϕ increases,
as illustrated in Fig. 15.4-1. Since the quantity ϕs(ν) =1/τsσ(ν) represents
the photon-flux density at which the gain coefficient decreases to half its
maximum value, it is called the saturation photon-flux density. When
τs ≈ tsp, the interpretation of ϕs(ν) is straightforward: (15.4-2) provides that
ϕs(ν) tsp σ(ν) = 1 so that roughly one photon is emitted during each
spontaneous emission lifetime into each transition cross-sectional area.



Figure 15.4-1 Dependence of the normalized saturated gain coefficient
γ(ν)/γ0(ν) on the normalized photon-flux density ϕ/ϕs(ν). When ϕ is equal
to its saturation value ϕs(ν), the gain coefficient is reduced to half its
unsaturated value.
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EXERCISE 15.4-1

Saturation Photon-Flux Density for Ruby. Determine the
saturation photon-flux density, and the corresponding saturation
intensity, for the λo = 694.3-nm ruby laser transition at ν = ν0. Use the
parameters provided in Table 15.3-1. Assume that τs ≈ 2tsp, in
accordance with (15.2-28).

EXERCISE 15.4-2

Spectral Broadening of a Saturated Amplifier. Consider a
homogeneously broadened amplifying medium with a Lorentzian
lineshape function of width Δν [see (15.1-8)]. Show that for a photon-
flux density ϕ, the amplifier gain coefficient γ(ν) assumes a Lorentzian
lineshape function of width

Linewidth of Saturated Amplifier

This demonstrates that gain saturation is accompanied by an increase
in bandwidth, corresponding to reduced frequency selectivity, as
illustrated in Fig. 15.4-2.

Figure 15.4-2 Gain coefficient reduction and bandwidth increase
resulting from saturation when ϕ = 2ϕs(ν0).

Gain
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Having determined the effect of saturation on the gain coefficient (gain per
unit length), we embark on a determination of the behavior of the
saturated gain for a homogeneously broadened laser amplifier of length
d [Fig. 15.4-3(a)]. For simplicity, we suppress the frequency dependencies
of γ(ν) and ϕs(ν) and write γ and ϕs instead.

If the photon-flux density at position z is ϕ(z), then in accordance with
(15.4-3) the gain coefficient at that position is also a function of z. We
know from (15.1-3) that the incremental increase in photon-flux density at
the position z is dϕ = γϕ dz, which leads to the differential equation

Rewriting this equation as (1/ϕ + 1/ϕs) dϕ = γ0 dz, and integrating, we
obtain

The relation between the photon-flux densities at the input and output,
ϕ(0) and ϕ(d), respectively, is therefore

where X = ϕ(0)/ϕs and Y = ϕ(d)/ϕs are the input and output photon-flux
densities normalized to the saturation photon-flux density, respectively.

It is useful to examine the solution for the gain G = ϕ(d)/ϕ(0) = Y/X in two
limiting cases:

1. If both X and Y are much smaller than unity (i.e., the photon-flux
densities are much smaller than the saturation photon-flux density),
then X and Y are negligible in comparison with ln(X) and ln(Y),
whereupon we obtain the approximate solution ln(Y) ≈ ln(X) + γ0d,
from which

In this case the relation between Y and X is linear, and the gain G =
Y/X ≈ exp(γ0d) [leftmost dashed curve in Fig. 15.4-3(b)]. This accords
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(15.4-10)

with (15.1-7), which was obtained under the small-signal
approximation, valid when the gain coefficient is independent of the
photon-flux density, i.e., γ ≈ γ0.

2. When X ≫ 1, we can neglect ln(X) in comparison with X and ln(Y) in
comparison with Y in (15.4-8), whereupon

which, with the help of (15.4-2) and (15.4-4), yields

Under these heavily saturated conditions, the atoms of the medium
are “busy” emitting a constant photon-flux density N0d/τs. Incoming
input photons therefore simply leak through to the output, augmented
by a constant photon-flux density that is independent of the amplifier
input [short dashed curve at right in Fig. 15.4-3(b)].

For intermediate values of X and Y , (15.4-8) must be solved numerically. A
plot of the solution is shown as the solid curve in Fig. 15.4-3(b). The linear
input–output relationship obtained for X ≪ 1, and the saturated
relationship for X ≫ 1, are evident as limiting cases of the numerical
solution. The gain G = Y/X for γ0d = 2 is plotted in Fig. 15.4-3(c). It
achieves its maximum value exp(γ0d) for small values of the input photon-
flux density (X ≪ 1), and decreases toward unity as X → ∞.



Figure 15.4-3 (a) A nonlinear (saturated) amplifier. (b) Relation between
the normalized output photon-flux density Y = ϕ(d)/ϕs and the normalized
input photon-flux density X = ϕ(0)/ϕs. For X ≪ 1, the gain G = Y/X ≈
exp(γ0d). For X ≫ 1, we obtain Y ≈ X + γ0d. The numerical solution for
(15.4-8) is indicated by the solid curve. (c) Gain as a function of the input
normalized photon-flux density X for a saturated amplifier of length d with
γ0d = 2.

Saturable Absorbers

If the gain coefficient γ0 is negative, i.e., if the population difference is
normal rather than inverted (N0 < 0), the medium provides attenuation
rather than amplification. The attenuation coefficient α(ν) = − γ(ν) then
also suffers from saturation, in accordance with the relation α(ν) =
α0(ν)/[1 + ϕ/ϕs(ν)], which is analogous to (15.4-3). This indicates that there
is less absorption for large values of the photon-flux density. A material
that exhibits this property is called a saturable absorber.

The relation between the output and input photon-flux densities, ϕ(d) and
ϕ(0), respectively, for an absorber of length d is governed by (15.4-8) with
negative γ0. The overall transmittance of the absorber Y/X = ϕ(d)/ϕ(0) is
presented as a function of X = ϕ(0)/ϕs as the solid curve in Fig. 15.4-4. The
transmittance increases with increasing ϕ(0), ultimately reaching a limiting
value of unity. This effect occurs because the population difference N → 0,
so that there is no net absorption.
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Figure 15.4-4 The transmittance of a saturable absorber Y/X = ϕ(d)/ϕ(0)
versus the normalized photon-flux density X = ϕ(0)/ϕs, for γ0d = −2. The
transmittance increases with increasing input photon-flux density.

*B. Saturated Gain in Inhomogeneously Broadened Media
Gain Coefficient

An inhomogeneously broadened medium comprises a collection of atoms
containing subsets thereof with different properties. As discussed in Sec.
14.3D, the subset of atoms labeled β has a homogeneously broadened
lineshape function gβ (ν). The overall inhomogeneous average lineshape
function of the medium is described by (ν) = (gβ(ν)) , where 〈·〉 represents
an average with respect to β. Because the small-signal gain coefficient γ0(ν)
is proportional to g(ν), as provided in (15.4-4), different subsets β of atoms
have different gain coefficients γ0β (ν). The average small-signal gain
coefficient is therefore

Solving for the saturated gain coefficient is more subtle, however. This is
because the saturation photon-flux density ϕs(ν), which is inversely
proportional to g(ν) as provided in (15.4-2), is itself dependent on the
subset of atoms β. An average gain coefficient may be defined by using
(15.4-2) and (15.4-3),

where
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(15.4-17)

with b = N0(λ2/8πtsp) and a2 =(λ2/8π)(τs/tsp). Evaluating the average of
(15.414) requires care because the average of a ratio is not equal to the
ratio of the averages.

Doppler-Broadened Medium

Though all of the atoms in a Doppler-broadened medium share a
lineshape function g(ν) of identical shape, the center frequency of the
subset β is shifted by an amount νβ proportional to the velocity vβ of the
subset. If g(ν) is Lorentzian with width Δν, (15.1-8) provides g(ν) =
(Δν/2π)/[(ν − ν0)2 + (Δν/2)2] and gβ(ν) = g(ν − νβ). Substituting gβ(ν) into
(15.4-14) provides

where

and

Equation (15.4-16) was obtained for the homogeneously broadened
saturated amplifier considered in Exercise 15.4-2 [see (15.4-5)]. It is
evident that the subset of atoms with velocity vβ has a saturated gain
coefficient γβ (ν) with a Lorentzian shape of width Δνs that increases as the
photon-flux density becomes larger.
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The average of γβ(ν) in (15.4-13) is readily calculated for a Doppler-
broadened medium since the shifts νβ follow a zero-mean Gaussian
probability density function  with standard
deviation σD (Exercise 14.3-2). Thus,  is given by

If p (νβ) is much broader than γβ(ν) (i.e., the Doppler broadening is much
wider than Δνs), we may regard the broad function p(νβ) as constant and
remove it from the integral when evaluating . Setting ν = ν0 and νβ = 0
in the exponential provides

where the average small-signal gain coefficient 0 is

Equation (15.4-19) provides an expression for the average saturated gain
coefficient of a Doppler broadened medium at the central frequency ν0, as a
function of the photon-flux density ϕ at ν = ν0. The gain coefficient
saturates as ϕ increases in accordance with a square-root law. The gain
coefficient in an inhomogeneously broadened medium therefore saturates
more slowly than the gain coefficient in a homogeneously broadened
medium [see (15.4-3)], as illustrated in Fig. 15.4-5.

Figure 15.4-5 Comparison of gain saturation in homogeneously and in-
homogeneously broadened media.



Hole Burning

When a large flux density of monochromatic photons at frequency ν1 is
applied to an inhomogeneously broadened medium, the gain saturates only
for those atoms whose lineshape functions overlap ν1. Other atoms simply
do not interact with the photons and remain unsaturated. When the
saturated medium is probed by a weak monochromatic light source of
varying frequency ν, the profile of the gain coefficient therefore exhibits a
hole centered about ν1, as illustrated in Fig. 15.4-6. This phenomenon is
known as hole burning. Since the gain coefficient γβ (ν) of the subset of
atoms with velocity vβ has a Lorentzian shape with width Δνs given by
(15.4-16), it follows that the width of the hole is Δνs. As the flux density of
saturating photons at ν1 increases, both the depth and the width of the hole
increase.

Figure 15.4-6 The gain coefficient of an inhomogeneously broadened
medium is locally saturated by a large flux density of monochromatic
photons at frequency ν1.

*15.5 AMPLIFIER NOISE
The resonant medium that provides amplification via stimulated emission
also generates spontaneous emission. The light arising from the latter
process, which is independent of the input to the amplifier, represents a
fundamental source of laser amplifier noise. Whereas the amplified signal
has a specific frequency, direction, and polarization, the noise associated
with amplified spontaneous emission (ASE) is broadband,
multidirectional, and unpolarized. As a consequence, it is possible to filter
out some of this noise by following the amplifier with a narrowband optical
filter, a collection aperture, and a polarizer.
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The probability density (per second) that an atom in the upper laser level
spontaneously emits a photon of frequency between ν and ν + dν is
(Exercise 14.3-1):

The probability density of the spontaneous emission of a photon of any
frequency is, of course, Psp = 1/tsp. If N2 is the atomic density in the upper
energy level, the average spontaneously emitted photon density is N2Psp(ν).
(The average spontaneously emitted power per unit volume per unit
frequency is therefore hνN2Psp(ν).) The spontaneously emitted photon
density is emitted uniformly in all directions and is equally divided
between the two polarizations. If the amplifier output is collected from a
solid angle dΩ, as illustrated in Fig. 15.5-1, and from only one of the
polarizations, it contains only a fraction 1

2
dΩ/4π of the spontaneously

emitted photon density. Furthermore, if a filter is used to limit the
collected photons to a narrow frequency band of width B centered about
the amplified signal frequency ν, the number of photons added per second
by spontaneous emission from an incremental volume of unit area and
length dz is ξsp(ν) dz, where

is the noise photon-flux density per unit length.

Figure 15.5-1 Spontaneous emission is a source of amplifier noise. It is
broadband, radiated in all directions, and unpolarized. Optics can be used
at the output of the amplifier to limit the spontaneous emission noise to a
narrow optical band, an incremental solid angle dΩ, and a single
polarization.



(15.5-3)

In determining the noise photon-flux density contributed by the amplifier,
the photon-flux density per unit length should not simply be multiplied by
the length of the amplifier. This is because the spontaneous-emission
noise is itself amplified by the medium; spontaneous-emission noise
generated near the input end of the amplifier provides a greater
contribution than noise generated near the output end. ASE noise can be
accommodated by modifying the differential equation governing the
growth of the photon-flux density provided in (15.1-3), so that it becomes

Equation (15.5-3) incorporates the photon-flux density arising from both
the amplified signal and the amplified spontaneous emission noise.

EXERCISE 15.5-1

Amplified Spontaneous Emission (ASE).

(a) Use (15.5-3) to show that, in the absence of any input signal,
spontaneous emission produces a photon-flux density at the
output of an unsaturated amplifier [γ(ν) = γ0(ν)] of length d that
can be expressed as ϕ(d) = ϕsp{exp[γ0(ν)d] − 1}, where ϕsp = ξsp(ν)/
γ0(ν).

(b) Since both ξsp(ν) and γ0(ν) are proportional to g(ν), ϕsp is
independent of g(ν) so that the frequency dependence of ϕ(d) is
governed solely by the factor {exp[γ0(ν)d] − 1}. If γ0(ν) is
Lorentzian with width Δν, i.e., γ0(ν) = γ0(ν0)(Δν/2)2/[(ν − ν0)2 +
(Δν/2)2], show that the width of the factor {exp[γ0(ν)d] − 1} is
smaller than Δν, i.e., that the amplification of spontaneous
emission is accompanied by spectral narrowing.

Photon statistics after amplification. In the course of amplification,
the photon-number statistics (Sec. 13.2C) of the incoming light are altered.
A coherent signal presented to the input of the amplifier exhibits Poisson
photon-number statistics, with a variance  equal to the mean signal
photon number . The ASE photons, on the other hand, exhibit Bose–
Einstein photon-number statistics with  which has a
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substantially larger variance. The photon-number statistics of the light
after amplification, comprising both signal and spontaneous-emission
contributions, exhibits a photon-number distribution intermediate
between the Poisson and Bose–Einstein distributions. If the detector
counting time and area are small, and the emerging light is linearly
polarized, the photon statistics at the amplifier output obey a special case
of the noncentral-negative-binomial photon-number distribution
(Prob. 15.5-3), which has a variance given by

This expression contains contributions from the signal and spontaneous
emission individually, as well as a cross term that involves both.
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PROBLEMS
15.1-2 Amplifier Gain and Rod Length. Consider a ruby laser amplifier

that makes use of a 15-cm-long rod and has a small-signal gain of 12.
Neglecting the effects of gain saturation, determine the small-signal
gain of a 20-cm-long rod?

15.1-3 Laser Amplifier Gain and Population Difference. A 15-cm-
long Nd3+:glass rod used as a laser amplifier has a total small-signal
gain of 10 at λo = 1.06 μm. Use the data provided in Table 15.3-1 to
determine the population difference N (Nd3+ ions per cm3) required to
achieve this gain.

15.1-4 Amplification of a Broadband Signal. The transition between
two energy levels exhibits a Lorentzian lineshape of central frequency
ν0 = 5 × 1014 with a linewidth Δν = 1 THz. The population is inverted
so that the maximum gain coefficient γ(ν0) = 0.1 cm−1. The medium
has an additional loss coefficient αs = 0.05 cm−1, which is independent
of ν. Estimate the loss or gain encountered by a light wave traversing 1
cm if it has a uniform power spectral density centered about ν0 with a
bandwidth 2Δν.

15.2-4 Two-Level Pumping System. Write the rate equations for a two-
level system and demonstrate that a steady-state population inversion
cannot be achieved by using direct optical pumping between levels 
and .

15.2-5 Two Laser Lines. Consider an atomic system with four levels: the
ground state , , , and . Two pumps are applied: one between
the ground state and level  at a rate R3 and the other between the
ground state and level  at a rate R2. Population inversion can occur
between levels  and  and/or between levels  and  (as in a four-
level system). Assuming that decay from level  to level  is not
possible, and that decay from levels  and  to the ground state are
negligible, write the rate equations for levels , , and  in terms of
the lifetimes τ1, τ31, and τ21. Determine the steady-state population
densities N1, N2, and N3 and examine the possibility of simultaneous
population inversions between levels  and , and between levels 
and . Show that the presence of radiation at the →  transition
reduces the population difference for the →  transition.



15.4-3 Significance of the Saturation Photon-Flux Density. In the
general two-level atomic system of Fig. 15.2-3, τ2 represents the
lifetime of level  in the absence of stimulated emission. In the
presence of stimulated emission, the rate of decay from level 
increases and the effective lifetime decreases. Find the photon-flux
density ϕ at which the lifetime decreases to half its value. How is that
photon-flux density related to the saturation photon-flux density ϕs?

15.4-4 Saturation Optical Intensity. Determine the saturation photon-
flux density ϕs(ν0) and the corresponding saturation optical intensity
Is(ν0), for the homogeneously broadened ruby and Nd3+:YAG laser
transitions by making use of the parameters provided in Table 15.3-1.

15.4-5 Growth of the Photon-Flux Density in a Saturated Laser
Amplifier. The growth of the photon-flux density ϕ(z) in a saturated
laser amplifier is described by (15.4-7). Plot ϕ(z)/ϕs versus γ0z for
ϕ(0)/ϕs = 0.05. Identify the onset of saturation in this amplifier.

15.4-6 Resonant Absorption of a Medium in Thermal Equilibrium.
A unity refractive-index medium of volume 1 cm3 contains Na = 1023

atoms in thermal equilibrium. The ground state is energy level ;
level  has energy 2.48 eV above the ground state (λo = 0.5 μm). The
transition between these two levels is characterized by a spontaneous
lifetime tsp = 1 ms, and a Lorentzian lineshape of width Δν = 1 GHz.
Consider two temperatures, T1 and T2, such that kT1 = 0.026 eV and
kT2 = 0.26 eV.

(a) Determine the populations N1 and N2.

(b) Determine the number of photons emitted spontaneously every
second.

(c) Determine the attenuation coefficient of this medium at λo = 0.5 μm
assuming that the incident photon flux is small.

(d) Sketch the dependence of the attenuation coefficient on frequency,
indicating the important parameters on the sketch.

(e) Find the value of photon-flux density at which the attenuation
coefficient decreases by a factor of 2 (i.e., the saturation photon-flux
density).



(f) Sketch the dependence of the transmitted photon-flux density ϕ(d) on
the incident photon-flux density ϕ(0) for ν = ν0 and ν = ν0 + Δν when
ϕ(0)/ϕs ≪ 1.

15.4-7 Gain in a Saturated Amplifying Medium. Consider a
homogeneously broadened laser amplifying medium of length d = 10
cm and assume that the saturation photon-flux density ϕs = 4 × 1018

photons/cm2-s. It is known that a photon-flux density at the input
ϕ(0) = 4 × 1015 photons/cm2-s produces a photon-flux density at the
output ϕ(d) = 4 × 1016 photons/cm2-s.

(a) Determine the small-signal gain of the system G0.

(b) Determine the small-signal gain coefficient γ0.

(c) What is the photon-flux density at which the gain coefficient decreases
by a factor of 5?

(d) Determine the gain coefficient for an input photon-flux density given
by ϕ(0) = 4 × 1019 photons/cm2-s. Under these conditions, is the gain
of the system greater than, less than, or the same as the small-signal
gain determined in (a)?

*15.5-2 Ratio of Signal Power to ASE Power. An unsaturated laser
amplifier of length d and gain coefficient γ0(ν) amplifies an input
signal ϕS (0) of frequency ν and introduces amplified spontaneous
emission (ASE) at a rate ξsp (per unit length). The amplified signal
photon-flux density is ϕS (d) and the ASE at the output is ϕASE. Sketch
the dependence of the ratio ϕS (d)/ϕASE on the product of the amplifier
gain coefficient and length, γ0(ν)d.

*15.5-3 Photon-Number Distribution for Amplified Coherent
Light. A linearly polarized superposition of interfering pulses of
coherent and narrowband thermal light serves as a suitable model for
the light emerging from a laser amplifier. The resulting light pulses
are known to have random energy fluctuations w that obey the
noncentral-chi-square probability density function,1



provided that the measurement time and detector area are sufficiently
small. Here I0 denotes the modified Bessel function of order zero, 
is the mean energy of the ASE, and ws is the (constant) energy of the
amplified coherent signal.

(a) Calculate the mean and variance of w.

(b) Use (13.2-27) and (13.2-28) to determine the photon-number mean 
and variance  thereby confirming the validity of (15.5-4).

(c) Use (13.2-26) to show that the photon-number distribution is given by

where Ln represents the Laguerre polynomial (see footnote on page
103)

and  and  are the mean signal and amplified-spontaneous-
emission photon numbers, respectively. This is a special case of
the noncentral-negative-binomial (NNB) distribution.

(d) Plot  demonstrating that the NNB
photon-number distribution provided above reduces to the Bose–
Einstein distribution for  and to the Poisson distribution for 

.

Note
1 See, e.g., T. Li and M. C. Teich, Photon Point Process for Traveling-Wave
Laser Amplifiers, IEEE Journal of Quantum Electronics, vol. 29, pp. 2568–
2578, 1993.
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Arthur L. Schawlow (1921–1999)

Theodore H. Maiman (1927–2007)

In 1958 Arthur Schawlow and Charles Townes suggested a method for extending the
principle of the maser to the optical region of the spectrum. Schawlow shared the
1981 Nobel Prize with Nicolaas Bloembergen (pictured on p. 1015). Theodore
Maiman achieved the first successful operation of a (ruby) laser on 16 May 1960, a
date commemorated as the International Day of Light.

The laser is an optical oscillator. It comprises a resonant optical amplifier whose
output is fed back to the input with matching phase (Fig. 16.0-1). The oscillation
process can be initiated by the presence at the amplifier input of even a small
amount of noise that contains frequency components lying within the bandwidth of
the amplifier. This input is amplified and the output is fed back to the input, where
it undergoes further amplification. The process continues indefinitely until a large
output is produced. The increase of the signal is ultimately limited by saturation of
the amplifier gain, and the system reaches a steady state in which an output signal is
created at the frequency of the resonant amplifier.

Figure 16.0-1 An oscillator is an amplifier with positive feedback.

Two conditions must be satisfied for oscillation to occur:

The amplifier gain must be greater than the loss in the feedback system so that
net gain is incurred in a round trip through the feedback loop.

The total phase shift in a single round trip must be a multiple of 2π so that the
feedback input phase matches the phase of the original input.



If these conditions are satisfied, the system becomes unstable and oscillation begins.
As the power in the oscillator grows, the amplifier gain saturates and thus falls
below its initial value. A stable condition is reached when the reduced gain is equal
to the loss (Fig. 16.0-2). The gain then just compensates the loss so that the cycle of
amplification and feedback is repeated without change and steady-state oscillation
prevails.

Figure 16.0-2 If the initial amplifier gain is greater than the loss, oscillation may
begin. As the oscillator power increases, the amplifier saturates, causing its gain to
decrease. A steady-state condition is reached when the gain just equals the loss.

Because the gain and phase shift are functions of frequency, the two oscillation
conditions are satisfied only at one or more particular frequencies, namely the
resonance frequencies of the oscillator. The useful output is extracted by coupling a
portion of the power out of the oscillator.

In summary, an oscillator comprises:

An amplifier with a gain-saturation mechanism.

A feedback system.

A frequency-selection mechanism.

An output coupling scheme.

The laser is an optical oscillator (Fig. 16.0-3) in which the amplifier is the pumped
active medium considered in Secs. 15.1 and 15.2. Gain saturation is a basic property
of laser amplifiers, as discussed in Sec. 15.4. Feedback is engendered by placing the
active medium in an optical resonator that reflects the light back and forth between
its mirrors, as discussed in Chapter 11. Frequency selection is jointly achieved by the
resonant amplifier and the resonator, which admits only certain modes. Output
coupling is accomplished by making one of the resonator mirrors partially
transmitting.



Figure 16.0-3 A laser consists of an optical amplifier (comprising an active
medium) placed within an optical resonator. The output is extracted through a
partially transmitting mirror.

Lasers have an enormous variety of forms and are used in myriad scientific and
technical applications such as interferometry, spectroscopy, imaging, lithography,
metrology, communications, lidar, atomic cooling, materials processing, biology, and
neuroscience, among others. Needless to say, they are invaluable for fundamental
studies and applications in photonics, as well as in all branches of science,
engineering, and medicine. The precursor to the laser was the maser, an acronym
for Microwave Amplification by Stimulated Emission of Radiation. The maser/laser
principle also holds promise for waves other than electromagnetic radiation. The
saser, for example, is an acoustic version of the laser that emits a beam of phonons,
offering Sound Amplification by Stimulated Emission of Radiation.

This Chapter

This chapter provides an introduction to the operation of lasers. In Sec. 16.1 the
behavior of the laser amplifier and the laser resonator are summarized, and
oscillation conditions are derived. The properties of the light emitted by lasers,
including power, spectral distribution, spatial distribution, and polarization, are
considered in Sec. 16.2. Various types of lasers are discussed in Sec. 16.3, while Sec.
16.4 is devoted to the operation of pulsed lasers. Laser diodes, microlasers, and
nanolasers are considered in Chapter 18 while high-power (petawatt) lasers are
briefly examined in Chapter 23.

16.1 THEORY OF LASER OSCILLATION
We begin this section with a summary of the properties of the two basic components
of the laser — the resonator and the amplifier. These topics have been discussed in
detail in Chapters 11 and 15, respectively, but are reviewed here for convenience.

A. Optical Amplification and Feedback
Laser Amplification

The laser amplifier is a narrowband coherent amplifier of light. Amplification is
achieved by stimulated emission from an atomic or molecular system with a
transition whose population is inverted (i.e., the upper energy level is more
populated than the lower). The amplifier bandwidth is determined by the linewidth
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of the atomic transition, or by an inhomogeneous broadening mechanism such as
Doppler broadening in gas lasers.

The laser amplifier is a distributed-gain device characterized by its gain coefficient
(gain per unit length) γ(ν), which governs the rate at which the photon-flux density
ϕ (or the optical intensity I = hν ϕ) increases. When the photon-flux density ϕ is
small, the gain coefficient is given by

where

N0 = equilibrium population density difference (density of atoms in the upper
energy state minus that in the lower state); N0 increases with increasing
pumping rate

σ(ν) = (λ2/8πtsp)g(ν) = transition cross section

tsp = effective spontaneous lifetime for stimulated emission

g(ν) = transition lineshape function
λ = λo/n = wavelength in the medium, where n = refractive index

As the photon-flux density increases, the amplifier ultimately enters a region of
nonlinear operation in which the gain saturates and decreases. The amplification
process then depletes the initial population difference N0, reducing it to N =
N0/[1+ϕ/ϕs(ν)] for a homogeneously broadened medium, where

ϕs(ν) = [τs σ(ν)]−1 = saturation photon-flux density

τs = saturation time constant, which depends on the decay times of the energy
levels involved; in an ideal four-level pumping scheme, τs ≈ tsp, whereas in
an ideal three-level pumping scheme, τs = 2tsp

The gain coefficient of the saturated amplifier is therefore reduced to γ(ν) = Nσ(ν),
so that for homogeneous broadening we have

The laser amplification process also introduces a phase shift. When the lineshape is
Lorentzian with linewidth Δν, so that g(ν) = (Δν/2π)/[(ν − ν0)2 + (Δν/2)2], the
amplifier phase shift per unit length becomes
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This phase shift is above and beyond that introduced by the medium hosting the
laser atoms. The gain and phase-shift coefficients for an amplifier with Lorentzian
lineshape function are illustrated in Fig. 16.1-1.

Figure 16.1-1 Spectral dependence of the gain and phase-shift coefficients for an
optical amplifier with a Lorentzian lineshape function.

Feedback and Loss: The Optical Resonator

Optical feedback is achieved by placing the active medium in an optical resonator. A
Fabry–Perot resonator, comprising two mirrors separated by a distance d, contains
the medium (refractive index n) in which the active atoms of the amplifier reside.
Travel through the medium introduces a phase shift per unit length equal to the
wavenumber

The resonator also contributes to losses in the system. Absorption and scattering of
light in the medium introduces a distributed loss characterized by the attenuation
coefficient αs (loss per unit length). In traveling a round trip through a resonator of
length d, the photon-flux density is reduced by the factor R1R2 exp(−2αsd), where R1
and R2 are the reflectances of the two mirrors. The overall loss in one round trip can
therefore be described by a total effective distributed loss coefficient αr, where

so that
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where αm1 and αm2 represent the loss contributions of mirrors 1 and 2, respectively.
The contribution from both mirrors is therefore

Since αr represents the total loss of energy (or number of photons) per unit length,
αrc represents the loss of photons per second. Thus,

represents the photon lifetime, which decreases with increasing loss.

The resonator sustains only frequencies that correspond to a round-trip phase shift
that is a multiple of 2π. For a resonator devoid of active atoms (a so-called “cold
resonator”), the round-trip phase shift is simply k2d = 2πνd/c = q2π, corresponding
to modes of frequencies

where νF = c/2d is the resonator mode spacing and c = co/n is the speed of light in
the medium (Fig. 16.1-2). The (full width at half maximum) spectral width of these
resonator modes is

where ℱ is the finesse of the resonator (Sec. 11.1A). When the resonator losses are
small and the finesse is large,
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Figure 16.1-2 Resonator modes are separated by the frequency νF = c/2d and have
linewidths δν = νF/ℱ = 1/2πτp.

B. Conditions for Laser Oscillation
Two conditions must be satisfied for the laser to oscillate (lase). The gain condition
determines the minimum population difference, and therefore the pumping
threshold, required for lasing. The phase condition determines the frequency (or
frequencies) at which oscillation takes place.

Gain Condition: Laser Threshold

The initiation of laser oscillation requires that the small-signal gain coefficient be
greater than the loss coefficient,

or, equivalently, that the gain be greater than the loss. In accordance with (16.1-1),
the small-signal gain coefficient γ0(ν) is proportional to the equilibrium population
density difference N0, which in turn is known from Chapter 15 to increase with the
pumping rate R. Indeed, (16.1-1) may be used to translate (16.1-12) into a condition
on the population difference, i.e., N0 = γ0(ν)/σ(ν) > αr/σ(ν). Thus,

where the quantity

is called the threshold population difference. This quantity, which is
proportional to αr, determines the minimum pumping rate Rt for the initiation of
laser oscillation.1

Using (16.1-8), αr may alternatively be written in terms of the photon lifetime, αr =
1/cτp, whereupon (16.1-14) takes the form
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The threshold population density difference is therefore directly proportional to αr
and inversely proportional to τp. Higher loss (shorter photon lifetime) requires more
vigorous pumping to achieve lasing.

Finally, use of the standard formula for the transition cross section, σ(ν) =
(λ2/8πtsp)g(ν), leads to yet another expression for the threshold population
difference,

from which it is clear that Nt is a function of the frequency ν. The threshold is
lowest, and lasing is therefore most readily achieved, at the frequency where the
lineshape function is greatest, i.e., at its central frequency ν = ν0. For a Lorentzian
lineshape function, (14.3-35) provides that g(ν0) = 2/πΔν, so that the minimum
population difference for oscillation at the central frequency ν0 turns out to be

It is directly proportional to the linewidth Δν.

If, furthermore, the transition is limited by lifetime broadening with a decay time
given by tsp, Δν assumes the value 1/2πtsp (Sec. 14.3D), whereupon (16.1-17)
simplifies to

This formula reveals that the minimum threshold population difference required to
achieve oscillation is a simple function of the wavelength λ and the photon lifetime
τp. It is clear that laser oscillation becomes more difficult to achieve as the
wavelength decreases. As a numerical example, if λo = 1 μm, τp = 1 ns, and the
refractive index n = 1, we obtain Nt ≈ 2.1 × 107 cm−3.
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EXERCISE 16.1-1

Threshold of a Ruby Laser.

a. At the line center of the λo = 694.3-nm transition (see Table 15.3-1), the
absorption coefficient of ruby in thermal equilibrium (i.e., without
pumping) at T = 300° K is α(ν0) ≡ −γ0(ν0) ≈ 0.2 cm−1. If the concentration
of Cr3+ ions responsible for the transition is Na = 1.58 × 1019 cm−3,
determine the transition cross section σ0 = σ(ν0).

b. A ruby laser makes use of a 10-cm-long ruby rod (refractive index n = 1.76)
of cross-sectional area 1 cm2 and operates on this transition at λo = 694.3
nm. Both of its ends are polished and coated so that each has a reflectance
of 80%. Assuming that there are no scattering or other extraneous losses,
determine the resonator loss coefficient αr and the resonator photon
lifetime τp.

c. As the laser pumping increases, γ(ν0) increases from its initial thermal
equilibrium value of −0.2 cm−1 and changes sign, thereby providing gain.
Determine the threshold population difference Nt for laser oscillation.

Phase Condition: Laser Frequencies

The second condition of oscillation requires that the phase shift imparted to a light
wave completing a round trip within the resonator must be a multiple of 2π, i.e.,

If the contribution arising from the active laser atoms [2φ(ν)d] is small, then
dividing (16.1-19) by 2d reduces to the cold-resonator result obtained earlier, ν = νq =
q(c/2d). In the presence of the active medium, when 2φ(ν)d does contribute, the
solution of (16.1-19) gives rise to a set of oscillation frequencies  that are slightly
displaced from the cold-resonator frequencies νq. It turns out that the cold-resonator
modal frequencies are all pulled slightly toward the central frequency of the atomic
transition, as shown below.

*Frequency Pulling

Using the relation k = 2πν/c, and the phase-shift coefficient for the Lorentzian
lineshape function provided in (16.1-3), the phase-shift condition (16.1-19) provides
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This equation can be solved for the oscillation frequency  that corresponds to
each cold-resonator mode νq. Because the equation is nonlinear, a graphical solution
is useful. The left-hand side of (16.1-20), designated ψ(ν), is plotted in Fig. 16.1-3 as
the sum of a straight line, representing ν, plus the Lorentzian phase-shift coefficient
shown schematically in Fig. 16.1-1. The value of  that renders ψ(ν)= νq is
graphically determined. It is apparent from the figure that the cold-resonator modes
νq are always frequency-pulled toward the central frequency of the resonant medium
ν0.

Figure 16.1-3 The left-hand side of (16.1-20), ψ(ν), plotted as a function of ν. The
frequency ν for which ψ(ν) = νq is the solution of (16.1-20). Each “cold” resonator
frequency νq corresponds to a “hot” resonator frequency , which is shifted in the
direction of the atomic-resonance central frequency ν0.

An approximate analytical solution of (16.1-20) can also be obtained. We write (16.1-
20) in the form

When , the second term on the right-hand side of (16.1-21) is small so that
ν may be replaced with νq without much loss of accuracy. This leads to

which is an explicit expression for the oscillation frequency  as a function of the
cold�resonator frequency νq. Furthermore, under steady-state conditions, the gain
equals the loss so that γ(νq)= αr ≈ π/ℱd = (2π/c)δν, where δν is the spectral width of
the cold resonator modes. Substituting this relation into (16.1-22) then leads to



Laser Frequencies

The cold-resonator frequency νq is thus seen to be pulled toward the atomic
resonance frequency ν0 by a fraction δν/Δν of its original distance from the central
frequency (νq − ν0), as illustrated in Fig. 16.1-4. The sharper the resonator mode (the
smaller the value of δν), the less significant is the pulling effect. In contrast, the
narrower the atomic resonance linewidth (the smaller the value of Δν), the more
effective is the pulling.

Figure 16.1-4 The laser oscillation modes fall near the cold-resonator modes; they
are pulled slightly toward the atomic-resonance central frequency ν0. The
illustration is not to scale and the degree of pulling is exaggerated for clarity.

16.2 CHARACTERISTICS OF THE LASER OUTPUT
A. Power
Internal Photon-Flux Density

A laser pumped above the threshold (N0 > Nt) exhibits a small-signal gain coefficient
γ0(ν) that is greater than the loss coefficient αr, as indicated in (16.1-12). Laser
oscillation may then begin, provided that the phase condition (16.1-19) is satisfied.
As the photon-flux density ϕ inside the resonator increases (Fig. 16.2-1), the gain
coefficient γ(ν) begins to decrease in accordance with (16.1-2) for a homogeneously
broadened medium. As long as the gain coefficient remains larger than the loss
coefficient, the photon flux continues to grow.
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Figure 16.2-1 Determination of the steady-state laser photon-flux density ϕ. At the
time of laser turn-on, ϕ = 0 so that γ(ν)= γ0(ν). As the oscillation builds up in time,
the increase in ϕ causes γ(ν) to decrease through gain saturation. When γ reaches αr,
the photon-flux density ceases its growth and steady-state conditions are achieved.
The smaller the loss, the greater the value of ϕ.

Finally, when the saturated gain coefficient becomes equal to the loss coefficient (or
equivalently N = Nt), the photon flux ceases its growth and the oscillation reaches
steady-state conditions. The result is gain clamping at the value of the loss. The
steady-state laser internal photon-flux density is therefore determined by equating
the large-signal (saturated) gain coefficient to the loss coefficient, i.e., γ0(ν)/[1 + ϕ/
ϕs(ν)] = αr, which provides

Equation (16.2-1) represents the steady-state photon-flux density arising from laser
action. This is the mean number of photons per second crossing a unit area in both
directions, since photons traveling in both directions contribute to the saturation
process. The photon-flux density for photons traveling in a single direction is
therefore ϕ/2. Spontaneous emission has been neglected in this simplified
treatment. Of course, (16.2-1) represents the mean photon-flux density; there are
random fluctuations about this mean as discussed in Sec. 13.2.

Since γ0(ν) = N0 σ(ν) and αr = Nt σ(ν), (16.2-1) may be written in the form

Below threshold, the laser photon-flux density is zero; any increase in the pumping
rate is manifested as an increase in the spontaneous-emission photon flux, but there
is no sustained oscillation. Above threshold, the steady-state internal laser photon-
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flux density is directly proportional to the initial population difference N0, and
therefore increases with the pumping rate R [see (15.2-13) and (15.2-27)]. If N0 is
twice the threshold value Nt, the photon-flux density is precisely equal to the
saturation value ϕs(ν), which is the photon-flux density at which the gain coefficient
decreases to half its maximum value. Both the population difference N and the
photon-flux density ϕ are shown as functions N0 in Fig. 16.2-2.

Figure 16.2-2 Steady-state values of the population difference N, and the laser
internal photon-flux density ϕ, as functions of N0 (the population difference in the
absence of radiation; N0 increases with the pumping rate R). Laser oscillation occurs
when N0 exceeds Nt; the steady-state value of N then saturates, clamping at the
value Nt [just as γ0(ν) is clamped at αr]. Above threshold, ϕ is proportional to N0 −
Nt.

Output Photon-Flux Density

Only a portion of the steady-state internal photon-flux density, as determined by
(16.2-2), leaves the resonator in the form of useful light. The output photon-flux
density ϕo is that part of the internal photon-flux density that propagates toward,
and is transmitted by, mirror 1, i.e., ϕ/2. If the transmittance of this mirror is 𝒯, the
output photon-flux density is then

The corresponding optical intensity of the laser output Io is

and the laser output power is Po = IoA, where A is the cross-sectional area of the
laser beam. These equations, together with (16.2-2), permit the output power of the
laser to be explicitly calculated in terms of ϕs(ν), N0, Nt, 𝒯, and A.

Optimization of the Output Photon-Flux Density

The useful photon-flux density at the laser output diminishes the internal photon-
flux density and therefore contributes to the losses of the laser oscillator. Any
attempt to increase the fraction of photons allowed to escape from the resonator (in
the expectation of increasing the useful light output) results in increased losses so
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that the steady-state photon-flux density inside the resonator decreases. The net
result may therefore be a decrease, rather than an increase, in the useful light
output.

We proceed to demonstrate that there is an optical transmittance 𝒯 (0 < 𝒯 < 1) that
maximizes the laser output intensity. The output photon-flux density ϕo = 𝒯ϕ/2 is a
product of the mirror’s transmittance 𝒯 and the internal photon-flux density ϕ/2. As
𝒯 is increased, ϕ decreases as a result of the greater losses. At one extreme, when 𝒯 =
0, the oscillator has the least loss (ϕ is maximum), but there is no laser output
whatever (ϕo = 0). At the other extreme, when the mirror is removed so that 𝒯 = 1,
the increased losses make αr > γ0(ν) (Nt > N0), thereby preventing laser oscillation.
In this case ϕ = 0, so that again ϕo = 0. The optimal value of 𝒯 lies somewhere
between these two extremes.

To determine this value, we must obtain an explicit relation between ϕo and 𝒯. Let us
assume that mirror 1, with reflectance ℛ1 and transmittance 𝒯 = 1 − ℛ1, transmits
the useful light. The loss coefficient αr is written as a function of 𝒯 by substituting in
(16.1-6) the loss coefficient associated with mirror 1,

which leads to

where the loss coefficient associated with mirror 2 is

We now use (16.2-1), (16.2-3), and (16.2-6) to obtain an equation for the transmitted
photon-flux density ϕo as a function of the mirror transmittance,

which is plotted in Fig. 16.2-3. Note that the transmitted photon-flux density is
directly related to the small-signal gain coefficient. The optical transmittance 𝒯op is
determined by setting the derivative of ϕo with respect to 𝒯 equal to zero. When 𝒯 ≪
1 we can make use of the approximation ln(1 − 𝒯) ≈ −𝒯 to obtain the expression
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Figure 16.2-3 Dependence of the transmitted steady-state photon-flux density ϕo
on the mirror transmittance 𝒯. For the purposes of this illustration, the gain factor
g0 = 2γ0d has been chosen to be 0.5 and the loss factor L = 2(αs + αm2)d is 0.02
(2%). The optical transmittance 𝒯op turns out to be 0.08.

Internal Photon-Number Density

The steady-state number of photons per unit volume inside the resonator n is
related to the steady-state internal photon-flux density ϕ (for photons traveling in
both directions) by the simple relation

This is readily visualized by considering a cylinder of area A, length c, and volume cA
(c is the velocity of light in the medium), whose axis lies parallel to the axis of the
resonator. For a resonator containing n photons per unit volume, the cylinder
contains cAn photons. These photons travel in both directions, parallel to the axis of
the resonator, half of them crossing the base of the cylinder in each second. Since
the base of the cylinder also receives an equal number of photons from the other
side, however, the photon-flux density (photons per second per unit area in both
directions) is , from which (16.2-10) follows.

The photon-number density corresponding to the steady-state internal photon-flux
density in (16.2-2) is

where ns = ϕs(ν)/c is the photon-number density saturation value. Using the
relations ϕs(ν) = [τs σ(ν)]−1, αr = γ(ν), αr = 1/cτp, and γ(ν) = N σ(ν) = Nt σ(ν), (16.2-
11) may be written in the form
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This relation admits a simple and direction interpretation: (N0 − Nt) is the
population difference (per unit volume) in excess of threshold, and (N0 − Nt)/τs
represents the rate at which photons are generated which, by virtue of steady-state
operation, is equal to the rate at which photons are lost, n/τp. The fraction τp/τs is
the ratio of the rate at which photons are emitted to the rate at which they are lost.

Under ideal pumping conditions in a four-level laser system, (15.2-13) and (15.2-14)
provide that τs ≈ tsp and N0 ≈ Rtsp, where R is the rate (s−1-cm−3) at which atoms are
pumped. Equation (16.2-12) can thus be written as

where Rt = Nt/tsp is the threshold value of the pumping rate. Under steady-state
conditions, therefore, the overall photon-density loss rate n/τp is precisely equal to
the excess pumping rate R − Rt.

Output Photon Flux and Efficiency

If transmission through the laser output mirror is the only source of resonator loss
(which is accounted for in τp), and V is the volume of the active medium, (16.2-13)
provides that the total output photon flux Φo (photons per second) is

If there are loss mechanisms other than through the output laser mirror, the output
photon flux can be written as

where the extraction efficiency ηe is the ratio of the loss arising from the extracted
useful light to all of the total losses in the resonator αr.

If the useful light exits only through mirror 1, (16.1-8) and (16.2-5) for αr and αm1
may be used to write ηe as

If, furthermore, 𝒯 = 1 − ℛ1 ≪ 1, (16.2-16) provides
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Extraction Efficiency
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Power-Conversion Efficiency
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Slope Efficiency
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(16.2-18)

where we have defined 1/TF = c/2d, indicating that the extraction efficiency ηe can
be understood in terms of the ratio of the photon lifetime to its round-trip travel
time, multiplied by the mirror transmittance. The output laser power is then

With the help of a few algebraic manipulations it can be confirmed that this
expression accords with that obtained from (16.2-4).

Losses result from other sources as well, such as inefficiency in the pumping
process. Overhead functions, such as cooling and monitoring, also consume power.
The power-conversion efficiency ηc (also called the overall efficiency or the
wall-plug efficiency) is generally defined as the ratio of the output optical power
Po to the input electrical power Pe:

Representative values of ηc for various types of lasers are provided in Table 16.3-1.
Because the laser output power increases linearly with pump power above threshold,
in accordance with (16.2-18), the differential power-conversion efficiency (also
called the slope efficiency) is another oft-encountered measure of performance:

The slope efficiency ηs is typically larger than the power-conversion efficiency ηc.

Optically pumped lasers are often characterized by efficiencies analogous to those
provided in (16.2-19) and (16.2-20), with the optical pump power Pp electrical power
Pe. The optical-to-optical efficiency is thus defined as

while the optical-to-optical slope efficiency is expressed as



(16.2-23) 
Number of Possible Laser Modes

The optical-to-optical slope efficiency ηs is typically larger than the optical-to-optical
efficiency ηo, which is itself bounded by ηo ≤ 1 − q, where q is the quantum defect
set forth in (15.2-32).

B. Spectral Distribution
The spectral distribution of the generated laser light is determined both by the
atomic lineshape of the active medium (including whether it is homogeneous or
inhomogeneously broadened) and by the resonator modes. This is illustrated in
terms of the two conditions for laser oscillations:

1. The gain condition requiring that the initial gain coefficient of the amplifier be
greater than the loss coefficient [γ0(ν) > αr] is satisfied for all oscillation
frequencies lying within a continuous spectral band of width B centered about
the atomic resonance frequency ν0, as illustrated in Fig. 16.2-4(a). The
bandwidth B increases with the atomic linewidth Δν and the ratio γ0(ν0)/αr; the
precise relation depends on the shape of the function γ0(ν).

2. The phase condition requires that the oscillation frequency be one of the
resonator modal frequencies νq (assuming, for simplicity, that frequency pulling
is negligible). The FWHM linewidth of each mode is δν ≈ νF/ℱ [Fig. 16.2-4(b)].

Figure 16.2-4 (a) Laser oscillation can occur only at frequencies for which the gain
coefficient is greater than the loss coefficient (shaded region). (b) Oscillation can
occur only within a band δν of the resonator modal frequencies (which are
represented as lines for simplicity of illustration).

It follows that only a finite number of oscillation frequencies (ν1, ν2, …, νM) are
possible. The number of possible laser oscillation modes is therefore



where νF = c/2d is the approximate spacing between adjacent modes. However, of
these M possible modes, the number of modes that actually carry optical power
depends on the nature of the atomic line broadening mechanism. It will be shown
below that for an inhomogeneously broadened medium all M modes oscillate (albeit
at different powers), whereas for a homogeneously broadened medium these modes
engage in some degree of competition, making it more difficult for as many modes
to oscillate simultaneously. Multimode lasers give rise to intensity-noise
fluctuations that arise from modal beating and modal competition.

EXERCISE 16.2-1

Number of Modes in a Gas Laser. A Doppler-broadened gas laser has a gain
coefficient with a Gaussian spectral profile (see Sec. 14.3D and Exercise 14.3-2)
that can be written as , where  is the
FWHM linewidth.

a. Derive an expression for the allowed oscillation band B as a function of ΔνD
and the ratio γ0(ν0)/αr, where αr is the resonator loss coefficient.

b. A He–Ne laser has a Doppler linewidth ΔνD = 1.5 GHz and a midband gain
coefficient γ0(ν0) = 2 × 10−3 cm−1. The length of the laser resonator is d =
100 cm, and the reflectances of the mirrors are 100% and 97% (all other
resonator losses are negligible). Assuming that the refractive index n = 1,
determine the number of laser modes M.

Homogeneously Broadened Medium

Immediately after being turned on, all laser modes for which the initial gain is
greater than the loss begin to grow, as portrayed in Fig. 16.2-5(a), and photon-flux
densities ϕ1, ϕ2, …, ϕM are created in the M modes.



(16.2-24)

Figure 16.2-5 Growth of oscillation in an ideal homogeneously broadened
medium. (a) Immediately following laser turn-on, all modal frequencies ν1, ν2, …,
νM, for which the gain coefficient exceeds the loss coefficient, begin to grow, with
the central modes growing at the highest rate. (b) After a short time the gain
saturates so that the central modes continue to grow while the peripheral modes, for
which the loss has become greater than the gain, are attenuated and eventually
vanish. (c) In the absence of spatial hole burning, only a single mode survives.

Modes whose frequencies lie closest to the transition central frequency ν0 grow
most quickly and acquire the highest photon-flux densities. These photons interact
with the medium and reduce the gain by depleting the population difference. The
saturated gain coefficient may be written as

where ϕs(νj) is the saturation photon-flux density associated with mode j. The
validity of (16.2-24) may be verified by carrying out an analysis similar to that which
led to (15.4-3). The saturated gain is displayed in Fig. 16.2-5(b).

Because the gain coefficient for a homogeneously broadened medium is reduced
uniformly, for modes sufficiently distant from the line center the loss becomes
greater than the gain; these modes lose power while the more central modes
continue to grow, albeit at a slower rate. Ultimately, only a single surviving mode (or
two modes in the symmetrical case) maintains a gain equal to the loss, with the loss
exceeding the gain for all other modes. Under ideal steady-state conditions, the
power in this preferred mode remains stable, while laser oscillation on all other
modes vanishes [Fig. 16.2-5(c)]. The surviving mode has the frequency that lies
closest to ν0; values of the gain for its competitors lie below the loss line. Given the
frequency of the surviving mode, its photon-flux density may be determined by
means of (16.2-2).

In practice, however, homogeneously broadened lasers do oscillate on multiple
modes because the different modes occupy different spatial portions of the active
medium. When oscillation on the most central mode in Fig. 16.2-5 is established, the
gain coefficient can still exceed the loss coefficient at locations where the standing-
wave electric field of the most central mode vanishes. This phenomenon is called



spatial hole burning. It allows another mode, whose peak fields are located near
the energy nulls of the central mode, an opportunity to lase as well.

Inhomogeneously Broadened Medium

In an inhomogeneously broadened medium, the gain  represents the composite
envelope of the gains of different species of atoms (Sec. 14.3D), as illustrated in Fig.
16.2-6.

Figure 16.2-6 The lineshape function of an inhomogeneously broadened medium
is a composite of numerous constituent atomic lineshape functions associated with
different properties or different environments.

The situation immediately after laser turn-on is the same as in the homogeneously
broadened medium. Modes for which the gain is larger than the loss begin to grow
and the gain decreases. If the spacing between the modes is larger than the width Δν
of the constituent atomic lineshape functions, different modes interact with
different atoms. Atoms whose lineshapes fail to coincide with any of the modes are
ignorant of the presence of photons in the resonator. Their population difference is
therefore not affected and the gain they provide remains the small-signal
(unsaturated) domain. Atomic species whose frequencies coincide with modes
deplete their inverted populations and their gains saturate, creating “holes” in the
gain spectral profile [Fig. 16.2-7(a)]. This process is known as spectral hole
burning. The width of a spectral hole increases with the photon-flux density in
accordance with the square-root law associated with (15.4-16): Δνs = Δν(1 + ϕ/ϕs)1/2.



Figure 16.2-7 (a) Laser oscillation occurs in an inhomogeneously broadened
medium by each mode independently burning a hole in the overall spectral gain
profile. The gain provided by the medium to one mode does not influence the gain it
provides to other modes. The central modes garner contributions from more atoms,
and therefore carry more photons than do the peripheral modes. (b) Spectrum of a
typical inhomogeneously broadened multimode gas laser.

The process of saturation by hole burning progresses independently for the different
modes until the gain is equal to the loss for each mode in steady state. Modes do not
compete because they draw power from different, rather than shared, atoms. Many
modes oscillate independently, with the central modes burning deeper holes and
growing larger, as illustrated in Fig. 16.2-7(a). The spectrum of a typical multimode
inhomogeneously broadened gas laser is displayed in Fig. 16.2-7(b). The number of
modes is typically larger than that in homogeneously broadened media since spatial
hole burning generally sustains fewer modes than spectral hole burning.

*Spectral Hole Burning in a Doppler-Broadened Medium

The lineshape function of a gas at temperature T arises from the collection of
Doppler-shifted emissions from the individual atoms, which move at different
velocities (Sec. 14.3D and Exercise 14.3-2). A stationary atom interacts with radiation
of frequency ν0. An atom moving with velocity v toward the direction of propagation
of the radiation interacts with radiation of frequency ν0(1 + v/c) whereas an atom
moving away from the direction of propagation of the radiation interacts with
radiation of frequency ν0(1 − v/c). Because a radiation mode of frequency νq travels
in both directions as it bounces back and forth between the mirrors of the resonator,
it interacts with atoms in two velocity classes: those traveling with velocity +v and
those traveling with velocity −v, such that νq − ν0 = ±ν0v/c. It follows that the mode
νq saturates the populations of atoms on both sides of the central frequency and
burns two holes in the gain profile, as portrayed in Fig. 16.2-8. If νq = ν0, only a
single hole is burned in the center of the profile, of course.



Figure 16.2-8 Hole burning in a Doppler-broadened medium. A probe wave at
frequency νq saturates those atomic populations with velocities v = ±c (νq/ν0 − 1) on
both sides of the central frequency, burning two holes in the gain profile.

The steady-state power of a mode increases with the depth of the hole(s) in the gain
profile. As the frequency νq moves toward ν0 from either side, the depth of the holes
increases, as does the power in the mode. As the modal frequency νq begins to
approach ν0, however, the mode begins to interact with only a single group of atoms
instead of two, so that the two holes collapse into one. This decrease in the number
of available active atoms when νq = ν0 causes the power of the mode to decrease
slightly. Thus, the power in a mode, plotted as a function of its frequency νq, takes
the form of a bell-shaped curve with a central depression, known as the Lamb dip,
at its center (Fig. 16.2-9).

Figure 16.2-9 Power in a single laser mode of frequency νq in a Doppler-broadened
medium whose gain profile is centered about ν0. Rather than providing maximum
power at νq = ν0, it exhibits the Lamb dip.

C. Spatial Distribution and Polarization
Spatial Distribution

The spatial distribution of the emitted laser light depends on the geometry of the
resonator and on the shape of the active medium. In the laser theory developed to



this point we have ignored transverse spatial effects by assuming that the resonator
is constructed of two parallel planar mirrors of infinite extent and that the space
between them is filled with the active medium. In this idealized geometry the laser
output is a plane wave propagating along the axis of the resonator. But as is evident
from Chapter 11, this planar-mirror resonator is highly sensitive to misalignment
and laser resonators usually have spherical mirrors. As indicated in Sec. 11.2, the
spherical-mirror resonator supports a Gaussian beam, which was studied in detail in
Sec. 3.1. A laser using a spherical-mirror resonator may therefore give rise to an
output that takes the form of a Gaussian beam.

It was also shown (in Sec. 11.2D) that the spherical-mirror resonator supports a
hierarchy of transverse electric and magnetic modes denoted TEMl,m,q. Each pair of
indices (l, m) defines a transverse mode with an associated spatial distribution. The
(0, 0) transverse mode is the Gaussian beam (Fig. 16.2-10). Modes of a higher l and
m form Hermite–Gaussian beams (Sec. 3.3 and Fig. 3.3-2). For a given (l, m), the
index q defines a number of longitudinal (axial) modes of the same spatial
distribution but of different frequencies νq (which are always separated by the
longitudinal-mode spacing νF = c/2d, regardless of l and m). The resonance
frequencies of two sets of longitudinal modes belonging to two different transverse
modes are, in general, displaced with respect to each other by some fraction of the
mode spacing νF, as indicated in (11.2-34).

Figure 16.2-10 The laser output for the (0, 0) transverse mode of a spherical-
mirror resonator takes the form of a Gaussian beam.

Because of their different spatial distributions, different transverse modes
experience different gains and losses. The (0, 0) Gaussian mode, for example, is the
most confined about the optical axis and therefore suffers the least diffraction loss
at the mirror boundaries. The (1, 1) mode vanishes at points on the optical axis (Fig.
3.3-2); thus if the laser mirror were blocked by a small central obstruction, the (1, 1)
mode would be completely unaffected, whereas the (0, 0) mode would suffer
significant loss. Higher-order modes occupy a larger volume and therefore can have
larger gain. This disparity between the losses and/or gains of different transverse
modes in different geometries determines their competitive edge in contributing to
the laser oscillation, as illustrated in Fig. 16.2-11.



Figure 16.2-11 The gains and losses for two transverse modes, say (0, 0) and (1, 1),
usually differ because of their different spatial distributions. A mode can contribute
to the output if it lies in the spectral band of width B within which the gain
coefficient exceeds the loss coefficient. Allowed longitudinal modes associated with
each transverse mode are shown.

In a homogeneously broadened laser, the strongest mode tends to suppress the gain
for the other modes, but spatial hole burning can permit a few longitudinal modes to
oscillate. Transverse modes can have substantially different spatial distributions so
that they can readily oscillate simultaneously. A mode whose energy is concentrated
in a given transverse spatial region saturates the atomic gain in that region, thereby
burning a spatial hole there. Two transverse modes that do not spatially overlap can
coexist without competition because they draw their energy from different atoms.
Partial spatial overlap between different transverse modes and atomic migrations
(as occur in gases) allow for mode competition.

Lasers are often designed to operate on a single transverse mode; this is usually the
(0, 0) Gaussian mode because it has the smallest beam diameter and can be focused
to the smallest spot size (Sec. 3.2). Oscillation on higher-order modes can be
desirable, on the other hand, for purposes such as generating large optical power.

Polarization

Each (l, m, q) mode has two degrees of freedom, corresponding to two independent
orthogonal polarizations. These two polarizations are regarded as two independent
modes. Because of the circular symmetry of the spherical-mirror resonator, the two
polarization modes of the same l and m have the same spatial distributions. If the
resonator and the active medium provide equal gains and losses for both
polarizations, the laser will oscillate on the two modes simultaneously,
independently, and with the same intensity. The laser output is then unpolarized
(Sec. 12.4).

Unstable Resonators

Though our discussion has focused on laser configurations that make use of stable
resonators (Fig. 11.2-3), the use of unstable resonators offers a number of
advantages in the operation of high-power lasers, including the following: (1) a



greater portion of the gain medium contributes to the laser output power as a result
of the availability of a larger modal volume; (2) higher output powers may be
obtained from operation on the lowest-order transverse mode, rather than on
higher-order transverse modes as in the case of stable resonators; and (3) high
output power can be attained by making use of purely reflective water-cooled optics
that permits the laser light to spill out around the mirror edges.

D. Mode Selection
A multimode laser may be operated on a single mode by making use of an element
inside the resonator to provide loss sufficient to prevent oscillation on undesired
modes.

Selection of a Laser Line

An active medium with multiple transitions (atomic lines) whose populations are
inverted by the pumping mechanism will produce a multiline laser output. A
particular line may be selected for oscillation by placing a prism inside the
resonator, as shown schematically in Fig. 16.2-12.

Figure 16.2-12 A particular atomic line may be selected by the use of a prism
placed inside the resonator. A transverse mode may be selected by means of a spatial
aperture of carefully chosen shape and size.

The prism is adjusted such that only light of the desired wavelength strikes the
highly reflecting mirror at normal incidence and can therefore be reflected back to
complete the feedback process. By rotating the prism, one wavelength at a time may
be selected. Argon-ion lasers, as an example, often contain a rotatable prism in the
resonator to allow the choice of one of six common laser lines, stretching from 488
nm in the blue to 514.5 nm in the blue–green. A prism can only be used to select a
line if the other lines are well separated from it. It cannot be used, for example, to
select one longitudinal mode from another; adjacent modes are too closely spaced
for the dispersive refraction provided by the prism to distinguish them.

Selection of a Transverse Mode

Different transverse modes have different spatial distributions, so that an aperture
of controllable shape placed inside the resonator may be used to selectively
attenuate undesired modes (Fig. 16.2-12). The laser mirrors may also be designed to
favor a particular transverse mode.

Selection of a Polarization



A polarizer may be used to convert unpolarized light into polarized light. It is
advantageous, however, to place the polarizer inside the resonator rather than
outside it since an external polarizer wastes half the output power generated by the
laser. The light transmitted by an external polarizer can also suffer from noise
arising from the fluctuation of power between the two polarization modes (mode
hopping). An internal polarizer creates high losses for one polarization so that
oscillation on its corresponding mode never even begins and the atomic gain is
devoted solely to the surviving polarization. An internal polarizer is usually
implemented by means of Brewster windows (Sec. 6.2 and Exercise 6.2-1), as
illustrated in Fig. 16.2-13.

Figure 16.2-13 The use of Brewster windows in a gas laser provides a linearly
polarized output laser beam. Light polarized in the plane of incidence (the TM wave)
is transmitted without reflection loss through a window placed at the Brewster
angle. The orthogonally polarized (TE) mode suffers reflection loss and therefore
does not oscillate.

Selection of a Longitudinal Mode

A single longitudinal mode can be selected by appropriately modifying the resonator.
The number of longitudinal modes in an inhomogeneously broadened laser (e.g., a
Doppler-broadened gas laser) is the number of resonator modes contained in a
frequency band B within which the atomic gain is greater than the loss (Fig. 16.2-4).
At first blush, there are two obvious alternatives for operating a laser on a single
longitudinal mode, but neither turns out to be satisfactory for the reasons indicated:
1) the loss can be increased sufficiently so that only the mode with the largest gain
oscillates, but the surviving mode is then itself weak; 2) the longitudinal-mode
spacing, νF = c/2d, can be increased by reducing the resonator length, thereby
leaving only a single mode within the band B, but this reduces the volume of the
active medium and hence also results in a weak surviving mode.

Rather, intracavity frequency-selective elements can be conveniently used to alter
the frequency spacings of the allowed resonator modes and thereby permit single
longitudinal-mode operation. Two commonly used configurations are detailed
below: the use of an intracavity tilted etalon and the use of multiple-mirror
resonators.

Intracavity tilted etalon.



A Fabry–Perot resonator whose mirror separation d1 is much shorter (thinner) than
the laser resonator, i.e., an intracavity tilted etalon, may be used for longitudinal-
mode selection, as illustrated in Fig. 16.2-14. Modes of the thin etalon have large
spacing c/2d1 > B, so that only one etalon mode can fit within the laser amplifier
bandwidth. The etalon is designed so that one of its modes coincides with the
resonator longitudinal mode exhibiting the highest gain (or any other desired
mode). The etalon may be fine-tuned by means of a slight rotation, by changing its
temperature, or by slightly changing its width d1 with the help of a piezoelectric (or
other) transducer. The etalon is slightly tilted with respect to the resonator axis to
prevent reflections from its surfaces from reaching the resonator mirrors and
creating undesired additional resonances. The etalon is usually temperature
stabilized to assure frequency stability.

Figure 16.2-14 Longitudinal mode selection by use of a thin intracavity etalon.
Oscillation occurs at frequencies where a mode of the resonator coincides with an
etalon mode; both must, of course, lie within the spectral window where the gain of
the medium exceeds the loss.

Multiple-mirror resonators.
Mode selection can also be achieved by making use of multiple-mirror resonators.
Several configurations are illustrated in Fig. 16.2-15. Mode selection may be
achieved by means of two coupled resonators of different lengths [Fig. 16.2-15(a)].
The resonator in Fig. 16.2-15(b) consists of two coupled cavities, each with its own
gain — in essence, two coupled lasers. Yet another configuration makes use of a
resonator coupled with an interferometer [Fig. 16.2-15(c)].



Figure 16.2-15 Longitudinal mode selection achieved with the help of: (a) two
coupled resonators (one passive and one active); (b) two coupled active resonators;
(c) a coupled resonator–interferometer.

Laser Linewidth

The FWHM spectral width ΔνL of the output of a single-mode laser can in principle
be far smaller than the spectral width of a resonator mode, δν ≈ νF/ℱ. The width ΔνL
is limited by the so-called Schawlow–Townes linewidth, which accommodates
random-phase spontaneous-emission contributions that combine with the laser-
oscillation mode. The FWHM value of the Schawlow–Townes linewidth for a four-
level system, which is given by ΔνST = π hν (δν)2/Po, can be minimized by: 1)
increasing the resonator length d, which decreases the free spectral range νF =
co/2nd and thus δν; 2) reducing the resonator loss, which increases ℱ and hence
reduces δν; and 3) increasing the laser output power Po. In carefully controlled
experiments, it is possible to approach the Schawlow–Townes laser-linewidth limit.
However, most lasers have linewidths substantially greater than this limit as a result
of external effects such as resonator mechanical vibrations, active-medium
temperature fluctuations, and pump-power fluctuations. Free-running lasers usually
exhibit linewidths that lie in the kHz to GHz range. Single-mode laser linewidths can
be reduced to the mHz domain by various stabilization techniques, although
attaining a linewidth below 1 Hz is challenging.

16.3 TYPES OF LASERS
Laser amplification and oscillation is ubiquitous; it occurs in an enormous variety of
media, including solids (crystals, glasses, fibers, powders), gases (atomic, ionic,
molecular, excimeric), and liquids (organic-dye solutions). A single biological cell
can serve as a laser when genetically programmed to produce green fluorescent
protein. Plasmas support laser action in the extreme-ultraviolet and X-ray regions,
and relativistic electrons wiggling in a magnetic field serve as an active medium for
the free-electron laser. We discuss a number of examples of lasers in these various
categories.



Parameters associated with lasers assume a wide range of values and extend over
many orders of magnitude:

Physical sizes range from nanometers to kilometers; interstellar molecular
clouds exhibiting maser action extend over terameters.

Emission frequencies span nearly 10 orders of magnitude, from GHz in the
microwave to EHz in the hard-X-ray.

Spectral linewidths extend over more than 15 orders of magnitude, from
mHz to THz.

Peak powers stretch 24 orders of magnitude, from nanowatts to petawatts.

Pulse durations of lasers and laser-based systems reach from tens of
attoseconds to CW.

A. Solid-State Lasers
The energy-level diagrams of several solid-state laser materials (ruby, alexandrite,
Nd3+:YAG, and Nd3+:glass) were displayed in Figs. 14.1-4 and 14.1-5, and the
operation of several solid-state laser amplifiers (ruby, Nd3+:glass, and Er3+:silica
fiber) were examined in Figs. 15.3-1, 15.3-3, and 15.3-6, respectively. A number of
charac teristics of the principal laser transitions in these, and other, doped dielectric
media are summarized in Table 15.3-1. When suitably pumped and placed in an
optical resonator providing feedback, all of these solid-state materials behave as
laser oscillators. When ground into powders, some solid-state laser materials
function as random lasers.

Crystalline, ceramic, and glass hosts.
There are numerous varieties of solid-state lasers since dozens of transparent
dielectric media are commonly used as host materials to accommodate many kinds
of active dopant ions. Crystalline hosts include oxides, garnets, fluorides, vanadates,
and double-tungstates. The most common host materials are Al2O3 (sapphire),
Y3Al5O12 (yttrium aluminum garnet or YAG), Lu3Al5O12 (lutetium aluminum garnet
or LuAG), YLiF4 (yttrium lithium fluoride or YLF), YVO4 (yttrium vanadate, also
known as yttrium orthovanadate), KY(WO4)2 (potassium yttrium tungstate or
KYW), and KGd(WO4)2 (potassium gadolinium tungstate or KGW). Semiconductor
crystals such as ZnS and ZnSe also serve as suitable hosts for solid-state lasers.

High optical-quality transparent polycrystalline ceramic hosts, with the same
compositions as their single-crystal counterparts, are increasingly being used
because of the many salutary features they offer, including increased power and
efficiency, reduced cost, and options for fabricating flexible composite structures.

Glass hosts also enjoy wide use; these include silicate-based compositions (such as
noncrystalline SiO2, which is fused silica) and phosphate-based compositions, which



have long been favored for high-power and pulsed-laser applications (see, e.g., Sec.
15.3B). Because they are poor conductors of heat, however, glass lasers are
principally used in systems that operate at very high powers with low duty cycles.
Notable exceptions are the glass hosts used in fiber lasers, which have large area-
tovolume ratios that facilitate cooling.

Comparing the characteristics of lasers that make use of crystalline or ceramic hosts
with those that use glass hosts reveals that the former category typically offers
homogeneous broadening (see Sec. 14.3D) with narrower linewidths and
correspondingly lower laser thresholds, higher thermal conductivities, and increased
resistance to solarization (darkening caused by the ultraviolet component of
flashlamp light). In contrast, glass hosts, which exhibit inhomogeneous broadening,
have a number of distinct merits: they are isotropic, easily fabricated with high
optical quality and homogeneous doping, they retain their optical finishes, and they
are readily grown in large sizes (Sec. 15.3B).

Dopant ions.
The lion’s share of dopant ions used as active laser media in host crystals are
transition-metal or lanthanide-metal (rare-earth) ions, but actinide-metal ions are
also occasionally employed (Table 14.1-1). The dopant ions are generally dispersed
throughout the host and act as independent radiators, much as organic-dye ions
behave in a solvent. The dopant concentration (molar percentage) typically lies in
the vicinity of 1%; however, it can be as small as 0.01% or as large as 50%, depending
on the dopant, host material, and application. To minimize strain, the host material
is generally chosen so that the active dopant ion is comparable in atomic size to the
substituted atom.

Trivalent chromium ions doped into sapphire (Cr3+:Al2O3), i.e., ruby, was the first
material to be crafted into a laser (page 657). Ruby suffers from low efficiency,
however, because it is a three-level system. Alexandrite (Cr3+:BeAl2O4), another
early Cr3+-doped solid-state laser, finds occasional use in dermatology. When used
as an active laser ion, Cr3+ is nowadays often doped into colquiriite materials such as
LiCaAlF6 (LiCAF), LiSrAlF6 (LiSAF), or LiSrGaF6 (LiSGaF). Alexandrite and the
Cr3+-doped colquiriites may be efficiently pumped by red AlInGaP laser diodes.

Of the vast array of host and dopant-ion combinations for solid-state lasers, among
the most commonly encountered are Nd3+:YVO4, Nd3+:YAG, Yb3+:YAG,
Ti3+:sapphire, and Cr2+:ZnS, and we consider these in turn. Many other solid-state
lasers also belong to the family of rare-earth-doped dielectrics, including Er3+:YAG,
Ho3+:YAG, and Tm3+:YAG. As discussed in Sec. 14.1B, the energy levels of the rare-
earth ions (but not the sublevels thereof) are essentially independent of the host
material because their 4f electrons are well shielded from the lattice by the filled 5s
and 5p subshells (Table 14.1-1).



Diode-pumped solid-state lasers.
Solid-state lasers that are optically pumped by laser diodes (or bars or stacks of laser
diodes) are known as diode-pumped solid-state (DPSS) lasers. These devices
convert the relatively broadband, multimode output of laser diodes into the
narrowband, single-mode output of solid-state lasers. DSPPs are compact and highly
efficient devices that have excellent beam quality. They offer a variety of
wavelengths, dictated by their attendant electronic and vibronic transitions, which
can be augmented by harmonic generation and other forms of optical frequency
conversion (Chapter 22). Diode-pumped solid-state lasers find wide application in
industry, medicine, and research.

Neodymium-Doped Yttrium Vanadate

Nd3+:YVO4 is a dielectric medium with refractive index n ≈ 2.0. The host material is
transparent over a broad range of wavelengths, from 0.3 to 2.5 μm. The energy levels
associated with lasing as a four-level system are illustrated in Fig. 16.3-1; the laser
threshold is substantially lower than that of three-level ruby.

Figure 16.3-1 (a) Selected energy levels of Nd3+:YVO4. The red arrow indicates the
principal laser transition at a wavelength of 1.064 μm in the near infrared. The four
interacting energy levels are indicated by encircled numbers. (b) Configuration of a
Nd3+:YVO4 laser with an intracavity frequency-doubling lithium-triborate (LBO)
crystal that generates light at λo/2 = 532 nm via second-harmonic generation (Sec.
22.2A).

Optical pumping is readily implemented by making use of an 808-nm AlGaAs laser-
diode array to raise the Nd3+ ions to level  (4F5/2) at 1.53 eV. The  →  (4F3/2 →
4I11/2) transition is responsible for laser action at the iconic wavelength of 1.064 μm.
Alternatively, laser action on this transition can be attained by direct in-band
pumping (Fig. 15.2-8) from level  to level  at 880 nm (using AlGaAs laser
diodes), or at wavelengths as long as 914 nm (using InGaAs laser diodes). In the
latter case, the small quantum defect (q = 14%) results in an output power > 10 W at



1.064 μm, with an optical-to-optical efficiency ηo ≈ 80%. Light from an intracavity
frequency-doubled Nd3+:YVO4 laser often serves as a 532-nm pump for a Ti:sapphire
laser (Fig. 16.3-3).

The 4F3/2 → 4I13/2 and 4F3/2 → 4I9/2 transitions also support laser action at
wavelengths of 1.34 μm and at 914 nm, respectively, in the latter case as a quasi-
three-level system. Frequency doubling of the stimulated emission at 914 nm
generates blue light at 457 nm. Neodymium-doped yttrium vanadate is distinguished
from neodymium-doped glass (Fig. 14.1-5) by its higher refractive index,
homogeneous broadening, and smaller transition linewidth (Table 15.3-1).

Neodymium-Doped Yttrium Aluminum Garnet

Developed in 1964, Nd3+:YAG, whose energy levels are displayed in Fig. 14.1-5, is one
of the oldest and most widely used of all diode-pumped solid-state lasers. It is a
compact system that provides high output power. Because the optically active 4f
electrons in Nd3+ are shielded from the crystalline host, the energy levels of this
material are similar to those of neodymium-doped yttrium vanadate (Fig. 16.3-1).
Nd3+:YAG lasers often incorporate intracavity doubling crystals, as illustrated in Fig.
16.3-1 for Nd3+:YVO4. Though it can be pumped by flashlamp, Nd3+:YAG is most
conveniently pumped as a four-level system using an AlGaAs laser-diode array at
808 nm, much as with Nd3+:YVO4. Crystals with lengths as short as a few hundred
μm can serve as efficient, single-frequency, thin-disk lasers.

The most common laser line offered by Nd3+:YAG is at a wavelength of λo = 1.06415
μm. The sublevels of the three manifolds associated with this laser transition are
displayed in Fig. 14.1-6; the numbers of distinct sublevels are (2𝒥 + 1)/2 = 5, 6, and
2, respectively. This particular laser line arises from a transition between the upper
sublevel of the 4F3/2 manifold at 1.4269 eV and the third-from-bottom sublevel of
the 4I11/2 manifold at 0.2616 eV. When frequency doubled, this transition provides
green light at 532 nm. Transitions among the different sublevels within the upper
and lower laser manifolds offer a multitude of possible laser wavelengths that span
the wavelength range between 1.052 and 1.122 μm. In particular, lasing can be
achieved at λo = 1.12238 μm via a transition between the lower of the two levels in
the 4F3/2 manifold at 1.4165 eV and the highest of the levels in the 4I11/2 manifold at
0.3117 eV. This represents the longest wavelength that can be attained using a
transition between these manifolds; when frequency doubled, this transition yields
yellow-green light at λo = 561 nm.

Nd3+:YAG can also be operated as a quasi-three-level system on the 4F3/2 → 4I9/2
transition, generating light at 946 nm; intracavity frequency doubling then provides
blue light at 473 nm. Many other possibilities abound since oscillation on the
dominant transition can be suppressed by making use of photonic-crystal filters, for
example. As with Nd3+:YVO4, in-band pumping (Fig. 15.2-8) at 880 nm can be used



to raise the Nd3+ ions from the ground state directly to the upper manifold, a
scheme that has the merit of a small quantum defect.

The principal disadvantages of Nd3+:YAG relative to Nd3+:YVO4 are its narrower
4F5/2 absorption band (rendering it more sensitive to wavelength variations in the
pump laser diodes), higher threshold, lower slope efficiency, and unpolarized
output. A distinct advantage, however, is that it can tolerate approximately three
times the thermal fracture stress. Indeed, when configured appropriately, Nd3+:YAG
can produce multi-kilowatt output powers. It continues to be the workhorse of
diode-pumped solid-state lasers.

EXAMPLE 16.3-1.

Power-Conversion Efficiency of a Diode-Pumped Nd3+:YAG Laser. A
1-cm-long water-cooled laser-diode bar comprising 25 AlGaAs broad-area laser
diodes emitting at a wavelength of 808 nm is used to pump a Nd3+:YAG laser
rod operating at 1064 nm on the basis of a four-level pumping scheme. Each
laser diode emits 4 W and is spaced 0.4 mm from its neighbor in the form of a
1D array. The bar consumes 200 W of electrical power and delivers 100 W of
optical power so its power-conversion efficiency is 50%. In accordance with the
expression for the quantum defect q provided in (15.2-32), the pumping
efficiency is 1 − q = 808/1064 ≈ 76%; furthermore, the transfer of pump
radiation to, and useful absorption by, the Nd3+:YAG laser rod has an efficiency
of about 65%. Mode matching and optical energy retention in the resonator is
60% efficient. The overall power-conversion efficiency ηc of the electrically
driven Nd3+:YAG laser is therefore 15%. Pumping this laser with a single laser-
diode bar that consumes 200 W of electrical power results in an output of 30 W
at 1064 nm. The output power can be increased by pumping with stacks of laser-
diode bars. CW and pulsed Nd3+:YAG lasers are widely used in manufacturing,
materials processing, and medicine, and have myriad other applications, such as
rangefinding.

Ytterbium-Doped Yttrium Aluminum Garnet

Yb3+:YAG thin-disk lasers, which operate on the basis of quasi-three-level pumping,
make use of a 940-nm laser-diode pump (Fig. 16.3-2).



Figure 16.3-2 (a) Energy levels pertinent to the ytterbium-doped YAG laser
transition at λo = 1.030 μm. Yb3+:YAG behaves as a quasi-three-level system at T =
300° K and as a four-level system when cooled to T = 77° K, which serves to reduce
the thermal population in the lower laser level. (b) Schematic of a single-frequency,
single-mode Yb3+:YAG thin-disk laser. The active medium typically has a thickness
of several hundred μm. The pump light is passed through the active medium some
20 times by an optical system that includes a parabolic mirror and a retroreflector.
High gain is achieved by using Yb3+ doping levels ≈ 25%.

High-efficiency absorption of the pump light is achieved by passing it through the
active medium multiple times with the help of suitably designed optics. High gain is
attained by using high Yb3+ doping levels. The pump wavelength λo = 940 nm,
usually provided by an InGaAs laser-diode array, is quite close to the laser
wavelength λo = 1030 nm so that the quantum defect q is small. Hence, little heat is
generated in the crystal.

Moreover, the thin-disk configuration allows the residual heat to be effectively
removed by heat-sink mounting or fluid immersion, thereby permitting the TEM00
spatial mode to be maintained. Thin-disk lasers can generate hundreds of watts of
single-mode CW optical power and many kilowatts of multimode CW power at 1.030
μm. When frequency-doubled, the ytterbium-doped YAG laser provides a strong
source of green light at 515 nm that has replaced the Ar+ laser in many applications.

Yb3+ ions are also welcome dopants in hosts such as yttrium vanadate, as well as in
various double-tungstates, borates, sesquioxides, and glasses. In particular,
ytterbium-doped double-tungstates such as Yb3+:KYW and Yb3+:KGW make
efficient use of in-band pumping at 981 nm (rather than at 940 nm), further
reducing the quantum defect q and therefore the heat dissipated. Moreover, the
large transition linewidths and good thermal properties associated with these hosts
render them ideal for use as thin-disk, mode-locked lasers that can generate average
powers in excess of 100 W and pulses with durations below 100 fs. Thin-disk lasers
may also be fabricated using Nd3+:YVO4 and Nd3+:YAG.



Titanium-Doped Sapphire

The Ti3+:sapphire laser is widely used because it is tunable over a substantial range
of wavelengths. Another of its merits is that it can be mode-locked to provide
ultrashort pulses (Sec. 16.4D). The energy levels relevant to lasing in this four-level
system are displayed in Fig. 16.3-3.

Figure 16.3-3 (a) Selected energy bands of Ti3+:Al2O3. The red arrow indicates the
principal laser transition of this vibronic system, which is tunable between 700 and
1050 nm. Dark-tolight shading in the bands indicates a decrease in relative
occupancy. (b) Schematic diagram of a Ti3+:Al2O3 mode-locked laser. The two prisms
within the shaded box provide intracavity dispersion compensation (Sec. 23.2).
Wavelength tuning over tens of nm is achieved by means of a rotatable birefringent
filter (BRF) that acts as a bandpass filter for the polarized intracavity beam; tuning
over a larger range is effected by adjusting one of the prisms. The green pump light
is often provided by a frequency-doubled Nd3+:YVO4 laser, such as that illustrated in
Fig. 16.3-1.

During the course of crystal growth, a small fraction (≈ 1%) of the Al3+ ions in
sapphire are replaced by Ti3+ ions. Like ruby, the material is principally sapphire and
therefore has a refractive index n ≈ 1.76. Optical pumping can be provided by a
frequency-doubled Nd3+:YVO4 or Nd3+:YAG DPSS laser operating at 532 nm (Fig.
16.3-1), or by a frequency-doubled Yb3+:YAG DPSS laser operating at 515 nm (Fig.
16.3-2). Alternatively, direct pumping with a green laser-diode array can be used.

Each titanium ion, which has a single 3d1 active electron (Table 14.1-1), is
surrounded by six oxygen atoms at an octahedral site. This ion is therefore subjected
to significant crystal-field and orbital interactions. As with other transition-metal
ions in dielectric hosts, the titanium-doped sapphire energy levels displayed in Fig.
16.3-3 are designated by group-theoretical, rather than by term symbols (Sec. 14.1B).
Moreover, the electronic energy levels are strongly coupled to the lattice vibrations,
resulting in broad bands of vibronic states. Stimulated emission is thus accompanied



by the simultaneous emission of one or more phonons. The occupancy of the 2T2
band follows a Boltzmann distribution so that its upper reaches are essentially
unoccupied and the system behaves as a four-level laser, as shown in Fig. 16.3-3(a).

The laser transition indicated by a red arrow in Fig. 16.3-3(a) can be tuned over a few
tens of nm by making use of a rotatable birefringent filter installed at the Brewster
angle within the cavity [Fig. 16.3-3(b)], which acts as a bandpass filter for the
polarized intracavity beam. Greater changes in wavelength are effected by adjusting
the internal optics since the cavity group velocity dispersion changes with
wavelength. The net result is that a broad range of wavelengths, from 700 nm in the
red to 1050 nm in the near infrared, can be accessed. A typical Ti3+:Al2O3 laser
provides ≈ 5 W of optical power when operated CW. When mode-locked, it can
generate a sequence of 10-fs, 50-nJ pulses with peak power Pp ≈ 5 MW, at a
repetition rate of ≈ 80 MHz; repetition rates exceeding 10 GHz can also be attained.
Applications range from multiphoton imaging to nonlinear optics to petawatt
physics.

Because of the importance of lattice vibrations in the tunability of this laser, it is
described as a phonon-terminated or vibronic laser. In general, a vibronic
transition comprises a simultaneous change in the electronic and vibrational states
of a system. The chromium-doped forsterite laser and the alexandrite laser (Fig.
14.1-4) also fall in this class, as does the dye laser (Sec. 16.3E) since molecular
vibrations play the same role as lattice vibrations. It is often convenient to use in-
band pumping with vibronic lasers.

Transition-Ion-Doped Zinc Chalcogenides

A family of vibronic lasers with continuous tunability, analogous to the Ti:sapphire
laser but in the mid infrared, makes use of zinc-chalcogenide ceramic hosts doped
with transition-metal ions. Among the most widely used members of this family are
Cr2+:ZnS and Cr2+:ZnSe. Both ZnS and ZnSe are wide-bandgap II–VI semiconductor
materials (Fig. 17.1-8) that are readily doped with Cr2+ ions that substitute for a
fraction of the Zn2+ ions comprising the lattice. (This substitutional doping is to be
distinguished from doping with ions of valences other than two for purposes of
creating n-and p-type semiconductors.) These four-level solid-state lasers offer
single-mode, linearly polarized, CW operation on the 5E → 5T2 transition with Po ≈
100 W, 𝕄2 ≤ 1.1, linewidth < ½ nm, and ηc ≈ 25%. Using an external cavity, they can
be tuned over a wavelength range stretching from 1.9 to 3.0 μm. Though pumping
can be effected by means of a laser-diode array, as with traditional DPSS lasers,
Er3+:silicafiber pumps offer greater optical power in this wavelength range. Much as
with the Ti3+:sapphire laser, a mode-locked Cr2+:ZnS laser can provide a sequence of
30-fs, 50-nJ pulses at a repetition rate between 80 MHz and 1 GHz, with Pp ≈ 1.7
MW and Po ≈ 5 W.



Other members of this family of materials include Fe2+:ZnS and Fe2+:ZnSe, which
can be tuned over a wavelength range stretching from 3.8 to 4.8 μm. These longer-
wavelength lasers offer single-mode, linearly polarized CW operation with Po ≈ 100
mW, 𝕄2 ≤ 1.2, and linewidths < 1 nm. In the current state of their development,
however, the iron-doped devices require cooling to achieve CW operation. Efficient
pumping is provided by a Tm3+:silica-fiber laser. In spite of the fact that transition-
iondoped zinc-chalcogenide lasers operate only over a limited range in the mid IR,
they have the merit of being continuously tunable. Other commonly encountered
sources of radiation in the mid infrared are considered in Sec. 18.4D.

B. Fiber Lasers
With suitable feedback, rare-earth-doped fiber amplifiers can be made to operate as
highly efficient fiber lasers. The most commonly used dopant ions for fiber lasers
are neodymium (Nd3+), ytterbium (Yb3+), erbium (Er3+), and thulium (Tm3+). These
ions offer useful laser transitions at near-infrared wavelengths, in the vicinity of
1.06, 1.07, 1.55, and 2.00 μm, respectively (among many other wavelengths). Silica-
glass fibers are generally preferred as hosts because they are endowed with optical
and mechanical properties superior to those of most other glass fibers. However, the
transparency of silica glass diminishes appreciably for wavelengths longer than
about 2.2 μm, so that fibers fabricated from fluorides and other glasses are also used
(Sec. 10.5). To first order, the energy levels of rare-earth-ion laser transitions are
little affected by the host material, as explained in Sec. 14.1B. Consequently, the
energy-level diagrams for Nd3+, Yb3+, and Er3+ ions embedded in silica-fiber hosts
are nearly indistinguishable from those presented in Figs. 14.1-5, 16.3-2, and 15.3-6,
respectively, at the illustrated resolution. Fiber lasers, like diode-pumped solid-state
(DPSS) lasers, are usually pumped by laser-diode arrays, although they are
sometimes pumped by other fiber lasers. The first fiber laser, developed by Elias
Snitzer in 1961 (one year after Maiman demonstrated the ruby laser), made use of a
core of neodymium-doped glass.

Fiber lasers offer many salutary features, including:

High optical power (the large area-to-volume ratio facilitates cooling).

High power-conversion efficiency.

Diffraction-limited beam quality.

Stability against temperature variations and vibrations.

Compact, robust, and maintenance-free construction.

Ability to operate on low-gain transitions (the gain region can be arbitrarily
long).

A simplified schematic illustrating a typical fiber laser that uses diode-laser pumping
and fiber Bragg-grating (FBG) reflectors is displayed in Fig. 16.3-4. FBGs have



the merit that they are robust and do not require realignment.

Figure 16.3-4 (a) Simplified schematic of a laser-diode-pumped fiber laser that
makes use of fiber Bragg gratings (FBGs) as reflectors. Pumping often involves
arrays of broad-area multimode laser diodes whose light is coupled into the outer
core of the fiber via multimode couplers, sometimes in both the forward and
backward directions. (b) Concentric double-clad fiber configuration. A single-mode
inner core fosters single-transverse-mode oscillation. Many double-clad
configurations are designed to increase the overlap between the inner core and the
skew rays of the outer core (Fig. 10.12). For example, the inner core may be shifted
off-center (toward the edge of the outer core), or the outer core may be rectangular,
hexagonal, octagonal, or D-shaped.

A double-clad fiber configuration enables the laser mode to propagate in the inner
core while the multimode pump light circulates in the inner cladding/outer core.
This configuration is widely used to avoid the deleterious nonlinear effects that
would arise from a high-power pump concentrated in the small inner core.Fiber
laser operation has been achieved in many configurations, and makes use of various
forms of end pumping and side pumping. Slab-waveguide fiber lasers, also
known as ribbon fiber lasers, have a rectangular cross section and can provide
output powers greater than those offered by traditional fibers. Photonic-bandgap
fiber lasers can be configured so that the light emerges radially from the full
circumferential surface of the fiber, rather than axially.

Master-Oscillator Power-Amplifier (MOPA)

A master-oscillator power-amplifier (MOPA) is a configuration consisting of a
master-oscillator (seed laser) followed by an optical amplifier to boost its output
power. MOPAs may contain various combinations of fiber, diode-pumped solid-
state, and semiconductor lasers and amplifiers. In the special case when the power-
amplifier is a fiber-amplifier, a MOPA is also referred to as a master-oscillator
fiber-amplifier (MOFA). Though it is admittedly more complex to implement a
MOPA than to use a single high-power laser to directly produce a given output
power, the MOPA approach enjoys a number of distinct advantages. These stem
from the relative ease of controlling a low-power seed laser, in which devices such as
filters and modulators can be readily inserted because of the low-power intracavity
environment; such devices can alternatively be placed between the oscillator and
amplifier. This in turn facilitates the ability to optimize the MOPA output



parameters, such as wavelength tuning range, laser linewidth, beam quality, and
pulse duration. Moreover, the power-amplifier segment of the MOPA is subject only
to the limited output power of the seed laser and not to the large intracavity optical
power associated with full-fledged laser oscillation.

Another advantage of the MOPA configuration is its modularity. This feature offers a
template for using concatenated amplifier stages with successively greater
capacities, such as modal area and optical power. An example is provided by the
MOPA at the National Ignition Facility (NIF), as described in Sec. 15.3B. A diode-
pumped Yb3+�doped fiber laser, by virtue of its stability and the high quality of its
beam, serves as the master-oscillator. The 1-nJ, 5-ns pulse that it generates is split
and sent to 192 main beamlines, where cascades of Nd3+-doped glass power
amplifiers increase the pulse energy to 20 kJ in each beamline.

MOPAs do have some disadvantages, aside from increased complexity. These
include the possibility of amplifier-to-oscillator feedback and increased noise arising
from amplified spontaneous emission (ASE), but these effects can often be
mitigated by making use of optical isolators and by operating at saturation,
respectively.

Ytterbium-Doped Silica-Fiber Lasers

Ytterbium-doped silica-fiber lasers offer excellent performance. Operating on the
2F5/2 → 2F7/2 transition (Fig. 16.3-2) as quasi-three-level systems, double-clad
Yb3+:silica-fiber lasers pumped by InGaAs laser-diode arrays at λo = 940 nm
generate light in the wavelength range 1020–1200 nm. At very low powers (Po < 1
W), the use of short (few-cm-long) fibers provides linearly polarized single
longitudinal-and transverse-mode operation with laser linewidths in the kHz range.
The laser linewidth increases with increasing output power, reaching ≈ 100 kHz at
100 W. Single fibers of modest lengths can provide multi-kW output powers in the
form of single-mode, near-diffraction-limited beams (𝕄2 ≈ 1.1). The 9% quantum
defect leads to large power-conversion efficiencies, ηc ≈ 40%. These lasers can also
be operated at high average powers in Q-switched and mode-locked configurations
(Sec. 16.4D; Example 16.4-3).

Tandem pumping.
An effective way of increasing the power of a fiber laser beyond the multi-kW level is
to make use of tandem pumping. In this technique, the output of one or more
double-clad fiber lasers pumps another fiber laser or a fiber amplifier. Using in-band
pumping, the wavelength of the pump laser can be very close to that of the pumped
fiber, resulting in a small quantum defect. This, along with the low divergence (high
brightness) of the fiber laser pump, reduces heating and increases the system wall-
plug efficiency. The net result is the availability of high-power operation using a
reduced length of pumped fiber that offers a concomitant reduction in fiber
nonlinearity.



EXAMPLE 16.3-2.

High-Power, Tandem-Pumped, CW Yb3+:Silica-Fiber MOFA. An
example of tandem pumping in the form of a single-stage MOFA is provided by
a 15-m-long Yb3+:silica-fiber power-amplifier seeded by a 1-kW Yb3+:silica-fiber
master-oscillator. Using in-band pumping in the forward and backward
directions, with 13 kW from Yb3+:silica-fiber lasers operating at 1018 nm, this
system produces 10 kW of optical power at 1070 nm in the form of a single-
mode, near-diffraction-limited optical beam. The power can readily be scaled up
to 20 kW CW and coherent beam combination can further boost the power
to more than 30 kW CW in a single mode. Incoherent beam combination
yields in excess of 100 kW CW in multimode operation, with 𝕄2 ≈ 50.

Applications.
Because of the many salutary features of ytterbium-doped fiber lasers and MOFAs,
they are commercially available with a range of output powers and they find
application in a broad variety of scientific and industrial venues. At low powers (Po ≈
1–100 W) these lasers are used for holography, interferometry, metrology,
spectroscopy, sensing, 3D lidar, and optical trapping. At medium powers (Po ≈ 0.1–1
kW) they find use for precision cutting, micro-drilling, micro/nanoscale machining,
and additive manufacturing. At high powers (Po ≈ 1–20 kW), ytterbium-doped fiber
devices excel for materials processing and for cutting high-reflectance metals, while
at ultra-high power levels (Po > 20 kW) they are invaluable for welding, drilling,
precision cutting, annealing, and brazing.

High-power fiber lasers and MOFAs also find use as directed-energy weapons
(DEWs). They are generally superior to other types of lasers (e.g., chemical, solid-
state, and free-electron lasers) in this connection because of their high power, high
efficiency, good beam quality, compactness, and immunity to vibrations and
temperature fluctuations. The efficacy of Yb3+:silica-fiber lasers in this capacity is
demonstrated by the U.S. Navy Laser Weapon System (LaWS). This system
comprises six 5.5-kW fiber lasers whose outputs are incoherently combined into a
single 33-kW beam and transmitted through a beam director. An advanced version
delivers a 150-kW beam.

Erbium-Doped Silica-Fiber Lasers

Erbium-doped silica-fiber lasers owe their prominence to their progenitors, the
erbium-doped silica-fiber amplifiers (EDFAs) widely used in optical fiber
communication systems (Secs. 15.3C and 25.1C). Operating on the 4I13/2 → 4I15/2

transition as quasi-three-level systems (Fig. 15.3-6), Er3+:silica-fiber lasers pumped
by strained-layer In-GaAs laser-diode arrays at λo = 980 nm lase in the vicinity of the



conventional (C) and long (L) telecommunications bands. The fibers are often co-
doped with ytterbium to increase efficiency and reduce fiber length. By virtue of its
large cross section and high doping density, Yb3+ is highly effective for absorbing the
laser-diode pump radiation and transferring the excitation energy to the Er3+ ions.
Co-doping is also useful for extending the wavelength range and for preventing
erbium-ion clustering.

Narrow laser linewidths (≈ 1 kHz) are available when CW erbium-doped silica-fiber
lasers are operated at low power levels (Po ≈ 10–1000 mW). At modest power levels
(Po < 10 W), single-frequency (FWHM laser linewidth ≈ 50 kHz), linearly polarized,
diffraction-limited (𝕄2 ≈ 1.1) operation is available in the wavelength range 1530–
1625 nm, with power-conversion efficiencies ηc ≈ 10%. Multimode operation (𝕄2 ≈
10) of an erbium-doped MOFA in the vicinity of 1567 nm (FWHM linewidth ≈ 400
GHz) offers substantially higher output powers (Po ≈ 2–5 kW) along with higher
efficiencies (ηc ≈ 20%). Mode-locked operation at 1550 nm provides 5-μJ pulses of
500-fs duration at repetition rates up to 2 MHz, with peak powers ≈ 10 MW, average
powers ≈ 10 W, and 𝕄2 ≈ 1.4. These devices have applications in
telecommunications, metrology, sensing, polymer welding, non-metal cutting, and
low-loss power transmission.

The output power of the Er3+:silica-fiber laser is limited in comparison with that
available from the Yb3+:silica-fiber laser, in part because of the difference in the
quantum defect q [see (15.2-32)], which is far larger for erbium (37%) than for
ytterbium (9%). Though the quantum defect for erbium can be reduced to 5% by
using in-band pumping at 1480 nm, rather than quasi-three-level pumping at 980
nm, there are concomitant disadvantages to doing so.

Thulium-Doped Silica-Fiber Lasers

Thulium-doped silica-fiber lasers operate at yet longer wavelengths, namely in the
1.8– 2.1-μm range, as quasi-three-level systems on the 3F4 → 3H6 transition. Double-
clad Tm3+:silica-fiber lasers and MOFAs pumped by AlGaAs laser-diode arrays at λo
= 793 nm can generate output powers in excess of 500 W CW in the form of single-
mode (FWHM laser linewidth ≈ 75 GHz), near-diffraction-limited (𝕄2 ≈ 1.1) beams;
linear polarization can be obtained by operating at powers < 200 W. The output
power can be scaled up by making use of coherent beam combination. Multimode
operation leads to optical powers > 1 kW CW. Tunable pulsed operation in the
wavelength range 1900–2050 nm can deliver 1-mJ pulses of 1-ns duration at
repetition rates up to 50 kHz, with peak powers ≈ 1 MW, average powers ≈ 20 W,
and 𝕄2 ≈ 1.1.

Cross-relaxation, in this case a salutary effect, results in the creation of two Tm3+

ions in the upper laser level for each absorbed pump photon. This in turn leads to a
high power-conversion efficiency, ηc ≈ 35%, notwithstanding the large (96%)



quantum defect. Since light at a wavelength of ≈ 2 μm is strongly absorbed by water
and biological soft tissue, the thulium-doped fiber laser is useful for surgery and
lithotripsy. It is also suitable for remote sensing and for the processing of plastics
that are transparent in the visible region.

Comparison of Fiber and DPSS Lasers

Fiber lasers are most notably distinguished from diode-pumped solid-state (DPSS)
lasers (Sec. 16.3A) in that fiber resonators impose narrow lateral confinement and
have long lengths (Chapter 10). This latter feature can yield high optical gain even
for transitions with small gain coefficients. Another distinction is that the
inhomogeneous broadening associated with glass-fiber hosts generally leads to
broader transition linewidths than does the homogeneous broadening associated
with crystalline or ceramic hosts.

Both classes of lasers provide high performance and both are expected to enjoy
substantial further advances. It is useful, however, to highlight a few specific
distinctions between the two classes of lasers in the current state of their
development: In general, fiber lasers are superior to DSPP lasers by virtue of their:

Higher output power (CW and pulsed).

Higher power-conversion efficiency.

Superior beam quality that persists to high-power operation.

Superior immunity to thermal and vibrational effects.

Superior performance on low-gain transitions.

On the other hand, DPSS lasers have the edge over fiber lasers because they offer:

Reduced nonlinearities (smaller length and larger spatial extent of active
region).

Reduced stimulated Raman and stimulated Brillouin scattering.

Broad wavelength tunability associated with vibronic lasers (e.g.,
Ti3+:sapphire).

Possibility of using pump sources with poor beam quality.

C. Raman Lasers

Raman fiber lasers (RFLs).
These devices operate on the basis of stimulated Raman scattering (SRS), a process
considered in Sec. 14.5C and revisited in Sec. 15.3D in connection with Raman fiber
amplifiers (RFAs). The process of stimulated Raman scattering is illustrated in Fig.
15.3-7: A signal photon of energy hνs stimulates the emission of a clone signal
photon that is obtained by Stokes-shifting the pump photon by the Raman



vibrational energy hνR so that the energy of the clone photon precisely matches that
of the initial signal photon. The optical gain of a RFA is governed by the Raman gain
coefficient γR set forth in (22.3-15); its bandwidth is determined by the vibrational
spectrum of the glass host, as described in Sec. 15.3D and illustrated in Fig. 15.3-7.

Just as a rare-earth-doped fiber amplifier can be converted into a fiber laser by
introducing optical feedback as shown in Fig. 16.3-4, so too can a Raman fiber
amplifier be converted into a Raman fiber laser (RFL). Fiber Bragg gratings serve as
reflectors that define the resonator, fostering oscillation at those frequencies where
their reflectance is large (Sec. 7.1C). Distributed-feedback (DFB) resonator
configurations can also be used (Sec. 18.3C). The oscillation frequency νS is reduced
below the pump frequency νp by the Stokes frequency νR, which can take on any
value within the vibrational spectrum of the glass host, as shown in Fig. 15.3-7.
Though bulk Raman lasers were demonstrated early on, fiber implementation
brought Raman technology to the fore for several reasons: 1) fibers offer long
lengths and therefore large gains; 2) fibers can support large intensities in a single-
mode core; 3) fibers are efficiently pumped by diode-pumped solid-state lasers; and
4) fibers readily accommodate multiple fiber Bragg gratings. We emphasize that the
Raman laser makes use of Raman gain, rather than a population inversion and
stimulated emission, so it differs from the usual laser in an essential way.

Cascaded Raman fiber lasers.
A unique feature of the Raman interaction is that the Stokes shift is independent of
the pump frequency. Indeed, the Stokes-shifted RFL oscillation frequency generated
using a resonator comprising a particular pair of fiber Bragg gratings, say FBG1, can
itself serve as a pump within the same fiber. As shown in Fig. 16.3-5(a), this second
pump, which has reduced frequency νp1 = νp − νR, can then create a second-order
Stokes-shifted oscillation, established at the frequency of maximum reflectance νp2
of a second pair of fiber Bragg gratings, FBG2.



Figure 16.3-5 (a) Cascaded Stokes shifts of multiple orders. (b) Schematic of a
Raman phosphosilicate-fiber laser. The double-clad Yb3+:silica-fiber pump laser is
itself pumped by a laser-diode array. Percentage values indicated below the FBGs
represent power reflectances at the specified wavelengths (in nm).

The cascade can continue, using nested pairs of FBGs, until terminated by the use of
an output coupler that directs light out of the fiber at the desired frequency. Raman
fiber lasers comprising multiple orders of Stokes shifts thus offer a greatly expanded
range of possible wavelengths. They are known as cascaded Raman fiber lasers.



EXAMPLE 16.3-3.

Cascaded Raman Phosphosilicate-Fiber Laser. A cascaded Raman fiber
laser can be constructed by using a double-clad ytterbium-doped fiber laser that
emits in the 1050–1120-nm region (Sec. 16.3B) as a pump for a 1-km length of
phosphosilicate-fiber Raman wavelength shifter, as depicted in Fig. 16.3-5(b).
The Yb3+:silica-fiber pump laser, which is itself pumped by a laser-diode array
operating in the vicinity of 960 nm, emits single-mode light that can be coupled
into the single-mode Raman wavelength shifter more efficiently than can
multimode light from a laser-diode array. As a specific example, assume we wish
to convert ytterbium-laser pump light at 1064 nm (282 THz) to a longer
wavelength, say 1484 nm (202 THz), so that the Raman fiber laser can be used
to pump a Raman fiber amplifier or an erbium-doped fiber amplifier (Sec.
15.3D). Since we seek a significant frequency shift (80 THz), we make use of
phosphosilicate fiber, which has a large Stokes shift, νR ≈ 40 THz, thereby
enabling the desired frequency conversion using only two Stokes orders. We
could alternatively use germanium-doped silica fiber, but this would require six
Stokes orders since the Stokes shift for silica fiber is far smaller, νR ≈ 13 THz, as
is clear from Fig. 15.3-7. As portrayed in Fig. 16.3-5(b), a first pair of fiber Bragg
gratings, FBG1, is used to shift the 1064-nm pump light down by 40 THz in
frequency to 1239 nm, while a second pair, FBG2, shifts the light down another
40 THz in frequency to the desired wavelength of 1484 nm. The FBG1 pair have
reflectances of 100%, while the reflectance of one member of the FGB2 pair is
reduced to 50% so that light can be coupled out of the RFL at 1484 nm. A
compact, commercially available RFL, such as that shown in Fig. 16.3-5(b), can
deliver tens of watts of single-mode CW optical power with a bandwidth of ≈ 2
nm at any desired wavelength within the range of 1100–1700 nm. The power-
conversion efficiencies of the ytterbium-doped fiber pump laser and the
pump/Raman-shifter combination are approximately 40% and 10%,
respectively.

The levels of optical power obtainable from Raman lasers can be extended to
hundreds of watts by making use of novel configurations, such as seed lasers in
combination with Raman fiber amplifiers. Optical powers can be further increased
to the multikW regime by employing mixed rare-earth/Raman amplification in
conjunction with Yb3+-doped fibers. Raman fiber lasers are useful for many
applications, including laser pumping, optical fiber communications,
supercontinuum generation, materials processing, and clinical medicine. They are
particularly suitable for pumping Raman fiber amplifiers in dense wavelength-
division-multiplexed (DWDM) systems and for the remote pumping of erbium-
doped fiber amplifiers. Ultralow-threshold, high-efficiency, single-mode CW Raman
lasers have also been fabricated using ultrahigh-Q toroidal silica microcavities. The



most attractive feature of a RFL is that oscillation over a broad range of wavelengths
is supported by suitable choice of the pump wavelength, fiber material, and fiber
Bragg gratings.

Stimulated Brillouin scattering [Fig. 14.5-5(d)] can be used in an analogous way to
construct Brillouin fiber lasers. The Brillouin frequency shift and bandwidth for
silica fibers are in the vicinity of 10 GHz and 100 MHz, respectively — these values
are orders of magnitude lower than those for the Raman frequency shift and
bandwidth in the same material.

EXAMPLE 16.3-4.

Silicon Raman Laser. Low-threshold, CW silicon Raman lasers that operate
at room temperature have been fabricated using integrated-optic-ring
resonators on silicon chips. Though Si has a high Raman gain coefficient, the
substantial losses associated with free-carrier absorption induced by two-photon
absorption must be limited to achieve high gain. A Si Raman laser of this kind
has been implemented by using a 3-cm-long racetrack-shaped ring resonator
consisting of a silicon-on-insulator (SOI) rib waveguide [Fig. 9.3-5(d)] with a rib
width of 1.5 μm.2 Racetrack-shaped p-type and n-type regions, separated from
each other by about 6 μm, hug the outside and inside contours of the i-type rib-
waveguide resonator, respectively. A reverse-bias field applied between the
doped regions serves to sweep out the electron–hole pairs generated by two-
photon absorption that are responsible for loss. A bus waveguide, connected to
the resonator via an integrated-photonic directional coupler, couples pump light
at 1550 nm into the resonator and Raman laser light at 1686 nm out of the
resonator. An output power Po = 50 mW is obtained at a reverse bias of 25 V,
with an optical-to-optical slope efficiency ηs = 28% and a threshold optical pump
power Pt = 20 mW. Even under zero-bias conditions, the output power is greater
than 10 mW and the threshold pump power is 26 mW. Silicon Raman lasers
such as these can access wavelengths substantially longer than the bandgap
wavelength of Si (λg = 1.11 μm), but they require auxiliary pump lasers, which is
challenging for silicon (see Sec. 17.1B).

Cascaded silicon Raman lasers have also been fabricated. In one example, a
pump at 1550 nm produces a Raman output at 1686 nm by virtue of a Stokes
shift at νR = 15.6 THz, along with an output at 1848 nm resulting from a second-
order Stokes shift.3 The single-mode, CW output at 1848 nm has an optical
power Po = 5 mW, a spectral width Δν < 2.5 MHz, an optical-to-optical slope
efficiency ηs ≈ 3%, and an optical-to-optical efficiency ηo ≈ 1%. The threshold
optical pump power is Pt = 120 mW.

D. Random Lasers



As discussed in Secs. 16.1 and 16.2, the oscillation frequencies of conventional lasers
are determined by the Fabry–Perot resonator modes together with the gain profile
of the active-medium resonant transition. The output light, transmitted through a
partially reflecting exit mirror, typically has a narrow spectrum, strong directionality,
and a high degree of temporal and spatial coherence. Scattering from the laser
medium introduces loss and is assiduously avoided.

When scattering in the active medium is very strong, however, it itself can provide
feedback. Random lasers operate on the basis of feedback provided by multiple
scattering within a disordered gain medium, which serves as a closed 3D cavity.
Photons traveling within the medium can be viewed as executing a random walk in
3D or, alternatively, the medium may be considered as a collection of low-Q cavities
coupled by the randomly scattered photons [Fig. 16.3-6(a)]. Because strong
scattering is associated with disordered media, lasers that operate on this principle
are known as random lasers. In distinction to conventional lasers, the radiation
scattered back to any location in the active medium has a random phase. The
feedback is thus incoherent and intensity-based, rather than coherent and field-
based. Inasmuch as resonant feedback is absent in such random lasers, the central
oscillation frequency is governed by the active-medium gain profile. Random lasers
can be implemented in 1D and 2D geometries as well, corresponding to scattering
media in the form of fibers and plates, respectively.

Figure 16.3-6 (a) A random laser relies on incoherent and nonresonant feedback
provided by multiple scattering, as well as a long pathlength within the gain
medium. The modes can be spatially localized or extended, and both versions can
contemporaneously coexist. Recurrent scattering (illustrated schematically as loops)
represents an alternative scenario in which the field repeatedly retraces one or more
local paths that collectively serve as a local cavity, thereby providing coherent and
resonant feedback. (b) Close-packed ZnO nanocrystallites serve as both the active
medium and the scattering feedback elements in a microrandom laser.

When ground into powders, conventional solid-state laser materials such as ruby,
Nd3+:YAG, Nd3+:glass, Ti3+:sapphire, Cr2+:ZnSe, and GaAs can function as random
lasers known as powder lasers or plasers. In many such powders, the gain and
scattering media are one-and-the-same, but this is not the only possible
configuration. For example, rhodamine-6G dye molecules serve well as an active
medium, while Al2O3 microparticles function as a scattering medium, when both are
placed in a solution of methanol. Random-laser active media encompass inorganic



dielectrics, polymers, liquids, dye solutions, dye-doped liquid crystals, disordered
semiconductor nanostructures, and even biological tissues.

Substantial gain can be attained in random lasers because of the large overall path-
length in the active medium that is engendered by the multiple scattering. The onset
of lasing is characterized by two lengths: dst, which represents the mean distance
traveled by a photon before stimulating the net emission of a clone photon; and dex,
which is the mean distance traveled by a photon before it exits the medium. As the
scattering strength increases, so too does dex. When the scattering increases to a
level such that dex just equals dst, each photon generates a clone photon, on average,
before escaping from the medium and a chain reaction of induced photon generation
becomes sustainable. Thus, the stronger the scattering, the lower the threshold
pump power.

The hallmark of random lasers is the absence of directionality and spatial coherence
of the emitted light. Indeed, the spatial lasing pattern from the face of a cuvette
containing a powdered active medium can resemble that of a surface-emitting LED
[Fig. 18.1-11(a)]. However, random lasers share many properties in common with
conventional lasers, including their diversity. They can be pumped optically,
electrically, or by electron beam. Lasing can take place over a broad range of
wavelengths. The sizes of active regions can stretch from the microscopic to the
macroscopic. Indeed, feedback via scattering appears to play an important role in
astrophysical masers, such as those observed from molecular clouds of H2O, OH,
and SiO.

If the constituent particles of the active medium are sufficiently large and regularly
shaped so that they support resonator modes, they can behave instead as random
collections of individual microlasers, each with its own emission direction.
Alternatively, a local configuration of scatterers can support resonances. If the
scattering is recurrent [Fig. 16.3-6(a)], those return paths for which the optical gain
exceeds the loss can serve as cavities. The ensuing laser emission is then sharply
peaked at these fortuitous cavity-mode frequencies. Since different regions of the
random medium support different collections of such return paths, the oscillation
frequencies depend on the particular regions of the material being pumped and
observed. Such lasers are sometimes called coherent random lasers because of
their coherent feedback and spatially random cavity configurations; they are similar
to collections of microlasers with random directions of emission (conventional
microcavity lasers are considered in Sec. 18.5).

Clusters of scatterers can be used to fabricate individual microrandom lasers, in
which light is confined to a volume of the order of a cubic wavelength by strong
scattering rather than by reflection, as illustrated in Example 16.3-5.



EXAMPLE 16.3-5.

ZnO Microrandom Laser. A closely packed collection of several thousand
ZnO nanocrystallites [Fig. 16.3-6(b)], each of the order of tens of nm in
diameter, can coalesce into a microcluster ≈ 1 μm in diameter. The
nanocrystallites serve as both the gain medium and the scattering feedback
elements of a microrandom laser. The emission wavelength λo ≈ 380 nm lies
near the bandgap wavelength of ZnO. Because the optical confinement arises
from scattering, rather than from reflection at the surface of the microcluster,
such microlasers need not have regular shapes and smooth surfaces.

E. Gas and Dye Lasers
Atomic and Ionic Gas Lasers

Atomic and ionic gas lasers such as He–Ne, Ar+, and Kr+, produce the beautiful
multicolored beams that were long a staple of optics laboratories (Table 16.3-1). The
Kr+-ion laser, in particular, generates hundreds of milliwatts of optical power at
wavelengths ranging from λo = 350 nm in the near-ultraviolet to 676 nm in the red.
It can be operated simultaneously on a number of lines to produce “white laser
light.” Many other monoatomic species, and their ions, also serve as active laser
media and operate at innumerable wavelengths in the near-infrared and visible
regions. Nevertheless, atomic and ionic gas lasers are now used principally for
specialized applications since diode-pumped solid-state lasers and laser diodes have
far superior performance, aside from being tunable and physically more robust.

Molecular Gas Lasers

Molecular gas lasers such as the CO2 laser (Table 16.3-1 and Fig. 14.1-7), which lases
in the vicinities of λo = 9.6 and 10.6 μm in the mid infrared, can produce kilowatts of
CW power with high efficiency, and has applications such as cutting, welding, and
engraving. In years past, a favorite in the far-infrared was the methanol (CH3OH)
laser, which oscillates at λo = 119 and 124 μm as well as at myriad other wavelengths
(Table 16.3-1). Indeed, most molecular transitions in the infrared region can be
made to lase; even simple water vapor (H2O) generates laser radiation at many
wavelengths in the far infrared (Table 16.3-1). In recent years, however, quantum
cascade lasers (QCLs) have come to the fore (Sec. 18.4D). Operating at room
temperature and with high power-conversion efficiencies, these devices produce
watts of CW power in the mid-infrared. QCLs have supplanted molecular lasers in
essentially all applications, save those requiring optical powers in excess of 10 W.

Excimer and Exciplex Lasers

Excimer and exciplex lasers are important in the ultraviolet region of the spectrum.
The term excimer, which is a contraction of the phrase “excited dimer,” refers to a



short-lived molecule that contains two atoms in an excited electronic state; the term
exciplex is preferred when the two atoms are not identical. Noble-gas halides form
exciplexes because the chemical behavior of an excited noble-gas atom is similar to
that of an alkali atom, which readily reacts with a halogen. An example of an excimer
laser is F2, which lases at 157 nm in the far ultraviolet. Examples of exciplex lasers,
along with their principal wavelengths of operation, are: ArF (193 nm), KrF (248
nm), XeCl (308 nm), and XeF (351 nm) (Table 16.3-1). ArF exciplexes can be formed,
for example, by passing a 20-ns-duration current pulse through a gas mixture of Ar
and F2 to create a gas discharge. As the exciplexes return to the ground state, they
emit a 150mJ pulse of stimulated emission as the exciplex components dissociate
(the individual atoms often repel each other). Since a lower laser level does not
exist, exciplex lasers enjoy a built-in population inversion.

Since ultraviolet light does not penetrate deeply into most materials, exciplex lasers
find use in applications involving the processing of delicate materials. The UV light
from these lasers disrupts the molecular bonds at the surface of the material,
vaporizing it via ablation rather than by heating, burning, or cutting. This, along
with the substantial energy per pulse that can be generated, makes exciplex lasers
suitable for the precision micromachining of polymers and for carrying out sensitive
dermatological and refractive surgeries. The most important application of ArF
lasers is the fabrication of microelectronic and photonic integrated circuits with
feature sizes smaller than 10 nm. This is achieved by making use of optical
lithography in conjunction with multiple patterning and liquid-immersion
techniques (to increase the numerical aperture). Feature sizes continue to shrink as
optical lithography migrates toward extreme-ultraviolet and X-ray wavelengths.
Other nanofabrication techniques include electron-beam and focused ion-beam
lithography.

Chemical Lasers

Chemiluminescence, the emission of light via a chemical reaction, is observed when
the reaction between two or more substances releases sufficient energy to populate
the excited state of a reaction product (Sec. 14.5A). Chemical lasers, which
comprise mixtures of gases, are self-pumped in the sense that the pump energy
derives from a chemical reaction in the active medium itself. The HF laser, which
delivers megawatts of optical power in the 2.7–2.9-μm wavelength range, is perhaps
the best known among this class of lasers. Its construction resembles that of a
rocket engine: it contains a combustion chamber, nozzles, gas-injection
mechanisms, and a resonator. As a simplified explanation of its operation, a mixture
of H2 and F2 gases is subjected to an electric discharge, which results in the
production of an HF molecule in an excited vibrational state, denoted HF*. This
molecule emits an infrared photon and dissociates. Its components in turn react
with the H2 and F2 gases to create other vibrationally excited molecules, creating a
chain reaction of sorts. Other chemical lasers include the “chemical oxygen–iodine
laser” (COIL) and the “all gas-phase iodine laser” (AGIL).



In earlier decades, the high power and good beam quality of chemical lasers made
them prime candidates for use as directed energy weapons (DEWs). In the end,
however, they were found to be too bulky, too heavy, too inefficient, and too
hazardous for shipboard use. In recent years, attention has shifted toward solid-
state, diode-pumped, free-electron, and fiber lasers. Fiber lasers, in particular, are
currently of substantial interest for the development of DEWs because they offer
high power, high efficiency, good beam quality, compactness, and immunity to
vibrations (Sec. 16.3B).

EXAMPLE 16.3-6.

Deuterium Fluoride Chemical Laser. The most notorious chemical laser,
perhaps, is the U.S. Navy’s Mid-Infrared Advanced Chemical Laser (MIRACL),
located at the White Sands Missile Range in New Mexico. This formidable DEW
burns ethylene (C2H4) with nitrogen trifluoride (NF3). The resulting free
fluorine atoms combine with injected deuterium gas to form vibrationally
excited deuterium fluoride molecules, DF*. The photon emission, molecular
dissociation, and creation of new vibrationally excited molecules is similar to
that in the HF laser. However, the DF device lases on multiple lines in the 3.5–
4.0-μm wavelength range, which falls within the MWIR atmospheric window so
that its radiation is absorbed far less than that emitted by the HF laser. The DF
laser produces multi-megawatt levels of CW radiation over durations ≈ 1
minute, in the form of a 14 cm × 14 cm square beam. It is the highest power CW
chemical laser in the Western Hemisphere.

Dye Lasers

We include a brief description of organic dye lasers for completeness. Dye lasers
played a central role in optics and photonics in decades past because of their ability
to be tuned over a substantial range of wavelengths. The active medium of a dye
laser is generally a solution of an organic dye compound (a carbon-based fluorescent
soluble stain) in alcohol or water, with a concentration ≈ 10−4 M. The dye solution is
usually rapidly circulated since organic dyes tend to decompose in the presence of
light.

Dyes typically exhibit large transition linewidths, accommodating broad wavelength
tunability as well as ultrashort pulse generation with passive mode locking.
Polymethine dyes provide oscillation in the red and near infrared (0.7–1.5 μm),
xanthene dyes lase in the visible (500–700 nm), coumarin dyes lase in the violet,
blue, and green (390–500 nm), and scintillator dyes lase in the ultraviolet (< 390
nm). Rhodamine-6G, the quintessential example of an active dye molecule, can be
tuned over the wavelength range 560–640 nm. Dye molecules can also be imbedded
in a polymer, glass, or crystalline host to form a solid-state dye laser. Dye lasers
are typically in-band pumped (Fig. 14.1-8) with the help of an external laser such as



a doubled Nd3+:YAG laser or a laser diode. Fabry–Perot and ring-laser resonators are
the most prevalent designs, with a prism or diffraction grating inserted in the beam
path to provide wavelength tuning.

Unfortunately, dye lasers require high maintenance, in no small part because of the
limited chemical life of the dye in the solvent. As a result, diode-pumped solid-state
lasers (Sec. 16.3A) and laser diodes (Sec. 18.3) have by-and-large replaced the dye
laser, except in the most specialized of applications. The diode-pumped
Ti3+:sapphire laser, for example, offers broader tunability than a typical dye laser in
the vicinity of λo = 800 nm, and requires little maintenance. A frequency-doubled
Ti:sapphire laser offers a band of tunable radiation in the vicinity of 400 nm.
Tunability near 600 nm, in the gap between 400 and 800 nm, can be achieved by
frequency-doubling the output of an optical parametric oscillator operating in the 1–
2-μm wavelength region (Sec. 22.2C).

F. X-Ray and Free-Electron Lasers
A number of approaches are commonly used to generate coherent light in the
extreme-ultraviolet (EUV) spectral band, as well as in the soft-X-ray (SXR)
and hard-X-ray (HXR) bands, which lie on the short-wavelength side of the EUV
band. The γ-ray band comprises wavelengths yet shorter than those in the HXR
band. The wavelengths and photon energies of these bands are presented in Fig.
16.3-7.

Figure 16.3-7 Wavelengths and photon energies for the extreme ultraviolet (EUV),
soft-X-ray (SXR), hard-X-ray (HXR), and γ-ray spectral bands. The boundaries
dividing the various bands are somewhat arbitrary. However, for concreteness we set
the boundary between the EUV and SXR bands at λo = 10 nm and the boundary
between the SXR and HXR bands at λo = 0.2 nm. The Ångström length scale is
widely used in the X-ray literature (1 Å ≡ 10−10 m = 0.1 nm). The photon energy is
related to the wavelength via E(keV) ≈ 1.24/λo(nm), in accordance with (13.1-6).

We begin with a discussion of coherent X-ray generation using atomic EUV and
X-ray lasers. Two other methods are also widely used for generating coherent X-
rays: X-ray free-electron lasers (XFELs), which use particle accelerators to
provide pulse energies in the mJ range, as discussed subsequently; and high-
harmonic generation (HHG), which provides pulse energies in the μJ range and
is examined in Sec. 23.5D. HHG systems are compact and versatile; individual
spectral and/or temporal components can be extracted by the use of gating
techniques.

Atomic EUV and X-Ray Lasers



Using atomic transitions to achieve laser action in the X-ray region of the
electromagnetic spectrum is a challenging enterprise because of the difficulty of
achieving a population inversion at short wavelengths. According to (16.1-16), for a
fixed value of tsp, the threshold population difference Nt ∝ 1/τp λ2 g(ν). Since a
photon of energy E = hc/λ is required to pump each atom, the threshold pump
power density is proportional to 1/τp λ3 g(ν). When Doppler broadening prevails, as
is often the case in these media, (14.3-42) and (14.3-43) provide that g(ν) ∝ λ, so that
the threshold pump power density is proportional to 1/τp λ4. Since 1/λ4 increases
rapidly as the wavelength moves toward the X-ray region, it becomes increasingly
difficult to supply sufficient pump power to attain laser threshold.

Another challenging aspect of achieving laser action at X-ray wavelengths is
centered on the difficulty of constructing suitable optical components. This is the
case both because the absorption coefficient is large (which decreases the photon
lifetime τp and thus further increases Nt) and because the refractive index is close to
unity in most materials in the X-ray region. Nevertheless, a number of X-ray optical
components have been successfully implemented and are available:

Grazing-Incidence Optics. Since X-ray frequencies lie well above the plasma
frequency, metals exhibit a refractive index that lies just below unity (Sec. 8.2A
and Fig. 8.2-3). Total internal reflection can therefore be achieved and metals
can serve as mirrors. This is possible only near grazing incidence, however,
because the small refractive-index contrast requires a large angle of incidence
(the situation is analogous to that at the boundary between the core and
cladding of a planar dielectric waveguide). Nevertheless, X-rays can be focused
to nanometer-scale spots using grazing-incidence deformable mirrors that allow
for wavefront correction, as well as by making use of other techniques.

Multilayer Optics. The construction of multilayer-optical devices is more
complex than in the visible region because the refractive index is close to unity
and does not vary appreciably from one material to another. In accordance with
(6.2-15), the normal-incidence Fresnel reflectance at a vacuum/material
interface, ℛ = [(1 − n)/(1 + n)]2, is typically < 10−4. Nevertheless, high-
reflectance multilayer mirrors can be fabricated by making use of stacks that
contain a large numbers of layers (Sec. 7.1), although this number is ultimately
restricted by the limited penetration depth into the stack. As an example, a
multilayer mirror comprising tens of alternating layers of Si and Mo can provide
normal-incidence reflectance ≈ 70% at λo = 13.5 nm. The optimization of
reflectance at certain wavelengths can be fostered by constructing stacks of
three materials rather than two, and by relying on biperiodic and aperiodic
structures. Other special design criteria are necessary for the design of
components that accommodate femtosecond and attosecond X-ray pulses.
Multilayer optics can also be incorporated in grazing-incidence configurations
and in zone-plate structures.



Gratings. Gratings are useful for selecting narrowband wavelength slices from
continuous-wavelength X-ray sources (e.g., synchrotron radiation) as well as for
selecting individual harmonic components from line-spectrum X-ray sources
such as those generated by high-harmonic generation. They are also useful for
pulse shaping and compression (Sec. 23.2). Plane and concave gratings are often
ruled with triangular groove profiles.

In spite of the severity of these limitations, they were overcome in 1980 when X-ray
laser action was first achieved in a dramatic experiment carried out by researchers at
the Lawrence Livermore National Laboratory (LLNL). An underground nuclear
detonation, dubbed Dauphin, created a flux of incoherent X-rays sufficiently strong
that it was able to achieve a population inversion by pumping the atoms in an
assembly of metal rods. A coherent X-ray laser pulse was generated and detected —
just before the apparatus was vaporized by the detonation. It is worth mentioning
that since HHG sources are not lasers, the generation of coherent X-rays via HHG is
not subject to the limitations discussed above.

We now examine two practical approaches for implementing atomic EUV and X-ray
lasers in the laboratory: 1) atomic ionization using focused laser beams; and 2)
atomic inner-shell photopumping. This is followed by a brief discussion of a number
of applications that make use of atomic X-ray lasers.

Focused-laser-beam atomic ionization.
Highly ionized atoms can be formed by focusing short-duration, high-intensity laser
pulses in the IR, visible, or UV onto a solid target to directly generate a hot ionized-
atom plasma. Coherent X-ray radiation can then be generated via recombination
or collisional excitation. A downward electron transition in a highly ionized atom
produces a high-energy photon that in turn can induce the emission of a clone
photon from a nearby ion via stimulated emission. Because it is difficult to construct
resonators with X-ray feedback at these short wavelengths, many X-ray lasers
operate on the basis of amplified stimulated emission (ASE, Sec. 15.5). An EUV laser
of this form that operates at a wavelength of 18.2 nm via plasma recombination was
first reported in hydrogen-like carbon (C5+) in the mid1980s, as detailed in Example
16.3-7.



(16.3-1)

EXAMPLE 16.3-7.

Hydrogen-Like Carbon EUV Laser. The carbon-plasma laser provides a
didactic example of an EUV laser that operates on the basis of focused-laser-
beam atomic ionization and recombination. In an experiment carried out at
Princeton University in 1985, a 10.6-μmwavelength CO2 laser pulse, of 300-J
energy and 50-ns duration, with a peak power of 6 GW, was focused onto a solid
carbon disk.4 The infrared-laser pump pulse generated sufficient heat to strip all
of the electrons from some of the carbon atoms, thereby creating a plasma of
ionized carbon, which was radially confined by the use of a magnetic field. The
cooling of the plasma at the termination of the pump pulse led to the capture of
electrons in the n = 3 shells, and simultaneously to a dearth of electrons in the n
= 2 shells because of fast radiative decay to the ground state. The net result was
a collection of hydrogen-like C5+ ions with a population inversion (Fig. 14.1-1).

As expected from (14.1-4), the decay of an electron from the n = 3 to the n = 2
shell (the 3d→2p transition has the largest cross section) is accompanied by the
emission of a photon of energy

With z = 6 this corresponds to an EUV photon of energy 68 eV at a wavelength
λo = 18.2 nm. In the ionized-carbon experiment, a spontaneously emitted
photon (tsp ≈ 12 ps) initiated the stimulated emission of EUV photons from
other ions, resulting in ASE (other transition parameters are provided in Table
15.3-1). The single-pass gain-coefficient–length product γd was found to be ≈ 6
so that, in accordance with (15.1-7), the gain was G ≈ e6. The output was a 20-ns
pulse of EUV ASE with a power of 100 kW, an energy of 2 mJ, and a divergence
of ≈ 5 mrad. Similar results were obtained by using Nd3+:glass laser excitation at
1.06 μm.

Typical active media that are used for hot-plasma atomic EUV and X-ray lasers are
Ne-like or Ni-like highly ionized atoms, which offer the most stable electron
configurations. In 1985, EUV lasers that made use of collisional excitation were
reported in Ne-like selenium (Se24+) and in Ne-like yttrium (Y29+), at wavelengths
near 21 nm and 16 nm, respectively. Not too long thereafter, in the late 1980s, the
1.06-μm NOVA Nd3+:glass laser system at Lawrence Livermore National Laboratory
was used to vaporize thin foils of tantalum and tungsten metal, creating Ni-like
Ta45+ and Nilike W46+ ions respectively, and generating 250-ps SXR laser pulses at
wavelengths as short as λo = 4.3 nm.



A common pumping configuration employs a cylindrical lens that focuses the pump
light onto the target in the form of a thin line, generating a column of plasma that
serves as a length of active region. Pumping is often provided by a Ti3+:sapphire
laser operating near 800 nm, or by the fundamental, second, or third harmonic of a
Nd3+:glass laser, at 1053, 526, or 351 nm, respectively. The use of sequential pump
pulses can enhance the population inversion, thereby improving efficiency and
permitting laser operation in the saturated-gain regime. Delivering the main pump
pulse at grazing incidence increases the absorption and reduces the required pump
energy since it effectively provides traveling-wave pumping, thereby increasing the
path length of the light in the plasma gain medium. Furthermore, injecting light
from a low-noise, coherent seed laser into the device causes it to behave as an
amplifier and to produce amplified coherent emission rather than amplified
spontaneous emission. Desirable characteristics of the seed, such as high coherence,
can then be transferred to the X-ray laser, resulting in output pulses with high
spatial and temporal coherence, low divergence, and a defined polarization. The
salutary features discussed here are all exhibited by the Ni-like Ag19+ EUV laser
considered in Example 16.3-8.



EXAMPLE 16.3-8.

Nickel-Like Silver EUV Laser. Plasma-based, collisionally excited, atomic
EUV lasers have been operated at 13.9 nm on the 4d 1S0 → 4p 1P1 transition in
Ni-like Ag19+.

In the unseeded configuration, pumping was provided by a mode-locked,
amplified, 800-nm Ti3+:sapphire laser that generated ps-duration main heating
pulses of ≈ 1 J energy. These pulses were directed to a silver target at grazing
incidence to form a 4 mm × 30 μm line of Ag19+ plasma.† The small-signal gain
coefficient was 67.5 cm−1 and the gain-coefficient–length product was γd ≈ 16.8.
The resulting 13.9-nm gain-saturated ASE pulses had duration ≈ 5 ps, energy ≈
85 μJ, average power ≈ 2 μW, divergence ≈ 8 mrad, and a repetition rate of 5 Hz.

When injection-seeded with pulses from a source of high-harmonic generation
(Sec. 23.5D), a similar device generated amplified coherent emission with
properties superior to those obtained in the unseeded configuration. The dense
Ag19+ plasma was created by irradiating a polished silver slab with a main
heating pulse of 6.7-ps duration and ≈ 1 J energy.‡ Produced by an amplified
Ti3+:sapphire laser operating at 815 nm, the heating pulse impinged on the
sample at grazing incidence to form a 4.1 mm × 30 μm line of plasma. The HHG
seed was generated by focusing 20-mJ laser pulses compressed to 50-fs
duration, obtained from the Ti3+:sapphire pump laser, into Ne gas at 20 torr
(Example 23.5-4). The seed pulse at 13.9 nm, consisting of the 59th harmonic of
the HHG, was injected into the amplifier 1 ps after the heating pulse; gain
saturation was reached after 3 mm of propagation. The EUV laser amplified the
seed pulse by a factor of 200 and generated ps-duration output pulses with an
energy of ≈ 50 nJ and a divergence ≈ 1 mrad. The repetition rate was 5 Hz. The
pulse duration can be reduced below 1 ps by making use of collisional-ionization
gating.

Other approaches for achieving ionized-atom-plasma lasing include current-pulse
and field-induced atomic ionization. The medium can be excited by a strong
electrical pulse to create a hot plasma; capillary-confined plasmas can be used to
produce saturated lasing in a compact configuration. The active medium can
alternatively be directly ionized by laser-driven optical field effects and multiphoton
processes, which give rise to a cold, dense collection of ionized atoms surrounded by
a hot electron distribution, in which case collisional excitation is initiated by the
emitted electrons rather than by the thermalized particles in a heated plasma.

Inner-shell photopumping.



The techniques for achieving lasing in the EUV and SXR regions considered above
are based on recombination or collisional excitation into excited states of highly
ionized atoms in a plasma. An alternative approach, made possible by the advent of
the X-ray free-electron laser (XFEL, Fig. 16.3-8), relies on the photopumping of
neutral atoms that results in the photoionization of atomic inner-shell electrons.
Photopumping leaves the lower laser level unpopulated, and as such results in the
direct production of a population inversion. However, since the population inversion
disappears at the expiration of the lifetime of the core-excited state, the laser action
is self-terminating. Though this lifetime is short as a result of fast radiative decay
from higher energy levels and nonradiative Auger recombination (Fig. 17.1-18), a
population inversion can nevertheless be attained by making use of an XFEL, which
is an ultrafast, coherent X-ray-laser pump of sufficient power to allow inner-shell
photoionization to take place on a timescale comparable with the lifetime of the
core-excited state. This pumping scheme bears some similarity to in-band pumping.

Though it requires an XFEL pump, which is hardly found in every laboratory, the
inner-shell photopumping approach has a number of merits: 1) the pump energy is
directed exclusively to the transition of interest, thereby avoiding inefficiencies
associated with the excitation of extraneous states; 2) the laser radiation is spatially
well-matched to the pump; and 3) the pump XFEL, when configured for dual-
frequency operation, can provide an auxiliary seed.



EXAMPLE 16.3-9.

XFEL-Pumped Neon Inner-Shell SXR Laser. Laser emission at 1.46 nm
(E photon = 849 eV) is generated by an inner-shell-photopumped atomic Ne X-ray
laser pumped by an XFEL (Example 16.3-11) that operates at a wavelength of
1.29 nm (Ephoton = 960 eV).7 Neon is a closed-shell noble gas, with ten electrons
(Z = 10) and the ground-state electron configuration Ne:1s22s22p6. An XFEL
pump photon photoionizes an electron from the inner (n = 1) shell, also known
as the K shell. This results in a singly ionized neon ion (Ne+:1s12s22p6) that
serves as the upper laser level. The laser transition Ne+:1s12s22p6 →
Ne+:1s22s22p5 is associated with the radiative recombination of an electron from
the outer (n = 2) shell, also called the L shell, with the core hole in the K shell.
X-rays resulting from n = 2 → n = 1 transitions are, by convention, called Kα X-
rays. Though a competing Auger transition (which has a short 2.4-fs lifetime
and thus is exceptionally strong) is available from the upper laser level,
Ne+:1s12s22p6 → Ne2+:1s22s22p4, a residual 1.8% probability of spontaneous
radiative decay at 1.46 nm on the laser transition is nevertheless sufficient to
achieve lasing. The traditional atomic Ne laser lines in the visible and infrared
regions of the spectrum (Fig. 14.1-2) arise from valence-electron transitions
lying exclusively within the n = 2 shell.

In an experiment carried out in 2012 at the SLAC National Accelerator
Laboratory, XFEL pump pulses (energy ≈ 0.02 to 0.27 mJ, duration ≈ 50 fs, and
maximum intensity ≈ 2×1017 W/cm2) were focused (spot size ≈ 1 μm) into a gas
cell containing a volume of neon atoms (pressure ≈ 500 torr) to create a long,
narrow column of transiently core-excited ions. Photons that were
spontaneously emitted (tsp ≈ 130 fs) near the front end of the column initiated
ASE that increased exponentially along the path of the XFEL pulse, which
served to prepare atoms in the excited state just as the Ne Kα ASE from
previously excited atoms arrived. Some characteristic parameters associated
with this transition are provided in Table 15.3-1.

The emitted SXR ASE pulses had energy ≈ 1 μJ, duration ≈ 5 fs, divergence ≈ 1
mrad, and an energy conversion efficiency ≈ 4 × 10−3. The single-pass gain
coefficient was ≈ 65 cm−1 and the gain-coefficient–length product was γd ≈ 18.
Doubling the incident XFEL pulse energy from 0.12 to 0.24 mJ increased the
output pulse energy by a factor of 104. The laser line exhibited a Lorentzian
lineshape with a width of 0.27 eV that resulted principally from lifetime
broadening associated with the Auger transitions. The low operating
temperature and low Ne gas density rendered the effects of Doppler and
collisional broadening negligible; indeed, the observed linewidth was
substantially narrower than that attainable with plasma-based X-ray lasers.



Globally speaking, the neon innershell-photopumped X-ray laser served to
convert the fluctuating self-amplified spontaneous emission (SASE) radiation
from the pump XFEL into a highly stable, narrowband, coherent X-ray source, a
transformation reminiscent of the operation of diode-pumped solid-state
(DPSS) lasers (Sec. 16.3A).

EXAMPLE 16.3-10.

XFEL-Pumped and Seeded Copper Inner-Shell HXR Laser. The
operation of the XFEL-pumped copper inner-shell laser is similar to that of the
XFEL-pumped neon inner-shell laser (Example 16.3-9), but it offers two
additional important features: 1) it operates in the HXR rather than in the SXR
band; and 2) it can be operated in a seeded configuration by making use of a
dual-frequency XFEL pump. Laser emission on the Cu Kα line at 1.54 Å = 8.0
(Ephoton = 8.0 keV) from a 20-μm-thick copper foil is obtained by inner-shell
photopumping with a HXR XFEL operating at 1.4 Å (Ephoton = 8.9 keV).8 Various
parameters associated with this transition are set forth in Table 15.3-1. When an
auxiliary spectral component provided by the XFEL was used to seed the laser,
the amplification was augmented by a factor of about 100 and the temporal
coherence was improved considerably.

Applications of EUV and X-ray lasers.
EUV and X-ray laser applications include nanolithography for semiconductor
manufacturing, nanopatterning, nanoimaging, plasma diagnostics, medical imaging,
high-resolution spectroscopy, nonlinear X-ray optics, and the dynamic imaging and
holography of biological samples.

Free-Electron Lasers

The free-electron laser (FEL) makes use of an accelerator-generated relativistic
electron beam that is passed through a channel between two opposing rows of
stationary magnets of alternating polarity known as an undulator or wiggler (Fig.
16.3-8). The electron beam serves as the pump for the FEL and its interaction with
the generated electromagnetic field serves as the active medium. The appellation
“free-electron laser” signifies that, unlike the situation in most other lasers, the
electrons are not bound in atoms or molecules. Since the motion of the electrons is
affected by both the wiggler and the generated field, however, the description “free”
is not totally apt.



Figure 16.3-8 Schematic of a free-electron laser (FEL) oscillator. The undulator
creates a periodic magnetic flux density, typically with a magnitude in the vicinity of
1 T. It usually has a centimeter-scale spatial period and contains anywhere from tens
to thousands of periods, so that its total longitudinal length is somewhere between
meters and tens of meters. The electron beam, with a radius of millimeters, is
guided into the undulator by bending magnets. The electron-beam current typically
ranges from amperes to kiloamperes while the electron energy varies from MeV to
GeV. The pulse duration of the emitted radiation, which follows that of the electron
pulse, varies from femtoseconds to microseconds. Both spontaneous and stimulated
emission occur; in wavelength regions where resonators can be fabricated, mirrors
can be used to foster oscillation. Such an FEL oscillator might use a mirror
separation d about twice the length of the undulator and might support an optical
beam with a waist of millimeters. However, FELs can also be operated on the basis
of a single pass through an undulator, an approach that is particularly useful in the
X-ray region, where it is difficult to fabricate mirrors.

The undulator produces a periodic transverse static magnetic wiggler field, which,
with proper design of the pole pieces, can be made nearly sinusoidal in space near
the axis of the undulator. The wiggler field in turn causes the electrons to undergo
nearly sinusoidal transverse oscillations. Relativistic electrons forced to accelerate
or decelerate under the action of a magnetic field emit synchrotron radiation in a
narrow cone tangential to the electron trajectory in the forward direction. This
radiation, while rendered narrowband by the undulator, is incoherent because of
constructive and destructive interference among the waves emitted by the randomly
distributed electrons.

The lasing process can be initiated by the spontaneous emission at the entrance to
the undulator associated with the inherent electron-position fluctuations (electron
shot noise). Because the electrons are highly relativistic and move essentially at the
speed of light, they copropagate with the radiation they generate and remain coupled
to it over long distances, thereby allowing the spontaneous synchrotron radiation to
grow. When this radiation becomes sufficiently strong, its transverse field interacts
with the transverse component of the electron current. This causes some electrons
to lose energy to the field, while others gain energy, via the ponderomotive force
associated with the electric field, , where ω and 𝛆 are the angular
frequency and amplitude of the oscillating field, respectively. This in turn gives rise
to successive microbunches of electrons separated by an optical wavelength along
the axis of the undulator, and hence to emissions that are coherent with the phase of



(16.3-2) 
Free-Electron Laser Emission Wavelength

the field. The net result is a saturated power many orders of magnitude greater than
that of the synchrotron radiation. This route to lasing is known as a self-amplified
spontaneous emission (SASE). Alternatively, the lasing process can be initiated
by seeding the FEL with a radiation field in resonance with it, whereupon the FEL
acts as an amplifier. The seed may be generated by the FEL itself (self-seeding) or by
an external source, such as high-harmonic generation.

The wavelength of the on-axis light emitted by a free-electron laser is expressible as

where Λu is the spatial period of the undulator and  is the
relativistic Lorentz factor; the electron rest energy . The undulator
(magnetic-deflection) parameter is expressible as K = eℬΛu/2πm0co, where ℬ is the
magnetic flux density. The FEL emission wavelength expressed in (16.3-2) is of the
form λFEL ∝ Λu/γ2. The physical underpinnings of this relation can be understood by
recognizing that λFEL is matched to a scaled version of the undulator period Λu,
where the scaling factor 1/γ2 is imposed by the requirements of relativity. One factor
of 1/γ arises from the length contraction of the undulator spatial period in the rest
frame of the relativistic electron, while the other factor of 1/γ arises from the time
dilation of the emitted radiation in the laboratory frame, corresponding to the
relativistic Doppler shift.

In accordance with (16.3-2), decreasing the spatial period of the undulator Λu results
in a decrease of the wavelength of the emitted light λFEL, as does decreasing the
strength of the magnetic flux density Β embedded in the undulator parameter K. As
the energy of the electron beam Ebeam increases, so too does the electron velocity V
and the Lorentz factor γ, which also lead to a decrease in the wavelength of the
emitted radiation. Individual FELs can thus provide a broad range of operating
wavelengths by tuning the electron-beam energy Ebeam, undulator period Λu, and
undulator parameter K. Because they operate in a vacuum, high peak powers can be
attained without incurring material damage and encountering thermal lensing
effects. Moreover, the gain medium is transparent at all wavelengths. Though they
are highly complex and require large and expensive facilities, FELs can offer
unrivaled power and performance, particularly in wavelength regions that are
difficult to reach using other lasers.

Free-electron lasers operate across much of the electromagnetic spectrum, including
the millimeter-wave, infrared, visible, ultraviolet, and X-ray bands. Many facilities
have multiple FELs and beamlines. Representative examples of FEL facilities in vari
ous spectral regions include:



mm-wave/FIR: The electrostatic FEL at the University of California at Santa
Barbara operates at wavelengths that stretch from 2.5 mm to 63 μm.

IR/Visible/UV: The iFEL 1–5 LINAC FEL at Osaka University operates at
wave lengths extending from 100 μm to 230 nm.

NUV/MUV: The OK4 storage-ring FEL at Duke University operates at wave
lengths that extend from 400 nm to 193 nm.

EUV: The FERMI LINAC FEL at Elettra Sincrotrone Trieste operates at wave
lengths between 100 nm and 4 nm.

SXR/HXR: The Linac Coherent Light Source (LCLS) LINAC FEL at the SLAC
National Accelerator Laboratory at Stanford University operates at wavelengths
that stretch from 44 Å to 1.1 Å.

X-ray free-electron lasers (XFELs).
As discussed above, free-electron lasers can operate in the X-ray region by making
use of high electron-beam energies and small undulator periods. Because of the
difficulty of constructing laser resonators in the X-ray band, XFELs often operate
using a single pass through a long undulator and rely on self-amplified spontaneous
emission (SASE) or injection seeding; the latter approach typically provides superior
performance in terms of output power and temporal coherence. Today’s XFELs are
typically driven by kilometer-scale linear accelerators (LINACs), which offer more
energetic and brighter X-ray beams than those available from devices in which the
electrons circulate, such as synchrotrons and electron storage rings. Efforts are
underway to reduce the lengths of XFELs from kilometers to meters by coupling
tabletop accelerators that make use of plasma wakefield acceleration (PWFA)
or laser wakefield acceleration (LWFA)9 with undulators and compact electron
guns. Though ultrafast SXR pulses are available from high-harmonic generation, as
mentioned earlier, XFELs can provide harder, and far more energetic, X-ray pulses.



EXAMPLE 16.3-11.

Linac Coherent Light Source (LCLS) XFEL. The Linac Coherent Light
Source (LCLS) at the SLAC National Accelerator Laboratory (SLAC) is a 1-km-
long SASE free-electron laser that generates ultrafast hard-X-ray pulses at a
repetition rate of 120 Hz.10 Its (Nd-Fe-B) permanent-magnet undulator,
comprising 33 3.4-m-long sections, has an overall active length of 112 m. The
undulator period is Λu = 3 cm and the magnetic-deflection parameter is K = 3.5,
corresponding to a peak magnetic wiggler field of 1.25 T. The LCLS makes use of
an electron beam whose energy is adjustable over the range 2.5 ≤ Ebeam ≤ 15.9
GeV, corresponding to a Lorentz factor γ ≈ Ebeam/(0.511 MeV) that can be
adjusted over the range 4 892 ≤ γ ≤ 31 115. Using (16.3-2), this corresponds to
laser operation over the wavelength range 4.4 ≥ λFEL ≥ 0.11 nm (44 ≥ λFEL ≥ 1.1
Å). The LCLS produces coherent X-ray pulses of energy ≈ 2 mJ, duration
between 2 and 500 fs (FWHM), peak power ≈ 20 GW, intensity ≈ 1021 W/cm2,
and average power ≈ 200 mW. The peak brightness is some 10 orders of
magnitude greater than that available using a conventional, incoherent
synchrotron source. Multipulse and multicolor lasing, with fixed or variable
time and/or wavelength separation, is incorporated in the system, as is
polarization control. Self-seeding and external-seeding capabilities provide
increased power and improved temporal coherence.

The pulse repetition rate of the LCLS is limited to 120 Hz to avoid damage to the
LINAC’s copper cavities. High pulse repetition rate greatly facilitates imaging by
increasing the number of image samples that can be collected in a fixed period
of time. The European XFEL at Deutsches Elektronen-Synchrotron (DESY)
Hamburg, commissioned in 2017, operates at an average repetition rate of 27
kHz by virtue of its superconducting linear accelerator. This FEL generates HXR
radiation in the form of clusters of 2 700 pulses separated by 220 ns,
periodically repeated at a rate of 10 Hz. Because of its high pulse repetition rate,
this 3.4-km-long, 17.5-GeV, SASE FEL has an average power and brightness
nearly 1000 times greater than that of the LCLS. In 2021, a new
superconducting-LINAC FEL, dubbed LCLS-II, will come online at the SLAC
National Accelerator Laboratory. Among other advances, it will support a pulse
repetition rate of 1 MHz.

XFEL applications.
The XFEL serves as a source of energetic, ultrafast, and coherent X-rays. Because
the short-wavelength pulses emitted are brief and bright, XFELs have facilitated the
imaging and filming of physical, chemical, and biological structures and processes at
unprecedented spatial and temporal scales. The XFEL has also expedited the study
of non-periodic systems, non-crystalline states, non-equilibrium dynamical



processes, and nonlinear X-ray phenomena. With spatial resolution at the Å-scale
and temporal resolution at the fs-scale, XFEL imaging has elucidated the inner
workings of processes in photonics, materials science, and medicine.

A pulsed radiation source suitable for high-resolution, spatiotemporal imaging has a
number of requirements that are accommodated by XFELs:

Temporal and spatial coherence for coherent imaging. Spatial
coherence is ac commodated for SASE operation and temporal coherence is
accommodated for seeded operation.

Temporal resolution at the atomic scale (Bohr period T0 ≈ 150 as).
Pulse dura tions ≈ 1 fs are currently accommodated; the generation of
attosecond pulses is under development.

High energy and high peak power. Pulses with mJ energies and peak
powers of tens of GW are currently accommodated; beams at photon energies >
50 keV are being planned.

High average power for rapid image accumulation. Pulse repetition
rates of tens of kHz are currently accommodated; rates up to 1 MHz are under
development.

Spatial resolution at the atomic scale (Bohr radius a0 ≈ 0.53 Å).
Focusing to nm-scale spot sizes is currently accommodated.

High intensity to facilitate extreme nonlinear X-ray interactions.
Pulse intensities as high as ≈ 1021 W/cm2 are currently accommodated.

Multicolor and multipulse operation. Pulses with fixed or variable
wavelength and/or time separation are accommodated.

XFELs offer unrivaled spatiotemporal resolution in a number of imaging
configurations and have ushered in new imaging methodologies such as serial
femtosecond X-ray coherent diffractive imaging. A single, ultrafast, high-
energy, XFEL pulse forms a diffractive image of a target particle before
photoionizing it, whereupon the particle vaporizes via a “Coulomb explosion.” This
approach is referred to as diffraction-before-destruction. Many such individual
diffractive patterns are recorded from individual particles that are serially injected
into the XFEL beam via a jet. Patterns with the same orientation are combined to
form a full set of 3D diffraction data, from which the image is extracted by use of
phase retrieval. This technique is suitable for a broad variety of targets, including
nanocrystals, proteins, and viruses.

Valuable information about the internal workings of molecules can also be obtained
by optical/X-ray pump–probe experiments. Ultrafast optical-laser pulses are
used to pump a target to manipulate its internal electronic state and XFEL pulses
are used to probe it after an adjustable delay time. The collected data is fashioned
into a movie that tracks femtosecond-scale changes to the electronic states and



molecular structure. The reorganization of electron clouds in the course of making
and breaking molecular bonds has been visualized.

G. Tabulation of Selected Laser Characteristics
Table 16.3-1 lists, in order of increasing wavelength, several characteristics for
various lasers. The broad range of transition wavelengths, wall-plug efficiencies, and
output powers is noteworthy. The transition cross section, spontaneous lifetime, and
transition linewidth for a number of these lasers are provided in Table 15.3-1. The
laser linewidth ΔνL is generally orders of magnitude smaller than the transition
linewidth Δν because of the additional frequency selectivity imposed by the optical
resonator.



Table 16.3-1 Parameters for some well-known laser media, in order of increasing
wavelength.

Laser
Mediuma

Transition
Wavelength

λo

Single
Mode (S)

or
Multimode

(M)

CW or
Pulsedb

Approx.
Wall-
Plug

Efficiency
ηc(%)c

Max.
Output
Power

or
Energyd

Energy-
Level

Diagram
(Fig.)

X-ray free-
electron laser
(LCLS)

1.1–44 Å M Pulsed 10−6 2 mJ

Ne+ Kα (g) 14.6 Å S Pulsed 10−9 1 μJ

Ag19+ (p) 13.9 nm M Pulsed 10−4 85 μJ

C5+ (p) 18.2 nm M Pulsed 10−3 2 mJ 14.1-1
ArF Exciplex
(g)

193 nm M Pulsed 0.2 1 J

KrF Exciplex
(g)

248 nm M Pulsed 0.4 1.5 J

Ar+ (g) 515 nm S/M CW 0.05 15 W
Rhodamine-
6G (l)

560–640 nm S/M CW 10 100 mW 14.1-8

Ne (He–Ne)
(g)

633 nm S/M CW 0.1 50 mW 14.1-2

Kr+ (g) 647 nm S/M CW 0.01 1 W

Cr3+:Al2O3
(ruby) (s)

694 nm M CW 4 1 W 15.3-1

Cr3+:BeAl2O4
(alexandrite)
(s)

700–820 nm M CW 40 25 W 14.1-4

Ti3+:Al2O3 (s) 700–1050
nm

S/M CW 0.1 5 W 16.3-3

Yb3+:YAG
(thin-disk)
(s)

1030 nm S/M CW 30. 1 kW 16.3-2

Nd3+:Glass
(phosphate)
(s)

1053 nm S/M Pulsed 1. 50 J 15.3-3

Nd3+:YAG (s) 1064 nm S/M CW 15. 200 W 14.1-5



Laser
Mediuma

Transition
Wavelength

λo

Single
Mode (S)

or
Multimode

(M)

CW or
Pulsedb

Approx.
Wall-
Plug

Efficiency
ηc(%)c

Max.
Output
Power

or
Energyd

Energy-
Level

Diagram
(Fig.)

Nd3+:YVO4
(s)

1064 nm S/M CW 30. 30 W 16.3-1

Yb3+:Silica
fiber (s)

1070 nm S/M CW 40. 10 kW

Cr4+:Mg2SiO4
(forsterite)
(s)

1100–1400
nm

M CW 0.5 1 W

Er3+:Silica
fiber (s)

1550 nm S/M CW 20. 2 kW 15.3-6

Tm3+:Silica
fiber (s)

1800–2100
nm

S/M CW 35. 500 W

Cr2+:ZnS (s) 1900–3000
nm

S/M CW 25. 100 W

Ne (He–Ne)
(g)

3:39 μm S/M CW 0.1 20 mW 14.1-2

CO2 (g) 10:6 μm S/M CW 15. 500 W 14.1-7

H2O (g) 28 μm S/M CW 0.05 250 mW

CH3OH
(methanol)
(g)

118:8 μm S/M CW 0.03 150 mW

HCN
(hydrogen
cyanide) (g)

336:8 μm S/M CW 0.05 120 mW

a Gas (g), solid (s), liquid (l), plasma (p).

b Lasers designated “CW” can be operated in pulsed mode as well. Lasers that cannot sustain a continuous
population inversion can operate only in pulsed mode and are denoted “Pulsed.”

c The wall-plug efficiency ηc (also known as the power-conversion efficiency or overall efficiency) is the ratio of
the output optical power Po to the input electrical power Pe (for pulsed lasers, it is the ratio of the energies per
pulse). Values reported have substantial uncertainty since they sometimes include the electrical power consumed
for overhead functions such as cooling and monitoring. Laser diodes exhibit the highest efficiencies, which can
exceed 70%, as discussed in Sec. 18.4.

d The maximum output power for CW systems varies over a substantial range, as does the maximum output
energy per pulse for pulsed systems (in part because of the wide range of pulse durations). Representative values
are listed. Achievable values for single-mode operation with no amplification are provided where available;



multimode output powers are generally significantly higher. Output powers delivered by laser systems used for
industrial applications can be orders of magnitude higher.

16.4 PULSED LASERS
It is sometimes desirable to operate lasers in a pulsed mode since the optical power
can be greatly increased when the output pulse has limited duration. Lasers can be
made to emit optical pulses with durations as short as femtoseconds; the durations
can often be further compressed by making use of nonlinear optical techniques (Sec.
23.2). Pulse repetition rates (PRRs) can extend to the THz range and individual laser
pulses can carry enormous peak powers and intensities. A 10-fs-duration pulse of
10-mJ energy, for example, exhibits a peak power of 1 TW. Focusing such a pulse to
a 3-μm-radius spot provides a peak intensity of 7 EW/cm2. Some lasers must be
operated in a pulsed mode since CW operation cannot be sustained, as is evident in
Table 16.3-1.

A. Methods of Pulsing Lasers
The most direct method of obtaining pulsed light from a laser is to use a continuous-
wave (CW) laser in conjunction with an external modulator (switch) that transmits
the light only during selected short time intervals. This simple method has two
distinct disadvantages, however. First, the scheme is inefficient since it blocks (and
therefore wastes) the light energy during the off-time of the pulse train. Second, the
peak power of the pulses cannot exceed the steady power of the CW source, as
illustrated in Fig. 16.4-1(a).

Figure 16.4-1 Comparison of attainable peak laser output powers using (a) an
external modulator and (b) an internal modulator.

More efficient pulsing schemes are based on turning the laser itself on and off by
means of an internal modulator, designed so that energy is stored during the off-
time and released during the on-time. Energy may be stored in the resonator in the
form of light that is periodically permitted to escape, or in the atomic system in the
form of a population inversion that is periodically released by allowing the system to
oscillate. These schemes permit short laser pulses to be generated with peak powers
far in excess of the constant power deliverable by a CW laser, as illustrated in Fig.
16.4-1(b).



Four common methods are used for the internal modulation of laser light: 1) gain
switching, 2) Q-switching, 3) cavity dumping, and 4) mode locking. These are
considered in turn.

Gain Switching

Gain switching is a rather direct approach in which the gain is controlled by
turning the laser pump on and off (Fig. 16.4-2). In a flashlamp-pumped pulsed ruby
laser, for example, the pump (flashlamp) is switched on periodically for brief periods
of time by a sequence of electrical pulses. During the on-times, the gain coefficient
exceeds the loss coefficient and laser light is produced. Pulsed laser diodes are
generally gain switched because it is easy to modulate the electric current that
provides the pumping (Sec. 18.3). The laser-pulse rise and fall times achievable with
gain switching are derived in Sec. 16.4B.

Figure 16.4-2 Gain switching. The laser pump is switched on and off periodically.

Q-Switching

In Q-switching, the laser output is turned off by periodically increasing the
resonator loss (spoiling the resonator quality factor Q) with the help of a modulated
absorber inside the resonator (Fig. 16.4-3). Thus, Q-switching is loss switching.
Because the pump continues to deliver constant power at all times, energy is stored
in the atoms in the form of an accumulated population difference during the high-
loss off-times. When the losses are reduced during the on-times, the large
accumulated population difference is released, generating intense (usually short)
pulses of light. An analysis of this method is provided in Sec. 16.4C.

Figure 16.4-3 Q-switching. During the off-times, energy builds up as an
accumulated population inversion in the active medium. The resonator loss is
modulated by use of an absorber.

Cavity Dumping

Cavity dumping is a technique based on storing photons (rather than a population
difference) in the resonator during the off-times, and releasing them during the on-



times. It differs from Q-switching in that the resonator loss is modulated by altering
the mirror transmittance (Fig. 16.4-4). The system operates like a bucket into which
water is poured from a hose at a constant rate. The bucket represents the resonator,
the water hose represents the constant pump, and the bucket bottom represents the
laser output mirror. After a period of time of accumulating water, the bottom of the
bucket is suddenly removed so that the water is “dumped.” The bucket bottom is
subsequently returned and the process is repeated. A constant flow of water is
therefore converted into a pulsed flow. The leakage of light from the resonator,
including useful light, is not permitted during the off-times; photons are stored in
the resonator and cannot escape. This results in negligible resonator loss, thereby
increasing the optical power inside the laser resonator. The mirror is suddenly
removed altogether (e.g., by rotating it out of alignment), increasing its
transmittance to 100% during the on-times. The result is a strong pulse of laser
light. As the accumulated photons leave the resonator, the sudden increase in the
loss arrests the oscillation. A detailed analysis for cavity dumping is not provided in
the sequel inasmuch as it is closely related to that of Q-switching. This is because
the variation of the gain and loss with time are similar, as may be seen by comparing
Fig. 16.4-4 with Fig. 16.4-3.

Figure 16.4-4 Cavity dumping. During the off-times, energy builds up as an
increase of the photon-number density in the resonator. One of the mirrors is
periodically removed (e.g., by rotating it out of alignment) to dump the stored
photons as useful light.

Mode Locking

The pulse-generation approaches discussed above are based on the transient
dynamics of a laser medium. Mode locking differs from these approaches in that it
is a dynamic steady-state process. It is the most important of all the techniques for
generating trains of ultrashort laser pulses. Pulsed laser action is attained by locking
the phases of the modes of a laser to each other. An example is provided by the
longitudinal modes of a multimode laser, which oscillate at frequencies that are
equally spaced by the intermodal frequency νF = c/2d. When the phases of these
components are locked together, they behave like the Fourier components of a
periodic function of time, and therefore form a periodic pulse train. The mode
coupling is achieved by periodically modulating the losses inside the resonator.
Mode locking is examined in Sec. 16.4D.
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*B. Analysis of Transient Effects
An analytical description of the operation of pulsed lasers requires an understanding
of the dynamics of the laser oscillation process, i.e., the time course of laser
oscillation onset and termination. The steady-state solutions presented earlier in
this chapter are inadequate for this purpose. The lasing process is governed by two
variables: the number of photons per unit volume in the resonator, n(t), and the
atomic population difference per unit volume, N(t)= N2(t) − N1(t); both are
functions of the time t.

Rate Equation for the Photon-Number Density

The photon-number density n is governed by the rate equation

The first term on the right-hand side represents photon loss caused by leakage from
the resonator, at a rate given by the inverse photon lifetime 1/τp. The second term
represents net photon gain, at a rate NWi, arising from stimulated emission and
absorption. Here, the quantity Wi = ϕσ(ν)= c n σ(ν) is the probability density for
induced absorption/emission. Spontaneous emission is assumed to be negligible.
With the help of the relation Nt = αr/σ(ν) = 1/cτp σ(ν), where Nt is the threshold
population difference [see (16.1-15)], we write σ(ν) = 1/cτp Nt, from which

Substituting this into (16.4-1) provides a simple differential equation for the photon
number density n,

As long as N > Nt, dn/dt will be positive and n will increase. When steady state
(dn/dt = 0) is reached, N = Nt.

Rate Equation for the Population Difference

The dynamics of the population difference N(t) depends on the pumping
configuration. We proceed to analyze a three-level pumping scheme (Sec. 15.2B).
The rate equation for the population of the upper energy level of the transition is,
according to (15.2-8),
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where it is assumed that τ2 = tsp. The pumping rate R is taken to be independent of
the population difference N. Denoting the total atomic number density N2 + N1 by
Na, so that  and , we obtain a differential equation for the
population difference N = N2 − N1:

where the small-signal population difference N0 = 2Rtsp − Na [see (15.2-27)].
Substituting the relation Wi = n/Ntτp from (16.4-2) into (16.4-5) then yields

The third term on the right-hand side of (16.4-6) is twice the second term on the
right-hand side of (16.4-3), and of opposite sign. This reflects the fact that the
generation of one photon by an induced transition reduces the population of level 
by one atom while increasing the population of level  by one atom, thereby
decreasing the population difference by two atoms.

Equations (16.4-3) and (16.4-6) are a pair of coupled nonlinear differential equations
whose solution determines the transient behaviors of the photon number density
n(t) and the population difference N(t). Setting dn/dt = 0 and dN/dt = 0 leads to N
= Nt and n = (N0 − Nt)(τp/2tsp), respectively. These are indeed the steady-state
values of N and n obtained previously, as is evident from (16.2-12) with τs = 2tsp, as
provided by (15.2-28) for a three-level pumping scheme.

EXERCISE 16.4-1

Population-Difference Rate Equation for a Four-Level System. Obtain
the population-difference rate equation for a four-level system for which τ1 ≪
tsp. Provide a rationale for the absence of the factor of 2 that appears on the
right-hand side of (16.4-6).

Gain Switching

Gain switching is implemented by turning the pumping rate R on and off, which is
equivalent to modulating the small-signal population difference N0 = 2Rtsp − Na, as
provided in (15.2-27). A schematic illustration of the typical time evolution of the



population difference N(t) and the photon-number density n(t), as the laser is
pulsed by varying N0, is provided in Fig. 16.4-5.

Figure 16.4-5 Variation of the population difference N(t) and the photon-number
density n(t) with time as a square pump pulse causes N0 to suddenly increase from a
low value N0a to a high value N0b at t = 0, and then to return back to the low value
N0a at t = t2.

The following regimes are evident in the process:

For t < 0, the population difference N(t) = N0a lies below the threshold Nt and
oscillation does not occur.

The pump is turned on at t = 0, which increases N0 from a value N0a below
threshold to a value N0b above threshold in step-function fashion. The
population difference N(t) begins to increase as a result. As long as N(t) < Nt,
however, the photon-number density n = 0. In this region (16.4-6) therefore
becomes dN/dt = (N0 − N)/tsp, indicating that N(t) grows exponentially toward
its equilibrium value N0b with time constant tsp.

Once N(t) crosses the threshold Nt at t = t1, laser oscillation begins and n(t)
increases. The population inversion then begins to deplete so that the rate of
increase of N(t) slows. As n(t) becomes larger, the depletion becomes more
effective so that N(t) begins to decay toward Nt. N(t) finally reaches Nt, at which
time n(t) reaches its steady-state value.

The pump is turned off at time t = t2, so that N0(t) returns to its initial value
N0a. N(t) and n(t) proceed to decay to the values N0a and 0, respectively.

The detailed profile of the buildup and decay of n(t) is obtained by numerically
solving (16.4-3) and (16.4-6). The precise shape of the solution depends on the
values of tsp, τp, and Nt, as well as on N0a and N0b (see Prob. 16.4-4).

*C. Q-Switching



Q-switched laser pulsing is achieved by switching the resonator loss coefficient αr
from a large value during the off-time to a small value during the on-time. This may
be accomplished in any number of ways, such as by placing a modulator into the
resonator that periodically introduces large losses. Since the lasing threshold
population difference Nt is proportional to the resonator loss coefficient αr [see
(16.1-14) and (16.1-6)], the result of switching αr is to decrease Nt from a high value
Nta to a low value Ntb, as illustrated in Fig. 16.4-6. Therefore, in Q-switching Nt is
modulated while N0 remains fixed, whereas in gain switching N0 is modulated while
Nt remains fixed (see Fig. 16.4-5).

Figure 16.4-6 Operation of a Q-switched laser. Behavior of the threshold
population difference Nt (which is proportional to the resonator loss coefficient αr),
the pump parameter N0, the population difference N(t), and the photon number
density n(t).

The population and photon-number densities behave as follows:

At t = 0, the pump is turned on so that N0 follows a step function. The loss is
maintained at a level that is sufficiently high (Nt = Nta > N0) so that laser
oscillation cannot begin. The population difference N(t) therefore builds up
(with time constant tsp). The medium behaves as a high-gain amplifier in this
region but the loss is sufficiently large that oscillation is prevented.

At t = t1, the loss is suddenly decreased so that Nt diminishes to a value Ntb <
N0. In accordance with (16.1-13), oscillation therefore begins and the photon-
number density rises sharply. The presence of the radiation causes a depletion
of the population inversion (gain saturation) whereupon N(t) begins to
decrease. When N(t) falls below Ntb, the loss again exceeds the gain, resulting in
a rapid decrease of the photon-number density (with a time constant of the
order of the photon lifetime τp).

At t = t2, the loss is reinstated, ensuring the availability of a long period of
population-inversion buildup to prepare for the next pulse. The process is
repeated periodically so that a periodic optical pulse train is generated.
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We now undertake an analysis to determine the peak power, energy, duration, and
shape of the optical pulse generated by a Q-switched laser in the steady pulsed state.
We rely on the basic three-level-system rate equations (16.4-3) and (16.4-6) for n(t)
and N(t), respectively, which we solve during the on-time ti to tf indicated in Fig.
16.4-6. The problem can, of course, be solved numerically. However, the equations
simplify sufficiently to permit an analytical solution if we assume that the first two
terms on the right-hand side of (16.4-6) are negligible. This assumption is suitable if
both the pumping and the spontaneous emission are negligible in comparison with
the effects of induced transitions during the short time interval from ti to tf. This
approximation turns out to be reasonable if the duration of the generated optical
pulse is much shorter than tsp. When this is the case, (16.4-3) and (16.4-6) become,
respectively,

These are two coupled differential equations in n(t) and N(t), with initial conditions
n = 0 and N = Ni at t = ti. During the time interval from ti to tf, Nt is fixed at its low
value Ntb.

Dividing (16.4-7) by (16.4-8), we obtain a single differential equation relating n and
N,

which we integrate to obtain

Using the initial condition n = 0 when N = Ni finally leads to

Pulse Power

According to (16.2-10) and (16.2-3), the internal photon-flux density (comprising
both directions) is given by ϕ = nc, while the external photon-flux density emerging
from the output mirror of transmittance 𝒯 is . Assuming that the photon-
flux density is uniform over the cross-sectional area A of the emerging beam, the
corresponding optical output power is
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where V = Ad is the volume of the resonator. According to (16.2-17), if 𝒯 ≪ 1 the
fraction of the resonator loss that contributes to useful light at the output is ηe ≈
𝒯(c/2d)τp, where ηe is the extraction efficiency, which leads to

Equation (16.4-13) is easily interpreted since the factor nV/τp is the number of
photons lost from the resonator per unit time.

Peak Pulse Power

As discussed earlier, and illustrated in Fig. 16.4-6, n reaches its peak value np when
N = Nt = Ntb. This is corroborated by setting dn/dt = 0 in (16.4-7), which leads
immediately to N = Nt. Substituting this into (16.4-11) therefore provides

Using this result in conjunction with (16.4-12) provides the peak power

When Ni ≫ Nt, as must be the case for pulses with large peak powers, we have Nt/Ni
≪ 1 so that (16.4-14) provides

In this limit, the peak photon-number density is equal to one-half of the initial
population density difference whereupon the peak power assumes a particularly
simple form:

Pulse Energy

The pulse energy E is given by

Peak Pulse Power
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(16.4-23) Q-Switched Pulse Energy

which, in accordance with (16.4-12), can be written as

Inserting (16.4-8) in (16.4-19), we obtain

which integrates to

The final population difference Nf is determined by setting n = 0 and N = Nf in (16.4-
11), which provides

Finally, substitution of (16.4-22) into (16.4-21) yields

When Ni ≫ Nf, we obtain , as expected. It remains to solve (16.4-
22) for Nf. One approach is to let X = Ni/Nt and Y = Nf/Nt, whereupon (16.4-22)
becomes ln(X/Y) = X − Y or, equivalently, ln Y − Y = ln X − X. Exponentiating both
sides of this equation gives exp(ln Y − Y ) = exp(ln X − X), which in turn provides Y
exp(−Y) = X exp(−X). Thus, given X = Ni/Nt, we can solve for Y = Nf/Nt numerically
or by using the graph provided in Fig. 16.4-7.

Figure 16.4-7 Graphical construction for determining Nf from Ni, where X = Ni/Nt
and Y = Nf/Nt. For X = X1 the ordinate represents the value X1 exp(−X1). Since the
corresponding solution Y1 obeys Y1 exp(−Y1) = X1 exp(−X1), it must have the same
value of the ordinate.
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Pulse Duration

A rough estimate of the pulse duration is provided by the ratio of the pulse energy to
the peak pulse power. Using (16.4-14), (16.4-15), and (16.4-23), we obtain

When Ni ≫ Nt and Ni ≫ Nf, the pulse duration reduces to τpulse ≈ τp.

Pulse Shape

The optical pulse shape, along with the various pulse characteristics described
above, can be determined by numerically integrating (16.4-7) and (16.4-8). Examples
of the resulting pulse shapes are displayed in Fig. 16.4-8.

Figure 16.4-8 Q-switched pulse shapes obtained by numerically integrating the
approximate rate equations provided in (16.4-7) and (16.4-8). The photon-number
density n(t) is normalized to the threshold population difference Nt = Ntb and the
time t is normalized to the photon lifetime τp. As the ratio Ni/Nt increases, the pulse
narrows and attains a higher peak value. In the limit Ni/Nt ≫ 1, the peak value of
n(t) approaches .

EXAMPLE 16.4-1.

Q-Switched Frequency-Doubled Nd3+:YAG Microchip Laser. A slice of
Nd3+:YAG is brought together with a saturable absorber and an intracavity
frequency-doubling crystal (see Sec. 22.2A) to form a 1-mm-long cavity. When
pumped with 1 W of light from a fiber-coupled 808-nm laser diode, this
microchip laser generates Q-switched optical pulses at 532 nm. Each pulse has
an energy of 30 μJ and a duration of 250 ps. The repetition rate is ≈ 10 kHz and
the average power is 300 mW.
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EXERCISE 16.4-2

Pulsed Ruby Laser. Consider the ruby-laser example discussed in Exercise
16.1-1. Assume that the laser is now Q-switched and that at t = ti [see Fig. 16.4-6]
the population difference Ni = 6Nt. Use Fig. 16.4-8 to estimate the shape and
duration of the laser pulse. Calculate the approximate peak power, energy, and
duration of the laser pulse.

D. Mode Locking
A laser can oscillate on many longitudinal modes, with frequencies that are equally
separated by the Fabry–Perot intermodal spacing νF = c/2d. Though these modes
normally oscillate independently (they are then called free-running modes),
techniques are available for coupling them and locking their phases together. The
modes can then be regarded as the components of a Fourier-series expansion of a
periodic function of time with period TF = 1/νF = 2d/c, which constitute a periodic
pulse train. This was the approach taken in Sec. 2.6B, where we considered the
interference of M monochromatic waves with equal intensities and equally spaced
frequencies. We discuss in turn the properties of a mode-locked pulse train and
methods of achieving mode locking, and then provide several examples of mode-
locked lasers.

Properties of a Mode-Locked Pulse Train

If each of the laser modes is approximated by a uniform plane wave propagating in
the z direction with velocity c = co/n, where n is the refractive index of the laser
medium, the total complex wavefunction of the field may be written in the form of a
sum:

where

is the frequency of mode q and Aq is its complex envelope. For convenience we
assume that the q = 0 mode coincides with the central frequency ν0 of the atomic
lineshape. The magnitudes |Aq| may be determined from knowledge of the spectral
profile of the gain and the resonator loss (see Sec. 16.2B). In an inhomogeneously
broadened medium, the modes interact with different groups of atoms so that their
phases arg{Aq} are random and statistically independent.

Substituting (16.4-26) into (16.4-25) provides
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where the complex envelope 𝒜(t) is the function

and

The complex envelope 𝒜(t) in (16.4-28) is a periodic function of t of period TF while
𝒜(t − z/c) is a periodic function of z of period cTF = 2d. If the magnitudes and
phases of the complex coefficients Aq are properly chosen, 𝒜(t) may be made to take
the form of a sequence of periodic narrow pulses.

Consider, for example, M modes (q = 0, ±1, …, ±S, so that M = 2S + 1) whose
complex coefficients are all equal: Aq = A for q = 0, ±1, …, ±S. Equation (16.4-28)
then becomes

where x = exp(j2πt/TF) (see Sec. 2.6B for more details). After a few algebraic
manipulations, 𝒜(t) can be cast in the form

The optical intensity I = |U|2 is then given by I(t, z)= |𝒜(t − z/c)|2 so that

which is a periodic function of time, as illustrated in Fig. 16.4-9.



Figure 16.4-9 Intensity of the periodic pulse train resulting from the sum of M
laser modes of equal magnitudes and phases. Each pulse has a duration τpulse that is
M times smaller than the period TF and a peak intensity that is M times greater than
the mean intensity.

The behavior of the mode-locked laser pulse train is therefore dependent on the
number of modes M, which is proportional to the transition linewidth Δν. If M ≈ Δν/
νF, then the pulse duration τpulse = TF/M ≈ 1/Δν. Since τpulse is inversely proportional
to the transition linewidth Δν, and since Δν can be quite large, very narrow mode-
locked laser pulses can generated. The ratio between the peak and mean intensities
is equal to the number of modes M, which can also be quite large (Fig. 16.4-9).

The period of the pulse train is TF = 2d/c and its pulse repetition rate is νF = 1/TF =
c/2d. The period TF is just the time for a single round trip of reflection within the
resonator. Indeed, the light in a mode-locked laser can be regarded as a single
narrow pulse of photons that reflects back and forth between the mirrors of the
resonator, as portrayed in Fig. 16.4-10. At each encounter with the output mirror, a
fraction of the photons exits in the form of a pulse of light. The transmitted pulses
are separated by the distance c(2d/c) = 2d and each has a spatial width dpulse = cτpulse
= 2d/M.

Figure 16.4-10 The mode-locked laser pulse reflects back and forth between the
mirrors of the resonator. Each time it reaches the output mirror it transmits a short
optical pulse. The transmitted pulses are separated by the distance 2d and travel
with velocity c. The switch opens only when the pulse reaches the mirror and only
for the duration of the pulse. The periodic pulse train is therefore unaffected by the
presence of the switch. Other wave patterns, however, suffer losses that preclude
oscillation.

The properties of a mode-locked laser pulse train are summarized in Table 16.4-1.
Though the formulas presented in the table are applicable for the special case in
which the modes have equal amplitudes and phases, calculations based on more
realistic behavior provide similar results.



Table 16.4-1 Characteristic properties of a mode-locked pulse train.

Temporal period TF = 2d/c Spatial period 2d

Frequency spacing νF = c/2d Pulse repetition rate νF = c/2d

Pulse duration τpulse = TF/M = 1/Δν Pulse length dpulse = 2d/M

Mean intensity Ī Peak intensity Ip = MĪ

EXERCISE 16.4-3

Demonstration of Pulsing by Mode Locking. Plot the intensity I(t)= |
𝒜(t)|2 of a wave whose envelope 𝒜(t) is given by the sum in (16.4-28). Assume
that the number of modes M = 11 and use the following choices for the complex
coefficients Aq:

a. Equal magnitudes and the same phase (this should reproduce the results
provided earlier).

b. Magnitudes that obey the Gaussian spectral profile  and the
same phase.

c. Equal magnitudes and random phases (obtain the phases by using a
random number generator to produce a random variable uniformly
distributed between 0 and 2π).

Methods of Mode Locking

We have found thus far that if a large number M of modes are locked in phase, they
form a giant narrow pulse of photons that reflects back and forth between the
mirrors of the resonator. The spatial length of the pulse is a factor of M smaller than
twice the resonator length. We now turn to a consideration of methods suitable for
locking the phases of the modes together, a task that can be accomplished with the
help of an active or passive modulator (switch) placed within the resonator. We
consider active mode locking and passive mode locking in turn.

Suppose that an active optical modulator controlled by an external applied signal
(e.g., an acousto-optic or electro-optic switch, as discussed in Secs. 20.2A and 21.1B,
respectively) is placed inside the resonator, and that this switch blocks the light at
all times except when the optical pulse is about to cross it, whereupon it opens for
the duration of the pulse (Fig. 16.4-10). Since the pulse itself is permitted to pass, it
is not affected by the presence of the switch and it continues its travels
uninterrupted. In the absence of mode locking, the individual modes have different
phases that are determined by the random conditions at the onset of their
oscillation. If those phases happen, by accident, to take on equal values, the sum of
the modes will form a giant pulse and it will not be affected by the presence of the



switch. However, any other combination of phases will superpose to form a field
distribution that is totally or partially blocked by the switch, which adds to the losses
of the system. In the presence of the switch, therefore, lasing can occur only when
the modal phases are equal. At turn-on, the laser waits for the “lucky accident” of
phase alignment; once oscillation begins the locking continues.

The same argument can be framed in mathematical terms. An optical field must
satisfy the wave equation with the boundary conditions imposed by the presence of
the switch. The multimode optical field of (16.4-25) does indeed satisfy the wave
equation for any combination of phases, including equal phases. Only this latter
case, however, also satisfies the boundary conditions imposed by the switch so it is
the unique solution.

A passive switch such as a saturable absorber may also be used to achieve mode
locking. A saturable absorber (see Sec. 15.4A) is a medium whose absorption
coefficient decreases as the intensity of the light passing through it increases; it thus
transmits intense pulses with relatively little absorption while weak pulses are
absorbed. Oscillation can therefore occur only when the phases of the different
modes are related to each other in such a way that they form an intense pulse that is
able pass through the absorbing medium. Semiconductor saturable-absorber
mirrors (SESAMs), which are saturable absorbers that operate in reflection, are in
widespread use; the more intense the light, the greater the reflection provided by
these devices. SESAMs can accommodate wavelengths in the range from 800 to
1600 nm, pulse durations from fs to ns, and power levels from mW to hundreds of
W. Graphene saturable absorbers are effective for achieving broadband laser
mode locking since graphene has an absorbance that is nearly constant from λo = 0.7
to 25 μm, and also exhibits strong absorption saturation and fast (ps) recovery time
(Sec. 17.1B). Saturable absorbers can also produce Q-switched mode locking, where
the laser emits collections of mode-locked pulses within a Q-switching envelope.

Passive mode locking can also be implemented via Kerr-lens mode locking,
which relies on the optical Kerr effect, a nonlinear optical phenomenon that causes
the refractive index of a material to change with optical intensity (Sec. 22.3). A Kerr
medium, which may be the gain medium itself or a material placed within the laser
resonator, acts as a lens with a focal length that is inversely proportional to the
intensity (Exercise 22.3-2). The Kerr lens is designed to reduce the area of the laser
mode at a specified location within the resonator when the light intensity is high. An
aperture placed at that location will then permit the light to pass through, but only
when the phases are aligned so that the pulse intensity is high. Alternatively, the
reduced modal area in the gain medium can be used to increase its overlap with the
strongly focused pump beam, thereby increasing the effective gain. The Kerr-lens
approach is inherently broadband because of the parametric nature of the process.
The rapid response and recovery inherent in passive mode locking generally leads to
shorter optical pulses than can be obtained with active mode locking. Passive and
active devices are used for the mode locking of inhomogeneously and
homogeneously broadened media alike.



Examples of Mode-Locked Lasers

Table 16.4-2 provides a list of pulse durations available using selected mode-locked
laser media. They are listed in order of increasing values of the observed pulse
duration, which spans a broad range. The observed values depend not only on the
medium, but also on the method used to achieve mode locking. Limitations are also
imposed by nonlinearities and dispersion in the medium.

Table 16.4-2 Typical pulse durations for a number of mode-locked lasers subject to
homogeneous (H) and inhomogeneous (I) broadening.

Laser
Medium

Transition
Linewidtha Δν

Calculated Pulse
Duration τpulse = 1/Δν

Observed
Pulse

Duration

Ti3+:Al2O3
(Ti:Sapphire)

H 100 THz 10 fs 10 fs

Cr4+:Mg2SiO4
(Forsterite)

H 50 THz 20 fs 20 fs

Rhodamine-6G
dye

H/I 40 THz 25 fs 27 fs

Nd3+:Glass
(phosphate)

I 7 THz 140 fs 150 fs

Er3+:Silica fiber H/I 5 THz 200 fs 200 fs

Yb3+:Silica fiber H/I 5 THz 200 fs 5 ps

Nd3+:YAG H 150 GHz 7 ps 7 ps

Ar+ I 3.5 GHz 286 ps 150 ps
He–Ne I 1.5 GHz 667 ps 600 ps
CO2 I 60 MHz 16 ns 20 ns

aThe transition linewidths Δν are drawn from Table 15.3-1.



EXAMPLE 16.4-2.

Mode Locking in a Neodymium-Doped Glass Laser. Consider a
Nd3+:glass laser operating at λo = 1.05 μm. It has a refractive index n = 1.5 and a
transition linewidth Δν = 7 THz (Tables 15.3-1 and 16.4-2). The pulse duration is
thus τpulse = 1/Δν ≈ 140 fs. If the resonator has a length d = 15 cm, the temporal
period is TF = 2nd/co = 1.5 ns and the mode separation (and pulse repetition
rate) is νF = co/2nd = 0.67 GHz. This yields M = Δν/νF ≈ 10 500 modes and a
pulse length of dpulse = 2d/M ≈ 28.6 μm. The peak intensity Ip is 10 500 times
greater than the mean intensity Ī. In media with broad transition linewidths,
mode locking is generally more advantageous than Q-switching for obtaining
short pulses. However, gas lasers generally have narrow atomic linewidths that
make it difficult to obtain ultrashort pulses via mode locking.

EXAMPLE 16.4-3.

Mode Locking in an Ytterbium-Doped Fiber Laser. A passively mode-
locked Yb3+:silica-fiber laser operated at λo = 1070 nm produces an average
power of 10 W in the form of 200-nJ pulses with a peak power of 40 kW, with
the help of a SESAM. The pulse repetition rate is 50 MHz and the observed
pulse duration is 5 ps; this is substantially longer than the expected value since
Δν = 5 THz (Table 16.4-2), which provides τpulse = 1/Δν = 200 fs. The discrepancy
arises because of group velocity dispersion, which imparts broadening and also
chirps the pulse as it travels through the laser medium (Fig. 5.7-3). The normal
dispersion in silica fiber near λo = 1 μm (Fig. 5.7-5) can be compensated by
introducing anomalous dispersion via a fiber Bragg grating or a photonic-crystal
fiber, which reduces the observed pulse duration to 200 fs. Additional
reductions to the pulse duration can be effected by using suitable pulse-
compression techniques (Sec. 23.2). Pulses with far greater energies and peak
powers can be obtained.

Mode-locked lasers find use in many applications, including time-resolved mea
surements, imaging, metrology, communications, materials processing, and clinical
medicine. The mode-locked laser of choice is often the Ti:sapphire laser, whose
center wavelength can be tuned over the range 700–1050 nm and whose individual
pulses have durations as short as 10 fs. A commonly available commercial version of
this laser makes use of Kerr-lens mode locking and delivers 50-nJ pulses of 10-fs
duration and 1-MW peak power, at a repetition rate of 80 MHz, but repetition rates
in excess of 10 GHz are available. The spectral bandwidth Δν of this laser can also be
easily constrained to provide ps-duration mode-locked pulses. The intensity
available from a mode-locked Ti:sapphire laser, or an amplified version thereof, is



also sufficient to support harmonic generation and other nonlinear wavelength-
shifting techniques (Chapters 22 and 23), which can provide sources of mode-locked
pulses at shorter wavelengths. In particular, second-harmonic generation produces
pulses in the range 350–525 nm and third-harmonic generation reaches 230–350
nm.

In the direction of longer wavelengths, mode-locked operation can be extended
beyond λo = 1 μm by using a Ti:sapphire mode-locked laser oscillator as the source
for a synchronously pumped optical parametric oscillator employing a crystal such
as LBO or a periodically poled crystal (Sec. 22.4C). This approach provides mode-
locked signal and idler output beams that cover the 1.0–3.3 μm infrared wavelength
range. Mode-locked ytterbium-doped and erbium-doped fiber lasers operate in the
vicinity of 1.07 and 1.55 μm, respectively. Though these lasers typically have large
transition linewidths, achievable ultrafast pulse durations, along with other
performance features, are often limited by the fiber dispersion and/or nonlinearities
resulting from long fiber lengths and small modal volumes, respectively. Low pulse
repetition rates arising from long resonator lengths may be increased by making use
of harmonic mode locking, wherein multiple, well-spaced pulses circulate within
the fiber resonator. High output powers from ultrafast fiber lasers are usually
achieved by making use of chirped-pulse amplification.

In the domain of semiconductor lasers, vertical external-cavity surface-emitting
lasers (VECSELS), also called semiconductor disk lasers (SDLs), can be
operated in mode-locked configurations with pulse durations < 100 fs and pulse
repetition rates in the range of 1–50 GHz (Sec. 18.5A). Monolithic mode-locked laser
diodes, by virtue of their very small resonator lengths, can exhibit pulse repetition
rates that reach hundreds of GHz or even 1 THz (Example 18.3-4). In the mid
infrared, quantum cascade lasers (QCLs) operating in the wavelength region 3 ≤ λo ≤
12 μm can generate mode- locked optical pulses with durations of a few ps (Sec.
18.4D).

*E. Optical Frequency Combs
Since light from a mode-locked laser has a discrete optical spectrum with uniformly
spaced frequencies over a broad band, the spectrum is known as an optical
frequency comb (OFC). The qth frequency component of an OFC is νq = qνF + νi,
where νF is the frequency spacing between the adjacent ‘teeth’ of the comb and νi <
νF is an offset frequency. The number of frequency components M contained in the
comb is typically large so that the spectral bandwidth is much greater than the
frequency spacing νF. An OFC is thus completely described by two frequencies, νF
and νi, both of which are readily measured. Whereas the νq are optical frequencies,
the frequency spacing for mode-locked lasers νF = c/2d typically lies between tens of
MHz and hundreds of GHz, as determined by the length of the Fabry–Perot
resonator.



By enabling the high-precision measurement of optical and ultraviolet frequencies,
OFCs have found myriad uses in physics and astronomy. They have become valuable
tools for precision molecular, atomic, and nuclear spectroscopy, as well as for
precision optical imaging and metrology. Moreover, OFCs comprising entangled
photon pairs generated via on-chip quantum circuits (Sec. 13.3D) offer parameter
estimation with even greater precision.

Measurement of an octave-spanning OFC.
If the highest frequency of an OFC is a factor of two greater than the lowest
frequency, the OFC is said to span a frequency octave. Since the frequency spacing is
established by the fixed laser cavity, the comb is highly uniform and νF is highly
stable. The OFC may therefore serve as a frequency ruler against which unknown
frequencies may be measured. Such measurements usually rely on light beating
(Sec. 2.6B), which generates frequency differences that are readily determined with
electronic instruments.

The frequencies νq of an OFC may be determined if the frequencies νF and νi, which
are far smaller than νq, are measured. The measurement of νF is straightforward
since it is the pulse repetition rate of the mode-locked pulse train, which can be
quantified with a fast detector. Alternatively, the value of νF can be established with
the help of an electronic spectrum analyzer, which will display the beat frequency
between adjacent frequencies in the comb.

Establishing the value of νi is more difficult, though straightforward. If the comb
spans a frequency octave, νi may be elicited by beating the comb with a frequency-
doubled version of itself. Frequency doubling may be implemented by making use of
second-harmonic generation in a nonlinear optical medium, as described in Sec.
22.2A. As illustrated in Fig. 16.4-11, after frequency doubling the component of order
q from the low-frequency side of the frequency-doubled comb has approximately the
same frequency as the component 2q on the high-frequency side of the original
comb, i.e., 2νq ≈ ν2q. Measuring the beat frequency between these combs yields the
offset frequency since 2νq − ν2q = 2(qνF + νi) − (2qνF + νi) = νi. The outcome of such
a measurement may be used to control the source of the OFC, or even to eliminate
the offset frequency altogether, thereby providing a perfect frequency ruler in which
νq = qνF.



(16.4-33)

(16.4-34)

Figure 16.4-11 (a) Spectrum of an octave-spanning optical frequency comb. (b)
Frequency-doubled spectrum of the comb in (a). (c) Beating these two spectra yields
the offset frequency νi.

Precise measurement of optical frequency.
An OFC may be used to increase the precision of an optical-frequency measurement
made with a conventional wavelength-sensitive spectrum analyzer. If the coarse
measurement of the frequency νL of a monochromatic light source such as a CW
laser is approximately equal to a multiple of the frequency spacing of an OFC, i.e., if
νL ≈ qνF, the precision of the frequency measurement can be enhanced by beating
the two optical fields. The smallest beat frequency νL − (qνF + νi) is then used to
calculate a more precise value of νL. The process is akin to making use of a Vernier
scale such as that used to obtain fractional readings from a uniformly divided ruler.
In the event that the offset frequency νi is not known, then both νi and the
correction νL − qνF may be determined by beating the OFC once with the CW laser,
and again with a frequency-doubled version thereof, as illustrated in Fig. 16.4-12.
Since νL ≈ νq and 2νL ≈ ν2q, the resultant beat frequencies are, respectively:

Figure 16.4-12 Precise measurement of the frequency of a CW laser by beating an
octave-spanning OFC once with the CW laser, and again with a second-harmonic of
the CW laser.



Solving (16.4-33) and (16.4-34) yields both the offset frequency νi = νb − 2νa and the
correction νL − qνF = νb − νa. This analysis assumes that the OFC is octave spanning
and that qνF lies toward the low-frequency side of the comb.

Extreme-ultraviolet and X-ray OFCs.
As indicated earlier, the frequencies νq of OFCs generated using mode-locked lasers
usually fall in the visible region of the spectrum while the pulse repetition rates νF =
c/2d typically range from tens of MHz to hundreds of GHz, depending on the length
d of the Fabry–Perot laser resonator (Sec. 11.1A). In recent years, high-harmonic
generation (HHG, Sec. 23.5D) has emerged as an alternative technique for
generating optical frequency combs. The HHG approach is distinct from mode
locking and has made it possible to substantially increase the frequency spacings
and frequency reach of OFCs. An optical frequency comb generated via HHG
exhibits spacings between adjacent frequency components that lie at twice the
frequency of the exciting laser, which typically operates in the near or mid infrared.
OFC difference frequencies (and pulse repetition rates) are thus in the vicinity of
hundreds of THz, orders of magnitude greater than those obtained using mode-
locking techniques. Moreover, at high gas pressures the highest frequency
components of OFCs generated via HHG can stretch to the SXR region (Fig. 16.3-7).
The pulse trains associated with HHG-generated OFCs exhibit attosecond structure.
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PROBLEMS
16.2-2 Number of Longitudinal Modes. An Ar+-ion laser has a resonator of

length 100 cm. The refractive index n = 1.

a. Determine the frequency spacing νF between the resonator modes.

b. Determine the number of longitudinal modes that the laser can sustain if the
FWHM Doppler-broadened linewidth is ΔνD = 3.5 GHz and the loss coefficient
is half the peak small-signal gain coefficient.

c. What would the resonator length d have to be to achieve operation on a single
longitudinal mode? What would that length be for a CO2 laser, which has a
much smaller Doppler linewidth ΔνD = 60 MHz under the same conditions?

16.2-3 Frequency Drift of the Laser Modes. A He–Ne laser has the following
characteristics: (1) A resonator with 97% and 100% mirror reflectances and
negligible internal losses; (2) a Doppler-broadened atomic transition with
Doppler linewidth ΔνD = 1.5 GHz; and (3) a small-signal peak gain coefficient
γ0(ν0) = 2.5 × 10−3 cm−1. While the laser is running, the frequencies of its
longitudinal modes drift with time as a result of small thermally induced
changes in the length of the resonator. Find the allowable range of resonator
lengths such that the laser will always oscillate in one or two (but not more)
longitudinal modes. The refractive index n = 1.

16.2-4 Mode Control Using an Etalon. A Doppler-broadened gas laser operates
at 515 nm in a resonator with two mirrors separated by a distance of 50 cm. The
photon lifetime is 0.33 ns. The spectral window within which oscillation can
occur is of width B = 1.5 GHz. The refractive index n = 1. To select a single
mode, the light is passed into an etalon (a passive Fabry–Perot resonator)
whose mirrors are separated by the distance d and its finesse is ℱ. The etalon



acts as a filter. Suggest suitable values of d and ℱ. Is it better to place the etalon
inside or outside the laser resonator?

16.2-5 Modal Powers in a Multimode Laser. A He–Ne laser operating at λo =
632.8 nm produces 50 mW of multimode power at its output. It has an
inhomogeneously broadened gain profile with a Doppler linewidth ΔνD = 1.5
GHz and the refractive index n = 1. The resonator is 30 cm long.

a. If the maximum small-signal gain coefficient is twice the loss coefficient,
determine the number of longitudinal modes of the laser.

b. If the mirrors are adjusted to maximize the intensity of the strongest mode,
estimate its power.

16.2-6 Output of a Single-Mode Gas Laser. Consider a 10-cm-long gas laser
operating at the center of the 600-nm line in a single longitudinal and single
transverse mode. The mirror reflectances are ℛ1 = 99% and ℛ2 = 100%. The
refractive index n = 1 and the effective area of the output beam is 1 mm2. The
small-signal gain coefficient γ0(ν0) = 0.1 cm−1 and the saturation photon-flux
density ϕs = 1.43 × 1019 photons/cm2-s.

a. Determine the distributed loss coefficients, αm1 and αm2, associated with each
of the mirrors separately. Assuming that αs = 0, find the resonator loss
coefficient αr.

b. Find the photon lifetime τp.

c. Determine the output photon-flux density ϕo and the output power Po.

16.2-7 Transmittance of a Laser Resonator. Monochromatic light from a
tunable optical source is transmitted through the optical resonator of an
unpumped gas laser. The observed transmittance, as a function of frequency, is
shown in Fig. P16.2-7.

Figure P16.2-7 Transmittance of a laser resonator.

a. Determine the resonator length, the photon lifetime, and the threshold gain
coefficient of the laser. Assume that the refractive index n = 1.

b. Assuming that the central frequency of the laser transition is 5 × 1014 Hz,
sketch the transmittance versus frequency if the laser is now pumped but the



pumping is not sufficient for laser oscillation to occur.

16.2-8 Rate Equations for a Four-Level Laser. Consider a four-level laser with
an active volume V = 1 cm3. The population densities of the upper and lower
laser levels are N2 and N1 and N = N2 − N1. The pumping rate is such that the
steady-state population difference N in the absence of the stimulated emission
and absorption is N0. The photon-number density is n and the photon lifetime
is τp. Write the rate equations for N2, N1, N, and n in terms of N0, the transition
cross section σ(ν), and the times tsp, τ1, τ2, τ21, and τp. Determine the steady-
state values of N and n.

16.3-1 Operation of an Ytterbium-Doped YAG Laser. Yb3+:YAG is a rare-earth-
doped dielectric material that lases at λo = 1.030 μm on the 2F5/2 → 2F7/2
transition (see Tables 14.1-1, 15.3-1, 16.3-1, and Fig. 16.3-2). This three-level
laser is usually optically pumped with an array of InGaAs laser diodes.

a. The pump band (level ) has a central energy of 1.31915 eV and a width of
0.02475 eV. Determine the free-space wavelength of the desired laser-diode
pump and the width of the absorption band in nm.

b. At the central frequency of the laser transition ν0, the peak transition cross
section σ0 ≡ σ(ν0) = 2 × 10−20 cm2. Given that the Yb3+-ion doping density is set
at Na = 1.4 × 1020 cm−3, determine the absorption and gain coefficients of the
material at the center of the line, α(ν0) ≡ −γ(ν0). Assume that the material is in
thermal equilibrium at T = 300° K (i.e., there is no pumping).

c. Consider a laser rod constructed from this material with a length of 6 cm and a
diameter of 2 mm. One of its ends is polished to a reflectance of 80% (ℛ1 = 0.8)
while the other is polished to unity reflectance (ℛ2 = 1.0). Assuming that there
is no scattering, and that there are no other extraneous losses, determine the
resonator loss coefficient αr and the resonator photon lifetime τp.

d. As the laser is pumped, the gain coefficient γ(ν0) increases from its initial
negative value at thermal equilibrium and changes sign, thereby providing gain.
Determine the threshold population difference Nt for laser oscillation.

e. Why is it advantageous to have the energy of level  close to that of level ?

f. How might the operation of the laser change if yttrium vanadate (YVO4) were
substituted for YAG (Y3Al5O12) as the host material?

16.3-2 Threshold Population Difference for an Ar+-Ion Laser. An Ar+-ion
laser has a 1-m-long resonator with 98% and 100% mirror reflectances. Other
loss mechanisms are negligible. The atomic transition has a central wavelength
λo = 515 nm, spontaneous lifetime tsp = 10 ns, and linewidth Δλ = 0.003 nm.



The lower energy level has a very short lifetime and hence zero population. The
diameter of the oscillating mode is 1 mm. Determine

a. the photon lifetime.

b. the threshold population difference for laser action.

16.3-3 Spontaneous Lifetime of an EUV Transition. A visible laser transition
at λo = 500 nm has a spontaneous lifetime tsp = 10 ns. Estimate the
spontaneous lifetime for an EUV laser transition at λo = 18.2 nm, assuming that
the transition strength S is the same in both cases. Compare your result with
that provided in Table 15.3-1.

*16.4-4 Transients in a Gain-Switched Laser.

a. Introduce the new variables X = n/τp, Y = N/Nt, and the normalized time s = t/
τp, to demonstrate that the rate equations (16.4-3) and (16.4-6) take the form

where a = τp/tsp and Y0 = N0/Nt.

b. Solve these two equations for both switching on and switching off. Assume that
Y0 is switched from 0 to 2 to turn the laser on, and from 2 to 0 to turn it off.
Assume further that an initially very small photon flux corresponding to X =
10−5 starts the oscillation at t = 0. Speculate on the possible origin of this flux.
Determine the switching transient times for a = 10−3, 1, and 103. Comment on
the significance of your results.

*16.4-5 Q-Switched Ruby Laser Power. A Q-switched ruby laser makes use of a
15-cm-long rod of cross-sectional area 1 cm2 placed in a resonator of length 20
cm. The mirrors have reflectances ℛ1 = 0.95 and ℛ = 0.7. The Cr3+ density is
1.58 × 1019 atoms/cm3, and the transition cross section σ(ν0) = 2 × 10−20 cm2.
The laser is pumped to an initial population of 1019 atoms/cm3 in the upper
state with negligible population in the lower state. The pump band (level ) is
centered at ≈ 450 nm and the decay from level  to  is fast. The lifetime of
level  is ≈ 3 ms.

a. How much pump power is required to maintain the population in level  at 1019

cm−3

b. How much power is spontaneously radiated before the Q-switch is operated?

c. Determine the peak power, energy, and duration of the Q-switched pulse.



*16.4-6 Operation of a Cavity-Dumped Laser. Sketch the variation of the
threshold population difference Nt (which is proportional to the loss), the
population difference N(t), the internal photon number density n(t), and the
external photon-flux density ϕo(t), during two cycles of operation of a pulsed
cavity-dumped laser.

16.4-7 Mode Locking with Lorentzian Amplitudes. Assume that the envelopes
of the modes of a mode-locked laser are given by

and the phases are all equal. Determine expressions for the following parameters of
the generated pulse train:

a. Mean power

b. Peak power

c. Pulse duration (FWHM)

16.4-8 Second-Harmonic Generation. Crystals with nonlinear optical properties
are often used for second-harmonic generation, as explained in Sec. 22.2A. In
this process, two photons of frequency ν are converted into a single photon of
frequency 2ν. Assume that such a crystal is placed inside a laser resonator with
an active medium providing gain at frequency ν. The frequencies ν and 2ν
correspond to two modes of the resonator. If the rate of second-harmonic
conversion is ζn (s−1-m−3) and the rate of photon production by the laser
process (net effect of stimulated emission and absorption) is ξn (s−1-m−3),
where ζ and ξ are constants, write the rate equations for the photon number
densities n and n2 at the frequencies ν and 2ν. Assume that the photon lifetimes
at ν and 2ν are τp and τp2, respectively. Determine the steady-state values of n
and n2.
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William B. Shockley (1910–1989), seated, John Bardeen
(1908–1991), center, and Walter H. Brattain (1902–1987),
right, shared the Nobel Prize in 1956 for demonstrating that
semiconductor devices could be used to achieve amplification.

Photonics is the technology of controlling the flow of photons,
much as electronics is the technology of controlling the flow of
charge carriers (electrons and holes). These two technologies join
together in semiconductor optics: photons generate mobile charge
carriers, and charge carriers generate and control the flow of
photons. Semiconductor devices serve as photon sources (light-
emitting diodes and laser diodes), amplifiers, photodetectors,
waveguides, modulators, multiplexers, sensors, and nonlinear
optical elements. The compatibility of semiconductor optical devices
and semiconductor electronic devices has fostered the development
of both.

Semiconductor materials absorb and emit photons by undergoing
transitions among allowed energy levels. Though the basic rules
that govern these interactions are the same as those set forth for
photons and atoms in Sec. 14.3, semiconductors have a number of
unique features, as outlined in Sec. 14.1D:



Because of the proximity of atoms in a crystal lattice, a
semiconductor material should not be viewed as a collection of
noninteracting atoms, each with its own individual energy
levels. Rather, the energy levels belong to the system as a
whole.

Collections of closely spaced energy levels form energy bands.
In the absence of external excitation, these bands are either
fully occupied by electrons or totally unoccupied at T = 0° K.
The highest-lying fully occupied energy band is known as the
valence band while the lowest-lying unoccupied energy band is
called the conduction band. These two bands are separated by a
forbidden band, with bandgap energy Eg.

An external energy source (whether thermal, optical, or
electronic) can impart energy to an electron in the valence
band, causing it to jump across the forbidden band and enter
the conduction band. This transition leaves behind a vacancy
(hole) in the valence band. In the inverse process, electron–
hole recombination, an electron decays from the conduction
band to fill an empty state in the valence band (provided that
one is accessible), generating a photon and/or phonons in the
process. Thus, photons interact with both types of charge
carriers, electrons and holes.

Two processes are fundamental to the operation of most
semiconductor optical devices:

1. The absorption of a photon can create an electron–hole pair.
Mobile charge carriers resulting from the absorption of a
photon alter the electrical properties of the semiconductor. This
process is the basis of operation of photoconductive
photodetectors.

2. The recombination of an electron and a hole can result in the
emission of a photon. This process is responsible for the
operation of semiconductor photon sources. Spontaneous



radiative electron–hole recombination gives rise to photon
generation in the light-emitting diode. Stimulated electron–
hole recombination generates photons in a laser diode.

This Chapter

The reader is expected to be familiar with the basic principles of
semiconductor physics. In Sec. 17.1 we offer a review of
semiconductors and their properties. Section 17.2 provides an
introduction to the optical properties of bulk and quantum-confined
semiconductors. We present a simplified theory of absorption,
spontaneous emission, and stimulated emission patterned on the
approach to the interaction of photons with atoms provided in Sec.
14.3.

This and the following two chapters form a unit. Chapter 18 deals
with the operation of semiconductor sources such as light-emitting
diodes and laser diodes. Chapter 19 is devoted to semiconductor
photodetectors.

17.1 SEMICONDUCTORS
As discussed in Sec. 14.1D, a semiconductor is a crystalline or
amorphous solid whose electrical conductivity is typically
intermediate between that of a metal and that of an insulator. Its
conductivity can be significantly altered by modifying the
temperature or doping concentration of the material, or by
illuminating it with light. The band structure of semiconductors,
and the ability to form junctions and heterostructures, offer unique
properties. Quantum-confined semiconductor structures further
extend the range of available features. As will be elucidated in Sec.
17.1B, semiconductor optical devices often rely on III–V ternary or
quaternary compounds (e.g., InGaAsP, AlInGaP, or AlInGaN), but
also make use of organic semiconductors and, increasingly,
compounds forged from elements residing in group-IV of the
periodic table (e.g., C, Si, Ge, and Sn). Electronic semiconductor
devices are principally fabricated from Si.



A. Energy Bands and Charge Carriers

Energy Bands in Bulk Semiconductors

The atoms comprising solid-state materials have sufficiently strong
interatomic interactions that they cannot be treated as individual
entities (Sec. 14.1D). Their conduction electrons are not bound to
individual atoms; rather, they belong to the collection of atoms as a
whole. The solution of the Schrödinger equation for the electron
energy, in the periodic potential created by the collection of atoms
in the crystal lattice, results in a splitting of the atomic energy levels
and the formation of energy bands. Each band contains a large
number of densely packed discrete energy levels that is well
approximated as a continuum. As illustrated in Fig. 17.1-1, the
valence and conduction bands are separated by a forbidden band or
bandgap. The bandgap energy Eg plays an important role in
determining the electrical and optical properties of the material.

Figure 17.1-1 Energy bands in Si and GaAs. The bandgap energy Eg,
which separates the valence and conduction bands, is 1.12 eV for Si
and 1.42 eV for GaAs at room temperature.

The origin of the bandgap may be illustrated by means of the
Kronig–Penney model. In this simple theory the crystal-lattice
potential, a one-dimensional version of which is depicted in Fig.
17.1-2(a), is approximated by a 1D periodic rectangular-barrier
potential, as shown in Fig. 17.1-2(b). The solution of the associated



Schrödinger equation (14.1-3) for this potential yields allowed
energy bands with traveling-wave solutions, separated by forbidden
bands with exponentially decaying solutions. It can be shown that
the results are general and apply to three dimensions. This approach
is similar to that used for analyzing the optics of one-dimensional
periodic media, as set forth in Sec. 7.2 and discussed in Appendix C.
The traveling-wave eigenfunctions are Bloch modes with the
periodicity of the crystal lattice [see (7.2-4)].

Figure 17.1-2 (a) Crystal-lattice potential associated with an
infinite one-dimensional collection of atoms with lattice constant a.
(b) Idealized rectangular-barrier potential (height V0) for the
Kronig–Penney model.

Electrons and Holes

As is understood from Sec. 14.1, the wavefunctions of the electrons
in a semiconductor overlap so that the Pauli exclusion principle
applies. This principle dictates that no two electrons may occupy the
same quantum state and that the lowest available energy levels fill
first. Elemental semiconductors, such as Si and Ge, have four
valence electrons per atom that form covalent bonds. At T = 0° K,
the number of quantum states that can be accommodated in the
valence band is such that it is completely filled while the conduction
band is completely empty. The material cannot conduct electricity
under these conditions.

As the temperature increases, however, some electrons can be
thermally excited from the valence band into the empty conduction
band, where unoccupied states are abundant (Fig. 17.1-3). These
electrons can then act as mobile carriers, drifting through the
crystal lattice under the effect of an applied electric field, and



thereby contributing to the electric current. Moreover, an electron
departing from the valence band leaves behind an unoccupied
quantum state, which in turn allows the remaining electrons in the
valence band to exchange places with each other under the
influence of an external field. The collection of electrons remaining
in the valence band thus undergoes motion. This can equivalently
be regarded as motion, in the opposite direction, of the hole left
behind by the departed electron. The hole therefore behaves as a
particle with positive charge +e.

Figure 17.1-3 Electrons in the conduction band and holes in the
valence band at T > 0° K.

The net result is that each electron excitation creates a free electron
in the conduction band and a free hole in the valence band. The two
charge carriers are free to drift under the effect of the applied
electric field and thereby to generate an electric current. The
material behaves as a semiconductor whose conductivity increases
sharply with increasing temperature, as an increasing number of
mobile carriers are thermally generated.

Energy–Momentum Relations

In accordance with Schrödinger wave mechanics, the energy E and
momentum p of an electron in a region of constant potential, such
as free space, are related by E = , where p is the



(17.1-1)

(17.1-2)

magnitude of the momentum, k is the magnitude of the wavevector 
, and m0 is the electron mass (9.1 × 10−31 kg). The E–k

relation for a free electron is thus a simple parabola.

EXERCISE 17.1-1

Energy–Momentum Relation for a Free Electron.

a. Consider a one-dimensional version of the time-
independent Schrödinger equation set forth in (14.1-3) for a
free electron (V = 0) of mass m0. Use a trial solution of the
form ψ(x) ∝ exp(−jkx) to show that the energy–momentum
relation assumes the quadratic form

so that the electron energy is not quantized in this example.

b. The free photon, in contrast, has the linear energy–
momentum relation provided in (13.1-11),

where c is the speed of light in the medium. What is the
origin and significance of this distinction?

The motion of an electron in a semiconductor material is similarly
governed by the Schrödinger equation, but with a potential
generated by the charges in the periodic crystal lattice of the
material. As discussed earlier, this construct results in allowed
energy bands separated by forbidden bands, as exemplified by the
Kronig–Penney model. The ensuing E–k relations for electrons and
holes, in the conduction and valence bands respectively, are
illustrated in Fig. 17.1-4 for Si and GaAs. The energy E is a periodic
function of the components (k1, k2, k3) of the wavevector k, with



(17.1-3)

periodicities (π/a1, π/a2, π/a3), where a1, a2, a3 are the crystal lattice
constants. Figure 17.1-4 displays cross sections of this relation along
two particular directions of the wavevector k. The range of k values
in the interval [−π/a, π/a] defines the first Brillouin zone. The
energy of an electron in the conduction band thus depends not only
on the magnitude of its momentum, but also on the direction in
which it is traveling in the crystal. The semiconductor E–k diagram
bears some resemblance to the photoniccrystal ω-K diagram (Fig.
7.3-5).

Figure 17.1-4 Cross sections of the E–k relations for Si and GaAs
along two crystal directions: [111] toward the left and [100] toward
the right.

Effective Mass

It is apparent from Fig. 17.1-4 that near the bottom of the
conduction band, for both Si and GaAs, the E–k relation may be
approximated by a parabola

where Ec is the energy at the bottom of the conduction band and k is
measured from the value of the wavevector where the minimum
occurs. This parabolic relation suggests that a conduction-band
electron behaves in a manner analogous to that of a free electron,
but with a mass mc, known as the conduction-band effective mass
or the electron effective mass, in place of the free-electron mass



(17.1-4)

m0. The effective mass mc embodies the influence of the ions of the
lattice on the motion of a conduction-band electron. This behavior
is highlighted in Fig. 17.1-5.

Figure 17.1-5 The E–k relation is well-approximated by parabolas
at the bottom of the conduction band and at the top of the valence
band, for both Si and GaAs.

Similarly, near the top of the valence band, we may write

where Ev = Ec − Eg is the energy at the top of the valence band and
mv is the valence-band effective mass or the hole effective mass,
as illustrated in Fig. 17.1-5. The influence of the lattice ions on the
motion of a valence-band hole is captured by its effective mass mv.
The effective mass also depends on the particular band under
consideration. Indeed, several parabolas of different curvature often
coexist near the top of the valence band, corresponding to so-called
heavy holes, light holes, and split-off-band holes.

The effective mass depends on the crystal structure of the material
and on the direction of travel with respect to the lattice since the
interatomic spacing varies with crystallographic direction. Typical
averaged effective masses, normalized to the free-electron mass m0,
are provided in Table 17.1-1 for Si, GaAs, and GaN.



Table 17.1-1 Typical averaged values of the normalized electron
and hole effective masses in selected semiconductor materials.

mc/m0 mv/m0

Si 0.98 0.49
GaAs 0.07 0.50
GaN 0.20 0.80

Direct- and Indirect-Bandgap Semiconductors

Semiconductors for which the conduction-band minimum energy
and the valence-band maximum energy correspond to the same
value of the wavenumber k (same momentum) are called direct-
bandgap materials. Semiconductors for which this is not the case
are known as indirect-bandgap materials. As is evident from Fig.
17.1-5, GaAs is a direct-bandgap semiconductor whereas Si is an
indirect-bandgap semiconductor. The distinction is important
because a transition between the bottom of the conduction band
and the top of the valence band in an indirect-bandgap
semiconductor must accommodate a substantial change in the
momentum of the electron, requiring the participation of a third
body such as a phonon. As a consequence, under ordinary
circumstances indirect-bandgap semiconductors such as Si cannot
serve as efficient light emitters whereas direct-bandgap
semiconductors such as GaAs can, as will be elucidated
subsequently.

B. Semiconductor Materials
Figure 17.1-6 reproduces the section of the periodic table that
comprises the elements important in semiconductor electronics and
photonics. Both elemental and compound semiconductors play
crucial roles in these technologies. We discuss several classes of
these materials in turn and then consider doped semiconductors.



Figure 17.1-6 Section of the periodic table relating to
semiconductors. Each column designation should, strictly speaking,
have “A” appended to it, so that II represents IIA, etc. The full
periodic table is displayed in Fig. 14.1-3. Elements indicated in blue,
yellow, and silver take the form of gases, liquids, and solids,
respectively, at room temperature.



Elemental Semiconductors

Silicon (Si) and germanium (Ge) are important elemental
semiconductors in group IV of the periodic table. Both find
widespread use in photonics, although they have traditionally not
been used as light emitters because of their indirect bandgaps
(their basic properties are provided in Table 17.1-2). However, Ge
has been shown to behave as a direct-bandgap material and to
emit light under special circumstances. Silicon is used for
fabricating virtually all commercial electronic integrated circuits
and serves a wide variety of functions in photonics under the
rubric silicon photonics. Group-IV elements can be alloyed to
form compound semiconductors with a broad array of uses. For
example, the indirect-bandgap, binary alloy silicon carbide (SiC),
also known as carborundum, is useful for fabricating ultraviolet
photodetectors and as a template for III–nitride photon emitters.
Silicon-germanium (SixGe1−x) finds application in both photonics
and electronics, including use as an infrared photodetector
material. Germanium-tin (Ge1−ySny) is suitable for fabricating
photodetectors, as well as laser diodes and LEDs. Useful ternary
and quaternary group-IV semiconductor compounds include
SixGe1−x−ySny and SixGe1−x−y−zSnyCz, respectively. The use of
alloys and combinations of group-IV elements is an emerging
area of photonics that has come to be called group-IV photonics.



Table 17.1-2 Selected elemental and binary III–V
semiconductors along with their crystal structures, bandgap
types, bandgap energies, and bandgap wavelengths.

Material

Crystal
Structurea

(D/Z/W)

Bandgap
Typeb

(I/D)

Bandgap
Energyc

Eg (eV)

Bandgap
Wavelengthd

λg (μm)

Si D I 1.12 1.11   
Ge D I 0.66 1.88  
AlN W D 6.02 0.206
AlP Z I 2.45 0.506
AlAs Z I 2.16 0.574
AlSb Z I 1.58 0.785
GaN W D 3.39 0.366
GaP Z I 2.26 0.549
GaAs Z D 1.42 0.873
GaSb Z D 0.73 1.70  
InN W D 0.65 1.91  
InP Z D 1.35 0.919
InAs Z D 0.36 3.44  
InSb Z D 0.17 7.29  

aThe crystal structure listed above indicates the most commonly used form of the
material: D = Diamond, Z = Zincblende, W = Wurtzite. The zincblende structure
comprises two interpenetrating face-centered-cubic lattices, one for each element,
displaced from each other by ¼ of the body diagonal. The diamond lattice is the same
as zincblende except that all atoms are identical. The Brillouin zone for these structures
is illustrated in Fig. 7.3-4. The wurtzite structure consists of two hexagonal close-packed
lattices, one for each element, displaced from each other along the three-fold c axis by
⅜ of its length. All atoms are tetrahedrally bonded with their neighbors.

bI = Indirect bandgap; D = Direct bandgap.

cAt T = 300° K.



dThe bandgap wavelength λg is related to the bandgap energy Eg by λg = hco/Eg; when
the bandgap energy is expressed in eV and the bandgap wavelength is expressed in μm,
this relation can be expressed as λg ≈ 1.24/Eg.

Binary III–V Semiconductors

Compounds formed by combining an element in column III,
such as aluminum (Al), gallium (Ga), or indium (In), with an
element in column V, such as nitrogen (N), phosphorus (P),
arsenic (As), or antimony (Sb), are important semiconductors in
photonics. These twelve III–V compounds are listed in Table
17.1-2, along with their crystal structure (zincblende or wurtzite),
bandgap type (direct or indirect), bandgap energy Eg, and
bandgap wavelength λg = hco/Eg (the free-space wavelength of a
photon of energy Eg). The bandgap energies and lattice constants
of these compounds are also displayed in Fig. 17.1-7. Photon
sources (light-emitting diodes and lasers) and photodetectors can
be readily fabricated from many of these binary compounds. The
first of the binary semiconductors to find use in photonics was
gallium arsenide (GaAs), which is also sometimes used as an
alternative to Si for fast electronic devices and circuits. Gallium
nitride (GaN) plays a central role in photonics by virtue of its
near-ultraviolet bandgap wavelength; it is also important in
electronics because of its ability to withstand high temperatures.
AlN, an insulator by virtue of its large bandgap energy, emits
photons in the vicinity of λo = 210 nm in the mid ultraviolet.

Zincblende and Diamond



Wurtzite





Figure 17.1-7 Dots represent bandgap energies, bandgap
wavelengths, and lattice constants for Si, Ge, SiC, and 12 binary
III–V compounds. Solid and dashed curves represent direct-
bandgap and indirect-bandgap compositions, respectively. A
material may have a direct bandgap for one mixing ratio and an
indirect bandgap for a different mixing ratio. Ternary materials
are represented along the line that joins two binary compounds.
A quaternary compound is represented by the area formed by its
binary components. (a) In1−xGaxAs1−yPy is represented by the
stippled area with vertices at InP, InAs, GaAs, and GaP, while
(AlxGa1−x)yIn1−yP is represented by the shaded area with vertices
at AlP, InP, and GaP. Both are important quaternary compounds,
the former in the near infrared and the latter in the visible.
AlxGa1−xAs is represented by points along the line connecting
GaAs and AlAs. As x varies from 0 to 1, the point moves along the
line from GaAs and AlAs. Since this line is nearly vertical,
AlxGa1−xAs is lattice matched to GaAs. (b) Though the III–nitride
compound InxGa1−xN can, in principle, be compositionally tuned
to accommodate the entire visible spectrum, this material
becomes increasingly difficult to grow as the In composition
becomes appreciable. InxGa1−xN is principally used in the green,
blue, and violet spectral regions, while AlxGa1−xN and
AlxInyGa1−x−yN serve the ultraviolet region. All compositions of
these III–nitride compounds are direct-bandgap semiconductors.

Ternary III–V Semiconductors

Compounds formed from two elements of column III with one
element from column V (or one from column III with two from
column V) are important ternary semiconductors. AlxGa1−xAs, for
example, is a compound with properties that interpolate between
those of AlAs and GaAs, depending on the compositional mixing
ratio x (the fraction of Ga atoms in GaAs that are replaced by Al
atoms). The bandgap energy Eg for this material varies between
1.42 eV for GaAs and 2.16 eV for AlAs, as x varies between 0 and 1



along the line connecting GaAs and AlAs in Fig. 17.1-7(a).
Because this line is essentially vertical, AlxGa1−xAs is lattice
matched to GaAs; a layer of arbitrary composition of this
material can therefore be grown on a layer of different
composition without straining the lattice. Other useful III–V
ternary compounds, such as GaAs1−xPx, are also represented in
the bandgapenergy versus lattice-constant diagram displayed in
Fig. 17.1-7(a). InxGa1−xAs is widely used for photon sources and
detectors in the near-infrared region of the spectrum. Similarly,
AlxGa1−xN and InxGa1−xN are important ternary semiconductors
for photonic devices that operate in the ultraviolet, violet, blue,
and green regions of the spectrum, as can be deduced from Fig.
17.1-7(b). In the domain of electronics, InxGa1−xAs/InP
heterojunction bipolar transistors can both emit light and be
switched at high speeds.

Quaternary III–V Semiconductors

These compounds are formed by mixing two elements from
column III with two elements from column V (or three from
column III with one from column V). Quaternary
semiconductors offer more flexibility for fabricating materials
with desired properties than do ternary semiconductors by virtue
of their additional degree of freedom. An example is provided by
In1−xGaxAs1−yPy, whose bandgap energy varies between 0.36 eV
(InAs) and 2.26 eV (GaP) as the compositional mixing ratios x



and y vary between 0 and 1. The lattice constant usually varies
linearly with the mixing ratio (Vegard’s law). The stippled area in
Fig. 17.1-7(a) indicates the range of bandgap energies and lattice
constants spanned by this compound. For mixing ratios x and y
that satisfy y = 2.16(1 − x), In1−xGaxAs1−yPy can be lattice
matched to InP, which can therefore serve as a convenient
template (substrate). This quaternary compound is used for
fabricating light-emitting diodes, laser diodes, and
photodetectors, particularly in the vicinity of the 1550-nm optical
fiber communications wavelength (Chapters 18, 19, and 25).
Another example is provided by AlxInyGa1−x−yP, for which GaAs
serves as a template; this compound offers high-brightness
emission in the red, orange, and yellow spectral regions [shaded
region in Fig. 17.1-7(a)]. Yet another important quaternary
material is the III–nitride compound AlxInyGa1−x−yN, which
serves the green, blue, violet, and ultraviolet spectral regions in
the same way [Fig. 17.1-7(b)]. Convenient templates for the III–
nitrides are sapphire, SiC, and Si.

Binary and Ternary II–VI Semiconductors

Binary II–VI materials, i.e., compounds formed from elements in
column II (e.g., Zn, Cd, Hg) and chalcogenide elements in
column VI (e.g., S, Se, Te) of the periodic table are also useful
semiconductors. This family includes ZnS, ZnSe, ZnTe, CdS,
CdSe, CdTe, HgS, HgSe, and HgTe, as displayed in Fig. 17.1-8.
Unlike the III–V alloys, the II–VI compounds are widely found
in nature. All of these materials have a zincblende structure and
are direct-bandgap semiconductors, with the exception of HgSe
and HgTe, which are semimetals with small negative bandgaps. A



particular merit of ZnSe is that it can be deposited on a GaAs
substrate with a relatively low defect density since the lattice
constants of the two materials are similar. The ternary II–VI
semiconductor HgxCd1−xTe can be grown without strain on a
CdTe substrate since HgTe and CdTe are nearly lattice matched.
This material system is widely used for photodetectors, as are
other II–VI compounds (Chapter 19). However, photon sources
fabricated from these materials are rarely used since they suffer
from limited lifetimes. Notwithstanding, binary II–VI
semiconductor materials such as CdSe are readily fashioned into
quantum dots with tunable photoluminescence emission
wavelengths (see, e.g., Fig. 14.1-13).

Figure 17.1-8 Bandgap energies, bandgap wavelengths, and
lattice constants for various II–VI semiconductors (HgSe and
HgTe are semimetals with small negative bandgaps). HgTe and
CdTe are nearly lattice matched, as evidenced by the vertical line
connecting them, so that the ternary semiconductor HgxCd1−xTe
can be grown without strain on a CdTe template. It is an
important mid-infrared photodetector material.

Ternary IV–VI Semiconductors



Ternary IV–VI compounds such as PbxSn1−xTe and PbxSn1−xSe
have also been used as laser diodes and infrared photodetectors.
As photodetectors, however, these alloys have long RC response
times because of their large relative permittivities. Moreover,
cycling between room and cryogenic temperatures can also be
problematic because of their high thermal-expansion
coefficients.

Doped Semiconductors

The electrical and optical properties of semiconductors can be
modified substantially by the controlled introduction into the
material of small amounts of specially chosen impurities called
dopants. The introduction of these impurities can alter the
concentration of mobile charge carriers by many orders of
magnitude. Dopants with excess valence electrons, called donors,
replacing a small proportion of the normal atoms in the crystal
lattice, create a predominance of mobile electrons. The material is
then said to be an n-type semiconductor. Thus, atoms from column
V (e.g., P or As) replacing a fraction of the column-IV atoms in an
elemental semiconductor (e.g., Si or Ge), or atoms from column VI
(e.g., Se or Te) replacing a small fraction of the column-V atoms in a
III–V binary semiconductor (e.g., As or Sb), produce an n-type
material.

Similarly, a p-type semiconductor is made by using dopants with a
deficiency of valence electrons, called acceptors. The result is then
a predominance of mobile holes. Column IV atoms in an elemental
semiconductor replaced with a small proportion of column-III
atoms (e.g., B or In), or column-III atoms in a III–V binary
semiconductor replaced with a small proportion of column-II atoms
(e.g., Zn or Cd), yield p-type material. Column-IV atoms act as
donors for column III and as acceptors for column V, and therefore
can be used to produce an excess of both electrons and holes in III–
V materials. Of course, the charge neutrality of the material is not
altered by the introduction of dopants.



Semiconductors can also be doped with impurities that have the
same valence as a constituent of the crystal lattice. Rather than
introducing excess carriers, such substitutional doping can create a
material that acts as a solid-state laser medium. For example, a
transition-ion-doped zinc-chalcogenide laser can be formed by
introducing Cr2+ ions into ZnS to substitute for a fraction of the
Zn2+ ions comprising the lattice (Sec. 16.3A).

Undoped semiconductors (i.e., semiconductors devoid of intentional
doping) are referred to as intrinsic materials, whereas doped
semiconductors are called extrinsic materials. The concentrations
of mobile electrons and holes are equal in an intrinsic
semiconductor, n = p = ni, where the intrinsic concentration ni
grows with increasing temperature at an exponential rate. On the
other hand, the concentration of mobile electrons in an n-type
semiconductor (majority carriers) is far greater than the
concentration of holes (minority carriers), i.e., n ≫ p. The
opposite is true in a p-type semiconductor, where holes are the
majority carriers, and p ≫ n. A doped semiconductor at room
temperature typically has a majority-carrier concentration that is
approximately equal to the doping concentration.

As semiconductor devices shrink in scale, their characteristics are
determined by ever smaller numbers of dopant atoms that are
randomly distributed in position. At the nanoscale, the average
number of dopants shrinks to a handful. However, techniques such
as single-ion implantation can be used to fabricate semiconductor
materials in which the number of dopant atoms, and their positions,
are precisely determined, thereby offering improved control over
device behavior. Nowadays, semiconductor materials such as Si and
Ge can be grown with sufficient purity that a nanodevice can be
totally devoid of impurities, thereby permitting a solitary dopant to
be inserted at a specified position.



(17.1-5)

EXAMPLE 17.1-1

Donor-Electron Ionization Energy. Consider a germanium
crystal of relative permittivity ϵ/ϵo = 16 (Table 17.2-1) doped with
arsenic donor atoms. The electron effective mass mc = 0.2m0,
where m0 is the free electron mass. The donor electron moves in
the field of the singly charged arsenic ion (As+), and has energy
levels similar to those of an electron in the hydrogen atom.
Choosing n = 1 and Z = 1 in (14.1-4), and replacing ϵo by ϵ, and Mr
by mc, to accommodate the polarization density and crystal
lattice of the semiconductor material, respectively, the energy of
the donor electron is given by

Since the energy of the electron in the ground state of hydrogen
is ≈ −13.6 eV with respect to the vacuum level (i.e., it is 13.6 eV
below the ionization energy), the energy of the arsenic donor
electron is ED = −(mc/m0)(ϵo/ϵ)2 × 13.6 eV ≈ −0.01 eV. The
donor electron thus resides in the forbidden band, at a level ≈
0.01 eV below the conduction band edge. Since the thermal
energy kT ≈ 0.026 eV at T = 300° K, however, essentially all of
the donors are ionized at room temperature and the donor
electrons are elevated to the conduction band. The material thus
has a conduction-band donor concentration that matches the
impurity concentration.

Organic Semiconductors

Organic semiconductors are increasingly employed in electronics
and photonics, where they are used in the form of photovoltaic
devices, light-emitting diodes, and high-quality organic light-
emitting displays. Though they generally do not offer the speed of



inorganic semiconductor structures, they can be inexpensively
fabricated in the form of thin sheets, making low-cost, mechanically
flexible optoelectronic components available. These materials can
be engineered to suit specific requirements and can sometimes be
printed on a suitable substrate, such as plastic, using inkjet
technology.

Organic semiconductors are available in two principal varieties, as
illustrated schematically in Fig. 17.1-9:

1. Small organic molecules such as pentacene, which consists of
five linearly joined benzene rings [Fig. 17.1-9(a)].

2. Conjugated polymer chains such as polyacetylene, comprising
hundreds or thousands of carbon atoms [Fig. 17.1-9(b)].

Figure 17.1-9 Organic semiconductors are available in two
principal varieties: (a) small organic molecules such as pentacene,
and (b) conjugated polymer chains such as polyacetylene. (c)
Doping polyacetylene with sodium donors yields an n-type material,
whereas doping with iodine acceptors yields a p-type material. Each
vertex represents a carbon atom and each line represents a bond
between two carbon atoms; double lines represent double bonds.
Hydrogen bonds are omitted for simplicity. A wide variety of organic
molecules and polymers are used in photonics and electronics.

A hallmark of these amorphous materials, termed conjugation, is
their alternating single and double carbon–carbon bonds. Though
the double-bond electrons shown in Figs. 17.1-9(a) and (b) are
portrayed as belonging to particular atoms, these electrons are
actually delocalized and shared among multiple atoms, or along a
segment of polymer comprising roughly ten repeat units. The
molecule, or polymer segment, behaves as a single system in which
the allowed electron states form bands.



In its undoped state, the valence band of a conjugated polymer
chain is typically full, and its conduction band empty, so that it
behaves as an insulator. However, as illustrated in Fig. 17.1-9(c),
dopants such as sodium and iodine act as donors and acceptors,
respectively, providing n-type and p-type variants. Small organic
molecules are often conductive in their pure state.

A number of fundamental features distinguish organic
semiconductors from their inorganic cousins:

The constituent molecules are bound by weak van der Waals
forces (bond energy ≈ 0.01 eV) whereas the atoms in inorganic
semiconductors are bound by strong covalent bonds (bond
energy ≈ 3 eV).

Weak intermolecular bonds offer mechanical flexibility
whereas inorganic semiconductors are rigid.

The energy bands derive from localized behavior at the
molecular level whereas in inorganic semiconductors they
derive from the collection of atoms as a whole.

The two energy levels that play key roles are the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO), whereas in inorganic
semiconductors the conduction and valence bands are of
paramount importance.

Charge carriers have high effective mass (mc/m0 ≈ 500) and
low mobility (μ ≈ 10−3 cm2/V·s) whereas carriers in inorganic
semiconductors have low effective mass (mc/m0 < 1) and high
mobility (μ ≈ 103 cm2/V·s).

Intermolecular electronic transfer occurs via phonon-assisted
tunneling (hopping) whereas electronic transport in inorganic
semiconductors is characterized by drift and diffusion.

Organic semiconductors generally exhibit low electrical
conductivity and are sensitive to moisture whereas the reverse



is true for inorganic semiconductors.

Graphene and 2D Materials

As indicated at the beginning of this section, the semiconductor
elements residing in group-IV of the periodic table are of substantial
interest in photonics. Most important among these are carbon (C),
silicon (Si), germanium (Ge), and tin (Sn). Group-IV elements exist
in various structural forms, known as allotropes, that have different
properties and applications. Among the most widely known
allotropes of carbon, for example, are diamond, graphite, carbon
nanotubes, carbon dots, and graphene (there are others). Graphene,
a material with a one-atom-thick carbon honeycomb lattice, has
come to the fore in recent years because of its unique properties and
because it can be fashioned into various photonic devices.
Elemental group-IV analogs of graphene include silicene,
germanene, and stanene. These hexagonal-lattice 2D atomic sheets
are often denoted h-C, h-Si, h-Ge, and h-Sn, respectively, where the
designation ‘h’ represents ‘hexagonal.’ The nascent fields of
graphene photonics and 2D-material photonics lie under the
rubric of group-IV photonics.

Graphene
Graphene is a 2D material comprising a single 0.33-nm-thick layer
of graphite with atoms arranged in a hexagonal honeycomb
structure (Fig. 17.1-10). Graphene is endowed with a collection of
exceptional properties that make it useful in many photonics
applications:

It is an excellent conductor of electricity and has an optical
transmittance near unity so it can be used as a transparent
electrode. Its optical absorbance is nearly constant at 𝒜 = πe2/
ℏc ≈ 2.3% over a broad wavelength band that stretches from 0.7
to 25 μm; its reflectance is a negligible ℛ ≈ 1.3 × 10−4; and its



transmittance at normal incidence is 𝒯 ≈ 97.7%. Moreover, its
current-carrying capacity is substantial (≈ 108 A/cm2 on SiO2).

It is a semimetal with zero bandgap that can interact with
radiation over a broad spectral range stretching from the THz to
the ultraviolet. Its absorption coefficient α ≈ 7 × 105 cm−1 is an
order of magnitude greater than that of Si or GaAs. It is readily
doped, so that its electronic properties can be altered.

It has an unusually high electron mobility. When deposited on
SiO2, its mobility is ≈ 1.5 × 104 cm2/V·s so that the drift velocity
of carriers is an order of magnitude greater than that in Si, as
indicated in (19.1-9). It therefore has an inordinately fast
response and is suitable for use in ultrafast photodetectors. Its
high area-tovolume ratio makes it highly effective for
applications involving sensing.

It is chemically stable, refractory to high temperatures, and
resilient in high humidity. It has high thermal conductivity and
excellent mechanical strength, yet is elastic and therefore
bendable.

It exhibits fast and strong absorption saturation, rendering it
suitable for use as a saturable absorber for mode-locked lasers
and as a broadband modulator.



Figure 17.1-10 Graphene, also referred to as h-C, is a single layer
of carbon atoms arranged in a hexagonal honeycomb lattice. Its E–k
diagram is conical rather than parabolic (compare with Fig. 17.1-5).
Graphene behaves as a semimetal with zero bandgap since its
conduction-and valence-band cones meet at points that define the
Fermi level Ef.

Because of its particular 2D symmetry, the band structure for
carriers in graphene takes the form of cones (Fig. 17.1-10), rather
than the parabolas that are characteristic of traditional
semiconductors (Fig. 17.1-5). The E–k diagram is therefore linear
rather than parabolic; it is similar to that for photons and is
characterized by (17.1-2) rather than by (17.1-1). As with photons,
the electronic excitations (called Dirac fermions) behave as if they
were massless; this leads to an unusually large Fermi velocity, v ≈
c/300, that underlies graphene’s fast response. Furthermore, the
conduction- and valence-band cones meet at single points (called
Dirac points) that define the Fermi level, so that graphene behaves
as a semimetal with zero bandgap. Several other 2D materials also
host massless Dirac fermions and behave as semimetals (e.g.,
silicene, germanene, stanene, and β12-borophene), but most 2D
materials have approximately parabolic, rather than conical, band
structures. Though Dirac fermions have been most widely studied
in 2D materials, they are also hosted by 3D materials such as
compressively strained α-Sn (gray tin) and Na3Bi.



Though the interaction of light with graphene is strong on a per-
unit-distance basis (α ≈ 7 × 105 cm−1), devices that rely on single-
pass operation encounter an insignificant thickness of material
(0.33 nm). Building an effective 2D-based device thus generally
requires that the interaction be enhanced, which may be achieved
by specialized doping or siting, by coupling to a photonic waveguide
or cavity, or by coupling to plasmons, phonons, or excitons.
Significant enhancement of the light–matter interaction can be
attained by making use of traveling surface plasmon polaritons.

Other 2D materials
By virtue of its semimetallic nature, graphene is a poor emitter of
light. However, a number of other 2D materials, including various
transition-metal dichalcogenides (TMDs) such as molybdenum
disulfide, behave as direct-bandgap semiconductors with bandgap
energies Eg that lie between 0.5 and 3 eV. As with 3D
semiconductors, the bandgap energy can be tuned via chemistry,
composition, and/or quantum confinement. These materials can
serve as light emitters or reflectors dominated by excitonic
transitions.

Single-layer TMDs such as MoS2 and WSe2 consist of a sublayer of
transition metal sandwiched between two sublayers of chalcogen.
MoS2, for example, has an overall layer thickness of 0.65 nm and a
bandgap energy of 1.8 eV. In their 3D configurations, some of these
materials (e.g., graphite, MoS2) serve as industrial lubricants. This is
because consecutive atomic layers are bound only by weak van der
Waals forces and easily slide over each other, a property that has
made it relatively easy to peel off individual 2D layers. Indeed, such
2D materials are often called van der Waals materials. Other 3D
precursors (e.g., silicon, germanium) form tight bonds in all three
dimensions so that their 2D versions, when extracted, tend to
buckle. The number of possible TMDs that can be formed is
substantial since there are tens of transition metals and, as is
apparent in column VIA of the periodic table (Fig. 14.1-3), at least



three chalcogens (S, Se, and Te; the elements O, Po, and Lv are
sometimes also included in this category). Some single-layer
materials behave as insulators (e.g., hexagonal BN, with Eg ≈ 6 eV)
and others behave as metals (e.g., TiS2). 2D materials can be used in
isolation, or combined in layers of various compositions, to create
atomically thin heterostructures that serve as planar photonic
devices.

C. Carrier Concentrations
Determining the concentration of carriers (electrons and holes) as a
function of energy requires knowledge of two features that we
consider in turn:

The density of allowed energy levels (density of states)

The probability that each of these levels is occupied

Density of States

The quantum state of an electron in a semiconductor material is
characterized by its energy E, its wavevector k [the magnitude of
which is approximately related to E by (17.1-3) or (17.1-4)], and its
spin. The state is described by a wavefunction that satisfies certain
boundary conditions.

An electron near the conduction band edge may be approximately
described as a particle of mass mc confined to a three-dimensional
cubic box (of dimension d) with perfectly reflecting walls, i.e., a
three-dimensional infinite rectangular potential well. The standing-
wave solutions require that the components of the vector k = (kx,
ky, kz) assume the discrete values k = (q1π/d, q2π/d, q3π/d), where
the respective mode numbers (q1, q2, q3) are positive integers. This
result is a three-dimensional generalization of the one-dimensional
infinite square well (Exercise 17.1-5). The tip of the vector k must
lie on the points of a lattice whose cubic unit cell has dimension
π/d. There are therefore (d/π)3 points per unit volume in k-space.



(17.1-6)
Density of States

The number of states whose vectors k have magnitudes between 0
and k is determined by counting the number of points lying within
the positive octant of a sphere of radius k [with volume ≈ 

]. Because of the two possible values of the electron
spin, each point in k-space corresponds to two states. There are
therefore approximately 2(πk3/6)/(π/d)3 = (k3/3π2)d3 such points
in the volume d3 and (k3/3π2) points per unit volume. It follows
that the number of states with electron wavenumbers between k
and k + Δk, per unit volume, is ϱ(k)Δk = [(d/dk)(k3/3π2)]Δk = (k2/
π2)Δk, so that the density of states is

This derivation is identical to that used for counting the number of
modes that can be supported in a three-dimensional
electromagnetic resonator (Sec. 11.3C). In the case of
electromagnetic modes there are two degrees of freedom associated
with the field polarization (i.e., two photon spin values), whereas in
the semiconductor case there are two spin values associated with
the electron state. In resonator optics the allowed electromagnetic
solutions for k were converted into allowed frequencies via the
linear frequency–wavenumber relation ν = ck/2π. In semiconductor
physics, on the other hand, the allowed solutions for k are
converted into allowed energies via the quadratic energy–
wavenumber relations given in (17.1-3) and (17.1-4).

If ϱc(E)ΔE represents the number of conduction-band energy levels
(per unit volume) lying between E and E + ΔE, then, because of the
one-to-one correspondence between E and k governed by (17.1-3),
the densities ϱc(E) and ϱ(k) must be related by ϱc(E) dE = ϱ(k) dk.
Thus, the density of allowed energies in the conduction band is
ϱc(E) = ϱ(k)/(dE/dk). Similarly, the density of allowed energies in
the valence band is ϱv(E) = ϱ(k)/(dE/dk), where E is given by (17.1-



(17.1-7)

(17.1-8)
 Density of States 
Near Band Edges

4). The approximate quadratic E–k relations (17.1-3) and (17.1-4),
which are valid near the edges of the conduction band and valence
band, respectively, are used to evaluate the derivative dE/dk for
each band. The result that obtains is

The square-root relation is a result of the
quadratic energy–wavenumber formulas for
electrons and holes near the band edges. The dependence of the
density of states on energy is illustrated in Fig. 17.1-11(c). It is zero
at the band edge, and increases away from it at a rate that depends
on the effective masses of the electrons and holes. The values of mc
and mv provided in Table 17.1-1 are averaged values suitable for
calculating the density of states.

Figure 17.1-11 (a) Cross section of the E–k diagram (e.g., in the
direction of the k1 component, with k2 and k3 fixed). (b) Allowed
energy levels (at all k). (c) Density of states near the edges of the
conduction and valence bands. The quantity ϱc(E) dE is the number
of quantum states with energy between E and E + dE, per unit
volume, in the conduction band. The quantity ϱv(E) has an
analogous interpretation for the valence band.
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Probability of Occupancy

In the absence of thermal excitation (at T = 0° K), all electrons
occupy the lowest possible energy levels, subject to the Pauli
exclusion principle. The valence band is then completely filled
(there are no holes) and the conduction band is completely empty
(it contains no electrons). When the temperature is raised, thermal
excitations raise some electrons from the valence band to the
conduction band, leaving behind empty states in the valence band
(holes). The laws of statistical mechanics dictate that under
conditions of thermal equilibrium at temperature T, the probability
that a given state of energy E is occupied by an electron is
determined by the Fermi function

where k is Boltzmann’s constant (at T = 300° K, kT = 0.026 eV) and
Ef is a constant known as the Fermi energy or Fermi level. This
function, plotted in Fig. 17.1-12, is also known as the Fermi–Dirac
distribution. Each energy level E is either occupied [with
probability f(E)], or empty [with probability 1 − f(E)]. The
probabilities f(E) and 1 − f(E) depend on the energy E in accordance
with (17.1-9). The function f(E) is not itself a probability
distribution, and it does not integrate to unity; rather, it is a
sequence of occupation probabilities for successive energy levels.



Figure 17.1-12 The Fermi function f(E) is the probability that an
energy level E is filled with an electron; 1 − f(E) is the probability
that it is empty. In the valence band, 1 − f(E) is the probability that
energy level E is occupied by a hole. At T = 0° K, f(E) = 1 for E ≤ Ef,
and f(E) = 0 for E > Ef; there are then no electrons in the
conduction band and no holes in the valence band.

Because f(Ef) = 1/2, whatever the temperature T, the Fermi level is
that energy for which the probability of occupancy (if there were an
allowed state there) would be 1/2. The Fermi function is a
monotonically decreasing function of E. At T = 0° K, f(E) is 0 for E
> Ef and 1 for E ≤ Ef. This establishes the significance of Ef; it is the
division between the occupied and unoccupied energy levels at T =
0° K. Since f(E) is the probability that the energy level E is occupied,
1 − f(E) is the probability that it is empty, i.e., that it is occupied by a
hole if E lies in the valence band. Thus, for energy level E:

When E − Ef ≫ kT, f(E) ≈ exp[−(E − Ef)/kT], so that the high-
energy tail of the Fermi function in the conduction band decreases
exponentially with increasing energy. The Fermi function is then
proportional to the Boltzmann distribution, which describes the
exponential energy dependence of the fraction of a population of
atoms excited to a given energy level (Sec. 14.2). By symmetry, when
E < Ef and Ef − E ≫ kT, 1 − f(E) ≈ exp[−(Ef − E)/kT]; the probability
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of occupancy by holes in the valence band then decreases
exponentially as the energy decreases well below the Fermi level.

Thermal-Equilibrium Carrier Concentrations

Let n(E) ΔE and p(E) ΔE be the number of electrons and holes per
unit volume, respectively, with energy lying between E and E + ΔE.
The densities n(E) and p(E) can be obtained by multiplying the
densities of states at energy level E by the probabilities of occupancy
of the level by electrons or holes, so that

The concentrations (populations per unit volume) of electrons and
holes, n and p, are then obtained from the integrals

In an intrinsic (pure) semiconductor at any temperature, n = p
because thermal excitations always create electrons and holes in
pairs. The Fermi level must therefore be placed at an energy value
such that n = p. In materials for which mv = mc, the functions n(E)
and p(E) are also symmetric, so that Ef must lie precisely in the
middle of the bandgap (Fig. 17.1-13). In most intrinsic
semiconductors, the Fermi level does indeed lie near the middle of
the bandgap.



Figure 17.1-13 The concentrations of electrons and holes, n(E) and
p(E), as a function of energy E, for an intrinsic semiconductor. The
total concentrations of electrons and holes are n and p, respectively.

The energy-band diagrams, Fermi functions, and equilibrium
concentrations of electrons and holes for n-type and p-type doped
semiconductors are illustrated in Figs. 17.1-14 and 17.1-15,
respectively. Donor electrons occupy an energy ED slightly below
the conduction-band edge so that they are easily raised to it. If ED =
0.01 eV, for example, at room temperature (kT = 0.026 eV) most
donor electrons will be thermally excited into the conduction band
(Example 17.1-1). As a result, the Fermi level [the energy at which
f(Ef) = 1/2] will lie above the middle of the bandgap. For a p-type
semiconductor, the acceptor energy level lies at an energy EA just
above the valence-band edge so that the Fermi level will lie below
the middle of the bandgap. Our attention has been directed to the
mobile carriers in doped semiconductors. These materials are, of
course, electrically neutral, as assured by the fixed donor and
acceptor ions, so that n + NA = p + ND, where NA and ND are,
respectively, the number of ionized acceptors and donors per unit
volume.



Figure 17.1-14 Energy-band diagram, Fermi function f(E), and
concentrations of mobile electrons and holes, n(E) and p(E),
respectively, in an n-type semiconductor.

Figure 17.1-15 Energy-band diagram, Fermi function f(E), and
concentrations of mobile electrons and holes, n(E) and p(E),
respectively, in a p-type semiconductor.
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EXERCISE 17.1-2

Exponential Approximation of the Fermi Function.
When E − Ef ≫ kT, the Fermi function f(E) may be
approximated by an exponential function. Similarly, when Ef − E
≫ kT, 1 − f(E) may be approximated by an exponential function.
These conditions apply when the Fermi level lies within the
bandgap, but away from its edges by an energy of at least several
times kT (at room temperature kT ≈ 0.026 eV whereas Eg = 1.12
eV in Si and 1.42 eV in GaAs). Using these approximations,
which apply for both intrinsic and doped semiconductors, show
that (17.1-11) gives

where Nc = 2(2πmckT/h2)3/2 and Nv = 2(2πmvkT/h2)3/2. Verify
that if Ef is closer to the conduction band and mv = mc, then n >
p, whereas if it is closer to the valence band, then p > n.

Law of Mass Action

Equation (17.1-14) reveals that, in thermal equilibrium, the product

is independent of the location of the Fermi level Ef within the
bandgap and the semiconductor doping level, provided that the
exponential approximation to the Fermi function is valid. The
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(17.1-16)
Intrinsic 

Carrier Concentration

constancy of the concentration product is called the law of mass
action. For an intrinsic semiconductor, n = p ≡ ni. Combining this
latter relation with (17.1-14) then leads to

revealing that the intrinsic concentration of electrons and holes
increases with temperature T at an exponential rate. The law of
mass action may therefore be written in the form

The values of ni for different materials vary because of differences
in the bandgap energies and effective masses. The room-
temperature intrinsic carrier concentrations for Si, GaAs, and GaN
are provided in Table 17.1-3.

Table 17.1-3 Intrinsic carrier concentrations at T = 300° K.a

Material ni (cm−3)

Si 1.5 × 1010

GaAs 1.8 × 106

GaN 1.9 × 10−10

aSubstitution of the values of mc and mv provided in Table 17.1-1, and the value for Eg
given in Table 17.1-2, into (17.1-16), does not yield the listed values of ni because of the
sensitivity of the formula to the precise values of the parameters.

The law of mass action is useful for determining the concentrations
of electrons and holes in doped semiconductors. A moderately
doped n-type material, for example, has a concentration of electrons



n that is essentially equal to the donor concentration ND. Using the
law of mass action, the hole concentration is then .
Knowledge of n and p allows the Fermi level to be determined via
(17.1-11). As long as the Fermi level lies within the bandgap, at an
energy greater than several times kT from its edges, the
approximate relations in (17.1-12) and (17.1-13) can be used to
determine it directly.

If the Fermi level lies inside the conduction (or valence) band, the
material is referred to as a degenerate semiconductor. In that
case, the exponential approximation of the Fermi function cannot
be used, so that . The carrier concentrations must then be
obtained by numerical solution. Under conditions of very heavy
doping, the donor (acceptor) impurity band actually merges with the
conduction (valence) band to become what is known as the band
tail. This results in an effective decrease of the bandgap.

Quasi-Equilibrium Carrier Concentrations

The occupancy probabilities and carrier concentrations considered
above are applicable only for a semiconductor in thermal
equilibrium. They are not valid when thermal equilibrium is
disturbed. There are, nevertheless, situations in which the
conduction-band electrons are in thermal equilibrium among
themselves, as are the valence-band holes, but the electrons and
holes are not in mutual thermal equilibrium. This can occur, for
example, when an external electric current or photon flux induces
band-to-band transitions at too high a rate for interband
equilibrium to be achieved. This situation, which is known as
quasi-equilibrium, arises when the relaxation (decay) times for
transitions within each of the bands are much shorter than the
relaxation time between the two bands. Typically, the intraband
relaxation time < 10−12 s, whereas the radiative electron–hole
recombination time ≈ 10−9 s.

Under these circumstances, it is appropriate to use a separate Fermi
function for each band; the two associated Fermi levels, denoted Efc



and Efv, are known as quasi-Fermi levels (Fig. 17.1-16). When Efc
and Efv lie well inside the conduction and valence bands,
respectively, the concentration of both electrons and holes can be
quite large.

Figure 17.1-16 A semiconductor in quasi-equilibrium. The
probability that a particular conduction-band energy level E is
occupied by an electron is fc(E), a Fermi function with Fermi level
Efc. The probability that a valence-band energy level E is occupied by
a hole is 1 − fv(E), where fv(E) is a Fermi function with Fermi level
Efv. The concentrations of electrons and holes are n(E) and p(E),
respectively. Both can be large.
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EXERCISE 17.1-3

Determination of the Quasi-Fermi Levels Given the
Electron and Hole Concentrations.

a. Given the concentrations of electrons n and holes p in a
semiconductor at T = 0° K, use (17.1-10) and (17.1-11) to
show that the quasi-Fermi levels are

b. Show that these equations are approximately applicable for
an arbitrary temperature T if n and p are sufficiently large so
that Efc − Ec ≫ kT and Ev − Efv ≫ kT, i.e., if the quasi-Fermi
levels lie deep within the conduction and valence bands.

D. Generation, Recombination, and Injection

Generation and Recombination in Thermal Equilibrium

The thermal excitation of electrons from the valence band into the
conduction band results in the electron–hole generation (Fig.
17.1-17). Thermal equilibrium requires that this generation process
be accompanied by a simultaneous reverse process of de-excitation.
This process, called electron–hole recombination, occurs when
an electron decays from the conduction band to fill a hole in the
valence band (Fig. 17.1-17). The energy released by the electron may
take the form of an emitted photon, in which case the process is
called radiative recombination.



Figure 17.1-17 Electron–hole generation and recombination.

Nonradiative recombination can occur via a number of
independent competing processes, including the transfer of energy
to lattice vibrations (creating one or more phonons) or to another
free electron via Auger recombination (which, as a three-particle
interaction, can take place when the carrier density is very high).
Recombination may also take place at surfaces and indirectly via
traps or defect centers, which are energy levels associated with
impurities or defects associated with grain boundaries, dislocations,
or other lattice imperfections that lie within the forbidden band. An
impurity or defect state can act as a recombination center if it is
capable of trapping both an electron and a hole, thereby increasing
their probability of recombining (Fig. 17.1-18). Impurity-assisted
recombination may be radiative or nonradiative.

Figure 17.1-18 Electron–hole recombination via a trap; via Auger
recombination.
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Because it takes both an electron and a hole for a recombination to
occur, the rate of recombination is proportional to the product of
the concentration of electrons and holes, i.e.,

where the recombination coefficient r (cm3/s) depends on the
characteristics of the material, including its composition and defect
density, and on temperature; it also depends relatively weakly on
the doping level.

The equilibrium concentrations of electrons and holes n0 and p0 are
established when the generation and recombination rates are in
balance. In the steady state, the rate of recombination must equal
the rate of generation. If G0 is the rate of thermal electron–hole
generation at a given temperature, then, in thermal equilibrium,

The product of the electron and hole concentrations n0p0 = G0/r is
approximately the same whether the material is n-type, p-type, or
intrinsic. Thus, , which leads directly to the law of mass
action . This law is therefore seen to be a consequence of
the balance between generation and recombination in thermal
equilibrium.

Electron–Hole Injection

A semiconductor in thermal equilibrium with carrier concentrations
n0 and p0 has equal rates of generation and recombination, G0 =
rn0p0. Now let additional electron–hole pairs be generated at a
steady rate R (pairs per unit volume per unit time) by means of an
external (nonthermal) injection mechanism, such as light falling on
the material. A new steady state will be reached in which the
concentrations are n = n0 + Δn and p = p0 + Δp. It is clear, however,
that Δn = Δp since the electrons and holes are created in pairs.
Equating the new rates of generation and recombination, we obtain



(17.1-23)

(17.1-24)

(17.1-26)

(17.1-21)

(17.1-22)

(17.1-25)
Excess-Carrier 

Recombination Lifetime

Substituting G0 = rn0p0 into (17.1-21) leads to

which we write in the form

with

For an injection rate such that Δn ≪ n0 + p0,

In an n-type material, where n0 ≫ p0, the recombination lifetime τ ≈
1/rn0 is inversely proportional to the electron concentration.
Similarly, for a p-type material where p0 ≫ n0, we obtain τ ≈ 1/rp0.
This simple formulation is not applicable when traps play an
important role in the process.

The parameter τ may be regarded as the electron–hole
recombination lifetime of the injected excess electron–hole
pairs. This is readily understood by noting that the injected-carrier
concentration is governed by the rate equation

which is similar to (15.2-3). In the steady state, d(Δn)/dt = 0
whereupon (17.1-23), which is like (15.2-13), is recovered. If the
source of injection is suddenly removed (R becomes 0) at the time
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t0, then Δn decays exponentially with time constant τ, i.e., Δn(t) =
Δn(t0) exp[−(t − t0)/τ]. In the presence of strong injection, on the
other hand, τ is itself a function of Δn, as evident from (17.1-24), so
that the rate equation is nonlinear and the decay is no longer
exponential.

If the injection rate R is known, the steady-state injected
concentration may be determined from

permitting the total concentrations n = n0 + Δn and p = p0 + Δn to be
determined. Furthermore, if quasi-equilibrium is assumed, (17.1-11)
may be used to determine the quasi-Fermi levels. Quasi-equilibrium
is not inconsistent with the balance of generation and
recombination assumed in the analysis above; it simply requires
that the intraband equilibrium time be short in comparison with the
recombination time τ.

This type of analysis will prove useful in developing theories of the
semiconductor light-emitting diode and the semiconductor laser
diode, which are based on enhancing light emission by means of
carrier injection, as will become clear in Chapter 18.
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EXERCISE 17.1-4

Electron–Hole Pair Injection in GaAs. Assume that
electron–hole pairs are injected into n-type GaAs (Eg = 1.42 eV,
mc ≈ 0.07 m0, mv ≈ 0.50 m0) at a rate R = 1023/cm3-s. The
thermal equilibrium concentration of electrons is n0 = 1016/cm3.
If the recombination coefficient r = 10−11 cm3/s and T = 300° K,
determine:

a. The equilibrium concentration of holes p0.

b. The steady-state excess concentration Δn.

c. The recombination lifetime τ.

d. The separation between the quasi-Fermi levels Efc − Efv,
assuming that T = 0° K.

Internal Quantum Efficiency

The internal quantum efficiency ηi of a semiconductor material
is defined as the ratio of the radiative electron–hole recombination
coefficient to the total (radiative and nonradiative) recombination
coefficient. This parameter is important because it determines the
efficiency of light generation in a semiconductor material. The total
rate of recombination is given by (17.1-19). If the recombination
coefficient r is split into a sum of radiative and nonradiative parts, r
= rr + rnr, the internal quantum efficiency is

The internal quantum efficiency may also be written in terms of the
recombination lifetimes since τ is inversely proportional to r [see
(17.1-25)]. Defining the radiative and nonradiative lifetimes τr and
τnr, respectively, leads to
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The internal quantum efficiency is then rr/r = (1/τr)/(1/τ), or

The radiative recombination lifetime τr governs the rate of photon
absorption and emission, as explained in Sec. 17.2C. Its value
depends on the carrier concentrations and the material parameter
rr. For low to moderate injection rates,

in accordance with (17.1-25). The nonradiative recombination
lifetime is governed by a similar equation. However, if nonradiative
recombination takes place via defect centers in the forbidden band,
τnr is more sensitive to the concentration of these centers than to
the electron and hole concentrations.

Typical values for recombination coefficients and lifetimes are listed
in Table 17.1-4. Order-of-magnitude values are given for the
radiative recombination coefficients rr; the radiative, nonradiative,
and overall recombination lifetimes, τr, τnr, and τ, respectively; and
the internal quantum efficiencies ηi.



Table 17.1-4 Representative values for radiative recombination
coefficients rr, recombination lifetimes, and internal quantum
efficiencies ηi, for representative semiconductors.a

Material rr (cm3/s) τr τnr τ ηi

Si 10−15 10 ms 100 ns 100 ns 10−5

GaAs 10−10 100 ns 100 ns 50 ns 0.5

GaNb 10−8 20 ns 0.1 ns 0.1 ns 0.005

aAssuming n-type material with a carrier concentration n0 = 1017/cm3 and defect centers

with a concentration 1015/cm3, at T = 300° K.

bAs a matter of practice, InGaN is used; this increases the internal quantum efficiency to ηi
≈ 0.3.

The radiative lifetime for bulk Si is orders of magnitude longer than
its overall lifetime, principally because of its indirect bandgap. This
results in a small internal quantum efficiency. For GaAs and GaN,
on the other hand, the decay is largely via radiative transitions
(these materials have a direct bandgap), and consequently the
internal quantum efficiency is large. Direct-bandgap materials are
therefore useful for fabricating light-emitting structures that
operate via interband spontaneous and stimulated emission,
whereas indirect-bandgap materials generally are not.

Light emission from indirect-bandgap materials can, nevertheless,
be achieved by making use of interactions such as stimulated
Raman scattering and intersubband transitions (Sec. 18.1D), which
do not rely on the interband transitions discussed in Sec. 17.2B.

E. Junctions
Juxtapositions of differently doped regions of a single
semiconductor material are called homojunctions. An important
example is the p–n junction, which is discussed in this section.
Junctions between different semiconductor materials are called
heterojunctions. These are discussed subsequently.



The p–n Junction

The p–n junction is a homojunction between a p-type and an n-type
semiconductor. It acts as a diode, which can serve in electronics as a
rectifier, logic gate, voltage regulator (Zener diode), or tuner
(varactor diode); and in photonics as a light-emitting diode (LED),
laser diode (LD), photodetector, or solar cell.

A p–n junction consists of a p-type and an n-type section of the
same semiconductor materials in metallurgical contact. The p-type
region has an abundance of holes (majority carriers) and few mobile
electrons (minority carriers); the n-type region has an abundance of
mobile electrons and few holes (Fig. 17.1-19). Both charge carriers
are in continuous random thermal motion in all directions.

Figure 17.1-19 Energy levels and carrier concentrations for a p-
type and an n-type semiconductor before contact.

When the two regions are brought into contact (Fig. 17.1-20), the
following sequence of events takes place:

Electrons and holes diffuse from areas of high concentration
toward areas of low concentration. Thus, electrons diffuse from
the n-region into the p-region, leaving behind positively
charged ionized donor atoms. In the p-region the electrons
recombine with the abundant holes. Similarly, holes diffuse



from the p-region into the n-region, leaving behind negatively
charged ionized acceptor atoms. In the n-region the holes
recombine with the abundant mobile electrons. This diffusion
process does not continue indefinitely, however, because it
causes a disruption of the charge balance in the two regions.

As a result, a narrow region on both sides of the junction
becomes nearly depleted of mobile charge carriers. This region
is called the depletion layer. It contains only the fixed charges
(positive ions on the n-side and negative ions on the p-side).
The thickness of the depletion layer in each region is inversely
proportional to the concentration of dopants in the region.

The fixed charges create an electric field in the depletion layer
that points from the n-side toward the p-side of the junction.
This built-in field obstructs the diffusion of further mobile
carriers through the junction region.

An equilibrium condition is established that results in a net
built-in potential difference V0 between the two sides of the
depletion layer, with the n-side exhibiting a higher potential
than the p-side.

The built-in potential provides a lower potential energy for an
electron on the n-side relative to the p-side. As a result, the
energy bands bend, as illustrated in Fig. 17.1-20. In thermal
equilibrium there is only a single Fermi function for the entire
structure so that the Fermi levels in the p- and n-regions must
align.

No net current flows across the junction. The currents
associated with diffusion and built-in field (drift current) cancel
for both the electrons and holes.



Figure 17.1-20 A p–n junction in thermal equilibrium at T > 0° K.
The depletion-layer, energy-band diagram, and concentrations (on a
logarithmic scale) of mobile electrons n(x) and holes p(x) are shown
as functions of the position x. The built-in potential difference V0
corresponds to an energy eV0, where e is the magnitude of the
electron charge.

The Biased p–n Junction

An externally applied potential will alter the potential difference
between the p- and n-regions. This in turn will modify the flow of
majority carriers, so that the junction can be used as a “gate.” If the
junction is forward biased by applying a positive voltage V to the
p-region (Fig. 17.1-21), its potential is increased with respect to the
n-region, so that an electric field is produced in a direction opposite
to that of the built-in field. The presence of the external bias voltage
causes a departure from equilibrium and a misalignment of the
Fermi levels in the p- and n-regions, as well as in the depletion
layer. The presence of two Fermi levels in the depletion layer, Efc
and Efv, represents a state of quasi-equilibrium.



Figure 17.1-21 Energy-band diagram and carrier concentrations for
a forward-biased p–n junction.

The net effect of the forward bias is to reduce the height of the
potential-energy hill by an amount eV. The majority carrier current
turns out to increase by an exponential factor exp(eV/kT) so that
the net current becomes i = is exp(eV/kT) − is, where is is a constant.
The excess majority carrier holes and electrons that enter the n- and
p-regions, respectively, become minority carriers and recombine
with the local majority carriers. Their concentration therefore
decreases with distance from the junction as shown in Fig. 17.1-21.
This process is known as minority carrier injection.

If the junction is reverse biased by applying a negative voltage V
to the p-region, the height of the potential-energy hill is augmented
by eV. This impedes the flow of majority carriers. The corresponding
current is multiplied by the exponential factor exp(eV/kT), where V
is negative; i.e., it is reduced. The net result for the current is i = is
exp(eV/kT) − is, so that a small current of magnitude ≈ is flows in
the reverse direction when |V| ≫ kT/e.

A p–n junction therefore acts as a diode with a current–voltage (i–
V) characteristic
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as illustrated in Fig. 17.1-22. The ideal diode characteristic in (17.1-
32) is known as the Shockley equation.

Figure 17.1-22 (a) Voltage and current in a p–n junction. (b)
Circuit representation of the p–n junction diode. (c) Current–
voltage characteristic of the ideal p–n junction diode.

The response of a p–n junction to a dynamic (AC) applied voltage is
determined by solving the set of differential equations governing
the processes of electron and hole diffusion, drift (under the
influence of the built-in and external electric fields), and
recombination. These effects are important for determining the
speed at which the diode can be operated. They may be conveniently
modeled by two capacitances, a junction capacitance and diffusion
capacitance, in parallel with an ideal diode. The junction
capacitance accounts for the time necessary to change the fixed
positive and negative charges stored in the depletion layer when the
applied voltage changes. The thickness l of the depletion layer turns
out to be proportional to ; it therefore increases under
reverse-bias conditions (negative V) and decreases under forward-
bias conditions (positive V). The junction capacitance C = ϵA/l
(where A is the area of the junction) is therefore inversely
proportional to . The junction capacitance of a reverse-biased
diode is smaller (and the RC response time is therefore shorter)
than that of a forward-biased diode. The dependence of C on V is
used to make voltage-variable capacitors (varactors).



Minority carrier injection in a forward-biased diode is described by
the diffusion capacitance, which depends on the minority carrier
lifetime and the operating current.

The p–i–n Junction Diode

A p–i–n (PIN) junction diode is made by inserting a layer of
intrinsic (or lightly doped) semiconductor material between a p-type
region and an n-type region (Fig. 17.1-23). Because the depletion
layer extends into each side of a junction by a distance inversely
proportional to the doping concentration, the depletion layer of the
p–i junction penetrates deeply into the i-region. Similarly, the
depletion layer of the i–n junction extends well into the i-region. As
a result, the p–i–n diode can behave like a p–n junction with a
depletion layer that encompasses the entire intrinsic region. The
electron energy, density of fixed charges, and the electric field in a
p–i–n junction diode in thermal equilibrium are illustrated in Fig.
17.1-23. One advantage of using a diode with a large depletion layer
is its small junction capacitance and its consequent fast response.
For this reason, p–i–n diodes are often favored over p–n diodes for
use as semiconductor photodetectors. The large depletion layer also
permits an increased fraction of the incident light to be captured,
thereby increasing the photodetection efficiency (Sec. 19.3B).



Figure 17.1-23 Electron energy, fixed-charge density, and electric
field magnitude for a p–i–n junction diode in thermal equilibrium.

F. Heterojunctions
Junctions between different semiconductor materials are known as
heterojunctions. Optical sources and detectors make extensive use
of heterojunctions in their designs; they are used not only as active
regions but also as contact layers and waveguiding regions. The
electron affinities of the materials determine the alignments of the
conduction-and valence-band edges. It is often advantageous to
lattice match the semiconductor materials and to make use of
graded junctions rather than abrupt ones. The juxtaposition of
different semiconductors can have manifold advantages in
photonics:

Junctions between materials of different bandgap create
localized jumps in the energy-band diagram, as portrayed in
Fig. 17.1-24. A potential-energy discontinuity provides a barrier
that can be useful in preventing selected charge carriers from
entering regions where they are undesired. This property may
be used in a p–n junction, for example, to reduce the
proportion of current carried by minority carriers, and thus to
increase injection efficiency.



Figure 17.1-24 The p–p–n double heterojunction structure.
The middle layer is of narrower bandgap than the outer layers.
In equilibrium, the Fermi levels align so that the edge of the
conduction band drops sharply at the p–p junction and the edge
of the valence band drops sharply at the p–n junction. The
conduction-and valence-band discontinuities are known as
band offsets. When the device is forward biased, these jumps
act as barriers that confine the injected minority carriers to the
region of lower bandgap. Electrons injected from the n-region,
for example, are prevented from diffusing beyond the barrier at
the p–p junction. Similarly, holes injected from the p-region are
not permitted to diffuse beyond the energy barrier at the p–n
junction. This double-heterostructure configuration therefore
forces electrons and holes to occupy a narrow common region.
This substantially increases the efficiency of light-emitting
diodes, semiconductor optical amplifiers, and laser diodes, as
discussed in Chapter 18.

Discontinuities in the energy-band diagram created by two
heterojunctions can be useful for confining charge carriers to a
desired region of space. For example, a layer of narrow-bandgap



material can be sandwiched between two layers of a wider
bandgap material, as shown in the p–p–n structure illustrated
in Fig. 17.1-24 (which consists of a p–p heterojunction and a p–
n heterojunction). This double-heterostructure (DH)
configuration is used effectively in the fabrication of LEDs,
semiconductor optical amplifiers, and laser diodes, as explained
in Chapter 18.

Heterojunctions are useful for creating energy-band
discontinuities that accelerate carriers at specific locations. The
additional kinetic energy suddenly imparted to a carrier can be
useful for selectively enhancing the probability of impact
ionization in a multilayer avalanche photodiode (Sec. 19.4B).

Semiconductors of different bandgap type (direct and indirect)
can be used in the same device to select regions of the structure
where light is emitted. Semiconductors of the direct-bandgap
type emit light efficiently (Sec. 17.2B).

Semiconductors of different bandgaps can be used in the same
device to select regions of the structure where light is absorbed.
A semiconductor material whose bandgap energy is larger than
the photon energy of light incident on it will be transparent,
acting as a window layer.

Heterojunctions of materials with different refractive indices
can be used to create photonic structures and optical
waveguides that confine and direct photons, as discussed in
Chapters 7 and 9.

G. Quantum-Confined Structures
Heterostructures of thin layers of semiconductor materials can be
grown epitaxially, i.e., as layers of one semiconductor material over
another, by using techniques such as molecular-beam epitaxy
(MBE); liquid-phase epitaxy (LPE); and vapor-phase epitaxy (VPE),
of which common variants are metalorganic chemical vapor
deposition (MOCVD) and hydride vapor-phase epitaxy (HVPE).



Homoepitaxy is the growth of materials that have the same
composition as the substrate whereas heteroepitaxy is the growth
of materials on a substrate of different composition, whether
lattice-matched or not. MBE makes use of molecular beams of the
constituent elements that are caused to impinge on an appropriately
prepared substrate in a high-vacuum environment, LPE uses the
cooling of a saturated solution containing the constituents in
contact with the substrate, and VPE uses gases in a reactor. The
compositions and dopings of the individual layers, which can be
made as thin as monolayers, are determined by manipulating the
arrival rates of the molecules and the temperature of the substrate
surface.

When the layer thickness is comparable to, or smaller than, the de
Broglie wavelength of a thermalized electron, the quantized energy
of an electron resident in the layer must be accommodated, in
which case the energy–momentum relation for a bulk
semiconductor material is no longer applicable. The de Broglie
wavelength is expressed as λdB = h/p, where h is Planck’s constant
and p is the electron momentum (λdB ≈ 50 nm for GaAs). Three
structures offer substantial advantages for use in photonics:
quantum wells, quantum wires, and quantum dots (Sec. 14.1D). The
appropriate energy–momentum relations for these structures are
derived below. The use of quantum-confined structures in photonic
devices is considered in Chapters 18 and 19.

Quantum Wells

A quantum-well structure, displayed in Fig. 17.1-25, is a double
heterostructure consisting of an ultrathin (≲ 50 nm) layer of
semiconductor material whose bandgap is smaller than that of the
surrounding material. An example is provided by a thin layer of
GaAs surrounded by AlGaAs (Fig. 14.1-12). The sandwich forms 1D
conduction-and valence-band rectangular potential wells within
which electrons and holes are confined: electrons in the conduction-
band well and holes in the valence-band well.
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Figure 17.1-25 (a) Geometry of the quantum-well structure. (b)
Energy-level diagram for electrons and holes in a quantum well. (c)
Cross section of the E–k relation in the direction of k2 or k3. The
energy subbands are labeled by their quantum number q1 = 1, 2,....
The E–k relation for bulk semiconductor is indicated by the dashed
curves.

A sufficiently deep potential well can be approximated as an infinite
rectangular potential well (Fig. 17.1-26). The energy levels Eq of a
particle of mass m (mc for electrons and mv for holes) confined to a
one-dimensional infinite rectangular well of full width d are
determined by solving the time-independent Schrödinger equation
(14.1-3). As shown in Exercise 17.1-5, the energy levels turn out to
be

As an example, the first three allowed energy levels of an electron in
an infinitely deep GaAs well (mc = 0.07 m0) of width d = 10 nm are
Eq = 54, 216, and 486 meV, respectively (recall that kT = 26 meV at
T = 300° K). The smaller the width of the well, the larger the
separation between adjacent energy levels.



EXERCISE 17.1-5

Energy Levels of a Quantum Well. Solve the Schrödinger
equation (14.1-3) to determine the allowed energies of an
electron of mass m in an infinitely deep one-dimensional
rectangular potential well [V(x) = 0 for 0 < x < d and V(x) = ∞
otherwise], confirming that Eq = ℏ2(qπ/d)2/2m, q = 1, 2, 3,... , as
illustrated in Fig. 17.1-26(a). Compare these energies with those
for the particular finite square quantum well shown in Fig. 17.1-
26(b).

Figure 17.1-26 Energy levels of (a) a one-dimensional infinite
rectangular potential well, and (b) a finite square quantum well
with an energy depth V0 = 32ℏ2/md2.

However, semiconductor quantum wells are actually three-
dimensional constructs. In the quantum-well structure shown in
Fig. 17.1-25, electrons (and holes) are confined in the x direction to
within a distance d1 (the well thickness), but they extend over much



(17.1-34)

(17.1-35)

larger dimensions (d2, d3 ≫ d1) in the plane of the confining layer.
Thus, in the y–z plane, they behave as if they were in bulk
semiconductor.

The electron energy–momentum relation is

where k1 = q1π/d1, k2 = q2π/d2, k3 = q3π/d3, and q1, q2, q3 = 1, 2, 3,....
Since d1 ≪ d2, d3, the parameter k1 takes on well-separated discrete
values, whereas k2 and k3 have finely spaced discrete values that
may be approximated as a continuum. It follows that the energy–
momentum relation for electrons in the conduction band of a
quantum well is given by

where k is the magnitude of a two-dimensional k = (k2, k3) vector in
the y–z plane. Each quantum number q1 corresponds to a subband
whose lowest energy is Ec + Eq1. Similar relations apply for the
valence band.

The energy–momentum relation for a bulk semiconductor is given
by (17.1-3), where k is the magnitude of a three-dimensional vector
k = (k1, k2, k3). The key distinction is that for the quantum well, k1
takes on well-separated, discrete values. As a result, the density of
states associated with a quantum-well structure differs from that
associated with bulk material, for which the density of states is
determined from the magnitude of the three-dimensional vector
with components k1 = q1π/d, k2 = q2π/d, and k3 = q3π/d for d1 = d2

= d3 = d. The result is ϱ(k) = k2/π2 per unit volume [see (17.1-6)],
which yields the density of conduction-band states [see (17.1-7) and
Fig. 17.1-11]
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In a quantum-well structure the density of states is obtained from
the magnitude of the two-dimensional vector (k2, k3). For each
quantum number q1 the density of states is therefore ϱ(k) = k/π
states per unit area in the y–z plane, and therefore k/πd1 per unit
volume. The densities ϱc(E) and ϱ(k) are related by ϱc(E) dE = ϱ(k)
dk = (k/πd1) dk. Finally, using the E–k relation (17.1-35) we obtain
dE/dk = ℏ2k/mc, from which

Thus, for each quantum number q1, the density of states per unit
volume is constant when E > Ec + Eq1. The overall density of states
is the sum of the densities for all values of q1, so that it exhibits the
staircase distribution shown in Fig. 17.1-27. Each step of the
staircase corresponds to a different quantum number q1 and may be
regarded as a subband within the conduction band (Fig. 17.1-25).
The bottoms of these subbands move progressively higher for
higher quantum numbers. It can be shown by substituting E = Ec +
Eq1 in (17.1-36), and by using (17.1-33), that at E = Ec + Eq1 the
quantum-well density of states is the same as that for the bulk
material. The density of states in the valence band has a similar
staircase distribution.



Figure 17.1-27 Density of states for a quantum-well structure
(solid curve) and for a bulk semiconductor (dashed curve).

In contrast with bulk semiconductor, the quantum-well structure
exhibits a substantial density of states at its lowest allowed
conduction-band energy level and at its highest allowed valence-
band energy level. This property has an important effect on the
optical characteristics of the material, as discussed in Sec. 18.2D.

Multiquantum Wells and Superlattices

Multilayered structures comprising alternating semiconductor
materials are known as multiquantum-well (MQW) structures
(Fig. 17.1-28). They can be fabricated so that the energy bandgap
varies with position in any desired way (see, e.g., Fig. 14.1-12). A
MQW structure can have any number of layers, from just a few to
hundreds. As an example, a MQW structure with 100 layers, each of
thickness ≈ 10 nm and containing some 40 atomic planes, has an
overall thickness ≈ 1 μm. As discussed in Sec. 14.1D, if the energy
barriers between adjacent wells are sufficiently thin so that
electrons can readily tunnel through them, the discrete energy
levels broaden into minibands, in which case the multiquantum-
well structure is referred to as a superlattice structure. The
transition from MQW subbands to superlattice minibands is
analogous to the transition from discrete energy levels in an atom to
energy bands in a solid as the atoms are brought into closer
proximity and permitted to interact (see Figs. 14.1-9 and 14.1-10).



Quantum wells and superlattices can also be created by spatially
varying the doping of a material, thereby creating space-charge
fields that form potential barriers.

Figure 17.1-28 A MQW structure fabricated from alternating
layers of materials of different bandgaps, such as AlGaAs and GaAs.
These particular materials are often used to illustrate
multiquantum-well structures because they can be lattice matched
over a broad range of compositions [see Fig. 17.1-7(a)], which
minimizes the strain between the two lattices, and because of their
large difference in bandgap energies [see Table 17.1-2], which
provides substantial carrier confinement. Other combinations of
MQW materials commonly used in photonics include
AlInAsSb/GaSb, AlInAs/InGaAs, AlInGaP/InGaP, GaN/InGaN, and
AlxGa1−xN/AlyGa1−yN.

Biased Multiquantum-Well Structures

The energy-band diagrams of unbiased and biased multiquantum-
well and superlattice structures are schematized in Fig. 17.1-29. The
electric field causes the wells to become canted and alters the
energy levels. In superlattice structures, the discrete energy levels
smear into minibands. Multiquantum-well structures find use in a
wide variety of photonic devices, such as active regions in light-
emitting diodes, semiconductor optical amplifiers, and laser diodes
(Secs. 18.1C, 18.2D, and 18.4, respectively). They also serve as
photodetectors (Sec. 19.2C) and modulators (Sec. 21.5).



(17.1-38)

(17.1-39)

Figure 17.1-29 Energy-band diagrams of MQW and superlattice
structures fabricated from alternating layers of materials with
different bandgaps, such as AlGaAs and GaAs. (a) Unbiased MQW
structure. (b) Biased MQW structure. (c) Biased superlattice
structure with minibands and minigap.

Quantum Wires

As discussed in Sec. 14.1D, a semiconductor material that takes the
form of a thin wire surrounded by a material of wider bandgap is
called a quantum-wire structure (Fig. 17.1-30). The wire acts as a
potential well that narrowly confines electrons and holes in two
directions, x and y. Assuming that the wire has a rectangular cross
section of area d1d2, the energy–momentum relation in the
conduction band is

where

and k is the vector component in the z direction (along the axis of
the wire).
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Figure 17.1-30 The density of states in different confinement
configurations. The conduction and valence bands split into
overlapping subbands that become successively narrower as the
electron motion is restricted in a greater number of dimensions.

Each pair of quantum numbers (q1, q2) is associated with an energy
subband that has a density of states ϱ(k) = 1/π per unit length of the
wire and therefore 1/πd1d2 per unit volume. The corresponding
quantum-wire density of states (per unit volume), as a function of
energy, is

These are decreasing functions of energy, as illustrated in Fig. 17.1-
30. The incorporation of quantum wires in devices will be discussed
in Sec. 18.4B.

Quantum Dots
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A quantum-dot structure narrowly confines the electrons in all
three directions within a region that can be modeled as a box of
volume d1d2d3 (Sec. 14.1D). The energy is therefore quantized to

where

The allowed energy levels are discrete and well separated so that the
density of states is represented by a sequence of delta functions at
the allowed energies, as illustrated in Fig. 17.1-30. Quantum dots are
thus often called artificial atoms. Even though they contain
enormous numbers of strongly interacting natural atoms, the
discrete energy levels of the quantum dot can, in principle, be
chosen at will by proper design. Quantum-dot-based devices are
considered in Chapters 18 and 19.

17.2 INTERACTIONS OF PHOTONS WITH
CHARGE CARRIERS
We proceed to consider some of the basic optical properties of
semiconductors, with an emphasis on the processes of absorption
and emission important in the operation of photonic devices. This
domain of study is known as semiconductor optics.

A. Photon Interactions in Bulk Semiconductors
A number of mechanisms can lead to the absorption and emission
of photons in bulk semiconductors. The most important of these
are:



Band-to-Band (Interband) Transitions. An absorbed photon
can result in an electron in the valence band making an upward
transition to the conduction band, thereby creating an
electron–hole pair [Fig. 17.2-1(a)]. Electron–hole
recombination can result in the emission of a photon. Band-to-
band transitions may be assisted by one or more phonons. A
phonon is a quantum of the lattice vibrations associated with
molecular or acoustic vibrations of the atoms in a material.

Figure 17.2-1 Examples of absorption and emission of photons in
bulk semiconductors. (a) Band-to-band transitions in GaAs can
result in the absorption or emission of photons of wavelength λo <
λg = hco/Eg = 0.87 μm. (b) The absorption of a photon of
wavelength λA = hco/EA = 14 μm results in a valence-band to
acceptor-level transition in Hg-doped Ge (Ge:Hg). (c) Free-carrier
transitions within the conduction band of Ge.

Impurity-to-Band Transitions. An absorbed photon can result
in a transition between a donor (or acceptor) level and a band
in a doped semiconductor. In a p-type material, for example, a
low-energy photon can lift an electron from the valence band to
the acceptor level, where it becomes trapped by an acceptor
atom [Fig. 17.2-1(b)]. A hole is created in the valence band and
the acceptor atom is ionized. Or a hole may be trapped by an
ionized acceptor atom; the result is that the electron decays
from its acceptor level to recombine with the hole. The energy
may be released radiatively (in the form of an emitted photon)
or nonradiatively (in the form of phonons). The transition may



also be assisted by traps in defect states, as illustrated in Fig.
17.1-18.

Free-Carrier (Intraband) Transitions. An absorbed photon can
impart its energy to an electron in a given band, causing it to
move higher within that band. An electron in the conduction
band, for example, can absorb a photon and move to a higher
energy level within the conduction band [Fig. 17.2-1(c)]. This is
followed by thermalization, a process whereby the electron
relaxes down to the bottom of the conduction band while
releasing its energy in the form of phonons. The strength of
free-carrier absorption is proportional to the carrier density; it
decreases with photon energy as a power-law function.

Phonon Transitions. Long-wavelength photons can release
their energy by directly exciting lattice vibrations, i.e., by
creating phonons.

Excitonic Transitions. The absorption of a photon in a
semiconductor can result in the formation of a free electron in
the conduction band and a hole that rises to the top of the
valence band, where its energy is minimized. The hole and
electron can be bound together by their mutual Coulomb
attraction to form an exciton; the attractive potential results in
a reduction of the total energy of the electron and hole. This
entity is much like a hydrogen atom in which a hole plays the
role of the proton. Excitons typically have lifetimes that range
from hundreds of picoseconds to nanoseconds. A photon may
be emitted as a result of the electron and hole recombining,
thereby annihilating the exciton.

These transitions all contribute to the overall absorption coefficient,
which is displayed in Fig. 17.2-2 for Si and GaAs, and at greater
magnification in Fig. 17.2-3 for a number of semiconductor
materials. For photon energies greater than the bandgap energy Eg,
the absorption is dominated by band-to-band transitions that form
the basis of many photonic devices. The spectral region where the



material changes from being relatively transparent (hν < Eg) to
strongly absorbing (hν > Eg) is known as the absorption edge.
Direct-bandgap semiconductors have a more abrupt absorption edge
than indirect-bandgap materials, as is apparent in Figs. 17.2-2 and
17.2-3.

Figure 17.2-2 Observed optical absorption coefficient α versus
photon energy and wavelength for Si and GaAs in thermal
equilibrium at T = 300° K. The bandgap energy Eg is 1.12 eV for Si
and 1.42 eV for GaAs. Silicon is relatively transparent in the band λo
≈ 1.1 to 12 μm, whereas intrinsic GaAs is relatively transparent in
the band λo ≈ 0.87 to 12 μm (Fig. 5.5-1).
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Figure 17.2-3 Absorption coefficient versus photon energy and
wavelength for Ge, Si, GaAs, GaN, and several other III–V binary
semiconductors at T = 300° K, on an expanded scale. Direct- and
indirect-bandgap materials follow different functional forms near
the band edge.

B. Interband Transitions in Bulk Semiconductors
We proceed to develop a simple theory of direct interband (band-to-
band) photon absorption and emission in bulk semiconductors,
ignoring the other types of transitions.

Bandgap Wavelength

Direct interband absorption and emission can take place only at
frequencies for which the photon energy hν > Eg. The minimum
frequency ν necessary for this to occur is νg = Eg/h, so that the
corresponding maximum wavelength is λg = co/νg = hco/Eg. If the
bandgap energy is given in eV (rather than in J), the bandgap
wavelength λg = hco/eEg in μm turns out to be



and Eg (eV)

The quantity λg is known as the bandgap wavelength (or cutoff
wavelength).

The bandgap wavelength λg, and its associated bandgap energy Eg,
are provided in Table 17.1-2, and in Figs. 17.1-7 and 17.1-8, for a
number of semiconductor materials of importance in photonics.
III–V ternary and quaternary semiconductors of different
compositions span a substantial range of bandgap wavelengths,
from the mid infrared to the mid-ultraviolet.

Conditions for Photon Absorption and Emission

Electron excitation from the valence to the conduction band may be
induced by the absorption of a photon of appropriate energy (hν >
Eg or λ < λg). An electron–hole pair is generated [Fig. 17.2-4(a)].
This adds to the concentration of mobile charge carriers and
increases the conductivity of the material. The material behaves as a
photoconductor with a conductivity proportional to the photon flux.
This effect is used for the photodetection of light (Chapter 19).



Figure 17.2-4 (a) The absorption of a photon results in the
generation of an electron–hole pair. This process is used for the
photodetection of light. (b) The recombination of an electron–hole
pair results in the spontaneous emission of a photon. Light-emitting
diodes (LEDs) operate on this basis. (c) Electron–hole
recombination can be induced by a photon. The result is the
stimulated emission of an identical photon. This is the underlying
process responsible for the operation of semiconductor laser diodes.

Electron de-excitation from the conduction to the valence band
(electron–hole recombination) may result in the spontaneous
emission of a photon of energy hν > Eg [Fig. 17.2-4(b)], or in the
stimulated emission of a photon [Fig. 17.2-4(c)] when a photon of
energy hν > Eg is initially present (Sec. 14.3). Spontaneous emission
is the underlying phenomenon on which the light-emitting diode is
based (Sec. 18.1). Stimulated emission is responsible for the
operation of semiconductor optical amplifiers and laser diodes
(Secs. 18.2–18.6).

The conditions under which interband absorption and emission take
place are summarized as follows:

Conservation of Energy. The absorption or emission of a
photon of energy hν requires that the energies of the two states
involved in the interaction (say E1 and E2 in the valence band
and conduction band, respectively, as depicted in Fig. 17.2-4) be
separated by hν. Thus, for photon emission to occur by
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electron–hole recombination, for example, an electron
occupying an energy level E2 must interact with a hole
occupying an energy level E1, such that energy is conserved:

Conservation of Momentum. Momentum must also be
conserved in the process of photon emission/absorption, so
that p2 − p1 = hν/c = h/λ, or k2 − k1 = 2π/λ. The magnitude of
the photon momentum h/λ is, however, very small in
comparison with the range of momentum values that electrons
and holes can assume. The semiconductor E–k diagram
extends to values of k of the order 2π/a, where the lattice
constant a is much smaller than the wavelength λ, so that 2π/λ
≪ 2π/a. The momenta of the electron and the hole participating
in the interaction must therefore be approximately equal. This
condition, k2 ≈ k1, is called the k-selection rule. Transitions
that obey this rule are represented in the E–k diagram (Fig.
17.2-4) by vertical lines, indicating that the change in k is
negligible on the scale of the diagram.

Energies and Momenta of the Electron and Hole with Which a
Photon Interacts. As is apparent from Fig. 17.2-4, conservation
of both energy and momentum requires that a photon of
frequency ν interact with electrons and holes of specific
energies and momenta determined by the semiconductor E–k
relation. Using (17.1-3) and (17.1-4) to approximate this relation
for a direct-bandgap semiconductor by two parabolas, and
writing Ec − Ev = Eg, (17.2-2) may be written in the form

from which
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Optical Joint 

Density of States

where

Substituting (17.2-4) into (17.1-3) provides the energy levels E1
and E2 with which the photon interacts:

In the special case when mc = mv, we obtain ,
as required by symmetry.

Optical Joint Density of States. We now determine the density
of states ϱ(ν) with which a photon of energy hν interacts under
conditions of energy and momentum conservation in a direct-
bandgap semiconductor. This quantity incorporates the density
of states in both the conduction and valence bands and is
known as the optical joint density of states. The one-to-one
correspondence between E2 and ν embodied in (17.2-6) permits
ϱ(ν) to be related to the density of states ϱc(E2) in the
conduction band by use of the incremental relation ϱc(E2) dE2
= ϱ(ν) dν, from which ϱ(ν) = (dE2/dν)ϱc(E2), so that

Using (17.1-7) and (17.2-6), we finally obtain the number of
interacting states per unit volume per unit frequency,



which is sketched in Fig. 17.2-5. The one-to-one correspondence
between E1 and ν in (17.2-7), together with ϱv(E1) from (17.1-8),
results in an expression for ϱ(ν) identical to (17.2-9).

Figure 17.2-5 The density of states with which a photon of
energy hν interacts increases with hν − Eg in accordance with a
square-root law.

Photon Absorption Is Not Unlikely in an Indirect-Bandgap
Semiconductor. The energy and momentum conservation
required for photon absorption in an indirectbandgap
semiconductor is readily accommodated by means of a two-step
process (Fig. 17.2-6). The electron is first excited to a high
energy level within the conduction band by a k-conserving
vertical transition. It then quickly relaxes to the bottom of the
conduction band by a process called thermalization, in which
its momentum is transferred to phonons. The generated hole
behaves similarly. Since the process occurs sequentially, it does
not require the simultaneous presence of three bodies and is
thus not unlikely in indirect-bandgap semiconductors. Indeed,
Si and Ge are widely used as photodetector materials (Chapter
19), as are directbandgap semiconductors such as AlGaAs and
InGaAs.



Figure 17.2-6 Photon absorption in an indirect-bandgap
semiconductor via a vertical (k-conserving) transition. The
photon generates an excited electron in the conduction band,
leaving behind a hole in the valence band. The electron and
hole then undergo fast transitions — to the lowest and highest
available levels in the conduction and valence bands,
respectively, releasing their energy in the form of phonons.
Since the process is sequential, it is not unlikely.

Photon Emission Is Unlikely in an Indirect-Bandgap
Semiconductor. Radiative electron–hole recombination is
unlikely in an indirect-bandgap semiconductor. This is because
a transition from near the bottom of the conduction band to
near the top of the valence band (where electrons and holes are
most likely to reside, respectively) requires an exchange of
momentum that cannot be accommodated by the emitted
photon (Fig. 17.2-7). Momentum may be conserved, however,
by the participation of phonons in the interaction. Phonons can
carry relatively large momenta but typically have small energies
(≈ 0.01–0.1 eV; see Fig. 17.2-2), so that their transitions appear
horizontal on the E–k diagram as portrayed in Fig. 17.2-7. The
net result is that the k-selection rule is violated but momentum
is conserved. However, because phonon-assisted emission
involves the simultaneous participation of three bodies
(electron, photon, and phonon), the probability of its
occurrence is substantially reduced. Thus, Si, which is an



indirectbandgap semiconductor, has a substantially lower
radiative recombination coefficient than does GaAs, which is a
direct-bandgap semiconductor (Table 17.1-4). Silicon therefore
does not emit light efficiently via interband transitions,
whereas GaAs does. However, under special circumstances it is
sometimes possible to elicit photon emission from an indirect-
bandgap semiconductor; a particular situation where this can
be achieved is considered in Example 17.2-1.

Figure 17.2-7 Photon emission via an interband transition in an
indirect-bandgap semiconductor. The recombination of an electron
near the bottom of the conduction band with a hole near the top of
the valence band requires the exchange of energy and momentum.
The energy may be carried off by a photon, but one or more
phonons are required to conserve momentum. Such a simultaneous
multiparticle interaction has a reduced likelihood of taking place.



EXAMPLE 17.2-1

Photon Emission from Indirect-Bandgap Germanium.
Under some circumstances, the application of an externally
applied mechanical stress can result in an attendant strain in a
material that results in a crossover from indirect- to direct-
bandgap behavior. Germanium is one such material, as
evidenced by the operation of the Ge laser diode. An electrically
pumped, Fabry–Perot Ge heterostructure uses a combination of
mechanical strain and n-type doping to achieve laser action.1 The
tensile strain in the plane of the layer serves to transform the
indirect bandgap of Ge to a direct bandgap by equalizing the
energies of the direct-bandgap (Γ) valley and the energetically
lowest indirect-bandgap (L) valley in its band structure. A biaxial
tensile strain of 0.2% is introduced by forming a heterojunction
of Ge and Si at high temperature; upon cooling the Ge becomes
strained because of the thermal-expansion mismatch between
the two materials. The germanium is doped with phosphorus at
a concentration of 4 × 1019 cm−3, which provides sufficient gain
to overcome the losses associated with an electrically pumped
device. The width of the pump current pulses lies between 20 μs
and 100 ms, and the device is operated with a duty cycle of 4% to
avoid undue heating. Room-temperature operation yields 1 mW
of multimode optical output power at a wavelength that is
tunable between 1.5 and 1.7 μm. The operation of the Ge
heterostructure laser demonstrates that bandgap engineering
can, in principle, be used to elicit recombination radiation from
an inherently indirect-bandgap material.

C. Absorption, Emission, and Gain in Bulk
Semiconductors
We now proceed to determine the probability densities of a photon
of energy hν being emitted or absorbed by a bulk semiconductor



(17.2-10)

material in a direct interband transition. Conservation of energy and
momentum, in the form of (17.2-4), (17.2-6), and (17.2-7),
determines the energies E1 and E2, and the momentum ℏk, of the
electrons and holes with which the photon may interact. Three
factors determine these probability densities, as discussed below:

1. Occupancy probabilities

2. Transition probabilities

3. Optical joint density of states

Occupancy Probabilities

The occupancy conditions for photon emission and absorption by
means of transitions between the discrete energy levels E2 and E1
are stated as follows:

Emission condition: A conduction-band state of energy E2 is
filled (with an electron) and a valence-band state of energy E1
is empty (i.e., filled with a hole).

Absorption condition: A conduction-band state of energy E2
is empty and a valence-band state of energy E1 is filled.

The probabilities that these occupancy conditions are satisfied for
various values of E2 and E1 are determined from the appropriate
Fermi functions fc(E) and fv(E) associated with the conduction and
valence bands of a semiconductor in quasi-equilibrium. Thus, the
probability fe(ν) that the emission condition is satisfied for a photon
of energy hν is the product of the probabilities that the upper state
is filled and that the lower state is empty since these are
independent events, i.e.,



(17.2-11)

(17.2-12)
Condition for Net Emission

The energies E1 and E2 are related to ν by (17.2-6) and (17.2-7).
Similarly, the probability fa(ν) that the absorption condition is
satisfied is

EXERCISE 17.2-1

Requirement for the Photon Emission Rate to Exceed
the Absorption Rate.

a. For a bulk semiconductor in thermal equilibrium, show that
fe(ν) is always smaller than fa(ν) so that the rate of photon
emission cannot exceed the rate of photon absorption.

b. For a semiconductor in quasi-equilibrium (Efc ≠ Efv), with
radiative transitions occurring between a conduction-band
state of energy E2 and a valence-band state of energy E1 with
the same value of k, show that emission is more likely than
absorption if the separation between the quasi-Fermi levels
is larger than the photon energy, i.e., if

What does this condition imply about the locations of Efc
relative to Ec, and Efv relative to Ev?

Transition Probabilities

Satisfying the emission/absorption occupancy condition does not
assure that the emission/absorption actually takes place. These
processes are governed by the probabilistic laws of interaction
between photons and atomic systems examined at length in Secs.



14.3A–14.3C (see also Exercise 14.3-1). As they relate to
semiconductors, these laws are generally expressed in terms of
emission into (or absorption from) a narrow band of frequencies
between ν and ν + dν:



(17.2-13)

(17.2-14)

(17.2-15)

Summary
A radiative transition between two discrete energy levels E1 and
E2 is characterized by a transition cross section σ(ν) =
(λ2/8πtsp)g(ν), where ν is the frequency, tsp is the effective
spontaneous lifetime, and g(ν) is the lineshape function
[centered about the transition frequency ν0 = (E2 − E1)/h, with
transition linewidth Δν and with unity area]. In semiconductors,
the radiative electron–hole recombination lifetime τr, which was
discussed in Sec. 17.1D, plays the role of tsp so that

If the occupancy condition for emission is satisfied, the
probability density (per unit time) for the spontaneous
emission of a photon into any of the available radiation
modes in the narrow frequency band between ν and ν + dν
is

If the occupancy condition for emission is satisfied and a
mean spectral photon-flux density ϕν (photons per unit time
per unit area per unit frequency) at frequency ν is present,
the probability density (per unit time) for the stimulated
emission of one photon into the narrow frequency band
between ν and ν + dν is

If the occupancy condition for absorption is satisfied and a
mean spectral photon-flux density ϕν at frequency ν is
present, the probability density for the absorption of one



(17.2-16)

photon from the narrow frequency band between ν and ν +
dν is also given by (17.2-15).

Since each transition has a different central frequency ν0, and since
we are considering a collection of such transitions, we explicitly
label the central frequency of the transition by writing g(ν) as
gν0(ν). In semiconductors the homogeneously broadened lineshape
function gν0(ν) associated with a pair of energy levels generally has
its origin in electron–phonon collision broadening. It therefore
typically exhibits a Lorentzian lineshape [see (14.3-34) and (14.3-
38)] of width Δν ≈ 1/πT2, where the electron–phonon collision time
T2 is of the order of picoseconds. If T2 = 1 ps, for example, then Δν =
318 GHz, corresponding to an energy width hΔν ≈ 1.3 meV. The
radiative lifetime broadening of the levels is negligible in
comparison with collisional broadening.

Overall Emission and Absorption Transition Rates

For a pair of energy levels separated by E2 − E1 = hν0, the rates of
spontaneous emission, stimulated emission, and absorption of
photons of energy hν (in units of photons/s-Hz-cm3 of the
semiconductor material), at the frequency ν, are obtained as
follows: The appropriate transition probability density Psp(ν) or
Wi(ν) [as provided in (17.2-14) or (17.2-15)] is multiplied by the
appropriate occupation probability fe(ν0) or fa(ν0) [as given in (17.2-
10) or (17.2-11)], and by the density of states that can interact with
the photon ϱ(ν0) [as set forth in (17.2-9)]. The overall transition rate
for all allowed frequencies is then calculated by integrating over ν0.

The rate of spontaneous emission at frequency ν, for example, is
given by



(17.2-17)

(17.2-18)

(17.2-19)
Emission and 

Absorption Rates

When the collision-broadened width Δν is substantially less than
the width of the product fe(ν0)ϱ(ν0), which is the usual situation,
gν0(ν) may be approximated by δ(ν − ν0), whereupon the transition
rate simplifies to rsp(ν) = (1/τr)ϱ(ν)fe(ν). The rates of stimulated
emission and absorption are obtained in a similar fashion, and the
following formulas result:

These equations, together with (17.2-9)–(17.2-11), permit the rates
of spontaneous emission, stimulated emission, and absorption
arising from direct interband transitions (photons/s-Hz-cm3) to be
calculated in the presence of a mean spectral photon-flux density ϕν

(photons/s-Hz-cm2). The products ϱ(ν)fe(ν) and ϱ(ν)fa(ν) are
analogous to the products of the lineshape function and atomic
number densities in the upper and lower levels, g(ν)N2 and g(ν)N1,
respectively, used in Chapters 14–16 to study emission and
absorption in atomic systems.

The determination of the occupancy probabilities fe(ν) and fa(ν)
requires knowledge of the quasi-Fermi levels Efc and Efv. It is via
the control of these two parameters (by the application of an
external bias to a p–n junction, for example) that the emission and
absorption rates are modified to produce semiconductor photonic
devices that carry out different functions. Equation (17.2-17) is the
basic result that describes the operation of the light-emitting diode
(LED), a semiconductor source based on spontaneous emission



(17.2-20)

(17.2-21)

(17.2-22)

(Sec. 18.1). Equation (17.2-18) is applicable to semiconductor optical
amplifiers and laser diodes, which operate on the basis of
stimulated emission (Secs. 18.2–18.6). Equation (17.2-19) is
appropriate for semiconductor detectors that function by means of
photon absorption (see Sec. 19.1B).

Spontaneous-Emission Spectral Intensity in Thermal
Equilibrium

A semiconductor in thermal equilibrium has only a single Fermi
function so that (17.2-10) becomes fe(ν) = f(E2)[1 − f(E1)]. If the
Fermi level lies within the bandgap, away from the band edges by at
least several times kT, use may be made of the exponential
approximations to the Fermi functions, f(E2) ≈ exp[−(E2 − Ef)/kT]
and 1 − f(E1) ≈ exp[−(Ef − E1)/kT], whereupon fe(ν) ≈ exp[−(E2 −
E1)/kT], i.e.,

Substituting (17.2-9) for ϱ(ν) and (17.2-20) for fe(ν) into (17.2-17)
therefore provides

where

is a parameter that increases with temperature at an exponential
rate.

The spontaneous emission rate (17.2-21), which is plotted versus hν
in Fig. 17.2-8, comprises two factors: a function associated with the



density of states that increases as the square-root of hν − Eg, and an
exponentially decreasing function of hν − Eg arising from the Fermi
function. The spontaneous emission rate can be increased by
augmenting fe(ν). In accordance with (17.2-10), this can be achieved
by purposely causing the material to depart from thermal
equilibrium in such a way that fc(E2) is made large and fv(E1) is
made small. This assures an abundance of both electrons and holes,
which is the desired condition for the operation of an LED, as
discussed in Sec. 18.1.

Figure 17.2-8 Spectral intensity of the direct interband
spontaneous emission rate rsp(ν) (photons/s-Hz-cm3) from a
semiconductor in thermal equilibrium, as a function of hν. The
spectrum has a low-frequency cutoff at ν = Eg/h and extends over a
range of frequencies of approximate width 2kT/h.

Gain Coefficient in Quasi-Equilibrium

The net gain coefficient γ0(ν) corresponding to the rates of
stimulated emission and absorption in (17.2-18) and (17.2-19) is
determined by taking a cylinder of unit area and incremental length
dz, and assuming that a mean spectral photon-flux density is
directed along its axis (see Fig. 15.1-1). If ϕν(z) and ϕν(z)+ dϕν(z) are
the mean spectral photon-flux densities entering and leaving the
cylinder, respectively, dϕν(z) must be the mean spectral photon-flux
density emitted from within the cylinder. The incremental number
of photons, per unit time per unit frequency per unit area, is simply
the number of photons gained, per unit time per unit frequency per



(17.2-23)

(17.2-24)
Gain Coefficient

(17.2-26b)

(17.2-25)

(17.2-26a)

unit volume [rst(ν) − rab(ν)], multiplied by the thickness of the
cylinder dz. Hence, dϕν(z) = [rst(ν) − rab(ν)] dz. Substituting the
rates set forth in (17.2-18) and (17.2-19) leads to

The net gain coefficient is therefore

where the Fermi inversion factor fg(ν) takes the form

as may be understood from (17.2-10) and (17.2-11), with E1 and E2
related to ν by (17.2-6) and (17.2-7). Comparing (17.2-24) with (15.1-
4) reveals that ϱ(ν) fg(ν) in the semiconductor system plays the role
of Ng(ν) in the atomic system. Using (17.2-9), the gain coefficient
may be cast in the form

with

The sign and spectral form of the Fermi inversion factor fg(ν) are
governed by the quasi-Fermi levels Efc and Efv, which in turn
depend on the state of excitation of the carriers in the
semiconductor. As shown in Exercise 17.2-1, this factor is positive
(corresponding to a population inversion and net gain) only when
Efc − Efv > hν. When the semiconductor is pumped to a sufficiently
high level by means of an external source of power, this condition



(17.2-27)

(17.2-28)
Absorption Coefficient

(17.2-29)

may be satisfied and net gain achieved, as we shall see in Sec. 18.2.
This reflects the physics underlying the operation of semiconductor
optical amplifiers and laser diodes.

Absorption Coefficient in Thermal Equilibrium

A semiconductor in thermal equilibrium has only a single Fermi
level Ef = Efc = Efv, so that

The factor fg(ν) = fc(E2) − fv(E1) = f(E2) − f(E1) < 0, and therefore
the gain coefficient γ0(ν) is always negative [since E2 > E1 and f(E)
decreases monotonically with E]. This is true whatever the location
of the Fermi level Ef. Thus, a semiconductor in thermal equilibrium,
whether it be intrinsic or doped, always attenuates light. The
attenuation (absorption) coefficient, α(ν) = −γ0(ν), is therefore

where E2 and E1 are given by (17.2-6) and (17.2-7), respectively, and
D1 is given by (17.2-26b).

If Ef lies within the bandgap but away from the band edges by an
energy of at least several times kT, then f(E1) ≈ 1 and f(E2) ≈ 0 so
that [f(E1) − f(E2)] ≈ 1. In that case, the direct interband
contribution to the absorption coefficient is

Equation (17.2-29) is plotted in Fig. 17.2-9 for GaAs, using the
following parameters: n = 3.6, mc = 0.07 m0, mv = 0.50 m0, m0 = 9.1
× 10−31 kg, a doping level such that τr = 0.4 ns (this differs from that



given in Table 17.1-4 because of the difference in doping level), Eg =
1.42 eV, and a temperature such that [f(E1) − f(E2)] ≈ 1. As the
temperature increases, f(E1) − f(E2) decreases below unity and the
absorption coefficient set forth in (17.2-28) is reduced.

Figure 17.2-9 Calculated absorption coefficient α(ν) (cm−1)
resulting from direct interband transitions, as a function of the
photon energy hν (eV) and the wavelength λo (μm), for GaAs. This
curve should be compared with the empirical result displayed in Fig.
17.2-3, which encompasses all absorption mechanisms.

In accordance with (17.2-29), absorption near the band edge in a
direct-bandgap semiconductor should follow the functional form 

. However, the sharp onset of absorption at hν = Eg is an
idealization. As is evident in Fig. 17.2-3, direct-bandgap
semiconductors generally exhibit an exponential absorption tail,
known as the Urbach tail, with a characteristic width ≈ kT that
extends slightly into the forbidden band. This is associated with
thermal and static disorder in the crystal arising from several
factors, including phonon-assisted absorption, randomness in the
doping distribution, and variations in material composition.
Absorption near the band edge in indirectbandgap semiconductors
(e.g., Ge, Si, and GaP in Fig. 17.2-3) generally follows the functional
form (hν − Eg)2 rather than the square-root relation applicable for
directbandgap semiconductors.



EXERCISE 17.2-2

Wavelength of Maximum Interband Absorption. Use
(17.2-29) to determine the (free-space) wavelength λp at which
the absorption coefficient of a semiconductor in thermal
equilibrium is maximum. Calculate the value of λp for GaAs.
Note that this result applies only to absorption mediated by
direct interband transitions.

D. Photon Interactions in Quantum-Confined
Structures
Multiquantum-well and superlattice structures were considered in
Sec. 17.1G. The photon interactions in these structures bear a
considerable resemblance to those for bulk semiconductors (Sec.
17.2A). Several mechanisms play important roles in absorption and
emission in quantum-confined structures:

Interband (band-to-band) transitions

Excitonic transitions

Intersubband transitions

Miniband transitions

These are illustrated in Fig. 17.2-10 and discussed below.



Figure 17.2-10 Photon absorption and emission in multiquantum-
well structures. (a) Interband transitions. (b) Excitonic transitions.
(c) Intersubband transitions. (d) Miniband transitions in a
superlattice structure.

Interband Transitions. Interband emission and absorption
takes place between states in the valence and conduction bands
[Fig. 17.2-10(a)], much as in bulk semiconductors. Because of
quantum confinement, however, the optical joint density of
states (17.2-9) must be replaced by (18.2-11). Interband
transitions are responsible for the operation of MQW light-
emitting diodes, superluminescent diodes, and laser diodes
(Figure 18.1-21, 18.2-11, and 18.4-4, respectively), as well as
MQW electroabsorption modulators (Fig. 21.5-2).

Excitonic Transitions. The 1D carrier confinement associated
with MQW structures results in an increase in the exciton
binding energy. This leads to strong excitonic transitions,
even at T = 300° K, as schematized in Fig. 17.2-10(b). Excitonic
transitions play an important role in many quantum-confined
devices, including MQW electroabsorption modulators (Fig.
21.5-2).

Intersubband Transitions. Transitions that take place between
energy levels within a single band of a MQW structure [Fig.
17.2-10(c)] are known as intersubband transitions. Devices
that operate on the basis of these intraband transitions include
the quantum-well quantum cascade laser [Fig. 18.4-8(a)] and
the quantum-well infrared photodetector (Fig. 19.2-3). In the
latter device, the absorption of a photon causes a transition
from a bound energy level to the continuum. The picosecond



carrier dynamics of intersubband systems offer large
bandwidths.

Miniband Transitions. In superlattices, the discrete MQW
energy levels broaden into minibands that are separated by
minigaps. Such miniband transitions [Fig. 17.2-10(d)] play a
crucial role in the operation of superlattice quantum cascade
lasers [Fig. 18.4-8(b)]. Such transitions, as well as intersubband
transitions, exhibit fast relaxation and large nonlinearities, and
are therefore appealing for applications such as all-optical
switching and demultiplexing.

E. Quantum-Dot Single-Photon Emitters
Quantum dots, which can be excited optically or electrically, emit
only one photon at a time; the emitted photons are thus separated
from each other in time (antibunched) and the light is generally
sub-Poisson (Sec. 13.3C). When embedded in photonic structures
such as microcavities, 2D materials, and semiconductor
heterostructures, quantum dots are thus useful for fabricating
single-photon emitters (SPEs). Efficient, on-demand sources of
pure single photons that are highly indistinguishable are important
for implementing quantum information processing,
communications, computing, and cryptography in the form of
scalable systems. Several examples of quantum-dot single-photon
emitters are provided below. Other approaches can also be
employed for creating SPEs, including the use of diamond defect
centers, single-walled carbon nanotubes, and defects in 2D
materials.



EXAMPLE 17.2-2

Silicon-Photonics Quantum-Dot Emitter. The
confinement of carriers in a quantum dot results in a reduction
of their positional uncertainty Δx. Since , in accordance
with (A.2-6) of Appendix A, this is accompanied by a
concomitant increase in the wavenumber uncertainty Δk. The
increase in Δk obviates the need for phonons to take part in
radiative recombination. The use of quantum-dot structures in
this context is analogous to the incorporation of nitrogen
impurities at sharply localized positions in indirect-bandgap GaP
to make GaP:N LEDs (Sec. 18.1C). The small size of the quantum
dot therefore measurably enhances radiative recombination via
interband transitions in an indirect-bandgap semiconductor such
as Si. Furthermore, surface passivation enhances the radiative
rate via induced surface-localized excitons. As a result, light
emission from silicon nanoparticles and porous silicon becomes
possible.

EXAMPLE 17.2-3

Quantum-Dot/Micropillar Single-Photon Emitter. A
single InAs/GaAs self-assembled quantum dot embedded in a
2.5-μm-diameter, cryogenically cooled micropillar microcavity
(Sec. 11.4B) efficiently generates indistinguishable photons of
high purity (one and only one photon is emitted at a time) via
resonance fluorescence. By virtue of the micropillar’s small
cavity volume and high quality factor (Q = 6124) the Purcell
spontaneous-emission enhancement factor provided in (14.3-48)
is FP ≈ 6. A single-mode optical fiber efficiently coupled to the
micropillar microcavity funnels ≈ 3.7 × 106 single photons/s out
of the device. Excitation is provided by 25-nW, 3-ps near-
infrared pulses at λo = 897 nm, resonant with the microcavity, at
a repetition rate of 81 MHz. The photon extraction efficiency is



66% while the overall system efficiency is 4.5%. The source is
about a factor of ten brighter than that provided by a two-photon
heralded device based on spontaneous parametric
downconversion (Sec. 13.3D).

EXAMPLE 17.2-4

Single-Photon Emission from 2D Materials. The large
bandgap (Eg ≈ 6 eV) of hexagonal boron nitride (h-BN), an
insulating 2D material, facilitates its use as a host for quantum-
dot single-photon emitters. Advantages of using this 2D host
include: 1) room-temperature operation; 2) the ability to localize
the emitter; and 3) the elimination of decoherence and
background luminescence from a third dimension.
Semiconducting 2D materials can also serve as single-photon
emitters. Deterministic arrays of hundreds of photoluminescent
single-photon emitters can be fabricated by depositing
monolayers of transition-metal dichalcogenides such as WSe2
and WS2 onto silica substrates patterned with arrays of
nanopillars (150-nm diameter × 100-nm height). The
nanopillars create localized material deformations that
accommodate the quantum confinement of excitons and serve as
the loci of photoluminescent single-photon emissions. When
excited by green light, these cryogenic devices emit at
wavelengths ranging from the red to the near infrared.



F. Refractive Index
The ability to control the refractive index of a semiconductor is
important in the design of many photonic devices, particularly those
that make use of optical waveguides, laser diodes, and integrated
photonics. Semiconductor materials are dispersive, so that the
refractive index is dependent on the wavelength. Indeed, the
refractive index is related to the absorption coefficient α(ν)
inasmuch as the real and imaginary parts of the susceptibility must
satisfy the Kramers–Kronig relations (Sec. 5.5B and Sec. B.1 of
Appendix B). The group index and refractive index for GaAs,
calculated from the Sellmeier equation discussed in Sec. 5.5C, are
displayed in Fig. 17.2-11. The refractive index depends on
temperature and doping level.

Figure 17.2-11 Refractive index n and group index N for GaAs as a
function of the free-space wavelength λo. The results are determined
from the Sellmeier equation provided in Table 5.5-1.

The refractive indices of selected elemental and binary bulk
semiconductors, under specific conditions and near the bandgap
wavelength, are provided in Table 17.2-1. The refractive indices of
ternary and quaternary semiconductors can be approximated via
linear interpolation between the refractive indices of their
components.



Table 17.2-1 Refractive indices of selected semiconductor
materials.a

Material Refractive Index
Elemental semiconductors
 Ge 4.0
 Si 3.5
III–V binary semiconductors
 AlN 2.2
 AlP 3.0
 AlAs 3.2
 AlSb 3.8
 GaN 2.5
 GaP 3.3
 GaAs 3.6
 GaSb 4.0
 InN 3.0
 InP 3.5
 InAs 3.8
 InSb 4.2

aResults reported are for photon energies near the bandgap energy of the material (hν ≈
Eg) and at T = 300° K.
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PROBLEMS
17.1-6 Donor-Electron Ionization Energies and Radii.

Estimate the donor electron ionization energies ED and Bohr
radii a0 for the semiconductor materials listed below (see Sec.
14.1A and Example 17.1-1). Comment, in each case, on the role
of thermal excitations and use of the bulk relative
permittivities in your calculations.

a. A silicon crystal, with electron effective mass mc = 0.98 m0
(Table 17.1-1) and relative permittivity ϵ/ϵo = 12.3 (Table 17.2-1).

b. A gallium arsenide crystal, with electron effective mass mc =
0.07 m0 (Table 17.1-1) and relative permittivity ϵ/ϵo = 13 (Table
17.2-1).



c. A gallium nitride crystal, with electron effective mass mc = 0.20
m0 (Table 17.1-1) and relative permittivity ϵ/ϵo = 6.25 (Table
17.2-1).

d. A sample of Na+-doped polyacetylene, an n-type conjugated
polymer semiconductor with electron effective mass mc = m0
and relative permittivity ϵ/ϵo = 3. Organic light-emitting diodes
(OLEDs) operate on the basis of recombination radiation from
bound excitons.

17.1-7 Fermi Level of an Intrinsic Semiconductor. Given the
expressions (17.1-12) and (17.1-13) for the thermal equilibrium
carrier concentrations in the conduction and valence bands:

a. Determine an expression for the Fermi level Ef of an intrinsic
semiconductor and show that it falls exactly in the middle of
the bandgap only when the effective mass of the electrons mc is
precisely equal to the effective mass of the holes mc.

b. Determine an expression for the Fermi level of a doped
semiconductor as a function of the doping level and the Fermi
level determined in (a).

17.1-8 Electron–Hole Recombination Under Strong
Injection. Semiconductors!recombination Consider electron–
hole recombination under conditions of strong carrier-pair
injection such that the recombination lifetime can be
approximated by τ = 1/rΔn, where r is the recombination
coefficient of the material and Δn is the injection-generated
excess carrier concentration. Assuming that the source of
injection R is set to zero at t = t0, find an analytical expression
for Δn(t), demonstrating that it exhibits power-law rather than
exponential behavior.

17.1-9 Bowing Parameters for Ternary Semiconductors. The
lattice constant of a ternary semiconductor alloy, say AxB1−xC,
typically varies linearly with the composition x, in accordance



with Vegard’s law. The bandgap energy Eg, on the other hand,
usually varies nonlinearly with x so that a plot of bandgap
energy versus lattice constant exhibits a bowed shape. This
relation is usually modeled by the quadratic equation

  where b is called the bowing parameter. Use the curves
provided in Figs. 17.1-7 and 17.1-8 to determine the bowing
parameters for AlxGa1−xAs, GaAs1−xPx, AlxGa1−xN, InxGa1−xN,
AlxIn1−xN, and HgxCd1−xTe. What significance does the bowing
parameter have with respect to lattice matching of the ternary
compound to a substrate?

*17.1-10 Energy Levels in a GaAs/AlGaAs Quantum Well.

a. Draw the energy-band diagram of a single-crystal
multiquantum-well structure of GaAs/AlGaAs to scale on the
energy axis when the AlGaAs has the composition Al0.3Ga0.7As.
The bandgap of GaAs, Eg(GaAs), is 1.42 eV; the bandgap of
AlGaAs increases above that of GaAs by approximately 12.47
meV for each 1% increase in the Al composition. Because of the
inherent characteristics of these two materials, the depth of the
GaAs conduction-band quantum well is about 60% of the total
conductionplus-valence band quantum-well depths.

b. Assume that a GaAs conduction-band well has depth as
determined in (a) above and has precisely the same energy
levels as the finite square well shown in Fig. 17.1-26(b), for

which (mV0d2/2ℏ2)
1/2 = 4, where V0 is the depth of the well.

Find the total width d of the GaAs conduction-band well. The
effective mass of an electron in the conduction band of GaAs is
mc ≈ 0.07 m0 = 0.64 × 10−31 kg.

17.2-3 Validity of the Approximation for
Absorption/Emission Rates. The derivation of the rate of



spontaneous emission made use of the approximation gν0(ν) ≈
δ(ν − ν0) in the course of evaluating the integral

a. Demonstrate that this approximation is satisfactory for GaAs by
plotting the functions gν0(ν), fe(ν0), and ϱ(ν0) at T = 300° K and
comparing their widths. GaAs is collisionally lifetime
broadened with T2 ≈ 1 ps.

b. Repeat (a) for the rate of absorption in thermal equilibrium.

17.2-4 Peak Spontaneous Emission Rate in Thermal
Equilibrium.

a. Determine the photon energy hνp at which the direct interband
spontaneous emission rate from a semiconductor material in
thermal equilibrium achieves its maximum value when the
Fermi level lies within the bandgap and away from the band
edges by at least several kT.

b. Show that this peak rate (photons per sec per Hz per cm3) is
given by

c. What is the effect of doping on this result?

d. Assuming that τr = 0.4 ns, mc = 0.07 m0, mv = 0.50 m0, and Eg
= 1.42 eV, find the peak rate in GaAs at T = 300° K.

17.2-5 Radiative Recombination Rate in Thermal
Equilibrium.

a. Show that the direct interband spontaneous emission rate
integrated over all emission frequencies (photons per sec per



cm3) is given by

provided that the Fermi level is within the semiconductor
energy bandgap and away from the band edges. Note: 

.

b. Compare this with the approximate integrated rate obtained by
multiplying the peak rate obtained in Prob. 17.2-4 by the
approximate frequency width 2kT/h shown in Fig. 17.2-8.

c. Using (17.1-15), set the phenomenological equilibrium radiative
recombination rate  (photons per second per cm3)
introduced in Sec. 17.1D equal to the direct interband result
derived in (a) to obtain the expression for the radiative
recombination coefficient

d. Use the result in (c) to find the value of rr for GaAs at T = 300°
K using mc = 0.07 m0, mv = 0.5 m0, and τr = 0.4 ns. Compare
this with the value provided in Table 17.1-4 (rr ≈ 10−10 cm3/s).

Note
1R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M.
Romagnoli, L. C. Kimerling, and J. Michel, An Electrically Pumped
Germanium Laser, Optics Express, vol. 20, pp. 11316–11320, 2012.
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The operation of semiconductor laser diodes was reported nearly
simultaneously in 1962 by independent research teams from the
General Electric Corporation, IBM Corporation, and Lincoln
Laboratory of the Massachusetts Institute of Technology.

Light can be emitted from a semiconductor material as a result of
electron–hole recombination. Nevertheless, materials capable of
emitting such light do not glow at room temperature because the
concentrations of thermally excited electrons and holes are too
small to produce discernible radiation. However, an external source
of energy can be used to produce electron–hole pairs in sufficient
numbers that they generate large amounts of spontaneous
recombination radiation, causing the material to luminesce. A
convenient way of achieving this is to forward bias a p–n junction,
which fosters the injection of electrons and holes in the vicinity of
the junction. The ensuing recombination radiation is called
injection electroluminescence.

A light-emitting diode (LED) is a forward-biased p–n junction,
usually fabricated from a direct-bandgap semiconductor material,
that emits light via injection electroluminescence [Fig. 18.0-1(a)]. If
the forward voltage is increased beyond a certain point, however,
the number of electrons and holes in the junction region can
become sufficiently large such that a population inversion is



achieved, whereupon stimulated emission (i.e., emission induced by
the presence of photons) becomes more prevalent than absorption.
Under these conditions, the junction region may be used as a
semiconductor optical amplifier (SOA) [Fig. 18.0-1(b)] or, with
appropriate feedback, as a laser diode (LD) [Fig. 18.0-1(c)].

Figure 18.0-1 A forward-biased semiconductor p–n junction diode
operated as: (a) a light-emitting diode (LED); (b) a semiconductor
optical amplifier (SOA); and (c) a laser diode (LD).

Semiconductor photon sources in the form of both LEDs and LDs
serve as highly efficient electronic-to-photonic transducers. They
are indispensable in many applications by virtue of their small size,
high brightness, high efficiency, high reliability, ruggedness, and
durability. Visible LEDs have long been used for indication
applications (in which the observer directly views the source);
examples include indicator lights, mobile phones, signage, traffic
signals, and backlighting. High-power visible LEDs are ubiquitous
in illumination applications (in which the observer views the
light scattered from objects illuminated by the source), such as
architectural and street lighting, flashlights, and projection.

Infrared LEDs are often used in remote controls for consumer
products such as optical mice, headphones, and keyboards.
Ultraviolet LEDs are useful in applications such as water
purification, surgical sterilization, resin curing, and printing. They
are also used for the detection of chemical and biological agents,



many of which fluoresce at particular wavelengths when exposed to
ultraviolet light.

Laser diodes find extensive use in long-haul optical fiber
communication systems, where it is a particular convenience that
they can be readily modulated by controlling the injected current.
They also find use in high-density optical data-storage systems such
as DVD players, and in scanning, reading, and high-resolution color-
printing systems. Laser diodes are also employed in lidars and in
directional lighting applications, such as automotive headlights. As
discussed in Sec. 16.3A, banks of laser diodes are used to optically
pump optical fiber amplifiers and solid-state lasers, thereby
converting the relatively broadband, multimode laser-diode light
into the narrowband, single-mode light emitted by diode-pumped
solid-state (DPSS) lasers.

The advent of quantum-confined semiconductor lasers such as
multiquantum-well, multiquantum-dot, and quantum cascade
lasers, together with compact lasers such as vertical-cavity,
microdisk, and nanolasers, has greatly facilitated the integration of
lasers with other optical components in compact configurations,
which in turn has opened the door to manifold new uses.

This Chapter

This chapter is devoted to the study of light-emitting diodes (Sec.
18.1), semiconductor optical amplifiers (Sec. 18.2), laser diodes (Sec.
18.3), quantum-confined lasers (Sec. 18.4), microcavity lasers (Sec.
18.5), and nanocavity lasers (Sec. 18.6). As background, we draw
broadly on the material presented in Chapter 17. The theoretical
treatments offered for semiconductor optical amplifiers and laser-
diode oscillators closely parallel the analyses of laser amplifiers and
laser oscillators provided in Chapters 15 and 16, respectively.

18.1 LIGHT-EMITTING DIODES



Electroluminescence is a phenomenon in which light is emitted by a
material that is subjected to an electric field (Sec. 14.5). Injection
electroluminescence, first observed in 1907, underlies the operation
of light-emitting diodes, which are highly efficient devices capable
of emitting light of just about any color. LEDs are highly important
in a number of areas of photonics. We discuss the theory of
injection electroluminescence in Sec. 18.1A, the characteristics of
light-emitting diodes in Sec. 18.1B, representative materials and
device structures in Sec. 18.1C, the use of indirect-bandgap silicon
for generating light in Sec. 18.1D, organic LEDs in Sec. 18.1E, and
LED lighting in Sec. 18.1F.

A. Injection Electroluminescence

Electroluminescence in Thermal Equilibrium

Electron–hole radiative recombination results in the emission of
light from a semiconductor material. At room temperature the
concentration of thermally excited electrons and holes is so small,
however, that the generated photon flux is very small (Example
18.1-1).



EXAMPLE 18.1-1.

Photon Emission from GaAs in Thermal Equilibrium. At
room temperature, the intrinsic concentration of electrons and
holes in GaAs is ni ≈ 1.8 × 106 cm−3 (Table 17.1-3). Since the
radiative electron–hole recombination coefficient rr ≈ 10−10

cm3/s under certain conditions (as specified in Table 17.1-4), the
electroluminescence rate rrnp =  ≈ 324 photons/cm3-s, as
discussed in Sec. 17.1D. A 2-μm-thick layer of GaAs therefore
produces a photon-flux density ϕ ≈ 0.065 photons/cm2-s, which
is negligible as may be understood by consulting Table 13.2-1
(light emitted from a layer of GaAs thicker than about 2 μm
suffers reabsorption). Taking the photon energy hν as the
bandgap energy for GaAs, Eg = 1.42 eV or 1.42e = 2.27 × 10−19 J,
the emitted intensity turns out to be I = hνϕ ≈ 1.5 × 10−20

W/cm2.

If thermal equilibrium conditions are maintained, this intensity
cannot be appreciably increased (or decreased) by doping the
material. In accordance with the law of mass action provided in
(17.1-17), the product np is fixed at  if the material is not too
heavily doped so that the recombination rate  depends on
the doping level only through rr. An abundance of electrons and
holes is required for a large recombination rate; in an n-type
semiconductor n is large but p is small, whereas the converse is true
in a p-type semiconductor.

Electroluminescence in the Presence of Carrier Injection

The photon emission rate can be appreciably increased by using
external means to increase excess electron–hole pairs in the
material. This may be accomplished, for example, by illuminating
the material with light, but it is typically achieved by forward



(18.1-1)

biasing a p–n junction diode, which serves to inject carrier pairs
into the junction region. This process is illustrated in Fig. 17.1-21
and will be explained further in Sec. 18.1B. The photon emission
rate may be calculated from the electron–hole pair injection rate R
(pairs/cm3-s), where R plays the role of the laser pumping rate (Sec.
15.2). The photon flux Φ (photons per second), generated within a
volume V of the semiconductor material, is directly proportional to
the carrier-pair injection rate (Fig. 18.1-1).

Figure 18.1-1 Spontaneous photon emission resulting from
electron–hole radiative recombination, as might occur in a forward-
biased p–n junction.

Denoting the equilibrium concentrations of electrons and holes in
the absence of pumping as n0 and p0, respectively, we use n = n0
+Δn and p = p0 +Δp to represent the steady-state carrier
concentrations in the presence of pumping (Sec. 17.1D). The excess
electron concentration Δn is precisely equal to the excess hole
concentration Δp because electrons and holes are produced in pairs.
It is assumed that the excess electron–hole pairs recombine at a
rate 1/τ, where τ is the overall (radiative and nonradiative)
electron–hole recombination time. Under steady-state conditions,
the generation (pumping) rate must precisely balance the
recombination (decay) rate, so that R =Δn/τ. Thus, the steady-state
excess-carrier concentration is proportional to the pumping rate,
i.e.,

For carrier injection rates that are sufficiently low, as explained in
Sec. 17.1D, we have τ ≈ 1/r(n0 + p0) where r is the (radiative and



(18.1-2)

nonradiative) recombination coefficient, so that R ≈ rΔn (n0 + p0).

Only radiative recombinations generate photons, however, and the
internal quantum efficiency ηi = rr/r = τ/τr, defined in (17.1-28) and
(17.1-30), accounts for the fact that only a fraction of the
recombinations are radiative in nature. The injection of RV carrier
pairs per second therefore leads to the generation of a photon flux Φ
= ηi RV photons/s, i.e.,

The internal photon flux Φ is proportional to the carrier-pair
injection rate R and therefore to the steady-state concentration of
excess electron–hole pairs Δn.

The internal quantum efficiency ηi plays a crucial role in
determining the performance of this electron-to-photon transducer.
Direct-bandgap semiconductors are usually used to make LEDs
(and laser diodes) because ηi is substantially larger than it is for
indirect-bandgap semiconductors (e.g., at room temperature ηi ≈ 0.5
for GaAs, whereas ηi ≈ 10−5 for Si, as shown in Table 17.1-4). The
internal efficiency ηi depends on the doping, temperature, and
defect concentration of the material.



(18.1-3)

(18.1-4)

EXAMPLE 18.1-2.

Injection Electroluminescence Emission from GaAs.
Under certain conditions, we have τ = 50 ns and ηi = 0.5 for
GaAs (Table 17.1-4), so that a steady-state excess concentration
of injected electron–hole pairs Δn = 1017 cm−3 will give rise to a
photon flux concentration ηiΔn/τ ≈ 1024 photons/cm3-s. This
corresponds to an optical power density ≈ 2.3 × 105 W/cm3 for
photons at the bandgap energy Eg = 1.42 eV. A 2-μm-thick slab of
GaAs therefore produces an optical intensity of ≈ 46 W/cm2,
which is a factor of 1021 greater than the thermal-equilibrium
value calculated in Example 18.1-1. Under these conditions the
power emitted from a device of area 200 μm × 10 μm is ≈ 0.9
mW, which is substantial.

Spectral Intensity of Electroluminescence Photons

The spectral intensity of injection electroluminescence light may be
determined by using the direct interband emission theory developed
in Sec. 17.2. The rate of spontaneous emission rsp(ν) (number of
photons per second per Hz per unit volume), as provided in (17.2-
17), is

where τr is the radiative electron–hole recombination lifetime. The
optical joint density of states for interaction with photons of
frequency ν, as given in (17.2-9), is

where mr is related to the effective masses of the holes and
electrons by 1/mr = 1/mv +1/mc [as given in (17.2-5)], and Eg is the



(18.1-6)

(18.1-5)

(18.1-7)

bandgap energy. The emission condition [as given in (17.2-10)]
provides

which is the probability that a conduction-band state of energy

is filled and a valence-band state of energy

is empty, as provided in (17.2-6) and (17.2-7) and illustrated in Fig.
18.1-2.

Equations (18.1-6) and (18.1-7) guarantee that energy and
momentum are conserved. The Fermi functions fc(E )=1/{exp[(E −
Efc)/kT ]+1} and fv(E )= 1/{exp[(E − Efv)/kT ]+1} that appear in
(18.1-5), with quasi-Fermi levels Efc and Efv, apply to the conduction
and valence bands, respectively, under conditions of quasi-
equilibrium. The semiconductor parameters Eg, τr, mv, and mc, and
the temperature T, determine the spectral distribution rsp(ν), given
the quasi-Fermi levels Efc and Efv. These in turn are determined
from the concentrations of electrons and holes given in (17.1-10)
and (17.1-11):



(18.1-8)

(18.1-9)

(18.1-10)

Figure 18.1-2 The spontaneous emission of a photon resulting
from the recombination of an electron of energy E2 with a hole of
energy E1 = E2 − hν. The transition is represented by a vertical
arrow because the momentum carried away by the photon, hν/c, is
negligible on the scale of the figure.

The densities of states near the conduction-and valence-band edges
are, respectively, as per (17.1-7) and (17.1-8),

where n0 and p0 are the concentrations of electrons and holes in
thermal equilibrium (in the absence of injection), and Δn = Rτ is
the steady-state injected-carrier concentration. For sufficiently weak
injection, such that the Fermi levels lie within the bandgap and
away from the band edges by several kT , the Fermi functions may
be approximated by their exponential tails. The spontaneous photon
flux (integrated over all frequencies) is then obtained from the
spontaneous emission rate rsp(ν) by



(18.1-11)

as is readily extrapolated from Prob. 17.2-5.

Increasing the pumping level R causes Δn to increase, which in turn
moves Efc toward (or further into) the conduction band, and Efv
toward (or further into) the valence band. This results in an
increase in the probability fc(E2) of finding the conduction-band
state of energy E2 filled with an electron, and the probability
1−fv(E1) of finding the valence-band state of energy E1 empty (filled
with a hole). The net result is that the emission-condition
probability fe(ν)= fc(E2)[1 − fv(E1)] increases with R, thereby
enhancing the spontaneous emission rate given in (18.1-3) and the
spontaneous photon flux Φ given above.
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EXERCISE 18.1-1

Quasi‐Fermi Levels of a Pumped Semiconductor.

a. Under ideal conditions at T = 0° K, when there is no thermal
electron–hole pair generation [Fig. 18.1-3(a)], show that the
quasi-Fermi levels are related to the concentrations of
injected electron–hole pairs Δn by

so that

where Δn ≫ n0, p0. Under these conditions all Δn electrons
occupy the lowest allowed energy levels in the conduction
band, and all Δp holes occupy the highest allowed levels in
the valence band. Compare with the results of Exercise 17.1-
3.

b. Sketch the functions fe(ν) and rsp(ν) for two values of Δn.
Given the effect of temperature on the Fermi functions, as
illustrated in Fig. 18.1-3(b), determine the effect of
increasing the temperature on rsp(ν).
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Figure 18.1-3 Energy bands and Fermi functions for a
semiconductor in quasi-equilibrium (a) at T = 0° K, and (b) at T
> 0° K.

EXERCISE 18.1-2

Spectral Intensity of Injection Electroluminescence
under Weak Injection. For sufficiently weak injection, such
that Ec − Efc ≫ kT and Efv − Ev ≫ kT , the Fermi functions may
be approximated by their exponential tails. Show that the
luminescence rate can then be expressed as

where

is an exponentially increasing function of the separation
between the quasi-Fermi levels Efc − Efv. The spectral intensity
of the spontaneous emission rate is shown in Fig. 18.1-4; it has
precisely the same shape as the thermal-equilibrium spectral
intensity shown in Fig. 17.2-8, but its magnitude is increased by
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the factor D/D0 = exp[(Efc − Efv)/kT ], which can be very large in
the presence of

injection. In thermal equilibrium Efc = Efv, so that (17.2-21) and
(17.2-22) are recovered.

Figure 18.1-4 Spectral intensity of the direct interband
injection-electroluminescence rate rsp(ν) (photons per second
per Hz per cm3), versus hν, from (18.1-13), under conditions of
weak injection.

EXERCISE 18.1-3

Electroluminescence Spectral Linewidth.

a. Show that the spectral intensity of the emitted light
described by (18.1-13) attains its peak value at a frequency
vP determined by

b. Show that the full-width at half-maximum (FWHM) of the
electroluminescence spectral intensity is

The value of Δν for active materials made of compound
semiconductors can be larger than that specified in (18.1-15)



(18.1-16)

by virtue of randomness in the chemical composition; this
phenomenon is known as alloy broadening.

c. Show that this width corresponds to a wavelength spread 
, where λp = c/νp. For kT expressed in eV and the

wavelength expressed in μm, demonstrate that

d. Calculate Δν and Δλ at T = 300° K, for λp = 0.8 μm and λp =
1.6 μm.

B. LED Characteristics
As is clear from the foregoing discussion, the simultaneous
availability of electrons and holes substantially enhances the flux of
spontaneously emitted photons from a semiconductor. Electrons
are abundant in n-type material, and holes are abundant in p-type
material, but the generation of copious amounts of light requires
that both electrons and holes be plentiful in the same region of
space. This condition may be readily achieved in the junction region
of a forward-biased p–n diode (Sec. 17.1E). As shown in Fig. 18.1-5,
forward biasing causes holes from the p side and electrons from the
n side to be forced into the common junction region by the process
of minority carrier injection, where they recombine and emit
photons.

The light-emitting diode (LED) is a forward-biased p–n junction
with a large radiative recombination rate arising from injected
minority carriers. The semiconductor material is usually direct-
bandgap to ensure high quantum efficiency. In this section we
determine the output power, as well as the spectral and spatial
distributions of the light emitted from an LED, and derive
expressions for the efficiency, responsivity, and response time.



Figure 18.1-5 Energy-band diagram of a heavily doped p–n
junction that is strongly forward biased by an applied voltage V
(compare with the less strongly forward-biased energy-band
diagram in Fig. 17.1-21). The dashed lines represent the quasi-Fermi
levels, which are separated as a result of the bias. The simultaneous
abundance of electrons and holes within the junction region results
in strong electron–hole radiative recombination (injection
electroluminescence).

Internal Photon Flux and Internal Efficiency

A schematic representation of a simple p–n homojunction diode is
provided in Fig. 18.1-6. An injected DC current i leads to an increase
in the steady-state carrier concentrations Δn, which in turn result in
radiative recombination in the active-region volume V .

Figure 18.1-6 A simple forward-biased LED. The photons are
emitted spontaneously from the junction region.
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Internal Photon Flux

Since the total number of carriers per second passing through the
junction region is i/e, where e is the magnitude of the electronic
charge, the carrier injection (pumping) rate (carriers per second per
cm3) is simply

Equation (18.1-1) provides that Δn = Rτ, which results in a steady-
state carrier concentration

In accordance with (18.1-2), the internal photon flux Φ is then
ηiRV , which, using (18.1-17), gives

This simple and intuitively appealing formula governs the
production of photons by electrons in an LED: a fraction ηi of the
injected electron flux i/e (electrons per second) is converted into
photon flux. The internal quantum efficiency ηi is therefore
simply the ratio of the generated photon flux to the injected
electron flux.

The internal photon flux can be enhanced by making use of LEDs
with double heterostructure configurations (Sec. 17.1F), and, in
particular, multiquantum-well (MQW) active regions (Sec. 17.1G).
The benefit obtains because double heterostructures engender
higher carrier concentrations, which enhances radiative
recombination (the radiative lifetime τr is reduced) and thereby
increases the internal quantum efficiency ηi [see (17.1-30), (17.1-31),
and (18.1-19)]. To maximize ηi, the heterostructure confinement
layers should be lattice matched to the active region.



Narrow quantum wells confine carriers even more tightly, further
enhancing ηi. The number of quantum wells used in a device is
frequently limited because of difficulties in populating all of them.
To achieve good performance, it is important to make use of
materials of the highest quality, which minimizes defect
concentrations, and to avoid the presence of surfaces to which both
carrier types have access, which minimizes nonradiative
recombination.

Yet another approach for increasing ηi relies on making use of a
plasmonic LED, in which metallic nanoparticles are embedded in
a layer adjacent to a MQW active region. This engenders coupling
between localized surface plasmons (LSPs) of the metallic
nanoparticles (Sec. 8.2C), or of collective plasmonic resonances in
periodic nanostructure arrays, and the light emitted from the
proximate MQWs. The result can be a substantial enhancement of
the spontaneous-emission rate rsp(ν) via the Purcell effect (Sec.
14.3E), which in turn leads to an increase in the internal quantum
efficiency ηi. The usefulness of this approach is evident in increased
LED output power, including for devices that operate in the green.
The polarization and directionality of the emitted light are also
modified.

Extraction Efficiency

The photon flux generated in the junction is radiated uniformly in
all directions; however, the flux that emerges from the device
depends on the direction of emission. This is readily illustrated by
considering the photon flux transmitted through a planar material
along three possible ray directions, denoted A, B, and C in the
geometry of Fig. 18.1-7:
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Figure 18.1-7 Not all light generated in an LED with a planar
surface is able to emerge. Ray A is partly reflected. Ray B suffers
more reflection. Ray C lies outside the critical angle and therefore
undergoes total internal reflection, so that it is trapped in the
structure.

The photon flux traveling in the direction of ray A is attenuated
by the factor

where α is the absorption coefficient of the n-type material and
l1 is the distance from the junction to the surface of the device.
Furthermore, for normal incidence, reflection at the
semiconductor–air boundary permits only A fraction of the
light,

to be transmitted, where n is the refractive index of the
semiconductor material [see Fresnel’s equations (6.2-15)]. For
GaAs, n = 3.6, so that η2 = 0.68. The overall transmittance for
the photon flux traveling in the direction of ray A is therefore
ηA = η1η2.

The photon flux traveling in the direction of ray B has farther to
travel and therefore suffers a larger absorption; it also has
greater reflection losses. Thus, ηB < ηA.



(18.1-22)

The photon flux emitted along directions lying outside a cone of
(critical) angle θc = sin−1(1/n), such as illustrated by ray C,
suffers total internal reflection in an ideal material and is not
transmitted [see (1.2-5)]. The area of the spherical cap atop this
cone is  while the area of the
entire sphere is 4πr2. Thus, the fraction of the emitted light that
lies within the solid angle subtended by this cone is A/4πr2, so
that

For a material with refractive index n = 3.6, as an example, only
1.9% of the total generated photon flux can be transmitted. For
a parallelepiped of refractive √ index , the ratio of
isotropically radiated light energy that can emerge, to the total
generated light energy, is , as shown in Exercise
1.2-6. However, some fraction of the photons emitted outside
the critical angle can be absorbed and reemitted within this
angle, so that in practice, η3 may assume a value larger than
that specified by (18.1-22). Loss and Fresnel reflection must
also be incorporated for these rays.

The efficiency with which the internal photons can be extracted
from the LED structure is known as the extraction efficiency ηe.
Antireflection coatings (Exercise 7.1-1) can be used to reduce
Fresnel reflection and thereby increase ηe.



EXERCISE 18.1-4

Extraction of Light from a Planar-Surface LED.

a. Derive (18.1-22).

b. Determine the critical angles for light escaping into air
from: GaAs (n = 3.6), GaN (n = 2.5), and a transparent
polymer (n = 1.5). Calculate the fraction of light that can be
extracted in the three cases if absorption and Fresnel
reflection are ignored.

c. What is the enhancement in the fraction of extracted light
that can be achieved if a planar GaAs LED is coated with a
transparent polymer of refractive index n = 1.5, assuming
that absorption and Fresnel reflection at the semiconductor-
polymer boundary are ignored?

d. Determine whether it might be useful to employ a material
of intermediate refractive index (e.g., a polymer layer) to
maximize the fraction of light emitted from the LED into
air, if absorption is ignored but Fresnel reflection at both
the semiconductor–polymer and polymer–air interfaces is
accommodated.

The extraction efficiency can be enhanced in a multitude of ways.
One approach involves selecting a geometry for the LED die (LED
chip) that allows a greater fraction of the light to escape. A
spherical dome surrounding a point source at its center, for
example, permits all rays to escape, although they remain subject to
Fresnel reflection. As illustrated in Fig. 18.1-8, several other
geometries offer enhanced extraction efficiencies in comparison
with the parallelepiped: hemispherical domes, cylindrical structures
(which have an escape ring along the perimeter in addition to the
escape cone toward the top surface), inverted cones, and truncated
inverted pyramids. However, geometries that entail complex



processing steps are often avoided in practice because of increased
manufacturing costs. Simple planar-surface-emitting LEDs are
suitable when the intended viewing angle deviates little from the
normal or when the light is coupled into an optical fiber, as it is in
telecommunications applications.

Figure 18.1-8 LED-die geometries that offer enhanced extraction
efficiencies relative to the parallelepiped.

Another approach is to roughen the planar surface, which enhances
the extraction efficiency by permitting rays beyond the critical angle
to escape via scattering, as illustrated in Fig. 18.1-9. Indeed, an
irregular surface appears automatically under certain growth
conditions. Alternatively, the emission surface can be textured, such
as with an array of microscopic cones or pyramids, or with
nanoparticles.

Figure 18.1-9 An LED with a roughened planar surface permits
rays beyond the critical angle to escape, thereby increasing the
extraction efficiency ηe.

The morphology of the light-emitting organs of some biological
organisms, such as fireflies, serves to enhance light extraction by
reducing refractive-index mismatch and total internal reflection.



Bioinspired surface patterning has been successfully used to
increase the extraction efficiency of LEDs.

Top-emitting LEDs often make use of current-spreading layers (also
referred to as window layers), which are transparent conductive
semiconductor layers that spread the region of light emission
beyond that surrounding the electrical contact. Current-blocking
layers, which prevent current from entering the active region below
the top contact, can also be used to control the light emission. The
contact geometry can be designed to maximize light transmission.

A whole host of other techniques are also used to enhance the
extraction efficiency. These include the use of distributed Bragg
reflectors (see Sec. 7.1C) between the active layer and an absorbing
substrate to reflect the light back toward the desired direction of
emission, and reflective and transparent contacts. Another favored
approach is the use of a transparent substrate in conjunction with
flip-chip packaging, which allows the light to be extracted
through the substrate rather than through the top surface of the
device. The LED extraction efficiency can also be enhanced by
guiding light to the surface of the device via a 2D photonic crystal
(Sec. 7.3A), such as a regular array of 100–250-nm diameter holes
formed in the current-spreading layer.

Spatial Pattern of Emitted Light

The far-field radiation pattern for light emitted into air from a
planar surface-emitting LED is similar to that of a Lambertian
radiator. The intensity varies as cos θ, where θ is the angle from the
emission-plane normal; the intensity decreases to half its value at θ
= 60°. This pattern arises as a result of Snell’s law: light rays bend
away from the normal as they exit the semiconductor–air interface.



Figure 18.1-10 Polymer-encapsulated LED in a 5-mm-diameter
dual in-line package (DIP). Encapsulation protects the LED chip
(die), increases light extraction by reducing refractive-index
mismatch, and serves as a lens to shape the beam.

LEDs are often encapsulated in transparent polymer lens domes
such as epoxy or silicone for a number of reasons (Fig. 18.1-10).
Lenses of different shapes alter the emission pattern in different
ways, as illustrated schematically for hemispherical and parabolic
lenses in Fig. 18.1-11. Polymer lenses can also enhance the
extraction efficiency ηe. A lens with a refractive index close to that
of the semiconductor optimizes the extraction of light from the
semiconductor into the polymer. The shape of the lens can then be
tailored so as to maximize the extraction of light at the polymer– air
interface. Polymer materials usually have refractive indices that are
intermediate between those of semiconductors and air and, in
practice, yield an enhancement in light extraction by a factor of 2 to
3. Molded acrylic or polycarbonate collimators that make use of
total internal reflection in conjunction with refraction are often
used to provide parallel light rays for LED lighting applications, as
illustrated in Fig. 1.2-14.

Figure 18.1-11 Radiation patterns of surface-emitting LEDs: (a)
Lambertian spatial pattern in the absence of a lens; (b) spatial
pattern with a hemispherical lens; (c) spatial pattern with a
parabolic lens.
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The radiation pattern from edge-emitting LEDs and laser diodes is
usually quite narrow and can often be empirically described by the
function coss θ, with s > 1. If s = 10, for example, the intensity
decreases to half its value at θ ≈ 21° .

Output Photon Flux and External Quantum Efficiency

The output photon flux Φo (also called the external photon
flux) is related to the internal photon flux by

where the internal efficiency ηi relates the internal photon flux to
the injected electron flux, and the extraction efficiency ηe specifies
how much of the internal photon flux is transmitted out of the
structure. A single quantum efficiency that accommodates both of
these processes is the external quantum efficiency (EQE) ηex:

The output photon flux in (18.1-23) can therefore be written as

so that the external efficiency ηex is simply the ratio of the external
photon flux Φo to the injected electron flux i/e. Because the
pumping rate generally varies locally within the junction region, so
too does the generated photon flux. The LED output optical power
Po is directly related to the output photon flux since each photon
has energy hν:
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The internal efficiency ηi for LEDs ranges between 50% and nearly
100%, while the extraction efficiency ηe for properly designed
devices can extend up to 50%. The external efficiency ηex of LEDs is
thus typically below 50%.

As discussed in Sec. 16.2A, another measure of performance is the
wall-plug efficiency (also called the power-conversion
efficiency or overall efficiency), which is defined at the ratio of
the emitted optical power Po to the applied electrical power Pe = iV,

where V is the voltage drop across the device. For hν ≈ eV , as is the
case for some commonly encountered LEDs, we obtain ηc ≈ ηex.

Resonant-cavity LEDs. The quantum efficiencies ηex and ηc may
be enhanced by making use of a resonant-cavity light-emitting
diode (RCLED). A pair of mirrors (e.g., distributed Bragg
reflectors) is used to confine injection electroluminescence to a
wavelength-sized, resonant microcavity in one dimension (Secs.
11.1B and 11.4). RCLEDs exhibit a number of attractive features: 1)
the spontaneous-emission rate is enhanced by the Purcell effect
(Sec. 14.3E), which results in an increase in the internal quantum
efficiency ηi ; 2) the spectral width of the emitted light is reduced
below kT when the cavity resonance is narrower than the spectral-
intensity profile; 3) the temperature stability is then also enhanced
because the cavity is less sensitive to temperature changes than is
the semiconductor energy gap; and 4) the emission is more
narrowly confined in angle, which results in an increase in the
extraction efficiency ηe. As illustrated in Fig. 18.1-12, a substantial
fraction of the light is emitted into a resonant mode whose angular
extent falls principally within the extraction cone.
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A photonic-crystal structure can also be incorporated in an RCLED
to guide much of the residual light toward the surface of the device,
thereby further increasing ηe. The increased values of ηi and ηe for
RCLEDs lead directly to enhanced values of the external and wall-
plug efficiencies ηex = ηeηi and ηc = ηex(hν/eV ), respectively.

Figure 18.1-12 A plane-parallel-reflector resonant-cavity light-
emitting diode (RCLED). Two closely spaced reflectors (the one at
left with a reflectance near 100% and the one at right with a
reflectance of, say, 50%) form a wavelength-size cavity in one
dimension that confines the light and funnels a large portion of it
into a spatial region that lies within the extraction cone.

However, RCLEDs are inherently low power devices by virtue of the
small sizes of their active regions. The use of microresonators for
enhancing the properties of photon sources is discussed further in
Sec. 18.5.

Responsivity

The responsivity R of an LED is defined as the ratio of the emitted
optical power Po to the injected current i, i.e., R = Po/i. Using (18.1-
26), we obtain

The responsivity in W/A, when λo is expressed in μm, is then
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For example, if λo = 1.24 μm, then R = ηex W/A; if ηex were unity,
the maximum optical power that could be produced by an injection
current of 1 mA would be 1 mW. Thus, for ηex = 1/2 at λo = 1.24 μm,
we have R = 1/2 mW/mA.

In accordance with (18.1-26), the LED output power Po is
proportional to the injected current i. In practice, however, this
relationship is valid only over a restricted range. For the particular
device whose light–current (L–i) curve is shown in Fig. 18.1-13,
the emitted optical power is proportional to the injection (drive)
current only when the latter is less than about 20 mA. In this range,
the responsivity has a constant value of about 0.3 mW/mA, as
determined from the slope of the curve. For larger drive currents,
saturation causes the proportionality to fail; the responsivity then
declines with increasing drive current. Since λo = 0.420 μm for this
LED, (18.1-29) reveals that it has an external quantum efficiency
(EQE) ηex = 0.10.

Figure 18.1-13 Optical power at the output of an LED versus
injection (drive) current. This MQW InGaN/GaN LED emits in the
violet region of the spectrum at λo = 420 nm; the device structure is
exhibited in Fig. 18.1-21.

Spectral Distribution
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The spectral intensity rsp(ν) of light spontaneously emitted from a
semiconductor in quasi-equilibrium has been determined, as a
function of the concentration of injected carriers Δn, in Exercises
18.1-2 and 18.1-3. This theory is applicable to the
electroluminescence light emitted from an LED in which quasi-
equilibrium conditions are established by injecting current into a p–
n junction.

Under conditions of weak pumping, such that the quasi-Fermi
levels lie within the bandgap and are at least a few kT away from the
band edges, the spectral intensity achieves its peak value at the
frequency vp =(Eg + kT/2)/h (Exercise 18.1-3). In accordance with
(18.1-15) and (18.1-16), the FWHM of the spectral intensity is Δν ≈
1.8kT/h, which is independent of ν, and Δν = 10 THz for T = 300° K.
When expressed in terms of wavelength, however, the width does
depend on λ,

where kT is specified in eV, the wavelength is specified in μm, and
λp = c/νp.

The dependence of Δλ on  is apparent in Fig. 18.1-14, which
illustrates the observed wavelength spectral intensities for selected
LEDs operating in the ultraviolet (indicated as magenta) and visible
regions of the spectrum. AlN has the largest III– nitride energy
bandgap, producing light at 210 nm; AlGaN is typically employed in
the mid and near ultraviolet; InGaN is the material of choice in the
violet, blue, and green; and AlInGaP usually serves the yellow,
orange, and red. Typical spectral intensities for LEDs that operate in
the near infrared are displayed in Fig. P18.1-5; these devices are
generally fabricated from InGaAsP. The spectral width increases
roughly as , in accordance with (18.1-30). If λp = 1 μm at T = 300°
K, for example, (18.1-30) provides Δλ ≈ 36 nm. However, alloy



broadening can result in a further increase in the spectral width, as
is evident in the spectrum for the green LED in Fig. 18.1-14.

Figure 18.1-14 Spectral intensities versus wavelength for LEDs
that operate in the ultraviolet and visible regions of the spectrum.
The peak intensities are all normalized to the same value. Results
for LEDs operating in the infrared are presented in Fig. P18.1-5.

Response Time

The response time of LEDs used for illumination is usually limited
by the RC time constant of the device because the junction area, and
therefore the capacitance, is large. The response time of
communication-system LEDs, in contrast, is generally limited
principally by the lifetime τ of the injected minority carriers that are
responsible for radiative recombination. For a sufficiently small
injection rate R, the injection/recombination process can be
described by a first-order linear differential equation (Sec. 17.1D),
and therefore by the response to sinusoidal signals. An
experimental determination of the highest frequency at which an
LED can be effectively modulated is easily obtained by measuring
the output light power in response to sinusoidal electric currents of
different frequencies. If the injected current assumes the form i = i0
+ i1 cos(Ωt), where i1 is sufficiently small so that the emitted optical
power Ρ varies linearly with the injected current, the emitted optical
power behaves as Ρ = Ρ0 + Ρ1 cos(Ωt + φ).

The associated transfer function, which is defined as H(Ω) = (P1/i1)
exp(jφ), assumes the form
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which is characteristic of a resistor–capacitor circuit. The rise time
of the LED is τ (s) and its 3-dB bandwidth is B = 1/2πτ (Hz). A larger
bandwidth B is therefore attained by decreasing the rise time τ,
which comprises contributions from both the radiative lifetime τr
and the nonradiative lifetime τnr through the relation 1/τ = 1/τr +1/
τnr. However, reducing τnr results in an undesirable reduction of the
internal quantum efficiency ηi = τ/τr. It may therefore be desirable
to maximize the internal quantum efficiency–bandwidth product
ηiB = 1/2πτr rather than the bandwidth alone. This requires a
reduction of only the radiative lifetime τr, without a reduction of τnr,
which may be achieved by careful choice of the semiconductor
material and doping level. Typical rise times of LEDs are in the
range 1 to 50 ns, corresponding to bandwidths of hundreds of MHz.

Electronic Circuitry

An LED is usually driven by a current source, as illustrated
schematically in Fig. 18.1-15(a), most simply implemented by
means of a constant-voltage source in series with a resistor, as
shown in Fig. 18.1-15(b). The emitted light is readily modulated by
simply modulating the injected current. Analog and digital
modulation are portrayed in Figs. 18.1-15(c) and 18.1-15(d),
respectively. The performance of LED drivers may be improved by
adding circuitry that regulates bias current, matches impedance, and
provides nonlinear compensation to limit the maximum current.
Fluctuations in the intensity of the emitted light may be stabilized
by monitoring it with a photodetector, whose output is used as a
feedback signal to control the injected current.



Figure 18.1-15 Various circuits can be used as LED drivers. These
include (a) an ideal DC current source; (b) a DC current source
provided by a constant-voltage source in series with a resistor; (c)
transistor control of the current injected into the LED to provide
analog modulation of the emitted light; and (d) transistor switching
of the current injected into the LED to provide digital modulation of
the emitted light.

C. Materials and Device Structures
Photonics was revolutionized in the 1950s by the growth of single-
crystal binary III–V semiconductors, compounds that do not occur
in nature. Many of these alloys have direct bandgaps and therefore
exhibit large values of the internal quantum efficiency. Photon
sources fabricated from III–V materials also offer long lifetimes,
unlike those that make use of II–VI alloys. GaAs was the first such
material to be fabricated in the form of LEDs and LDs (see p. 787).
Today’s LED industry is almost exclusively built around ternary and
quaternary III–V material systems, particularly InGaAsP, AlInGaP,
and AlInGaN (Fig. 18.1-16)



Figure 18.1-16 Bandgap wavelength λg, and corresponding
bandgap energy Eg, for selected elemental and III–V binary, ternary,
and quaternary semiconductors. Successive rows, starting at the top,
represent AlInGaN, AlGaN, InGaN, InGaAsP, AlInGaP, InGaP,
GaAsP, AlGaAs, InGaAs, and GaAsSb. The shaded regions indicate
direct-bandgap compositions.

These III–V materials allow high-brightness light to be generated
over a spectral range that stretches from the infrared to the
ultraviolet, as exemplified by Figs. 18.1-14, 18.1-17, and P18.1-5.

Figure 18.1-17 LED traffic signal based on III–V materials.

LEDs may be constructed either in surface-emitting or edge-
emitting geometries (Fig. 18.1-18). The surface-emitting LED emits
light from a face of the device that is parallel to the plane of the
active region. The edge-emitting LED, in contrast, emits light from
the edge of the active region.



Figure 18.1-18 (a) Surface-emitting LED. (b) Edge-emitting LED.

We proceed to provide brief descriptions of the principal III–V
semiconductor compounds used to fabricate LEDs, along with
schematic illustrations of several representative device structures.
These compounds are also used to fabricate semiconductor optical
amplifiers, laser diodes, quantum-confined lasers, microcavity
lasers, and nanocavity lasers, as considered in Secs. 18.2–18.6,
respectively. Along the way, we highlight a number of applications
for LEDs and LDs in the IR, visible, and UV.

GaAs.
The first III–V material to play an important role in photonics was
GaAs. This direct-bandgap, binary semiconductor was used to
fabricate the first practical LED in 1961, with a peak emission
wavelength at 0.890 μm (near the bandgap wavelength of GaAs at λg
= 0.873 μm). Not long thereafter, several other direct-bandgap,
binary III–V semiconductors, grown by vapor-phase epitaxy (VPE)
and liquid-phase epitaxy (LPE), were also shown to exhibit
electroluminescence near their bandgap wavelengths (as provided
in Table 17.1-2): GaSb (λg = 1.70 μm), InP (λg = 0.919 μm), InAs (λg
= 3.44 μm), and InSb (λg = 7.29 μm).

GaAsP.
Increasing the mole-fraction of phosphorus in the ternary
semiconductor GaAs1−xPx causes the bandgap wavelength to move
into the visible region of the spectrum, offering emission in the red



(Fig. 18.1-16). Though the nature of the bandgap ultimately changes
from direct to indirect as the bandgap wavelength decreases further,
emission in the orange, yellow, and green can nevertheless be
achieved by using nitrogen-doped versions of these materials
(GaAsP:N and GaP:N). The nitrogen impurities (zinc and oxygen co-
dopants can also be used) are incorporated into the material at
sharply localized positions so that they can accommodate the
substantial momentum changes associated with indirect transitions.
However, the external quantum efficiencies of such LEDs are
typically < 1%, in part because of a lattice-constant mismatch with
the GaAs substrate. Nevertheless, LEDs made of GaAs, GaAsP,
GaAsP:N, and GaP:N are inexpensive to fabricate and continue to be
used in low-brightness applications such as indicator lamps and
remote controls for consumer appliances.

InGaAs.
Adding indium to GaAs has the opposite effect of adding
phosphorus; it serves to increase the bandgap wavelength, allowing
it to extend all the way to the value for InAs. The ternary
semiconductor InxGa1−xAs is a direct-bandgap material that can be
lattice matched to an InP substrate. Its bandgap is compositionally
tunable over the near infrared and a portion of the mid infrared:
0.873 μm (GaAs) ≤ λg ≤ 3.44 μm (InAs) (Fig. 18.1-16). LEDs
fabricated from InxGa1−xAs are used in consumer applications.
Strained-layer InGaAs laser-diode arrays are used to pump Yb3+-
doped DPSS and silica-fiber lasers at λo = 940 nm as well as Er3+:
silica-fiber lasers and amplifiers at λo = 980 nm (Secs. 16.3A and
16.3B). InGaAs laser-diode arrays are also used for the in-band
pumping of Nd3+:YVO4 DPSS lasers at 914 nm (Sec. 16.3A). In the
domain of photodetectors, InGaAs is widely used in the fabrication
of PIN detectors and avalanche photodiodes for use in optical fiber
communication systems that operate in the 1.3–1.6-μm
telecommunications band (Example 19.4-2 and Sec. 25.1D).



InGaAsP.
The quaternary In1−xGaxAs1−yPy is a versatile alloy that is widely
used in the near-infrared region of the spectrum. Its bandgap is
compositionally tunable over a substantial range of wavelengths
[0.549 μm (GaP) ≤ λg ≤ 3.44 μm (InAs)], and lattice matching to an
InP substrate can be maintained if the compositional mixing ratios
x and y are judiciously chosen [stippled area in Fig. 17.1-7(a)]. Only
a portion of this range enjoys the benefit of a direct bandgap,
however (Fig. 18.1-16). InGaAsP laser-diode arrays are used for the
in-band pumping of Er3+:silica-fiber amplifiers and lasers at 1480
nm (Secs. 15.3C and 16.3B).

Applications of IR LEDs and LDs.
InGaAsP can be used to fabricate LEDs for short-haul, modest-bit-
rate communication systems operating near λo = 1330 nm (Fig. 18.1-
19). Long-haul, high-bit-rate communication systems generally
operate in the vicinity of λo = 1550 nm and make use of laser diodes
rather than LEDs since it is easier to couple the collimated light
emitted by an LD into a single-mode fiber (Sec. 25.1B).



Figure 18.1-19 Saul–Lee–Burrus-type surface-emitting InGaAsP
LED for use in an optical fiber communication system operating at a
wavelength of 1.3 μm. The active region is lattice matched to the InP
substrate. The device is mounted upside down in the package (flip-
chip packaging) so the light emerges through the substrate. An
integrated lens collimates the light for enhanced coupling to a fiber.

InGaAsSb.
The bandgap wavelength may be further increased by replacing the
P in InGaAsP with Sb, yielding the quaternary semiconductor
In1−xGaxAs1−ySby. Using a GaSb substrate, this compositionally
tunable alloy can be used to fabricate devices such as quantum-well
lasers that operate in the mid-infrared region (2 ≤ λo ≤ 4 μm).
However, III–antimonide sources have largely been replaced by
mid-infrared quantum cascade lasers (Sec. 18.4D), which generally
offer superior performance.

AlGaAs.
Just as adding phosphorus to GaAs increases its bandgap energy, so
too does the addition of aluminum. Like GaAs1−xPx, the ternary
alloy AlxGa1−xAs can be compositionally tuned in the red and near
infrared (AlGaAs has a direct bandgap in the wavelength range 630
≤ λg ≤ 900 nm, as is evident from Fig. 18.1-16). Unlike GaAsP,
however, AlGaAs has the merit that lattice matching to GaAs is



maintained for all mole fractions of aluminum [Fig. 17.1-7(a)] so
that the material can serve as a high-brightness source in the red.
However, since AlxGa1−xAs/GaAs multiquantumwell structures can
be adversely affected by nonuniform carrier distributions in the
active region, LEDs are often fabricated using a double-
heterostructure configuration of the form AlxGa1−xAs/AlyGa1−yAs,
in which the compositions of the barriers and wells differ.
Collections of AlGaAs laser diodes emitting at 808 or 880 nm can
be arrayed in the form of bars or stacks to provide four-level and in-
band pumping, respectively, for Nd3+:YVO4 and Nd3+:YAG solid-
state lasers (Sec. 16.3A). Similarly, AlGaAs laser stacks emitting at
888 nm provide in-band pumping for the enormously powerful
Nd3+:glass laser amplifiers used in the HAPLS laser system
(Example 23.2-3). AlGaAs laser-diode arrays emitting at 793 nm are
also used to pump Tm3+:silicafiber lasers (Sec. 16.3B).

AlInGaP.
The quaternary semiconductor (AlxGa1−x)yIn1−yP is a direct-
bandgap material over a substantial range of the near infrared and
the longer reaches of the visible spectrum (Fig. 18.1-16). Lattice
matching to GaAs is attained for compositions in the range
(AlxGa1−x)0.5In0.5P. The quantum efficiency of AlInGaP LEDs is
enhanced by making use of multiquantum-well (MQW) active
regions, wafer-bonded transparent GaP substrates in place of GaAs,
and resonant-cavity (RC) configurations that offer decreased
bandwidth and directed emission patterns.

Applications of visible LEDs.
Under daylight conditions, human vision is maximally sensitive at
555 nm in the yellow-green region of the spectrum (Sec. 18.1F). This
makes AlInGaP the material of choice for high-brightness
applications such as traffic lights and signage, at least in the red,
orange, yellow-orange (amber), and yellow regions. AlInGaP/InGaP
LEDs also find occasional use in plastic-fiber communication



systems that operate in the 650-nm wavelength region (Fig. 18.1-
20). The lattice-matched ternary compound In0.5Ga0.5P, with a
bandgap wavelength of 650 nm, is widely used for red laser
pointers.

Figure 18.1-20 Surface-emitting AlInGaP/InGaP 650-nm MQW
RCLED for use in short-haul, plastic-fiber communication systems.
A top-emitting structure is used because of the opacity of the GaAs
substrate in this device. The distributed Bragg reflectors comprise
AlAs/AlGaAs layers with an aluminum content that is sufficiently
high so that the 650-nm light is transmitted. A lens enhances
coupling of the light to a fiber.

GaN.
Gallium nitride is a direct-bandgap, binary semiconductor with a
bandgap wavelength λg = 0.366 μm that falls in the near-ultraviolet
region of the spectrum. It may be grown by MBE, MOCVD, or
HVPE. GaN is the progenitor of the important ternary and
quaternary compounds InGaN, AlGaN, and AlInGaN, much as GaAs
was the progenitor of InGaAs, AlGaAs, and InGaAsP. These
materials are often grown on sapphire or Si substrates, despite
substantial lattice mismatch; unlike the arsenide and phosphide
III–V compounds, the III–nitrides can tolerate large dislocation
concentrations so that lattice mismatch is well-tolerated. Buffer
layers can also be used to accommodate differences in thermal-



expansion coefficients. A better lattice match is offered by SiC,
which is sometimes used as a substrate.

InGaN.
The ternary semiconductor InxGa1−xN is a direct-bandgap material
with a bandgap wavelength that spans the region 366 nm (GaN) ≤ λg
≤ 1.61 μm (InN). InGaN is the material of choice for high-brightness
LEDs in the wavelength range 366 ≤ λg ≤ 580 nm, comprising the
near-ultraviolet, violet, blue, and green regions of the spectrum (Fig.
18.1-16). This III–nitride alloy is thus complementary to AlInGaP,
which best accommodates the red, orange, and yellow regions. As
with AlInGaP, the quantum efficiency is enhanced by making use of
MQW structures such as GaN/InGaN (Fig. 18.1-21). The substrate is
often GaN on sapphire. However, the number of quantum wells is
generally limited because of population limits imposed by the hole
diffusion length; low and/or thin barriers are preferred.
Performance can also be enhanced by the use of resonant-cavity
devices. Other configurations include arrays of quantum dots that
self-assemble on growth and arrays of nanorods.

AlGaN.
AlxGa1−xN is also a ternary III–nitride direct-bandgap
semiconductor, but its bandgap wavelength falls in the range 206
nm (AlN) ≤ λg ≤ 366 nm (GaN) (Fig. 18.1-16), which covers the mid-
and near-ultraviolet regions(200 ≤ λo ≤ 390 nm). LEDs comprising
AlGaN/AlGaN heterostructures have been fabricated across this
wavelength region although achieving high efficiency is more
challenging at these shorter wavelengths. As with InGaN, LED
quantum efficiency is enhanced by making use of double-
heterostructure or MQW active regions with layers of the form
AlxGa1−xN/AlyGa1−yN. High-quality AlN, or templates of
AlGaN/AlN/sapphire, serve as transparent lattice-matched
substrates for ultraviolet AlGaN-based emitters. AlN LEDs emitting
at 210 nm have also been fabricated. By virtue of their large bandgap



and large thermal conductivity, III–nitride materials are also
employed in specialized electronic components such as transistors
for high-power and high-temperature applications.

Figure 18.1-21 Flip-chip packaged, surface-emitting GaN/InGaN
MQW LED operating at λo = 420 nm in the violet spectral region.
The light is extracted through the GaN-on-sapphire transparent
substrate, which is textured with an array of tiny pyramids to
increase the extraction efficiency. In the structure illustrated, the
active region comprises 5-nm GaN barriers and 2.5-nm InxGa1−xN
wells.

Applications of UV LEDs.
Ultraviolet LEDs operating in the UVA band (315 ≤ λo ≤ 400 nm)
find use in applications such as printing, curing, and counterfeit
detection. Source emitting in the UVC band (100 ≤ λo ≤ 280 nm) are
useful for sterilization as well as germicidal and water-treatment
applications. UV LEDs are also employed for detecting chemical and
biological agents (many of which fluoresce at particular
wavelengths when exposed to ultraviolet light) and for non-line-of-
sight covert communications.



AlInGaN.
It is clear from the foregoing that the ternary III–nitride
compounds InGaN and AlGaN are suitable for fabricating sources
that stretch across the visible and ultraviolet regions of the
spectrum. However, the quaternary semiconductor
(AlxInyGa1−x−y)N has the merit that it can be lattice matched to a
GaN template for certain values of x and y [Fig. 17.1-7(b)], thereby
increasing the quantum efficiency of the resulting devices. This
lattice matching is analogous to that of AlInGaP to GaAs and of
InGaAsP to InP. AlInGaN LEDs with lattice matching to a GaN
substrate are useful over wavelengths ranging from 366 nm, the
bandgap wavelength of GaN, to λo ≈ 250 nm, the wavelength of
AlInN that is lattice matched to GaN. AlInGaN/InGaN/AlInGaN
quantum-well structures serve as active-region materials for
devices. AlInGaN can also serve as a transparent contact layer.

D. Silicon Photonics
Silicon has long been the leading materials platform for integrated
electronics, for a whole host of reasons: it is 1) abundant and
inexpensive; 2) readily grown in pure form and in bulk; 3) easy to
dope, oxidize, and manipulate; 4) stable at high temperatures; and
5) compatible with CMOS technology. Its ubiquity, availability, and
properties have also made it an attractive platform for integrated
photonics. The high refractive-index contrast of silicon and its
oxides allows strong optical confinement in a compact volume. This,
together with its transparency in the 1.3–1.6-μm
telecommunications band, and its CMOS compatibility, promotes its
use for devices such as high-performance optical waveguides, filters,
splitters, multiplexers, demultiplexers, and wavelength converters,
as well as other components (Sec. 25.1E).

A notable exception to the adaptability of Si centers on its use as an
active medium for LEDs and laser diodes. The development of Si-
based light sources has been hampered by its indirect bandgap,
which restricts its ability to generate light efficiently via interband



transitions (Fig. 17.2-7). Over the years, extensive efforts have been
devoted to surmounting this roadblock, either by mitigating the
indirect nature of silicon’s bandgap or by avoiding it altogether.
Early efforts directed toward increasing the efficiency of light
emission involved the use of alternatives to its crystalline form,
such as porous silicon (in which nanopores pervade the diamond
structure); silicon nanocrystals, superlattices, and quantum dots
(Example 17.2-2); and Er3+-doped silicon-based hosts and
superlattices. None of these approaches has been particularly
successful, however. A more fruitful approach was to co-opt light-
emitting interactions in silicon other than those associated with
interband transitions. In particular, the silicon Raman laser relies
on stimulated Raman scattering and is thus indifferent to the
nature of the bandgap (Example 16.3-4). Still, Raman devices
require optical rather than electrical pumping, which reduces their
appeal for many applications. Yet, silicon Raman lasers have been
successfully integrated with direct-bandgap emitters such as InP
that serve as an optical pump.

Fortunately, substantial progress has been made in recent years in
implementing silicon-based on-chip light sources for use in
photonic integrated circuits (PICs). Three approaches are
currently in use, each with its own limitations and merits:

1. Flip-chip integration (direct-mounting integration) of III–V
laser diodes into a separately fabricated silicon platform, often
with optical butt coupling. This approach, which makes use of
solder bumps, requires sub-micrometer-scale alignment
precision and is not scalable to large wafer volumes or complex
laser designs, but it is straightforward.

2. Heterogeneous integration (hybrid approach) of III–V lasers
into prepatterned silicon circuits, typically via wafer bonding
and with optical evanescent coupling to evade lattice-matching
limitations. This approach is incompatible with the clean
CMOS-foundry environment. However, it accommodates a
whole host of materials and can also relegate photon storage to



the undoped silicon platform (with its low loss and high Q) via
hybrid modes, thereby facilitating the fabrication of narrow-
linewidth, dense-comb, and mode-locked lasers.

3. Direct heteroepitaxial growth of III–V lasers on Si substrates
using intermediate buffer layers to minimize dislocations in the
light-emitting region. This approach is encumbered with the
large lattice-constant and thermal mismatches between Si and
III–V materials, which result in dislocations that reduce
efficiency by acting as nonradiative recombination centers.
However, this can be largely counterbalanced by employing
quantum-dot, rather than quantum-well emitters, since: 1)
quantum dots are less affected by the threading dislocations
initiated by lattice and thermal mismatches, and 2) quantum
dots enjoy substantially reduced sensitivity to temperature
changes.

On balance, direct heteroepitaxy appears to be the most attractive
alternative for large-scale, low-cost, fabrication of silicon-based on-
chip light sources.

It is worth noting that group-IV photonics also offers a route to the
development of on-chip light sources via combinations and alloys of
indirect-bandgap semiconductors such as Si, Ge, Sn, and C.
Germanium-based structures are leading the way, although
considerable challenges remain (see, e.g., Example 17.2-1 and Sec.
18.5B). Interestingly, the use of such materials is not new: the first
LED, which dates to 1907, was a forward-biased SiC Schottky diode.

E. Organic LEDs

OLEDs

Organic light-emitting diodes can be fabricated from small organic
molecules or conjugated polymer chains (Sec. 17.1B). Small-
molecule organic light-emitting diodes, called OLEDs or
SMOLEDs, are efficient generators of electroluminescence in the
blue, green, and red. A device is formed from two thin (≈ 100-nm)



organic semiconductor films that are juxtaposed to form an organic
heterostructure. As shown in Fig. 18.1-22(a), this structure is
sandwiched between two inorganic electrodes, an anode that injects
holes and one or more cathodes that inject electrons. This contrasts
with the process of carrier injection in inorganic LEDs, which makes
use of heavily doped p-and n-type crystalline materials and strong
forward bias.

The injected carriers are transported to the heterojunction (active
region), forming bound excitons that generate spontaneous
emission upon recombination. Different heterostructure materials
yield different recombination-radiation wavelengths, so several
heterostructures can be patterned on a single substrate to provide a
multicolor OLED. Such heterostructures can be fabricated in a side-
by-side, or striped configuration, forming a color-tunable
horizontal stack as shown in Fig. 18.1-22(a). Alternatively, they can
be fabricated one atop the other, creating a vertical stack with a blue
emitter on top, a green emitter in the middle, and a red emitter on
bottom, as shown in Fig. 18.1-22(b). White organic light-emitting
diodes (WOLEDs), which are the elements of white OLED light
panels, are usually fabricated using vertical stacks.



Figure 18.1-22 OLED structures fabricated in the form of (a) a
horizontal stack of blue, green, and red emitters, which requires
patterning but is color tunable, and (b) a vertical stack. Calcium and
indium tin oxide are commonly used as the cathode and transparent
anode materials, respectively. Exciton recombination radiation
emitted at the organic heterojunctions exits through the transparent
anode and glass substrate. Organic semiconductors used to fabricate
OLEDs include hole-transporting TPD (triphenyl diamine
derivative) and electron-transporting Alq3 [aluminum
tris(8hydroxyquinoline)]. Luminescent dopants can be infused into
the active regions to enhance the internal quantum efficiency and to
create white light. A white element is sometimes added to the
horizontal stack to facilitate color refinement.

The energy levels of bound excitons in organic materials resemble
those of electrons in dye molecules, comprising both singlet (S) and
triplet (T) states, as schematized in Fig. 14.1-8. The electron spin in
a singlet state is antiparallel to that of the remainder of the
molecule, resulting in a total spin angular-momentum quantum
number S = 0 and spin multiplicity 2S +1 = 1, as explained in Secs.
14.1A and 14.1C. The electron spin in a triplet state, in contrast, is
parallel to that of the remainder of the molecule, which results in S
= 1 and 2S + 1 = 3. The spin multiplicity of the triplet state is thus
three times that of the singlet state, whence its appellation.

As explained in Sec. 14.5A, radiative transitions that take place
between two states of the same multiplicity (S → S or T → T) are
spin-allowed, in which case the luminescence process is known as
fluorescence. Luminescence from spin-forbidden transitions (e.g.,



T → S), in contrast, is called phosphorescence. The lifetimes of
phosphorescent transitions are usually far longer than those of
fluorescent transitions (e.g., msec vs. nsec) because of the forbidden
nature of the former. The ground states of most organic compounds
are singlet states so that the radiative decay of singlet excitons is
strongly favored.

However, triplet-exciton radiative recombination can be fostered by
infusing the active region of the device with fluorophores that bind
to the organic molecules or conjugated polymer chains comprising
the heterostructure. Triplet excitons can then efficiently transfer
their energy to the fluorophore while concomitantly transferring
their spin angular momentum to the organic molecule or polymer
to which the exciton is bound. By virtue of the triplet-state
multiplicity, this serves to increase the internal quantum efficiency
of the device by a factor of four. This approach also allows the colors
of the emitted light to be determined by the choice of fluorophores
rather than by the exciting excitons.

PLEDs

Polymer light-emitting diodes, called PLEDs or P-OLEDs, are
similar in construction to OLEDs except that they typically have an
n-type active region into which holes are injected by a p-type
organic layer. Light-emitting polymer materials (LEPs) that
comprise such devices are often derivatives of poly(p-phenylene
vinylene) (PPV) and polyfluorene. The color of the emitted light can
be modified by substituting appropriate side chains on the polymer
backbone. PLEDs are less expensive to fabricate than OLEDs and
are readily printed, but they generally have lower efficiencies and
shorter life spans.

The desirable features of small-molecule and large-molecule
polymeric organic materials can be brought together in molecules
known as phosphorescent dendrimers. These are large molecular
balls containing a heavy-metal ion core, such as
Ir(2phenylpyridine)3, which facilitates triplet-exciton radiative



recombination via spin-orbit coupling; layers of branching-ring
structures are bonded around it. Alternatively, high efficiencies can
be attained by making use of efficient thermally activated
delayed fluorescence (TADF) emitters, which have an energy
gap between their singlet and triplet excited states (S1 and T1,
respectively) that is sufficiently small so that temperature
fluctuations can drive transitions to the singlet state.

F. LED Lighting
Only about 5% of the optical power radiated by a typical
incandescent lamp is emitted in the form of visible light; the
remaining 95% is emitted in the infrared as heat. Light-emitting
diodes, in contrast to incandescent and fluorescent sources, are
efficient and versatile, and have long operational lives. LED and
OLED sources, discussed in Secs. 18.1C and 18.1E, respectively, are
widely used in residential, architectural, automotive, and street
lighting. The light emitted by LEDs can be dynamically controlled
and can assume an enormous palette of colors, including white,
with excellent color rendering quality. LED lighting is also called
solid-state lighting.

The human visual system is constructed in such a way that the
combination of light from a small number of judiciously chosen
LEDs, in spite of their narrow individual spectral profiles, can
nonetheless appear white to the observer. Such light, termed
metameric white light, can even be generated by a single LED
when it is endowed with a photoluminescent phosphor. As a prelude
to considering the features of LED lighting, it is useful to set forth
some of the units and metrics used in the field. This is followed by
brief discussions of single-die (discrete) LEDs, white LEDs, array
LEDs, chip-on-board (COB) LEDs, retrofit LED lamps, and white
OLED light panels.

Units and Metrics



(18.1-32)

In earlier chapters our attention was focused exclusively on
radiometric units, which characterize the strength of a light
source in terms of its physical properties. Photometric units, on
the other hand, characterize the effectiveness of a light source in
terms of its ability to excite the human visual system. Both
radiometric and photometric units are important in LED lighting.
Examples of radiometric units are the radiant flux P, also called
the optical power (specified in W) and the irradiance I, commonly
called the intensity (specified in W/m2). The corresponding
photometric units are, respectively, the luminous flux Pv
(specified in lumens, which is abbreviated lm) and the
illuminance Mv (specified in lm/m2, which is the same as lux).
Photometric quantities often carry the subscript “v” to indicate their
connection with vision.

The luminous flux Pv is a measure of the brightness of a light
source as perceived by the eye. Dictated by historical considerations,
the lumen is defined such that 683 lm corresponds to 1 W of optical
power at 555 nm, the wavelength of maximum human visual
sensitivity under daylight conditions where photopic vision prevails.
The photopic luminosity function V (λo), which has a value of
unity at λo = 555 nm, specifies the relative sensitivity of the eye over
the range of visible wavelengths, which stretches from 380 to 780
nm.

The wall-plug luminous efficacy ηv, also called the overall
luminous efficacy or the luminous efficacy of the source, is
the most widely used efficiency metric for LED lighting devices. It is
defined as the ratio of the luminous flux generated (lm) to the
electrical power provided to the device (W), and hence has units of
lm/W:

The electrical power iV is the product of the applied current and
voltage. An LED that optimally converts electrical power to visible



light would exhibit a luminous efficacy of 683 lm/W, a value that
can be attained only if the device has a power-conversion efficiency
ηc = 1 [see (18.1-27)] and if it emits monochromatic yellow-green
light at a wavelength of 555 nm. Since metameric white light
comprises a wavelength spectrum broader than just a single
component at 555 nm, and since the relative sensitivity of the eye
diminishes for wavelengths both below and above this value in
accordance with the photopic luminosity function, it is clear that a
white LED is constrained to provide ηv < 683 lm/W. Observed
values of luminous efficacy for three distinct lighting devices are
provided for context: 1) a 100-W tungsten incandescent lamp offers
ηv ≈ 15 lm/W; 2) an equivalent compact fluorescent lamp provides
ηv ≈ 70 lm/W; and 3) an equivalent commercially available white
LED lamp yields ηv ≈ 120 lm/W, although white LED lamps with ηv
> 300 lm/W have been reported.

The correlated color temperature (CCT) of a source is the
temperature of a blackbody radiator, as described in Sec. 14.4B,
whose color most closely resembles that of the source. As the
temperature of a blackbody radiator transitions from low to high, its
color goes from deep red, to orange, to yellow, to yellowish-white, to
white, and ultimately to bluish-white at sufficiently high
temperatures. Sources in the range 2700° ≲ CCT ≲ 3500° K
(yellowish) are called “warm white,” while those in the range 5000°
≲ CCT ≲ 7500° K (bluish-white) are referred to as “cool white.” The
value of the CCT ascribed to a source of light bears no connection to
its thermodynamic temperature.

Another important measure is the color rendering index (CRI),
which indicates how realistically a source can render colors. This
metric, which is defined only for sources that are approximately
white, is calculated by measuring the light reflected from a
standardized sample set for various colors. The CRI assumes values
between 0 and 100, with 100 considered ideal.

Salutary Features



LED lighting offers many salutary features in comparison with its
incandescent and fluorescent counterparts:

Long operational life, slow failure, and low cost. LEDs have life
spans that can exceed 100 000 hours, far longer than the 1 500
hours for typical incandescent sources and 10 000 hours for
compact fluorescent lamps; their failure is also gradual rather
than sudden. These features result in reduced long-term
replacement and maintenance costs.

Low energy consumption. High values of the wall-plug
luminous efficacy ηv indicate that LEDs use far less electrical
power than their incandescent and fluorescent cousins to
generate a given luminous flux. Because of this, LEDs can be
powered by solar panels.

Broad choice of colors and high-quality color rendering. LEDs
can generate light with colors that span the gamut of human
vision, including a continuum of whites. They offer high values
of the color rendering index (CRI), indicating that colored
objects appear natural under illumination.

Dynamic and smart-networking capabilities. The colors,
temporal irradiance patterns, and spatial distributions of light
produced by LEDs can be dynamically programmed. The
electronic drivers can also communicate wirelessly with each
other and with collections of sensors to provide smart
networks.

Discrete LEDs

Individually, LEDs emit narrowband, colored light — the color is
determined by the bandgap wavelength of the material from which
the LED is fabricated, as exemplified in Fig. 18.1-14. The optical and
electrical characteristics of some typical individual, single-die LEDs
of different colors are set forth in Table 18.1-1. Such devices are
commonly called discrete LEDs.



Table 18.1-1 Representative parameter values for 3-mm-diameter,
discrete LEDs (blue, green, and red): peak wavelength λp (nm),
forward voltage V (V), forward current i (A), electrical power
consumed iV (W), external quantum efficiency ηex, power-
conversion efficiency ηc, output radiant flux (optical power) Po (W),
luminous flux Pv (lm), and wall-plug luminous efficacy ηv (lm/W).
The quantities ηex, ηc, and Po are interrelated via (18.1-24), (18.1-
26), and (18.1-27).

Color λp V ia iV ηex ηc Po Pv ηv

Blue 465 3.1 0.35 1.1 0.4 0.35 0.38 50 45
Green 528 3.2 0.35 1.1 0.3 0.22 0.25 125 115
Red 625 2.2 0.35 0.8 0.4 0.36 0.28 75 95

aTripling the current to ≈ 1 A results in an approximate doubling of the radiant flux Po
and luminous flux Pv, but this comes at the expense of a reduction in the luminous
efficacy ηv.

White LEDs

White is by far the most important color for illumination. There are
several methods by means of which colored LED light can be
converted into metameric white light. The first method, widely used
because of its simplicity and low cost, makes use of a phosphor-
conversion LED, which is an LED die coupled with one or more
phosphors that generate photoluminescence (Sec. 14.5B). In its
simplest implementation, a violet LED and a yellow phosphor give
rise to metameric white light (any two colors whose combination
results in white light are known as complementary colors). A red
phosphor can be added to the combination to yield warmer
metameric white light and quantum dots can be used in place of
phosphors to increase efficiency. The second method, known as
additive color mixing, relies on superposing the light generated by
several LEDs of different colors — this approach has the merit of
offering color-tunable LED lighting. The third method, often



referred to as the hybrid approach, makes use of two or more LEDs
of different colors (e.g., blue and red) in conjunction with one or
more phosphors. This method can offer favorable color-quality
attributes at the expense of increased complexity and cost. We
proceed to examine the first and second methods in turn.

Method 1: Phosphor-conversion LEDs (PC-LEDs).
The evolution of the PC-LED since the year 2000 is illustrated in
Fig. 18.1-23. Early devices, such as that portrayed in Fig. 18.1-23(a),
made use of InGaN LED chips with a central emission wavelength ≈
465 nm and a FWHM spectral width ≈ 35 nm. Some of the blue LED
light that impinged on the Ce3+:YAG phosphor generated yellow
photoluminescence light with a spectral bandwidth ≈ 500–700 nm
that was relatively broad. The result was metameric white light. A
contemporary PC-LED, such as that shown in Fig. 18.1-23(b),
operates on the same principle, but takes the form of a surface-
mounted device (SMD), with its electrical contacts lateral to the
housing; this offers greatly improved heat-sinking and efficiency as
well as reduced size. The LED die is supported by a ceramic base
and is overlaid with a thin yellow phosphor sheet. The entire device
is encapsulated in a hemispherical silicone lens. The device
illustrated also makes use of an InGaN LED chip, but with a shorter
center wavelength (≈ 445 nm in the violet) and a narrower FWHM
spectral width (≈ 10 nm). The yellow photoluminescence has a
central wavelength of ≈ 570 nm and a spectral band of ≈ 510–630
nm, corresponding to a FWHM of ≈ 120 nm, somewhat narrower
than that of the first-generation device. Violet and yellow are
complementary colors so metameric cool-white light results.



Figure 18.1-23 Evolution of the phosphor-conversion white LED.
(a) White-light emission from an early device (ca. 2000) containing
an InGaN LED die and a yellow phosphor in a 5-mm-diameter dual
in-line package (DIP). This device generated metameric cool-white
light with a wall-plug luminous efficacy ηv ≈ 20 lm/W. (b) A
contemporary device comprising an InGaN LED die overlaid with a
thin yellow phosphor sheet and a 3-mm-diameter hemispherical
lens in a surface-mounted-technology package. Devices such as
these provide metameric cool-white light with Pv > 500 lm and ηv >
300 lm/W, a factor of 15 larger than that of early devices such as
that portrayed in (a).

Method 2: Additive color mixing.
The second method of obtaining metameric white light relies on
multiple dies that generate different colors. Appropriate
combinations of red, green, and blue light are perceived as white, a
phenomenon illustrated in Fig. 18.1-24. Additive color mixing is
used in luminaires to provide light of tunable color. In the
terminology of LED lighting, a luminaire is a light fixture containing
one or more LED lamps along with optics that shape and guide the
emitted light to the exterior.



Figure 18.1-24 Additive color mixing. A device that generates light
of tunable color often contains LEDs that emit Red (R), Blue (B),
and Green (G), as shown. When observed, the overlapping light
beams yield the following colors, as portrayed in the figure:

B+G → C (Cyan)

R+B → M (Magenta)

R+G → Y (Yellow)

R+B+G → W (White)

Array LEDs

Modern color-mixing LEDs, which contain red, green, and blue dies
within a single LED package, have the merit that they can be
electrically tuned to emit essentially any color within the gamut of
human vision. An example is provided by the array LED illustrated
in Fig. 18.1-25, which contains red, green, and blue dies, together
with a white phosphor-conversion emitter, all in close proximity
and individually addressable. A 5-mm-diameter hemispherical
silicone lens caps this multicolor array LED.



Figure 18.1-25 A color-mixing LED comprising individually
addressable red, green, and blue dies, along with a white phosphor-
conversion emitter, in an SMD package capped by a 5-mm-diameter
hemispherical lens. Array LEDs such as these can be electrically
tuned to emit essentially any color in the gamut of human vision,
including metameric white light.

COB LEDs

A chip-on-board (COB) LED, sometimes called an LED
integrated array, offers a modular alternative to a collection of
discrete LEDs. As displayed in Fig. 18.1-26, high luminous flux is
attained by making use of a large number of dies on a chip (often
tens but sometimes hundreds), with high packing density,
configured in the form of a single circuit and mounted on a printed-
circuit board or other substrate. The device serves as a uniform
diffuse source of light and is suitable for many single-color lighting
applications, directional and non-directional alike. Chip-on-board
LEDs are available with a broad range of parameters, including size,
die density, operating voltage, color, light output, and efficiency.



Figure 18.1-26 An illuminated chip-on-board (COB) device
containing 120 InGaN dies embedded in a 3-cm-diameter, 1.5-mm-
thick layer of yellow phosphor. Drawing 125 W of electrical power, a
device such as this provides metameric cool-white light with a
luminous flux ≈ 18 000 lm and a wall-plug luminous efficacy ≈ 145
lm/W.

LED Retrofit Lamps

An LED lamp designed as a drop-in replacement for an incandescent
lamp is known as an LED retrofit lamp. These devices, generally
called bulbs, typically comprise single-and multiple-die LEDs
incorporated into plastic housings. The operating characteristics of
the lamp, usually indicated on the packaging, include the luminous
flux (lm), wall-plug luminous efficacy (lm/W), correlated color
temperature (° K), color rendering index (CRI), electrical power
consumption (W), as well as the electrical power consumption of an
incandescent lamp with the same luminous flux.

A white LED retrofit lamp, the top portion of which is illustrated in
the cutaway view depicted in Fig. 18.1-27, closely resembles its
incandescent counterpart, at least from a morphological perspective,
and it has roughly the same weight. It incorporates a collection of
surface-mounted devices, like the one depicted in Fig. 18.1-23(b), or
chip-on-board devices such as that illustrated in Fig. 18.1-26.



Figure 18.1-27 A white LED retrofit lamp contains an array of
LEDs or chip-on-board (COB) devices enclosed in a diffusing globe.
The cooling means, drive and dimmer electronics, and screw base
are not shown. A device such as that depicted here might consume
10 W of electrical power and generate light indistinguishable from
that produced by an incandescent bulb consuming 100 W of
electrical power. An omnidirectional and dimmable lamp
comprising 10 LEDs, each generating a luminous flux of 150 lm,
produces metameric warm-white light with an overall luminous flux
Pv = 1500 lm and a wall-plug luminous efficacy ηv = 150 lm/W. The
emitted light often has a correlated color temperature (CCT) in the
vicinity of 2700° K and a color rendering index (CRI) of about 90.
Such lamps have life spans in excess of 25 000 hours.

The bulb can contain a heat sink or a plastic shroud that is vented at
the top and bottom, allowing the lamp to be cooled by convection.
Contemporary retrofit lamps exhibit wall-plug luminous efficacies
in excess of 200 lm/W and are available at various luminous-flux
levels and correlated color temperatures. The optimization of
efficiency and of the distribution of emitted light has led to the
development of lamps with a variety of shapes.

Retrofit lamps usually use screw bases and operate at line voltage.
The circuitry incorporated within the bulb serves as a built-in driver.
A collection of LEDs connected in series can be driven by a DC
current obtained by rectifying AC line-voltage with diodes and
capacitors. The LEDs can also be directly driven by the AC current,
emitting light every other half cycle. Alternatively, wiring them as
two antiparallel strands of series-connected LEDs results in half of
them emitting light every half cycle. LED lamps can be dimmed



either by reducing the applied voltage or by using a pulse-
widthmodulated current driver.

OLED Light Panels

OLED light panels are large-area light sources fashioned from
organic light-emitting diodes (OLEDs), which are efficient
generators of electroluminescence in the blue, green, and red.
White organic light-emitting diodes (WOLEDs), fabricated in
the manner prescribed in Fig. 18.1-22, generate white light via
additive color mixing, as depicted in Fig. 18.1-24. They have near-
unity internal quantum efficiency and provide excellent color
rendition. A white OLED light panel comprises a single, broad-
area, vertically stacked OLED, such as that displayed in Fig. 18.1-
22(b). Though typically designed to emit white light, OLED panels
can alternatively be configured to emit light of any color, and to
accommodate dynamic color tuning. Such panels have a spatial
light-emission pattern that is nearly Lambertian so they offer large-
area homogeneous lighting without glare. Though their luminous
flux is limited, OLED light panels are available in a broad range of
sizes, shapes, and color temperatures. When fabricated on
transparent plastic substrates, they are lightweight, thin, and
flexible, so they can be configured in unique shapes. A white OLED
light panel is displayed in Fig. 18.1-28.

Figure 18.1-28 A 1/4-mm-thick white OLED light panel that
generates metameric white light with a luminous flux Pv = 75 lm, a
luminous efficacy ηv = 60 lm/W, a CCT = 3000° K, and a CRI = 90.
It has a life span of some 40 000 hours. Such panels offer large-area
homogeneous illumination.



18.2 SEMICONDUCTOR OPTICAL
AMPLIFIERS
Semiconductor optical amplifiers (SOAs), also called
semiconductor laser amplifiers (SLAs), are often used as
photonic switches. As discussed in Sec. 24.3B, an SOA may be
rapidly switched on and off by applying and removing an injected
electric current. In the presence of gain (when the device is on), it
acts as an amplifier, while in the absence of gain (when the device is
off), it acts as an absorber. The SOA thus behaves as a fast photonic
switch with a large extinction ratio. Moreover, arrays of SOAs may
be interconnected via optical fibers to form complex photonic
switches. Semiconductor optical amplifiers are also useful for
wavelength conversion, as discussed in Sec. 24.3D, as well as for
optical demultiplexing and optical clock recovery. They also serve as
photonic logic gates in optical processing (Sec. 24.4). Though laser
diodes enjoy wide use as sources in optical fiber communications,
amplification in such systems is better served by optical fiber
amplifiers (OFAs) such as EDFAs, REFAs, and RFAs, as explained in
Sec. 25.1C.

The principle underlying the operation of an SOA is the same as that
for other laser amplifiers: the creation of a population inversion
that renders stimulated emission more prevalent than absorption.
The population inversion is usually achieved by electric-current
injection in some form of a p–n junction diode; a forward bias
causes carrier pairs to be injected into the junction region where
they recombine to emit stimulated emission. However, the theory of
the SOA is somewhat more complex than that presented in Chapter
15 for the conventional laser amplifier inasmuch as the transitions
take place between bands of closely spaced energy levels rather than
between well-separated discrete energy levels or manifolds. For
purposes of comparison, nevertheless, the SOA may be viewed as a
device that operates via a form of in-band pumping.



The extension of the laser amplifier theory set forth in Chapter 15 to
semiconductor devices was provided in Chapter 17. We proceed to
use the results derived in Sec. 17.2 to obtain expressions for the gain
and bandwidth of semiconductor optical amplifiers. We then
consider pumping schemes suitable for attaining a population
inversion and highlight the benefits of using heterostructure,
quantum-well, and quantum-dot amplifier configurations. We then
compare the performance of semiconductor optical amplifiers and
optical fiber amplifiers, and finally consider superluminescent
diodes. The theoretical underpinnings of SOA operation carry over
to laser-diode operation, considered in Sec. 18.3.

A. Gain and Bandwidth
Light of frequency ν can interact with the carriers of a
semiconductor material of bandgap energy Eg via band-to-band
transitions, provided that ν > Eg/h. The incident photons may be
absorbed, resulting in the generation of electron–hole pairs, or they
may produce additional photons through stimulated electron–hole
recombination radiation (Fig. 18.2-1). When emission is more likely
than absorption, net optical gain ensues and material can serve as a
coherent optical amplifier.

Figure 18.2-1 (a) The absorption of a photon results in the
generation of an electron–hole pair. (b) Electron–hole
recombination can be induced by a photon; the result is the
stimulated emission of an identical photon.
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Expressions for the rate of stimulated emission rst(ν) and the rate of
photon absorption rab(ν) are provided in (17.2-18) and (17.2-19),
respectively. These quantities depend on the photon-flux spectral
intensity ϕν ; the quantum-mechanical strength of the transition for
the particular material under consideration (which is implicit in the
value of the electron–hole radiative recombination lifetime τr); the
optical joint density of states ϱ(ν); and the occupancy probabilities
for emission fe(ν) and absorption fa(ν).

The optical joint density of states ϱ(ν) is determined by the E–k
relations for electrons and holes and by the conservation of energy
and momentum. With the help of the parabolic approximation for
the E–k relations near the conduction-and valence-band edges, it
was shown in (17.2-6) and (17.2-7) that the energies of the electron
and hole that interact with a photon of energy hν are

respectively, where mc and mv are their effective masses and 1/mr =
1/mc +1/mv. The resulting optical joint density of states that
interacts with a photon of energy hν was determined to be [see
(17.2-9)]

It is apparent that ϱ(ν) increases as the square root of photon
energy above the bandgap.

The occupancy probabilities fe(ν) and fa(ν) are determined by the
pumping rate through the quasi-Fermi levels Efc and Efν. The
quantity fe(ν) is the probability that a conduction-band state of
energy E2 is filled with an electron and a valence-band state of
energy E1 is filled with a hole. The quantity fa(ν), on the other hand,
is the probability that a conduction-band state of energy E2 is empty



(18.2-4)
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and a valence-band state of energy E1 is filled with an electron. The
Fermi inversion factor [see (17.2-25)]

represents the degree of population inversion. The quantity fg(ν)
depends on both the Fermi function for the conduction band, fc(E)
= 1/{exp[(E − Efc)/kT] + 1}, and the Fermi function for the valence
band, fv(E) = 1/{exp[(E − Efv)/kT] + 1}. It is a function of
temperature and of the quasi-Fermi levels Efc and Efv, which in turn
are determined by the pumping rate. A complete population
inversion can in principle be achieved in a semiconductor optical
amplifier [fg(ν) = 1], so it behaves like a four-level laser system in
that respect (Sec. 15.2B).

The results provided above were combined in (17.2-24) to provide
an expression for the net gain coefficient, γ0(ν)=[rst(ν) − rab(ν)]/ϕν,

Comparing (18.2-4) with (15.1-4), it is apparent that the quantity
ϱ(ν)fg(ν) in the semiconductor optical amplifier plays the role of
Ng(ν) in other laser amplifiers, and that σ(ν) ≈ γ0(ν)/Δn.

Amplifier Bandwidth

In accordance with (18.2-3) and (18.2-4), a semiconductor medium
provides net optical gain at the frequency ν when fc(E2) > fv(E1).
Conversely, net attenuation ensues when fc(E2) < fv(E1). Thus, a
semiconductor material in thermal equilibrium (undoped or doped)
cannot provide net gain whatever its temperature; this is because
the conduction-and valence-band Fermi levels coincide (Efc = Efv =
Ef ). External pumping is required to separate the Fermi levels of
the two bands in order to achieve amplification.
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The condition fc(E2) >fv(E1) is equivalent to the requirement that
the photon energy be smaller than the separation between the
quasi-Fermi levels, i.e., hν < Efc − Efv, as demonstrated in Exercise
17.2-1. Of course, the photon energy must be larger than the
bandgap energy (hν > Eg) in order that laser amplification occur by
means of interband transitions. Thus, if the pumping rate is
sufficiently large that the separation between the two quasi-Fermi
levels exceeds the bandgap energy Eg, the medium can act as an
amplifier for optical frequencies in the band

Amplifier Bandwidth

For hν < Eg the medium is transparent, whereas for hν > Efc − Efv it
is an attenuator instead of an amplifier. Equation (18.2-5)
demonstrates that the amplifier bandwidth increases with Efc − Efv,
and therefore with pumping level. In this respect it is unlike the
atomic laser amplifier, which has an unsaturated bandwidth Δν that
is independent of pumping level (Fig. 15.1-2).

Computation of the gain properties is simplified considerably if
thermal excitations can be ignored (i.e., if T = 0° K). The Fermi
functions are then simply fc(E2)=1 for E2 < Efc and 0 otherwise;
fv(E1)=1 for E1 < Efv and 0 otherwise. In that case the Fermi
inversion factor is

Schematic plots of the functions ϱ(ν), fg(ν), and the gain coefficient
γ0(ν) are presented in Fig. 18.2-2, illustrating how γ0(ν) changes
sign and turns into a loss coefficient when hν > Efc − Efv. The ν−2

dependence of γ0(ν), arising from the λ2 factor in the numerator of



(18.2-4), varies sufficiently slowly that it may be ignored. Finite
temperature smoothes the functions fg(ν) and γ0(ν), as shown by
the dashed curves in Fig. 18.2-2.

Figure 18.2-2 Dependence on energy of the optical joint density of
states ϱ(ν), the Fermi inversion factor fg(ν), and the gain coefficient
γ0(ν) at T = 0° K (solid curves) and at room temperature (dashed
curves). Photons with energy between Eg and Efc − Efv undergo laser
amplification.

Dependence of the Gain Coefficient on Pumping Level

The gain coefficient γ0(ν) increases both in its width and in its
magnitude as the pumping rate R is elevated. As provided in (18.1-
1), a constant pumping rate R (number of injected excess electron–
hole pairs per cm3 per second) establishes a steady-state
concentration of injected electron–hole pairs in accordance with Δn
=Δp = Rτ, where τ is the electron–hole recombination lifetime
(which includes both radiative and nonradiative contributions).
Knowledge of the steady-state total concentrations of electrons and
holes, n = n0 + Δn and p = p0 + Δn, respectively, permits the Fermi
levels Efc and Efv to be determined via (18.1-8) and (18.1-9). Once
the Fermi levels are known, the computation of the gain coefficient



can proceed using (18.2-4). The dependence of γ0(ν) on Δn, and
thereby on R, is illustrated in Example 18.2-1.



EXAMPLE 18.2-1.

Gain Coefficient for an InGaAsP SOA.

A sample of the quaternary material In0.72Ga0.28As0.6P0.4, with
bandgap energy Eg = 0.95 eV, is operated as a semiconductor
optical amplifier at a wavelength of λo = 1300 nm at T = 300° K.
The sample is undoped but has residual concentrations of ≈ 2 ×
1017 cm−3 donors and acceptors, and a radiative electron–hole
recombination lifetime τr ≈ 2.5 ns. The effective masses of the
electrons and holes are mc ≈ 0.06 m0 and mv ≈ 0.4 m0,
respectively, and the refractive index n ≈ 3.5. Given the steady-
state injected-carrier concentration Δn (which is controlled by
the injection rate R and the overall recombination time τ ), the
gain coefficient γ0(ν) may be computed from (18.2-4) in
conjunction with (18.1-8) and (18.1-9). As illustrated in Fig. 18.2-
3, both the amplifier bandwidth and the peak value of the gain
coefficient γp increase with Δn. The energy at which the peak
occurs also increases with Δn, as expected from the behavior
shown in Fig. 18.2-2. Furthermore, the minimum energy at
which amplification occurs decreases slightly with increasing Δn
as a result of band-tail states, which reduce the bandgap energy.
At the largest value of Δn shown (Δn = 1.8 × 1018 cm−3), photons
with energies falling between 0.91 and 0.97 eV undergo
amplification. This corresponds to a full amplifier bandwidth of
14.5 THz, and a wavelength range of 80 nm. A more suitable
measure is the bandwidth at the full-width at half-maximum
(FWHM) of the gain profile, also called the 3-dB gain bandwidth,
which is 10 THz, corresponding to about 50 nm at λo = 1300 nm
(see Table 15.3-1 for a comparison with other laser transitions).
The calculated peak gain coefficient γp = 270 cm−1 at this value
of Δn is large in comparison with most atomic laser amplifiers.



Figure 18.2-3 (a) Calculated gain coefficient γ0(ν) for an
InGaAsP SOA versus photon energy hν, with the injected-carrier
concentration Δn as a parameter (T = 300° K). The band of
frequencies over which amplification occurs (centered near 1300
nm) increases with increasing Δn. At the largest value of Δn
shown, the FWHM amplifier bandwidth is 10 THz,
corresponding to 0.04 eV in energy and 50 nm in wavelength.
(Adapted from N. K. Dutta, Calculated Absorption, Emission, and
Gain in In0.72Ga0.28As0.6P0.4, Journal of Applied Physics, vol. 51,
pp. 6095–6100, 1980, Fig. 8.) (b) Calculated peak gain
coefficient γp as a function of Δn. At the largest value of Δn, the
peak gain coefficient ≈ 270 cm−1. (Adapted from N. K. Dutta and
R. J. Nelson, The Case for Auger Recombination in
In1−xGaxAsyP1−y, Journal of Applied Physics, vol. 53, pp. 74–92,
1982, Fig. 17.)

The onset of gain saturation in semiconductor optical amplifiers is
not unlike that of other homogeneously broadened laser amplifiers,
as considered in Sec. 15.4. The relatively large semiconductor
transition cross section (Table 15.3-1) implies a small saturation
photon-flux density [ϕs ≈ 1/τr σ(ν)] and therefore a reduced gain
coefficient [see (15.4-2) and (15.4-3)]. This in turn limits the overall
gain that an SOA can provide.



(18.2-7)

In common with other optical amplifiers, SOAs suffer from
amplified spontaneous emission noise (Sec. 15.5); however, they are
also affected by noise associated with temperature and carrier
fluctuations.

Approximate Peak Gain Coefficient

The complex dependence of the gain coefficient on the injected-
carrier concentration makes the analysis of the semiconductor
amplifier (and laser) somewhat difficult. Because of this, it is
customary to adopt an empirical approach in which the peak gain
coefficient γp is assumed to be linearly related to Δn for values of Δn
near the operating point. As the example in Fig. 18.2-3 (b)
illustrates, the approximation is reasonable when γp is sufficiently
large. The dependence of the peak gain coefficient γp on Δn may
then be modeled by the linear relation,

Peak Gain Coefficient (Linear Approximation)

which is illustrated in Fig. 18.2-4. The parameters α and ΔnT are
chosen to satisfy the following limits:

When Δn = 0, γp = −α, where α represents the absorption
coefficient of the semiconductor in the absence of current
injection.

When Δn =ΔnT, γp = 0. Thus, ΔnT is the injected-carrier
concentration at which emission and absorption just balance so
that the medium is transparent.



Figure 18.2-4 Peak value of the gain coefficient γp as a function of
injected-carrier concentration Δn for the approximate linear model.
The quantity α represents the attenuation coefficient in the absence
of injection, whereas ΔnT represents the injected-carrier
concentration at which emission and absorption just balance each
other. The solid portion of the straight line matches the more
realistic calculation considered in the preceding subsection.

EXAMPLE 18.2-2.

Approximate Peak Gain Coefficient for an InGaAsP
SOA.

The peak gain coefficient γp versus Δn for InGaAsP presented in
Fig. 18.2-3(b) may be approximately fit by a linear relation that
takes the form of (18.2-7), with the parameters ΔnT ≈ 1.25 × 1018

cm−3 and α = 600 cm−1. For Δn = 1.4 ΔnT = 1.75 × 1018 cm−3, the
linear model yields a peak gain coefficient γp = 240 cm−1. For an
InGaAsP crystal of length d = 350 μm, this corresponds to a total
gain exp(γp

d) ≈ 4447 or 36.5 dB. In practice, this value is reduced
by gain saturation, as discussed above, as well as by coupling
losses, which are typically 3 to 5 dB per facet.

Increasing the injected-carrier concentration from below to above
the transparency value ΔnT results in the semiconductor changing



from a strong absorber of light [fg(ν) < 0] into a high-gain amplifier
of light [fg(ν) > 0]. The very same large transition probability that
makes the semiconductor a good absorber also makes it a good
amplifier, as may be understood by comparing (17.2-18) and (17.2-
19).

B. Pumping

Optical Pumping

Pumping may be achieved by means of external light, as depicted in
Fig. 18.2-5, provided that its photon energy is sufficiently large (>
Eg). Pump photons are absorbed by the semiconductor, resulting in
the generation of carrier pairs. The generated electrons and holes
decay to the bottom of the conduction band and the top of the
valence band, respectively. If the intraband relaxation time is much
shorter than the interband relaxation time, as is usually the case, a
steady-state population inversion between the bands may be
established, as discussed in Sec. 15.2 for conventional laser
amplifiers.

Figure 18.2-5 Optical pumping of a semiconductor optical
amplifier.

Current Pumping

A more practical scheme for pumping a semiconductor optical
amplifier is by means of electron–hole injection in a heavily doped



p–n junction — a diode. As with the LED (Sec. 18.1) the junction is
forward biased so that minority carriers are injected into the
junction region (electrons into the p-type region and holes into the
n-type region). Figure 18.1-5 shows the energy-band diagram of a
forward-biased heavily doped p–n junction. The conduction-band
and valence-band quasi-Fermi levels, Efc and Efv, lie within the
conduction and valence bands, respectively, and a state of quasi-
equilibrium exists within the junction region. The quasi-Fermi
levels are sufficiently well separated so that a population inversion
is achieved and net gain may be obtained over the bandwidth Eg ≤
hν ≤ Efc − Efv within the active region. The thickness l of the active
region is an important parameter of the diode that is determined
principally by the diffusion lengths of the minority carriers at both
sides of the junction. Typical values of l for InGaAsP are 1–3 μm.

Figure 18.2-6 Geometry of a simple semiconductor optical
amplifier. Charge carriers travel perpendicularly to the p–n
junction, whereas photons travel in the plane of the junction.

If an electric current i is injected through an area A = wd, where w
and d are the width and height of the device, respectively, into a
volume lA (as portrayed in Fig. 18.2-6), then the steady-state carrier
injection rate is R = i/elA = J/el per second per unit volume, where J
= i/A is the injected current density. The resulting injectedcarrier
concentration is then
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Transparency Current Density

The injected-carrier concentration is therefore directly proportional
to the injected current density so that the results shown in Figs.
18.2-3(b) and 18.2-4 with Δn as a parameter may just as well have J
as a parameter. In particular, it follows from (18.2-7) and (18.2-8)
that within the linear approximation implicit in (18.2-7), the peak
gain coefficient is linearly related to the injected current density J,
i.e.,

The transparency current density JT is given by

where ηi = τ/τr again represents the internal quantum efficiency.

When J = 0, the peak gain coefficient γp = −α becomes the
attenuation coefficient, as is apparent in Fig. 18.2-7. When J = JT, γp
= 0 so that the material is transparent and neither amplifies nor
attenuates. Net gain can be achieved only when the injected current
density J exceeds its transparency value JT. Note that JT is directly
proportional to the junction thickness l so that a lower transparency
current density JT is achieved by using a narrower active-region
thickness. This is an important consideration in the design of
semiconductor optical amplifiers (and lasers).



Figure 18.2-7 Peak optical gain coefficient γp as a function of
current density J for the approximate linear model. When J = JT the
material is transparent and exhibits neither gain nor loss.

EXAMPLE 18.2-3.

Gain of an InGaAsP SOA.

An InGaAsP semiconductor optical amplifier operates at 300° K
and has the following parameters: τr = 2.5 ns, ηi = 0.5, ΔnT = 1.25
× 1018 cm−3, and α = 600 cm−1. The junction has thickness l = 2
μm, length d = 200 μm, and width w = 10 μm. Using (18.2-10),
the current density that just makes the semiconductor
transparent is JT = 3.2 × 104 A/cm2. A slightly larger current
density J = 3.5 × 104 A/cm2 provides a peak gain coefficient γp ≈
56 cm−1 as is clear from (18.2-9). This gives rise to an amplifier
gain G = exp(γp

d) = exp(1.12) ≈ 3. However, since the junction
area A = wd = 2 × 10−5 cm2, a rather large injection current i =
JA = 700 mA is required to produce this current density.

Motivation for Heterostructures

If the thickness l of the active region in Example 18.2-3 were
reduced from 2 μm to, say, 0.1 μm, the current density JT would be
reduced by a factor of 20, to the more reasonable value 1600 A/cm2.
Because proportionately less volume would have to be pumped, the



amplifier could then provide the same gain with a lower injected
current density. Such a reduction in the thickness of the active
region poses a potential problem, however, because the diffusion
lengths of the electrons and holes in InGaAsP are several μm and
the carriers would tend to diffuse out of this smaller region.
However, it is possible to confine carriers to an active region whose
thickness is smaller than their diffusion lengths by making use of a
heterostructure device, as discussed in Sec. 18.2C. Indeed, light can
simultaneously be confined in such a structure, providing an
additional advantage.

C. Heterostructures
As is apparent from Sec. 18.2D.

Electromagnetic confinement of the amplified optical beam can be
achieved simultaneously if the material of the active layer is
selected such that its refractive index is slightly greater than that of
the two surrounding layers, in which case the structure acts as an
optical waveguide (Sec. 9.2).



Figure 18.2-8 Energy-band diagram and refractive index as
functions of position for a double-heterostructure semiconductor
optical amplifier.

The double-heterostructure design therefore calls for three layers of
different lattice-matched materials, as illustrated in Fig. 18.2-8:

Layer 1: p-type, energy bandgap Eg1, refractive index n1

Layer 2: p-type, energy bandgap Eg2, refractive index n2

Layer 3: n-type, energy bandgap Eg3, refractive index n3

The semiconductor materials are selected such that Eg1 and Eg3 are
greater than Eg2, which achieves carrier confinement, while n2 is
greater than n1 and n3, which achieves light confinement. The active
layer (layer 2) is made quite thin (0.1 to 0.2 μm) to minimize the
transparency current density JT and thereby to maximize the peak
gain coefficient γp. Stimulated emission takes place in the p–n
junction between layers 2 and 3.

In summary, the double-heterostructure design offers the following
advantages:



Increased amplifier gain, for a given injected current density, as
a result of decreased active-layer thickness, in accordance with
(18.2-9) and (18.2-10). Injected minority carriers are confined
within the thin active layer between the two heterojunction
barriers and are prevented from diffusing to the surrounding
layers.

Increased amplifier gain resulting from the confinement of
photons within the active layer as a result of its larger refractive
index. The active medium acts as an optical waveguide.

Reduced loss, resulting from the inability of layers 1 and 3 to
absorb the guided photons because the bandgaps of these
layers, Eg1 and Eg3, are larger than the photon energy (hν = Eg2
< Eg1, Eg2).

Two examples of double-heterostructure semiconductor optical
amplifiers follow:

InGaAsP/InP Double-Heterostructure Laser Diode Amplifier.
The active layer, In1−xGaxAs1−yPy, is surrounded by layers of
InP. The composition parameters x and y are selected so that
the materials are lattice matched. Operation is thereby
restricted to a range of values of x and y for which Eg2
corresponds to the wavelength band 1.1–1.7 μm.

GaAs/AlGaAs Double-Heterostructure Laser Diode Amplifier.
The active layer (layer 2) is fabricated from GaAs (Eg2 = 1.42 eV,
n2 = 3.6). The surrounding layers (1 and 3) are fabricated from
AlxGa1−xAs with Eg > 1.43 eV and n < 3.6 (by 5–10%). This
amplifier typically operates within the 0.82–0.88μm
wavelength band when the AlGaAs composition parameter is in
the range x = 0.35–0.5.

D. Quantum-Well Structures



As discussed in Sec. 18.2C, heterostructures offer a reduced
thickness of the active layer within which carriers and photons are
confined. This in turn provides increased amplifier gain and reduced
amplifier loss. When the thickness of the active layer is reduced yet
further, say to 5–10 nm (which is smaller than the de Broglie
wavelength of a thermalized electron), quantum effects play a key
role. Since the active layer in a double heterostructure has a
bandgap energy smaller than that of the surrounding layers, the
structure then acts as a quantum well (Sec. 17.1G), and is referred to
as a quantum-well device.

The band structure and energy–momentum (E –k) relations of a
quantum well are different from those of a bulk material. The
conduction band is split into a number of subbands, labeled by the
quantum number q = 1, 2,..., each with its own energy– momentum
relation and density of states. The bottoms of these subbands have
energies Ec + Eq, where Eq = ħ2(qπ/l)2/2mc, q = 1, 2,..., are the
energies of an electron of effective mass mc in a one-dimensional
quantum well of thickness l (see Figs. 17.125 and 17.1-27; q1 and d1
in Chapter 17 correspond to q and l here). Each subband has a
parabolic E–k relation and a constant density of states that is
independent of energy. The overall density of states in the
conduction band, ϱc(E), therefore assumes a staircase distribution
[see (17.1-37)] with steps at energies Ec + Eq, q = 1, 2,.... The valence
band has similar subbands at energies Ev − , where 

 are the energies of a hole of effective mass mv
in a quantum well of thickness l.

The interactions of photons with electrons and holes in a quantum
well take the form of energy-and momentum-conserving transitions
between the conduction and valence bands. The transitions must
also conserve the quantum number q, as illustrated in Fig. 18.2-
9(a); they obey rules similar to those that govern transitions
between the conduction and valence bands in bulk semiconductors.
The expressions for the transition probabilities and gain coefficient
in the bulk material (Sec. 17.2) apply to the quantum-well structure
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if we simply replace the bandgap energy Eg with the energy gap
between the subbands, , and use a constant density
of states rather than one that varies as the square root of energy.
The total gain coefficient is the sum of the gain coefficients
provided by all of the subbands (q = 1, 2,...).

Figure 18.2-9 (a) E–k relations of different subbands. (b) Optical
joint density of states for a quantum-well structure (staircase curve)
and for a bulk semiconductor (dashed curve). The first jump occurs
at energy  (where E 1 and É1 are, respectively, the
lowest energies of an electron and a hole in the quantum well).

Density of States

Consider transitions between the two subbands of quantum number
q. To satisfy the conservation of energy and momentum, a photon of
energy hν interacts with states of energies E = Ec + Eq +(mr/mc)(hν
− Egq) in the upper subband and E − hν in the lower. The optical
joint density of states  is related to  by 

. It follows from (17.1-37) that
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Including transitions between all subbands q = 1, 2,..., we arrive at a 
 that has a staircase distribution with steps at the energy gaps

between subbands of the same quantum number [Fig. 18.2-9(b)].

Gain Coefficient

The gain coefficient of the device is given by the usual expression
[see (17.2-24)]

where the Fermi inversion factor fg(ν) depends on the quasi-Fermi
levels and temperature, and is the same for bulk and quantum-well
lasers. The density of states , however, differs in the two cases,
as we have shown. The frequency dependences of , fg(ν), and
their product are illustrated in Fig. 18.2-10 for quantum-well and
bulk double-heterostructure configurations. The quantum-well
structure has a smaller peak gain coefficient and a narrower gain
profile. It is assumed in the construction of Fig. 18.2-10 that only a
single step of the staircase function  occurs at an energy smaller
than Efc − Efv, as is the case under usual injection conditions.
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Figure 18.2-10 Density of states , Fermi inversion factor fg(ν),
and gain coefficient γ0(ν) in quantum-well (solid) and bulk (dashed)
structures.

The maximum gain coefficient γm may then be determined by
substituting fg(ν)= 1 and  in (18.2-12), which yields

Relation Between Gain Coefficient and Current Density

By increasing the injected current density J, the concentration of
excess electrons and holes Δn is increased and, therefore, so is the
separation between the quasi-Fermi levels Efc − Efv. The effect of
this increase on the gain coefficient γ0(ν) may be assessed by
examining the diagrams in Fig. 18.2-10. For sufficiently small J
there is no gain. When J is such that Efc − Efv just exceeds the gap
Eg1 between the q = 1 subbands, the medium provides gain. The



peak gain coefficient increases sharply and saturates at the value
γm. An increase of J increases the gain spectral width but not its
peak value. If J is increased yet further, to the point where Efc − Efv
exceeds the gap Eg2 between the q = 2 subbands, the peak gain
coefficient undergoes another jump, and so on. The gain profile can
therefore be quite broad, thereby providing a wide tuning range for
such devices.

Materials and Device Structures

The structure of a semiconductor optical amplifier resembles that of
a laser diode operated above transparency but below the threshold
of oscillation (Sec. 18.3). Semiconductor optical amplifiers can be
made to operate in any region of the optical spectrum by judiciously
choosing the semiconductor material and using compositional
tuning. The center wavelength, bandwidth, and gain depend both on
the material and on the structure of the device.

SOAs designed for applications in the near infrared are usually
fabricated from InGaAsP, InGaAs, or InP. In the 1300–1600-nm
telecommunications band, achievable bandwidths are Δλ ≈ 50 nm,
corresponding to Δν ≈ 10 THz at λo = 1300 nm (Example 18.2-1).
This is broader than the bandwidths offered by EDFAs but is similar
to those provided by RFAs (see Secs. 15.3C and 15.3D, respectively).
Quantum-well SOAs offer a substantial reduction in the drive
current required to achieve transparency but otherwise behave
similarly to bulk devices.

The gain of an SOA is usually limited to ≈ 15 dB because of gain
saturation and insertion losses of 3–5 dB per facet (Example 18.2-
2). Saturation leads to interchannel and intersymbol interference,
rendering SOAs unsuitable for use in DWDM communication
systems. Furthermore, the short semiconductor recombination time
(Table 15.31) leaves the SOA susceptible to high-frequency noise
that might reside in the pumping current and optical signal, leading
to noise figures ≈ 8–10 dB as opposed to 3 dB for EDFAs. It is
important to note that if an SOA is to be operated as a broadband



single-pass device (i.e., as a traveling-wave amplifier), the facet
reflectances must be reduced to a minimum. Failure to do so can
lead to multiple reflections and a gain profile that is modulated by
the resonator modes; this can also result in oscillation, which, of
course, obviates the possibility of controllable amplification.
Techniques for reducing reflectances include the use of
antireflection coatings and tilted waveguides.

As a result of the issues discussed above, optical-transmission
applications of SOAs have, for the most part, been limited to
metropolitan optical networks where low gain suffices for
overcoming losses associated with multiple optical add–drop nodes.
The appeal of SOAs, rather, resides in their use as photonic switches
(see Sec. 24.3B), wavelength converters (see Sec. 24.3D), and logic
gates in optical processing. They also are useful for optical
demultiplexing and optical clock recovery.

EXAMPLE 18.2-4.

Waveguide Amplifiers. Multiquantum-well semiconductor
optical amplifiers can be constructed in the form of optical
waveguides, providing operation in fundamental optical modes
at increased output saturation powers, and employing direct butt
coupling to single-mode fibers. Such devices have relatively low
losses and a small optical confinement factor. As an example, a
1550-nm InGaAsP/InP quantum-well amplifier with a length of
1 cm provides a fiber-to-fiber gain of 13 dB.

Comparison of Quantum-Dot and Quantum-Well SOAs

The quantum-dot semiconductor optical amplifier (QD-SOA) offers
many of the advantages and disadvantages offered by its quantum-
well counterpart, and indeed their performance under CW operation
is comparable. As a result of inhomogeneous broadening, QD-SOAs
enjoy bandwidths that can extend up to 200 nm, corresponding to
Δν ≈ 25 THz at λo = 1550 nm; however, a concomitant reduction in



the gain per unit bandwidth and saturated output power ensues.
Nevertheless, the QD-SOA is distinguished by its greater
unsaturated gain and faster gain dynamics, which provide efficient
amplification for short optical pulses and pulse trains. Gain
recovery times can extend down to 100 fs, corresponding to
operation at > 200 Gb/s.

Comparison of SOAs and OFAs

The semiconductor optical amplifier enjoys advantages and
disadvantages with respect to optical fiber amplifiers such as the
erbium-doped fiber amplifier and the Raman fiber amplifier:

Advantages of SOAs:

Central wavelength selectable by choice of material

Compatible with photonic integrated circuits

Electrical pumping

Readily modulated via injection current

Compact

Low cost

Disadvantages of SOAs:

Low gain

Low saturated output power

High noise

Substantial interchannel and intersymbol interference

Sensitivity to thermal effects from heat dissipation

Sensitivity to facet reflections

Sensitivity to signal polarization

Control of transverse-mode characteristics



High insertion loss

Incompatibility with fiber geometry

On balance, the performance of the SOA is generally inferior to that
of the EDFA and the RFA, and its use is generally restricted to
special applications. The relative merits of EDFAs and RFAs were
considered in Sec. 15.3D.

E. Superluminescent Diodes
Superluminescent diodes (SLEDs) are semiconductor optical
amplifiers (SOAs) operated without an optical signal presented to
the input. The light emitted from a SLED is amplified
spontaneous emission (ASE) produced by the device itself. The
ASE takes the same form as the optical noise emitted by a
conventional laser amplifier, as discussed in Sec. 15.5. The SLED is
distinguished from an LED in that the level of current injection is
sufficiently high so that stimulated emission outweighs
spontaneous emission.

An example of a SLED is the multiquantum-well InGaAsP/InP
structure displayed in Fig. 18.2-11. The optical output power
generated by a SLED is generally greater than that of an LED but
less than that of an LD (Fig. 18.3-5), while the normalized spectral
intensity is typically narrower than that of an LED but broader than
that of an LD (Fig. 18.3-7). A SLED can offer diffraction-limited and
spatially coherent emission comparable to that of an edge-emitting
LD, which facilitates coupling the output light into a single-mode
fiber. As with the semiconductor optical amplifier, it is important to
minimize optical feedback to avoid lasing from occurring. This may
be achieved in any number of ways, such as by making use of a
stripe contact that injects current only over a portion of the device,
by using a tapered-stripe geometry, or by antireflection-coating or
tilting the facets of the device.



Figure 18.2-11 A MQW InGaAsP/InP superluminescent diode.
SLEDs can generate light with substantial optical power and with a
bandwidth intermediate between that of an LED and an LD. It is
important to minimize feedback so that laser oscillation does not
occur. One way of achieving this is to use a stripe contact that
injects current only over a portion of the device (illustrated), which
increases the loss via absorption.

Superluminescent diodes are used in applications where the long
coherence time of laser light is troublesome, either because its
spectrum is too narrow or because of randomly occurring
interferences (speckle). Examples of such applications include
interferometric instrumentation such as optical coherence
tomography (Sec. 12.2B), fiber-optic gyroscopy, and certain fiber-
optic sensors. Optical fiber amplifiers are also sometimes used as
sources of superluminescence light.

18.3 LASER DIODES
In this section we consider the general characteristics of
conventional laser diodes. The earliest devices, fabricated in 1962,
comprised single p–n junctions of GaAs and GaAsP, which emitted
in the near infrared and red, respectively (see p. 787).
Semiconductor lasers have been fabricated in a bewildering variety
of forms. They operate at wavelengths that stretch from the mid-
ultraviolet to the far-infrared — and at output powers that range
from nW (for nanolasers) to W (for individual laser diodes) to kW
(for banks of laser diodes). Today’s laser diodes take many forms.
Quantum-confined lasers are discussed in Sec. 18.4, and compact



lasers in the form of microcavity and nanocavity devices are
considered in Secs. 18.5 and 18.6, respectively.

A. Amplification, Feedback, and Oscillation
A laser diode is a semiconductor optical amplifier that is endowed
with a path for optical feedback. As discussed in the preceding
section, a semiconductor optical amplifier is a forward-biased
heavily doped p–n junction fabricated from a direct-bandgap
semiconductor material. The injected current is sufficiently large so
as to provide optical gain. In its simplest configuration, the optical
feedback is provided by plane mirrors, which are usually
implemented by cleaving the semiconductor material along its
crystal planes. The sharp refractive index difference between the
crystal and the surrounding air causes the cleaved surfaces to act as
reflectors. Thus, the semiconductor crystal acts both as a gain
medium and as a Fabry–Perot optical resonator, as illustrated in
Fig. 18.3-1. Provided that the gain coefficient is sufficiently large,
the feedback converts the optical amplifier into an optical oscillator,
i.e., a laser. The device is called a laser diode or a diode laser (it is
also sometimes referred to as a semiconductor injection laser).

The laser diode (LD) bears considerable similarity to the light-
emitting diode (LED) discussed in Sec. 18.1. In both devices, the
source of energy is an electric current injected into a p–n junction.
However, the light emitted from an LED is generated by
spontaneous emission, whereas the light from an LD arises from
stimulated emission.



Figure 18.3-1 In its simplest configuration, a laser diode is a
forward-biased p–n junction in which two surfaces that are
perpendicular to the plane of the junction act as reflectors. These
surfaces are often cleaved along crystal planes to ensure that they
are parallel. The other two surfaces perpendicular to the plane of
the junction are often roughened to eliminate feedback.

Laser diodes enjoy a number of advantages with respect to other
types of lasers: small size, compatibility with electronic
components, high power, high efficiency, as well as ease of pumping
and modulation by electric-current injection. Laser diodes have
manifold uses, as will be considered subsequently.

We begin our discussion of the conditions required for laser
oscillation, and the characteristics of the emitted light, with a brief
summary of the basic results that describe the semiconductor
optical amplifier and the Fabry–Perot optical resonator.

Laser Amplification

The gain coefficient γ0(ν) of a semiconductor optical amplifier has a
peak value γp that is approximately proportional to the injected-
carrier concentration, which in turn is proportional to the injected
current density J. Thus, as provided in (18.2-9) and (18.2-10), and as
illustrated in Fig. 18.2-7,



(18.3-1)

(18.3-2)

(18.3-3)

where τr is the radiative electron–hole recombination lifetime, ηi =
τ/τr is the internal quantum efficiency, l is the thickness of the
active region, α is the thermal-equilibrium absorption coefficient,
and ΔnT and JT are the injected-carrier concentration and current
density required to just make the semiconductor transparent.

Feedback

The feedback is often obtained by cleaving the crystal planes normal
to the plane of the junction, or by polishing two parallel surfaces of
the crystal. The active region of the p–n junction illustrated in Fig.
18.3-1 then also serves as a planar-mirror optical resonator of length
d and cross-sectional area lw. Semiconductor materials typically
have large refractive indices, so that the power reflectance for
normal incidence at the semiconductor–air interface,

is substantial [see (6.2-15) and Table 17.2-1]. Thus, if the gain of the
medium is sufficiently large, the refractive-index discontinuity can
itself serve as an adequate reflective surface and no external mirrors
are necessary. For GaAs, for example, n = 3.6, so that (18.3-2) yields
R = 0.32.

Resonator Losses

The principal source of loss in the Fabry–Perot resonator arises
from the partial reflection at the surface of the crystal. This loss
constitutes the transmitted useful laser light. For a resonator of
length d, the reflection loss coefficient is [see (11.1-22)]
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if the two surfaces have the same reflectances R1 = R2 = R, then αm
= (1/d) ln(1/R). The total loss coefficient is

where αs represents other sources of loss, including free-carrier
absorption in the semiconductor material (Fig. 17.2-2) and
scattering from optical inhomogeneities. The quantity αs increases
as the concentration of impurities and interfacial imperfections in
heterostructures increase. It can attain values in the range 10 to 100
cm−1.

Of course, the term −α in the expression for the gain coefficient
(18.3-1), corresponding to absorption in the material, also
contributes substantially to the losses. This contribution is
accounted for, however, in the net peak gain coefficient γp given by
(18.3-1). This is apparent from the expression for γ0(ν) given in
(17.2-24), which is proportional to fg(ν)= fe(ν) − fa(ν) (i.e., to
stimulated emission less absorption).

Another important contribution to the loss results from the spread
of optical energy outside the active layer of the amplifier (in the
direction perpendicular to the junction plane). This can be
especially detrimental if the thickness of the active layer l is small.
The light then propagates through a thin amplifying layer (the
active region) surrounded by a lossy medium so that large losses are
likely. This problem may be alleviated by the use of a double
heterostructure (Sec. 18.2C and Fig. 18.2-8), in which the middle
layer is fabricated from a material of elevated refractive index that
acts as a waveguide confining the optical energy.

Losses caused by optical spread may be phenomenologically
accounted for by defining a confinement factor Γ to represent the
fraction of the optical energy lying within the active region, as
illustrated in Fig. 18.3-2.
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Figure 18.3-2 Spatial spread of the laser light in the direction
perpendicular to the plane of the junction for: (a) homostructure,
and (b) heterostructure lasers.

Assuming that the energy outside the active region is totally wasted,
Γ is therefore the factor by which the gain coefficient is reduced, or
equivalently, the factor by which the loss coefficient is increased.
Equation (18.3-4) must therefore be modified to reflect this
increase, so that

There are three types of simple laser-diode structures based on the
mechanism used to confine the carriers or light in the transverse (or
lateral) direction (i.e., in the junction plane): broad-area (in which
there is no mechanism for transverse confinement), gain-guided
(in which transverse variations of the gain are used for
confinement), and index-guided (in which transverse refractive-
index variations are used for confinement).

Gain Condition: Laser Threshold

The laser oscillation condition is that the gain exceed the loss, γp >
αr, as indicated in (16.1-12). The threshold gain coefficient is
therefore αr. Setting γp = αr and J = Jt in (18.3-1) corresponds to a
threshold injected current density Jt given by
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(18.3-7)

Threshold Current Density

where the transparency current density,

Transparency Current Density

is the current density that just makes the medium transparent. The
threshold current density is larger than the transparency current
density by the factor (αr + α)/α, which is ≈ 1 when α ≫ αr. Since the
current i = JA, where A = wd is the cross-sectional area of the active
region, we can define iT = JTA and it = JtA , corresponding to the
currents required to achieve transparency of the medium and laser-
oscillation threshold, respectively.

The threshold current density Jt is a key parameter in characterizing
the laser-diode performance; smaller values of Jt indicate superior
performance. In accordance with (18.3-6) and (18.3-7), Jt is
minimized by maximizing the internal quantum efficiency ηi; and
by minimizing the resonator loss coefficient αr, the transparency
injected-carrier concentration ΔnT, and the active-region thickness l.
As l is reduced beyond a certain point, however, the loss coefficient
αr becomes larger because the confinement factor Γ decreases [see
(18.3-5)]. Consequently, Jt decreases with decreasing l until it
reaches a minimum value, beyond which any further reduction
causes Jt to increase (see Fig. 18.3-3). In double-heterostructure
lasers, however, the confinement factor remains near unity for
lower values of l because the active layer behaves as an optical
waveguide (see Fig. 18.3-2). The result is a lower minimum value of



Jt, as shown in Fig. 18.3-3, and therefore superior performance. The
reduction in Jt is illustrated in the following examples.

Because the parameters ΔnT and α in (18.3-1) are temperature
dependent, so too are the threshold current density Jt and the
frequency of peak gain. Temperature control can be used to stabilize
the laser output and to modify the output frequency.

Figure 18.3-3 Dependence of the threshold current density Jt on
the thickness of the active layer l. The double-heterostructure laser
exhibits a lower value of Jt than the homostructure laser, and
therefore superior performance. The increase of Jt at small values of
l is a result of the reduction in confinement for thin active layers.



EXAMPLE 18.3-1.

Threshold Current for an InGaAsP Homostructure
Laser Diode.

Consider an InGaAsP homostructure Fabry–Perot laser diode
with the same material parameters as in Examples 18.2-1 and
18.2-2: ΔnT = 1.25 × 1018 cm−3 , α = 600 cm−1 , τr = 2.5 ns, n =
3.5, and ηi = 0.5 at T = 300° K. Assume that the dimensions of
the junction are d = 200 μm, w = 10 μm, and l = 2 μm. The
current density necessary for transparency is then calculated to
be JT = 3.2 × 104 A/cm2. We now determine the threshold
current density for laser oscillation. Using (18.3-2), the surface
reflectance is R = 0.31. The corresponding mirror loss coefficient
is αm = (1/d) ln(1/R)= 59 cm−1. Assuming that the loss
coefficient due to other effects is also αs = 59 cm−1 and that the
confinement factor Γ ≈ 1, the total loss coefficient is then αr =
118 cm−1. The threshold current density is therefore Jt = [(αr +
α)/α] JT = [(118 + 600)/600][3.2 × 104]=3.8 × 104 A/cm2. The
corresponding threshold current it = Jtwd ≈ 760 mA, which is
rather high. Homostructure lasers are rarely used because of the
difficulties of achieving CW operation without cooling to
dissipate heat.

EXAMPLE 18.3-2.

Threshold Current for an InGaAsP Heterostructure
Laser Diode.

We turn now to an InGaAsP/InP double-heterostructure Fabry–
Perot laser diode (see Fig. 18.2-8) with the same parameters and
dimensions as in Example 18.3-1 except for the active-layer
thickness, which is now taken to be l = 0.1 μm instead of 2 μm. If
the confinement of light is assumed to be perfect (Γ = 1), we may



use the same values for the resonator loss coefficient αr. The
transparency current density is then reduced by a factor of 20 to
become JT = 1600 A/cm2, and the threshold current density
assumes a more reasonable value of Jt = 1915 A/cm2. The
corresponding threshold current is it = 38 mA. It is this
significant reduction in threshold current that made CW
operation of the double-heterostructure laser diode feasible at
room temperature.

B. Power and Efficiency

Internal Photon Flux

When the laser current density is increased above its threshold
value (i.e., J > Jt), the amplifier peak gain coefficient γp exceeds the
loss coefficient αr. Stimulated emission then outweighs absorption
and other resonator losses so that oscillation can begin and the
photon flux Φ in the resonator can increase. As with other
homogeneously broadened lasers, saturation sets in as the photon
flux becomes larger and the population difference becomes depleted
[see (16.1-2)]. As shown in Fig. 16.2-1, the gain coefficient then
decreases until it becomes equal to the loss coefficient, whereupon
steady state is reached.

As with the internal photon-flux density and the internal photon-
number density considered for other types of lasers [see (16.2-2)
and (16.2-13)], the steady-state internal photon flux Φ is
proportional to the difference between the pumping rate R and the
threshold pumping rate Rt. Since R ∝ i and Rt ∝ it, in accordance
with (18.2-8), Φ may be written as



(18.3-8)

(18.3-9)

Steady-State Internal Photon Flux

Thus, the steady-state laser internal photon flux (photons/s
generated within the active region) is equal to the electron flux
(injected electrons/s) in excess of that required for threshold,
multiplied by the internal quantum efficiency ηi.

The internal laser power above threshold is simply related to the
internal photon flux Φ by the relation 𝒫 = hνΦ, so that we obtain

Internal Laser Power λo(μm), P(W), i(A)

where λo is expressed in μm, i in amperes, and 𝒫 in watts.

Output Photon Flux and Efficiency

The laser output photon flux Φo is the product of the internal
photon flux Φ and the extraction efficiency ηe [see (16.2-16)],
which is the ratio of the loss associated with the useful light
transmitted through the mirrors to the total resonator loss αr. If
only the light transmitted through mirror 1 is used, then ηe = αm1/
αr; on the other hand, if the light transmitted through both mirrors
is used, then ηe = αm/αr. In the latter case, if both mirrors have the
same reflectance R, we obtain ηe = [(1/d) ln(1/R)] αr. The laser
output photon flux is therefore given by
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(18.3-11)

(18.3-12)

(18.3-13)

(18.3-14) 
Laser Output Power λo (μm), Po(W), i(A)

Laser Output Photon Flux

The proportionality between the laser output photon flux and the
injected electron flux above threshold set forth in (18.3-10) is
governed by a quantity known as the external differential
quantum efficiency,

External Differential Quantum Efficiency

The quantity ηd thus represents the rate of change of the output
photon flux with respect to the injected electron flux above
threshold,

It is related to the differential power-conversion efficiency (slope
efficiency) set forth in (16.2-20) via

When hν ≈ eV , as is usually the case, we have ηd ≈ ηs.

The laser output power above threshold is Po = hνΦo = ηd(i − it)
(hν/e), which is written more simply as



(18.3-15)

when λo is expressed in μm. This relationship is called the light–
current (L–i) curve. The slope of this curve above threshold is
known as the differential responsivity of the laser, which is
usually specified in units of W/A:

Light–current curves for two laser diodes are displayed as the solid
curves in Fig. 18.3-4: (a) a gain-guided MQW InGaAsP/InGaAsP
device operating at 1550 nm; and (b) a MQW GaN/InGaN device
operating at 405 nm. The theoretical fits provided by (18.3-14) are
shown as dashed curves.

Figure 18.3-4 Measured (solid) and ideal (dashed) light–current
curves for: (a) a gain-guided MQW InGaAsP/InGaAsP laser diode
operated at a wavelength of 1550 nm in the near infrared (the device
structure is exhibited in Fig. 18.4-4); (b) a MQW GaN/InGaN laser
diode operated at a wavelength of 405 nm in the violet.
Nonlinearities, which are not accounted for by the simple theory,
cause the optical output power to saturate.

The parameters associated with these laser diodes are readily
extracted by making use of (18.3-14) and (18.3-15); their values are
presented in Table 18.3-1. Though the external differential quantum
efficiency ηd is nearly identical for both devices, the differential



(18.3-16) 
Power-Conversion Efficiency

responsivity Rd is about a factor of four greater for the GaN/InGaN
device by virtue of its shorter operating wavelength, as is readily
understood from (18.3-15).

Table 18.3-1 MQW laser-diode operating parameters extracted
from the infrared and violet light– current curves displayed in Figs.
18.3-4(a) and (b), respectively.

Material λo (nm) it (mA) ηd Rd (W/A)

InGaAsP/InGaAsP 1550 15 0.33 0.26
GaN/InGaN 405 35 0.33 1.0

The power-conversion efficiency (or wall-plug efficiency) ηc is
defined as the ratio of the emitted laser light power Po to the
electrical input power Pe = iV , where V is the forward-bias voltage
applied to the diode. Since Po = ηd(i − it)(hν/e), we have

For operation well above threshold, so that i ≫ it, and for eV ≈ hν,
we obtain ηc ≈ ηd. Laser diodes can exhibit power-conversion
efficiencies in excess of 70%, which is well above that for LEDs
(Table 18.1-1) and for other types of lasers (Table 16.3-1). The
electrical power that is not transformed into light is transformed
into heat. Because laser diodes do, in fact, generate substantial
amounts of heat they are usually mounted on heat sinks, which
help to dissipate the heat and stabilize the temperature.



EXAMPLE 18.3-3.

Comparison of Efficiencies for Multiquantum-Well and
Double-Heterostructure InGaAsP Laser Diodes.

Consider once again Example 18.3-2 for the InGaAsP/InP
double-heterostructure Fabry–Perot laser diode with ηi = 0.5, αm

= 59 cm−1 , αr = 118 cm−1, and it = 38 mA. If the light from both
output faces is used, the extraction efficiency is ηe = αm/αr = 0.5,
while the external differential quantum efficiency is ηd = ηeηi =
0.25. At λo = 1300 nm, the differential responsivity of this laser
is Rd = dPo/di = 0.24 W/A. If, for example, i = 50 mA, we have i
− it = 12 mA and Po = 12 × 0.24 = 2.9 mW. Comparison of these
numbers with those reported in Fig. 18.3-4(a) and Table 18.3-1
for a MQW InGaAsP/InGaAsP laser diode operated at 1550 nm
reveals that the MQW laser has a lower threshold current and a
higher external differential quantum efficiency than the double-
heterostructure laser, as expected.

 



Summary
There are four efficiencies associated with laser diodes:

The internal quantum efficiency ηi = rr/r = τ/τr, which
accounts for the fact that only a fraction of the electron–
hole recombinations are radiative.

The extraction efficiency ηe, which accounts for the fact that
only a portion of the light lost from the cavity is useful.

The external differential quantum efficiency ηd = ηeηi,
which accounts for both of the above effects.

The power-conversion (wall-plug) efficiency ηc , which is
the ratio of the emitted optical power to the electrical power
supplied to the device.

The differential responsivity Rd (W/A) is also a useful measure
of performance.

Comparison of LED, SLED, and LD Efficiencies and Powers

It is of interest to compare the efficiencies and optical powers
associated with LEDs, SLEDs, and LDs. When operated below
threshold, laser diodes produce spontaneous emission and behave
as light-emitting diodes (Sec. 18.1). Indeed, the presence of
spontaneous emission can be discerned at low currents in LD light–
current curves.

The four efficiencies attendant to LD operation have been
highlighted in the summary above. There are also four efficiencies
associated with LEDs, as discussed in Sec. 18.1. These are the
internal quantum efficiency ηi, which accounts for the fact that only
a fraction of the electron–hole recombinations are radiative in
nature; the transmittance efficiency ηe, which accounts for the fact
that only a fraction of the light generated in the junction region can



escape from the high-index semiconductor medium; the external
efficiency ηex = ηiηe, which accounts for both of the foregoing
effects; and the power-conversion efficiency ηc . The responsivity R
is also used as a measure of LED performance.

There are one-to-one correspondences between the quantities ηi,ηe,
and ηc for the LED and the LD, respectively. Furthermore, there are
correspondences between ηex and ηd, R and Rd, and i and (i − it) for
the LED and the LD, respectively. The superior performance of the
laser results principally from the fact that ηe for the LD is greater
than that for the LED. This is because the laser operates on the
basis of stimulated emission, which causes the laser light to be
concentrated in particular modes so that it can be more readily
extracted. The net result is that a laser diode operated above
threshold has a value of ηd that is typically larger than the value of
ηex for an LED.

Superluminescent laser diodes (SLEDs), which are operated with
current injection that is sufficiently strong so that stimulated
emission dominates spontaneous emission, exhibit behavior
intermediate between that of LEDs and LDs. As discussed in Sec.
18.2E, feedback must be frustrated in these devices to avert lasing.

To forge a comparison for the performance of these three classes of
devices, light– current curves for a light-emitting diode,
superluminescent diode, and laser diode are provided in Fig. 18.3-5,
at modest values of the drive current. All are MQW InGaAsP/InP
structures operating at a wavelength of 1600 nm. The responsivity
and efficiency of the LD are substantially greater than those of the
other two devices. Moreover, the light–current curve of the SLED
characteristically bends upward in exponential fashion (as is
apparent in the inset) whereas the LED and LD curves bend
downward at higher current levels as a result of saturation.



Figure 18.3-5 Light–current curves for a light-emitting diode
(LED), a superluminescent diode (SLED), and a laser diode (LD).
All three devices are InGaAsP/InP MQW structures operated at a
wavelength of 1600 nm, and at modest values of the drive current.
The inset provides an expanded view of the LED and SLED curves.

C. Spectral and Spatial Characteristics

Spectral Characteristics

The spectral intensity of laser light is governed by three factors, as
described in Sec. 16.2B:

1. The bandwidth B over which the active medium small-signal
gain coefficient γ0(ν) is greater than the loss coefficient αr.

2. The homogeneous or inhomogeneous nature of the line-
broadening mechanism (Sec. 14.3D).

3. The resonator modes, in particular the approximate frequency
spacing between the longitudinal modes νF = c/2d, where d is
the resonator length.

The spectral intensity of light emitted by a semiconductor laser
diode, in particular, is characterized by the following three features:

1. The spectral width of the gain coefficient is relatively large
because transitions occur between two energy bands rather



than between two discrete energy levels.

2. Intraband processes are fast so that semiconductors tend to be
homogeneously broadened. Nevertheless, spatial hole burning
permits the simultaneous oscillation of many longitudinal
modes (Sec. 16.2B). Spatial hole burning is particularly
prevalent in short cavities in which there are few standing-wave
cycles. This permits the fields of different longitudinal modes,
which are distributed along the resonator axis, to overlap less,
thereby allowing partial spatial hole burning to occur.

3. The semiconductor resonator length d is significantly smaller
than that of most other types of lasers. The frequency spacing
of adjacent resonator modes νF = c/2d is therefore relatively
large. Nevertheless, many such modes can generally be
supported within the broad bandwidth B over which the small-
signal gain exceeds the loss [the number of possible laser
modes is M = B/νF , in accordance with (16.2-23)].



EXAMPLE 18.3-4.

Number of Longitudinal Modes in an InGaAsP Laser
Diode.

An InGaAsP crystal (n = 3.5) of length d = 400 μm has Fabry–
Perot resonator modes spaced by νF = c/2d = co/2nd ≈ 107 GHz.
Near the central wavelength λo = 1300 nm, this frequency
spacing corresponds to a free-space wavelength spacing λF ,
where λF /λo = νF/ν, so that λF = λoνF /ν = /2nd ≈ 0.6 nm. If the
spectral width B = 1.2 THz (corresponding to a wavelength width
Δλ = 7 nm), then approximately 11 longitudinal modes may
oscillate. A typical spectral-intensity pattern consisting of a
single transverse mode and about 11 longitudinal modes is
illustrated in Fig. 18.3-6. The linewidth of individual longitudinal
modes is typically of the order of tens of MHz for index-guided
lasers and a few GHz for gain-guided lasers. The overall spectral
width of light emitted by laser diodes is greater than that of most
other lasers (see Table 15.3-1). To reduce the number of modes
to one within the confines of a Fabry–Perot structure, the
resonator length d would have to be reduced so that B = c/2d,
requiring a cavity of length d ≈ 36 μm.



Figure 18.3-6 Spectral intensity of a 1300-nm InGaAsP index-
guided buried-heterostructure laser. This distribution is
considerably narrower, and differs in shape, from that of a λo ≈
1300-nm InGaAsP LED (see Fig. 18.1-5). The number of modes
decreases as the injection current increases; the mode closest to
the gain maximum increases in power while the side peaks
saturate. (Adapted from R. J. Nelson, R. B. Wilson, P. D. Wright,
P. A. Barnes, and N. K. Dutta, CW Electrooptical Properties of
InGaAsP (λ = 1.3 μm) Buried-Heterostructure Lasers, IEEE
Journal of Quantum Electronics, vol. QE-17, pp. 202–207, Fig. 6
© 1981 IEEE.)

Comparison of LED, SLED, and LD Spectral Intensities

The spectral intensities for an InGaAsP/InP light-emitting diode, a
superluminescent diode, and a laser diode are compared in Fig.
18.3-7. The spectral narrowing associated with stimulation emission
is evident in the SLED curve, and even more so in the LD curve.



Figure 18.3-7 Normalized spectral intensities for a light-emitting
diode (LED), a superluminescent diode (SLED), and a laser diode
(LD). All three devices are InGaAsP/InP structures operating at a
wavelength of 1600 nm. The LED has a broad spectrum, the LD has
a narrow spectrum, and the SLED has a spectrum of intermediate
width.

Spatial Characteristics

As with other Fabry–Perot lasers, oscillation in laser diodes takes
the form of transverse and longitudinal modes. In Sec. 16.2C, the
indices (l, m) were used to characterize the spatial distributions in
the transverse direction, while the index q was used to represent
variation along the direction of wave propagation or temporal
behavior. In most other types of lasers, the laser beam resides
totally within the active medium so that the spatial distributions of
the different modes are determined by the shapes of the mirrors
and their separations. For circularly symmetric systems, the
transverse modes can be represented in terms of Hermite–Gaussian
or Laguerre–Gaussian beams (Sec. 11.2D). However, the situation is
different in laser diodes since the laser beam extends outside the
active layer. The transverse modes (also called spatial modes) are
therefore modes of the dielectric waveguide created by the different
layers of the laser diode.

The transverse modes can be determined by using the theory
presented in Sec. 9.3 for an optical waveguide with rectangular cross
section of dimensions l and w. If l/λo is sufficiently small, the
waveguide will admit only a single mode in the transverse direction



perpendicular to the junction plane. However, w is usually larger
than λo, so that the waveguide will support several modes in the
direction parallel to the plane of the junction, as illustrated in Fig.
18.3-8. Modes in the direction parallel to the junction plane are
called transverse modes or lateral modes. The larger the ratio
w/λo, the greater the number of transverse modes possible.

Figure 18.3-8 Schematic illustration of optical-intensity spatial
distributions for the laser waveguide modes (l, m) = (1, 1), (1, 2),
and (1, 3).

Far-Field Radiation Pattern

An edge-emitting laser diode with an active layer of dimensions l
and w emits light with far-field angular divergence ≈ λo/l (radians)
in the plane perpendicular to the junction and ≈ λo/w in the plane
parallel to the junction, as illustrated in Fig. 18.3-9. This is similar
to the results for a Gaussian beam of diameter 2W0, provided in
(3.1-21), for which the divergence angle is θ ≈ (2/π)(λo/2W0)= λo/
πW0 when θ ≪ 1. The angular divergence determines the far-field
radiation pattern, as discussed in Sec. 4.3. Because of the small size
of its active layer, the laser diode is characterized by an angular
divergence larger than that of most other lasers. As an example, for l
= 2 μm, w = 10 μm, and λo = 800 nm, the divergence angles are
calculated to be ≈ 23° and 5°. Light from a single-transverse-mode
laser diode, for which w is smaller, has an even larger angular
divergence. The spatial distribution of the far-field light within the
radiation cone depends on the number of transverse modes and on
their optical powers. The highly asymmetric elliptical distribution of



laser-diode light emitted from such a device can make collimation
tricky.

Figure 18.3-9 Angular distribution of the optical beam emitted
from an edge-emitting laser diode. The directions perpendicular and
parallel to the plane of the junction are called the fast axis and slow
axis, respectively (not to be confused with designations of the same
name that relate to polarization).

Single-Mode Operation: DBR and DFB Laser Diodes

Because higher-order transverse modes have a wider spatial spread,
they are less confined; their loss coefficient αr is therefore greater
than that for lower-order modes. Consequently, some of the
highest-order modes will fail to satisfy the oscillation conditions;
others will oscillate at a lower power than the fundamental (lowest-
order) mode. To achieve high-power single-spatial-mode operation,
the number of waveguide modes must be reduced. This can be done
by decreasing the dimensions of the active-layer cross section (l and
w) so that it acts as a single-mode waveguide. The attendant
reduction of the junction area also has the effect of reducing the
threshold current. Higher-order transverse modes may also be
eliminated by making use of gain-guided or index-guided laser-
diode configurations.

Operation on a single longitudinal mode, which produces a single-
frequency output, may be achieved by reducing the length d of the



resonator so that the frequency spacing between adjacent
longitudinal modes, i.e., the Fabry–Perot free spectral range νF =
c/2d, exceeds the spectral width of the amplifying medium. Single-
mode operation may also be attained by making use of multiple-
mirror resonators, as discussed in Sec. 16.2D and illustrated in Fig.
16.2-15.

Another approach for achieving single-frequency operation involves
the use of distributed reflectors in place of the cleaved crystal
surfaces that serve as lumped mirrors in the Fabry–Perot
configuration. When feedback of this type is provided, the surfaces
of the crystal are antireflection coated to suppress the Fabry–Perot
modes. As an example, wavelength-selective reflectors such as
Bragg gratings can be placed in the plane of the junction [Fig. 18.3-
10(a)]. As discussed in Secs. 2.4B and 7.1C, a Bragg grating reflects
light when the grating period Λ satisfies Λ = qλ/2, where q is an
integer. The device portrayed in Fig. 18.3-10(a) is called a
distributed Bragg reflector laser or, more simply, a DBR laser.
Alternatively, a DBR grating placed below or above the active region
can also serve as a distributed reflector, as illustrated in Fig. 18.3-
10(b).

Yet another method for providing wavelength-dependent feedback
makes use of a corrugated region between the active and guiding
layers, as shown in Sec. 18.4A).



Figure 18.3-10 (a) Schematic diagram of a distributed Bragg
reflector (DBR) multiquantum-well laser diode with DBR mirrors
outside the active region. (b) Diagram of a distributed feedback
(DFB) multiquantum-well laser diode with a DBR structure that
resides below the active region and serves as a distributed reflector.
(c) Structure for a distributed feedback (DFB) multiquantum-well
laser diode, which incorporates a corrugation between the active
and guiding layers that acts as a distributed reflector.

Linewidth-enhancement factor.
The linewidth ΔνL of the light emitted by a single-mode
semiconductor laser exceeds the Schawlow–Townes linewidth ΔνST,
which accommodates the random-phase spontaneous-emission
contributions that combine with the laser-oscillation mode (Sec.
16.2D). The increased linewidth is a result of the coupling between
phase and intensity changes that arises from the effects of the
semiconductor carrier density on its refractive index. This coupling
is represented by a linewidth-enhancement factor α, which is the
constant of proportionality between changes in the phase and the
field gain. A typical MQW DFB laser has a linewidthenhancement
factor α = 4.5 at an output power of 10 mW; quantum-dot devices
have smaller values of α. The laser-diode linewidth is a factor of (1 +
α)2 larger than the conventional laser linewidth, so that the
Schawlow–Townes linewidth for a single-mode laser diode is given
by ΔνST = π(1 + α)2 hν (δν)2/Po.

External-Cavity Wavelength-Tunable Laser Diodes

There are many circumstances in which it is advantageous to be
able to tune the output wavelength of a single-mode laser diode.
One prominent example is in a coherent optical communication
system, whose operation requires a tunable local oscillator (Sec.



25.4). Other examples include wavelength-division multiplexed
(WDM) systems (Sec. 25.3C), systems involving wavelength
conversion, and spectroscopic applications. The wavelength at
which a LD operates can be changed, for example, by modifying the
refractive index of the active medium. This can be implemented via
various physical mechanisms, such as carrier injection, the
application of an electric field, or temperature modification.

However, it is far more convenient to achieve tuning by placing the
die in an external cavity that incorporates a wavelength-selective
element (see Sec. 16.2D). Aside from allowing the output
wavelength to be tuned, this approach concomitantly yields a
salutary reduction in its spectral width. In the Littman–Metcalf
configuration illustrated in Fig. 18.3-11, the die has a highly
reflective coating on one of its ends and an antireflection coating on
the other. A collimating lens and an external mirror complete the
cavity, into which is inserted a wavelength-selective element,
usually a stationary diffraction grating. The output wavelength may
then be tuned over the spectral width B where net gain is available
by rotating the mirror that reflects the first-order diffracted beam
back to the laser diode. A particular merit of the Littman–Metcalf
configuration is that the direction of the output beam remains fixed
as the wavelength is tuned. An analogous fiber-optic configuration
incorporates a fiber Bragg grating (FBG).

Figure 18.3-11 Littman–Metcalf configuration for a tunable
external-cavity laser diode. The output wavelength is tuned by
rotating the mirror.

External-cavity laser diodes are readily mode-locked since a
saturable absorber (Sec. 15.4A) can be easily inserted in the cavity to
achieve passive mode locking. Mode-locked external-cavity laser



diodes offer advantages over mode-locked fiber lasers in certain
applications (e.g., optical fiber communications).

18.4 QUANTUM-CONFINED LASERS
Quantum-confined lasers, in which carriers are confined to
dimensions smaller than the de Broglie wavelength of a thermalized
electron (λdB ≈ 50 nm in GaAs), are the workhorses of the family of
laser diodes. Confinement of the electron momentum in 0, 1, 2, and
3 dimensions corresponds to bulk, quantum-well, quantum-wire,
and quantum-dot configurations, respectively; the geometrical
dimensionality of these structures are 3, 2, 1, and 0, respectively, as
depicted in Fig. 18.4-1. Bulk structures have confinement in 0
dimensions and thus have a geometrical dimensionality of 3.
Quantum-dot structures have confinement in 3 dimensions and
thus have a geometrical dimensionality of 0. Convention dictates
that quantum-confined structures be designated by their
geometrical dimensionality. Some of the elementary properties of
quantum-confined structures were set forth in Secs. 14.1D and
17.1G.

Figure 18.4-1 Schematic representation of several quantum-
confined laser configurations: (a) quantum-well laser (2D); (b)
quantum-wire laser (1D); and (c) quantum-dot laser (0D). Charge
carriers are restricted to the active region by confinement layers
while Bragg reflectors serve as mirrors.

The dimensionality of a quantum-confined device governs the
behavior of the laser gain coefficient, threshold current, external



differential quantum efficiency, and output linewidth. In general, a
decrease in the geometrical dimensionality leads to a reduction of
the active volume, and thus to a reduction of the output power,
especially for quantum-wire and quantum-dot lasers. In this
section, we discuss quantum-well, quantum-wire, and quantum-dot
semiconductor lasers in turn. We then turn to quantum cascade
lasers, which are multiquantum-well devices that generate
substantial optical power in the infrared and THz spectral regions.

A. Quantum-Well and Multiquantum-Well Lasers
We have already encountered several examples of quantum-well
and multiquantumwell structures earlier, in connection with LEDs,
SOAs, SLEDs, and LDs. As discussed in Secs. 18.2 and 18.3, the
performance of the single-quantum-well (SQW) device portrayed in
Fig. 18.4-1(a) is superior to that of the double-heterostructure (DH)
device. The benefit accrues from the small thickness of a single
quantum well, which is typically < 10 nm; this is to be compared
with an active-region thickness of ≈ 100 nm for a DH laser diode
and ≈ 2 μm for an old-fashioned homojunction device.

The dependences of the peak gain coefficient γp on the current
density J for SQW and bulk DH laser diodes are compared in Fig.
18.4-2. The SQW laser requires a far smaller value of the current
density JT to achieve transparency. Its peak gain coefficient
increases sharply at first but then saturates at multiples of the
maximum gain coefficient γm [see (18.2-13)].



Figure 18.4-2 Peak gain coefficient γp versus current density J for
SQW and bulk DH laser diodes. The quantum-well laser has a far
smaller transparency current density JT; however, its gain
coefficient saturates at a lower level.

The single-quantum-well laser offers the following salutary features
in comparison with its double-heterostructure counterpart:

Smaller threshold current density

Larger external differential quantum efficiency

Larger power-conversion efficiency

Narrower gain-coefficient width

Smaller laser-mode linewidth

Reduced temperature dependence

Faster response and thus greater modulation frequencies

The multiquantum-well (MQW) laser, schematized in Fig. 18.4-3,
offers a greater gain coefficient than the single-quantum-well laser.
Indeed, the gain coefficient of a MQW laser with N wells is N times
that of each of its wells. Multiquantum-well lasers offer excellent
performance and are in fact the most commonly used of all laser
diodes. They find extensive use in all manner of applications, and
comprise the lion’s share of the device structures discussed in this
section and in Sec. 18.5.

However, to effect a fair comparison of the performance of SQW
and MQW devices, the pumping level should be taken to be the
same in both. Consider a single quantum well injected with an



excess carrier density Δn and a peak gain coefficient γp. In the
comparison MQW structure, each of the N wells would then be
injected with only Δn/N carriers. Because of the nonlinear
dependence of the gain on Δn, the gain coefficient of each well
would then be ξγp/N, where ξ could be smaller or greater than unity,
depending on the operating conditions. The total gain provided by
the MQW laser would thus be N(ξγp/N)= ξγp. It turns out that the
performance of the MQW device is typically inferior at low current
densities but superior at high current densities, but by a factor
smaller than N.

Figure 18.4-3 Schematic of the active region of a multiquantum-
well laser. The confinement layers restrict charge carriers to the
quantum-well region.

Strained-Layer Quantum-Well Lasers

The introduction of mechanical strain can provide a salutary effect
on the performance of laser diodes, in spite of the fact that the
notion is counterintuitive. Strained-layer lasers are widely used
because of their superior properties. Quantum-confined strained-
layer lasers have been fabricated in many material systems
(including III–V, III–nitride, and SiGe) using various
configurations, and operated at many wavelengths. Rather than
being lattice-matched to the confining layers, the active region is
deliberately chosen to have a different lattice constant. If
sufficiently thin, it can accommodate its atomic spacings to those of
the surrounding layers, and in the process become mechanically
strained. If the active region is too thick, however, it will not
properly accommodate and the material will develop defects and
imperfections that render it unusable. The InGaAs active layer in an



AlGaAs/InGaAs strained-layer quantum-well laser, for example, has
a free-standing lattice constant that is significantly greater than that
of its AlGaAs confining layers. The thin InGaAs layer is therefore
subjected to biaxial compression in the plane of the layer, while its
atomic spacings are increased above their nominal values in the
direction perpendicular to the layer. Conversely, an active layer with
a free-standing lattice constant smaller than that of the confining
layers would be subjected to biaxial tension in the plane of the layer
and would experience decreased atomic spacings in the
perpendicular direction.

Compressive strain can alter the band structure in three significant
ways: (1) it increases the bandgap Eg; (2) it removes the degeneracy
at k = 0 between the heavy and light hole bands; and (3) it makes
the valence bands anisotropic so that the highest band has a light
effective mass in the direction parallel to the plane of the layer and
a heavy effective mass in the perpendicular direction. These
features can serve to significantly improve the performance of
quantum-well lasers. First, the laser wavelength is altered by virtue
of the dependence of Eg on the strain. Second, the laser threshold
current density can be reduced by the presence of the strain, which
may be understood in terms of the following argument: achieving a
population inversion requires that the separation of the quasi-Fermi
levels be greater than the bandgap energy, i.e., Efc − Efv > Eg, as set
forth in (17.2-12); the reduced hole mass allows Efv to more readily
descend into the valence band, thereby permitting this condition to
be satisfied at lower values of injection current. Indeed, we have
already seen that strain can have an outsize effect on the
performance of a photonic device; the Ge laser can operate only in
its presence (Example 17.2-1).

Materials and Device Structures

Most semiconductor lasers in use today make use of active regions
that comprise quantum-confined structures. We begin by
considering several types of conventional multiquantum-well laser



diodes; these lasers find use in a whole host of applications ranging
from consumer products such as laser printers and data-storage
devices to long-haul optical fiber communication systems. They also
serve as highly efficient optical pumps for optical fiber amplifiers,
fiber lasers, and solid-state lasers. The materials and device
structures for most conventional laser diodes closely resemble
those used for light-emitting diodes (Sec. 18.1C). Direct-bandgap
ternary and quaternary materials are used in the near-infrared to
mid-ultraviolet region because their bandgap wavelengths can be
compositionally tuned. As with LEDs, AlInGaN, AlInGaP, InGaAs,
and InGaAsP are particularly important quaternary materials.

Laser diodes are commonly available at the following wavelengths:
635, 650, 680, and 780 nm for use in laser pointers, optical storage
and display systems, and short-haul plastic-fiber communication
systems; 850 nm for short-haul silica-fiber communication
systems; and 1300–1600 nm for long-haul silica-fiber
communication systems. Typical wavelengths used for diode-
pumped solid-state (DPSS) and diode-pumped fiber lasers are 793
nm (AlGaAs) for thulium-doped silica fiber; 808 and 880 nm
(AlGaAs) for neodymium-doped yttrium vanadate and YAG; 940 nm
(InGaAs) for ytterbium-doped YAG and silica fiber; and 980 nm
(InGaAs) for erbium-doped silica-fiber lasers and amplifiers. Other
wavelengths at which laser diodes are commonly available include
375, 405, 440, 670, 785, 830, and 920 nm. Lead-salt laser diodes can
operate at wavelengths as long as about 30 μm, but they have been
largely supplanted by mid-infrared quantum cascade lasers.

Individual edge-emitting laser diodes can deliver optical powers that
range from milliwatts to tens of watts, with power-conversion
efficiencies that can exceed 70%, speeds in the vicinity of tens of
GHz, and life spans of years.

Single-mode MQW lasers.
Lasers that include a narrow waveguide, in the form of a ridge or
buried index step with a width between 2 and 5 μm, can



accommodate only a single spatial mode (Sec. 9.3). Such lasers are
used when it is important to be able to focus the laser beam to a
diffraction-limited spot; applications include optical data storage,
printing, metrology, and optical fiber communications. The small
waveguide size in such devices limits the optical power to a
maximum of about 1 W. When single spatial mode MQW lasers
have a Fabry–Perot resonator configuration, as for the ridge-
waveguide laser illustrated below, lasing generally occurs on
multiple longitudinal modes.

Operation on a single longitudinal-mode can be instituted by
making use of a distributed-feedback (DFB) configuration in place
of the Fabry–Perot feedback. The former provides feedback only at a
single frequency, and DFB lasers have many other salutary
characteristics as well (Sec. 18.3C). The signal and pump sources for
optical fiber communication systems require the narrow frequency
spectrum and low noise offered by lasers that operate on a single
spatial mode as well as a single longitudinal mode. Lasers for this
purpose generally provide milliwatts to watts of optical power and
are fiber-coupled. The buried-heterostructure DFB laser diode
illustrated below is a highly reliable device that fills the bill.

Ridge-waveguide Fabry–Perot laser.
The ridge-waveguide (RW) laser diode operates on a single spatial
mode and can lase over a broad range of wavelengths. The ridge
waveguide provides weak optical waveguiding as well as gain
guiding by restricting current injection to the active region beneath
the ridge. RW laser diodes often take the form of a Fabry–Perot
structure with cleaved facets. The 500-μm-long device displayed in
Fig. 18.4-4 has an active region comprising six 7-nm-thick,
compression-strained InGaAsP quantum wells sandwiched between
10-nm-thick tension-strained InGaAsP barriers. The laser diode
depicted here has a threshold current it = 15 mA, an external
differential quantum efficiency ηd = 0.33, a differential responsivity
Rd = 0.26 W/A, and emits 20 mW of optical power.



Figure 18.4-4 Schematic diagram of a strained-MQW
InGaAsP/InGaAsP ridge-waveguide laser diode that operates at
1550 nm. The active region under the ridge is surrounded on all
sides by material of lower refractive index so that the ridge
constitutes an optical waveguide. This laser operates on a single
spatial mode but on multiple longitudinal modes. The light–current
curve for this device is displayed in Fig. 18.3-4(a).

Buried-heterostructure distributed-feedback laser.
As illustrated in Fig. 18.4-5, alternating p- and n-type layers allow
current flow only in the vicinity of the active region in this buried-
heterostructure device, thereby enforcing lateral confinement. The
dielectric film provides gain guiding. The distributed feedback
(DFB) component of the device makes use of a corrugated-layer
grating adjacent to the active region that serves as a distributed
reflector (Sec. 18.3C). Lasers such as these offer ample gain at
modest current levels, and can provide output powers as high as 1 w
in a single spatial and longitudinal mode. These devices offer
narrow spectral widths, which is crucial for the efficient operation
of 1300–1600-nm wavelength-division-multiplexed (WDM)
communication systems, as discussed in Sec. 25.1B. Typical values
of the threshold current and differential responsivity are it < 10 mA
and Rd ≈ 0.4 W/A, respectively, and ΔνL is a few MHz.



Figure 18.4-5 Buried-heterostructure multiquantum-well DFB
laser used for optical fiber communications in the 1300–1600-nm
wavelength range. This laser operates on a single spatial mode as
well as on a single longitudinal mode.

Multimode MQW lasers.
If the width of the active region of a laser diode is broadened from a
few μm to, say, 200 μm, it can operate on multiple spatial modes
and deliver optical powers as high as 10 W. Devices of this kind are
known as broad-area laser diodes or broad-stripe laser
diodes. The light from such lasers cannot be focused to a
diffraction-limited spot, nor can it be efficiently coupled into a
single-mode fiber, but it is suitable for applications such as
pumping optical fiber amplifiers, multi-clad fiber lasers, and diode-
pumped solid-state (DPSS) lasers.

Laser-diode bars and stacks.
Yet higher laser powers may be obtained by configuring multimode
laser diodes into bars and stacks, which can serve as pumps for
diode-pumped solid-state (DPSS) lasers (Sec. 16.3A) as well as for
purposes such as direct diode-laser materials processing. The usual
bar comprises between 10 and 50 broad-area laser diodes,
contiguously arranged in a 1D array and integrated into a single
chip. A bar suitable for pumping a DPSS laser typically has a length
of 1 cm, emits 100 w of partially coherent optical power, and has a
power-conversion efficiency in the vicinity of 50% (Example 16.3-1).



Bars are often mounted in stacks, which commensurately ramp up
the optical power to kW levels. Powerful stacks developed at the
Lawrence Livermore National Laboratory (LLNL) serve as pumps
for the Nd3+:glass laser amplifiers in the HAPLS petawatt laser
system. As detailed in Example 23.2-3, an individual laser-diode
stack containing more than 125 000 AlGaAs laser diodes delivers
250-J pulses of 0.3-ms duration at a wavelength of 888 nm, with a
peak power of 800 kW and an average power of 2.5 kW, at a
repetition rate of 10 pulses/s. The stack consists of an array of 1600
bars, each of which emits 500 W, with a bar-to-bar spacing of 350
μm. The power-conversion efficiency of the stack is ηc ≈ 60%.

B. Quantum-Wire and Multiquantum-Wire Lasers
Quantum wires (see Sec. 17.1G) can also serve as the active region
of a semiconductor laser, as illustrated in Fig. 18.4-1(b).
Multiquantum-wire lasers comprise arrays of quantum wires, as
portrayed in Fig. 18.4-6. In principle, multiquantum-wire lasers
offer narrower linewidths than quantum-well lasers by virtue of
their tighter carrier confinement. However, the fabrication of III–V
quantum-wire structures currently lags behind that of quantum-
well structures, in part because of the difficulty of creating a
sufficiently dense collection of wires, and hence so too does their
performance.

Figure 18.4-6 Schematic of the active region of a multiquantum-
wire laser. Light is ordinarily emitted in all directions; laser
emission can be restricted to the end faces by making use of a
suitable resonator.



EXAMPLE 18.4-1.

Performance Comparison of Multiquantum-Wire and
Quantum-Well Lasers.

A collection of five 1-mm-long, 23-nm-wide, InGaAsP active-
layer quantum wires, clad with InP and spaced 80 nm apart,
operates as a room-temperature CW multiquantum-wire laser at
a wavelength λo ≈ 1550 nm. The threshold current, threshold
current density, external differential quantum efficiency, and
power-conversion efficiency turn out to be it = 140 mA, Jt = 800
A/cm2 , ηd = 40%, and ηc = 2%, respectively.† As a result of the
small volume of the active region and the substantial optical
losses, however, the performance of this multiquantum-wire
laser is inferior to that of a quantum-well laser fabricated from
the same chip, which has operating parameters it = 100 mA, Jt =
500 A/cm2 , ηd = 50%, and ηc = 6%.

C. Quantum-Dot and Multiquantum-Dot Lasers
Quantum dots, occasionally called quantum boxes or
nanocrystals, are semiconductor particles that can take the form
of cubes, spheres, disks, pyramids, or other shapes. They typically
have dimensions in the range 1–50 nm (a 10-nm cube of GaAs
contains some 40 000 atoms). The carriers may be confined by
cladding the dots with a semiconductor of larger bandgap or by
embedding them in glass or polymer. Figure 18.4-1(c) depicts a
quantum-dot. The growth and characteristics of quantum dots were
discussed in Sec. 14.1D and their energy levels were examined in
Sec. 17.1G. The energy levels of a quantum dot are those of its
excitons. Though the levels are sharp as a result of tight carrier
confinement, they depend strongly on the size of the dot. As
illustrated in Fig. 14.1-13, the photoluminescence photon energy
increases as the dot size decreases because of the greater energy



required to confine the semiconductor excitation to a smaller
volume (see Sec. 14.1D).

Since quantum dots can self-assemble into ordered arrangements, it
is easier than it might appear to construct a multiquantum-dot laser
with an active region containing many quantum dots, as depicted in
Fig. 18.4-7. The first such device, fabricated with InGaAs quantum
dots, was operated in 1994.

Figure 18.4-7 Schematic of the active region of a multiquantum-
dot laser, which often consists of multiple layers, each containing
self-assembled multiple quantum dots as shown. The typical
dimensions of self-assembled quantum dots fall in the 10–50-nm
range.

For collections of quantum dots, the delta-function density of states
associated with an isolated dot is usually smeared into a smooth
profile whose character is determined by the inhomogeneities in
quantum-dot sizes and shapes. The resulting inhomogeneous
broadening of the quantum-dot laser has the distinct merit in that it
offers wavelength tunability. This contrasts with the nearly
homogeneously broadened gain medium of the quantum-well laser.

GaAs-and InP-based multiquantum-dot lasers, which serve the 1.3
and 1.55-μm wavelength regions, respectively, offer a number of
performance advantages over their quantum-well counterparts:

Ultralow CW threshold current density at room temperature, Jt

≈ 10 A/cm2 per quantum-dot layer; this is a factor of 5 lower
than its quantum-well counterpart.

Superior gain and differential quantum efficiency.



Reduced dependence of threshold current density on
temperature; uncooled lasing is available from a ground-state
transition for temperatures as high as 200° C, which eliminates
the need for external cooling.

Reduced sensitivity to defects facilitates the integration of III–
V lasers with group-IV materials such as Si and Ge.

Reduced linewidth-enhancement factor and reduced linewidth;
the linewidth– power product of a quantum-dot DFB laser is ≈
1 MHz-mW at an output power of 2 mW — this is an order of
magnitude lower than that of a commercial quantum-well DFB
laser operated at the same power.

Increased operating bandwidth to 200 nm; wavelength-tunable
operation is available in an external-cavity configuration (Sec.
18.3C). Increased modulation bandwidth for direct modulation
(currently ≈ 20 GHz at room temperature).

Insensitivity to optical feedback for light that inadvertently
reenters the cavity, thereby avoiding the need for an isolator in
an optical fiber communication system.

Availability of mode-locked operation with short pulse widths
and high repetition rates by virtue of broad bandwidth, fast gain
dynamics, easily saturated gain and absorption, and low
linewidth-enhancement factor.

The small size and low power consumption of quantum-dot lasers,
along with their ability to operate uncooled at high temperatures, as
well as the salutary features outlined above, make them especially
suitable for use in many specialized applications. These include
sensing in hot environments as well as serving in optical clock
distribution and high bit-rate optical time-division multiplexing
systems (Chapter 24).

D. Quantum Cascade Lasers



Most semiconductor lasers operate via radiative electron–hole
recombination. The production of light in such interband lasers is
a two-carrier, single-photon affair: a transition comprising the
combination of an electron from the conduction band with a hole in
the valence band generates a single photon via stimulated emission.
The quantumcascade laser (QCL), in contrast, makes use of
only a single kind of carrier, the electron, which makes multiple
transitions and generates multiple photons via stimulated emission.
The QCL is therefore a unipolar rather than a bipolar device. QCLs
are constructed from a concatenated series of quantum wells,
designed and biased in such a way that a single electron injected
into the conduction band of the device undergoes a cascade of
intersubband stimulated-emission transitions as it transits the
device (Fig. 18.4-8). The operating wavelength of the device is thus
unrelated to the bandgaps of the constituent semiconductor
materials. Rather, the wavelength is determined by the widths of
the quantum wells and barriers, which in turn determine the
subband and miniband energy separations (Exercise 17.1-5). With
hundreds to thousands of individual layers, the QCL is, perhaps, the
epitome of band-structure engineering.



Figure 18.4-8 Schematic diagram of: (a) two stages of a QCL with
a quantum-well active region, and (b) two stages of a QCL with a
superlattice active region. QCLs usually contain between 10 and 100
stages, comprising hundreds to thousands of individual
semiconductor layers.

Quantum cascade lasers can be fabricated with either quantum-well
or superlattice active regions. As illustrated in Fig. 18.4-8(a), the
quantum-well version consists of a sequence of stages, each
comprising an electron injector and a quantum-well active region.
The injector contains a collection of wells of varying widths and thin
barriers that form a superlattice, with an energy-level structure
consisting of minibands separated by minigaps (Sec. 14.1D). In the
presence of bias, the electrons are injected via resonant tunneling
from the bottom (ground state) of a miniband, denoted level 3, into
the upper laser level in the quantum-well active region, denoted
level 2. A photon of frequency ν = E21/h is emitted via stimulated
emission on the 2→1 intersubband transition, as indicated in red in
Fig. 18.4-8 (see also Sec. 17.2D). The electron then decays via
phonon scattering to level 0, whereupon it enters the miniband in
the next stage via resonant tunneling. The process is then repeated,
resulting in the emission of another photon. A typical QCL contains



between 10 and 100 stages, so that a substantial number of photons
are generated for each electron that transits the device.

Because it makes use of transitions within a single band, the
operation of a quantum-well QCL bears some resemblance to the
operation of an electrically pumped gas laser. As is evident in Sec.
15.2B). As a result, the gain coefficient γ0(ν) for a QCL is
proportional to a narrow lineshape function g(ν), as for an atomic
laser [see (16.1-1)], rather than to a broad joint density-of-states
function , as for an interband semiconductor laser [see (18.2-4)].
The QCL transition linewidth arises from lifetime broadening,
intersubband scattering, and nonparabolicity of the subbands.

The superlattice QCL shown in Sec. 17.2D). The laser frequency is
thus determined by the height of the minigap separating the two
minibands. This structure is generally more suitable for generating
coherent light with wavelengths longer than about 10 μm since the
alignment between the injector and active region is less critical.
Furthermore, higher drive currents are less deleterious and a
population inversion is more readily achieved in this configuration
because of very fast relaxation in the lower laser-level miniband.

Another widely used design for the QCL active region is the so-
called bound-tocontinuum scheme, where the laser action involves
transitions from a discrete upper state to a superlattice miniband.
This approach combines the efficient electron injection into the
upper laser level of a quantum-well QCL with the fast depopulation
of the lower laser level of a superlattice QCL, and thereby reduces
the threshold and increases the output power.

Many other QCL designs have been developed. These include
superlattice devices in which the injector region is eliminated;
heterogeneous QCLs that generate broadband radiation or
supercontinuum emission by incorporating multiple cascades that
operate at different wavelengths within the active region; devices in
which the light is guided in surface-plasmon modes so that long-
wavelength operation can be achieved without thick dielectric
waveguides; and Raman-laser devices that are pumped by a



quantum cascade laser integrated into the same structure. Surface-
emitting and ring-cavity configurations are also employed, and QCL
arrays are readily fabricated.

QCLs can operate at wavelengths that stretch from the near to the
far infrared, and beyond to the THz region, all with the same
heterostructure configuration. The shortest wavelength at which a
QCL can operate is determined by the heterostructure conduction-
band offset, which governs the largest available photon energy for
intersubband transitions — large conduction-band offsets allow
lasing at shorter wavelengths. Single-mode operation can be
achieved by incorporating a distributed-feedback (DFB) element
into the device. External-cavity feedback, in conjunction with a
rotatable grating (Sec. 18.3C), offers single-frequency operation
with high spectral purity and wavelength tuning over a range of
about 10% of the center wavelength. Fine wavelength tuning
extending over a range of about 1% of the center wavelength may be
achieved by changing the injection current and/or temperature,
which modify the effective refractive index of the material; this in
turn changes the optical pathlength of the cavity and thus the
emission wavelength. Sampled-grating DFB (SGDFB) QCLs, and
arrays thereof, extend this tunability substantially by incorporating
a pair of reflection gratings and imposing slightly different periodic
spatial modulations on each. This in turn gives rise to two
sequences of periodic reflection maxima in the wavelength domain
with slightly different spacings. Single-frequency operation obtains
since oscillation can only occur when two reflection maxima align,
as illustrated in Sec. 16.4E).

Mid-Infrared Quantum Cascade Lasers

Interest in the mid-infrared region of the electromagnetic spectrum
was initially fostered by the two regions of atmospheric
transparency that lie within it: the 3–5-μm and 8–14-μm windows,
which are also known as the medium-wavelength infrared (MWIR)
and long-wavelength infrared (LWIR) bands, respectively. Quantum
cascade lasers operate over a range of wavelengths that



encompasses the mid infrared (2 ≤ λo ≤ 20 μm), as well as portions
of the far-infrared (20 ≤ λo ≤ 300 μm) and THz (100 ≤ λo ≤ 1000
μm) spectral regions (see Fig. 2.0-1).

This broad range of wavelengths offers extensive opportunities for
scientific, industrial, and military applications, including infrared
spectroscopy, infrared imaging and countermeasures, combustion
diagnostics, rangefinding, and free-space optical communications.
Moreover, since these bands encompass the molecular-fingerprint
region that contains the vibrational–rotational transition
wavelengths of many molecular species (Sec. 14.1C), the QCL has
also engendered numerous remote-sensing applications, such as
trace-gas analysis and sensing, chemical sensing and identification,
and isotopic analysis. Together with room-temperature mid-infrared
detectors, such as HgCdTe photovoltaic arrays and VOx
microbolometer arrays (Sec. 19.5), QCLs provide unparalleled access
to the mid infrared.

As discussed above, the operating wavelength of a QCL is
determined by the widths of its quantum wells and barriers, which
in turn establish the subband and miniband energy separations. In
principle, QCLs can thus be constructed using a wide variety of
semiconductor materials although the intersubband gain coefficient
depends on the well and barrier effective masses, which in turn are
governed by the choice of materials. Superior performance has been
obtained by using MBE or MOCVD to fabricate the following
material systems:

InGaAs/InAlAs quantum wells on an InP substrate

GaAs/AlGaAs quantum wells on a GaAs substrate

InAs/AlSb quantum wells on an InAs substrate

InGaAs/AlInAsSb, InGaAs/GaAsSb, or InGaAs/AlInGaAs on
InP

GaN/AlGaN quantum wells on a GaN substrate



As with interband lasers, strained-layer QCLs (e.g., compressively
strained InGaAs and tensilely strained InAlAs) offer improved
performance. QCLs are often fabricated in a buried-heterostructure
configuration that contains between 10 and 100 stages, with overall
lengths between 1/2 and 10 mm and widths that range from 5 to 20
μm.

QCLs that operate CW at room temperature in the region 3 ≤ λo ≤
25 μm (which encompasses both the MWIR and LWIR bands)
exhibit excellent performance. In particular, devices that operate
CW at room temperature in the region 3 ≤ λo ≤ 12 μm deliver output
powers in excess of 5 W and power-conversion efficiencies greater
than 25%. Moreover, such QCLs can be modulated at high rates and
can be mode-locked to produce optical pulses of a few-picoseconds
duration. Multi-wavelength QCLs can also incorporate integrated
nonlinear mixing regions to foster parametric interactions such as
difference-frequency and sum-frequency generation.

An important current frontier in QCL research is directed toward
extending CW, room-temperature operation to wavelengths both
shorter and longer than the mid-infrared, i.e., to the near-infrared
and to the THz regions, respectively. Direct approaches to achieving
this would make use of heterostructures with increased band
offsets, and would mitigate the thermally activated relaxation
between the upper and lower radiative states, respectively. QCLs
have been operated in the frequency range 1.2 ≤ ν ≤ 4.9 THz,
corresponding to the wavelength range 60 ≤ λo ≤ 250 μm, but
cryogenic cooling is required.

Comparison of QCLs with Other Mid-IR Sources
Finally, it is instructive to compare quantum cascade lasers with
other commonly encountered sources of radiation in the mid
infrared. As indicated below, QCLs are often superior because of a
number of salutary features: 1) the ability to operate CW at room
temperature, 2) access to a broad range of wavelengths, 3)



multiwatt CW optical powers, 4) high power-conversion efficiencies,
and 5) compact structure:

Transition-ion-doped zinc chalcogenides such as Cr2+:ZnS and
Cr2+:ZnSe (Sec. 16.3A) offer substantial optical power and are
continuously tunable, but only over the limited wavelength
range 1.9 ≤ λo ≤ 3.0 μm.

CO and CO2 gas lasers (Sec. 16.3E) offer output powers many
orders of magnitude greater than those attainable with QCLs
but they are bulky and fragile, and suffer from limited ranges of
accessible wavelengths.

Difference-frequency generation (Sec. 22.2C) offers a broad
range of accessible wavelengths but it is complex and
challenging to implement in a CW configuration.

Lead-salt (IV–VI) interband laser diodes, such as those
fabricated from PbSnTe and PbSnSe (Sec. 17.1B), can be
compositionally tuned over a broad range of wavelengths (4 to
30 μm), which encompasses much of the mid-infrared
spectrum. However, these devices suffer from nonradiative
recombination, low thermal conductivity, and small band
offsets that necessitate cryogenic cooling for CW operation.
Also, optical power levels are limited to the milliwatt range and
power-conversion efficiencies are low.

III–antimonide interband laser diodes (usually
InGaAsSb/AlGaAsSb quantum wells on a GaSb substrate) offer
CW, room-temperature operation with optical powers in excess
of 1.5 w and power-conversion efficiencies greater than 15%,
but only for wavelengths shorter than ≈ 2.2 μm. The use of
quinternary AlIn-GaAsSb barriers allows operation to be
extended to about 4 μm, but growing and using quinternary
materials is a complex enterprise and output powers are limited
to tens of milliwatts in any case.



GaSb-based interband cascade lasers (ICLs) operate CW at
room temperature and generate hundreds of milliwatts of
optical power with power-conversion efficiencies of about 15%.
However, ICLs operate only in the shorter wavelength reaches
of the mid-infrared spectrum, namely in the range 3 ≤ λo ≤ 6
μm.

18.5 MICROCAVITY LASERS
The quantum confinement considered in Sec. 18.4 relates to the
confinement of carriers to a spatial region of the order of the de
Broglie wavelength of an electron (for a thermalized electron in
GaAs, λdB ≈ 50 nm). The microcavity lasers considered in this
section, in contrast, involve the confinement of photons to a spatial
region of the order of the optical wavelength (λo ≈ 1 μm ≫ λdB).
Microresonators are resonators in which one or more of the spatial
dimensions is the size of a few wavelengths of light or smaller, d ≈
λ. Microcavities are usually thought of as having small dimensions
in all spatial directions; however, these two terms have come to be
used interchangeably. Microcavity lasers are also called
microlasers.

Photon confinement and carrier confinement are independent
features of photonic devices. It is therefore possible to have a
microcavity laser whose active region is not subject to quantum
confinement (e.g., a microcavity containing a simple p–n
homojunction active region), or a large-resonator laser whose
active region is subject to quantum confinement (e.g., a quantum
cascade laser). In practice, however, most microcavity lasers make
use of quantum-confined structures for their active regions.

Microresonator lasers in which the light is confined to wavelength-
size regions in various dimensions are exemplified by the
micropillar, microdisk, and microsphere structures illustrated in
Fig. 18.5-1. These, and other, microresonators have been described
in Sec. 11.4.



Figure 18.5-1 Microresonator (or microcavity) lasers, sometimes
called microlasers for short, confine light within wavelength-size
regions in various dimensions. The defect in the 2D photonic crystal
creates a cavity that traps the light. Analogous quantum-confined
structures are the quantum well, quantum wire, and quantum dot.

In laser diodes with large resonators (d ≫ λ), the modes exhibit
small spacings in all directions of k-space and the density of allowed
resonance frequencies M(ν) can be determined via a continuous
approximation (Sec. 11.3). The overall spontaneous emission
probability density (s−1) depends on the modal density M(ν) of the
frequency space into which photons can be emitted, as specified by
(14.3-11). In large-resonator lasers, as in free space, the modal
density assumes the quadratic form M(ν)=8πν2/c3, in accordance
with (11.3-10). This offers a large number of modes for spontaneous
emission. After stimulated emission is initiated in a particular
mode, however, spontaneous emission into modes other than the
laser mode represents wasted energy. Indeed, for a conventional
laser diode, the fraction of spontaneous emission that contributes to
a given laser mode is generally very small. The current injected into
a large-resonator laser at threshold is thus principally replenishing
the wasted spontaneous emission rather than contributing to the
stimulated emission.

However, the modal density M(ν) can be substantially reduced by
making use of a microcavity, as discussed in Sec. 11.4. The allowed
modes of microresonators can exhibit large spacings in one or more
directions of k-space, so that modes can be absent over extended
spectral bands. The reduction is most dramatic in microcavities that



have large spacings in all directions of k-space, which results in a
discrete collection of modes (Fig. 11.4-1). The opportunity to alter
the modal environment is important in connection with
spontaneous emission. Placing a source in this environment
inhibits spontaneous emission since it is directed away from modes
that do not exist and toward modes that are available. Moreover, the
emission of light into particular modes of a high-Q, small-volume
microcavity can be enhanced relative to emission into ordinary
optical modes via the Purcell effect, as described in Sec. 14.3E.
Microcavity lasers are designed to take maximum advantage of
opportunities for both spontaneous-emission inhibition and
enhancement.

Summary
Microcavity lasers offer a number of desirable features in
comparison with their conventional counterparts:

Reduced size

Reduced laser threshold

Reduced spectral width

Reduced spatial width

Increased efficiency

However, reduced size generally signifies reduced output power.

We consider three classes of microcavity lasers in turn in Secs.
18.5A, 18.5B, and 18.5C: vertical-cavity surface-emitting lasers
(VCSELs), microdisk and microring lasers, and photonic-crystal
lasers. Though microcavity lasers comprising semiconductor active
media are most prevalent, gain media such as organic dyes, rare-
earth-doped silica, and organic polymers are also used.

A. Vertical-Cavity Surface-Emitting Lasers



Vertical-cavity surface-emitting lasers (VCSELs) are designed
so that the light emerges from the top face of a planar Fabry–Perot
resonator, much like the surface-emitting LED displayed in Fig.
18.1-18. VCSELs, which can be realized using conventional or
organic semiconductors, usually operate in the visible and near IR.
They can be fabricated with a broad range of diameters, stretching
from ≈ 1 μm, where they resemble micropillar lasers, to ≈ 1 mm.
Small-area VCSELs have threshold currents in the μA region, output
powers in the mW range, and power-conversion efficiencies in the
vicinity of 70%. The output beams are circular and therefore easily
coupled to optical fibers. VCSELs find use in a broad variety of
applications that range from optical mice to short-haul optical fiber
communications (Sec. 25.1B).

Large-area VCSEL. An example of a large-area VCSEL is shown in
Fig. 18.5-2. This device has a multiquantum-well GaAs/InGaAs
active region with an emission wavelength centered at 995 nm.
Because the thickness of the active region is only tens of nm, the
single-pass gain is typically small (a fraction of 1%) and the light
must be repeatedly reflected through the active region. Typical
distributed Bragg reflector (DBR) mirrors contain dozens of layers
to enhance reflectance at the operating wavelength. VCSELs often
make use of dielectric films to localize carrier injection and thereby
to laterally confine the optical mode. The spectral intensity, optical
power, and angular emission distribution generated by the laser
portrayed in Fig. 18.5-2 are shown in Fig. 18.5-3.



Figure 18.5-2 (a) Schematic diagram of a large-area (320-μm
diameter) multiquantum-well GaAs/InGaAs VCSEL that operates at
a wavelength of 995 nm. (b) Etched mesa showing the p contact, p-
type DBR, and active region. (Adapted from M. Miller, M. Grabherr,
R. King, R. Jäger, R. Michalzik, and K. J. Ebeling, Improved Output
Performance of High-Power VCSELs, IEEE Journal of Selected
Topics in Quantum Electronics, vol. 7, pp. 210–216, Fig. 2 ©2001
IEEE.)

Figure 18.5-3 Spectral intensity, optical power, and angular
emission distribution of the multiquantum-well GaAs/InGaAs
VCSEL displayed in Fig. 18.5-2. The threshold current it = 1.1 A for
this large-area device. The maximum optical power, about 1 W, is
similar to that provided by the edge-emitting buried-heterostructure
DFB laser depicted in Fig. 18.4-5. (Adapted from M. Miller, M.
Grabherr, R. King, R. Jäger, R. Michalzik, and K. J. Ebeling,
Improved Output Performance of High-Power VCSELs, IEEE
Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 210–
216, Figs. 8, 5, and 9 ©2001 IEEE.)



Multiquantum-dot VCSEL. Though the active regions of VCSELs
are usually multiquantum wells, they are also fabricated with
multiquantum dots, as illustrated in Fig. 18.5-4. As with other
structures that make use of quantum-dot emitters, the promise of
reduced threshold and reduced temperature sensitivity, together
with enhanced modulation bandwidth, is appealing.

Figure 18.5-4 VCSEL with a multiquantum-dot active region.

Variations on the VCSEL theme. VCSELs assume an enormous
variety of forms, and can incorporate auxiliary features such as
photonic crystals for lateral mode control, coupled cavities, and
integrated modulators that extend modulation bandwidths, as
portrayed in Fig. 18.5-5.

Figure 18.5-5 Variations on the theme of VCSELs. (a) VCSEL with
photonic crystal for lateral mode control. (b) VCSEL with
monolithically integrated electroabsorption modulator.

VCSEL Arrays



A salutary feature of VCSELs is that they offer high packing
densities on a wafer scale and are readily fabricated in the form of
dense arrays. As an early example, an array of about 1 million
electrically pumped, tiny, vertical-cavity cylindrical InGaAs
quantum-well VCSELs (diameter ≈ 2 μm, height ≈ 5.5 μm), with
lasing wavelengths in the vicinity of 970 nm, was fabricated on a
single 1-cm2 chip of GaAs. These particular devices had thresholds it
≈ 100 μA, and operated CW at room temperature. A scanning
electron micrograph of a tiny portion of this array is displayed in
Fig. 18.5-6. VCSEL arrays can be fabricated with elements that have
a prespecified distribution of diameters and laser frequencies.

Figure 18.5-6 Scanning electron micrographs of an early array of
electrically pumped vertical-cavity surface-emitting In0.2Ga0.8As
quantum-well lasers with diameters between 1 and 5 μm on a GaAs
chip. The microresonators comprise AlAs/GaAs Bragg reflectors. (a)
AlAs has been preferentially etched away from the Bragg reflectors
in these devices, highlighting the GaAs disks (courtesy J. L. Jewell).
(b) Top view of a small portion of the array. (Adapted from J. L.
Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison,
and L. T. Florez, Low-Threshold Electrically Pumped Vertical-Cavity
Surface-Emitting Microlasers, Optics News, vol. 15, no. 12, pp. 10–
11, 1989, Fig. 1.)

Two-dimensional arrays of incoherent emitters, as described above,
offer broad-area power scaling. However, coherently combining the
light emitted by a collection of individual VCSELs can, by virtue of
the interferences among the individual emissions, achieve a



divergence below that of a single emitter as well as increased on-
axis intensity. Features such as these are important for applications
such as imaging, targeting, sensing, and optical communications.
Techniques for achieving coherent beam combination include
injection locking and lateral coupling among neighboring
incoherent emitters. In injection locking, part of the output from a
single master laser, which may be separate from the array or one of
the devices within it, is distributed and reflected back to seed all of
the slave lasers, thereby causing them to oscillate coherently.
Lateral coupling can be implemented via diffractive or antiguided
(leakymode) interactions; evanescent interactions have proved
difficult to marshal. Typical coherent power levels from arrays of
hundreds of VCSELs are in the range of hundreds of mW.

Vertical External-Cavity Surface-Emitting Lasers (VECSELs)

As with external-cavity laser diodes (Sec. 18.3C), the VCSEL
structure can be endowed with an external cavity to form a
wavelength-tunable, single-mode vertical external-cavity
surface-emitting laser (VECSEL), sometimes called a
semiconductor disk laser (SDL). In one configuration, used in
optical coherence tomography, tuning is provided by a movable
microelectromechanical system (MEMS) that serves as the upper
mirror. As with diode-pumped solid-state (DPSS) lasers (Sec.
16.4D), the use of an intracavity semiconductor saturable-absorber
mirror (SESAM) can provide passive mode locking; VECSELs can
attain pulse durations τpulse < 100 fs and pulse repetition rates 1/TF
≈ 50 GHz. Much as with VCSELs, VECSELs (along with QCLs and
DFB lasers) can be fabricated in the form of arrays.

B. Microdisk and Microring Lasers
The march toward device miniaturization has facilitated the
integration of lasers and other optical components in compact
configurations and photonic integrated circuits (PICs). Microdisk
lasers are configured with active regions comprising organic or
conventional semiconductors, and most rely on quantum-well or



quantum-dot structures. III–V and III–nitride devices operate over
broad spectral ranges, stretching from the infrared to the ultraviolet.
Because of their small size, low power consumption, low threshold
current, ease of out-coupling, and CW room-temperature operation,
dielectric microdisk lasers have experienced robust development
since their invention in the early 1990s. They are often grown on
their native substrates, but they can also be epitaxially grown on
silicon — in some cases with equivalent performance. Electric
current and mechanical support are provided by n-and p-type
structures below and above the disk. Whereas VCSELs operate on
the basis of Fabry–Perot modes and emit light vertically, microdisk
lasers rely on high-Q whispering-gallery modes (Sec. 11.4B) and
emit in the plane of the semiconductor substrate; light is extracted
via in-plane coupling waveguides.

The modal structure of microring lasers, sometimes called
microtoroid lasers, is quite similar to that of microdisk lasers of the
same radius; indeed, a microring device can be considered to be a
limiting case of a microdisk device in which the inner wall simply
limits the number of modes in the radial direction. The overall
dimensions of these devices typically lie in the multi-μm range,
larger than the wavelength of the emitted light since they confine
light by means of whispering-gallery modes. Applications of
microdisk and microring lasers range from short-reach
interconnects such as on-chip data communications to the detection
of viruses and nanoparticles.

Silicon Photonics and Group-IV Devices
In the domains of silicon photonics and group-IV photonics,
respectively, microcavity lasers can be fabricated via the direct
heteroepitaxial growth of III–V quantum dots on Si and by the
growth of GeSn on Si.

III–V quantum-dot-on-Si microring laser. Microring lasers
containing active regions that consist of seven InAs/InGaAs
quantum-dot-in-well (DWELL) layers have been epitaxially grown



on planar or V-groove-patterned Si substrates.† The ring outer radii
stretch from 5 to 50 μm and the ring widths range from 2 to 7 μm.
These electrically pumped devices operate CW at room temperature.
A microring device with a 5-μm outer radius and a 3-μm ring width
exhibits a laser threshold of 0.6 mA and emits 8 μW near λo ≈ 1.3
μm at a drive current of 2 mA. In comparison with quantum-well
devices, quantum‐dot lasers offer substantially lower thresholds
and reduced sensitivity to temperature, as well as other salutary
features, as discussed in Sec. 18.4C.

GeSn-on-Si microdisk laser. Direct-bandgap lasers can be
fabricated by growing an alloy of Ge and α-Sn on a Ge-buffered Si
substrate. An alloy of composition Ge0.915Sn0.085 contains just
enough Sn to equalize the energies of the directbandgap (Γ) valley
and the energetically lowest indirect-bandgap (L) valley in the band
structure of Ge, thereby creating a direct-bandgap group-IV
material. An 8-μmdiameter Ge0.875Sn0.125 microdisk laser, pumped
with a pulsed Nd:YAG laser operated at λo = 1.064 μm, lases at λo ≈
2.5 μm.† In the current state of its development, this optically
pumped, pulsed microdisk laser requires cooling but double-
heterostructure SixGe1−x−ySny/Ge1−ySny devices, as well as
multiquantum-well structures, promise electrically pumped, CW
operation at room temperature.

Optical Vortex-Beam Lasers
Light beams carrying orbital angular momentum (OAM) possess
helical wavefronts which, by virtue of this additional degree of
freedom, are appealing for use in specialized applications. An
example of such an optical vortex is the Laguerre–Gaussian beam
(Sec. 3.4); beams with spiral wavefronts can be produced with the
help of holo graphic optical elements (Example 4.5-3). An optical
vortex beam can also be generated by injecting light into a
whispering-gallery mode microcavity fitted with an embedded
refractive-index grating structure in the azimuthal direction.
Recently, a microcavity laser that directly generates a single-mode



OAM vortex beam, with a topological charge that can be chosen at
will, has been developed.‡ Unidirectional lasing in a microring
resonator that supports whispering-gallery modes with large values
of OAM is induced by selectively modulating the refractive index
and gain/loss, which breaks the rotational symmetry of the lasing
process. The microring sidewalls are designed in such a way that
scattering causes the vortex beam to emerge vertically from the
plane of the device, mimicking the output of a VCSEL.

C. Photonic-Crystal Lasers
Microcavities consisting of defects in photonic crystals (Sec. 11.4D),
together with miniature quantum-confined emission sources such
as quantum wells or quantum dots, can serve as wavelength-size
lasers and laser arrays. Photonic‐crystal lasers, with active
volumes smaller than those of VCSELs and microdisk lasers, offer
ultralow thresholds, ultralow power consumption, and high direct-
modulation rates. They are suitable for sending information over
distances of centimeters or millimeters, and promise substantially
reduced power consumption in venues such as datacenters, where
on-chip and rack-to-rack communications has long been mediated
electrically (Sec. 24.1D).

2D Photonic-Crystal Lasers
Examples of individual 2D photonic-crystal devices, as well as
coherently coupled arrays of such devices, are illustrated in Figs.
18.5-7(a) and (b), respectively. The device displayed in Fig. 18.5-7(a)
is a single-mode 2D photonic-bandgap laser that operates at room
temperature. It is electrically pumped via a sub-micron-size post
and has a threshold current of 260 μA.* The active region comprises
six strained InGaAsP quantum wells and lasing occurs at λo = 1520
nm. The structure produces 2 nW of power at a current of 1/2 mA
and has a differential responsivity R ≈ 10−5. The quality factor and
modal volume are Q ≈ 2500 and V ≈ 0.06 μm3, respectively. Since
the emission linewidth Δν is smaller than the width of an



electromagnetic mode in the device δν, and the quality factor q of
the microcavity is high, spontaneous emission is enhanced via the
Purcell effect (Sec. 14.3E and Fig. 14.3-12). The Purcell factor for
this device is FP = (3/4π2)(λ3/V )Q ≈ 400.

Figure 18.5-7 (a) InGaAsP/InGaAsP 2D multiquantum-well
photonic-crystal laser. The InP post has a height of 1 μm and serves
as an electrical contact. (b) Array of coherently coupled 2D
quantum-well photonic-crystal lasers.

The nW-level output power of an individual device may be
substantially enhanced by constructing a coherently coupled
microcavity-array laser, as portrayed in Fig. 18.5-7(b). This
particular array comprises 81 cavities and four InGaAsP/InP
quantum wells, with an overall array area ≈ 15 μm2 and output
power ≈ 12 μW. A distributed-feedback version of a 2D photonic-
crystal laser, in which feedback takes place over the entire 2D plane,
achieves what is known as band-edge lasing. 2D photonic-crystal
lasers rely on conventional reflection for out-of-plane confinement.

3D Photonic-Crystal Lasers

Lasing may also be attained in a 3D photonic-crystal microcavity
with a complete photonic bandgap (Sec. 7.3B). Such devices, which
operate at room temperature and often make use of active regions
comprising electrically pumped stacks of quantum-dot layers, can
attain values of q ≈ 40 000 and modulation rates of 10 Gb/s. Both
electrons and photons are confined in three dimensions in such
devices.†



EXAMPLE 18.5-1.

Thresholdless Quantum-Dot Photonic-Crystal Laser. In
a cavity of wavelength size with dimensions such that only one
optical mode is permitted to exist, photon emission must be into
that unique mode, whether the emission is via spontaneous or
stimulated emission. Since there is then no distinction between
the two processes, the kink in the light–current (L–i) curve that
characterizes the transition from spontaneous to stimulated
emission in a conventional laser, and thus determines the “laser
threshold,” disappears (i.e., occurs at zero current). Constructing
a thresholdless laser thus involves imposing strict control on the
modal structure of the resonator. The fraction of spontaneous
emission that contributes to a given laser mode is specified by
the spontaneous-emission coupling coefficient β. This parameter
is typically minuscule for conventional laser diodes; for an edge-
emitting device it turns out to be β ≈ 10−5. As indicated earlier,
microcavity lasers are designed to optimize the inhibition and
enhancement of spontaneous emission. Indeed, the modification
of the modal density provided by microcavities (and
nanocavities) can increase β by many orders of magnitude.
Implementing such a modification has the concomitant benefit
of reducing the laser-diode threshold current it by a
commensurate amount.

An optically pumped laser is characterized by a light–light (L–
L) curve analogous to the light– current (L–i) curve of an
electrically injected laser diode. A nearly thresholdless optically
pumped laser (β = 0.85), with a threshold intensity It < 1 μW,
has been fabricated by embedding InAsSb quantum dots in a
photonic-crystal microcavity. The device is pumped by a CW
laser diode at 785 nm. It emits light at λo ≈ 1.3 μm and operates
at room temperature.†



18.6 NANOCAVITY LASERS
The lasers considered in Secs. 18.4 and 18.5 rely on refractive-index
differences between dielectrics to confine light in their resonators.
The physical and modal sizes of such lasers in any given direction
are therefore greater than the wavelength of the emitted light. In
this section, we consider lasers that rely on metal-based
nonplasmonic and plasmonic resonators that confine light to
subwavelength dimensions while operating at optical frequencies.
The active media in such nanocavity lasers, or nanolasers, are
often semiconductors in the form of bulk, quantum-well, or
quantum-dot structures, but organic semiconductors and dye
solutions are used as well. As a consequence of dissipation, lasers
with metal-based resonators have substantially reduced values of
the quality factor Q that must be overcome by increased gain. Both
bottom-up and top-down approaches are used in fabrication.

Both non-plasmonic and plasmonic nanolasers have been
developed. Non-plasmonic devices, consisting of subwavelength-
size metal cavities that encapsulate high-gain materials, support
non-evanescent electromagnetic modes. The metal cladding limits
the transverse size of the device, which enhances modal
confinement and diminishes the volume of the active region. These
devices can be electrically pumped, operated at room temperature,
and operated at timescales that stretch from femtoseconds to CW.

Plasmonic nanolasers can be constructed with overall physical and
modal sizes of the order of tens to hundreds of nanometers — well
below the micrometer sizes associated with microcavity lasers.
Plasmonic devices operate on the basis of propagating surface
plasmon polaritons (SPPs) or nonpropagating localized surface
plasmons (LSPs). Both versions make use of metal–dielectric or
metal–semiconductor interfaces to confine light to subwavelength
dimensions. Surface plasmon polariton nanolasers use resonators
such as metal–dielectric nanodisks (Sec. 11.4E), or plasmonic wave
guides such as metal–insulator–metal (MIM), metal–insulator–
semiconductor (MIS), or metal-slab structures (Sec. 9.6). Gain is



provided by replacing the dielectric in sulating material in these
resonators with an active gain medium, such as a directbandgap
semiconductor or a dye. Feedback is provided in the same manner
as for conventional lasers, namely via a Fabry–Perot cavity, a DFB
grating, or a circular disk or ring structure that supports whispering-
gallery modes. Propagating SPPs do not rely on resonances, so this
class of devices offers broadband operation. Localized surface
plasmon nanolasers, on the other hand, make use of plasmonic
resonators such as the metallic nanosphere (Fig. 8.2-6 and Sec.
11.4E). The gain is then provided by replacing the surrounding
dielectric material with an active gain medium such as a dye-
impregnated shell.

Diminishing the size of a laser to the nanoscale has manifold
benefits for certain applications. These include:

Reduced laser threshold

Increased differential power-conversion efficiency (slope
efficiency)

Increased modulation bandwidth

Nanometer-size devices can be used in chip-scale optical
communications and data-processing, display technology, and near-
field photolithography. They can also be deployed in wireless sensor
networks. Moreover, nanolasers can be implanted or injected into
biological materials to carry out tasks such as imaging, sensing,
spectroscopy, and therapeutics.

Representative examples of these three types of nanolasers are set
forth below: 1) a metal-nanocavity laser; 2) a SPP nanoring laser;
and 3) a LSP nanosphere laser.

Non-Plasmonic Nanocavity Lasers

Non-plasmonic nanolasers make use of subwavelength-size external
metal cavities that support non-evanescent electromagnetic modes
and encapsulate gain media such as semiconductors.



Ag-clad InGaAs metal-nanocavity laser. We consider a
subwavelength metal-cavity nanolaser that takes the form of a
rectangular pillar of InP/InGaAs/InP, with a SiN insulating layer,
encapsulated in a rectangular silver shell that serves as a metallic
Fabry–Perot resonator.† The light is mostly confined within the
rectangular bulk-InGaAs active region (refractive index n = 3.4),
which is sandwiched between two rectangular InP confining regions
of lower refractive index (n = 3.1). The device operates CW at room
temperature and is electrically pumped (threshold current it = 1.1
mA). It lases at λo = 1.59 μm with a linewidth of 0.5 nm. The cavity
volume is 0.67 λ3

0 and the quality factor corresponding to the
observed linewidth is Q = 3182. Configured in a flip-chip
configuration, the emitted light passes through the substrate and
emerges vertically. Despite the presence of the lossy metal
comprising the cavity, the properties and performance of this
semiconductor nanocavity laser are comparable to those of a
conventional semiconductor microcavity laser, thereby
demonstrating that metallic dissipation can be vanquished by
semiconductor gain. Replacing the bulk-semiconductor active
region with quantum wells or quantum dots should improve
performance, as should improved heat dissipation.

Plasmonic Nanocavity Lasers

Plasmonic nanolasers incorporate metals within subwavelength-
size internal structures that support evanescent modes and are
juxtaposed with gain media such as semiconductors or dyes.
Plasmonic devices function either via surface plasmon polariton
(SPP) traveling waves (Sec. 8.2B) or via localized surface plasmon
(LSP) oscillations (Sec. 8.2C) at their metal–dielectric boundaries.
We first consider an example of an SPP plasmonic nanolaser and
follow this with an example of an LSP plasmonic nanolaser (spaser).

MIS-on-Si surface-plasmon-polariton nanoring laser.
Subwavelength nanocavity lasers based on the amplification of
surface plasmon polaritons (SPPs) have been developed in a



number of configurations. One didactic version makes use of a Ag-
Al2O3-AlInGaP metal–insulator–semiconductor (MIS) structure
that supports surface plasmon polariton whispering-gallery modes
in a nanoring cavity.‡ The lithographically defined ring has inner
and outer diameters of 0.79 and 1.09 μm, respectively, so that the
ring width is 150 nm. The nanolaser sits on a Si substrate and
operates at room temperature. The AlInGaP heterostructure gain
medium has an overall thickness of 110 nm and provides broadband
gain at room temperature. The 570-nm pump laser supplies 4-ps
pulses at a repetition rate of 1 kHz. The onset of lasing from a pair
of 2D whispering gallery modes, at 610 and 634 nm, occurs at a
threshold pump energy density of ≈ 2 mJ/cm2 per pulse. Similar
devices have been fabricated with other cavity geometries, including
waveguides, 3D disks and squares, and arrays.

Dye-clad-Au nanosphere localized-surface-plasmon spaser.
A subwavelength nanocavity laser based on the amplification of
localized surface plasmons (LSPs) is often referred to as a spaser,
an acronym for Surface Plasmon Amplification by Stimulated
Emission of Radiation, a term coined by Bergman and Stockman in
2003. In analogy with a laser, a spaser generates stimulated
emission of localized surface plasmons in resonant metallic
nanostructures juxtaposed with a gain medium. The first spaser-
based nanolaser, which dates to 2009, consisted of a collection of
15-nmdiameter gold-nanosphere resonators surrounded by silica
shells doped with green dye to provide gain and compensate for
metallic dissipative losses. Pump pulses were provided by an optical
parametric oscillator operated at 488 nm. A collection of these 44-
nm-diameter core–shell nanoparticles supported surface plasmon
oscillations that out-coupled to photonic modes at a wavelength of
531 nm.† Subsequently, a spaser with tunable output wavelength
was implemented by replacing the Au nanospheres with Au
nanorods and by making use of different organic dyes at various
doping levels as gain media.
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PROBLEMS
18.1-5 LED Spectral Widths. Consider seven LED spectra drawn

from Figs. 18.1-14 and P18.1-5, namely those centered at λo =
0.37, 0.53, 0.64, 0.91, 1.30, 1.93, and 2.25 μm. Graphically
estimate their spectral widths (FWHM) in units of nm, Hz, and
eV. Compare your estimates with the results calculated from
the formulas provided in Exercise 18.1-3. Estimate the alloy
broadening in the LED spectrum centered at λo = 0.53 μm in
units of nm, Hz, and eV.

Figure P18.1-5 Spectral intensities versus wavelength for InGaAsP
LEDs operating in the near-infrared region of the spectrum.
The peak intensities are all normalized to the same value. The
spectral width generally increases as  , in accordance with
(18.1-30).



18.1-6 Extraction Efficiency for an LED. Derive an expression
for ηe, the efficiency for the extraction of internal unpolarized
light from an LED, that includes the angular dependence of
Fresnel reflection at the semiconductor–air boundary (refer to
Sec. 6.2).

18.1-7 Coupling Light from an LED into an Optical Fiber.
Calculate the fraction of optical power emitted from an LED
that is accepted by a step-index optical fiber of numerical
aperture NA = 0.1 in air and core refractive index 1.46 (refer to
Sec. 10.1). Assume that the LED has a planar surface, a
refractive index n = 3.6, and an angular dependence of optical
power that is proportional to cos4(θ). Assume further that the
LED is bonded to the core of the fiber and that the emission
area is smaller than the fiber core.

18.2-1 Bandwidth of a Semiconductor Optical Amplifier. Use
the data in Fig. 18.2-3(a) to plot the full bandwidth of the
InGaAsP SOA amplifier as a function of the injected-carrier
concentration Δn. Determine an approximate linear formula
for this bandwidth as a function of Δn and, using the data in
Fig. 18.2-3(b), plot the peak gain coefficient versus bandwidth.

18.2-2 Peak Gain Coefficient of a Semiconductor Optical
Amplifier at T = 0° K.

a. Show that the peak value γp of the gain coefficient γ0(ν) at T =
0° K is located at ν =(Efc − Efv)/h.

b. Obtain an analytical expression for the peak gain coefficient γp
as a function of the injected-carrier concentration Δn at T = 0°
K.

c. Plot γp versus Δn for an InGaAsP amplifier (λo = 1300 nm, n =
3.5, τr = 2.5 ns, mc = 0.06 m0, mv = 0.4 m0) for values of Δn in
the range 1 ×1018 to 2 ×1018 cm−3 .

d. Compare these results with the data provided in Fig. 18.2-3(b).



*18.2-3 Gain Coefficient of a GaAs Semiconductor Optical
Amplifier. A room-temperature (T = 300° K) p-type GaAs
SOA (Eg ≈ 1.40 eV, mc = 0.07 m0, mv = 0.50 m0), with
refractive index n = 3.6, is doped (p0 = 1.2 × 1018) such that the
radiative recombination lifetime τr ≈ 2 ns.

a. Given the steady-state injected-carrier concentration Δn (which
is controlled by the injection rate R and the overall
recombination time τ ), use (18.2-2)–(18.2-4) to compute the
gain coefficient γ0(ν) versus the photon energy hν, assuming
that T = 0° K.

b. Carry out the same calculation numerically, assuming that T =
300° K.

c. Plot the peak gain coefficient as a function of Δn for both cases.

d. Determine the loss coefficient α and the transparency
concentration ΔnT using the linear approximation model.

e. Plot the full amplifier bandwidth (in Hz, nm, and eV) as a
function of Δn for both cases.

f. Compare your results with the gain coefficient and peak gain
coefficient curves shown in Fig. P18.2-3.



Figure P18.2-3 Gain coefficient and peak gain coefficient for a
GaAs SOA. (Adapted from M. B. Panish, Heterostructure
Injection Lasers, Proceedings of the IEEE, vol. 64, pp. 1512–
1540, Fig. 4 ©1976 IEEE.)

18.2-4 Bandgap Reduction Arising from Band-Tail States.
The bandgap reduction ΔEg arising from band-tail states in
InGaAsP and GaAs can be empirically expressed as

where n and p are the carrier concentrations (cm−3) provided by
doping or carrier injection or both.

a. For p-type InGaAsP and GaAs, determine the concentration p
that reduces the bandgap by approximately 0.02 eV.

b. For undoped InGaAsP and GaAs, determine the injected-carrier
density Δn that reduces the bandgap by approximately 0.02 eV.
Assume that ni is negligible.

c. Compute Eg + ΔEg and compare the result with the energy at
which the gain coefficient in Fig. P18.2-3(a) is zero on the low-
frequency side.

18.2-5 Amplifier Gain and Bandwidth. GaAs has an intrinsic
carrier concentration ni = 1.8×106 cm−3, a recombination



lifetime τ = 50 ns, a bandgap energy Eg = 1.42 eV, an effective
electron mass mc = 0.07 m0, and an effective hole mass mv =
0.50 m0. Assume that T = 0° K.

a. Determine the center frequency, bandwidth, and peak net gain
within the bandwidth for a GaAs amplifier of length d = 200
μm, width w = 10 μm, and thickness l = 2 μm, when 1 mA of
current is passed through the device.

b. Determine the number of voice messages that can be supported
by the bandwidth determined above, given that each message
occupies a bandwidth of 4 kHz.

c. Determine the bit rate that can be passed through the amplifier
given that each voice channel requires 64 kb/s.

18.2-6 Transition Cross Section. Determine the transition cross
section σ(ν) for GaAs as a function of Δn at T = 0° K. The
probability density for stimulated emission or absorption is
ϕσ(ν), where ϕ is the photon-flux density. Why is the transition
cross section less useful for semiconductor optical amplifiers
than for other laser amplifiers?

*18.2-7 Gain Profile. Consider a 1550-nm InGaAsP amplifier (n =
3.5) of the configuration shown in Fig. 18.2-6, with identical
antireflection coatings on its input and output facets. Calculate
the maximum reflectance of each of the facets that can be
tolerated if it is desired to maintain the variations in the gain
profile arising from the frequency dependence of the Fabry–
Perot transmittance to less than 10% [refer to (7.1-30)].

18.3-1 Dependence of Laser-Diode Output Power on
Refractive Index. Identify the terms in the output photon
flux Φo provided in (18.3-10) that depend on the refractive
index of the crystal.

18.3-2 Number of Longitudinal Modes. A current is injected
into an InGaAsP diode of bandgap energy Eg = 0.91 eV and



refractive index n = 3.5 such that the difference in Fermi levels
is Efc − Efv = 0.96 eV. If the resonator is of length d = 250 μm
and has no losses, determine the maximum number of
longitudinal modes that can oscillate.

18.3-3 Minimum Gain Required for Lasing. A 500-μm-long
InGaAsP crystal operates at a wavelength where its refractive
index n = 3.5. Neglecting scattering and other losses, determine
the gain coefficient required to barely compensate for
reflection losses at the crystal boundaries.

*18.3-4 Modal Spacings with a Wavelength-Dependent
Refractive Index. The frequency separation of the modes of a
laser diode is complicated by the fact that the refractive index is
wavelength dependent, i.e., n = n(λo). A laser diode of length
430 μm oscillates at a central wavelength λc = 650 nm. Within
the emission bandwidth, n(λo) may be assumed to be linearly
dependent on λo [i.e., n(λo)= n0 − a(λo − λc), where n0 =
n(λc)=3.4 and a = dn/dλo].

a. The separation between the laser modes with wavelength near
λc is observed to be Δλ ≈ 0.12 nm. Explain why this does not
correspond to the usual modal spacing νF = c/2d.

b. Obtain an estimate for a.

c. Explain the phenomenon of mode pulling in a gas laser and
compare it with the effect described above in semiconductor
lasers.
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Heinrich Hertz (1857–1894) discovered the photoelectric effect
in 1887; its origin was explained by Einstein in 1905.

Siménis Denis (1781–1840) developed the fundamental
probability distribution that describes photodetector noise.

 

A photodetector is a device whose electrical characteristics (e.g.,
current, voltage, resistance) vary when exposed to light. By
converting the energy of the absorbed photons into a measurable
form, it can be used to determine the photon flux (or optical power)
of a light beam. It can also be used to display temporal and/or
spatial interference between incident optical beams. Two principal
classes of photodetectors are in common use, photoelectric
detectors and thermal detectors:

1. The operation of photoelectric detectors is based on the
photoelectric effect, also called the photoeffect. The



absorption of photons by a material causes electrons to
transition to higher energy levels, resulting in mobile charge
carriers. Under the effect of an electric field, these carriers
move and produce a measurable electric current. The
photoeffect takes two forms: external and internal. The
external photoeffect involves photoelectric emission,
also called photo-emission, in which the photogenerated
electrons escape from the material as free electrons. The
internal photoeffect involves photoconductivity, in which
the excited carriers remain within the material and serve to
increase its conductivity.

2. Thermal detectors operate by converting photon energy into
heat energy via any of a number of effects. Bolometers and
microbolometers operate on the basis of temperature-
induced changes in the resistance of a material while
thermocouples and thermopiles rely on the
thermoelectric effect, which is associated with the direct
conversion of a temperature difference into a voltage difference
across two dissimilar juxtaposed metals. Pyroelectric
detectors, which are responsive to the rate of change of
temperature, develop a surface voltage difference when heated.
This is caused by a modification of the atomic positions within
the crystal, which alter its polarization density. Finally, Golay
cells are enclosures that contain an infrared absorbing gas and
a flexible membrane. Incident infrared radiation heats the gas,
which increases its pressure and deforms the membrane. The
level of an auxiliary source of light that reflects from the
membrane registers its motion and thus reveals the infrared
power incident on the cell. Thermal detectors have long been
considered to be inefficient and slow in comparison with
photoelectric detectors because of the time required to effect a
temperature change. Yet recent advances in manufacturing and
miniaturization have dramatically improved the performance of
thermal array detectors so that they are now viable contenders
for imaging applications in the mid-infrared spectral region.



This Chapter

This chapter is devoted principally to a study of various
photoelectric detectors that find use in photonics. We begin in Sec.
19.1 with a discussion of the external and internal photoelectric
effects and set forth several important general properties of
photodetectors, including quantum efficiency, responsivity, and
response time. We then direct our attention to three types of
semiconductor photodetectors that rely on the internal photoeffect:
photoconductors, photodiodes, and avalanche photodiodes, which
are considered in Secs. 19.2, 19.3, and 19.4, respectively. Array
detectors, which produce electronic versions of optical images, are
discussed in Sec. 19.5.

To assess the performance of photodetectors in various
applications, it is important to understand their noise properties,
and these are set forth in Sec. 19.6. Noise in the output circuit of a
photoelectric detector arises from several sources: the photon
character of the light itself (photon noise), the conversion of
photons to photocarriers (photoelectron noise), the generation of
secondary carriers by internal amplification mechanisms (gain
noise), and receiver circuit noise. The chapter closes with a
discussion of the performance of analog and digital optical
receivers.

19.1 PHOTODETECTORS
A. External and Internal Photoeffects
Photoelectric Emission

If the energy of a photon illuminating a material in vacuum is
sufficiently large, the excited electron can escape over the potential
barrier of the surface of the material and be liberated into the
vacuum as a free electron. This process, called photoelectric
emission or photoemission, is illustrated in Fig. 19.1-1(a) for a
metal. An incident photon of energy hν releases a free electron from



(19.1-1)

within the partially filled conduction band. A brief delay in the
emission is incurred by the interaction of the outgoing electron with
the remaining ion, as well as by transport, screening, and scattering
effects. The delay time depends on the particular metal and on the
photon energy, but it is roughly in the range of 100 attoseconds.

Photoemission from a metal. Energy conservation requires that
electrons emitted from below the Fermi level, where they are
plentiful, have a maximum kinetic energy

where the photoelectric work function W is the energy
difference between the vacuum level and the Fermi level of the
metal. Equation (19.1-1) is known as the Einstein photoemission
equation. Only if the electron initially lies right at the Fermi level
can it receive the maximum kinetic energy specified in (19.1-1); the
removal of a deeper-lying electron requires additional energy to
transport it to the Fermi level, thereby reducing the kinetic energy
of the liberated electron. The lowest work function for a metal (Cs)
is about 2 eV, so that optical detectors based on the external
photoeffect from pure metals are useful in the visible and
ultraviolet regions of the spectrum, but not in the infrared.



(19.1-2)

Figure 19.1-1 Photoelectric emission (a) from a metal, and (b)
from an intrinsic semiconductor. The bandgap energy and electron
affinity of the material are denoted Eg and χ, respectively, and W is
the photoelectric work function. All three of these quantities are
usually specified in eV.

Photoemission from a semiconductor. Photoelectric emission
from an intrinsic semiconductor is portrayed schematically in Fig.
19.1-1(b). Photoelectrons are usually released from the valence
band, where electrons are plentiful. The formula analogous to (19.1-
1) is

where Eg is the bandgap energy and χ is the electron affinity of the
material, i.e., the energy difference between the vacuum level and
the bottom of the conduction band. The energy Eg + χ can be as
small as 1.4 eV for certain materials (e.g., the multialkali compound
NaKCsSb, which forms the basis for the so-called S–20-type
photocathode), so that semiconductor photoemissive detectors can
operate in the near infrared, as well as in the visible and ultraviolet.

Negative-electron-affinity materials. Furthermore, negative-
electron-affinity (NEA) semiconductors have been developed in
which the conduction-band edge lies above the vacuum level so that
hν need only exceed Eg for photoemission to occur. This is achieved
by depositing a thin n-type or metallic layer on p-type material,
which causes the bands to bend at the surface of the material. NEA



detectors, such as Cs-coated GaAs, are therefore responsive to
slightly longer near-infrared wavelengths, and also exhibit improved
quantum efficiency and reduced dark current. Photocathodes
constructed from inhomogeneous materials or oxides, such as the
S– 1-type photocathode, can also be used in the near infrared, but
only for wavelengths λo ≲ 1 μm.

Vacuum photodiodes and photomultiplier tubes. In their
simplest form, photodetectors based on photoelectric emission take
the form of vacuum tubes called vacuum photodiodes or
phototubes. Electrons are emitted from the surface of a
photoemissive material called the photocathode and travel to an
electrode (anode), which is maintained at a higher electrical
potential. The photocathode can be opaque and operate in reflection
mode [Fig. 19.1-2(a)], or semitransparent and operate in
transmission mode. As a result of the electron transport between
the cathode and anode, a current proportional to the photon flux,
known as the photocurrent, is created in the circuit. The
photoemitted electrons may also create a cascade of electrons via
the process of secondary emission [Fig. 19.1-2(b)]. This occurs
when the photoelectrons emitted from the photocathode impact
other specially placed cesiated-oxide or semiconductor surfaces in
the tube, called dynodes, which are maintained at successively
higher potentials. A device such as this, known as a
photomultiplier tube (PMT), offers low-noise amplification of
the generated photocurrent with gains as high as 108 (Example 19.6-
2).



Figure 19.1-2 (a) Photon detection in a vacuum photodiode with a
photocathode operated in reflection mode. (b) Photon detection and
electron multiplication at the dynodes in a photomultiplier tube
(PMT). (c) Cutaway view of a microchannel plate (MCP). (d) Photon
detection and electron multiplication in a single capillary of an MCP
endowed with a semitransparent imaging photocathode.

Applications of PMTs. Though PMTs usually have modest
quantum efficiencies and require high voltages to operate, they find
use in many venues. Their high gain, low dark current, low noise,
and fast response time endows them with the ability to detect
individual optical photons (Sec. 19.4C). With diameters ranging
from millimeters to half a meter, PMTs are used in applications as
diverse as oil-well logging (they can operate at high temperatures)
and gamma cameras. Gamma and beta rays are readily detected
with PMTs by making use of scintillator materials that convert
these high-energy particles into visible photons via
radioluminescence and betaluminescence, respectively (Sec. 14.5A).
The Super-Kamiokande neutrino-detection experiment in Japan
makes use of more than 11 000 PMTs, each with a diameter of 1/2
m, that carpet the interior walls of an underground tank containing
50 000 tons of water. Neutrinos interact with the constituent atoms



of the water to produce charged particles that travel faster than the
speed of light in water, thereby generating blue Čerenkov radiation
pulses that are detected by the PMTs. At the other end of the size
spectrum, μ-PMTs measuring roughly 1-cm2 in area by 2-mm high,
and weighing only about 1/2 g, offer gains approaching 107. These
devices find use in portable photosensing instruments for
applications such as biomedical point-of-care testing, biochemical
micro-total analysis, and environmental monitoring.

Microchannel plates. A compact imaging device that makes use
of the secondary-emission principle is the microchannel plate
(MCP) displayed in Fig. 19.1-2(c). It consists of an array of millions
of capillaries (of internal diameter ≈ 10 μm) created in a glass plate
(of thickness ≈ 1 mm). Both faces of the plate are coated with thin
metallic films that act as electrodes, across which a voltage is
applied. The interior wall of each capillary is coated with a material
that facilitates electron secondary emission so it behaves as a
continuous dynode, multiplying the photocurrent generated at that
lateral position in the MCP [Fig. 19.1-2(d)]. This allows the local
photon flux of a faint image to be converted to a substantial
electron-flux image that can be directly measured. Moreover, if
desired the electron-flux image can be reconverted into an
(amplified) photon-flux image by applying a phosphor coating to the
rear electrode that then produces light via cathodoluminescence
(Sec. 14.5A); this combination is known as an image intensifier.

Photoconductivity

Most modern photodetectors operate on the basis of the internal
photoeffect, in which the photoexcited carriers (electrons and holes)
remain within the sample. Photoconductive detectors rely
directly on the light-induced increase in the electrical conductivity
of a material. The absorption of a photon by an intrinsic
semiconductor, for example, results in the generation of a free
electron excited from the valence band to the conduction band (Fig.
19.1-3). Concurrently, a hole is generated in the valence band. The
application of an electric field to the material results in the



transport of both electrons and holes through the material and, as a
consequence, the production of an electric current in the electrical
circuit.

Figure 19.1-3 Electron–hole pair photogeneration in an intrinsic
semiconductor.

Semiconductor photodiodes are p–n junction structures that
are also based on the internal photoeffect. Photons absorbed in the
depletion layer of the device generate electrons and holes, which are
subjected to the local electric field within that layer. The two
carriers drift in opposite directions. This transport process induces
an electric current in the external circuit.

Some photodetectors also incorporate an internal gain mechanism
so that the photocurrent is amplified, thereby making the signal
more easily detectable. Avalanche photodiodes (APDs) are
devices in which an internal amplification process takes place via
carrier multiplication within the detector. If the depletion-layer
electric field in a photodiode is increased sufficiently by applying a
large reverse-bias voltage across the junction, the electrons and
holes generated may themselves acquire sufficient energy to
liberate additional electrons and holes by a process called impact
ionization, which is the inverse of Auger recombination (Fig. 17.1-
18). An APD can be used as an alternative to, or in conjunction with,
a laser preamplifier [see, e.g., Fig. 25.1-5(c)]. Each of these
amplification mechanisms carries its own form of noise, however.

Semiconductor photoelectric detectors with gain therefore involve
the following three basic processes:



1. Generation: Absorbed photons generate free carriers.

2. Transport: An applied electric field causes these carriers to
move, resulting in a circuit current.

3. Gain: In an avalanche photodiode, a large applied electric fields
imparts sufficient energy to the carriers so that they in turn
free additional carriers by impact ionization; this internal
amplification process enhances the responsivity of the detector,
but also introduces noise.

Organic photodetectors. Organic semiconductors are usually
either small organic molecules or conjugated polymer chains. The
lowest-unoccupied molecular orbital (LUMO) and the highest-
occupied molecular orbital (HOMO) may be viewed as analogous to
the conduction-and valence-band edges of inorganic
semiconductors, respectively (Sec. 17.1B). Photon absorption leads
to the generation of charge carriers. Organic photodetectors (OPDs)
can be configured as photoconductors, photodiodes, or
phototransistors and can operate over a broad range of wavelengths
that stretches from the near infrared to the ultraviolet. They are
often fabricated as heterojunctions comprising conjugated organic
semiconductors with different electron affinities.

Much as with OLEDs (Sec. 18.1E), OPDs offer a number of salutary
features: they can be thin, lightweight, mechanically flexible,
semitransparent, responsive across large portions of the optical
spectrum, and easy to fabricate in large sizes. Printed OPDs can
convert flexible substrates (e.g., paper, plastic, or glass) into smart
surfaces and can be fashioned into wearable biomedical devices. In
the current state of their development, however, OPD parameters
such as dark current, responsivity, and life span are generally
inferior to those of silicon-based photodetectors, although not
substantially so.

B. General Properties



Certain general features are associated with all photodetectors.
Before considering the details of specific photoelectric detectors of
interest in photonics, we examine three such general features:
quantum efficiency, responsivity, and response time.
Photodetectors and semiconductor sources are inverse devices and
these three features also have their counterparts in the domain of
semiconductor sources (Secs. 18.1B and 18.3B). Indeed, the same
materials are often used to fabricate semiconductor photodetectors
and semiconductor sources (see, e.g., Figs. 17.1-7, 17.1-8, and 18.1-
16).

Quantum Efficiency

The quantum efficiency η (0 ≤ η ≤ 1) of a semiconductor
photodetector is the probability that a single photon incident on the
device generates a photocarrier pair that contributes to the detector
current. When many photons are incident, as is usually the case, η
becomes the flux of generated electron–hole pairs that contribute to
the detector current divided by the flux of incident photons. For
non-semiconductor photodetectors, the photon detection
efficiency (PDE) η is defined as the probability that a single
photon incident on the device generates a detectable electrical
current in the output circuit. For detectors that operate on the basis
of the external photoeffect, such as the vacuum photodiode and the
photomultiplier tube, the quantum efficiency η is the probability
that a single incident photon generates a free photoelectron.

Not all incident photons produce electron–hole pairs in a
semiconductor photodetector because not all of them reach the
photosensitive region and are absorbed. As illustrated in Fig. 19.1-4,
some of the photons are reflected at the surface of the detector via
Fresnel reflection while others fail to be absorbed because the
photosensitive material has insufficient thickness (the rate of
photon absorption in a semiconductor material was considered in
Sec. 17.2C). Furthermore, some electron–hole pairs produced near
the photodetector surface quickly recombine because of the
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Quantum Efficiency

abundance of recombination centers at surfaces, and are therefore
not available to contribute to the detector current.

Figure 19.1-4 Effect of surface reflection and incomplete
absorption (arising from an insufficient thickness of photosensitive
material) on the detector quantum efficiency η.

For semiconductor photoelectric detectors, the quantum efficiency
η can therefore be written as

where ℛ is the power reflectance at the surface of the
photodetector, ζ is the fraction of electron–hole pairs that
successfully contributes to the detector photocurrent, α is the
absorption coefficient of the photosensitive material (cm−1)
discussed in Sec. 17.2C, and d is the thickness of the photosensitive
region. Equation (19.1-3) is thus a product of three factors:

The first factor, 𝒯 = (1 − ℛ), represents the power
transmittance at the surface of the device. The transmittance
can be increased, for example, by the use of antireflection
coatings. Some definitions of the quantum efficiency η exclude
the effects of reflection at the surface, which must then be
considered separately.



The second factor ζ is the fraction of electron–hole pairs that
successfully avoid recombination at the material surface so
they can potentially contribute to the useful photocurrent.
Surface recombination can be reduced by careful material
growth and device design.

The third factor, , represents
the fraction of the photon flux absorbed in the bulk of the
photosensitive material. The device should have a value of d
that is sufficiently large so this factor is maximized, subject to
other constraints.

Additional loss is also incurred if the light is not properly focused
onto the photosensitive region of the detector.

Dependence of quantum efficiency on wavelength. The
quantum efficiency η is a function of wavelength principally
because the absorption coefficient α is wavelength dependent (Fig.
17.2-3). The characteristics of the semiconductor material thus
determine the spectral window within which η is large. For
sufficiently large values of the free-space wavelength λo, η is small
because absorption cannot occur for λo ≥ λg = hco/Eg (the photon
energy is then smaller than the bandgap energy and the material is
transparent). The bandgap wavelength λg is thus the long-
wavelength photodetection limit for a semiconductor material.
Representative values of Eg and λg are presented in Table 17.1-2 and
displayed in Figs. 17.1-7 and 17.1-8 for representative semiconductor
materials of interest in photonics. For sufficiently small values of
λo, η also decreases because most photons are then absorbed near
the surface of the device (for α = 104 cm−1, for example, most of the
light is absorbed within a distance 1/α = 1 μm). The recombination
lifetime is quite short near the surface, so the photocarriers
recombine before being collected.

Resonant-cavity photodetectors. The quantum efficiency η
may be enhanced by constructing a detector configuration in which
the light can interact with the photosensitive material on multiple



passes. This is equivalent to increasing the photodetector depth d,
which increases the absorption and reduces the transmitted photon
flux. This may be achieved in practice by placing the photodetector
inside a resonant cavity, which traps the light and thus increases the
quantum efficiency, but it does so at the expense of restricting the
bandwidth and extending the response time.

Plasmonic photodetectors. Another approach for augmenting
the quantum efficiency η of a semiconductor photodetector relies
on endowing the photosensitive material with metallic
nanostructures that have the ability to scatter, concentrate, and
guide light at the nanoscale, as discussed in Chapter 8:

The presence of metallic nanoparticles at the upper surface of
the semiconductor material can result in enhanced trapping of
the incident light in the photosensitive layer via high-angle,
multiple scattering. Increasing the effective optical path length
in this manner is especially useful for structures such as thin-
film solar cells. The scattering of light by metallic nanoparticles
is detailed in Sec. 8.2C.

Metallic nanoparticles embedded in the interior of the
semiconductor material can serve as resonant optical antennas
that trap and concentrate light in the form of localized surface
plasmons. Such modes generate near-field radiation, such as
optical dipole waves, that in turn can produce electron–hole
pairs. The properties of optical antennas are discussed in Sec.
8.2D.

A corrugated metallic surface placed at the lower surface of the
semiconductor material can trap light in the form of surface
plasmon polaritons (SPPs) that propagate in the plane of the
photosensitive layer. SPPs at a metal–dielectric boundary are
considered in Sec. 8.2B.

Responsivity
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Photodetector Responsivity 

(A/W; λo in μm)

The responsivity of a photodetector relates the electric current ip
flowing in the device circuit to the optical power P incident on it. If
every photon were to generate a photocarrier pair in the device, a
photon flux Φ (photons per second) would produce an electron flux
(electrons per second) in the photodetector circuit that corresponds
to a short-circuit electric current ip = eΦ. Thus, an optical power P =
hνΦ (watts) at optical frequency ν would give rise to an electric
current ip = eP/hν.

However, since the fraction of photons that produces detected
electrons is η rather than unity, the electric current is

The proportionality factor between the electric current and the
optical power, R = ip/P, has units of A/W and is called the
photodetector responsivity:

It is important to distinguish the photodetector responsivity (A/W)
from the LED responsivity (W/A) defined in (18.1-29).

The responsivity is linearly proportional to both the quantum
efficiency η and the free-space wavelength λo, as is evident from
(19.1-5) and Fig. 19.1-5. An appreciation for the order of magnitude
of the responsivity is gained by setting η = 1 and λo = 1.24 μm in
(19.1-5), whereupon R = 1 A/W = 1 nA/nW.



Figure 19.1-5 Responsivity R (A/W) versus wavelength λo , with
the quantum efficiency η as a parameter. For η = 1, the responsivity
is R = 1 A/W at λo = 1.24 μm.

The proportionality of R to λo is a consequence of the fact that the
responsivity is defined on the basis of optical power, whereas most
photodetectors generate currents proportional to the photon flux Φ.
For a given photon flux Φ = P/hν = Pλo/hco (corresponding to a
given photodetector current ip), the product Pλo is fixed so that an
increase in λo requires a commensurate decrease in P, thereby
leading to an increase in the responsivity. Indeed, some thermal
detectors are responsive to optical power rather than to photon flux,
causing R to be independent of λo.

The region over which R increases with λo is limited, however,
inasmuch as the wavelength dependence of η comes into play at
both long and short wavelengths, as discussed earlier. The
responsivity can also be degraded if the detector is presented with
an excessively large optical power. This condition, known as
detector saturation, limits the linear dynamic range of the
detector, which is the range over which it responds to the incident
optical power in a linear fashion.

Devices with gain. The formulas presented above are predicated
on the assumption that each photocarrier pair produces a charge e
in the photodetector circuit. However, devices that exhibit gain can
produce a charge q in the circuit that differs from e. The gain G is



(19.1-7)
Photocurrent with Gain

(19.1-6)
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(A/W; λo in μm)

defined as the number of circuit electrons generated per
photocarrier pair,

The gain can be either greater than or less than unity, as will be
seen subsequently.

In the presence of gain, the formulas for the photocurrent and
responsivity presented in (19.1-4) and (19.1-5), respectively, must be
modified. Substituting q = Ge for e in these equations, respectively,
yields

and

The gain of the device G is to be distinguished from the
photodetector quantum efficiency η, which is the probability that an
incident photon produces a detectable photocarrier pair. Other
useful measures of photodetector behavior, such as signal-to-noise
ratio and receiver sensitivity, await discussion of detector noise
properties, presented in Sec. 19.6.

Response Time

Transit-time spread. A constant electric field E applied to a
semiconductor (or metal) causes its free charge carriers to
accelerate. In the course of doing so, they encounter frequent
collisions with lattice ions moving about their equilibrium positions
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via thermal motion, as well as imperfections in the crystal lattice
associated with impurity ions. These collisions cause the carriers to
suffer random decelerations; the result is motion at an average
velocity rather than at a constant acceleration. The mean velocity of
a carrier is given by v = aτcol, where a = eE/m is the acceleration
imparted by the electric field and τcol is the mean time between
collisions, which serves as a relaxation time. The net result is that
the carrier drifts in the direction of the electric field with a mean
drift velocity v = eτcolE/m, which is conventionally written in the
form

where μ = eτcol/m is known as the carrier mobility.

Ramo’s theorem. The carrier motion in the photodetector creates
a current in its external circuit. To determine the magnitude of the
current i(t), consider an electron–hole pair generated (by photon
absorption, for example) at an arbitrary position x in a
semiconductor material of length w, to which a voltage V is applied,
as shown in Fig. 19.1-6(a). We restrict our attention to motion in the
x direction and invoke an energy argument. If a carrier of charge Q
(a hole of charge Q = e or an electron of charge Q = −e) moves a
distance dx in the time dt under the influence of an electric field of
magnitude E = V/w, the work done is −QE dx = −Q(V/w) dx. This
work must equal the energy provided by the external circuit, i(t)V
dt. Thus, i(t)V dt = −Q(V/w) dx, which leads to i(t) = −(Q/w)
(dx/dt) = −(Q/w)v(t). A carrier moving with drift velocity v(t) in the
x direction therefore creates a current in the external circuit
characterized by Ramo’s theorem:



Figure 19.1-6 (a) An electron–hole pair is generated at the
position x. The hole drifts to the left with constant velocity vh and
the electron drifts to the right with constant velocity ve. The process
terminates when the carriers reach the edges of the material. (b)
The hole current ih(t), electron current ie(t), and total current i(t)
induced in the circuit. The total charge induced in the circuit per
carrier pair is e.

Assuming that the hole moves with constant velocity vh to the left,
and the electron moves with constant velocity ve to the right, (19.1-
10) provides that the hole current is ih = −(e)(−vh)/w = evh/w and
the electron current is ie = −(−e)ve/w = eve/w, as illustrated in Fig.
19.1-6(b). Each carrier contributes to the current as long as it is
moving. If the carriers continue their motion until they reach the
edges of the material, the hole moves for a duration x/vh while the
electron moves for a duration (w − x)/ve [Fig. 19.1-6(a)]. In
semiconductors, ve is generally larger than vh so that the overall
duration of the response is x/vh. The finite duration of the current is
known as the transit-time spread; it is an important limiting factor
for the speed of operation (bandwidth) of all semiconductor
photodetectors.
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Charge generated in external circuit. One might be inclined to
argue that the charge generated in an external circuit should be 2e
when a photon generates an electron–hole pair in a photodetector
material, since there are two charge carriers. In fact, the charge
generated is e, as is demonstrated by calculating the total charge q
induced in the external circuit from the sum of the areas under ie
and ih:

This result is independent of the position x at which the electron–
hole pair was created.

Uniform generation of carrier pairs. The transit-time spread is
far more severe if the electron–hole pairs are generated uniformly
throughout the material rather than at a single point x, as can be
understood from Fig. 19.1-7 and Prob. 19.1-4. For vh < ve, the full
width of the transit-time spread is then w/vh rather than x/vh. This
occurs because uniform illumination produces carrier pairs at all
locations, including at x = w, the location at which the holes have
the farthest to travel before being able to recombine at x = 0.



Figure 19.1-7 Hole current ih(t), electron current ie(t), and total
current i(t) induced in the photodetector circuit for electron–hole
generation by N photons uniformly distributed between 0 and w
(Prob. 19.1-4). The tail in the total current results from the motion
of the slow holes. The total current i(t) can be viewed as the impulse
response function (see Appendix B, Sec. B.1) of a uniformly
illuminated detector subject to transit-time spread.

Summary
Ramo’s theorem demonstrates that the charge delivered to the
external circuit of a semiconductor photodetector by carrier
motion within the photodetector material is not provided
instantaneously, but rather occupies an extended time. It is as if
the motion of the charge carriers in the material pulls charge
slowly from the wire on one side of the device and pushes it
slowly into the wire on the other side, so that each charge
passing through the external circuit is spread out in time.

Ohm’s law. In the presence of a uniform charge density ϱ, rather
than a single point charge Q, the total charge in the photodetector
material is ϱAw, where A is the cross-sectional area [Fig. 19.1-6(a)].
From (19.1-10), the current density in the x direction is then J(t) =
i(t)/A = −(ϱAw/Aw)v(t) = −ϱv(t). The well-known vector form of
this equation is
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Combining (19.1-12) with (19.1-9) yields J = σE, where σ is the
conductivity of the medium,

N is the number of carriers per unit volume [see (8.2-3) and (8.2-
17)].

More generally, Ohm’s law takes the form of a relationship
between the current-density and electric-field vectors, 𝒥 and ε,
respectively, mediated by the second-rank conductivity tensor σ:

For charge carried by a homogeneous conductive medium with
cross-sectional area A and length w, J = σE can be written as i =
(σA/w)Ew = (σA/w)V = GV = V/R, where G and R are the
conductance and resistance of the material, respectively. In this
configuration, Ohm’s law takes its beloved form

RC time constant. The resistance R and capacitance C of the
photodetector, along with that of its circuitry, give rise to another
response time called the RC time constant, τRC = RC. The
resistance/capacitance combination serves to integrate the current
at the photodetector output, thereby increasing the duration of the
impulse response function. In the presence of transit-time and an
RC time-constant, the overall impulse response function is
determined by convolving the current i(t) displayed in Fig. 19.1-7
with the exponential function (1/RC) exp(−t/RC) (Sec. B.1). It is
worthy of note that photodetectors of different types may exhibit
other specific limitations on their bandwidths, which require



consideration on a case-by-case basis. As a final point, we mention
that photodetectors fabricated with a given material and structure
sometimes exhibit a fixed gain–bandwidth product, in which case
increasing the gain results in a decrease of the bandwidth and vice
versa. This tradeoff between gain and frequency response is
associated with the time required for the gain process to take place.

19.2 PHOTOCONDUCTORS
When photons are absorbed in a semiconductor, mobile charge
carriers are generated (ideally an electron–hole pair for every
absorbed photon). The electrical conductivity of the material σ
increases in proportion to the photon flux Φ. An electric field
applied to the material by an external voltage source causes the
electrons and holes to be transported. This in turn results in a
measurable electric current in the circuit, as illustrated in Fig. 19.2-
1(a). Photoconductive detectors operate by registering either
the photocurrent ip, which is proportional to the photon flux Φ, or
the voltage drop across a load resistor R placed in series with the
circuit.

A. Intrinsic Photoconductors
If the photon energy is greater than the bandgap of the
semiconductor, photons are absorbed via interband transitions [Fig.
17.2-4(a)]. A photoconductive device may take the form of a slab or
a thin film. The anode and cathode contacts are often interdigitated
on the same surface of the device to minimize the transit time [Fig.
19.2-1(b)]. At the same time, the photon flux reaching the
photosensitive material can be maximized by directing the light to
the opposite surface if the insulating substrate has a sufficiently
large bandgap so that it is not absorptive.



(19.2-1)

Figure 19.2-1 The photoconductive detector. (a) Photogenerated
carrier pairs move in response to the applied voltage V, generating a
photocurrent ip proportional to the incident photon flux Φ.(b) The
interdigitated electrode structure of this device is designed to
minimize the carrier transit time (and thereby maximize the
bandwidth) while maximizing the light reaching the photosensitive
material.

The increase in conductivity arising from a photon flux Φ (photons
per second) illuminating a semiconductor volume wA [Fig. 19.2-
1(a)] is calculated as follows. A fraction η of the incident photon
flux is absorbed and gives rise to excess electron–hole pairs. The
pair-production rate R (per unit volume per unit time) is thus R =
ηΦ/wA. If τ is the excess-carrier recombination lifetime, in
accordance with (17.1-23) electrons are lost at the rate Δn/τ where
Δn is the electron concentration. Under steady-state conditions both
rates are equal so that R = Δn/τ and Δn = ητΦ/wA . The increase in
the carrier concentration Δn is accompanied by an increase in the
charge density Δϱ = eΔn, and thus, in accordance with (19.1-13), by
an increase in the conductivity Δσ = μΔϱ = eμΔn, so that

where μe and μh are the electron and hole mobilities, respectively.
In accordance with (19.2-1), the increase in conductivity is
proportional to the photon flux, as expected.
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Ohm’s law (19.1-14) dictates that the photogenerated current
density is given by Jp = Δσ E. Combining this with (19.2-1) and (19.1-
9), which provides ve = μeE and vh = μhE, gives Jp =[ηeτ(ve +
vh)/wA]Φ, which corresponds to an electric current ip = JpA =
[ηeτ(ve + vh)/w]Φ. If vh ≪ ve, and if the formula is cast in terms of
the electron transit time across the sample τe = w/ve, we finally
obtain

Comparison with (19.1-7) shows that the ratio τ/τe in (19.2-2)
corresponds to the detector gain G, for reasons we now proceed to
elucidate.

Gain. The responsivity of a photoconductor with gain is given by
(19.1-8). Simply viewed, the device exhibits internal gain because
the excess-carrier recombination lifetime τ and the transit time τe
differ in general. Suppose that electrons travel faster than holes and
that τ is very long. As the electron and hole are transported to
opposite sides of the photoconductor (Fig. 19.2-1), the electron
completes its trip sooner than the hole. The requirement of current
continuity then forces the external circuit to immediately provide
another electron, which enters the device from the wire at the left.
This new electron moves quickly toward the right, again completing
its trip before the hole reaches the left edge (or is released from a
trap). This process continues until the electron recombines with the
hole, which requires a long time τ.

A single photon absorption can therefore result in an electron
passing through the external circuit many times. The expected
number of trips that the electron makes before the process
terminates is



where τ is the excess-carrier recombination lifetime and τe = w/ve is
the electron transit time across the sample. The charge delivered to
the circuit by a single electron– hole pair is then q = Ge > e so that
the device exhibits gain.

At the other extreme, the recombination lifetime may be sufficiently
short such that the carriers recombine before reaching the edge of
the material. This can occur if there is a ready availability of carriers
of the opposite type for recombination to take place. In that case τ <
τe and the gain is less than unity so that, on average, each carrier
pair contributes only a fraction of the electronic charge e to the
circuit. Charge is, of course, conserved so that the many carrier pairs
present deliver an integral number of electronic charges to the
circuit.

The photoconductor gain G = τ/τe can therefore be interpreted as
the fraction of the sample length traversed by the average excited
carrier before it undergoes recombination. The transit time τe is
determined from the length of the device and the applied voltage via
(19.1-9) and τe = w/ve; typical values of w = 1 mm and ve = 107 cm/s
yield τe ≈ 10−8 s. The recombination lifetime τ can range from 10−13

s to many seconds, depending on the photoconductor material and
doping [see (17.1-24)]. Thus, the gain G can assume a broad range of
values, stretching from below unity to well above unity, depending
on the parameters of the material, the size of the device, and the
applied voltage. However, the gain of a photoconductor generally
cannot exceed 106 because of the restrictions imposed by space-
charge-limited current flow, impact ionization, and dielectric
breakdown.

The process of electron–hole recombination is actually random so
that the implicit assumption of deterministic photoconductor gain
invoked above can be too simplistic. In those circumstances, a more
realistic model must be used (Prob. 19.6-4).

Spectral response. The spectral sensitivity of a photoconductive
detector is governed principally by the wavelength dependence of



the quantum efficiency η, as discussed in Sec. 19.1B. Different
semiconductors have different long-wavelength photodetection
limits λg (Table 17.1-2). Interband transitions in elemental, binary,
and ternary semiconductor photoconductors allow operation into
the mid infrared (in contrast to photoemissive detectors) but their
use at wavelengths beyond about 2 μm generally requires cooling to
minimize the thermal generation of electron–hole pairs.

Response time. The response time of a photoconductive detector
is constrained by the transit-time and RC time-constant
considerations discussed in Sec. 19.1B. The carrier-transport
response time is approximately equal to the recombination time τ,
so that the carrier-transport bandwidth B is inversely proportional
to τ. Since the gain G is directly proportional to τ in accordance with
(19.2-3), increasing τ serves to increase the gain, which is desirable,
but concomitantly decreases the bandwidth, which is undesirable.
The gain–bandwidth product GB thus turns out to be roughly
independent of τ; values of GB can extend up to ≈ 1012.

B. Extrinsic Photoconductors
Photoconductivity can be achieved at wavelengths that extend to the
far infrared by making use of doped semiconductors. Mobile charge
carriers can be generated via photon absorption by dopants with
energy levels lying within the forbidden gap. The process can occur
in one of two ways: (1) an incident photon interacts with a bound
electron at a donor site, frees it to the conduction band, and leaves
behind a bound hole; or (2) an incident photon interacts with a
bound hole at an acceptor site, frees it to the valence band, and
leaves behind a bound electron, as illustrated in Fig. 17.2-1(b).
Donor and acceptor levels in the bandgap of doped semiconductors
can have very low activation energies EA, and therefore quite
extended long-wavelength limits λA = hco/EA. These detectors must
be cooled to avoid thermal excitation; liquid He at 4° K is often
used. Representative values of EA and λA are provided in Table 19.2-
1 for a number of extrinsic photoconductive detectors.



Table 19.2-1 Selected extrinsic semiconductor materials with their
activation energies EA and long-wavelength limits λA = hco/EA.

Semiconductor:Dopant EA (eV) λA (μm)

Ge:Hg 0.088 14
Ge:Cu 0.041 30
Ge:Zn 0.033 38
Ge:Ga 0.010 115

Si:B 0.044 23

The relative responsivities of several extrinsic photoconductive
detectors are illustrated in Fig. 19.2-2. For all of these materials, the
responsivity increases approximately linearly with λo, in accordance
with (19.1-8), peaks slightly below the long-wavelength limit λA, and
falls off rapidly beyond it. The quantum efficiencies of these
detectors can be substantial (e.g., η ≈ 0.5 for Ge:Cu), although the
gain can be low under usual operating conditions (e.g., G ≈ 0.03 for
Ge:Hg).

Figure 19.2-2 Relative responsivity vs. wavelength λo (μm) for a
number of different doped-Ge extrinsic materials used as infrared
photoconductive detectors.

C. Heterostructure Photoconductors
Properly configured heterostructures can serve as useful
photoconductive detectors. An example is the quantum-well



infrared photodetector (QWIP). An incident infrared photon
releases the electron occupying a bound energy level in a quantum-
well to the continuum, thereby creating a mobile charge carrier that
increases the conductivity of the material (Fig. 19.2-3). In an
alternate configuration, the quantum wells are situated between
superlattice barriers and the electrons are swept out via a miniband
transport channel lying below the continuum [Fig. 17.2-10(d)].
QWIPs typically have sharp spectral responses dictated by the
narrowness of the quantized states and operate at cryogenic
temperatures.

The quantum-dot infrared photodetector (QDIP), a variation
on this theme, can also be used for multiwavelength infrared
detection via intersubband transitions. The dot-in-well QDIP
(DWELL-QDIP) offers a further improvement in performance by
imposing constraints on the locations of the quantum dots.

Figure 19.2-3 Generation of mobile charge carriers by absorption
of photons in a QWIP. The detector illustrated comprises AlGaAs
barriers and n-type GaAs quantum wells that provide the electrons
occupying the energy levels. The device is configured in such a way
that there is a single energy level in each well, whose parameters are
adjusted to provide sensitivity at a particular central wavelength.
Though they require cooling, QWIPs fabricated from III–V
compound semiconductors offer high speeds and high
responsivities from mid-to far-infrared wavelengths (λo ≈ 3–20μm).
They are often used in focal-plane arrays (Sec. 19.5).



19.3 PHOTODIODES
A. The p–n Photodiode
As with photoconductors, photodiode detectors rely on
photogenerated charge carriers for their operation. A photodiode is
a p–n junction (Sec. 17.1E) whose reverse current increases when it
absorbs photons. Though p–n and p–i–n (PIN) photodiodes are
generally faster than photoconductors, they do not exhibit gain.

Consider a reverse-biased p–n junction under illumination, as
depicted in Fig. 19.3-1. Photons are absorbed everywhere with
absorption coefficient α. Whenever a photon is absorbed, an
electron–hole pair is generated. But only at locations where an
electric field is present can the charge carriers be transported in a
particular direction. Since a p–n junction can support an electric
field only in the depletion layer, this is the region in which it is most
desirable to generate photocarriers.

Figure 19.3-1 Photons illuminating an idealized reverse-biased p–
n photodiode detector. The drift and diffusion regions are indicated
by 1 and 2, respectively. Carriers generated beyond the diffusion
region, in 3, fail to contribute to the photocurrent. Illumination can
be directed parallel to the junction layer (edge illumination), as
illustrated, or at normal incidence to the junction layer.

There are, nevertheless, three possible locations where electron–
hole pairs can be generated:



Electrons and holes generated in the depletion layer (region 1)
quickly drift in opposite directions under the influence of the
strong electric field. Since the electric field always points in the
n→p direction, electrons move to the n side and holes to the p
side. As a result, the photocurrent created in the external circuit
is always in the reverse direction (from the n to the p region).
Each carrier pair generates in the external circuit an electric
current pulse of area e (G = 1) since recombination does not
take place in the depleted region.

Electrons and holes generated well away from the depletion
layer (region 3) cannot be transported because of the absence
of an electric field. They wander randomly until they are
annihilated by recombination. They do not contribute a signal
to the external electric current.

Electron–hole pairs generated outside the depletion layer, but
in its vicinity (region 2), have a chance of entering the depletion
layer by random diffusion. An electron coming from the p side
is quickly transported across the junction and therefore
contributes a charge e to the external circuit. A hole coming
from the n side has a similar effect.

Photodiodes have been fabricated from many of the semiconductor
materials listed in Table 17.1-2, as well as from binary, ternary, and
quaternary compound semiconductors such as InGaAs, InGaAsP,
SiC, and GeSn. Devices can be constructed so that light is directed
parallel to the junction layer via edge illumination, as illustrated in
Fig. 19.3-1, or at normal incidence to the junction layer.

Response Time

The transit time of carriers drifting across the depletion layer (wd/ve
for electrons and wd/vh for holes) and the RC time constant both
play a role in the response time of photodiode detectors, as
discussed in Sec. 19.1B. The resulting circuit current is displayed in



(19.3-1)

Fig. 19.1-6(b) for an electron–hole pair generated at a given position
x, and in Fig. 19.1-7 for uniform electron–hole pair generation.

In photodiodes there is an additional contribution to the response
time arising from diffusion, which is a relatively slow process in
comparison with drift. Carriers generated outside the depletion
layer, but sufficiently close to it, take some time to diffuse into it,
where they contribute to the current. The maximum times allowed
for this process are the carrier lifetimes (τp for electrons in the p
region and τn for holes in the n region). The deleterious effects of
diffusion time can be diminished by making use of p–i–n
photodiodes, as will be seen in Sec. 19.3B. Nevertheless,
photodiodes are generally faster than photoconductors because of
the large velocity of the photogenerated carriers imparted by the
strong field in the depletion region. Furthermore, photodiodes are
not affected by many of the trapping effects associated with
photoconductors.

Modes of Operation

From the perspective of an electronic device, the photodiode i–V
relation is given by

as illustrated in Fig. 19.3-2. This is the usual i–V relation for a p–n
junction provided in (17.1-32) with an added term for the
photocurrent −ip that is proportional to the photon flux Φ.



Figure 19.3-2 Generic photodiode and its i–V relation.

There are three classical modes in which photodiodes are operated:
open-circuit (photovoltaic), short-circuit, and reverse-biased
(photoconductive).

Open-circuit mode. In the open-circuit mode (Fig. 19.3-3), the
light generates electron–hole pairs in the depletion region. The
additional electrons freed on the n side of the layer recombine with
holes on the p side, and vice versa. The net result is an increase in
the electric field, which produces a photovoltage Vp across the
device that increases with increasing photon flux Φ. Since it is
operating as an open-circuit device (i = 0), the responsivity of a
photodiode operating in photovoltaic mode is measured in V/W
rather than A/W. This is the mode of operation used in solar cells.

Short-circuit mode. The short-circuit (V = 0) mode is illustrated
in Fig. 19.3-4. The short-circuit current is simply the photocurrent —
ip.



Figure 19.3-3 Photovoltaic (open-circuit) operation of a
photodiode.

Figure 19.3-4 Short-circuit operation of a photodiode.



Figure 19.3-5 Reverse-biased operation of a photodiode: (a)
without a load resistor and (b) with a load resistor. The operating
point lies on the dashed line.

Reverse-biased mode. Lastly, a photodiode may be operated in its
reverse-biased or “photoconductive” mode, as portrayed in Fig. 19.3-
5(a). If a series load resistor is inserted in the circuit, the operating
conditions are those shown in Fig. 19.3-5(b). Photodiodes are
usually operated in a strongly reverse-biased mode for the following
reasons:

A strong reverse bias creates a strong electric field in the
junction region that increases the drift velocity of the carriers,
thereby reducing transit time.

A strong reverse bias increases the width of the depletion layer,
which reduces the junction capacitance and improves the
response time.

The increased width of the depletion layer offers a larger
photosensitive area, facilitating the collection of more light.

B. The p–i–n Photodiode
As a detector, the p–i–n (PIN) photodiode has a number of
advantages over the p–n photodiode. A p–i–n diode is a p–n
junction with an intrinsic (often unintentionally or lightly doped)



layer sandwiched between the p and n layers (Sec. 17.1E). It can be
operated under the various bias conditions considered for the p–n
photodiode in the preceding section. The energy-band diagram,
charge distribution, and electricfield distribution for a reverse-
biased p–i–n diode are illustrated in Fig. 19.3-6. This structure
serves to extend the width of the region supporting an electric field,
in effect widening the depletion layer.

Figure 19.3-6 The p–i–n photodiode structure, energy-band
diagram, charge distribution, and electric-field distribution. The
incident light can be directed parallel to the junction layer (so-called
edge illumination), i.e., vertically in the figure. Alternatively, the
light can be directed at normal incidence to the junction layer, i.e.,
horizontally in the plane of the figure.

Photodiodes with a p–i–n structure offer the following advantages:

Increasing the width of the depletion layer of the device (where
the generated carriers can be transported by drift) increases the
area available for capturing light.

Increasing the width of the depletion layer reduces the junction
capacitance and thereby the RC time constant. On the other
hand, the transit time increases with increasing width of the
depletion layer.

Reducing the ratio between the diffusion length and the drift
length of the device results in a greater proportion of the



generated carriers undergoing the faster drift process.

Normal vs. edge illumination. For normally illuminated
photodiodes, the carrier flow is parallel to that of the photons,
which leads to a tradeoff between responsivity and bandwidth since
attaining high responsivity requires a sufficiently thick absorption
layer (considering In0.53Ga0.47As with α ≈ 104 cm−1 as an example, a
thickness of ≈ 2 μm is required to absorb 88% of the incident light).
Yet, the thicker the absorption region the greater the transit time,
and hence the narrower the bandwidth. For edge-illuminated
photodiodes, on the other hand, light is coupled into the device in
a direction perpendicular to the carrier transport, which permits the
absorption layer to be much thinner than that for normal-incidence
photodiodes. Thus, a salutary feature of the edge-illumination
configuration is that it decouples the absorption of light
(responsivity) and the carrier transit time (bandwidth).

Evanescent coupling. A common implementation for edge-
illuminated photodiodes is to abut an optical fiber or a passive
waveguide with the intrinsic region. In that case, the quantum
efficiency (19.1-3) must accommodate the coupling loss and the
appropriate optical power confinement factor Γ. Evanescently
coupled waveguide photodiodes were developed to mitigate
such losses. They typically consist of a photodiode located atop a
passive waveguide and are well-suited to monolithic integration in
photonic integrated circuits. Evanescent coupling also mitigates any
lattice mismatch between the photodiode and waveguide materials
and typically offers large bandwidths. Performance can be further
enhanced by implementing a traveling-wave configuration.

Responsivity of Si PIN photodiodes. The responsivity of two
commercially available Si p–i–n photodiodes is compared with that
of an ideal device (η = 1) in Fig. 19.3-7. The responsivity maximum
occurs at a wavelength shorter than the bandgap wavelength. This is
because Si is an indirect-bandgap material. The photon-absorption
transitions therefore typically take place from valence-band to



conduction-band states that lie well above the conduction-band
edge, as depicted in Fig. 17.2-6.

Figure 19.3-7 Responsivity (A/W) vs. wavelength (μm) for an ideal
Si photodiode (η = 1) and for two commercially available Si p–i–n
photodiodes. The quantum efficiency of a carefully constructed,
antireflection-coated silicon device can approach unity.

Enhancing Si-photodiode performance with photon-
trapping microstructures. Silicon p–i–n photodiodes that
operate at visible wavelengths enjoy the benefit of a large
absorption coefficient α. However, as the wavelength moves toward
the near infrared, the absorption coefficient decreases, thereby
necessitating the use of a thicker absorption region to maintain the
external quantum efficiency. This in turn results in increased transit
time and reduced device bandwidth. This undesirable effect can be
mitigated by permeating the intrinsic absorption region with micro-
and nanostructured holes that serve to efficiently trap the light,
which substantially increases the effective absorption coefficient.1
This in turn allows for devices with thinner absorption regions and
larger bandwidths.

C. Heterostructure Photodiodes
Heterostructure photodiodes, comprising at least two
semiconductor materials with different bandgaps, provide flexibility



that can offer advantages over homojunctions fabricated from a
single material. A heterojunction that incorporates a large-bandgap
material (Eg > hν), for example, can make use of its transparency to
minimize optical absorption outside the depletion region and hence
to reduce surface recombination and maximize ζ in (19.1-3); the
large-bandgap material is then said to be a window layer.

Two or more materials can also be fashioned into a structure that
makes use of the best features of each. A Ge-on-Si waveguide
structure, for example, combines the superior guiding properties of
Si with the strong near-infrared absorption properties of Ge
(Example 19.3-2). Several material systems are of particular interest
(see, e.g., Figs. 17.1-7, 17.1-8, and 18.1-16):

AlxGa1−xAs/GaAs (AlGaAs lattice matched to a GaAs substrate)
is useful in the wavelength range 0.7 to 0.87 μm.

InxGa1−xAs/InP is a direct-bandgap material that can be lattice
matched to an InP substrate. The bandgap wavelength of this
material is compositionally tunable over the near infrared and a
portion of the mid infrared: 0.873 μm (GaAs) ≤ λg ≤ 3.44 μm
(InAs) (Fig. 18.1-16). This range of wavelengths includes the
1.3–1.6 μm telecommunications band. A typical InGaAs p–i–n
photodetector operating at 1550 nm has a quantum efficiency η
≈ 0.80, a responsivity R ≈ 0.95 A/W, and a bandwidth ≈ 10
GHz.

Ge/Ge0.93Sn0.07/Ge CMOS-compatible double-heterostructures
grown directly on Si operate at wavelengths as long as 2.2 μm.
In the current state of the technology, a typical p–i–n
photodiode operating at room temperature at 1550 nm exhibits
a responsivity R ≈ 0.3 A/W at normal incidence under a
reverse-bias voltage of 0.1 V.

HgxCd1−xTe/CdTe finds extensive use in the mid infrared. This
II–VI ternary semiconductor can be lattice matched to CdTe at
nearly all compositions since CdTe and HgTe have nearly the



same lattice parameter (Fig. 17.1-8). HgCdTe is compositionally
tunable with a bandgap energy that extends from about 0.85 to
16 μm. Applications include night vision, thermal imaging, and
long-wavelength optical communications.

Quaternaries, such as In1−xGaxAs1−yPy/InP,
In1−xGaxAs1−ySby/GaSb, and Al1−xGaxAs1−ySby/GaSb, which are
useful over wavelengths that extend from 0.92 to 5 μm, are of
interest because the fourth element provides an additional
degree of freedom that allows lattice matching to be achieved
for different compositionally determined values of Eg.



EXAMPLE 19.3-1. III–V Multi-Junction Photovoltaic
Solar Cell. Multi-junction solar cells are heterostructures
comprising multiple thin semiconductors films of different
bandgap energies stacked one atop the other. If the light enters
from the top, the values of Eg successively decrease from the top
to the bottom layer, so that each layer acts as a window layer for
the one below it. This allows absorption to be optimized for the
various spectral slices of the solar radiation that reaches earth. A
heterostructure photodiode containing five layers of III–V
materials (InGaP/GaAs/InGaAsNSb/GaSb/InGaAsSb) operating
in the photovoltaic mode harvests > 99% of the available solar
power and achieves a quantum efficiency η > 41%.2 The two
smallest-bandgap layers at the bottom of the stack, GaSb and
InGaAsSb, absorb light in the wavelength region between 1.7 and
2.5 μm in the infrared (Fig. 18.1-16).

EXAMPLE 19.3-2. Ge-on-Si Waveguide Photodiode. In
the 1.3–1.6-μm telecommunications band, silicon is transparent
(λg = 1.11 μm; see Table 17.1-2) and therefore not photosensitive.
Efficient and high-speed silicon-photonics-based photodetectors
have traditionally been fabricated via hybrid integration of
photosensitive III–V materials, such as InGaAs on Si, but an
alternative is to make use of CMOS-compatible Ge, which is
sensitive over this range of wavelengths. However,
accommodating the substantial lattice mismatch between Ge
and Si (≈ 4.2%) dictates using configurations in which Ge and Si
are evanescently or butt coupled. In one particular design that
relies on edge illumination, light emerging from a Si waveguide
is butt-coupled to the intrinsic region of a lateral p–i–n Ge-on-Si
photodiode integrated at the end of the Si waveguide.3 Operating
at 1550 nm, this photodiode offers a responsivity of ≈ 1 A/W and
a bandwidth > 50 GHz. It has performance comparable with that
obtained using hybrid integration of InGaAs on Si and it can also
be operated in photovoltaic mode.



Schottky-Barrier Photodiodes

Metal–semiconductor photodiode. (also called Schottky-
barrier photodiodes) are formed from metal–semiconductor
heterojunctions. A thin semitransparent metallic film is used in
place of the p-type (or n-type) layer in the p–n junction photodiode.
The thin film is sometimes fabricated from a metal–semiconductor
alloy that behaves like a metal. The Schottky-barrier structure and
its energy-band diagram are shown schematically in Fig. 19.3-8 for
metal deposited on a lightly doped n-type semiconductor.

Figure 19.3-8 (a) Structure and (b) energy-band diagram of a
Schottky-barrier photodiode formed by depositing a metal on an n-
type semiconductor. At equilibrium, the Fermi levels in the two
regions align. These photodetectors are responsive to photon
energies greater than the Schottky barrier height, hν > W − χ.
Schottky-barrier photodiodes can be fabricated from many
materials, such as Au on n-type Si (which operates in the visible)
and platinum silicide (PtSi) on p-type Si (which operates over a
range of wavelengths that stretches from the ultraviolet to the
infrared).

On contact, electrons flow from the semiconductor to the metal,
bringing the Fermi levels of the two materials into alignment. This
results in a region depleted of free electrons just inside the
semiconductor interface. The accompanying fixed positive charges
in the semiconductor cause its valence and conduction bands to
bend upward at the interface. At equilibrium, the discontinuity in
allowed energy states of the two materials gives rise to the Schottky



barrier, which blocks the flow of electrons from the metal back to
the semiconductor and is responsible for the rectifying nature of the
device. The absorption of a photon results in current flow.

Schottky-barrier photodiodes are particularly useful in a number of
circumstances:

Not all semiconductors can be prepared in both p-type and n-
type forms; Schottky-barrier devices can be used in these
material systems.

Semiconductors used for the detection of visible and ultraviolet
light with a photon energy well above the bandgap energy have
a large absorption coefficient. This gives rise to substantial
surface recombination and a reduction of quantum efficiency.
The depletion layer of the metal–semiconductor junction is
present immediately at the surface, in contrast, thereby
eliminating surface recombination.

The response speed of p–n and p–i–n junction photodiodes is
in part limited by the slow diffusion current associated with
photocarriers generated close to, but outside of, the depletion
layer. One way of decreasing this unwanted absorption is to
decrease the thickness of one of the junction layers, but this
should be implemented without substantially increasing the
series resistance of the device, which increases the RC time
constant. The Schottky-barrier structure achieves this because
of the low resistance of the metal. Furthermore, Schottky-
barrier structures are majority-carrier devices and therefore
have inherently fast responses and large operating bandwidths.
Response times of ps, corresponding to bandwidths of 100 GHz,
are readily available.

Representative responsivity curves for several p–i–n and Schottky-
barrier photodiodes are displayed in Fig. 19.3-9.



Figure 19.3-9 Responsivity R (A/W) versus wavelength λo (μm)
for a number of p–i–n (solid) and Schottky-barrier (dashed)
photodiodes. For ternary and quaternary devices, the wavelength of
maximal response depends on composition. Response times in the
tens of ps, corresponding to bandwidths ≈ 50 GHz, are generally
available.



EXAMPLE 19.3-3. Graphene–Si Schottky-Barrier
Photodiode. Graphene is a 2D crystal comprising a one-atom-
thick layer of graphite whose atoms are arranged in a hexagonal
honeycomb lattice (Sec. 17.1B). By virtue of graphene’s high
conductivity, low reflectance, high carrier mobility, and the
broad spectrum over which it interacts with radiation, the
junction between graphene and n-type silicon can serve as a
high-speed, broadband Schottky-barrier photodiode. It is
remarkable that a junction formed by a 2D/zero-bandgap
material and a 3D/finite-bandgap material yields a practical
operating device. Calculations show that the absorbance of
graphene is 𝒜 ≈ πe2/ℏc ≈ 2.3% for photon energies below 3 eV.
Since the reflectance of a single graphene layer is minuscule, ℛ
≈ 1.3 × 10−4, the intensity transmittance is 𝒯 ≈ 1 − 𝒜 ≈ 97.7% (at
normal incidence). The graphene thus acts as a nonreflecting,
transparent electrode that serves to collect carriers while the
optical absorption associated with the detection process takes
place in the silicon. Schottky-barrier photodiodes have been
fabricated by depositing graphene on lightly doped n-type silicon
using CVD in a CMOS-compatible process.4 The devices are
sensitive over the visible and near-infrared spectral regions,
exhibiting a cutoff at the bandgap wavelength of Si, λg = 1.1 μm.
Illuminated at normal incidence, the responsivity of a typical
device closely resembles the Si responsivity curve portrayed in
Fig. 19.3-9. Using (19.1-5), together with the observed
responsivity of R ≈ 0.3 A/W at 0.6 μm on the graphene–Si curve
leads to a quantum efficiency η ≈ 0.6. Devices such as these can
also be configured to provide internal gain by using electrodes
that direct the current flow laterally, along the width of the
device rather than through its thickness, thereby co-opting the
enormous contrast between the fast transit time of graphene, τh,
and the slow recombination time in the graphene–silicon
system, τ. In accordance with (19.2-3), this configuration leads to
a gain given by G = τ/τh. The observed value of gain in these



devices is G ≈ 3 × 104, corresponding to a responsivity R ≈ 104 in
accordance with (19.1-8). It is noteworthy that the Fermi level of
graphene may be tuned by doping, or by the application of a bias
voltage, which serves to modify the barrier height of the
Schottky junction and thus the current–voltage relationship of
the device. Other 2D materials have also been juxtaposed with
various semiconductor structures to construct photodiodes that
operate in both biased and photovoltaic modes.

19.4 AVALANCHE PHOTODIODES
An avalanche photodiode (APD) operates by converting each
detected photon into a cascade of moving carrier pairs. Weak light is
then able to elicit a current that is sufficiently large so that it can be
readily detected by the electronics following the device. APDs are
configured as strongly reverse-biased photodiodes that have large
electric fields in the junction region, enabling charge carriers to
acquire sufficient energy so they can excite new carriers via impact
ionization. However, the multiplication process requires time to
play out and introduces gain noise, which limits system bandwidth
and performance. Avalanche photodiodes find extensive use in
optical fiber communication receivers (Sec. 25.1D) and are used in
applications involving imaging, scanning, and range finding.

A. Conventional Avalanche Photodiodes
The history of a typical electron–hole pair in the depletion region of
a conventional avalanche photodiode (CAPD) is depicted in
Fig. 19.4-1. A photon is absorbed at point 1, creating an electron–
hole pair (an electron in the conduction band and a hole in the
valence band). The electron accelerates under the influence of the
strong electric field, thereby increasing its energy with respect to the
bottom of the conduction band. The acceleration process is
constantly interrupted by random collisions with the lattice in
which the electron loses some of its acquired energy. These



competing processes cause the electron to reach an average
saturation velocity. Should the electron be lucky and acquire an
energy larger than Eg at any time during the process, it has an
opportunity to generate a second electron–hole pair by impact
ionization (say at point 2). The two electrons then accelerate under
the effect of the field, and each of them may be the source for a
further impact ionization. The holes generated at points 1 and 2 also
accelerate, moving toward the left. Each of these also has a chance
of creating an impact ionization should they acquire sufficient
energy, thereby generating a hole-initiated electron–hole pair (e.g.,
at point 3).

Figure 19.4-1 Schematic representation of the multiplication
process in a conventional homojunction avalanche photodiode
(CAPD).

Ionization Coefficients and Ionization Ratio

Ionization coefficients. The abilities of electrons and holes to
impact ionize are characterized by the ionization coefficients αe
and αh, respectively. These quantities represent ionization
probabilities per unit length (cm−1); the inverse coefficients 1/αe
and 1/αh represent average distances between consecutive
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ionizations for electrons and holes, respectively. The ionization
coefficients increase with electric-field strength in the depletion
layer (since it provides the acceleration) and decrease with
increasing device temperature (since the increased frequency of
collisions diminishes the opportunity of a carrier gaining sufficient
energy to cause an ionization). The simplified theory presented in
this section assumes that αe and αh are constants. For purposes of
noise reduction, however, it can be advantageous to design devices
in which the ionization coefficients depend on carrier history and
position in particular ways, as discussed in Sec. 19.4B.

Ionization ratio. An important parameter for characterizing the
performance of an APD is the ionization ratio, which is defined as
the ratio of the ionization coefficients,

When holes do not ionize appreciably (i.e., when αh ≪ αe so that k
≪ 1), most of the ionization is achieved by electrons. The
avalanching process then proceeds principally from left to right in
Fig. 19.4-1 (i.e., from the p side to the n side of the device), and
terminates when all of the electrons arrive at the n side of the
depletion layer. If electrons and holes both ionize appreciably (k ≈
1), those holes that move to the left create electrons that move to
the right, which in turn generate further holes moving to the left,
possibly leading to an unending circulation. Though this feedback
process increases the gain of the device (the total generated charge
in the circuit per photocarrier pair, q/e), it is nevertheless
undesirable for several reasons:

It is time consuming and therefore reduces the device
bandwidth.

It is random and therefore increases the device noise.

It can be unstable, thereby causing avalanche breakdown.
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It is therefore desirable to fabricate APDs from single-carrier-
multiplication materials, i.e., from materials that permit only one
type of carrier (either electrons or holes) to impact ionize. For
example, if electrons have the higher ionization coefficient, optimal
behavior is attained by injecting the electron of a photocarrier pair
at the p-type edge of the depletion layer, and by making use of a
material whose value of k is as small as possible. If the material is
such that holes have the higher ionization coefficient, the hole of a
photocarrier pair should be injected at the n-type edge of the
depletion layer and k should be as large as possible. Hence, the ideal
case of single-carrier multiplication is achieved when k = 0 or ∞.

Gain and Responsivity

Single-carrier-injection single-carrier-multiplication
(SCISCM) devices. As a prelude to determining the gain of an
APD in which both kinds of carriers can give rise to ionizations, we
first consider the simpler problem of single-carrier (electron)
multiplication (αh = 0, k = 0) with single-carrier (electron)
injection. Let Je(x) be the electric current density carried by
electrons at location x, as illustrated in Fig. 19.4-2.

Figure 19.4-2 Exponential growth of the electric current density in
a single-carrierinjection single-carrier-multiplication APD.

Within a distance dx, on average, the current is incremented by

from which we obtain the differential equation
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(19.4-5)

(19.4-4)

whose solution is the exponential function Je(x) = Je(0)exp(αex).
The gain G = Je(w)/Je(0) is therefore

The electric current density increases exponentially with the
product of the ionization coefficient αe and the multiplication layer
width w. The result is analogous to that for gain in a laser amplifier
[see (15.1-7)].

Single-carrier-injection double-carrier-multiplication
(SCIDCM) devices. Solution of the double-carrier multiplication
problem requires knowledge of both the electron current density
Je(x) and the hole current density Jh(x). We assume that only
electrons are injected into the multiplication region (single-carrier
injection). Since hole ionizations also produce electrons, however,
the growth of Je(x) is governed by the differential equation

As a result of charge neutrality, dJe/dx = −dJh/dx, and the sum
Je(x)+ Jh(x) must remain constant for all x under steady-state
conditions. This is clear from the illustration provided in Fig. 19.4-3;
the total number of charge carriers crossing any plane is the same
regardless of the position x.
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Figure 19.4-3 Constancy of the sum of the electron and hole
current densities across a plane at any value of x. By way of
illustration, a single injected electron gives rise to four impact
ionizations, with four electrons plus four holes crossing every plane.

Since it is assumed that no holes are injected at x = w, we have
Jh(w) = 0 so that

as displayed in Fig. 19.4-4.

Figure 19.4-4 Electron and hole current densities in a double-
carrier-multiplication APD with electron injection.

The hole current density Jh(x) can therefore be eliminated in (19.4-
5) to obtain

This first-order differential equation is readily solved for the gain G
= Je(w)/Je(0). For αe ≠ αh, the result is G = (αe − αh)/{αe exp[−(αe −
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APD Gain

αh)w] − αh}, from which we obtain

The single-carrier multiplication result for the gain (19.4-4), with its
simple exponential growth, is recovered when k = 0. When k = ∞ so
that only holes multiply, the gain remains unity since only electrons
are injected and electrons do not multiply. For k = 1, (19.4-8) is
indeterminate and the gain must be obtained directly from (19.4-7);
the result is then G = 1/(1 − αew). An instability is reached when
αew = 1. The dependence of the gain on αew for several values of the
ionization ratio k is illustrated in Fig. 19.4-5.

Figure 19.4-5 Growth of the gain G with multiplication-layer
width w for several values of the ionization ratio k in a single-
carrierinjection double-carrier-multiplication (SCIDCM) APD with
pure electron injection.

The responsivity R of the SCIDCM APD is obtained by using (19.4-
8) in conjunction with the general relation (19.1-8).

Device Structures

As with photodiodes, APDs should be configured with a geometry
designed to maximize photon absorption (e.g., by emulating a p–i–n
structure) and to minimize dark current. Concomitantly, the
multiplication region should be designed with a sufficiently strong
field to foster single-carrier impact ionization with minimal



multiplication noise, and thin enough to minimize the possibility of
uncontrolled localized avalanches associated with instabilities and
microplasmas.

SAM APDs. These conflicting requirements call for an APD design
in which the absorption and multiplication regions are spatially
separated. Structures of this kind are known as separate
absorption and multiplication (SAM) APDs.

Reach-through APDs. The operation of a SAM APD is most
readily understood by considering a device fabricated from a
material such as Si, for which k ≈ 0 (Example 19.6-3). In the device
portrayed in Fig. 19.4-6, known as a reach-through APD, photons
are absorbed in an extended intrinsic (or lightly doped) π region.
The photoelectrons drift across this region under the influence of a
moderate electric field and then enter a thin p–n+ junction where
they experience an electric field sufficient to cause avalanching. The
reverse-bias voltage applied across the device is large enough for the
depletion region to reach through the p and π regions into the p+

contact layer.

Figure 19.4-6 Reach-through p+–π–p–n+ APD structure. The π
region is intrinsic or very lightly doped p-type material. The p+ and
n+ regions are heavily doped. Avalanching occurs in the thin p–n+

junction region where the electric field is strong.

SACM APDs. A variation on the SAM theme is the separate
absorption, charge, and multiplication (SACM) APD, a



heterostructure device that incorporates a charge layer in addition
to the separate absorption and multiplication layers. The charge
layer is designed to keep the electric field in the absorption region
small (so that dark current arising from tunneling in this narrow-
bandgap layer is minimized), while providing a large field in the
wide-bandgap multiplication region (to facilitate impact
ionizations). Use of a wide-bandgap multiplication layer minimizes
tunneling and thermal effects, thereby minimizing the dark current
generated in this region. The relative field strengths in the two
regions are governed by the doping profile, much as with the reach-
through structure shown in Fig. 19.4-6. Compositionally graded
layers are often incorporated to avoid carriers from being trapped at
the interfaces between layers.

Response Time

Avalanche buildup time. Aside from the usual transit, diffusion,
and RC time constants that govern the response time of
photodiodes, APDs are subject to an additional time constant known
as the avalanche buildup time. It is the time required for the
impact-ionization process to unfold and settle, and it places a limit
on the speeds at which APD-based systems can operate. Systems
operating at bit rates beyond those limits must make use of p–i–n
photodiodes.

The response time of a separate absorption and multiplication
(SAM) APD is illustrated in Fig. 19.4-7 by displaying the history of a
photoelectron generated at the edge of the absorption region (point
1). The APD is assumed to operate via single-carrierinjection
double-carrier-multiplication (SCIDCM). The electron drifts with a
saturation velocity ve, reaching the multiplication region (point 2)
after a transit time wd/ve. Within the multiplication region the
electron also travels with velocity ve. Through impact ionization it
creates electron–hole pairs, say at points 3 and 4, generating two
additional electron–hole pairs. The holes travel in the opposite
direction with their saturation velocity vh. The holes can also cause



impact ionizations, resulting in electron– hole pairs as shown, for
example, at points 5 and 6. These carriers can themselves cause
impact ionizations, sustaining the feedback loop. The process
terminates when the last hole (at point 7) leaves the multiplication
region and crosses the absorption region to arrive at point 8.

Figure 19.4-7 (a) Tracing the course of the avalanche buildup time
in a SAM APD with the help of a position–time graph. The device is
assumed to operate via single-carrier-injection and double-carrier
multiplication. The blue lines represent electrons, and the green
lines represent holes. Electrons move to the right with velocity ve
and holes move to the left with velocity vh. Electron– hole pairs are
produced in the multiplication region. The carriers cease moving
when they reach the edge of the material. (b) Hole current ih(t) and
electron current ie(t) induced in the circuit. Each carrier pair
induces a charge e in the circuit. The total induced charge q, which
is the area under the ie(t) + ih(t) vs. t curve, is Ge. This figure is a
generalization of Fig. 19.1-6, which applies for a single electron–
hole pair.



(19.4-9)

(19.4-10)

(19.4-11)

The total time τ required for the entire process (between points 1
and 8) to unfold is the sum of the transit times (roughly from 1 to 2
and from 7 to 8) and the multiplication time denoted τm,

Because of the randomness of the multiplication process, the
multiplication time τm is random. In the special case when k = 0 (no
hole multiplication) the maximum value of τm is readily seen from
Fig. 19.4-7 to be

For large gain G, and for electron injection with 0 < k < 1, an order
of magnitude estimate of the average value of τm is obtained by
multiplying the first term of (19.4-10) by the factor Gk, so that

Reducing k shortens τm and τ and hence increases the speed at
which the APD operates. The associated hole current ih(t) and
electron current ie(t) are also displayed in Fig. 19.4-7. A more
accurate theory is rather complex.



EXAMPLE 19.4-1. Avalanche Buildup Time in a Si APD.
Consider a silicon APD with wd = 50 μm, wm = 0.5 μm, ve = 107

cm/s, vh = 5 × 106 cm/s, G = 100, and k = 0.1. Equation (19.4-10)
yields τm = 5 + 10 = 15 ps, so that (19.4-9) gives τ = 1020 ps =
1.02 ns. On the other hand, (19.4-11) yields τm = 60 ps, so that
(19.4-9) provides τ = 1065 ps = 1.07 ns. For a p–i–n photodiode
with the same values of wd, ve, and vh, the transit time is wd/ve +
wd/vh ≈ 1 ns. The results do not differ greatly because τm is quite
low in a Si SAM device.

Materials

The materials used for the photosensitive absorption layers of APDs
are closely related to those used for p–i–n photodiodes (Fig. 19.3-9).
The materials used for the multiplication layers should have values
of the ionization ratio k that are as low as possible for electron
injection or as high as possible for hole injection; relatively large
bandgap energies are also useful for minimizing dark current.

Silicon and AlInAsSb APDs, which are principally used in the
wavelength regions 700–900 nm and 1.3–1.6 μm, respectively, offer
ionization ratios as low as k ≈ 0.01–0.02, and hence nearly
negligible gain noise. Low-k materials suitable for use in the
ultraviolet include GaN and AlGaN, while HgCdTe finds use in the
mid infrared.



EXAMPLE 19.4-2. InGaAs/InP SAM APD. InGaAs/InP
SAM APDs, in which InGaAs and InP serve as the materials used
in the absorption and multiplication regions, respectively, have
traditionally been used for optical fiber communication systems
that operate in the 1.3–1.6-μm telecommunications band (Sec.
25.1D). Because they are easily fabricated and offer high
responsivities (Fig. 19.3-9), these devices continue to be used
despite the somewhat unfavorable ionization ratio for InP (1/k ≈
0.3). They are generally operated at voltages that lie between
punchthrough and breakdown (Fig. 19.4-8); as the reverse-bias
voltage increases, so too do the gain and dark current. Tens of
volts of bias results in an electric field ≈ 105 V/cm, which is
sufficient to initiate the avalanche process. Typical values of the
mean gain and bandwidth are  ≈ 10 and B = 10 GHz,
respectively. In an SACM configuration, InGaAsP can serve as
the charge layer. AlInAs is sometimes used in place of InP for
the multiplication region because of its more favorable
ionization ratio (1/k ≈ 0.2); in accordance with (19.4-11), this
also provides higher speed.



Figure 19.4-8 Current–voltage characteristic for an
InGaAs/InP separate absorption and multiplication (SAM) APD.
The device is operated at a reverse-bias voltage that lies between
punchthrough (the voltage at which the depletion region
penetrates the absorption region) and breakdown (the voltage
at which uncontrolled avalanching occurs).

EXAMPLE 19.4-3. Ge-on-Si SACM APD. The Ge-on-Si
SACM APD, a group-IV-photonics monolithic device, operates
across most of the 1.3–1.6-μm telecommunications band. A
principal merit of this device is its CMOS compatibility and its
availability for on-chip integration. The normal-incidence device
is fabricated such that the photons impinge on a Ge absorption
layer grown atop a layer of Si, in which carrier multiplication
takes place; this avoids the intrinsic noisiness of carrier
multiplication in Ge (see Prob. 19.4-2). A Si charge layer
maintains a low electric field in the absorption region to
minimize dark current. With unintentionally doped Ge and Si
layers of thicknesses 1 and ½ μm, respectively, and a 0.1-μm p-
type Si charge layer, this APD exhibits the following properties:5

mean gain  ≈ 50; gain–bandwidth product GB ≈ 350 GHz
(substantially exceeding that of an InGaAs/InP APD);
responsivity R ≈ 5.9 A/W at λo = 1.3 μm; ionization ratio k ≈
0.09; and operation at bit rates of 25 Gb/s. The principal limiting



features are: 1) the steep decrease in the absorption coefficient
of Ge for wavelengths greater than ≈ 1.55 μm, and 2) the
relatively large dark current arising from deep-level traps
associated with the lattice mismatch between Ge and Si. Much
as with Ge-on-Si waveguide photodiodes (Example 19.3-2),
waveguide-based Ge-on-Si SACM APDs decouple the light
absorption and carrier collection, enabling these devices to offer
both high quantum efficiency and high speed.

EXAMPLE 19.4-4. AlInAsSb/GaSb SACM APD. The
AlInAsSb SACM APD is a III–V direct-bandgap device that
operates across the 1.3–1.6-μm telecommunications band. This
digital-alloy material system, which is lattice matched to GaSb,
offers a high absorption coefficient and is suitable for designing
complex structures. The AlxIn1−xAsySb1−y APD illustrated in Fig.
19.4-9 makes use of absorption and multiplication layers with
low and high Al content, respectively, corresponding to small
and large energy bandgaps.6 It has a quantum efficiency η ≈ 0.4
and a dark current that is somewhat greater than that of the
InGaAs/AlInAs APD, but substantially lower than that of the Ge-
on-Si APD. The ionization ratio k, which is comparable to that of
Si, is approximately 0.01 at a mean gain  = 10 (Example 19.6-4).
Digital alloys of AlInAs also prove useful in fabricating low-noise
APDs.



Figure 19.4-9 Structure of an AlxIn1−xAsySb1−y separate
absorption, multiplication, and charge (SACM) APD with a
lattice-matched GaSb substrate. The device has a 1-μm-thick, n−-
type AlInAsSb absorption layer (x = 0.4, y = 0.3) surrounded by a
pair of 100-nm-thick, p+-type compositionally graded AlInAsSb
layers (not shown). A 150-nm-thick, p-type AlInAsSb charge
layer (x = 0.7, y = 0.3) separates the absorption layer from the 1-
μm-thick, n−-type AlInAsSb multiplication layer (x = 0.7, y =
0.3). The substrate is n+-type GaSb.

EXAMPLE 19.4-5. HgCdTe SAM APD. HgxCd1−x Te is a II–
VI direct-bandgap material whose bandgap wavelength can be
compositionally tuned from 0.85 to 16 μm (Fig. 17.1-8). This
material is useful for fabricating SAM APDs with cutoff
wavelengths extending from 2 to 11 μm in the mid infrared.7
HgCdTe APDs offer quantum efficiencies as high as 0.9, high
gain (  > 1000), and large gain–bandwidth products (GB > 1
THz), but they require cryogenic cooling. They exhibit single-
carrier-injection single-carrier-multiplication (SCISCM)
behavior (electron multiplication prevails for 0.2 < x < 0.6) with
an ionization ratio k ≈ 0, so they are very low-noise devices.
HgCdTe APDs are readily incorporated into focal plane arrays
that are useful in a whole host of low-flux and high-speed
infrared applications, including imaging and lidar.

B. History-and Position-Dependent Parameters



The theory for the conventional APD (CAPD) set forth in Sec. 19.4A
is predicated on the assumption that the probability that a carrier
will effect an impact ionization is independent of both its ionization
history and the location at which the ionization occurs. The
ionization rate for the CAPD is thus taken to be the same at all
times and locations within the multiplication region.

These simplifying assumptions are not always applicable, however,
and other conditions can prevail:

To garner sufficient energy so it can initiate an impact
ionization, a newly generated carrier may need to travel some
distance in the multiplication region, indicating that the
probability of impact ionization depends on the carrier’s
ionization history.

The multiplication region of an APD can be bandgap-
engineered in such a way that it contains quantum wells,
graded bandgaps, and/or other features that render the
probability of impact ionization dependent on the carrier’s
location within the device.

We proceed to consider APDs with history-dependent
parameters and position-dependent parameters in turn.
Combinations of these features can be deliberately incorporated
into APD designs to reduce gain noise and improve performance.

APDs with History-Dependent Parameters

In certain cases, a newly generated carrier in the multiplication
region of an APD can cause an impact ionization only after traveling
a certain distance that enables it to accumulate sufficient energy
from the electric field. The carrier ionization probability is then zero
immediately following its generation, and it remains zero over a
distance known as the dead space. A more accurate portrayal
considers the carrier ionization probability to slowly recover
following its generation, in which case the recovery distance is more



properly termed sick space. In either case, the ionization
coefficient is clearly dependent on the carrier’s ionization history.

Specially designed multilayer APD structures can offer high-gain,
low-noise, and low-dark-current by appropriately tailoring their
history-dependent parameters:

Dead space. Dead space, which is inherent in the process of
impact ionization, regularizes the locations at which impact
ionizations occur, thereby enhancing the orderliness of the
carrier-generation process, which reduces the gain noise. The
effect of dead space is particularly pronounced when the
multiplication region is thin and the number of multiplications
is small.

Initial-energy effects. Carriers traversing an appropriately
designed field gradient before entering the multiplication
region can garner substantial kinetic energy, thereby reducing
the initial dead space in the multiplication region and thus
further regularizing the impact ionizations and reducing the
gain noise.

The theory of gain noise for APDs with history-dependent
parameters is outlined in Sec. 19.6B.

APDs with Position-Dependent Parameters

Multilayer avalanche photodiodes can be fabricated with bandgaps
and ionization coefficients that have arbitrary positional
dependencies within each device layer. Special cases of such
multilayer devices are conventional, separate absorption and
multiplication, multiquantum-well, and superlattice APDs.

Specially designed multilayer APD structures can offer high gain,
low noise, and low dark current by appropriately tailoring their
position-dependent parameters:



Position-dependent field gradients. A multilayer device can be
designed such that a carrier traversing it encounters energy-
band discontinuities that accelerate carriers at specific locations
within the structure. The additional kinetic energy suddenly
imparted to a carrier can then selectively enhance the
probability of impact ionization.

Position-dependent ionization thresholds. A multilayer device
can be designed such that a carrier traversing it encounters a
sudden decrease in the ionization threshold energy as it crosses
from a layer of one material into a layer of another. A carrier
with insufficient energy in the first layer is then more likely to
cause an ionization upon entering the second layer.

The theory of gain noise for superlattice APDs (SAPDs), with their
attendant position-dependent parameters, is provided in Sec. 19.6B.

C. Single-Photon and Photon-Number-Resolving
Detectors
Single-photon detectors are able to detect individual photons. This
capability is important in a broad variety of applications that include
imaging, lidar, remote sensing, communications, astronomy,
quantum optics, and quantum information. The performance of a
single-photon detector is assessed on the basis of a number of
parameters, including spectral sensitivity, detection efficiency, dark-
count rate, timing jitter, maximum count rate, active area, operating
temperature, and photon-number-resolving capability.

We consider in turn three solid-state detectors suitable for detecting
and counting individual photons: single-photon avalanche diodes
(SPADs), silicon photomultipliers (SiPMs), and superconducting
single-photon detectors (SSPDs).

It is perhaps worth mentioning that there are several emerging
technologies that may (or may not) prove useful for achieving
single-photon and photon-numberresolving detection: 1) nonlinear-
optical frequency up-conversion of IR photons to visible



wavelengths where single-photon detection is more efficient; 2)
SCISCM Si:As SAM devices operated at cryogenic temperatures; 3)
superconducting nanowire single-photon detectors (SNSPDs)
operated at cryogenic temperatures; and 4) quantum-dot and defect-
based single-photon detectors.

Single-Photon Avalanche Diodes (SPADs)

Photomultiplier tubes (PMTs) have long been the workhorses of
single-photon and photon-counting systems (Sec. 19.1A). Visible
and near-infrared PMTs exhibit spectral sensitivities that extend
from 150 to 1000 nm, detection efficiencies as high as 40%, dark-
count rates as low as 100 counts/s, timing jitter of 300 ps,
maximum count rates of 10 MHz, diameters ranging from mm to 1/2
m, room-temperature operation, and limited photon-number-
resolving capability.

As a convenient solid-state alternative to the PMT, single-photon
detection can be achieved by making use of a single-photon
avalanche diode (SPAD), which is also known as a Geiger-
mode avalanche photodiode since its operation is analogous to
that of the Geiger counter used to detect ionizing radiation. The
SPAD is an APD that is biased slightly above its avalanche
breakdown voltage so that a single electron– hole pair generated by
the absorption of a photon is sufficient to precipitate avalanche
breakdown, creating a large current pulse that signifies the arrival of
the photon. The detector response is binarized in this mode of
operation, which serves to mitigate gain noise and circuit noise. The
photon detection efficiency (PDE) η is the probability that an
incident photon generates a detectable electrical current in the
output circuit. Thermal, tunneling, and trapping processes in the
semiconductor material also result in the generation of electron–
hole pairs that precipitate avalanches, and these events give rise to a
finite dark-count rate.

Each avalanche must be quenched to prepare the SPAD for the
arrival of the next photon. This quenching may be carried out by



passive or active means:

Passive quenching is most simply achieved by incorporating a
high-resistance series resistor in the SPAD circuit that develops
a substantial voltage drop in response to the avalanche current
pulse, which reduces the voltage across the diode and quenches
the avalanche.

Active quenching is more complex but allows for a substantially
greater maximum photon count rate. A fast discriminator
senses the steep onset of the avalanche current pulse across a
series resistor and triggers circuitry that reduces the voltage
across the diode to below breakdown, which quenches the
avalanche. The voltage is then restored to a value above
breakdown, and, after a recovery time of about 100 ns, the
device is ready for the next photon. In practice, the recovery
time depends on the characteristics of the device as well as on
its ancillary circuitry. It can be abrupt or gradual, in which case
it is represented by a dead time or sick time, respectively.
The dead time limits the maximum count rate of the detector
and is sometimes deliberately extended to suppress
afterpulsing.

A number of materials are useful for fabricating SPADs in different
wavelength regions:

Si SPADs operate in the visible and near infrared (350 < λo <
900 nm). They offer photon detection efficiencies as high as
65%, dark-count rates as low as 25 counts/s, timing jitter of
400 ps, maximum count rates of 10 MHz, diameters of 100–
200 μm, and room-temperature operation, but they do not offer
photonnumber-resolving capability.

InGaAs/InP SPADs, which operate in the near infrared (900 <
λo < 1700 nm) are the devices of choice in the optical fiber
telecommunications band, but their performance is not nearly
as good as that of Si SPADs. Because these devices have



inordinately high dark-count rates (typically > 20 000
counts/s), they are often cryogenically cooled and operated in a
gated Geiger mode, which is suitable when the photon
delivery time is known. They then offer photon detection
efficiencies of 10%, gated dark-count rates of 100 counts/s,
timing jitter of 400 ps, maximum count rates of 10 kHz, and
diameters of 40 μm. Ge-on-Si SPADs are also sometimes used
in this wavelength region but their performance is inferior to
that of InGaAs/InP devices.

HgCdTe SPADs are useful in the mid-infrared region while GaN
and SiC SPADs have found use in the ultraviolet. SiC has the
particular merit that it can tolerate high temperatures and
hostile environments.

When operated individually, SPADs are typically only able to
distinguish between the detection of zero photons and one-or-more
photons, thus obviating their use for photonnumber-resolving
applications. This is because the detection of one photon leads to an
avalanche breakdown indistinguishable from that initiated by more
than one photon.

Silicon Photomultipliers (SiPMs)

Though a stand-alone SPAD cannot distinguish between the
detection of a single photon and multiple photons, photon-number-
resolving capability can be achieved by making use of multiple
SPADs. In one configuration, a cascade of beamsplitters and
suitable delays can be used to splay the multiphoton pulse out in
time so that the constituent photons can be separately detected. Or,
as with a microchannel plate (MCP), the multiphoton pulse can be
made to broadly illuminate an array of SPADs so that the
constituent photons are spatially splayed out among the individual
SPADs.

The silicon photomultiplier (SiPM) is a Si SPAD spatial array in
which a quenching resistor is inserted in series with each SPAD and
the summed output is fed to an amplifier. The modus operandi of



this device mimics that of human scotopic vision. The SPADs that
comprise the SiPM are analogous to the retinal rods in a receptive
field, and the SiPM collection circuit is analogous to the associated
retinal ganglion cell. A photon-number-resolving scheme such as
this requires a sufficient number of SPADs to mitigate the
possibility of two or more photons being absorbed in any one SPAD.
Systems based on this architecture have the following salutary
features:

Immunity to dead time in the individual elements

Enlarged photosensitive area

Photon-number-resolving capability

High sensitivity and gain

A typical SiPM is a two-terminal Si device with an area in the range
of 1–50 mm2 that contains between hundred and thousands of Si
SPADs, each of area 102–104 μm2. Typical devices exhibit gains in
the range  ≈ 106 and overall decay times τ ≈ 100 ns. SiPMs find
applications in medical imaging, quantum optics, astrophysics, and
high-energy physics.

Comparison of SiPMs and PMTs. Since silicon photomultipliers
and photomultipler tubes serve similar functions, it is useful to
consider their relative advantages:

Advantages of SiPMs over PMTs:

Lower operating voltage (tens of volts)

Higher spatial resolution

Superior photon-number-resolving capability

Smaller size

More rugged construction

Lower cost



Immunity to magnetic fields (can be used in MRI and PET
scanners)

Absence of hysteresis

Compatibility with semiconductor technology

Disadvantages of SiPMs with respect to PMTs:

Operation restricted to the 300–900-nm spectral region

Lower gain

Longer response time

Greater dark-count rate

Lower sensitivity for small photon flux

Higher excess noise factor (arising from crosstalk among
elements)

Inferior dynamic range

Smaller photosensitive areas (although monolithic SiPM arrays
are available)

Greater sensitivity to temperature variations

Greater susceptibility to damage from ionizing radiation

Silicon photomultipliers (SiPMs) and photomultiplier tubes (PMTs)
thus play complementary roles in the domain of single-photon and
photon-number-resolving detection. The choice of which device to
select depends on the intended use and the prevailing experimental
conditions.

CMOS-integrated SiPMs. The performance of SiPMs can be
significantly enhanced by using CMOS technology to incorporate
the constituent SPADs together with their circuitry on the same
silicon substrate. The compactness of such structures reduces
response time and time jitter, and thus leads to faster devices.
Digital SiPMs that employ direct pulse counting based on digital



readout have also been developed. Much like their analog
counterparts, these devices, which are sometimes called digital
photon-counting (DPC) devices, deliver a collective output.

Superconducting Single-Photon Detectors (SSPDs)

Single-photon detection and photon-number-resolved detection can
also be achieved by making use of superconducting single-
photon detectors (SSPDs) such as the transition-edge sensor
(TES). At its superconducting critical temperature, the TES behaves
as a microbolometer in which the absorption of a photon results in
a steep temperature-induced change in resistance. This enables a
precise measurement of the energy associated with an arbitrary
number of absorbed photons, allowing highly resolved photon-
number detection. TES devices can be constructed from materials
such as tungsten-on-silicon or NbN-on-sapphire, and are sensitive
from the infrared to the X-ray. TES devices exhibit jitters of 100 ns,
bandwidths of 100 kHz, negligible dark counts, and photon
detection efficiencies in excess of 90% when embedded in suitable
optical-cavity structures. Their use in practice is complicated by the
need for cryogenic operation and by their small active areas.

In one configuration, photolithographically patterned 40-nm-thick
tungsten thin films are deposited on a Si substrate to form a 25 μm
× 25 μm TES device. The substrate is cooled to approximately 60
mK, about half the 100-mK superconductingto-normal transition
temperature. The transition width is about 1 mK. A bias voltage
across the thin film maintains the temperature in the transition
region via Joule heating. An incident photon absorbed by the
tungsten film raises its electron temperature, thereby increasing its
resistance. The time integral of the associated decrease in current
multiplied by the bias voltage yields the total photoelectric energy
absorbed by the thin film within its (slow) 15-μs thermal relaxation
time. For light of a specified wavelength, the number of photons
incident within the thermal relaxation time is determined by
establishing the total energy transferred to the detector within this
time. The signal is read out of the detector using an array of DC



superconducting quantum-interference devices (SQUIDs), which
operate as current-sensitive amplifiers.

19.5 ARRAY DETECTORS
An individual photodetector registers the photon flux incident upon
it as a function of time. Similarly, an array containing a large
number of photodetectors simultaneously registers the photon
fluxes (as functions of time) at many spatial points. Array
detectors thus allow electronic versions of optical images to be
formed. One type of array detector, the microchannel plate [Fig.
19.1-2(c)], has already been discussed.

Modern microelectronics technology permits the fabrication of
many types of array detectors. These contain large numbers of
photodetector elements, known as pixels, that can operate as
photoconductors, photodiodes, avalanche photodiodes, or thermal
detectors such as microbolometers. A 2D array of photosensitive
elements designed to record an electronic version of an image at the
focal plane of an imaging system is known as a focal-plane array
(FPA). Two principal forms of readout circuitry are used to
transport the signals generated at the FPA: charge-coupled device
(CCD) technology and complementary metal-oxide-semiconductor
(CMOS) technology.

Photodetector Elements

The pixels in a focal-plane array take many forms, as indicated by
the following examples:

Microbolometer arrays are often used in thermal imaging
cameras. Incident photons cause an increase in the
temperature of the illuminated elements; the accompanying
change in resistance is recorded by external circuitry. These
devices operate at ambient temperature and have come to the
fore in recent years as their resolution and sensitivity have
improved dramatically. Vanadium oxide (VOx) microbolometer



arrays offer hundreds of thousands of pixels, each ≈ 25 μm in
size, and are sensitive in the mid-infrared region. These devices
find extensive use in military and commercial applications.

Photoconductive arrays are typically used in the mid-infrared
region. A photon whose energy is greater than the bandgap
energy in a semiconductor such as InSb or HgCdTe creates an
electron–hole pair that contributes to the conductivity of the
material.

Arrays of extrinsic semiconductors, such as Ge:Ga, are useful
for making photoconductive FPAs that are sensitive in the far-
infrared. A photon places a donor electron into the conduction
band (or a receptor hole into the valence band) so that it
contributes to the conductivity.

Quantum-well infrared photodetectors (QWIPs) are used in
megapixel focal-plane arrays. A photon provides sufficient
energy to lift an electron out of a quantum well so that it
contributes to the conductivity. Far-infrared and mid-infrared
images are provided by GaAs/AlGaAs and
GaAs/InGaAs/AlGaAs elements.

Arrays fabricated from compound-semiconductor p–i–n
photodiodes, such as InGaAs, GeSn, and HgCdTe, are used in
the visible and infrared. A photon whose energy is greater than
the bandgap energy creates an electron–hole pair that
contributes to the diode current.

Schottky-barrier photodiode elements fabricated from metal–
semiconductor junctions are used in highly versatile FPA
cameras. A photon whose energy is greater than the Schottky
barrier creates an electron–hole pair that contributes to the
diode current. PtSi can be used for imaging in many spectral
regions since it is sensitive over a broad band of wavelengths
stretching from the near ultraviolet to about 6 μm in the mid
infrared. In spite of the fact that it has low quantum efficiency



in the infrared, PtSi is widely used since it is easily
manufactured and highly stable.

Avalanche-photodiode detectors fabricated from p–n junctions
with multiplication regions have been crafted into array
detectors. A photon whose energy is greater than the bandgap
energy creates an electron–hole pair that enters a high-field
semiconductor region that provides gain. The resulting sub-
nanosecond electrical pulse can have an amplitude sufficient to
directly trigger a digital CMOS circuit.

Single-photon avalanche detectors (SPADs) fabricated from
reverse-biased p–n junctions make use of multiplication
regions operated in Geiger mode. A photon whose energy is
greater than the bandgap energy creates an electron–hole pair
that enters the high-field semiconductor region, thereby
causing avalanche breakdown and the concomitant generation
of a large current pulse.

SPAD arrays have been developed in which the constituent
SPAD outputs can be individually read out and the entire array
can be read out as a frame with ps resolution. Devices that
make use of active quenching, in conjunction with in-pixel
signal processing and analog-to-digital conversion, are
available. Arrays that make use of time-to-digital conversion
make 3D single-photon imaging via time-resolved detection
feasible.

Photosensitive arrays can also be operated as heterodyne
detectors in which conversion gain is provided by a local
oscillator (Sec. 25.4).

Readout Circuitry

Two principal forms of readout circuitry are used to transport the
signals from the photodetector elements to the camera display or
output: charge-coupled device (CCD) technology and
complementary metal-oxide-semiconductor (CMOS) technology.



CCD technology. A charge-coupled device (CCD) operates by
converting photons to photoelectrons at each detector element
(pixel) and storing the photoelectrons in local potential wells. At a
specified time, the charge is sequentially transferred, via a buried
CCD channel that serves as a shift register, from one detector
position to another until it is transported to one corner of the chip,
where it is read out. Numerous electrode structures and clocking
schemes have been developed for periodically reading out the
charge accumulated at each CCD element and generating the
electronic data stream representing the image. In comparison with
CMOS imaging systems, CCD systems are typically more complex,
require more power, and provide slower readout, but they find
widespread use in scientific and medical applications where high
quality imaging is mandatory. A variation on the theme of CCDs is
the intensified charge-coupled device (ICCD), which makes
use of a microchannel-plate image intensifier (Sec. 19.1A) placed
before the CCD. Another variation is the electron-multiplying
charge-coupled device (EMCCD), which, just prior to readout,
employs a supplementary high-voltage, serial electron-
multiplication register that contains several hundred electrodes and
provides a gain of several thousand via secondary emission. ICCDs
and EMCCDs have comparable performance, although each has its
own particular merits. Single-photon and single-electron sensitivity
has recently been achieved by making use of a Si “skipper CCD” that
reduces readout noise by sampling the charge associated with each
pixel multiple times.8

CMOS technology. Complementary metal-oxide-
semiconductor (CMOS) manufacturing technology is widely
used for fabricating electronic devices and integrated circuits.
Because it consumes little power, has good noise immunity, and is
relatively inexpensive, this technology has spurred the mass
production of FPAs; photosensitive group-IV detection elements can
be directly integrated with the readout circuitry. Each element in
the photodetector array is individually linked to several metal-
oxidesemiconductor field-effect transistors (MOSFETs) that amplify



and read out the detected signal. Unlike the sequential read-out
required for CCDs, the detector elements in a CMOS array are read
out in parallel, which provides a significant speed advantage. A
variation on the theme of CMOS is scientific complementary
metal-oxidesemiconductor (sCMOS), which makes use of a
more advanced readout technology that offers increased imaging
area, higher frame rate, greater dynamic range, higher quantum
efficiency, and lower readout noise. sCMOS and EMCCD devices are
competitive; the choice depends principally on the application at
hand. However, at extremely low light levels (< 100 photons/pixel),
and in the absence of background, a common rule-of-thumb dictates
that EMCCD sensors are superior. Photonnumber-resolving
megapixel image sensors, operating without the benefit of cooling
or avalanche gain, have also recently been developed.9

19.6 NOISE IN PHOTODETECTORS
Photodetectors are responsive to photon flux (or optical power). In
accordance with (19.1-4), an incident photon flux Φ (optical power P
= hνΦ) gives rise to a proportional photocurrent ip = ηeΦ = RP. In
actuality, however, the electric current generated in a photodetector
is a random quantity i that takes on values both below and above its
mean value  ≡ ip = ηeΦ = RP. (We use the symbols  and 〈x〉
interchangeably to represent the mean value of x.) The fluctuations
of i, which are generally regarded as noise, are characterized by the
variance of the current, , or by its standard deviation 

. For a current of zero mean (  = 0), the standard
deviation becomes the root-mean-square (RMS) value σi = .

Sources of noise. A number of sources of noise are inherent in
the process of photodetection:

Photon Noise. The most fundamental source of noise is
associated with the random arrivals of the photons themselves,
which are usually described by Poisson statistics, as discussed
in Sec. 13.2C.



Photoelectron Noise. In a photodetector with quantum
efficiency η < 1, a single arriving photon generates a
photoelectron–hole pair with probability η and fails to do so
with probability 1 − η. Because the deletion process is random
it serves as a source of noise, as shown in Sec. 13.2D.

Gain Noise. The amplification process that provides internal
gain in certain types of photodetectors, such as
photoconductors and APDs, is random. Each detected photon
(photoelectron) generates a random number of carriers G, with
an average value . The gain fluctuations depend on the nature
of the amplification process, as will be elucidated in Sec. 19.6B.

Receiver Circuit Noise. Various components in the electrical
circuitry of an optical receiver, such as resistors and transistors,
contribute to receiver circuit noise, as will be considered in Sec.
19.6C.

These four sources of noise are illustrated schematically in Fig.
19.6-1. The mean signal entering the detector (input optical signal)
has an associated intrinsic photon noise. The photoeffect converts
the photons into photoelectrons. In the process, the mean signal
decreases by the factor η (the quantum efficiency). The associated
photoelectron noise also decreases, but by a lesser amount than the
signal; thus the signal-tonoise ratio of the photoelectron signal is
lower than that of the incident photon signal. If a photodetector
gain mechanism is present, it amplifies both the photoelectron
signal and noise. Moreover, it introduces its own gain noise. Finally,
circuit noise enters at the point of current collection.



Figure 19.6-1 Input and detected signals along with various
sources of noise for (a) a photodetector without gain, such as a p–i–
n photodiode; and (b) a photodetector with gain, such as an
avalanche photodiode.

Performance measures. As components of an information
transmission system, photodetectors and optical receivers can be
characterized by the following performance measures:

The signal-to-noise ratio (SNR) of a random variable is
defined as the ratio of the square of its mean to its variance.
Thus, the SNR of the current i is  while the SNR of
the photon number  is .

The minimum-detectable signal is defined as the mean
signal that yields unity SNR. In particular, the noise-
equivalent power (NEP) is the signal power that yields unity
SNR at a bandwidth of 1 Hz. The specific detectivity D* is the
reciprocal of the NEP after normalization by the square root of
the bandwidth and the square root of the detector area.

The excess noise factor F of a random variable is defined as
the ratio of its mean-square to its square-mean. Thus, the
excess noise factor of the photodetector gain G is .

For an analog system, the receiver sensitivity is defined as
the signal that corresponds to a prescribed value of the signal-
to-noise ratio, SNR = SNR0. While the minimum-detectable



signal corresponds to a receiver sensitivity that provides SNR0
= 1, a higher value of SNR0 is often specified to ensure a given
level of accuracy (e.g., SNR0 = 103, corresponding to 30 dB). For
a digital system, the receiver sensitivity is defined as the optical
energy (or corresponding mean number of photons) per bit
required to achieve a prescribed bit error rate, which is often set
at BER = 10−9.

The bit error rate (BER) is defined as the probability of error
per bit in a digital optical receiver.

We proceed to derive expressions for the signal-to-noise ratio, as
well as for some of the other performance measures discussed
above, for photodetectors and optical receivers subject to the four
key sources of noise highlighted earlier. Sources of noise that we do
not explicitly consider include background noise and dark-current
noise. Background noise is photon noise associated with light
from extraneous optical sources (e.g., the sun, the stars) that
manages to reach the photodetector. Background noise is
particularly deleterious in detection systems that operate in the
mid-and far-infrared spectral regions because of the copious
thermal radiation emitted at these wavelengths by objects at room
temperature (Fig. 14.4-4). Photodetectors also generate dark-
current noise, which, as the name implies, is present even in the
absence of light. Dark-current noise results from surface leakage
current as well as from random electron–hole pairs generated by
thermal and tunneling processes.

A. Photoelectron Noise

Photon Noise

As described in Sec. 13.2B, the photon flux associated with a fixed
optical power P is inherently uncertain. The mean photon flux is Φ
= P/hν (photons/s), but this quantity fluctuates randomly in
accordance with a probability law that depends on the nature of the
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(19.6-2)

light source. The number of photons n counted in a time interval T
is thus random with mean  = ΦT. For light from an ideal laser (Sec.
13.2C), or light from a multimode thermal source (Probs. 13.2-6–
13.2-8), the photon number obeys the Poisson probability
distribution, for which . If  = 100, for example, the actual
number of photons observed will lie approximately in the range 100
± 10.

The photon-number signal-to-noise ratio  is therefore

and the minimum-detectable photon number is  = 1 photon. If the
observation time T = 1 μs and the wavelength λo = 1.24 μm, this is
equivalent to a minimum-detectable power of 0.16 pW. The receiver
sensitivity for SNR0 = 103 (30 dB) is 1000 photons. If the time
interval T = 10 ns, this is equivalent to a photon-flux sensitivity of
1011 photons/s or an optical power sensitivity of 16 nW at λo = 1.24
μm.

Photoelectron Noise

A photon incident on a photodetector of quantum efficiency η
generates a photoevent (i.e., creates a photoelectron–hole pair or
liberates a photoelectron) with probability η, or fails to do so with
probability 1 − η. Photoevents are assumed to be selected at random
from the photon stream. An incident mean photon flux Φ
(photons/s) therefore results in a mean photoelectron flux ηΦ
(photoelectrons/s). The number of photoelectrons m detected in the
time interval T is a random variable with mean
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where  =ΦT is the mean number of incident photons in the same
time interval T. If the photon number is distributed in Poisson
fashion, so too is the photoelectron number, as can be ascertained
by using an argument parallel to that developed in Sec. 13.2D. It
follows that the photoelectron-number variance is equal to its
mean, i.e.,

The photoelectron noise is clearly not additive with the photon
noise.

The underlying Poisson randomness inherent in the photon
number, which constitutes a fundamental source of noise that must
be contended with when using light to transmit a signal, thus
results in a photoelectron-number signal-to-noise ratio

in accord with (13.2-34). The minimum-detectable photoelectron
number is  = 1 photoelectron, corresponding to 1/η photons.
The receiver sensitivity for SNR0 = 103 is 1000 photoelectrons or
1000/η photons.

Photocurrent Noise

We now examine the properties of the electric current i(t) induced
in a circuit by a random photoelectron flux of mean ηΦ. The
treatment we provide includes the effects of photon noise,
photoelectron noise, and the characteristic time response of the
detector and circuitry (filtering). Every photoelectron–hole pair
generates a pulse of electric current of charge (area) e and time
duration τp in the external circuit of the photodetector (Fig. 19.6-2).
A photon stream incident on a photodetector therefore results in a
stream of current pulses that add together to constitute the
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photocurrent i(t). The randomness of the photon stream is
transformed into a fluctuating electric current. If the incident
photons are Poisson distributed, the current fluctuations are known
as shot noise. More generally, for detectors with gain G the
generated charge in each pulse is q = Ge.

Figure 19.6-2 The photocurrent induced in a photodetector circuit
comprises a superposition of current pulses, each associated with a
detected photon. The individual pulses illustrated are exponentially
decaying step functions but they can assume an arbitrary shape
(see, e.g., Figs. 19.1-6(b) and 19.1-7). The superposition of the
individual current pulses constitutes shot noise.

Before providing an analytical derivation of the properties of the
photocurrent i(t), we examine the problem from a simplified
perspective. Consider a photon flux Φ incident on a photoelectric
detector of quantum efficiency η. Let the random number m of
photoelectrons counted within a characteristic time interval T =
1/2B (the resolution time of the circuit) generate a photocurrent
i(t), where t is the instant of time immediately following the
interval T. For rectangular current pulses of duration T, the current
and photoelectron-number random variables are related by i =
(e/T)m. The photocurrent mean and variance are therefore given by
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respectively, where  = ηΦT = ηΦ/2B is the mean number of
photoelectrons collected in the time interval T = 1/2B. Substituting 

 for Poisson photoelectrons yields the shot-noise
photocurrent mean and variance:

It follows that the signal-to-noise ratio of the shot-noise
photocurrent, , is

The current SNR is directly proportional to the photon flux Φ and
inversely proportional to the electrical bandwidth of the circuit B.
The result is identical to that for the photoelectron-number signal-
to-noise ratio , as expected, since the circuit introduces no added
randomness.

EXAMPLE 19.6-1. SNR and Receiver Sensitivity. For  =
10 nA and B = 100 MHz, σi ≈ 0.57 nA, corresponding to a signal-
to-noise ratio SNR = 310 or 25 dB. An average of 310
photoelectrons are detected in every time interval T = 1/2B = 5
ns. The minimum-detectable photon flux is Φ = 2B/η, and the
receiver sensitivity for SNR0 = 103 is Φ = 1000 · (2B/η) = 2 ×
1011/η photons/s.
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◻ Derivation of the Photocurrent Mean and Variance.
We now proceed to prove (19.6-7) and (19.6-8) in the general
case. Assume that a photoevent generated at t = 0 produces an
electric pulse h(t), of area e, in the external circuit. A photoevent
generated at time t1 then produces a displaced pulse, h(t − t1).
Divide the time axis into incremental time intervals Δt so that
the probability p that a photoevent occurs within an interval is p
= ηΦΔt. The electric current i at time t is written as

where Xi assumes the value 1 with probability p, and 0 with
probability 1 − p. The variables {Xl}are independent. The mean
value of Xl is 0 × (1 − p) + 1 × p = p. Its mean-square value is 

. The mean of the product XlXk is p2 if l ≠
k, and p if l = k.

The mean and mean-square values of i(t) are now determined
via

Substituting p = ηΦΔt, and taking the limit Δt → 0 so that the
summations become integrals, (19.6-11) and (19.6-12) yield,
respectively,
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(19.6-16)

(19.6-17)

It follows that

Defining

finally leads to (19.6-7) and (19.6-8). ▪

The parameter B defined by (19.6-16) represents the device/circuit
bandwidth. This is readily verified by noting that the Fourier
transform of h(t) is its transfer function H(ν). The area under h(t) is
simply H(0) = e. In accordance with Parseval’s theorem (A.1-7), the
area under h2(t) is equal to the area under the symmetric function
|H(ν)|2, so that

In accordance with (A.2-10), the quantity B is therefore the power-
equivalent spectral width of the function |H(ν)| (i.e., the bandwidth
of the device/circuit combination). As an example, if H(ν) = 1 for
−νc < ν < νc and 0 elsewhere, (19.6-17) yields B = νc.

These relations are applicable for all photoelectric detection devices
without gain (e.g., phototubes and junction photodiodes). Use of the
formulas requires knowledge of the bandwidth of the device, biasing
circuit, and amplifier; B is determined by inserting the transfer
function of the overall system into (19.6-17).

B. Gain Noise
Deterministic gain. The photocurrent mean and variance for a
device with deterministic (fixed) gain G is obtained by replacing e
with q = Ge in (19.6-7) and (19.6-8), which leads to
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(19.6-20)

(19.6-21)

(19.6-19)
The signal-to-noise ratio, in accordance with (19.6-9), then becomes

The SNR is independent of G because deterministic gain introduces
no additional randomness. This is confirmed by observing that the
mean current , along with its RMS value σi, are both multiplied by
the same factor G.

Random gain. The simple results derived above do not apply
when the gain itself is random, as is the case in photomultiplier
tubes, photoconductors, and avalanche photodiodes. Appropriate
expressions for the photocurrent mean and variance can be
determined by modifying the derivation provided in the previous
section. In particular, the electric current provided in (19.6-10)
should be written as

where, as before, Xl takes the value 1 with probability p = ηΦΔt, and
0 with probability 1 − p. Now included in this expression is the
random number Gl that represents the gain imparted to a
photocarrier generated in the lth time slot, as shown in Fig. 19.6-3.
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Figure 19.6-3 Each photoevent in a photodetector with gain
generates a random number Gl of carriers that give rise to electrical
current pulses of area eGl. The total electric current in the detector
circuit i(t) is the superposition of these pulses.

If the random variable Gl has mean , and mean-square (G2),
an analysis analogous to that provided in (19.6-10)–(19.6-17) for
Poisson photoelectrons yields

and

where the excess noise factor F is defined
as
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The excess noise factor is related to the variance of the gain  by 
. In the special case of deterministic gain,  = 0 and F =

1, whereupon (19.6-23) reverts to (19.6-19). For random gain, we
have  > 0 and F > 1; both of these quantities increase with the
severity of the gain fluctuations. The resulting electric current i then
exhibits fluctuations that are greater than those of shot noise.

In the presence of random gain, the current signal-to-noise ratio 
 becomes

where  is the mean number of photoelectrons collected in the time
T = 1/2B. The random-gain SNR is smaller than the deterministic-
gain SNR by the factor F; the reduction is a consequence of gain
randomness. It is clear that the excess noise factor F embodies the
noise introduced by random gain in photodetectors.
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EXAMPLE 19.6-2. Excess Noise Factor for a PMT. A
photomultiplier tube achieves amplification by making use of
secondary electron emission at its dynodes, as illustrated in Fig.
19.1-2(b). The excess noise factor is readily calculated by
assuming that the secondary-emission gain random variable δ is
identically distributed, with Poisson counting statistics and
mean gain  for all dynodes except the first, which is endowed
with gain  (typically, A ≫ 1). Under these conditions, the
excess noise factor for the PMT is determined to be

where  is the mean gain and N is the number of dynodes.
The special case of all identical dynodes and large gain is
considered in Prob. 19.6-3. Equation (19.6-26) is plotted vs.  as
the dashed curves in Fig. 19.6-7 for N = 1, 4, and 10, assuming
that A = 10 for the first (GaP) dynode. An estimate of the
magnitude of the gain fluctuations may be obtained by
considering a PMT in which the gain randomness yields an
excess noise factor F ≈ 1.2. Since , the gain SNR 

. If the PMT has a mean gain  = 106, the
standard deviation of the gain fluctuations is .

Excess Noise Factor for a Conventional APD

Conventional avalanche photodiodes (CAPDs) were examined in
Sec. 19.4A. When photoelectrons are injected at the edge of a
uniform multiplication region in a CAPD, the gain G of the device is
given by (19.4-8). It depends on the electron ionization coefficient
αe and the ionization ratio k = αh/αe, as well as on the width of the
multiplication region w. The use of a similar (but more complex)
analysis that incorporates the randomness associated with the gain
process leads to an expression for the mean-square gain (G2) and
the excess noise factor F. This more general derivation provides an
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expression for the mean gain  that is identical to that given in
(19.4-8).

Calculations carried out by McIntyre in the mid-1960s reveal that
the excess noise factor F for the CAPD is related to the mean gain
and ionization ratio by

This formula is plotted in Fig. 19.6-4 with the ionization ratio k as a
parameter.

Figure 19.6-4 Excess noise factor F for a conventional APD
(CAPD) with a uniform multiplication region, under electron
injection, as a function of the mean gain , for different values of
the ionization ratio k. For hole injection, 1/k replaces k.

Equation (19.6-27) is valid when electrons are injected at the edge of
the multiplication region, but both electrons and holes have the
capacity to initiate impact ionizations. If only holes are injected, the
same expression applies, provided that k is replaced by 1/k. Gain
noise is minimized by injecting the carrier with the higher



ionization coefficient, and by fabricating a structure with the lowest
possible value of k if electrons are injected, or the highest possible
value of k if holes are injected. In short, the ionization coefficients
for the two carriers should be as different as possible. Equation
(19.6-27) is said to be valid under conditions of single-carrier-
injection double-carrier multiplication (SCIDCM) since both
types of carrier have the capacity to impact ionize, even when only
one type is injected. If electrons and holes are injected
simultaneously, the overall result is the sum of the two partial
results.

The gain noise associated with a CAPD arises from two sources: the
randomness in the locations at which ionizations occur, and the
feedback process associated with the fact that both kinds of carrier
can produce impact ionizations. The first of these noise sources is
present even when only one kind of carrier can multiply; it leads to
F − 1 = 1 − 1/  (which is ≈ 1 for large values of the mean gain ) as
is apparent by setting k = 0 in (19.6-27). This result is plotted vs. 
as the dotted curve in Fig. 19.6-7 for purposes of comparison with
the PMT and the staircase APD. The second source of noise, the
feedback process, is potentially more detrimental since it can result
in a far greater value of F.



EXAMPLE 19.6-3. Excess Noise Factor for a Si SAM
APD. A separate absorption and multiplication (SAM) Si reach-
through APD such as that depicted in Fig. 19.4-6 has peak
sensitivity at a wavelength of 800 nm, quantum efficiency η =
0.8, and a gain–bandwidth product GB = 350 GHz. This SCIDCM
device, which makes use of electron injection, has a mean gain 
= 50 and an ionization ratio k = 0.02. Equation (19.6-27) yields F
≈ 3 so that the gain mechanism reduces the signal-to-noise ratio
by a factor of 3 while increasing the mean detected current by a
factor of 50. Silicon APDs are sensitive over a wavelength range
that stretches from 450 to 1 100 nm and can attain gains as high
as 1000, depending on the device structure and reverse-bias
voltage. In the presence of circuit noise the use of an APD can
serve to increase the overall system SNR, as discussed in Sec.
19.6D.

EXAMPLE 19.6-4. Excess Noise Factor for an AlInAsSb
SACM APD. The separate absorption, charge, and
multiplication (SACM) Al0.4In0.6As0.3Sb0.7/Al0.7In0.3As0.3Sb0.7
APD considered in Example 19.4-4 makes use of absorption and
multiplication layers with low and high Al content,
corresponding to small and large energy bandgaps, respectively.
This device is sensitive over telecommunications-band
wavelengths (1.3 ≤ λo ≤ 1.6 μm). The ionization ratio k = 0.01 for
this SCIDCM APD is comparable to that of Si. For a mean gain 
= 10, (19.6-27) yields F ≈ 2, indicating that the gain mechanism
reduces the signal-to-noise ratio by a factor of 2 and increases
the mean detected current by a factor of 10. As indicated above,
the use of an APD can serve to increase the overall SNR in the
presence of circuit noise (Sec. 19.6D).

Excess Noise Factor for APDs with History-Dependent
Parameters



APDs with history-dependent parameters were introduced in Sec.
19.4B. A theory of APD noise that accommodates dead space, along
with initial carrier-energy and impact-ionization threshold-energy
effects, can be cast in the form of recurrence relations for the first
and second moments, as well as the probability distribution, of the
numbers of electrons and holes. These random variables are
deterministically related to the random gain. Numerical solutions
provide the mean gain and excess noise factor for arbitrary values of
dead space and multiplication-region width. The theory properly
predicts the performance of APDs in which history-dependent
parameters play a role.

An example of the energy-band diagram for an APD with history-
dependent parameters tailored to improve its performance is
displayed in Fig. 19.6-5. Two thin multiplication layers, with
relatively low threshold energy, surround a layer with higher
threshold energy. Impact ionization is enhanced at the edges of the
twin multiplication layers and is suppressed in the central region,
which serves to impart energy to the carriers in transit. The
materials are chosen so that hole-induced ionization is discouraged.
The performance improvement is illustrated in Example 19.6-5.



EXAMPLE 19.6-5. Excess Noise Factor for a
GaAs/AlGaAs APD Influenced by Dead Space. A very thin
heterostructure APD similar to that displayed in Fig. 19.6-5 has a
multiplication region comprising two 50-nm-thick layers of
GaAs surrounding an 85-nm-thick layer of Al0.6Ga0.4As. The
measured excess noise factor is F ≈ 2.5 at a mean gain  = 20. In
contrast, the excess noise factor predicted by (19.6-27) for a bulk
GaAs homojunction APD (k ≈ 0.75) is F ≈ 15.5 at  = 20 (Fig.
19.6-4). The noisiness of this heterostructure device is thus
substantially lower than that predicted by the bulk theory, which
ignores dead space as well as initial-energy and impact-
ionization threshold-energy effects. Evidently, such effects
materially reduce gain noise and must be accommodated when
modeling thin-multiplication-region APDs. Other
heterostructure configurations, such as a centered-well
configuration, can exhibit even lower values of F at small values
of .

Figure 19.6-5 Energy-band diagram of a low-noise
heterostructure APD with history-dependent parameters, under
reverse-bias conditions.

Excess Noise Factor for APDs with Position-Dependent
Parameters
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Multilayer APDs with arbitrary structure and position-dependent
parameters were introduced in Sec. 19.4B. A special case of this class
of devices, the staircase avalanche photodiode, has the energy-
band diagram displayed in Fig. 19.6-6. A three-stage device is
illustrated under both unbiased and reverse-biased conditions. The
bandgap is compositionally graded over a short distance, from a low
value of Eg1 to a high value of Eg2. Because of the material
properties, hole-induced ionizations are discouraged. Other
potential advantages of these devices include the discrete locations
of the multiplications (at the jumps in the conduction band edges),
the low operating voltage (which minimizes tunneling), and the fast
response time (resulting from the reduced avalanche buildup time).

Figure 19.6-6 Energy-band diagram of a bandgap-engineered
staircase avalanche photodiode under (a) unbiased and (b) reverse-
biased conditions. The conduction-band steps encourage electron
ionizations at discrete locations. (Adapted from F. Capasso, W.-T.
Tsang, and G. F. Williams, Staircase Solid-State Photomultipliers
and Avalanche Photodiodes with Enhanced Ionization Rates Ratio,
IEEE Transactions on Electron Devices, vol. ED-30, pp. 381–390,
Fig. 1 ©1983 IEEE.)

Under single-carrier-injection single-carrier-multiplication
(SCISCM) conditions, the mean gain  of the staircase APD (Prob.
19.6-2) is
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and the excess noise factor is given by10

where P is the probability of impact ionization at each stage and N is
the number of stages. Equation (19.6-29) is plotted as the solid
curves in Fig. 19.6-7 (as the modified excess noise factor F − 1
vs. ) for N = 5 and 10.



Figure 19.6-7 Modified excess noise factor F − 1 versus mean gain 
 for three photodetectors: The SCISCM Staircase APD: The solid

curves represent (19.6-29) with N = 5 and 10. The SCISCM
Conventional APD: The dotted curve represents (19.6-27) with k =
0. The SCISCM High-GainFirst-Dynode PMT: The dashed curves
represent (19.6-26) with A = 10 and N = 1, 4, and 10. The modified
excess noise factor F − 1 is displayed because it is conveniently
plotted on double-logarithmic coordinates. The results presented
represent optimal noise behavior for all three detectors. Though the
excess noise factor of the ideal staircase APD always lies below that
of the conventional APD, the difference is not large since F < 2 for
both devices. The PMT offers high gain and excellent noise
performance since the electrons travel in vacuum and it is a single-
carrier device; however, its sensitivity is typically restricted to
wavelengths shorter than about 1 μm and its quantum efficiency
and responsivity are limited. (Adapted from M. C. Teich, K. Matsuo,
and B. E. A. Saleh, Excess Noise Factors for Conventional and
Superlattice Avalanche Photodiodes and Photomultiplier Tubes,
IEEE Journal of Quantum Electronics, vol. QE-22, pp. 1184–1193,
Fig. 3 ©1986 IEEE.)

Taking (19.6-29) to the limit as N → ∞ leads to F = 2 − 1/ , which is
identical to the result obtained for the conventional APD under



SCISCM conditions [(19.6-27) with k = 0], as expected. Though we
deal with the graded-gap staircase APD for purposes of illustration,
(19.6-28) and (19.6-29) are applicable for any superlattice
avalanche photodiode (SAPD) in which the carrier transport is
perpendicular to the superlattice planes. In such structures, the
carriers encounter a potential discontinuity at the heterointerfaces
at each period of the multilayer structure.

Initial attempts to operate a staircase APD using GaAs/AlGaAs were
impeded by insufficiently large conduction-band offsets and small
energy separations between the direct and indirect band-structure
valleys, so that the merits of the staircase structure could not be
unequivocally demonstrated. However, recent work with the
AlInAsSb/GaSb system has shown that the staircase concept is
feasible (Example 19.6-6). The development of low-noise APDs
based on narrow-bandgap semiconductor materials is a worthy
enterprise since such structures can serve as “solid-state
photomultipliers” at infrared wavelengths, where night-vision and
thermal-imaging applications abound.



EXAMPLE 19.6-6. Excess Noise Factor for an
AlInAsSb/GaSb Staircase APD. A one-stage staircase APD
operates on the basis of photogenerated electrons in a wide-
bandgap (Eg = 1.16 eV) AlInAsSb injector region entering a thin,
narrow-bandgap (Eg = 0.25 eV) InAsSb multiplication region.11

The conduction-band-edge energies at the interface of the
materials differ by ≈ 0.6 eV, which is sufficient to permit impact
ionization in the InAsSb with high probability, since its
ionization threshold energy is ≈ 0.4 eV. The impact ionization is
observed as a current gain of  ≈ 1.8 ± 0.2 that persists over a
broad range of excitation wavelengths, excitation intensities,
reverse-bias voltages, and operating temperatures. Monte Carlo
simulations confirm the presence of robust impact ionization by
electrons within the thin InAsSb layer and essentially none by
holes. The device thus behaves as a SCISCM staircase APD. In
accordance with (19.6-28) and (19.6-29) for N = 1, we deduce
that P =  − 1 ≈ 0.8 ± 0.2 and  ≈ 1, respectively, over
the range of observed values of .

Excess Noise Factor for Dark Current in the Multiplication
Region

The output current of an APD fluctuates in the presence of light as
well as in its absence. The dark-current noise arises from effects
that are both external to, and internal to, the depletion and
multiplication regions of the device. The surface-leakage dark
current bypasses both regions and thus is not subject to gain noise.
However, carrier pairs randomly generated by tunneling or thermal
processes in the interior of many conventional and multilayer APDs
are subject to multiplication, and thus to gain noise, much as for
photogenerated carrier pairs. The dark carriers generated within the
multiplication region are randomly distributed throughout it so that
they experience a smaller mean gain, and a larger excess noise
factor, than the carriers injected at its edge. Photogenerated carriers



produced by light that impinges on the multiplication region are
also subject to this increased excess noise. To minimize this effect,
multiplication regions are generally fabricated using semiconductor
materials of higher bandgap, which serves to limit tunneling and
thermal processes, and the ensuing dark current. Expressions for
the mean gain and excess noise factor for dark carriers generated
within the multiplication region, as well as for dark and
photogenerated carriers generated in the depletion region, and
arbitrary superpositions thereof, have been set forth for multilayer
APDs of arbitrary structure.12

C. Circuit Noise
Yet additional noise is introduced by the electronic circuitry
associated with an optical receiver. Circuit noise results from the
thermal motion of charged carriers in resistors and other dissipative
elements (thermal noise) and from fluctuations of charge carriers in
transistors used in the receiver amplifier, as well as from 1/f-type
effects.

Thermal Noise

Thermal nois (also called Johnson noise or Nyquist noise)
arises from the random motion of mobile carriers in resistive
electrical materials at finite temperatures; this gives rise to a
random electric current i(t) even in the absence of an external
electrical power source. The thermal electric current in a resistance
R is a random function i(t) whose mean value 〈i(t)〉 = 0. The
variance of the current , which is the same as its mean-square
value since the mean vanishes, increases with the temperature T.

Using the results of a derivation based on statistical mechanics, to
be presented shortly, a resistance R at temperature T exhibits a
random electric current i(t) characterized by a power spectral
density
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Thermal Noise Current 

Variance (Resistance R)

where f is the frequency. In the region f ≪ kT/h, which is the
frequency range of principal interest since kT/h = 6.24 THz at room
temperature, exp(hf/kT) ≈ 1 + hf/kT, so that

The variance of the electric current is the integral of the power
spectral density over all frequencies within the bandwidth B of the
circuit, i.e.,

Hence, for B ≪ kT/h this leads to

Thus, as shown in Fig. 19.6-8, a resistor R at temperature T in a
circuit of bandwidth B behaves as a noiseless resistor in parallel
with a zero-mean noise current source with an RMS value σi
specified by (19.6-33).

Figure 19.6-8 A resistance R at temperature T is equivalent to a
noiseless resistor in parallel with a noise current source whose
mean is zero and whose variance is given by  = (i2) ≈ 4kTB/R,
where B is the circuit bandwidth.



EXAMPLE 19.6-7. Thermal Noise in a Resistor. A 1-kΩ
resistor at T = 300° K, in a circuit of bandwidth B = 100 MHz,
exhibits an RMS thermal noise current σi ≈ 41 nA.

◻ *Derivation of the Power Spectral Density of Thermal
Noise. We derive (19.6-30) by showing that the electrical power
associated with the thermal noise in a resistance is identical to
the electromagnetic power radiated by a one-dimensional
blackbody. The factor hf/[exp(hf/kT) − 1] in (19.6-30) is
recognized as the mean energy  of an electromagnetic mode of
frequency f (the symbol ν is reserved for optical frequencies) in
thermal equilibrium at temperature T [see (14.4-8)]. Equation
(19.6-30) may therefore be written as Si(f)R = 4 . The electrical
power dissipated by a noise current i passing through a
resistance R is (i2)R = R, so that Si(f)R represents the electrical
power density (per Hz) dissipated by the noise current i(t)
through R.

We now proceed to demonstrate that 4  is the power density
radiated by a one-dimensional blackbody. As discussed in Sec.
14.4B, an atomic system in thermal equilibrium with the
electromagnetic modes in a cavity radiates a spectral energy
density ϱ(ν) = M(ν) , where M(ν) = 8πν2/c3 is the three-
dimensional density of modes, and the spectral intensity density
is cϱ(ν). Though the charge carriers in a resistor move in all
directions, only motion in the direction of the circuit current
flow contributes. The density of modes in a single dimension is
M(f) = 4/c modes/m-Hz [see (11.1-10)] so that the
corresponding energy density is ϱ(f) = M(f)  = 4 /c and the
radiated power density is cϱ(f) = 4 , as promised. ▪

1/f Noise



Another form of noise associated with some components that
comprise the electronic circuitry of an optical receiver exhibits a
power spectral density with a power-law form: S(f) ≈ (f/f0)−α. The
multiplicative constant  determines the absolute strength of the
fluctuations at all frequencies while the exponent −α characterizes
the relative strength of the fluctuations at different frequencies.
Noise of this form is typically referred to as 1/fα noise or 1/f-type
noise. In the particular case when α = 1, common appellations are
1/f noise, excess noise, flicker noise, and pink noise. The latter
terminology arises from an analogy with visible light. For a
spectrum of the form S(f) ∝ 1/f, each octave is endowed with equal
power so that lower frequencies (“red”) are weighed more heavily
than higher frequencies (“blue”), resulting in a spectrum with a
pink tinge. Since no strict standard for this nomenclature exists,
however, the foregoing descriptions are all used to describe 1/fα

noise when α is roughly in the vicinity of unity.

Fluctuations of this form are ubiquitous in electronics and
photonics. 1/fα noise was discovered, along with thermal noise, in
early studies of low-frequency circuits. Such fluctuations are also
widely observed in components, materials, and devices, including
resistors, semiconductors, metal films, superconductors,
thermionic-emission devices, and junction devices. In electronics,
the range of frequencies over which such behavior is manifested can
stretch over 12 orders of magnitude or more, and α typically lies
between 0.8 and 1.4. From a practical perspective, devices and
systems subject to 1/fα noise are often operated at frequencies that
are sufficiently high so that this noise is negligible.

The origins of 1/fα noise remain obscure for many components,
materials, and devices. The underlying mechanism is often
associated with fluctuations of the number, or the mobility, of the
charge carriers, but other causes have been postulated. 1/f-type
noise is thought by some to be a surface effect whereas others
attribute it to bulk behavior. Moreover, behavior of this kind is not
restricted to simple systems; complex systems also exhibit 1/fα
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noise. Although ubiquitous, this type of noise is not universal; it is
not present, for example, in wire-wound resistors.

Circuit-Noise Parameter: Resistance-Limited and Amplifier-
Limited Optical Receivers

It is convenient to lump the various sources of circuit noise in an
optical receiver (thermal noise in resistors as well as noise in
transistors and other circuit devices) into a single random current
source ir at the receiver input that produces the same total noise at
the receiver output (Fig. 19.6-9). The mean value of ir is zero while
its variance  depends on temperature, receiver bandwidth, circuit
parameters, and device type.

Figure 19.6-9 A noisy receiver circuit (left) can be replaced by a
noiseless receiver circuit that has a single random current source
with RMS value σr at its input (right).

It is also convenient to define a dimensionless circuit-noise
parameter

where B is the receiver bandwidth and T = 1/2B is the receiver
resolution time. Since σr is the RMS value of the noise current, σr/e
is the RMS electron flux (electrons/s) arising from circuit noise, and
σq = (σr/e)T thus represents the RMS number of circuit-noise
electrons collected in the time T. The circuit-noise parameter σq is a
figure of merit that characterizes the quality of the optical receiver
circuit, as will become apparent in Sec. 19.6D.
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Circuit-Noise Parameter 

(Resistance-Limited Receiver)

An optical receiver comprising a photodiode in series with a load
resistor RL, followed by an amplifier, is illustrated in Fig. 19.6-10.
This simple receiver is said to be resistance-limited if the circuit-
noise current arising from thermal noise in the load resistor
substantially exceeds noise contributions from other sources. The
amplifier may then be regarded as noiseless and the circuit-noise
mean-square current is simply  = 4kTB/RL. The circuit-noise
parameter defined by (19.6-34) is therefore

which is inversely proportional to the square-root of the bandwidth
B.

Figure 19.6-10 Resistance-limited optical receiver.

EXAMPLE 19.6-8. Circuit-Noise Parameter for a
Resistance-Limited Receiver. At room temperature, a
resistance RL = 50Ω in a circuit of bandwidth B = 100 MHz
generates a random current of RMS value σr = 0.18 μA. This
corresponds to a circuit-noise parameter σq ≈ 5700.

A receiver using a well-designed low-noise amplifier can yield a
smaller circuit-noise parameter than a resistance-limited receiver.
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 Circuit-Noise Parameter 
(FET Amplifier Receiver)

Consider a receiver using an FET amplifier. If the noise arising from
the high input resistance of the amplifier can be neglected, the
receiver is limited by thermal noise in the channel between the FET
source and drain. With the use of an equalizer to boost the high
frequencies attenuated by the capacitive input impedance of the
circuit, for typical circuit component values the circuit-noise
parameter at room temperature turns out to be

For example, if B = 100 MHz, then σq = 100, which is significantly
smaller than the circuit-noise parameter associated with a 50-Ω
resistance-limited amplifier of the same bandwidth (Example 19.6-
8). The circuit-noise parameter σq increases with B because of the
effect of the equalizer.13

A receiver that makes use of a bipolar-transistor amplifier, on the
other hand, has a circuit-noise parameter σq that is independent of
the bandwidth B over a wide range of frequencies. For bandwidths
between 100 MHz and 2 GHz, σq is typically ≈ 500, provided that
appropriate transistors are used and that they are optimally biased.

D. Signal-to-Noise Ratio and Analog Receiver
Sensitivity
The simplest measure of the quality of reception in an analog
communication system is the signal-to-noise ratio. The SNR of the
current at the input to the noiseless circuit represented in Fig. 19.6-
9 is the ratio of the square of the mean current to the sum of the
variances of the constituent sources of noise:
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Signal-to-Noise Ratio
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Signal-to-Noise Ratio 

for an Optical Receiver

The leftmost terms in the denominators represent photoelectron
and gain noise [see (19.6-23)] while the rightmost terms represent
circuit noise. For a detector devoid of gain, we have  = 1 and F = 1.
The noiseless circuit in Fig. 19.6-9 does not alter the signal-to-noise
ratio even if it provides amplification.

EXERCISE 19.6-1

Signal-to-Noise Ratio of a Resistance-Limited Receiver.
Assume that the optical receiver portrayed in Fig. 19.6-10 makes
use of an ideal p–i–n photodiode (η = 1) and that the resistance
RL = 50 Ω at T = 300° K. The bandwidth is B = 100 MHz. At what
value of the photon flux Φ is the photoelectron-noise current
variance equal to the resistor thermal-noise current variance?
What is the corresponding optical power at λo = 1550 nm?

It is useful to recast the SNR in (19.6-37) in terms of the mean
number of detected photons  in the resolution time of the receiver
T = 1/2B,

and the circuit noise-parameter σq = σr/2Be. The resulting
expression is simply

Equation (19.6-39) has a straightforward interpretation. The
numerator is the square of the mean number of multiplied
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photoelectrons detected in the receiver resolution time T = 1/2B.
The denominator is the sum of the variances of the number of
photoelectrons and the number of circuit-noise electrons collected
in T.

For a photodiode without gain we have  = F = 1, so that (19.6-39)
reduces to

The relative magnitudes of  and  establish the relative
importance of photoelectron noise and circuit noise. The manner in
which the parameter σq characterizes the circuit’s performance as
an optical receiver is now apparent. For example, if σq = 100, then
circuit noise dominates photoelectron noise provided that the mean
number of photoelectrons recorded per receiver resolution time is
below 10 000.

We proceed now to examine the dependence of the SNR on photon
flux Φ, receiver circuit-noise parameter σq, mean gain , and
receiver bandwidth B. This will allow us to determine when the use
of an avalanche photodiode is beneficial and will permit us to select
an appropriate optical preamplifier for a given photon flux. In
undertaking this parametric study, we rely on the expressions for
the SNR provided in (19.6-37), (19.6-39), and (19.6-40).

Dependence of the SNR on Photon Flux

The dependence of the SNR on  = ηΦ/2B provides an indication of
how the SNR varies with the photon flux Φ. Consider first a
photodiode without gain, in which case (19.6-40) applies. Two
limiting cases are of interest:

1. Circuit-noise limit. If Φ is sufficiently small, such that 
, photon noise is negligible and circuit noise
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dominates, yielding

2. Photon-noise limit. If the photon flux Φ is sufficiently large,
such that  ≫  (Φ ≫ 2B /η), the circuit-noise term can be
neglected, whereupon

For small , therefore, the SNR is proportional to  and thereby to
Φ2, whereas for large  it is proportional to  and thereby to Φ, as
illustrated in Fig. 19.6-11. For all levels of light, the SNR increases
with increasing incident photon flux Φ; more light improves
receiver performance.

Figure 19.6-11 Signal-to-noise ratio (SNR) as a function of the
mean number of photoelectrons per receiver resolution time,  =
ηΦ/2B, for a photodiode at two values of the circuit-noise
parameter σq.

When is an APD Superior to a Photodiode?

We now compare two receivers that are identical in all respects
except that one exhibits no gain, while the other exhibits mean gain 

 together with an excess noise factor F (e.g., an APD). For
sufficiently small  (or photon flux Φ), circuit noise dominates.
Amplifying the photocurrent above the level of circuit noise would



then improve the SNR so that the APD receiver would be superior.
For sufficiently large  (or photon flux), circuit noise is negligible.
Amplifying the photocurrent then introduces gain noise, thereby
reducing the SNR. The photodiode receiver would then be superior.

Comparing (19.6-39) and (19.6-40) reveals that the SNR of the APD
receiver is greater than that of the photodiode receiver when 

. For  ≫ 1, the APD provides an advantage
when  < /(F − 1). If this condition is not satisfied, the use of an
APD compromises, rather than enhances, receiver performance.
When σq is very small, for example, it is evident from (19.6-39) that
the APD SNR = /F is inferior to the photodiode SNR = . The SNR
is plotted as a function of  for the two receivers in Fig. 19.6-12.

Figure 19.6-12 SNR versus  = ηΦ/2B for a photodiode receiver
(solid curve) and for an APD receiver with mean gain  = 100 and
excess noise factor F = 2 (dashed curve) obtained from (19.6-39).
The circuit-noise parameter σq = 100 in both cases. For small
photon flux (circuit-noise-limited case), the APD yields a higher
SNR than the photodiode. For large photon flux (photon-noise
limited case), the photodiode receiver is superior to the APD
receiver. The transition between the two regions occurs at  ≈ /(F
− 1) = 104.

Dependence of the SNR on APD Gain

As indicated above, the use of an APD with large gain is beneficial
when the photon flux is sufficiently small, i.e., when  < /(F − 1).
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The optimal gain of the APD is then determined by making use of
(19.6-39):

However, the excess noise factor F is itself a function of  for a
conventional APD, as is clear from (19.6-27). Substituting (19.6-27)
into (19.6-43) yields

where k is the APD carrier ionization ratio specified in (19.4-1).
Equation (19.6-44) is plotted in Fig. 19.6-13 for  = 1000 and σq =
500, with k as a parameter. For the single-carrier-multiplication
APD (k = 0), the SNR increases with gain and eventually saturates.
For the double-carrier multiplication APD (k > 0), the SNR initially
increases with increasing gain, but then reaches a maximum beyond
which it decreases with increasing gain as a result of the sharp
increase in gain noise. In general, therefore, there is an optimal
value of the APD gain.

Figure 19.6-13 Dependence of the SNR on the APD mean gain 
for different values of the ionization ratio k when  = 1000 and σq =
500. Smaller values of k allow larger gain, higher receiver
sensitivity, and larger values of the gain–bandwidth product.
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Dependence of the SNR on Receiver Bandwidth

The relation between the SNR and the circuit bandwidth B is
implicit in (19.6-37). It is governed by the dependence of the circuit-
noise current variance  on B. Consider three receivers:

1. The resistance-limited receiver exhibits  ∝ B [see (19.6-33)]
so that

2. The FET amplifier receiver obeys σq ∝ B1/2[see (19.6-36)] so
that σr = 2eBσq ∝ B3/2 [see (19.6-34)]. This indicates that the
dependence of the SNR on B in (19.6-37) assumes the form

where s is a constant.

3. The bipolar-transistor amplifier receiver has a circuit-noise
parameter σq that is approximately independent of B. Thus, σr ∝
B so that (19.6-37) takes the form

where s′ is a constant.

These relations are illustrated schematically in Fig. 19.6-14. The
SNR always decreases with increasing B. For sufficiently small
bandwidths, all three receivers exhibit an SNR that varies as 1/B.
For large bandwidths, the SNRs for the FET and bipolar-transistor
receivers decline more sharply with bandwidth.
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Figure 19.6-14 Double-logarithmic plot illustrating the
dependence of the SNR on the circuit bandwidth B for the
resistance-limited receiver, the bipolar-transistor receiver, and the
FET receiver.

Analog Receiver Sensitivity

The receiver sensitivity is the minimum photon flux Φ0, and its
corresponding minimum optical power P0 = hνΦ0 and minimum
mean number of photoelectrons  = ηΦ0/2B, required to achieve a
prescribed value of signal-to-noise ratio SNR0. The quantity  can
be determined by solving (19.6-39) for SNR = SNR0.

We consider only the unity-gain receiver, setting aside the more
general solution as Exercise 19.6-2. Solving the quadratic equation
(19.6-40) for , we obtain

Two limiting cases emerge:



EXAMPLE 19.6-9. Sensitivity of an Analog Receiver.
Assume that SNR0 = 104, corresponding to an acceptable signal-
to-noise ratio of 40 dB. If the receiver circuit-noise parameter σq
≪ 50, the receiver is photon-noise limited and its sensitivity is 

 = 10 000 photoelectrons per receiver resolution time. In the
more likely situation for which σq ≫ 50, the receiver sensitivity
≈ 100 σq. If σq = 500, for example, the sensitivity is  = 50 000,
which corresponds to 2B  = 105B photoelectrons/s. The optical
power sensitivity P0 = 2B hν/η = 105Bhν/η is directly
proportional to the bandwidth. If B = 100 MHz and η = 0.8, then
at λo = 1550 nm the receiver sensitivity is P0 ≈ 1.6 μW.

When using (19.6-48) to determine the receiver sensitivity, it is
important to keep in mind that the circuit-noise parameter σq is, in
general, a function of the bandwidth B, in accordance with:

For these receivers, the receiver sensitivity  therefore depends on
the receiver bandwidth B as illustrated in Fig. 19.6-15. The optimal
choice of receiver therefore depends in part on the bandwidth B.
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Figure 19.6-15 Double-logarithmic plot of receiver sensitivity 
(minimum mean number of photoelectrons per receiver resolution
time T = 1/2B that guarantees a minimum signal-to-noise ratio
SNR0) as a function of the receiver bandwidth B, for three receivers.
The curves approach the photon-noise limit at values of B for which 

. In the photon-noise limit (when circuit noise is
negligible), the sensitivity  is equal to SNR0 in all cases.

EXERCISE 19.6-2

Sensitivity of an Analog APD Receiver. Derive an
expression analogous to (19.6-48) for the sensitivity of a receiver
that incorporates an APD with mean gain  and excess noise
factor F. Show that in the limit of negligible circuit noise, the
receiver sensitivity reduces to

E. Bit Error Rate and Digital Receiver Sensitivity
The sensitivity of an analog receiver was defined in Sec. 19.6D as the
minimum power of the received light (or the corresponding mean
number of photons or photoelectrons) required to achieve a
prescribed signal-to-noise ratio SNR0. We now turn to the direct-
detection digital communications receiver. In this case, the receiver
sensitivity is defined as the minimum optical energy (or



corresponding mean number of photons) per bit necessary to
achieve a prescribed bit error rate (BER). The calculations are
carried out in the context of an ON–OFF keying (OOK) system: the
logic states “1” and “0” of a bit represent, respectively, the presence
and absence of an optical pulse. We first determine the receiver
sensitivity under ideal conditions, when the photodetector has unity
quantum efficiency and only photon noise is present. We then
consider the increase in sensitivity (decrease in performance) that
results from incorporating photoelectron noise, background noise,
photodetector gain noise, and circuit noise into the system. The
performance of direct-detection and coherent-detection optical fiber
communication systems are considered in detail in Secs. 25.2 and
25.4, respectively.

Sensitivity of the Ideal Digital Optical Receiver

Assume that the logic states “1” and “0” in an OOK system
correspond to the presence and absence of optical energy,
respectively; in state “1” an average of  photons is received while in
state “0” no photons are received. If the two states are equally likely,
the overall mean number of photons per bit is . Since the
actual number of detected photons is random, errors in logic-state
identification occur, as portrayed in Fig. 19.6-16(a).
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Figure 19.6-16 (a) Schematic illustrating errors that result from
randomness in the photon number. (b) Bit error rate (BER) versus
mean number of photons per bit  for an ideal, direct-detection
OOK system in which the only source of noise is Poisson photon
fluctuations.

For light generated by most optical sources, including laser diodes,
lasers, and light-emitting diodes, the probability of finding n
photons in a fixed time interval T obeys the Poisson distribution, 

, where  is the mean number of photons (Sec.
13.2C). The ideal direct-detection OOK receiver is designed in such a
way that it decides that “1” has been transmitted if it detects one or
more photons. The probability p1 of mistaking “1” for “0” is
therefore given by the Poisson probability of detecting zero photons:
p1 = p(0) = exp(− ). When state “0” is transmitted, zero photons are
detected; the receiver then correctly decides that state “0” has been
transmitted and the error probability p0 = 0. The bit error rate is the
average of the two error probabilities, BER = , from which
we find

Figure 19.6-16(b) portrays a semilogarithmic plot of this relation.

The receiver sensitivity is defined as the average number of photons
per bit required to achieve a specified value of the BER. In



particular, for a BER = 10−9, an oft-chosen metric, (19.6-52) yields 
 ≈ 10 photons per bit. We conclude that:

The receiver sensitivity for a direct-detection, binary OOK
communication system that is ideal in every respect except for
the Poisson statistics of the detected photon number is 10
photons per bit at a BER of 10−9.

The ideal receiver sensitivity can be improved, in principle, by
making use of photonnumber-squeezed (sub-Poisson) light (Sec.
13.3C).

EXERCISE 19.6-3

Effect of Quantum Efficiency and Background Noise on
Receiver Sensitivity.

a. Show that for a receiver using a photodetector of quantum
efficiency η, but that is otherwise ideal, , so
that the receiver sensitivity is  = 10/η photons per bit at a
BER = 10−9, corresponding to  = η  = 10 photoelectrons
per bit.

b. Assume that states “1” and “0” correspond, respectively, to
mean photon numbers  and , where  is the mean
number of signal photons and  is the mean number of
detected Poisson-distributed background photons that is
independent of the signal. Determine an expression for the
BER as a function of  and . Plot the BER versus  for
several values of . Determine the receiver sensitivity  as
a function of  from this plot. [Hint: The sum of two
Poisson-distributed random variables is also Poisson-
distributed.]

Sensitivity of a Digital Receiver with Circuit Noise and Gain
Noise
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As elucidated in Sec. 19.6A, a photodetector transforms a fraction η
of the incident photons into charge carriers, each of which then
contributes a charge e to the electric current in the external circuit.
The total charge accumulated in the bit time interval T is m (units
of electrons). If the incident photons obey a Poisson distribution
with mean , the photoelectrons also obey a Poisson distribution
with mean  = η  and variance .

Additional noise is introduced into the receiver circuit via a random
electric current ir with zero mean and a probability distribution that
is approximately Gaussian with variance . Within the bit time
interval T, the accumulated charge q = irT/e (units of electrons) has
an RMS value σq = σrT/e. The circuit-noise parameter σq depends on
the receiver bandwidth B, as represented in (19.6-34).

The total accumulated charge per bit s = m + q (units of electrons)
is thus the sum of a Poisson random variable m and an independent
Gaussian random variable q. Its mean μ is the sum of the means,

and its variance σ2 is the sum of the variances,

For  sufficiently large, the Poisson distribution may itself be
approximated by a Gaussian distribution so that the overall
distribution can be cast in the form of a Gaussian distribution of
mean μ and variance σ2. We adopt this approximation in the
following analysis.

For an avalanche photodiode (APD) of mean gain , the mean
number of photoelectrons is multiplied by the factor ; gain noise is
also introduced by the multiplication process. The mean of the total
collected charge per bit s (units of electrons) is then



(19.6-57)

(19.6-56)

(19.6-58)

while the variance is

where F =  is the APD excess noise factor [see (19.6-24)].

The direct-detection OOK receiver determines the charge s
accumulated in each bit (by use of an integrator, for example) and
compares it with a prescribed threshold ϑ. If s > ϑ, state “1” is
selected; otherwise, state “0” is selected. The probabilities of error,
p1 and p0, are determined from two Gaussian probability
distributions in s with the following parameters:

The probability p0 of mistaking “0” for “1” is the integral of a
Gaussian probability distribution p(s) with mean μ0 and variance ,
from s = ϑ to s = ∞. The probability p1 of mistaking “1” for “0” is the
integral of a Gaussian probability distribution with mean μ1 and
variance , from s = −∞ to s = ϑ. The threshold ϑ is selected such
that the average probability of error, , is minimized.

An analysis along these lines is the basis of the conventional theory
of binary detection in the presence of Gaussian noise, which is
widely applicable (indeed we shall make use of it in our analysis of
coherent communication systems in Sec. 25.4). If μ0 and , and μ1
and , are the means and variances associated with two Gaussian
variables representing states “0” and “1”, respectively, and if σ0 and
σ1 are much smaller than μ1 − μ0, it can be shown that the bit error
rate for an optimal-threshold receiver is given by

Here



(19.6-59)

(19.6-60)

(19.6-61)
Condition for BER = 10−9 
(Gaussian Approximation)

(19.6-62)

(19.6-63)
APD Receiver Sensitivity 
(Absence of Circuit Noise)

and the error function erf(z) is defined as

From (19.6-58) we know that a BER of 10−9 corresponds to Q ≈ 6,
whereupon (19.6-59) provides

Substituting (19.6-57) into (19.6-61),
defining  as the mean number of photoelectrons detected
per bit, and working through some algebra yields

Equation (19.6-62) relates the receiver sensitivity, specified by the
mean number of photoelectrons per bit  required to render the
BER = 10−9, to the APD and circuit-noise parameters , F, and σq.
The approximation serves well for the parameter values observed in
actual systems.

When the APD gain is sufficiently large such that , the
second (circuitnoise-dependent) term on the right-hand side of
(19.6-62) can be neglected, whereupon

According to (19.6-63), a receiver that has negligible circuit noise,
and makes use of a photodiode with no gain (  = 1 and F = 1),
exhibits a receiver sensitivity  ≈ 18 photoelectrons per bit at a



BER = 10−9. This result differs from the 10-photoelectrons-per-bit
sensitivity established earlier for this ideal receiver. The discrepancy
arises because of the replacement of the Poisson distribution by a
Gaussian distribution, which is inaccurate for small photon
numbers.

Typical sensitivities for several direct-detection, OOK receivers are
provided in Table 19.6-1. It is of interest to compare these results
with those presented in Table 25.4-1 for coherent-detection systems.

Table 19.6-1 Typical values of the sensitivity (number of photons
per bit) for several direct-detection, OOK optical receivers with
amplifier and circuit noise when operated at a BER = 10−9,
assuming that the photodetector quantum efficiency η = 1. The
actual values depend on the amplifier parameters  and F as well as
on the receiver circuit-noise parameter σq, which in turn depends on
the bit rate B0 = 1/T.

Receiver Receiver Sensitivity
(photons/bit)

Photon-limited ideal detector 10
Si APD 125

Er3+-doped silica-fiber
preamplifier/InGaAs p–i–n photodiode

215

InGaAs APD 500
p–i–n photodiode 6000
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PROBLEMS
19.1-1 Effect of Reflectance on Quantum Efficiency. Calculate

the factor 𝒯 = 1 − ℛ in the expression for the photoelectric-
detector quantum efficiency provided in (19.1-3), under both
normal and 45° incidence, for an unpolarized light beam
incident from air onto Si, GaAs, and InSb (refer to Sec. 6.2 and
Table 17.2-1).

19.1-2 Maximum Responsivity. Determine the maximum
responsivity of an ideal (unity quantum efficiency and unity
gain) semiconductor photodetector fabricated from (a) Si; (b)
GaAs; and (c) InSb.

19.1-3 Transit Time Current and Duration for a Single
Carrier Pair. Referring to Fig. 19.1-6, assume that a photon
generates an electron–hole pair at the position x = w/3, that ve
= 3vh, and that the carriers recombine at the contacts. For each
carrier in the semiconductor, find the magnitudes of the
currents, ih and ie, and the durations of the currents, τh and τe.
Express your results in terms of e, w, and ve. Verify that the
total charge induced in the circuit is e. For ve = 6 × 107 cm/s
and w = 10 μm, sketch the time course of ih(t), ie(t), and i(t).

*19.1-4 Transit-Time Spread for a Uniformly Illuminated
Semiconductor Photodetector. Consider a semiconductor
material (as in Fig. 19.1-6) exposed to a broad-area impulse of
light at t = 0 that uniformly generates N electron–hole pairs
between 0 and w. Let the electron and hole velocities in the
material be ve and vh, respectively. Show that the hole current
can be written as



and that the electron current can be written as

so that the total current is

These three currents are illustrated in Fig. 19.1-7. Verify that the
electrons and holes each contribute charge Ne/2 to the external
circuit so that the total charge delivered to the circuit is Ne.

*19.1-5 Two-Photon Photodetectors. Consider a beam of
photons of energy hν and photon-flux density ϕ (photons/cm2-
s) incident on a semiconductor detector with bandgap energy
hν < Eg < 2hν, so that one photon has insufficient energy to
raise an electron from the valence to the conduction band.
However, two photons can occasionally conspire to jointly
surrender their energy to the electron. Assume that the current
density induced in such a detector is Jp = ζϕ2, where ζ is a
constant. Show that the responsivity (A/W) of the two-photon
photodetector is given by , where P is the optical
power and A is the illuminated detector area. Provide a
rationale for the proportionality of R to  and P/A. Two-photon
photoemission behaves similarly.14

19.2-1 Photoconductive Detector Circuit. A photoconductive
detector is often connected in series with a load resistor R and
a DC voltage source V, and the voltage Vp across the load
resistor is measured. If the conductance of the detector is



proportional to the optical power P, sketch the dependence of
Vp on P. Under what conditions is this dependence linear?

19.2-2 Photoconductivity in Intrinsic Si. The concentration of
charge carriers in a sample of intrinsic Si is ni = 1.5 × 1010 cm−3

and the recombination lifetime τ = 10 μs. If the material is
illuminated with light, and an optical power density of 1
mW/cm3 at λo = 1 μm is absorbed by the material, determine
the percentage increase in its conductivity. Assume that the
quantum efficiency η = 1/2.

19.3-1 Quantum Efficiency and Responsivity of a Photodiode
Detector. A particular p–i–n photodiode illuminated by a
pulse of light containing 6 × 1012 incident photons at a
wavelength of λo = 1550 nm gives rise, on average, to 2 × 1012

electrons collected at the terminals of the device. Determine
the quantum efficiency η and the responsivity R of the
photodiode at this wavelength.

19.4-1 Quantum Efficiency of an APD. An APD with gain  = 20
operates at a wavelength λo = 1550 nm. If its responsivity at
this wavelength is R = 12 A/W, calculate its quantum efficiency
η. What is the photocurrent ip at the output of the device if a
photon flux Φ = 1010 photons/s, at this same wavelength, is
incident on it?

19.4-2 Gain of a Ge APD. Show that a conventional APD with
ionization ratio k ≈ 1, such as a device fabricated from
germanium, has a gain given by  = 1/(1 − αew), where αe is the
electron ionization coefficient and w is the width of the
multiplication layer. Note that (19.4-8) cannot be used to
provide a proper result for the gain when k = 1.

19.6-1 Comparison of Excess Noise Factors for SCISCM and
SCIDCM Conventional APDs. Show that a single-carrier-
injection single-carrier-multiplication (SCISCM) conventional
APD with pure electron injection and no hole multiplication (k



= 0) has an excess noise factor F ≈ 2 for all appreciable values
of the gain. Use (19.4-8) to show that the mean gain is then G =
exp(αew). Calculate the responsivity of a Si APD illuminated by
photons of energy equal to its bandgap energy, Eg = 1.12 eV,
assuming that η = 0.8 and  = 70. Determine the excess noise
factor for a single-carrier-injection double-carrier-
multiplication (SCIDCM) Si APD when k = 0.01. Compare the
SCISCM and SCIDCM results for F.

*19.6-2 Mean Gain of a Staircase APD. Use the Bernoulli
probability law to demonstrate that the mean gain of a single-
carrier-injection single-carrier-multiplication (SCISCM)
multilayer APD, such as the staircase device displayed in Fig.
19.6-6, is  = (1 + P)N, where P is the probability of impact
ionization at each stage and N is the number of stages. Show
that  reduces to the result for the conventional SCISCM APD
when P → 0 and N → ∞. In this limit there are an infinite
number of stages and the probability is vanishingly small that a
carrier is produced by impact ionization in any one given stage
of the device.

19.6-3 Excess Noise Factor for a Photomultiplier Tube.

a. Derive an expression for the excess noise factor F of a one-stage
photomultiplier tube (PMT) assuming that the number of
secondary-emission electrons per incident primary electron is
Poisson distributed with mean . Show that the results are a
special case of those provided in (19.6-26) for the N-dynode
PMT.

b. When the N dynodes are all identical (A = 1), in the limit of
high mean gain (  ≫ 1), show that (19.6-26) can be written as 

. This signifies that the gain provided
by a PMT is nearly noise free even without the benefit of a
high-gain first dynode.



*19.6-4 Excess Noise Factor for a Photoconductive Detector.
The gain of a photoconductive detector was specified in (19.2-3)
to be G = τ/τe, where τ is the excess-carrier electron–hole
recombination lifetime and τe is the electron transit time across
the sample. In a more realistic representation, the gain G is
taken to be a random quantity since the process of electron–
hole recombination is random. Show that an exponentially
distributed probability density function for the random
recombination lifetime, P(τ) = , results in an
excess noise factor F = 2. In accordance with (19.6-25), this
reveals that photoconductor generation-recombination
(GR) noise degrades the photoconductor current SNR by a
factor of 2.

19.6-5 Bandwidth of an RC Circuit. Using the definition of
bandwidth provided in (19.6-16), show that a circuit of impulse
response function h(t) = (e/τ)exp(−t/τ) has a bandwidth B =
1/4τ. What is the bandwidth of an RC circuit? Determine the
thermal noise current associated with a resistance R = 1kΩ at T
= 300° k connected to a capacitance C = 5 pF.

19.6-6 Signal-to-Noise Ratio for an Analog APD Receiver.
Assuming that circuit noise is negligible, by what factor does
the signal-to-noise ratio of a receiver that uses a conventional
APD of mean gain  = 100 change if the ionization ratio k is
increased from k = 0.1 to k = 0.2? Show that if  ≫ 1 and  ≫
2(1 − k)/k, the SNR is approximately inversely proportional to 

.

19.6-7 Noise in an Analog APD Receiver. An optical receiver
using a conventional APD has the following parameters:
quantum efficiency η = 0.8; mean gain  = 100; ionization ratio
k = 0.5; load resistance RL = 1kΩ; temperature T = 300° K;
bandwidth B = 100 kHz; and dark/leakage current id = 1 nA. An
optical signal of power 10 nW at λo = 0.87 μm is received.
Determine the RMS values of the different noise currents, and
the SNR. Assume that the dark/leakage current has a noise



variance that obeys the same law as photocurrent noise and
that the receiver is resistance limited.

19.6-8 Optimal Gain for an APD in an Analog Receiver. An
analog receiver using a p–i–n photodiode has a ratio of circuit-
noise variance to photoelectron-noise variance of 100. If a
conventional APD with ionization ratio k = 0.2 is used instead,
determine the optimal mean gain for maximizing the SNR and
the corresponding improvement in SNR.

19.6-9 Analog Receiver Sensitivity. Determine the receiver
sensitivity, in terms of the optical power required to achieve a
SNR = 103, for a photodetector of quantum efficiency η = 0.8 at
λo = 1300 nm in a circuit of bandwidth B = 100 MHz when
there is no circuit noise. The receiver measures the electric
current i.

19.6-10 Noise Comparison for Three Photodetectors.
Consider a photodetector connected in series with a 50-Ω load
resistor maintained at 77° K (liquid-nitrogen temperature) that
is to be used in a 1-μm-wavelength analog optical system with a
bandwidth of 1 GHz. Compare the performance of three
photodetectors: 1) a p–i–n photodiode with quantum efficiency
η = 0.9; 2) an APD with quantum efficiency η = 0.6, gain  =
100, and ionization ratio k = 0; and 3) a 10-stage
photomultiplier tube (PMT) with quantum efficiency η = 0.3,
overall mean gain  = 410, and overall gain variance .

a. For each photodetector, determine the photocurrent SNR when
it is illuminated by a photon flux of 1010 s−1.

b. Which devices render the signal detectable?

*19.6-11 Sensitivity of an AM Receiver. A receiver with negligible
circuit noise, bandwidth B, and a photodetector with
responsivity ℛ (A/W) measures a modulated optical power P(t)
= P0 + Ps cos(2πft), where f < B. If P0 ≫ Ps, derive an



expression for the minimum modulation power Ps that is
measurable with signal-to-noise ratio SNR0 = 30 dB. What is
the effect of the background power P0 on the minimum
observable signal Ps?

19.6-12 Dependence of Digital Receiver Sensitivity on
Wavelength. The receiver sensitivity of an ideal digital
receiver (with unity quantum efficiency and no circuit noise)
operating at a wavelength 870 nm is −76 dBm. What is the
sensitivity at 1300 nm if the receiver is operated at the same
data rate?

19.6-13 Bit Error Rate for a Digital Receiver. An ideal digital
receiver that makes use of a p–i–n photodiode with η = 1 is
devoid of noise except for Poisson photon noise. The receiver
mistakes a 870-nm optical signal of power P (logic state “1”)
that is present for one that is absent (logic state “0”) with
probability 10−10. What is the probability of error under each of
the following altered conditions?

a. The wavelength is λo = 1300 nm.

b. Original conditions, but now the power is doubled.

c. Original conditions, but the photodetector quantum efficiency
is now η = 0.5.

d. Original conditions, but an ideal APD with η = 1, gain G = 100,
and F = 1 (no gain noise) is used.

e. As in (d), but the APD has an excess noise factor F = 2 instead.

19.6-14 Sensitivity of a Photon-Counting Receiver. A
photodetector with quantum efficiency η = 0.5 records the
number of photoelectrons received in successive time intervals
of duration T = 1 μs. Determine the receiver sensitivity (mean
number of photons required to achieve a SNR = 103) assuming
that the photon-number distribution is Poisson. Assuming that



the wavelength of the light is λo = 870 nm, what is the
corresponding optical power? If this optical power is detected,
what is the probability that the detector registers zero counts?

*19.6-15 Single-Dynode PMT Illuminated by Photon-
Number-Squeezed Light. Consider a photomultiplier tube
(PMT) with quantum efficiency η and a single dynode. Incident
on the photocathode is light from a specially designed photon
source for which the probability of observing n photons in the
counting time T is

When an electron strikes the dynode, either two or three secondary
electrons are emitted and these proceed to the anode to be
registered. The gain distribution P(G) is given by

so that it is twice as likely that three secondary electrons are
produced as two.

a. Calculate the SNR and the photon-number variance-to-mean
ratio for the input photon number and compare these
quantities to those for a Poisson photon number of the same
mean.

b. Find the probability distribution for the photoelectron number
p(m), along with its SNR and variance-to-mean ratio [see Sec.
13.2D].

c. Demonstrate that as the quantum efficiency η decreases and
approaches zero, the photoelectron-number variance-to-mean
ratio  approaches unity from below, but never becomes
equal to or exceeds unity.15 The photoelectron statistics thus



retain their sub-Poisson character no matter how small η
becomes.

d. Determine the mean gain (G) and the mean-square gain (G2)
associated with the secondary-emission process.

e. Find the excess noise factor F.

f. Assuming that the quantum efficiency of the PMT is , and
the counting time T = 1.3 ns, determine the mean anode
current  in a circuit of bandwidth B = 1/2T, and calculate the
current SNR.

g. Calculate the PMT responsivity if the incident light is of
wavelength λo = 1550 nm.

h. Explain why (19.6-23) for  is not applicable.
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Sir William Henry Bragg (1862–1942, left) and Sir William
Lawrence Bragg (1890–1971, right), a father-and-son team, were
awarded the Nobel Prize in 1915 for their studies of the diffraction
of light from periodic structures such as those created by sound.

The refractive index of an optical medium can be altered by the
presence of sound. Acousto-optics is the study of how sound
modifies the effect such a medium has on light, as schematically
illustrated in Fig. 20.0-1. Many useful photonic devices make use of
the ability of sound to control light; these include optical
modulators, switches, deflectors, filters, isolators, frequency
shifters, and spectrum analyzers.

Figure 20.0-1 Sound can modify the effect of an optical medium
on light.

Sound is a dynamic strain involving molecular vibrations that takes
the form of a wave traveling at a velocity characteristic of the
medium (the velocity of sound). As an example, a harmonic plane
wave of compressions and rarefactions in a gas is depicted in Fig.
20.0-2. In those regions where the medium is compressed, the
density of gas is higher and its refractive index is larger; where the
medium is rarefied, its density and refractive index are smaller. In
solids, sound involves vibrations of the molecules about their
equilibrium positions; this alters the optical polarizability of the
material and thus its refractive index.



Figure 20.0-2 Variation of the refractive index of a material
accompanying a harmonic sound wave. The pattern has a period Λ
(the wavelength of sound) and travels with the velocity of sound in
the medium.

Hence, an acoustic wave creates a perturbation of the refractive
index in the form of a wave. The medium becomes a dynamic
graded-index medium — an inhomogeneous medium with a time-
varying, stratified refractive index. The theory of acousto-optics
deals with the perturbation of the refractive index caused by sound,
and with the propagation of light through this perturbed, time-
varying, inhomogeneous medium.

The propagation of light in static (as opposed to time-varying)
inhomogeneous (graded-index) media has been examined in Secs.
1.3, 2.4C, and 5.2B. Since optical frequencies are far higher than
acoustic frequencies, the variations of the refractive index in a
medium perturbed by sound are invariably very slow in comparison
with the optical period. As a consequence, an adiabatic approach is
suitable wherein the optical propagation problem is solved
separately at every instant of time during the relatively slow course
of the acoustic cycle, always treating the material as if it were a
static (frozen) inhomogeneous medium. In this quasi-stationary
approximation, acousto-optics reduces to the optics of
inhomogeneous media, usually periodic, controlled by sound.

The simplest form of the interaction of light and sound is the partial
reflection of an optical plane wave from the stratified parallel planes
representing the refractive-index variations created by an acoustic



(20.0-1)

plane wave (Fig. 20.0-3). A set of parallel reflectors separated by the
wavelength of sound Λ will reflect light if the angle of incidence θ
satisfies the Bragg condition for constructive interference (2.5-
13),

Bragg Condition

where λ is the wavelength of light in the medium [Exercise 2.5-3
and (7.1-42)]. This form of light–sound interaction is known as
Bragg diffraction, Bragg reflection, or Bragg scattering.
Devices that make use of it are known as Bragg reflectors,
Braggdeflectors, Bragg cells, acousto-optic cells, or acousto-
optic modulators.

Figure 20.0-3 Bragg diffraction: an acoustic plane wave acts as a
partial reflector of light (a beamsplitter) when the angle of
incidence θ satisfies the Bragg condition specified in (20.0-1).

This Chapter

In Sec. 20.1, a simplified theory of the optics of Bragg diffraction is
presented for linear, nondispersive, and isotropic media. Though the
theory is based on wave optics, so that the polarization of light and
sound are ignored, a simple quantum interpretation of the
interaction emerges. Bragg cells using electrically controlled
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acoustic transducers have found widespread application in
photonics and their use for the modulation and scanning of light is
considered in Sec. 20.2. Section 20.3 provides a brief introduction to
anisotropic and polarization effects in acousto-optics.

20.1 INTERACTION OF LIGHT AND SOUND
The effect of a scalar acoustic wave on a scalar optical wave is
described in this section. We first consider optical and acoustic
plane waves, and then examine the interaction of optical and
acoustic beams.

A. Bragg Diffraction
Consider an acoustic plane wave of frequency f (angular frequency
Ω = 2πf) and wavelength Λ = vs/f (wavenumber q = 2π/Λ) traveling
in the x direction (vertically) in a medium with sound velocity vs.
The strain (relative displacement) at time t and position x in the
medium is

where S0 is the strain amplitude. The acoustic intensity Is (units of
W/m2) is

where ϱ is the mass density of the medium.

Refractive-index perturbation.
The medium is assumed to be optically transparent and its
refractive index in the absence of sound is n. The sound-induced
strain s(x, t) creates a proportional perturbation of the refractive
index that is obtained via a Taylor-series expansion analogous to
that used for the Pockels effect in (21.1-4),
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(20.1-6)

(20.1-7)

(20.1-4)

(20.1-5)

where p is a dimensionless phenomenological coefficient known as
the elasto-optic coefficient or strain-optic coefficient. The
minus sign indicates that positive strain (dilation) leads to a
reduction of the refractive index. As a consequence, the medium has
a time-varying inhomogeneous refractive index that takes the form
of a wave

with amplitude

Substituting (20.1-2) into (20.1-5) reveals that the refractive-index
change is proportional to the square root of the acoustic intensity,

The quantity

Acousto-Optic Figure of Merit

is a material parameter that represents the effectiveness of sound in
altering the refractive index. The quantity ℳ is thus a figure of
merit that indicates the strength of the acousto-optic effect in the
material.



(20.1-8)

EXAMPLE 20.1-1.

Acousto-Optic Figure of Merit for Flint Glass. Extra-
dense flint glass is characterized by the parameters ϱ = 6.3 × 103

kg/m3, vs = 3.1 km/s, n = 1.92, and p = 0.25, so that ℳ = 1.67 ×
10−14 m2/W. An acoustic wave of intensity 10 W/cm2 thus
creates a refractive-index wave of amplitude Δn0 = 2.89 × 10−5.

Amplitude reflectance.
Consider now an optical plane wave traveling in this medium with
frequency ν, angular frequency ω = 2πν, free-space wavelength λo =
co/ν, wavelength in the unperturbed medium λ = λo/n
corresponding to wavenumber k = nω/co, and wavevector k lying in
the x–z plane and making an angle θ with the z axis, as illustrated in
Fig. 20.1-1.

Figure 20.1-1 Reflections from layers of an inhomogeneous
medium.

Because the acoustic frequency f is typically smaller than the optical
frequency ν by at least five orders of magnitude, we consider the
light–sound interaction in terms of an adiabatic approach, as
mentioned earlier. Hence, the refractive index is taken to be a static
“frozen” sinusoidal function
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where φ is a fixed phase. We determine the reflected light from this
inhomogeneous (graded-index) medium and track its slow variation
with time by taking φ = Ωt.

To determine the amplitude of the reflected wave (wavevector kr)
we divide the medium into incremental planar layers orthogonal to
the x axis. The incident optical plane wave is partially reflected at
each layer because of the refractive-index change. To begin, we
assume that the reflectance is sufficiently small so that the
transmitted light from each layer approximately maintains its
original magnitude (i.e., is not depleted) as it penetrates through the
subsequent layers of the medium.

If Δr =(dr/dx)Δx is the incremental complex amplitude reflectance
of a layer of incremental width Δx at position x, the total complex
amplitude reflectance for an overall length L (Fig. 20.1-1) is the sum
of all incremental reflectances,

The phase factor ej2kx sin θ accommodates the fact that the reflected
wave at a position x is advanced by a distance 2x sin θ,
corresponding to a phase shift 2kx sin θ, relative to the reflected
wave at x = 0. The wavenumbers of the incident and reflected waves
are taken to be the same.

Using (20.1-8), we write

where the derivative dr/dn, which may be obtained from the
Fresnel equations of reflection as will be shown subsequently, is not
dependent on x. Substituting (20.1-10) into (20.1-9), and using
complex notation for sin(qx − φ) = [ej(qx−φ) − e−j(qx−φ)]/2j, we have
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where

Carrying out the integrals in (20.1-11) and substituting φ = Ωt, we
finally obtain

where

Amplitude Reflectance

and sinc(x) ≡ sin(πx)/(πx).

For reasons that will become clear shortly, the terms r+ and r− are
called the upshifted and downshifted Bragg amplitude reflectances,
respectively. The upshifted reflectance r+ has its maximum value
when 2k sin θ = q, whereas the downshifted reflection is maximum
when 2k sin θ = −q. If L is sufficiently large, these maxima are
sharp, so that any slight deviation from the angles θ = ± sin−1 (q/2k)
renders the corresponding term negligible. Thus, only one of these
two terms can be significant at a time, depending on the angle θ. We
first consider the upshifted condition, 2k sin θ ≈ q, in which case the
downshifted reflection is negligible; we comment on the
downshifted case subsequently.

Bragg Condition



(20.1-15)

The sinc function in (20.1-14) attains its maximum value of 1.0
when its argument is zero, i.e., when q = 2k sin θ for upshifted
reflection. This occurs when θ = θℬ, where θℬ = sin−1(q/2k) is the
Bragg angle. Since q = 2π/Λ and k = 2π/λ, we have

The Bragg angle is the angle at which the incremental reflections
from planes separated by an acoustic wavelength Λ have a phase
shift of 2π so that they interfere constructively [see Exercise 2.5-3
and (7.1-42)].

EXAMPLE 20.1-2.

Bragg Angle for Flint Glass. An acousto-optic cell is made of
extra-dense flint glass of refractive index n = 1.92, in which the
velocity of sound is vs = 3.1 km/s. The Bragg angle for reflection
of an optical wave of free-space wavelength λo = 633 nm (λ =
λo/n ≈ 330 nm) from a sound wave of frequency f = 100 MHz (Λ
= vs/f = 31 μm) is θℬ = 5.3 mrad ≈ 0.30°. This angle is internal
(i.e., inside the medium). If the cell is placed in air, θℬ
corresponds to an external angle . A sound wave of
10 times greater frequency (f = 1 GHz) corresponds to a Bragg
angle θℬ = 3.0°.

The Bragg condition can also be stated as a simple relation between
the wavevectors of the sound wave and the optical waves. If q = (q,
0, 0), k = (−k sin θ, 0, k cos θ), and kr = (k sin θ, 0, k cos θ)
represent the components of the wavevectors of the sound wave,
the incident light wave, and the reflected light wave, respectively,
the condition q = 2k sin θℬ is equivalent to the vector relation
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as illustrated by the vector diagram in Fig. 20.1-2.

Figure 20.1-2 The Bragg condition sin θℬ = q/2k is equivalent to
the vector relation kr = k + q. For a sound wave traveling in the
upward direction, the directions of the incident optical wave and the
sound wave form an acute angle and the frequency of the diffracted
wave is upshifted.

Tolerance in the Bragg Condition

The dependence of the complex amplitude reflectance on the angle
θ is governed by the symmetric function sinc[(q − 2k sin θ)L/2π] =
sinc[(sin θ − sin θℬ)2L/λ] in (20.1-14). This function reaches its
peak value when θ = θℬ and drops sharply when θ differs slightly
from θℬ. When sin θ − sin θℬ = λ/2L the sinc function reaches its

first zero and the intensity reflectance |r|2 vanishes (Fig. 20.1-3).
Because θℬ is usually very small, sin θ ≈ θ, and the reflectance
vanishes at an angular deviation from the Bragg angle of
approximately θ − θℬ ≈ λ/2L. Since L is typically much greater than
λ, this is an extremely small angular width. This sharp reduction of
the reflectance for slight deviations from the Bragg angle occurs as a
result of the destructive interference between the incremental
reflections from the sound wave.
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Figure 20.1-3 Dependence of the intensity reflectance |r|2 on the
angle θ. Maximum reflection occurs at the Bragg angle θℬ =

sin−1(λ/2Λ).

Doppler Shift

In accordance with (20.1-14), the complex amplitude reflectance r+
is proportional to exp(jΩt). Since the angular frequency of the
incident light is ω [i.e., E ∝ exp(jωt)], the reflected wave Er = r+E ∝
exp[j(ω + Ω)t] has angular frequency

Doppler Shift

The process of reflection is therefore accompanied by a frequency
shift equal to the frequency of the sound. This can be viewed as a
Doppler shift (Exercise 2.6-1 and Sec. 14.3D). The incident light is
reflected from surfaces that move with velocity vs. Its Doppler-
shifted angular frequency is therefore ωr = ω(1 + 2vs sin θ/c), where
vs sin θ is the component of velocity of these surfaces along the
direction of the incident and reflected waves. Using the relations sin
θ = λ/2Λ, vs = ΛΩ/2π, and c = λω/2π reproduces (20.1-17). The
magnitude of the Doppler shift equals the sound frequency.

Because Ω ≪ ω, the frequencies of the incident and reflected waves
are approximately equal (the difference is typically smaller than 1
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part in 105) so that the wavelengths of the two waves are therefore
also approximately equal. In writing (20.1-9) we have implicitly
made use of this assumption by using the same wavenumber k for
the two waves. Also, in drawing the vector diagram in Fig. 20.1-2 it
was assumed that the vectors kr and k have approximately the same
length, nω/co.

Intensity Reflectance

The reflectance ℛ = |r+|2 is the ratio of the intensity of the reflected
optical wave to that of the incident optical wave. At the Bragg angle
θ = θℬ, (20.1-14) gives ℛ = |r0|2 so that substituting from (20.1-12)
yields

An expression for the derivative dr/dn may be obtained by use of
the Fresnel equations (Sec. 6.2) to determine the incremental
complex-amplitude reflectance Δr in terms of the incremental
refractive-index change Δn between two adjacent layers. For TE
(orthogonal) polarization, (6.2-8) is used with n1 = n + Δn, n2 = n,
and θ1 = 90° − θ; Snell’s law n1 sin θ1 = n2 sin θ2 provides θ2. When
terms of second order in Δn are neglected, the result is Δr ≈ −Δn/2n
sin2 θ so that

Equation (6.2-9) is similarly used for the TM (parallel) polarization,
yielding

In most acousto-optic devices θ is very small, so that cos 2θ ≈ 1,
rendering (20.1-19) approximately applicable for both polarizations.
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Substituting (20.1-19) into (20.1-18), and using the Bragg condition
q = 2k sin θ = (4πn sin θ/λo), then leads to

Using (20.1-6), we conclude that the intensity reflectance

Intensity Reflectance

is proportional to the intensity of the acoustic wave Is, to the
material parameter ℳ defined in (20.1-7), and to the square of the
oblique distance L/sin θ of penetration of light through the acoustic
wave. Finally, substituting sin θ = λ/2Λ into (20.1-22) gives rise to

Hence, the intensity reflectance is inversely proportional to  (or
directly proportional to ω4). The dependence of the efficiency of
scattering on the fourth power of the optical frequency is typical for
light-scattering phenomena (see Secs. 5.6B, 10.3A, and 14.5C).

The purported proportionality between the reflectance and the
sound intensity is problematical, however. As the sound intensity
increases, ℛ would eventually exceed unity, and the reflected light
would be more intense than the incident light. This result is a
consequence of a violation of the assumptions of this approximate
theory. It was assumed at the outset that the incremental reflection
from each layer was too small to deplete the transmitted wave that
reflects from subsequent layers. Clearly, this assumption does not
hold when the sound wave is intense. Saturation then occurs,
ensuring that ℛ does not exceed unity (see also Sec. 7.1C). As will
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be shown in Sec. 20.1B, a more careful analysis that accommodates
depletion of the incident optical wave leads to an expression for the
exact reflectance ℛe given by

where ℛ is the approximate reflectance provided in (20.1-22).
Evidently, when ℛ ≪ 1, sin , so that ℛe ≈ ℛ, as illustrated
in Fig. 20.1-4.

Figure 20.1-4 Dependence of the exact reflectance ℛe of a Bragg
reflector on the intensity of sound Is. When Is is small ℛe ≈ ℛ,
which is a linear function of Is.
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EXAMPLE 20.1-3.

Reflectance of a Flint-Glass Bragg Cell. Consider a Bragg
cell made of extra-dense flint glass, which has a figure of merit
ℳ = 1.67 × 10−14 m2/W (Example 20.11). For λo = 633 nm (a
wavelength of the He–Ne laser), a sound intensity Is = 10W/cm2,
and a penetration length of the light through the sound L/sin θ =
1 mm, we find that ℛ = 0.0206 and ℛe = 0.0205, so that
approximately 2% of the light is reflected from the cell. If the
sound intensity is increased to 100 W/cm2, however, then ℛ =
0.206 and ℛe = 0.192, revealing that the depletion of the
incident optical wave must be accommodated and that the
reflectance increases to ≈ 19%.

Downshifted Bragg Diffraction

According to (20.1-14), another possible geometry for Bragg
diffraction is that for which 2k sin θ = −q. This is satisfied when the
angle θ is negative; i.e., when the directions of the incident optical
wave and the sound wave make an obtuse angle, as illustrated in
Fig. 20.1-5. In this case, the downshifted reflectance r− in (20.1-14)
attains its maximum value, while the upshifted reflectance r+ is
negligible. The complex amplitude reflectance is then

In this geometry, the frequency of the reflected optical wave,
denoted ωs, is downshifted, so that

and the wavevectors of the light and sound waves satisfy the
relation



(20.1-27)
as illustrated in Fig. 20.1-5. Equation (20.1-27) is a phase-matching
condition, ensuring that the light reflections add in phase. The
frequency downshift in (20.1-26) is consistent with the Doppler
shift since the light and its parallel sound-wave component travel in
the same direction in this configuration.

Figure 20.1-5 Geometry of downshifted diffraction of light from a
sound wave traveling in the upward direction. The directions of the
incident optical wave and the sound wave make an obtuse angle
with respect to each other and the frequency of the diffracted wave
is downshifted.

Quantum Interpretation

In accordance with the quantum theory of light (Chapter 13), an
optical wave of angular frequency ω and wavevector k is viewed as a
stream of photons, each of energy ℏω and momentum ℏk. An
acoustic wave of angular frequency Ω and wavevector q may be
similarly regarded as a stream of acoustic quanta, called phonons,
each of energy ℏΩ and momentum ℏq.

From a quantum perspective, the interaction of light and sound
involves a photon and a phonon combining to generate a new
photon with the sum energy and momentum. An incident photon of
frequency ω and wavevector k thus interacts with a phonon of
frequency Ω and wavevector q to generate a new photon of
frequency ωr and wavevector kr, as illustrated in Fig. 20.1-6 (see



(20.1-28)
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also Fig. 14.5-5). Conservation of energy and momentum require
that ℏωr = ℏω + ℏΩ and ℏkr = ℏk + ℏq, from which the Doppler shift
formula (20.1-17), ωr = ω + Ω, and the Bragg condition (20.1-16), kr
= k + q, are recovered. The preceding argument is applicable for
upshifted Bragg diffraction; a parallel argument exists for the
downshifted case. The quantum interpretation provided here is
similar to that offered for Brillouin and Raman scattering in Sec.
14.5C.

Figure 20.1-6 Bragg diffraction from a quantum perspective: a
photon combines with a phonon to generate a new photon with
modified frequency and momentum.

*B. Coupled-Wave Theory

Bragg Diffraction as a Scattering Process

As described in ec. 5.2B, light propagating through a homogeneous
medium with a slowly varying inhomogeneous refractive-index
perturbation Δn is described by the wave equation (5.2-20),

where the radiation source

is proportional to the second derivative of the product Δn ε. For
Bragg diffraction the perturbation Δn is created by a sound wave, so
the scattering source is dependent on both the acoustic field and the
optical field ε, which includes both the incident and scattered fields.
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An approximate method for solving this scattering problem makes
use of the first Born approximation, which relies on the
assumption that the scattering source 𝒮 is created by the incident
field, rather than by the actual field. Once the scattering source is
known, the wave equation can be solved for the scattered field.

We assume that the incident optical field is a plane wave,

and that the perturbation engendered by the acoustic wave is also a
plane wave,

Substituting these two equations into (20.1-29), and reordering the
terms of the product Δn ε, leads to

where ωr = ω + Ω, kr = k + q, kr = ωr/c; and ωs = ω − Ω, ks = k − q,
ks = ωs/c. The two sources of radiation, with frequencies ω ± Ω and
wavevectors k ± q, may emit upshifted or downshifted Bragg-
reflected plane waves. Upshifted reflection occurs if the geometry of
the experimental configuration is such that the magnitude of the
vector k + q equals ωr/c ≈ ω/c, as can easily be seen from the vector
diagram in Fig. 20.1-2. Downshifted reflection occurs if the vector k
− q has magnitude ωs/c ≈ ω/c, as illustrated in Fig. 20.1-5. Clearly,
these two conditions cannot be simultaneously satisfied.

The foregoing analysis provides an independent proof for the Bragg
condition and Doppler-shift formula based on a scattering approach.
Equation (20.1-32) confirms that the intensity of the emitted light is
proportional to ω4, so that the efficiency of scattering is inversely
proportional to the fourth power of the wavelength. This analysis
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can be pursued further to obtain an expression for the intensity
reflectance by determining the intensity of the wave emitted by the
scattering source (Prob. 20.1-2).

Coupled-Wave Equations

To reach beyond the first Born approximation, we must include the
contribution made by the scattered field to the source 𝒮. Assuming
that the geometry is that of upshifted Bragg diffraction, the field ε
then comprises the incident and Bragg-reflected waves: ε = Re{E
exp(jωt)} + Re{Er exp(jωrt)}. With the help of the relation Δn =
−Δn0 cos(Ωt − q · r), (20.1-29) provides

where

Comparing terms of equal frequencies on both sides of the wave
equation (20.1-28) leads to a pair of coupled Helmholtz equations
for the incident wave and the Braggreflected wave:

These equations, with the help of (20.1-34), may be solved to
determine E and Er.

Consider, as an example, the case of small-angle Bragg diffraction (θ
≪ 1), so that the two waves travel approximately in the z direction
as portrayed in Fig. 20.1-7. Assuming that k ≈ kr, the fields E and Er
are described by E = A exp(−jkz) and Er = Ar exp(−jkz), respectively,
where the envelopes A and Ar are slowly varying functions of z.
Using the slowly varying envelope approximation set forth in Sec.
2.2C, we can set (∇2 + k2)A exp(−jkz) ≈ −j2k(dA/dz) exp(−jkz),
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(20.1-38a)

(20.1-38b)

whereupon (20.1-34) and (20.1-35) yield coupled first-order
differential equations for the envelopes

with

Figure 20.1-7 Top: Incident and reflected waves for small-angle
Bragg diffraction. Bottom: The intensity of the incident optical wave
decays while that of the Bragg-reflected wave grows as the distance
of travel through the acoustic wave in the Bragg cell increases.

If the Bragg cell extends from z = 0 to z = d (Fig. 20.1-7), and we use
the boundary condition Ar(0) = 0, (20.1-36) have the harmonic
solutions
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These equations describe the growth of the reflected wave and the
decay of the incident wave, as illustrated in Fig. 20.1-7. The
reflectance ℛe = |Ar(d)|2/|A(0)|2 is therefore ℛe = sin2(γd/2), so
that , where ℛ = (γd/2)2. Using (20.1-37), we then have 

, which exactly matches the expression for the weak
sound reflectance provided in (20.1-21) with d = L/sin θ.

C. Bragg Diffraction of Beams
It has been shown thus far that an optical plane wave of wavevector
k interacts with an acoustic plane wave of wavevector q to produce
an optical plane wave of wavevector kr = k + q, provided that the
Bragg condition is satisfied (i.e., the angle between k and q is such
that the magnitude kr = |k + q| ≈ k = 2π/λ, as illustrated in Fig.
20.1-2).

The interaction between a beam of light and a beam of sound can be
understood if the beams are regarded as superpositions of plane
waves traveling in different directions, each with its own wavevector
(see the introduction to Chapter 4).

Diffraction of an Optical Beam from an Acoustic Plane Wave

Consider an optical beam of width D interacting with an acoustic
plane wave. In accordance with Fourier optics (Sec. 4.3A), the
optical beam can be decomposed into a collection of plane waves
whose directions occupy a cone of half-angle

The coefficient of proportionality in (20.1-39) is taken to be unity
for simplicity, but actually depends on the beam profile: 1) For a
rectangular profile of width D, the angular width from the peak to
the first zero of the Fraunhofer diffraction pattern is δθ = λ/D in
accordance with (4.3-7); 2) For a circular profile of diameter D, δθ =
1.22λ/D in accordance with (4.3-9); and 3) For a Gaussian beam of
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waist diameter D = 2W0, δθ = λ/πW0 = (2/π)λ/D ≈ 0.64λ/D in
accordance with (3.1-20).

Though there is only a single wavevector q for the acoustic plane
wave, there are many wavevectors k (all of the same length 2π/λ)
within the cone of angle δθ for the optical beam. As illustrated in
Fig. 20.1-8, however, there is only one direction of k for which the
Bragg condition is satisfied. The diffracted optical wave thus has
only a single wavevector kr and is therefore a plane wave.

Figure 20.1-8 Diffraction of an optical beam from an acoustic
plane wave. There is only a single plane-wave component of the
incident light beam that satisfies the Bragg condition. The diffracted
light is therefore a plane wave.

Diffraction of an Optical Beam from an Acoustic Beam

Suppose now that the acoustic wave itself is a beam of width Ds. If
the sound frequency is sufficiently high so that the wavelength is
much smaller than the width of the medium, sound propagates as
an unguided (free-space) wave and has properties analogous to
those of light, and exhibits an angular divergence

The sound beam thus comprises a collection of acoustic plane waves
whose directions lie within the divergence angle δθs. The Bragg
diffraction of an optical beam from an acoustic beam can be



determined by identifying matching pairs of optical and acoustic
plane waves that satisfy the Bragg condition. The sum of the
reflected waves constitutes the reflected optical beam. There are
many vectors k (all of the same length 2π/λ) and many vectors q
(all of the same length 2π/Λ), but only those pairs of vectors that
result in isosceles triangles obeying the Bragg condition contribute,
as illustrated in Fig. 20.1-9.

Figure 20.1-9 Diffraction of an optical beam from an acoustic
beam. There are many plane-wave components of the incident light
beam that satisfy the Bragg condition so the diffracted light is an
optical beam.

If the acoustic-beam divergence is greater than that of the optical-
beam (δθs ≫ δθ), and if the central directions of the two beams
satisfy the Bragg condition, every incident optical plane wave finds
an acoustic match and the diffracted light beam has the same
angular divergence as the incident optical beam δθ. The distribution
of acoustic energy in the sound beam can then be monitored as a
function of direction by using a probe light beam of much narrower
divergence and measuring the diffracted light as the angle of
incidence is varied.

Diffraction of an Optical Plane Wave from a Thin Acoustic
Beam: Raman–Nath Diffraction

Since a thin acoustic beam comprises plane waves traveling in many
directions, it can diffract light at angles that are significantly
different from the Bragg angle corresponding to the beam’s
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principal direction. Consider, for example, the geometry of Fig. 20.1-
10 in which an incident optical plane wave impinges perpendicularly
to the principal direction of a thin acoustic beam. This configuration
for the acousto-optic diffraction of light by sound is known as
Raman–Nath diffraction or Debye–Sears diffraction.

Figure 20.1-10 Raman–Nath diffraction of light by sound. An
optical plane wave normally incident on a thin-beam acoustic
traveling or standing wave is partially deflected into two directions,
at angles θ ≈ ±λ/Λ with respect to the direction of the incident wave.

As can be understood from the vector diagram provided in Fig. 20.1-
10, the Bragg condition is satisfied if the diffracted wavevector
makes angles ±θ with respect to the direction of the incident optical
wave, where the angle θ is given by

If θ is small, we have sin(θ/2) ≈ θ/2, which leads to

The incident light is diffracted at the angles ±θ, whether the thin
acoustic beam is traveling upward or downward. For an acoustic
standing-wave beam, the optical wave is diffracted at both angles



from both traveling-wave components that comprise the standing
wave.

The angle θ ≈ λ/Λ is in fact the angle at which a diffraction grating
of period Λ diffracts an incident plane wave (Exercise 2.4-5). Indeed,
the thin acoustic beam serves to modulate the refractive index of
the acousto-optic material, creating a pattern of period Λ confined to
a thin planar layer. The acousto-optic medium thus acts as a thin
diffraction grating.

Such an acousto-optic phase grating also allows light to be diffracted
into higher orders, at angles ±2θ, ±3θ, …, as described by (2.4-12)
and illustrated in Fig. 20.1-11(a). Such higher-order diffracted waves
can be interpreted via a generalized quantum picture of the light–
sound interaction portrayed in Fig. 20.1-6: an incident photon
combines with two phonons to form a photon of the second-order
diffracted wave. Conservation of momentum dictates that the
diffracted beams then have wavevectors k ± 2q [one of these
beams, kr = k + 2q, is illustrated in Fig. 20.1-11(b)]; the second-
order diffracted light is concomitantly frequency shifted to ω ± 2Ω.
The same approach can be used to describe higher orders of
diffraction.

Figure 20.1-11 (a) A thin acoustic beam acts as a diffraction
grating. (b) Conservation-of-momentum diagram for second-order
acousto-optic diffraction.



20.2 ACOUSTO-OPTIC DEVICES
The materials used for the fabrication of acousto-optic devices are
generally chosen on the basis of the figure of merit 
that characterizes the strength of the acousto-optic effect, as
provided in (20.1-7). In addition to the region of wavelength
transparency, key material parameters are the refractive index, mass
density, sound velocity, and elasto-optic coefficient. Commonly
used materials in the visible and near-IR include extra-dense flint
glass (Examples 20.1-1, 20.1-2, and 20.1-3), fused silica, crystalline
quartz, and TeO2; in the mid-IR, Ge and chalcogenide glasses are
often used. Longitudinal acoustic waves are most commonly
employed in such devices because of their high diffraction
efficiency, but transverse acoustic waves have the merit that they
offer polarization-independent operation in certain configurations.
Integrated-optic devices often rely on LiNbO3, which is piezoelectric
so that it allows the generation of on-chip surface acoustic waves via
surface-mounted metallic electrodes.

As discussed in this section, acousto-optic modulators are useful in
a wide variety of applications in photonics, including:

Analog modulation of optical intensity

Digital switching of optical intensity

Scanning an optical beam

Routing an optical beam to selected directions

Spectral analysis of an acoustic beam

Spectral filtering of an optical beam

Shifting the frequency of an optical beam

Serving as an optical isolator

A. Modulators



The intensity of the light diffracted from a Bragg cell is proportional
to the intensity of the applied acoustic wave, provided that the latter
is sufficiently weak [see (20.1-22)]. Using an electrically controlled
acoustic transducer [Fig. 20.2-1(a)], the reflected light intensity can
thus be varied proportionally. Such a device, known as an acousto-
optic modulator (AOM), serves as a linear analog modulator of
light.

As the acoustic intensity increases and saturation sets in, it is
possible to attain essentially unity reflectance (Fig. 20.1-4). The
modulator can then serve as an acoustooptic switch. As
illustrated in Fig. 20.2-1(b), switching the sound ON and OFF
results in the reflected light being switched ON and OFF, while the
transmitted light is concomitantly switched OFF and ON. Acousto-
optic switches find use in Q switching and cavity dumping for solid-
state lasers, as well as in active mode-locking and laser-pulse
selection (Sec. 16.4), among other uses.

Figure 20.2-1 (a) An acousto-optic modulator that uses an
electrically controlled piezoelectric transducer. The intensity of the
diffracted light is proportional to the intensity of the sound. (b) An
acousto-optic switch. The presence of sound causes the light to be
reflected while its absence allows the light to be transmitted.

Modulation Bandwidth

The bandwidth of the modulator is the maximum frequency at
which it can efficiently impart modulation to the diffracted light.
When the amplitude of an acoustic wave of frequency f0 is varied as
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a function of time via amplitude modulation with a signal of
bandwidth B, the acoustic wave is no longer a single-frequency
harmonic function; it then has frequency components that lie
within a band f0 ± B centered about the frequency f0 (Fig. 20.2-2).
How does monochromatic light interact with this multifrequency
acoustic wave and what is the maximum value of B that can be
accommodated by the acousto-optic modulator?

Figure 20.2-2 Sample waveform of an amplitude-modulated
acoustic signal and its spectrum.

When both the incident optical wave and the acoustic wave are
plane waves, the component of sound of frequency f corresponds to
a Bragg angle

assuming that θ is small. For a fixed angle of incidence θ, an
incident monochromatic optical plane wave of wavelength λ thus
interacts with one and only one harmonic component of the
acoustic wave, i.e., the component with frequency f that satisfies
(20.2-1). This frequency corresponds to a wavenumber q = (2π/vs)f,
and the vector diagram illustrated in Fig. 20.2-3 shows that the
diffracted wave is then monochromatic with frequency ν + f.
Though the acoustic wave is modulated, the diffracted optical wave
is not. Evidently, under this idealized condition the bandwidth of
the modulator is zero!



Figure 20.2-3 Interaction of an optical plane wave with a
modulated (multifrequency) acoustic plane wave. Only one
frequency component of the sound diffracts the light wave. The
diffracted wave is monochromatic and not modulated.

To achieve modulation with a bandwidth B, each of the acoustic
frequency components within the band f0 ± B must interact with
the incident light wave. A situation with more tolerance is evidently
required. Suppose that the incident light is a beam of width D and
angular divergence δθ = λ/D and that the modulated sound wave is
planar. Each frequency component of the sound can then interact
with the optical plane wave that has the matching Bragg angle (Fig.
20.2-4).

Figure 20.2-4 Interaction of an optical beam of angular
divergence δθ with acoustic plane waves whose frequencies are
confined to the band f0 ± B. There are many parallel q vectors of
different lengths; each matches a direction in the incident light
beam.
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As is clear from the figure, the frequency band f0 ± B is
accommodated by an optical beam of angular divergence

The bandwidth of the modulator is therefore determined by

which we write as

Modulator Bandwidth

The quantity T represents the transit time of the sound across the
waist of the light beam, a result that is readily understood since a
time T is required to change the amplitude of the sound wave at all
points in the light–sound interaction region. The bandwidth can
therefore be increased by focusing the light beam to a smaller
diameter.
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EXERCISE 20.2-1

Parameters of Acousto-Optic Modulators. Determine the
Bragg angle and maximum bandwidth for the following acousto-
optic modulators:

Modulator 1

Material: Fused silica (n = 1.46, vs = 6 km/s)

Sound: Frequency f = 50 MHz
Light: He–Ne laser, wavelength λo = 633 nm; angular

divergence δθ = 1 mrad

Modulator 2

Material: Tellurium (n = 4.8, vs = 2.2 km/s)

Sound: Frequency f = 100 MHz
Light: CO2 laser, wavelength λo = 10.6 μm; beam width D = 1

mm

B. Scanners
An acousto-optic cell can be used to scan light. The fundamental
concept is based on the linear relation between the Bragg angle θ
and the sound frequency f expressed in (20.2-1). The angle of
deflection 2θ is therefore given by

where θ is taken to be sufficiently small so that sin θ ≈ θ. By
changing the sound frequency f, the deflection angle 2θ can be
varied.

Scanning with an acoustic plane wave.



One difficulty is that θ represents both the angle of incidence and
the angle of reflection. Effecting a change in just the angle of
reflection requires a simultaneous change in both the angle of
incidence and the sound frequency. Changing the angle of incidence
may be accomplished by tilting the sound beam, as illustrated in
Fig. 20.2-5. However, creating such a tilt requires a complex system
that uses, for example, a phased array of acoustic transducers
(several acoustic transducers driven at relative phases selected to
impart a tilt to the overall generated sound wave). Changing the
sound frequency requires a frequency modulator (FM), which must
be synchronized with phased array governing the angle of tilt.

Scanning with an acoustic beam.
The requirement of tilting the sound wave may be mitigated by
making use a sound beam with an angular divergence equal to or
greater than the entire range of directions to be scanned. As the
sound frequency is changed, the Bragg angle is altered and the
incoming light wave selects only that acoustic plane-wave
component with the matching direction. Though the efficiency of
such a system is expected to be low, we proceed to examine some of
its properties.

Figure 20.2-5 Scanning by changing the sound frequency and
acoustic-wave direction. The planar sound wave is tilted by using an
array of transducers driven by signals that differ by a phase φ.

Scan Angle
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For a sound frequency f, the incident light wave interacts with the
sound component at an angle θ =(λ/2vs)f and is deflected by an
angle 2θ = (λ/vs)f, as illustrated in Fig. 20.2-6. By varying the sound
frequency from f0 to f0 + B, the deflection angle 2θ is swept over a
scan angle

Scan Angle

This assumes, of course, that the sound beam has an angular width
δθs = Λ/Ds ≥ Δθ. Since the scan angle is inversely proportional to
the speed of sound, larger scan angles are obtained by using
materials with a small sound velocity vs.

Figure 20.2-6 Scanning an optical wave by varying the frequency
of a sound beam over the frequency range f0 ≤ f ≤ f0 + B. The
angular divergence of the sound beam is δθs.

Number of Resolvable Spots

If the optical wave itself has a residual angular width δθ = λ/D, and
assuming that δθ ≪ δθs, then the deflected beam also has a width
δθ. The number of resolvable spots of the scanner (the number of
nonoverlapping angular widths within the scanning range) is then
given by
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which we write as

Number of Resolvable Spots

where B is the bandwidth of the FM modulator used to generate the
sound and T = D/vs is the transit time of sound across the light
beam (Fig. 20.2-7). The number of resolvable spots, which is equal
to the time–bandwidth product T B, represents the degrees of
freedom of the scanner and is a significant indicator of its
capabilities. Increasing N requires a large transit time T, which is
opposite to the design requirement for an acousto-optic modulator,
where the modulation bandwidth B = 1/T is enhanced by selecting a
small value of T.

Figure 20.2-7 Number of resolvable spots of an acousto-optic
scanner.



EXERCISE 20.2-2

Parameters of an Acousto-Optic Scanner. A fused-silica
acousto-optic scanner (vs = 6 km/s, n = 1.46) is used to scan a
He–Ne laser beam (λo = 633 nm). The sound frequency is
scanned over the range 40 to 60 MHz. To what width should the
laser beam be focused so that the number of resolvable spots is
N = 100? What is the scan angle Δθ? What would be the effect of
using a material with a smaller velocity of sound, such as extra-
dense flint glass for which vs = 3.1 km/s?

The Acousto-Optic Scanner as an Acoustic Spectrum Analyzer

The proportionality between the Bragg angle and the sound
frequency stated in (20.2-1) can be used to make an acoustic
spectrum analyzer. A sound wave containing a collection of different
frequencies disperses the incident light in corresponding different
directions. The intensity of the deflected light in a given direction is
proportional to the intensity of the sound component at the
corresponding frequency (Fig. 20.2-8).

Figure 20.2-8 Each frequency component of the sound wave
deflects light in a different direction. The acoustooptic cell thus
serves as an acoustic spectrum analyzer.

C. Space Switches



An acousto-optic cell can be used as a space switch (Sec. 24.3) that
routes information carried by one or more optical beams to one or
more selected directions. Several interconnection schemes are
possible:

An acousto-optic cell in which the frequency of the acoustic
wave is one of N possible values, f1, f2, … , or fN, reflects an
incident optical beam in one of N corresponding directions, θ1,
θ2, … , or θN , as illustrated in Fig. 20.2-9. The device routes one
beam to any of N directions.

Figure 20.2-9 Routing an optical beam to one of N directions. By
applying an acoustic wave of frequency f3, for example, the optical
beam is reflected at an angle θ3 and routed to point 3.

Using an acoustic wave comprising two frequencies that are
simultaneously present, f1 and f2, allows the incident optical
beam to be simultaneously reflected in the two corresponding
directions, θ1 and θ2. A single beam is thereby connected to any
pair of many possible directions, as illustrated in Fig. 20.2-10.
More generally, an acoustic wave comprising M simultaneously
present frequencies allows the incident beam to be
simultaneously routed in M directions. An example of this
configuration is the acoustic spectrum analyzer schematized in
Fig. 20.2-8. The light beam is simultaneously routed to M
points, and the intensity at each point is proportional to the
intensity of the corresponding sound-frequency component.



Figure 20.2-10 Routing a light beam simultaneously in a number
of directions.

The length of the acousto-optic cell may be divided into two
segments. At a certain time, an acoustic wave of frequency f1 is
present in one segment and an acoustic wave of frequency f2 is
present in the other. This can be accomplished by generating
the acoustic wave from a frequency shift keyed electric signal in
the form of two pulses: a pulse of frequency f1 followed by
another of frequency f2, each with a duration T/2, where T =
w/vs is the transit time of sound through the length w of the
cell (Fig. 20.2-11). When the leading edge of the acoustic wave
reaches the end of the cell, the cell processes two incoming
optical beams by reflecting the top beam in the direction θ1
corresponding to f1, and the bottom beam in the direction θ2
corresponding to f2. This is a switch that connects each of two
beams to any of many possible directions. By placing more than
one frequency component in each segment, each of the two
beams can itself be simultaneously routed in several directions.



Figure 20.2-11 Routing each of two light beams in a set of
specified directions. The acoustic wave is generated by a frequency
shift keyed electric signal.

The cell may also be divided into N segments, each carrying a
harmonic acoustic wave of the same frequency f but of different
amplitude. The result is a spatial light modulator (SLM)
that modulates the intensities of N input beams (Fig. 20.2-12).
Spatial light modulators are useful in optical signal processing
(Sec. 21.1E).

Figure 20.2-12 The spatial light modulator modulates N optical
beams. The acoustic wave is driven by an amplitude-modulated
electric signal.

The most general interconnection architecture is one for which
the cell is divided into L segments, each carrying an acoustic
wave with M frequencies. The device acts as a random access
switch that simultaneously routes each of L incoming beams in
M directions (Fig. 20.2-13).
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Figure 20.2-13 An arbitrary-interconnection switch routing each
of L incoming light beams for random access to M points.

Interconnection Capacity

There is an upper limit to the number of interconnections that may
be established by an acousto-optic device, as will be shown below. If
an acousto-optic cell is used to route each of L incoming optical
beams to a maximum of M directions simultaneously, the product
M L cannot exceed the time–bandwidth product N = T B, where T is
the transit time through the cell and B is the bandwidth of the
acoustic wave:

Interconnection Capacity

This upper bound on the number of interconnections is called the
interconnection capacity of the device.

An acousto-optic cell with L segments relies on an acoustic wave
composed of L segments, each of time duration T/L. For each
segment to address M independent points, the acoustic wave must
carry M independent frequency components per segment. For a
signal of duration T/L there is an inherent frequency uncertainty of
L/T Hz. The M frequency components must therefore be separated
by at least that uncertainty. For the M components to be placed



within the available bandwidth B, we must have M(L/T) ≤ B, from
which M L ≤ T B so that (20.2-9) follows.

A single optical beam (L = 1), for example, can be connected to any
of N = T B points, but each of two beams can be connected to at
most N/2 points, and so on. It is a question of dividing an available
time–bandwidth product N = T B in the form of L time segments,
each containing M independent frequencies. Examples of the
possible choices are illustrated in the time–frequency diagram
presented in Fig. 20.2-14.

Figure 20.2-14 Several examples of dividing the time–bandwidth
region T B in the time– frequency diagram into N = T B
subdivisions (in this diagram N = 20). (a) Scanner: a single time
segment containing N frequency segments. (b) Spatial light
modulator: N time segments, each containing one frequency
component. (c) Interconnection switch: L time segments, each
containing M = N/L frequency segments (in this diagram, N = 20, M
= 4, and L = 5).

D. Filters, Frequency Shifters, and Isolators
The acousto-optic cell is useful for a number of other devices,
including filters, frequency shifters, and optical isolators.

Tunable Acousto-Optic Filters

The Bragg condition sin θ = λ/2Λ relates the angle θ, the acoustic
wavelength Λ, and the optical wavelength λ. If θ and Λ are specified,
Bragg reflection can occur only for a single optical wavelength, λ =



2Λ sin θ. This wavelength-selective property can be used to filter an
optical wave containing a broad spectrum of wavelengths. The filter
is tuned by changing the angle θ or the sound frequency f.

EXERCISE 20.2-3

Resolving Power of an Acousto-Optic Filter. Show that
the spectral resolving power λ/Δλ of an acousto-optic filter is
equal to f T , where f is the sound frequency, T is the transit
time, and Δλ is the minimum resolvable wavelength difference.

Frequency Shifters

Optical frequency shifters are useful in many photonic applications,
including optical heterodyne systems, optical FM modulators, and
laser Doppler velocimeters. An acousto-optic cell may be used as a
tunable frequency shifter since the Bragg reflected light is frequency
shifted (up or down) by the frequency of the sound (Sec. 20.1A). In
a heterodyne optical receiver, a received amplitude-modulated or
phase-modulated optical signal is mixed with a coherent optical
wave from a local light source, acting as a local oscillator with a
different frequency. The two optical waves beat with each other
(Sec. 2.6B) and the detected signal varies at the difference
frequency. Information relating to the amplitude and phase of the
received signal can be extracted from the detected signal (Sec. 25.4).
The acousto-optic cell offers a convenient means for imparting the
frequency shift required for the heterodyning process.

Optical Isolators

An optical isolator is a one-way optical valve that is often used to
prevent reflected light from retracing its path back into the original
light source (Secs. 6.6D and 24.1C). Optical isolators are sometimes
used with laser diodes since the reflected light can adversely affect
the lasing process. The acousto-optic cell can serve as an isolator. If
part of the frequency-upshifted Bragg-diffracted light is reflected



onto itself by a mirror and traces its path back into the cell, as
illustrated in Fig. 20.2-15, it undergoes a second Bragg diffraction
accompanied by a second frequency upshift. Since the frequency of
the returning light differs from that of the original light by twice the
sound frequency, a filter may be used to block it. Even without a
filter, the laser process may be insensitive to the frequency-shifted
light.

Figure 20.2-15 An acousto-optic isolator.

*20.3 ACOUSTO-OPTICS OF ANISOTROPIC
MEDIA
The scalar theory of the interaction of light and sound is generalized
in this section to include the anisotropic properties of the medium
and the effects of polarization of light and sound.

Acoustic Waves in Anisotropic Materials

An acoustic wave is a wave of material strain. Strain is defined in
terms of the displacements of molecules relative to their
equilibrium positions. If u = (u1, u2, u3) is the vector of
displacement of the molecules located at position x =(x1, x2, x3), the
strain tensor, which is symmetrical, has components 

, where the indices i, j = 1, 2, 3 denote the
coordinates (x, y, z). The element s33 = ∂u3/∂x3, for example,
represents tensile strain (stretching) in the z direction [Fig. 20.3-
1(a)], whereas s13 represents shear strain since ∂u1/∂x3 is the
relative movement in the x direction of two incrementally separated



parallel planes normal to the z direction, as illustrated in Fig. 20.3-
1(b).

Figure 20.3-1 Displacements associated with tensile strain and
shear.

An acoustic wave can be longitudinal or transverse, as illustrated by
the following examples.
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EXAMPLE 20.3-1.

Longitudinal Acoustic Wave. A wave with the displacement
u1 = 0, u2 = 0, u3 = A0 sin(Ωt − qz), where A0 is a constant,
corresponds to a strain tensor in which all components vanish
except

where S0 = −qA0. This is a wave that stretches in the z direction
and also travels in the z direction. Since the vibrations lie along
the same direction as the wave propagation, the wave is
longitudinal.

EXAMPLE 20.3-2.

Transverse Acoustic Wave. A wave with the displacement u1
= A0 sin(Ωt − qz), u2 = 0, u3 = 0, corresponds to a strain tensor
in which all components vanish except

where . This wave travels in the z direction but vibrates
in the x direction. It is therefore a transverse (shear) wave.

The velocities of longitudinal and transverse acoustic waves are
characteristics of the medium and generally depend on the direction
of propagation.

The Photoelastic Effect

The optical properties of an anisotropic medium are completely
characterized by the electric impermeability tensor η = εoε−1 (Sec.
6.3). Given η, we can determine the index ellipsoid and hence the



(20.3-3)

refractive indices for an optical wave of arbitrary polarization
traveling in an arbitrary direction.

In the presence of strain, the electric impermeability tensor is
modified so that ηij becomes a function of the elements of the strain
tensor, ηij = ηij(skl). This dependence is called the photoelastic
effect. Each of the nine functions ηij(skl) may be expanded in a
Taylor series in terms of the nine variables skl. Maintaining only the
linear terms provides

where the quantities pijkl = ∂ηij/∂skl are the components of a fourth-
rank tensor known as the photoelasticity tensor (sometimes
called the elasto-optic tensor or the strain-optic tensor).

Since both {ηij} and {skl} are symmetrical tensors, the coefficients
{pijkl} are invariant to permutations of i and j, and to permutations
of k and l. There are therefore only six (rather than nine)
independent values for the set (i, j) and six independent values for
(k, l). The pair of indices (i, j) is usually contracted to a single index
I = 1, 2, … , 6 (see Table 21.2-1). The indices (k, l) are similarly
contracted and denoted by the index K = 1, 2, … , 6. The fourth-rank
tensor pijkl is then described by a 6 × 6 matrix pIK.

Moreover, the symmetry of the crystal requires that some of the
coefficients pIK vanish and that certain coefficients are related. The
matrix pIK for a cubic crystal, for example, has the structure



(20.3-4)

Photoelasticity Matrix (Cubic Crystal)

This matrix is also applicable for isotropic media, with the
additional constraint , which leads to only two
independent coefficients. It is analogous to the Kerr electro-optic
matrix sIK for isotropic media displayed in Table 21.2-3.
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EXAMPLE 20.3-3.

Longitudinal Acoustic Wave in a Cubic Crystal. The
longitudinal acoustic wave described in Example 20.3-1 travels
along one of the axes of a cubic crystal of refractive index n.
Substituting (20.3-1) and (20.3-4) into (20.3-3), we find that the
associated strain results in an impermeability tensor with
elements

Thus, the initially optically isotropic cubic crystal becomes a
uniaxial crystal with the optic axis along the direction of the
acoustic wave (z direction) and with ordinary and extraordinary
refractive indices, no and ne, respectively, given by

The shape of the index ellipsoid is altered periodically in time
and space in the form of a wave, but the principal axes remain
unchanged (Fig. 20.3-2). Since the change in the refractive
indices is typically small, the second terms in (20.3-8) and (20.3-
9) are small, so that the approximation (1 + Δ)−1/2 ≈ 1 − Δ/2 for |
Δ| ≪ 1 may be applied, whereupon (20.3-8) and (20.3-9) become
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(20.3-13)

(20.3-14)

Figure 20.3-2 A longitudinal acoustic wave traveling in the z
direction in a cubic crystal alters the shape of the index ellipsoid
from a sphere to an ellipsoid of revolution whose dimensions
vary sinusoidally with time; the optic axis is along the z
direction.

EXERCISE 20.3-1

Transverse Acoustic Wave in a Cubic Crystal. The
transverse acoustic wave described in Example 20.3-2 travels
along one of the axes of a cubic crystal. Show that the crystal
becomes biaxial with principal refractive indices

In Example 20.3-3 and Exercise 20.3-1, the acoustic wave alters the
principal values of the index ellipsoid but not its principal
directions, so that the ellipsoid maintains its orientation. This is not
always the case, however. Acoustic waves with other directions and
polarizations relative to the principal axes of the crystal result in
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(20.3-15)

alterations of the principal refractive indices as well as the principal
axes of the crystal.

Bragg Diffraction

The interaction of a linearly polarized optical wave with a
longitudinal or transverse acoustic wave in an anisotropic medium
can be described by the same principles as those set forth in Sec.
20.1. The incident optical wave is diffracted from the acoustic wave
if the Bragg condition for constructive interference is satisfied. The
analysis is a bit more complex than that for the scalar theory,
however, since the incident and reflected waves travel with different
velocities; thus, the angles of reflection and incidence need not be
equal.

The condition for Bragg diffraction is the conservation-of-
momentum (phasematching) condition provided in (20.1-16),

Now, however, the magnitudes of these wavevectors are k = (2π/
λo)n, kr = (2π/λo)nr, and q = (2π/Λ), where λo and Λ are the optical
and acoustic wavelengths, and n and nr are the refractive indices of
the incident and reflected optical waves, respectively.

As illustrated in Fig. 20.3-3, if θ and θr are the angles of incidence
and reflection, respectively, the vector equation (20.3-15) may be
replaced with two scalar equations relating the z and x components
of the wavevectors in the plane of incidence:

from which
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(20.3-18a)

Given the wavelengths λo and Λ, the angles θ and θr may be
determined by solving (20.3-18). Note that n and nr are generally
functions of θ and θr that may be determined from the index
ellipsoid of the unperturbed crystal.

Figure 20.3-3 Bragg condition (conservation of momentum or
phase-matching condition) in an anisotropic medium.

For collinear optical and acoustic waves, the phase-matching
conditions are readily inferred from the vector configurations
displayed in Fig. 20.3-4. For front-reflection we have kr = k + q,
where kr, k, and q are the magnitudes of the respective vectors with
no signs attached. This gives rise to nr − n = λo/Λ. For back-
reflection we have kr + k = q, which leads to nr + n = λo/Λ.
Combining both results in the form of a single equation yields

For back reflection (+ sign), Λ must be smaller than λo, which is
unlikely except for very-high-frequency acoustic waves. For front
reflection (− sign), the incident and reflected waves must have
different polarizations so that nr ≠ n.



Figure 20.3-4 Wavevector diagrams for front and back reflections
of an optical wave from an acoustic wave.
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PROBLEMS
20.1-1 Diffraction of Light from Various Periodic

Structures. Discuss the diffraction of an optical plane wave of
wavelength λ from the following periodic structures, indicating



in each case the geometrical configuration and the frequency
shift(s):

a. An acoustic traveling wave of wavelength Λ.

b. An acoustic standing wave of wavelength Λ.

c. A graded-index transparent medium with refractive index that
varies sinusoidally with position (period Λ).

d. A stratified medium comprising parallel layers of two materials
of different refractive indices that alternate to form a periodic
structure of period Λ (Sec. 7.1C).

*20.1-2 Bragg Diffraction as a Scattering Process. An incident
optical wave of angular frequency ω, wavevector k, and
complex envelope A interacts with a medium perturbed by an
acoustic wave of angular frequency Ω and wavevector q, and
creates a light source 𝒮 described by (20.1-32). The angle θ
corresponds to upshifted Bragg diffraction, so that the
scattering light source is 𝒮 = Re{Sr(r) exp(jωrt)}, where 

, and . This source
emits a scattered field E. Assuming that the incident wave is
undepleted by the acoustooptic interaction (first Born
approximation, i.e., A remains approximately constant), the
scattered light may be obtained by solving the Helmholtz
equation ∇2E + k2E = −S. This equation has the far-field
solution (Prob. 22.2-6)

where  is a unit vector in the direction of r, k = 2π/λ, and V is the
volume of the source. Use this equation to determine an expression
for the intensity reflectance of the acoustooptic cell when the Bragg
condition is satisfied. Compare the result with (20.1-22).

20.1-3 Condition for Raman–Nath Diffraction. Derive an
expression for the maximum width Ds of an acoustic beam of



wavelength Λ that permits Raman–Nath diffraction of light of
wavelength λ (refer to Fig. 20.1-10).

*20.1-4 Combined Acousto-Optic and Electro-Optic
Modulation. One end of a lithium niobate (LiNbO3) crystal is
placed inside a microwave cavity that contains an
electromagnetic field at a frequency of 3 GHz. As a result of the
piezoelectric effect (an electric field creates a strain in the
material), an acoustic wave is launched in the crystal, which
has a refractive index of n = 2.3 and in which the velocity of
sound is vs = 7.4 km/s. Light from a He–Ne laser (λo = 633 nm)
is reflected from the acoustic wave. Determine the Bragg angle.
Since lithium niobate is also an electro-optic material, the
applied electric field modulates the refractive index, which in
turn modulates the phase of the incident light. Sketch the
spectrum of the reflected light. If the microwave electric field is
a pulse of short duration, sketch the spectrum of the reflected
light at different times, indicating the contributions of the
electro-optic and acousto-optic effects.

20.2-4 Choice of Materials for Acousto-Optic Modulators.
Consider the following materials for possible use as Bragg
reflectors: 1) CaF2; 2) fused silica; 3) TiO2; 4) LiNbO3; 5) Si;
and 6) Ge.

a. For each material, determine the wavelength region of
transparency (see Fig. 5.5-1); the acousto-optic figure of merit
ℳ specified in (20.1-7); and the amplitude of the refractive-
index wave Δn0 launched by an acoustic wave of intensity 10
W/cm2. Compare your results with those for extra-dense flint
glass provided in Example 20.1-1.

b. If each of these Bragg cells is placed in air, determine the
internal and external Bragg angles for the diffraction of an
optical wave of free-space wavelength λo = 2.5 μm from a sound
wave of frequency f = 100 MHz. Compare your results with
those for extra-dense flint glass provided in Example 20.1-2.



c. For light of wavelength λo = 2.5 μm, a sound intensity of Is =
100 W/cm2, and a penetration length of the light through the
sound of L/sin θ = 1 mm, determine the intensity reflectance
ℛe for each material. Compare your results with those for
extra-dense flint glass provided in Example 20.1-3.

d. Which materials promise the best performance at λo = 0.532
μm? At 1.06 μm? At 10.6 μm?

20.2-5 Frequency Shifting with a Bragg Reflector. Devise a
system for converting a monochromatic optical wave with
complex wavefunction U(t)= A exp(jωt) into a modulated wave
of complex wavefunction A cos(Ωt) exp(jωt) by making use of
an acousto-optic cell with an acoustic wave s(x, t)= S0 cos(Ωt −
qx). Hint: Consider the use of upshifted and downshifted Bragg
reflections.

20.2-6 Frequency-Shift-Free Bragg Reflector. Design an
acousto-optic system that deflects light without imparting a
frequency shift. Hint: Use two Bragg cells.

*20.3-2 Front Bragg Diffraction. A transverse acoustic wave of
wavelength Λ travels along the x direction in a uniaxial crystal
whose refractive indices are no and ne and whose optic axis in
the z direction. Derive an expression for the wavelength λo of
an incident optical wave, traveling in the x direction and
polarized in the z direction, that satisfies the Bragg diffraction
condition. What is the polarization of the front reflected wave?
Determine Λ if λo = 633 nm, ne = 2.200, and no = 2.286.



Chapter 21 
ELECTRO-OPTICS

21.1 PRINCIPLES OF ELECTRO-OPTICS

A. Pockels and Kerr Effects

B. Electro-Optic Modulators and Switches

C. Scanners

D. Directional Couplers

E. Spatial Light Modulators

*21.2 ELECTRO-OPTICS OF ANISOTROPIC MEDIA

A. Pockels and Kerr Effects

B. Modulators

21.3 ELECTRO-OPTICS OF LIQUID CRYSTALS

A. Wave Retarders and Modulators

B. Spatial Light Modulators and Displays

*21.4 PHOTOREFRACTIVITY

21.5 ELECTROABSORPTION

Friedrich Pockels (1865–1913), a German physicist, described
the linear electro-optic effect in 1884.



John Kerr (1824–1907), a Scottish physicist, discovered the
quadratic electro-optic effect in 1875.

Much as with acousto-optics (Chapter 20), electro-optics is a branch
of photonics that deals with the modulation, switching, deflection,
scanning, and redirection of optical beams. However, in electro-
optics attention is directed to the implementation of these
operations by means of transparent materials whose optical
properties are altered when subjected to an electric field, rather
than to an acoustic wave. The electric field distorts the positions,
orientations, and/or shapes of the molecules that constitute the
material. The electro-optic effect represents a change in the
refractive index of the material that results from the application of a
steady or low-frequency electric field (Fig. 21.0-1). In particular, an
electric field applied to an anisotropic optical material modifies its
refractive indices and thereby the effect that the material has on
polarized light passing through it.

Figure 21.0-1 A steady electric field applied to an electro-optic
material changes its refractive index. This in turn changes the effect
of the material on light traveling through it. The electric field
therefore controls the light.



The dependence of the refractive index on the applied electric field
usually assumes one of two forms:

The refractive index changes in proportion to the applied
electric field, an effect known as the linear electro-optic
effect or Pockels effect.

The refractive index changes in proportion to the square of the
applied electric field, an effect known as the quadratic
electro-optic effect or Kerr effect.

The change in the refractive index is typically small. Nevertheless,
the phase of an optical wave propagating through an electro-optic
medium can be modified significantly if the distance of travel
substantially exceeds the wavelength of the light. As an example, if
the refractive index is increased by 10−5 by virtue of the presence of
the electric field, an optical wave propagating a distance of 105

wavelengths will experience an additional phase shift of 2π.

Materials whose refractive index can be modified by means of an
applied electric field are useful for producing electrically
controllable optical devices, as indicated by the following examples:

A lens made of a material whose refractive index can be varied
is a lens of controllable focal length.

A prism whose beam-bending capability is controllable can be
used as an optical scanning device.

Light transmitted through a transparent plate of controllable
refractive index undergoes a controllable phase shift so that the
plate can be used as an optical phase modulator.

An anisotropic crystal whose refractive indices can be changed
serves as a wave retarder of controllable retardation; it may be
used to change the polarization properties of light.

A wave retarder placed between two crossed polarizers results
in transmitted light whose intensity is dependent on the phase



retardation (Sec. 6.6B). The transmittance of such a device is
therefore electrically controllable so that it can be used as an
optical intensity modulator or an optical switch.

Controllable components such as these find substantial use in
optical signal-processing and in optical fiber communications
applications.

Alternatively, an electric field can be used to modify the optical
properties of a material via absorption. A semiconductor material is
normally optically transparent to light whose wavelength is longer
than the bandgap wavelength (Sec. 17.2B). However, an applied
electric field can reduce the bandgap of the material, thereby
facilitating absorption and converting the material from transparent
to opaque. This effect, known as electroabsorption, is useful for
making optical modulators and switches.

This Chapter

We begin with a description of the electro-optic effect and the
principles of electrooptic modulation and scanning. The initial
presentation in Sec. 21.1 is simplified by deferring the detailed
consideration of anisotropic effects to Sec. 21.2.

Section 21.3 is devoted to the electro-optic properties of liquid
crystals. An electric field applied to the molecules of a liquid crystal
causes them to alter their orientations. This in turn leads to changes
in the optical properties of the medium, i.e., it exhibits an electro-
optic effect. The molecules of a twisted nematic liquid crystal, for
example, are organized in a helical pattern so that they normally act
as a polarization rotator. An applied electric field can be used to
remove this helical pattern, thereby deactivating the rotatory power
of the material. Turning the electric field off results in the material
regaining its original helical structure and therefore its rotatory
power. Hence, the device acts as a dynamic polarization rotator. The
use of fixed polarizers in conjunction with such a polarization
rotator permits it to serve as an intensity modulator or switch. This
behavior is the basis of most liquid-crystal display devices.



(21.1-1)

(21.1-2)

The electro-optic properties of photorefractive media are considered
in Sec. 21.4. These are materials in which the absorption of light
creates an internal electric field, which in turn initiates an electro-
optic effect that alters the optical properties of the medium. Thus,
the optical properties of the medium are indirectly controlled by the
light incident on it. Photorefractive devices therefore permit light to
control light. Finally, a brief introduction to electroabsorption is
provided in Sec. 21.5.

21.1 PRINCIPLES OF ELECTRO-OPTICS
A. Pockels and Kerr Effects
The refractive index of an electro-optic medium is a function n(E) of
an applied electric field E that is steady (or slowly varying in
comparison with optical frequencies). The function n(E) varies only
slightly with E so that it can be expanded in a Taylor series about E
= 0,

where the coefficients of expansion are n = n(0), a1 =(dn/dE)|E = 0,
and a2 = (d2n/dE2)|E = 0. For reasons that will become apparent
below, it is conventional to write (21.1-1) in terms of two new
coefficients, r = −2a1/n3 and s = −a2/n3, known as the electro-optic
coefficients, so that

The second-and higher-order terms of this series are typically many
orders of magnitude smaller than n. Terms higher than the third
can safely be neglected.

For future use in connection with the optical properties of
anisotropic media (Sec. 6.3A), it is convenient to derive an
expression for the electric impermeability of the electro-optic
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medium, η = ∊o/∊ = 1/n2, as a function of E. The incremental
change , so that

where η = η(0). The electro-optic coefficients r and s are therefore
simply the coefficients of proportionality of the two terms of Δη
with E and E2, respectively. This explains the seemingly odd
definitions of r and s used in (21.1-2). The values of the coefficients
r and s depend on the direction of the applied electric field and the
polarization of the light, as will be discussed in Sec. 21.2.

Pockels Effect

There is a large class of materials for which the third term of (21.1-
2) is negligible in comparison with the second, whereupon

Pockels Effect

as illustrated in Fig. 21.1-1(a). The medium is then known as a
Pockels medium (or a Pockels cell) and the coefficient r is called
the Pockels coefficient or the linear electrooptic coefficient. The
change in refractive index induced by the electric field in the
Pockel’s effect [(21.1-4)] is analogous to that induced by strain in
the acousto-optic effect [(20.1-3)]. Typical values of r lie in the
range 10−12 to 10−10 m/V (or 1 to 100 pm/V). For E = 106 V/m (e.g.,
10 kV applied across a 1-cm-thick cell), for example, the term  in
(21.1-4) is on the order of 10−6 to 10−4. Changes in the refractive
index induced by electric fields are indeed very small. Crystals
commonly used as Pockels cells include KTiOPO4 (KTP), β-BaB2O4
(BBO), KH2PO4 (KDP), NH4H2PO4 (ADP), LiNbO3, and LiTaO3.
Specially designed polymers can also serve this purpose.
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Figure 21.1-1 Dependence of the refractive index on the electric
field: (a) Pockels medium; (b) Kerr medium.

Kerr Effect

If the material is centrosymmetric, as is the case for gases, liquids,
and certain crystals, n(E) must be an even symmetric function [Fig.
21.1-1(b)] since it must be invariant to the reversal of E. The linear
term then vanishes when r = 0, whereupon

Kerr Effect

The material is then known as a Kerr medium (or a Kerr cell) and
the parameter s is called the Kerr coefficient or the quadratic
electro-optic coefficient. Typical values of s lie between 10−18 and
10−14 m2/V2 in crystals, and between 10−22 and 10−19 m2/V2 in
liquids. For E = 106 V/m, for example, the term  in (21.1-5) is
on the order of 10−6 to 10−2 in crystals and 10−10 to 10−7 in liquids.

B. Electro-Optic Modulators and Switches

Phase Modulators

A beam of light traversing a Pockels cell of length L to which an
electric field E is applied undergoes a phase shift φ = n(E) koL =
2πn(E)L/λo, where λo is the free-space wavelength. Using (21.1-4),
we therefore have
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(21.1-8)

where φ0 = 2πnL/λo. If the electric field is obtained by applying a
voltage V across two faces of the cell separated by a distance d, then
E = V/d and (21.1-6) provides

Phase Modulation

where

Half-Wave Voltage

The parameter Vπ, known as the half-wave voltage, is the applied
voltage at which the phase shift changes by π.

Equation (21.1-7) expresses a linear relation between the optical
phase shift and the voltage. One can therefore modulate the phase
of an optical wave by varying the voltage V applied across a material
through which the light passes. The parameter Vπ is an important
characteristic of the modulator. It depends on the material
properties (n and r), on the wavelength λo, and on the aspect ratio
d/L. The value of the electro-optic coefficient r depends on the
directions of propagation and the applied field since the crystal is, in
general, anisotropic, as explained in Sec. 21.2. As illustrated in Fig.
21.1-2, the electric field may be applied in a direction parallel to the
direction of light propagation (longitudinal modulator), in which
case d = L, or perpendicular thereto (transverse modulator).



Figure 21.1-2 (a) Longitudinal modulator. The electrodes may take
the shape of washers or bands, or may be transparent conductors.
(b) Transverse modulator. (c) Traveling-wave transverse modulator.
Typical values of the half-wave voltage are in the vicinity of 1 to a
few kilovolts for longitudinal modulators, and hundreds of volts for
transverse modulators.

The speed at which an electro-optic modulator operates is limited by
electrical capacitive effects and by the transit time of the light
through the material. If the slowly varying electric field E(t) varies
significantly within the light transit time ⊤ , the traveling optical
wave will be subjected to different electric fields as it traverses the
crystal. The modulated phase at a given time t will then be
proportional to the average electric field E(t) at times from t − ⊤ to
t. As a result, the transit-time-limited modulation bandwidth is ≈ 1/
⊤. One method of reducing this time is to apply the voltage V at one
end of the crystal while the electrodes serve as a transmission line,
as illustrated in Fig. 21.1-2(c). If the velocity of the traveling
electrical wave matches that of the optical wave, transit time effects
can, in principle, be eliminated. Commercial modulators in forms
such as those shown in Fig. 21.1-2 generally operate up to the GHz
domain.

As illustrated in Fig. 21.1-3, electro-optic modulators can also be
constructed in the form of integrated-photonic devices, which
operate at higher speeds and at lower voltages than bulk devices. An
optical waveguide is fabricated on an electro-optic substrate (often
LiNbO3) by indiffusing a material (such as Ti) to increase the
refractive index, and the electric field is applied to the waveguide
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using electrodes. Because the configuration is transverse, and the
width of the waveguide is much smaller than its length (d ≪ L), the
half-wave voltage can be as small as several volts. Modulators such
as these can be operated at speeds in excess of 100 GHz. Light can
be conveniently coupled into, and out of, such devices by the use of
optical fibers.

Figure 21.1-3 An integrated-photonic phase modulator using the
electro-optic effect.

Dynamic Wave Retarders

An anisotropic medium has two linearly polarized normal modes
that propagate with different velocities, say co/n1 and co/n2 (Sec.
6.3B). If the medium exhibits the Pockels effect, then in the
presence of a steady electric field E the two refractive indices are
modified in accordance with (21.1-4), so that

where r1 and r2 are the appropriate Pockels coefficients (anisotropic
effects are examined in detail in Sec. 21.2). After propagating a
distance L, the two modes thus undergo a relative phase retardation
given by
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If E results from the application of a voltage V across two surfaces
of the medium separated by a distance d, (21.1-11) can be written in
compact form as

Phase Retardation

where Γ0 = ko(n1 − n2)L is the phase retardation in the absence of
the electric field. The applied voltage Vπ necessary to obtain a phase
retardation π is then given by

Retardation Half-Wave Voltage

Equation (21.1-12) indicates that the phase retardation is linearly
related to the applied voltage so that the medium behaves as an
electrically controllable dynamic wave retarder.

Intensity Modulators: Use of a Phase Modulator in an
Interferometer

Phase delay (or retardation) alone does not affect the intensity of a
light beam. However, a phase modulator placed in one branch of an
interferometer can function as an intensity modulator. Consider, for
example, the Mach–Zehnder interferometer portrayed in Fig. 21.1-4.
If the beamsplitters divide the optical power equally, the intensity
transmitted through one output port of the interferometer Io is
related to the incident intensity Ii by
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where φ = φ1 − φ2 is the difference between the phase shifts
encountered by the light as it travels through the two
interferometer branches (Sec. 2.5A). The transmittance of the
interferometer is thus 𝒯 = Io/Ii = cos2(φ/2).

Figure 21.1-4 A phase modulator placed in one branch of a Mach–
Zehnder interferometer can serve as an intensity modulator. The
transmittance of the interferometer 𝒯(V)= Io/Ii varies periodically
with the applied voltage V. By operating over a limited region of
voltage near point B, the device acts as a linear intensity modulator.
If V is switched between points A and C, the device serves as an
optical switch.

Because of the presence of the phase modulator in branch 1, in
accordance with (21.1-7) we have , so that φ is
controlled by the applied voltage V in accordance with the linear
relation φ = φ1 − φ2 = φ0 − πV/Vπ, where the constant φ0 = φ10 − φ2
depends on the optical path difference. The transmittance of the
device is therefore a function of the applied voltage V,

Transmittance



This function is plotted in Fig. 21.1-4 for an arbitrary value of φ0.
The device may be operated as a linear intensity modulator by
adjusting the optical path difference so that φ0 = π/2 and operating
in the nearly linear region around 𝒯 = 0.5. Alternatively, the optical
path difference may be adjusted so that φ0 is a multiple of 2π. In
that case 𝒯(0)= 1 and 𝒯(Vπ) = 0, so the modulator switches the light
on and off as V is switched between 0 and Vπ.

A Mach–Zehnder intensity modulator may also be constructed in
the form of an integrated-photonic device. Waveguides are placed
on a substrate in the geometry shown in Fig. 21.1-5. The
beamsplitters are implemented using waveguide Y’s while the
optical input and output are carried on optical fibers. Commercially
available integrated-photonic modulators generally operate at
speeds of tens of GHz.

Figure 21.1-5 An integrated-photonic intensity modulator (or
optical switch). A Mach–Zehnder interferometer and an electrooptic
phase modulator are implemented using optical waveguides
fabricated from a material such as LiNbO3 indiffused with Ti.

Intensity Modulators: Use of a Retarder Between Crossed
Polarizers

As described in Sec. 6.6B, a wave retarder (of retardation Γ)
sandwiched between two crossed polarizers placed at 45° with
respect to the retarder’s axes (Fig. 6.6-4) exhibits an intensity
transmittance 𝒯 = sin2(Γ/2). If the retarder is a Pockels cell, then Γ
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is linearly dependent on the applied voltage V, as provided in (21.1-
12). The transmittance of the device is then a periodic function of V,

Transmittance

as displayed in Fig. 21.1-6. By changing V, the transmittance can be
varied between 0 (shutter closed) and 1 (shutter open). The device
can also be used as a linear modulator if the system is operated in
the region near 𝒯(V) = 0.5. By selecting Γ0 = π/2 and V ≪ Vπ, we
have

Figure 21.1-6 (a) An optical intensity modulator using a Pockels
cell placed between two crossed polarizers. (b) Optical
transmittance versus applied voltage for an arbitrary value of Γ0; for
linear operation the cell is biased near point B.

so that 𝒯(V) is a linear function with slope π/2Vπ, representing the
sensitivity of the modulator. The phase retardation Γ0 can be
adjusted either optically (by incorporating an external phase
retarder) or electrically (by incorporating a constant bias voltage).



(21.1-18)

In practice, the maximum transmittance of the modulator is smaller
than unity because of losses associated with reflection, absorption,
and scattering. Moreover, the minimum transmittance is greater
than zero because of inadvertent misalignments of the propagation
direction and the polarization directions relative to the crystal axes
and polarizers. Nevertheless, the ratio between the maximum and
minimum transmittances, called the extinction ratio, can exceed
30 dB (1000:1).

C. Scanners
An optical beam can be deflected dynamically by using a prism with
an electrically controlled refractive index. In accordance with (1.2-
7), the angle of deflection introduced by a prism of small apex angle
α and refractive index n is θ ≈ (n − 1)α. An incremental change of
the refractive index Δn caused by an applied electric field E via the
Pockels effect results in an incremental change of the deflection
angle,

where V is the applied voltage and d is the prism width [Fig. 21.1-
7(a)]. The angle Δθ is proportional to the applied voltage V so that
the incident light is scanned. It is sometimes more convenient to
place triangularly shaped electrodes that define a prism on a
rectangular crystal. Two, or several, prisms can be cascaded by
alternating the direction of the electric field, as illustrated in Fig.
21.1-7(b).



(21.1-19)

(21.1-20)

Figure 21.1-7 (a) An electro-optic prism. The deflection angle θ is
controlled by the applied voltage. (b) An electro-optic double prism.

An important parameter that characterizes a scanner is its
resolution, i.e., the number of independent spots it can scan and it
turns out that electro-optic scanning is inefficient in this respect. An
optical beam of width D and wavelength λo has an angular
divergence δθ ≈ λo/D [see (4.3-7)]. To minimize that angle, the
beam should be as wide as possible, ideally covering the entire
width of the prism itself. For a given maximum voltage V
corresponding to a scanned angle Δθ, the number of independent
spots is given by

Substituting α ≈ L/D and Vπ = (d/L)(λo/r n3) then leads to

from which we conclude that V ≈ 2NVπ. This is a discouraging result
because it indicates that the scanning of N independent spots
requires a voltage 2N times greater than the half-wave voltage Vπ,
which is generally large to begin with. As a consequence, acousto-
optic and mechanical scanners (Secs. 20.2B and 24.3B, respectively)
are of greater use than electro-optic scanners.

Lateral beam shift, rather than deflection, can be effected by making
use of the process of double refraction in an anisotropic crystal (Sec.



6.3E). An incident beam is shifted parallel to itself for one
polarization while undergoing no shift for the orthogonal
polarization. This process is implemented by first passing a linearly
polarized optical beam through an electro-optic wave retarder that
acts as a polarization rotator and then passing it through the
birefringent crystal, as illustrated in Fig. 21.1-8. The electrically
controlled polarization determines whether the beam is, or is not,
shifted laterally.

Figure 21.1-8 A position switch based on electro-optic phase
retardation and double refraction.

D. Directional Couplers
An important application of the electro-optic effect is in controlling
the coupling between two parallel waveguides in an integrated-
photonic device. An electric field can be used to transfer light from
one waveguide to the other, so that the device serves as an
electrically controlled directional coupler.

The coupling of light between two parallel single-mode planar
waveguides, as displayed in Fig. 21.1-9(a), was examined in Sec.
9.4B. It was shown there that the optical powers carried by the two
waveguides, P1(z) and P2(z), are periodically exchanged along the
direction of propagation z. Two parameters govern the strength of
the coupling process: the coupling coefficient 𝒞 (which depends on
the dimensions, wavelength, and refractive indices), and the
mismatch of the propagation constants Δβ = β1 − β2 = 2πΔn/λo,
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where Δn is the difference between the refractive indices of the
waveguides. If P2(0) = 0 and the waveguides are identical with Δβ =
0, then at a distance z = L0 = π/2𝒞, known as the transfer
distance or coupling length, the power is totally transferred
from waveguide 1 into waveguide 2, i.e., P1 (L0) = 0 and P2 (L0) =
P1(0), as illustrated in Fig. 21.1-9(a).

Figure 21.1-9 (a) Exchange of power between two parallel, weakly
coupled, identical waveguides with the same propagation constant β
(Δβ = 0). At z = 0 all of the power resides in waveguide 1; at z = L0
all of the power is transferred to waveguide 2. (b) Dependence of
the power-transfer ratio 𝒯 = P2(L0)/P1(0) on the phase-mismatch
parameter Δβ L0 for Δβ ≠ 0.

For waveguides of lengths L0 with different propagation constants
(Δβ ≠ 0), the power-transfer ratio 𝒯 = P2(L0)/P1(0) is a function of
the phase mismatch, as provided in (9.4-13),

where sinc(x) ≡ sin(πx)/(πx). Figure 21.1-9(b) illustrates this
dependence. The ratio assumes a maximum value of unity at ΔβL0 =



0, decreases with increasing ΔβL0, and vanishes when ,
at which point no optical power is transferred to waveguide 2.

The dependence of the coupled power on the phase mismatch is the
key to fabricating electrically activated directional couplers. If the
mismatch ΔβL0 is switched from 0 to , the power-transfer ratio
switches from unity to zero. Electrical control of Δβ is readily
achieved by making use of the Pockels electro-optic effect. An
electric field E applied to one of two, otherwise identical,
waveguides alters its refractive index by , where r is the
Pockels coefficient. This results in a phase shift ΔβL0 = Δn(2πL0/λo)
= −(π/λo)n3r L0E.

A typical electro-optic directional coupler has the geometry
displayed in Fig. 21.1-10. The electrodes are placed over two
waveguides separated by a distance d. An applied voltage V creates
an electric field E ≈ V/d in one waveguide and −V/d in the other,
where d is an effective distance determined by solving the
electrostatics problem (the electric-field lines go downward at one
waveguide and upward at the other, as portrayed in the inset of Fig.
21.1-3). The refractive index is thus incremented in one waveguide
and decremented in the other. The result is a net refractive index
difference 2Δn = −n3r(V/d), corresponding to a phase mismatch
ΔβL0 = −(2π/λo)n3r (L0/d)V , which is proportional to the applied
voltage V.

Figure 21.1-10 An integrated electro-optic directional coupler.
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The voltage V0 required to switch the optical power from one
waveguide to the other is that for which , namely

where L0 = π/2𝒞 and 𝒞 is the coupling coefficient. This is called the
switching voltage. Since , (21.1-21) yields

Coupling Efficiency

This equation, plotted in Fig. 21.1-11, governs the coupling of optical
power in the directional coupler as a function of the applied voltage
V.

Figure 21.1-11 Dependence of the coupling efficiency of the
directional coupler on the applied voltage V . When V = 0, all of the
optical power is coupled from waveguide 1 into waveguide 2; when
V = V0, all of the optical power remains in waveguide 1.

An electro-optic directional coupler is characterized by its coupling
length L0, which is inversely proportional to the coupling coefficient
𝒞, and its switching voltage V0, which is directly proportional to 𝒞.
The key parameter is thus 𝒞, which is governed by the geometry and
refractive indices of the device (Sec. 9.4B). An integrated photonic
directional coupler may be fabricated, for example, by indiffusing



titanium into a high-purity LiNbO3 substrate. The light beams are
focused to spot sizes of a few μm and the waveguide ends can be
permanently fixed to single-mode polarization-maintaining optical
fibers (Sec. 10.2B). The switching voltage V0 is typically less than 10
V, and operating speeds reach tens of GHz. Increased bandwidths
may be attained by making use of traveling-wave versions of such
devices.

EXERCISE 21.1-1

Coupling-Efficiency Spectral Response. Equation (21.1-22)
indicates that the switching voltage V0 is proportional to the
wavelength. Assume that the applied voltage V = V0 for a
particular value of the wavelength , so that the coupling
efficiency 𝒯 = 0 at . If, instead, the incident wave has
wavelength , plot the coupling efficiency 𝒯 as a function of 

 Assume that the coupling coefficient 𝒞 and the
material parameters n and r are independent of wavelength.

E. Spatial Light Modulators
A spatial light modulator (SLM) is a device that modulates the
intensity of light at different positions by prescribed factors (Fig.
21.1-12). It is a planar optical element of controllable intensity
transmittance 𝒯(x, y) such that the transmitted light intensity Io(x,
y) is related to the incident light intensity Ii(x, y) by the product
Io(x, y) = Ii(x, y) 𝒯(x, y). If the incident light is uniform (i.e., if Ii(x,
y) is constant), the transmitted light intensity is proportional to 𝒯(x,
y). The “image” 𝒯(x, y) is then imparted to the transmitted light,
much as the image stored in a transparency is “read” by uniformly
illuminating it in a slide projector. In a spatial light modulator,
however, 𝒯(x, y) is controllable. In an electro-optic spatial light
modulator the control is electrical.



Figure 21.1-12 The spatial light modulator.

To construct a spatial light modulator using the electro-optic effect,
some mechanism must be devised for creating an electric field E(x,
y) that is proportional to the desired transmittance 𝒯(x, y) at each
position. This is not easy. One approach is to place an array of
transparent electrodes on small plates of electro-optic material set
between crossed polarizers and to apply to each electrode an
appropriate voltage (Fig. 21.1-13). The voltage applied to the
electrode centered at position (xi, yi), i = 1, 2,…, is made proportional
to the desired value of 𝒯(xi, yi) (see Fig. 21.1-6). If the number of
electrodes is sufficiently large, the transmittance approximates 𝒯(x,
y). This system is in effect a parallel array of longitudinal electro-
optic modulators operated as intensity modulators. Though it is not
practical to address a large number of such electrodes
independently, it will become clear in Sec. 21.3B that this scheme is
in fact practical for liquid-crystal spatial light modulators used for
display, since the required voltages are low.

Figure 21.1-13 An electrically addressable array of longitudinal
electro-optic modulators.

Optically Addressed Electro-Optic Spatial Light Modulators



One method of optically addressing an electro-optic spatial light
modulator is based on the use of a thin layer of photoconductive
material to create the electric field required to operate the
modulator (Fig. 21.1-14). The conductivity of a photoconductive
material is proportional to the intensity of light to which it is
exposed (Sec. 19.2). When illuminated by a write image with an
intensity distribution IW (x, y), a spatial pattern of conductance G(x,
y) ∝ IW (x, y) is created. The photoconductive layer is placed
between two electrodes that act as a capacitor. The capacitor is
initially charged and the electrical charge leakage at position (x, y) is
proportional to the local conductance G(x, y). Hence, the charge on
the capacitor is reduced in those regions where the conductance is
high. The local voltage is therefore proportional to 1/G(x, y) and the
corresponding electric field E(x, y) ∝ 1/G(x, y) ∝ 1/IW(x, y). If the
transmittance 𝒯(x, y) [or the reflectance ℛ(x, y)] of the modulator
is proportional to the applied field, it must be inversely proportional
to the initial light intensity IW (x, y).

Figure 21.1-14 An optically addressed electro-optic spatial light
modulator uses a photoconductive material to create a spatial
distribution of electric field that controls an electro-optic material.

The Pockels Readout Optical Modulator

An ingenious implementation of this principle is the Pockels
readout optical modulator (PROM). One implementation
makes use of a crystal of bismuth silicon oxide, Bi12SiO20 (BSO),



which has an unusual combination of optical and electrical
properties: (1) it exhibits the Pockels electro-optic effect; (2) it is
photoconductive for blue, but not for red light; and (3) it is a good
insulator in the dark. The PROM displayed in Fig. 21.1-15 comprises
a thin wafer of BSO sandwiched between two transparent
electrodes. The light to be modulated (read light) is transmitted
through a polarizer, enters the BSO layer, and is reflected by a
dichroic reflector, whereupon it crosses a second polarizer. The
reflector reflects red but is transparent to blue light. The PROM is
operated as follows:

Priming: A large potential difference (≈ 4 kV) is applied to the
electrodes and the capacitor is charged (with no leakage since
the crystal is a good insulator in the dark).

Writing: Intense blue write light with an intensity distribution
IW (x, y) illuminates the crystal. As a result, a spatial pattern of
conductance G(x, y) ∝ IW(x, y) is created, the voltage across the
crystal is selectively lowered, and the electric field decreases
proportionally at each position, so that E(x, y) ∝ 1/G(x, y) ∝
1/IW(x, y). As a result of the electro-optic effect, the refractive
index of the BSO is altered, and a spatial pattern of refractive-
index change Δn(x, y) ∝ 1/IW(x, y) is created and stored in the
crystal.

Reading: Uniform red light is used to read Δn(x, y) as with
usual electro-optic intensity modulators [see Fig. 21.1-6(a)]
with the polarizing beamsplitter playing the role of the crossed
polarizers.

Erasing: The refractive-index pattern is erased by illumination
with a uniform flash of blue light. The crystal is again primed
by applying 4 kV, and the device is ready for a new cycle.



Figure 21.1-15 The Pockels readout optical modulator (PROM).

Incoherent-to-Coherent Optical Converters

In an optically addressed spatial light modulator, such as the
PROM, the light used to write a spatial pattern into the modulator
need not be coherent since photoconductive materials are sensitive
to optical intensity. A spatial optical pattern (an image) may
therefore be written using incoherent light, and read using coherent
light. This process of real-time conversion of a spatial distribution
of natural incoherent light into a proportional spatial distribution of
coherent light is useful in a number of optical data-and image-
processing applications.

*21.2 ELECTRO-OPTICS OF ANISOTROPIC
MEDIA
The basic principles and applications of electro-optics were
presented in a simplified fashion in Sec. 21.1; polarization and
anisotropic effects were either ignored or introduced only
generically. In this section a more complete analysis of the electro-
optics of anisotropic media is presented. A brief refresher of some of
the important properties of anisotropic media set forth in Sec. 6.3 is
provided below.



Crystal Optics: A Brief Refresher

The optical properties of an anisotropic medium are
characterized by a geometric construction called the index
ellipsoid,

where ηij = ηji are elements of the impermeability tensor η =
ϵoϵ−1. If the axes of the ellipsoid correspond to the principal axes
of the medium, its dimensions along these axes are the principal
refractive indices n1, n2, and n3 (Fig. 21.2-1):

Figure 21.2-1 The index ellipsoid. The coordinates (x1,x2,x3) are
the principal axes and n1, n2, n3 are the principal refractive
indices. The refractive indices of the normal modes of a wave
traveling in the direction k are na and nb.

The index ellipsoid may be used to determine the polarizations
and refractive indices na and nb of the two normal modes of a
wave traveling in an arbitrary direction in the anisotropic
medium. This is accomplished by drawing a plane perpendicular
to the direction of propagation that passes through the center of
the ellipsoid. Its intersection with the ellipsoid is an ellipse



(21.2-1)

whose major and minor axes have half-lengths equal to na and
nb, as described in Sec. 6.3C.

A. Pockels and Kerr Effects
When a steady electric field ε with components (E1, E2, E3) is
applied to a crystal, the elements of the impermeability tensor η are
altered. Each of the nine elements ηij becomes a function of E1, E2,
and E3, i.e., ηij = ηij (E), so that the index ellipsoid is modified (Fig.
21.2-2). Once we know the functions ηij (E), we can determine the
index ellipsoid and the optical properties for an arbitrary applied
electric field E. The problem is simple in principle, but the
implementation is often lengthy.

Figure 21.2-2 The index ellipsoid of a crystal is modified when a
steady electric field is applied.

Each of the elements ηij (E) is a function of the three variables E =
(E1, E2, E3), which may be expanded in a Taylor series about E = 0,

where , and the
derivatives are evaluated at E = 0. Equation (21.2-1) is a
generalization of (21.1-3), in which r is replaced by 33 = 27
coefficients {rijk}, and s is replaced by 34 = 81 coefficients {sijkl}. The
quantities {rijk} are the coefficients of the (third-rank) linear
electrooptic (Pockels) tensor, whereas the quantities {sijkl}
represent the coefficients of the (fourth-rank) quadratic electro-
optic (Kerr) tensor.



Symmetry

Because η is symmetric (ηij = ηji), r and s are invariant under
permutations of the indices i and j, i.e., rijk = rjik and sijkl = sjikl. Also,
the coefficients sijkl =  are invariant to permutations of
k and l (because of the invariance to the order of differentiation), so
that sijkl =sijlk. Because of this permutation symmetry, the nine
combinations of the indices i, j generate six instead of nine
independent elements. The same reduction applies to the indices k,
l. Consequently, rijk has 6 × 3 independent elements, whereas sijkl
has 6 × 6 independent elements.

It is conventional to rename the pair of indices (i, j), i, j = 1, 2, 3, as a
single index I = 1, 2,..., 6 in accordance with Table 21.2-1. The pair (k,
l) is similarly replaced by an index k = 1, 2,..., 6, in accordance with
the same rule. Thus, the elements rijk and sijkl are replaced by rIk and
sIK , respectively. For example, r12k is denoted as r6k, s1231 is
renamed s65, and so on. Hence, the third-rank tensor r is replaced by
a 6 × 3 matrix and the fourth-rank tensor s is contracted to a 6 × 6
matrix.

Table 21.2-1 Lookup table for the index I that represents the
pair of indices (i, j).a

j\i 1 2 3
1 1 6 5
2 6 2 4
3 5 4 3

a The pair (i, j) = (3, 2), for example, is labeled I  = 4.

Crystal Symmetry

The symmetry of the crystal adds further constraints to the
elements of the r and s matrices. Some entries must be zero and



others must be equal, or equal in magnitude and opposite in sign, or
related by some other rule. For centrosymmetric materials, as an
example, r vanishes altogether and only the Kerr effect is exhibited.
Tabulations of r and s, and their symmetry relations for the 32
crystallographic point groups (of which 11 are centrosymmetric),
may be found in several books referenced in the reading list.
Representative examples are provided in Tables 21.2-2 and 21.2-3.

Table 21.2-2 Pockels coefficients rIk for several representative
crystal groups.

Table 21.2-3 Kerr coefficients SIK for an isotropic medium. The
form of this matrix is identical to that for the photoelasticity matrix
PIK for an isotropic medium, as displayed in (20.3-4).

Pockels Effect

The following procedure is used to determine the optical properties
of an anisotropic medium exhibiting the Pockels effect in the
presence of an electric field E:

1. Find the principal axes and principal refractive indices n1, n2,
and n3 in the absence of E.
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2. Find the coefficients {rijk} from the appropriate matrix for rIk,
e.g., from Table 21.2-2, by using the rule that relates I to (i, j)
provided in Table 21.2-1.

3. Determine the elements of the impermeability tensor

where ηij (0) is a diagonal matrix with elements , , and 
.

4. Write the equation for the modified index ellipsoid

5. Determine the principal axes of the modified index ellipsoid by
diagonalization, and find the corresponding principal refractive
indices n1(E), n2(E), and n3(E).

6. Given the direction of light propagation, find the normal modes
and their associated refractive indices from this index ellipsoid.
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EXAMPLE 21.2-1.

Trigonal 3m Crystals (LiNbO3 and LiTaO3). Trigonal 3m
crystals are uniaxial (n1 = n2 = no; n3 = ne) with the matrix r
provided in Table 21.2-2. Assuming that E = (0, 0,E), i.e., that the
electric field points along the optic axis (see Fig. 21.2-3), the
modified index ellipsoid is readily shown to be

This is an ellipsoid of revolution whose principal axes are not
altered when the electric field is applied. The ordinary and
extraordinary indices, no(E) and ne(E), respectively, are given by

Because the terms r13E and r33E in (21.2-5) and (21.2-6) are
small, we use the Taylor-series approximation ,
valid for |Δ|≪ 1, to obtain

Note the similarity between these equations and the generic
equation (21.1-4). We conclude that when an electric field is
applied along the optic axis of this uniaxial crystal it remains
uniaxial with the same principal axes, as illustrated in Fig. 21.2-
3, but its refractive indices are modified in accordance with
(21.2-7) and (21.2-8).
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Figure 21.2-3 Modification of the index ellipsoid of a trigonal
3m crystal such as LiNbO3 that results from the application of a
steady electric field along the direction of the optic axis.

EXAMPLE 21.2-2.

Tetragonal 2m Crystals (KDP and ADP). Carrying out the
same process for this class of uniaxial crystals, and assuming
that the electric field points along the optic axis (Fig. 21.2-4), we
obtain the following equation for the index ellipsoid,

where the factor of two results because {i, j = 1, 2}. The modified
principal axes are obtained by rotating the coordinate system 45°
about the z axis. Substituting 
in (21.2-9), so that  and , and
relabeling the new principal axes as (x1, x2, x3), leads to

where
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Cross-multiplying and using the Taylor-series approximation 
 yields

We conclude that in this case the originally uniaxial crystal takes
on a biaxial character when subjected to an electric field in the
direction of its optic axis, as illustrated in Fig. 21.2-4.

Figure 21.2-4 Modification of the index ellipsoid resulting
from the application of a steady electric field E along the
direction of the optic axis of a uniaxial tetragonal 2m crystal
such as KDP.

EXAMPLE 21.2-3.

Cubic 3m Crystals (GaAs, CdTe, and InAs). Assuming that
the applied electric field points along a cubic axis of the material
(taken as the z direction in Fig. 21.2-5), the index ellipsoid for
these isotropic crystals (n1 = n2 = n3 = n) becomes
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where r63 assumes the value r41 (see Table 21.2-2). As in
Example 21.2-2, the new principal axes are rotated 45° about the
z axis and the principal refractive indices turn out to be

The applied electric field thus causes the isotropic crystal to
behave in biaxial fashion (Fig. 21.2-5).

Figure 21.2-5 Modification of the index ellipsoid as a result of
applying a steady electric field E along a cubic axis of a  crystal
such as GaAs.

Though cubic crystals have isotropic linear optical properties, they
have well-defined crystal axes. Two cubic crystals belonging to
different point groups can thus exhibit different optical properties
in the presence of a steady electric field. For example, cubic crystals
with the m3m diamond-structure, such as Si and Ge, are
centrosymmetric and exhibit no Pockels effect whereas ¯ 3m cubic
crystals, such as GaAs and InAs, exhibit anisotropic optical
properties, as is clear from Example 21.2-3.

For initially anisotropic materials in which the applied electric field
does not alter the principal axes, as in Example 21.2-1, the
polarizations of the normal modes remain the same, but their
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associated refractive indices become dependent on E. The medium
can then be conveniently used as a phase modulator, wave retarder,
or intensity modulator, in accordance with the generic theory
provided in Sec. 21.1B. This principle is described further in Sec.
21.2B.

Kerr Effect

The optical properties of a Kerr medium can be determined by
making use of the same procedure used for the Pockels medium,
except that the coefficients ηij (E) obey
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EXAMPLE 21.2-4.

Kerr Effect in an Isotropic Medium. With a steady applied
electric field ε pointing along the z direction, we use the Kerr
coefficients for an isotropic medium sIK provided in Table 21.2-3
to find the equation for the index ellipsoid,

This is the equation of an ellipsoid of revolution whose optic axis
is the z axis, along the direction of the applied electric field. The
principal refractive indices no(E) and ne(E) are determined from

Since the rightmost terms in (21.2-21) and (21.2-22) are small,
we again make use of the approximation  to
obtain

Thus, a steady electric field E applied to an initially isotropic
medium causes it to behave as a uniaxial crystal with the optic
axis along the direction of the electric field. In this case, the
ordinary and extraordinary indices are quadratically decreasing
functions of E.

B. Modulators
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The principles of phase and intensity modulation using the electro-
optic effect were outlined in Sec. 21.1B. Anisotropic effects were
introduced only generically. Using the anisotropic theory presented
in this section, the generic parameters r and s used in Sec. 21.1 can
be explicitly determined for any crystal, for arbitrary electric-field
and light-propagation directions. We restrict our discussion to
Pockels modulators, but the same approach is applicable for Kerr
modulators. For simplicity, we assume that the direction of the
electric field is such that the principal axes of the crystal are not
altered. We also assume that the direction of the wave relative to
these axes is such that the planes of polarization of the normal
modes are not altered by the presence of the electric field.

Phase Modulators

A normal mode is characterized by a refractive index ,
where n and r are the appropriate refractive index and Pockels
coefficient, respectively, and where E = V/d is the electric field
obtained by applying a voltage V across a distance d. A wave
traveling a distance L undergoes a phase shift

where φo = 2πnL/λo, and the half-wave voltage is

in agreement with (21.1-7) and (21.1-8), respectively. The
appropriate coefficients generically referred to as n and r can be
readily determined in specific cases, as demonstrated in the
following example.
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EXAMPLE 21.2-5.

Trigonal 3m Crystals (LiNbO3 and LiTaO3). When an
electric field is directed along the optic axis of this class of
uniaxial crystal, the crystal remains uniaxial with the same
principal axes, as shown in Example 21.2-1. The principal
refractive indices are given by (21.2-7) and (21.2-8). The crystal
can be used as a phase modulator in either of two
configurations:

Longitudinal Modulator: If a linearly polarized optical wave
travels along the direction of the optic axis (parallel to the
electric field), the appropriate parameters for the phase
modulator are n = no, r = r13, and d = L. For LiNbO3, r13 =
9.6 pm/V and no = 2.3 at λo = 633 nm. Equation (21.2-26)
then yields Vπ = 5.41 kV, the voltage required to change the
phase by π.

Transverse Modulator: If the wave travels in the x direction
and is polarized in the z direction, the appropriate
parameters are n = ne and r = r33. The width d is generally
not equal to the length L. For LiNbO3 at λo = 633 nm, r33 =
30.9 pm/V and ne = 2.2, which results in a half-wave
voltage Vπ = 1.9(d/L) kV. If d/L = 0.1, we obtain Vπ ≈ 190
V, which is significantly lower than the half-wave voltage
for the longitudinal modulator.

Intensity Modulators

The difference in the dependence of the refractive indices of the two
normal modes of a Pockels cell on the applied field provides a
voltage-dependent retardation,
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where

in agreement with (21.1-12) and (21.1-13). If the cell is placed
between crossed polarizers, the system serves as an intensity
modulator (Sec. 21.1B). It is not difficult to determine the
appropriate indices n1 and n2, and coefficients r1 and r2, as
illustrated by Example 21.2-6.

EXAMPLE 21.2-6.

Tetragonal 2m Crystals (KDP and ADP). As described in
Example 21.2-2, when an electric field is applied along the optic
axis of this uniaxial crystal, it behaves as a biaxial crystal. The
new principal axes are the original axes rotated by 45° about the
optic axis. Assume a longitudinal modulator configuration (d/L
= 1) in which the wave travels along the optic axis. The two
normal modes have refractive indices given by (21.2-12) and
(21.2-13). The appropriate coefficients to be used in (21.2-29) are
thus n1 = n2 = no, r1 =r63, r2 = −r63, and d = L, so that Γ0 = 0 and

For KDP at λo = 633 nm, Vπ = 8.4 kV.

 



EXERCISE 21.2-1

Intensity Modulation Using the Kerr Effect. Use (21.2-23)
and (21.2-24) to determine an expression for the phase shift φ
and the phase retardation Γ in a longitudinal Kerr modulator
made of an isotropic material, as functions of the applied voltage
V . Derive expressions for the half-wave voltages Vπ in each case.

21.3 ELECTRO-OPTICS OF LIQUID
CRYSTALS
As described in Sec. 6.5, the elongated molecules of nematic liquid
crystals tend to have ordered orientations that are altered when the
material is subjected to mechanical or electric forces. Because of
their unique anisotropic properties, liquid crystals can serve as
dynamic wave retarders or polarization rotators. The presence of an
electric field modifies their molecular orientation, so that their
effect on polarized light is altered. Liquid crystals can therefore be
used as electrically controlled optical wave retarders, modulators,
and switches. These devices are particularly useful in display
technology.

A. Wave Retarders and Modulators

Electrical Properties of Nematic Liquid Crystals

The liquid crystals used to make electro-optic devices are usually of
sufficiently low conductivity that they can be regarded as ideal
dielectric materials. Because of the elongated shape of the
constituent molecules and their ordered orientation, liquid crystals
have anisotropic dielectric properties with uniaxial symmetry. The
electric permittivity is defined as ϵ∥ for electric fields pointing along
the long axes of the molecules and as ϵ⊥ for fields pointing in the



perpendicular direction. Liquid crystals for which ϵ∥ > ϵ⊥ (positive
uniaxial) are usually selected for electro-optic applications.

The application of a steady (or low frequency) electric field to a
liquid crystal induces electric dipoles in its molecules and the
resultant electric forces exert torques on them. The molecules
rotate in a direction such that the free electrostatic energy, 

, is minimized (here, E1, E2, and E3 are
the components of E in the directions of the principal axes). Since ϵ∥
> ϵ⊥, for a given direction of the electric field, minimum energy is
achieved when the molecules are aligned with the field. In that case
E1 = E2 = 0, so that E = (0, 0, E), and the free energy is .
When alignment is complete, the long molecular axes point in the
direction of the electric field, as portrayed in Fig. 21.3-1. A reversal
of the electric field results in the same molecular rotation and an
alternating field generated by an AC voltage also has the same
effect.

Figure 21.3-1 The molecules of a positive uniaxial liquid crystal
rotate so their long molecular axes align with the applied electric
field.

Nematic Liquid-Crystal Wave Retarders and Modulators

A nematic liquid-crystal cell is a thin layer of nematic liquid crystal
placed between two parallel glass plates and rubbed so that the
molecules are parallel to each other. The material then acts as a
uniaxial crystal with the optic axis parallel to the molecular
orientation. For waves traveling in the z direction (perpendicular to
the glass plates), the normal modes are linearly polarized in the x
and y directions (parallel and perpendicular to the molecular
directions, respectively), as illustrated in Fig. 21.3-2(a). The
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principal refractive indices are then the extraordinary and ordinary
indices, ne and no, respectively. A cell of thickness d provides a wave
retardation Γ = 2π(ne − no)d/λo.

Figure 21.3-2 Molecular orientation of a liquid-crystal cell: (a) in
the absence of a steady electric field; (b) in the presence of a steady
electric field. The optic axis lies along the direction of the long axes
of the molecules.

Now, if an electric field is applied in the z direction (by applying a
voltage V across transparent conductive electrodes coated on the
insides of the glass plates), the resultant electric forces tend to tilt
the molecules toward alignment with the field, but the elastic forces
at the surfaces of the glass plates resist this motion. When the
applied electric field is sufficiently strong, however, most of the
molecules (except for those adjacent to the glass surfaces) tilt
toward the z axis. The equilibrium tilt angle θ (with respect to the
x–y) plane for these molecules is a monotonically increasing
function of V characterized by 1

where V is the applied RMS voltage, Vc is a critical voltage at which
the tilting process begins, and V0 is a constant. When (V − Vc)/V0 =
1, we find that θ ≈ 50°. As (V − Vc)/V0 increases beyond unity, θ
approaches 90° as shown in Fig. 21.3-3(a).
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Figure 21.3-3 (a) Dependence of the tilt angle θ of the liquid-
crystal molecules on the normalized RMS voltage applied to the
liquid-crystal cell. (b) Dependence of the normalized retardation Γ/
Γmax = [n(θ) − no]/(ne − no) on the normalized RMS voltage when
no = 1.5, for the values of Δn = ne − no indicated. This plot is
obtained from (21.3-1) and (21.3-2).

When the electric field is removed, the orientations of the
molecules near the glass plates are reasserted and all of the
molecules tilt back to their original orientations, in planes parallel
to the plates. In a sense, the liquid-crystal material may be viewed
as a liquid with memory.

For a tilt angle θ, the normal modes of an optical wave traveling in
the z direction are polarized in the x and y directions and have
refractive indices n(θ) and no, where

Note that for a tilt angle θ, the direction between the optic axis and
the direction of propagation is 90° − θ, which explains why (21.3-2)
differs from (6.3-15).

The liquid-crystal cell finds use in a number of applications:

Phase modulator. For an optical wave traveling in the z
direction that is linearly polarized in the x direction (parallel to



the untilted molecular orientation), the phase shift is φ =
2πn(θ)d/λo, where n(θ) is given by (21.3-2). Since θ is
controlled by the voltage applied to the cell in accordance with
(21.3-1), the cell can be readily used as a voltage-controlled
phase modulator.

Variable wave retarder. The retardation Γ = 2π[n(θ) − no]d/
λo also depends on the tilt angle θ. It achieves its maximum
value Γmax = 2π(ne − no)d/λo when the molecules are not tilted
(θ = 0) and decreases monotonically toward 0 when the tilt
angle reaches 90°. Using (21.3-2) and (21.3-1), the dependence
of Γ on the applied voltage is plotted in Fig. 21.3-3(b). The
liquid-crystal cell therefore serves as a voltage-controlled wave
retarder with principal axes along the x and y directions.

Intensity modulator. When the liquid-crystal cell is placed
between two crossed polarizers (at ±45° with respect to the x
axis in the x–y plane), the transmittance of the device is 𝒯 =
sin2(Γ/2), which is a function of the voltage-controlled
retardation Γ and has a maximum value of unity when the
retardation is π. Since the retardation is voltage dependent, so
too is the transmittance so that the device functions as a
voltage-controlled intensity modulator. Intensity modulation
may also be implemented in reflection mode by placing the cell
between a mirror and a polarizer oriented at 45° with respect to
the x-axis, as illustrated in Fig. 21.3-4(a), in which case the
reflectance is controlled by the applied voltage. A sketch of the
reflectance versus the applied voltage is provided in Fig. 21.3-
4(b).



Figure 21.3-4 (a) A nematic liquid-crystal cell placed between a
polarizer and a mirror functions as a reflector with voltage-
controllable reflectance. The retardation Γ varies between π/2 and 0
as the voltage is tuned between 0 (“OFF” state) and the saturation
voltage V0 (“ON” state). After reflection from the mirror and a
round trip through the crystal, the plane of polarization rotates 90°
in the “OFF” state, so that the light is blocked. In the “ON” state,
there is no rotation, and the reflected light is transmitted by the
polarizer. (b) Dependence of the intensity reflectance R on the
applied voltage V .

Liquid-Crystal Cell Parameters

Liquid-crystal cells are usually sealed between antireflection-coated,
optically flat, glass windows. Liquid-crystal layers have typical
thicknesses d ≈ 10 μm and a refractive-index difference Δn = ne − no
in the vicinity of 0.1–0.3. The retardation Γ = 2 πϱ/λo is often
expressed in terms of the retardance ϱ = (ne − no)d; retardances of
several hundred nanometers are typical (e.g., a retardance of 300
nm corresponds to a retardation of π at λo = 600 nm). The response
time of a liquid crystal layer depends on its thickness, as well as on
the viscosity of the material, its temperature, and the nature of the
applied drive voltage. Liquid-crystal cells are slow devices; the rise
time is of the order of tens of milliseconds if the operating voltage is
near the critical voltage Vc and roughly a few milliseconds at higher
voltages. The critical voltage Vc is typically a few volts RMS. The



decay time is insensitive to the operating voltage but can be reduced
by using cells of smaller thickness. The voltage is usually applied as
a square waveform with a frequency that ranges between tens of Hz
and a few kHz. Operation at lower frequencies tends to cause
electromechanical effects that disrupt molecular alignment and
reduce the lifetime of the device, while frequencies higher than 100
Hz entail greater power consumption because of increased
conductivity.

Twisted Nematic Liquid-Crystal Modulators

A twisted nematic liquid-crystal cell is a thin layer of nematic liquid
crystal placed between two parallel glass plates and rubbed in such a
way that the molecular orientation rotates helically about an axis
normal to the plates (the axis of twist). If the angle of twist is 90°,
for example, the molecules point in the x direction at one plate and
in the y direction at the other [Fig. 21.3-5(a)]. Consecutive
transverse layers of the material act as uniaxial crystals with an
optic axis that rotates helically about the axis of twist. It was
demonstrated in Sec. 6.5 that the plane of polarization for linearly
polarized light traveling along the direction of the axis of twist
rotates with the molecules, so that the cell acts as a polarization
rotator.

When an electric field is applied along the direction of the axis of
twist (the z direction) the molecules tilt toward the field [Fig. 21.3-
5(b)]. When the tilt is 90° , the molecules lose their twisted
character (except for those adjacent to the glass surfaces),
whereupon the polarization rotatory power is deactivated. If the
electric field is removed, the orientations of the layers near the glass
surfaces dominate, causing the molecules to return to their original
twisted state and the polarization rotatory power to be regained.



Figure 21.3-5 (a) A twisted nematic liquid-crystal cell in its twisted
state. (b) In the presence of a sufficiently strong electric field, the
molecules tilt in the direction of the field and lose their twisted
character.

Since the polarization rotatory power may be turned off and on by
switching the electric field on and off, a shutter can be designed by
placing a cell providing a 90° twist between two crossed polarizers.
The system then transmits light in the absence of an electric field
and blocks it when the electric field is applied, as portrayed in Fig.
21.3-6.

Figure 21.3-6 A twisted nematic liquid-crystal modulator. (a)
When the electric field is absent, the liquid-crystal cell acts as a
polarization rotator and the light is transmitted. (b) When the
electric field is present, the cell’s rotatory power is suspended and
the light is blocked. At intermediate values of the applied voltage,
the device provides partial intensity transmission and therefore
operates as an analog intensity modulator.



The twisted liquid-crystal cell placed between crossed polarizers
may also be operated as an analog modulator. Intermediate tilt
angles result in a combination of polarization rotation and wave
retardation. The analysis of the transmission of polarized light
through tilted and twisted molecules is rather complex, but the
overall effect is partial intensity transmittance. There is an
approximately linear range of transition between the total
transmission of the fully twisted (untilted) state and the total
blocking of the fully tilted (untwisted) state, although the dynamic
range is rather limited.

Operation in the reflective mode is also possible, as illustrated in
Fig. 21.3-7. Here, the twist angle is 45°; a mirror is placed on one
side of the cell and a polarizer on the other side. When the electric
field is absent the polarization plane rotates a total of 90° as the
wave propagates a round trip through the cell; the reflected light is
therefore blocked by the polarizer. When the electric field is
present, the polarization rotatory power is suspended and the
reflected light is transmitted through the polarizer. Other reflective
and transmissive modes of operation with different angles of twist
are also possible.



Figure 21.3-7 A twisted nematic liquid-crystal cell with a 45° twist
angle and a mirror provides a round-trip polarization rotation of 90°
in the absence of the electric field (blocked state) and no rotation
when the field is applied (unblocked state). The device is a reflective
switch. Much as with the nematic liquid-crystal cell illustrated in
Fig. 21.3-4, this device can be operated as a reflective analog
intensity modulator for intermediate values of the field.

Ferroelectric Liquid Crystals

Smectic liquid crystals are organized in layers, as displayed in Fig.
6.5-1(b). In the smectic-C phase, the molecular orientation is tilted
by an angle θ with respect to the normal to the parallel smectic
layers (the x axis), as illustrated in Fig. 21.3-8. This material has
ferroelectric properties. When placed between two closely spaced
glass plates the surface interactions permit only two stable states of
molecular orientation: at the angles ±θ, as shown in Fig. 21.3-8.
When an electric field +E is applied in the z direction, a torque is
produced that switches the molecular orientation into the stable
state +θ [Fig. 21.3-8(a)]. The molecules can be switched into the
state −θ by applying an electric field −E of the opposite polarity [Fig.
21.3-8(b)]. The cell therefore acts as a uniaxial crystal whose optic
axis may be switched between two orientations.



Figure 21.3-8 The two allowed states of a ferroelectric liquid-
crystal cell.

In the geometry of Fig. 21.3-8, the incident light is linearly polarized
at an angle θ with respect to the x axis. In the +θ state at left, the
polarization is parallel to the optic axis and the wave travels with
the extraordinary refractive index ne without retardation. In the −θ
state at right, the polarization makes an angle 2θ with the optic axis.
If 2θ = 45°, the wave undergoes a retardation Γ = 2π(ne − no)d/λo,
where d is the thickness of the cell and no is the ordinary refractive
index. If d is selected such that Γ = π, the device acts as a half-wave
retarder and the plane of polarization is rotated by 90°, as illustrated
in Fig. 6.1-8(b). Hence, reversing the applied electric field has the
effect of rotating the plane of polarization by 90°. A switch is
therefore readily constructed by placing this cell between two
crossed polarizers. The principal merit of ferroelectric liquid-crystal
switches lies in their fast response times at room temperature.
Their μs response times are far faster than the ms response times
associated with nematic liquid crystals. The switching voltage is on
the order of ±10 V.

B. Spatial Light Modulators and Displays
Spatial light modulators (SLMs) modify the spatial distribution of
the wavefront (phase), intensity, or polarization of an optical wave
by making use of an array of optical modulators arranged in a
particular spatial configuration. Wavefront modulation is used for
beam steering and focusing, as well as in adaptive optics. The



principal application of intensity modulation is for the display of
spatial patterns, such as numbers, letters, graphics, and images.
Liquid-crystal technology is widely used in SLMs and liquid-
crystal displays (LCDs) are dominant in applications such as
mobile phones, digital watches, laptop and desktop computers, and
flat panel and high-definition television receivers.

LCDs are designed to operate either in a transmissive mode (T-
mode), as in the configuration depicted in Fig. 21.3-6, or in a
reflective mode (R-mode), as exemplified in Fig. 21.3-7. T-mode
LCDs rely on a backlight placed at the rear of the device; the
emitted light is transmitted through the liquid-crystal cell and is
viewed from the front of the device. The backlight generally consists
of a panel of white LEDs or WOLEDs (Sec. 18.1F), or a cold-cathode
fluorescent lamp; the emitted light is rendered spatially uniform
with the help of a diffuser. The images in R-mode LCDs are usually
generated using the reflection of ambient light from the device. R-
mode devices thus have the dual merits of low power consumption
and superior readability at high ambient light levels (such as
outdoors), but they cannot be used in the dark. Transreflective
devices that can operate in either mode are available.

LCDs make use of nematic, twisted-nematic, or ferroelectric liquid-
crystal cells (Sec. 21.3A). The configuration most commonly used in
laptop computers and high-definition television receivers is the 90°
twisted-nematic transmissive configuration (Fig. 21.3-6), principally
because it offers high contrast. The contrast of LCDs typically
degrades significantly as the angle of view increases, in part because
oblique rays undergo different retardation at different angles of
incidence/reflection, particularly when the molecules are rotated in
an out-of-plane direction. Special compensation filters have been
developed for wide-angle viewing.

Segmented LCD

A segmented LCD is constructed by placing transparent electrodes
in a particular configuration on the glass plate of a reflective liquid-



crystal cell. Applying a voltage to selected electrodes (with respect to
a common electrode at the rear of the device) results in the desired
pattern of reflection and nonreflection. As an example, a seven-
segment electrode configuration suitable for displaying the
numerals 0 to 9 is illustrated in Fig. 21.3-9. Larger numbers of
electrodes may be addressed sequentially, such as by the use of a
charge-coupled configuration (Sec. 19.5).

Figure 21.3-9 Electrodes of a seven-bar-segment reflective-mode
LCD.

Matrix LCD

A matrix LCD [Fig. 21.3-10(a)] makes use of transparent electrodes
arranged in the form of rows and columns, with pixels defined by
the locations of their intersections. Each pixel functions much like
the single liquid-crystal modulator illustrated in Fig. 21.3-6. The
image information is imparted via voltages applied across the
transparent electrodes of each pixel, which in turn determine the tilt
angles of their liquid-crystal layers and thence the intensities of the
light they transmit. The resolution of the device is determined by
the pixel density.

Given a passive-matrix LCD with N rows and M columns, an
external wire is required to address each of the N M pixels, at least
in principle. Since this is not feasible for large arrays, in practice
only the rows and columns are addressed, requiring N + M external
wires. Crosstalk among the pixels is minimized by entering the
image sequentially over a time period T that is shorter than the
response time of the viewer’s visual system. This period is divided
into N intervals; the N rows are sequentially scanned with an



applied voltage, while the image data are entered by applying a
positive or negative voltage to each of the M columns, depending on
the desired image. A schematic of the system and its operation is
presented in Fig. 21.3-10.

Figure 21.3-10 (a) A matrix LCD is addressed by applying
sequential scanning (S) voltage pulses to the rows, and data (D)
voltage pulses to the columns. (b) Image obtained by applying to the
rows and columns the voltage-pulse sequences displayed in (c).

A binary image with dark and bright pixels, such as that displayed in
Fig. 21.3-10(b) may be entered into a matrix LCD by means of the
following scheme: During the nth time interval, a voltage (1 − r)V is
applied to the nth row (V is a constant voltage and r < 1), while all
other rows are maintained at 0 V. Concurrently, a voltage −rV is
applied to the mth column if the (m, n) pixel is to be bright, and +rV
is applied if it is to be dark. The voltage applied to the (m, n) pixel
during the nth time interval is therefore (1−r)V −(−rV )= V if the
pixel is bright, and (1−r)V −(rV ) = (1−2r)V if it is dark. During the
other N − 1 time intervals, the voltage applied to the (m, n) pixel is
either 0 − (−rV )= rV or 0 − (rV )= −rV . The LCD is responsive to
the RMS voltage VRMS averaged over the sequence of N intervals.
For the (m, n) pixel,  if the pixel is
bright, and  if it is dark. The ratio
of these two voltages is maximum if , in which case
VRMS in the bright state is greater than that in the √√ dark states by
the factor . Though this ratio is only slightly



greater than unity, small changes in the applied voltage can switch
the pixel from dark to bright because of the nonlinear relation
between the transmittance and the applied voltage. Nevertheless,
this type of passive addressing system is clearly not adequate if N is
too large.

Active-Matrix LCD (AMLCD)

The AMLCD eliminates pixel-to-pixel crosstalk by making use of
thin-film transistor (TFT) circuitry. As illustrated in Fig. 21.3-11,
each pixel is coupled to its own TFT, gated by a signal from its row
wire, while the data are entered via its column wire. When the gate
signal is present, the TFT applies a voltage V between the
indiumtin-oxide (ITO) pixel electrode and an ITO common
electrode during a time duration T/N, where T is the frame period
and N is the number of rows. Since the data are entered row by row,
crosstalk is eliminated. Though the voltage applied on each pixel
appears only during the brief frame time, the viewer perceives the
image in its totality since the integration time of the human visual
system is long (of the order of ms) in comparison with the frame
time.

Figure 21.3-11 illustrates the structure and operation of an AMLCD
in the T-mode configuration. The liquid-crystal (LC) material is
sandwiched between two thin glass plates with a single ITO
common electrode on one side of it and the ITO pixel electrode
array on the other side. The stack is placed between a pair of crossed
polarizer sheets that form the display screen. Color display is
implemented by segmenting each pixel into three independently
addressed adjacent segments (sub-pixels) with red, green, and blue
color filters in front, as shown in Fig. 21.3-11(b). With white
backlight illuminating the array, the color displayed by each pixel is
determined by the superposition of the light transmitted through its
three sub-pixels. Metameric white light is produced via additive
color mixing, as described in Sec. 18.1F.



Figure 21.3-11 An active-matrix liquid-crystal display (AMLCD).
(a) Device structure viewed from the rear. Pixels are addressed via
thin-film transistors (TFTs) gated by signals (G) applied from the
rows and data (D) entered via the columns. The white backlight is
not shown. (b) Adjacent color filters placed between the common
electrode and substrate provide color sub-pixels. (c) Black-andwhite
image obtained by applying the gating and data waveforms
displayed in (d). The electrodes are fabricated from indium tin oxide
(ITO), a transparent conductor.

Optical phase-modulation SLMs, widely used for applications such
as wavefront modification and the reshaping of optical beams, often
make use of liquid-crystal-on-silicon technology, and are typically
configured in the reflective mode.

A competing display technology makes use of TFT circuitry to
control arrays of organic light-emitting diodes. The color sub-pixels
in an active-matrix organic light-emitting display (AMOLED) are
created by OLEDs that directly emit red, green, and blue light (Sec.
18.1E), or by WOLEDs that emit white OLED light that is passed
through color filters. AMOLEDs have a number of salutary features
in comparison with AMLCDs: they are 1) thinner, 2) flexible, 3)
superior in color rendition, 4) superior in contrast, 5) insensitive to
viewing angle, and 6) faster. However, they are more expensive in
the current state of their development.

Optically Addressed Spatial Light Modulators



Most LCDs are addressed electrically. However, optically addressed
spatial light modulators are attractive for applications involving
image and optical data processing. Light with an intensity
distribution IW (x, y), the “write” image, is converted by an
optoelectronic sensor into an electric-field distribution E(x, y),
which controls the reflectance ℛ(x, y) of a liquid-crystal cell
operated in the reflective mode. A separate optical wave of uniform
intensity is reflected from the device and creates the “read” image
I(x, y) ∝ ℛ(x, y). Thus, the “read” image is controlled by the “write”
image (Fig. 21.1-14).

If the write image is carried by incoherent light, and the read image
is formed by coherent light, the device serves as a spatial
incoherent-to-coherent light converter, much like the PROM device
discussed earlier (Sec. 21.1E). Furthermore, the wavelengths of the
write and read beams need not be the same. The read light may also
be more intense than the write light, so that the device may serve as
an image intensifier.

There are several ways of converting the write image IW (x, y) into a
pattern of electric field E(x, y) for application to the liquid-crystal
cell. A layer of photoconductive material, e.g., cadmium sulfide
(CdS), placed between the electrodes of a capacitor may be used.
When illuminated by the distribution IW (x, y), the conductance
G(x, y) is altered proportionally. The capacitor is then discharged at
each position in accordance with the local conductance, so that the
resultant voltage and electric field E(x, y) ∝ 1/IW (x, y) is a negative
of the original image. An alternative makes use of a sheet
photodiode [e.g., a p–i–n photodiode of hydrogenated amorphous
silicon (α-Si:H)]. The reverse-biased photodiode conducts in the
presence of light, thereby creating a potential difference
proportional to the local light intensity.

An example of a commercially available liquid-crystal spatial light
modulator (SLM) is the Parallel-Aligned Spatial Light
Modulator (PAL-SLM) illustrated in Fig. 21.3-12. This device
uses α-Si:H as the write medium and a nematic LC with molecules



in parallel alignment as a phase modulator. At each point, the
impedance of the amorphous silicon layer is altered by the write
light and a voltage proportional to the optical intensity is applied to
the corresponding point in the LC layer. This results in rotation of
the anisotropic LC molecules to align with the applied electric field.
Consequently, the read light beam undergoes a proportional phase
shift as it travels through the LC layer. The PAL-SLM is a
continuous modulator (i.e., it is not pixelated). It has high spatial
resolution, corresponding to 480 × 480 points over its active area of
2 × 2 cm2, and its rise (fall) time is 30 (40) ms.

Figure 21.3-12 Schematic of the Hamamatsu Parallel-Aligned
Spatial Light Modulator (PAL-SLM). This optically addressed SLM
has two principal layers: an amorphous silicon layer, which senses
the write light intensity, and a liquid-crystal (LC) layer that serves
as a reflective phase modulator for the read light. These layers are
separated by a light-blocking dielectric material. The device is
encased in glass substrates (not shown).

*21.4 PHOTOREFRACTIVITY
Photorefractive materials exhibit photoconductive and electro-optic
behavior, and have the ability to detect and store spatial
distributions of optical intensity in the form of spatial patterns of
altered refractive index. Photoinduced charges create a space-charge



distribution that produces an internal electric field, which in turn
alters the refractive index by means of the electro-optic effect.

Ordinary photoconductive materials are often good insulators in the
dark. Upon illumination, photons are absorbed, free charge carriers
(electron–hole pairs) are generated, and the conductivity of the
material increases. When the light is removed, the process of charge
photogeneration ceases, and the conductivity returns to its dark
value as the excess electrons and holes recombine. Photoconductors
are most often used as photodetectors (Sec. 19.2).

When a photorefractive material is exposed to light, free charge
carriers (electrons or holes) are generated by excitation from
impurity energy levels to an energy band at a rate proportional to
the optical intensity. This process is much like that in an extrinsic
semiconductor photoconductor (Sec. 19.2B). These carriers then
diffuse away from the positions of high intensity where they were
generated, leaving behind fixed charges of the opposite sign
(associated with the impurity ions). The free carriers can be trapped
by ionized impurities at other locations, depositing their charge
there as they recombine. The result is the creation of an
inhomogeneous space-charge distribution that remains in place for
a period of time after the light is removed. This charge distribution
creates an internal electric-field pattern that modulates the local
refractive index of the material by virtue of the (Pockels) electro-
optic effect. The image may then be accessed optically by
monitoring the spatial pattern of the refractive index using a probe
optical wave. The material can be brought back to its original state
(erased) by illumination with uniform light, or by heating. Thus, a
photorefractive material can be used to record and store images,
much as with a photographic emulsion. The process is illustrated in
Fig. 21.4-1 for iron-doped lithium niobate (Fe2+/3+:LiNbO3).



Figure 21.4-1 Energy-level diagram of LiNbO3 doped with Fe ions
that illustrates the processes of (1) photoionization, (2) diffusion,
(3) recombination, (4) space-charge formation, and (5) electric-field
generation. The Fe2+ impurity centers act as donors and become
Fe3+ after photoionization, whereas the Fe3+ centers act as traps and
revert to Fe2+ after recombination.

Important photorefractive materials include lithium niobate
(LiNbO3), potassium niobate (KNbO3), barium titanate (BaTiO3),
bismuth silicon oxide (Bi12SiO20 or BSO), strontium barium niobate
(SrxBa1−xNb2O6 or SBN), and gallium arsenide (GaAs).

Simplified Theory of Photorefractivity

When a photorefractive material is illuminated by light of intensity
I(x) that varies in the x direction, the refractive index changes by
Δn(x). The following is a step-by-step description of the processes
that mediate this effect, as illustrated in Fig. 21.4-1, together with a
simplified set of one-dimensional equations that govern these
processes:

1. Photoionization. The absorption of a photon at position x raises
an electron from the donor level to the conduction band. The
rate of photoionization G(x) is proportional both to the optical
intensity and to the number density of nonionized donors.
Thus,



(21.4-1)

(21.4-4)

(21.4-2)

(21.4-3)

where ND is the overall number density of donors,  is the
number density of ionized donors, and s is a constant
proportional to the photoionization cross section.

2. Diffusion. Since I(x) is nonuniform, the number density of
excited electrons n(x) is also nonuniform. As a result, electrons
diffuse from locations of high concentration to locations of low
concentration.

3. Recombination. The electrons recombine at a rate R(x)
proportional to their number density n(x), and to the number
density of ionized donors (traps) , so that

where γR is a constant. In equilibrium, the rate of
recombination equals the rate of photoionization, i.e., R(x)= G
(x), so that

from which

4. Space-charge formation. Each photogenerated electron leaves
behind a positive ionic charge. When the electron is trapped
(recombines), its negative charge is deposited at a different site.
As a result, a nonuniform space-charge distribution is formed.

5. Electric-field generation. This nonuniform space charge
generates a position-dependent electric field E(x), which may
be determined by observing that in steady state the drift and
diffusion electric-current densities must be of equal magnitude
and opposite sign, so that the total current density vanishes,
i.e.,



(21.4-5)

(21.4-6)

(21.4-7)

(21.4-8)

(21.4-9)

where μe is the electron mobility, k is Boltzmann’s constant,
and T is the temperature. Thus,

6. Refractive-index modification. Since the material is electro-
optic, the internal electric field E(x) locally modifies its
refractive index in accordance with Δn(x)= − 2

where n and r are the appropriate values of refractive index and
Pockels electrooptic coefficient for the material [see (21.1-4)].

7. Photorefractive image storage. The relation between the
incident light intensity I(x) and the resultant refractive index
change Δn(x) may be readily estimated if we assume that the
quantity  in (21.4-4) is approximately constant,
independent of x. In that case n(x) is proportional to I(x),
whereupon (21.4-6) yields

Finally, substituting (21.4-8) into (21.4-7) provides an
expression for the position-dependent refractive-index change
as a function of intensity,

Refractive-Index Change

This result is readily generalized to two dimensions, whereupon
it governs the operation of a photorefractive material as an



image storage device.

Many assumptions have been made in an attempt to keep the
foregoing theory simple: In deriving (21.4-8) from (21.4-6) it was
assumed that the ratio of number densities of unionized to ionized
donors is approximately uniform, despite the spatial variation of the
photoionization process. This assumption is approximately
applicable when the ionization is caused by other more effective
processes that are position independent in addition to the light
pattern I(x). Dark conductivity and volume photovoltaic effects
were neglected. Holes were ignored. It was assumed that no
external electric field was applied, when in fact this can be useful in
certain applications. The theory is valid only in the steady state even
though the time dynamics of the photorefractive process are clearly
important since they determine the speed with which the
photorefractive material responds to the applied light. Yet, in spite
of all these assumptions, the simplified theory captures the essence
of the behavior of photorefractive materials.



(21.4-10)

(21.4-11)

EXAMPLE 21.4-1.

Photorefractive Sinusoidal Spatial Intensity Pattern.
Consider an intensity distribution that takes the form of a
sinusoidal function of period Λ, contrast m, and mean intensity
I0,

as illustrated in Fig. 21.4-2. Substituting this expression into
(21.4-8) and (21.4-9) yields the internal electric-field and
refractive-index patterns

where  are the maximum values
of E(x) and Δn(x), respectively.

Figure 21.4-2 Response of a photorefractive material to a
sinusoidal spatial light pattern.

As a numerical example, if Λ = 1 μm, m = 1, and T = 300° K, we
have Emax = 1.6 × 105 V/m, an internal field is equivalent to
applying 1.6 kV across a crystal of 1-cm width. The maximum
refractive-index change Δnmax is directly proportional to the



(21.4-12)

contrast m and the electrooptic coefficient r, and inversely
proportional to the spatial period Λ. The grating pattern Δn(x) is
insensitive to the average intensity I0. When the image contrast
m is small, the second terms in the denominators of (21.4-11)
may be neglected, in which case the internal electric field and
refractive-index change are simple sinusoidal patterns shifted by
90° relative to the incident light pattern, i.e.,

as illustrated in Fig. 21.4-2.

Applications of the Photorefractive Effect

An image I(x, y) may be stored in a photorefractive crystal in the
form of a refractive-index distribution Δn(x, y). The image can be
read by using the crystal as a spatial phase modulator to encode the
information on a uniform optical plane wave that acts as a probe.
Phase modulation may be converted to intensity modulation, for
example, by placing the cell in an interferometer (Fig. 21.1-4).

Because of the capability of recording images, photorefractive
materials are attractive for use in real-time holography (holography
is discussed in Sec. 4.5). As illustrated in Fig. 21.4-3 for two plane
waves, an object wave is holographically recorded by mixing it with
a reference wave. The intensity of the sum of two such waves forms
a sinusoidal interference pattern, which is recorded in the
photorefractive crystal in the form of refractive-index variations.
The crystal then serves as a volume phase hologram (Fig. 4.5-10).
To reconstruct the stored object wave, the crystal is illuminated
with the reference wave. Acting as a volume diffraction grating, the
crystal reflects the reference wave and reproduces the object wave.



Figure 21.4-3 Two-wave mixing is a form of dynamic holography.

Since the recording process is relatively fast, the processes of
recording and reconstruction can be carried out simultaneously. The
object and reference waves travel together in the medium and
exchange energy via reflection from the created grating, a process
called two-wave mixing. As shown in Fig. 21.4-3 (see also Fig. 4.5-
8), waves 1 and 2 interfere and form a volume grating. Wave 1
reflects from the grating and adds to wave 2; wave 2 reflects from
the grating and adds to wave 1. Thus, the two waves are coupled
together by the grating they create in the medium. Consequently,
the transmission of wave 1 through the medium is controlled by the
presence of wave 2, and vice versa. For example, wave 1 may be
amplified at the expense of wave 2.

The mixing of multiple waves also occurs in other nonlinear optical
materials with light-dependent optical properties, as discussed in
Chapter 22. Wave mixing has numerous applications in optical data
processing (Chapters 22 and 24), including image amplification, the
removal of image aberrations, the cross-correlation of images, and
optical interconnections.

Electrochromism

Another electro-optic effect involving the transport of charge is
electrochromism, wherein an electric field causes a change in the
absorption spectrum (color) of a material. Applications include
displays and electrically controlled windows. Both inorganic and
organic materials can exhibit electrochromism.

21.5 ELECTROABSORPTION



Electroabsorption is a change of the absorption characteristics of
a medium in response to an externally applied electric field. In a
bulk semiconductor, the application of an external electric field
results in electron tunneling, which extends the absorption edge
into the forbidden gap. The bandgap energy of the material Eg is
thus reduced below that provided by the band tail and the Urbach
tail, so that hν2 < hν1 when the field is ON, as illustrated in Fig. 21.5-
1(a). This phenomenon, known as the Franz–Keldysh effect,
therefore shifts the absorption spectrum to longer wavelengths [Fig.
21.5-1(b)]. The applied electric field also results in the broadening,
and ultimate disappearance of, the exciton absorption peaks (Sec.
17.2C).

This effect may be used in optical electroabsorption
modulators and electroabsorption switches, which are
technologically simple to implement. In the absence of the electric
field (OFF), an incident beam at the operating wavelength, which is
longer than the normal bandgap wavelength, is transmitted without
absorption [Fig. 21.5-1(b)]. However, upon application of the
electric field (ON), the light is absorbed. Such modulators are often
constructed in the form of waveguides, with the electric field
applied in a direction perpendicular to the direction of propagation
of the light beam, as portrayed in Fig. 21.5-1(c). In comparison with
electro-optic modulators, which operate on the basis of refractive-
index change in response to an externally applied electric field
(Secs. 21.1–21.3), electroabsorption modulators typically operate at
greater speeds and at lower voltages. Moreover, they can be
integrated on the same chip as semiconductor light sources so they
are convenient for use in optical fiber communication systems.
They also exhibit less chirp than directly modulated laser diodes
(Sec. 25.1B).



Figure 21.5-1 The Franz–Keldysh effect. (a) The bandgap energy
Eg in the absence of an external electric field (OFF) is reduced in its
presence (ON). (b) Change in the absorption spectrum caused by
the presence of an electric field, which moves the absorption peak
toward longer wavelengths. (c) Electroabsorption modulator in a
waveguide configuration.

The electroabsorption effect is more pronounced in semiconductor
multiquantumwell (MQW) structures (Secs. 17.1G and 18.2D). An
electric field applied in the plane of a quantum well gives rise to
behavior similar to the Franz–Keldysh effect, including a shift of
the absorption edge to a longer wavelength and exciton dissociation.
However, an electric field applied in the direction of confinement
gives rise to additional phenomena, known collectively as the
quantum-confined Stark effect (QCSE), as illustrated in Fig.
21.5-2:

The energy difference between the conduction-and valence-
band energy levels decreases with increasing electric field (hν2
< hν1).

The band tilt causes the locations of the wavefunctions to shift
toward the edges of the well.

Exciton ionization is inhibited and exciton energy levels remain
unbroadened even at high field levels, since the electron and
hole remain in proximity by virtue of the confinement.



Figure 21.5-2 (a) Energy-band diagrams of a quantum well in the
absence (OFF) and presence (ON) of an external electric field
applied in the direction of confinement. The field causes the
interband energy difference to decrease and the wavefunctions to
shift from the centers of the wells toward opposite edges. (b)
Absorption spectrum in an AlGaAs/GaAs multiquantum-well
structure for various values of the applied voltage (field). The
exciton absorption peak moves toward longer wavelengths as the
voltage is increased. (Adapted from D. A. B. Miller, D. S. Chemla, T.
C. Damen, T. H. Wood, C. A. Burrus, Jr., A. C. Gossard, and W.
Wiegmann, The Quantum Well Self-Electrooptic Effect Device:
Optoelectronic Bistability and Oscillation, and Self-Linearized
Modulation, IEEE Journal of Quantum Electronics, vol. 21, pp.
1462–1476, Fig. 1 ©1985 IEEE.) (c) Schematic of a MQW
electroabsorption modulator operated in a surface-normal
architecture.

As a result of these MQW characteristics, the wavelength shift of
the absorption peak is greater, and the absorption edge is more
abrupt, than in bulk semiconductors. Electroabsorption modulators
based on the QCSE have excellent characteristics, including

High speeds

Large extinction ratios



Low drive voltages

Low chirp

The simplest transmission implementation directs light through an
intrinsic MQW structure sandwiched between p and n regions
across which a voltage is applied. Switching is accomplished by
simply turning the voltage on and off. A device of this sort can also
be fabricated in a waveguide configuration and can be integrated
with a distributed-feedback (DFB) laser on a single chip. QCSE
modulators and switches can also be fabricated in the form of arrays
operated in a double-pass surface-normal architecture, as illustrated
in Fig. 21.5-2(c).

EXAMPLE 21.5-1.

GeSi Electroabsorption Modulator. Optical modulators are
important elements in integrated photonics. Though silicon has
a small electro-optic coefficient, SiGe is suitable for the
fabrication of electroabsorption modulators (EAMs). A GeSi
EAM with an active region of 1 μm × 50 μm, integrated on a 3-
μm-high silicon-on-insulator waveguide, operates over a 35-nm
wavelength range in the vicinity of 1550 nm. The device has a 3-
dB bandwidth of 35 GHz and a swing voltage of 2.5 V.
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PROBLEMS
21.1-2 Response Time of a Phase Modulator. A GaAs crystal

with refractive index n = 3.6 and electro-optic coefficient r =
1.6 pm/V is used as an electro-optic phase modulator
operating at λo = 1.3 μm in the longitudinal configuration. The
crystal is 3 cm long and has a 1-cm2 cross-sectional area.
Determine the half-wave voltage Vπ, the transit time of light
through the crystal, and the electrical capacitance of the device
(the low-frequency relative permittivity of GaAs is ∊/∊o =
13.5). The voltage is applied with a source of 50-Ω resistance.
Which factor limits the speed of the device, the transit time of
the light through the crystal or the response time of the
electrical circuit?

21.1-3 Sensitivity of an Interferometric Electro-Optic
Intensity Modulator. An integratedphotonic intensity



modulator in a Mach–Zehnder configuration, such as that
illustrated in Fig. 21.1-5, is used as a linear analog modulator.
If the half-wave voltage is Vπ = 10 V, what is the sensitivity of
the device (the incremental change of the intensity
transmittance per unit incremental change of the applied
voltage)?

21.1-4 An Elasto-Optic Strain Sensor. An elasto-optic material
exhibits a change of the refractive index proportional to the
strain. Design a strain sensor based on this effect in the
context of an integrated-photonic implementation. If the
material is also electro-optic, consider a design based on
compensating the elasto-optic and electro-optic refractive
index changes against each other, and determining the electric
field that nulls the reading of the photodetector in a Mach–
Zehnder interferometer configuration.

21.1-5 Magneto-Optic Modulator. Describe how a Faraday rotator
(see Sec. 6.4B) may be used as an optical intensity modulator.

*21.2-2 Silica Integrated-Photonic Phase Modulator. Since
bulk fused silica is centrosymmetric, it does not ordinarily
exhibit the linear electro-optic (Pockels) effect. However,
thermally poled silica has Pockels coefficients that are
sufficiently large for use as optical modulators. Determine the
phase shift introduced by a poled-silica integrated-photonic
phase modulator in a configuration such as that shown in Fig.
21.1-3. Assume that the electrode length is L = 25 mm, the
electrode separation is d = 30 μm, and the wavelength is λ =
1.55 μm. Assume also that the optical wave is polarized in the
y direction, the electric field is created by an applied voltage V
= 400 V and points in the y direction, and the wave travels
along the electrodes in the z direction. The material is poled in
a direction such that its principal axes (x1, x2, x3) point in the
z, x, and y directions, respectively. The refractive index of the
poled material is n = 1.445 and the Pockels coefficients are
characterized by the matrix



*21.2-3 Cascaded Phase Modulators.

a. A KDP crystal (r41 = 8 pm/V, r63 = 11 pm/V; no = 1.507, ne =
1.467 at λo = 633 nm) is used as a longitudinal phase
modulator. The orientation of the crystal axes and the applied
electric field are as shown in Examples 21.2-2 and 21.2-6.
Determine the half-wave voltage Vπ at λo = 633 nm.

b. An electro-optic phase modulator consists of 9 KDP crystals
separated by electrodes that are biased as shown in Fig. P21.2-3.
How should the plates be oriented relative to each other so that
the total phase modulation is maximized? Calculate Vπ for the
composite modulator.

Figure P21.2-3

*21.2-4 The “Push–Pull” Intensity Modulator. An optical intensity
modulator uses two integrated electro-optic phase modulators
and a 3-dB directional coupler, as shown in Fig. P21.2-4. The
input wave is split into two waves of equal amplitudes, each of
which is phase modulated, reflected from a mirror, phase
modulated once again, and the two returning waves are added
by the directional coupler to form the output wave. Derive an
expression for the intensity transmittance of the device in
terms of the applied voltage, wavelength, dimensions, and
physical parameters of the phase modulator.



Figure P21.2-4

*21.2-5 A LiNbO3 Integrated-Photonic Intensity Modulator.
Design a LiNbO3 integratedphotonic intensity modulator
using the Mach–Zehnder interferometer shown in Fig. 21.1-5.
Select the orientation of the crystal and the polarization of the
guided wave to achieve the smallest half-wave voltage Vπ.
Assume that the active region has length L = 1 mm and width
d = 5 μm. The wavelength is λo = 0.85 μm, the refractive
indices are no = 2.29 and ne = 2.17, and the electro-optic
coefficients are r33 = 30.9, r13 = 8.6, r22 = 3.4, and r42 = 28
pm/V.

*21.2-6 Double Refraction in an Electro-Optic Crystal.

a. An unpolarized He–Ne laser beam (λo = 633 nm) is transmitted
through a 1-cm-thick LiNbO3 plate (ne = 2.17, no = 2.29, r33 =
30.9 pm/V, r13 = 8.6 pm/V). The beam is orthogonal to the plate
and the optic axis lies in the plane of incidence of the light at
45° with the beam. The beam is double refracted (see Sec.
6.3E). Determine the lateral displacement and the retardation
between the ordinary and extraordinary beams.

b. If an electric field E = 30 V/m is applied in a direction parallel
to the optic axis, what is the effect on the transmitted beams?
What are possible applications of this device?

Note



1. See, e.g., P. G. de Gennes and J. Prost, The Physics of Liquid
Crystals, Oxford University Press, 2nd ed. 1993.



Chapter 22 
NONLINEAR OPTICS

22.1 NONLINEAR OPTICAL MEDIA

22.2 SECOND-ORDER NONLINEAR OPTICS

A. Second-Harmonic Generation (SHG) and Rectification

B. The Electro-Optic Effect

C. Three-Wave Mixing

D. Phase Matching and Tuning Curves

E. Quasi-Phase Matching

22.3 THIRD-ORDER NONLINEAR OPTICS

A. Third-Harmonic Generation (THG) and Optical Kerr
Effect

B. Self-Phase Modulation (SPM), Self-Focusing, and
Spatial Solitons

C. Cross-Phase Modulation (XPM)

D. Four-Wave Mixing (FWM)

E. Optical Phase Conjugation (OPC)

*22.4 SECOND-ORDER NONLINEAR OPTICS: COUPLED
WAVES

A. Second-Harmonic Generation (SHG)

B. Optical Frequency Conversion (OFC)

C. Optical Parametric Amplification (OPA) and Oscillation
(OPO)

*22.5 THIRD-ORDER NONLINEAR OPTICS: COUPLED
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A. Four-Wave Mixing (FWM)

B. Three-Wave Mixing and Third-Harmonic Generation
(THG)

C. Optical Phase Conjugation (OPC)

*22.6 ANISOTROPIC NONLINEAR MEDIA

*22.7 DISPERSIVE NONLINEAR MEDIA

Nicolaas Bloembergen (1920–2017) began his seminal studies
in nonlinear optics in the early 1960s. He shared the 1981 Nobel
Prize with Arthur Schawlow (pictured on p. 657).

Peter A. Franken (1928–1999) provided the first demonstration
of optical second-harmonic generation by converting red laser light
into ultraviolet light in a quartz crystal.



Throughout the long history of optics, and indeed until relatively
recently, it was thought that all optical media were linear. The
consequences of this assumption are far-reaching:

The optical properties of materials, such as refractive index and
absorption coefficient, are independent of light intensity.

The principle of superposition, a fundamental tenet of classical
optics, is applicable.

The frequency of light is never altered by its passage through a
medium.

Two beams of light in the same region of a medium have no
effect on each other so that light cannot be used to control
light.

The operation of the first laser in 1960 enabled us to examine the
behavior of light in optical materials at higher intensities than
previously possible. Experiments carried out in the post-laser era
clearly demonstrate that optical media do in fact exhibit nonlinear
behavior, as exemplified by the following observations:

The refractive index, and consequently the speed of light in a
nonlinear optical medium, does depend on light intensity.

The principle of superposition is violated in a nonlinear optical
medium.

The frequency of light is altered as it passes through a
nonlinear optical medium; the light can change from red to
blue, for example.

Photons do interact within the confines of a nonlinear optical
medium so that light can indeed be used to control light.

The field of nonlinear optics offers a host of fascinating phenomena,
many of which are also eminently useful.



Nonlinear optical behavior is not observed when light travels in free
space. The “nonlinearity” resides in the medium through which the
light travels, rather than in the light itself. The interaction of light
with light is therefore mediated by the nonlinear medium: the
presence of an optical field modifies the properties of the medium,
which in turn causes another optical field, or even the original field
itself, to be modified.

As discussed in Chapter 5, the properties of a dielectric medium
through which an optical electromagnetic wave propagates are
described by the relation between the polarization-density vector
𝒫(r, t) and the electric-field vector ε(r, t). Indeed it is useful to view
𝒫(r, t) as the output of a system whose input is 𝒫(r, t). The
mathematical relation between the vector functions 𝒫(r, t) and ε(r,
t), which is governed by the characteristics of the medium, defines
the system. The medium is said to be nonlinear if this relation is
nonlinear (see Sec. 5.2).

This Chapter

In Chapter 5, dielectric media were further classified with respect to
their dispersiveness, inhomogeneity, and anisotropy (see Sec. 5.2).
To focus on the principal effect of interest — nonlinearity — the first
portion of our exposition is restricted to a medium that is
nondispersive, homogeneous, and isotropic. The vectors 𝒫 and ε are
consequently parallel at every position and time and may therefore
be examined on a component-by-component basis.

The theory of nonlinear optics and its applications is presented at
two levels. A simplified approach is provided in Secs. 22.1–22.3. This
is followed by a more detailed analysis of the same phenomena in
Sec. 22.4 and Sec. 22.5.

The propagation of light in media characterized by a second-order
(quadratic) nonlinear relation between 𝒫 and ε is described in Sec.
22.2 and Sec. 22.4. Applications include the frequency doubling of a
monochromatic wave (second-harmonic generation), the mixing of
two monochromatic waves to generate a third wave at their sum or



difference frequencies (frequency conversion), the use of two
monochromatic waves to amplify a third wave (parametric
amplification), and the incorporation of feedback in a parametric-
amplification device to create an oscillator (parametric oscillation).
Wave propagation in a medium with a third-order (cubic) relation
between 𝒫 and ε is discussed in Secs. 22.3 and 22.5. Applications
include third-harmonic generation, self-phase modulation, self-
focusing, four-wave mixing, and optical phase conjugation. The
behavior of anisotropic and dispersive nonlinear optical media is
briefly considered in Secs. 22.6 and 22.7, respectively.

Nonlinear Optics in Other Chapters

A principal assumption of the treatment provided in this chapter is
that the nonlinear optical medium is passive, i.e., it does not
exchange energy with the light wave(s). Waves of different
frequencies may exchange energy with each another via the
nonlinear property of the medium, but their total energy is
conserved. This class of nonlinear phenomena, known as
parametric interactions, are so-named because a parameter of
the system is varied periodically in time; a strong electric field, for
example, can cause the electric susceptibility to oscillate in time.
Several nonlinear phenomena involving nonparametric
interactions are described in other chapters of this book:

Laser interactions. The interactions of light with a medium at
frequencies near atomic or molecular resonances involve
phenomena such as absorption, and stimulated and
spontaneous emission, as described in Sec. 14.3. These
interactions become nonlinear when the light is sufficiently
intense so that the populations of the various energy levels are
significantly altered. Nonlinear optical effects are manifested in
the saturation of laser amplifiers and saturable absorbers (Sec.
15.4).

Multiphoton absorption. Intense light can induce the
absorption of multiple photons whose total energy matches



that of an atomic transition. For k-photon absorption, the rate
of absorption is proportional to Ik, where I is the optical
intensity. This nonlinear optical phenomenon is described
briefly in Sec. 14.5B.

Nonlinear scattering. Nonlinear inelastic scattering involves
the interaction of light with the vibrational or acoustic modes
of a medium. Examples include stimulated Raman and
stimulated Brillouin scattering, as described in Secs. 14.5C and
15.3D.

It is also assumed throughout this chapter that the light is described
by stationary continuous waves. Nonstationary nonlinear optical
phenomena include:

Nonlinear optics of pulsed light. The parametric interaction of
optical pulses with a nonlinear medium is described in Sec.
23.5.

Optical solitons are light pulses that travel over exceptionally
long distances through nonlinear dispersive media without
changing their width or shape. This nonlinear phenomenon is
the result of a balance between dispersion and nonlinear self-
phase modulation, as described in Sec. 23.5B. The use of
solitons in optical fiber communication systems is described in
Sec. 25.2E.

Yet another nonlinear optical effect is optical bistability. This
involves nonlinear optical effects together with feedback. The use of
optical bistability in photonic logic gates is described in Sec. 24.4.

22.1 NONLINEAR OPTICAL MEDIA
A linear dielectric medium is characterized by a linear relation
between the polarization density and the electric field, 𝒫 = ∊oχε,
where ∊o is the permittivity of free space and χ is the electric
susceptibility of the medium (see Sec. 5.2A). A nonlinear dielectric



medium, on the other hand, is characterized by a nonlinear relation
between 𝒫 and ε (see Sec. 5.2B), as illustrated in Fig. 22.1-1.

The nonlinearity may be of microscopic or macroscopic origin. The
polarization density 𝒫 = Nр is a product of the individual dipole
moment р induced by the applied electric field ε and the number
density of dipole moments N. The nonlinear behavior may reside
either in р or in N.

Figure 22.1-1 The 𝒫–ε relation for (a) a linear dielectric medium,
and (b) a nonlinear medium.

The relation between р and ε is linear when ε is small, but becomes
nonlinear when ε acquires values comparable to interatomic electric
fields, which are typically ∼ 105– 108 V/m. This may be understood
in terms of a simple Lorentz oscillator model in which the dipole
moment is р = −ex, where x is the displacement of a mass of charge
−e to which an electric force −eε is applied (see Sec. 5.5C). If the
restraining elastic force is proportional to the displacement (i.e., if
Hooke's law is satisfied), the equilibrium displacement x is
proportional to ε. In that case 𝒫 is proportional to ε and the medium
is linear. However, if the restraining force is a nonlinear function of
the displacement, the equilibrium displacement x and the
polarization density 𝒫 are nonlinear functions of ε and,
consequently, the medium is nonlinear. The time dynamics of an
anharmonic oscillator model describing a dielectric medium with
these features is discussed in Sec. 22.7.
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Another possible origin of a nonlinear response of an optical
material to light is the dependence of the number density N on the
optical field. An example is provided by a laser medium in which the
number of atoms occupying the energy levels involved in the
absorption and emission of light are dependent on the intensity of
the light itself (see Sec. 15.4).

Since externally applied optical electric fields are typically small in
comparison with characteristic interatomic or crystalline fields,
even when focused laser light is used, the nonlinearity is usually
weak. The relation between 𝒫 and ε is then approximately linear for
small ε, deviating only slightly from linearity as ε increases (see Fig.
22.1-1). Under these circumstances, the function that relates 𝒫 to ε
can be expanded in a Taylor series about ε = 0,

and it suffices to use only a few terms. The coefficients a1, a2, and a3
are, respectively, the first, second, and third derivatives of 𝒫 with
respect to ε, evaluated at ε = 0. These coefficients are characteristic
constants of the medium. The first term, which is linear, dominates
at small ε. Clearly, a1 = ∊oχ, where χ is the linear susceptibility,
which is related to the relative permittivity and the refractive index
of the material via n2 = ∊/∊o = 1+ χ [see (5.2-13)]. The second term
represents a quadratic or second-order nonlinearity, while the third
term represents a third-order nonlinearity, and so on.

It is customary to write (22.1-1) in the form1

where d = 1

4
a2 and χ(3) =  a3 are nonlinear optical

coefficients that serve to describe the strength of the second-and



third-order nonlinear effects, respectively.

Equation (22.1-2) provides the essential mathematical
characterization of a nonlinear optical medium. Material dispersion,
inhomogeneity, and anisotropy have not been accommodated, both
for the sake of simplicity and to enable us to focus on the essential
features of nonlinear optical behavior. Sections 22.6 and 22.7 are
devoted to anisotropic and dispersive nonlinear media, respectively.

In centrosymmetric media, which have inversion symmetry so that
the properties of the medium are not altered by the transformation
r →−r, the 𝒫–ε function must have odd symmetry, so that the
reversal of ε results in the reversal of 𝒫 without any other change.
The second-order nonlinear optical coefficient d must then vanish,
and the lowest order nonlinearity is of third order.

Typical values of the second-order nonlinear optical coefficient d for
dielectric crystals, semiconductors, and organic materials used in
photonics applications lie in the range d = 10−24–10−21 (C/V2 in
MKS units). Typical values of the third-order nonlinear optical
coefficient χ(3) for glasses, crystals, semiconductors, semiconductor-
doped glasses, and organic materials of interest in photonics are in
the vicinity of χ(3) = 10−34–10−29 (Cm/V3 in MKS units). Biased or
asymmetric quantum wells offer large nonlinearities in the mid and
far infrared.



(22.1-3)

EXERCISE 22.1-1

Intensity of Light Required to Elicit Nonlinear Effects.

a. Determine the light intensity (in W/cm2) at which the ratio
of the second term to the first term in (22.1-2) is 1% in an
ADP (NH4H2PO4) crystal for which n = 1.5 and d = 6.8 ×
10−24 C/V2 at λo = 1.06 μm.

b. Determine the light intensity at which the third term in
(22.1-2) is 1% of the first term in carbon disulfide (CS2) for
which n = 1.6, d = 0, and χ(3) = 4.4 × 10−32 Cm/V3 at λo = 694
nm.

Note: In accordance with (5.4-8), the light intensity is I =
|E0|2/2η = (ε2)/η, where η = ηo/n is the impedance of the
medium and ηo =  ≈ 377 Ω is the impedance of free space
(see Sec. 5.4).

The Nonlinear Wave Equation

The propagation of light in a nonlinear medium is governed by the
wave equation (5.2-25), which was derived from Maxwell's
equations for an arbitrary homogeneous, isotropic dielectric
medium. The isotropy of the medium ensures that the vectors 𝒫
and ε are always parallel so that they may be examined on a
component-by-component basis, which allows us to write (5.2-25)
as

It is convenient to write the polarization density in (22.1-2) as a sum
of linear (∊oχε) and nonlinear (𝒫NL) parts,



(22.1-6)

(22.1-7)

(22.1-4)

(22.1-5)
Using (22.1-4), along with the relations c = co/n, n2 = 1 + χ, and 

 provided in (5.2-12) and (5.2-13), allows (22.1-3) to be
written as

Wave Equation in Nonlinear Medium

It is convenient to regard (22.1-6) as a wave equation in which the
term 𝒮(t) is regarded as a source that radiates in a linear medium of
refractive index 𝓃. Because 𝒫NL (and therefore 𝒮) is a nonlinear
function of ε, (22.1-6)is a nonlinear partial differential equation in
E. This is the basic equation that underlies the theory of nonlinear
optics.

Two approximate approaches to solving this nonlinear wave
equation can be called upon. The first is the iterative approach
known as the Born approximation. This approximation underlies
the simplified introduction to nonlinear optics presented in Secs.
22.2 and 22.3. The second approach is a coupled-wave theory in
which the nonlinear wave equation is used to derive approximate
linear coupled partial differential equations that govern the
interacting waves. This is the basis of the more advanced study of
wave interactions in nonlinear media presented in Secs. 22.4 and
22.5.

Scattering Theory of Nonlinear Optics: The Born Approximation

The radiation source 𝒮 in (22.1-6) is a function of the field ε that it,
itself, radiates. To emphasize this point we write 𝒮 = 𝒮(ε) and



illustrate the process by the simple block diagram in Fig. 22.1-2.
Suppose that an optical field ε0 is incident on a nonlinear medium
confined to some volume, as shown in the figure. This field creates
a radiation source 𝒮(ε0) that radiates an optical field ε1. The
corresponding radiation source 𝒮(ε1) radiates a field ε2, and so on.
This process suggests an iterative solution, the first step of which is
known as the first Born approximation. The second Born
approximation carries the process an additional step, and so on. The
first Born approximation is adequate when the light intensity is
sufficiently weak so that the nonlinearity is small. In this
approximation, light propagation through the nonlinear medium is
regarded as a scattering process in which the incident field is
scattered by the medium. The scattered light is determined from the
incident light in two steps:

1. The incident field ε0 is used to determine the nonlinear
polarization density 𝒫NL, from which the radiation source 𝒮(ε0)
is determined.

2. The radiated (scattered) field ε1 is determined from the
radiation source by adding the spherical waves associated with
the different source points (as in the theory of scattering
discussed in Sec. 5.6).

Figure 22.1-2 The first Born approximation. An incident optical
field ε0 creates a source 𝒮(ε0), which radiates an optical field ε1.



(22.2-1)

The development presented in Secs. 22.2 and 22.3 are based on the
first Born approximation. The initial field ε0 is assumed to contain
one or several monochromatic waves of different frequencies. The
corresponding nonlinear polarization density 𝒫NL is then
determined using (22.1-5) and the source function 𝒮(ε0) is evaluated
using (22.1-7). Since 𝒮(ε0) is a nonlinear function, new frequencies
are created and the source emits an optical field ε1 with frequencies
not present in the original wave ε0. This leads to numerous
interesting phenomena that have been utilized to make useful
nonlinear optics devices.

22.2 SECOND-ORDER NONLINEAR OPTICS
In this section we examine the optical properties of a nonlinear
medium in which nonlinearities of order higher than the second are
negligible, so that

A material for which (22.2-1) is applicable is called a second-order
nonlinear medium; more colloquially it is also known as a chi-
two medium since 𝒫NL = 2dε2 = ∊oχ(2)ε2 (see footnote on page
1018).

We proceed to consider an electric field ε comprising one or two
harmonic components and determine the spectral components of
𝒫NL. In accordance with the first Born approximation, the radiation
source 𝒮 contains the same spectral components as 𝒫NL and,
therefore, so too does the emitted (scattered) field.

A. Second-Harmonic Generation (SHG) and
Rectification



(22.2-2)

(22.2-3)

(22.2-4)

(22.2-5)

Consider first the response of this nonlinear medium to a single
harmonic electric field of angular frequency ω (wavelength λo =
2πco/ω) and complex amplitude E(ω):

The corresponding nonlinear polarization density 𝒫NL is obtained
by substituting (22.22) into (22.2-1)

where

This process is graphically illustrated in Fig. 22.2-1.

Second-Harmonic Generation (SHG)

The source 𝒮(t) = −μo∂2𝒫NL/∂t2 corresponding to (22.2-3) has a
component at frequency 2ω with complex amplitude 𝒮(2ω) = 4μoω2

dE(ω)E(ω), which radiates an optical field at frequency 2ω
(wavelength λo/2). Thus, the scattered optical field has a component
at the second harmonic of the incident optical field. Since the
amplitude of the emitted second-harmonic light is proportional to
𝒮(2ω), its intensity I(2ω) is proportional to |𝒮(2ω)|2, which in turn
is proportional to the square of the intensity of the incident wave
I(ω) = |E(ω)|2/2η and to the square of the nonlinear coefficient d.
Also, since the emissions are added coherently, the intensity of the
second-harmonic wave is proportional to the square of the length of
the interaction region L.



(22.2-6)

Figure 22.2-1 A sinusoidal electric field of angular frequency ω in
a second-order nonlinear optical medium creates a polarization
density with a component at 2ω (second-harmonic) and a steady
(DC) component.

The efficiency of second-harmonic generation ηSHG = I(2ω)/I(ω) is
therefore proportional to L2I(ω). Since I(ω) = P/A, where P is the
incident power and A is the cross-sectional area of the interaction
volume, the SHG efficiency is often expressed in the form

SHG Efficiency

where C2 is a constant (units of W−1) proportional to d2 and ω2. An
expression for C2 will be provided in (22.4-36).

In accordance with (22.2-6), to maximize the SHG efficiency it is
essential that the incident wave have the largest possible power P.
This is accomplished by the use of pulsed lasers for which the
energy is confined in time, so that large peak powers are obtained.
Additionally, to maximize the ratio L2/A, the wave must be focused
to the smallest possible area A and experience the longest possible
interaction length L. For a thin crystal, L is determined by the
length of the crystal so that the beam should be focused to the
smallest spot area A [Fig. 22.2-2(a)]. If the dimensions of the



nonlinear medium are not limiting factors, however, the maximum
value of L for a given area A is limited by beam diffraction. For
example, a Gaussian beam focused to a beam width W0 maintains a
beam cross-sectional area  over a depth of focus 

 [see (3.1-22)] so that the ratio L2/A = 2L/λ = 4A/
λ2. In this case, the beam should be focused to the largest spot size,
corresponding to the largest depth of focus. The efficiency is then
proportional to L. For a thick crystal, therefore, the beam should be
focused to the largest spot that fits within the cross-sectional area of
the crystal [Fig. 22.2-2(b)].

Figure 22.2-2 SHG interaction volumes. (a) For a thin crystal,
minimize A.(b) For a thick crystal, maximize A.(c) For an optical
waveguide, maximize L.

Guided-wave structures offer the advantage of light confinement in
a small cross-sectional area over long lengths. Since A is determined
by the size of the guided mode, the efficiency is proportional to L2

[Fig. 22.2-2(c)]. Optical waveguides take the form of planar or
channel waveguides (Chapter 9) or fibers (Chapter 10). Though
silica-glass fibers were initially ruled out for second-harmonic
generation since glass is centrosymmetric (and therefore
presumably has d = 0), second-harmonic generation is in fact
observed in silica-glass fibers, an effect attributed to electric-
quadrupole and magnetic-dipole interactions and to defects and
color centers in the fiber core.

Figure 22.2-3 displays several experimental configurations for
generating optical second-harmonic generation in bulk materials
and in waveguides, in which visible light is converted to ultraviolet
light and infrared light is converted to visible light.



Figure 22.2-3 Optical second-harmonic generation (a) in a bulk
crystal; (b) in a doped silica-glass fiber; (c) within the cavity of a
laser diode.

Optical Rectification

The component PNL(0) in (22.2-3) and (22.2-4) corresponds to a
steady (non-timevarying) polarization density that creates a DC
potential difference across the plates of a capacitor within which the
nonlinear material is placed (Fig. 22.2-4). The generation of a DC
voltage as a result of an intense optical field represents optical
rectification (in analogy with the conversion of a sinusoidal AC
voltage into a DC voltage in an ordinary electronic rectifier). An
optical pulse with a peak power of several MW, for example, may
generate a voltage of several hundred μV.



(22.2-7)
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(22.2-9a)

(22.2-9b)

(22.2-9c)

Figure 22.2-4 The transmission of an intense beam of light
through a second-order nonlinear crystal generates a DC voltage
across it.

B. The Electro-Optic Effect
We now consider an electric field ε(t) comprising a harmonic
component at an optical frequency ω together with a steady
component (at ω = 0),

We distinguish between these two components by denoting the
electric field E(0) and the optical field E(ω). In fact, both
components are electric fields.

Substituting (22.2-7) into (22.2-1), we obtain

where

so that the polarization density contains components at the angular
frequencies 0, ω, and 2ω.



(22.2-10)

If the optical field is substantially smaller in magnitude than the
electric field, i.e., |E(ω)|2 ≪ |E(0)|2, the second-harmonic
polarization-density component PNL(2ω) is negligible in comparison
with the components PNL(0) and PNL(ω). This is equivalent to the
linearization of 𝒫NL as a function of ε, i.e., approximating it by a
straight line with a slope equal to the derivative at ε = E(0), as
illustrated in Fig. 22.2-5.

Figure 22.2-5 Linearization of the second-order nonlinear relation
𝒫NL = 2dε2 in the presence of a strong electric field E(0) and a weak
optical field E(ω).

Equation (22.2-9b) provides a linear relation between PNL(ω) and
E(ω), which we write in the form PNL(ω) = ∊oΔχE(ω), where Δχ =
(4d/∊o)E(0) represents an increase in the susceptibility proportional
to the electric field E(0). The corresponding incremental change of
the refractive index is obtained by differentiating the relation n2 =
1+ χ, to obtain 2n Δn = Δχ, from which

The medium is then effectively linear with a refractive index n +Δn
that is linearly controlled by the electric field E(0).

The nonlinear nature of the medium creates a coupling between the
electric field E(0) and the optical field E(ω), causing one to control
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(22.2-13a)

(22.2-13b)

the other, so that the nonlinear medium exhibits the linear electro-
optic effect (Pockels effect) discussed in Chapter 21. This effect is
characterized by the relation  where r is the
Pockels coefficient. Comparing this formula with (22.2-10), we
conclude that the Pockels coefficient r is related to the second-order
nonlinear optical coefficient d by

Though this expression reveals the common underlying origin of
the Pockels effect and the medium nonlinearity, it is not consistent
with experimentally observed values of r and d. This is because we
have made the implicit assumption that the medium is
nondispersive (i.e., that its response is insensitive to frequency).
This assumption is clearly not satisfied when one of the
components of the field is at the optical frequency ω and the other
is a steady field with zero frequency. The role of dispersion is
discussed in Sec. 22.7.

C. Three-Wave Mixing
We now consider the case of a field ε(t) comprising two harmonic
components at optical frequencies ω1 and ω2,

(The spatial features of these waves will be considered shortly.) The
nonlinear component of the polarization density 𝒫NL = 2dε2 then
contains components at five frequencies, 0, 2ω1, 2ω2, ω+ = ω1 + ω2,
and ω− = ω1 − ω2, with amplitudes



(22.2-13c)

(22.2-13d)

(22.2-13e)
Thus, the second-order nonlinear medium can be used to mix two
optical waves of different frequencies and generate (among other
things) a third wave at the difference frequency or at the sum
frequency. The former process is called frequency
downconversion whereas the latter is known as frequency up-
conversion or sum-frequency generation. An example of
frequency up-conversion is provided in Fig. 22.2-6: the light from
two lasers with free-space wavelengths λo1 = 1.06 μm and λo2 = 10.6
μm enter a proustite crystal and generate a third wave with
wavelength λo3 = 0.96 μm (where ).

Figure 22.2-6 An example of sum-frequency generation (SFG),
also called frequency up-conversion, in a nonlinear crystal.

Though the incident pair of waves at frequencies ω1 and ω2 produce
polarization densities at frequencies 0, 2ω1, 2ω2, ω1 + ω2, and ω1 −
ω2, all of these waves are not necessarily generated, since certain
additional conditions (phase matching) must be satisfied, as
explained presently.

Frequency and Phase Matching
If waves 1 and 2 are plane waves with wavevectors k1 and k2, so that
E(ω1) = A1 exp(−jk1 · r) and E(ω2) = A2 exp(−jk2 · r), then in



(22.2-14)

(22.2-15)

accordance with (22.2-13d), PNL(ω3) = 2dE(ω1)E(ω2) = 2dA1A2
exp(−jk3 · r), where

Frequency-Matching Condition

and

Phase-Matching Condition

The medium therefore acts as a light source of frequency ω3 = ω1
+ω2, with a complex amplitude proportional to exp(−jk3 · r), so that
it radiates a wave of wavevector k3 = k1 + k2, as illustrated in Fig.
22.2-7. Equation (22.2-15) can be regarded as a condition of phase
matching among the wavefronts of the three waves that is
analogous to the frequency-matching condition ω1 + ω2 = ω3. Since
the argument of the complex wavefunction is ωt − k · r, these two
conditions ensure both the temporal and spatial phase matching of
the three waves, which is necessary for their sustained mutual
interaction over extended durations of time and regions of space.

Figure 22.2-7 The phase-matching condition.

Three-Wave Mixing Modalities



When two optical waves of angular frequencies ω1 and ω2 travel
through a second-order nonlinear optical medium they mix and
produce a polarization density with components at a number of
frequencies. We assume that only the component at the sum
frequency ω3 = ω1 + ω2 satisfies the phase-matching condition.
Other frequencies cannot be sustained by the medium since they
are assumed not to satisfy the phase-matching condition.

Once wave 3 is generated, it interacts with wave 1 and generates a
wave at the difference frequency ω2 = ω3 − ω1. Clearly, the phase-
matching condition for this interaction is also satisfied. Waves 3
and 2 similarly combine and radiate at ω1. The three waves
therefore undergo mutual coupling in which each pair of waves
interacts and contributes to the third wave. The process is called
three-wave mixing.

Two-wave mixing is not, in general, possible. Two waves of
arbitrary frequencies ω1 and ω2 cannot be coupled by the medium
without the help of a third wave. Two-wave mixing can occur only in
the degenerate case, ω2 = 2ω1, in which the second-harmonic of
wave 1 contributes to wave 2; and the subharmonic ω2/2 of wave 2,
which is at the frequency difference ω2 − ω1, contributes to wave 1.

Three-wave mixing is known as a parametric interaction
process. It takes a variety of forms, depending on which of the three
waves is provided as an input, and which are extracted as outputs, as
illustrated in the following examples (see Fig. 22.2-8):

Optical Frequency Conversion (OFC). Waves 1 and 2 are
mixed in an up-converter, generating a wave at the sum
frequency ω3 = ω1 + ω2. This process, also called sum-
frequency generation (SFG), has already been illustrated in
Fig. 22.2-6. Second-harmonic generation (SHG) is a degenerate
special case of SFG. The opposite process of downconversion
or difference-frequency generation (DFG) is realized by
an interaction between waves 3 and 1 to generate wave 2, at the



difference frequency ω2 = ω3 − ω1. Up-and down-converters are
used to generate coherent light at wavelengths where no
adequate lasers are available, and as optical mixers in optical
communication systems.

Optical Parametric Amplifier (OPA). Waves 1 and 3
interact so that wave 1 grows, and in the process an auxiliary
wave 2 is created. The device operates as a coherent amplifier at
frequency ω1 and is known as an OPA. Wave 3, called the
pump, provides the required energy, whereas wave 2 is known
as the idler wave. The amplified wave is called the signal.
Clearly, the gain of the amplifier depends on the power of the
pump. OPAs are used for the detection of weak light at
wavelengths for which sensitive detectors are not available.

Optical Parametric Oscillator (OPO). With proper
feedback, the parametric amplifier can operate as a parametric
oscillator, in which only a pump wave is supplied. OPOs are
used for the generation of coherent light and mode-locked
pulse trains over a continuous range of frequencies, usually in
frequency bands where there is a paucity of tunable laser
sources.

Spontaneous Parametric Downconversion (SPDC).
Here, the only input to the nonlinear crystal is the pump wave
3, and downconversion to the lower-frequency waves 1 and 2 is
spontaneous. The frequency-and phase-matching conditions
(22.2-14) and (22.2-15) lead to multiple solutions, each forming
a pair of waves 1 and 2 with specific frequencies and directions.
The downconverted light takes the form of a cone of
multispectral light, as illustrated in Fig. 22.2-8.

Further details pertaining to these parametric devices are provided
in Sec. 22.4.



Figure 22.2-8 Optical parametric devices in bulk crystals or
integrated waveguides: optical frequency converter (OFC); optical
parametric amplifier (OPA); optical parametric oscillator (OPO);
spontaneous parametric downconverter (SPDC). Fiber lasers, laser
diodes, quantum cascade lasers, and diode-pumped solid-state
lasers often serve as pumps for optical parametric devices.

Wave Mixing as a Photon Interaction Process

The three-wave-mixing process can be viewed from a photon-optics
perspective as a process of three-photon interaction in which two
photons of lower frequency, ω1 and ω2, are annihilated, and a
photon of higher frequency ω3 is created, as illustrated in Fig. 22.2-
9(a). Alternatively, the annihilation of a photon of high frequency
ω3 is accompanied by the creation of two low-frequency photons, of
frequencies ω1 and ω2, as illustrated in Fig. 22.2-9(b). Since ℏω and
ℏk are the energy and momentum of a photon of frequency ω and
wavevector k (see Sec. 13.1), conservation of energy and
momentum, in either case, requires that



(22.2-16)

(22.2-17)
where k1, k2, and k3 are the wavevectors of the three photons. The
frequency-and phase-matching conditions presented in (22.2-14)
and (22.2-15) are thus reproduced.

The energy diagram for the three-photon-mixing process displayed
in Fig. 22.2-9(b) bears some similarity to that for an optically
pumped three-level laser, illustrated in Fig. 22.2-9(c) (see Sec.
15.2B). There are significant distinctions between the two processes,
however:

One of the three transitions involved in the laser process is
non-radiative.

An exchange of energy between the field and medium takes
place in the laser process.

The energy levels associated with the laser process are
relatively sharp and are established by the atomic or molecular
system, whereas the energy levels of the parametric process are
dictated by photon energy and phase-matching conditions and
are tunable over wide spectral regions.
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Figure 22.2-9 Comparison of parametric processes in a second-
order nonlinear medium and laser action. (a) Annihilation of two
low-frequency photons and creation of one high-frequency photon.
Dashed lines indicate virtual states. (b) Annihilation of one high-
frequency photon and creation of two low-frequency photons. (c)
Optically pumped 3-level laser, a nonparametric process in which
the medium participates in energy transfer.

The process of wave mixing involves an energy exchange among the
interacting waves. Clearly, energy must be conserved, as is assured
by the frequency-matching condition, ω1 + ω2 = ω3. Photon
numbers must also be conserved, consistent with the photon
interaction. Consider the photon-splitting process represented in
Fig. 22.2-9(b). If ΔΦ1, ΔΦ2, and ΔΦ3 are the net changes in the
photon fluxes (photons per second) in the course of the interaction
(the flux of photons leaving minus the flux of photons entering) at
frequencies ω1, ω2, and ω3, then ΔΦ1 = ΔΦ2 = −ΔΦ3, so that for each
of the ω3 photons lost, one each of the ω1 and ω2 photons is gained.

If the three waves travel in the same direction, the z direction for
example, then by taking a cylinder of unit area and incremental
length Δz → 0 as the interaction volume, we conclude that the
photon-flux densities ϕ1, ϕ2, ϕ3 (photons/s-m2) of the three waves
must satisfy

Photon-Number Conservation
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Since the wave intensities (W/m2) are I1 = ħω1ϕ1, I2 = ħω2ϕ2, and I3
= ħω3ϕ3, (22.2-18) gives

Manley–Rowe Relations

Equations (22.2-19) are known as the Manley–Rowe relations. It
was first derived in the context of wave interactions in nonlinear
electronic systems. The Manley–Rowe relations can be derived
using wave optics, without invoking the concept of the photon
(Exercise 22.4-2).

D. Phase Matching and Tuning Curves
Phase Matching in Collinear Three-Wave Mixing

If the mixed three waves are collinear, i.e., they travel in the same
direction, and if the medium is nondispersive, then the phase-
matching condition (22.2-15) yields the scalar equation nω1/co +
nω2/co = nω3/co, which is automatically satisfied if the frequency
matching condition ω1 + ω2 = ω3 is met. However, since all
materials are in actuality dispersive, the three waves actually travel
at different velocities corresponding to different refractive indices,
n1, n2, and n3, and the frequency-and phase-matching conditions are
independent:

Matching Conditions

and must be simultaneously satisfied. Since this is usually not
possible, birefringence, which is a feature of anisotropic media, is
often used to compensate dispersion.
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For an anisotropic medium, the three refractive indices n1, n2, and
n3 are generally dependent on the polarizations of the waves and
their directions relative to the principal axes (see Sec. 6.3C). This
offers other degrees of freedom to satisfy the matching conditions.
Precise control of the refractive indices at the three frequencies is
often achieved by appropriate selection of polarization, orientation
of the crystal, and in some cases by temperature control.

For an optical waveguide, the phase-matching condition (22.2-15)
should be replaced with β1 + β2 = β3, which relates the propagation
constants of the waveguide modes at the wavelengths of the three
mixed waves. These propagation constants depend on the refractive
indices of the waveguide material, the polarization (TE or TM), and
the waveguide geometry and dimensions (see Sec. 9.2A). These
additional degrees of freedom offer more flexibility in satisfying the
phase-matching condition.

In practice, the medium is often a uniaxial crystal characterized by
its optic axis and frequency-dependent ordinary and extraordinary
refractive indices no(ω) and ne(ω). Each of the three waves can be
ordinary (o) or extraordinary (e) and the process is labeled
accordingly. For example, the label e-o-o indicates that waves 1, 2,
and 3 are e, o, and o waves, respectively. For an o wave, n(ω) =
no(ω); for an e wave, n(ω) = n(θ, ω) depends on the angle θ between
the direction of the wave and the optic axis of the crystal, in
accordance with the relation

which is represented graphically by an ellipse [see (6.3-15) and Fig.
6.3-7]. If the polarizations of the signal and idler waves are the
same, the wave mixing is said to be Type-I; if they are orthogonal,
it is said to be Type-II.



EXAMPLE 22.2-1. Collinear Type-I Second-Harmonic
Generation (SHG). For SHG, waves 1 and 2 have the same
frequency (ω1 = ω2 = ω) and ω3 = 2ω. For Type-I mixing, waves 1
and 2 have identical polarizations so that n1 = n2. Therefore,
from (22.2-20), the phase-matching condition is n3 = n1, i.e., the
fundamental wave has the same refractive index as the second-
harmonic wave. Because of dispersion, this condition cannot
usually be satisfied unless the polarizations of these two waves
are different. For a uniaxial crystal, the process is either o-o-e or
e-e-o. In either case, the direction at which the wave enters the
crystal is adjusted in such a way that n3 = n1, i.e., such that
birefringence compensates exactly for dispersion.

Figure 22.2-10 Phase matching in e-e-o SHG. (a) Matching the
index of the e wave at ω with that of the o wave at 2ω.(b) Index
surfaces at ω (solid curves) and 2ω (dashed curves) for a
uniaxial crystal. (c) The wave is chosen to travel at an angle θ
with respect to the crystal optic axis, such that the extraordinary
refractive index ne(θ, ω) of the ω wave equals the ordinary
refractive index no(2ω) of the 2ω wave.

For an e-e-o process such as that illustrated in Fig. 22.2-10, the
fundamental wave is extraordinary and the second-harmonic
wave is ordinary, n1 = n(θ, ω) and n3 = no(2ω), so that the
matching condition is: n(θ, ω) = no(2ω). This is achieved by
selecting an angle θ for which
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(22.2-23)

(22.2-24)

SHG Type-I e-e-o

where n(θ, ω) is given by (22.2-21). This is illustrated graphically
in Fig. 22.2-10, which displays the ordinary and extraordinary
refractive indices (a circle and an ellipse) at ω (solid curves) and
at 2ω (dashed curves). The angle at which phase matching is
satisfied is that at which the circle at 2ω intersects the ellipse at
ω.

As an example, for KDP at a fundamental wavelength λ = 694
nm, no(ω) = 1.506, ne(ω) = 1.466; and at λ/2 = 347 nm, no(2ω) =
1.534, ne(2ω) = 1.490. In this case, (22.2-22) and (22.2-21) gives
θ = 52°. This is called the cut angle of the crystal. Similar
equations may be written for SHG in the o-o-e configuration. In
this case, for KDP at a fundamental wavelength λ = 1.06 μm, θ =
41°.

EXAMPLE 22.2-2. Collinear Optical Parametric
Oscillator (OPO). The oscillation frequencies of an OPO are
determined from the frequency and phase-matching conditions.
For a Type-I o-o-e mixing configuration,

OPO Type-I o-o-e

For Type-II e-o-e mixing,

OPO Type-II e-o-e



Figure 22.2-11 Tuning curves for a collinear OPO using a BBO
crystal and a 532-nm pump, which is readily obtained from a
frequency doubled Nd:YAG laser (a) Type-I, and (b) Type-II.

The functions no(ω) and ne(ω) are determined from the
Sellmeier equation (5.5-28), and the extraordinary index n(θ, ω)
is determined as a function of the angle θ between the optic axis
of the crystal and the direction of the waves by use of (22.2-21).
For a given pump frequency ω3, the solutions of (22.2-23) and
(22.2-24), ω1 and ω2, are often plotted versus the angle θ, a plot
known as the tuning curve. Examples are illustrated in Fig. 22.2-
11.

Phase Matching in Non-Collinear Three-Wave Mixing

In the non-collinear case, the phase-matching condition k1 + k2 =
k3 is equivalent to ω1n1û1 + ω2n2û2 = ω3n3û3, where û1, û2, and û3
are unit vectors in the directions of propagation of the waves. The
refractive indices n1, n2, and n3 depend on the directions of the
waves relative to the crystal axes, as well as the polarizations and
frequencies. This vector equation is equivalent to two scalar
equations so that the matching conditions become



(22.2-25)

where θ1 and θ2 are the angles waves 1 and 2 make with wave 3. The
design of a 3-wave mixing device centers about the selection of
directions and polarizations to satisfy these equations, as
demonstrated by the following exercise and example.
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EXERCISE 22.2-1

Non-Collinear Type-II Second-Harmonic Generation
(SHG). Figure 22.2-12 illustrates Type-II o-e-e non-collinear
SHG. An ordinary wave and an extraordinary wave, both at the
fundamental frequency ω, create an extraordinary second-
harmonic wave at the frequency 2ω. It is assumed here that the
directions of propagation of the three waves and the optic axis
are coplanar and the two fundamental waves and the optic axis
make angles θ1, θ2, and θ with the direction of the second-
harmonic wave. The refractive indices that appear in the phase-
matching equations (22.2-25) are n1 = no(ω), n2 = n(θ + θ2, ω),
and n3 = n(θ, 2ω), i.e.,

SHG Type-II o-e-e

For a KDP crystal and a fundamental wave of wavelength 1.06
μm (Nd3+:YAG laser), determine the crystal orientation and the
angles θ1 and θ2 for efficient second-harmonic generation.

Figure 22.2-12 Non-collinear Type-II second-harmonic
generation.



EXAMPLE 22.2-3. Spontaneous Parametric
Downconversion (SPDC). In SPDC, a pump wave of
frequency ω3 creates pairs of waves 1 and 2, at frequencies ω1
and ω2, and angles θ1 and θ2, all satisfying the frequency-and
phase-matching conditions (22.2-25). For example, in the Type-I
o-o-e case, n1 = no(ω1), n2 = no(ω2) and n3 = n(θ, ω3). These
relations together with the Sellmeier equations for no(ω) and
ne(ω) yield a continuum of solutions (ω1, θ1), (ω2, θ2) for the
signal and idler waves, as illustrated by the example in Fig. 22.2-
13.

Figure 22.2-13 Tuning curves for non-collinear Type-I o-o-e
spontaneous parametric downconversion in a BBO crystal at an
angle θ = 33.53° for a 351.5-nm pump (from an Ar+-ion laser).
Each point in the bright area of the middle picture represents the
frequency ω1 and angle θ1 of a possible downconverted wave,
and has a matching point at a complementary frequency ω2 = ω3
− ω1 with angle θ2. Frequencies are normalized to the degenerate
frequency ωo = ω3/2. For example, the two dots shown represent
a pair of downconverted waves at frequencies 0.9ωo and 1.1ωo.
Because of circular symmetry, each point is actually a ring of
points all of the same frequency, but each point on a ring
matches only one diametrically opposite point on the
corresponding ring, as illustrated in the right graph.
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Tolerable Phase Mismatch and Coherence Length

A slight phase mismatch Δk = k3−k1−k2 ≠ 0 may result in a
significant reduction in the wave-mixing efficiency. If waves 1 and 2
are plane waves with wavevectors k1 and k2, so that E(ω1) = A1
exp(−jk1 · r) and E(ω2) = A2 exp(−jk2 · r), then in accordance with
(22.2-13d), PNL(ω3) = 2dE(ω1)E(ω2) = 2dA1A2 exp[−j(k1 + k2) · r]=
2dA1A2 exp(jΔk · r) exp(−jk3 · r). By virtue of (22.1-7) this creates a
source with angular frequency ω3, wavevector k3, and complex
amplitude  exp(jΔk· r). It can be shown
(Prob. 22.2-6) that the intensity of the generated wave is
proportional to the squared integral of the source amplitude over
the interaction volume V,

Because the contributions of different points within the interaction
volume are added as phasors, the position-dependent phase Δk·r in
the phase mismatched case results in a reduction of the total
intensity below the value obtained in the matched case. Consider
the special case of a one-dimensional interaction volume of length L
in the z direction: , where Δk is
the z component of Δk and sinc(x) = sin(πx)/(πx). It follows that in
the presence of a wavevector mismatch Δk, I3 is reduced by the
factor sinc2(ΔkL/2π), which is unity for Δk = 0 and drops as Δk
increases, reaching a value of (2/π)2 ≈ 0.4 when |Δk| = π/L, and
vanishing when |Δk| = 2π/L (Fig. 22.2-14). For a given value of L,
the mismatch Δk corresponding to a prescribed efficiency reduction
factor is inversely proportional to L, so that the phase-matching
requirement becomes more stringent as L increases. For a given
mismatch Δk, the length



Coherence Length

is a measure of the maximum length within which the parametric
interaction process is efficient; Lc is often called the wave-mixing
coherence length.

For example, for a second-harmonic generation |Δk| = 2(2π/λo)|n3
− n1|, where λo is the free-space wavelength of the fundamental
wave and n1 and n3 are the refractive indices of the fundamental and
the second-harmonic waves. In this case, Lc = λo/2|n3 − n1| is
inversely proportional to |n3 − n1|, which is governed by the
material dispersion. For example, for | n3 − n1 |= 10−2 , Lc = 50λ.

Figure 22.2-14 The factor by which the efficiency of three-wave
mixing is reduced as a result of a phase mismatch ΔkL between
waves interacting within a distance L.

The tolerance of the interaction process to the phase mismatch can
be regarded as a result of the wavevector uncertainty Δk ∝ 1/L
associated with confinement of the waves within a distance L [see
(A.2-6) in Appendix A]. The corresponding momentum uncertainty
Δp = ħΔk ∝ 1/L explains the apparent violation of the law of
conservation of momentum in the wave-mixing process.

Phase-Matching Bandwidth
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As previously noted, for a finite interaction length L, a phase
mismatch |Δk|≤ 2π/L is tolerated. If exact phase matching is
achieved at a set of nominal frequencies of the mixed waves, then
small frequency deviations from those values may be tolerated, as
long as the condition ω1 + ω2 = ω3 is perfectly satisfied. The spectral
bands associated with such tolerance are established by the
condition |Δk|≤ 2π/L.

As an example, in SHG we have two waves with frequencies ω1 = ω
and ω3 = 2ω. The mismatch Δk is a function Δk(ω) of the
fundamental frequency ω. The device is designed for exact phase
matching at a nominal fundamental frequency ω0, i.e., Δk(ω0) = 0.
The bandwidth Δω is then established by the condition |
Δk(ω0+Δω)| = 2π/L. If Δω is sufficiently small, we may write Δk(ω0
+Δω) = Δk′Δω, where Δk′ = (d/dω)Δk at ω0. Therefore, Δω = 2π/|
Δk′|L, from which the spectral width in Hz is

Phase-Matching Bandwidth

Since Δk(ω) = k3(2ω)−2k1(ω), the derivative Δk′ =
dk3(2ω)/dω−2dk1(ω)/dω = 2[dk3(2ω)/d(2ω) − dk1(ω)/dω] =
2[1/v3 − 1/v1], where v1 and v3 are the group velocities of waves 1
and 3 at frequencies ω and 2ω, respectively (see Sec. 5.7). The
spectral width is therefore related to the length L and the group
velocity mismatch by

Phase-Matching Bandwidth
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where N1 and N3 are the group indices of the material at the
fundamental and second-harmonic frequencies.

It is apparent that second-harmonic generation of a broadband
wave, or an ultra-narrow pulse (see Sec. 23.5A), can be
accomplished by use of a thin crystal (at a cost of lower conversion
efficiency), and by the use of an additional design constraint, group
velocity matching, v3 ≈ v1 or N3 ≈ N1. Phase-matching tolerance in
SPDC is revealed in Fig. 22.2-13 by the thickness of the curves.

E. Quasi-Phase Matching
In the presence of a wavevector mismatch Δk, points within the
interaction volume radiate with position-dependent phases Δk · r,
so that the magnitude of the generated parametric wave is
significantly reduced. Since phase matching can be difficult to
achieve, or can severely constrain the choice of the nonlinear optical
coefficient or the crystal configuration that maximizes the efficiency
of wave conversion, one approach is to allow a phase mismatch, but
to compensate it by using a medium with position-dependent
periodic nonlinearity. Such periodicity introduces an opposite phase
that brings back the phases of the distributed radiation elements
into better alignment. The technique is called quasi-phase
matching (QPM).

If the medium has a position-dependent nonlinear optical
coefficient d(r), then (22.2-27) becomes

If d(r) is a harmonic function d(r) = do exp(−jG · r), with G = Δk,
then the phase mismatch is fully eliminated. Accordingly, the
phase-matching condition (22.2-15) is replaced with
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In effect, the nonlinear medium serves as a phase grating (or
longitudinal Bragg grating) with a wavevector G.

It is generally difficult to fabricate a medium with a continuously
varying harmonic nonlinear optical coefficient, d(r) = do exp(−jG ·
r), but it is possible to fabricate simpler periodic structures, e.g.,
media with nonlinear optical coefficients of constant magnitude but
periodically reversed sign. Since any periodic function can be
decomposed into a superposition of harmonic functions via Fourier
series, one such function can serve to correct the phase mismatch,
with the others playing no role in the wave-mixing process because
they introduce greater phase mismatch.

QPM in Collinear Wave Mixing

For collinear waves traveling in the z direction and having a phase
mismatch Δk, the required phase grating is of the form exp(−jGz),
where G = Δk. Such a grating may be obtained by use of a periodic
nonlinear optical coefficient d(z) described by the Fourier series d

, where Λ is the period and {dm} are the
Fourier coefficients. Any of these components may be used for
phase matching. For example, for the mth harmonic, G = m2π/Λ =
Δk, so that

QPM Condition

i.e., the grating period Λ equals an integer multiple of the coherence
length Lc = 2π/Δk.

Equation (22.2-32) together with the frequency matching condition
yield



QPM Tuning Curves

These equations are used in lieu of (22.2-20) to determine the
tuning curves and the crystal angles in the design of parametric
devices. It is evident that QPM offers some flexibility in the design
of desired tuning curves.

QPM in a Medium with Periodically Reversed Nonlinear
Coefficient

The simplest periodic pattern of the nonlinear optical coefficient
d(z) alternates between two constant values, +do and −do, at
distances Λ/2, as shown in Fig. 22.2-15.

Figure 22.2-15 A nonlinear crystal with periodically varying
nonlinear optical coefficient d(z) of period Λ.

The physical mechanism by which the periodic reversal of the sign
of nonlinearity compensates the position-dependent phase of the
radiation is illustrated in Fig. 22.2-16 for m = 1, i.e., when the
grating period Λ equals the coherence length Lc = 2π/Δk.



Figure 22.2-16 Phasors of the waves radiated by incremental
elements at different positions z in the nonlinear medium. (a) In
the phase-matched case (Δk = 0) the phasors are all aligned and
maximum conversion efficiency is attained. (b) In the presence of a
phase mismatch Δk, the phasors are misaligned and the efficiency is
significantly reduced. (c) In the quasi-phase matched case, the
misaligned phasors are periodically reversed by reversing the sign of
the nonlinear optical coefficient at intervals of Λ/2. The conversion
efficiency is partially restored.

The improvement of the conversion efficiency afforded by QPM
may be determined quantitatively as follows. In accordance with
Fourier-series theory, dm = (2/mπ)do, for odd m, and zero,
otherwise. If phase matching is accomplished via the mth harmonic,
i.e., Λ = mLc, then the parametric conversion efficiency is
proportional to . By contrast, a homogeneous medium
with nonlinear optical coefficient do and the same length L, but with
wavevector mismatch Δk, has a conversion efficiency 

, which falls as  when L ≫
Lc. Since Lc = Λ/m, the improvement of conversion efficiency is by a
factor of 4(L/Λ)2; it is proportional to the square of the number of
periods of the periodic structure. Clearly, the use of a periodic
medium can offer a significant improvement in conversion
efficiency.



The most challenging aspect of quasi-phase matching is the
fabrication of the periodic nonlinear structure. A uniform nonlinear
crystal may be altered periodically by reversing the principal axis
direction in alternating layers, thereby creating a d coefficient with
alternating sign. This may be implemented by lithographically
exposing the crystal to a periodic electric field that reverses the
direction of the crystal's permanent electric polarization, a
technique called poling. This approach has been applied to
ferroelectric crystals such as LiTaO3, KTP, and LiNbO3; indeed, the
latter has spawned a technology known as periodically poled
lithium niobate (PPLN). Semiconductor crystals such as GaAs
also have been used for the same purpose.

Periodic poling has also been implemented in integrated nonlinear
optical waveguides. For example, PPLN waveguides may be
fabricated by Ti-indiffusion at high temperatures or by annealed
proton exchange. Ridge waveguides may be cut in PPLN by reactive
ion etching. Single-mode waveguides are typically used to enhance
the efficiency of wave mixing. An illustration of second-harmonic
generation in a periodically poled, nonlinear waveguide is provided
in Fig. 22.2-17. For example, a z-cut LiNbO3 ridge waveguide of 1-
μm height and 5-μm width can operate in a single TM mode at a
wavelengths of 1550 nm or shorter. Poling periods of the order of
10–15 μm achieve quasi-phase matching for second-harmonic
generation at this wavelength.



(22.3-1)

Figure 22.2-17 Schematic of second-harmonic generation in a
periodically poled, integrated, nonlinear ridge waveguide.

22.3 THIRD-ORDER NONLINEAR OPTICS
In media possessing centrosymmetry, the second-order nonlinear
term in (22.1-5) is absent since the polarization must reverse when
the electric field reverses. The dominant nonlinearity is then of
third order,

(Fig. 22.3-1) and the material is called a third-order nonlinear
medium or a Kerr medium. Kerr media respond to optical fields
by generating third harmonics and sums and differences of triplets
of frequencies.
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Figure 22.3-1 Third-order nonlinearity in a Kerr medium.

EXERCISE 22.3-1

Third-Order Nonlinear optical Media Exhibit the Kerr
Electro-Optic Effect. Consider a monochromatic optical field
E(ω) incident on a third-order nonlinear medium in the
presence of a steady electric field E(0). The optical field is taken
to be much smaller than the electric field, so that |E(ω)|2

≪|E(0)|2. Use (22.3-1) to show that the component of 𝒫NL at
frequency ω is approximately given by PNL(ω) ≈
12χ(3)E2(0)E(ω). Demonstrate that this component of the
polarization density is equivalent to a refractive-index change 

, where

The proportionality between the refractive-index change and the
squared electric field is the Kerr (quadratic) electro-optic effect
described in Sec. 21.1A, where s is the Kerr coefficient [see (21.1-
5)].

A. Third-Harmonic Generation (THG) and Optical Kerr
Effect
Third-Harmonic Generation (THG)
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In accordance with (22.3-1), the response of a third-order nonlinear
medium to a monochromatic optical field ε(t) = Re{E(ω) exp(jωt)}
is a nonlinear polarization density PNL(t) containing a component at
frequency ω and another at frequency 3ω:

The presence of a component of polarization density at the
frequency 3ω in (22.33b) indicates that third-harmonic light is
generated. In most cases, however, the energy conversion efficiency
is low. Indeed, THG is often achieved via second-harmonic
generation followed by sum-frequency generation of the
fundamental and second-harmonic waves (an example is provided
in Sec. 15.3B).

Optical Kerr Effect

The polarization-density component at frequency ω in (22.3-3a)
corresponds to an incremental change of the susceptibility Δχ at
frequency ω given by

where I = |E(ω)|2/2η is the optical intensity of the initial wave [see
(5.4-8)]. Since n2= 1+ χ, we have 2nΔn = Δχ so the incremental
susceptibility change is equivalent to an incremental refractive-
index change Δn = Δχ/2n:

where
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Optical Kerr Coefficient

Thus, the change in the refractive index Δn is proportional to the
optical intensity I. The overall refractive index is therefore a linear
function2 of the optical intensity,

Optical Kerr Effect

The proportionality of Δn to I is known as the optical Kerr effect
because of its similarity to the electro-optic Kerr effect discussed in
Exercise 22.3-1 and Sec. 21.1A, wherein Δn is proportional to the
square of the steady electric field. The optical Kerr effect is a self-
induced effect in which the phase velocity of the wave depends on
the wave's own intensity. It is an example of nonlinear
refraction.

The order of magnitude of the coefficient n2 (in units of cm2/W) is
10−16 to 10−14 in glasses, 10−14 to 10−7 in doped glasses, 10−10 to 10−8

in organic materials, and 10−10 to 10−2 in semiconductors. It is
sensitive to the operating wavelength (see Sec. 22.7) and depends on
the polarization.

B. Self-Phase Modulation (SPM), Self-Focusing, and
Spatial Solitons
Self-Phase Modulation (SPM)

As a result of the optical Kerr effect, an optical wave traveling in a
third-order nonlinear medium undergoes self-phase modulation
(SPM). The phase shift incurred by an optical beam of power P and
cross-sectional area A, traveling a distance L in the medium, is φ =



(22.3-8)

−n(I)koL = −2πn(I)L/λo = −2π(n + n2P/A)L/λo. Thus, the change in
phase arising from the optical Kerr effect is

which is proportional to the optical power P. Self-phase modulation
is useful in applications in which light controls light.

To maximize the effect, L should be large and A small. These
requirements are well served by the use of optical waveguides. The
optical power at which Δφ = −π is attained is Pπ = λoA/2Ln2. A
doped glass fiber of length L = 1 m, cross-sectional area A = 10−2

mm2, and n2 = 10−10 cm2/W, operating at λo = 1 μm, for example,
switches the phase by a factor of π at an optical power Pπ = 0.5 W.
Materials with larger values of n2 can be used in centimeter-long
channel waveguides to achieve a phase shift of π at powers of a few
mW.

Phase modulation may thence be converted into intensity
modulation by employing one of the schemes used in conjunction
with electro-optic modulators (see Sec. 21.1B): (1) using an
interferometer (Mach–Zehnder, for example); (2) using the
difference between the modulated phases of the two polarization
components (birefringence) as a wave retarder placed between
crossed polarizers; or (3) using an integrated-photonic directional
coupler (Sec. 9.4B). The result is an all-optical modulator in which a
weak optical beam may be controlled by an intense optical beam.
All-optical switches are discussed in Sec. 24.3C.

Self-Focusing

Another important effect associated with self-phase modulation is
self-focusing. If an intense optical beam is transmitted through a
thin sheet of nonlinear material exhibiting the optical Kerr effect, as
illustrated in Fig. 22.3-2, the refractive-index change mimics the
intensity pattern in the transverse plane. If the beam has its highest
intensity at the center, for example, the maximum change of the



refractive index is also at the center. The sheet then acts as a
graded-index medium that imparts to the wave a nonuniform phase
shift, thereby causing wavefront curvature. Under certain conditions
the medium can act as a lens with a power-dependent focal length,
as shown in Exercise 22.3-2. Kerr-lens focusing is useful for laser
mode locking, as discussed in Sec. 16.4D.

Figure 22.3-2 A third-order nonlinear medium acts as a lens
whose focusing power depends on the intensity of the incident
beam.



EXERCISE 22.3-2

Optical Kerr Lens. An optical beam traveling in the z direction
is transmitted through a thin sheet of nonlinear optical material
exhibiting the optical Kerr effect, n(I) = n + n2I. The sheet lies in
the x–y plane and has a small thickness d so that its complex
amplitude transmittance is exp(−jnkod), as shown in (2.4-3).
The beam has an approximately planar wavefront and an
intensity distribution I ≈ I0[1−(x2 + y2)/W2] at points near the
beam axis (x, y ≪ W), where I0 is the peak intensity and W is the
beam width. Show that the medium acts as a thin lens with a
focal length that is inversely proportional to I0. Hint: A lens of
focal length f has a complex amplitude transmittance
proportional to exp[jko(x2 + y2)/2f], as shown in (2.4-9) [see also
Exercise 2.4-6].

Spatial Solitons

When an intense optical beam travels through a substantial
thickness of nonlinear homogeneous medium, rather than a thin
sheet, the refractive index is altered nonuniformly so that the
medium can act as a graded-index waveguide. Thus, the beam can
create its own waveguide. If the intensity of the beam has the same
spatial distribution in the transverse plane as one of the modes of
the waveguide that the beam itself creates, the beam propagates
self-consistently without changing its spatial distribution. Under
these conditions, diffraction is compensated by self-phase
modulation, and the beam is confined to its self-created waveguide.
Such self-guided beams are called spatial solitons. Analogous
behavior occurs in the time domain when group velocity dispersion
is compensated by self-phase modulation. As discussed in Sec.
23.5B, this leads to the formation of temporal solitons, which travel
without changing shape.
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The self-guiding of light in an optical Kerr medium is described
mathematically by the Helmholtz equation, E = 0,
where n(I) = n + n2I, ko = ω/co, and I = |E|2/2η. This is a nonlinear
differential equation in E, which is simplified by writing E = A
exp(−jkz), where k = nko, and assuming that the envelope A = A(x,
z) varies slowly in the z direction (in comparison with the
wavelength λ = 2π/k), and does not vary in the y direction (see Sec.
2.2C). Using the approximation (∂2/∂z2)[A exp(−jkz)] ≈ (−2jk ∂A/
∂z − k2A) exp(−jkz), the Helmholtz equation becomes

Since the nonlinear effect is small (n2I ≪ n), we write

so that (22.3-9) becomes

Equation (22.3-11) is known as the nonlinear Schr¨odinger
equation. One of its solutions is

Spatial Soliton

where W0 is a constant; sech(·) indicates the hyperbolic-secant
function; A0 satisfies , so that A0W0 is a constant;
and  [this is the same for the Rayleigh range of a
Gaussian beam, as shown in (3.1-22)]. The intensity distribution
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(22.3-14)

is independent of z and has a width W0, as illustrated in Fig. 22.3-3.
The distribution in (22.3-12) is the mode of a graded-index
waveguide with a refractive index n + n2I = n[1 + 
)sech2(x/W0)], so that self-consistency is assured. Since E = A
exp(−jkz), the wave travels with a propagation constant k +1/4z0 =
k(1 + λ2  and phase velocity . The velocity is
smaller than c for localized beams (small W0) but approaches c for
large W0.

Figure 22.3-3 Comparison of (a) a Gaussian beam traveling in a
linear medium, and (b) a spatial soliton (self-guided optical beam)
traveling in a nonlinear medium.

Raman Gain

Much as the complex susceptibility χ = χ′ + jχ″ was constructed to
accommodate loss and gain in linear optics (Sec. 5.5), we follow suit
with the third-order nonlinear susceptibility χ(3), setting 

. The self-phase modulation in (22.3-8), which is then
also complex, may thus be written as
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Consequently, the propagation phase factor ejφ is a combination of
phase shift, Δφ = , and gain ,
with a gain coefficient given by3

Raman Gain Coefficient

which is proportional to P/A.

The presence of such Raman gain arises from the pump field
coherently driving the nonlinear polarization density of the Raman
medium. It permits power to be transferred from the pump beam to
the signal beam via an interaction between the light and the
vibrational modes of the Raman medium. This is in contrast to the
gain arising from population inversion in a stimulated-emission
device, as discussed in Sec. 15.1. Raman gain underlies the operation
of a distributed Raman fiber amplifier (RFA), where the pump and
signal are both sent through the same fiber (Sec. 15.3D). When the
gain exceeds the loss, and appropriate feedback is provided, the
Raman amplifier becomes a Raman laser (Sec. 16.3C).

C. Cross-Phase Modulation (XPM)
We now consider the response of a third-order nonlinear medium to
an optical field comprising two monochromatic waves of angular
frequencies ω1 and ω2, ε(t) = Re{E(ω1) exp(jω1t)} + Re{E(ω2)
exp(jω2t)}. On substitution in (22.3-1), the component PNL(ω1) of
the polarization density at frequency ω1 turns out to be

Assuming that the two waves have the same refractive index n, this
relation may be cast in the form PNL(ω1) = 2∊onΔnE(ω1), where
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Cross-Phase Modulation

with n2 = 3ηoχ(3)/∊on2. The quantities I1 = |E(ω1)|2/2η and I2 =
|E(ω2)|2/2η are the intensities of waves 1 and 2, respectively.
Therefore, wave 1 travels with an effective refractive index n +Δn
controlled by its own intensity as well as that of wave 2. Wave 2
encounters a similar effect, so that the waves are coupled.

Since the phase shift encountered by wave 1 is modulated by the
intensity of wave 2, this phenomenon is known as cross-phase
modulation (XPM). It can result in the contamination of
information between optical communication channels at
neighboring frequencies, as in wavelength-division-multiplexing
systems (WDM) (see Sec. 25.3C).

As we have seen in Sec. 22.2C, two-wave mixing is not possible in a
second-order nonlinear medium (except in the degenerate case).
Note, however, that two-wave mixing can occur in photorefractive
media, as illustrated in Fig. 21.4-3.

EXERCISE 22.3-3

Optical Kerr Effect in the Presence of Three Waves.
Three monochromatic waves with frequencies ω1, ω2, and ω3
travel in a third-order nonlinear medium. Determine the
complex amplitude of the component of PNL(t) in (22.3-1) at
frequency ω1. Show that this wave travels with a velocity co/(n
+Δn), where

and n2 = 3ηoχ(3)/∊on2, with Iq = |E(ωq)|2/2η, q = 1, 2, 3.
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D. Four-Wave Mixing (FWM)
We now examine the case of four-wave mixing (FWM) in a
third-order nonlinear medium. We begin by determining the
response of the medium to a superposition of three waves of
angular frequencies ω1, ω2, and ω3, with field

It is convenient to write ε(t) as a sum of six terms

where ω−q = −ωq and E(−ωq) = E∗(ωq). Substituting (22.3-20) into
(22.3-1), we write 𝒫NL as a sum of 63 = 216 terms,

Thus, PNL is the sum of harmonic components of frequencies ω1,...,
3ω1,..., 2ω1 ± ω2,..., ±ω1 ± ω2 ± ω3. The amplitude PNL(ωq + ωr + ωl)
of the component of frequency ωq + ωr + ωl can be determined by
adding appropriate permutations of q, r, and l in (22.3-21). For
example, PNL(ω1 + ω2 − ω3) involves six permutations,

Equation (22.3-22) indicates that four waves of frequencies ω1, ω2,
ω3, and ω4 are mixed by the medium if ω4 = ω1 + ω2 − ω3, or
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Frequency-Matching Condition

This equation constitutes the frequency-matching condition for
FWM.

Assuming that waves 1, 2, and 3 are plane waves of wavevectors k1,
k2, and k3, so that E(ωq) ∝ exp(−jkq · r), q = 1, 2, 3, then (22.3-22)
gives

so that wave 4 is also a plane wave with wavevector k4 = k1 + k2 −
k3, from which

Phase-Matching Condition

Equation (22.3-25) is the phase-matching condition for FWM.

Several FWM processes occur simultaneously, all satisfying the
frequency and phase-matching conditions. As shown before, waves
1, 2, and 3 interact and generate wave 4, in accordance with (22.3-
22). Similarly, waves 3, 4, and 1 interact and generate wave 2, in
accordance with

and so on.

The FWM process may also be interpreted as an interaction
between four photons. A photon of frequency ω3 and another of of
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frequency ω4 are annihilated to create a photon of frequency ω1 and
another of frequency w2, as illustrated in Fig. 22.3-4. Equations
(22.3-23) and (22.3-25) represent conservation of energy and
momentum, respectively.

Figure 22.3-4 Four-wave mixing (FWM): (a) phase-matching
condition; (b) interaction of four photons.

Three-Wave Mixing

In the partially degenerate case for which two of the four waves
have the same frequency, ω3 = ω4 ≡ ω0, we have three waves with
frequencies related by

so that the frequencies ω1 and ω2 are symmetrically located with
respect to the central frequency ω0, much like the sidebands of an
amplitude modulated sine wave, or the Stokes and anti-Stokes
frequencies in Raman scattering. The components of the nonlinear
polarization density at ω1, ω2, and ω3 include terms of the form

These terms are responsible for three-wave mixing, i.e., radiation at
the frequency of each wave generated by mixing of the other waves.
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These mixing processes may be used for optical frequency
conversion (OFC), optical parametric amplification (OPA) and
oscillation (OPO), and spontaneous parametric downconversion
(SPDC), much like three-wave mixing in second-order nonlinear
media; the waves at ω1, ω2, and ω3 may be regarded as the signal,
idler, and pump of the parametric process. Note, however, that this
three-wave mixing process involves four photons. For example, the
annihilation of two photons at ω0 and the creation of two photons
at ω1 and ω2. An example of OPA in a χ(3) medium, such as a silica-
glass optical fiber, is illustrated in Fig. 22.3-5.

Figure 22.3-5 Three-wave, four-photon optical fiber parametric
amplifier (OPA).

E. Optical Phase Conjugation (OPC)
The frequency-matching condition (22.3-23) is satisfied when all
four waves are of the same frequency:

The process is then called degenerate four-wave mixing.

Assuming further that two of the waves (waves 3 and 4) are uniform
plane waves traveling in opposite directions,

with



(22.3-32)

and substituting (22.3-30) and (22.3-31) into (22.3-26), we see that
the polarization density of wave 2 is 6χ(3)A3A4 . This term
corresponds to a source emitting an optical wave (wave 2) of
complex amplitude

Phase Conjugation

Since A3 and A4 are constants, wave 2 is proportional to a
conjugated version of wave 1. The device serves as a phase
conjugator. Waves 3 and 4 are called the pump waves and waves
1 and 2 are called the probe and conjugate waves, respectively. As
will be demonstrated shortly, the conjugate wave is identical to the
probe wave except that it travels in the opposite direction. The
phase conjugator is a special mirror that reflects the wave back onto
itself without altering its wavefronts.

To understand the phase conjugation process consider two simple
examples:



EXAMPLE 22.3-1. Conjugate of a Plane Wave. If wave 1 is
a uniform plane wave, E1(r) = A1 exp(−jk1 · r), traveling in the
direction k1, then E2(r) =  exp(jk1 · r) is a uniform plane wave
traveling in the opposite direction k2 = −k1, as illustrated in Fig.
22.3-6(b). Thus, the phase-matching condition (22.3-25) is
satisfied. The medium acts as a special “mirror” that reflects the
incident plane wave back onto itself, no matter what the angle of
incidence.

Figure 22.3-6 Reflection of a plane wave from (a) an ordinary
mirror and (b) a phase conjugate mirror.

EXAMPLE 22.3-2. Conjugate of a Spherical Wave. If
wave 1 is a spherical wave centered about the origin r = 0, E1(r)
∝ (1/r) exp(−jkr), then wave 2 has complex amplitude E2(r) ∝
(1/r) exp(+jkr). This is a spherical wave traveling backward and
converging toward the origin, as illustrated in Fig. 22.3-7(b).

Figure 22.3-7 Reflection of a spherical wave from (a) an
ordinary mirror and (b) a phase conjugate mirror.



Since an arbitrary probe wave may be regarded as a superposition of
plane waves (see Chapter 4), each of which is reflected onto itself by
the conjugator, the conjugate wave is identical to the incident wave
everywhere, except for a reversed direction of propagation. The
conjugate wave retraces the original wave by propagating backward,
maintaining the same wavefronts.

Phase conjugation is analogous to time reversal. This may be
understood by examining the field of the conjugate wave ε2(r, t) =
Re{E2(r) exp(jωt)}∝ Re  exp(jωt)}. Since the real part of a
complex number equals the real part of its complex conjugate, ε2(r,
t) ∝ Re{E1(r) exp(−jωt)}. Comparing this to the field of the probe
wave ε1(r, t) = Re{E1(r) exp(jωt)}, we readily see that one is
obtained from the other by the transformation t → −t, so that the
conjugate wave appears as a time-reversed version of the probe
wave.

The conjugate wave may carry more power than the probe wave.
This can be seen by observing that the intensity of the conjugate
wave (wave 2) is proportional to the product of the intensities of the
pump waves 3 and 4 [see (22.3-32)]. When the powers of the pump
waves are increased so that the conjugate wave (wave 2) carries
more power than the probe wave (wave 1), the medium acts as an
“amplifying mirror.” An example of an optical arrangement that
provides phase conjugation is shown in Fig. 22.3-8.

Degenerate Four-Wave Mixing as a Form of Real-Time
Holography

The degenerate four-wave-mixing process is analogous to volume
holography (see Sec. 4.5). Holography is a two-step process in which
the interference pattern formed by the superposition of an object
wave E1 and a reference wave E3 is recorded in a photographic
emulsion. Another reference wave E4 is subsequently transmitted
through or reflected from the emulsion, creating the conjugate of
the object wave E2 ∝  , or its replica E2 ∝  depending on
the geometry [see Fig 4.5-10(a) and (b)]. The nonlinear medium



permits a real-time simultaneous holographic recording and
reconstruction process. This process occurs in both the Kerr
medium and the photorefractive medium (see Sec. 21.4).

Figure 22.3-8 An optical system for degenerate four-wave mixing
using a nonlinear crystal. The pump waves 3 and 4 and the probe
wave 1 are obtained from a laser using a beamsplitter and two
mirrors. The conjugate wave 2 is created within the crystal.

When four waves are mixed in a nonlinear medium, each pair of
waves interferes and creates a grating, from which a third wave is
reflected to produce the fourth wave. The roles of reference and
object are exchanged among the four waves, so that there are two
types of gratings as illustrated in Fig. 22.3-9. Consider first the
process illustrated in Fig. 22.3-9(a) [see also Fig. 4.5-10(a)]. Assume
that the two reference waves (denoted as waves 3 and 4) are
counterpropagating plane waves. The two steps of holography are:

1. The object wave 1 is added to the reference wave 3 and the
intensity of their sum is recorded in the medium in the form of
a volume grating (hologram).

2. The reconstruction reference wave 4 is Bragg reflected from the
grating to create the conjugate wave (wave 2).

This grating is called the transmission grating.



Figure 22.3-9 Four-wave mixing in a nonlinear medium. A
reference and object wave interfere and create a grating from which
the second reference wave reflects and produces a conjugate wave.
There are two possibilities corresponding to (a) transmission and
(b) reflection gratings.

The second possibility, illustrated in Fig. 22.3-9(b), is for the
reference wave 4 to interfere with the object wave 1 and create a
grating, called the reflection grating, from which the second
reference wave 3 is reflected to create the conjugate wave 2. These
two gratings can exist together but they usually have different
efficiencies.

In summary, four-wave mixing can provide a means for real-time
holography and phase conjugation, which have a number of
applications in optical signal processing.

Use of Phase Conjugators in Wave Restoration

The ability to reflect a wave onto itself so that it retraces its path in
the opposite direction suggests a number of useful applications,
including the removal of wavefront aberrations. The idea is based
on the principle of reciprocity, illustrated in Fig. 22.3-10. Rays
traveling through a linear optical medium from left to right follow
the same path if they reverse and travel back in the opposite
direction. The same principle applies to waves.



Figure 22.3-10 Optical reciprocity.

If the wavefront of an optical beam is distorted by an aberrating
medium, the original wave can be restored by use of a conjugator
that reflects the beam onto itself and transmits it once more
through the same medium, as illustrated in Fig. 22.3-11.

One important application is in optical resonators (see Chapter 11).
If the resonator contains an aberrating medium, replacing one of
the mirrors with a conjugate mirror ensures that the distortion is
removed in each round trip, so that the resonator modes have
undistorted wavefronts transmitted through the ordinary mirror, as
illustrated in Fig. 22.3-12.

Figure 22.3-11 A phase conjugate mirror reflects a distorted wave
onto itself, so that when it retraces its path, the distortion is
compensated.



(22.4-1)

(22.4-2)

Figure 22.3-12 An optical resonator with an ordinary mirror and a
phase conjugate mirror.

*22.4 SECOND-ORDER NONLINEAR OPTICS:
COUPLED WAVES
A quantitative analysis of the process of three-wave mixing in a
second-order nonlinear optical medium is provided in this section
using a coupled-wave theory. Unlike the treatment provided in Sec.
22.2, all three waves are treated on equal footing. To simplify the
analysis, consideration of anisotropic and dispersive effects is
deferred to Secs. 22.6 and 22.7, respectively.

Coupled-Wave Equations

In accordance with (22.1-6) and (22.1-7), wave propagation in a
second-order nonlinear medium is governed by the basic wave
equation

where

is regarded as a radiation source, and
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(22.4-3)
is the nonlinear component of the polarization density.

In three-wave mixing, the field ε(t) is taken as a superposition of
three waves of angular frequencies ω1, ω2, and ω3 with complex
amplitudes E1, E2, and E3:

[compare with (22.2-12) in the context of the first Born
approximation]. It is convenient to rewrite (22.4-4) in the compact
form

where ω−q = −ωq and E−q = . The corresponding polarization
density obtained by substituting (22.4-5) into (22.4-3) is a sum of 6
× 6 = 36 terms,

Thus, the corresponding radiation source is

which generates a sum of harmonic components whose frequencies
are sums and differences of the original frequencies ω1, ω2, and ω3.

Substituting (22.4-5) and (22.4-7) into the wave equation (22.4-1)
leads to a single differential equation with many terms, each of
which is a harmonic function of some frequency. If the frequencies
ω1, ω2, and ω3 are distinct, we can separate this equation into three
time-independent differential equations by equating terms on both
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sides of (22.4-1) at each of the frequencies ω1, ω2, and ω3,
separately. The result is cast in the form of three Helmholtz
equations with associated sources,

where Sq is the complex amplitude of the component of 𝒮 with
frequency ωq and kq = nωq/co, q = 1, 2, 3. Each of the complex
amplitudes of the three waves satisfies the Helmholtz equation with
a source equal to the component of 𝒮 at its frequency. Under certain
conditions, the source for one wave depends on the electric fields of
the other two waves, so that the three waves are coupled.

In the absence of nonlinearity, d = 0 whereupon the source term 𝒮
vanishes and each of the three waves satisfies the Helmholtz
equation independently of the other two, as expected in linear
optics.

If the frequencies ω1, ω2, and ω3 are not commensurate (one
frequency is not the sum or difference of the other two, and one
frequency is not twice another), then the source term 𝒮 does not
contain any components of frequencies ω1, ω2, or ω3. The
components 𝒮1, 𝒮2, and 𝒮3 then vanish and the three waves do not
interact.

For the three waves to be coupled by the medium, their frequencies
must be commensurate. Assume, for example, that one frequency is
the sum of the other two,

The source 𝒮 then contains components at the frequencies ω1, ω2,
and ω3. Examining the 36 terms of (22.4-7) yields
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The source for wave 1 is proportional to  (since ω1 = ω3 − ω2),
so that waves 2 and 3 together contribute to the growth of wave 1.
Similarly, the source for wave 3 is proportional to E1E2 (since ω3 =
ω1 + ω2), so that waves 1 and 2 combine to amplify wave 3, and so
on. The three waves are thus coupled or “mixed” by the medium in a
process described by three coupled differential equations in E1, E2,
and E3,

3-Wave-Mixing Coupled Equations
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EXERCISE 22.4-1

SHG as Degenerate Three-Wave Mixing. Equations (22.4-
13) are valid only when the frequencies ω1, ω2, and ω3 are
distinct. Consider now the degenerate case for which ω1 = ω2 =
ω and ω3 = 2ω, so that there are two instead of three waves, with
amplitudes E1 and E3. This corresponds to second-harmonic
generation (SHG). Show that these waves satisfy the Helmholtz
equation with sources

so that the coupled wave equations are

SHG Coupled Equations

Note that these equations are not obtained from the three-wave-
mixing equations (22.4-13) by substituting E1 = E2 [the factor of
2 is absent in (22.4-16b)].

Mixing of Three Collinear Uniform Plane Waves

Assume that the three waves are plane waves traveling in the z
direction with complex amplitudes Eq = Aq exp(−jkqz), complex
envelopes Aq, and wavenumbers kq = ωq/c, q = 1, 2, 3. It is
convenient to normalize the complex envelopes by defining the
variables aq = Aq/(2ηħωq)1/2, where η = ηo/n is the impedance of
the medium, ηo = (μo/∊o)1/2 is the impedance of free space, and ħωq
is the energy of a photon of angular frequency ωq. Thus,
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and the intensities of the three waves are Iq = |Eq|2/2η = ħωq|aq|2.
The photon-flux densities (photons/s-m2) associated with these
waves are

The variable aq therefore represents the complex envelope of wave
q, scaled such that |aq|2 is the photon-flux density. This scaling is
convenient since the process of wave mixing must be governed by
photon-number conservation (see Sec. 22.2C).

As a result of the interaction between the three waves, the complex
envelopes aq vary with z so that aq = aq(z). If the interaction is
weak, the aq(z) vary slowly with z, so that they can be assumed
approximately constant within a distance of a wavelength. This
makes it possible to use the slowly varying envelope approximation
wherein d2aq/dz2 is neglected relative to kqdaq/dz = (2π/λq)daq/dz
and

(see Sec. 2.2C). With this approximation (22.4-13) reduce to simpler
equations that are akin to the paraxial Helmholtz equations, in
which the mismatch in phase is considered:
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3-Wave-Mixing Coupled Equations

where

and

represents the error in the phase-matching condition. The
variations of α1, α2, and α3 with z are therefore governed by three
coupled first-order differential equations (22.4-20), which we
proceed to solve under the different boundary conditions
corresponding to various applications. It is useful, however, first to
derive some invariants of the wave-mixing process. These are
functions of α1, α2, and α3 that are independent of z. Invariants are
useful since they can be used to reduce the number of independent
variables. Exercises 22.4-3 and 22.4-2 develop invariants based on
conservation of energy and conservation of photons.
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EXERCISE 22.4-2
Photon-Number Conservation: The Manley–Rowe
Relations. Using (22.4-20), show that

from which the Manley–Rowe relations (22.2-19), derived using
photon-number conservation, follow. Equation (22.4-23) implies
that |α1|2 + |α3|2 and |α2|2 + |α3|2 are also invariants of the
wave-mixing process.

EXERCISE 22.4-3
Energy Conservation. Show that the sum of the intensities Iq

= ħωq|αq|2, q = 1, 2, 3, of the three waves governed by (22.4-20)
is invariant to z, so that

A. Second-Harmonic Generation (SHG)
Second-harmonic generation (SHG) is a degenerate case of three-
wave mixing in which

Two forms of interaction occur: in SHG, two photons of frequency ω
combine to form a single photon of frequency 2ω, as illustrated in
Fig. 22.4-1(a); in degenerate parametric downconversion, one
photon of frequency 2ω splits into two photons of frequency ω.

The interaction of the two waves is described by the paraxial
Helmholtz equations with sources. Conservation of momentum
requires that
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EXERCISE 22.4-4

Coupled-Wave Equations for SHG. Apply the slowly varying
envelope approximation (22.4-19) to the Helmholtz equations
(22.4-16), which describe two collinear waves in the degenerate
case, to show that

where Δk = k3 − 2k1 and

Assuming two collinear waves with perfect phase matching (Δk =
0), equations (22.4-27) reduce to

SHG Coupled Equations

At the input to the device (z = 0) the amplitude of the second-
harmonic wave is assumed to be zero, α3(0) = 0, and that of the
fundamental wave, α1(0), is assumed to be real. We seek a solution
for which α1(z) is real everywhere. Using the energy conservation
relation , (22.4-29b) gives a differential
equation in α3(z),
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(22.4-31b)

(22.4-33)

whose solution may be substituted in (22.4-29a) to obtain the
overall solution:

Consequently, the photon-flux densities ϕ1(z) = |α1(z)|2 and ϕ3(z) =
|α3(z)|2 evolve in accordance with

where 

Since sech2(·) + tanh2(·) = 1, ϕ1(z)+2ϕ3(z) = ϕ1(0) is constant,
indicating that at each position z, photons of wave 1 are converted to
half as many photons of wave 3. The fall of ϕ1(z) and the rise of
ϕ3(z) with z are shown in Fig. 22.4-1(b).

Note that there would be no inception of the interaction
characterized by (22.4-29) under the initial conditions α1(0) = 0 and
α3(0) > 0, so that the inverse process of spontaneous parametric
downconversion (see Fig. 22.2-8) is not permitted within the
confines of these classical equations.

Efficiency of SHG

The efficiency of second-harmonic generation for an interaction
region of length L is
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For large γL (long cell, large input intensity, or large nonlinear
parameter), the efficiency approaches one. This signifies that all the
input power (at frequency ω) has been transformed into power at
frequency 2ω; all input photons of frequency ω are converted into
half as many photons of frequency 2ω.

Figure 22.4-1 Second-harmonic generation. (a) A wave of
frequency ω incident on a nonlinear crystal generates a wave of
frequency 2ω.(b) As the photon-flux density Φ1(z) of the
fundamental wave decreases, the photon-flux density ϕ3(z) of the
second-harmonic wave increases. Since photon numbers are
conserved, the sum ϕ1(z)+2ϕ3(z) = ϕ1(0) is a constant. (c) Two
photons of frequency ω combine to make one photon of frequency
2ω.

For small γL [small device length L, small nonlinear parameter d, or
small input photon-flux density ϕ1(0)], the argument of the tanh
function is small and therefore the approximation tanh x ≈ x may be
used. The efficiency of second-harmonic generation is then
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so that

SHG Efficiency

where P = I1(0)A is the incident optical power at the fundamental
frequency and A is the cross-sectional area. This reproduces (22.2-6)
and shows that the constant C2 is proportional to the material
parameter d2/n3, which is a figure of merit used for comparing
different nonlinear materials.

EXAMPLE 22.4-1. Efficiency of SHG. For a material with
d2/n3 = 10−46 C/V2 (see Table 22.6-3 for typical values of d) and
a fundamental wave of wavelength 1 μm, C2 = 38 × 10−9 W−1 =
0.038 (MW)−1. In this case, the SHG efficiency is 10% if PL2/A =
2.63 MW. If the aspect ratio of the interaction volume is 1000,
i.e., L2/A = 106, the required power is 2.63 W. This may be
realized using L = 1 cm and A = 100 μm2, corresponding to a
power density P/A = 2.63 × 106 W/cm2. The SHG efficiency may
be improved by using higher power density, longer interaction
length, or material with a larger value of d2/n3.

Phase Mismatch in SHG

To study the effect of phase (or momentum) mismatch, the general
equations (22.4-27) are used with Δk ≠ 0. For simplicity, we limit
ourselves to the weak-coupling case for which γL ≪ 1. In this case,
the amplitude of the fundamental wave α1(z) varies only slightly
with z [see Fig. 22.4-1(a)], and may be assumed approximately
constant.

Substituting α1(z) ≈ α1(0) in (22.4-27b), and integrating, we obtain
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(22.4-39a)

from which ϕ3(L) = |α3(L)|2 =  sin2(ΔkL/2), where α1(0)
is assumed to be real. The efficiency of second-harmonic generation
is therefore

where sinc(x) = sin(πx)/(πx).

The effect of phase mismatch is therefore to reduce the efficiency of
second-harmonic generation by the factor sinc2(ΔkL/2π). This
confirms the previous results displayed in Fig. 22.2-14. For a given
mismatch Δk, the process of SHG is efficient for lengths smaller
than the coherence length Lc = 2π/|Δk|.

B. Optical Frequency Conversion (OFC)
A frequency up-converter [Fig. 22.4-2(a)] converts a wave of
frequency ω1 into a wave of higher frequency ω3 by use of an
auxiliary wave at frequency ω2, called the pump. A photon ħω2
from the pump is added to a photon ħω1 from the signal to form a
photon ħω3 of the up-converted signal at an up-converted
frequency ω3 = ω1 + ω2.

The conversion process is governed by the three coupled equations
(22.4-20). For simplicity, assume that the three waves are phase
matched (Δk = 0) and that the pump is sufficiently strong so that its
amplitude does not change appreciably within the interaction
distance of interest; i.e., α2(z) ≈ α2(0) for all z between 0 and L. The
three equations (22.4-20) then reduce to two,
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where γ = 2gα2(0) and α2(0) is assumed real. These are simple
differential equations with harmonic solutions

The corresponding photon-flux densities are

The dependencies of the photon-flux densities ϕ1 and ϕ3 on z are
sketched in Fig. 22.4-2(b). Photons are exchanged periodically
between the two waves. In the region between z = 0 and z = π/γ, the
input ω1 photons combine with the pump ω2 photons and generate
the up-converted ω3 photons. Wave 1 is therefore attenuated,
whereas wave 3 is amplified. In the region z = π/γ to z = 2π/γ, the
ω3 photons are more abundant; they disintegrate into ω1 and ω2
photons, so that wave 3 is attenuated and wave 1 amplified. The
process is repeated periodically as the waves travel through the
medium.
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Figure 22.4-2 The frequency up-converter; (a) wave mixing; (b)
evolution of the photon-flux densities of the input ω1-wave and the
up-converted ω3-wave. The pump ω2-wave is assumed constant; (c)
photon interactions.

The efficiency of up-conversion for a device of length L is

For γL ≪ 1, and using (22.4-21), this is approximated by I3(L)/I1(0)
≈ (ω3/ω1) (γL/2)2 = (ω3/ω1)g2L2ϕ2(0) =  from which

OFC Efficiency

where A is the cross-sectional area and P2 = I2(0)A is the pump
power. This expression is similar to (22.4-36) for the efficiency of
second-harmonic generation.



EXERCISE 22.4-5

Infrared Up-Conversion. An up-converter uses a proustite
crystal (d = 1.5 × 10−22 C/V2 , n = 2.6, d2/n3 = 1.3 × 10−45 C2/V4).
The input wave is obtained from a CO2 laser of wavelength λo =
10.6 μm, and the pump from a 1-W Nd3+:YAG laser of
wavelength λo = 1.06 μm focused to a cross-sectional area 10−2

mm2 (see Fig. 22.2-6). Determine the wavelength of the up-
converted wave and the efficiency of up-conversion if the waves
are collinear and the interaction length is 1 cm.

C. Optical Parametric Amplification (OPA) and
Oscillation (OPO)
Optical Parametric Amplifier (OPA)

The OPA uses three-wave mixing in a nonlinear crystal to provide
optical gain [Fig. 22.4-3(a)]. The process is governed by the same
three coupled equations (22.4-20) with the waves identified as
follows. Wave 1 is the signal to be amplified; it is incident on the
crystal with a small intensity I1(0). Wave 3, the pump, is an intense
wave that provides power to the amplifier. Wave 2, called the idler,
is an auxiliary wave created by the interaction process.



(22.4-44a)

(22.4-44b)

(22.4-45a)

(22.4-45b)

(22.4-46a)

(22.4-46b)

Figure 22.4-3 The optical parametric amplifier: (a) wave mixing;
(b) photon-flux densities of the signal and the idler (the pump
photon-flux density is assumed constant); (c) photon mixing.

Assuming perfect phase matching (Δk = 0), and an undepleted
pump, α3(z) ≈ α3(0), the coupled-wave equations (22.4-20) provide

where γ = 2gα3(0). If α3(0) is real, γ is also real, and the differential
equations have the solution

If α2(0) = 0, i.e., the initial idler field is zero, then the corresponding
photon-flux densities are



(22.4-47)

Both ϕ1(z) and ϕ2(z) grow monotonically with z, as illustrated in Fig.
22.4-3(b). This growth saturates when sufficient energy is drawn
from the pump so that the assumption of an undepleted pump no
longer holds.

The overall gain of an amplifier of length L is G = ϕ1(L)/ϕ1(0) =
cosh2(γL/2). In the limit γL ∊ 1, G = (eγL/2 + e−γL/2)2/4 ≈ eγL/4, so
that the gain increases exponentially with γL. The gain coefficient γ
= 2gα3(0) = 2d  α3(0), from which

OPA Gain Coefficient

where P3 = I3(0)A is the pump power and A is the cross-sectional
area, and C2 is a parameter similar to that describing SHG and OFC.

The interaction is tantamount to a pump photon ħω3 splitting into a
photon ħω1 that amplifies the signal, and a photon ħω2 that creates
the idler [Fig. 22.4-3(c)].

EXERCISE 22.4-6

Gain of an OPA. An OPA amplifies light at λo = 2.5 μm by
using a 2-cm long KTP crystal pumped by a Nd:YAG laser with λo
= 1.064 μm. Determine the wavelength of the idler wave and the
C coefficient in (22.4-47). Determine the appropriate laser power
and beam cross-sectional area such that the total amplifier gain
is 3 dB. Assume that n = 1.75 and d = 2.3 × 10−23 C/V2 for KTP.

Optical Parametric Oscillator (OPO)

A parametric oscillator is constructed by providing feedback at
either or both the signal and the idler frequencies of a parametric
amplifier, as illustrated in Fig. 22.4-4. In the former case, the



oscillator is called a singly resonant oscillator (SRO); in the
latter, it is called a doubly resonant oscillator (DRO).

Figure 22.4-4 The parametric oscillator generates light at
frequencies ω1 and ω2. A pump of frequency ω3 = ω1 + ω2 serves as
the source of energy. (a) Singly resonant oscillator (SRO). (b)
Doubly resonant oscillator (DRO).

The oscillation frequencies ω1 and ω2 of the parametric oscillator
are determined by the frequency-and phase-matching conditions, ω1
+ ω2 = ω3 and n1ω1 + n2ω2 = n3ω3, in the collinear case. The
solution of these two equations yields ω1 and ω2, as described in
Sec. 22.2D. In addition, these frequencies must also coincide with
the resonance frequencies of the resonator modes, much the same
as for conventional lasers (see Sec. 16.1B). The system therefore
tends to be over-constrained, particularly in the DRO case for which
both the signal and idler frequencies must coincide with resonator
modes.

Another condition for oscillation is that the gain of the amplifier
must exceed the loss introduced by the mirrors for one round trip of
propagation within the resonator. By equating the gain and the loss,
expressions for the threshold amplifier gain and the corresponding
threshold pump intensity may be determined, as shown below for
the SRO and DRO configurations.

SRO. At the threshold of oscillation, the signal's amplified and
doubly reflected amplitude α1(L)  equals the initial amplitude
α1(0), where L is the length of the nonlinear medium and r1 is the
magnitude of the amplitude reflectance of a mirror (the two mirrors
are assumed identical and the phase associated with a round trip is
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(22.4-50b)

not included since it is a multiple of 2π). Using (22.4-45a), together
with the boundary condition α2(0) = 0, we obtain  cosh(γL/2) = 1,
from which

Here, ℛ1 =  the mirror power reflectance at the signal frequency.
Since ℛ1 is typically slightly smaller than unity, cosh2(γL/2) is
slightly greater than unity, i.e., γL/2 ≪ 1 and the approximation
cosh2(x) ≈ 1 + x2 may be used. It follows that at threshold (γL/2)2 ≈
(1 − ). Using (22.4-47), we obtain the threshold intensity,
from which the threshold power of the pump is obtained,

SRO Threshold Pump Power

where  and A is the cross-sectional area. For
example, if L2/A = 106, C2 = 10−7 W−1, and ℛ1 = 0.9, then
P3|threshold(0) ≈ 2.3 W.

DRO. At threshold, two conditions must be satisfied: α1(L)  =
α1(0) and α2(L) = α2(0), where r1 and r2 are the magnitudes of the
amplitude reflectances of the mirrors at the signal and idler
frequencies, respectively. Substituting for α1(L) from (22.4-45a),
and substituting for α2(L) from (22.4-45b) and forming the
conjugate, we obtain
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where ℛ1 =  and ℛ2 =  are the power reflectances of the mirrors
at the signal and idler frequencies, respectively. Equating the values
of the ratio  obtained from (22.4-50a) and (22.4-50b) then
leads to

If γL/2 ≪ 1, we can again use the approximation cosh2 x ≈ 1 + x2 and
write , from which we obtain the
threshold pump power:

DRO Threshold Pump Power

The ratio of the threshold pump power for the DRO configuration,
to that for the SRO configuration, as calculated from (22.4-49) and
(22.4-52), is then determined to be . Since ℛ1 ≈ 1
and ℛ2 ≈ 1, this is approximately equal to (1 − ℛ2)/2, which is
small. Thus, the threshold power for the DRO is substantially lower
than that for the SRO. Unfortunately, DROs are more sensitive to
fluctuations of the resonator length because of the requirement that
the oscillation frequencies of both the signal and the idler match
resonator modes. DROs therefore often have poor stability and
spiky spectra.

*22.5 THIRD-ORDER NONLINEAR OPTICS:
COUPLED WAVES
A. Four-Wave Mixing (FWM)
We now derive the coupled differential equations that describe
FWM in a third-order nonlinear medium, using an approach similar
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to that employed in the three-wave mixing case in Sec. 22.4.

Coupled-Wave Equations

Consider four waves constituting a total field

traveling in a medium characterized by a nonlinear polarization
density

The corresponding source of radiation, 𝒮 = −μo∂2PNL/∂t2, is
therefore a sum of 83 = 512 terms,

Substituting (22.5-1) and (22.5-3) into the wave equation (22.4-1),
and equating terms at each of the four frequencies ω1, ω2, ω3, and
ω4, leads to four Helmholtz equations with their associated sources,

where Sq is the complex amplitude of the component of 𝒮 at
frequency ωq.

For the four waves to be coupled, their frequencies must be
commensurate. Consider, for example, the case for which the sum
of two frequencies equals the sum of the other two frequencies,

and assume that these frequencies are distinct. Three waves
can then combine and create a source at the fourth frequency. Using
(22.5-5), terms in (22.5-3) at each of the four frequencies are
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Each wave is therefore driven by a source with two components.
The first component is a result of mixing of the other three waves.
The first term in 𝒮1, for example, is proportional to  and
therefore represents the mixing of waves 2, 3, and 4 to create a
source for wave 1. The second component is proportional to the
complex amplitude of the wave itself. The second term of 𝒮1, for
example, is proportional to E1, so that it plays the role of refractive-
index modulation, and therefore represents the optical Kerr effect
(Exercise 22.3-3).

It is therefore convenient to separate the two contributions to these
sources by defining

where

and
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Here Iq = |Eq|2/2η are the intensities of the waves, I = I1 + I2 + I3 +
I4 is the total intensity, which is constant in view of conservation of
energy, and η is the impedance of the medium. This enables us to
rewrite the Helmholtz equations (22.5-4) as

where

and

which matches (22.3-6). If the second term of (22.5-12) is much
smaller than the first, then

Optical Kerr Effect

The Helmholtz equation for each wave is therefore modified in two
ways:

1. A source representing the combined effects of the other three
waves is present. This may lead to the amplification of an
existing wave, or the generation of a new wave at that
frequency.

2. The refractive index for each wave is altered, becoming a
function of the intensities of the four waves.
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These equations are used to generate four coupled nonlinear
differential equations that may be solved for the fields, or their
complex envelopes, under the appropriate boundary conditions.
This was the approach followed for second-order nonlinear
processes, and will now be applied to several special cases in third-
order nonlinear processes.

B. Three-Wave Mixing and Third-Harmonic Generation
(THG)
We now consider degenerate cases for which two or three of the
four waves have the same frequency.

Three-Wave Mixing

In the degenerate case for which two of the four waves have the
same frequency ω3 = ω4 ≡ ω0, we have three waves with frequencies
related by ω1 + ω2 = 2ω0. A coupled-wave theory of this three-wave
mixing process can be formulated by identifying the radiation
sources generated at the three frequencies:

When substituted in the Helmholtz equations 
 the result is a set of coupled equations

that can, in principle, be solved under appropriate initial conditions.

Collinear waves traveling in the z direction are written Eq(r) = Aq
exp(−jkqz). As with second-order nonlinear processes, we use the
slowly varying envelope approximation, 

, and write the complex
amplitudes , in terms of the variables αq, which are
normalized such that ϕq = |αq|2 are photon-flux densities. The
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analysis is simplified by assuming that ω1 ≈ ω2 ≈ ω0 when
calculating the coupling coefficients. The result is the following set
of coupled equations:

where

and

represents the phase-matching error.

This set of nonlinear equations can be readily solved in the
undepleted pump approximation (|α1|, |α2|≪|α0|) since in this case
α0(z) is approximately constant. In the phase matched case (Δk =
0), (22.5-16) are approximated by two linear differential equations

where  is a constant proportional to the constant pump
intensity. The solution to these equations is written in terms of the
initial values of the two waves:
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If the initial idler amplitude is α2(0) = 0, then the photon-flux
density ϕ1(z) = |α1(z)|2 of the signal grows as ϕ1(z) = (1+ γ2z2)ϕ1(0).
The rate of growth is sensitive to the magnitude and phase of the
initial idler wave. For example, if α2(0) = rejφα1(0), then

which is a function of the phase difference φ that reaches its
maximum value when tan φ = 2/γz. At small z, maximum growth
occurs when φ = π/2. Clearly, the amplifier is a phase-sensitive
amplifier.

To examine the effect of pump depletion and phase mismatch, the
full set of equations (22.5-16) must be solved. One step in this
direction is taken by writing the complex amplitudes αq = bq
exp(jφq) in terms of their magnitudes bq and phases φq.
Substituting into (22.5-16) and equating the real and imaginary
parts of each equation leads to the following set of nonlinear
equations in real variables:

where φ = Δkz + φ1 + φ2 − 2φ0. Two invariants can be easily
identified. Consistent with conservation of optical intensity, the
sum  must be constant. Also, consistent with
conservation of photons, the difference  must be constant
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(this is a version of the Manley–Rowe relations). Other invariants
involving the phase φ may also be identified4 and used to study the
role of phase mismatch and initial amplitudes and phase difference
between the signal and idler. For example, it can be readily seen
from (22.5-22a) that the initial rate of growth of the signal occurs
when sin φ = 0, i.e., when φ = π/2.

Third-Harmonic Generation (THG)

Another degenerate special case of four-wave mixing is third-
harmonic generation. Here, three of the four waves have identical
frequencies, ω1 = ω2 = ω4 = ω, and the fourth has the sum
frequency ω3 = ω1 + ω2 + ω4 = 3ω. In effect, we have two waves, 1
and 3, whose amplitudes are coupled by the third-order nonlinear
medium. A coupled-wave theory can be formulated using the
approach followed in the four-and three-wave mixing cases. This
leads to two Helmholtz equations ( , where

These equations may be used to derive coupled equations for E1 and
E3, as was done in previous cases.
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EXERCISE 22.5-1

THG in the Undepleted-Pump Approximation. Assume
that the fundamental and third-harmonic waves are plane waves
traveling in the z direction with complex envelopes Aq, q = 1, 3.
Use the slowly varying envelope approximation to write coupled
differential equations for A1 and A3. Show that in the undepleted
pump approximation [A3 ≪ A1 and A1(z) ≈ A1(0)],

where Aq =  αq and Δk = 3k1 − k3. Derive an expression for
g.

C. Optical Phase Conjugation (OPC)
We now develop and solve the coupled-wave equations in the fully
degenerate case for which all four waves have the same frequency
ω1 = ω2 = ω3 = ω4 = ω. As was assumed in Sec. 22.3E, two of the
waves (waves 3 and 4), called the pump waves, are plane waves
propagating in opposite directions, with complex amplitudes E3(r) =
A3 exp(−jk3 ·r) and E4(r) = A4 exp(−jk4 ·r) and wavevectors related
by k4 = −k3. Their intensities are assumed to be much greater than
those of waves 1 and 2, so that they are approximately undepleted
by the interaction process, allowing us to assume that their complex
envelopes A3 and A4 are constant. The total intensity of the four
waves I is then also approximately constant, I ≈ [|A3|2 +|A4|2]/2η.
The terms 2I −I1 and 2I − I2, which govern the effective refractive
index for waves 1 and 2 in (22.514), are approximately equal to 2I,
and are therefore also constant, so that the optical Kerr effect
amounts to a constant change of the refractive index. Its effect will
therefore be ignored.
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With these assumptions the problem is reduced to a problem of two
coupled waves, 1 and 2. Equations (22.5-10) and (22.5-8) give

where

and , where  is a constant.

The four nonlinear coupled differential equations have thus been
reduced to two linear coupled equations, each of which takes the
form of the Helmholtz equation with a source term. The source for
wave 1 is proportional to the conjugate of the complex amplitude of
wave 2, and similarly for wave 2.

Phase Conjugation

Assume that waves 1 and 2 are also plane waves propagating in
opposite directions along the z axis, as illustrated in Fig. 22.5-1,

This assumption is consistent with the phase-matching condition
since k1 + k2 = k3 + k4.
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Figure 22.5-1 Degenerate four-wave mixing. Waves 3 and 4 are
intense pump waves traveling in opposite directions. Wave 1, the
probe wave, and wave 2, the conjugate wave, also travel in opposite
directions and have increasing amplitudes.

Substituting (22.5-27) in (22.5-25) and using the slowly varying
envelope approximation, (22.4-19), we reduce equations (22.5-25)
to two first-order differential equations,

where

is a coupling coefficient whose magnitude may be written in the
form
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Coupling Coefficient

Here I3 = |A3|2/2η and I4 = |A4|2/2η are the intensities of the two
waves and η = η0/ .

For simplicity, assume that A3A4 is real, so that γ is real. The
solution of (22.528) is then two harmonic functions, A1(z) and
A2(z), with a 90° phase shift between them. If the nonlinear
medium extends over a distance between the planes z = −L to z = 0,
as illustrated in Fig. 22.5-1, wave 1 has amplitude A1(−L) = Ai, at the
entrance plane, and wave 2 has zero amplitude at the exit plane,
A2(0) = 0. Under these boundary conditions the solution of (22.5-
28) is

The amplitude of the reflected wave at the entrance plane, Ar =
A2(−L), is

Reflected Wave Amplitude

whereas the amplitude of the transmitted wave, At = A1(0), is



(22.6-1)

Transmitted Wave Amplitude

Equations (22.5-33) and (22.5-34) suggest a number of applications:

The reflected wave is a conjugated version of the incident wave.
The device acts as a phase conjugator (see Sec. 22.3E).

The power reflectance, |Ar|2/|Ai|2 = tan2(γL), may be smaller or
greater than 1, corresponding to attenuation or gain,
respectively. The medium can therefore act as a reflection
amplifier (an “amplifying mirror”).

The transmittance |At|2/|Ai|2 = 1/ cos2(γL) is always greater
than 1, so that the medium always acts as a transmission
amplifier.

When γL = π/2, or odd multiples thereof, the reflectance and
transmittance are infinite, indicating instability. The device
may then be used as an oscillator.

*22.6 ANISOTROPIC NONLINEAR MEDIA
In an anisotropic medium, each of the three components of the
polarization-density vector 𝒫 = (𝒫1, 𝒫2, 𝒫3) is generally a function
of the three components of the electric-field vector ε = (ε1, ε2, ε3).
These functions are linear for small magnitudes of ε (see Sec. 6.3)
but deviate slightly from linearity as ε increases. They may therefore
be expanded in a Taylor series in terms of the three components of
ε, just as in the scalar analysis presented in Sec. 22.1:



The coefficients χij , dijk, and  are tensor components that
correspond to the scalar coefficients χ, d, and χ(3), respectively, and
(22.6-1) is a tensor generalization of (22.1-2). Because the
component dijk of the (third-rank) second-order optical
nonlinearity tensor is proportional to ∂2𝒫i/∂εj∂εk, it is invariant
to exchange of j and k. Similarly, the component  of the (fourth-
rank) third-order optical nonlinearity tensor is invariant to
permutations of j, k, and l. For lossless nondispersive media, there
are additional intrinsic symmetries: χij = χji, as shown in Sec. 6.3A;
also dijk and  are invariant to permutations of their indices. This
full-permutation symmetry does not generally hold for dispersive
nonlinear media.

Exploiting the symmetry condition dijk = dikj , components of the
tensor dijk are usually listed as a 3 × 6 array diJ , where the six
independent combinations (j, k) = 11, 22, 33, 23, 31, 12 are
represented by a single index J = 1, 2, 3, 4, 5, 6, in that order (see
Table 21.2-1). For example, d25 denotes the coefficients d231 = d213.

The third-order coefficients  are similarly described by a 6 × 6
array , where the pair (i, j) is contracted into a single index I = 1,
2, ··· , 6, and the pair (k, l) is contracted into K = 1, 2, ··· , 6.

The structural symmetry of the crystal places additional constraints
on the tensor components dijk and . When the coordinate system
(1,2,3) coincides with the principal axes of the crystal, which are
determined from the tensor χij, some entries in the arrays diJ and 

 are zero, while others are equal or are related by some simple
rule. Representative examples are provided in Tables 22.6-1 and
22.6-2. Values for the diJ coefficients for a number of representative
nonlinear crystals are provided in Table 22.6-3. Though cubic
crystals have isotropic linear optical properties, their well-defined
crystal axes (as determined by their structural symmetry) endow
them with anisotropic nonlinear optical properties.



Table 22.6-1 Second-order nonlinear coefficients diJ for some
representative crystal groups.

The tensors dijk and  are closely related to the Pockels and Kerr
tensors rijk and sijkl, respectively, as demonstrated in Prob. 22.6-2.
They also have the same symmetries, as can be seen by comparing
Tables 22.6-1 and 22.6-2, which list diJ and  with Tables 21.2-2
and 21.2-3, which provide rIk and sIK , for a number of crystal
groups. Note, however, that diJ is analogous to the transpose of rIk.

Table 22.6-2 Third-order nonlinear coefficients  for an
isotropic medium.



Table 22.6-3 Representative magnitudes of second-order
nonlinear optical coefficients for selected materials.a

Crystal diJ (C/V2) diJ /∊o (pm/V)b

β-BaB2O4 (BBO) d22 = 2.0 × 10−23 2.2

d31 = 3.5 × 10−25 0.04

LiB3O5 (LBO) d31 = 5.9 × 10−24 0.67

d32 = 7.5 × 10−24 0.85

d33 = 3.5 × 10−25 0.04

LiIO3 d31 = 3.9 × 10−23 4.4

d33 = 4.1 × 10−23 4.6

LiNbO3 d22 = 1.9 × 10−23 2.1

d31 = 4.1 × 10−23 4.6

d33 = 2.2 × 10−22 25.2

KNbO3 d31 = 1.1 × 10−22 11.9

d32 = 1.2 × 10−22 13.7

KTiOPO4 (KTP) d31 = 2.0 × 10−23 2.2

d32 = 3.3 × 10−23 3.7

d33 = 1.3 × 10−22 14.6

KH2PO4 (KDP) d36 = 3.1 × 10−24 0.38

NH4H2PO4 (ADP) d36 = 4.2 × 10−24 0.47

α-SiO2 (quartz) d11 = 2.7 × 10−24 0.30

KBe2BO3F2 (KBBF) d11 = 4.3 × 10−24 0.49

GaAs d14 = 1.5 × 10−21 170.



(22.6-2)

(22.6-3)

Te d11 = 5.8 × 10−21 650.

aMost of the coefficients are as reported by D. N. Nikogosyan, Nonlinear Optical Crystals:
A Complete Survey, Springer-Verlag, 2005. Values are provided at a wavelength λo = 1.06
μm except for Te, which is provided at λo = 10.6 μm.

bThe coefficients d/∊o, specified in units of pm/V, are often used in practice. The nonlinear

optical coefficients in C/V2 (MKS units) are readily converted to pm/V by dividing d by

10−12
∊o ≈ 8.85 × 10−24.

Three-Wave Mixing in Anisotropic Second-Order Nonlinear
Media

When an optical field comprising two monochromatic linearly
polarized waves of angular frequencies ω1 and ω2, and complex
amplitudes E(ω1) and E(ω2), travel through a second-order
nonlinear crystal, the induced nonlinear polarization-density vector
P(ω3) at frequency ω3 = ω1 + ω2 has components

where Ej (ω1), Ek(ω2), and Pi(ω3) are the components of these
vectors along the principal axes of the crystal. This equation is a
generalization of (22.2-13d).

Using the contracted notation (j, k) = J, (22.6-2) may be
conveniently written in matrix form as:

Effective value of d. If Ej (ω1) = E(ω1) cos θ1j and Ek(ω2) = E(ω2) cos
θ2k, where θ1j and θ2k are the angles that the vectors E(ω1) and



(22.6-4)

(22.6-5)

(22.6-7)

(22.6-6)

E(ω2) make with the principal axes, then (22.6-2) may be written in
the form

Since the polarization-density vector P(ω3) is the source for wave 3,
only the component P⊥(ω3) in the plane orthogonal to the
wavevector k3 contributes; the component parallel to k3 cannot
radiate a TEM wave. If P⊥(ω3) makes angles  with the principal
axes, then its magnitude is

It follows from (22.6-4) and (22.6-5) that

where the effective second-order nonlinear optical coefficient is

Equation (22.6-6) takes the same form as that used in the scalar
formulation provided in Secs. 22.2C and 22.4; the effective second-
order nonlinear coefficient deff plays the role of the nonlinear-
optics coefficient d. Example 22.6-1 illustrates the computation of
deff for a three-wave mixing configuration in an anisotropic crystal.



(22.6-8)

(22.6-9)

(22.6-11)

(22.6-10)

EXAMPLE 22.6-1. Collinear Type-I Three-Wave Mixing
in a KDP Crystal. In this example, we determine the effective
nonlinear optical coefficient deff for three collinear waves
traveling in a KDP crystal at an arbitrary direction (θ, ϕ) defined
in a spherical coordinate system with the crystal optic axis
pointing in the z direction, as illustrated in Fig. 22.6-1. Waves 1
and 2 are ordinary waves at frequencies ω1 and ω2, and wave 3 is
extraordinary with frequency ω3 = ω1 + ω2.

Using (22.6-2) and Table 22.6-1 for crystals of  symmetry,
such as KDP, the nonlinear components of the polarization-
density vector are given by

In this geometry, the electric field components of waves 1 and 2
are:

Therefore, based on (22.6-8), the components of the
polarization-density vector for wave 3 are

In this case, the component P⊥(ω3) = −P3(ω3) sin θ, so that

This result can also be obtained by direct use of (22.6-7) with the
appropriate angles and coefficients.



The effective nonlinear optical coefficient in (22.6-11) has its
maximum magnitude d36 if the angles are θ = 90° and ϕ = 45°, as
illustrated in Fig. 22.6-1.

Figure 22.6-1 (a) Geometry for collinear Type-I o-o-e three-
wave mixing in a uniaxial crystal whose optic axis is in the z
direction. (b) Direction of propagation for achieving maximum
deff.

*22.7 DISPERSIVE NONLINEAR MEDIA
This section provides a brief discussion of the origin of dispersion
and its effect on nonlinear optical processes. Anisotropic dispersive
media are briefly considered at the end of this section. A dispersive
medium is a medium with memory (see Sec. 5.2); the polarization
density 𝒫(t) resulting from an applied electric field ε(t) does not
appear instantaneously. Rather, the response 𝒫(t) at time t is a
function of the applied electric field ε(t′) at times t′ ≤ t. When the
medium is also nonlinear, the functional relation between 𝒫(t) and
{ε(t), t′ ≤ t} is nonlinear. There are two means for describing such
nonlinear dynamical systems:

1. A phenomenological integral relation between 𝒫(t) and ε(t)
based on a Volterraseries expansion, which is similar to a



(22.7-1)

(22.7-2)

Taylor-series expansion. The coefficients of the expansion
characterize the medium phenomenologically.

2. A nonlinear differential equation for 𝒫(t), with ε(t) as a driving
force, obtained by developing a model for the physics of the
polarization process, much as the Lorentz model was developed
for linear media.

Integral-Transform Description of Dispersive Nonlinear Media

If the deviation from linearity is small, a Volterra-series expansion
may be used to describe the relation between 𝒫(t) and ε(t). The first
term of the expansion is a linear combination of ε(t′) for all t′ ≤ t,

This describes a linear system with impulse response function
∊oχ(t) [see Sec. 5.2, particularly (5.2-23), and Appendix B].

The second term in the expansion is a superposition of the products
ε(t′)ε(t″) at pairs of times t′ ≤ t and t″ ≤ t,

where χ(2)(t′, t″) is a function of two variables that characterizes the
second-order dispersive nonlinearity. The third term represents a
third-order nonlinearity that can be characterized by a function χ(3)

(t′, t″, t′″) together with a similar triple-integral relation.

The linear dispersive contribution described by (22.7-1) can also be
completely characterized by the response to monochromatic fields.
If ε(t) = Re{E(ω) exp(jωt)}, then 𝒫(t) = Re{P(ω) exp(jωt)}, where P
(ω) = ∊oχ(ω)E(ω) and χ(ω) is the Fourier transform of χ(t) at ν =
ω/2π. The medium is then characterized completely by the
frequency-dependent susceptibility χ(ω).



(22.7-4)

(22.7-5)

(22.7-3)

(22.7-6a)

The second-order nonlinear contribution described by (22.7-2) is
characterized by the response to a superposition of two
monochromatic waves of angular frequencies ω1 and ω2.
Substituting

into (22.7-2), it can be shown that the polarization-density
component of angular frequency ω3 = ω1 + ω2 has an amplitude

The coefficient d(ω3; ω1, ω2) is a frequency-dependent version of
the nonlinear optical coefficient d in (22.2-13d). The relation
between this coefficient and the response function χ(2)(t′, t″) is
established by defining

which is the two-dimensional Fourier transform of χ(2)(t′, t″)
evaluated at ν1 = −ω1/2π and ν2 = −ω2/2π [see (A.3-2) in Appendix
A]. Substituting (22.7-3) into (22.7-2) and using (22.7-5), we obtain

Thus, the second-order nonlinear dispersive medium is completely
characterized by either of the frequency-dependent functions, 𝒳(2)

(ω1, ω2) or d(ω3; ω1, ω2).

The degenerate case of second-harmonic generation in a second-
order nonlinear medium is also readily described by substituting
ε(t) = Re{E(ω) exp(jωt)} into (22.7-2) and using (22.7-5). The
resultant polarization density has a component at frequency 2ω
with amplitude P (2ω) = d(2ω; ω, ω) E(ω)E(ω), where



(22.7-7)

(22.7-8)

(22.7-6b)
Other d coefficients representing various wave-mixing processes
may similarly be related to the two-dimensional function 𝒳(2)(ω1,
ω2). The electro-optic effect, for example, is a result of interaction
between a steady electric field (ω1 = 0) and an optical wave (ω2 = ω)
to generate a polarization density at ω3 = ω. The pertinent
coefficient for this interaction is d(ω;0, ω) = 2∊o𝒳(2)(ω, 0); it
determines the Pockels coefficient r in accordance with (22.2-11).

In a third-order nonlinear medium, an electric field comprising
three harmonic functions of angular frequencies ω1, ω2, and ω3
creates a sum-frequency polarization density with a component at
angular frequency ω4 = ω1 + ω2 + ω3 of amplitude

where the function χ(3)(ω4; ω1, ω2, ω3) replaces the nonlinear
optical coefficient χ(3) that describes the nondispersive case. The
function χ(3)(ω4; ω1, ω2, ω3) can be determined from χ(2)(t′,t″,t′″) by
relations similar to (22.7-6a).

In short, as a consequence of dispersion, the second-and third-order
coefficients d and χ(3) are dependent on the frequencies of the
waves involved in the wave-mixing process.

Differential-Equation Description of Dispersive Nonlinear Media

An example of a nonlinear dynamic relation between 𝒫(t) and ε(t) is
provided by the differential equation

where ζ, ω0, χ0, and b are constants. In the absence of the nonlinear
term, , (22.7-8) reduces to (5.5-15), which is appropriate



(22.7-9)

(22.7-10)

for a linear resonant dielectric medium described by the Lorentz
oscillator model (see Sec. 5.5C). Each atom is then characterized by
a harmonic oscillator in which an electron of mass m is subjected to
an electric-field force −eε, an elastic restoring force −κx, and a
frictional force mζ dx/dt, where x is the displacement of the
electron from its equilibrium position and  is the
resonance angular frequency. The medium is then linear and
dispersive with a susceptibility given by [see (5.5-18)]

Linear Susceptibility (Harmonic-Oscillator)

When the restoring force is a nonlinear function of displacement,
−κx − κ2x2, where κ and κ2 are constants, the result is an
anharmonic oscillator described by (22.78), where b is proportional
to κ2. The medium is then nonlinear.

EXERCISE 22.7-1

Polarization Density for an Anharmonic-Oscillator
Medium. Show that for a medium containing N atoms per unit
volume, each modeled as an anharmonic (nonlinear) oscillator
with restraining force −κx−κ2x2, the relation between 𝒫(t) and
ε(t) is the nonlinear differential equation (22.7-8), where 

 and b = κ2/e3N2.

Equation (22.7-8) cannot be solved exactly. However, if the
nonlinear term is small, an iterative approach provides an
approximate solution. Let (22.7-8) be written in the form



(22.7-11)

(22.7-12)

where  is a linear differential
operator. The iterative solution of (22.7-10) is carried out via the
following steps:

1. Find a first-order approximation P1 by neglecting the nonlinear
term b P2 in (22.7-10), and solving the linear equation

2. Use this approximate solution to determine the small nonlinear
term b 

3. Obtain a second-order approximation by solving (22.7-10) with
the term b 𝒫2 replaced by b 𝒫2. The solution of the resulting
linear equation is denoted 𝒫2,

4. Repeat the process to obtain a third-order approximation as
illustrated by the block diagram of Fig. 22.7-1.

Figure 22.7-1 Block diagram representing the nonlinear
differential equation (22.7-10). The linear system represented by the
operator equation L{𝒫} = ε has a transfer function ∊oχ(ω).

We first examine the special case of monochromatic light, ε =
Re{E(ω) exp(jωt)}. In the first iteration 𝒫1 = Re{P1(ω) exp(jωt)},
where P1(ω) = ∊oχ(ω)E(ω) and χ(ω) is given by (22.7-9). In the
second iteration, the linear system is driven by a force



(22.7-13)

(22.7-14)

Since these three terms have frequencies ω, 2ω, and 0, the linear
system responds with susceptibilities χ(ω), χ(2ω), and χ(0),
respectively. The component of 𝒫2 at frequency 2ω has an
amplitude  Since P(2ω) = d(2ω; ω,
ω)E(ω)E(ω), we conclude that

EXERCISE 22.7-2

Miller's Rule. For the nonlinear resonant medium described by
(22.7-8), if the light comprises a superposition of two
monochromatic waves of angular frequencies ω1 and ω2, show
that the second-order approximation described by (22.7-11) and
(22.7-12) yields a component of polarization density at frequency
ω3 = ω1 + ω2 with amplitude P2(ω3) = 2d(ω3; ω1, ω2)E(ω1)E(ω2),
where

Miller's Rule

Equation (22.7-14) is known as Miller's rule.

Miller's rule states that the coefficient of second-order nonlinearity
for the generation of a wave of frequency ω3 = ω1 + ω2, from two
waves of frequencies ω1 and ω2, is proportional to the product of the
linear susceptibilities at the three frequencies, χ(ω1)χ(ω2)χ(ω3). The
three frequencies must therefore lie within the optical transmission



(22.7-15)

(22.7-16)

(22.7-17)

window of the medium (away from resonance). If these frequencies
are much smaller than the resonance frequency ω0, then (22.7-9)
gives χ(ω) = χ0, and (22.7-14) then yields d(ω3; ω1, ω2) = ,
which is independent of frequency. The medium is then
approximately nondispersive, and the results of the previous
sections in which dispersion was neglected are applicable. Miller's
rule also indicates that materials with large refractive indices (large
χ0) tend to have large d.

Anisotropic Dispersive Media

When both anisotropic and dispersive properties are considered,
three-wave mixing in a second-order medium is described by the
more general relation

where ω3 = ω1 + ω2. The coefficients dijk are now dependent on the
frequencies of the mixed waves. This relation is similar to the
relation Pi(ω) = Σj χij(ω)Ej (ω), which describes linear media.
Similarly, four-wave mixing in a third-order medium is described by

where ω4 = ω1 + ω2 + ω3.

The frequency-dependent tensor components dijk, and  obey
several intrinsic symmetry relations that are similar to the relation 

 in linear optics:



(22.7-18)

In these relations, the coefficient djki(ω1; −ω2, ω3), for example,
represents a down-conversion process in which a wave of frequency
ω2 and polarization k mixes with a wave of frequency ω3 and
polarization i and generates a wave of frequency ω1 = ω3 − ω2 and
polarization j. Other coefficients can be similarly interpreted. This
type of intrinsic symmetry is of course supplemented by other
structural symmetry relations that are obeyed for various classes of
crystals.
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PROBLEMS
22.2-2 Power Exchange in Frequency Up-Conversion. A

LiNbO3 crystal of refractive index n = 2.2 is used to convert
light of free-space wavelength 1.3 μm to light of free-space
wavelength 0.5 μm, using a three-wave mixing process. The
three waves are collinear plane waves traveling in the z
direction. Determine the wavelength of the third wave (the
pump). If the power of the 1.3-μm wave decreases by 1 mW
within an incremental distance Δz, what is the power gain of
the up-converted wave and the power loss or gain of the pump
within the same distance?

22.2-3 Matching Conditions for Collinear Type-II SHG.
Determine the angle θ for a KDP crystal used in Type-II
second-harmonic generation at λ = 1.06 μm for each of the o-eo
and o-e-e configurations. Use the Sellmeier equations in Table



5.5-1 to determine the wavelength dependence of the refractive
indices.

22.2-4 Phase Matching in a Degenerate Parametric
Downconverter. A degenerate parametric downconverter
uses a KDP crystal to downconvert light from 0.6 μm to 1.2 μm.
If the two waves are collinear, what is the proper direction of
propagation of the waves (in relation to the optic axis of the
crystal), and their polarizations, so that the phase-matching
condition is satisfied? KDP is a uniaxial crystal with the
following refractive indices: at λo = 0.6 μm, no = 1.509 and ne =
1.468; at λo = 1.2 μm, no = 1.490 and ne = 1.459.

22.2-5 Matching Conditions for Three-Wave Mixing in a
Dispersive Medium. The refractive index of a nonlinear
medium is a function of wavelength approximated by n(λo) ≈
n0 − ξλo, where λo is the free-space wavelength and n0 and ξ are
constants. Show that three waves of wavelengths λo1, λo2, and
λo3 traveling in the same direction cannot be efficiently coupled
by a second-order nonlinear effect. Is efficient coupling
possible if one of the waves travels in the opposite direction?

*22.2-6 Tolerance to Phase Mismatching.

a. The Helmholtz equation with a source, , has the
solution [see (5.6-4)]

where V is the volume of the source and ko = 2π/λo. This
equation can be used to determine the field emitted at a point r,
given the source at all points r′ within the source volume. If the
source is confined to a small region centered about the origin r
= 0, and r is a point sufficiently far from the source so that r′ ≪
r for all r′ within the source, then |r − r′| = (r2 + r′2 − 2r · r′)1/2

≈ r(1 − r · r′/r2) and



where  is a unit vector in the direction of r. Assuming that the
volume V is a cube of side L and the source is a harmonic
function 𝒮(r) = exp(−jks · r), show that if L ≫ λ0, the emitted
light is maximized when ko  = ks and decreases sharply when
this condition is not met. Thus, a harmonic source of
dimensions much greater than a wavelength emits a plane wave
with approximately the same wavevector.

b. Use the relation in (a) and the first Born approximation to
determine the scattered field when the field incident on a
second-order nonlinear medium is the sum of two waves with
wavevectors k1 and k2. Derive the phase-matching condition k3
= k1 + k2 and determine the smallest magnitude of Δk = k3 − k1
− k2 at which the scattered field E vanishes.

22.2-7 Backward SHG with QPM. Show that a periodically poled
crystal may be used to generate a second-harmonic wave
traveling in a direction opposite to that of the fundamental
wave. Write the phase-matching equation for this quasi-phase-
matched process. If the equation is satisfied for the 7th-order
harmonic of the periodic function, determine the ratio of the
poling period to the wavelength of the fundamental wave in the
medium.

22.3-4 Invariants in Four-Wave Mixing. Derive equations for
energy and photon-number conservation (the Manley–Rowe
relations) for four-wave mixing.

22.3-5 Power of a Spatial Soliton. Determine an expression for
the integrated intensity of the spatial soliton described by
(22.3-12) and show that it is inversely proportional to the beam
width W0.

22.3-6 An Opto-Optic Phase Modulator. Design a system for
modulating the phase of an optical beam of wavelength 546 nm



and width W = 0.1 mm using a CS2 Kerr cell of length L = 10
cm. The modulator is controlled by light from a pulsed laser of
wavelength 694 nm. CS2 has a refractive index n = 1.6 and a
coefficient of third-order nonlinearity χ(3) = 4.4 × 10−32 C·m/V3.
Estimate the optical power Pπ of the controlling light required
to modulate the phase of the controlled light by π.

22.3-7 SHG in a Third-Order Nonlinear Medium via a Static
Electric Field. Show that SHG can take place in a third-order
nonlinear medium with an applied static electric field. What
physical parameters determine the efficiency of this SHG
process?

*22.4-7 Gain of a Parametric Amplifier. A parametric amplifier
uses a 4-cm-long KDP crystal (n ≈ 1.49, d = 8.3 × 10−24 C/V2) to
amplify light of wavelength 550 nm. The pump wavelength is
335 nm and its intensity is 106 W/cm2. Assuming that the
signal, idler, and pump waves are collinear, determine the
amplifier gain coefficient and the overall gain.

*22.4-8 Degenerate Parametric Downconverter. Write and
solve the coupled equations that describe wave mixing in a
parametric downconverter with a pump at frequency ω3 = 2ω
and signals at ω1 = ω2 = ω. All waves travel in the z direction.
Derive an expression for the photon-flux densities at 2ω and ω
and the conversion efficiency for an interaction length L. Verify
that energy conservation and photon conservation are
maintained.

*22.4-9 Threshold Pump Intensity for Parametric
Oscillation. A parametric oscillator makes use of a 5-cm-long
LiNbO3 crystal with a second-order nonlinear optical
coefficient d = 4 × 10−23 C/V2 and refractive index n = 2.2
(assumed to be approximately constant at all frequencies of
interest). The pump is obtained from a 1.06-μm Nd:YAG laser
that is frequency doubled using a second-harmonic generator.
The crystal is placed in a resonator using identical mirrors with



reflectances ℛ = 0.98. Phase matching is satisfied when the
signal and idler of the parametric amplifier are of equal
frequencies. Determine the minimum pump intensity required
to achieve parametric oscillation.

*22.5-2 Combined SHG and SFG. Two waves of angular
frequencies ω1 and ω2, along with their second-harmonic
counterparts of angular frequencies 2ω1 and 2ω2, and their
sum-frequency wave of angular frequency ω1 + ω2, interact
simultaneously in a second-order nonlinear medium.
Assuming that phase matching is satisfied for the two SHG
processes and for the SFG process, write coupled equations for
this five-wave-mixing process. Solve these equations
numerically and demonstrate that the presence of the second
wave may suppress the SHG process for the first.

*22.5-3 Coupled-Wave Equations for Degenerate Four-Wave
Mixing. Consider the collinear four-wave-mixing problem in a
third-order nonlinear medium, in the degenerate case ω4 = ω3
and ω1 + ω2 = 2ω3. Derive coupled wave equations for the
amplitudes A1, A2, and A3 assuming that the phase-matching
condition is fully met.

*22.6-1 Collinear Type-II Three-Wave Mixing in a BBO
Crystal. Repeat the analysis carried out in Example 22.6-1 to
demonstrate that the effective nonlinear coefficient deff for
Type-II o-e-e three-wave mixing for a crystal in the 3m group,
such as BBO, is deff = d22 cos2 θ cos 3ϕ.

*22.6-2 Relation Between Nonlinear-Optical and Electro-
Optic Coefficients. Show that the electro-optic coefficients
are related to the coefficients of optical nonlinearity by rijk =
−4∊odijk/∊ii∊jj and . These relations are
generalizations of (22.2-11) and (22.3-2), respectively. Hint: If
two matrices A and B are related by B = A−1 , the incremental
matrices ΔA and ΔB are related by ΔB = −A−1ΔAA−1.



Notes
1An alternative form of this relation, 𝒫 = ∊o(χε + χ(2)ε2 + χ(3)ε3), is
also widely used.
2Equation (22.3-7) is sometimes written in the alternative form,
n(I) = n + n2|E|2/2, where n2 differs from (22.3-6) by the factor η.

3The Raman gain coefficient is sometimes expressed in the form γR

/(P/A), which has units of cm·W−1.
4See, e.g., G. Cappellini and S. Trillo, Third-Order Three-Wave
Mixing in Single-Mode Fibers: Exact Solutions and Spatial
Instability Effects, Journal of the Optical Society of America B, vol.
8, pp. 824–838, 1991.
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Paul B. Corkum (born 1943) (left) was the principal progenitor
of the field of attosecond optics; James P. Gordon (1928–2013)
greatly advanced our understanding of optical solitons; and Gérard
Mourou (born 1944) (right) implemented optical chirped-pulse
amplification with Donna Strickland, for which they shared the
Nobel Prize with Arthur Ashkin in 2018.

The study of optical pulses began in earnest with the invention of
the laser because the earliest lasers could only emit light in the
form of pulses; the development of CW lasers required significant
additional effort. Interest in the characteristics and behavior of
ultrashort optical pulses flourished as progress was made in
generating optical pulses of shorter and shorter duration, with
concomitantly larger and larger peak intensity. The generation of
nanosecond optical pulses was followed by the generation of
picosecond pulses, then femtosecond pulses, and finally attosecond
pulses. Progress in generating ultrashort and ultrahigh-intensity (or
ultrahigh-field-strength) optical pulses was fueled by the many



important applications spawned by their availability. These include
nonlinear frequency conversion; the probing of ultrafast physical,
chemical, and biological processes; the generation of spatially
coherent X-ray beams; multiphoton imaging; materials processing;
and ultrafast optical fiber communications.

In the context of optics, the terms ultrafast and ultrashort are
generally used to describe pulse durations that lie in the range of
hundreds-of-femtoseconds to attoseconds. In electronics, however,
these same terms refer to much longer pulses, namely durations of
nanoseconds to tens-of-picoseconds, since the speed at which
electronics operates lies well below that for optics. A nanosecond
electrical pulse roughly has a GHz spectral width and so must be
guided by a broadband microwave circuit. A picosecond electrical
pulse, on the other hand, has a THz spectral width, which cannot be
sustained by conventional electronic or microwave circuitry. Were a
femtosecond electrical pulse to be generated, it would extend over a
spectral band that spans the entire frequency range from DC to a
PHz, beyond the ultraviolet edge of the visible band. By virtue of the
time–energy uncertainty relation σE σt ≥ ℏ/2 provided in (13.1-17),
the energy uncertainty of such a pulse would exceed the bandgap
energy of a typical semiconductor (Eg ≈ 1.5 eV), rendering
conventional electronics unreliable.

This Chapter

Ultrashort optical pulses may be directly generated by specially
designed lasers that incorporate particular switching schemes or
mode-locking methods (see Sec. 16.4). However, the shortest pulses
capable of being directly generated by such devices are often not
sufficiently short for certain applications. In this chapter, we
demonstrate how ultrashort pulses can be shortened yet further, as
well as reshaped, by making use of nonlinear dispersive optical
components and systems.

The chapter begins with a description of the basic temporal and
spectral characteristics of optical pulses (Sec. 23.1) and then
considers their filtering by: (1) linear dispersive bulk optical



components such as prisms and gratings (Sec. 23.2); and (2)
transmission through linear dispersive media such as optical fibers
(Sec. 23.3). Spatial effects, and the optics of pulsed waves with
ultrabroad spectral widths, are examined in Sec. 23.4. The nonlinear
optics of pulsed waves is addressed in Sec. 23.5, where several of the
CW nonlinear optical phenomena introduced in Chapter 22,
including parametric wave mixing, self-phase modulation, and
optical solitons, are generalized to pulsed waves. Finally, various
methods of measuring ultrashort optical pulses using “slow”
detectors are reported in Sec. 23.6.

23.1 PULSE CHARACTERISTICS
A. Temporal and Spectral Characteristics
A pulse of light is described by an optical field of finite time
duration. In this chapter we rely on the scalar wave theory of
Chapter 2, representing the field components with a generic
complex wavefunction U(r, t) normalized such that the optical
intensity is I(r, t) = |U(r, t)|2 (W/m2). When we are concerned with
only the temporal or spectral properties of a pulse at a fixed position
r, we simply use the functions U(t) and I(t).

Temporal and Spectral Representations

The complex wavefunction describing an optical pulse of central
frequency ν0 is written in the form U(t) = 𝒜(t) exp(jω0t), where
𝒜(t) is the complex envelope and ω0 = 2πν0 is the central angular
frequency. The complex envelope itself is characterized by its
magnitude |𝒜(t)| and phase φ(t) = arg{𝒜(t)}, so that U(t) = |𝒜(t)|
exp (j[ω0t + φ(t)]). The optical intensity I(t) = |U(t)|2 = |𝒜(t)|2

(W/m2) and the area under the intensity function ∫I(t)dt is the
energy density (J/m2).

The intensity profiles of typical pulses include the Gaussian
function, I(t) ∝ exp(−2t2/τ2) (which is examined in detail in Sec.



23.1B), the Lorentzian function I(t) ∝ 1/(1 + t2/τ2), and the
hyperbolic-secant function I(t) ∝ sech2(t/τ) (which appears in Sec.
23.5B in connection with optical solitons). The width of each of
these pulses is proportional to the time constant τ.

In the spectral domain, the pulse is described by the Fourier
transform V(ν) = ∫U(t) exp(−j2πνt)dt, which is a complex function
V(ν) = |V(ν)| exp[jψ(ν)]. The squared magnitude S(ν)= |V(ν)|2 is
called the spectral intensity and ψ(ν) is the spectral phase. The
function V(ν) is centered at the central frequency ν0 and vanishes
for negative ν since U(t) is a complex analytic signal (Sec. 2.6A). The
Fourier transform of the complex envelope, A(ν) = ∫𝒜(t)
exp(−j2πνt)dt = V(ν − ν0), is centered at ν = 0. If the pulse has a
narrow spectral width, then the complex envelope is a slowly
varying function of time (i.e., varies slightly within an optical cycle
1/ν0), but this is not the case for ultranarrow pulses with ultrawide
spectral distributions. Figure 23.1-1 illustrates the various temporal
and spectral functions that characterize an optical pulse.

Figure 23.1-1 Temporal and spectral representations of an optical
pulse. (a) The real part of the wavefunction Re{U(t)} = |𝒜(t)|
cos[ω0t + φ(t)], the magnitude of the envelope |𝒜(t)|, the intensity
I(t), and the phase φ(t). (b) Spectral intensity S(ν) and spectral
phase ψ(ν).

Temporal and Spectral Widths

The temporal and spectral widths of a pulse are the widths of the
intensity I(t) = |U(t)|2 and the spectral intensity S(ν)= |V(ν)|2,
respectively, as defined by any of the measures of width set forth in



Appendix A.2. Unless otherwise specified, we will use the full-width
at half-maximum (FWHM) definition and denote the temporal and
spectral widths as τFWHM and Δν, respectively.

Because of the Fourier-transform relation between U(t) and V(ν),
the spectral width is inversely proportional to the temporal width.
The coefficient of proportionality depends on the pulse shape and
the definition of width. This inverse relation is illustrated in Fig.
23.1-2(a) for a Gaussian pulse for which τFWHMΔν = 0.44.

Figure 23.1-2 (a) The relation Δν = 0.44/τFWHM between the
spectral width Δν and the temporal width τFWHM for a Gaussian
pulse. (b) The corresponding width Δλ for a pulse of central
frequency ν0 corresponding to the central wavelengths λ0 = c/ν0 =
0.5 μm, 1 μm, and 1.5 μm. As an example, a 10-fs pulse has a
spectral width Δν = 44 THz, corresponding to Δλ = 37 nm, 147 nm,
and 331 nm, if the central wavelength is λ0 = 0.5 μm, 1 μm, and 1.5
μm, respectively, as indicated by the open circles in the graph. This
relation is linear if Δν ≪ ν0 [see (23.1-1)].

The spectral intensity S(ν) is often plotted as a function of the
wavelength, Sλ(λ). This conversion is obtained by use of the relation
Sλ(λ) = S(ν)|dν/dλ| = (c/λ2)S(c/λ). The spectral width Δν may also
be converted into wavelength units. If Δν ≪ ν0, then the spectral
width in wavelength units is approximately Δλ ≈ |dλ/dν| Δν, or



(23.1-1)

(23.1-3)

(23.1-2)

(23.1-4)

Spectral Width

where λ0 = c/ν0 is the wavelength corresponding to the central
frequency. If Δν is in units of THz, λ0 in μm, and Δλ in nm, then

For example, a spectral width Δν = 1 THz corresponds to Δλ = 1 nm
at λ0 = 0.55 μm, and to 4 nm at λ0 = 1.1 μm. This relation is
illustrated in 23.1-2(b).

For ultranarrow pulses with large Δν, the exact expression for Δλ is

However, under these conditions, the concept of spectral width
loses its significance. A 2-fs pulse, e.g., has spectral width Δν = 220
THz, corresponding to Δλ = 847 nm at λ0 = 1 μm, i.e., the spectrum
is quite broad and extends from visible through infrared.

Instantaneous Frequency

Another descriptor of the optical pulse is the time dependence of its
instantaneous frequency. The instantaneous angular frequency ωi is
the derivative of the phase of U(t), and the instantaneous frequency
νi = ωi/2π, so that

Instantaneous Frequency



(23.1-5)

If the phase is a linear function of time, φ(t) = 2π ft, then the
instantaneous frequency νi = ν0 + f; i.e., a linearly varying phase
corresponds to a fixed frequency shift. Nonlinear time dependence
of the phase corresponds to time-dependent instantaneous
frequency.

Chirped Pulses

A pulse is said to be chirped, or frequency modulated (FM), if its
instantaneous frequency is time varying. If νi is an increasing
function of time at the pulse center (t = 0), i.e., φ″ = d2φ/dt2 > 0,
then the pulse is said to be up-chirped. If νi is a decreasing
function of time at the pulse center, i.e., φ″ < 0, it is said to be
down-chirped.

In particular, if the phase of an optical pulse of width τ is a
quadratic function of time φ(t)= at2/τ2, where a is a constant, then
φ″ = 2a/τ2 so that the instantaneous frequency νi = ν0 + (a/πτ2)t is
a linear function of time. The pulse is then said to be linearly
chirped and the parameter

Chirp Parameter

is called the chirp parameter. The pulse is up-chirped if a > 0 and
down-chirped if a < 0. At t = τ/2, the instantaneous frequency
increases by a/2πτ, which is of the order of magnitude of aΔν. Thus,
the chirp parameter is indicative of the ratio between the
instantaneous frequency change at the pulse half-width point and
the spectral width Δν. Examples of linearly chirped pulses and their
instantaneous frequencies are illustrated in Fig. 23.1-3.



Figure 23.1-3 Linearly up-chirped and down-chirped optical
pulses. (a) An up-chirped pulse has an increasing instantaneous
frequency. (b) A down-chirped pulse has a decreasing instantaneous
frequency. In this figure, the pulse width is 20 fs and the central
frequency ν0 = 300 THz. The letters R and B, which represented red
and blue, are generic indicators of long and short wavelengths,
respectively.

If the dependence of the phase φ on time is an arbitrary nonlinear
function, as in Fig. 23.1-1, then it can be approximated by a Taylor-
series expansion in the vicinity of the pulse center, and the chirp
coefficient a defined by (23.1-5) then represents the lowest-order
chirping effect resulting from the quadratic term of the expansion.

Time-Varying Spectrum

It is often useful to trace the spectral changes of a time-varying
pulse throughout its time course. Such changes are obscured in the
Fourier transform, which only provides an average spectral
representation of the entire signal without noting which frequencies
occur at which times. This is particularly evident if the signal is
composed of a sequence of segments each with a different spectral
composition. A good example is a musical signal for which the
spectral changes indicate changes of the musical score as time
progresses.



While the instantaneous frequency can be a measure of the time-
dependent nature of the spectrum, it is not always adequate since it
is based only on the phase and ignores the amplitude. A commonly
used measure is based on a sliding window, or gate, that selects only
one short time segment at a time, and obtains the Fourier transform
of the pulse within the window duration. This is repeated at
different locations of the sliding window, as illustrated in Fig. 23.1-
4, and the result is plotted as a function of both frequency and time
delay. The resultant 2D function is called the short-time Fourier
transform. Its squared magnitude is called the spectrogram and
is often plotted as a picture with the horizontal and vertical axes
representing time and frequency, respectively, as illustrated in Fig.
23.1-4.



(23.1-6)

Figure 23.1-4 The short-time Fourier transform of U(t) is
constructed by making use of a sequence of Fourier transforms of
U(t) multiplied by a moving window W(t − τ). The spectrogram S(ν,
τ) is the squared magnitude of these Fourier transforms. In this
example, U(t) comprises two Gaussian pulses, each of time constant
τ = 60 fs and central frequency 100 THz. The first pulse is up-
chirped (a = 5) whereas the second, which has a smaller amplitude,
is down-chirped (a = −5). The window function W(t) is Gaussian
with time constant τ = 20 fs.

If W(t) is a window function of short duration T beginning at t =
0, and if U(t) is the pulse wavefunction, then the product U(t) W(t −
τ) is a segment of the pulse of duration T beginning at time τ. The
Fourier transform of the segment is



(23.1-7)

(23.1-8)

(23.1-9)

(23.1-10)

Short-Time Fourier Transform

The function Φ(ν, τ) is the short-time Fourier transform and its
squared magnitude S(ν, τ)= |Φ(ν, τ)|2 is the spectrogram.

B. Gaussian and Chirped Gaussian Pulses

Transform-Limited Gaussian Pulse

A transform-limited Gaussian pulse has a complex envelope with
constant phase and Gaussian magnitude, so that

where τ is a real time constant. The intensity I(t) = I0 exp(−2t2/τ2)
is also a Gaussian function, with peak value I0 = |A0|2 , 1/e full
width , and FWHM

The Fourier transform of the complex envelope, A(ν) ∝
exp(−π2τ2ν2), is a Gaussian function, and so is the spectral intensity

The FWHM of the spectral intensity is

so that the product of the FWHM temporal and spectral widths is
τFWHMΔν = 0.44. Figure 23.1-5(a) illustrates the temporal and
spectral characteristics of the transform-limited Gaussian pulse.

As discussed in Appendix A.2, the transform-limited Gaussian pulse
has a minimum temporal-and spectral-width product, and this is
why it is called transform limited (also called Fourier-transform
limited or bandwidth limited).



(23.1-11)

Though the Gaussian pulse has an ideal shape that is not
encountered exactly in practice, it is a useful approximation that
lends itself to analytical studies.

Chirped Gaussian Pulse

A more general Gaussian pulse has a complex envelope 𝒜(t) = A0

exp(−αt2), where α = (1 − ja)/τ2 is a complex parameter and τ and a
are real parameters, so that

The magnitude of the complex envelope is a Gaussian function |A0|
exp(−t2/τ2) and the intensity is also Gaussian. The phase is a
quadratic function φ = at2/τ2 so that the instantaneous frequency νi

= ν0 + at/πτ2 is a linear function of time; i.e., the pulse is linearly
chirped with chirp parameter a. The pulse is up-chirped for positive
a, down-chirped for negative a, and transform-limited (unchirped)
for a = 0. The Fourier transform of the complex envelope 𝒜(t)= A0

exp(−αt2) is proportional to exp(−π2τ2ν2/α), which is also a
Gaussian function of frequency. The spectral intensity S(ν) is
proportional to exp[−2π2τ2(ν − ν0)2/(1 + a2)], which is Gaussian
with FWHM . This is a factor
of  greater than that of an unchirped pulse (a = 0) of the
same time constant τ. The product of the FWHM temporal and
spectral widths is , so that the unchirped
Gaussian pulse (a = 0) has the smallest temporal-and spectral-
width product. The spectral phase ψ(ν) ∝ aν2 is a quadratic function
of frequency.

Key equations characterizing the chirped Gaussian pulse are
provided in Table 23.1-1. Figure 23.1-5 illustrates the temporal and
spectral characteristics of transform-limited and chirped Gaussian
pulses.



Table 23.1-1 Temporal and spectral properties of a chirped
Gaussian pulse of peak amplitude A0, peak intensity I0 = |A0|2,
central frequency ν0, time constant τ, and chirp parameter a.



Figure 23.1-5 Temporal and spectral profiles of three Gaussian
pulses of central frequency ν0 = 300 THz (corresponding to a
wavelength of 1 μm and a 3.3-fs optical cycle) and width τFWHM = 5
fs (τ = 4.23 fs). (a) Transform-limited pulse; the spectral width Δν =
88 THz (Δλ = 73 nm). (b) Up-chirped pulse of chirp parameter a =
2; the spectral width is a factor of  greater than in (a), so
that Δν = 197 THz. The instantaneous frequency is a linearly
increasing function of time with value ν0= 300 THz at t = 0 (center
of the pulse) and values νi = ν0(1 ± at/πν0τ) = 300(1 ± 0.497) THz at
t = ±τ. The frequency is swept between 151 THz and 449 THz as t
changes from −τ to +τ. This corresponds to a change of the
wavelength between 0.67 μm and 1.99 μm. (c) Same as in (b) but
the pulse is down-chirped with chirp parameter a = −2.

C. Spatial Characteristics
In this section we examine a few simple examples of pulsed optical
waves traveling in free space or, alternatively, in a linear,
homogeneous, and nondispersive medium. In such media, in
accordance with (2.2-4), the complex wavefunction U(r, t) obeys the
wave equation ∇2U − (1/c2)∂2U/∂t2 = 0. The simplest exact
solutions of this equation are the pulsed plane wave and the pulsed
spherical wave. We discuss these solutions and also introduce the



pulsed Gaussian beam. A more detailed study of the spatial
properties of pulsed light is deferred to Sec. 23.4.

Pulsed Plane Wave

As discussed in Sec. 2.6A, a pulsed plane wave traveling in the z
direction has a complex wavefunction of the form U(r, t) = 𝒜(t −
z/c) exp[jω0(t − z/c)], where 𝒜(t) is an arbitrary function. The
corresponding intensity is I(t − z/c), where I(t) = |𝒜(t)|2. If the
width of I(t) is τ, then the traveling pulse occupies a distance Δz =
cτ at any time and travels without change at a velocity c, as
illustrated in Fig. 23.1-6. Numerical values of the pulse temporal
and spatial widths in free space are:

Temporal width τ 1 ns 1 ps 1 fs 1 as
Spatial width cτ 30 cm 0.3 mm 0.3 μm 0.3 nm

Figure 23.1-6 The envelope of a plane-wave pulse of width τ
traveling in the z direction with velocity c. The pulse occupies a
distance cτ at any time.

A pulsed plane wave traveling at an angle θ with the z axis has a
complex wavefunction U(r, t)= 𝒜[t − (x sin θ + z cos θ)/c] exp
[−jk0(x sin θ + z cos θ)] exp(jω0t) and intensity I[t − (x sin θ + z cos
θ)/c], where I(t)= |𝒜(t)|2. If this intensity is recorded as a function
of x and z in a sequence of snapshots (each at a fixed time), then the
result is as illustrated in Fig. 23.1-7(a). The bright stripe in each
snapshot represents the traveling pulse at a given time. For
example, a 100-fs pulse in free space appears as a stripe of width 30
μm. Note that a single vertical line (fixed z) intercepting the stripe



in a single snapshot (fixed t) provides a complete record of the pulse
temporal profile since it records the function I(−x sin θ/c +
constant). Thus, the temporal profile may be measured by observing
the spatial profile of a snapshot of the pulse. This can be utilized for
pulse detection, as will be discussed in Sec. 23.5B.

Pulsed Spherical Wave

Another simple solution of the wave equation is the pulsed
spherical wave U(r, t)= (1/r)g(t − r/c) exp[jω0(t − r/c)], where g(t)
is an arbitrary function. The pulse expands radially and its
wavefronts are concentric spheres, as illustrated in Fig. 23.1-7(b). At
any fixed time, it occupies a spherical shell of radial width cτ, where
τ is the width of g(t).

* Paraxial Wave Modulated by Slowly Varying Pulse

When the envelope of a pulsed wave varies slowly with time so that
it is approximately constant within an optical cycle, it is said to have
a slowly varying envelope (SVE). Because of the associated
narrow spectral width, Δν ≪ ν0, the spatial behavior is
approximately the same as that of a monochromatic (CW) wave at
the central frequency ν0 or the wavelength λ0 = c/ν0. The wave may
therefore be regarded as a quasi-CW pulsed wave.

If the wave is also paraxial (see Sec. 2.2C), it may be expressed in
terms of its envelope in the general form U(r, t) = 𝒜(r, t)
exp(−jk0z) exp(jω0t), where the envelope varies slowly with z so
that it is approximately constant within a distance equal to a
wavelength λ0 = 2π/k0; i.e., the condition  is satisfied.
Since the envelope is also slowly varying in time, the approximation 

 is also applicable. Under such conditions, the wave
equation ∇2U −(1/c2)∂2U/∂t2 = 0 leads to an approximate equation
for the envelope,



(23.1-24)

Paraxial SVE Equation

where  is the transverse Laplacian operator.
Equation (23.1-24) is known as the paraxial SVE equation. For a CW
wave, ∂𝒜/∂t = 0 and (23.1-24) reproduces the paraxial Helmholtz
equation (2.2-23).

As can be seen by direct substitution, (23.1-24) is satisfied by 𝒜(ρ, z,
t) = g(t − z/c)𝒜0(r), where g is an arbitrary function of the retarded
time t − z/c and 𝒜0(r) satisfies the paraxial Helmholtz equation 

, which is applicable in the CW case. It
follows that in this approximation a paraxial wave at the wavelength
λ0 may be modulated by a slowly varying pulse of arbitrary shape,
without altering its spatial behavior.

Figure 23.1-7 (a) Four snapshots (taken at equal time intervals) of
a pulsed plane wave traveling at an angle. Each snapshot contains a
single line of width cτ (in the z direction), where τ is the pulse
width. The line moves from left to right as the pulsed wave
propagates. (b) Same as (a) but for a spherical wave; (c) Same as (a)
but for a Gaussian beam.

Pulsed Gaussian Beam

One of the solutions of the paraxial Helmholtz equation is the
Gaussian beam described by (3.1-5). In the pulsed quasi-CW case,
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the Gaussian beam is given by

where g(t) is an arbitrary slowly varying function of the retarded
time t − z/c and z0 is the Rayleigh range (also called the diffraction
length). In this approximation, except for the retardation effect,
there is no coupling between space and time; i.e., the beam
maintains its Gaussian spatial profile at all times, and the pulse
maintains its initial temporal profile at all positions. Snapshots of
such a beam are illustrated in Fig. 23.1-7(c).

It will be shown in Sec. 23.4 that for ultranarrow pulses, for which
the SVE approximation is not applicable, space–time coupling can
be significant, and a wave that is Gaussian in time and space in a
given transverse plane becomes non-Gaussian in both time and
space as it propagates in free space.

23.2 PULSE SHAPING AND COMPRESSION
The temporal profile of a short optical pulse is unavoidably altered
as it travels through a dispersive optical system. This is because the
individual spectral components that constitute the pulse are
attenuated and/or phase shifted by different amounts. The shorter
the optical pulse, the greater is its spectral width and thus the more
dramatic is the effect of dispersion. On the other hand, dispersive
optical elements may be designed to effect desired changes in the
shape of an optical pulse, such as compression or stretching.

In this section, we study only temporal effects in linear dispersive
optical media, i.e., only pulsed plane waves are considered. A
discussion of spatial effects in linear optical media, including
diffraction and beam propagation in dispersive media, is reserved
for Sec. 23.4. Dispersion in nonlinear systems is examined in Sec.
23.5.
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A. Chirp Filters

Linear Filtering of an Optical Pulse

The transmission of an optical pulse through an arbitrary linear
optical system is generally described by the theory of linear systems
(see Appendix B). A linear time-invariant system is characterized by
a transfer function H(ν), which is the factor by which the Fourier
component of the input pulse at frequency ν is multiplied to
generate the output component at the same frequency. If U1(t) and
U2(t) are the complex wavefunctions of the original and filtered
pulses, respectively, then their Fourier transforms V1(ν) and V2(ν)
are related by

In using (23.2-1) we only need to know H(ν) at frequencies within
the spectral band of the pulse, which is a region of width Δν
surrounding the central frequency ν0, as illustrated in Fig. 23.2-1.
When Δν « ν0, it is convenient to work with the complex envelope
instead of the wavefunction. Using the relation U(t) = 𝒜(t)
exp(j2πν0t) and the shift property of the Fourier transform, V(ν) =
A(ν − ν0), where A(ν) is the Fourier transform of 𝒜(t), it follows
from (23.2-1) that A2(ν − ν0) = H(ν) A1(ν − ν0), where the subscripts
1 and 2 denote the input and output pulses, respectively. Defining
the frequency difference f = ν − ν0, we obtain A2(f) = H(ν0 + f) A1(f),
or

where

Envelope Transfer Function
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is called the envelope transfer function. Working with (23.2-2)
is generally more convenient than working with (23.2-1), since the
frequency f is typically much smaller than ν. These relations are
illustrated in Fig. 23.2-1.

The transfer functions H(ν) and He(f) are complex functions, H(ν) =
|H(ν)| exp[−jΨ(ν)] and He(f) = |He(f)| exp[−jΨe(f)], where Ψe(f) =
Ψ(ν0 + f) are real functions representing the phase transfer. The
phase introduced by the filter often plays a more important role
than the magnitude in the reshaping of pulses. Throughout this
chapter we will deal with phase filters, i.e., filters for which the
magnitude |H(ν)|is approximately constant within the frequency
range of interest.

Figure 23.2-1 Filtering the wavefunction with a filter H(ν) (upper
figure) is equivalent to filtering the envelope with a filter He(f) =
H(ν0 + f) (lower figure). The shaded area represents the spectral
band of interest.

When transformed to the time domain, (23.2-2) becomes the
convolution relation

where he(t) is the inverse Fourier transform of He(f).
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The Ideal Filter

An ideal filter preserves the shape of the input pulse envelope; it
merely multiplies it by a constant (of magnitude < 1 for an
attenuator and > 1 for an amplifier), and possibly delays it by a fixed
time. The transfer function has the form

where H0 is a constant, G = |H0|2 is the intensity reduction or gain
factor, and τd is the time delay. The phase is a linear function of
frequency Ψe(f) = Ψ0 + 2πτdf, where Ψ0 = arg{H0} is a constant
phase [see Fig. 23.2-2(a)]. Using a basic Fourier-transform property
(see Appendix A), the phase 2πτdf is equivalent to a time delay τd.
The input and output envelopes are related by 𝒜2(t) = H0𝒜1(t − τd),
and the intensities are related by I2(t) = GI1(t − τd). For a
distributed attenuator/amplifier of attenuation/gain coefficient α,
velocity c, and length d, the transfer function is He(f) = exp(−αd/2)
exp(−j2πfd/c) so that G = exp (−αd) and τd = d/c. A slab of ideal
nondispersive material with attenuation coefficient α and refractive
index n is an example of such filter, where c = co/n. Here, the
transfer function H(ν) = exp(−αd/2) exp(−jβd), where β = 2πν/c is
the propagation constant (see Sec. 5.5A), and He(f) = exp(−αd/2)
exp(−j2πfd/c). When α and n are frequency dependent, i.e., the
medium is dispersive, the filter is not ideal and the pulse shape may
be significantly altered, as will be shown in Sec. 23.3.

The Chirp Filter

Perhaps the most important filter in ultrafast optics is the Gaussian
chirp filter, often simply called the chirp filter. It is a phase filter
whose phase is a quadratic function of frequency Ψe(f) = bπ2f2 [see
Fig. 23.2-2(b)] so that the envelope transfer function is Gaussian,
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Chirp-Filter Transfer Function

where b is a real parameter (units of s2) called the chirp
coefficient of the filter. For b > 0 the filter is said to be up-
chirping, and for b < 0 it is down-chirping.

The corresponding impulse response function is the inverse
Fourier transform of (23.2-6) (see Table A.1-1), which is another
Gaussian function

Chirp-Filter Impulse Response Function

It too has a phase that is a quadratic function of time, i.e., it is a
linearly chirped function, which is up-chirped for positive b and
down-chirped for negative b.

A cascade of two chirp filters with coefficients b1 and b2 is
equivalent to a single chirp filter with coefficient b = b1 + b2, since
the transfer functions multiply. Thus, a down-chirping filter may
compensate the effect of an up-chirping filter, so that the action of a
chirp filter is reversible.

Figure 23.2-2 Magnitude and phase of the envelope transfer
functions for (a) an ideal filter, and (b) a chirp filter (with b > 0).
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As can be seen by substituting (23.2-7) into (23.2-4), the pulse
envelopes at the output and input of a chirp filter are related by

This transformation is mathematically similar to Fresnel diffraction
[see (4.3-12) in Sec. 4.3B], and for a sufficiently large chirp
parameter b it becomes similar to Fraunhofer diffraction, i.e.,
equivalent to a Fourier transform (see Sec. 4.3A). The analogy
between diffraction in space and dispersion in time, which is
described by a chirp filter, is formally established in Sec. 23.3D.

Approximation of Arbitrary Phase Filter by a Chirp Filter

When the filter magnitude and phase vary slowly within the narrow
spectral width of a pulse, we may assume that the magnitude is
approximately constant at its central-frequency value, |H(ν0 + f)| ≈
|H(ν0)| ≡ |H0|, and expand the phase function Ψ(ν) in a Taylor
series centered at the frequency ν0. Retaining only the first three
terms, , where 

, we obtain 
.

It follows from (23.2-3) that the envelope transfer function may
therefore be approximated by

This filter is equivalent to a cascade of an ideal filter and a chirp
filter (see Fig. 23.2-3). The ideal filter is composed of a constant
multiplier H0 = |H0| exp(−jΨ0), which does not alter the shape of
the pulse and may be ignored, and a phase shift exp(−j2πτdf), which
is equivalent to a time delay
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Group Delay

The chirp filter has a transfer function exp(−jbπ2f2) with chirp
coefficient

Chirp Coefficient

Figure 23.2-3 Approximation of an arbitrary filter with slowly
varying transfer function as a cascade of an ideal filter (including a
time delay) and a chirp filter.

We conclude that the principal source of distortion in a dispersive
system with slowly varying phase is described by a chirp filter.
Examples of such systems based on angular dispersion and Bragg
gratings are considered subsequently in this section. Dispersive
media are also described by chirp filters, as will be shown in Sec.
23.3. A more accurate approximation of the phase filter would
require the inclusion of additional terms in the Taylor-series
expansion of the phase Ψ(ν). The third-order term corresponds to a
phase filter , and higher-order terms can be similarly
defined.

Chirp Filtering of a Transform-Limited Gaussian Pulse
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We now consider the effect of a chirp filter with a transfer function
given by He(f) = exp(−jbπ2f2) and chirp coefficient b on an
unchirped (transform-limited) Gaussian pulse of complex envelope 

. Since the Fourier transform of 𝒜1(t) is 
, by virtue of (23.2-2) the filtered pulse

has a complex envelope with Fourier transform

This expression may be cast as the Fourier transform of a chirped
Gaussian pulse of width τ2 and chirp parameter a2, which, in
accordance with (23.1-18), has a Fourier transform

Equating the exponents in (23.2-12) and (23.2-13), we obtain

and equating the amplitudes we obtain .
Equating the real and imaginary parts of (23.2-14) leads to the
expressions that relate the parameters of the output pulse to those
of the input pulse:

We conclude that upon transmission through a chirp filter, an
unchirped Gaussian pulse remains Gaussian and its properties are
modified as follows:



The pulse width is increased by a factor . For 
, this factor is . Thus, the filter begins to have a

significant effect when its chirp coefficient is of the order of the
squared width of the original pulse. For , i.e., for large
chirp coefficient or narrow original pulse, τ2 ≈ |b|/τ1, indicating
that the width of the filtered pulse is directly proportional to |b|
and inversely proportional to τ1, so that narrower pulses
undergo greater broadening.

The initially transform-limited pulse becomes chirped with a
chirp parameter a2 that is directly proportional to the filter
chirp coefficient b and inversely proportional to the square of
the original pulse width. The filtered pulse will be up-chirped if
b is positive, i.e., if the filter is up-chirping, and will be down-
chirped if b is negative, i.e., the filter is down-chirping. For 

, the chirp parameter a2 = 1.

The spectral width of the pulse remains unchanged. The
original pulse has a spectral width Δν = 0.375/τ1, and the
filtered pulse has an equal spectral width 

. This is not surprising since the
chirp filter is a phase filter that does not alter the spectral
intensity of the original pulse. The invariance of the spectral
width may also be viewed as follows: The temporal width of the
pulse is expanded by a factor , so that the associated
spectral width must be compressed by the same factor.
However, because the filtered pulse is chirped this is
accompanied by a spectral broadening by the very same factor,
resulting in an unchanged spectral width.

The dependence of the pulse broadening ratio τ2/τ1 and the chirp
parameter a2 on the ratio  is illustrated in Fig. 23.2-4.
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Figure 23.2-4 A chirp filter with coefficient b converts an
unchirped Gaussian pulse of width τ1, marked by an open circle,
into a chirped Gaussian pulse of width τ2 and chirp parameter a2.
The pulse width increases as |b| increases, and is greater for smaller
τ1. The chirp parameter is directly proportional to b and is greater
for smaller τ1.

Chirp Filtering of a Chirped Gaussian Pulse

When a chirped Gaussian pulse is transmitted through a chirp filter,
the outcome is also a chirped Gaussian pulse, with altered
parameters. The pulse will be either expanded or compressed and its
chirp parameter will be altered, and may under certain conditions
diminish to zero so that the new pulse may become unchirped
(transform limited). This compression property offers a technique
for generation of picosecond and femtosecond optical pulses, as will
be shown in subsequent sections.

If the original pulse has width τ1, chirp parameter a1, and complex
envelope , then upon filtering with a
chirp filter He(f) = exp(−jbπ2f2 , the result is a chirped Gaussian
pulse , where
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Equating the real and imaginary parts of (23.2-18) leads to the
following expressions for the width τ2 and chirp parameter a2:

A sketch of the dependence of the pulse broadening ratio τ2/τ1 and
the chirp parameter a2 on the ratio  is shown in Fig. 23.2-5. To
determine the value bmin of the filter's chirp parameter at which the
filtered pulse has its minimum width τ0, we equate to zero the
derivative of τ2 in (23.2-19) with respect to b. The result is

Using (23.2-21) and (23.2-22) we rewrite (23.2-19) and (23.2-20) in
terms of bmin and τ0 as follows:

When b = bmin, (23.2-23) and (23.2-24) give τ2 = τ0 and a2 = 0, so
that the pulse is both maximally compressed and unchirped. Based
on (23.2-22), if the original pulse is up-chirped (a1 > 0), then bmin <
0, so that a down-chirping filter is necessary for maximal
compression. If the original pulse is unchirped (a1 = 0), no chirp
filter can compress it further, since it is already at its minimum
width (bmin = 0 and τ0 = τ1).



Note that (23.2-23) and (23.2-24) are identical to (23.2-15) and
(23.2-16), which were derived for the initially unchirped pulse,
except that b is replaced by b − bmin. Thus, the graphs in Fig. 23.2-4
also apply to the case of an initially chirped pulse except for a shift
in the horizontal direction by the value bmin, as determined from
(23.2-22).



EXAMPLE 23.2-1.

Compression/Expansion of a Chirped Pulse Using a
Chirp Filter.

a. A Gaussian pulse of width τ1 and negative chirp parameter
a1 = −1 is filtered by a chirp filter of coefficient b. The
filtered pulse is also Gaussian and has width τ2 and chirp
parameter a2. In this case, the filtered pulse becomes
maximally compressed and unchirped when  and
the compression factor is , so that the compressed
pulse width . The normalized pulse width τ2/τ0 is
plotted in Fig. 23.2-5(a) versus the ratio . For small
positive values of b, the pulse is compressed and acquires
positive chirp. It becomes maximally compressed (and
unchirped) when . As b increases further,
the pulse is expanded. For negative b, the pulse is expanded
and acquires additional down-chirp.

b. An initially up-chirped pulse with chirp parameter a1 = 1 is
expanded with the application of an up-chirping filter (b >
0); its chirp parameter a2 > 1. Application of a down-
chirping filter (b < 0) results in compression. Maximal
compression is achieved at  (or ), as
illustrated in Fig. 23.2-5(b).



Figure 23.2-5 Filtering a Gaussian pulse of width τ1 and chirp
parameter a1 with a chirp filter of chirp coefficient b, which is
positive/negative in the unshaded/shaded areas. Two values of
the original chirp parameter are considered: (a) a1 = −1, and (b)
a1 = 1. The filtered pulse has width τ2 and chirp parameter a2.
Parameters of the original pulse (b = 0) are indicated by open
circles. The minimum pulse width  is used for
normalization. The upper graphs show the dependence of the
normalized pulse width on the ratio . The lower graphs show
the dependence of the chirp parameter a2 on .

EXAMPLE 23.2-2.

Chirped-Pulse Amplification (CPA). The amplification of
an ultrashort high-peak-power optical pulse is often limited by
nonlinear effects such as saturation and self-focusing in the
optical amplifier. Such limitations may be alleviated if the pulse
is stretched by use of a chirp filter prior to amplification, and
compressed by filtering through a second chirp filter after it has
been amplified, as illustrated in Fig. 23.2-6. The first filter lowers
the peak power by stretching the pulse, while maintaining its
total energy. The second chirp filter, which has a chirp parameter
of equal magnitude and opposite sign, compresses the pulse
back to its original width. The amplification process is



distributed over a longer time duration so that the peak power
does not exceed the amplifier limits.

Figure 23.2-6 Chirped-pulse amplifier.

EXAMPLE 23.2-3.

Ultrafast, Petawatt, High-Repetition-Rate Laser Using
CPA. The HAPLS laser system1 makes use of chirped-pulse
amplification to generate ultrafast, high-power pulses at a
central wavelength of 800 nm and a repetition rate of 10
pulses/s. Each pulse delivers an energy of 30 J in a duration of
30 fs, corresponding to a peak power of 1 PW. The 17-mlong
system comprises a frequency-doubled, diode-pumped
Nd3+:glass laser, which in turn serves as the pump for a
Ti3+:sapphire femtosecond laser (Sec. 16.3) that incorporates a
chirped-pulse amplifier (Example 23.2-2). The power-amplifier
portion of the pump laser contains a collection of Nd3+:glass
laser-amplifier slabs similar to those used at the National
Ignition Facility (Sec. 15.3B). The slabs are pumped by four
AlGaAs laser-diode stacks (Sec. 18.4A) (comprising > 500 000
laser diodes) that collectively deliver 1000-J pulses of 0.3-ms
duration, at a wavelength of 888 nm and at a repetition rate of
10 pulses/s, with a peak power of 3.2 MW and an average power
of 10 kW. This high repetition rate is enabled by laser-diode
pumping, which is a factor of 20 more efficient than flashlamp
pumping and thus reduces heating considerably. The Nd3+:glass



pump laser produces 200-J pulses at a repetition rate of 10
pulses/s, with an average power of 2 kW, at a wavelength of
1.053 μm. After passage through a second-harmonic-generation
(SHG) module (Sec. 22.2A), which halves the wavelength to
526.5 nm, the pulse train pumps the Ti3+:sapphire femtosecond
laser that incorporates chirped-pulse amplification using a
diffraction-grating chirp filter for pulse compression (Example
23.2-5). The net result is that the 1000-J, 3.2-MW pulses of 0.3-
ms duration delivered by the laser-diode stacks are converted
into 30-J, 1-PW pulses of 30-fs duration, at the same repetition
rate of 10 pulses/s. The 10-kW average optical power generated
by the laser-diode stacks is reduced to 300 W at the output of
the HAPLS, providing an optical-to-optical efficiency ηo ≈ 3%.
Since the HAPLS consumes 150 kW of electrical power, its wall-
plug efficiency ηc ≈ 0.2%. Multi-petawatt systems generally fall
into two classes: 1) those with pulse durations < 50 fs that are
principally based on Ti3+ -doped sapphire lasers; and 2) those
with pulse durations > 100 fs that are principally based on Nd3+ -
and Yb3+ -doped glass or crystals (see, e.g., Example 15.3-1).

B. Implementations of Chirp Filters
Chip filters are implemented by use of dispersive optical systems.
The following are some of the various origins of dispersion in
optical components (see also Sec. 10.3B):

Material dispersion results from the frequency/wavelength
dependence of the index of refraction and/or absorption
coefficient of optical materials.

Spatial dispersion takes a variety of forms:

– Angular dispersion has its origin at the
frequency/wavelength dependence of the deflection angle
of certain optical components. This is most pronounced in
diffractive optical elements such as diffraction gratings and



holographic optical elements. Refractive elements such as
prisms exhibit angular dispersion as a result of their
material dispersion.

– Multipath dispersion is associated with the existence of
multiple paths with different optical pathlengths. An
example is modal dispersion in optical waveguides, which
results from the different propagation constants of the
waveguide modes (Sec. 9.2).

– Optical systems dominated by interferometric effects are
wavelength dependent and therefore exhibit
interferometric dispersion. For example, stratified media
and periodic structures such as Bragg gratings have
frequency-dependent reflectance and transmittance.
Optical resonators have strong frequency selectivity, and
are therefore highly dispersive.

– Likewise, diffraction from small apertures is wavelength
dependent and can therefore be responsible for significant
changes in the profiles of short optical pulses; this is a
form of diffractive dispersion. In general, propagation
through, or scattering from, spatial structures or
inhomogeneities of size comparable to a wavelength
contribute to this type of dispersion. Even single-mode
waveguides exhibit waveguide dispersion, which is
associated with the confinement of light in small
structures (see Sec. 9.2).

Polarization dispersion is a result of the wavelength
dependence of the anisotropic properties of optical materials,
components, and systems.

Nonlinear dispersion also plays an important role in the
reshaping of intense optical pulses, because of the wavelength
dependence of nonlinear optical effects such as self-phase
modulation and parametric interactions governed by frequency-
dependent energy conservation and phase-matching conditions.
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Any of these dispersive effects may be used to implement the chirp
filter, as demonstrated by the following examples.

Angular-Dispersion Chirp Filters

Optical elements that introduce angular dispersion, such as prisms
and diffraction gratings, may function as chirp filters. A generic
element with such behavior, illustrated schematically in Fig. 23.2-
7(a), disperses the monochromatic components that constitute a
pulsed plane wave into different directions. Assume that the
component with frequency ν is directed at an angle θ(ν) measured
from the direction of the component at the central frequency ν0, i.e.,
θ(ν0) = 0. If ℓ0 is the optical pathlength of the central-frequency
component, then the optical pathlength of the component at
frequency ν is ℓ0 cos θ(ν), as can be seen from Fig. 23.2-7(a). The
phase shift encountered by the spectral component ν is

and the corresponding phase filter has a transfer function H(ν) =
exp[−jΨ(ν)].

A pulsed beam is typically filtered by use of four identical dispersive
elements arranged as shown in Fig. 23.2-7(b). One element
separates the spectral components of the optical pulse into separate
directions. A second inverted element brings back the rays into
parallelism, as illustrated in the left block of Fig. 23.2-7(b). The
process is reversed by two identical elements in the reverse order, as
illustrated in the right block of the figure. The overall system is a
phase filter with Ψ(ν) = (2πν/c)ℓ0 cos θ(ν), where ℓ0 is the overall
optical pathlength of the central-frequency component.
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Figure 23.2-7 (a) An optical element exhibiting angular
dispersion. The component at frequency ν is separated from that at
the central frequency ν0 by a deflection angle θ(ν). At the
observation point P0, the pathlength of the central-frequency
component is ℓ0 (distance ). The pathlength of the component at
frequency ν is the distance , where P1 is determined by lining up
the wavefront to pass through the observation point P0. Therefore,
the distance  in the triangle PP1P0 is ℓ0 cos θ(ν). (b) A chirp filter
made with a combination of four of the elements in (a).

The function θ(ν) depends on the dispersive element used, as will
be shown in subsequent examples. Typically, θ(ν) is sufficiently
small so that  and

If θ(ν) is slowly varying within the pulse spectral width, then it may
be approximated by a few terms of a Taylor-series expansion about
the central frequency ν0. The derivatives of Ψ(ν) evaluated at ν = ν0,
where θ(ν0) = 0, are:

Based on (23.2-10) and (23.2-11), the filter is equivalent to a time
delay τd = ℓ0/c and a chirp filter with chirp coefficient
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Angular-Dispersion Chirp Coefficient

where αν = dθ/dν is the angular dispersion coefficient. Since b
is always negative in this approximation, regardless of the sign of
αν, such filters are always down-chirping. Higher-order terms of the
series expansion of the phase do, of course, introduce additional
pulse shaping effects.
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EXAMPLE 23.2-4. Prism Chirp Filter. The angle of
deflection θd(ν) of a ray incident on a prism is a function of the
refraction geometry and the refractive index n(ν) (see Fig. 23.2-
8). Since θ(ν) = θd(ν) − θd(ν0) the angular dispersion coefficient
αν = dθ/dν = (dθd/dn)(dn/dν). Using the relations dn/dν = −
(λo/ν0)dn/dλo = (n − N)/ν0, where N = n − λodn/dλo is the group
index of the material (see Sec. 5.7), we obtain

For a thin prism with apex angle α, the deflection angle θd = (n −
1)α [see (1.2-7)] so that dθd/dn = α and

As an example, for BK7 glass at wavelength λo = 800 nm, n =
1.511 and N = 1.527. For a prism with α = 15°, αν = −1.11 × 10−17

= −0.011 fs. For ℓ0 = 1 m, the chirp coefficient given by (23.2-28)
is . In accordance with
(23.2-15) and (23.2-16), an unchirped pulse of width τ1 = 5 fs
transmitted through this device is broadened by a factor 

 and becomes chirped with chirp parameter 
.

The thick-prism chirp filter is considered in Prob. 23.2-1.

Figure 23.2-8 Prism chirp filter.
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EXAMPLE 23.2-5. Diffraction-Grating Chirp Filter. In a
diffraction grating system (Fig. 23.2-9) the angles of incidence
and diffraction, θ1 and θ2, from a grating with period Λ are
related by the diffraction condition (2.4-13). If θ2 = θ20 + θ(ν),
where θ20 is the angle of the central-frequency component, then
for first-order diffraction,

Taking the derivatives of both sides at ν = ν0, we obtain

In the symmetrical case in which θ1 = θ20, sin θ20 = λo/2Λ, and
therefore

so that

For λo = 800 nm and Λ = 1.6 μm, αν = −2.72 × 10−15 s = −2.72 fs.
For ℓ0 = 10 cm, b = −2.94 × 10−25 = −(542 fs)2.

Figure 23.2-9 The diffraction grating as a down-chirping filter.

Bragg-Grating Chirp Filters
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Variable-pitch (or chirped) Bragg gratings (Fig. 23.2-10) are often
used as chirp filters. As described in Sec. 7.1C, a Bragg grating is a
periodic structure that reflects optical waves selectively. A grating
with period Λ reflects only waves with wavelength λ satisfying the
Bragg condition Λ = mλ/2, where m is an integer; waves at other
wavelengths are transmitted without change. The grating can
therefore serve as a narrowband filter. If the grating has a pitch that
varies with position, then each segment of the grating reflects the
wave with a wavelength matching the local pitch. The reflected
waves travel different distances depending on the location from
which they are reflected, so that the system acts as a frequency-
sensitive phase filter. If the frequency of the periodic structure
varies linearly with distance, the grating is said to be linearly
chirped, and it functions as a linear chirp filter.

Figure 23.2-10 A Bragg grating with decreasing period serves as a
positive chirp filter.

Assume that the period of a Bragg grating is a function Λ(z) of the
position z selected such that the frequency varies linearly with z,
i.e.,  where Λo is the period at z = 0 and ξ is a
constant. To determine the effect of the grating on an optical pulse,
we decompose the pulse into its spectral components and examine
the effect of the grating on each component. The component of
frequency ν is reflected from the grating at the location z for which
Λ = mλ/2, i.e., Λ(z) = mλ/2 = mc/2ν or z = 2ν/mcξ − 1/ξΛo. That
component travels a distance 2z and undergoes a phase shift Ψ =
(2πν/c)(2z) so that
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It follows from (23.2-10) and (23.2-11) that the chirped Bragg
grating is equivalent to a time delay τd = 2/cξΛo and a chirp filter
with chirp coefficient

Bragg-Grating Chirp Coefficient

If ξ > 0, i.e., the grating has an increasing frequency, as illustrated in
Fig. 23.2-10, and the chirp coefficient b > 0, i.e., the filter is up-
chirping. Likewise, a chirped Bragg grating with a decreasing
frequency is a down-chirping filter.

C. Pulse Compression
A transform-limited pulse cannot be compressed by use of a chirp
filter alone. Such a filter introduces chirp accompanied by temporal
broadening, but it does not alter the spectral width of the pulse.
However, compression may be achieved by making use of a phase
modulator followed by a chirp filter. The phase modulator
multiplies the pulse by a time-dependent phase factor, which
introduces chirp accompanied by spectral broadening, but it does
not alter the temporal width of the pulse. The chirped pulse is
subsequently compressed by a chirp filter, which preserves the
broadened spectral width while compressing the temporal width in
the course of generating a transform-limited compressed pulse.

To compress an unchirped pulse , we first convert
it into a chirped pulse by multiplication with a quadratic phase
factor exp(jζt2), where ζ is a constant, using a quadratic phase
modulator (QPM). The result is a chirped pulse 

 with chirp parameter
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If ζ > 0, the pulse becomes up-chirped, and subsequent filtering
with a down-chirping filter can result in compression. Alternatively,
if ζ < 0, the pulse becomes down-chirped and subsequent filtering
with an up-chirping filter can result in compression. In either case,
the pulse is compressed by a factor . The system is
illustrated in Fig. 23.2-11.

Figure 23.2-11 Compression of a transform-limited pulse by use of
a quadratic phase modulator (QPM) followed by a chirp filter.

If the original pulse is a chirped pulse ,
then modulation by a quadratic phase exp(jζt2) converts it into
another chirped pulse  with the same
width but with an altered chirp parameter

Effect of QPM on Chirp Parameter

Thus, a quadratic phase modulator for which the sign of ζ is
opposite to that of a1 may unchirp the initial pulse or even reverse
its chirp sign.



Summary
The quadratic phase modulator (QPM) and the chirp filter serve
dual functions. One operation is the Fourier-transform analog of
the other:

QPM = multiplication by a
quadratic phase function:

Alters
spectral
width

Preserves
temporal
width

Chirp
Filter

= convolution with a
quadratic phase function:

Preserves
spectral
width

Alters
temporal
width

QPMs may be implemented by use of electro-optic modulators (see
Sec. 21.1B), although the production of the appropriate signal
exp(jζt2) is not simple. Passive phase modulation occurs when
intense pulses are transmitted through nonlinear media exhibiting
the optical Kerr effect, as will be described in Sec. 23.5C in
connection with self-phase modulation, and this effect may be used
to implement QPMs.

D. Pulse Shaping
The pulse-shaping methods discussed thus far are based on chirp
filters implemented by dispersive optical components. Though chirp
filters can be used for the purposes of pulse stretching and
compression, they cannot be used to alter the optical pulse shape in
an arbitrary manner, nor can they be used to generate optical pulses
of prescribed shape, as is often desired in optical-communications
and signal-processing applications. The general shaping of
ultrashort pulses can, however, be achieved by making use of optical
frequency-to-space mapping or time-to-space mapping, together
with the use of spatial light modulators, as described in this section.

Frequency-to-Space Mapping



Frequency-to-space mapping of an optical pulse is achieved by
means of a diffraction grating and a lens, which direct each
constituent spectral component to a unique point in the lens's focal
plane, as illustrated in the left side of Fig. 23.2-12. This system in
effect projects the Fourier transform of the temporal profile of the
pulse as a spatial pattern in the focal plane. A modulator modifies
the magnitude and phase in accordance with the transfer function
of the desired pulse-shaping linear filter. This is accomplished by
use of a microlithographic or holographic mask, or a programmable
spatial light modulator (SLM) (see Sec. 21.3B). The inverse
operation of spatial-spectral mapping is subsequently implemented
by a second lens and grating, which recombine the modified spectral
components to form the reshaped pulse. This amounts to an inverse
Fourier transform, and the overall operation is similar to spatial
filtering in Fourier optics (see Sec. 4.4B). This technique has
become an established tool for the general shaping of ultrashort
pulses.

Figure 23.2-12 A system for pulse shaping includes: (1) frequency-
to-space mapping — a grating and a lens display the Fourier
transform of the pulse as a spatial pattern in the Fourier plane; (2)
modulation by a spatial light modulator (SLM); and (3) space-to-
frequency mapping using a lens and a grating generating the inverse
Fourier transform.

The system depicted in Fig. 23.2-12 is described quantitatively as
follows. If θ(ν) is the deflection angle introduced by the grating at
frequency ν, then the Fourier component at that frequency will be
focused at a position x = θ(ν)f in the lens focal plane (the Fourier
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plane), where f is the lens focal length and the angle is assumed to
be small. A mask with amplitude transmittance p(x) is therefore
equivalent to a filter with transfer function H(ν)= p[θ(ν)f]. If θ(ν) is
approximated by a linear function of frequency, θ(ν) ≈ ανν, where αν
= dθ/dν is the angular dispersion coefficient of the grating [given by
(23.2-32)], then the shape of the filter transfer function H(ν) is a
scaled version of the profile of the mask function p(x), i.e.,

In this frequency-to-space mapping, the position x in the Fourier
plane corresponds to the frequency ν = x/αν f, and the spectral
width Δν extends over a width X = αν fΔν.

The preceding simplified analysis was based on the assumption that
the original pulse is a plane wave, so that diffraction plays no role.
For an original beam of finite width W in the plane of the grating,
the spectral component at frequency ν is deflected by an angle θ(ν)
≈ ανν, but has an angular spread proportional to λ/W = c/νW, which
corresponds to a spatial spread δx = fλ0/W = cf/νW. This frequency-
dependent spread limits the spatial resolution of the system. A
mask of total width X has approximately M = X/δx = X/(λ0f/W)
independent points, where λ0 is the central wavelength. The spatial
spread δx corresponds to a spectral spread δν = (λ0 f/W)/(αν f)=
λ0/(ανW). This limits the spectral resolution of the pulse filtering
system to M = XW/λ0 f independent points.

The reshaping of picosecond and femtosecond pulses has been
successfully demonstrated using a number of SLM technologies,
including deformable mirrors, multi-element liquid-crystal
modulator arrays (millisecond to submillisecond response times,
high duty cycle), acousto-optic deflectors (microsecond
reprogramming, low duty cycle), and semiconductor optoelectronic
modulator arrays (nanosecond reprogramming times).

Time-to-Space Mapping
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(23.2-41)

Another configuration for arbitrary pulse shaping uses a spatial
light modulator (SLM) butted against a diffraction grating and
followed by a 2-f lens system with an on-axis pinhole in the Fourier
plane, as illustrated in Fig. 23.2-13. The grating multiplies the
spectral component of frequency ν, which has complex envelope
A1(ν), by the frequency-dependent and position-dependent phase
factor exp(j2πγνx), where γ is a constant. The SLM modulates it by a
controllable spatial pattern p(x), and the lens system functions as a
spatial integrator producing an amplitude

where P(νx) is the spatial Fourier transform of p(x). The overall
system therefore acts as a linear system with transfer function H(ν)
∝ P(−γν), which corresponds to an impulse response function

It follows that the transmittance of the SLM at the position x
controls the value of the impulse response function at one-and-
only-one time t = −γx. Thus, the system serves as a direct time-to-
space mapping that may be exploited to reshape or synthesize a
femtosecond pulse with arbitrary temporal profile.

23.3 PULSE PROPAGATION IN OPTICAL
FIBERS
This section examines the propagation of an optical pulse in an
extended linear dispersive medium, such as an optical fiber, by
regarding the process of propagation as a linear filter with a transfer
function governed by the frequency-dependent propagation
constant. For optical pulses with a slowly varying envelope, such as
picosecond pulses, the filter may be approximated by a combination
of a time delay and a chirp filter, in which case the mathematics of
pulse propagation is encompassed in the analysis provided in Sec.



23.2A. A differential equation describing the evolution of the pulse
envelope as it travels through the medium is derived and an analogy
between dispersion and ordinary optical diffraction is established.

Figure 23.2-13 Pulse shaping based on time-to-space mapping.
The system has an impulse response function h(t) that is a scaled
version of the SLM transmittance function p(x).

A. The Optical Fiber as a Chirp Filter

The Dispersive Medium as a Filter

Upon propagation in a linear lossless dispersive medium, a
monochromatic plane wave of frequency ν traveling a distance z in
the z direction (Fig. 23.3-1) undergoes a phase shift β(ν)z, where
β(ν) = 2πνn(ν)/co is the propagation constant, and n(ν) is the
refractive index. Propagation is therefore mathematically equivalent
to multiplication by the phase factor exp[−jβ(ν)z]. Since a pulsed
wave of wavefunction U(z, t) is a superposition of many
monochromatic waves, the phase factor H(ν) = exp[−jβ(ν)z] is the
transfer function of the linear system that represents propagation,
i.e., V(z, ν) = H(ν) V(0, ν) = exp[−jβ(ν)z] V(0, ν), where V(z, ν) is
the Fourier transform of U(z, t).

For pulses with narrow spectral distribution, the complex
wavefunction is written in terms of the complex envelope, U(z, t) =
𝒜(z, t) exp(−jβ0z) exp(j2πν0t), where ν0 is the central frequency
and β0 = β(ν0). In the Fourier domain, this translates to V(z, ν) =
A(z, ν − ν0) exp(−jβ0z), and hence the relation V(z, ν) = exp
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(23.3-1)

(23.3-3)

[−jβ(ν)z] V(0, ν) becomes A(z, ν − ν0) = A(0, ν − ν0) exp(−j[β(ν) −
β(ν0)]z). In terms of the frequency difference f = ν − ν0,

where

Envelope Transfer Function

is the envelope transfer function. The effect of the dispersive
medium on the pulse envelope is therefore modeled as a phase filter
He(f) = exp[−jΨ(f)] with phase Ψ(f) = [β(ν0 + f) − β(ν0)]z.

Figure 23.3-1 Transmission of an optical pulse through a
dispersive medium is equivalent to a phase filter.

Approximation of a Dispersive Medium by Time Delay and Chirp
Filter

If the propagation constant β(ν) varies slowly within the pulse
spectral width, we may use the results of the Taylor-series
expansion , described in Sec. 23.2A, where Ψ′ and
Ψ″ are the first and second derivatives of Ψ(ν) with respect to ν at
ν0, and Ψ(0) = 0. The envelope transfer function can then be
approximated by
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(23.3-5)

(23.3-6)

where τd = Ψ′/2π and b = Ψ″/2π2. It follows that the process of
pulse propagation is equivalent to a combination of a time delay and
a chirp filter.

The factor exp(−j2πτdf) is a time delay τd = Ψ′/2π = (1/2π)(dβ/dν)z
= (dβ/dω)z = z/v, called the group delay, where

Group Velocity (β′ = dβ/dω)

is the group velocity, and N = n − λodn/dλo is the group index. These
parameters have been previously defined in the simplified analysis
provided in Sec. 5.7.

The factor exp(−jbπ2f2) represents a chirp filter with chirp
coefficient b = Ψ″/2π2 = (1/2π2)(d2β/dν2)z = 2β″z, where β″ =
d2β/dω2. The chirp coefficient is proportional to the distance z and
is usually written in the form

Chirp Coefficient

where

GVD Coefficient (β″ = d2β/dω2)

is the group velocity dispersion (GVD) coefficient. It is the
derivative of the group delay per unit length with respect to the



frequency ν, as described previously in Sec. 5.7. A medium with β″ >
0 (or Dν > 0) is said to have normal dispersion or positive GVD, and
it functions as an up-chirping chirp filter (b > 0). Conversely, a
medium with β″ < 0 (or Dν < 0) is said to have anomalous
dispersion or negative GVD, and it corresponds to a down-chirping
filter (b < 0).



EXAMPLE 23.3-1.

Adjustable Chirp Filter Using Combined Angular and
Material Dispersion in a Prism. In Example 23.2-4, it was
shown that when a pulsed beam is refracted by a prism, a
chirping effect is introduced as a result of angular dispersion. In
this example, we consider the effect of material dispersion,
which was neglected in the previous example. If the central ray
crossing the prism in Fig. 23.2-8 travels a distance L through the
prism, then material dispersion amounts to a chirp filter with
chirp coefficient b = 2β″L = DνL/π [see (23.3-5)]. For a prism
made of BK7 glass at λ = 800 nm, the dispersion coefficient Dν =
0.284 × 10−24 s2/m so that, for L = 1 m, the chirp coefficient b =
DνL/π = +9 × 10−26 s2 = +(300 fs)2. In Example 23.2-4, it was
shown that the chirp coefficient arising from angular dispersion
alone for a thin prism with 15° apex angle was b ≈ −(7.1 fs)2. The
total chirp coefficient is the sum of the contributions of material
and angular dispersion so the net value of b is positive. The
distance L can be adjusted by moving the prism in a direction
orthogonal to its base, as illustrated in Fig. 23.3-2.

Figure 23.3-2 Prism chirp filter with adjustable chirp
coefficient.

 



Summary
The propagation of a pulse in a dispersive medium may be
approximated by two effects: a time delay associated with the
group velocity v = 1/β′ = co/N and a chirp filter with chirp
parameter b = 2β″z = Dνz/π proportional to the propagation
distance z. The parameters β′ and β″ are the derivatives of the
propagation constant β with respect to the angular frequency ω,
and Dν = 2πβ″ is the GVD coefficient.

B. Propagation of a Gaussian Pulse in an Optical Fiber
Since a linear dispersive medium may be approximated by a time
delay and a chirp filter, the propagation of a Gaussian optical pulse
in such a medium may be understood in terms of the general results
presented in Sec. 23.2A, as discussed above.

Transform-Limited-Gaussian Input Pulse

Consider first a transform-limited (unchirped) Gaussian pulse of
width τ0 at z = 0. At a distance z the pulse is delayed by a time τd =
z/v and is filtered by a chirp filter of chirp coefficient b = Dνz/π. In
accordance with (23.2-15)–(23.2-17), the pulse remains Gaussian,
but its width increases to , and it becomes
chirped with chirp parameter  and amplitude 

. By defining the parameter z0 such that 
, these equations may be expressed in the simpler

forms provided in Table 23.3-1, which also includes an expression
for the complex envelope based on (23.1-12). The magnitude of z0 is
called the dispersion length and is a characteristic of the medium
and the initial pulse width. The following observations emerge:



Table 23.3-1 Characteristics of a Gaussian pulse traveling through
a dispersive medium with group velocity v, dispersion coefficient
Dν, and dispersion parameter z0. At z = 0 the pulse is transform-
limited with width τ0, amplitude A0, and intensity I0 = |A0|2.

Complex envelope (23.3-7)

Intensity (23.3-8)

Energy density (23.3-9)
Pulse width (23.3-10)

Chirp parameter (23.3-11)

Dispersion length |z0| (23.3-12)

Spectral width (23.3-13)

The pulse center is delayed by a time z/v; i.e., the pulse travels
with the group velocity v = 1/β′.

The width of the pulse τ(z) has its minimum value τ0 at z = 0
and increases with increasing |z|, as illustrated in Fig. 23.3-3.
At z = |z0| the pulse expands by a factor of , and at 
its width doubles. For z ≫ |z0|, τ(z) ≈ τ0z/|z0| = (|Dν|/πτ0)z;
i.e., the pulse expands linearly at a rate inversely proportional
to its initial pulse width, τ0. In terms of the spectral width Δν =
0.375/τ0, the pulse width behaves as τ(z) ≈ (1/0.375π) |Dν| Δν z
= 0.85 |Dν| Δν z, which is consistent with the fact that Dν is the
pulse broadening rate per unit distance per unit spectral width
(s/m-Hz). This relation may also be written in terms of the
dispersion coefficient Dλ [ps/km-nm] as τ(z) ≈ 0.85 |Dλ| Δλz,
which is an approximate version of (5.7-8).

The chirp parameter a(z) is 0 at z = 0, by definition, and
increases linearly with the distance z, reaching a magnitude of



unity at z = |z0|, as illustrated in Fig. 23.3-3. The chirp sign is
the same as the sign of Dν. For normal dispersion, Dν > 0 and
a(z) > 0 for z > 0, meaning that the pulse is up-chirped. In the
visible region, normal dispersion means that “blue” is slower
than “red,” which is consistent with an up-chirped pulse. The
opposite occurs for anomalous dispersion.

The dispersion length |z0| depends on the magnitude of the
medium dispersion coefficient Dν and the initial pulse width τ0.
It is the distance at which the pulse width increases by a factor
of  and the chirp parameter reaches a magnitude of unity.

The spectral width Δν = 0.375/τ0 remains the same as the pulse
travels. The spectral compression that accompanies temporal
expansion of the pulse is fully compensated by an equal
spectral broadening that accompanies chirping. This is to be
expected since propagation in the dispersive medium is
modeled as a phase filter, which does not alter the spectral
intensity.

The energy density carried by the pulse is independent of z, as
one would expect in a lossless medium.



Figure 23.3-3 Propagation of an initially unchirped Gaussian pulse
through a dispersive medium. The pulse remains Gaussian, but its
width τ(z) expands, and it becomes chirped with an increasing chirp
parameter a(z).

EXAMPLE 23.3-2.

Pulse Broadening in BK7 Glass. The dispersion coefficient
of BK7 glass at λ = 620 nm is β″ = 1.02 × 10−25 s2/m. For a slab
of thickness 1 cm, this corresponds to a chirp coefficient b =
2β″z = 2.04 × 10−23 s2/m = (4.5 ps)2. This means that when a
Gaussian pulse of width 4.5 ps crosses the slab, its width
expands by a factor of . For a shorter Gaussian pulse of time
constant τ0 = 100 fs and central wavelength λo = 620 nm, the
dispersion length is . The pulse doubles its width
upon crossing a slab of thickness .

Chirped Gaussian Input Pulse

Based on (23.2-21), upon propagation through the dispersive
medium a chirped Gaussian pulse of width τ1 and chirp parameter
a1 at z = 0 reaches a minimum width



(23.3-14)

(23.3-15)

(23.3-16)

(23.3-17)

(23.3-18)

Minimum Width

at a distance zmin for which (Dν/π)zmin = bmin. From (23.2-22),

which may be written in terms of the dispersion parameter 
 as

Location of Minimum Width

Finally (23.2-23) and (23.2-24) translate to the following
expressions for the pulse width and chirp parameter as functions of
the distance z,

Equations (23.3-17) and (23.3-18) are identical to (23.3-10) and
(23.3-11) for the initially unchirped case, except for a shift by a
distance zmin, which is the location of the minimum width.

The expressions in Table 23.3-1 are therefore universally valid for
both positive or negative z and may be used for initially chirped
pulses by placing the beginning of the medium at the location z
corresponding to the matching value of the initial chirp parameter.
This is illustrated in Fig. 23.3-4, which is another plot of τ(z) and
a(z) based on (23.3-10) and (23.3-11) for positive and negative
values of z. As an example, for a medium with positive z0 (positive



GVD, or normal dispersion), when the initial chirp parameter is a1 =
−1, then zmin = z0, so that the medium begins at the position z =
−z0. The process of pulse compression and subsequent spreading is
now clear. The pulse is maximally compressed by a factor of  and
becomes unchirped at a distance zmin = z0. Upon further
propagation through the medium the pulse is broadened and
becomes up-chirped.

Figure 23.3-4 Propagation of an initially down-chirped Gaussian
pulse (a1 = −1) through a medium with normal dispersion. The
pulse τ(z) decreases from an initial value of τ1 to a minimum 

, and subsequently increases. The initially negative chirp
parameter increases linearly and reverses sign when z > zmin. In this
example zmin = z0.

Since the initial chirp parameter a1 and the dispersion coefficient Dν
may be positive or negative, we have a number of possibilities:



(23.3-19)

For a medium with normal dispersion (Dν > 0) the filter is up-
chirping and the parameter z0 is positive. For an initially down-
chirped pulse (a1 < 0), zmin is positive so that the pulse is
indeed compressed as it travels in the positive z direction. For
an initially up-chirped pulse (a1 > 0), zmin is negative and the
pulse will not be compressed.

For a medium with anomalous dispersion (Dν < 0) the filter is
down-chirping and the parameter z0 is negative. For an initially
up-chirped pulse (a1 > 0), zmin is positive so that the pulse is
indeed compressed as it travels in the positive z direction. For
an initially down-chirped pulse (a1 < 0), zmin is negative, so that
the pulse will not be compressed.

In summary, compression can occur if an up-chirped pulse travels
through a down-chirping (anomalous) medium, or if a down-
chirped pulse travels through an up-chirping (normal) medium.

Pulse Compression by Use of a QPM and a Dispersive Medium

As described in Sec. 23.2C, a transform-limited pulse may be
compressed by use of a combination of a quadratic phase modulator
(QPM) and a chirp filter. The chirp filter may be implemented by a
dispersive medium, as illustrated in Fig. 23.3-5. If the width of the
initial pulse is τ1, then modulation by the phase factor exp(jζt2) is
equivalent to a chirp coefficient . The spectral width of the
chirped pulse is expanded by the factor . If ζ is negative, the
pulse is down-chirped, and subsequent travel through a medium
with positive GVD (normal dispersion) results in pulse compression
to a minimum width

The pulse will also be compressed if ζ is positive and the medium
has negative GVD. Using (23.3-16) and (23.3-19), we conclude that



(23.3-20)

(23.3-21)

(23.3-22)

the minimum width occurs at a distance

which is positive if ζ and Dν have opposite signs.

Figure 23.3-5 Pulse compression by a quadratic phase modulator
(QPM) and a medium with group velocity dispersion (GVD).

In the limit when ,

and zmin ≈ f, where

This distance may be regarded as the focal length of this pulse
focusing system.



EXAMPLE 23.3-3.

Pulse Compression in a Silica-Glass Optical Fiber.

a. A Gaussian pulse of time constant τ = 100 fs and central
wavelength λ0 = 850 nm (generated, e.g., by a Ti-sapphire
laser) travels through a silica-glass optical fiber. At this
wavelength, silica glass has normal dispersion (positive
GVD) with Dλ = −200 ps/km-nm (see Fig. 5.7-5),
corresponding to . If the pulse is
initially unchirped, then τ0 = 100 fs and therefore the
dispersion length is . At this distance the
pulse expands by a factor of  and has a chirp coefficient a
= 1. At a distance z = 6.52 m, the pulse width increases by a
factor of approximately z/z0 = 100, becoming 10 ps and the
chirp parameter a = 100.

b. If the initial pulse is phase modulated by a factor exp(jζt2),
then a1 = ζτ2. For ζ = −10−2 fs−2 the pulse becomes down-
chirped with parameter a = −1. Upon subsequent
propagation through the fiber, the initial 100-fs pulse is
compressed to  at a distance 

. Since the pulse is now narrower, it
expands more rapidly upon further propagation through the
fiber. At the distance z = 6.52 m, the width increases by a
factor of approximately z/z0 ≈ 200, reaching a width of 14.1
ps.

 



EXERCISE 23.3-1

Dispersion Compensation in Optical Fibers. Pulse
broadening in an optical fiber may be eliminated by balancing
normal and anomalous dispersion.

a. An unchirped pulse of central wavelength λ0 = 1.55 μm and
width τ1 = 10 ps is transmitted through a silica-glass optical
fiber. At this wavelength, silica glass has anomalous
dispersion with Dλ = +20 ps/km-nm. Determine the pulse
width τ and chirp parameter a at a distance d1 = 100 km.

b. If the pulse is to be compressed back to the original width of
10 ps by use of another fiber of length d2 (see Fig. 23.3-6)
made of some material exhibiting normal dispersion with
Dλ = −100 ps/km-nm, determine d2.

Figure 23.3-6 Dispersion compensation in optical fibers.

EXERCISE 23.3-2

Dispersion Compensation by Use of a Periodic
Sequence of Phase Modulators. Pulse broadening in an
optical fiber may be reduced by use of a periodic set of quadratic
phase modulators spaced at a distance 2d. Each modulator



(23.3-23)

(23.3-24)

introduces a quadratic phase exp(jζt2). If the dispersion
coefficient ζ is positive and the fiber material has negative GVD,
then the pulse width and chirp parameter increase and decrease
periodically as illustrated in Fig. 23.3-7. Show that the condition
for this periodic pattern is

where τ0 and τ are the minimum and maximum pulse widths, a
is the chirp parameter, and .

Figure 23.3-7 Dispersion compensation by use of periodic
positive QPM and negative GVD.

*C. Slowly Varying Envelope Diffusion Equation
It was shown in Sec. 23.3A that a dispersive medium with
propagation constant approximated by a Taylor-series expansion up
to the quadratic term is equivalent to a pulse-envelope filter with
transfer function He(f) = exp(−j2πzf/v) exp(−jπDνzf2), where v is
the group velocity and Dν is the dispersion coefficient. We now
demonstrate that under such conditions the envelope 𝒜(z, t)
satisfies the partial differential equation



(23.3-25)

(23.3-26)

If the time delay z/v is ignored (or a coordinate system moving with
the pulse velocity v is used), then (23.3-24) simplifies to

SVE Diffusion Equation

which is recognized as the diffusion equation.

□ Proof of the SVE Diffusion Equation in a Dispersive
Medium. The proof begins with the filter equation A(z, f) = A(0, f)
He(z, f) from which A(z, f) ≈ A(0, f) exp[−j2π(z/v)f − jπDνzf2],
where A(z, f) is the Fourier transform of 𝒜(z, t). Taking the
derivative with respect to z we obtain the differential equation
(d/dz)A(z, f) ≈ [−j2πf/v − jπDνf2]A(z, f). Forming the inverse
Fourier transform of both sides with respect to f, and noting that
the inverse Fourier transforms of A(z, f), j2πfA(z, f), and (j2πf)2A(z,
f) are 𝒜(z, t), ∂𝒜(z, t)/∂t, and ∂2

𝒜(z, t)/∂t2, respectively, we obtain
(23.3-24). ▪

The impulse response function associated with the diffusion
equation is

which is identical to that of a chirp filter (23.2-7) with b = Dνz/π.

For an initial Gaussian distribution , the
diffusion equation is known to have a Gaussian solution, 

, where .
Accounting for the time delay, we replace t with t − z/v and
reproduce (23.3-7).

□ *Derivation of the SVE Diffusion Equation from the
Helmholtz Equation. Equation (23.3-24) may also be directly



derived from the Helmholtz equation [d2/dz2 + β2(ν)] V(z, ν) = 0.
Since U(z, t) = 𝒜(z, t) exp(−jβ0z) exp(j2πν0t), its Fourier transform
is V(z, ν) = A(z, ν − ν0) exp(−jβ0z) where A(z, ν) is the Fourier
transform of 𝒜(z, t). Substituting ν = ν0 + f, the Helmholtz equation
yields [d2/dz2 + β2(ν0 + f)][A(z, f) exp(−jβ0z)] = 0. Using the SVE
approximation , Helmholtz
equation becomes . For weak
dispersion, . As before, we
approximate the propagation constant β(ν) by a 3-term Taylor-series
expansion β(ν0 + f) ≈ β0 + 2πfβ′ + 2π2f2β″, where 

, and . With this, Helmholtz
equation now becomes −jdA/dz + [2πfβ′ + 2π2f2β″]A = 0.
Performing an inverse Fourier transform and noting that the
multipliers j2πf and −4π2f2 are equivalent to the derivatives ∂/∂t
and ∂2/∂t2, respectively, we obtain .
Finally, substituting β′ = 1/v and β″ = Dν/2π, we obtain (23.3-24). ▪

*D. Analogy Between Dispersion and Diffraction
A striking mathematical similarity is observed between the SVE
diffusion equation ∂2

𝒜/∂t2 + j(4π/Dν) ∂𝒜/∂z = 0, which describes
the propagation of a pulse 𝒜(z, t) in a dispersive medium (in a
frame moving with velocity v, and neglecting dispersion terms
higher than the quadratic term), and the paraxial Helmholtz
equation , which describes the diffraction of an optical beam
A(x, y, z) through free space in the paraxial approximation. Both are
diffusion equations (the former is 1D and the latter is 2D). This
similarity indicates that the temporal spreading (dispersion) of a
pulse as it travels through the dispersive medium obeys the same
mathematical law that governs the spatial spreading (diffraction) of
a beam in the transverse plane as it travels through free space, with
time t playing the role of the transverse coordinate ρ =(x, y) and the
dispersion coefficient −Dν playing the role of the wavelength λ.
Various features of this analogy are summarized in Table 23.3-2.



Table 23.3-2 Comparison between diffraction in space (paraxial
approximation) and dispersion in a dispersive medium (second-
order approximation). The dispersion coefficient −Dν in pulse
dispersion plays the role of the wavelength λ in diffraction. The
quadratic phase modulator (QPM) is analogous to a temporal lens.

Diffraction Dispersion
Complex
envelope

A(ρ, z) Complex
envelope

𝒜(z, t)

Transverse
coordinate

Axial
coordinate

z

Time

Axial
coordinate

t

z

Paraxial
Helmholtz
equation

SVE
diffusion
(moving
frame)

Wavelength λ Dispersion
coefficient

−Dν

Impulse
response
function
he(ρ)

Impulse
response
function
he(t)

Lens

Focal length

exp(jπρ2/λf)

f

QPM

Focal length

exp(jζt2)

f = π/(−Dνζ)

The analogy between the dispersion coefficient −Dν and the
wavelength λ is appreciated more fully if time t is measured in units
of distance traveled at the speed of light, ct. In these units c2Dν has
units of distance and its role in determining the scale of pulse
dispersion is quantitatively similar to the role played by the



wavelength in determining the scale of diffraction. For example, if
Dν = 10−23 s2/m, then c2Dν ≈ 0.9 μm, which is equivalent to 3 fs.

Another interesting analogy relates the role of a lens in altering the
wavefront curvature and the role of a quadratic phase modulator
(QPM) in chirping a pulse. A thin lens introduces multiplication by
a phase factor exp(jπρ2/λf) [see (2.4-9)], while a QPM introduces
multiplication by a phase factor exp(jζt2) (see Sec. 23.2C). Writing
exp(jζt2) = exp[jπt2/(−Dν f)], where ζ = −πDν f, we see that the QPM
is equivalent to a time lens that compresses the pulse to a
minimum width at z = f, where f = π/(−Dνζ) is a focal length,
confirming (23.3-22).

The mathematical analogy between the temporal spreading of a
Gaussian pulse in a dispersive medium (Sec. 23.3B) and the spatial
spreading of a Gaussian beam in free space (Sec. 3.1B) is
summarized in Table 23.3-3. The dispersion length z0 is analogous
to the diffraction length (Rayleigh range) z0. Though the latter is
always positive, the former is defined such that it is positive for
normal dispersion and negative for anomalous dispersion. This
explains the negative sign in the parameter z0 that appears in the
expression for the complex envelope of the Gaussian pulse.



Table 23.3-3 Comparison between the diffraction of a Gaussian
beam in free space and the dispersion of a Gaussian pulse in a
dispersive medium.

Gaussian Beam Gaussian Pulse
Beam width Pulse width

Diffraction length Dispersion
length

Divergence half
angle

θ0 = λ/πW0 Spreading rate
(s/m)

|Dν|/πτ0

Wavefront
curvature

Chirping rate

Spatial chirp Chirp parameter

Because of the mathematical analogy between spatial diffraction
and temporal dispersion, and between the lens and the quadratic
phase modulator (QPM), each conventional optical system
comprising combinations of free space and lenses has an analogous
temporal system comprising combinations of dispersive media and
QPMs. Figure 23.3-8 provides a number of examples:



Figure 23.3-8 Analogy of spatial optics (left column) and temporal
optics (right column). The quadratic phase modulator (QPM) plays
the role of the lens. The shaded areas represent the spatial width of
a wave (left) and the temporal width of a pulse (right) as functions
of z. In the right column, time delays are ignored and only time
spread is shown. The optical pulse (right) is assumed to travel in a
medium with negative GVD. The figures in the right column are
also applicable for a medium with positive GVD, but in this case the
QPM must be negative.



Temporal spreading of a pulse in a dispersive medium is
analogous to spatial diffraction of a beam, or a wave
transmitted through an aperture.

Temporal compression of a pulse by a QPM is analogous to
spatial focusing of a beam by a lens. For example, since a
Gaussian beam is focused by a lens of focal length f into a
width W1 =(λ/πW0)f, it follows by analogy that a Gaussian
pulse is compressed by a QPM into a temporal width τ1 = 1/ζτ0
= (−Dν/πτ0)f, where f = π/(−Dνζ) is the focal length of the
QPM. Another example of the time-focusing effect of the QPM
is the focusing of two separated narrow pulses at z = 0 into one
single pulse at z = f.

The counterpart to single-lens imaging in conventional optics is
a system using a QPM as a temporal lens that generates a
magnified or minified replica of the pulse temporal profile, i.e.,
a temporal image (see Prob. 23.3-4).

A periodic sequence of QPMs, designed to maintain the width
of a pulse, is analogous to a periodic set of relaying lenses.

The counterpart to a 2-f Fourier transform system (see Sec. 4.2)
is a 2-f temporal Fourier transform system using a QPM. The
system, for example, transforms a phase modulated optical
pulse into an amplitude modulated pulse whose temporal
profile is the Fourier transform of the original pulse.

One primary difference between spatial diffraction and temporal
dispersion is that the wavelength λ is always positive, while its
counterpart −Dν may be positive or negative. The implication of this
difference may be appreciated by examining the impulse response
functions in Table 23.3-2. The positivity of the wavelength λ implies
that a point of light must spread into a diverging phase front (a
spherical wave). By analogy, in a medium with negative Dν (i.e.,
positive −Dν), an impulse of light spreads into a down-chirped
pulse. Conversely, in a medium with positive Dν (i.e., normal



dispersion), an impulse of light spreads into an up-chirped pulse.
Both signs of chirp are permitted, whereas spatial diffraction admits
only diverging waves.

23.4 ULTRAFAST LINEAR OPTICS
The spatial and temporal characteristics of pulsed waves are
inherently coupled. Spatial spreading (or focusing) depends on the
initial temporal profile, and the temporal pulse shape is influenced
by the initial spatial pattern. These effects are particularly
pronounced for ultranarrow optical pulses and for optical systems
that exhibit angular dispersion. Only in a few special cases does a
pulsed optical wave exactly maintain its temporal profile as it
travels (examples are the plane wave and the spherical wave, as
discussed in Sec. 23.1C). For optical pulses with a slowly varying
envelope, the quasi-CW approximation is applicable, in which case
the temporal and spatial changes are approximately decoupled. This
approximation is not applicable for ultranarrow pulses, however. In
this section we consider the propagation of ultranarrow pulsed
beams in simple imaging systems. We begin with a simplified
analysis based on ray optics and subsequently proceed to a theory
based on wave optics using a Fourier-optics approach.

A. Ray Optics
Ray optics is based on the description of light by rays that are
reflected and refracted at optical boundaries in accordance with
Snell's law (Sec. 1.1). Temporal effects are accommodated in this
theory since rays are assumed to travel with a medium-dependent
velocity c = co/n. We used this theory in Sec. 10.3B to estimate the
spreading of the time of arrival of optical rays inside an optical fiber
by determining the time of travel for each of the optical paths and
estimating the difference between the longest and shortest delays.

If some of the components of the optical system are dispersive, then
the delay introduced by these components must be based on the



(23.4-1)

(23.4-2)

group velocity v = co/N, rather than the phase velocity c = co/n,
where N = n − λo dn/dλo is the group index [see (5.7-2)]. Estimating
the broadening of an optical pulse as it travels through an optical
system is therefore an exercise in determining the difference
between the longest and shortest group delays for all possible
optical paths.

Pulse Broadening in a Single-Lens Imaging System

In the single-lens imaging system illustrated in Fig. 23.4-1, an
optical pulse is emitted at point P1 in the form of multiple rays that
meet at the conjugate point P2. Each ray travels through air and the
glass of the lens and is delayed accordingly. If the glass is
nondispersive, then in accordance with Fermat's principle (Sec. 1.1)
all rays arrive at the same time, and the pulse is not broadened. To
account for the effect of dispersion, it is convenient to define the
differential delay as the difference between the group delay (based
on the group velocity v) and the phase delay (based on the phase
velocity c). The difference between the longest and shortest
differential delays then constitutes the pulse broadening. The
differential delay is, of course, zero for the nondispersive portions of
the optical path, so that attention need be directed only to the
differential delay in the lens material.

Marking each ray by its position (x, y) in the plane of the lens, and
denoting the lens thickness at position (x, y) as d(x, y), the
differential delay is written as

The width of the broadened pulse is the difference between the
maximum and minimum values of τ(x, y), so that

where Δd is the difference between the maximum and minimum
widths of the lens. For a thin lens of focal length f and maximum



(23.4-3)

thickness d0, (2.4-8) and (2.4-10) provide d(x, y) ≈ d0 − (x2 + y2)/2R
= d0 − (x2 + y2)/2(n − 1)f, with (x2 + y2) = (D/2)2 , where D is the
diameter of the lens aperture. Thus, Δd = (D/2)2/2(n − 1)f and Δτ =
[|n − N|/(n − 1)](D/2)2/2cof, from which we have

Pulse Spreading

where F# = f/D is the lens F -number.

Figure 23.4-1 Pulse broadening in a single-lens imaging system
resulting from material (chromatic) dispersion.

As an example, for a BK7-glass lens at λo = 400 nm, n = 1.53, and n
− N = λo dn/dλo = −0.052. If f = 30 mm and F# = 2, the pulse
spreads to a width Δτ ≈ 307 fs.

In this system, the pulse broadening is a result of the differential
material dispersion associated with the multiple spatial paths of the
rays. Without material dispersion, the existence of multiple paths
would not result in pulse broadening, thanks to Fermat's principle.

*B. Wave and Fourier Optics
The wave nature of light dictates that a monochromatic narrow
optical beam spreads into a wide cone with an angle directly
proportional to the wavelength and inversely proportional to the
original beam width. When the beam is modulated by an ultrashort



pulse with a broad spectrum, each of its wavelength components
spreads into its own cone, with the short-wavelength components
occupying cones of smaller angles. Consequently, the spectral
composition of the propagated light at each point in space is altered,
with the points farther from the axis having less energy at the
shorter wavelengths, as illustrated in Fig. 23.4-2. At off-axis points,
the spectrum is therefore shifted to a lower central frequency (red
shift) and the spectral width is reduced and accompanied by
temporal broadening. This example demonstrates that the spatial
and temporal characteristics of light are entwined through the very
process of wave propagation, particularly when the beam is
ultranarrow and the pulse is ultrashort.

Figure 23.4-2 Spreading of a pulsed beam. The long-wavelength
components (R) spread into cones with angles greater than those of
the short-wavelength components (B). This results in the
suppression of the short-wavelength components at off-axis points,
and hence a red shift and a reduction of the spectral width
accompanied by an increase in the pulse duration.

Though the propagation of ultrashort light pulses through arbitrary
optical systems is complicated by the inherent space–time coupling,
the analysis is conceptually simple when the system is linear since a
Fourier approach can be used to reduce the problem to one of a
superposition of solutions for each of the constituent
monochromatic components. An arbitrary pulsed wave U(r, t) is
decomposed into a sum of monochromatic components with
amplitudes given by the Fourier transform V(r, ν) = ∫u(r, t)



(23.4-4)

(23.4-5)

exp(−j2πνt) dt. The propagation of each monochromatic component
through the system is determined using the tools developed in
Chapters 2–4, and the overall solution is subsequently obtained by
superposition, i.e., by an inverse Fourier transform u(r, t)= ∫V(r, ν)
exp(j2πνt) dν.

Fourier Optics of Pulsed Waves

The propagation of monochromatic light between two parallel
planes, denoted 1 and 2, with an arbitrary linear optical system
sandwiched between, may be described by the linear transformation
[see (B.2-1) of Appendix B and Chapter 4]:

where h is the impulse response function of the system at frequency
ν. For a pulsed input wavefunction U1(x, y, t), the output
wavefunction U2(x, y, t) may be readily determined by computing its
Fourier transform V2(x, y, ν) via (23.4-4), and then computing the
inverse Fourier transform.

The impulse response function h has been determined in Chapter 4
for various optical components. The results are reproduced here
with the dependence on the frequency ν made explicit:

Free space. In accordance with (4.1-18), which is valid in the
Fresnel approximation, propagation through a distance z of free
space is equivalent to a system with impulse response function

We have ignored the factor exp(−j2πνz/c) that belongs to h0 in
(4.1-18) since it represents an inconsequential constant time
delay z/c.
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Aperture. Transmission through a planar aperture is
equivalent to multiplication by the aperture function (which is,
in accordance with (4.3-2), unity within the aperture and zero
outside it).

Lens. Transmission through a thin double-convex lens of focal
length f is, according to (2.4-9) and (2.4-11), equivalent to
multiplication by the quadratic phase factor

where  is the radial distance and the focal length f is
given by

Here R1 and R2 are the two radii of the spherical lens. If the
refractive index n of the lens material is wavelength dependent,
then the focal length f depends on the optical frequency ν.
Material dispersion thus results in chromatic aberration, which
in turn contributes to the distortion of ultrashort optical pulses.

With the help of these equations, it is in principle possible to
determine the space–time dependence of the output wave for any
input pulsed wave transmitted through any system comprising
combinations of free space, apertures, and lenses.

Optical Fourier-Transform System

Consider, for example, an optical system involving the propagation
of a monochromatic wave between the front and back focal planes
of a lens. Ignoring the y dependence for simplicity, this system is
described by an impulse response function
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where hl =(jν/cf) exp(−j4πνf/c) is a constant [see (4.2-8)]; this
corresponds to a spatial Fourier transform for monochromatic light,
as described in Sec. 4.2. This system exhibits strong temporal-
spatial coupling — the temporal waveform at a fixed point at the
output plane is heavily influenced by the spatial distribution of the
wave at the input plane. Similarly, the spatial distribution at the
output plane is sensitive to the temporal waveform of the input
field.

To illustrate this point, consider the special case in which the input
wavefunction is separable in time and space, U1(x, t) = g(t)p(x). This
wavefunction may be generated by transmitting a pulsed plane wave
of amplitude g(t) through a spatial light modulator (SLM) with
frequency-independent transmittance p(x), as illustrated in Fig.
23.4-3. The Fourier transform of U1(x, t) is V1(x, ν) = G(ν)p(x),
where G(ν) is the Fourier transform of g(t). Substituting V1(x, ν),
together with the impulse response function of the optical Fourier-
transform system given in (23.4-8), into (23.4-4) reveals that the
field at the output plane is characterized by

where P(νx) = ∫p(x) exp (j2πνxx) dx is the spatial Fourier transform
of p(x).

It is evident from (23.4-9) that the output field is no longer time-
space separable. Since the temporal waveform of the field at a fixed
position x0 in the output plane is governed by (23.4-9), the transfer
function of the linear system that relates U2(x0, t) to the input pulse
g(t) is



(23.4-11)

This temporal transfer function is seen to be a scaled version of the
spatial Fourier transform of the input spatial distribution p(x).

The corresponding temporal impulse response function is obtained
by taking the temporal inverse Fourier transform of both sides of
(23.4-10),

Space-to-Time Conversion

revealing that the value of the function h(t) at time t is controlled by
the transmittance of the SLM at one-and-only-one position, x =
(cf/x0)t. Equivalently, the transmittance of the mask at a point x
controls the value of the impulse response function of the system at
one-and-only-one time, t =(x0/cf)x. This configuration thus serves
as a direct space-to-time conversion system, which can be used for
pulse shaping. A similar pulse-shaping system using a combination
of a diffraction grating and an SLM was discussed in Sec. 23.2D.

Figure 23.4-3 A spatial Fourier-transform system couples the
temporal and spatial distributions of the input pulsed light. The
shape of the output pulse at a fixed position is governed by the
spatial distribution at the input, which is controlled by the SLM (see
Sec. 21.1E).

*C. Beam Optics



(23.4-12)
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The Fourier approach described in the previous section (23.4B) may
be applied to the study of pulsed Gaussian beams. Consider first a
Gaussian beam modulated in the plane of its waist by a pulse g(t),
i.e.,  or , where W0
is the beam radius and G(ν) is the Fourier transform of g(t). At an
arbitrary distance z, the spatiotemporal wavefunction is determined
by use of (23.4-4) and (23.4-5),

where

is the diffraction length (Rayleigh range) at frequency ν. Equation
(23.4-12) is the standard expression of the wavefunction of a
Gaussian beam [see (3.1-5)] with the frequency dependence of the
diffraction length made explicit. The beam radius and the radius of
curvature given by (3.1-8) and (3.1-9) are also frequency dependent.

If the spectral width is sufficiently narrow, then in accordance with
the quasi-CW approximation the spatial distribution of the
Gaussian beam may be approximated by its values at the central
frequency ν ≈ ν0, and consequently the time-space dependence is
separable, as described earlier by (23.1-25). For ultranarrow (i.e.,
broadband) pulses, this approximation is not applicable.

The temporal profile of the pulse may be determined at an arbitrary
point (ρ, z) by evaluating the inverse Fourier transform of (23.4-
12)). In general, a numerical solution is necessary.

Gaussian-Pulsed Gaussian Beam

If the original wave is modulated by a Gaussian pulse 
, then  is also

Gaussian. An approximate analytical expression for V2(x, y, ν) in the
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far zone [z ≫ z0(ν) for all ν] may be obtained as follows: The factor
[z + jz0(ν)]−1 = z−1 [1 + jz0(ν)/z]−1 in the exponent of (23.4-12) is
approximated by z−1 [1 − jz0(ν)/z], and the same factor in the
amplitude is approximated by z−1. Using (23.4-13), we obtain the
far-zone expression

The inverse Fourier transform of (23.4-14) may now be determined.
The phase factor in the exponent is equivalent to a time delay
ρ2/2cz. The factor jν in the amplitude is equivalent to a derivative ∂/
∂t. The middle two Gaussian functions are combined into one
Gaussian function of ν whose inverse Fourier transform is another
Gaussian function. The result may be cast in the normalized form

Gaussian-Pulsed Gaussian Beam

where

is a position-dependent delay time,

is a position-dependent time constant,
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(23.4-19)
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is a position-dependent central frequency,

is the number of optical cycles within the width τ0 of the initial
pulse, and

where W(z) = W0z/z0 is the far-zone beam radius for a CW wave at
the central frequency ν0 and  is the associated diffraction
length. As a function of the normalized transverse distance ρ/ρ0 and
the normalized time t/τ0, the far-zone wavefunction is completely
described by two free parameters: N and the ratio z/z0.

The intensity I2(x, y, t) = |U2(x, y, t)|2 is

This is a universal function of t/τ0 and ρ/ρ0 characterized by only
one free parameter N. The spectral intensity S2(x, y, ν) = |V2(x, y,
ν)|2 is

which is a universal function of ν/ν0 and ρ/ρ0, characterized by the
free parameter N.

Based on (23.4-15)–(23.4-22), we conclude that the pulse at a point
(ρ, z) in the far-zone has the following characteristics (see Fig. 23.4-
4):

The pulse is delayed by time ρ2/2cz, which is the travel time
between the center of the beam (0, 0) and the point (ρ, z).



The pulse temporal profile is the product of a Gaussian
function of width  and a Lorentzian function of
width πNτ0. The width of the Gaussian function is τ0 at ρ = 0,
and increases with the transverse distance ρ, reaching the value

 at ρ = ρ0. The phase shift arctan(tp/πNτ0)
introduced by the Lorentzian function is a manifestation of the
Gouy effect (see Sec. 3.1B) for pulsed Gaussian beams.

The pulse central frequency νρ depends on the transverse
distance ρ. Starting at the value ν0 on axis (ρ = 0), it decreases
monotonically with increase of ρ, reaching ν0/2 at ρ = ρ0. This
is a consequence of the fact that long-wavelength (low-
frequency) components of the pulse spread into wider cones, as
illustrated in Fig. 23.4-2. For the same reason, the farther the
point is from the beam axis, the smaller the spectral width and
the greater the temporal width.

The initial Gaussian spatial distribution is altered dramatically
as t increases. An initially single-peaked distribution builds up,
is subsequently flattened, and eventually becomes double-
peaked as it decays (see Fig. 23.4-4).



Figure 23.4-4 Temporal and spatial spreading of a Gaussian beam
modulated by a Gaussian pulse. Initially, the beam has radius W0
and temporal width τ0 (left surface plot). The far-zone intensity
I2(ρ, t) is illustrated in the right surface plot. Time is normalized to
the initial pulse width τ0, transverse distance is normalized to ρ0,
and the intensity has arbitrary units. At a fixed time t, I2(ρ, t)
provides a snapshot of the intensity as a function of position. It
changes from a single-peaked function at t = 0 to a double-peaked
function at t = τ0, and eventually becomes two separate weak peaks
at t = 2τ0 and beyond. The temporal profile at a fixed position is also
depicted by this surface. In the center of the beam, the pulse has its
shortest width. At off-axis points the pulse is weakened, delayed,
and has longer duration. The spectral intensity S2(ρ, ν) is shown
(top right) as a function of the normalized frequency ν/ν0 at two
positions, A and B, and is normalized such that the peak value is
unity for each position. In this plot, N = ν0τ0 = 5; i.e., the pulse has
five optical cycles. As an example, N = 5 for a pulse of central
frequency ν0 = 750 THz (λ0 = 400 nm) and width τ0 = 6.67 fs. If W0
= 1 mm, then z0 = 7.85 m, W0z/z0 = 5 mm, and ρ0 ≈ 8 cm.

Focusing of a Pulsed Beam
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If a beam of arbitrary spatial distribution p(x, y) modulated with a
pulse of arbitrary temporal shape g(t) is transmitted through a lens
of focal length f followed by a distance z of free space, then by
substituting U1(x, y, t) = g(t)p(x, y) into (23.4-4) and (23.4-5) we
obtain

where G(ν) is the Fourier transform of g(t). We have here assumed
that the lens has an aperture wider than the beam width.

If the lens material is nondispersive, so that n and f are independent
of ν, then at points in the focal plane z = f, (23.4-23) simplifies to

where 𝒫(νx, νy) = ∬ dxdyp(x, y) exp [j2π (νxx + νyy)] is the spatial
Fourier transform of p(x, y). The factor exp(−j2πνd0/c) has been
ignored since it now represents a simple time delay. The
wavefunction in the focal plane is the temporal inverse Fourier
transform of V2(x, y, ν), so that

The coupling of the temporal and spatial features of the pulsed
beam is evident in (23.4-25). In addition to the space-dependent
time delay t − ρ2/2cf, the Fourier transform of the original spatial
profile is scaled by the frequency-dependent factor cf/ν before it is
averaged over the spectral distribution of the pulse.

As an example, for a Gaussian beam  modulated
by a Gaussian pulse 
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 and 
, (23.4-24) gives

This expression is identical to that for the far-zone Gaussian beam
(23.4-14), with z = f. Thus, the corresponding wavefunction U2(x, y,
t) is given by (23.4-15)–(23.4-22) with z = f. The graphs in Fig. 23.4-
4 are applicable here with z = f, z0 being the diffraction length of the
original (not the focused) beam, and

where  is the beam radius at the focal plane for a CW
beam with wavelength λo [see (3.2-15) and (3.2-17)]. As before, N =
ν0τ0 is the number of optical cycles within the initial pulse. The
characteristic transverse radius ρ0 is therefore πN times greater
than . Figure 23.4-5 is an illustration of the spatiotemporal
distribution of the pulse in the focal plane.



Figure 23.4-5 Focal-plane spatiotemporal profile of the intensity
of a Gaussian beam modulated by a Gaussian pulse and focused by
a lens of focal length f. In this plot the initial pulse has N = 5 optical
cycles and the initial beam has a diffraction length z0 ≫ f. The
difference between this and the spatiotemporal profile in Fig. 23.4-4
is attributed to the fact that here the time delay 

 is negligible for f ≪ z0 at off-axis points with ρ < ρ0.

*Pulsed Beams in Dispersive Media

The process of diffraction of pulsed light in a dispersive medium can
be complex. If the medium is linear and homogeneous, then the
Helmholtz equation [∇2 + β2(ν)] V(r, ν) = 0 describes this process
for arbitrary dispersion properties, characterized by the propagation
constant β(ν), and for a pulse with arbitrary spatial-spectral profile
V (r, ν). Once V (r, ν) is determined by solving this equation, the
corresponding wavefunction U(r, t) may be readily determined by
an inverse Fourier transform. This approach is, in principle, valid no
matter how dispersive the medium or how narrow the pulse.

Approximations similar to those that led independently to the
paraxial Helmholtz equation, which describes beam diffraction, and
the SVE equation, which describes pulse dispersion (see Table 23.3-
2), may be combined to derive a partial differential equation for the
envelope 𝒜(r, t) of a pulse with a narrow spectral distribution. An
approach following the same steps described in Sec. 23.2C results in
the generalized paraxial wave equation:
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Generalized Paraxial Wave Equation

This equation generalizes (23.1-24), which is applicable for
nondispersive media Dν = 0), as well as (2.2-23), which is applicable
for the CW case for which ∂2A/∂t2 = ∂A/∂t = 0.

□ Proof of the Generalized Paraxial Wave Equation. The
wavefunction and its Fourier transform are related to the envelope
and its Fourier transform by U(r, t) = 𝒜(r, t) exp(−jβ0z) exp(j2πν0t)
and V(r, ν) = A(r, ν − ν0) exp(−jβ0z). The paraxial approximation, 

, can be used to convert the
Helmholtz equation to

For weak dispersion, we use the approximation 
 together with a 3-term Taylor-series

expansion β(ν0 + f) = β0 + 2πβ′ f + 2π2β″ f2. The Helmholtz
equation then becomes

Performing an inverse Fourier transform and noting that the
multipliers j2πf and −4π2f2 are equivalent to the derivatives ∂/∂t
and ∂2/∂t2, respectively, we obtain

Finally, substituting β′ = 1/v and β″ = Dν/2π and β0 = 2π/λo, we
obtain (23.4-28). ▪

The paraxial SVE equation admits a space–time Gaussian solution
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that has a spatiotemporal Gaussian initial envelope 
, where  and 

 are, respectively, the dispersion length associated with
the initial pulse width τ0 and the diffraction length associated with
the initial beam radius W0. This solution combines the diffraction
of a Gaussian beam (Chapter 3) and the dispersion of a Gaussian
pulse (Sec. 23.3) in a space–time separable fashion, as illustrated in
Fig. 23.4-6.

Figure 23.4-6 Three snapshots of the spatial distribution of a
pulse as it travels through a linear dispersive medium. Because of
diffraction, the pulse spreads in the transverse direction x. Because
of dispersion, it spreads in time (which is shown here as spatial
spread in the direction of propagation z).

Since (23.4-28) and (23.4-32) are separable in time and space, we
conclude that the approximations to which these equations are
subject are in effect tantamount to the quasi-CW approximation
described in Sec. 23.1C.

*Envelope Equation for Ultranarrow Pulsed Beam

When conditions for the SVE approximation are not met (i.e., the
pulse is very narrow and the beam is very thin), then the space–
time dependence is no longer separable. The differential equation
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that governs the pulse envelope takes a more complex form,
although the very concept of envelope is then less meaningful.
Beginning with the Helmholtz equation [∇2 + β2(ν)]V(r, ν) = 0 and
substituting V (r, ν) = A(r, ν − ν0) exp(−jβ0z) and ν = ν0 + f, we
obtain . Expanding the
function  in a Taylor-series expansion up to the second
order, we have .
Transforming back to the time domain and reordering terms, we
obtain

where v = 1/β′ and Dν = 2πβ″. Equation (23.4-33) is more general
than (23.4-28) since the paraxial approximation and the weak
dispersion approximation have not been used. If β′2 ≪ β0β″ (or
λo/v2 ≪ Dν) and ∂2

𝒜/∂z2 ≪ (4π/λo)∂A/∂z, then the fourth term in
(23.4-33) is negligible and (23.4-33) reproduces (23.4-28).

Equation (23.4-33) may be expressed in a coordinate system moving
at the pulse velocity v by using the transformation t′ = t − z/v and z′
= z. The result is the differential equation

which clearly exhibits spatiotemporal coupling.

23.5 ULTRAFAST NONLINEAR OPTICS
The previous sections of this chapter have considered the
propagation of optical pulses in linear media, with an emphasis on
the role of group velocity dispersion (GVD) in the reshaping of short
pulses. In this section, we consider the propagation of optical pulses
in nonlinear media. Nonlinear effects are more frequently
encountered with ultrashort pulses because of their higher



intensity. Nonlinear optical phenomena were introduced in Chapter
22; in particular, three-wave mixing in media with second-order
nonlinearity, and two-and four-wave mixing in media with third-
order nonlinearity, were considered. In this section, some of these
phenomena are revisited in the context of pulsed optical waves.
Section 23.5A deals with pulsed parametric processes, including
three-wave mixing, optical rectification, and self-phase modulation;
Sec. 23.5B details the theory of optical solitons; Sec. 23.5C is
devoted to supercontinuum generation; and Sec. 23.5D considers
high-harmonic generation and attosecond optics.

A. Pulsed Parametric Processes
Three-wave mixing in a medium with second-order nonlinearity was
discussed in Sec. 22.2C for continuous waves (CW), and a coupled-
wave theory was developed in Sec. 22.4. The principal conditions for
wave mixing are dictated by conservation of energy and momentum.
For pulsed waves with central angular frequencies ω1, ω2 and ω3,
and central wavevectors k1, k2, and k3, these conditions are: ω1 + ω2
= ω3 and k1 + k2 = k3. If dispersion effects are neglected, the CW
theory is applicable to the pulsed case; i.e., the pulse is regarded as
“quasi-CW” at any time during its course, and the envelopes of the
three waves obey the same coupled-wave equations (22.4-20).

The Walk-Off Effect

If the medium exhibits first-order dispersion, but not second-order
(GVD) or higher-order dispersion, then the three pulsed waves
travel at their group velocities without altering their shapes (only
their amplitudes are altered by the mixing process). Since these
velocities are generally different, the pulses eventually separate and
the parametric process responsible for wave mixing ceases, a
phenomenon known as the walk-off effect. Therefore, for efficient
pulsed-wave mixing, an additional condition is the equality of the
group velocities, v1 = v2 = v3. The walk-off effect is illustrated in Fig.



(23.5-1)

23.5-1 in the degenerate case of collinear second-harmonic
generation (ω1 = ω2 = ω and ω3 = 2ω).

Figure 23.5-1 A pulsed wave at the fundamental frequency (F) and
its associated second-harmonic wave (SH) separate as they travel at
different velocities (in this example, the SH wave is faster). The
upper graph is a space–time diagram for pulses of duration τ. The
lower schematic shows three snapshots of the traveling pulses at
times t1 < t2 < t3.

It is difficult to satisfy both phase matching and group-velocity
matching simultaneously. It was shown in Sec. 22.2D and Sec. 22.4A
that for a phase matching error Δk, second-harmonic generation
diminishes significantly at a distance Lc = 2π/|Δk|, called the
coherence length [see (22.2-28)]. For a group-velocity matching
error Δβ′ = 1/v3 − 1/v1, the pulses separate by a time delay Δβ′ z =
z/v3 − z/v1 after traveling a distance z. When this delay equals the
pulse width τ, the pulses no longer overlap and the nonlinear
coupling ceases. This occurs at a distance

Walk-Off Length

called the walk-off length. The shorter of the distances Lc and Lg
dictates which of the two effects, phase-velocity mismatch or group-
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velocity mismatch, dominates.

As an example, for a KDP crystal using an ordinary fundamental
wave at λ1 = 1.06 μm and an extraordinary second-harmonic wave at
λ3 = 0.53 μm in the Type-II o-e-o configuration, the group velocity
mismatch Δβ′ = 2(1/v3 − 1/v1) ≈ 5.2 × 10−10 s/m. For a 100-fs pulse,
the walk-off length Lg = τ/|Δβ′| ≈ 0.2 mm.

*Coupled-Wave Equations for Pulsed Three-Wave Mixing

The coupled-wave equations that were derived in Sec. 22.4 for CW
waves may be readily generalized to pulsed waves. For collinear
plane waves traveling in the z direction, the electric fields are
expressed in terms of the complex envelopes as 

, where a1, a2, and a3 are
normalized complex envelopes of the three pulses, and β1, β2 and β3
are the propagation constants at the central frequencies ω1, ω2, and
ω3. Using the slowly varying envelope approximation and a two-
term Taylor-series expansion of the propagation constant β(ω) near
each of the central frequencies , where  is the
derivative ∂β/∂ω at ωq, we obtain the coupled equations:

where  is the group velocity of the ωq wave, and g is a
constant given by (22.4-21). These equations are similar to the CW
coupled equations (22.4-20). If the group velocities are equal, i.e., v1
= v2 = v3 = v, then by use of a coordinate system moving with a
velocity v, the pulsed coupled equations (23.5-2) become identical
to the CW coupled equations (22.4-20), and the solutions presented
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in Sec. 22.4 are applicable with the variable z replaced by z − vt. If
the group velocities are not equal, the solution of (23.5-2) becomes
more complex.

When the medium also exhibits GVD (see Prob. 23.5-2), a three-
term Taylor-series expansion  leads to the
coupled-wave equations:

Pulsed Optical Rectification: THz Pulse Generation

A pulsed wave with central frequency in the optical band and
spectral width in the THz range may be downconverted into a pulse
of THz radiation. In essence, the pulse is frequency shifted from the
optical band to the THz band, as if it were rectified. Figure 23.5-2 is
a schematic illustration of the process.

Figure 23.5-2 Generation of a THz pulse by downconversion of an
optical wave.

When an optical pulse ℰ(t) = Re{𝒜(t) exp(jω0t)} with slowly
varying envelope 𝒜(t) travels through a medium with second-order
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nonlinear optical coefficient d, it induces a polarization density
2dℰ2(t), which has a term at 2ω0, responsible for second-harmonic
generation, and another,

representing optical rectification (see Secs. 22.2A, 22.2C, and
22.4B).

In order to determine the appropriate phase matching conditions
for this parametric process, we resort to a Fourier approach. The
pulsed optical wave can be regarded as a sum of monochromatic
waves with frequencies occupying a spectral band surrounding the
central frequency ω0. Upon passage through the nonlinear medium,
these monochromatic components are mixed in pairs, each
generating a downconverted monochromatic wave at the frequency
difference. In accordance with (22.2-13e), a pair of waves at the
angular frequencies ω1 = ω and ω2 = ω + Ω generates a nonlinear
polarization density PTHz(Ω) = 2dE*(ω)E(ω + Ω) at the THz
frequency Ω so that the sum for all the pairs is

In the time domain, this is equivalent to (23.5-4). To include
nonlinear dispersion effects, the nonlinear optical coefficient d in
(23.5-5) must be replaced by a frequency-dependent version d(Ω, ω,
ω + Ω) (see Sec. 22.7).

This downconversion process must satisfy the phase matching
condition at all frequencies ω and Ω. This condition cannot be met
exactly, and an error

will arise. If Ω ≪ ω, this relation may be written in the approximate
form
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where v(ω) = (dk/dω)−1 is the group velocity and N(ω) is the group
index at the optical frequency ω, and c(Ω) and n(Ω) are the phase
velocity and refractive index at the THz frequency Ω. The device
must therefore be designed in such a way that the group index at
optical frequencies is equal to the phase index at THz frequencies.

As was shown in Sec. 22.2D for a crystal of length L, this phase-
matching error is small if L < Lc, where Lc = 2π/|Δk| is the
coherence length [see (22.2-28)]. To account for this effect, the
factor  must be included within the
integral of (23.5-5).

Pulse Self-Phase Modulation

Self-phase modulation (SPM) occurs in nonlinear media that
exhibit the optical Kerr effect (see Sec. 22.3B). The phase Δφ
introduced by this effect for a wave traveling a distance z in a
medium with optical Kerr coefficient n2 is Δφ = −n2Ik0z, where I is
the optical intensity and k0 is the wavenumber. For an optical pulse,
the intensity is a function of time I(t) so that the phase is time
varying:

This corresponds to a change of the instantaneous frequency [see
(23.1-4)]

For a pulse with a simple shape, such as that illustrated in Fig. 23.5-
3, if n2 is positive, the frequency of the trailing half of the pulse (the
right half) is increased (blue shifted) since dI/dt < 0, whereas the
frequency of the leading half (the left half) is reduced (red shifted)
since dI/dt > 0. The pulse is therefore up-chirped (i.e., its
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instantaneous frequency is increasing) near its center. It follows
that SPM may be used to introduce chirp, and may therefore be
employed for pulse shaping (see Sec. 23.2D).

Figure 23.5-3 Chirping of an optical pulse by propagation through
a nonlinear optical Kerr medium.

For example, a Gaussian pulse may be approximated near its center
by a parabolic function, I(t) = I0 exp(−2t2/τ2) ≈ I0[1 − 2t2/τ2], so
that the time-varying component of the phase is approximately a
quadratic function of time Δφ = 2n2I0k0zt2/τ2, corresponding to a
linear chirp with chirp coefficient a = 2n2I0k0z of the same sign as
the Kerr coefficient n2. Self-phase modulation therefore introduces
a quadratic phase modulation factor exp(jat2/τ2) = exp(jζt2), where

It is convenient to write the chirp parameter introduced by SPM in
the form

SPM Chirp Parameter

where |zNL| is called the nonlinear characteristic length of the
Kerr medium. The phase introduced by traveling through the
nonlinear material a distance 2|zNL| at the peak intensity I0 is unity,
i.e., n2I0k02|zNL| = 1.



It has been implicitly assumed in the preceding analysis that the
medium is weakly dispersive so that pulse broadening is negligible;
i.e., GVD is negligible in comparison with SPM. This condition
obtains if |z0| ≫ |zNL|. Analysis of pulse propagation in materials
exhibiting both SPM and GVD is complex, as will be seen in the next
section.

The quadratic phase modulation introduced by nonlinear SPM may
be used in conjunction with a linear dispersive device, such as a
diffraction grating or prism module, to implement pulse
compression, as described in Sec. 23.2C and illustrated in Example
23.5-1. The combination results in pulse compression by a factor 

.



EXAMPLE 23.5-1.

Pulse Compression Using Fiber SPM and Grating GVD.
A 65-fs pulse of peak power P0 = 300 kW at a central wavelength
λo = 620 nm is chirped by a 9-mm long silica-glass optical fiber
of cross-sectional area A = 100 μm2, as illustrated in Fig. 23.5-4.
At this wavelength, n2 ≈ 3.2 × 10−20 m2/W so that the nonlinear
characteristic length is |zNL| = |2n2I0k0|−1 = λoA/4π|n2|P0 ≈ 0.5
mm. Since the fiber length z = 9 mm, the chirp parameter
introduced by the SPM is a = z/zNL = 18. This corresponds to a
maximum pulse compression factor , or a compressed
pulse of width 3.6 fs. The fiber also introduces GVD. At 620 nm,
β″ = 6 × 10−26 s2/m, so that the dispersion length for a pulse of
width τ0 = 65 fs is . Since z0 ≫ zNL, SPM
dominates GVD. To achieve maximum compression, the grating
must introduce a chirp coefficient 

.

Figure 23.5-4 Pulse compression by a combination of a
quadratic phase modulation (QPM) (introduced by SPM) and a
chirp filter. The phase modulator is implemented using an
optical fiber exhibiting SPM, via the optical Kerr effect. The chirp
filter is implemented using the GVD introduced by a diffraction
grating.

B. Optical Solitons



The interplay between self-phase modulation (SPM) and group
velocity dispersion (GVD) in a medium exhibiting both the
nonlinear optical Kerr effect and linear dispersion can result in a net
pulse spreading or pulse compression, depending on the
magnitudes and signs of these two effects. Under certain conditions,
an optical pulse of prescribed shape and intensity can travel in such
a nonlinear dispersive medium without ever altering its shape, as if
it were traveling in an ideal linear nondispersive medium. This
occurs when GVD fully compensates the effect of SPM, as
illustrated in Fig. 23.5-5(c). Such pulse-like stationary waves are
called solitary waves. Optical solitons are special solitary waves
that are orthogonal, in the sense that when two of these waves cross
one another in the medium their intensity profiles are not altered
(only phase shifts are imparted as a result of the interaction), so
that each wave continues to travel as an independent entity.



Figure 23.5-5 (a) In a linear medium with negative GVD
(anomalous dispersion), the shorter-wavelength component B has a
larger group velocity and therefore travels faster than the longer-
wavelength component R; this results in pulse spreading. (b) In a
nonlinear medium with positive optical Kerr effect (n2 > 0), SPM
introduces a negative frequency shift in the leading half of the pulse
(denoted R) and a positive-frequency shift in the trailing half
(denoted B). The pulse is chirped, but its shape is not altered. If the
chirped wave in (b) travels in the linear dispersive medium depicted
in (a), the pulse will be compressed since the blue-shifted half
catches up with the red-shifted half. (c) If the medium is both
nonlinear and dispersive, the pulse can be compressed, expanded, or
maintained (creating a solitary wave), depending on the magnitudes
and signs of the GVD and SPM. This illustration shows a solitary
wave created by a balance between negative GVD and positive SPM.

The soliton process may be visualized via the mechanical analog
illustrated by the cartoon in Fig. 23.5-6. Here, the heavy car
represents the central portion of the optical pulse. It alters the
surface of the ground, assumed to be elastic, much like the intense
pulse peak alters the refractive index of the medium. The fast sports
car, which is analogous to the trailing side of the pulse, is slowed
down by the inclination created in the surface. The slow bicycle,
which is analogous to the leading side of the pulse, is accelerated by



the down-sloped surface. The result of this self-sustained process is
that the three members of the team travel at the same velocity, and
maintain the distances that separate them.

Figure 23.5-6 Transportation analog of the soliton.

Solitons have a characteristic pulse profile and level of intensity for
which the effects of SPM and GVD are balanced. For these pulses,
the chirping effect of SPM perfectly compensates the natural pulse
expansion caused by the GVD. Any slight spreading of the pulse
enhances the compression process, and any pulse narrowing
reduces the compression process, so that the pulse shape and width
are maintained. Solitons can be thought of as the modes
(eigenfunctions) of the nonlinear dispersive system. A
mathematical analysis of this phenomenon is based on solutions of
the nonlinear wave equation that governs the propagation of the
pulse envelope, as described subsequently. However, we first
present a simple derivation of the soliton condition.

Soliton Condition

An expression for the soliton condition is obtained by equating the
sum of the phases introduced by SPM and GVD to zero, within an
incremental distance Δz. As described earlier in this section, a pulse
traveling through a nonlinear medium exhibiting the optical Kerr
effect undergoes SPM, which introduces a quadratic phase
modulation exp(jζt2), with , where I0 and τ0 are the
pulse peak intensity and width, respectively, and n2 is the optical
Kerr coefficient. Also, as described in Sec. 23.3, GVD in a linear
dispersive medium introduces a phase shift , where the chirp
parameter , and where β″ is the material
dispersion coefficient and |z0| is the dispersion length (see Table
23.3-1).
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The condition that the pulse travel as a soliton is that the two phase
factors are equal in magnitude and opposite in sign, so that

or, equivalently,

Soliton Condition (Phase)

This expression in turn is equivalent to

Soliton Condition (Length)

which indicates that the GVD dispersion length must equal the
nonlinear characteristic length. Stated differently, the phase shift
introduced by SPM over a propagation distance equal to twice the
GVD dispersion length |z0| is unity (−k0n2I02z0 = 1).

We may alternatively derive this condition by thinking of the
medium as a periodic sequence of localized SPM elements separated
by pulse-spreading elements (GVD) of widths Δz, as illustrated in
Fig. 23.5-7. The scheme is identical to the pulse-relaying system
described in Exercise 23.3-2. In fact (23.5-12) may be derived from
(23.3-23) in the limit as Δz → 0.

An expression for the soliton condition can also be cast in terms of
the pulse amplitude A0, where I0 = |A0|2/2η and η is the
electromagnetic impedance of the medium. The result is written in
terms of the product of the peak pulse amplitude A0 and the
temporal width τ0,



(23.5-15)

(23.5-16)

Soliton Condition (Area)

where

Figure 23.5-7 Simple model for a medium with negative GVD and
positive SPM.

is a nonlinear coefficient that serves as another material parameter.
Note that γ and β″ are assumed to have opposite signs. Thus, the
product A0τ0 of the peak amplitude and width is a constant
determined by the ratio of the parameter β″, which describes GVD,
and the parameter γ, which describes SPM. For a given material, the
product A0τ0 is fixed, which has the following implications:

The pulse peak amplitude A0 is inversely proportional to the
pulse width τ0.

The pulse peak power is inversely proportional to .

The pulse energy density ∫I(t)dt is inversely proportional to τ0,
so that a soliton of shorter duration must carry greater energy.
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By solving the nonlinear wave equation that governs pulse
propagation in a medium exhibiting both SPM and GVD, it will be
shown subsequently that one of the solutions is the soliton pulse

Soliton Envelope

where sech(·) = 1/ cosh(·) is the hyperbolic-secant function
illustrated in Fig. 23.5-8. This symmetric bell-shaped function has
the following characteristics:

Peak amplitude = A0

FWHM width of amplitude profile = 2.63 τ0

Area under amplitude profile = 2πA0τ0

Intensity I(t) ∝ |A0|2 sech2(t/τ0); width τFWHM = 1.76 τ0

Figure 23.5-8 Comparison of a sech function and a Gaussian
function of the same height and width (FWHM).

The Nonlinear Slowly Varying Envelope Wave Equation

To describe the propagation of an optical pulse in a nonlinear
dispersive medium exhibiting both GVD and SPM, we begin with
the wave equation in (5.2-25) and (22.1-3),
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where ℰ(r, t) is the electric field, 𝒫L(r, t) is the linear component of
the polarization density, which is governed by the medium
dispersion, and 𝒫NL = 4χ(3)ℰ3 is the nonlinear component of the
polarization density, which is assumed to be nondispersive.
Bringing the linear term from the right-hand side to the left-hand
side of (23.5-18) and rewriting the equation in the Fourier domain,
we obtain

where β(ω) is the propagation constant in the linear medium and E
= E(r, ω) and PNL = PNL(r, ω) are Fourier transforms of ℰ(r, t) and
𝒫NL(r, t), respectively. In the absence of nonlinearity, (23.5-19)
reproduces the Helmholtz equation (5.3-16).

We consider a plane-wave optical pulse traveling in the z direction
with central angular frequency ω0 and central wavenumber β0 =
β(ω0) = ω0/c,

and assume that the complex envelope 𝒜 is a slowly varying
function of t and z (in comparison with the period 2π/ωo and the
wavelength 2π/β0, respectively).

Using three assumptions: (1) slowly varying envelope, (2) weak
dispersion, and (3) small nonlinear effect, it will be shown below
that the envelope 𝒜(z, t) satisfies the differential equation

Nonlinear SVE Wave Equation
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where v = 1/β′ is the group velocity, Dν = 2πβ″ is the dispersion
coefficient, β′ and β″ are the first and second derivatives of β(ω)
with respect to ω at ω = ω0, and γ is given by (23.5-16). For a linear
medium γ = 0, and the linear SVE wave equation (23.3-24) is
reproduced.

□ * Derivation of the Nonlinear SVE Wave Equation. We
begin with the nonlinear Helmholtz equation (23.5-19). Substituting
E = A(z, ω − ω0) exp(−jβ0z) as well as PNL = ANL(z, ω − ω0)
exp(−jβ0z), and defining Ω = ω − ω0, we obtain

We now simplify (23.5-22) using a number of approximations:

Since ω ≈ ω0, the ω2 factor on the right-hand side of (23.5-22)
can be approximated by .

When the SVE approximation 
 is applied, (23.5-22)

becomes

Assuming weak dispersion, .
Further assuming a three-term Taylor-series expansion, 

, (23.5-23) becomes

Since 𝒫NL = 4χ(3)ℰ3, 𝒫NL contains components near the
frequencies ω0 and 3ω0. Retaining only the term near ω0, we
write 𝒫NL = Re{𝒜NL(z, t) exp[j(ω0t − β0z)]}, where 𝒜NL(z, t) is
a slowly varying envelope. Using (23.5-20) and (22.3-3a), it
follows that
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We then transform (23.5-24) back to the time domain, using the
fact that jΩA(z, Ω) and −Ω2A(z, Ω) are equivalent to ∂A/∂t and ∂2A/
∂t2. Finally, using (23.5-25), we obtain the nonlinear SVE wave
equation (23.5-21).

This result may also be obtained if we assume that the nonlinear
medium is approximately linear with a propagation constant β(ω) +
Δβ, where Δβ = (ω0/co)n2I. We take the intensity I = |A|2/2η to be
sufficiently slowly varying so that it may be regarded as time-
independent. The Fourier analysis that led to the differential
equation (23.3-24) for the linear medium is then simply modified
by adding a term proportional to ΔβA. This contribution produces
the additional term γ|A|2 A, whereupon (23.5-21) emerges. ▪

The Nonlinear Schrödinger Equation

Equation (23.5-21) must be satisfied by the complex envelope 𝒜(z,
t) of a plane-wave optical pulse traveling in the z direction in an
extended nonlinear dispersive medium, with group velocity v,
dispersion parameter β″, and nonlinear coefficient γ. As previously
noted, a solitary-wave solution is possible if β″ < 0 (i.e., the medium
exhibits negative GVD) and γ > 0 (i.e., the optical Kerr coefficient n2
> 0).

It is convenient to rewrite (23.5-21) in terms of dimensionless
variables by normalizing the time, distance, and amplitude to the
scales τ0, 2z0, and A0, respectively:

τ0 is the pulse width

 is the dispersion length of the linear dispersive
medium for this pulse width

A0 = (−β″/γ)1/2/τ0 is the pulse peak amplitude that satisfies the
soliton condition (23.5-15).
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Using a retarded frame of reference, and defining the dimensionless
variables

the nonlinear SVE wave equation in (23.5-21) becomes

Nonlinear Schrödinger Equation

which is recognized as the nonlinear Schrödinger equation.

Fundamental Soliton

The simplest solitary-wave solution of (23.5-27) is obtained by
assuming a space–time separable function of the form ψ(𝓏, t) = 𝒯(t)
exp[j𝒵(𝓏)], where 𝒯(t) and 𝒵(𝓏) are real functions. By direct
substitution in (23.5-27), and using a separation-of-variables
approach, this leads to two differential equations: 𝒵′(𝓏) = ϑ and 𝒯″
(t) = 2(ϑ − 𝒯2)𝒯, where ϑ is a constant. Assuming that 𝒯 = 𝒯′ = 0 at
|t| → ∞, and 𝒯 = 1 and 𝒯′ = 0 at t = 0 (the pulse peak), these
ordinary differential equations may be solved by direct integration
to yield 𝒯(t)= sech(t) and . The normalized amplitude is
then given by

and this solution is called the fundamental soliton. It
corresponds to an envelope
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Fundamental Soliton

that travels at velocity v without altering its shape. This solution is
achieved if the incident pulse at z = 0 is

Higher-Order Soliton

The fundamental soliton is but one of a family of solutions of the
nonlinear Schrödinger equation with solitary properties. Consistent
with the initial pulse ψ(0, t) = N sech(t), where N is an integer, is a
solution known as the N-soliton wave. Such a wave propagates as
a periodic function of z with period zp = π/2, called the soliton
period, which corresponds to a physical distance 

. At z = 0 the envelope 𝒜(0, t) is then a
hyperbolic-secant function with peak amplitude N A0, which is N
times greater than that of the fundamental soliton. As the pulse
travels, it contracts initially, then splits into distinct pulses that
subsequently merge, and eventually it reproduces the initial pulse at
z = zp and multiples thereof.

The N = 2 soliton serves as an example. It has a normalized
amplitude given by

whose magnitude is illustrated in Fig. 23.5-9.
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Figure 23.5-9 Propagation of the fundamental (N = 1) soliton and
the N = 2 soliton.

The periodic compression and expansion of the multi-soliton wave
is accommodated by a periodic imbalance between the pulse
compression, which results from the chirping introduced by self-
phase modulation, and the pulse spreading caused by group velocity
dispersion. The initial compression has been used for the
generation of subpicosecond pulses.

Soliton-Soliton Interaction

When two solitons separated by some time delay are launched into
the nonlinear medium, their shape and time separation are altered
as if they experience attractive or repulsive forces pulling them
together or separating them. For example, two identical separated
fundamental solitons are initially attracted as they travel through
the medium and their time separation is reduced until they collapse
into a single pulse, whereupon they experience repulsive forces that
separate them again into two pulses. The process is repeated
periodically with a period

where T is the initial center-to-center separation, τ0 is the width of
the individual soliton, and z0 is the GVD dispersion length. This
result can be obtained by solving the nonlinear Schrödinger
equation with the appropriate boundary condition. As an example, if



T = 10τ0, so that the pulses are well separated and only their tails
interact, Lp ≈ 466z0, which is quite large. However, this effect can be
significant in long optical fibers since it can impose restrictions on
optical fiber communication systems that use solitons to represent
bits, as described in Sec. 25.2E.

EXAMPLE 23.5-2.

Solitons in Optical Fibers. Ultrashort solitons have been
generated in glass fibers at wavelengths in the anomalous
dispersion region (λo > 1.3 μm), where the GVD is negative. They
were first observed in a 700-m single-mode silica-glass fiber
using pulses from a mode-locked laser operating at a wavelength
λo = 1.55 μm. The pulse shape closely approximated a
hyperbolic-secant function with τ0 = 4 ps (corresponding to
τFWHM = 1.76 τ0 = 7 ps). At this wavelength the dispersion
coefficient is Dλ = 16 ps/km-nm (see Fig. 10.3-5), corresponding
to . The refractive index n = 1.45
and the nonlinear coefficient n2 = 3.19 × 10−20 m2/W,
corresponding to γ =(π/λo)n2/η = 2.48 × 10−16 m/V2 (where η =
ηo/n = 260 Ω). The amplitude A0 = (|β″|/γ)1/2/τ0 ≈ 2.25 × 106

V/m, corresponding to an intensity . If the fiber
area is 10 μm2, this corresponds to a power of about 100 mW.
The soliton period is .

Soliton Generation and Maintenance

To excite the fundamental soliton, the input pulse must have the
hyperbolic-secant profile with the appropriate amplitude-width
product A0τ0, as specified in (23.5-15). A lower value of this product
will excite an ordinary optical pulse, while a higher value will excite
the fundamental soliton, or possibly a higher-order soliton, with the
remaining energy diverted into a spurious ordinary pulse. When the



initial pulse has a different profile or is chirped, the resulting pulse
can, under certain conditions, evolve into a fundamental or higher-
order soliton after a distance equal to a few soliton periods.

If the medium is lossy, the pulse power is gradually dissipated so
that the nonlinear effect becomes weaker and dispersive effects
dominate, which leads to pulse broadening and loss of the soliton
nature of the pulse. In optical fibers, this problem may be mitigated
by the use of distributed Raman amplification (see Secs. 15.3D and
22.3B) to overcome absorption and scattering losses. Lumped
amplification can also be effective if the amplifier spacing is well
within the soliton period zp.

Because of their unique ability to maintain their shape and width
over long propagation distances, optical solitons have the potential
for transmitting digital data through optical fibers at higher rates,
and for longer distances, than is currently possible with linear optics
(see Sec. 25.2E). Optical solitons with durations of a few tens of
picoseconds have been successfully transmitted through many
thousands of kilometers of optical fiber.

Soliton Lasers

Optical-fiber lasers have also been used to generate picosecond
solitons. One version is a single-mode fiber in a-ring resonator
configuration (Fig. 23.5-10). The fiber is a combination of an
erbium-doped fiber amplifier (see Sec. 15.3C) and an undoped
optical fiber that provides the pulse shaping and soliton action.
Pulses are generated by making use of a phase modulator to achieve
mode locking. An integrated version makes use of a laser-diode
pump, such as InGaAsP, and an integrated-photonic phase
modulator.
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Figure 23.5-10 An optical-fiber soliton laser.

Dark Solitons

A dark soliton is a short-duration dip in the intensity of an
otherwise continuous wave of light. Dark solitons have properties
similar to the “bright” solitons described earlier, but can be
generated in the normal dispersion region (λo < 1.3 μm in silica
optical fibers). They exhibit robust features that can be garnered for
optical switching.

Analogy Between Temporal and Spatial Solitons

The optical solitons described in Sec. 23.5B are analogous to the
spatial solitons (selfguided beams) described in Sec. 22.3B. Spatial
solitons are monochromatic waves that are localized spatially in the
transverse plane. They travel in a nonlinear medium without
altering their spatial distribution, as a result of a balance between
diffraction and spatial self-phase modulation in accordance with the
nonlinear Schrödinger equation,

Nonlinear Beam Diffraction

where γ = πn2/ληo and n2 is the optical Kerr coefficient. Equation
(23.5-33) is equivalent to (22.3-11).
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The nonlinear Schrödinger equation that describes temporal
solitons in nonlinear dispersive media (23.5-21) may be rewritten in
the moving frame (t′ = t − z/v, z′ = z) as

Nonlinear Pulse Dispersion

where γ = πn2/ληo. This is identical to (23.5-33) with time t playing
the role of the transverse spatial coordinate x, and the dispersion
coefficient −Dν (which governs pulse dispersion) playing the role of
the wavelength λ (which governs beam diffraction). It is therefore
evident that temporal solitons are formal analogs of spatial solitons.
In fact the term soliton refers to generic solutions of the nonlinear
Schrödinger equation, describing pulses that propagate without
change; they may be temporal or spatial.

Spatiotemporal Solitons and Light Bullets

A spatiotemporal soliton is a combined temporal and spatial soliton,
i.e., a pulsed beam that maintains its spatial and temporal profiles
as it travels through a nonlinear medium exhibiting the optical Kerr
effect (see Fig. 23.5-11). In this case, the temporal broadening
associated with negative (anomalous) dispersion and the spatial
spreading resulting from diffraction are simultaneously
compensated for by self-phase modulation and self-focusing that
ensue from a positive nonlinear optical Kerr effect. The partial
differential equation describing these three phenomena is a
combination of (23.5-33) and (23.5-34),

Nonlinear Diffraction & Dispersion



A necessary condition for generating spatiotemporal solitons is the
equality of the dispersion length  and the diffraction
length  so that τ0/W0 = (λ/|Dν|)1/2.

Figure 23.5-11 (a) Spatial and temporal spreading of a pulsed
beam as a result of propagation in a linear dispersive medium. (b) A
spatiotemporal soliton is a pulsed beam that maintains its spatial
and temporal profiles as it propagates in a nonlinear medium.

*C. Supercontinuum Light
Supercontinuum light has an ultrabroad continuous spectrum and
is of high brightness. Supercontinuum generation (SCG) is
implemented by transmitting an ultrashort optical pulse of high
peak power (a pump) through a nonlinear medium with special
dispersive properties; examples of such media are dispersion-
shifted, dispersion-flattened microstructured, and photonic-crystal
optical fibers (PCFs). Supercontinuum light sources with spectra
stretching from the mid infrared to the extreme ultraviolet have
been demonstrated.

Depending on the details of the source, several nonlinear
mechanisms, including self-phase modulation (SPM), stimulated
Raman scattering (SRS), four-wave mixing (FWM), and the soliton
self-frequency shift (SSFS), may contribute individually or jointly to
SCG. These nonlinear effects are sensitive to the sign of the
medium dispersion at the central wavelength λ0 of the pump pulse
and to the relative location of the zero-dispersion wavelength λZD of
the medium. The widest SCG spectra are obtained when λ0 is close



to λZD. It was the availability of nonlinear PCFs with λZD close to the
wavelength of the Ti:sapphire laser that first made SCG practical.

A brief description of the principal nonlinear mechanisms that
contribute to SCG follows; Fig. 23.5-12 provides schematic
illustrations of these processes.

Figure 23.5-12 Principal nonlinear mechanisms for
supercontinuum generation (SCG) via spectral broadening of an
ultrashort pulse transmitted through a nonlinear dispersive fiber.
(a) Self-phase modulation (SPM) combined with stimulated Raman
scattering (SRS). (b) Soliton self-frequency shift (SSFS). (c) Four-
wave mixing (FWM).

Self-phase modulation (SPM) is the principal mechanism
for producing SCG in nonlinear optical fibers with normal
dispersion (Dλ < 0) at the pump central wavelength λ0, since in
this case solitons cannot be formed. As discussed in Sec. 23.5A,
SPM results in pulse chirping, which in turn causes spectral
broadening. A chirp coefficient a corresponds to spectral
broadening by the factor . For a medium of length L and
optical Kerr coefficient n2, the chirp parameter is a = L/zNL,
where zNL = (2n2I0k0)−1 is the nonlinear characteristic length
of the Kerr medium and I0 is the peak pulse intensity.



Stimulated Raman scattering (SRS) broadens the spectral
distribution further, toward longer wavelengths, since it results
in a frequency downshift (see Secs. 14.5C, 15.3D, and 16.3C).

The soliton self-frequency shift (SSFS) originates from
intrapulse stimulated Raman scattering (SRS). When λ0 is close
to λZD the combined SPM/SRS broadens the spectrum into the
anomalous region, creating conditions suitable for soliton
formation. Optical solitons generally experience a downshift of
their carrier frequency, toward longer wavelengths, which
increases with pump power.

Four-wave mixing (FWM) can also contribute to SCG. In a
microstructured fiber that has two widely separated, zero-
dispersion wavelengths, with λ0 lying between them, the
dominant nonlinear mechanisms for spectral broadening are
SPM and FWM. The SPM process broadens the pump pulse,
enabling the phase-matching conditions for FWM to be met.
This generates new light at both lower and higher frequencies,
yielding SCG with double-peaked spectra. With sufficient
broadening, the two FWM peaks may merge into a single flat
distribution.
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EXAMPLE 23.5-3.

High-Energy Solitons Generated in a Photonic-Crystal
Rod. The soliton pulse energy E = Aeff ∫I(t) dt can be maximized
by making use of a photonic-crystal rod with large effective
mode area Aeff. By virtue of the soliton condition specified in
(23.5-15) and (23.5-16), the soliton intensity is given by I(t) =
(|A0|2/2η) sech2(t/τ0), where . Since ,
the soliton pulse energy can be written as

Soliton Energy

A 36-cm-long photonic-crystal rod with an effective mode area
Aeff = 2300 μm2, driven by a mode-locked, Er3+-doped fiber laser
that provides a sequence of 360-fs, 500-nJ pulses at a
wavelength of λo = 1550 nm and at a repetition rate of 1 MHz,
generates optical solitons via SSFS. The output of the rod is a
train of 65-fs, 67-nJ optical solitons with a center wavelength of
λ0 = 1675 nm, a repetition rate of 1 MHz, and an average power
of tens of mW. This source is useful for three-photon
fluorescence microscopy (Sec. 14.5B).

*D. High-Harmonic Generation and Attosecond Optics
The previous sections of this chapter have considered ultrafast
nonlinear phenomena in the context of a dielectric medium in
which the motion of bound electrons is characterized by a weakly
nonlinear 𝒫–ℰ relation (Fig. 22.1-1). Equation (22.1-1) provides a
Taylor-series expansion for the polarization density 𝒫 in terms of
increasing powers of the electric field ℰ that are responsible for



second-and third-harmonic generation, as well as a host of other
parametric processes. When the optical field exceeds a certain
strength, however, this expansion is no longer viable and the light–
matter interaction exhibits new physical manifestations, such as
atomic ionization (see Sec. 14.1A). This domain is known as
extreme nonlinear optics.

In high-harmonic generation (HHG), an infrared ultrafast
pulse from a focused laser beam serves to ionize a gas atom,
creating a free electron in the process. The electron is accelerated by
the exciting laser field, which imparts kinetic energy to it before it is
recaptured by its parent atom. The ensuing atom–electron
recombination generates a high-energy photon in the form of a
burst of radiation with sub-femtosecond structure. This same
process takes place in a collection of atoms, which radiate
coherently since they are entrained by the waveform of the exciting
laser. The discrete spectrum of the emitted light comprises a
frequency comb (Sec. 16.4E) that can contain hundreds of
harmonics of the exciting laser frequency, reaching into the
extreme-ultraviolet (EUV) region. The result is a tightly collimated
beam of light that contains wavelengths far shorter than that of the
exciting laser. High-harmonic generation serves to convert infrared
(IR) light into extreme-ultraviolet (EUV) radiation and to generate
attosecond light pulses, as illustrated schematically in Fig. 23.5-
13. At high gas pressures, the HHG spectrum can contain thousands
of harmonics of the exciting laser frequency and extend well into
the soft-X-ray (SXR) region.



Figure 23.5-13 Comparison between (a) second-harmonic
generation (SHG) and (b) high-harmonic generation (HHG), a
process that generates pulses of EUV light on an attosecond
timescale.

Emissions from a single atom.
A simplified semiclassical model that describes the generation of
HHG, known as the recollisional model, is illustrated in Fig.
23.5-14. A gas atom is modeled as a single electron in a potential
well [Fig. 23.5-14(a)]. The exciting laser field at the location of the
atom is taken to be monochromatic with angular frequency ω0 and
period T = 2π/ω0, and to be linearly polarized in the x direction. The
photon energy of the laser ℏω0 is much smaller than the ionization
energy of the atom W so ordinary photon absorption does not take
place. The HHG generation process follows three steps, in sequence:



Figure 23.5-14 Simplified three-step recollisional model for HHG.
(a) A gas atom is modeled as a single electron in the ground state of
a potential well with ionization energy W. (b) An applied optical
field ℰ(t) from an exciting laser alters the potential well and causes
the electron to tunnel into free space at time ti. (c) The free electron
is accelerated in the +x direction by the negative optical field but
reverses direction when the optical field becomes positive, returning
back to the ionized atom with increased kinetic energy Ek at time tr.
(d) The electron recombines with the ion and radiates an EUV
photon of energy W + Ek that takes the form of a chirped pulse of
radiation with sub-femtosecond structure, as illustrated. Emissions
from all atoms illuminated by the exciting laser pulse add
coherently.

Step 1. During the first quarter of the optical cycle [Fig. 23.5-
14(b)], the optical field tilts the atomic potential well, thereby
converting it into a potential barrier. The electron tunnels
through the barrier at time ti. Different atoms tunnel through
at different times.

Step 2. The liberated electron is accelerated in free space by the
exciting field, in the +x direction away from the ionized atom
[Fig. 23.5-14(c)]. When the field reverses direction during the
second and third quarters of the excitation cycle, the electron
reverses direction and is accelerated in the −x direction, back
toward the ionized atom. On its arrival at the atom, the atomic



potential is tilted in the opposite direction and the electron is
endowed with increased kinetic energy Ek as a consequence of
its acceleration via the ponderomotive force.

Step 3. When the electron collides with the ionized atom at
time tr, recombination occurs and the electron falls into the
potential well [Fig. 23.5-14(d)]. In the process, a photon is
emitted with energy ℏω = W + Ek ≫ ℏω0, in the form of a burst
of radiation with sub-femtosecond structure. The emitted EUV
light has a frequency far greater than that of the exciting IR
light.

The preceding three steps are repeated for each cycle of the exciting
laser field, resulting in a periodic stream of radiation bursts.
However, the process can also be initiated on the half optical cycle
opposite to that portrayed above, in which case the liberated
electron initially accelerates in the −x direction before turning
around and reuniting with the ionized atom. Symmetry dictates that
both alternatives have equal probability of occurrence in the
collection of gas atoms, so that radiation pulses with attosecond
structure are generated twice per cycle, i.e., with period T/2 = π/ω0.
Such a periodic sequence of events exhibits a discrete spectrum
whose frequencies are spaced by 2π/(T/2) = 2ω0 and whose
amplitudes are determined from a Fourier-series expansion (see
Appendix A). The symmetry of the atom and the electric field gives
rise to components at odd harmonics of the exciting laser frequency
that are separated by 2ω0, as schematically illustrated in Fig. 23.5-
13(b).

Field to electron energy transfer.
The energy imparted to the electron by the exciting field during its
foray away from its parent ion determines the characteristics of the
HHG. The kinetic energy acquired by an electron in an ionization–
recombination cycle may be calculated by determining its free-space
trajectory. The optical field of the exciting laser, ℰ(t)= ℰ0 cos ω0t at
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x = 0, exerts a force eℰ = m0a on the electron, resulting in an
acceleration in the +x direction given by a(t) = (eℰ0/m0) cos ω0t,
where −e and m0 are the charge and mass of the electron,
respectively. If the ionization occurs at time ti, and the electron
emerges with zero velocity [v(ti) = 0] at position x = 0, the following
equations govern the electron's velocity v(t) = ∫a(t) dt, kinetic
energy Ek(t), and position x(t) = ∫v(t) dt at time t:

where v0 = eℰ0/m0ω0 and . These equations establish
the trajectory of the electron and the dependence of its kinetic
energy Ek = Ek(tr) on the ionization time ti and the recombination
time tr.

Based on numerical solutions to these equations, which are
displayed in Fig. 23.5-15, the following observations emerge:

From Fig. 23.5-15(a) it is clear that electrons freed at times ti in
the first quarter of the laser cycle (0 < ti < T/4) arrive at the
parent atom at times tr in the last three quarters of the cycle
(T/4 < tr < T). The earlier an electron is freed in the first
quarter, the later it arrives in the last three quarters. In
particular, an electron freed at the very beginning of the cycle
(ti = 0) arrives at the very end of the cycle (tr = T), and its
excursion away from the parent atom is the greatest (a distance
x0). Electrons freed at times ti in the second quarter of the
exciting laser cycle (T/4 < ti < T/2) drift away and never return
to the parent atom.

From Fig. 23.5-15(b) it is evident that an electron ionized at ti =
0 returns with zero net kinetic energy (Ek = 0). As ti increases
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within the first quarter of the laser cycle (0 < ti < T/4), the
kinetic energy of the returning electron increases
monotonically, reaching a peak value 
(corresponding to a velocity 1.26 v0) for ti = 0.05T, and then
decreases to zero at ti = T/4. The maximum kinetic energy Emax
depends on the laser intensity  and laser wavelength
λo in accordance with

where ηo is the free-space impedance. The maximum kinetic
energy is proportional to the laser intensity and to the square of
its wavelength.

Figure 23.5-15(c) demonstrates that the electron's kinetic
energy Ek, as a function of the recombination time tr, which is
also the photon emission time, is greater than zero over the last
three quarters of the exciting-laser cycle and exhibits a
maximum value at tr ≈ 0.7T. The full width of this curve is
therefore ≈ ¾T, corresponding to ≈ 2 fs for an exciting
wavelength of 800 nm.



Figure 23.5-15 (a) Normalized trajectories x(t)/x0 of liberated
electrons for various normalized ionization times ti/T within the
first quarter of the laser cycle. Each trajectory begins at time ti/T
and terminates at the corresponding arrival time tr/T .(b)
Dependence of the normalized kinetic energy on the normalized
ionization time ti/T. (c) Dependence of the normalized kinetic
energy on the normalized recombination time tr/T.

Emissions from a collection of atoms.
The characteristics of the generated HHG beam are determined by
the collective recombinations of many electrons with their parent
ionized atoms over a range of times within the same laser cycle.
Figure 23.5-15(c) demonstrates that the kinetic energy Ek of an
arriving electron lies between 0 and Emax, indicating that the
corresponding energy of its companion emitted photon lies in the
range between W and W + Emax. If the ionization probability were
constant and independent of the ionization time ti within the first
quarter cycle, each generated pulse would comprise a coherent
superposition of recombination emissions from the various atoms.
Each such pulse would have an overall temporal duration < T/2 and
would be chirped by virtue of the dependence of the kinetic energy
Ek(tr) on the recombination time tr, as depicted in Fig. 23.5-15(c).
The frequency of the emitted pulse, ω(tr) = [W + Ek(tr)]/ℏ, is up-
chirped for tr < 0.7 T and down-chirped for tr > 0.7 T. The
corresponding spectral width is Δν = Emax/h = M/T, where M =
Emax/hν0 is the number of harmonics within the spectral band.



Pulse-compression techniques could be used to eliminate the
attendant chirp and render the pulse transform-limited (Sec. 23.2),
in which case its temporal width would be compressed to a value on
the order of T/M. As an example, (23.1-10) reveals that a transform-
limited Gaussian pulse of spectral width Δν (FWHM) has a
corresponding temporal width τFWHM = 0.44/Δν = 0.44T/M, which
represents a small fraction of the laser period T. The technology of
attosecond optics offers methods for unchirping HHG pulses, as
well as for using suitable optical gating to isolate individual
attosecond pulses from such a pulse train.

EXAMPLE 23.5-4.

HHG Attosecond Pulses in Ar Gas. An ultrafast Ti:sapphire
laser operated at a wavelength of λo = 800 nm emits
femtosecond pulses that are amplified and focused to an
intensity I = 5 × 1014 W/cm2. The infrared pulses impinge on a
gas of argon atoms (ionization energy W = 15.78 eV) to produce
HHG. The simplified three-step HHG model yields a maximum
electron excursion  nm and a maximum
electron kinetic energy  [see (23.5-39)]. The
maximum energy of an emitted photon is thus W + Emax = 110.6
eV, which corresponds to a wavelength of ≈ 11.2 nm in the EUV.
Since the exciting photon energy is ℏω0 = 1.55 eV, the number of
harmonics generated is M = Emax/ℏω0 ≈ 61. The period of the
laser cycle is T = 2.67 fs so optimal pulse compression would
yield a train of pulses of duration T/61 ≈ 43.8 attoseconds.

For very large values of the laser intensity, the probability of
ionization is not constant and independent of the ionization time ti
within the first quarter cycle, as assumed above. Rather, a subset of
ionization times, smaller than the full quarter cycle and
corresponding to larger field values, dominates. This in turn causes
the duration of the emissions to shrink below T/2 and gives rise to



the generation of sub-femtosecond pulses without the use of
compression. However, compression techniques serve to further
shrink the temporal width of the pulses to their transform-limited
value, which is established by the overall spectral width.

To foster the constructive growth of the HHG light along the length
of the gas region, phase matching must be maintained, i.e., the
phase velocities of the exciting laser light and the HHG light must
match (Sec. 22.2D). While the phase velocity of the high-frequency
HHG light is essentially equal to the free-space velocity co, the
phase velocity of the laser light is lower and depends on the gas
pressure. One phase-matching scheme involves guiding the laser
light through a hollow-core waveguide filled with the gas. While the
guided laser light travels at the velocity of the guided mode, the
high-frequency HHG light is unguided and travels with phase
velocity co. In the absence of the gas, the velocity of the laser guided
mode is greater than co (as the propagation constant is lower), but it
can be reduced to co by increasing the gas pressure, thereby
permitting phase matching to be achieved.

Aside from Ti3+:sapphire lasers, ultrafast Yb3+:silica-fiber lasers
with high repetition rates are often used as sources to produce
HHG. Coherent attosecond beams, with hundreds of μW in
individual harmonic components and pulse durations in the
attosecond domain, can be generated. Attosecond optics has myriad
applications, particularly in spectroscopy and imaging. It is also
useful for understanding chemical reactions since the electrons that
participate in such reactions move on that timescale. Light travels at
a speed of 0.3 nm/as, so it traverses the width of a water molecule
(0.3 nm) in 1 attosecond. The generation of HHG using lasers
operating in the mid infrared can, in principle, allow multiple re-
encounters of the electron with its parent ion, thereby promising
the generation of sub-attosecond (zeptosecond) optical pulses. HHG
can also be elicited from solids. The character of such emissions
from crystalline solids differs somewhat from those elicited from
gases because of the periodic crystal structure of the material. In



particular, the HHG depends on the polarization of the incident
radiation and the frequency combs generated contain even
harmonics as well as odd ones for band structures that effectively
lack inversion symmetry. The sum of a collection of EUV or SXR
frequency combs with slightly different spectral spacings, generated
by sweeping the exciting-laser wavelength and averaging, can serve
as a quasi-supercontinuum source in these spectral domains.
Attosecond radiation may also be generated by free-electron lasers
(Sec. 16.3F), but FELs are currently available only at large-scale
facilities.

Limitations of the model.
Though highly oversimplified, the semiclassical analysis presented
here captures many of the essential features of HHG production
and attosecond pulse generation. Many simplifications and
approximations have been made: 1) the atomic model incorporates
only a single active electron; 2) though the electron is assumed to
tunnel through the potential barrier, it is treated as a classical
particle rather than as a quantum-mechanical wavepacket; 3) the
ionization is taken to be instantaneous and the effect of the
Coulomb field associated with the resulting ionized atom is ignored;
4) the analysis is one-dimensional; and 5) the field is assumed to be
linearly polarized. Advances in the field of attosecond optics have
enabled the development of more sophisticated models that reveal
more subtle features of HHG.

23.6 PULSE DETECTION
The measurement of an ultranarrow optical pulse is challenging
since the fastest available photodetector is almost always too slow
to carry out the task. Methods of effecting such measurements rely
primarily on the use of an ultrafast optical shutter (gate) controlled
by another, shorter reference pulse and a mechanism for
introducing a controllable time delay between the two pulses. The
light transmitted through the gate is measured as the process is
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repeated for different delays, thereby providing an estimate of the
pulse-intensity profile I(t). To measure the pulse phase φ(t),
interferometric approaches can be cleverly combined with nonlinear
optical techniques.

In the spectral domain, the pulse is fully characterized by its
spectral intensity S(ν) and spectral phase ψ(ν). These functions may
be measured by the use of an optical spectrum analyzer in
conjunction with interferometric measurements. A challenging
aspect of ultrashort pulse detection is the fact that the optical
components employed in the measurement system unavoidably
alter the optical pulse before measurement. Such effects must be
minimized by careful system design, or compensated by appropriate
post-detection signal processing.

A. Measurement of Intensity

Direct Photodetection

Ideally, the intensity profile of a short optical pulse may be directly
measured by making use of a photodetector whose response time is
much shorter than the pulse. In accordance with (19.1-4), the
measured photocurrent ip(t) is then proportional to the pulse
intensity I(t) via

Fast Detector

where R is the responsivity (A/W) of the detector and A is its active
area (which is assumed to be sufficiently small so that the optical
intensity is sampled at the position of the detector).

If the response time of the photodetector is not small in comparison
with the pulse duration, which is the usual case for ultrashort
optical pulses, the photocurrent response is a broadened and
distorted version of the optical pulse. If hD(t) is the impulse
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response function of the detector, where ∫hD(t) dt = R, then the
photocurrent response is given by the convolution integral

Arbitrary Detector

which has greater duration than the optical pulse. Other measures
must then be used to determine its true intensity waveshape I(t). It
is apparent that (23.6-2) reduces to (23.6-1) in the limiting case
when the photodetector response time [the width of hD(t)] is much
shorter than the duration of the optical pulse [the width of I(t)].

At the opposite extreme, when the optical pulse duration is much
shorter than the response time of the photodetector, (23.6-2)
becomes

in which case the photocurrent takes on the temporal profile of the
detector's impulse response function, rather than that of the optical
pulse. These three cases are illustrated schematically in Fig. 23.6-1.

Figure 23.6-1 Response of a photodetector with impulse response
function hD(t) to optical pulses of (a) long; (b) intermediate; and (c)
short duration. For short optical pulses, as illustrated in (c), the
photocurrent ip(t) follows hD(t) rather than I(t).

Furthermore, if the photoreceiver circuitry has a time constant τR
that is longer than the response time of the photodetector, with an
impulse response function that is rectangular with hR(t) = 1/τR, the
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photocurrent response is ip(t) ≈ (1/τR) ∫hD(t) dt · A ∫I(τ) dτ. This is
a rectangular function of duration τR that can be written as

Slow Detector

The receiver then measures the area multiplied by the time integral
of the intensity, which is the energy of the optical pulse. The
receiver then altogether lacks temporal resolution and may be
simply modeled as an integrator.

So, how might one measure the temporal profile of an ultrashort
optical pulse, whose duration is in the picosecond or femtosecond
regime, by making use of a “slow” photodetector, whose response
time is a few tenths of a nanosecond at best?

Measurement of Short Pulse with Slow Detector and Fast
Shutter

The temporal profile of a short optical pulse may be measured with
a slow detector by making use of a fast shutter (switch or gate). As
illustrated in Fig. 23.6-2, the gate opens for only a short time
window during the course of the pulse, allowing a sample of the
pulse to be detected by the slow detector. The measurement is
repeated by opening the gate at different times, and a set of
measured samples are used to estimate the pulse intensity profile.
Since electronically operated gates are not viable at speeds in the
picosecond or femtosecond range, we consider instead an optical
gate controlled by a reference optical pulse whose duration is much
shorter than that of the measured pulse (see Sec. 24.3C for a
discussion of all-optical switches).



Figure 23.6-2 Measurement of an optical pulse I(t) by use of an
optical gate controlled by a far shorter optical gating pulse W(t).

Two examples of optical gates used for the measurement of
ultranarrow pulses are displayed in Fig. 23.6-3.

Figure 23.6-3 (a) An anisotropic nonlinear Kerr gate. The
reference pulse intensity Ir(t) = |Ur(t)|2 alters the Kerr-medium
phase retardation, as explained in Sec. 22.3A. Since the test pulse
U(t) is transmitted through a pair of crossed polarizers, with the
Kerr medium sandwiched between, it is modulated by the gating
function W(t) ∝ |Ur(t)|2. (b) A second-harmonic generation (SHG)
gate. The test pulse U(t) and the gating pulse Ur(t), which have
orthogonal polarizations, combine in a collinear Type-II
configuration (see Prob. 22.2-3), generating a pulse at the second-
harmonic frequency with amplitude ∝ U(t)Ur(t), so that the gating
function W(t) ∝ Ur(t).

Finally, we assess the effect of the finite switching time on the
measurement resolution. If W(t) is the transmittance of the gate
when initiated by a gating pulse at t = 0, then when the gating
action is delayed by time τ the transmitted optical pulse intensity is
I(t) W(t − τ). The delay τ may be imparted either to the gating
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function W(t) or to the optical pulse itself, I(t). When detected by
the slow photodetector, the resultant photocurrent is proportional
to the area under the transmitted pulse,

The measured photocurrent is thus proportional to the convolution
of the optical pulse and the window function. Hence, the temporal
resolution of the measurement is equal to the width of the window
function W(t), which is governed by the gate/shutter speed. Were
the window function W(t) a delta function δ(t), the photocurrent
would be proportional to I(τ) and there would be no loss of
resolution.

Single-Shot Pulse versus Pulse Train

The preceding method for measuring the shape of a short pulse with
a slow detector can be easily implemented if a periodic train of
identical pulses is available. The shutter is set at a different time
delay τ for each of a sequence of pulses, as illustrated in Fig. 23.6-4,
and the readings of the detector are recorded sequentially. The pulse
repetition rate must, of course, be sufficiently low so that the slow
detector can recover before encountering a subsequent pulse.

Figure 23.6-4 Measurement of a pulse intensity profile I(t) by
sampling individual pulses of a pulse train at time delays τ = mΔτ,
m = 0, 1, 2,… .

But what if a single-shot pulse is to be measured? This may be
accomplished by generating multiple copies of the pulse via a fan-
out optical element (see Fig. 24.1-4). As shown in Fig. 23.6-5, each



copy is then subjected to a different time delay before transmission
through a gate controlled by a gating pulse W(t). The use of an array
of detectors then permits I(t) to be recovered for a single-shot pulse.

Figure 23.6-5 Measurement of the intensity profile I(t) of a brief
single-shot optical pulse by means of an optical fan-out device,
followed by a bank of optical delays, an optical gate, and an array of
slow photodetectors.

Temporal-to-Spatial Transformation: Streak-Camera Principle

The fan-out and multiple-delay concept depicted in Fig. 23.6-5 may
be implemented optically by using an extended beam intercepted at
an angle by a planar spatial detector (e.g., an array detector or CCD
camera), as illustrated in Fig. 23.6-6. A pulsed plane wave traveling
in the z direction has intensity I(t − z/c), so that a wave traveling at
an angle θ with respect to the z axis has an intensity I(t − [x sin θ +
z cos θ]/c). If this beam is intercepted by a spatial detector at the
plane z = 0, it detects the intensity I(t − [x sin θ]/c); hence, at
position x the pulse is delayed by time τx = [x sin θ]/c. Every
detector element therefore sees its own delay, which implements
the scheme displayed in Fig. 23.6-5. If a shutter is used to take a
snapshot at time t = 0, the detector reading at location x is
proportional to I(−[x sin θ]/c). The result is that the pulse shape
I(t) is spatially recorded with a mirror-image profile, scaled such
that an incident pulse of duration τ0 (spatial width cτ0) creates an
image of transverse width cτ0/sin θ at the plane of the spatial
detector, as sketched in Fig. 23.6-6. As an example, a pulse of



duration τ0 = 10 ps extends over a spatial width cτ0 = 3 mm along
the direction of propagation; at an angle θ = 30° this yields an image
width of 6 mm at the detector plane.

Figure 23.6-6 Temporal-to-spatial transformation of an optical
pulse by use of an oblique wave and a spatial detector such as a CCD
camera. The streak camera makes use of this principle.

This is the principle underlying the streak camera. The pulsed
light is “streaked” in such a way that rays hitting different points on
the extended spatial detector travel different distances and therefore
experience different time delays. Such a position-dependent time
delay may alternatively be introduced by transmitting the beam
through a glass wedge.

The shutter used in the system portrayed in Fig. 23.6-6 may be an
optical Kerr gate or a SHG gate, as schematized in Figs. 23.6-3(a)
and (b), respectively. A particularly convenient implementation is
the non-collinear Type-II SHG gate illustrated in Fig. 23.6-7. The
test and gating pulses take the form of orthogonally polarized
oblique waves at angles θ and −θ with respect to the z axis. Their
wavefunctions are thus U(t − [x sin θ + z cos θ]/c) and Ur(t − [−x
sin θ + z cos θ]/c), respectively, so that the relative time delay is τx
= [2x sin θ]/c at position x. The wave generated at the second-
harmonic frequency has a wavefunction proportional to the product
U · Ur, so that the measured intensity is proportional to I · Ir. As a
result, the detected signal is proportional to the intensity
autocorrelation function GI(τx), as explained below.
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Figure 23.6-7 Measurement of a single-shot pulse by use of non-
collinear Type-II SHG (Exercise 22.2-1) and time-to-space
transformation (streaking). The detected signal is proportional to
the intensity correlation function GI(τx).

Measurement of Intensity Autocorrelation

As indicated above, the measurement of an ultrashort optical pulse
I(t) with a slow detector is achieved by making use of a shorter
optical pulse W(t) to control an optical gate. When no such external
gating pulse exists, the test pulse itself may be compressed and used
for this purpose. Or, a squared version of the test pulse obtained via
SHG, for example, can also serve this purpose since I2(t) is narrower
than I(t). Higher-order harmonic generation could be used to
generate an even narrower pulse, although it would be of lower
intensity.

In circumstances when neither compression nor harmonic
generation of the test pulse is feasible, the test pulse itself may be
used as the gating pulse. As illustrated in Fig. 23.6-8, the
photocurrent will then be proportional to the intensity
autocorrelation function, given by

Intensity Autocorrelation



Figure 23.6-8 Measurement of the intensity autocorrelation
function GI(τ).

Since I(t) is a real function of finite duration, GI(τ) is a symmetric
function that decreases from a peak value GI(0) at τ = 0, to zero at τ
= ∞. The autocorrelation function of a pulse of arbitrary shape is a
broader symmetric function. For example, a Gaussian pulse of
intensity I(t) = exp[−2(τ/τ0)2), with width τ0, has a (Gaussian)
autocorrelation function GI(τ) ∝ exp[−(τ/τ0)2], which may be
written as , revealing that the width has broadened
from τ0 to .

Knowledge of the autocorrelation function is generally not
sufficient to determine the underlying function itself. This can be
seen by noting that the Fourier transform of GI(τ) is |ℐ(ν)|2, where
ℐ(ν) is the Fourier transform of I(t) (see Sec. A.1 in Appendix A).
Measurement of GI(τ) thus permits the magnitude |ℐ(ν)| to be
determined but provides no information about the phase and hence
cannot be used to completely recover the complex envelope. An
exception is the symmetric pulse, for which I(−t) = I(t), since ℐ(ν)
is then real and therefore has zero phase. However, if the
mathematical profile of a nonsymmetric function is known, the
measurement of its autocorrelation function does allow parameters
such as its width to be estimated.

B. Measurement of Spectral Intensity



Optical Spectrum Analyzer

The spectral intensity S(ν) = |A(ν)|2 of an optical pulse of complex
envelope 𝒜(t) may be measured by use of an optical spectrum
analyzer, which is simply a bank of spectral filters tuned to an
appropriate set of frequencies/wavelengths. If a bank of “slow”
detectors is used to detect the energy in each of the spectral
components, the result of the measurement is the spectral intensity
S(ν). An optical implementation is sketched in Fig. 23.6-9.

Figure 23.6-9 Measurement of spectral intensity with an optical
spectrum analyzer. (a) System. (b) Optical implementation using
prisms.

It is generally not possible to retrieve the complex function 𝒜(t)
from the magnitude of its Fourier transform |A(ν)| in the absence
of phase information. An exception is the case of a symmetric pulse,
whose Fourier transform is real.

Interferometric Spectrum Analyzer

The spectral intensity S(ν) of an optical pulse may also be measured
by use of an interferometric spectrum analyzer, as portrayed in
Fig. 23.6-10. Recall from Sec. 12.2B that a Michelson interferometer
may be used as a Fourier-transform spectrometer. When a pulsed
optical beam of complex wavefunction U(t) is split into two beams
by a 50/50 beamsplitter, and one beam is delayed by time τ with
respect to the other, the combined beam has optical field 

 and intensity .
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Figure 23.6-10 Interferometric measurement of the pulse spectral
intensity. The interferogram is used to determine the
autocorrelation function of the pulse envelope G𝒜(τ), whose
Fourier transform is the spectral intensity.

When detected with a “slow detector,” the result is a function of the
optical delay,

Substituting U(t) = 𝒜(t) exp(j2πν0t) leads to

where

is the autocorrelation function of the complex envelope, which is
the inverse Fourier transform of the spectral intensity S(ν) =
|A(ν)|2. The measurement RU(τ) is a fringe pattern of visibility
|G𝒜(τ)|/G𝒜(0). This scheme permits us to determine G𝒜(τ)
through careful analysis of the visibility and location of the fringes.
The interferometer therefore provides the same information as does
the conventional spectrum analyzer.
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C. Measurement of Phase
The full characterization of an optical pulse involves knowledge of
the complex envelope, i.e., the magnitude and phase of the
wavefunction , or equivalently the
magnitude and phase of its Fourier transform .
The techniques presented in Sec. 23.6A provide means for
determining the intensity I(t), but not the phase φ(t). The
approaches set forth in Sec. 23.6B, on the other hand, offer ways of
measuring the spectral intensity S(ν), but provide no information
about the spectral phase ψ(ν). Only under special conditions can
knowledge of the magnitudes of a function and its Fourier
transform serve to fully characterize that function, absent
knowledge of the associated phases.

We now consider measurements that are directly sensitive to the
phase φ(t) and the spectral phase ψ(ν). Techniques for phase
measurement are often based on interferometry since the intensity
at the interferometer output is highly sensitive to the difference
between the phases of the interfering waves.

A conventional method for measuring phase is optical
heterodyning, a form of temporal interferometry (see Sec.
2.6B). In this approach the complex wavefunction of the test pulse 

 is mixed with a known reference pulse 
, which has a central frequency νr = ν0 +

f. The intensity of the sum is given by

Equation (23.6-10) is a generalization of (2.6-12), in which the
phases φ(t) and φr(t) were arbitrarily set to zero. Equation (23.6-10)
represents an interferogram whose beat frequency f (fringes per
second) is the difference between the central frequencies, and
whose time-varying phase is [φr(t) − φ(t)]; both the beat frequency
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and phase may be readily extracted from the interferogram. For
ultrashort pulses, however, the detector is always “slow” so that the
temporal features of the interferogram are unfortunately averaged
out. Temporal interferometry, including heterodyning, therefore
cannot be marshaled for the measurement of φ(t).

Spectral Interferometry

Interferometry can yield useful results, however, if it is carried out
in the Fourier domain. In an approach known as spectral
interferometry, the pulse U(t) is delayed by a fixed time τ and
added to a known reference pulse Ur(t) of the same frequency. The
Fourier transform of the sum, U(t − τ) + Ur(t), is then measured
with a slow detector to create an interferogram, as illustrated in Fig.
23.6-11. If the Fourier transforms of U(t) and Ur(t) are 

 and , respectively, the
spectral interferometer measures the interferogram

This is a fringe pattern (in frequency) whose visibility is determined
by the spectral intensity S(ν) and whose fringe locations are
governed by the phase difference ψr(ν) − ψ(ν). The measurement
therefore yields full information about V(ν), and hence about U(t).

Figure 23.6-11 A spectral interferometer generates an
interferogram in the Fourier domain.
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The duality between temporal and spectral interferometry may be
understood by noting that (23.6-10) and (23.6-11) are identical in
form, with t and ν playing dual roles, while the delay τ plays the role
of the frequency difference f. The principal challenge of spectral
interferometry is the necessity for a known reference pulse.

Self-Referenced Spectral Interferometry

The test pulse cannot be used as its own reference since the phase
term in (23.6-11) vanishes if ψr(ν) = ψ(ν). One method of working
around this problem is to use a frequency-shifted version of the test
pulse as a reference, i.e., by choosing Vr(ν) = V(ν + f). A block
diagram of the configuration is presented in Fig. 23.6-12. The
resultant interferogram is

from which the phase difference ψ(ν + f) − ψ(ν) may be estimated.
If the frequency shift f is small, this phase difference may be used
as an approximation of the derivative dψ/dν, which may then be
integrated to provide the phase ψ(ν).

Figure 23.6-12 Self-referenced spectral interferometer.

Nonlinear Interferometry

As discussed in Sec. 23.6B, an interferometric spectrum analyzer
can provide full information about the spectral intensity S(ν) of a
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pulse, although it provides no information about the spectral phase.
The block diagram in Fig. 23.6-10 demonstrated that conventional
time-domain interferometry achieves this by measuring of the area
under the function |U(t) + U(t − τ)|2 [see (23.6-7)].

One way to extract phase information is to make use of a nonlinear
interferometer. If the integrand in (23.6-7) is squared prior to
detection, the interferometer extracts the area under the function |
[U(t) + U(t − τ)]2|2, as illustrated by the block diagram in Fig. 23.6-
13. The squaring operation may be implemented by second-
harmonic generation in a nonlinear optical crystal.

Figure 23.6-13 Nonlinear interferometer.

The nonlinear function analogous to RU(τ) in (23.6-7), denoted 
, is then given by

To demonstrate that  contains the phase information we seek,
we substitute U(t) = 𝒜(t) exp(j2πν0t) into (23.6-13), and separate
terms with frequencies 0, ν0, and 2ν0. This leads to

with
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where GI(τ) is the intensity autocorrelation function defined in
(23.6-6). The function  is seen to be the sum of three terms: a
nonoscillatory term C0(τ) and two oscillatory terms at frequencies
ν0 and 2ν0, which may be separated by Fourier analyzing .

The first term depends on the intensity autocorrelation function
GI(τ) and has no phase dependence. The two other terms depend on
both the pulse intensity and phase. The overall function is bounded
by an upper envelope with maximum value 

 and a lower envelope with minimum value 
. Its asymptotic value is 

. The ratio 
therefore goes from a peak value of 8 at τ = 0 to an asymptotic value
of unity at τ = ∞.

As a specific example, we examine a linearly chirped Gaussian pulse
with time constant τ0 and chirp parameter a, for which

The normalized function  is plotted in Fig. 23.6-14 for
three values of the chirp parameter a. It is evident that the profile of
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the interferogram, particularly the point at which the oscillatory
terms vanish, is highly sensitive to a, and can therefore be used to
estimate the chirp parameter from experimental data.

Figure 23.6-14 Normalized intensity autocorrelation function 
, plotted against the normalized time delay τ/τ0, for a

chirped Gaussian pulse with three different values of the chirp
parameter a.

Though there is no general procedure for estimating the pulse phase
from the measurement of , the measurement can nevertheless
can be used to verify known models for pulse amplitude and phase
as well as to estimate unknown parameters.

Nonlinear Interferometry with Nonlinear Detectors.
In an alternative implementation of the nonlinear interferometer
depicted in Fig. 23.6-13, the squaring operation is carried out by the
detector itself. This is accomplished by use of a detector based on
two-photon absorption, e.g., a photodiode with a bandgap energy
greater than the photon energy, but smaller than twice the photon
energy (see Prob. 19.1-5). In such a detector, the photocurrent is
proportional to the square of the intensity (since it absorbs pairs of
photons). As a result, such a nonlinear interferometer would
measure the function
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which, like (23.6-13), contains information about the pulse
distribution and width.

*D. Measurement of Spectrogram
As set forth in Sec. 23.1A, the spectrogram S(ν, τ) of an optical pulse
U(t) is a time–frequency representation given by the squared
magnitude of the Fourier transform of the pulse, as seen through a
moving window (gating function) W(t):

Consequently, the spectrogram may be measured by transmitting
the pulse U(t) through an optical gate controlled by a time-delayed
gating function W(t − τ), and measuring the spectrum of the
product U(t) W(t − τ) with a spectrum analyzer at each time delay τ,
as depicted schematically in Fig. 23.6-15. An optical implementation
relies on a moving mirror to introduce the time delay, an
appropriate optical gate, and an optical spectrum analyzer such as
that shown in Fig. 23.6-9. The technique is known as frequency-
resolved optical gating (FROG).

Figure 23.6-15 Measurement of the spectrogram S(ν, τ) by
frequency-resolved optical gating (FROG).

In the absence of a sufficiently short gating function W(t), the pulse
U(t) itself, or a related pulse, may be used for this purpose. The
relation between W(t) and U(t) depends on the nature of the optical
gate, as illustrated by the following examples:
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For a second-harmonic generation (SHG) gate (see Fig. 23.6-7)
with input waves U(t) and U(t − τ) at the fundamental
frequency, the wave at the second-harmonic frequency is
proportional to the product U(t) U(t − τ), so that W(t) ∝ U(t)
and

The time-frequency function in (23.6-23) is known as the
Wigner distribution function. The overall optical system
that implements the block diagram in Fig. 23.6-15 is depicted in
Fig. 23.6-16(a) and the system is known as the SHG-FROG.
This system is suitable for single-shot measurement, as
discussed earlier.

For a polarization-based optical Kerr gate [Fig. 23.6-3(a)], W(t)
is proportional to the pulse intensity I(t) so that W(t) ∝ I(t) =
|U(t)|2 and

When this gate is used to implement the block diagram in Fig.
23.6-15, the system is called the polarization-gated FROG (PG-
FROG), which is illustrated in Fig. 23.6-16(b).



Figure 23.6-16 Two implementations of frequency-resolved
optical gating (FROG): (a) Second-harmonic generation FROG
(SHG-FROG); (b) Polarization-gated FROG (PG-FROG).

Other nonlinear optical configurations have also been devised,
including a gate based on third-harmonic generation, which
corresponds to the gating function W(t) ∝ U2(t), and a gate based on
self-diffraction, which corresponds to W(t) ∝ [U∗(t)]2.

Estimation of the Pulse Wavefunction from the Spectrogram

In its many variations, the spectrogram S(ν, τ) provides a 2D
“picture” that may be used to characterize the optical pulse by
displaying signatures of its key features. With some difficulty, it
may also be used to estimate the complex wavefunction (both
magnitude and phase) of the pulse U(t).

The estimation of U(t) from the measured spectrogram S(ν, τ) is not
straightforward. A general expression for S(ν, τ), as determined for
any of the gating systems considered above, may be written in the
form
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where g(t, τ) = U(t) W(t − τ) and W(t) is related to U(t). As we have
seen previously, W(t) = U(t) for the SHG-FROG, and W(t) = |U(t)|2

for the PG-FROG.

If the complex function Φ(ν, τ) were known, U(t) could be readily
estimated as follows. Form the inverse Fourier transform of Φ(ν, τ)
with respect to ν at each τ, to obtain:

Given that g(t, τ) = U(t) W(t − τ), compute the wavefunction U(t) by
integration over τ:

The proportionality constant is the area under the window function,
which is unknown. Nevertheless, this analysis will prove useful in
the following paragraph.

The problem of estimating Φ(ν, τ) from its measured absolute
square, S(ν, τ) = |Φ(ν, τ)|2, is known as a missing-phase problem.
Many algorithms have been devised for addressing this kind of
problem. One iterative approach follows the steps illustrated by the
following diagram:

1. Beginning with the measured spectrogram S(ν, τ), determine
the magnitude |Φ(ν, τ)| = [S(ν, τ)]1/2. With an initial guess for
the missing phase, arg{Φ(ν, τ)}, use the procedure discussed in
the previous paragraph [inverse Fourier transform Φ(ν, τ) with
respect to ν and integrate over τ] to estimate U(t) up to an
unknown proportionality constant.



2. Using this value of U(t), compute Φ(ν, τ) to obtain a revised
estimate of the unknown phase arg{Φ(ν, τ)}; use this together
with the measured magnitude |Φ(ν, τ)| to obtain a new and
better estimate of U(t).

3. Repeat the process until it converges to a pulse wavefunction
U(t) that is consistent with the measured spectrogram.

An example displaying the outcome of this procedure for SHG-
FROG is provided in Fig. 23.6-17.

Figure 23.6-17 (a) Measured spectrogram Sλ(λ, τ) of a 2½-cycle,
4½-fs optical pulse with a central wavelength ≈ 0.85 μm obtained
by SHG-FROG. (b) Estimated temporal and spectral characteristics
of the pulse. (c) The SHG-FROG spectrogram computed from the
pulse in (b) is approximately the same as the measurement in (a).
Note that the wavelength regions of peak response in (a) and (c) are
at the second harmonic. (Adapted from A. Baltuška, M. S.
Pshenichnikov, and D. A. Wiersma, IEEE Journal of Quantum
Electronics, vol. 35, pp. 459–478, Figs. 17(a), 17(b), and 18 ©1999
IEEE; R. Trebino, ed., Frequency-Resolved Optical Gating: The
Measurement of Ultrashort Laser Pulses, Kluwer, 2000, figure on
associated CD-ROM.)
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PROBLEMS



23.1-1 Superposition of Two Gaussian Pulses. A transform-
limited Gaussian pulse is added to a chirped Gaussian pulse
with chirp parameter a but otherwise identical parameters.
Derive expressions for the intensity, phase, spectral intensity,
spectral phase, and chirp parameter of the superposition pulse.

23.1-2 The Hyperbolic-Secant Pulse. Consider a pulse with
complex envelope sech(t/τ), where sech(·) = 1/ cosh(·) and τ is
a time constant.

a. Show that the width of the intensity function is τFWHM = 1.76 τ.

b. Show that the spectral intensity S(ν) ∝ sech2(π2τν) and that the
FWHM spectral width is Δν = 1.786/τ.

c. Compare these results with those for the Gaussian pulse
provided in Appendix A.

23.2-1 Thick-Prism Chirp Filter. A thick prism is used as a chirp
filter. The angle of incidence is selected to satisfy the Brewster-
angle condition in order to minimize reflection loss. The apex
angle α is selected such that the incident ray and the central
deflected ray are symmetric with respect to the prism. Under
these two conditions, show that the angle of deflection θd
satisfies the condition dθd/dn = −2, and that the chirp
coefficient can be expressed as b ≈ −4(n − N)2ℓ0λo/πc2. Show
that this chirp coefficient is greater than that for the thin-prism
chirp filter (Example 23.2-4) by a factor of 4/α2, given that all
other parameters are the same.

23.2-2 Bragg-Grating Chirp Filter. Design a Bragg-grating chirp
filter for Gaussian pulses of central frequency ν0 = 300 THz
(corresponding to a free-space wavelength of 1 μm) and τFWHM

= 0.44 ps. The filter is to have a chirp coefficient b = (2 ps)2.
Specify the dimensions of the grating and the maximum and
minimum pitch of its periodic structure to ensure that all
spectral components of the pulse are reflected by the grating.



23.3-3 Propagation of a Rectangular Pulse Through an
Optical Fiber. A rectangular pulse of width τ travels through
an optical fiber, which is modeled as a chirp filter with chirp
parameter b = Dνz/π [see (23.3-5)]. Show that after a
sufficiently long distance z, the pulse alters its shape from a
rectangular function to a sinc function. Derive an expression
for the modified pulse width.

23.3-4 Temporal Imaging with a Time Lens. An optical pulse of
width τ1 and arbitrary shape travels a distance d1 through a
fiber with positive GVD, where it is modulated by a phase
factor exp(jζt2); it subsequently travels a distance d2 through a
fiber of the same material. The width of the final pulse is τ2.
Assuming that d1 and d2 are much larger than the dispersion
length z0 of the fiber, show that the new pulse will be a delayed
replica of the original pulse, with time magnification τ2/τ1 =
d2/d1, if the condition 1/d1 + 1/d2 = 1/f is satisfied. Here, f =
−π/ζDν is the focal length of the phase modulator for this
medium (ζ is negative and f is positive). This result indicates
that the system is equivalent to a temporal imaging system.

23.5-1 Mixing of Pulsed Chirped Waves and Chirp
Amplification.

a. Three pulsed collinear plane waves with central angular
frequencies ω1, ω2, and ω3 = ω1 + ω2 are mixed in a second-
order nonlinear medium with nonlinear optical coefficient d.
The medium is dispersive and has indices of refraction n1, n2,
and n3 and group velocities v1, v2, and v3 at the three central
frequencies. The three pulses are chirped with chirp parameters
a1, a2, and a3. What should be the relation between a1, a2, and
a3 for efficient three-wave mixing. Hint: Assume that energy
conservation and momentum conservation (phase matching)
relations are satisfied at all instants of time.



b. Demonstrate that the chirp parameter of the signal and/or the
idler may be greater than that of the pump. Discuss possible
applications of this “chirp amplification” process.

*23.5-2 Pulsed Three-Wave Mixing in a Medium with Group
Velocity Dispersion (GVD). Derive the three-wave-mixing
coupled-wave equations (23.5-3) for a medium with GVD. You
may use the following procedure. Begin with the Helmholtz
equation with a source equal to the Fourier transform of 𝒮 =
μo∂2𝒫NL/∂t2, where 𝒫NL = 2dℰ2. Express the field ℰ as a
superposition of three waves with distinct central frequencies
and slowly varying envelopes (SVEs), and convert the
Helmholtz equation into three separate equations at the three
frequencies. Simplify these equations using the SVE
approximation, weak dispersion, and a three-term Taylor-series
expansion of the propagation coefficient. Use an inverse
Fourier transform to convert the equations back to the time
domain.

23.5-3 Dependence of Soliton Characteristics on Group
Velocity Dispersion. Compare the characteristics of two
fundamental solitons of equal energy traveling in two different
extended media (e.g., optical fibers) with GVD coefficients Dλ =
20 and 10 ps/km-nm, but with otherwise identical optical
properties (same refractive index and same Kerr coefficient n2).
Compare the soliton widths, peak amplitudes, areas under
amplitude profiles, and soliton distances.

23.5-4 Solitons in an Optical Fiber. Show that the product of the
peak intensity and dispersion length for the fundamental
soliton is a constant: I0|z0| = λo/4πn2. For a silica-glass fiber
with Kerr coefficient n2 = 3.19 × 10−20 m2/W, determine the
peak intensity I0 for a dispersion distance |z0| = 30 km.

23.6-1 Measurement of a Gaussian Pulse. A Gaussian
transform-limited optical pulse with a 50-fs FWHM and a



central frequency corresponding to a wavelength of 800 nm is
measured with the help of the intensity correlator illustrated in
Fig. 23.6-8.

a. Determine the shape and FWHM of the measured
autocorrelation function.

b. It has been suggested that the measurement can be improved if
one of the pulses, say the one traveling in the upper branch, is
deliberately stretched by passage through a silica-glass fiber. If
the pulse is to be stretched by a factor of 5, what length of fiber
is required to do so, given that silica glass has a dispersion
coefficient Dλ = −110 ps/km-nm at 800 nm? What would be the
width of the modified correlation function after insertion of the
fiber?

c. Consider applying this notion to the nonlinear interferometer
displayed in Fig. 23.6-13, with the fiber placed in the upper
branch. Describe the possible merits and difficulties of using
this approach as a tool for pulse measurement.

23.6-2 Interferometer with a Two-Photon Absorbing
Detector. An interferometer that uses a two-photon absorber
as a detector (Prob. 19.1-5) provides a measurement of the
function  specified in (23.6-21). Compare this
interferometer with a nonlinear interferometer that makes use
of a second-harmonic generator followed by a conventional
detector, which provides a measurement of the function 
given in (23.6-13). Hint: Expand (23.6-21) in a form similar to
that of (23.6-14) and compare the different terms.

Note
1 The High-Repetition-Rate Advanced Petawatt Laser System
(HAPLS), developed at LLNL, is located at the European Extreme



Light Infrastructure (ELI) Beamlines facility in Dolní Břežzany,
Czech Republic.
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The development of optical interconnects and photonic switches
began in earnest in the 1980s under the aegis of Bell Laboratories,
an organization created by AT&T in 1925. Bell Laboratories became
part of Lucent Technologies in 1996, part of Alcatel–Lucent in 2006,
and then part of Nokia in 2016.

Interconnections and switches are essential components of
distributed systems such as communication systems and networks
(telecom and datacom) and computing systems (computer-com). As
displayed in Fig. 24.0-1, the scale of the interconnection distances in
these different venues extend over a broad range: 1–100 km for
telecom; 10–1000 m for datacom; and 1–1000 cm for computer-
com. The interconnection links may be passive (fixed), or they may
be active (reconfigurable) and controllable by switches.

Figure 24.0-1 Typical interconnection distances for telecom [wide-
area networks (WANs) and metropolitan-area networks (MANs)];
datacom [local-area networks (LANs), datacenters, and active
optical cables (AOCs)]; and computer-com [rack-to-rack, board-to-
board, chip-to-chip, and on-chip interconnects].

Optical fibers have emerged as the preferred medium for telecom
and datacom interconnects, and indeed many types of photonic
switches have been developed to support active links. The reach of
optical-fiber technology has developed more slowly for short-
distance applications, yet optical interconnects and switches have
continued to make inroads in computer-com, including computer



rack-to-rack, board-to-board, chip-to-chip, and even on-chip links.
The principal challenges in implementing short-distance
interconnects are the greater link density and the attendant higher
dissipated power density. While several decades of research in
digital optical computing have not yielded commercial products that
are competitive with electronic computing, a byproduct of this effort
has been the development of a number of technologies for optical
interconnects and logic gates.

A generic interconnection system is displayed in Fig. 24.0-2. Light
entering each of aset of M points at the input is directed to one or
several of a set of N points at the output. If the connections are
fixed and independent of the content of the incoming light, the
system is referred to as an interconnect. On the other hand, if the
incoming light is routed to different destinations that depend on its
content, the system is called a router. If the connections are
reconfigurable, in response to an external control signal, the system
is called a switch.

Figure 24.0-2 A generic N×M system may function as a passive
interconnect, a router, or a switch.

 

Light has multiple attributes, as illustrated in Fig. 24.0-3: position
(space); time (for optical pulses or specific sequences of optical
pulses that form a code); wavelength (or frequency); polarization;
direction; intensity; and phase (for coherent waves). These
attributes serve as resources that can be used to enrich the
interconnection and switching fabric. When the different
interconnection points schematized in Fig. 24.0-2 refer to space,



time, wavelength, or polarization, the system is called a space-
domain switch (or simply a space switch), a time-domain
switch, a wavelength-domain switch, or a polarization
switch, respectively. For example, a time-domain switch may be
engaged to transfer a signal from one time slot to another, while a
wavelength-domain switch converts a signal from one wavelength
to another. Switches controlled by an address coded in each packet
of incoming data are known as packet switches.

Figure 24.0-3 Attributes of an optical beam that can be used for
modulation, multi-plexing, routing, and switching.

An interconnection for which an attribute, such as wavelength, of
the incoming light dictates the destination output ports is known as
a passive optical router. Such routers enable multiplexing:
multiple data streams can be transported on a single link by using
one attribute as a distinguishing marker while modulating another
attribute to encode information. For example, the optical intensities
of different wavelengths in a single light beam may be modulated by
different data streams that are ultimately separated (demultiplexed)
at the destination by means of a wavelength-sensitive passive
optical router. The introduction of wavelength-division
multiplexing (WDM) has substantially advanced modern optical
fiber communication systems, as discussed in Sec. 25.5B, and has
motivated the development of special wavelength-based photonic
switches.

This Chapter



This chapter introduces the basic principles associated with optical
interconnects, passive optical routers, photonic switches, and
photonic logic gates. Many of the fundamental principles of optics
and photonics introduced in earlier chapters find use here,
including Fourier optics and holography, guided-wave and fiber
optics, semiconductor optics, acousto-optics, electro-optics,
nonlinear optics, and ultrafast optics.

Optical interconnects via free-space, planar photonic circuits,
and optical fibers are considered in Sec. 24.1. The input beams are
directed to prescribed output ports regardless of their attributes and
the information they carry.

Passive optical routers are described in Sec. 24.2. Each input
optical beam is directed to one or more output ports based on beam
attributes such as wavelength, polarization, or intensity. Different
wavelength components in a single beam may, for example, be
routed to separate output ports, in which case the device serves as a
wavelength-division demultiplexer. The inverse of this operation, in
which beams with different wavelengths are combined into a single
optical beam, is implemented by a multiplexer.

Photonic switches are considered in Sec. 24.3. The simplest
example is an ON– OFF switch that can be directed by a control
signal to connect or disconnect two ports (i.e., transmit or block a
beam of light), or a switch that selectively directs a beam to one of
two possible locations, regardless of the data content or attributes of
the beam. Following an introduction to the types and properties of
these switches, we provide a brief overview of the different
technologies used to implement them; these include mechano-
optic, electro-optic, semiconductor-photonic, thermo-optic, and all-
optical devices. Time-domain switches and packet switches are also
described.

Photonic logic gates based on bistable optical devices are
examined in Sec. 24.4. These switches have memory so that the
output takes on one of two (or several) values, depending both on
the current value and on the previous history of the input.



24.1 OPTICAL INTERCONNECTS
Digital signal-processing and computing systems contain large
numbers of interconnected gates, switches, and memory elements.
In electronic systems, the interconnections are effected by means of
conducting wires, coaxial cables, or conducting channels within
semiconductor integrated circuits. Photonic interconnections may
be similarly realized by the use of optical waveguides with
integrated-photonic or fiber-optic couplers. Free-space light beams
may also be used for interconnections, in which microlenses or
diffractive optical elements direct these beams. This latter option is
not available in electronic systems since electron beams require
vacuum and cannot cross one another without mutual repulsion.

Figure 24.1-1 illustrates a number of configurations for
interconnects (also called couplers). Each input port is connected
to one or many output ports, and vice-versa. For example, in the T-
coupler or fan-out configuration, the input port is connected to each
of the output ports. In the 3-dB or star coupler, each input port is
connected to each and every output port.

Figure 24.1-1 Representative examples of interconnect
configurations. (a) One-to-one. (b) Oneto-many or many-to-one. (c)
Many-to-many.



(24.1-1)

(24.1-2)

Interconnection Matrix

The diagrams displayed in Fig. 24.1-1 are solely schematic
connectivity diagrams; they do not specify quantitative relations
among the optical fields or intensities at the connected ports. For
linear coherent optical interconnects, the optical field  at the ℓ th
output port (ℓ = 1, 2,..., N) is related to the optical fields  at the
input ports, m = 1, 2, . . . , M, via the superposition

where the weights {Tℓm} are complex numbers that define an
interconnection matrix T. For example, the 2 × 2 3-dB coupler
shown in Fig. 24.1-1(c) is described by

and which harks back to the scattering matrix for an ideal
beamsplitter (7.1-18) and the transmission matrix for phase-
matched guided waves in coupled-mode theory (9.4-11). For this
device, the optical power carried in by one beam (in the absence of
the other) is divided equally between the two outgoing beams.
Other interconnects may be similarly described. The
interconnection matrix of a cascade of interconnects may be
determined by making use of matrix multiplication, as described in
Sec. 7.1A.

Since the light is assumed to be coherent, the phase relations
between the incoming beams and the phases introduced by the
elements of the interconnection device play important roles. Indeed,
interferometric effects are often used to redistribute the incoming
power among the output ports in a prescribed manner. If the light is
incoherent, on the other hand, then the intensity (and hence the
power) at each output port is a weighted superposition of the
intensities (powers) at the input ports (see Sec. 12.3B):



(24.1-3)

In this case, the powers at the output and input ports of a 3-dB
coupler are related by an interconnection matrix whose elements
are all equal to ½.

Key performance specifications of practical couplers include the
following power ratios, usually expressed in dB [i.e., −10
log(1/power ratio)]:

The insertion loss describes the port-to-port power
transmittance, ideally 0 dB for a lossless path.

For a coupler distributing power among multiple output ports,
the splitting ratio is the ratio of the power at one output port
to the power at all output ports. For example, for an ideal 3-dB
coupler, the splitting ratio is −3 dB.

The crosstalk is the ratio of the undesired power received at
an output port to the input power directed to another output
port(s).

The excess loss is the ratio of the total output power to the
total input power.

Nonreciprocal Interconnects: Isolators and Circulators

The designation of the ports of an interconnect as input or output
ports implies a specific direction of transmission — from input to
output (from left to right in the examples in Fig. 24.1-1). Certain
interconnects are reciprocal, i.e., if the transmission is directed
instead from the output ports to the input ports, the
interconnection matrix remains the same. Otherwise, the
interconnect is nonreciprocal.

Isolators. The simplest example of a nonreciprocal interconnect is
a 1 × 1 unidirectional link that transmits in only one direction, as
illustrated in Fig. 24.1-2(a). This is often implemented by using an
optical isolator, much like a diode or a one-way valve (see Sec.



6.4B). The performance of an isolator is specified by the insertion
loss (power transmittance in the forward direction in dB) and the
reverse isolation (power transmittance in the reverse direction in
dB).

Multiport Nonreciprocal Interconnects. The input/output
designation is not applicable when a port plays a dual role, as
transmitter and receiver. The interconnect is then designated simply
by the number of ports. Figure 24.1-2(b) and (c) are example of 3-
port interconnects using unidirectional links. These interconnects
are used in duplex (two-way) communication systems, as depicted
in the 4-port interconnect in Fig. 24.1-2(e). In another 4-port
system, shown in Fig. 24.1-2(d), the connections between the left
and right ports are in the parallel configuration in the forward
direction (left to right), and in the cross configuration in the
backward direction (right to left).

Figure 24.1-2 (a) A 2-port unidirectional link (isolator). (b), (c) A
3-port interconnect using two unidirectional links. (d) A 4-port
nonreciprocal interconnect. (e) A 4-port interconnect for duplex
(bidirectional) communications.

Circulators. Another example of nonreciprocal interconnects is
the optical circulator. This is an interconnect with three or more
ports connected by unidirectional links pointing in the same
direction. As illustrated in Fig. 24.1-3, the 4-port circulator is
equivalent to the interconnect in Fig. 24.1-2(d). Circulators find
many applications in communication systems and networks. They
are used, for example, in optical add–drop multiplexers (OADMs),
as described in Sec. 24.2A (Fig. 24.2-3).



Figure 24.1-3 A 4-port circulator represented by two equivalent
configurations.

A. Free-Space Refractive and Diffractive Interconnects
Refractive interconnects. Conventional optical components
(mirrors, lenses, prisms, etc.) are routinely used as interconnects in
optical systems. Consider, as an example, a simple imaging system
in which a lens connects points in the object and image planes. To
appreciate the enormous density of such interconnections in a well-
designed imaging system, observe that as many as 1000 × 1000
independent points per mm2 in the object plane are optically
connected by means of the lens to a corresponding 1000 × 1000
points per mm2 in the image plane. Implementing such connectivity
electrically would require one million nonintersecting and suitably
insulated conducting channels per mm2.

Standard optical components may be used to implement special
interconnects, such as shift, reversal, crossover, shuffle, fan-in, fan-
out, star coupling, and projection, as illustrated in Fig. 24.1-4 (see
also Fig. 24.1-1). Bulk-optical components can be miniaturized to a
micro-optical scale with the help of miniature beamsplitters, lenses,
graded-index rods, prisms, filters, and gratings, which are
compatible with optical fibers for light transmission.



Figure 24.1-4 Examples of simple optical interconnects created by
conventional refractive optical components: A prism bends parallel
optical rays preferentially and establishes an ordered
interconnection map corresponding to a reversal or crossover. Two
appropriately oriented prisms perform a perfect-shuffle — an
operation used in sorting algorithms and in the fast Fourier
transform (FFT). A lens establishes a fan-in, a fan-out, or a reversal.
A beamsplitter together with two lenses creates a directional
coupler. A glass rod serves as a star coupler. An astigmatic optical
system, such as a cylindrical lens, implements a projection by
connecting points of each row at the input plane to one point at the
output plane.

Diffractive interconnects. Arbitrary optical interconnection
maps require the design of custom optical components that may be
quite complex and impractical. However, computer-generated
holograms comprising a large number of phase-grating segments
with different spatial frequencies and orientations have been
successfully used to create high-density optical interconnections. A
phase grating is a thin optical element whose complex amplitude
transmittance is a two-dimensional periodic function of unit
amplitude. The simplest phase grating has complex amplitude
transmittance t(x, y)= exp[−j2π(νxx + νyy)], where νx and νy are the
spatial frequencies in the x and y directions, respectively; they
determine the period and orientation of the grating. It was shown in
Secs. 2.4B and 4.1A that when a coherent optical beam of
wavelength λ is transmitted through such a grating, it undergoes a



(24.1-4)

phase shift that causes the beam to tilt by the angles sin−1 λνx ≈ λνx

and sin−1 λνy ≈ λνy, when λνx ≪ 1 and λνy ≪ 1, as illustrated in Fig.
24.1-5. Varying the spatial frequencies νx and νy (i.e., the periodicity
and orientation of the grating) alters the tilt angles.

 

Figure 24.1-5 Bending of an optical wave as a result of
transmission through a phase grating. The deflection angles,
assumed to be small, depend on the spatial frequency and
orientation of the grating.

As described in Sec. 4.1A and illustrated in Fig. 4.1-5, this principle
may be used to implement an arbitrary interconnection map by
constructing a phase grating comprising a collection of grating
segments with different spatial frequencies. As displayed in Fig.
24.1-6, optical beams transmitted through the different segments
undergo different tilts, in accordance with the desired
interconnection map.

If the grating segment located at position (x, y) has spatial
frequencies νx = νx(x, y) and νy = νy(x, y), the angles of tilt are
approximately λνx and λνy, respectively. The beam then impinges on
the output plane at the position (x′, y′) that satisfies

where d is the distance between the hologram and the output plane,
and all angles are assumed to be small. Given the interconnection
map, i.e., the desired relation between (x′, y′) and (x, y), the
requisite spatial frequencies νx and νy at each position are
determined by using (24.1-4).



Holographic interconnection devices are capable of establishing
one-to-many or many-to-one interconnections (i.e., connecting one
point to many points, or vice versa). In Fig. 24.1-6, for example, the
center grating element is seen to be a superposition of two
harmonic functions so that its complex amplitude transmittance t(x,
y) ∝ exp[−j2π(νx1x + νy1y)] + exp[−j2π(νx2x + νy2y)]; the incident
beam is thus split equally into two components, one tilted at the
angles (λνx1, λνy1) and the other at the angles (λνx2, λνy22), where all
angles are small. Weighted interconnections may be realized by
assigning different weights to the different gratings. Arbitrary
interconnections may therefore be created by appropriate selection
of the grating spatial frequencies at each point of the hologram.

Figure 24.1-6 Holographic interconnection map created by an
array of phase gratings of different periodicities and orientations.
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EXERCISE 24.1-1

Interconnection Capacity. The space–bandwidth product of
a square hologram of size a × a is the product (Ba)2, where B is
the highest spatial frequency (lines/mm) that may be printed on
the hologram. Show that if the hologram is used to direct each of
L incoming beams to M directions, the product ML cannot
exceed (Ba)2,

Hint: Use an analysis similar to that presented in Sec. 20.2C in
connection with acousto-optic interconnection devices [see
(20.2-9)].

What is the maximum number of interconnections per mm2 if
the highest spatial frequency is 1000 lines/mm and if every
point in the input plane is connected to every point in the output
plane?

In the limit in which the grating elements have infinitesimal areas,
the result is a continuous (instead of discrete) interconnection map:
a geometric coordinate transformation rule that transforms each
point (x, y) in the input plane into a corresponding point in the
output plane (x′, y′). If the desired transformation is defined by the
two continuous functions

the grating frequencies must vary continuously with x and y as in a
frequency modulated (FM) signal (see Fig. 24.1-7). Assuming that
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the grating has a transmittance t(x, y) = exp[−jφ(x, y)], the
associated local (or instantaneous) spatial frequencies are

as provided in Sec. 4.1A. Substituting (24.1-6) into (24.1-4) then
leads to a pair of partial differential equations,

which may be solved to determine the grating phase function φ(x,
y).

Figure 24.1-7 Diffraction from a phase hologram as a continuous
interconnection system.

EXAMPLE 24.1-1. Fan-In Map. Suppose that all points (x, y)
in the input plane are to be steered to the point (x', y') = (0, 0) in
the output plane, so that a fan-in interconnection map is created.
Substituting ψx(x, y)= ψy(x, y) = 0 in (24.1-7) and solving the
two partial differential equations, we obtain φ(x, y) = −π(x2 +
y2)/λd. Not surprisingly, this is nothing but the phase shift
introduced by a lens of focal length d [see (2.4-9)].
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EXERCISE 24.1-2

The Logarithmic Map. Show that the logarithmic coordinate
transformation

is realized by a hologram with the phase function

Once the appropriate phase φ(x, y) is decided, the optical element is
fabricated by using the techniques of computer-generated
holography. This approach allows a complex function exp[−jφ(x,
y)] to be encoded with the help of a binary function that takes on
only two values, 1 and 0, or 1 and −1, for example. This is similar to
encoding an image by making use of a collection of black dots with
density or sizes that vary in proportionality to the local gray value of
the image (an example is the halftone process used for printing
newspaper images). Software is used to print the binary image on a
mask (a transparency) that plays the role of the hologram. The
binary image may also be printed by etching grooves in a substrate,
which modulate the phase of an incident coherent wave via a
technology known as surface-relief holography.

Dynamic (reconfigurable) interconnections may be constructed by
using acoustooptic or magneto-optic devices, although the number
of interconnection points is far smaller than that achievable with
holographic gratings. Dynamic holographic interconnections may
also be implemented by making use of nonlinear optical processes
such as four-wave mixing in photorefractive materials. In this
approach, two waves interfere to create a grating, from which a third
wave is reflected. The angle between the two waves determines the
spatial frequency of the grating, which in turn determines the tilt of
the reflected wave (see Secs. 21.4 and 22.3E).



(24.1-10)

B. Guided-Wave Interconnects
Optical interconnects are implemented in integrated photonics by
patterning optical waveguides in silicon or LiNbO3 substrates (see
Sec. 9.4B), much as metal wires are implemented in integrated
electronics. Examples are illustrated in Fig. 24.1-8; combinations
and cascades of these basic interconnects can be used to create
more complex interconnects.

Figure 24.1-8 Integrated-photonic devices implementing some of
the interconnects depicted in Fig. 24.1-1. The mesh coupler is
another implementation of the star coupler.

Waveguide couplers are used to distribute optical power in
prescribed proportions. The coupler portrayed in Fig. 24.1-8(b), for
example, is described by an interconnection matrix that is identical
to the transmission matrix of (9.4-11),

where  is the coupling coefficient and L is the interaction length.
The power arriving at input port 1 is therefore apportioned between
output ports 1 and 2 in accordance with the factors cos2 L and sin2 
L, respectively. For L = π/4, the input power is equally divided

between the output ports so that the device becomes a 3-dB coupler.

Fiber-optic interconnects are widely used in optical fiber
technology, particularly in optical fiber communications, and the
devices portrayed in Fig. 24.1-9 parallel those depicted in Fig. 24.1-8



for integrated photonics. Indeed, the coupler shown in Fig. 24.1-9(b)
is described by the same interconnection matrix as that in Fig. 24.1-
8(b), namely (24.1-10).

Figure 24.1-9 Fiber-optic couplers that implement some of the
interconnects displayed in Fig. 24.1-1. (a) Double-core fiber used as
a T-coupler, splitter, or combiner. (b) 3-dB coupler comprising two
fused fibers; another version makes use of a pair of GRIN-rod
lenses separated by a beamsplitter film. (c) Fan-in or fan-out. (d)
Star coupler that relies on fused fibers; another version makes use
of a mixing rod, a slab of glass through which light from one fiber is
dispersed to reach all other fibers.

C. Nonreciprocal Optical Interconnects
Optical implementations of nonreciprocal interconnects are based
primarily on nonreciprocal polarization devices. As explained in Sec.
6.6D, an optical isolator may be implemented by use of a 45°
Faraday rotator sandwiched between a pair of polarizers oriented at
45° with respect to each another. Linearly polarized light is
transmitted in the forward direction but blocked in the reverse
direction.

A 45° Faraday rotator followed by a half-wave retarder is also a
useful nonreciprocal device, as portrayed in Fig. 6.6-6. The
polarization of a forward-traveling linearly polarized wave whose
plane of polarization is oriented at 22.5° with respect to the fast axis
of the retarder is not altered, while the plane of polarization of the



backward-traveling wave is rotated by 90°. This device may be used
in conjunction with polarizing beamsplitters to implement
nonreciprocal interconnects, such as 3-port and 4-port (circulator)
devices, as illustrated in Figs. 24.1-10(a) and (b), respectively.

Figure 24.1-10 (a) Implementation of the 3-port nonreciprocal
interconnect of Fig. 24.1-2(c) by means of a polarizing beamsplitter
(PBS) together with the combination of a Faraday rotator and a half-
wave (π) retarder. Light travels from port  to port , and from  to
port . (b) Implementation of the 4-port nonreciprocal circulator of
Fig. 24.1-3 by means of a pair of polarizing beamsplitters together
with the combination of a Faraday rotator and a half-wave retarder.
Light travels from port to port in accordance with .

D. Optical Interconnects in Microelectronics and
Computer Systems
The prospect of using optical interconnects in place of conventional
electrical interconnects in microelectronics and computer systems
has engendered substantial research and development efforts over
the past several decades. Successful implementations include
backplane-to-backplane, board-to-board, chip-to-chip, and intrachip
interconnects, as illustrated schematically in Fig. 24.1-11. Integrated
photonics has been fueling the transition from electronic to optical
interconnects in venues such as datacenters and high-performance
computers. Some of the strictures that apply to components used in



optical fiber communication systems (Sec. 25.1) are not restrictive
in the context of optical interconnects because of their short reach.

Figure 24.1-11 Schematic illustration of optical interconnects in
microelectronics and computer systems: backplane-to-backplane,
board-to-board, chip-to-chip, and intrachip. Optochips are chip-scale
optical transceivers.

Inter-Board and Inter-Chip Optical Interconnects

With the successful implementation of fiber optics for computer-to-
computer communications in local area networks and datacenters
(Sec. 25.5), systems employing optical fibers for backplane-to-
backplane and board-to-board communications have been
developed and implemented in high-performance computers. Such
short-reach optical-fiber links can operate at data rates in excess of
100 Gb/s, far greater than those of electrical links, and the
technology is well established (Chapter 25).

Board-to-board interconnects may also be implemented by making
use of integrated-optic waveguides placed on the backplane. In the
example illustrated in Fig. 24.1-12(a), multiple boards are connected
in a bus configuration that serves as a star coupler connecting each
board to all others. Board-to-board free-space optical links using
reflecting mirrors or holographic optical elements have also been
considered, but they are cumbersome and inefficient. On-board
chip-to-chip optical interconnects using on-board mirrors and



planar waveguides, as depicted in Fig. 24.1-12(b), have also been
developed.

Figure 24.1-12 (a) Multiple boards interconnected via planar
waveguides in a bus configuration on the backplane. (b) Chip-to-
chip optical interconnect using on-board planar waveguides and
mirrors. Optochips are chip-scale optical transceivers.

Optochips. A principal component of optical interconnects for
microelectronics and high-performance computing is the optochip,
a chip-scale optical transceiver (transmitter/receiver) comprising
an array of light sources (e.g., VCSELs) and an array of
photodetectors (PDs), together with their associated transmitter
(Tx) and receiver (Rx) electronic circuitry. A schematic example of
an optochip coupled to an on-board planar waveguide via mirrors is
displayed in Fig. 24.1-13(a). Four chips (VCSEL, PD, Tx, and Rx) are
mounted on a Si carrier; light is transmitted between the VCSEL/PD
arrays and the waveguide via holes in the carrier and is focused by
means of integrated lenses. In another example, portrayed in Fig.
24.1-13(b), an optochip is coupled to an array of multimode optical
fibers (MMFs). In this case the VCSEL and PD arrays are supported
by an organic carrier and are attached to an electronic integrated
circuit (IC) that contains the Tx and Rx circuitry. Light to and from



the fibers passes through holes (vias) in the IC and an array of
integrated lenses serve as the focusing element. VCSELs can
generate multimode emission with a numerical aperture compatible
with the MMFs.

Figure 24.1-13 Schematic illustrations of optochips mounted on
printed circuit boards (PCBs). Light is generated by a VCSEL array
driven by a transmitter circuit (Tx), and detected by a photodetector
(PD) array connected to a receiver circuit (Rx). (a) The four chips
are mounted on a Si carrier; light from/to the VCSEL/PD array is
directed through holes in the Si carrier, integrated lenses, and
mirrors in the on-board planar waveguide. (b) The VCSEL and PD
arrays are attached to an electronic IC that contains the Tx and Rx
circuitry; they are linked to a fiber array via holes (vias) in the IC
and an integrated lens array.

An optochip using an array of 24 VCSELs and 24 PDs, each
operating at a data rate of 15 Gb/s, provides communication at an
overall rate of 360 Gb/s. Transceivers that operate at data rates of
100 Gb/s are readily available for datacenter interconnects and
high-performance computing. These compact modules incorporate
lasers, modulators, splitters, wavelength multiplexers, wavelength
demultiplexers, and photodetectors.

Intrachip Optical Interconnects

The use of ultra-short-reach optical links to connect points within a
chip is a more challenging enterprise. The use of intrachip optical
interconnects is motivated by advances in high-speed, high-density
microelectronics circuitry and the parallel-processing architectures



found in high-performance computers, which demand high-quality
inter-connectivity to avoid communications bottlenecks. In ultra-
large-scale integrated circuits (ULSI), the interconnects occupy a
substantial portion of the available chip area so considerable effort
must be devoted to equalizing interconnect lengths in order to
minimize interconnection time delays (which can exceed gate
delays). Intrachip optical interconnects incorporating carefully
designed optochips are commercially available.

An intrachip optical interconnect features three key components: 1)
an electronic-to-optical (E/O) transducer (transmitter) modulated
by the electrical signal at a point within the chip; 2) a point-to-point
optical link that carries the signal to another point on the chip; and
3) an optical-to-electronic (O/E) transducer (receiver) that detects
the signal at the destination point. Ideally, this device should take
the form of a photonic integrated circuit (PIC) in which all
three components are monolithically integrated within the silicon
substrate of the chip and are compatible with CMOS
(complementary metal-oxide-semiconductor) technology, which is
the principal platform for integrated electronics. In fact, silicon
photodiodes (Fig. 19.3-7) can be readily embedded in silicon chips,
and silicon-on-insulator (SOI) optical waveguides (Sec. 9.3) can
serve as high-efficiency conduits (although the on-chip real-estate
for such guides may be scarce).

Si-based on-chip sources. The principal difficulty in creating a
monolithic intrachipinterconnect PIC lies with the fabrication of the
laser-diode transmitter inasmuch as Si is an indirect-bandgap
material from which light sources cannot be efficiently fashioned
(Fig. 17.2-7). Nevertheless, as discussed in Sec. 18.1D in the context
of silicon photonics, silicon-based on-chip light sources can be
implemented via three approaches: 1) flip-chip integration of III–V
laser diodes onto a separately fabricated silicon platform with the
help of solder bumps; 2) heterogeneous integration of III–V lasers
into prepatterned silicon circuits (hybrid approach); and 3) direct
heteroepitaxial growth of III–V lasers on Si substrates using
intermediate buffer layers to minimize dislocations in the light-



emitting region. Each of these approaches has its own limitations
and merits. Hybrid integration is widely used (Fig. 24.1-14) but
direct heteroepitaxy may be the most attractive alternative going
forward.

Figure 24.1-14 Light sources integrated with Si CMOS chips via
heterogeneous integration (hybrid approach). The III–V source
chips are fabricated separately and then integrated with the Si
structure. (a) An AlGaAs optical source is bonded to a silicon chip in
a surface normal architecture. (b) An InP light source is bonded to a
silicon chip and the emitted light is coupled into an on-chip silicon-
on-insulator (SOI) ridge waveguide.

Alternative on-chip sources. Group-IV materials other than Si
can be used to fabricate light sources (Sec. 17.1B and Fig. 17.1-6);
GeSn alloys, for example, are compatible with silicon and CMOS
technology. Various types of compact, low-threshold lasers are also
good candidates for use in optical interconnects; these include
VCSELs (Sec. 18.5A), microdisk and microring lasers (Sec. 18.5B),
photonic-crystal lasers (Sec. 18.5C), and nanocavity lasers (Sec.
18.6). Also, directly modulated optical sources can be replaced with
externally illuminated electro-optic (Sec. 21.1B) or electroabsorption
(Sec. 21.5) modulators that derive their modulation signals directly
from the local electrical signals within the chip. This approach,
although inefficient and cumbersome, has the merit that it
decouples the modulation and light-generation mechanisms,
thereby allowing them to be independently optimized.

On-chip holographic interconnects. Free-space optical links
using external devices such as holograms have also been considered
for intrachip interconnects, as illustrated in Fig. 24.1-15(a). A



configuration that does not require the use of on-chip transmitters
is a one-way interconnect between one, or several, external point(s)
and points on the chip, as illustrated in Fig. 24.1-15(b). A useful
application for such a configuration is optical clock distribution,
where a signal from an external clock modulates an external light
source that broadcasts the signal to multiple photodetectors on the
chip using a reflection hologram. This ensures accurate
synchronization of high-speed synchronous circuits and mitigates
the problem of clock skew that results from differential time delays.
The hologram may, of course, be eliminated and the light
“broadcast” directly to all points on the chip. While this creates a
robust system that is insensitive to misalignment, the power
efficiency is low since a large portion of the optical power is lost.

Figure 24.1-15 (a) Interconnects between on-chip sources and
detectors via an external reflection hologram used as an
interconnect element. (b) One-way interconnects directing clock
pulses from an external light source to photodetectors on a silicon
chip.

Rationale for Chip Optical Interconnects

Optical interconnects offer a number of advantages for inter-and
intrachip interconnects that stem principally from the short
wavelength of light and its corresponding high frequency (e.g., 20–
50 THz), which is substantially greater than the bandwidth of the
transmitted data. Electronic interconnects, in contrast, use
baseband signals at far lower frequencies (e.g., in the GHz range).
The principal advantages of optical interconnects, in terms of their



larger bandwidths, shorter delays, higher densities, and lower power
consumption, are set forth below.

Bandwidth. The bandwidth of an electronic strip line of
length ℓ and cross-sectional area A placed above a ground plane
is proportional to the ratio A/ℓ2 . This can be understood for a
line limited by RC effects, since the resistance R ∝ ℓ/A while the
capacitance C ∝ ℓ, so that the time constant RC ∝ ℓ2/A. A similar
argument applies to lines limited by LC effects. The bandwidth
is thus determined by the aspect ratio  and cannot be
altered by miniaturizing the device or by increasing its size.
Optical interconnects do not suffer from this aspect ratio
limitation since the bandwidth is governed by other physical
effects and is generally larger. Moreover, for optical
interconnects, the maximum bandwidth of the data carried by
each connection is not affected by the density of proximate
interconnects. Said differently, the optical crosstalk among
neighboring lines is not influenced by an increase in the data
rate. This stems from the small ratio of the bandwidth to the
carrier frequency of the modulated light. This is not the case for
electronic interconnects, in which the density must be reduced
sharply at high modulation frequencies to eliminate capacitive
and inductive coupling among proximate interconnects. Optical
interconnects therefore offer greater density–bandwidth
products than do electronic interconnects.

Delay. Photons travel at a speed co = 0.3 mm/ps in free space
and at co/n ≈ 0.086 mm/ps in silicon (n = 3.5). The
corresponding propagation time delays are therefore ≈ 3.3
ps/mm and ≈ 11.7 ps/mm, respectively. Electrical-signal delays
on strip lines fabricated from ceramics and polyimides are
approximately 10.2 and 6.8 ps/mm, respectively. Propagation
delay is therefore not an issue per se. However, the velocity of
light is independent of the number of interconnections
branching from an optical interconnect, whereas in electronic
transmission lines the velocity is inversely proportional to the



capacitance per unit length and therefore depends on the total
capacitive “load”; hence the propagation delay time increases as
fan-outs increase. Optics thus offers greater flexibility with
respect to fan-out and fan-in interconnections, which are
limited only by the available optical power.

Density. The most dense set of interference-free interconnects
makes use of unguided beams, each with a small width and a
small divergence angle, limited only by diffraction (the product
of the width and the angle of a narrow beam is of the order of a
wavelength, which is small at optical frequencies). Moreover,
since such beams can intersect (pass through one another)
without mutual interference (assuming that the medium is
linear), they can be used in three-dimensional configurations to
create interconnects with densities unmatchable by electrical
wires. Light may also be guided in planar or quasi-planar low-
loss dielectric waveguides, with widths as small as a
wavelength, that can be packed densely with minimal crosstalk.
Electrical interconnects, on the other hand, use metallic
conductors, such as strip lines, that serve as transmission lines
or waveguides for the electromagnetic waves associated with
the oscillating electric charges. Metallic conductors introduce
losses and cannot be packed as tightly since they become
susceptible to electromagnetic interference when in close
proximity.

Power. To avoid reflections, electrical interconnects must be
terminated with a matched impedance, which generally
requires an increase in the expenditure of power. For optical
interconnects, on the other hand, reflections can be
significantly reduced by making use of antireflection coatings.
Optical power requirements are typically limited by
photodetector sensitivities, the efficiencies of electrical-
tooptical and optical-to-electrical conversion processes, and the
power transmission efficiencies of the interconnect elements.



24.2 PASSIVE OPTICAL ROUTERS
A passive optical router redirects the data carried by a set of
incoming optical beams to one or more of a set of outgoing optical
beams, on the basis of the location of the beam and a physical
attribute X associated with the data (e.g., wavelength, polarization,
intensity, phase, or arrival time). A single incoming or outgoing
beam may carry several components marked by different values of
X. The system avoids contention, i.e., routing different data marked
by the same attribute value to the same outgoing beam. Three
common routers are the demultiplexer, the multiplexer, and the
add–drop multiplexer, as described below and illustrated in Fig.
24.2-1.

A demultiplexer (DMUX or DEMUX) is a 1 × N router that
sorts the components with attribute values X1, X2,..., XN in a
single input beam and directs them to separate output ports, as
shown in Fig. 24.2-1(a). The DMUX may be implemented by
use of a broadcast-and-select operation: a 1 × N fan-out
interconnect broadcasts copies of the incoming beam to all
output ports and is followed by a bank of filters that select
components with the desired attribute values and reject all
others.

The multiplexer (MUX) is the inverse of the DMUX. As
illustrated in Fig. 24.2-1(b), input beams with distinct values of
the optical attributes X1, X2,..., XN are combined into a single
beam that can be subsequently separated by use of a
demultiplexer. Multiplexing and demultiplexing based on
wavelength, frequency, and time are used extensively in optical
communication systems.

The add–drop multiplexer (ADM), portrayed in Fig. 24.2-
1(c), is another important routing device used in
communication networks. Here, a demultiplexer sorts
components with different attribute values, separates the



component of a selected attribute value, say X2, drops its data
content and instead adds new data, and then subsequently
combines all components into a single beam by use of a
multiplexer. The optical ADM (OADM) is commonly used in
optical networks.

Figure 24.2-1 Attribute-based routers. (a) Demultiplexer (DMUX).
(b) Multiplexer (MUX). (c) Add–drop multiplexer (ADM).

A. Wavelength-Based Routers
Wavelength-based routers are commonly used in wavelength-
division multiplexing (WDM) optical fiber communication systems
and networks. As described in Sec. 25.3C, these systems incorporate
channels with multiple wavelengths in the same optical fiber. They
employ routers that combine the channels at the fiber input and
separate them at the fiber output using wavelength-based routers
called wavelength-division multiplexers and wavelength-
division demultiplexers, respectively.

Implementations of Wavelength-Division
Multiplexers/Demultiplexers

A number of techniques, some of which are illustrated in Fig. 24.2-
2, can be used for wavelength-division demultiplexing.

An angularly dispersive optical device will separate the
components of different wavelengths within a single optical
beam into separate optical beams. The simplest devices that
exhibit angular dispersion are the prism [Fig. 24.2-2(a)] and
the diffraction grating [Fig. 24.2-2(b)]. The angular dispersion



of a prism is limited by the rate of change of the refractive
index with respect to the wavelength, dn/dλ, which is usually
not sufficiently large to adequately separate components of
slightly different wavelengths. Prisms made of photonic-crystal
materials (Chapter 7), called superprisms, can exhibit
dispersive power that is two to three orders of magnitude
greater than that of conventional materials. The angular
dispersion of diffraction gratings (Sec. 2.4B) is stronger than
that of ordinary prisms; they are capable of resolving
wavelength differences corresponding to a few GHz.

Figure 24.2-2 Wavelength-division demultiplexers. (a) Prism.
(b) Diffraction grating with a lens or graded-index (GRIN) rod.
(c) Dielectric thin-film interference filters (TFFs). (d) Fiber
Bragg gratings (FBGs). (e) Microring resonator filters.

Wavelength separation may also be implemented by using a
bank of filters tuned to the different wavelengths. The
incoming light is broadcast to the different filters; each filter
transmits a single wavelength channel and blocks all others.
Alternatively, the beam may be directed through a sequence of
filters with narrow spectral passbands, such as dielectric thin-
film interference filters (TFFs), each of which transmits one
wavelength and reflects all others to the next filter, as



illustrated in Fig. 24.2-2(c). A GRIN rod may be used to guide
the rays between the filters.

In a similar implementation, the wavelength dependence of the
reflectance of a fiber Bragg grating (FBG) (Sec. 7.1C) is
exploited to separate wavelength components; the component
at the Bragg wavelength λB = 2Λ, where Λ is the grating period,
is reflected and all other components are transmitted. Multiple
Bragg gratings are used to separate multiple wavelengths [Fig.
24.2-2(d)].

In yet another similar implementation, a sequence of
microring-resonator filters, each tuned to one wavelength,
is used [Fig. 24.2-2(e)].

Other implementations make use interferometers such as the
Mach–Zehnder interferometer and the arrayed
waveguides router, as will be described subsequently.

Optical Add–Drop Multiplexer (OADM)
An optical add–drop multiplexer (OADM) drops data from, and
simultaneously adds data to, selected wavelength channels of a
multi-channel optical beam. The individual wavelength channels
may be accessed by means of a demultiplexer followed by a
multiplexer, as portrayed in Fig. 24.2-1(c). A selected wavelength
channel, along with its associated data, is separated from the other
channels by means of a wavelength-sensitive optical element and
extracted (dropped) by detecting (annihilating) it. New data are
added via a modulated optical source. We consider two examples of
OADMs based on this arrangement. The first, pictured in Figs. 24.2-
3, makes use of a fiber Bragg grating (FBG) as the wavelength-
selective element while the second, illustrated in Fig. 24.2-4, uses
multiple microring resonators for this purpose.



Figure 24.2-3 An optical add–drop multiplexer (OADM). This
version makes use of a fiber Bragg grating (FBG) to reflect the
wavelength component λ1, which is then directed by a circulator to a
photodetector for annihilation. The remaining components, λ2 and
λ3, pass through the FBG to the output. Another circulator serves to
add light, modulated by new data, at λ1. The FBG retroreflects light
at λ1.

 

Figure 24.2-4 Another configuration for an OADM. This version
makes use of multiple micro-ring resonators to extract the
wavelength component λ1 from the multichannel input beam and to
direct it to a photodetector for annihilation. The remaining
components, λ2 and λ3, pass through to the output. Light at λ1,
modulated by new data, is selected by the resonators and
transferred to the output beam. Multiple microring resonators offer
greater wavelength selectivity (narrower spectral width and greater
rejection ratio) than single microring resonators.

The Mach–Zehnder Interferometer as a Demultiplexer
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Since interferometers are sensitive to wavelength, they are suitable
for wavelength-division routing. The integrated-photonic Mach–
Zehnder interferometer (MZI) portrayed in Fig. 24.2-5, for example,
may be used as a two-wavelength demultiplexer. To direct the
components of wavelengths λ1 and λ2 in the input beam to different
output ports, the pathlength difference Δd is selected such that the
phase difference φ = 2πΔd/λ is an even multiple of π at λ1 and an
odd multiple of π at λ2; i.e., Δd = q1λ1/2 and Δd = q2λ2/2, where q1 is
an even integer and q2 is an odd integer.

Figure 24.2-5 Wavelength-division routing (demultiplexing) of
two wavelengths by use of an integrated-photonic Mach–Zehnder
interferometer.

The resolution of the routing device, i.e., the closest wavelengths
that can be separated, is determined by writing |1/λ1−1/λ2| =
|q1−q2|/2Δd, and taking |q1−q2| = 1, so that |1/λ1 − 1/λ2| = 1/2Δd.
The corresponding frequency difference Δν = |ν1 − ν2| is therefore

For example, if Δd = 1 mm and n = 1.5, then Δν = 100 GHz. Smaller
separations Δν require proportionally longer pathlength differences
Δd.

The spectral sensitivity of the MZI router may be determined by
writing its interconnection matrix as



(24.2-3)

where d0 + Δd and d0 represent the pathlengths of the
interferometer branches. The first and third entries in this matrix
product are the interconnection matrices for a 3-dB coupler set
forth in (24.1-2). For an input field of unit power at input port 2, the
powers received at output ports 1 and 2 are P1 = |T21|2 and P2 =
|T22|2, respectively, so that

These powers are plotted in Fig. 24.2-5 as functions of λ. It is clear
from this dependence that the smaller the ratio λ/Δd, the more
rapidly these functions alternate between 0 and 1 and thus the
greater the possibility for demultiplexing closely spaced
wavelengths.

Multiple MZIs may be cascaded to separate more than two
wavelengths. For example, four wavelengths may be separated in a
two-step process, as illustrated in Fig. 24.2-6. The first MZI
separates the odd-numbered from the even-numbered wavelengths,
and subsequent MZIs implement finer wavelength separations.

Figure 24.2-6 Wavelength-division routing (demultiplexing) of
four wavelengths by use of cascaded integrated-photonic Mach–
Zehnder interferometers.

Arrayed Waveguides (AWG) Routers

Other interferometric configurations may be used to provide greater
wavelength selectivity. Multipath interferometers, for example, are
highly selective to wavelength since they exhibit sharp resonances.
Such interferometers may be custom designed using planar
waveguides and may be configured to provide routing for a large
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number of wavelengths in devices that contain many input and
output ports. The arrayed waveguides (AWG) router operates
on the principle that each connection between an input port and
output port is configured as an independent multipath
interferometer that transmits only specific wavelengths. Since this
device is similar to a diffraction-grating spectrometer, the AWG
router is also known as a waveguide grating router (WGR).

Multipath interferometer. Before embarking on a discussion of
the operation of the AWG, we first review the properties of the
multipath interferometer. An L-path interferometer is a connection
comprising L optical paths whose lengths increase progressively and
linearly so that adjacent paths have exactly the same pathlength
difference Δd, as portrayed in Fig. 24.2-7. The wave received at the
output port is then the sum of L waves of equal amplitudes and
equal phase difference, as considered in Sec. 2.5B. Since the phase
difference between adjacent paths is φ = 2πΔd/λ at wavelength λ,
the power transmittance provided in (2.5-12) becomes

which is a periodic function of φ with sharp peaks that occur when
φ equals integer multiples of 2π, as shown in Fig. 2.5-7. The
dependence of T on λ is not periodic, but rather comprises sharp
peaks at λ = Δd and integer fractions thereof, as illustrated in Fig.
24.2-7. The larger the number of paths L, the sharper the peaks.

Figure 24.2-7 A multipath interferometer and the wavelength
dependence of its transmittance.
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The AWG as a wavelength-division demultiplexer. An
arrayed waveguides (AWG) router may be used as a 1 × N
wavelength-based router that directs each of N wavelength
components, λ1, λ2,..., λN, at the input port to one of the N output
ports, as shown in Fig. 24.2-8. There are N multipath
interferometers, one for each of the output ports. Each
interferometer has a unique pathlength difference Δd selected such
that only a specific wavelength is transmitted. This is achieved if the
connections leading to the mth output port are designed to have a
pathlength difference Δdm that is an integer multiple of λm, but not
an integer multiple of the other wavelengths.

Figure 24.2-8 Wavelength-division demultiplexing using an
arrayed waveguides (AWG) router.

The design is simpler if the wavelengths λ1, λ2, ..., λN are distributed
uniformly as a decreasing sequence, λm = λ0 − mΔλ, where Δλ is the
wavelength channel separation and λ0 = λ1 −Δλ. A necessary
condition for operation of the demultiplexer is

indicating that the pathlength difference for the connections to the
mth output port decreases linearly with m. The other condition is
that Δdm is not equal to an integer multiple of λℓ for all ℓ = m. This
condition is automatically satisfied if the shortest wavelength λN is
greater than one half of the longest wavelength λ1, as depicted in
Fig. 24.2-8.
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AWG Equation

(24.2-6)

In the implementation displayed in Fig. 24.2-8, each pathlength
between the input port and an output port is the sum of the
waveguide length and the distances traveled in the star couplers.
The waveguide lengths may be selected to increase progressively by
a fixed length Δdw. For a star coupler with circular boundaries, the
pathlength difference may be approximated by a linearly decreasing
function of m, so that

where Δda and Δdb are constants that depend on the geometry of
the couplers. The condition provided in (24.2-5) can therefore be
satisfied if Δdw + Δda = λ0 and Δdb = Δλ. The resolution of the
wavelength demultiplexer, i.e., the minimum wavelength separation
Δλ, is therefore limited by the minimum value of the geometrical
factor Δdb.

The AWG as an N × N wavelength router. The AWG may also
be used as a more general N × N wavelength router. The
connections between the ℓth input port and the mth output port
form a multipath interferometer with pathlength difference Δdℓm =
λ00−(ℓ+m)Δλ, which decreases linearly with both ℓ and m (λ00 and
Δλ are constants that depend on the geometry of the AWG). Light is
transmitted between these ports if the wavelength λℓm equals Δdℓm,
i.e., if

Equation (24.2-7) is a generalization of (24.2-5). Although the AWG
does not implement an arbitrary wavelength routing, it can offer
solutions to certain routing problems such as simultaneous
wavelength multiplexing operations.

B. Polarization-, Phase-, and Intensity-Based Routers



Polarization-Based Routing

A simple example of passive optical routing is based on polarization.
In polarization-division demultiplexing the parallel and orthogonal
polarization components of an optical beam are separated by
making use of a polarizing beamsplitter (PBS), as illustrated in Fig.
24.2-9. Polarization-based multiplexing is achieved by using the PBS
as a beam combiner, with light traveling from right-to-left instead of
from left-to-right.

Figure 24.2-9 Polarization-division routing using a polarizing
beamsplitter (PBS). For beams traveling from left-to-right, the
prism is a demultiplexer. For beams traveling from right-to-left, it is
a multiplexer.

Phase-Based Routing

Another simple example of passive optical routing is based on
phase. Here a sequence of optical pulses with phases 0 or π are to be
sorted based on phase and routed to two output ports. This may be
accomplished by making use of a simple Mach–Zehnder
interferometer, as shown in Fig. 24.2-10.

Figure 24.2-10 Phase-based routing using a Mach–Zehnder
interferometer.

Intensity-Based Routing



A light beam whose intensity takes on different values at different
times may be routed into separate beams based on the value of the
intensity. For example, a light beam carrying a sequence of pulses
with two intensities, as depicted in Fig. 24.2-11, may be separated
into two beams, one containing the high-intensity pulses and the
other containing the low-intensity pulses. This demultiplexing
operation requires the use of a nonlinear optical element. It is often
implemented by converting the intensity variation into phase
change via the optical Kerr effect (Sec. 22.3A), as described next.

Nonlinear Mach–Zehnder interferometer (MZI). The
nonlinear MZI is a conventional MZI in which a nonlinear optical
element, such as a Kerr cell, is placed in one of the interferometer
branches. The cell introduces a phase shift proportional to the light
intensity. The system is adjusted such that the phase difference
between the interferometer branches is an odd multiple of π for one
intensity, and an even multiple of π for the other. This diverts the
stream of pulses into two output ports, one containing the high-
intensity pulses and the other containing the low-intensity pulses,
as illustrated in Fig. 24.2-11(a). The interferometer may also be
implemented using optical fibers, as depicted in Fig. 24.2-11(b).

Figure 24.2-11 An intensity-based 1 × 2 router using a Mach–
Zehnder interferometer in which a nonlinear Kerr medium has been
placed in one of the interferometer branches. (a) Bulk-optics
version. (b) Fiber-optics version.

Nonlinear asymmetric Sagnac interferometer. An intensity-
based 1 × 2 router using a nonlinear fiber Sagnac interferometer is
illustrated in Fig. 24.2-12. In this configuration, light enters from
fiber 1 and is split into a clockwise wave and a counterclockwise



wave. If the optical pathlengths of these waves are identical,
constructive interference occurs and the light propagates back into
fiber 1 and is directed to output port 1, so that the device acts as a
mirror. This occurs if the fiber is linear, or if the fiber is nonlinear
and the intensities of the two waves are equal. However, if the
coupler feeding the interferometer loop is not symmetric, then the
intensities in the two paths are unequal, in which case the phase
shifts introduced via the optical Kerr effect are generally different.
When the phase difference is π, destructive interference ensues and
light is diverted into fiber 2 and output port 2. Since the phase
difference is proportional to the intensity of the incident wave, the
system acts as a 1 × 2 self-controlled intensity-division router (a
demultiplexer).

Asymmetry between the clockwise and counterclockwise waves in
the Sagnac interferometer may also be introduced by placing an
erbium-doped fiber amplifier (EDFA) at an asymmetric location
within the loop. This serves to amplify one of the interfering waves
during the first half of its trip around the loop, so that it travels
more than half a round trip at a high intensity. The other wave is
amplified during the second half of its trip around the loop so it
travels a shorter distance at high intensity and thus encounters a
smaller nonlinear phase shift. This system is known as a
nonlinear optical loop mirror (NOLM).

Figure 24.2-12 Intensity-based 1 ×2 router using a nonlinear
Sagnac interferometer that serves as a nonlinear optical loop mirror
(NOLM).

Nonlinear directional coupler (NLDC). A waveguide or fiber-
optic directional coupler made of a Kerr material can also serve as
an intensity-based router, as illustrated in Fig. 24.2-13. If the
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intensity of the input pulse is low, the medium is approximately
linear and the light is periodically coupled from one guide to the
other as it travels (Fig. 9.4-6). If the length of the coupler is equal to
the transfer distance L0 and there is no phase mismatch, the light is
completely transferred from the input waveguide to the other
waveguide. However, for pulses of large intensity the propagation
constants are altered by the Kerr effect, creating an intensity-
dependent phase mismatch that varies with distance. Propagation
then obeys the nonlinear coupled differential equations

which are generalizations of the linear coupled equations (9.4-4) for
the conventional directional coupler. Here,  = π/2L0 is the coupling
coefficient and γ is proportional to the optical Kerr coefficient n2
[Sec. 22.3A and (23.5-16)]. The system is designed so that the high-
intensity pulses exit the coupler from the same waveguide and are
separated from the low-intensity pulses, as displayed in Fig. 24.2-13.

Figure 24.2-13 Intensity-based 1×2 router using a directional
coupler fabricated from a nonlinear optical material.
Implementation in: (a) integrated-photonic technology; (b) fiber-
optic technology.

Soliton directional coupler. Since the intensity of an optical
pulse varies during its time course, so too does the nonlinear
refractive index n2 and the corresponding propagation constant in



the nonlinear medium. Different fractions of the pulse power are
therefore transferred between the two channels, which can lead to
pulse reshaping and possibly to pulse breakup. However, this will
not occur in a fiber-optic NLDC [Fig. 24.2-13(b)] if the pulse is an
optical soliton (Sec. 23.5B). Because the nonlinear phase shift of an
optical soliton is constant over the pulse's envelope, the soliton
pulse remains intact as it is routed between the coupled fibers. A
further advantage of operating the NLDC in the soliton mode is that
the transition between the output ports is a far sharper function of
the input pulse power.

24.3 PHOTONIC SWITCHES
A. Space-Switch Architectures
A switch is a device that both establishes and releases connections
among transmission paths in a communication or signal-processing
system. A control unit processes the commands for connections and
sends a control signal to operate the switch in the desired manner.
Whereas interconnects always operate on the incoming signals in
the same manner, switches are controllable, active, or
reconfigurable interconnects that can be modified by an external
command. Space switches establish transmission paths that route
optical beams between specific physical locations, namely the input
and output ports of the switch. Examples of such switches are
displayed in Fig. 24.3-1.



Figure 24.3-1 Examples of space switches. (a) A 1 × 1 switch
connects or disconnects two lines. It is an ON–OFF switch. (b)A 1×2
switch connects one line to either of two lines. (c)A 2×2 crossbar
switch connects two lines to two lines. It has two configurations:
the bar state and the cross state, and may be regarded as a
controllable directional coupler. (d)A 1 × N switch connects one line
to one of N lines. (e) An N × N crossbar switch connects N lines to N
lines. Any input line can always be connected to a free
(unconnected) output line without blocking (i.e., without conflict).

A 1 × 1 switch can be used as an elementary unit from which
switches of larger sizes can be built. An N × N crosspoint-matrix
(crossbar) switch, for example, may be constructed by using an
array of N2 1 × 1 switches, organized at the points of an N × N
matrix, to connect or disconnect each of the N input lines to a free
output line [Fig. 24.3-1(e)]. In this portrayal, the mth input reaches
all elementary switches in the mth row, while the lth output is
connected to the outputs of all elementary switches in the lth
column. A connection is effected between the mth input and the lth
output by activating the (m, l)1 × 1 switch. Examples that make use
of 1 × 1 switches are shown in Fig. 24.3-2.



Figure 24.3-2 (a)A 1 × 3 switch made from three 1 × 1 switches.
(b)A 3 × 3 switch made from nine 1 × 1 switches in a broadcast-and-
select configuration.

An N × N switch can also be constructed by using 2 × 2 switches as
building blocks. Examples that make use of 2 × 2 switches are
displayed in Fig. 24.3-3.

Figure 24.3-3 (a)A 4 × 4 switch made from five 2 × 2 switches.
Input line 1 is connected to output line 3, for example, if switches A
and C are in the cross state and switch E is in the bar state. (b) An 8
× 8 switch comprising 28 interconnected 2 × 2 switches.

Photonic Switch Characteristics

A photonic switch is characterized by the following parameters:

Size: number of input and output lines.

Direction(s): whether data can be transferred in one or two
directions.

Switching time: time required for the switch to be
reconfigured.



Propagation delay time: time required by the signal to
cross the switch.

Throughput: maximum data rate that can flow through the
switch.

Switching energy: energy required to activate and deactivate
the switch.

Power dissipation: energy dissipated per second in the
process of switching.

Insertion loss: decrease in signal power introduced by forging
the connection.

Extinction ratio: contrast between the ON and OFF states.

Crosstalk: undesired power leakage to other lines.

Blocking probability: probability that a connection cannot
be established because of a conflict with another connection.

Physical dimensions: the physical size is an important
consideration when large arrays of switches are built.

B. Implementations of Photonic Space Switches

Optoelectronic Switches

Electronic switches have evolved a great deal since the early years of
telephony, generally tracking the steady advances in
microelectronics. Nanoscale CMOS electronic gates can operate at
switching times as small as 0.1 ns and with switching energies
smaller than 1 fJ. Advanced MOSFET gates can be switched at
subpicosecond time scales. Electronic chips for crossbar switching
with large numbers of ports (e.g., 128 × 128) are readily available. It
is therefore natural to consider these devices for photonic
switching. Unfortunately, optoelectronic switches are cumbersome
for photonic switching inasmuch as they require optical-to-electrical
conversion at the input of the switch and electrical-to-optical
conversion at its output, as illustrated schematically in Fig. 24.3-4.



Moreover, the optical/electrical/optical conversions required for the
operation of optoelectronic switches introduce substantial time
delays and power loss. It is therefore desirable to make use of
“transparent” photonic switches that operate directly on the optical
signals.

Figure 24.3-4 An optoelectronic crossbar switch. Incoming optical
signals carried by optical fibers are detected by an array of
photodetectors on an optoelectronic chip, switched using an
electronic crossbar switch, and regenerated using an array of light
sources (e.g., VCSELs) that feed outgoing optical fibers. The process
is cumbersome and inefficient.

Elementary Photonic-Switch Configurations

The most elementary of photonic switches are the optical scanner
and the modulator. A scanner that deflects an optical beam into one
of N possible directions is a 1 × N switch [Fig. 24.3-5(a)]. An optical
modulator operated in ON–OFF mode also serves as a 1 × 1 switch.
Modulation may be direct, relying on some physical effect that
transmits or blocks the light, or interferometric, using for example
an optical phase modulator placed in one arm of a Mach–Zehnder
interferometer, which converts phase modulation into intensity
modulation [Fig. 24.3-5(b)]. Another elementary photonic switch is
a directional coupler operated as a 2 × 2 switch. This may be
implemented by making use of a Mach–Zehnder interferometer in
which a phase modulator is placed in one or both branches [Fig.
24.3-5(c)]. The two interferometer branches may also represent two
orthogonal polarization components, in which case the phase
modulator is a wave retarder that introduces a relative phase shift
between the two polarizations.



Figure 24.3-5 (a) An optical scanner as a 1 × N switch. (b) An
interferometer with a phase modulator as a 1 × 1 switch. (c) An
interferometer with a phase modulator as a 2 × 2 switch.

Elementary photonic switches may be combined or cascaded in free
space or in planar-waveguide technology to create switches of
higher dimension. As illustrated in Fig. 24.3-6, for example, a planar
array of 16 optical modulators, each serving as a 1 × 1 switch, may be
configured in an optical system that operates as a 4 × 4 crossbar
switch in the broadcast-and-select configuration.

Figure 24.3-6 A 4 × 4 crossbar switch. Each of the 16 elements is a
1 × 1 switch that transmits or blocks light depending on a control
signal. Light from the mth point of the input, m = 1, 2, 3, 4, is
broadcast to all switches in the mth row. Light from all switches in
the lth column is directed to the lth output point, l = 1, 2, 3, 4. The
system is an implementation of the 4 × 4 switch depicted in Fig.
24.3-1(e).

The modulation and deflection of light can be achieved by the use of
mechanical; electromechanical; electrical; acoustical; magnetic; and
thermal control. Switches that operate under these rubrics are,



respectively, mechano-optic (or optomechanical);
microelectromechanical systems (MEMS); electro-optic,
semiconductor, and liquid-crystal; acousto-optic, magneto-optic,
and thermo-optic. The remainder of this section is devoted to
providing brief outlines of these technologies. All-optical, or opto-
optic, switches are described in Sec. 24.3C. The switching times of
these various devices are compared in the following diagram:

Mechano-Optic Switches

A mechano-optic (or optomechanical) 1 × N switch (a scanner) may
be implemented by using a moving (rotating or alternating) mirror,
prism, or holographic grating that deflects a light beam to a set of
directions (Fig. 24.3-7). As illustrated in Fig. 24.3-7(c), an optical
fiber can be connected to any of a number of other optical fibers by
mechanically moving the input fiber to align with the selected
output fiber. Piezoelectric elements may be used for faster
mechanical action.



Figure 24.3-7 Examples of the deflection of light into different
directions using mechano-optic switches. (a) A rotating mirror or
prism. (b) A rotating holographic disk; each sector of the disk
contains a grating whose orientation and period determine the
scanning plane and scanning angle of the deflected light. (c) An
optical fiber attached to a rotating wheel aligned with one of a
number of optical fibers attached to a fixed wheel; the fibers are
placed in V-grooves and an index-matching liquid is used to ensure
good optical coupling.

Microelectromechanical systems (MEMS) are miniaturized
mechanical arrangements powered by electrostatic actuators and
fabricated in large arrays using processes similar to those used in
microelectronics. Switching times range from 10 μs to 10 ms. A
crossbar switch, for example, may be implemented by using a set of
MEMS popup mirrors, as shown in Fig. 24.3-8(a), or by using a set
of rotating mirrors, as shown in Fig. 24.3-8(b). Another example of
a MEMS switch is the digital micromirror device (DMD) developed
at Texas Instruments (Fig. 24.3-9). As shown in the inset, it is an
array of micromirrors, each assuming one of two possible
orientations (+12° or −12°). In one orientation, the mirror deflects
incoming light through an imaging lens that displays a bright spot
in the image plane, whereas in the other orientation the mirror
deflects light to a beam dump so that dark spot is displayed in the
image plane. The DMD is a binary (bright/dark) spatial light
modulator (SLM) that finds use in commercial projection systems.
A gray value at any spot may be obtained by modulating the relative
time durations of dark and bright.



Figure 24.3-8 (a) MEMS popup-mirror switch. (b) MEMS
rotating-mirror switch.

 

Figure 24.3-9 The digital micromirror device (DMD) is an array of
micromirrors switched between two orientations to create a binary
image.

Mechano-optic switches generally offer low insertion loss and low
crosstalk but have relatively slow response times.

 

Electro-Optic Switches



As discussed in Sec. 21.1, the refractive indices of electro-optic
materials are altered in the presence of an electric field. These
materials may therefore be used as electrically controlled phase
modulators or wave retarders. When placed in one arm of an
interferometer, or between crossed polarizers, an electro-optic cell
can serve as an electrically controlled light modulator or a 1 × 1
(ON–OFF) switch (Sec. 21.1B).

Since it is difficult to make large arrays of switches using bulk
crystals, the most viable approach to electro-optic switching is via
integrated photonics. As described in Sec. 9.3, integrated-photonic
waveguides may be fabricated using electro-optic dielectric
substrates such as LiNbO3; the diffusion of titanium into the
substrate creates strips of slightly elevated refractive index that
serve as waveguides. An example of a 1 × 1 switch using an
integrated-photonic Mach–Zehnder interferometer (MZI) is
displayed in Fig. 24.3-10(a) (which reproduces Fig. 21.1-5). A 2 × 2
integrated-photonic switch can also be fashioned from a MZI, as
portrayed in Fig. 24.3-10(b).

The directional coupler discussed in Sec. 21.1D also serves as a 2 × 2
switch. As indicated in Fig. 24.3-10(c) (which reproduces Fig. 21.1-
10), two waveguides can be optically coupled by placing them in
close proximity. The refractive index may then be altered by
applying an electric field, which can be adjusted so that the optical
power either remains in the same waveguide or is transferred to the
other waveguide. Switches such as these operate at a few volts and
at bandwidths of tens of GHz.



Figure 24.3-10 (a)A 1 × 1 switch using an integrated-photonic
Mach–Zehnder interferometer (MZI). (b)A 2 × 2 switch using an
integrated-photonic MZI. (c)A 2 × 2 switch using an
integratedphotonic directional coupler.

An N × N integrated-photonic switch can be built by making use of
combinations of 2 × 2 switches. A 4 × 4 switch, for example, may be
implemented by using an arrangement of five 2 × 2 switches, as
suggested in Fig. 24.3-3(a). This configuration can be fabricated on
a single substrate in the geometry displayed in Fig. 24.3-11. Lithium
niobate electro-optic switches of size 32 × 32 have been fabricated.
The limit on the number of switches per unit area is governed by
the relatively large physical dimensions of each directional coupler
and the planar nature of the interconnections within the chip.
However, intersecting (rather than parallel) waveguides may be
used to reduce the dimensions and increase the switch packing
density.

Figure 24.3-11 An integrated-photonic 4 × 4 switch using five
directional couplers (A, B, C, D, and E) implemented on a single
substrate.

It is worthy of mention that the rectangular geometry of integrated-
photonics technology makes it difficult to obtain efficient coupling
to cylindrical waveguides such as optical fibers. Relatively large
insertion losses are encountered, especially with single-mode fibers.



Also, the coupling coefficient is polarization-dependent, which
requires proper selection of the polarization of the guided light and
the use of polarization-maintaining input and output connecting
fibers (Sec. 10.2B). Elaborate schemes are required to make
polarization-independent switches.

Semiconductor Photonic Switches

Electrically controlled semiconductor devices exhibit optical
properties that can be exploited for fast photonic switching. As
described in Sec. 21.5, electroabsorption, based on the Franz–
Keldysh effect in bulk semiconductors and on the quantum-
confined Stark effect (QCSE) in multiquantum-well (MQW)
structures, is useful for controlling the absorption of light at
wavelengths near the bandgap wavelength by means of an electric
field. Used as 1 × 1 switches, such electrically controlled optical
modulators can exhibit switching times shorter than 20 ps. They
can be fabricated in large arrays and bonded to silicon substrates for
operation in a surface-normal configuration, as illustrated
schematically in Fig. 24.3-12.

Figure 24.3-12 An array of MQW switches in a surface-normal
configuration. Operation is based on the QCSE.

Another device available for photonic switching is the
semiconductor optical amplifier (SOA). Since the SOA may be
rapidly turned on and off by applying and removing the injected
electric current (Sec. 18.2), it can be used as a 1 × 1 switch with
switching times in the nanosecond regime. In the absence of gain
(when the device is in the OFF state) it acts as a strong absorber
whereas in the presence of gain (when the device is in the ON state)
it becomes an amplifier; extinction ratios in excess of 40 dB can be



obtained. SOA switches using InGaAsP/InP MQW structures
operate at wavelengths in the vicinity of 1.55 and 1.3 μm (Sec.
18.2D).

Arrays of SOA switches may be fabricated and interconnected via
optical fibers, as illustrated in Fig. 24.3-13. SOAs operated as
amplifiers provide gain so they may be inserted in the circuit to
compensate for the large splitting losses. Since SOAs can also
function as wavelength converters, they may be used in wavelength
switching where optical data carried on a carrier of one wavelength
are “copied” onto a carrier of a different wavelength. Because of
their nonlinear optical properties, SOAs can also be operated as
ultrafast all-optical switches, as discussed in Sec. 24.3C.

Figure 24.3-13 A 2 × 2 switch using four 1 × 1 SOA switches in the
broadcast-and-select configuration illustrated in Fig. 24.3-2.

Liquid-Crystal Switches

Liquid crystals (LCs) offer yet another technology that can be used
to make electrically controllable photonic switches. As described in
Sec. 21.3, a liquid-crystal cell may be configured to act as an
electrically controlled wave retarder or polarization rotator; these
effects may be converted into intensity modulation by use of
crossed polarizers.

A compact configuration for implementing a 2 × 2 crossbar LC
switch is illustrated in Fig. 24.3-14. This is a polarization version of
the Mach–Zehnder interferometer displayed in Fig. 24.3-5(c); the
LC cell rotates the polarization of the beams in the interferometer
arms by 90° if the control signal is present, thereby switching the
connections from the bar to the cross state. The switch is



polarization-independent so that the beams are directed to the
desired ports regardless of their polarization state.

Figure 24.3-14 A 2 × 2 crossbar liquid-crystal switch. The two
polarization components of an input beam are separated by the left-
hand polarizing beamsplitter (PBS) and recombined by the right-
hand PBS after passage through the liquid-crystal cell (LC), which
serves as a π/2 polarization rotator if the control signal is on.
Without polarization rotation, the beams entering at inputs 1 and 2
are directed to outputs 1 and 2, respectively, i.e., the switch is in the
bar state. With polarization rotation, the beams are directed to the
opposite output ports, corresponding to the cross state.

In an alternate switching configuration, the change of the LC
refractive index caused by an applied electric field may be directly
used for switching. The incoming light enters the LC at an angle, via
another medium whose refractive index is selected such that total
internal reflection occurs only when the electric field is applied to
the LC. A large array of electrodes placed on a single liquid-crystal
panel serves as a set of 1 × 1 switches (a digital spatial light
modulator) that may be used in the broadcast-and-select mode
displayed in Fig. 24.3-6 to implement an N × N crossbar switch.

Because of their relatively long switching times, LC switches are
used in applications where speed is not paramount, such as in fault-
protection switching and in the re-configurable optical add–drop
multiplexers (ROADMs) used in optical fiber networks (Sec. 25.5B).



Acousto-Optic Switches

Acousto-optic switches rely on the Bragg diffraction of light by
sound (Sec. 20.1A). The reflectance of the diffracted light is
controlled by the intensity of the sound wave whereas the angle of
deflection is controlled by its frequency. An acousto-optic
modulator, such as that displayed in Fig. 24.3-15(a) (which
reproduces Fig. 20.1-2) is a 1 × 2 switch. An acousto-optic scanner,
such as that illustrated in Fig. 20.2-9, is a 1 × N switch. A 2 ×2
switch is portrayed in Fig. 24.3-15(b). If different portions of the
acousto-optic cell carry sound waves of different frequencies, as
shown in Fig. 24.3-15(c) (which reproduces Fig. 20.2-13), the result
is an L × M switch. A bound on the maximum value of the product
LM achievable with an acousto-optic device, a quantity known as
the interconnection capacity, is set forth in (20.2-9). Acousto-optic
switches are generally slow since the response time depends on the
transit time of sound across the device. Arrays of acousto-optic cells
are also available.

Figure 24.3-15 Acousto-optic switches. (a)A 1 × 2 switch. (b)A 2 ×
2 switch. (c) An L × M switch.

Magneto-Optic Switches

The optical properties of magneto-optic materials are altered when a
magnetic field is present. Materials exhibiting the Faraday effect, for
example, act as polarization rotators in the presence of a static
magnetic flux density B (Sec. 6.4B); the rotatory power ρ (angle per
unit length) is proportional to the component of B that lies along
the direction of propagation. When the material is placed between
crossed polarizers, the optical power transmittance T = sin2 θ is



governed by the polarization rotation angle θ = ρd, where d is the
thickness of the cell. This device can thus serve as a 1 × 1 switch
controlled by the magnetic field.

Magneto-optic materials usually take the form of films (e.g.,
bismuth-substituted iron garnet) deposited on nonmagnetic
substrates. The magnetic field is applied by making use of a pair of
intersecting conductors carrying electric current. A device operates
in binary mode by switching the direction of magnetization. Arrays
of magneto-optic switches can be fabricated by etching isolated cells
(each of size ≈ 10 μm × 10 μm) on a single film. Conductors for the
electric-current drive lines are subsequently deposited using usual
photolithographic techniques. Arrays of such switches (e.g., 1024 ×
1024) are available and operate at switching times of ≈ 100 ns.
Devices have also been developed that make use of plasmonic
effects. Magneto-optic materials are also used for optical-disc
recording, but in that case the process relies on a thermomagnetic
effect whereby the magnetization is altered by heating with a strong
focused laser; weak linearly polarized laser light is used for readout.

Thermo-Optic Switches

Thermo-optic switches usually operate on the basis of the thermo-
optic effect, which is a modification of the refractive index of a
material caused by a change in its temperature. The temperature
change results in a density change that in turn gives rise to an index
change. The resulting index modification is almost always small,
however, so that thermo-optic switches are usually operated in an
interferometric configuration. For example, the thermo-optic
coefficient of silica glass is dn/dT ≈ 10−5 per °C, although polymers
often exhibit larger values.

Thermo-optic integrated-photonic switches are fabricated in fiber-
matched silica-on-Si (SOS) waveguide configurations. An example is
the Mach–Zehnder interferometer (MZI) switch illustrated in Fig.
24.3-16. A thin-film metal heater deposited directly on the
waveguide in one of the interferometer branches is used to control



the temperature of the material. A temperature change ΔT results in
a phase shift (2πL/λo)Δn = (2πL/λo)(dn/dT )ΔT , where L is the
length of the heated region. In a silica-based switch with L/λo = 2 ×
103, for example, the temperature change required to introduce a
phase shift of π is ΔT = 25° C. Other interferometric switching
configurations based on arrayed waveguides (AWG) have also been
fabricated using both silica and polymeric waveguides. The principal
limitation of these switches is long switching time (≈ ms) but they
are suitable for applications such as reconfiguring light paths in
optical networks.

Figure 24.3-16 Thermo-optic Mach–Zehnder interferometer
(MZI) switch.

A different kind of thermo-optic switching technology is based on
the induction of changes in the refractive index of a fluid by a
bubble jet initiated by a microheater. As illustrated in Fig. 24.3-17,
the resulting refractive-index change in the fluid vacates its index-
matching functionality and renders it a total internal reflector
instead.

 

Figure 24.3-17 Bubble-jet switch.



C. All-Optical Space Switches
All-optical space switches, also called opto-optic space
switches, operate by making use of a nonlinear optical material or
device that allows light to control light. The controlling light alters a
particular optical property of the nonlinear material, which in turn
modifies an attribute of the controlled (signal) light such as its
phase, frequency, or polarization. The modified attribute is then
used to block the transmission of, or redirect the path of, the signal
light. The control and signal light must be distinguishable by at least
one feature, e.g., wavelength, polarization, or direction. The
nonlinear process may be nonparametric or parametric (Chapter 22)
and the configuration may be noninterferometric or interferometric.

As an adjunct to the parameters listed in Sec. 24.3A under the rubric
photonic switch characteristics, the principal parameters that
characterize an all-optical switch are: 1) area illuminated by the
control light, 2) intensity of the control light, 3) switching energy, 4)
switching time, and 5) extinction ratio. The ideal all-optical switch is
an ultracompact device that operates with ultralow control-light
intensity and ultralow switching energy at an ultrashort switching
time and with high extinction ratio.

Devices that are currently used as all-optical switches include: 1)
semiconductor optical amplifiers (SOAs) and 2) nonlinear optical
waveguides and fibers. Micro-and nanostructures that make use of
solitons, photonic crystals, plasmonic structures, metamaterials,
and ring nanocavities promise stronger nonlinearities, lower
operating power, and shorter switching times.

SOA Switches

Electrically controlled semiconductor photonic switches were
discussed in Sec. 24.3B. In this section we turn to all-optical
semiconductor optical amplifier (SOA) switches that operate via
nonparametric nonlinear processes: cross-gain modulation
(XGM) and cross-phase modulation (XPM).



In a XGM-SOA switch [Fig. 24.3-18(a)], the control light has higher
power than the signal light, and the two are distinguished by
different frequencies or different polarizations. When the control
light is absent the signal light is amplified; when it is present the
amplifier is saturated and its gain is substantially reduced because
of carrier-density depletion, resulting in the absence of
amplification. High and low values of the output signal represent
the ON and OFF states of the switch, respectively. The contrast ratio
between these states typically lies in the range of 10–20 dB.

In a XPM-SOA switch [Fig. 24.3-18(b)], the amplifier is unsaturated
and the control light, if present, alters the refractive index of the
SOA, which is dependent on the carrier density. The signal light
then undergoes a phase shift that is sensed by an interferometer. If
the presence of the control light results in a phase difference
between the interferometer branches that changes from 0 to π, the
signal light is directed from one output port to the other and the
device functions as a 1 × 2 switch. Although SOAs are compact
devices and can be integrated in arrays, their switching time is
limited to the 10–100-ps range.

Figure 24.3-18 SOA all-optical switches. (a)A 1 × 1 switch based
on cross-gain modulation (XGM). (b)A 1 × 2 switch makes use of
cross-phase modulation (XPM) and a Mach–Zehnder
interferometer (MZI).

Parametric Switches

As described in Chapter 22, second-and third-order nonlinear
materials support numerous nonlinear parametric wave-mixing
effects, including sum-frequency generation (SFG), optical Kerr
effect, self-phase modulation (SPM), cross-phase modulation
(XPM), cross-gain modulation (XGM), four-wave mixing (FWM),



optical frequency conversion (OFC), as well as optical solitons. A
number of all-optical switches and gates are based on these effects.

SFG switch. Illustrated in Fig. 24.3-19 is an example of a switch
based on sum-frequency generation (SFG) in a second-order
nonlinear waveguide such as a periodically poled lithium niobate
(PPLN) crystal (Sec. 22.2E). If the quasi-phase matching condition
is satisfied, the signal and control waves, of frequencies ω1 and ω2,
respectively, generate a new wave at the sum frequency ω3 = ω1 +
ω2. The two original waves are depleted in the process, but this only
happens when both the signal and control waves are present. Hence,
in the presence of the control wave, the signal wave is extinguished
whereas in the absence of the control wave, the signal wave is
transmitted through the waveguide without depletion. The SFG
process therefore serves as a 1 × 1 switch governed by the control
wave.

Figure 24.3-19 An all-optical 1 × 1 switch based on depletion
resulting from parametric sum-frequency generation (SFG) in a
second-order nonlinear waveguide (WG).

XPM-MZI switch. As illustrated in Fig. 24.3-20, the refractive
index of a third-order nonlinear medium that exhibits cross-phase
modulation (XPM), such as a highlynonlinear fiber (HNLF), is
altered by the control wave. The phase of the signal wave is thus
modified and this is sensed by a Mach–Zehnder interferometer
(MZI) that directs the signal wave to either of the two output ports,
depending on the presence or absence of the control wave. The
control wave is distinguished from the signal wave by its different
frequency and a filter is used to permit only the signal wave to pass
through the interferometer. The result is a 1 × 2 switch governed by
the presence or absence of the control wave.



Figure 24.3-20 An all-optical 1 × 2 switch based on cross-phase
modulation (XPM) in a highly nonlinear fiber (HNLF) placed in a
Mach–Zehnder interferometer (MZI).

XPM microring switch. An integrated-optic dielectric microring
resonator, such as that displayed in Fig. 11.0-1(b), whose resonance
frequency is optically controllable can be used as an ultracompact,
all-optical switch. As illustrated in Fig. 24.3-21, the input (signal)
and control waves are guided through straight waveguide segments
adjacent to the microring. In the absence of the control wave, the
input wave is coupled into the resonator, which is designed to have
a matching resonance frequency, and is dropped. The presence of
the control wave introduces a refractive index change Δn = n2I via
the optical Kerr effect (Sec. 22.3A), which alters the resonance
frequency of the resonator proportionally. Being off-resonance, the
signal wave is then no longer coupled to the resonator and is fully
transmitted to the output. The result is a 1 × 1 switch governed by
the presence or absence of the control wave. Microring switches
have been successfully implemented in III–V semiconductors and
in silicon-on-insulator (SOI) technology. Though the Kerr effect in
crystalline silicon is small, other nonlinear mechanisms give rise to
a sizable intensity-dependent refractive index in Si: free-carrier
effects and two-photon absorption (Example 16.3-4) and the
thermooptic effect (Sec. 24.3B). Switching times of 25 ps at 1.55 μm
have been demonstrated.



Figure 24.3-21 An all-optical 1 × 1 switch based on altering the
resonance frequency of a microring resonator via a change in
refractive index effected by the control wave. The signal wave is
blocked when its frequency is on-resonance, and transmitted when
it is off-resonance.

XPM retardation switch. This switch is based on the optical Kerr
effect in an anisotropic nonlinear medium. Propagation of the
control wave through such a medium creates different changes in
the principal refractive indices so that the medium serves as a wave
retarder for the signal (input) wave, thereby changing its state of
polarization. If a birefringent crystal or HNLF is placed between
crossed polarizers it can then function as an all-optical ON–OFF
switch. When the retardation is 0, the input wave is blocked and the
switch is in the OFF state and when the control wave provides a
retardation of π, the signal wave is transmitted and the switch is in
the ON state. Alternatively, a polarizing beam splitter (PBS) can be
used to direct the output from one port to another as the control
wave is turned on or off. This 1 × 2 switch is illustrated in Fig. 24.3-
22.

Figure 24.3-22 An all-optical 1 × 2 switch based on cross-phase
modulation (XPM), which alters the retardation in a birefringent
HNLF.

XPM frequency-shifting switch. The non-interferometric
configuration illustrated in Fig. 24.3-23 may be used for switching



ultrashort light pulses. As described in Sec. 23.1A, a phase shift that
varies linearly with time is equivalent to a frequency shift
proportional to the slope of the control pulse power profile.
Accordingly, the time-varying intensity at one edge of the control
optical pulse introduces, via XPM, a time-varying phase and an
associated frequency shift in the signal pulse. An appropriate
bandpass filter (BPF) is used to block the frequency-shifted wave.
When the control pulse is absent, the frequency shift does not occur
and the signal pulse is transmitted.

Figure 24.3-23 An all-optical 1 × 1 switch based on the frequency
shift introduced by cross-phase modulation (XPM) near the edge of
the control pulse in a highly nonlinear fiber (HNLF).

FWM switch. A switch based on four-wave mixing (FWM) (Sec.
22.3D) in a nonlinear optical fiber is illustrated in Fig. 24.3-24.
Signal (input) and control waves with frequencies ω1 and ω2,
respectively, are launched into the fiber. As they co-propagate, they
generate two new waves with frequencies ω3 and ω4 satisfying the
FWM condition ω1 + ω2 = ω3 + ω4, and both the signal and control
waves are depleted in the process. The system is much like a
depleted-pump optical parametric amplifier (OPA) in which the two
incoming waves act as pumps. This effect can also be regarded as an
example of XGM. The amount of depletion can be signal by
adjusting the power of the incoming waves. When the control wave
is absent, the signal wave emerges with no significant loss since the
parametric interaction process is thwarted.



Figure 24.3-24 An all-optical 1 × 1 switch based on depletion of
the signal wave caused by four-wave mixing (FWM) in the presence
of the control wave in a highly nonlinear fiber (HNLF).

Soliton Switches

Optical solitons are ultrashort pulses that propagate in nonlinear
dispersive optical fibers without spreading (Sec. 23.5B). An all-
optical switch may be realized by using one optical soliton to control
the routing of another. The interaction between the two solitons
may take the form of a collision or a recombination into a single
vector soliton. In either case, some optical property of the input
soliton is changed by the interaction, and the altered property is
used to effect the routing.

Soliton-collision switch. If two solitons with slightly different
frequencies, and hence slightly different group velocities, collide
(pass through one another), the arrival time and the phase are
altered for each soliton. One of the pulses serves as the control
pulse, and the other as the signal pulse. Either the time delay or the
phase shift that accompanies the collision with the control pulse is
used to route the signal pulse. Time-based routing is implemented
by making use of an optical gate that opens during a prescribed time
window. Phase-based routing is effected by making use of an
interferometer.

Vector-soliton switch. A vector soliton comprises two
orthogonally polarized optical pulses copropagating through a
nonlinear birefringent fiber. Since both pulses must be present for
the vector soliton to form, the system may be used as a photonic
switch with one pulse serving to control the other.



Two pulses with orthogonal polarizations travel in a birefringent
fiber at slightly different group velocities and therefore separate in
time, a phenomenon known as walk-off (Sec. 23.5A). If the fiber is
also nonlinear, cross-phase modulation (XPM) (Sec. 22.3C) results
in a frequency upshift in one pulse and a frequency downshift in the
other. Because of group velocity dispersion (GVD), these shifts are
accompanied by a change in the group velocities. When the group
velocity difference due to the birefringence is exactly compensated
by that due to GVD (via XPM), the two pulses travel jointly as a
single vector soliton, a condition also known as soliton trapping.

As illustrated in Fig. 24.3-25, a 1 × 1 vector-soliton switch may be
implemented by using one of the two orthogonally polarized pulses
as the control pulse, and the other as the signal to be transmitted or
blocked. If the two pulses have the same wavelength λ, when
traveling through the nonlinear birefringent fiber they form a vector
soliton whose components have wavelengths shifted to λ ± δλ. One
of these components is selected by a filter and constitutes the
output of the switch. In the absence of the control pulse, the vector
soliton is not formed and the wavelength is not shifted, in which
case the light is blocked by the filter.

Figure 24.3-25 An all-optical switch using vector solitons in a
highly nonlinear fiber (HNLF).

Photonic-Crystal and Plasmonic Switches

The optical Kerr effect may also be used in various all-optical
switches implemented in photonic crystal and plasmonic
nanostructures and microstructures. In these devices the control
light alters the refractive index of the dielectric material, thereby
altering a characteristic of the structure through which the signal



light propagates. The result is that the light is either transmitted
(ON state) or blocked (OFF state).

Photonic-crystal switches. As described in Sec. 7.2, photonic
crystals are periodic structures characterized by bandgaps, i.e.,
frequency bands within which light cannot propagate. The bandgaps
can be frequency shifted by altering the refractive index of the
material. In the absence of the control light, the frequency of the
signal light lies inside the bandgap, but near its edge, so the light
cannot propagate and the switch is in the OFF state. When the
control light is applied, the bandgap is shifted so that the frequency
of the signal light falls outside the bandgap and the light can
propagate, so the switch is converted to the ON state. An all-optical
switch may also be implemented by using a photonic-crystal
nanocavity formed by a lattice defect. Since the resonance frequency
of the nanocavity mode depends on the refractive index of the
material, it can be altered by the control light. The optical signal
then will or will not be coupled to the nanocavity depending on
whether its frequency matches or mismatches the nanocavity
resonance frequency, thereby enabling switching action.
Experimental demonstrations of photonic-crystal, all-optical
switching with response times in the subpicosecond range and
pump powers of kW/cm2 have been reported.

Plasmonic switches. The resonance frequency of a surface
plasmon polariton (SPP) mode is highly sensitive to the permittivity
of the adjacent dielectric material (Sec. 8.2B), which can be altered
by the control light via the optical Kerr effect. The signal light is
coupled to the SPP mode, and the switch is in the OFF state when
its frequency matches that of the of the SPP mode. Otherwise, the
signal light propagates uninterrupted (ON state). Plasmonic all-
optical switches are suitable for integratedphotonic
implementations and offer subpicosecond response times that are
limited by the relaxation time of the plasmonic resonance. However,
typical propagation distances of propagating SPP waveguides are
rather short because of metallic losses.



Switching Time

The switching time of an all-optical switch is limited by the duration
of the control optical pulse and the response time of the nonlinear
process responsible for the switching action. Since ultrashort optical
pulses of a few femtoseconds duration (a few optical cycles) are
readily available, the much slower nonlinear interaction process
sets the ultimate limit on the switching time, which is highly
dependent on the switching material.

Semiconductors such as GaAs, InSb, InAs, and CdS exhibit strong
optical nonlinearities as a result of excitonic effects at wavelengths
near the band edges. Switch-on times are typically on the order of a
few picoseconds while switch-off times, dominated by relatively
slow carrier recombination, typically extend to hundred
picoseconds. Semiconductor optical amplifier (SOA) switches based
on XGM and XPM are similarly limited by the intrinsically slow
recovery time of the amplifier gain, exhibiting switch-off times in
the 10–100-ps range. In contrast, switches based on XPM and FWM
in highly nonlinear optical fibers have far shorter response times,
typically < 100 fs. Switches that make use of fiber soliton
technology also operate at sub-picosecond switching times.

The non-symmetric nature of the temporal response of the
nonlinear effect in semiconductors (short rise time at the onset of
the control optical pulse and a far longer decay time following
removal of the pulse) can be exploited in designing switches whose
switching times are limited by the short rise time rather than by the
long decay time, as described in Example 24.3-1.



EXAMPLE EXAMPLE 24.3-1. Ultrafast Nonlinear
Asymmetric Sagnac Interferometer Switch.

The response time of XPM in a third-order nonlinear-optical
material is characterized by a short rise time and a long decay
time. The switching time can be reduced by making use of an
interferometric configuration in which both branches of the
interferometer include the same nonlinear element but the
signal light pulse crosses it at different times. This is readily
implemented by a fiber Sagnac interferometer with a nonlinear
optical element placed at an asymmetric location within the fiber
loop, as illustrated in Fig. 24.3-26. When the input signal pulse
enters the loop from fiber 1, it is split by a symmetric coupler
into a clockwise pulse and a counterclockwise pulse of equal
amplitudes. If the two pulses encounter the same phase shift as
they make their round-trip paths around the loop, they
recombine and return back into fiber 1 and exit from output port
1. If they undergo phase shifts differing by π, on the other hand,
they recombine and emerge into fiber 2 and exit from output
port 2. These are the two states of a 1 × 2 switch.

The nonlinear element is controlled by a short control optical
pulse that changes its refractive index by Δn. This change builds
up with a short rise time ti and decays with a much longer
relaxation time tr. Since the nonlinear element is placed at an
offset location within the fiber loop, the two signal pulses cross
it at different times, τ1 and τ2. If both pulses cross the nonlinear
element when it is active, i.e., in the presence of the full change
Δn, they undergo the same phase shift and the recombined pulse
is received in fiber 1. This also occurs if both pulses cross the
nonlinear element when it is inactive. However, if one pulse
crosses when the nonlinear element is active and the other when
it is inactive, they undergo different phase shifts, and if the
phase difference is π, the pulse enters fiber 2, and emerges from
output port 2. The switching action is therefore governed by the



time difference τ1 − τ2, which is proportional to the distance of
the nonlinear element from the mid-point of the fiber loop. If τ1
− τ2 is slightly greater than the rise time ti, the switching action
can be controlled with precision limited by the rise time, instead
of by the full response time tr. Femtosecond switching times
have been achieved, so that the switch can be operated at
terahertz bandwidths. This switch has been used for time-
division demultiplexing and is known as the Terahertz Optical
Asymmetric Demultiplexer (TOAD).1

Figure 24.3-26 An all-optical-fiber nonlinear asymmetric
Sagnac interferometer used as a 1 × 2 switch. The switch is
controlled by an optical pulse that initiates a refractive index
change Δn in a nonlinear element placed at an offset location
within the interferometer loop. The input pulse coming from
fiber 1 is split into clockwise and counterclockwise pulses that
traverse the nonlinear element at different times. The switch
changes the connection from output port 1 to output port 2 if
one of these pulses arrives just before, and the other just after,
the onset of Δn. This results in a phase difference of π and a
diversion of the output pulse to output port 2.

Switching Energy

The switching energy E = TAIc is the product of the switching time
T, the switch area illuminated by the control light A , and the
intensity of the control light Ic . As indicated previously, the
minimum switching time is limited by the response time of the
nonlinear process underlying the switching action. Limits on the



switch area are governed by diffraction effects, which make it
difficult to couple optical power into and out of devices whose
dimensions are smaller than a wavelength of light. If T and A are
maintained at their lowest possible values, further reduction in the
switching energy E can be achieved by making use of a material
with stronger nonlinearity, i.e., a material that requires a lower
intensity Ic for operation at a high switching efficiency. Certain
device configurations, such as those making use of resonant-cavity-
enhanced nonlinear interactions, can enhance the effective
nonlinearity, but they have the concomitant property of prolonging
the response time. In the extreme limit of T = 10 fs and A = 1 μm2,
operation with a small switching energy E = 1 fJ requires a control-
beam intensity Ic = 1 kW/cm2, which is modest for conventional
nonlinear materials.

The switching energy of GaAs devices typically lies in the range 1–
10 pJ, but it is in principle possible to reduce it to the fJ regime.
InGaAsP optical amplifiers have been operated with switching
energies less than 1 fJ, but doing so comes at the expense of
switching times of hundreds of ps. Switches that make use of
solitons in optical fibers have also been implemented with
switching energies in the range of tens of pJ.

Quantum limit. The minimum switching energy is ultimately
limited by the photon nature of light and its inherent uncertainty,
which is particularly evident at low light energies. A switching
energy E = 20 aJ, for example, corresponds to an average photon
number , but the actual photon number n is
random. If the light arises from a laser or an LED, the photon
number n is Poisson distributed with mean  and width 
, as is understood from Sec. 13.2C. Thus, if the switch is designed to
be activated when a fixed threshold number of photons is received,
there is always a finite probability that the actual number of
photons falls below that threshold and the switch fails. This type of
switching error can be minimized by making use of greater
switching energies. A switching energy E = 1 fJ, for example,



corresponds to a larger mean photon number, , and a
relatively narrower uncertainty ≈ 70 photons. In that case, the
switching error is minimal and switch activation almost always
occurs when desired.

Heat dissipation. An important practical limit on all-optical
switching arises from the difficulty of thermally transferring the
heat dissipated by the switching process. This limitation is
particularly severe when the switching is carried out at the
maximum allowed switching rate. With a switching energy E, a
switching time T , and a maximum switching rate of 1/2T
operations per second, the power dissipated is E/2T ,a heat load that
can be substantial for large values of E and small values of T. The
need to remove this dissipated power can make the combination of
very high switching energies and very short switching times
difficult. Thermal effects are less restrictive when the switch is
operated below its maximum permitted repetition rate, of course,
since the energy associated with each switching operation then has
more time to be dissipated.

A key issue pertaining to the usefulness of photonic switches is the
ability to fabricate them in large arrays on a single chip. Again, heat
dissipation can be a limiting factor; for an array of N switches per
unit area, the total power density required to be removed is NE/2T .
Consider, for example, an array of 100 × 100 switching elements on
a 1-cm2 GaAs chip, so that N = 104 cm−2. If the switching energy E =
1pJ and the switching time T = 50 ps, then the power required to be
removed is NE/2T = 100 W/cm2, which is manageable with good
thermal engineering. Such a chip can carry out N/2T = 1014

switching operations per second, which is large in comparison with
electronic supercomputers.

D. Wavelength-Selective Switches
The switches described to this point are space-domain switches,
meaning that they establish transmission paths that route optical
beams among specific physical positions (the input and output ports



of the switch). Their wavelength-domain logical counterparts,
known as wavelength-selective switches (WSSs), are
illustrated by the following examples:

EXAMPLE 24.3-2. Reconfigurable Wavelength Selector.
The wavelength selector displayed in Fig. 24.3-27 is an example of
an optical device that makes use of a combination of passive
wavelength routers and space switches. This switch selects one or
more wavelengths from an incoming beam with N wavelengths. It
uses a demultiplexer (DMUX) to separate the N wavelength
components, followed by a set of N 1 × 1 switches to select the
desired wavelengths, and then a multiplexer (MUX) to reconstitute
the output beam, as shown in the figure.

Figure 24.3-27 A reconfigurable wavelength selector.

EXAMPLE 24.3-3. Reconfigurable Optical Add–Drop
Multiplexer (ROADM). The ROADM is a reconfigurable OADM
with the option to add, drop, or pass-through specific wavelength
channels, as illustrated in Fig. 24.3-28. It uses a demultiplexer
(DMUX) and a multiplexer (MUX), along with a 1 × 2 switch and a 2
× 1 switch for each add–drop channel. The ROADM is the core
element of wavelength-division multiplexing (WDM) networks
(Sec. 25.3C). It acts on each wavelength in an incoming optical fiber
by either allowing it to pass or routing it to a drop fiber, which
directs it to another client or to an outgoing fiber connected to
another node in the network. Data in the dropped wavelength may
be replaced by new data added from another fiber carrying data
from another client or another node. ROADMs deployed in early
fiber networks used free-beam diffraction gratings as
demultiplexers and multiplexers along with arrays of transmissive



liquid crystal shutters as switches. These configurations are
bidirectional, handling both left-to-right and right-to-left traffic.
ROADMs that are deployed in more modern and larger networks
use so-called multi-degree ROADMs (M-ROADMs), which provide
wavelength-based interconnection among three or more
intersecting fiber routes. The switching core requires an N × N WSS,
which is often implemented by a bank of 1×N WSSs, each using a
route-and-select design based on beam-steering elements such as
metal micromirrors or diffractive arrays of liquid-crystal cells.

Figure 24.3-28 A reconfigurable optical add–drop multiplexer
(ROADM).

EXAMPLE 24.3-4. Wavelength-Channel Interchange
(WCI). The WCI switch, also called the λ switch, routes data
between wavelength channels in the same optical beam. An N × N
WCI switch may be implemented by mapping the wavelength
channels to the space domain using a demultiplexer, converting the
wavelengths using a bank of N wavelength converters (WCs), and
recombining the channels into a single beam by use of an N × 1
coupler, as shown in Fig. 24.3-29. A wavelength converter changes
the wavelength of a beam without altering the data, i.e., it “copies”
the data from one wavelength channel to another.



Figure 24.3-29 Implementation of a wavelength-channel
interchange (WCI). Data bits are depicted as colored and white
squares. In this example, data in wavelength channel 2 (green) of
the input beam are routed to wavelength channel 3 (yellow) of the
output beam. This switch is implemented by use of a wavelength
demultiplexer to separate and direct the wavelength channels to a
bank of wavelength converters. A fan-in N × 1 coupler recombines
the switched channels into a single beam.

Multidimensional Space–Wavelength Switches

The previous examples of wavelength-domain switches involve a
single optical beam with multiple wavelength channels. Switching
may also be applied to multichannel multiple beams. Consider, for
example, the switching of N beams, each with one of N wavelength
channels. The switch redistributes the wavelength channels among
the beams. Two implementations are displayed in Fig. 24.3-30.

The first implementation uses a broadcast-and-select router to
redirect the wavelength channels to different ports. This is
accomplished by means of a star coupler that broadcasts the
contents of all N beams to every one of a set of wavelength filters,
each of which is tuned to a single wavelength channel [Fig. 24.3-
30(a)]. Finally, for further processing, the wavelengths of the
switched channels are converted to the original wavelengths
(without changing their data content), by use of a bank of
wavelength converters (WCs).

The second implementation makes use of two sets of WCs with an
arrayed waveguides (AWG) router placed between them, as
portrayed in Fig. 24.3-30(b). The first WC converts the wavelengths
to values that satisfy the AWG equation (24.2-7) for the appropriate
destinations. The AWG switch is more efficient than the broadcast-



andselect switch since the latter wastes considerable power at the
filters. However, the broadcast-and-select switch has the advantage
of being reconfigurable.

Figure 24.3-30 (a) Broadcast-and-select space–wavelength
switch. (b) Arrayed waveguides (AWG) space–wavelength switch.

Implementations of Wavelength Converters

A wavelength converter (WC) transfers data carried by an optical
beam at one wavelength to a different wavelength. The wavelengths
often represent the channels of a WDM optical fiber
communication system (Sec. 25.3C); their wavelength separation is
then not large since they lie in the same band. Wavelength
converters are implemented by making use of nonlinear optical
devices, nonparametric or parametric, similar to those described in
Sec. 24.3C for all-optical switching.

SOA WCs In nonparametric WCs, the intensity of the first beam,
which is modulated by the data, is used to alter an optical property
of a medium, such as the gain coefficient, absorption coefficient, or
refractive index of a semiconductor, in proportion to the intensity,
so that the data is “written” into the medium. A second beam of
different wavelength transmitted through the medium is then
modulated by the altered property, so that the data are “read” by,
and transferred to, the second beam.

An example is the process of cross gain modulation (XGM) in a
saturated semiconductor optical amplifier (SOA), for which the gain
is a decreasing function of the intensity, as depicted in Fig. 24.3-
31(a). When the original intensity-modulated beam is transmitted
through this device, the gain is modulated as an inverted function,



and so is the intensity of the read beam. Another example is the
process of cross-phase modulation (XPM) in an unsaturated SOA,
for which the refractive index is modulated by the write beam since
it is dependent on the carrier density. The read beam is therefore
phase modulated. An interferometer must be employed to convert
the phase modulation into intensity modulation, as depicted in Fig.
24.3-31(b).

Parametric WCs. In a WC based on a parametric interaction,
beams of different wavelengths are coupled via the nonlinear effect.
In a second-order nonlinear medium (Sec. 22.2), for example, a
wave of frequency ω1 may be downconverted to a frequency ω2 = ω3
− ω1 with the help of an auxiliary wave of frequency ω3. The
amplitude of the downconverted wave is related to that of the
original wave, so that the data embedded in the magnitude or in the
phase of the original wave are transferred to the downconverted
wave. The principal difficulty of using this three-wave mixing
process is that if the frequencies ω1 and ω2 are close to each other,
the frequency ω3 of the auxiliary wave must be approximately twice
as large. If it is desired to use only waves of approximately the same
frequencies, a cascade of two nonlinear parametric processes may
be implemented. The first process could be a second-harmonic
generation (SHG) process in which ω1 is converted to 2ω1, while the
second process is a threewave-mixing downconversion process in
which a wave of frequency ω2 = 2ω3 − ω1 is generated. All three
waves now have approximately the same frequency.

Alternatively, a four-wave mixing (FWM) process implemented via
a third-order nonlinearity, such as occurs in optical fibers, may be
implemented, as displayed in Fig. 24.3-31(c). As described in Sec.
22.3D, this process involves the mixing of four-waves of frequencies
satisfying the relation ω1 + ω2 = ω3 + ω4. In the partially-degenerate
case we have ω3 = ω4 = ω0, so that ω2 = 2ω0 − ω1.



Figure 24.3-31 Wavelength conversion. Data is transferred from a
beam of frequency ω1 to a beam of frequency ω2.(a) Cross-gain
modulation (XGM) in a saturated semiconductor optical amplifier
(SOA). (b) Cross-phase modulation (XPM) in an unsaturated SOA.
The phase modulation of the converted beam is transformed into
intensity modulation by use of a Mach–Zehnder interferometer
(MZI). (c) Partially-degenerate four-wave mixing (FWM) in a third-
order nonlinear medium, such as an optical fiber, using an auxiliary
wave of frequency ω0 =  (ω1 + ω2).

E. Time-Domain Switches
The time-domain switch routes signals between time slots, as
illustrated in Fig. 24.3-32. In digital communication systems, a
signal is divided into a sequence of time frames of equal duration,
each of which is divided into N time slots where the data reside. An
example of a time-domain switch is the time-slot interchange
(TSI) switch, which transfers the data resident in the ℓth time slot
of each frame to the mth time slot of the same frame. This is
analogous to the wavelength-channel interchange (WCI) switch
described in Example 24.3-4.



Figure 24.3-32 Correspondence between time-and space-domain
switches. (a) Space-domain switch. In the example shown, data in
line 2 are routed to line 3. (b) Time-domain switch implementing a
time-slot interchange (TSI). In the example shown, data in time slot
2 are routed to time-slot 3 in each frame.

Two-dimensional space–time switches employ a combination of
time-domain and space-domain switches. The switch connects a set
of input lines, each carrying a digital signal composed of a sequence
of time frames, to a similar set of output lines. Data in each time
slot of each input line are transferred to one, or several, time slots
in one or several output lines, in accordance with a prescribed rule.
An example is the time–space–time (TST) switch, which
consists of a cascade of a time-slot interchange (TSI), a space
switch, and another TSI, as shown in Fig. 24.3-33.

Figure 24.3-33 Time–space–time (TST) switch.

Time-Division Multiplexing and Demultiplexing

A simple example of a space–time switch is the time-division
demultiplexer. It has one input line and N output lines, where N is
the number of time slots in each frame. The switch routes data in
the ℓth time slot of the input line to the ℓth time slot of the ℓth
output line; ℓ = 1, 2,..., N. The process is repeated periodically in all
frames. This switch is therefore equivalent to a time-to-space
mapping.



In the time-division demultiplexer shown in Fig. 24.3-34, for
example, there are N = 4 time slots per frame. The slots contain data
that takes the form of pulses of various heights. The switch directs
the first pulse to the first output port, and the second pulse to the
second output port, and so on. Such a switch could be constructed
by use of a 1 × N space switch connecting the input port sequentially
to one of its four output ports.

The inverse of the time-division demultiplexer, called a time-
division multiplexer (TDM), interleaves pulses from N separate
ports to form a single sequence of pulses at one output port. This
inverse operation is readily visualized in Fig. 24.3-34 by exchanging
the roles of the input and output ports so that the pulses travel from
rightto-left, instead of from left-to-right. The 1 × N time-division
demultiplexer may be implemented by making use of N 1 × 1 ON–
OFF switches, as illustrated in Fig. 24.3-2(a), that are turned on and
off sequentially with control pulses from a clock.

Figure 24.3-34 Time-division demultiplexing with N = 4.

Optical Time-Division Multiplexing (OTDM)

An optical implementation of the TDM is illustrated in Fig. 24.3-
35(a). Copies of the input beam are transmitted through a set of N 1
× 1 photonic switches controlled by a set of optical pulses from a
clock delayed by multiples of the time delay T/N, where T is the
frame period. In an alternate implementation, portrayed in Fig.
24.3-35(b), copies of the input beam are successively delayed by
multiples of T/N so that the N input pulses are separated in space



but synchronized in time; the 1 × 1 switches are controlled by the
same clock signal. The system is similar to that used to detect the
temporal profile of a single optical pulse (Fig. 23.6-5). Optical delays
may be implemented by using lengths of optical fiber
(approximately 5 ns/m for silica-glass fibers). The 1 × 1 switches
may be implemented optically by using an all-optical nonlinear
interferometric switch such as the Terahertz Optical Asymmetric
Demultiplexer (TOAD) discussed in Example 24.3-1.

Figure 24.3-35 Two implementations of time-division
demultiplexing using star couplers, optical time delays, and 1 × 1
photonic switches. In this illustration, N = 4.

Optical Time-Slot Interchange (TSI)

The TSI switch that was shown in Fig. 24.3-32 is a time-domain
switch that interchanges data within the time slots of each frame.
Optical implementations may be effected by combining space and
space–time switches. The configuration schematized in Fig. 24.3-36,
for example, relies on the following sequence of switches: 1) a time-
division demultiplexer (DMUX) that routes the time slots to
separate lines in space (time-to-space mapping); 2) time delays to
synchronize the pulses in a single time slot of duration T/N; 3) an N
× N cross-connect space switch to implement the desired
interchanges; 4) a second set of time delays to restore the pulses to
their original time slots; and 5) a time-division multiplexer (MUX)



to bring these time slots to a single time line (space-to-time
mapping).

Figure 24.3-36 An implementation of optical time-slot
interchange (TSI).

Optical Programmable Time Delays and Buffers

Controllable time delays are essential components for time-domain
switching. Buffers are memory elements used to temporarily store
data or to compensate for differences in data flow rates. As is
understood from Figs. 24.3-35 and 24.3-36, such delays may be
introduced by making use of optical fibers of appropriate length
(silica-glass fibers introduce delays of approximately 5 ns/m).
Programmable delays may be implemented by allowing the optical
pulses to circulate in a fiber loop for a programmable number of
cycles. As illustrated in Fig. 24.3-37, this may be accomplished by
using a crossbar switch that permits the pulse to enter the loop at
the desired time and releases it after a specified number of cycles.



Figure 24.3-37 Programmable delay line using a fiber loop and a
crossbar switch. At time t = 0, the switch is in the cross state so that
the optical pulse is admitted into the loop. At time t = T , the pulse
returns back to the input port of the switch, which is then placed in
the bar state so that the pulse undergoes another round trip that
incurs an additional delay T. At time t = mT , the pulse is released by
reconfiguring the switch to the cross state.

F. Packet Switches
The switches considered so far in this section are relational switches
that establish mappings between input and output ports that
depend on the state of the switch, which is controlled by external
control signals that are not dependent on the data entering the
input ports. This type of switching is called circuit switching.

Another type of switch, called a packet switch, sets the switch
configuration in accordance with destination information contained
in the input data itself. As illustrated in Fig. 24.3-38, the data are
organized in packets, each with a header containing the address of
the packet's destination and a payload. The packet switch contains a
header recognition unit that reads the address and sends a control
signal that configures the switch appropriately.

Figure 24.3-38 Packets and packet switches.



A header-address recognition system may use a bank of correlators
that correlate the bit sequence representing the address of the
incoming packet with the bit sequences representing each of the
possible addresses in a lookup table, and identifies the address with
the highest correlation. For example, if the address of the incoming
packet is the bit sequence (a1, a2, ..., aN) and that of one of the
addresses in the table is (b1, b2, ..., bN), the correlation is the sum
a1b1 + a2b2 + ··· + aNbN. Since the bits of the incoming header arrive
sequentially in time, implementation of the correlation operation
requires the use of delays, multipliers, and an adder. One optical
implementation uses an optical fiber with N fiber Bragg grating
(FBG) reflectors placed at equal distances, as shown in Fig. 24.3-39.
The reflectors have reflectances (b1, b2, ..., bN) and serve as the
multipliers. The round-trip delays introduced by the fiber segments
bring the bits of the incoming header into synchrony so that they
add up to yield the correlation sum.

Figure 24.3-39 Optical correlator for recognizing the header
address.

A packet switch may also be implemented sequentially by using a
set of elementary 2 × 2 switches, each of which routes the incoming
packet to its upper or lower output port depending on one bit in the
header address. For example, if the bit is 1 or 0, the switch routes
the data to the upper or lower output port, respectively. In other
systems, the 2 × 2 switch sorts its two incoming packets and directs
the packet with the greater address number to the lower output port
and the other packet to the upper output port.

An example is provided by the 8 × 8 three-stage switching
configuration illustrated in Fig. 24.3-40. This device, called a
Banyan switch, employs twelve 2×2 self-routing switches. The



address of each packet is expressed as a binary number (x1, x2, x3).
Routing in the first stage is based on the most significant bit x1,
while routing in stages 2 and 3 is based on bits x2 and x3,
respectively. In each case, if the bit is 1, the packet is routed to the
lower output port; otherwise, it goes to the upper output port. The
switch is configured in such a way that after three stages, the packet
arrives at its desired destination. However, it is not difficult to show
that a conflict may arise when two packets are to be routed to the
same output port of a 2 × 2 switch. More complex configurations,
such as systems that make use of combinations of sorting and
routing units, have been devised to avoid such internal blocking.

Figure 24.3-40 Configuration of an 8 ×8 three-stage Banyan
switch. An incoming packet at input port number 2 with header
address number 6 is directed to its destination, output port number
6, after passage through three 2 × 2 self-routing switches. Since the
address is represented by the binary number 6 = (110), the packet is
directed to the (lower, lower, upper) output ports of these switches,
respectively, following the path indicated by the dashed lines, and
ultimately reaches output port 6 = (110).

Contention occurs when packets from different input ports are
simultaneously destined to the same output port. Methods for
contention resolution include routing the conflicting packet via a
different path or delaying it to a later time by using a buffer. In the
optical domain, the packet may also be converted to a different
wavelength and transmitted along a different wavelength channel.



Wavelength converters and optical buffers were described in Secs.
24.3D and 24.3E, respectively.

24.4 PHOTONIC LOGIC GATES
Highly sophisticated digital electronic systems, such as digital
computers, contain large numbers of interconnected basic units:
switches, logic gates, and memory elements. As illustrated in Fig.
24.4-1, all-optical logic gates may be implemented by making use of
the all-optical switches described in Sec. 24.3C. For example, the
AND logic operation may be implemented by making use of a 1 × 1
switch in which the input and control signals (A and B, respectively)
represent the two input bits of the gate, while the output signal (C)
represents the output bit [Fig. 24.4-1(a)]. The AND gate may also be
implemented by using two 1 × 1 switches connected in series, with
the control signals for the two switches serving as the input bits of
the gate [Fig. 24.4-1(b)]. Similarly, two 1 × 1 switches connected in
parallel implement the OR gate [Fig. 24.4-1(c)], while a cascade of a
1 × 2 switch and a 2 × 1 switch implements the XOR (exclusive OR)
gate [Fig. 24.4-1(d)].

Figure 24.4-1 Implementation of various logic gates using
switches. The input bits are denoted A and B and the output bit is
denoted C. The source bit, denoted S, is in the “1” state.

While digital systems operate using binary (ON–OFF) signals
(bits), the nonlinear optical interactions underlying the operation of
all-optical switches do not necessarily adhere to this format. Binary
signaling enables fan-out, input–output isolation, and the
cascadability of logic operations. What is required, in essence, is an
“optical transistor.” In this section, we introduce the basic operating



principles of bistable (flip-flop) optical systems and devices that
find use in certain digital optical systems.

A. Bistable Systems
A bistable system is a two-state system whose output can assume
only one of two distinct stable values, whatever input is applied.
Switching between these two values may be achieved by changing
the input level in particular ways. In the system illustrated in Fig.
24.4-2, for example, the output is seen to assume its low value for
small input levels and its high value for large input levels. An input
signal that starts at a low level and increases causes the output to
suddenly jump from its low to its high value when the input exceeds
a certain critical level, the threshold ϑ2. If this large input signal is
subsequently decreased, the output will jump back to its low value
when the input crosses a different threshold ϑ1(<ϑ2), so that the
input–output relation forms a hysteresis loop.

Figure 24.4-2 Input–output hysteresis relation for a bistable
system.

There is an intermediate range of input levels, between ϑ1 and ϑ2, for
which either low or high output values are possible, depending on
the history of the input. Within this range, the system acts like a
seesaw (Fig. 24.4-3). If the output is low, a large positive input spike
will flip it to high. When in the high state, a large negative input
spike will flip it to low. The system exhibits a flip-flop behavior; its
state depends upon whether the last spike was positive or negative,
i.e., on its history. Bistable devices can serve as switches, logic gates,
and memory elements.



Figure 24.4-3 The flip-flop behavior of a bistable system. At time 1
the output is low. A positive input pulse at time 2 flips the output
from low to high. The output remains at its high value until a
negative pulse at time 3 flips it back to its low value. The system
acts as a latching switch or a memory element.

The bistable device parameters may be adjusted so that the two
critical values (the thresholds ϑ1 and ϑ2) coalesce into a single value
ϑ. The result is then a single-threshold steep -shaped nonlinear
input–output relation, as shown in Fig. 24.4-4.

Figure 24.4-4 The bistable device as: (a) An amplifier; (b) A
thresholding device, pulse shaper, or limiter.

When biased appropriately, the device can exhibit large differential
gain and can be used as an amplifier [Fig. 24.4-4(a)], much like a
transistor. It can also be used as a thresholding element for which
the output switches between two values as the input exceeds a
threshold; or it can be used as a pulse shaper or limiter [Fig. 24.4-
4(b)]. Stable threshold and stable bias are required to carry out
these operations.



Bistable devices may also be used as logic elements. The binary data
are represented by pulses that are added and their sum is used as
the input. With an appropriate choice of pulse heights in relation to
the threshold (Fig. 24.4-5), the device can be made to switch to its
high value only when both pulses are present, for example, in which
case it behaves as an AND gate.

Figure 24.4-5 The bistable device as an AND logic gate. The input
Ii is I1 + I2, where I1 and I2 are pulses representing the binary data.
The output Io is high if and only if both inputs are present.

B. Principles of Optical Bistability
Two features are required for the operation of a bistable device:
nonlinearity and feedback. An electronic bistable (flip-flop) circuit
is made by connecting the output of each of two transistors to the
input of the other, as may be understood by consulting a textbook
on digital electronics. An optical bistable system is realized by
making use of a nonlinear optical element whose output beam is
used in a feedback configuration to control the transmission of light
through the element itself.

Consider the generic optical system illustrated in Fig. 24.4-6. The
output intensity (or power) Io is made to control the transmittance
𝒯 of the system by means of feedback, so that 𝒯 is some nonlinear
function 𝒯 = 𝒯(Io). Since Io = 𝒯Ii, we have



(24.4-1)
Input–Output Relation 

for a Bistable System

Figure 24.4-6 An optical system whose transmittance 𝒯 is a
function of its output Io.

If 𝒯(Io) is a nonmonotonic function of Io, such as the bell-shaped
function used for purposes of illustration in Fig. 24.4-7(a), then Ii =
Io/𝒯(Io) will also be a non-monotonic function of Io, as shown in
Fig. 24.4-7(b). Consequently, Io must be a multivalued function of Ii,
indicating that some values of Ii will have more than one
corresponding value of Io, as portrayed in Fig. 24.4-7(c). The system
therefore exhibits bistable behavior, as schematized earlier in Fig.
24.4-2.



Figure 24.4-7 (a) Transmittance 𝒯(Io) versus output Io. This
nonmonotonic function is chosen for illustrative purposes. (b)
Input Ii = Io/𝒯(Io) versus output Io. For Io < I1 and Io > I2, 𝒯(Io) = 𝒯1
and Ii = Io/𝒯1, which is a linear relation of slope 1/𝒯1. At the
particular intermediate value of Io where 𝒯 has its maximum value
𝒯2 (point 2), Ii dips below the line Ii = Io/𝒯1 and touches the lower
line Ii = Io/𝒯2.(c) Output Io versus input Ii. This curve is obtained by
replotting the curve in (b) with the axes exchanged. This is achieved
by rotating the diagram in (b) by 90° in a counterclockwise direction
and forming a mirror image about the vertical axis.

The plot of Io vs. Ii displayed in Fig. 24.4-7(c) is shown in more
detail in Fig. 24.4-8. For small inputs (Ii < ϑ1) or large inputs (Ii >
ϑ2), each input level has only a single corresponding output value Io.
Increasing the input level from a small value results in the output
jumping to its high value when the threshold reaches ϑ2. When the
input is subsequently decreased, the output follows its upper branch
until it reaches ϑ1, at which point it jumps to its low value.



Figure 24.4-8 Expanded view of Fig. 24.4-7(c). The dotted curve
that contains point P represents an unstable state, as explained in
the text.

In the intermediate range ϑ1 < Ii < ϑ2, however, each input level
corresponds to three possible output values. The upper and lower
values are stable, but the intermediate output value (shown as the
dotted curve) is unstable since any slight perturbation added to the
input will force the output to move to either the upper or the lower
branch. This may be understood by considering point P on the
dotted curve joining points 1 and 2. A small increase in the output Io
will cause a sharp increase in the transmittance 𝒯(Io) since the
slope of 𝒯(Io) is positive and large, as is evident from Fig. 24.4-7(a).
This increase in transmittance results in a further increase in Io,
which serves to increase 𝒯(Io) yet further. The net result is a
transition to the upper stable state at point 2. Similarly, a small
decrease in Io at point P will cause a transition to the lower stable
state at point 1.

The nonlinear bell-shaped function 𝒯(Io) displayed in Fig. 24.4-7(a)
was constructed for purposes of illustration. Many other nonlinear
transmittance functions, coupled with systems patterned on Fig.
24.4-6, lead to bistability, and sometimes to multistability (where
more than two stable values of the output exist for a single value of
the input).
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EXERCISE 24.4-1

Nonlinear Transmittance Functions That Exhibit
Bistability. Plot the relation between Io and Ii = Io/𝒯(Io) for
each of the following functions:

a. 𝒯(x) = 1/[(x − 1)2 + a2].

b. 𝒯(x) = 1/[1 + a2 sin2(x + θ)].

c. 𝒯(x) =  +  cos(x + θ).

d. 𝒯(x) = sinc2 .

e. 𝒯(x) = (x + 1)2/(x + a)2.

Select appropriate values for the constants a and θ to generate a
bistable relation. Some of these functions represent bistable
systems that will be discussed subsequently.

Embedded bistable systems. The foregoing analysis dealt with a
system whose transfer function 𝒯(Io) is a function of its own
output. In practice, however, a nonlinear element embedded within
an optical system is illuminated not only by a portion of the output
but also by a portion of the input, as depicted in Fig. 24.4-9. In this
configuration, the open-loop system is described by a transfer
function 𝒯(I) that depends on the light intensity I illuminating the
nonlinear element, which is the sum of a component proportional
to It and another component proportional to Ii, namely I = 𝒯iIi +
ℜoIt. The transfer function 𝒯(I) relates the transmitted intensity to
the input intensity via It = 𝒯(I)Ii. The output intensity of the closed-
loop system is Io = 𝒯oIt, where 𝒯o is a transmittance factor.
Combining these relations leads to the following two equations:



The first equation is a nonlinear relation analogous to (24.4-1). It
can be similarly inverted to obtain I as a function of Ii and exhibits
bistability if 𝒯(I) is a nonmonotonic function. The second equation
is a linear relation that gives the final output Io in terms of I and Ii.

The details of the function 𝒯(I), along with the constants 𝒯i, 𝒯o, and
ℜo, are determined by the embedded bistable system under study,
as will be understood from the devices considered in Sec. 24.4C.

Figure 24.4-9 An optical system with an embedded nonlinear
element NL and a feedback loop that directs a portion of the output
power to NL. A portion of the input power also illuminates NL.

Intrinsic bistable systems. The feedback required for bistability
can also be provided entirely internally. The system shown in Fig.
24.4-10, for example, consists of a resonator containing an optical
nonlinear medium whose transmittance 𝒯(I) is controlled solely by
the internal light intensity I within the resonator, rather than by the
output light intensity Io. Since Io = 𝒯oI, where 𝒯o is the
transmittance of the resonator output mirror, the action of the
internal intensity I is the same as that of the external intensity Io,
except for a constant factor. Examples of intrinsic bistable optical
systems are provided in Sec. 24.4C.

Figure 24.4-10 Intrinsic bistable device. The internal light
intensity I controls the nonlinear medium and therefore the overall
transmittance of the system 𝒯(I).



C. Bistable Optical Devices
Many schemes are available for implementing the foregoing
bistability principles in optical configurations. The principal types of
nonlinear optical elements that can serve in this capacity include:

Dispersive nonlinear elements, for which the refractive
index n is a function of the optical intensity. A medium
exhibiting the optical Kerr effect, for example, has a refractive
index n(I)= n0 + n2I, where I is the intensity and n0 and n2 are
constants, as discussed in Sec. 22.3A.

Dissipative nonlinear elements, for which the absorption
coefficient α is a function of the optical intensity. The saturable
absorber discussed in Sec. 15.4A is an example in which the
absorption coefficient α(I)= α0/(1 + I/Is) is a nonlinear
function of I, where α0 is the small-signal absorption
coefficient and Is is the saturation intensity.

Amplifying nonlinear elements, in which the gain
coefficient γ is a function of the optical intensity. An example is
a medium with saturable gain γ(I)= γ0/(1 + I/Is), as considered
in Sec. 15.4A.

Nonlinear elements with combined dispersion and
dissipation/gain. Intensity-dependent attenuation or
amplification is often combined with an intensity-dependent
refractive index. In a semiconductor optical amplifier (SOA), for
example, increasing the optical intensity depletes the carrier
density, which reduces the gain coefficient and also alters the
refractive index.

Examples of optical configurations that include a nonlinear element
and feedback include the following:

Optical Kerr Medium in a Mach–Zehnder interferometer.
As discussed in Sec. 2.5A, the transmittance of a Mach–Zehnder
interferometer (MZI) is a function of the phase difference φ
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between its branches: . If an optical Kerr medium of
refractive index n(I)= n0 + n2I is placed in one branch, as illustrated
in Fig. 24.4-11, then φ = kodn + φ0 = kodn2I + φ1, where d is the
length of the nonlinear medium; ko = 2π/λo where λo is the free-
space wavelength; and φ0 and φ1 are constants. The transmittance
of the system then depends on intensity as

As Fig. 24.4-11 illustrates, this function is a periodic repetition of a
bell-shaped function of intensity, such as that used earlier to
demonstrate bistability [Fig. 24.4-7(a)].

Figure 24.4-11 A Mach–Zehnder interferometer in which one
branch contains a nonlinear medium of refractive index n(I)
controlled by the reflected intensity I via the optical Kerr effect.

Optical Kerr medium in a Fabry–Perot resonator. The
transmittance of a Fabry– Perot resonator is expressible as 𝒯 =
𝒯max[1 + (2ℱ/π)2 sin2(φ/2)]−1, where φ is the round-trip phase shift
and 𝒯max and ℱ are constants [see (2.5-18)]. For an optical Kerr
medium of length d placed between the mirrors [Fig. 24.4-12(a)],
we again have φ = kodn + φ0 = kodn2I + φ1, where φ0 and φ1 are
constants. The transmittance of the system then depends on the
internal intensity I as

As illustrated in Fig. 24.4-12(b), this function consists of a periodic
sequence of sharply peaked, bell-shaped functions, and the system
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is bistable.

Figure 24.4-12 (a) A Fabry–Perot resonator containing a medium
of nonlinear refractive index n(I) that is controlled by the internal
light intensity I.(b) Intensity-dependent transmittance 𝒯(I). (c)
Bistable Fabry–Perot etalon made of a thin layer of semiconductor
material with parallel reflecting surfaces.

This configuration has been used to demonstrate optical bistability
in a number of materials (e.g., sodium vapor, carbon disulfide, and
nitrobenzene). Since the nonlinear refractive index n2 is small for
these materials, however, the effect is hard to observe.
Semiconductors such as GaAs are more suitable since they exhibit
far stronger optical nonlinearities; in fact, a bistable device may be
fabricated from a thin layer of semiconductor material whose
cleaved faces serve as mirrors, as portrayed in Fig. 24.4-12(c).
Multiquantum-well semiconductor structures (Secs. 17.1G and
18.2D) also exhibit bistability, as do organic materials, graphene,
nonlinear photonic crystals, and surface plasmon polaritons.

Saturable absorber in a Fabry–Perot resonator. A saturable
absorber placed inside a Fabry–Perot resonator of length d that is
tuned for peak transmission (Fig. 24.4-13) has transmittance

where  ℜ1 and ℜ2 are the mirror reflectances; and 𝒯1 is a
constant (see Secs. 2.5B and 11.1A).
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Figure 24.4-13 A bistable device consisting of a saturable absorber
in a Fabry–Perot resonator.

If the medium is optically thin so that αd ≪ 1, a Taylor-series
expansion provides e−αd ≈ 1 − αd, whereupon

Because α is a nonlinear function of I, 𝒯 is also a nonlinear function
of I. Using the relations I = Io/𝒯o and α(I)= α0/(1 + I/Is), together
with (24.4-6), we arrive at

where 𝒯2 = 𝒯1/(1 − ℜ)2 , a = α0dℜ/(1 − ℜ), and Is1 = Is𝒯0. For
certain values of a, the system is bistable [see example (e) in
Exercise 24.4-1].

Nonlinear amplifier in a Fabry–Perot resonator. Suppose
now that the saturable absorber considered above is replaced by an
amplifying medium with saturable gain. The system is then nothing
but an optical amplifier with feedback, i.e., a laser. If ℜ exp(γ0d) < 1,
the laser is below threshold. But if ℜ exp(γ0d) > 1, the system
becomes unstable and laser oscillation ensues. Though the topic of
laser bistability was not discussed in Chapters 16 and 18, lasers do
indeed exhibit bistable behavior under certain circumstances. In
some sense, the dispersive bistable optical system is the nonlinear-
refractive-index analog of the nonlinear-gain laser.

SOA-MZI bistable device. A bistable system that makes use of a
pair of identical semiconductor optical amplifiers (SOA 1 and SOA



2) in a Mach–Zehnder interferometer (MZI) configuration is
illustrated in Fig. 24.4-14. The SOAs are placed in the two branches
of the MZI and the output of the MZI is fed back to SOA 1 via a
feedback loop implemented by optical fibers and couplers. The
saturated gain of the SOA is a decreasing function of the optical
power and the phase is also power-dependent, so gain and
dispersive effects both come into play.

Figure 24.4-14 A bistable device that makes use of two
semiconductor optical amplifiers, SOA 1 and SOA 2, in the two
branches of a Mach–Zehnder interferometer (MZI). The output of
the MZI is fed back into SOA 1. The “set” and “reset” short pulses
initiate transitions to states of high and low output power Io,
respectively. The input Ii has constant power and serves as a bias.

With light of constant power Ii presented to the input, the MZI is
balanced and the optical power It at its output is zero, as is the
output Io of the overall system. This stable condition is the lower
state of the bistable system. Another stable state is that for which
the optical power in SOA 1 is high so that its gain is depleted and its
phase differs from that of SOA 2. The MZI is then unbalanced and
the output Io is high.

Flipping between the two states of this system is accomplished by
making use of external triggers. When the system is in the low state,
it may be switched to the high state by injecting a short pulse Iset
into SOA 1 through the feedback loop. This reduces the gain of SOA
1 and alters the phase shift introduced by this laser. As a



consequence, the MZI becomes unbalanced and its transmittance
increases. A portion of the input optical power Ii now reaches the
feedback loop and is coupled back into SOA 1, keeping it in the
depleted state even after the termination of the set pulse. An
unbalanced MZI and a stable state of high output power results. The
system may be flipped back to its lower state by injecting a pulse
Ireset directly into SOA 2, thereby reducing its gain. Power also
reaches SOA 1 via the feedback loop. A new balanced MZI condition
is attained for which the output power Io = 0, and the system
remains in the low state.

Coupled microring-laser bistable device. A microring laser
(Sec. 18.5B) has two independent (uncoupled) lasing modes, one
that propagates clockwise (CW) and the other that propagates
counterclockwise (CCW). Two such lasers with close resonant
frequencies may be connected via a waveguide such that light from
the CW mode of laser A is coupled to the CW mode of laser B, or
light from the CCW mode of laser B is coupled to the CCW of laser
A (Fig. 24.4-15). This type of mutual feedback gives rise to a bistable
system with two stable “master–slave” states in which laser A is the
master and laser B is the slave, or vice-versa. The first state emerges
if more light from the CW mode of laser A is coupled into the laser
B ring. As it undergoes resonant amplification, it injection-locks the
CW mode of laser B whereupon self-oscillation in laser B is
extinguished and so is its CCW mode. The CW mode then acquires
greater power since its pump energy is supporting only one mode
[Fig. 24.4-15(a)]. The second state is established when the two
lasers reverse roles; the CCW mode of laser A is then injection-
locked and acquires greater power, while its CW mode is suppressed
[Fig. 24.4-15(b)].

The system is set into the first stable state (higher power in the
laser B CW mode) by injecting a “set” optical pulse that favors the
CW mode of laser B [Fig. 24.4-15(a)]. The system may then be
flipped into the second stable state (higher power in the laser A
CCW mode) by injecting a “reset” optical pulse that strengthens the



CCW mode of laser A [Fig. 24.4-15(b)]. A coupled microring-laser
flip-flop implemented in the form of an InP/InGaAsP photonic
integrated circuit (PIC) exhibits a switching time of 20 ps and a
switching energy of 5.5 fJ.2

Figure 24.4-15 A bistable device using two microring lasers
connected via a waveguide. The clockwise (CW) modes of the two
lasers are coupled, and so too are the counter-clockwise (CCW)
modes. (a) The “set” optical pulse initiates a state for which laser A
acts as a master that injection-locks laser B and suppresses its CCW
mode. (b) The “reset” optical pulse initiates a state for which laser B
is a master that injection-locks laser A and suppresses its CW mode.

Hybrid Bistable Optical Devices

All of the bistable optical systems discussed thus far are all-optical
systems. Hybrid electrical/optical bistable systems that involve
electric fields have also been devised. In one example, a Pockels cell
is placed inside a Fabry–Perot resonator; the output light is detected
using a photodetector, and a voltage proportional to the detected
optical intensity is applied to the cell so that its refractive index
varies in proportion to the output intensity. The optical
transmittance of the resonator is consequently a nonlinear function
of the output optical intensity, and since feedback is provided by the
resonator, the prerequisites for bistable behavior are present. A
related example makes use of a Pockels-cell wave retarder placed
between crossed polarizers. Again the output light intensity is
detected and a proportional voltage is applied to the cell. The
transmittance of the modulator is then a nonmonotonic function of



the transmitted intensity, and the system is bistable. These systems
are readily implemented in integrated-photonic technology.

Spatial light modulators (SLMs) may be used to construct arrays of
bistable elements. In an optically addressed liquid-crystal SLM (Sec.
21.3B), for example, the reflectance of each element is a nonlinear
function of the intensity of the light illuminating its write side. By
using feedback, the write intensity is proportional to the intensity of
the beam reflected from the element itself, so that bistable behavior
is exhibited. Different points on the surface of the device can be
addressed separately so that the SLM serves as an array of bistable
optical elements.

The self-electro-optic-effect device (SEED) is an electro-optic
semiconductor device that exhibits bistability. The SEED consists of
a p–i–n photodiode in which the intrinsic region comprises a
semiconductor multiquantum-well (MQW) heterostructure. The
diode is reverse-biased and a large electric field is created in the
MQW. By virtue of the quantum-confined Stark effect (QCSE) (Sec.
21.5), the optical absorption coefficient is a nonlinear function of
the voltage across the MQW. Consequently, the optical
transmittance is a nonlinear function of that voltage. Bistable
behavior is exhibited in the SEED as a result of the feedback
mechanism introduced by the photodiode electrical circuit, which
renders the voltage dependent on the incident optical power. This
occurs since the absorbed light creates a proportional photocurrent
that flows into the external circuit, resulting in a voltage drop. SEED
devices can be fabricated in the form of arrays that operate at
moderately high speeds and at low powers.
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PROBLEMS
24.1-3 Interconnection Hologram for a Conformal Map.

Design a hologram to realize the geometric transformation
defined by



This is a Cartesian-to-polar transformation followed by a
logarithmic transformation of the p polar coordinate 
Determine an expression for the required phase function φ(x,
y) of the hologram.

24.2-1 Cascaded MZI MUX/DMUX. Three Mach–Zehnder
interferometers (MZIs) are cascaded as shown in Fig. 24.2-6 to
multiplex or demultiplex four wavelength channels with wave
length separation Δλ = 0.2 nm and central wavelength 1550
nm. Determine the pathlength differences Δd required for each
interferometer if the refractive index is n = 2.3.

24.2-2 AWG DMUX. An arrayed waveguides (AWG) router (Fig.
24.2-8) is used to demultiplex four wavelength channels with
wavelength separation Δλ = 0.2 nm and central wavelength
1550 nm. Determine the pathlength difference parameter Δdb
that must be introduced by the star coupler if its refractive
index is n = 2.3.

24.2-3 AWG as a 2×2 Wavelength Router. An AWG device is
configured as a 2 × 2 wavelength router. Input port 1 has two
wavelength channels, λ1 and λ2, and input port 2 has two
wavelength channels, λ3 and λ4. Design a router that transposes
the input wavelengths among the two output ports, i.e., directs
the λ1 and λ3 channels to output port 1, and the λ2 and λ4
channels to output port 2. Write the routing conditions in
terms of the four optical pathlength differences Δd11, Δd12,
Δd21, and Δd22 of the multipath interferometers connecting
each of the input ports to each of the output ports.

24.3-1 Power Loss and Crosstalk. A 4 × 4 switch may be
implemented by use of five 2 × 2 switches. If each of these
switches introduces a power loss of 0.5 dB and a crosstalk of
−30 dB, determine the worst-case power loss and crosstalk for
the 4 × 4 switch.

24.3-2 MZI Crossbar Switch. An electro-optic Mach–Zehnder
interferometer is used as a crossbar switch. The application of a



voltage V = Vπ to the electro-optic material in one arm of the
interferometer introduces a phase shift of π. If the switch is set
in the bar state when V = 0, what must the applied voltage V be
to change the switch to the cross state? Determine the
crosstalk (in dB) caused by a 1% error in that applied voltage.

24.3-3 TSI Switch. As shown in Fig. 24.3-36, the time-slot
interchange (TSI) switch may be implemented by a five step
process: time-to-space routing, time delays, space switching,
time delays, and space-to-time routing. Construct another
implementation using the programmable delay lines shown in
Fig. 24.3-37.

24.4-2 Photonic Logic Gate. Figure 24.4-5 illustrates how a
nonlinear thresholding optical device may be used to make an
AND gate. Show how a similar system may be used to make
NAND, OR, and NOR gates. Is it possible to make an XOR
(exclusive OR) gate? Can the same system be used to obtain
the OR of N binary inputs?

24.4-3 Bistable Interferometer. A crystal exhibiting the optical
Kerr effect is placed in one of the arms of a Mach–Zehnder
interferometer. The transmitted intensity Io is fed back and
illuminates the crystal. Show that the intensity transmittance
of the system is Io/Ii = , where Iπ and φ
are constants. Assuming that φ = 0, sketch Io versus Ii and
derive an expression for the maximum differential gain dIo/dIi.

Notes
1 See J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, A Terahertz
Optical Asymmetric Demultiplexer (TOAD), IEEE Photonics
Technology Letters, vol. 5, pp. 787–790, 1993.
2 See M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H.
den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M.



K. Smit, A Fast Low-Power Optical Memory Based on Coupled
Micro-Ring Lasers, Nature, vol. 432, pp. 206–209, 2004.
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Sir Charles Kuen Kao (1933–2018) received the Nobel Prize in
2009 for recognizing that high-purity glass, such as fused silica,
could make optical fiber communications a reality.

Ivan Paul Kaminow (1930–2013) made pioneering
contributions to photonic components, systems, and networks that
are widely used in optical fiber communications today.

Philip St John Russell (born 1953) invented the
photoniccrystal fiber; various versions of such fibers have found use
in many applications, including optical fiber communications.



Until the mid-1970s, virtually all communication systems relied on
the transmission of information over electrical cables or made use
of radio-frequency or microwave electromagnetic radiation
propagating in free space. Light would seem to have been a more
natural choice for communications since, unlike electricity and
radio waves, it did not have to be discovered. However, low-loss
conduits for carrying light were not available and obstructions such
as clouds, fog, and haze hindered the passage of light through free
space.

The invention of the laser in the early 1960s stirred interest in using
light to communicate but early lasers were bulky, inefficient, and
difficult to modulate. On the brighter side, suitable photodetectors
were available. The advent of optical fiber communications has its
roots in two critical events in the annals of photonics: the invention
of compact and efficient semiconductor sources such as light-
emitting diodes (LEDs) and laser diodes (LDs), and the
development of low-loss optical fibers to carry light with minimal
attenuation. The technology of optical fiber communications offers
enormous transmission capacity, long link lengths between
amplifiers, immunity from electromagnetic interference,
information security, and relative ease of installation. Indeed,
billions of kilometers of optical fiber have been deployed around the
globe (the circumference of the earth is a mere 40 Mm).

The ever-increasing volume of data, voice, video, and telemetry
transmitted over both short-and long-haul links is driven by the
voracious human appetite for media content, social networking,
internet applications, and cloud services. Optical fiber
communications is the only technology that has been able to meet
the vast and exponentially increasing demands of broadband
communications, on scales that stretch from the individual dwelling
to the globe. All-fiber local, metropolitan, regional, long-haul, and
submarine networks interconnect organizations and cities, states
and countries, and continents. It is a remarkable, and continuing,
success story.



This Chapter

This chapter provides an introduction to optical fiber
communication systems and fiber-optic networks. A point-to-point
communication link comprises three basic elements, as illustrated
in Fig. 25.0-1: a compact light source modulated by an electrical
signal, a low-loss/low-dispersion optical fiber, and a photodetector
that converts the optical signal back into an electrical signal. These
optical components are discussed in detail in Chapters 18, 10, and
19, respectively. Optical amplifiers have also proved useful in many
fiber systems and these devices are discussed in Chapter 15.

Figure 25.0-1 Schematic of an optical fiber communication
system. An electrical signal is converted into an optical signal (E/O)
by modulating an optical source. The optical signal is transmitted
through the fiber to the receiver, where it is converted back into an
electrical signal via a photodetector and demodulator (O/E). For
long links, optical amplifiers (OAs) can be used to boost the
attenuated optical signal.

To make the chapter self-contained, Sec. 25.1 provides a brief
summary of the pertinent properties of fibers, sources, amplifiers,
and detectors, and also examines their role in the context of the
overall design, operation, and performance of an optical fiber
communication link. Other optical accessories such as splices,
connectors, couplers, switches, and multiplexing devices are also
essential for the successful operation of fiber links and networks;
the principles underlying the operation of many of these devices are
described in Chapter 24 and in other parts of this book.

Section 25.2 summarizes the evolution of optical fiber
communication systems from a historical perspective and considers
the basic design principles applicable to long-distance intensity-



modulated digital and analog links. The maximum fiber span
available for transmitting data, at a given rate and with a prescribed
performance level, is determined. Performance deteriorates if the
data rate exceeds the fiber bandwidth, or if the received power falls
below the receiver sensitivity in which case the signal cannot be
distinguished from noise.

This is followed, in Sec. 25.3, by an introduction to the various
forms of modulation and multiplexing used in optical fiber systems,
including field, intensity, and digital modulation. Multiplexing,
which enables more than one signal to be sent on a single
communication link, exists in many forms, including time-division,
code-division, wavelength-division, and space-division versions
thereof.

Digital coherent fiber communication systems, which are
introduced in Sec. 25.4, use light not as a source of controllable
power but rather as an electromagnetic wave of controllable
amplitude, frequency, and/or phase. Coherent optical fiber systems
are the natural extension to higher frequencies of conventional
radio and microwave communication systems. Modern high-speed
electronics, spectrally efficient coding, and digital signal processing
have permitted coherent systems to provide unparalleled
performance in receiver sensitivity and information-transmission
capacity.

Fiber-optic networks are communication links controlled by a set of
routers and switches that interconnect multiple users distributed
over some geographic area (e.g., a local-area network or LAN).
Section 25.5 provides an introduction to such networks, including
wavelength-division multiplexed (WDM) versions.

25.1 FIBER-OPTIC COMPONENTS
A. Optical Fibers



(25.1-1)

An optical fiber is a cylindrical dielectric waveguide made of low-
loss materials, usually fused silica glass (SiO2) of high chemical
purity. In its simplest configuration, called a step-index fiber, the
core of the waveguide has a constant refractive index that is slightly
higher than that of the cladding (the outer medium) so that light is
guided by total internal reflection along the direction of the fiber
axis.

The transmission of light through the fiber may be most simply
understood by examining the trajectories of the guided rays within
the core (Sec. 10.1). A more complete analysis, based on
electromagnetic theory, teaches that light travels in the fiber in the
form of guided waves (Sec. 10.2); each is a mode with a distinct
spatial distribution, polarization, propagation constant, group
velocity, and attenuation coefficient. There is, however, a
correspondence between each mode and a ray that bounces within
the core in a distinct trajectory.

The step-index fiber is characterized by its core radius a; the
refractive indices of its core and cladding, n1 and n2, respectively;
and the fractional refractive index difference Δ ≈ (n1 − n2)/n1, which
is usually very small (0.001 ≤ Δ ≤ 0.02). Light rays making angles
with the fiber axis that are smaller than the complement of the
critical angle,  = cos−1(n2/n1), are guided within the core by
multiple total internal reflections at the core–cladding boundary.
The angle  in the fiber corresponds to an acceptance angle θa =
sin−1 (NA) for rays incident from air into the fiber, where the
numerical aperture NA is given by

Numerical Aperture

Multimode Fibers (MMFs)
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Step-index fibers. The number of guided modes M supported by a
step-index multimode fiber is governed by the fiber V
parameter, V = 2π(a/λo) NA, where a/λo is the ratio of the core
radius to the free-space wavelength (Sec. 10.2A). A fiber with V ≫ 1
supports a large number of modes: M ≈ V2/2. Since the modes
travel with different group velocities, this results in pulse spreading,
which increases linearly with the fiber length, an effect known as
modal dispersion. When an impulse of light travels a distance L
in the fiber, it arrives as a sequence of pulses centered at the modal
delay times, as illustrated in Fig. 25.1-1(a). The composite pulse has
an approximate RMS width

Response Time (Step-Index MMF)

where c1 = co/n1. For example, if n1 = 1.46 and Δ=0.01, the time-
width increase per km is approximately Δ/2c1 ≈ 24 ns/km; for a
100-km-long fiber, an impulse spreads to a width of 2.4 μs. To
minimize στ, it is clearly desirable to use fibers with small values of
Δ.

Graded-index fibers. Modal dispersion can be reduced by making
use of graded-index (GRIN) fibers [Fig. 25.1-1(b)]. These fibers
are designed such that the refractive index of the core varies
gradually from a maximum value n1 on the fiber axis to a minimum
value n2 at the core–cladding boundary (Sec. 10.2C). Rays then
follow curved trajectories, with paths that are shorter than those in
the step-index fiber. The axial ray travels the shortest distance but
at the smallest phase velocity (largest refractive index), while the
oblique rays travel longer distances but at higher phase velocities
(smaller refractive indices), so that the delay times are
approximately equalized. If the fiber is optimally graded (using an
approximately parabolic profile), the pulse spreading rate (ps/km) is



proportional to that of the equivalent step-index fiber, with a
proportionality constant Δ/2. For Δ=0.01, for example, the pulse
spread of the GRIN fiber is theoretically reduced by a factor of 500
relative to that of the step-index fiber; in practice, however, the
improvement is generally more moderate because of the difficulty
of achieving the ideal index profile.

Figure 25.1-1 (a) Step-index multimode fiber (MMF): relatively
large core diameter; uniform refractive indices in core and cladding;
large pulse spreading arising from modal dispersion. (b) Graded-
index multimode fiber (MMF: GRIN): graded refractive index of
core; fewer modes; reduced pulse broadening arising from modal
dispersion. (c) Single-mode fiber (SMF): small core diameter; no
modal dispersion; pulse broadening arises only from material and
waveguide dispersion. (d) Multicore fiber (MCF): well-separated
cores serve as independent optical single-mode or multimode
waveguides; closer cores support coupled core propagation in the
form of supermodes.
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Short-haul multimode fiber-optic links. Silica multimode
fibers serve as efficient, low-cost, links for short-haul
communications. These systems often operate at 850 nm and are
used in local area networks (LANs), datacenters, and financial
centers. Various MMF grades at this wavelength are specified in
terms of their optical mode (OM) designators: OM1 and OM2
operate at bit rates of 1 Gb/s over distances of 300 m and 600 m,
respectively; OM3 and OM4 operate at 10 Gb/s at distances of 300
m and 550 m, respectively.

Single-Mode Fibers (SMFs)

When the core radius a and the numerical aperture NA of a step-
index fiber are sufficiently small so that V < 2.405, only a single
mode is allowed and the fiber is called a single-mode fiber [Fig.
25.1-1(c)]. One advantage of using a SMF is the elimination of pulse
spreading caused by modal dispersion (Sec. 10.2B). Pulse spreading
occurs, nevertheless, since the initial pulse has a finite spectral
linewidth and the group velocities (and therefore the delay times)
are wavelength dependent. This effect is known as chromatic
dispersion. There are two origins of chromatic dispersion:
material dispersion, which results from the dependence of the
refractive index on the wavelength, and waveguide dispersion,
which is a consequence of the dependence of the group velocity of
the mode on the ratio between the core radius and the wavelength.
Material dispersion is usually larger than waveguide dispersion.

A short optical pulse of spectral width σ⋋ spreads to a temporal
width

Response Time (SMF)

which is proportional to the propagation distance L (km) and to the
source linewidth σλ (nm). The dispersion coefficient 𝒟 (ps/km-nm)



involves a combination of material and waveguide dispersion. For
weakly guiding fibers (Δ ≪ 1), 𝒟 may be separated into a sum Dλ +
Dw for the material and waveguide contributions, respectively.

Consider, as an example, a SMF with a light source of spectral
linewidth σλ = 1 nm (such as that emitted from a typical single-
mode laser) and a fiber dispersion coefficient 𝒟 = 1 ps/km-nm (for a
silica fiber operating near λo = 1300 nm with minimal waveguide
dispersion). The response time calculated from (25.1-3) turns out to
be στ /L = 1 ps/km; for a 100-km-long fiber, an impulse spreads to a
width of 100 ps, far less than that for the multimode step-index
fiber considered above.

The geometries, refractive-index profiles, and pulse broadening for
step-index multimode, graded-index, and single-mode fibers are
schematically compared in Fig. 25.1-1. Multicore fibers (Sec.
10.2D), which have multiple cores embedded in the same cladding,
are included.

Material Attenuation and Dispersion

The wavelength dependence of the attenuation coefficient for fused
silica-glass fibers is illustrated in Fig. 25.1-2. As the wavelength
increases beyond the visible band, the attenuation coefficient α
decreases to about 0.3 dB/km at λo = 1300 nm and, aside from a
slight bump arising from residual OH-ion absorption near 1380 nm
(Sec. 10.3A), falls to a minimum of ≈ 0.16 dB/km at λo = 1550 nm.
The attenuation rises sharply as the wavelength rises beyond 1700
nm.



Figure 25.1-2 Wavelength dependence of the attenuation
coefficient α (dB/km) and the material dispersion coefficient Dλ
(ps/km-nm) for silica-glass fibers with suppressed OH absorption.
Three telecommunications bands are highlighted in dark shading:
the band centered at 870 nm, which was used in the earliest
systems, has α ≈ 1.5 dB/km and Dλ ≈−80 ps/km-nm; the O
(original) band centered at 1310 nm, for which α ≈ 0.3 dB/km and
the dispersion is minimal; and the C (conventional) band centered
at 1550 nm, for which the attenuation is minimal (α ≈ 0.16 dB/km)
and Dλ ≈ +17 ps/km-nm. The additional bands used in wavelength-
division multiplexing (WDM) systems include: E = Extended, S =
Short, L = Long, and U = Ultra-long.

The wavelength dependence of the dispersion coefficient Dλ for
fused silica glass fibers is also displayed in Fig. 25.1-2. It exhibits
negative values at short wavelengths that become positive at long
wavelengths, and it passes through zero at λo ≈ 1312 nm (Sec.
10.3B). In a medium with a negative dispersion coefficient, the
shorter-wavelength components of a pulse travel more slowly than



the longer-wavelength components, and therefore arrive later. This
condition is known as normal dispersion. The opposite situation,
called anomalous dispersion, occurs in a medium that exhibits a
positive dispersion coefficient (Sec. 5.7). Though the sign of the
dispersion coefficient does not affect the pulse-broadening rate, it
does play an important role in pulse propagation through media
comprising cascades of materials with dispersion coefficients of
different signs (Secs. 25.2D and 23.3).

Dispersion-Modified Fibers

As described in Sec. 10.3B, advanced designs of single-mode fibers
make use of graded-index cores with special refractive-index
profiles. These are selected such that the overall chromatic
dispersion coefficient 𝒟 attains desired values at particular
wavelengths, or assumes a wavelength dependence that is useful in
optical fiber communication systems, as in the following examples:

In dispersion-shifted fibers (DSFs), 𝒟 vanishes at λo = 1550
nm, where attenuation is minimum, rather than at 1312 nm
[see Fig. 10.3-6(a)]. In non-zero dispersion-shifted fibers
(NZ-DSFs), 𝒟 is significantly reduced in the 1500–1600 nm
window, but it is not zero. Indeed, a small amount of dispersion
can be useful in mitigating nonlinear distortions encountered
by narrow intense pulses. The wavelength dependence of 𝒟 in
DSF and NZ-DSF fibers is illustrated in Fig. 25.1-3.

In dispersion-flattened fibers (DFFs), 𝒟 vanishes at two
wavelengths and is reduced at intermediate wavelengths [see
Fig. 10.3-6(b)].

In dispersion-compensating fibers (DCFs), 𝒟 is
proportional to that of the conventional step-index fiber over an
extended wavelength band, but has the opposite sign. A short
length of fiber with a reversed large dispersion coefficient can
be used to compensate the pulse spreading introduced in long
lengths of conventional fiber [see Fig. 10.3-6(c)].



Figure 25.1-3 Wavelength dependence of the chromatic dispersion
coefficient 𝒟 for a conventional fiber and for examples of a
dispersion-shifted fiber (DSF) and a non-zero dispersion-shifted
fiber (NZ-DSF). The designations G.653 and G.655 are
specifications of the ITU (International Telecommunications
Union).

Other dispersion-modified fibers include holey fibers and
photonic-crystal fibers (PCFs), as considered in Sec. 10.4. In
these fibers, chromatic dispersion is dominated by waveguide
dispersion, which is strongly dependent on the geometry of the
holes. Dispersion flattening over broad wavelength ranges can be
achieved as can dispersion shifting to wavelengths shorter than the
zero-material-dispersion wavelength. A holey fiber may be designed
to operate as a single-mode waveguide over a broad range of
wavelengths (endlessly single-mode fibers). In fibers with a hollow
core and a cladding with holes arranged in a periodic structure, light
is guided in the core by reflection from the surrounding photonic-
crystal cladding. Since the light travels in the hollow core, it suffers
lower losses and reduced nonlinear effects.

Polarization Mode Dispersion

Another form of pulse spreading, known as polarization mode
dispersion (PMD), is caused by random anisotropic changes in
the fiber introduced by environmental and structural factors along
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its length. Random variations in the magnitude and orientation of
the birefringence introduce differential delays between the two
polarization modes and, as described in Sec. 10.3B, the RMS value of
the pulse broadening associated with PMD is proportional to the
square root of the fiber length,

Polarization Mode Dispersion

where DPMD is a dispersion parameter that typically ranges from 0.1
to 1 ps/ . Polarization mode dispersion becomes important at
high data rates when other forms of dispersion are compensated.

Nonlinear Optical Effects

Silica-glass fibers exhibit two kinds of optical nonlinear effects that
are germane to their use in optical fiber communication systems —
third-order nonlinearity, which underlies the optical Kerr effect; and
nonlinear inelastic scattering, which includes stimulated Raman
and Brillouin scattering. When high-power optical pulses are
transmitted through single-mode fibers with small cross-sectional
areas, the optical intensity may be sufficient for these nonlinear
interactions to cause deleterious effects that damage signal integrity
and limit transmission distance and speed:

Self-phase modulation (SPM) is a form of nonlinear dispersion
caused by the optical Kerr effect (a dependence of the refractive
index, and hence the phase velocity, on the optical intensity, as
described in Sec. 22.3A). Pulse spreading ensues since different
segments of the optical pulse travel at different velocities (Sec.
23.3B). The optical Kerr effect may also result in crosstalk
between counterpropagating waves in two-way communication
systems.

Cross-phase modulation (XPM) results from nonlinear wave
mixing wherein the phase velocity of a wave at one wavelength



depends on the intensities of waves at other wavelengths
traveling simultaneously in the same fiber (Sec. 22.3C). In
wavelength-division-multiplexed (WDM) systems, XPM can
cause substantial crosstalk among different channels.

Four-wave mixing (FWM) is also associated with third-order
nonlinear effects (Sec. 22.3D). It causes crosstalk between four
waves of different wavelengths traveling simultaneously in the
same fiber since the waves may exchange energy. This
introduces an intensity-dependent gain/loss into the channels
of a WDM system.

Stimulated Raman scattering (SRS) and stimulated Brillouin
scattering (SBS) are inelastic scattering processes that involve
interactions between light and molecular or acoustic vibrations
of the medium. In these processes, two optical waves of
different wavelengths interact via a molecular vibration mode
(SRS) or an acoustic vibration mode (SBS) (Secs. 14.5C, 15.3D,
and 16.3C). Such interactions also lead to undesirable crosstalk
among channels in a WDM system.

The deleterious effects of nonlinear phenomena in optical fiber
communications can be mitigated by increasing the fiber core
diameter, thereby reducing the energy density. This can sometimes
be achieved by making use of large-mode-area photoniccrystal
fibers (Sec. 10.4), although this sometimes requires the deployment
of new fiber. However, the nonlinear properties of fibers can also be
harnessed for useful applications in communication systems.
Nonlinear dispersion via SPM may be adjusted to compensate for
chromatic dispersion in the fiber, giving rise to optical solitons (Sec.
23.5B). Nonlinear interactions can also be used to provide useful
gain via FWM or SRS. Raman and Brillouin fiber amplifiers are
discussed in Secs. 15.3D and 25.1C.

B. Sources for Optical Transmitters



The requirements for the light source used in an optical fiber
communication system depend on the nature of the intended
application, e.g., long-haul communication or short-haul local-area
network.

A number of features are important in determining the source of
choice:

Wavelength. The wavelength of the source must be compatible
with the fiber medium, usually near the wavelength of its
minimum loss or minimum dispersion.

Power. The source power must be sufficiently high so that,
after transmission through the fiber and any associated
amplification, the received signal is detectable with the
required accuracy.

Speed. The source power must be able to be modulated at the
rate desired for imparting information.

Linewidth. The spectral linewidth must be sufficiently narrow
so that phase noise and the effect of fiber chromatic dispersion
is minimized.

Noise. Random fluctuations in the source power and frequency
are to be avoided, particularly for coherent communication
systems.

Other features. Other important features include ruggedness,
compactness, reliability, low cost, long lifetime, and
insensitivity to environmental variables such as temperature.

Laser-Diode and VCSEL Sources

Quantum-confined laser diodes (LDs) and vertical-cavity surface-
emitting lasers (VCSELs), discussed in Secs. 18.4 and 18.5A,
respectively, are both widely used as sources in optical fiber
communication systems. Long-haul and short-haul systems,
considered in turn, principally make use of LDs and VCSELs,
respectively.



Long-haul systems. Long-haul, high-bit-rate communication
systems generally rely on single-mode silica-glass fiber, billions of
kilometers of which span the globe. Operation at wavelengths in the
1.3–1.6 μm telecommunications band, the region of minimal
dispersion and attenuation (Fig. 25.1-2), is readily accommodated by
making use of laser diodes fabricated from InGaAsP, a direct-
bandgap, quaternary III–V semiconductor (Sec. 18.1C). As discussed
in Sec. 18.4A, multiquantum-well lasers, and their strained-layer
counterparts, are widely used in such systems because of their
superior properties. Edge-emitting distributed-feedback (DFB) laser
diodes are particularly good candidates. As illustrated in Fig. 25.1-4,
these devices make use of a corrugated-layer grating, placed
adjacent to the active region, that acts as a distributed reflector and
imposes single-frequency operation.

Figure 25.1-4 Buried-heterostructure MQW DFB laser used for
long-haul optical fiber communications in the 1.3–1.6-μm
telecommunications band. This single-frequency laser operates on a
single spatial and a single longitudinal mode. It generates an output
power Po > 1 W with a spectral width ΔνL of a few MHz.

These devices can operate on a single spatial and longitudinal mode
and deliver optical powers of watts to tens of watts, power-
conversion efficiencies of 70%, modulation rates of tens of Gb/s,
spectral widths of a few MHz, and life spans of years. The operation
of these low-noise lasers is robust in the presence of external
temperature variations and modulation since they are immune to
the deleterious effects of frequency chirping, the change in laser



frequency that results from refractive-index variations
accompanying fluctuations in the carrier concentration as the drive
current is modulated. Typical values of the threshold current and
differential responsivity are it < 10 mA and Rd ≈ 0.4 W/A,
respectively.

Short-haul systems. Short-haul communication systems also
often make use of silica fibers but rely on single-mode VCSELs that
operate in the 1.3–1.6-μm telecommunications band. These devices
consume little electrical power and can be modulated at bit rates
exceeding 10 Gb/s. Their low optical power can be mitigated by the
use of amplifiers. Some short-haul silica-fiber-based systems
operate at 850 nm using AlGaAs devices. Other, less expensive,
plastic-fiber systems operate at 650 nm and rely on AlInGaP
devices; 1-mm-diameter, polymer-core fibers can yield data rates of
1 Gb/s. Modules that include VCSELs with WDM functionality are
available for high-bandwidth communications (Sec. 25.1E).

Other Sources

A number of sources other than LDs and VCSELs are used, or are
potentially useful, as optical transmitters.

LEDs. Whether edge-emitting or surface-emitting (Sec. 18.1), LEDs
are generally inferior to LDs and VCSELs for use in optical fiber
systems. This stems from their lower power, lower conversion
efficiency, and lower modulation rate, along with their larger
spectral width and larger light-emission angle, which makes it
difficult to couple the light into an optical fiber. The principal
advantage of using an LED source is low cost. AlInGaP/InGaP
resonant-cavity LEDs operating at 650 nm (Fig. 18.1-20), and
InGaAsP LEDs operating at 1.3 μm (Fig. 18.1-19), have indeed been
used as sources in short-haul, modest-bit-rate systems. By-and-
large, however, LEDs have ceded their ground to VCSELs, which
have superior performance.

MQD lasers. Provided that they emit sufficiently high power,
multiquantum-dot lasers (Sec. 18.4C) have the distinct merits of



small size, low power consumption, low threshold, reduced
linewidth, enhanced modulation bandwidth, and resistance to
operating-temperature variations.

Fiber DFB lasers. Some fiber systems, such as those that make
use of WDM and coherent communications, respectively), require
sources whose wavelength can be tuned. Coherent communication
systems with advanced modulation formats, in particular, impose
stringent requirements on source stability, linewidth, phase noise,
and local-oscillator tunability. External-cavity wavelength-tunable
laser diodes (Sec. 18.3C) often serve as sources for such systems,
but more robust and less expensive alternatives, such as fiber
distributed-feedback lasers, are under development.

Multimode lasers. Though they provide greater power,
multimode laser diodes are often avoided since they suffer from
partition noise. When subjected to chromatic dispersion in the fiber
channel, the random distribution of laser power among the modes
leads to random intensity fluctuations and reshaping of the
transmitted pulses. Multi-mode VCSELs that operate in the 750–
850-nm wavelength region are nevertheless sometimes used for
short-haul optical fiber communications.

Mid-IR QCLs. Interest in mid-infrared optical fiber
communications stems from several relatively recent developments
in infrared photonics: 1) advances in the development of fluoride
and other soft-glass fibers (Sec. 10.5), which exhibit substantially
reduced Rayleigh scattering and absorption in comparison with
silica glass; 2) the operation of quantum cascade lasers (QCLs) in
the mid infrared (Sec. 18.4D); and 3) the evolution of mid-infrared
photodetectors that make use of materials such as HgCdTe and VOx
(Secs. 19.4 and 19.5).

C. Optical Amplifiers
Optical amplifiers are indispensable components in modern long-
haul optical fiber communication systems. They find use as power
amplifiers (also called postamplifiers), line amplifiers, and



preamplifiers. As illustrated in Fig. 25.1-5, power amplifiers
augment the optical power before light is launched into an optical
fiber, line amplifiers serve to boost the signal in the course of
transmission (Fig. 25.0-1), and preamplifiers provide gain before
photodetection.

Figure 25.1-5 Optical fiber amplifiers are used in three
configurations in optical fiber communication systems: (a) power
amplifiers; (b) line amplifiers; and (c) preamplifiers.

In this section, we consider in turn the three types of optical fiber
amplifiers (OFAs) that are typically used in optical fiber
communication systems:

Erbium-doped fiber amplifiers (EDFAs) (Sec. 15.3C).

Rare-earth-doped fiber amplifiers (REFAs) (Sec. 15.3C).

Raman fiber amplifiers (RFAs) (Sec. 15.3D).

Though semiconductor optical amplifiers (Sec. 18.2) are compact
and compatible with photonic integrated circuits, their
disadvantages outweigh their merits in the domain of optical fiber
communications. In particular, they are inferior to OFAs in terms of
fiber geometry, gain, interchannel interference, intersymbol
interference, noise, and temperature sensitivity. Similarly, optical
parametric amplifiers (Sec. 22.2C) offer substantial gain and
broadband tunability but are inferior to OFAs in that they require



phase matching and suffer from nonlinearities and sensitivity to
polarization.

Erbium-Doped Fiber Amplifiers (EDFAs)

Erbium-doped fiber amplifiers (EDFAs), which were the first OFAs
to be developed, are widely used in optical fiber communication
systems. As discussed in Sec. 15.3C, they offer high polarization-
independent gain, high output power, high efficiency, low insertion
loss, low noise, and a broad transition that offers gain in the vicinity
of λo = 1550 nm (corresponding to the wavelength of minimum loss
for silica optical fibers, as shown in Fig. 25.1-2). Quasi-three-level
pumping is achieved by longitudinally coupling light into the optical
fiber, in the forward or backward direction, or bidirectionally (Fig.
15.3-5). The pump light is usually generated by strained quantum-
well InGaAs laser diodes operating at λo = 980 nm, although in-
band pumping at 1480 nm is also used. Ytterbium is usually added
to erbium as a co-dopant to increase efficiency.

Gains in excess of 50 dB can be achieved in EDFAs with tens of mW
of pump power; signal output powers in excess of 100 W are readily
generated. Line-amplifier spacings are often ≈ 50 km. The available
bandwidth is Δλ ≈ 40 nm, corresponding to Δν ≈ 5.3 THz, which
accommodates the C-band. The L-band can be accommodated by
modifying the optimization parameters of the EDFAs. The large gain
and bandwidth offered by these amplifiers make them ideal for use
in wavelength-division multiplexing (WDM) systems (Sec. 25.3C).
The mixed homogeneous/inhomogeneous broadening leads to a
wavelength-dependent gain profile that can require gain
equalization. However, EDFAs are often operated in the saturated
regime and exhibit minimal crosstalk between different signals that
are simultaneously transmitted through them.

Rare-Earth-Doped Fiber Amplifiers (REFAs)

Rare-earth-doped fiber amplifiers (REFAs) other than Er3+ that are
useful for optical fiber communications include Tm3+ and Pr3+.



Good performance can be obtained from Tm3+-doped REFAs
operating in the S-and U-bands and from Pr3+-doped RE-FAs
operating in the O-band (Fig. 25.1-2). Though neither of these
REFAs offers the kind of gain and efficiency achievable with EDFAs,
mixing and matching Er3+ and Tm3+ fiber amplifiers can provide a
channel bandwidth of Δλ ≈ 150 nm, corresponding to Δν ≈ 18.8 THz
at 1550 nm.

Raman Fiber Amplifiers (RFAs)

Raman fiber amplifiers (RFAs) operate on the basis of stimulated
Raman scattering (Secs. 14.5C, 15.3D, and 16.3C). As discussed in
Sec. 15.3D, there are two standard RFA configurations: (1)
distributed RFAs where the signal and pump are both sent through
a transmission fiber that serves as the gain medium; and (2)
lumped RFAs in which a short length of highly nonlinear fiber
serves as the amplifier and provides gain. As with EDFAs, pumping
can be in the forward or backward direction, or bidirectional.

RFAs typically offer greater bandwidths than EDFAs. The bandwidth
over which Raman gain is available in germanium-doped silica fiber
is about 100 nm (corresponding to about 12.5 THz at 1550 nm).
Moreover, multiple pumps at different frequencies can be combined
to provide far greater bandwidths; indeed, Raman amplification can,
in principle, be employed over the entire region of fiber
transparency. The gain of a RFA, which can reach ≈ 20 dB, is
substantially lower than that of an EDFA, as are the efficiency and
gain efficiency. However, this can be mitigated in part by making
use of dispersion-compensating fiber to simultaneously achieve
gain and accommodate the different signal-and pump-pulse
frequencies. The relative merits of EDFAs and RFAs have been
detailed in Sec. 15.3D. In spite of the apparent shortcomings of
RFAs in comparison with EDFAs, their wider bandwidths, arbitrary
operating wavelengths, and compatibility with existing systems
render them of interest for certain applications. They are



particularly attractive for use in those telecommunications bands
where EDFAs and other REFAs are unavailable or inefficient.

D. Photodetectors for Optical Receivers
A comprehensive discussion of various photodetectors has been
provided in Chapter 19. The two most commonly used types of
detectors employed in optical fiber communication systems are p–
i–n (PIN) photodiodes and avalanche photodiodes (APDs). By virtue
of their larger bandwidths, PIN photodiodes are widely used for
systems that rely on coherent communications and that make use
of high-efficiency modulation techniques. Schottky-barrier
photodiodes, which can have bandwidths ≈ 100 GHz, are also used.

Systems that make use of direct detection enjoy a competitive
advantage in simplicity and cost, and are tolerant to chromatic
dispersion, intersymbol interference, and polarization mode
dispersion. Direct-detection systems often make use of APDs, which
have the advantage that they provide gain before the first electronic
receiver amplification stage, thereby reducing the detrimental
effects of circuit noise. However, the multiplication mechanism
inherent in APDs introduces intrinsic gain noise and engenders an
avalanche multiplication time that can reduce receiver bandwidth.
Furthermore, APDs require greater voltage and more complex
circuitry than PIN detectors, and can often require temperature
stabilization. Nevertheless, low-noise APDs with enhanced gain–
bandwidth products are widely used in high bit-rate
telecommunication systems. The signal-to-noise ratio and
sensitivity of receivers using p–i–n photodiodes and APDs has been
considered in Sec. 19.6.

Photodetectors in the 1300–1600-nm Wavelength Range

As illustrated in Fig. 25.1-2, the attenuation and dispersion
properties of silica optical fibers favor operation in the 1.3–1.6-μm
wavelength region comprising the O, E, S, C, L, and U
telecommunications bands. Silicon is not photosensitive in this



wavelength range as it is transparent (λg = 1.11 μm <λo; see Table
17.1-2).

InGaAs PIN and APD Photodetectors. The most widely used
photosensitive material in this wavelength range is In0.53Ga0.47As,
lattice-matched to InP, for which the bandgap energy Eg = 0.75 eV
(λg = 1.65μm). Both PIN and SACM (separate absorption, charge,
and multiplication) InGaAs/InGaAsP/InP (A/C/M) APDs are
extensively used for long-haul systems that operate in this
wavelength range. Waveguide structures offer larger bandwidths.

A typical InGaAs PIN photodiode operating at 1550 nm has
quantum efficiency η ≈ 0.80, responsivity R ≈ 0.95 A/W (Fig. 19.3-
9), and bandwidth B ≈ 10 GHz.

A typical InGaAs/InGaAsP/InP SACM APD operated at a reverse
bias of tens of volts provides a mean gain  ≈ 10 and has a
bandwidth B ≈ 10 GHz (Example 19.42). Though normal-incidence
InGaAs APDs achieve excellent receiver sensitivities for bit rates as
high as 10 Gb/s, three factors limit their performance at higher bit
rates: 1) since α ≈ 104 cm−1 for InGaAs in this wavelength range, the
absorption region must be ≈ 2.5 μm thick to attain η > 90%; 2) the
associated transit time then limits the bandwidth to B ≈ 10 GHz at
low gain values; at higher values of the gain, where the avalanche
buildup time comes into play, the relatively low gain–bandwidth
product (GB < 100 GHz) restricts the frequency response; and 3)
the ionization ratio 1/k ≈ 0.3 for InP results in significantly higher
excess noise than that attainable with Si. On the other hand, the
gain noise of the APD can be reduced, and its speed increased, by
making use of Al0.48In0.52As multiplication layers, which offer a
reduction of the ionization ratio 1/k ≈ 0.2, and further by making
these layers sufficiently thin so that dead-space (history-dependent
ionization) effects play a salutary role (Sec. 19.6B). The gain–
bandwidth product can then be increased to GB ≈ 235 GHz.

Ge-on-Si PIN and APD Photodetectors. Germanium can also
serve as a photosensitive material for PIN and APD detectors in the



1.3–1.6-μm wavelength region. Though the use of Ge by itself has a
number of drawbacks, group-IV-photonics monolithic devices that
make use of Ge-on-Si have the merit that they are CMOS-
compatible and hence available for on-chip integration. Waveguide-
based devices offer both high quantum efficiency and high speed
since they decouple the light absorption and carrier collection.
There are two principal limitations associated with the use of Ge-
on-Si devices, however: 1) the photosensitivity of Ge falls off rapidly
for λo > 1.55 μm, and 2) the dark current is relatively large as a
result of the lattice mismatch between Ge and Si.

The particular design for a Ge-on-Si waveguide PIN photodiode
operating at 1550 nm described in Example 19.3-2 relies on the butt
coupling of light from a Si waveguide to the i region of a lateral p–i–
n Ge-on-Si photodiode integrated at its end. This device offers a
responsivity R ≈ 1 A/W and a bandwidth B > 50 GHz. Its
performance is comparable to that obtained via the hybrid
integration of InGaAs on Si.

In the normal-incidence Ge-on-Si SACM APD considered in
Example 19.4-3, photons impinge on a Ge absorber layer grown on
top of a layer of Si, where carrier multiplication takes place. To
restrict the dark current, low electric field in the absorption region
is maintained by a Si charge layer. With unintentionally doped Ge
and Si layers of thicknesses 1 and ½ μm, respectively, and a 0.1-μm
p-type Si charge layer, this APD exhibits a mean gain  ≈ 50, a gain–
bandwidth product GB ≈ 350 GHz (which substantially exceeds that
of an InGaAs/InP APD), a responsivity R ≈ 5.9 A/W at λo = 1.3 μm,
an ionization ratio k ≈ 0.09, and operation at bit rates of 25 Gb/s.

AlInAsSb APD Photodetectors. Recent efforts for improving
APD performance have focused on the development of new
structures and materials that achieve lower noise and higher speeds,
while maintaining adequate gain. An example is the AlInAsSb SACM
APD, a III–V direct-bandgap device that operates across the 1.3–1.6-
μm telecommunications band. A device such as that described in
Example 19.4-4 has a quantum efficiency η ≈ 0.4 and a dark current



that is somewhat greater than that of the InGaAs/AlInAs APD
discussed above, but substantially smaller than that of the Ge-on-Si
APD. The gain–bandwidth product is anticipated to be GB > 300
GHz. The ionization ratio k ≈ 0.01 at a mean gain  = 10 is
comparable to that of Si (Example 19.6-4).

Photodetectors in the 800–900-nm Wavelength Range

As discussed in Sec. 25.2A, first-generation optical fiber
communication systems operated at λo ≈ 870 nm to match the
wavelength of the GaAs LEDs and laser diodes that were developed
in the early 1960s (Sec. 18.1C). Short-haul silica-fiber-based systems
that are implemented today in this wavelength range make use of
AlxGa1−xAs sources (Sec. 25.1B).

Si PIN and APD Photodetectors. Silicon p–i–n photodiodes and
APDs are highly effective in this wavelength range. A commercially
available Si PIN photodiode operating at 850 nm, for example, has a
quantum efficiency η ≈ 0.9, a responsivity R ≈ 0.6 A/W (Fig. 19.3-9),
and a bandwidth B ≈ 15 GHz.

In the domain of Si APDs, a separate absorption and multiplication
(SAM) reach-through APD has its peak sensitivity at a wavelength
of 800 nm (Example 19.6-3). Under specified operating conditions,
this device has a quantum efficiency η = 0.8,a mean gain  = 50, a
gain–bandwidth product GB = 350 GHz, and an ionization ratio k =
0.02.

Photodetectors in the Mid Infrared

As discussed in Sec. 25.1B, interest in mid-infrared optical fiber
communications has been fostered by advances in fluoride and
other soft-glass fibers (Sec. 10.5), by the advent of quantum cascade
lasers (Sec. 18.4D), and by improvements in mid-infrared detectors
(Sec. 19.4).

HgCdTe APD Photodetectors. Substantial progress has been
made in the quality of HgxCd1−xTe SAM APDs, which have cutoff



wavelengths that extend from 2 to 11 μm in the mid IR. A device
such as that described in Example 19.4-5 enjoys high quantum
efficiency (η ≈ 0.9), high gain (  > 1000), and large gain–bandwidth
product (GB > 1 THz), although it requires cryogenic cooling. The
ionization ratio k ≈ 0 is superior to that of Si (Example 19.6-4) so
that the excess noise factor F = , defined in (19.6-24), is
limited to F ≤ 2 and is independent of . The gain–voltage
characteristic is exponential.

E. Photonic Integrated Circuits
Contemporary optical fiber communication systems make use of
advanced modulation formats to achieve high capacities. Highly
coherent lasers with narrow linewidths are often required. Silicon
photonics provides a useful platform for fabricating high-quality
on-chip light sources that rely on the integration of direct-bandgap
III–V photon emitters with CMOS-compatible silicon substrates
(Sec. 18.1D). Quantum-dot active regions often replace their
quantum-well cousins because of reduced sensitivity to temperature
variations and to dislocations arising from the juxtaposition of the
different materials (Sec. 18.4C).

As discussed in Chapter 9, integrated photonics (integrated
optics) is the technology of combining, on a single chip, collections
of optical devices and components to achieve a particular purpose or
carry out a specific function. The design and fabrication of
photonic integrated circuits (PICs) draws on integrated
photonics and silicon photonics. PICs serve to miniaturize and
increase the density of photonic circuitry in much the same way
that electronic integrated circuits (ICs) miniaturize and increase the
density of electronic circuitry. In monolithic PICs, the various
elements are simultaneously fabricated on the same chip, and that
there are many chips per wafer. Passive PICs are also called planar
lightwave circuits (PLCs) and PICs that incorporate both
photonic and electronic components are also referred to as
optoelectronic integrated circuits (OEICs) Group-IV PICs can



comprise Si waveguides, together with Ge-based lasers, modulators,
and photodetectors.

The telecommunications industry long relied on PICs fabricated
wholly from III–V materials since these semiconductors readily
emit light, accommodate modulation via the electro-optic effect, and
can be lattice-matched to a range of related materials. Though
thousands of devices can be integrated into an InP-based PIC with
high yield, the fabrication process is complex and expensive. In
contrast, the compatibility of Sibased PICs with CMOS, and the
manifold benefits of group-IV materials, yield far higher integration
densities along with more efficient and less expensive integration.
Moreover, silicon-photonics-based PICs can offer improved
functionality by drawing on the different salutary features of III–V
materials and silicon. As an example, high gain can be provided by a
III–V direct-bandgap material while photon storage is relegated to a
ring resonator in an undoped silicon layer with low loss and high Q.

PICs often incorporate collections of standard on-chip building
blocks, such as lasers, modulators, couplers, splitters, amplifiers,
and photodiodes. Optical waveguides link the various components.
PICs find use in generating, focusing, splitting, combining, isolating,
polarizing, coupling, modulating, transporting, multiplexing,
switching, and detecting light. Higher-level PICs can incorporate
both transmitter and receiver functionalities on the same chip and
function as optical transceivers (optochips) and coherent
optical transceivers. These devices find application in a broad
variety of optical communication systems and networks, including
telecom (long-haul, short-haul, and undersea), datacom (LANs
and datacenters), and computer-com (chip interconnects and
high-performance computing — see Sec. 24.1D). Transceiver PICs
that incorporate standard on-chip building blocks along with filters
and wavelength multiplexers/demultiplexers are commercially
available at bit rates exceeding 100 Gb/s. PICs also find use as chip-
based phase-sensitive sensors and in applications such as night-
vision monitoring, integrated-optical gyroscopy, and lidar.



25.2 OPTICAL FIBER COMMUNICATION
SYSTEMS
The simplest communication system is a point-to-point link. The
information is carried by a physical variable (e.g., electrical,
electromagnetic, or optical) containing a signal that is transmitted
at one point and received at another. Transmitting more than one
signal simultaneously through the same link requires that the
signals be marked by some distinct attribute (e.g., time, frequency,
or wavelength) or identified by some distinct code. This scheme is
called multiplexing.

In an optical fiber communication system, the link is an optical
fiber that carries a light wave modulated by the signal. The
modulated physical variable carrying the information may be the
optical intensity, amplitude, frequency, phase, or polarization. The
most straightforward example is an intensity-modulated optical
communication system, as illustrated in Fig. 25.2-1.

Figure 25.2-1 Optical fiber communication systems using
intensity modulation. (a) Analog system: the power of the light
source is proportional to the signal, which is a continuous function
of time that could represent, for example, an audio or video
waveform. (b) Digital ON–OFF keying system: the states “1” and “0”
of a bit are represented, respectively, by the presence and absence of
an optical pulse.

The simplest example of optical multiplexing is wavelength-division
multiplexing (WDM), in which multiple optical signals are



transmitted through the same fiber at distinct optical wavelengths,
as illustrated in Fig. 25.2-2.

Figure 25.2-2 Wavelength-division multiplexing (WDM).

One measure of the performance of an analog communication
system is its bandwidth B (Hz). This is the maximum frequency at
which modulated optical power may be transmitted through the link
such that the received signal is detectable with a prescribed signal-
to-noise ratio. The bandwidth is determined by the response time of
the overall communication channel as well as by the attenuation
and the noise level at the receiver.

An analogous measure of the performance of a digital
communication system is the maximum bit rate B0 (bits per
second, or b/s) at which bits of the received signal are discernible
with an error rate not exceeding a prescribed value. This data rate is
determined by the attenuation and pulse spreading introduced by
the system, as well as by the noise level at the receiver. The bit rates
displayed in Table 25.2-1 represent optical carrier (OC) levels
defined by the Synchronous Optical Network (SONET) standard for
optical telecommunications technology.

Table 25.2-1 Approximate bit rates for the SONET standard.

OC-1 OC-3 OC-12 OC-24 OC-48 OC-
192

OC-
768

OC-
1920

52
Mb/s

156
Mb/s

622
Mb/s

1.25
Gb/s

2.5
Gb/s

10
Gb/s

40
Gb/s

100
Gb/s

This section begins with an overview of the evolution of optical fiber
communication systems and is followed by a quantitative analysis



of the performance limits of simple digital and analog systems that
make use of intensity modulation.

A. Evolution of Optical Fiber Communication Systems
As illustrated in Fig. 25.1-2, the minimum attenuation in silica-glass
fibers occurs at λo ≈ 1550 nm, whereas the minimum material
dispersion occurs at λo ≈ 1312 nm. The choice of which of these
wavelengths should be used to build a link depends on the
availability of an appropriate light source as well as on the relative
importance of power loss and pulse spreading, as explained in Sec.
25.2B. First-generation optical fiber communication systems
operated at λo ≈ 870 nm, the wavelength of the earliest available
light-emitting diodes and laser diodes, which were fabricated from
GaAs. However, optical-fiber attenuation and material dispersion
are both relatively high at this wavelength, so subsequent systems
were constructed using longer wavelengths as more advanced
semiconductor materials became available. Second-and third-
generation systems operated near 1310 and 1550 nm, respectively.

There are many possible combinations of operating wavelengths,
devices, materials, and fibers that can be used to build an optical
link — some of these are portrayed in Fig. 25.2-3. As new materials
and capabilities have come to the fore, the implementation of fiber
systems has generally proceeded along the following paths: (1) from
shorter to longer wavelengths; (2) from multimode fibers (MMFs)
to single-mode fibers (SMFs); (3) from light-emitting diodes (LEDs)
to laser diodes (LDs); (4) from p–i–n photodiodes (PINs) to
avalanche photodiodes (APDs); (5) from semiconductor optical
amplifiers (SOAs) to optical fiber amplifiers (OFAs); and (6) from
direct detection to coherent detection. This evolution has been
made possible in large part by advances in bandgap engineering and
glass engineering. The former allowed remarkable quaternary
semiconductor components to be developed for use at longer
wavelengths while the latter facilitated effective new designs for
silica-glass optical fibers.



Figure 25.2-3 Materials commonly used for optical sources,
detectors, amplifiers, and fibers, along with the ranges of
wavelengths over which they operate. Gray and white vertical
columns represent various optical fiber telecommunications bands.
The first three generations of fiber-optic links operated at
wavelengths near 870 nm, 1310 nm, and 1550 nm, respectively.

The evolution of fiber components and systems has been motivated
by the desire to increase the transmission bit rate B0 (b/s) as well as
the length L (km) of the communication link. Both B0 and the
product LB0 (usually expressed in units of kmGb/s) serve as
measures to gauge the advancement of fiber communication
systems.

The nine system generations discussed in the following pages
characterize this evolution and Fig. 25.2-4 depicts the increase
realized in B0 and LB0 as time has progressed. The first three
systems, which are often referred to as the first three generations of
optical fiber systems, achieved a 1000-fold increase in LB0 from
1974 to 1990. For simplicity, we use these technologies as examples
for evaluating system performance, as discussed in Sec. 25.2B. As is
evident in Fig. 25.2-4, subsequent progress has extended these basic
systems in a number of directions, and has led to an increase of B0
and LB0 by an additional eight orders of magnitude from 1990 to



2015. This tenfold increase every four years is known as “optical
Moore's law.”

Figure 25.2-4 The development of optical fiber communication
systems over the years reveals a continuous growth of bit rate B0
(right ordinate) and bit-rate–distance product LB0 (left ordinate,
generally with L = 10 000 km). Solid blue curves represent the
earliest systems. Dotted black curves indicate systems that were
developed subsequently but not widely implemented. Green curves
represent systems that have been widely deployed over land and
under sea. Red curves indicate systems developed more recently.
Systems  incorporate both OFAs and WDM. The superb
performance of the newer systems has led to the decommissioning
of most commercial links based on Systems . The straight
dashed line represents an “optical Moore's law” that reveals a
tenfold increase in bit rate every four years.

System  Multimode fiber (MMF) at 870 nm. This was the early
technology of the 1970s. Fibers were either step-index or graded-
index. The light source was either an LED or a laser diode (initially
GaAs and subsequently AlGaAs). Both Si p–i–n and APD
photodetectors were used. System performance was limited by high



fiber attenuation and modal dispersion. A typical communication
link of this era operated at B0 = 100 Mb/s, and had a length of L =
10 km, yielding LB0 ≈ 1 km-Gb/s. Several optical links could be
concatenated to form a longer link for intercity communication by
inserting optical-electrical-optical (OEO) units, known as repeaters
or regenerators, between consecutive links. Each such repeater
implemented three processes: photodetection, electrical
amplification, and optical signal regeneration.

System  Single-mode fiber (SMF) at 1310 nm. The move to single-
mode fibers and to a wavelength region with minimal material
dispersion in the 1980 time frame led to a substantial improvement
in performance, which was limited by fiber attenuation. InGaAsP
laser diodes were used with either InGaAs p–i–n or APD
photodetectors (sometimes Ge APDs). A typical long-haul link in
this class operated at OC-12 (622 Mb/s) with an OEO repeater
spacing of L = 40 km, yielding LB0 ≈ 25 km-Gb/s.

System  Single-mode fiber (SMF) at 1550 nm. Silica-glass fibers
were used in the 1550-nm wavelength range, where their
attenuation is lowest. Performance was limited by material
dispersion, which was reduced by employing low-chirp single-
frequency distributed-feedback (DFB) laser diodes (InGaAsP). APDs
were often used. The subsequent use of dispersion-shifted fibers
(DSF) reduced the deleterious effects of dispersion and boosted
performance. An example of this system is a long-haul terrestrial or
undersea link operating at 2.5 Gb/s (OC-48) over a distance of L =
100 km, so that LB0 ≈ 250 km-Gb/s. Further advances in
transmitters and receivers boosted the bit rate of this system to 10
Gb/s (OC-192), bringing LB0 to ≈ 1 km-Tb/s.

System  Coherent receiver. Coherent detection is a technique in
which light from a local source (called the local oscillator) is mixed
with the received signal light at a photodetector (see Sec. 25.4). This
is in contrast to direct detection, in which the intensity of the signal
light is directly detected by the photodetector. Though the use of
coherent detection enhances receiver sensitivity, thereby allowing



greater distances between repeaters, this benefit comes at the
expense of increased system complexity. As a result, the commercial
implementation of coherent systems lagged behind that of direct-
detection systems, particularly because of the enhancement
provided by the emergence of the optical fiber amplifier (OFA).

System  Optical solitons. Solitons are short (typically 1 to 50 ps)
optical pulses that can travel through long optical fibers without
changing the shape of their pulse envelope. As discussed in Sec.
23.5B, the effects of fiber dispersion and nonlinear self-phase
modulation (arising, for example, from the optical Kerr effect)
precisely cancel, so that the pulses act as if they were traveling
through a linear, nondispersive medium. Both erbium-doped and
Raman fiber amplification can be effectively used in conjunction
with soliton transmission to overcome absorption and scattering
losses. In 2002, Deutsche Telekom conducted a trial using Lucent's
LAMBDAXTREME DWDM system with dispersion-managed
transmission and Raman amplification. The system offered 128
WDM channels, each with a capacity of 10 Gb/s, providing B0 = 1.28
Tb/s and yielding LB0 ≈ 5120 km-Tb/s over a fiber length of L =
4000 km. However, the dispersion characteristics of existing fiber
links are often not well-suited to optical-soliton systems and the
technology has not been avidly pursued.

System  Optical fiber amplifiers (OFAs). The advent of the
erbium-doped fiber amplifier (EDFA) in 1987 (see Sec. 25.1C) had
an extraordinary impact on the performance of optical fiber
communication systems. Placed periodically along the fiber, these
amplifiers compensate for loss by optically boosting the signal, thus
dramatically increasing the distance over which information can be
transmitted. The first transpacific link to employ OFAs was the TPC-
5 cable network, which comprised four single-mode fibers in the
form of a ring that operated at bit rate B0 = 10 Gb/s over a distance
of L = 22 500 km, yielding LB0 ≈ 225 km-Tb/s.

System  Wavelength-division multiplexing (WDM). WDM
systems make use of multiple wavelengths (channels) transmitted



through the same fiber, which provides a dramatic increase in
system capacity. Broadband optical fiber amplifiers provide
simultaneous amplification for all channels. Single-wavelength
long-haul links can be upgraded to WDM status by simply replacing
the equipment at the ends of the link, while retaining the existing
OFAs. Capacity is increased with the addition of dispersion-
managed transmission and forward error correction. An example of
a WDM link is the TPE transpacific cable network between the U.S.
and China completed in 2010. The bit rate for each fiber of this eight
fiber-pair cable is 10 Gb/s per channel and B0 = 5.12 Tb/s. With L =
18 000 km, LB0 ≈ 92 km-Pb/s.

System  Digital coherent receiver with spectrally efficient coding.
The success of WDM in the 1990s and 2000s was followed by an
effort to enhance system spectral efficiency [(b/s)/Hz]. This fueled
a resurgence of interest in coherent systems, coupled with the use
of WDM and optimized digital coding and signal processing. The
first transpacific link employing digital coherent technology was the
FASTER submarine cable network, which began service in 2016.
This system makes use of six pairs of extremely low-loss fibers
without dispersion-compensation sections (digital signal processing
compensates for the cumulative dispersion at the end of the cable,
thereby avoiding optical-amplifier noise). Each of the twelve fibers
operates at 100 Gb/s per channel; with 100 WDM channels the
overall bit rate is thus B0 = 60 Tb/s in each direction. Transmission
over a distance L = 9000 km between Oregon and Japan yields LB0
≈ 540 km-Pb/s. Making use of the C+L-bands, the 2018 Pacific
Light Cable Network (PLCN) offers a capacity B0 = 120 Tb/s, double
that of the FASTER system. Stretching from Los Angeles to Hong
Kong, a distance L = 12 800 km, the PLCN network attains LB0 ≈ 1.5
km-Eb/s.

System  Space-division multiplexing (SDM). With spectral
bandwidth exhausted in the service of WDM, and spectral efficiency
and phase modulation optimized for digital coherent detection, the
only degree of freedom remaining available for increasing system



capacity is space. This has led to renewed consideration of
exploiting multimode fibers in which distinct spatial-mode
distributions serve as independent channels. Also being developed
for SDM are multicore fibers in which each core carries a few spatial
modes. Multiplexers and demultiplexers, along with digital signal
processing techniques to compensate for inherent crosstalk, are
being developed. As an example, the availability of 50 spatial
channels and 100 WDM channels provides a total of 5000 channels;
at 200 Gb/s per channel, a single fiber can support a bit rate of 1
Pb/s.

B. Performance of Optical Fiber Communication
Systems
The first step in assessing the performance of an optical fiber
communication system is to construct a mathematical model that
describes the effect of the various system components, principally
the optical fiber, on the modulated signal. This permits the shape of
the received distorted signal to be estimated, and hence permits a
determination of the signal-to-noise ratio for analog systems and
the expected bit error rate for digital systems.

In most applications, the fiber may be treated as a linear system
described by an impulse response function h(t) or its Fourier
transform, the transfer function H(f), where f is the modulation
frequency (see Appendix A). Three important parameters
characterize these functions:

Power transmission. This is the fraction of steady
(unmodulated) input optical power received at the output. It is
given by the transfer function H(f) at f = 0; H(0) = ∫ h(t) dt is
the area under h(t) since H(f) is the Fourier transform of h(t).
For a fiber of length L and attenuation coefficient α (dB/km),
H(0) = exp(−αL), where α is the attenuation coefficient in units
of km−1, which is related to α via α ≈ 0.23α. Localized power
losses at couplers may also be included in α in distributed units
of dB/km.



The response time στ is the width of h(t). It determines the
temporal spreading of optical pulses and therefore sets the
maximum data rate that can be used in digital systems. In a
single-mode fiber, for example, (25.1-3) provides that στ = |D|
σλL, where σλ (nm) is the source linewidth and 𝒟 (ps/km-nm)
is the dispersion coefficient. The response time is proportional
to the fiber length.

The bandwidth σf (Hz) is the width of the transfer function
|H(f)|. In an analog system, the bandwidth determines the
maximum frequency at which the input power may be
modulated and successfully detected by the receiver. Since H(f)
and h(t) are related by a Fourier transform, the bandwidth σf is
inversely proportional to the response time στ . The coefficient
of proportionality depends on the specific profile of h(t) (see
Appendix A, Sec. A.2). Here, we use the relation σf = 1/2πστ for
purposes of illustration.

The maximum fiber length that can be used to transmit a signal
with a desired performance level is set by the following principal
impairments introduced by the system:

Attenuation results in an exponential decrease of the optical
power as a function of distance [Fig. 25.2-5(a)]. At a distance
for which the received power becomes smaller than the receiver
sensitivity (the minimum power required by the receiver), the
system's performance becomes unacceptable.

Dispersion results in an increase of the width of the optical
pulses that represent data bits in a digital system as a function
of distance [Fig. 25.2-5(b)]. When the width exceeds the bit
interval, adjacent pulses overlap, resulting in intersymbol
interference (ISI), which introduces undesirable errors. In an
analog system, dispersion washes out high-frequency
components of the modulated signal and reduces the system's
bandwidth.



Noise added by optical components, such as optical amplifiers,
and by random propagation effects, such as polarization mode
dispersion, introduces additional errors.

Nonlinear distortion associated with intense optical pulses
results in the cross mixing of spectral components, and the
introduction of interference between multiplexed signals in
wavelength-division multiplexing (WDM) systems.

Figure 25.2-5 (a) Dependence of the optical power on distance. (b)
Dependence of the pulse width on distance. The maximum length of
the optical link is set by either (a) attenuation, when the received
power drops below the receiver sensitivity; or (b) dispersion, when
the pulse width exceeds the bit time.

The communication system is more sensitive to transmission
impairments at high bit rates (or high modulation frequencies)
because of the following effects:

For a fixed average power, a higher bit rate corresponds to
fewer photons per bit, and therefore to greater photon noise.
Other noise sources in the receiver also become more
important at high data rates. The receiver sensitivity is
therefore an increasing function of the bit rate [Fig. 25.2-6(a)].

A higher bit rate corresponds to shorter pulses [Fig. 25.2-6(b)]
with broader spectra and greater dispersion. Such pulses
undergo greater broadening, which leads to greater intersymbol
interference (ISI).



For a fixed optical energy per bit, a higher bit rate (shorter bit
time) requires greater optical power [Fig. 25.2-6(c)], which
evokes nonlinear interactions leading to nonlinear ISI.

Figure 25.2-6 Effect of bit rate on (a) receiver sensitivity, (b)
pulse width at the receiver, and (c) peak power. At higher bit rates,
the communication system is more sensitive to attenuation,
dispersion, and nonlinear effects.

Bit Error Rate

The performance of a digital communication system is measured by
the probability of error per bit, which is referred to as the bit
error rate (BER). For an ON–OFF keying (OOK) system, such as
that schematized in Fig. 25.2-1, the logic states “1” and “0” are
represented, respectively, by the presence and absence of an optical
pulse (see Sec. 19.6E). If p1 is the probability of mistaking “1” for
“0”, and p0 is the probability of mistaking “0” for “1”, and if the two
bits are equally likely to be transmitted, the BER = 1

2
p1 + 1

2
p0. A

typical acceptable BER is 10−9, corresponding to an average of one
error every 109 bits. Errors occur as a result of noise in the received
signal, or they arise from pulse spreading into neighboring bits,
which results in intersymbol interference (ISI). Figure 25.2-7
displays an example of random realizations of the pulse
corresponding to state “1”, superimposed with random realizations
of the signal received from possible neighboring pulses when the
state is “0”, This portrayal is called the eye diagram. The more



(25.2-1)

open the “eye,” the more distinguishable are the “1” and “0” states
and the smaller the likelihood of error.

Figure 25.2-7 Closing of the eye diagram (left to right) as a result
of noise and pulse broadening.

Receiver Sensitivity

The sensitivity of a digital optical receiver is defined as the
minimum number of photons (or the corresponding optical energy)
per bit required to guarantee that the rate of error (BER) is smaller
than a prescribed value (e.g., 10−9). Errors occur because of
randomness in the number of photoelectrons detected during each
bit and because of noise in the receiver circuit itself. The sensitivity
of digital optical receivers under various conditions has been
considered in Sec. 19.6E.

The simplest example of such a receiver is an ON–OFF keying
(OOK) optical receiver in which the light source emits Poisson
photons, the detector has unity quantum efficiency, and the receiver
circuit is noise-free. An average of at least  = 10 photons per bit is
required to achieve a BER ≤ 10−9 in such a system, so the sensitivity
of this ideal optical receiver is 10 photons/bit. This signifies that
state “1” should carry an average of at least 20 photons/bit, since
state “0” carries zero photons. In the presence of other forms of
noise, a larger number of photons per bit is required (Table 19.6-1).

A sensitivity of  photons per bit corresponds to an optical energy
of hν  per bit and an optical power of Pr =(hν )/(1/B0) per bit, so
that



which is proportional to the bit rate B0. As the bit rate increases, Pr
must increase commensurately to keep the number of photons/bit
(and therefore the BER) constant. When circuit noise is important,
the receiver sensitivity  depends on the receiver bandwidth (i.e.,
on the data rate B0), as discussed in Sec. 19.6E. This behavior
complicates the design problem so for simplicity we assume in the
following analyses that the sensitivity (photons per bit) of the
receiver is independent of B0.

It will become apparent in the sequel that the design of long-haul,
high-bit-rate optical fiber communication links involves the
selection of fibers with the lowest attenuation and/or dispersion,
careful power and pulse-width budgeting, and the avoidance of
deleterious nonlinear effects associated with ultra-intense pulses.

C. Attenuation-and Dispersion-Limited Systems
We now proceed to examine the performance limits imposed by
attenuation and dispersion on an elementary digital, intensity-
modulation, ON–OFF keying(OOK)system. For simplicity,
nonlinear effects are ignored and the fiber transmission system
itself is assumed to introduce no noise. We consider an optical fiber
link operated as a digital communication system at a data rate of B0
b/s over a distance of L (km). The source has power Ps (mW),
wavelength λo (nm), and spectral width σλ (nm). The fiber has
attenuation coefficient α (dB/km) and chromatic dispersion
coefficient Dλ (ps/kmnm). The receiver has a sensitivity of 
(photons per bit), corresponding to a power sensitivity Pr =(hco/λo)

B0 (mW); these values must be attained for the system to operate
at an acceptable error rate.

The performance limits are established by determining the
maximum distance L over which the link can transmit B0 b/s
without exceeding the prescribed bit error rate. Clearly, L decreases
with increasing B0. Alternatively, we may determine the maximum
bit rate B0 that a link of length L can transmit with an error rate not



exceeding the allowable limit. The maximum bit-rate–distance
product LB0 thus serves as a metric that describes the capability of
the link. We shall determine the typical dependence of L on B0, and
derive expressions for the maximum bit-rate–distance product LB0
for various types of fibers.

Two conditions must be satisfied for acceptable operation of the
link:

1. The received power must be at least equal to the receiver power
sensitivity Pr . This condition is met by preparing a power
budget from which the maximum fiber length is determined. A
margin of 6 dB above Pr is usually specified.

2. The width of the received pulses must not significantly exceed
the bit time interval 1/B0 to avoid overlap of adjacent pulses,
which leads to intersymbol interference and increases the error
rate. This condition is met by preparing a budget for the pulse
spreading resulting from the transmitter, the receiver, and
various forms of dispersion in the fiber.

If the bit rate B0 is fixed and the link length L is increased, two
situations leading to performance degradation can occur: the
received power becomes smaller than the receiver power sensitivity
Pr , or the received pulses become wider than the bit time 1/B0. If
the former situation occurs first, the link is said to be attenuation
limited. If the latter occurs first, the link is said to be dispersion
limited.

Attenuation-Limited Performance: Power Budget

Attenuation-limited performance is assessed by preparing a power
budget. Since fiber attenuation is measured in dB units, it is
convenient to also measure optical power in dB units. Using 1 mW
as a reference, dBm units are defined by
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As examples, 𝒫 = 0.1 mW, 1 mW, and 10 mW correspond to 𝒫 = −10
dBm, 0 dBm, and 10 dBm, respectively. In these logarithmic units,
power losses are additive.

If Ps is the source power (dBm), α is the fiber loss (dB/km), Pc is the
splicing and coupling loss (dB), and L is the maximum fiber length
such that the power delivered to the receiver is equal to the receiver
sensitivity Pr (dBm), then

where Pm is a safety margin. The optical power is plotted
schematically in Fig. 25.2-8 as a function of the link distance from
the transmitter.

Figure 25.2-8 Power budget for an attenuation-limited fiber-optic
link.

The receiver power sensitivity Pr = 10 log10 Pr (dBm) is obtained
from (25.2-1):
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Thus, Pr increases logarithmically with B0, and the power budget
must therefore be adjusted for the value of B0, as illustrated in Fig.
25.2-9.

Figure 25.2-9 Power budget as a function of bit rate B0 for an
attenuation-limited fiber-optic link. As B0 increases, the power Pr
per bit required at the receiver increases (so that the energy per bit
remains constant), and the maximum fiber length L decreases.

The maximum length of the link is obtained by substituting (25.2-4)
into (25.2-3),

which yields

Attenuation-Limited Fiber Length

where L0 =[Ps −Pc−Pm−30−10 log(  hν)]/α. The maximum link
length decreases with increasing bit rate B0 at a logarithmic rate



with slope −10/α. Figure 25.2-10 is a plot of this relation for the
operating wavelengths 870, 1300, and 1550 nm.

Figure 25.2-10 Maximum fiber length L as a function of bit rate
B0 under attenuation-limited conditions for a fused silica-glass fiber
operating at wavelengths λo = 870, 1300, and 1550 nm, assuming
fiber attenuation coefficients α = 2.5, 0.35, and 0.16 dB/km,
respectively. Source power Ps = 1 mW (Ps = 0 dBm); receiver
sensitivity  = 300 photons/bit for receivers operating at 870 and
1300 nm, and  = 1000 for the receiver operating at 1550 nm; and
Pc = Pm = 0. The LB0 relation for a typical coaxial cable is shown for
comparison.

Dispersion-Limited Performance: Time Budget

When a pulse representing a data bit is generated by the
transmitter, propagated through the fiber, and detected by the
receiver, it loses power and increases in width. The final pulse width
σo depends on the original pulse width σs, the response time of the
transmitter σtx, the response time of the fiber στ imparted by
various forms of dispersion, and the response time of the receiver
σrx. The actual shape of the received pulse may be determined by
convolving the original pulse profile with the impulse response
functions of the transmitter, the fiber, and the receiver (assuming
that all systems are linear). Moreover, if all functions are taken to
be Gaussian, the square of the width of the final pulse is the sum of
the squares of the widths of all the constituent functions, so that
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where

with σsys representing the width of the response function of the
entire communication system (transmitter + fiber + receiver).
These relations are used in the practical design of systems even
though the response functions are not actually Gaussian.

A principal design condition for the communication link ensures
that the width of the received pulse does not exceed a prescribed
fraction of the bit period T = 1/B0 to avoid intersymbol interference.
A time budget, such as that presented in Fig. 25.2-11, must be
prepared to ensure that this condition is met. The choice of that
fraction is arbitrary and a number of ad hoc values are used. As an
example, some designers require that the system's response time
σsys not exceed 70% of the bit period for nonreturn-to-zero (NRZ)
pulses and 35% for return-to-zero (RZ) pulses (these modulation
formats are defined in Fig. 25.3-4).

Figure 25.2-11 Budget for the pulse temporal width in a
dispersion-limited fiber-optic link.

For a given receiver and transmitter, the design of the link centers
around determining the maximum allowable fiber length L. Since
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the only length-dependent contribution to σsys is στ associated with
the fiber, in the following analysis we adopt a design criterion that
limits the value of στ to 1/4 of the bit-time interval T , i.e.,

The choice of the factor 1/4 is clearly arbitrary and simply allows us
to conveniently compare the different types of fibers. We now
consider the distance versus bit-rate relations that arise from this
condition for the various dispersion-limited cases considered in Sec.
25.1A. The results are discussed below and plotted in Fig. 25.2-12.



Figure 25.2-12 Dispersion-limited maximum fiber length L as a
function of the bit rate B0 for multimode fibers (MMF) and single-
mode fibers (SMF). Six lines are shown (left to right): (a) MMF,
step-index (n1 = 1.46, Δ=0.01), LB0 = 10 km-Mb/s; (b) MMF,
graded-index with parabolic profile (n1 = 1.46, Δ=0.01), LB0 = 2 km-
Gb/s; (c) SMF limited by material dispersion, operating at 1550 nm
with Dλ = 17 ps/km-nm and σλ = 1 nm, LB0 ≈ 15 km-Gb/s; (d) SMF
limited by material dispersion, operating at 1300 nm with |Dλ| = 1
ps/km-nm and σλ = 1 nm, LB0 = 250 kmGb/s; (e) SMF with
transform limited pulses operating at 1550 nm with Dλ = 17 ps/km-
nm; (f) same as (e) with non-zero dispersion-shifted fiber (NZ-DSF)
with chromatic dispersion coefficient Dλ = 4 ps/km-nm.

Multimode fiber (MMF). For multimode fiber, the width of the
received pulse after propagation a distance L is dominated by
modal dispersion. For step-index fibers, (25.1-2) and (25.2-9)
result in the LB0 relation
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Step-Index MMF

where c1 = co/n1 is the speed of light in the core material and
Δ=(n1 − n2)/n1 is the fiber fractional index difference. In a
graded-index (GRIN) fiber with an optimal (approximately
parabolic) refractive-index profile, the pulse width is smaller by
a factor 2/Δ, and LB0 is greater by the same factor. For n1 = 1.46
and Δ=0.01, the bit-rate–distance product LB0 ≈ 10 km-Mb/s
for step-index fibers and LB0 ≈ 2 km-Gb/s for graded-index
fibers.

Single-mode fiber (SMF). Assuming that pulse broadening in a
single-mode fiber results from material dispersion only (i.e.,
neglecting waveguide dispersion), then for a source of
linewidth σλ, the width of the received pulse is given by (25.1-
3), so that

SMF

where Dλ is the dispersion coefficient of the fiber material. For
operation near λo = 1300 nm, |Dλ| may be as small as 1 ps/km-
nm. Assuming that σλ = 1 nm (roughly the linewidth of a single-
mode laser diode), the bit-rate–distance product LB0 ≈ 250 km-
Gb/s. For operation near λo = 1550 nm, Dλ = 17 ps/km-nm, and
for the same source spectral width (σλ = 1 nm), we have LB0 ≈
15 km-Gb/s.

Single-mode fiber with transform-limited pulses. To reduce
chromatic dispersion, the spectral linewidth σλ of the source
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must be small. Spectral widths that are a small fraction of 1 nm
may be obtained by using single-frequency lasers with external
modulators. However, an extremely narrow spectral width is
incompatible with an extremely short pulse because of the
Fourier transform relation between the spectral and temporal
distributions. As described in Sec. A.2 of Appendix A, pulses
with the smallest product of temporal and spectral widths have
a Gaussian profile. Such transform-limited pulses therefore
suffer the least dispersion. A transform-limited Gaussian pulse
of width τ0 and complex envelope exp(−t2/ ) has a Gaussian
spectral intensity of width (FWHM) σν = 0.375/τ0, as provided
in (23.1-10). This corresponds to σλ = |∂λo/∂ν|σν = ( /co)σν =
0.375 /coτ0. If the pulse has a width equal to half a bit period,
i.e., τ0 = T /2=1/2B0, then

which is directly proportional to the bit rate B0. For example,
for λo = 1550 nm and B0 = 10 Gb/s, σλ = 0.06 nm. As described
in Sec. 23.3B, when a transform-limited Gaussian pulse of
width τ0 travels through a dispersive medium with dispersion
coefficient Dν, it is broadened by a factor of  at the
characteristic distance . In particular, a pulse of
initial width τ0 = T/2 stretches by a time ( )T/2 ≈ 0.21 T.
We may therefore take z0 as the maximum acceptable length L
of the communication link. Using the relations L = z0 = 
, τ0 = T/2 = 1/2B0, and Dν =  , we finally obtain

Single-Mode Fiber Transform-Limited Pulse



The maximum link distance L is therefore inversely
proportional to  so that it decreases more rapidly with data
rate than in the previous cases. Also, the product B0L is
inversely proportional to the data rate B0. Figure 25.2-12
displays the LB0 relation for λo = 1550 nm and Dλ = 17 ps/km-
nm. For example, at B0 = 10 Gb/s, L = 64 km, but at B0 = 40
Gb/s, L decreases to 4 km. The use of transform-limited pulses
therefore extends the dispersion-limited bit rate bounds
substantially, although that rate decreases more rapidly with
further increase of the bit rate.

Single-mode dispersion-compensated fiber with transform-
limited pulses. With single-mode fibers and transform-limited
optical pulses, the maximum fiber distance for a given bit rate
reaches its highest value, limited only by the dispersion
coefficient. This coefficient can be reduced by making use of
dispersion-shifted fibers (DSFs). As shown in Fig. 25.2-12, the
use of a DSF to reduce Dλ from 17 ps/km-nm to 4 ps/km-nm
increases the maximum link length from 64 km to 272 km at 10
Gb/s. However, DSF fibers have a slightly higher attenuation
coefficient.

Combined Attenuation-and Dispersion-Limited Performance

The attenuation-limited and dispersion-limited bit-rate–distance
relations portrayed in Figs. 25.2-10 and 25.2-12, respectively, are
combined into Fig. 25.2-13 by selecting the smaller of the
attenuation-or dispersion-limited distances.



Figure 25.2-13 Maximum fiber-optic link distance L versus bit
rate B0 for a variety of situations. This graph is obtained by
superposing the attenuation-limited and dispersion-limited bit-
rate– distance curves presented in Figs. 25.2-10 and 25.2-12,
respectively, and selecting the smaller of the attenuation-or
dispersion-limited distances. Each line in the figure represents the
maximum distance L of the link at each bit rate B0 that satisfies
both the attenuation and dispersion limits, i.e., that guarantees the
reception of the required power and pulse width at the receiver.

The graph in Fig. 25.2-13 is the result of an exercise that
summarizes the performance of the first three generations of
optical fiber communication systems, as portrayed in Fig. 25.2-4:
System  at λo = 870 nm (multimode); System  at 1310 nm
(single-mode); and System  at 1550 nm (single-mode). A number
of simplifying assumptions and arbitrary choices have been made to
create Fig. 25.2-13, so that the values reported therein should be
regarded only as indications of the order of magnitude of the
relative performance of the different types of fibers. Nevertheless, a
number of important conclusions can be drawn from this figure:



At low bit rates, the fiber link is generally attenuation-limited;
the length L decreases logarithmically with B0. At high bit rates,
the link is dispersion limited and L is inversely proportional to
B0 for optical pulses limited by the source linewidth, and
inversely proportional to  for transform-limited optical
pulses.

For high-data-rate and long-haul communication links, single-
mode fibers are superior. The choice between operation at 1300
and 1550 nm is not obvious since, for conventional fibers,
chromatic dispersion is minimal at 1300 nm while attenuation
is minimal at 1550 nm. This is illustrated by the crossover of
the LB0 lines for these wavelengths.

The use of dispersion-shifted fibers (DSFs) enables the overall
chromatic dispersion coefficient at 1550 nm to be reduced,
which in general makes operation at 1550 nm superior to
operation at 1300 nm.

Performance of an Analog Communication System

As with digital optical fiber communication links, the performance
of an analog link is limited by fiber attenuation and/or dispersion.
Because of fiber attenuation, the received signal is weakened and
may not be discernible in noise. Because of fiber dispersion, the
transmission bandwidth σf = 1/2πστ is limited so that high-
frequency signal components are attenuated more than low-
frequency components, resulting in signal degradation. Both of
these deleterious effects increase with increasing fiber length L. The
received optical power decreases exponentially with L, while the
fiber bandwidth is inversely proportional to L. Nonlinear optical
effects do not play a role in analog systems since the power is
distributed rather than concentrated in narrow pulses.

The maximum allowable length of an analog fiber link is
determined by ensuring that two conditions are met:
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The fiber attenuation must be sufficiently small so that the
received power is greater than the receiver power sensitivity Pr.

The fiber bandwidth σf must be greater than the spectral width
B of the transmitted signal.

As discussed in Sec. 19.6, the sensitivity of an analog optical receiver
is the smallest optical power required for the signal-to-noise ratio
(SNR) of the photocurrent to exceed a prescribed value, SNR0. For
an ideal receiver (with unity quantum efficiency and no circuit
noise), SNR =  = (P/hν)/2B, where B is the receiver bandwidth, 𝒫
is the optical power (W), and  is the average number of photons
received in a time interval 1/2B, which is regarded as the resolution
time of the system. If SNR0 is the minimum allowed signal-to-noise
ratio, the receiver sensitivity becomes 0 = SNR0 photons per
receiver resolution time, or its corresponding power

This is identical to (25.2-1) for the power sensitivity of an ideal
digital receiver if the resolution time of the analog system 1/2B is
equated with the bit time of the digital system 1/B0.

Because of the equivalence between (25.2-14) and (25.2-1), and
because of the applicability of the power budget equation (25.2-3) to
analog systems as well as digital ones, the LB0 relations set forth
earlier for the ideal binary digital system are also applicable for the
analog system, with B0 replaced by 2B, provided that the acceptable
performance level of the analog system is SNR0 = 10. As an
example, a 1-km fiber link capable of transmitting digital data at a
rate of 2 Gb/s with a BER not exceeding 10−9 can also be used to
transmit analog data of bandwidth 1 GHz with a signal-tonoise ratio
of at least 10.

In analog systems, however, the required signal-to-noise ratio is
usually far greater than 10, in which case the receiver sensitivity
must be far greater than 10 photons per receiver resolution time.



For high-quality audio and video signals, for example, a 60-dB
signal-to-noise ratio is often required. This corresponds to SNR0 =
106, or 0 = 106 photons per resolution time. Certain other design
considerations are also particularly important in analog systems.
For example, nonlinear behavior in the light source and
photodetector result in additional signal degradation and restrict the
dynamic range of the transmitted waveforms.

D. Attenuation and Dispersion Compensation and
Management
Attenuation Compensation

The performance of an attenuation-limited optical fiber
communication system may be significantly enhanced by making
use of optical fiber amplifiers placed at judicious locations within
the fiber link, as illustrated in Fig. 25.2-14. Amplifiers elevate the
diminished optical power, so that the received power can remain
above the receiver sensitivity for far greater fiber lengths. Indeed,
optical fiber amplifiers are invaluable components in long-haul
links, as exemplified by the enhanced performance offered by
System  in Fig. 25.2-4. The extent to which amplification can be
used is ultimately limited by the noise introduced by the amplifiers
themselves. However, before this limit is reached, dispersion often
takes over and the system becomes dispersion-limited. Dispersion
compensation is therefore an invaluable adjunct in long-haul optical
fiber communication systems that make use of optical amplifiers.

Figure 25.2-14 Compensation of attenuation by use of optical
fiber amplifiers.

Dispersion Compensation
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The pulse spreading introduced by propagation through an optical
fiber of length L and dispersion coefficient Dλ may be reversed by
making use of an auxiliary fiber, called a dispersion-
compensating fiber (DCF), with dispersion coefficient  of
opposite sign and length L′ selected such that the magnitudes of the
dispersion introduced by the two fibers are equal, i.e.,

The pulse spreading and compression introduced by an alternating
sequence of such fibers is illustrated in Fig. 25.2-15. The
compensating fiber is often relatively short so its dispersion
coefficient must be high. Since dispersion in conventional fibers is
positive for wavelengths above 1310 nm, the dispersion-
compensating fiber must have negative dispersion in this band. This
can be achieved by employing dispersion-shifted fibers (DSFs).

Figure 25.2-15 Dispersion compensation implemented by fiber
segments of opposite dispersion.

Other optical components may be used in place of DCFs. As
described in Sec. 23.2, the propagation of an optical pulse through a
dispersive medium is equivalent to a quadratic chirp filter, which is
a phase-only filter with a phase proportional to the square of the
frequency. A fiber of length L and dispersion coefficient Dλ behaves
as a quadratic chirp filter with chirp coefficient b = DλL. The effect
of this filter may be completely eliminated by making use of an



inverse compensation filter — another quadratic chirp filter with a
chirp coefficient of equal magnitude and opposite sign, b′ = −b. The
dispersion-compensating fiber plays such a role, but other optical
components, such as gratings and interferometers, may also be used
for this purpose (see Sec. 23.2).

The compensation filter may be placed at the transmitter end of the
link, thus pre-compensating the dispersion that is subsequently
introduced by the fiber. Alternatively, it may be placed at the
receiver end, thus postcompensating the broadened pulses
immediately before detection. More commonly, multiple
compensation filters are placed periodically within the link,
providing distributed compensation. Under linear propagation
conditions, the actual locations of the compensation filters are not
important. However, to avert deleterious nonlinear effects,
compensation filters are often placed at locations within the fiber
that obviate the presence of short pulses over extended distances.

Broadband Dispersion Compensation: Dispersion Management

For broadband communication systems, such as those that make
use of wavelength-division multiplexing (WDM), the condition for
dispersion compensation provided in (25.2-15) must be satisfied at
all wavelengths within the spectral band; i.e., the error eλ = DλL −
D′λL′ must be zero everywhere. Since the dispersion coefficients are
λ wavelength dependent, this condition is tricky to satisfy. Figure
25.2-16 illustrates a situation for which eλ = 0 at wavelength λ1 in
the middle of the band, where the compensation is perfect.
However, the positive value of eλ at wavelength λ2 corresponds to
net positive dispersion while the negative value of eλ at wavelength
λ3 corresponds to net negative dispersion.

Yet, if both Dλ and D′λ are approximately linear functions of λ with
the same slope, and if eλ = 0 at the central wavelength λ1, then eλ ≈
0 everywhere. The design of dispersion-compensating filters with
appropriate values of the dispersion coefficient and slope of its
wavelength dependence, is known as dispersion management.



This technique made possible the dramatic increase in system
capacity offered by WDM, as evidenced by System  in Fig. 25.2-4.

Figure 25.2-16 Perfect dispersion compensation at λ1; and
imperfect dispersion compensation, with net positive and negative
dispersion at λ2 and λ3, respectively. The error eλ vanishes if the
slopes of Dλ and D′λ are equal.

Electronic Dispersion Compensation

More recently, advances in digital signal processing and error
control coding have made electronic dispersion compensation
possible and have emerged as critical elements of optical fiber
communication systems. This is particularly true for digital
coherent systems, which employ WDM and rely on optimized digital
coding and electronic signal processing rather than on dispersion-
compensation sections. Digital coherent communications, shown as
System  in Fig. 25.2-4, is discussed in Sec. 25.4.

E. Soliton Optical Communications
The ultimate in dispersion compensation occurs naturally in optical
solitons. These non-spreading pulses have an intensity that is
sufficiently high so that the nonlinear optical properties of the fiber
play a principal role in their formation. As described in Sec. 23.5B,
optical solitons are pulses for which nonlinear dispersion (the
dependence of the phase velocity on the intensity via the optical
Kerr effect) completely compensates linear chromatic dispersion —
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the net result is that the pulse travels without altering its width or
shape. Moreover, the gain provided by a fiber amplifier can be used
to compensate for fiber attenuation so the pulse can maintain its
peak intensity and continue to travel as a soliton.

As expressed in (23.5-13), for a pulse of width τ0, peak intensity I0,
and free-space wavelength λo at its central frequency, the condition
for soliton formation is

Soliton Condition

where n2 is the optical Kerr coefficient and −β″ =( /2πco)Dλ is
proportional to the dispersion coefficient Dλ. The intensity profile of
the soliton is described by I(t)= I0 sech2(t/τ0), which is a bell-
shaped function with a FWHM of 1.76 τ0.

In a digital optical communication system, a soliton whose width τ0
is much smaller than the bit interval T represents state “1”, while
state “0” is represented by the absence of a soliton. This is
necessarily a return-to-zero (RZ) modulation format (Fig. 25.3-4).
Soliton communication systems are neither attenuation-limited nor
dispersion-limited. Rather, they are limited by nonlinear
intersymbol interference that results from the nonlinear interaction
between the tails of solitons that represent neighboring bits. When
two identical solitons separated by the bit interval T travel a
sufficiently long distance through the same fiber, they eventually
collapse and merge into a single pulse that subsequently splits again
into the original two solitons. In accordance with (23.5-32), this
process is repeated periodically with period

where r = T /τ0 is the ratio of the separation to the soliton width,
and 2z0 =  is the fiber dispersion distance.
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The period Lp increases exponentially with the ratio r. If r ≫ 1, i.e., if
the bit interval T is much greater than the soliton width τ0, then Lp
can be made much longer than z0. If the fiber length L is much
smaller than Lp, then the interaction between neighboring bits is
minimal. For a fixed ratio r, the condition L ≪ Lp may be written in
terms of the bit rate B0 = 1/T as

This places a limit on the ultimate distances and transmission rates
that are permitted. It is important to note that the dispersion
characteristics of existing fiber links are often not well-suited to
optical-soliton systems so the technology has not been avidly
pursued since the mid-1990s, as indicated by System  in Fig. 25.2-
4.



EXAMPLE 25.2-1. Soliton Optical-Fiber Communication
System. A soliton communication system transmits data at 10
Gb/s through a single-mode dispersion-shifted fiber at λ0 = 1550
nm using 10-ps (FWHM) soliton pulses. At this wavelength, the
dispersion coefficient Dλ = 1 ps/kmnm and the nonlinear
refractive index n2 = 2.6 × 10−20 m2/W. The fiber effective cross-
sectional area is Aeff = 60 μm2. We proceed to determine the
source optical power and the maximum length of the link. The
10-ps FWHM pulse width corresponds to a time constant τ0 =
10/1.76 = 5.7 ps. To satisfy the soliton condition (25.2-16), the
peak intensity is I0 = 3.75 × 108 W/m2, corresponding to a peak
power I0Aeff = 22.5 mW, which must be delivered by the source.
The fiber dispersion distance 2z0 = (2πco/ ) /Dλ ≈ 25 km.
Since the bit interval T = 1/B0 = 100 ps, the ratio r = T/τ0 = 17.6,
and the interaction period provided in (25.2-17) is Lp ≈ 2.1 ×
104z0. The fiber length must be much shorter than this length.
In this example, (25.2-18) provides  ≪ 26 m-Tb2/s2.

25.3 MODULATION AND MULTIPLEXING
A. Modulation
One way of classifying an optical communication system is in terms
of the particular optical variable (intensity, frequency, or phase)
that is modulated by the signal to be transmitted. Modulation takes
two principal forms: field modulation and intensity modulation.
Once the modulation variable is chosen, any of the conventional
modulation formats (analog, pulse, or digital) can be implemented.

Field modulation. The field of a monochromatic optical wave
serves as a sinusoidal carrier of very high frequency (e.g., 200 THz
at λo = 1500 nm). As a means of carrying information, amplitude



modulation (AM), phase modulation (PM), and frequency
modulation (FM) rely on modulation of the amplitude, phase, and
frequency of the field, respectively, in proportionality to the signal
(Fig. 25.3-1). Because of the high frequency of the optical carrier, a
very wide spectral band is available for the modulation so that a
great deal of information can be carried.

Figure 25.3-1 Amplitude modulation (AM) and frequency
modulation (FM) of the optical field.

Though modulation of the optical field is an obvious extension of
conventional radiowave and microwave communication techniques
to the optical band, it is somewhat difficult to implement for several
reasons:

It requires a source whose amplitude, frequency, and phase are
stable and free of fluctuations, e.g., a highly coherent laser.

Direct modulation of the phase or frequency of a laser is not
straightforward; an external modulator that makes use of the
electro-optic effect, for example, may be required.

Because of the assumed high degree of coherence of the source,
the use of single-mode fibers is often required; multimode
fibers may engender substantial modal noise unless special
measures are taken to separate the modes by use of
multiplexers/demultiplexers.

A mechanism for monitoring and controlling the polarization of
the field is required unless a polarization-maintaining fiber is
employed.



The receiver must be capable of measuring the magnitude and
phase of the optical field; this is often accomplished by making
use of a heterodyne or homodyne detection system.

Because of the requirement of a coherent field, optical
communication systems that make use of field modulation are
termed coherent communication systems. These systems are
discussed in Sec. 25.4.

Intensity modulation. In an intensity modulation (IM) system,
the optical intensity (or power) is imparted to the signal, or a coded
version thereof, in a proportional manner, as illustrated in Fig. 25.3-
2. The majority of commercial optical fiber communication systems
in current use employ intensity modulation because of its relative
simplicity and low cost. The optical power of an LED or laser-diode
source may be modulated by simply varying the injected drive
current. The fiber may be single-mode or multimode. The received
optical power impinges on a p–i–n photodiode or an avalanche
photodiode (APD) in what is called a direct-detection receiver.
The high-frequency optical field oscillations play no role in the
modulation and demodulation processes; it is the optical power that
is modulated at the transmitter and demodulated at the receiver.
Nevertheless, as we shall see in Sec. 25.3C, the wavelength of the
light can serve as a marker that allows many different signals to
travel through a single optical link via a process known as
wavelength-division multiplexing (WDM).

Figure 25.3-2 Intensity modulation (IM).

Digital modulation. An analog signal may be converted into a
digital signal by periodically sampling it at an appropriate rate. The
resulting samples are then quantized to a discrete finite number of
levels, each of which is binary coded and transmitted in the form of



a sequence of binary bits, “1's” and “0's”, represented by pulses
transmitted within the time interval between two adjacent samples
(Fig. 25.3-3). This scheme is known as pulse code modulation
(PCM).

Figure 25.3-3 An example of pulse code modulation (PCM). A 4-
kHz voice signal is sampled at a rate of 8 × 103 samples per second.
Each sample is quantized to 28 = 256 levels and represented by 8
bits. The original analog signal is thus converted into a sequence of
bits transmitted at a rate of 64 kb/s.

In a binary coding system such as that illustrated above, the two
states of each bit may be represented by two values of the optical
amplitude, phase, or frequency, in which case the modulation
scheme is known as amplitude shift keying (ASK), frequency
shift keying (FSK), and phase shift keying (PSK), respectively.
ASK modulation is also known as ON–OFF keying (OOK) when
each bit is represented by the presence or absence of a pulse of light.
These modulation schemes are illustrated in Fig. 25.3-4. Systems
based on optical intensity modulation typically use OOK. However,
it is also possible to modulate the optical intensity with a harmonic
function that serves as a subcarrier whose frequency or phase is
modulated using FSK or PSK. Field modulation with PSK is widely
used in wireless networking over short distances, e.g. in wireless
local area networks (WLANs), in radio frequency identification
(RFID), and in Bluetooth technology.



Figure 25.3-4 Examples of the binary modulation of light: (a)
ON–OFF keying intensity modulation (OOK/IM); (b) frequency
shift keying (FSK) and phase shift keying (PSK) field modulation.

Advances in high-speed electronics and digital signal processing
have enabled multilevel coding, which offers higher spectral
efficiency [(b/s)/Hz] than binary coding. In such systems, each
pulse (symbol slot) represents multiple bits. As an example, in
binary PSK (BPSK), the phase can assume only two values (0, π),
representing one bit, whereas in quaternary (or quadrature) PSK
(QPSK), four phase values (0, π/2, π, 3π/2) serve to encode two bits,
as depicted in the complex-plane diagram depicted in Fig. 25.3-5,
which is also called the quadrature diagram. QPSK transmits the
same information at half the symbol rate of BPSK. For higher-order
PSK, data are coded by a constellation of points in the quadrature
diagram that are separated by equal angles. Other variations of PSK
include differential PSK (where it is the data change, rather than
the data, that sets the phase. The differential approach avoids any
ambiguity that might be imparted by an unintended rotation of the
constellation introduced in the transmission channel. Differential
QPSK is denoted DQPSK.



Figure 25.3-5 Constellations for BPSK (1 bit), QPSK (2 bits; also
called 4-QAM), and 8-QAM (4 bits). The symbols I and Q denote the
in-phase and quadrature components of the complex amplitude,
which are the real and imaginary components, respectively.

Combined amplitude and phase shift keying permits a larger
number of bits per symbol to be attained, as may be understood
from the constellations of points in the complex plane shown in Fig.
25.3-5. The terminology quadrature amplitude modulation
(QAM) is used to indicate that each of the quadratures of the optical
field may assume multiple amplitudes. Thus, 4-QAM is the same as
QPSK since each of the two quadratures has two values of the
amplitude. The constellation of the 8-QAM system, which is a 4-bit
system, is also provided in Fig. 25.3-5. Constellations for 16-QAM,
and so on, are constructed in the same manner.

B. Multiplexing
Multiplexing enables the transmission and retrieval of more than
one signal through the same communication link, as illustrated in
Fig. 25.3-6. This is accomplished by marking each signal with a
distinct physical label or a code that may be identified at the
receiver. We begin this section with a discussion of electronic
multiplexing, which comprises three standard schemes:
frequency-division multiplexing (FDM), time-division
multiplexing (TDM), and code-division multiplexing (CDM).



Figure 25.3-6 Transmission of N signals through the same
channel by use of a multiplexer (MUX) and a demultiplexer
(DMUX).

Frequency-division multiplexing (FDM). In FDM, carriers of
distinct frequencies are modulated by a collection of signals. At the
receiver, the individual signals are identified by making use of
filters tuned to the carrier frequencies, as illustrated in Fig. 25.3-
7(a).

Figure 25.3-7 (a) In frequency-division multiplexing (FDM), a
spectral band centered about a distinct frequency is allocated to
each signal. (b) In time-division multiplexing, a sequence of time
slots is allocated to each signal. The time slots of different signals
are interleaved.

Time-division multiplexing (TDM). In TDM, data are
transmitted in a sequence of time frames, each with a set of time
slots allocated to bits or bytes of the different signals, as illustrated
in Fig. 25.3-7(b). These bits must be synchronized to the same clock.
At the receiver, each signal is identified by its time-slot location
within the frame. An example of a hierarchical TDM system is the
T-system illustrated in Fig. 25.3-8.



Figure 25.3-8 Hierarchy of the T-system originally developed by
the Bell telephone system for transmitting voice signals via time-
division multiplexing. A set of 24 4-kb/s signals are multiplexed by a
time-division multiplexer that generates a T1 composite signal at
1.544 Mb/s. Four such signals are multiplexed to generate a T2
signal, and so on, as illustrated in the figure.

Code-division multiplexing (CDM). In CDM, each signal is
assigned an address code (or key) in the form of a unique function
of time defined within the bit period. The code can be a sequence of
one/zero bits generated at a rate far higher than that of the original
data. Codes of different signals must be uncorrelated (orthogonal)
so that they can be separated at the receiver by use of a correlator.
In the particular encoding scheme illustrated in Fig. 25.3-9, each bit
“1” of the original data is replaced with the code sequence. Each
receiver correlates its own code with that of the received signal,
thereby locking it only to those bits associated with its own code
and permitting it to disregard all other bits.

Figure 25.3-9 An example of CDM encoding.

Electronic versus optical multiplexing. As portrayed in Fig.
25.3-10, multiplexing may be electronic or optical. In electronic
multiplexing, as discussed above, the signals are multiplexed via
FDM, TDM, or CDM to generate a composite electronic signal that



is used to modulate the light source via any of the optical
modulation schemes discussed in Sec. 25.3A. For example, an FDM
electronic signal may be generated by making use of a set of carrier
frequencies, called “subcarriers,” to modulate the intensity of the
light source (IM). At the receiver, the light is detected and the
demultiplexing is carried out by using electronic filters. In another
example, a TDM electronic signal such as the T4 signal shown in
Fig. 25.3-8 intensity modulates the light source; demultiplexing of
the detected signal is accomplished electronically.

Figure 25.3-10 (a) Electronic multiplexing. (b) Optical
multiplexing.

In optical multiplexing, on the other hand, the labels
distinguishing the multiplexed signals are optical in nature. In
optical FDM, for example, a collection of optical frequencies are
used as the carriers of the various signals. These frequencies are
separated at the receiver by means of optical filters. When the
carrier frequencies in optical FDM are sufficiently widely spaced
(say, greater than 20 GHz), this form of optical FDM has come to be
called wavelength-division multiplexing (WDM), as discussed
in Sec. 25.3C. Systems employing WDM are extensively used since
they allow the capacity of an existing fiber network to be expanded
without the necessity of deploying additional fiber. Another form of
optical multiplexing is space-division multiplexing (SDM),
discussed in Sec. 25.3D, in which the labels that distinguish the
multiplexed signals are associated with the spatial modes of optical
fibers, including polarization modes.

C. Wavelength-Division Multiplexing
A wavelength-division multiplexing (WDM) system makes
use of a collection of light sources of different wavelengths, each of



which is intensity modulated by a different electrical signal. The
modulated light beams are combined and launched into a fiber
using an optical multiplexer (OMUX). Demultiplexing is
implemented at the receiver with the help of an optical
demultiplexer (ODMUX), which serves to separate the different
wavelengths and direct them to different detectors. Optical
multiplexers and demultiplexers were described in Sec. 24.2A. The
electrical signal associated with each wavelength is often an
electronically multiplexed set of other signals, so that electronic
demultiplexing is required at the receiver. The overall system
schematic of such a configuration is illustrated in Fig. 25.3-11.

Figure 25.3-11 Wavelength-division multiplexing (WDM). A set of
electronically multiplexed data-carrying signals are converted into
an optical signal by modulating an optical source of a particular
wavelength (E/O). Collections of such modulated optical sources at
different wavelengths are optically multiplexed (OMUX) and
launched into a single optical fiber. At the receiver end, the signals
are optically demultiplexed (ODMUX). The optical signal at each
wavelength is converted into an electrical signal by use of a
detector/demodulator (O/E) and then electronically demultiplexed.

The spectral bands used in modern optical fiber communication
systems are displayed in Fig. 25.3-12. WDM systems can make use
of any combination of wavelengths within these bands. The spacing
between the wavelengths of the different channels must be greater
than the spectral widths of the modulated light in each channel,
which are determined by the linewidths of the light sources as well
as by the bandwidths of the data carried by the channels. The
channel spacing must also be large enough to permit optical



multiplexing and demultiplexing with minimal crosstalk among
channels.

Figure 25.3-12 A 40-channel DWDM system with channel
spacings of 100 GHz in the C spectral band. The curve represents
the attenuation coefficient (dB/km) of silica-glass fibers with
suppressed OH absorption. Fiber attenuation is minimized in the
wavelength region corresponding to the C band. The bands
commonly used in WDM systems are denoted O = Original, E =
Extended, S = Short, C = Conventional, L = Long, and U = Ultra-
long, as detailed in Fig. 25.1-2.

WDM systems are classified into two categories, coarse and dense,
depending on the number of channels and the channel spacing.

Coarse WDM (CWDM) systems use a few channels with
widely spaced wavelengths (20 nm or more). They are typically
used in short-range communications and do not make use of
amplification. An example is a system with two wavelengths,
one at 1310 nm and another at 1550 nm. CWDM is used in
cable television networks, where different wavelengths are used
for the downstream and upstream signals. The Ethernet LX-4
physical layer standard provides another example in which four
wavelengths near 1310 nm are used, each carrying a 3.125-Gb/s



data stream. The standardization of 100G and 400G ethernet is
upon us. Metropolitan networks employ CWDM systems with a
20-nm wavelength spacing.

Dense WDM (DWDM) systems have a large number of
channels (generally more than 16) with closely spaced
wavelengths. Such systems are used in long-haul transmission
and often make use of amplification. DWDM tends to be used
at a higher level (and at higher data rates) in the
communications hierarchy, for example, on the internet
backbone. Implementation requires the use of precision lasers
to prevent wavelength drift. At a wavelength of 1550 nm in the
C-band, for example, a frequency spacing of Δν = 200 GHz
corresponds to a wavelength spacing Δλ = ( )Δν = 1.6 nm.
DWDM systems use channel spacings as small as 50 GHz, or
sometimes even 20 GHz, corresponding to wavelength spacings
of 0.4 nm and 0.16 nm, respectively. As illustrated in Fig. 25.3-
12, the width of the C-band is 35 nm, or approximately 4.4 THz.
This can hold 40 channels with a 100-GHz (0.8 nm) spacing.
More channels may be accommodated by expanding beyond the
C-band and reducing the channel spacing. As an example,
making use of the C+L-bands, whose combined width is ≈ 9
THz, and channel spacings of 20.3 GHz, will accommodate 441
channels.

WDM for wideband multimode fibers at 800–900 nm
accommodates short-haul applications such as data
communications at rates exceeding 100 Gb/s. The MMFs use GRIN
profiles optimized to reduce modal and chromatic dispersion,
thereby doubling the 10 Gb/s rate of the OM4 fiber. VCSELs with
few emission lines in the 800–900-nm band are used as sources for
few-channel WDM systems.

D. Space-Division Multiplexing
The data rate carried by a fiber-optic cable may be increased by
making use of a fiber bundle (FB) within the same cable or by



making use of a multicore fiber (MCF) comprising multiple,
well-separated cores within the same fiber cladding, each providing
an independent communication channel [Fig. 25.3-13(a)]. Cables
can contain tens or hundreds of fibers. However, such
configurations require multiple systems for transmission,
amplification, and reception, as well as multiple splices that require
a great deal of mechanical precision in the event of a cable break.
Moreover, they typically need to be deployed from scratch.

Figure 25.3-13 (a) Multiple communication channels in a fiber
bundle (FB) or in a multicore fiber (MCF) with well-separated
cores. (b) Space-division multiplexing (SDM) using spatial modes of
a multimode fiber (MMF) or modes of a MCF with coupled cores.

It is worth considering whether a more compact configuration
might be envisioned while reducing the downside. It turns out that
data rates can indeed be increased by implementing space-
division multiplexing (SDM) using either the spatial modes of
one multimode fiber (MMF) or the coupled-core modes of a
multicore fiber (MCF) [Fig. 25.3-13(b)]. The spatial modes of a
MMF can provide independent communication channels, but
implementing such a system requires the use of multiplexing and
demultiplexing since the modes occupy a common physical volume.
Similarly, a MCF whose cores are in close physical proximity can be
used for data transmission, but this too requires the use of
multiplexing and demultiplexing since the set of coupled cores
support supermodes that occupy a common region of space. We
proceed to discuss the implementation of SDM in a multimode
fiber.

SDM in Multimode Fibers
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As described in Sec. 10.2A, a step-index MMF of core radius a and
numerical aperture NA has M ≈ ½ V2 modes, where V = (2πa/λo)
NA is the fiber V parameter. As is evident from Fig. 10.2-5, a fiber
with V = 10 supports approximately 50 modes. The optical field is
generally expressed as a weighted superposition of these modes

where aq, βq, and uq(r, ϕ) are, respectively, the complex amplitude,
propagation constant, and transverse spatial distribution of the qth
mode. For simplicity, we use the integer q = 1, 2, ..., M in lieu of the
mode double indices (l, m). The amplitudes {aq}, which carry the
transmitted information in a SDM system, are imparted to the MMF
by a multiplexer at the transmitter (z = 0) and extracted from the
total received optical field by a demultiplexer at the receiver
terminus (z = L), as illustrated in Fig. 25.3-14.

Figure 25.3-14 Space-division multiplexing (SDM) in a multimode
fiber (MMF) using an optical multiplexer (OMUX) and an optical
demultiplexer (ODMUX). The signals on M single-mode optical
fibers (SMFs) are multiplexed into M modes of the MMF.

Since the modes are orthonormal, i.e.,  (r, ϕ) uq′ (r, ϕ) rdrdϕ =
δqq′ , the amplitudes of the individual modes may be calculated from
the total field at z = L by use of the projections (see Appendix C)



Therefore, if the total optical field U(r, ϕ, L) were measured at the
terminus, in both its magnitude and phase, the complex amplitudes
{aq} of the modes would be determined. However, such a
measurement requires a fast coherent wavefront sensor, which is
not available, so we resort to less direct approaches.

SDM multiplexers and demultiplexers. The optical multiplexer
(OMUX) and demultiplexer (ODMUX) for SDM may be
implemented by selective optical couplers, assisted by
computational signal-processing tools, as described by the following
examples:

Mode conversion. An optical system that implements the
OMUX depicted in Fig. 25.3-14 converts the incoming SMF
optical beams, all of which have the spatial profile of the
fundamental mode and amplitudes {aq}, into beams whose
spatial profiles are proportional to those of the MMF modes
uq(r, ϕ). As illustrated in Fig. 25.3-15(a), the beams are optically
combined into a single beam corresponding to the
superposition in (25.3-1) and coupled into the MMF using a
single input coupler. Since each spatial profile is excited by only
the matching input profile, the modes of the MMF acquire
amplitudes proportional to {aq}. The key element of this
multiplexer is the mode converter, which is implemented by
means a phase plate, a spatial light modulator, or a hologram
(see Sec. 4.5). Though it offers a didactic example, this type of
multiplexer introduces high optical loss and crosstalk.

Multiple directional couplers with matching
propagation constants. A directional coupler couples the
mode of a SMF to a mode of a MMF if the propagation
constants are matched (see Sec. 9.4B), even if the modal spatial
profiles differ. An optical multiplexer/demultiplexer based on
this principle may be implemented by using a bank of
directional couplers of different dimensions designed to



selectively launch a particular mode of the MMF for each of the
incoming/outgoing SMFs, as illustrated in Fig. 25.3-15(b).

Single fused coupler. A single fiber coupler with M identical
SMFs at its input, and one MMF supporting M modes at its
output, may be used as a multiplexer/demultiplexer. Each of
the SMFs carries light with the profile of its fundamental mode,
but is positioned in relation to the output MMF such that it
excites a small group of MMF modes in accordance with a
coupling matrix. An example of a fused coupler is the
photonic lantern described in Sec. 10.2D and displayed in
Fig. 25.3-15(c). Since the fused coupler is reciprocal it can be
used in reverse as a demultiplexer. Each output SMF then
receives light from a group of modes of the MMF in accordance
with another coupling matrix.

Figure 25.3-15 Optical multiplexer (OMUX) examples for space-
division multiplexing (SDM). (a) OMUX using mode converters
(MC) and beam combining by means of beam splitters. (b) OMUX
using multiple directional couplers with propagation constants
matched to the MMF modes. (c) Photonic lantern OMUX. The
multiplexers in (b) and (c) can be used in reverse as demultiplexers.

Crosstalk and MIMO systems. Since multiplexers and
demultiplexers are not perfect, the complex amplitudes of the
modes detected by the receivers do not have one-to-one
correspondences with those at the transmitter, and are instead
described by coupling matrices at both ends. Additional mode



(25.3-3)

coupling is introduced by the fiber itself as a result of slight
variations along its length caused by fabrication errors or by micro
and macro fiber bending. Small distortions of the circular symmetry
of the fiber cross-section also result in coupling between the
degenerate modes, which have equal propagation constants under
ideal conditions. Mode coupling is a challenging obstacle to
implementing SDM although it can be overcome.

In the absence of nonlinear optical effects, the modal amplitudes
{bq} at the receiver output are related to the modal amplitudes {aq}
at the transmitter input by the linear relation

where the qp are the elements of an M × M coupling matrix. This
matrix is in turn the product of three matrices: the coupling matrix
of the multiplexer, the modal coupling matrix of the fiber, and the
coupling matrix of the demultiplexer. While the multiplexer and
demultiplexer coupling matrices can be measured, the modal
coupling matrix of the fiber has intrinsic randomness and can only
be described statistically. Moreover, elements of the overall
coupling matrix are frequency-dependent because of modal and
material dispersion, so that they represent a dynamical system that
includes differential modal delay. Nevertheless, these effects may be
compensated by making use of signal-processing tools similar to
those employed in wireless systems, which are subject to multiple
paths among transmitters and receivers, and are known as multiple-
input multiple-output (MIMO) systems.

SDM in multicore fibers. MCF SDM is implemented by making
use of a similar approach. If each of the cores supports a few modes,
then the system may be described in terms of a matrix representing
a combination of intra-core mode coupling and inter-core coupling.
For strong core coupling, the overall system may be also be
described in terms of supermodes (see Sec. 10.2D).



25.4 COHERENT OPTICAL
COMMUNICATIONS
Coherent optical communication systems make use of field
modulation (amplitude, phase, or frequency) rather than intensity
modulation. They employ coherent light sources, single-mode or
multimode fibers, and heterodyne or homodyne optical receivers.
Coherent optical fiber communication systems were initially
pursued in the late 1980s because of their superior sensitivity but
were largely bypassed in the early 1990s because of the invention of
the erbium-doped fiber amplifier, which enabled the sensitivity of
direct-detection systems to come within a few dB of that of coherent
systems.

The resurgence of interest in coherent optical fiber systems,
fostered by advances in high-speed electronics and digital signal
processing, has led to increased spectral efficiency and enhanced
transmission capacity. We proceed to examine the principles of
operation of such systems and to compare their performance with
that of direct-detection systems. We also touch on the requirements
for components employed in coherent systems. Coherent systems
also find application in free-space optical communications.

As discussed in Sec. 19.1B, photodetectors are responsive to the
photon flux and, as such, are insensitive to optical phase.
Nevertheless, it is possible to measure the complex amplitude (both
magnitude and phase) of a signal optical field by mixing it with a
coherent reference optical field of stable phase, called a local
oscillator (LO). As illustrated in Fig. 25.4-1, the two waves are
superposed (mixed) before impinging on the photodetector. As a
consequence of interference of the two fields, information
pertaining to both the amplitude and phase of the signal field is
registered in the detected electric current.

This detection technique is known as coherent detection, in
contrast to direct detection (DD), which was considered earlier in
this chapter. Coherent optical detection is also called optical
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mixing, photomixing, or light beating (see Sec. 2.6B). The
coherent optical receiver is the optical equivalent of the
superheterodyne radio receiver. When the signal and local-oscillator
waves have different frequencies (ωs and ωL, respectively), the
technique is called optical heterodyning whereas it is referred to
as optical homodyning when ωs = ωL.

Figure 25.4-1 Coherent optical detection. A signal wave of
frequency ωs is mixed with a local oscillator wave of frequency ωL
using (a) a beamsplitter, or (b) an optical coupler. The detector
photocurrent varies at the difference frequency ωI = ωs − ωL.

Heterodyne Receiver

Let εs = Re{Es exp(jωst)} be the signal optical field, with Es = |Es|
exp(jφs) its complex amplitude and ωs its angular frequency. The
magnitude |Es| (or the phase φs) is modulated by the signal at a rate
much slower than that of ωs. The local oscillator field is similarly
described by εL, EL, ωL, and φL. The two fields are mixed using a
beamsplitter or an optical coupler, as depicted in Fig. 25.4-1, so that
the total field is the sum of the constituent fields: ε = εs + εL. If the
incident fields are perfectly parallel plane waves and have the same
polarization, the spatial dependence need not be carried along in the
calculations. Taking the absolute square of the sum of the two
complex waves then leads to
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where ωI = ωs − ωL is the difference frequency, also called the
intermediate frequency. Since the intensities Is, IL, and I are
proportional to the absolute-squared values of the complex
amplitudes, we arrive at

which accords with (2.6-12). From a photon-optics point of view,
this process can be understood in terms of the detection of
polychromatic (two-frequency) photons (see Prob. 13.1-11).

The optical power P at the photodetector is the integral of the
intensity over the detector area, so that

where Ps and PL are the powers of the signal and the LO beams,
respectively. Misalignment between the directions of the two waves
washes out the interference term [the third term of (25.4-3)], since
the phase φs − φL then varies sinusoidally with position across the
area of the detector. As is readily understood from Fig. 2.5-4, this
undesirable result can be avoided by keeping the angle θ between
the wavefronts sufficiently small, such that θ ≪ λ/a, where a is the
size of the photodetector aperture.

If the signal and local oscillator beams are sufficiently close in
frequency, their difference ωI will be many orders of magnitude
smaller than the individual frequencies ωs and ωL. The superposed
light is then quasi-monochromatic and the total photon flux Φ =
P/h  is proportional to the optical power, where  = /2π and  = 
1

2
 (ωs + ωL). In accordance with (19.1-4), the photocurrent i

generated in a photodetector is proportional to the incident photon
flux Φ via i = ηeΦ, where e is the electron charge and η the detector
quantum efficiency. The mean photocurrent is hence  =(ηe/h )P,
which provides
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Photomixing Current

Here s = ηePs/hν and L = ηePL/hν are the photocurrents generated
by the signal and LO individually.

The local oscillator is usually made much stronger than the signal,
in which case the first term in (25.4-4) can be neglected. The second
term is constant and the useful information is carried by the third
term, which oscillates at the difference frequency ωI . With
knowledge of L and φL, the amplitude and phase of this term can be
determined, and s and φs estimated, from which the intensity and
phase (and hence the complex amplitude) of the measured optical
signal can be inferred. The information-containing signal variables 
s or φs are usually slowly varying functions of time in comparison
with ωI , so they act as slow modulations of the amplitude and
phase of the harmonic  cos(ωI t − φL), respectively. The
amplitude-and phase-modulated current can be demodulated by
drawing on the conventional techniques used in AM and FM radio
receivers.

Balanced Homodyne Receiver

The homodyne system is a special case of the heterodyne system for
which ωs = ωL and ωI = 0. The demodulation process is different for
homodyning than for heterodyning, however. For the homodyne
system, a phase-locked loop is used to lock the phase of the LO so
that φL = 0, whereupon (25.4-4) yields

A balanced homodyne receiver, also called a balanced mixer,
is a coherent receiver designed to cancel the first two terms of (25.4-
5). As illustrated in Fig. 25.4-2, the optical fields of the signal and
LO are mixed at a beamsplitter (or directional coupler).
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Figure 25.4-2 The balanced homodyne receiver detects the
intensity of the sum of the signal and local oscillator fields in one
arm (+) and the intensity of their difference in the other (−). The
resulting photocurrents are then subtracted electronically, yielding
a net current that contains the signal information. (a) Beam-splitter
implementation. (b) Optical-coupler implementation.

Since the phase difference between the waves at the two output
ports of the beam-splitter differs by π (see Sec. 2.5A), one output
branch contains the sum of the two fields whereas the other branch
contains their difference. The detected currents  ± = s + L ± 

 cos φs are then electronically subtracted, which gives rise to

The balanced homodyne mixer thus exhibits two advantages over
the heterodyne system: (1) Random fluctuations in the intensity of
the local oscillator [the second term of (25.4-5)] are canceled; and
(2) the information-carrying signal [the third term] is multiplied by
two.

A phase-diversity balanced homodyne receiver comprises a
pair of balanced homodyne receivers that use local oscillators with
phases φL and φL − π/2, which generate electric currents  = 
cos(φs − φL) and  =  sin(φs − φL), respectively. With the
phase-lock suppression of φL, the mixers thus provide the in-phase
and quadrature components of the complex field, I ∝  cos φs and
Q ∝  sin φs, respectively.

Advantages and Disadvantages of Coherent Receivers



In comparison with their direct-detection counterparts, coherent
receivers have the following advantages:

They are capable of measuring the complex optical field,
including its phase and frequency, thereby enabling field-
modulation communication systems with their attendant
increase in spectral efficiency.

By making use of a strong local oscillator field, coherent
receivers offer inherently noiseless conversion gain that
effectively amplifies the signal above the circuit noise, as will
become apparent subsequently.

Coherent receivers offer a 3-dB advantage in signal-to-noise
ratio over even noiseless direct-detection receivers, as will be
shown shortly.

Coherent receivers are insensitive to unwanted background
light since the local oscillator does not mix with it.

Coherent receivers offer one of the few ways of attaining
photon-noise-limited detection in the infrared region of the
spectrum, where background noise is prevalent.

Access to the complex optical field permits the use of electronic
equalization to compensate for signal impairments introduced
by the communication channel, such as chromatic dispersion
and polarization mode dispersion, which result in pulse
broadening in optical fibers (see Sec. 10.3B). Moreover,
nonlinear distortions introduced in fibers can be compensated
by digital signal processing.

The principal disadvantage of the coherent receiver centers on
its more stringent requirements. Coherent systems require a
stable, low-noise source of narrow bandwidth; a stable local
oscillator; an optical mixer in which the superposed fields must
be precisely aligned; and circuitry for phase locking and
ancillary functions.



Coherent Communication Systems

The schematic diagram of a basic coherent optical fiber
communication system that makes use of phase modulation and a
balanced homodyne receiver is displayed in Fig. 25.4-3. An essential
condition for proper mixing of the local oscillator and received
optical field is that they be locked in phase, parallel, and have the
same polarization. This places stringent requirements on the
components of the system. The lasers must be single-frequency and
have minimal phase and intensity fluctuations. The local oscillator
must be phase-locked to the received optical field by means of a
phase-locked loop that adaptively adjusts its phase and frequency.
The fiber should generally be single-mode (to avoid modal noise)
and polarization-maintaining (or the receiver should contain an
adaptive polarization-compensation system).

Figure 25.4-3 Coherent optical fiber communication system. The
signal is phase modulated using a Mach–Zehnder modulator
(MZM). The balanced mixer uses a tunable DFB laser and a phase-
locked loop.

A more sophisticated optical fiber communication system is
portrayed in Fig. 25.4-4. This system relies on quadrature-PSK
(QPSK or 4-QAM) coding (see Sec. 25.3A) and a phase-diversity
balanced homodyne receiver. At the transmitter (Tx), light from a
laser is split into two branches containing Mach–Zehnder phase
modulators that can introduce phase shifts of 0 or π. The upper
branch represents the in-phase component I while the lower
branch, which includes an additional phase shift of π/2, represents
the quadrature component Q. The phase of the transmitted field can



thus take on one of four values (0, π/2, π, 3π/2), representing two
bits per symbol. At the receiver (Rx), the laser serving as a local
oscillator is split into two branches that feed two balanced mixers.
The phase of the Q branch is shifted by π/2. The signals generated
by the upper and lower mixers are hence proportional to |Es + EL|2

−|Es − EL|2 and |Es + jEL|2 −|Es − jEL|2, corresponding to detected
currents proportional to cos φs and sin φs, respectively, so that the I
and Q (cosine and sine) components of the signal field are
recovered. The system employs a phase-locked loop (not shown)
that maintains the LO phase φL at zero.

Figure 25.4-4 QPSK coherent optical fiber communication system.
The transmitter (Tx) employs two Mach–Zehnder modulators
(MZMs) to phase modulate the in-phase (I) and quadrature (Q)
components of the complex field. The receiver (Rx) uses two
balanced homodyne mixers and a laser local oscillator to recover I
and Q.

A coherent optical fiber communication system implemented in the
late 1980s typically operated at λo = 1550 nm with a bit rate below 1
Gb/s. The vast strides made over the years in high-speed electronics
and digital signal processing, along with the use of spectrally
efficient coding, have led to bit rates that are now many orders of
magnitude greater. A system in current use might make use of 16-
QAM or 64-QAM coding, a per-channel bit rate of 100 Gb/s, and
hundreds of channels across the C+L-bands to yield an overall bit



(25.4-7)

(25.4-8a)

(25.4-8b)

rate of tens of Tb/s (System  in Fig. 25.2-4). Experiments have
been carried out that make use of more advanced coding, such as
2048-QAM, with the potential of achieving far higher overall bit
rates.

Performance of Analog Coherent Communication Systems

Heterodyne detection is useful whenever the phase of an optical
field is to be measured. It turns out that heterodyne detection is
also useful for measuring optical intensity because it provides a
form of amplification when the local oscillator is strong. This
amplification is known as conversion gain since it converts some
of the local-oscillator power into gain for the signal, as will become
apparent below. Coherent detection thus offers an alternative to
both optical amplification (Secs. 15.3 and 18.2) and
avalanchephotodiode gain (Sec. 19.4). Indeed, heterodyne detection
exhibits a signal-to-noise ratio advantage relative to direct detection,
as we now demonstrate.

The mean photocurrent  generated in the photodiode of an optical
receiver is accompanied by noise whose variance comprises two
terms:

where B is the receiver bandwidth. The first term represents the
photocurrent shot noise [see (19.6-8)] while the second term
represents current noise contributed by the receiver circuitry [see
Sec. 19.6C]. When heterodyning is used and the local oscillator is
sufficiently strong, such that L ≫ s and 2e LB ≫ , the
photomixing current and receiver noise variance, set forth in (25.4-
4) and (25.4-7), respectively, can be approximately written as



(25.4-9)

(25.4-10)

(25.4-11)

In the case of amplitude modulation, the signal is represented by
the RMS value of the sinusoidal waveform in (25.4-8a), so the
phase is of no significance. The electrical signal power is therefore 

 while the noise power is  = 2e LB, so the power
signal-to-noise ratio can be written as

If  = /2Be is the mean number of photoelectrons observed in the
receiver resolution time T = 1/2B (as derived in Sec. 19.6A), then
(25.4-9) becomes

Signal-to-Noise Ratio Heterodyne Receiver

The presence of the strong local oscillator has thus rendered the
SNR independent of both the magnitude of the LO and the presence
of circuit noise. The conversion gain has served to effectively
amplify the signal above the circuit noise.

By way of comparison, the SNR of a direct-detection photodiode
receiver with the same signal current s is given by (see Sec. 19.6)

which accords with (19.6-40), where  = (σr/2Be)2 is the circuit-
noise parameter defined in (19.6-34). For large signal current or
small circuit noise , the direct-detection result in (25.4-11)
reduces to SNR = .

The principal advantage of the coherent-detection system is
apparent. The heterodyne system, with SNR = 2 , offers a factor of
2 (or 3-dB) advantage over the direct-direction system. For weak
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light (or large circuit noise) the advantage is even greater: the SNR
of the direct-detection system is further reduced by circuit noise to 

, whereas the SNR of the heterodyne system remains
at 2 . Moreover, an avalanche photodiode incorporated into a
direct-detection system does not help matters. When the APD gain
is sufficiently large so that it overcomes circuit noise, in accordance
with (19.6-39) we obtain

where F is the APD excess noise factor (F > 1). Even a noiseless APD
receiver (F = 1) provides a result that is a factor of 2 inferior to that
of the heterodyne receiver.

Performance of Digital Coherent Communication Systems

We now proceed to examine in turn the performance and sensitivity
of digital coherent communication systems that makes use of
amplitude and phase modulation.

ON–OFF keying (OOK) homodyne system. Consider an ON–
OFF keying (OOK) system that transmits data at a rate B0 b/s and
uses a homodyne receiver. The logic states “1” and “0” are
represented by the presence and absence of the signal s during the
bit time T = 1/B0, respectively. Assuming that the local oscillator is
strong, and that φs = φL = 0 and ωI = ωs − ωL = 0, the measured

photocurrent exhibits the following means μ1,0 and variances , as
provided by (25.4-8a) and (25.4-8b):

The receiver bandwidth B = B0/2 since the bit time T = 1/B0 is the
sampling time 1/2B for a signal of bandwidth B. Figure 25.4-5(a)
offers a graphical depiction of the distance μ1 − μ0 in relation to the
RMS noise σ1 = σ0 = σ for the OOK constellation diagram.
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The performance of a binary communication system under the
Gaussian approximation was considered in Sec. 19.6E. As provided
in (19.6-58) and (19.6-59), the bit error rate is given by

where Q =(μ1 − μ0)/(σ1 + σ0). Using (25.4-13) thus leads to

where  = s/2eB is the mean number of detected photoelectrons
for state “1”. For a bit error rate BER = 10−9, we obtain Q ≈ 6 and
therefore  = 36, corresponding to a receiver sensitivity 0 = ½  =
18 photoelectrons per bit (averaged over both logic states).

Binary phase shift keying (BPSK) homodyne system. For a
binary PSK (BPSK) system, logic states “1” and “0” are represented
by phase shifts φs = 0 and π, respectively, as illustrated in Fig. 25.4-
5(b). Assuming that φL = 0 and ωI = ωs − ωL = 0 in (25.4-8), the
means and variances of the photocurrent for states “1” and “0” are,
respectively,

In this case, therefore, we obtain

which is a factor of 2 greater than that in the OOK case. This is also
evident by comparing the constellation diagrams in Figs. 25.4-5(a)
and (b). Again, a BER = 10−9 leads to Q ≈ 6, but now  = 9. Since
each of the two logic states of the bit must carry an average of nine
photoelectrons in this case, the average number of photoelectrons
per bit is 0 =  = 9. We conclude that the receiver sensitivity is 9



photoelectrons/bit and that the BPSK homodyne receiver is hence
twice as sensitive as the OOK homodyne receiver — it requires half
the number of photoelectrons to achieve the same BER.

Figure 25.4-5 Constellation diagrams for OOK, BPSK, and QPSK
homodyne systems. The red circle represents noise.

Quadrature phase shift keying (QPSK) homodyne system.
As a final example, we consider the sensitivity of a homodyne
quadrature-PSK (QPSK) system, and demonstrate that it turns out
to be 9 photoelectrons per bit as well. This can be established by
comparing the constellation diagrams presented in Figs. 25.4-5(b)
and (c). The distance μ1 − μ0 between the nearest points in the
QPSK constellation is smaller than that between the nearest points
in the BPSK constellation by a factor of , while the noise σ is
the same. Again, a BER = 10−9 leads to Q = 6, but in this case Q = 

 so that  = 18. In QPSK, however, each symbol corresponds to
two bits so that the number of photoelectrons per bit 0 = /2 = 9,
which is the same result as that for the BPSK homodyne system.

Comparison of heterodyne-and homodyne-system
performance. The heterodyne digital receiver requires a factor of
two more photons per bit than the homodyne receiver. This may be
understood by comparing the signal currents for OOK keying in
both cases. For homodyning we obtain μ1 − μ0 = , as provided
in (25.4-13), whereas for heterodyning the result is a factor of 
smaller, namely μ1 − μ0 = . The origin of the distinction is the
cosinusoidal factor in (25.4-8a), which is constant for homodyning
but oscillates at the intermediate frequency ωI for heterodyning,
with an RMS value of ½. Since the noise variances are the same 



, and since Q ≈ 6 for a BER = 10−9, we have 6 =  so
that 0 = /2 = 36. This factor-of-two penalty for heterodyning
carries over to phase shift keying, as indicated in Table 25.4-1.

Tabulation of receiver sensitivities. Table 25.4-1 provides a
comparison of the receiver sensitivities (photons per bit) for several
optical receivers and modulation formats under ideal conditions.
Though it appears that the direct-detection OOK system has
approximately the same sensitivity as the best coherent system
(homodyne PSK), namely ≈ 9 photons per bit, the conversion gain
provided by the strong local oscillator in homodyning has the
salutary effect of minimizing the role of circuit noise. The
performance of direct-detection systems, in contrast, is often
limited by circuit noise in practice. While the use of an avalanche
photodiode in a direct-detection receiver can mitigate the role of
circuit noise, the intrinsic APD gain noise increases the receiver
sensitivity from 10 photons per bit to at least 10F photons per bit,
where F is the APD excess noise factor. Direct detection could in
principle offer performance comparable to that of coherent
detection were noiseless APDs (F = 1) available. It is useful to
compare the results tabulated in Table 25.4-1 with those presented
in Table 19.6-1 for OOK direct-detection receivers in the presence of
circuit noise and gain noise.

Table 25.4-1 Receiver sensitivity (number of photons per bit) for
various receivers and modulation formats for an ideal detector.
Homodyning is superior to heterodyning and PSK is superior to
OOK.

Direct Detection Homodyne Heterodyne
OOK 10 18 36
PSK (BPSK & QPSK) — 9 18
FSK — — 36

25.5 FIBER-OPTIC NETWORKS



A communication network comprises a set of communication links
connecting multiple users (terminals) distributed within some
geographical area. Messages or data may be passed from one
terminal to another by transmission through one or several links
along paths controlled by routers and switches. A local-area
network (LAN), for example, connects terminals such as
computers, printers, video monitors, and copy machines in a
circumscribed region such as a building, campus, or manufacturing
plant. Larger networks include the telephone network, the global
Telex network, and the Internet. The network may make use
electrical cables, optical fibers, or satellite links. Fiber-optic
networks rely on fiber-optic links together with electronic and/or
optical routers and switches (see Chapter 24).

A. Network Topologies and Multiple Access
In its simplest configuration, a network containing N nodes is
constructed by making use of a dedicated point-to-point link
between each node and every other node. However, this
configuration requires N(N − 1) duplex (bidirectional) point-to-
point links, and therefore entails the use of 2N(N − 1) transmitters
and 2N(N − 1) receivers. Topologies that make use of fewer point-
to-point links, and fewer transmitters and receivers, are available;
they include the star, ring, and bus topologies depicted in Fig. 25.5-
1, along with a system for accessing the shared links. In these
networks, only N transmitters and N receivers are necessary.

Figure 25.5-1 Network topologies: (a) star; (b) ring; (c) bus; (d)
mesh.



In the star network, each node is connected to every other node via
the star coupler residing at the center of the network; the power
transmitted by any given node is equally distributed among all other
nodes. In the ring and bus networks, the fiber passes through the
nodes so that data may be extracted from, or added to, the optical
signal at any node. The mesh network is a more general
configuration. Since the light transmitted by any node travels
different distances to different nodes, the receivers must be able to
accommodate the received power over a broad range of levels.
Stated differently, each receiver must have a large dynamic range.
Several networks of the same or different topologies are often
interconnected to create a larger network, as schematized in Fig.
25.5-2.

Figure 25.5-2 A network containing ring and bus sub-networks
connected by digital cross-connects (XCs) at central offices.
Backbone ring networks carry heavier traffic and feed access
networks.

Interface

The interface between the terminal and the fiber network at each
node includes a receiver, a transmitter, and an electronic add–drop
multiplexer (ADM), as portrayed in Fig. 25.5-3(a). The receiver



detects the optical signal, and the ADM extracts data and adds new
data that modulate a source and transmits a new optical signal
through another fiber. This interface is said to be opaque since the
light is detected and regenerated at each node. A transparent
interface is coupled to the fiber network optically, as illustrated in
Fig. 25.5-3(b) (optical directional couplers are described in Secs.
24.1 and 24.3). An optical interface to a bidirectional (duplex) fiber
uses two directional couplers to transmit and receive in either
direction, as shown in Fig. 25.5-3(c).

Figure 25.5-3 Interfaces between a node and the fiber network. (a)
Opaque interface. The signal is converted from optical to electronic
(O/E) and the ADM extracts data and adds new data, which is used
to generate a new optical signal (E/O). (b) Optically coupled
(transparent) interface using a directional coupler. (c) Optically
coupled interface to a duplex fiber using two directional couplers.

Multiple Access

The signals transmitted by the network nodes share the same fiber
(the medium). To avoid confusion, a scheme for multiple access
or medium access is necessary. Time-domain, frequency-domain,
and code-domain multiple access systems are in use:

Time-division multiple access (TDMA) is similar to time-
division multiplexing (TDM), which is used in conventional
point-to-point communication systems (Sec. 25.3B). The nodes
send their data through the shared medium during interleaved
time slots. Buffers may be used to store data until the
appropriate time. Since it is not possible to synchronize the



timing of all nodes, guard times separating consecutive slots
are necessary.

Frequency-division multiple access (FDMA) is similar to
frequency-division multiplexing (FDM) (Sec. 25.3B). Here, the
nodes send their data through the shared medium in
preassigned spectral bands, and there is no need to synchronize
the bit clocks of the input signals. In optical networks, FDMA is
called wavelength-division multiple access (WDMA),
which is the counterpart of wavelength-division multiplexing
(WDM).

Code-division multiple access (CDMA) is similar to code-
division multiplexing (CDM) (Sec. 25.3B). In CDMA, each node
is preassigned a unique address code. Data transmitted by a
node is encoded with the address code of the destination node.
Each node correlates its own address code with the incoming
signal. This locks it to only those bits associated with its own
address, and it disregards all other bits. The data arrive in the
form of a sequence of packets, each with the address of its
destination (Sec. 24.3F).

Synchronous Optical Network (SONET)

SONET [and its international version, the Synchronous Digital
Hierarchy (SDH)] is a TDM standard used for transmission over
optical fibers. It addresses the difficulty of time-division
multiplexing for signals with slightly different clock rates by
embedding these signals within time frames of longer duration. The
payload (the signal bits) are allowed to float within the frames, but
the frames are perfectly synchronous. SONET provides a hierarchy
of multiplexed signals in which the basic unit, known as the STS1
signal or the optical carrier-1 (OC-1), transports data at 51.84 Mb/s.
Combining N such signals generates the OC-N signal, which has a
rate N times greater, as summarized in Table 25.5-1. For example,
OC-192 and OC-768 operate at approximately 10 Gb/s and 40 Gb/s,



respectively. An example of operation at different data transport
rates is illustrated in Example 25.5-1.

Table 25.5-1 Transmission rates (Mb/s) in the STS hierarchy used
by the SONET network.

OC-1 OC-3 OC-12 OC-24 OC-48 OC-192 OC-768 OC-1920
51.84 155.52 622.08 1

244.16
2

488.32
9

953.28
39

813.12
99

532.80

EXAMPLE 25.5-1. Ring Network.

An example of a fiber-optic 4-node ring network operating at
different data rates is illustrated in Fig. 25.5-4. Each of the 4
nodes transmits data to the other 3 nodes at either the OC-12
(622 Mb/s) or the OC-24 (1.24 Gb/s) rate, as shown. The fiber
segment connecting nodes 1 and 2 carries the heaviest traffic at a
combined rate OC-12 + OC-12 + OC-24 = OC-48 (2.5 Gb/s). The
traffic on the 2 ↔ 3 and 3 ↔ 4 segments is at the lighter OC-24
rate (1.24 Gb/s).

Figure 25.5-4 A 4-node ring network.

B. Wavelength-Division Multiplexing Networks



A wavelength-division multiplexing (WDM) fiber-optic network
uses coarse or dense WDM for communication along its links and
WDMA for medium access. The nodes are connected in a particular
topology (e.g., star, ring, bus, or mesh), and each node transmits
into one or several wavelength channels and receives from one or
several wavelength channels. The existence of multiple wavelength
channels for each physical connection adds another dimension to
the network and offers additional flexibility, but this comes at the
expense of additional complexity.

Broadcast-and-Select WDM Network

The simplest WDM network is the broadcast-and-select
network. Each node transmits at a unique fixed wavelength and
broadcasts its transmission to all other nodes via passive optical
couplers. The receiver at each node selects the particular wavelength
addressed to it by means of a tunable filter. An example is provided
by the 5-node network displayed in Fig. 25.5-5(a): nodes 1, 2, ··· , 5
transmit at wavelengths λ1,λ2, ··· ,λ5, respectively. An optical star
coupler broadcasts each transmission to all other nodes. In the state
shown, for example, node 1 is tuned to channel λ5; nodes 2, 3, and 4
are tuned to channel λ1; and node 5 is tuned to channel λ2. As
illustrated in the equivalent connection diagram in Fig. 25.5-5(b),
node 2 transmits to node 5, node 5 transmits to node 1, and node 1
multicasts its transmission to nodes 2, 3, and 4.

Figure 25.5-5 (a) A WDM broadcastand-select network and (b) its
equivalent logical connections.



In another example, shown in Fig. 25.5-6(a), the receiver of each
node is tuned to the wavelength transmitted by its next neighbor.
This network, which has a star physical topology, is thus equivalent
to a ring logical topology, as illustrated in Fig. 25.5-6(b).

Figure 25.5-6 A WDM network in the star physical topology (a) is
equivalent to the ring logical topology (b).

The network changes its state, i.e., the wavelengths to which each
node is tuned, as desired. Dynamic coordination is required to avoid
conflict and collisions.

Multi-Hop Broadcast-and-Select WDM Network

The requirement that each of the nodes in the broadcast-and-select
network be capable of selectively detecting any of the wavelengths
transmitted by the other nodes can be demanding. This requirement
is alleviated in a multi-hop network, in which each node is allocated
two different wavelength channels for transmission and only two
different channels for reception. At any time, a node may transmit
at one of its two allocated wavelengths and may receive by tuning to
one its two allocated wavelengths. The channels are allocated to the
nodes in such a way that a node may access any other node by
following either a single-hop (i.e., direct) connection or a two-hop
connection via an intermediate node. In the network shown in Fig.
25.5-7(a), for example, node 2 can transmit to node 1 directly via
channel λ3. Though node 1 cannot transmit to node 2 directly, since
they share no common wavelength, this transmission can occur in
two hops: node 1 transmits to node 3 on the λ1 channel, and node 3
subsequently transmits to node 2 on the λ6 channel [Fig. 25.5-7(b)].



This configuration is therefore called a multi-hop broadcast-
and-select network. The logical topology of the network is
displayed in Fig. 25.5-7(c).

However, networks with a large number of nodes are not well
served by the broadcast-and-select, single-hop, or multi-hop
configurations. Since the power transmitted by each node must
reach all other nodes, the system becomes inefficient when the
number of nodes is large. Also the number of channels used, which
must equal or exceed the number of nodes, becomes prohibitive for
large networks.

Figure 25.5-7 (a) A WDM multi-hop broadcast-and-select
network. (b) A two-hop connection from node 1 to node 2 via node
3. (c) Logical topology of the network.

Wavelength-Routed Networks

In a wavelength-routed network, a pair of nodes communicates
by use of one of the wavelength channels following some
connection path. Another pair of nodes may use the same
wavelength channel if their connection path does not share a
common link with the path of the first pair. For example, in the
network shown in Fig. 25.5-8(a), nodes 1 and 2 communicate on
channel λ1, and so do nodes 2 and 3. However, nodes 1 and 3 must
use a different wavelength λ2 if they use the path connecting them
via node 2. Similarly, nodes 4 and 1 communicate via a third
channel λ3 since their path contains links that use the λ1 and λ2
channels.



Figure 25.5-8 (a) A 5-node, 3-channel wavelength-routed ring
network. (b) Logical topology of the network. (c) An optical add–
drop multiplexer (OADM) used at node 5.

In this network, each link carries one or more wavelengths (but not
necessarily all of the wavelengths, as is the case in the broadcast-
and-select network). For example, the link between nodes 4 and 5
carries traffic at three wavelength channels, but each of the other
four links carry only two channels. Also, each node transmits and
receives data at one or more wavelengths. For example, node 5
receives data from node 4 at λ1 and from node 3 at λ2; it transmits
data to node 1 at λ1; data carried by channel λ3 pass through this
node without being detected. The logical connections for this
network are shown in Fig. 25.5-8(b).

The key component in a wavelength-routed WDM network is the
optical add–drop multiplexer (OADM) (Sec. 24.2A). Each node has
an OADM that extracts (drops) data from certain wavelength
channels on the incoming fiber, adds data to certain channels on the
outgoing fiber, and lets data on certain channels of the incoming
fiber pass through to the outgoing fiber without change. An OADM
comprises an optical demultiplexer (ODMUX), an add–drop
multiplexer (ADM), and an optical multiplexer (OMUX). As an
example, the OADM used at node 5 of the network shown in Fig.
25.5-8(a) is detailed in Fig. 25.5-8(c). Agile networks use ROADMs,
which are reconfigurable OADMs (Example 24.3-3).



An optical transport network employing a ROADM is illustrated in
Fig. 25.5-9. Data packets from many Internet Protocol (IP) packet
routers are connected to an optical client interface (e.g., at a rate of
100 Gb/s over short-reach optical links of roughly 40 km) and are
combined in small groups (one or more) and subsequently
multiplexed into a WDM signal, which is transmitted over a single-
fiber optical line traversing thousands of kilometers without
intermediate electronic processing. The fiber may, for example,
carry 100 wavelength channels, each operating at a rate of 200 Gb/s,
on a 50-GHz optical frequency grid, for an overall bit rate of 20
Tb/s. The optical signal is then demultiplexed in a reverse fashion at
the other of the line, and ultimately feeds other IP packet routers.
Along the way, certain channels are dynamically directed to other
optical lines in the network by use of ROADMs.

Figure 25.5-9 A WDM optical transport system linking two sets of
IP routers and exchanging data with other optical lines in the
network via ROADMs that add and drop information.

Wavelength-routed networks with configurations other than the
ring configuration have nodes with multiple incoming and outgoing
fibers. At these nodes, more complex routers are required. For
example, a node with two incoming and two outgoing fibers, as
shown in Fig. 25.5-10, employs an optical cross-connect (OXC)
that receives data from selected incoming fibers/channels, adds data
to selected outgoing fibers/channels, and routes data on selected
incoming channels to selected outgoing channels. The OXC uses



multidimensional space–wavelength switches and ADMs (see Sec.
24.3D). A wavelength-routed network also uses a hub node, which
makes use of a server to process data at all wavelength channels.

Figure 25.5-10 An optical cross-connect (OXC) at a node with two
incoming and two outgoing fibers, each with four wavelength
channels.



EXAMPLE 25.5-2. WDM Upgrade of a Ring Network

A 4-node wavelength-routed WDM ring network operates on 3
channels with wavelengths λ1, λ2, and λ3 at the rates shown in
Fig. 25.5-11. This network is an upgraded version of the network
considered in Example 25.5-1. Nodes 1 and 3 access wavelengths
λ1 and λ2; node 4 accesses wavelengths λ1 and λ3; and node 2
accesses all three wavelengths. In the upgraded network, the
nodes communicate at twice the rates of the original network,
but the highest rate in any of the WDM channels does not
exceed that of the original network. The fiber segment
connecting nodes 1 and 2 carries the heaviest traffic at a
combined OC-96 rate (5 Gb/s), but the highest rate at any given
wavelength is OC-48 (2.5 Gb/s).

Figure 25.5-11 Schematic of a 4-node, 3-channel WDM ring
network.
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PROBLEMS
25.1-1 Optical Fiber Communication Systems. Discuss the

validity of each of the following statements and indicate the
conditions under which your conclusion is applicable.

25.1-1 Optical Fiber Communication Systems. Discuss the
validity of each of the following statements and indicate the
conditions under which your conclusion is applicable.

(a) The wavelength λo = 1300 nm is preferred to λo = 870 nm
for all optical fiber communication systems.

(b) The wavelength λo = 1550 nm is preferred to λo = 1300 nm
for all optical fiber communication systems.

(c) Single-mode fibers are superior to multimode fibers because
they have lower attenuation coefficients.

(d) There is no pulse spreading at λo ≈ 1312 nm in silica-glass
fibers.

(e) Compound semiconductor devices are required for optical
fiber communication systems.

(f) APDs are noisier than p–i–n photodiodes and are therefore
not useful for optical fiber communication systems.



25.1-2 Components for Optical Fiber Communication
Systems. The design of an optical fiber communication system
involves many choices of fibers, sources, amplifiers, and
detectors, some of which are displayed in Fig. 25.2-3. Suggest
appropriate choices for each of the applications listed below.
Though more than one answer may be correct, some choices
may be incompatible.

(a) A transoceanic cable carrying data at a 2.5 Gb/s rate with
100-km repeater spacings.

(b) A 1-m cable transmitting analog data from a sensor at 1 kHz.

(c) A link for a computer local-area network operating at 500
Mb/s.

(d) A 1-km data link operating at 100 Mb/s with ±50° C
temperature variations.

25.2-1 Performance of a Plastic Fiber Link. A short-distance,
low-data-rate communication system uses plastic fiber with an
attenuation coefficient 0.5 dB/m, an LED that generates 1 mW
at a wavelength of 870 nm, and a photodiode with receiver
sensitivity −20 dBm. Assuming a power loss of 3 dB each at the
input and output couplers, determine the maximum length of
the link. Assume that the data rate is sufficiently low that
dispersion effects play no role.

25.2-2 Maximum Length of an Attenuation-Limited System.
An optical fiber communication link is designed for operation
at 10 Mb/s. The source is a 100-μW LED operating at 870 nm
and the fiber has an attenuation coefficient of 3.5 dB/km. The
fiber consists of 1-km segments and each connector between
segments introduces a loss of 1 dB. The input and output
couplers each introduce a loss of 2 dB and the safety margin is
6 dB. Two receivers are available: a Si p–i–n photodiode
receiver with a sensitivity of 5000 photons per bit, and a Si
APD receiver with a sensitivity of 125 photons per bit.



Determine the receiver sensitivity Pr (dBm units) and the
maximum length of the link for each receiver.

25.2-3 Maximum Data Rate for an Attenuation-Limited
System. A 50-km optical fiber link is operated at a wavelength
of 1550 nm. The source is a 2-mW InGaAsP laser and the fiber
has an attenuation coefficient of 0.2 dB/km. Connectors and
couplers introduce a total loss of 8 dB and the safety margin is
6 dB. The receiver is an InGaAs APD with a sensitivity of 1000
photons per bit at a bit error rate of 10−9. Determine the
maximum data rate that can be used assuming that the system
is attenuation-limited. If the required bit error rate is 10−11

instead, what is the maximum data rate?

25.2-4 Maximum Length of an Analog Link. An analog optical
fiber communication link uses intensity modulation to
transmit data at a bandwidth of B = 10 MHz with a signal-
tonoise ratio of 40 dB. The source is a λo = 870 nm light-
emitting diode that produces an average power of 100 μW with
a maximum modulation index of 0.5. The fiber is a multimode
step-index fiber with an attenuation coefficient of 2.5 dB/km.
The detector is an avalanche photodiode with mean gain  =
100, excess noise factor F = 5, and responsivity R = 0.5 A/W
(excluding the gain). Using the theory presented in Sec. 19.6D,
assume that circuit noise is negligible and calculate the optical
power sensitivity of the receiver. Calculate the attenuation-
limited maximum length L of the fiber.

25.2-5 Time Budget for a Dispersion-Limited System. A 100-
km single-mode fiber link operates at a wavelength of 1550 nm.
The source is an InGaAsP laser diode of spectral width 0.2 nm
and response time 20 ps. The fiber has a dispersion coefficient
of 17 ps/km-nm. The receiver uses an InGaAs APD and has a
response time of 0.1 ns. Determine the maximum data rate
based on the criterion that the response time of the fiber does
not exceed 25% of the bit duration. Also, determine the
maximum data rate using the criterion that the response time



of the overall system does not exceed 70% of the bit duration. If
a dispersion-shifted fiber is used instead, so that the dispersion
coefficient is reduced to 1 ps/km-nm, what are the maximum
data rates under the two criteria set forth above?

25.3-1 Number of WDM Channels. Determine the number of
WDM channels that fit in the C-band (1530–1565 nm) and in
the O-band (1260–1360 nm) if the channel spacing is 75 GHz.

25.5-1 Number of Nodes in a Broadcast-and-Select WDM
Network. The maximum number of nodes N that can be used
by a broadcast-and-select WDM network is often limited by the
available optical power. Determine N for a local area network
using an optical star coupler connected to each of the nodes by
a fiber of 2-km length, 0.3 dB/km attenuation coefficient, and 1
dB of connector loss. The star coupler distributes the power
equally among its outputs and introduces an additional loss of
3 dB. Each node uses a 1-mW optical source, the receiver
sensitivity is −35 dBm, and a 5-dB safety margin is assumed.

25.5-2 Wavelength-Routed WDM Ring Network. Consider a 4-
node, 6-channel WDM network. Each node uses an add–drop
multiplexer to transmit or receive at any of three different
wavelengths assigned to it, but allows the other three
wavelengths to pass through. For example, node 1 may add or
drop data at channels λ1, λ2, or λ3, but passes through data at λ4,
λ5, and λ6. Allocate sets of three add–drop channels to each of
the nodes 2, 3, and 4, in such a way that any node on the ring
may communicate with any of the other nodes. The idea is that
each node must have one add–drop channel in common with
each of the other three nodes, but this channel must not be in
common with nodes in-between.
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Inverse Fourier Transform
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Fourier Transform

APPENDIX A 
FOURIER TRANSFORM
This appendix provides a brief review of the Fourier transform, and
its properties, for functions of one and two variables.

A.1 ONE-DIMENSIONAL FOURIER
TRANSFORM
The harmonic function F exp(j2πνt) plays an important role in
science and engineering. It has frequency ν and complex amplitude
F. Its real part |F| cos(2πνt + arg{F }) is a cosine function with
amplitude |F| and phase arg{F }. The variable t usually represents
time; the frequency ν has units of cycles/s or Hz. The harmonic
function is regarded as a building block from which other functions
may be obtained by a simple superposition.

In accordance with the Fourier theorem, a complex-valued function
f (t), satisfying some rather unrestrictive conditions, may be
decomposed as a superposition integral of harmonic functions of
different frequencies and complex amplitudes,

The component with frequency ν has a complex amplitude F (ν)
given by



F(ν) is termed the Fourier transform of f(t), and f(t) is the
inverse Fourier transform of F(ν). The functions f(t) and F(ν)
form a Fourier transform pair; if one is known, the other may be
determined.

In this book we adopt the convention that exp(j2πνt) is a harmonic
function with positive frequency, whereas exp( −j2πνt) represents
negative frequency. The opposite convention is used by some
authors, who define the Fourier transform in (A.1-2) with a positive
sign in the exponent, and use a negative sign in the exponent of the
inverse Fourier transform (A.1-1).

In communication theory, the functions f(t) and F(ν) represent a
signal, with f(t) its time-domain representation and F(ν) its
frequency-domain representation. The absolute-squared value
|f(t)|2 is called the signal power, and |F(ν)|2 is the energy spectral
density. If |F(ν)|2 extends over a wide frequency range, the signal is
said to have a wide bandwidth.

Properties of the Fourier Transform
Some important properties of the Fourier transform are provided
below. These properties can be proved by direct application of the
definitions (A.1-1) and (A.1-2) (see any of the books in the Reading
List).

Linearity. The Fourier transform of the sum of two functions is
the sum of their Fourier transforms.

Scaling. If f(t) has a Fourier transform F(ν), and τ is a real
scaling factor, then f(t/τ) has a Fourier transform |τ|F (τν).
This means that if f(t) is scaled by a factor τ, its Fourier
transform is scaled by a factor 1/τ. Thus, if τ > 1, then f(t/τ) is a
stretched version of f(t), whereas F (τν) is a compressed version
of F(ν). The Fourier transform of f( −t) is F ( −ν).

Time Translation. If f(t) has a Fourier transform F(ν), the
Fourier transform of f(t − τ) is exp( −j2πντ)F(ν). Thus, delay by



(A.1-4) 
Convolution

(A.1-3)

(A.1-5) 
Correlation

time τ is equivalent to multiplication of the Fourier transform
by a phase factor exp( −j2πντ).

Frequency Translation. If F(ν) is the Fourier transform of f(t),
the Fourier transform of f(t) exp(j2πν0t) is F (ν − ν0). Thus,
multiplication by a harmonic function of frequency ν0 is
equivalent to shifting the Fourier transform to a higher
frequency ν0.

Symmetry. If f(t) is real, then F(ν) has Hermitian symmetry,
i.e., F ( −ν)= F ∗(ν). If f(t) is real and symmetric, then F(ν) is
also real and symmetric.

Convolution Theorem. If the Fourier transforms of f1(t) and
f2(t) are F1(ν) and F2(ν), respectively, the inverse Fourier
transform of the product

is

The operation defined in (A.1-4) is known as the convolution
of f1(t) with f2(t). Convolution in the time domain is therefore
equivalent to multiplication in the Fourier domain.

Correlation Theorem. The correlation between two complex
functions is defined as

The Fourier transforms of f1(t), f2(t), and f(t) are related by



(A.1-6)

(A.1-7) 
Parseval’s Theorem

If f2(t)= f1(t), (A.1-5) is called the autocorrelation.

Parseval’s Theorem. The signal energy, which is the integral of
the signal power |f(t)|2, equals the integral of the energy
spectral density |F(ν)|2, so that

Examples
The Fourier transforms of some important functions are provided in
Table A.1-1. The Fourier transforms of many other functions are
readily obtained by making use of the properties of linearity,
scaling, delay, and frequency translation. The functions used in
Table A.1-1 have the following definitions:

rect(t) ≡ 1 for , and = 0 elsewhere, i.e., it is a pulse of unit
height and unit width centered about t = 0.

δ(t) is the impulse function (also called the Dirac delta
function), which is defined as δ(t) ≡ limα→∞ α rect( αt). It is the
limit of a rectangular pulse of unit area as its width approaches
zero so that its height approaches infinity.

sinc(t) ≡ sin(πt)/(πt) is a symmetric function with a peak value
of unity at t = 0 and with zeros at t = ±1, ±2,....



Table A.1-1 Selected functions and their Fourier transforms.

A.2 TIME DURATION AND SPECTRAL WIDTH
It is often useful to have a measure of the width of a function. The
width of a function of time f(t) is its time duration and the width of



(A.2-1)

(A.2-2)

its Fourier transform F(ν) is its spectral width (or bandwidth). Since
there is no unique definition for the width, a plethora of definitions
are in use. All definitions, however, share the property that the
spectral width is inversely proportional to the temporal width, in
accordance with the scaling property of the Fourier transform. The
following definitions are used at different places in this book.

The Root-Mean-Square Width
The root-mean-square (RMS) width σt of a nonnegative real
function f(t) is defined by

If f(t) represents a mass distribution (t representing position), then 
 represents the centroid and σt the radius of gyration. If f(t) is a

probability density function, these quantities represent the mean
and standard deviation, respectively. As an example, the Gaussian
function  has an RMS width σt. Its Fourier
transform is given by , where

is the RMS spectral width.

This definition is not appropriate for functions with negative or
complex values. For such functions the RMS width of the absolute-
squared value |f(t)|2 is used,

We call this version of σt the power-RMS width.

With the help of the Schwarz inequality, it can be shown that the
product of the power RMS widths of an arbitrary function f(t) and



(A.2-3) Duration-Bandwidth Reciprocity Relation

(A.2-4)

(A.2-5)

(A.2-6)

its Fourier transform F(ν) must be equal to or greater than 1/4π,

where the spectral width σν is defined by

Thus the time duration and the spectral width cannot
simultaneously be made arbitrarily small. The Gaussian function
f(t) = exp(−t2/4σt

2), for example, has a power-RMS width σt. Its
Fourier transform is also a Gaussian function, F(ν) = 

, with power-RMS width

Since σtσν = 1/4π, the Gaussian function has the minimum
permissible value of the duration–bandwidth product. In terms of
the angular frequency ω = 2πν,

If the variables t and ω, which usually describe time and angular
frequency (rad/s), are replaced with the position variable x and the
spatial angular frequency k (rad/m), respectively, then (A.2-5)
becomes

In quantum mechanics, the position x of a particle is described by
the wavefunction ψ(x), and the wavenumber k is described by a
function φ(k), which is the Fourier transform of ψ(x). The
uncertainties of x and k are the RMS widths of the probability



(A.2-7) Heisenberg Uncertainty Relation

(A.2-8)

(A.2-9)

densities |ψ(x)|2 and |φ(k)|2, respectively, so that σx and σk are
interpreted as the uncertainties of position and wavenumber. Since
the particle momentum is p = ℏk (where ℏ = h/2π and h is Planck's
constant), the position–momentum uncertainty product satisfies
the inequality

which is known as the Heisenberg position–momentum
uncertainty relation.

The Power-Equivalent Width

The power-equivalent width of a signal f(t) is the signal energy
divided by the peak signal power. If f(t) has its peak value at t = 0,
for example, then the power-equivalent width is

The double-sided exponential function f(t) = exp( −|t|/τ), for
example, has a power-equivalent width τ, as does the Gaussian
function f(t) = exp( −πt2/2τ2). This definition is used in Sec. 12.1,
where the coherence time of light is defined as the power-
equivalent width of the complex degree of temporal coherence.

The power-equivalent spectral width is similarly defined by

If f(t) is real, so that |F(ν)|2 is symmetric, and if it has its peak value
at ν = 0, the power-equivalent spectral width is usually defined as
the positive-frequency width,



(A.2-10)

(A.2-11)

(A.2-12)

(A.2-13)

In the case when F(ν)= τ/(1 + j2πντ), for example, we have

This definition is used in Sec. 19.6A to describe the bandwidth of
photodetector circuits susceptible to photon and circuit noise (see
also Prob. 19.6-5).

Using Parseval's theorem (A.1-7), together with the relation 
, (A.2-10) may be written in the form

where

is yet another definition of the time duration [the square of the area
under f(t) divided by the area under f2(t)]. In this case, the
duration–bandwidth product .

The 1/e-, Half-Maximum, and 3-dB Widths
Another type of measure of the width of a function is its duration at
a prescribed fraction of its maximum value ( ,
are examples). Either the half-width or the full width on both sides
of the peak may be used. Two commonly encountered measures are
the full-width at half-maximum (FWHM) and the half-width at 

-maximum, called the 3-dB width. The following are three
important examples:

The exponential function f(t) = exp(−t/τ) for t ≥ 0 and f(t)=0
for t < 0, which describes the response of a number of electrical



(A.2-14)

(A.2-15)

(A.2-16)

(A.2-17)

(A.2-18)

and optical systems, has a 1/e-maximum width Δt1/e = τ. The
magnitude of its Fourier transform F(ν) = τ/(1 + j2πντ) has a 3-
dB width (half-width at 1/√2-maximum)

The double-sided exponential function f(t) = exp( −|t|/τ) has a
half-width at 1/e-maximum Δt1/e = τ. Its Fourier transform
F(ν)=2τ/[1 + (2πντ)2], known as the Lorentzian distribution,
has a full-width at half-maximum

and is usually written in the form F(ν) = (Δν/2π)/[ν2 +
(Δν/2)2], where Δν =ΔνFWHM. The Lorentzian distribution
describes the spectrum of certain light emissions (see Sec.
14.3D).

The Gaussian function f(t) = exp( −t2/2τ2) has a full-width at
1/e-maximum Δt1/e = 2√2τ. Its Fourier transform 

 has a full-width at 1/e-maximum

and a full-width at half-maximum

so that

The Gaussian function is also used to describe the spectrum of
certain light emissions (see Sec. 14.3D), as well as to describe the
spatial distribution of light beams (see Sec. 3.1).



A.3 TWO-DIMENSIONAL FOURIER
TRANSFORM
We now consider a function of two variables f(x, y). If x and y
represent the coordinates of a point in a two-dimensional space,
then f(x, y) represents a spatial pattern (e.g., the optical field in a
given plane). The harmonic function F exp[ −j2π(νxx + νyy)] is
regarded as a building block from which other functions may be
composed by superposition. The variables νx and νy represent
spatial frequencies in the x and y directions, respectively. Since x
and y have units of length (mm), νx and νy have units of cycles/mm,
or lines/mm. Examples of two-dimensional harmonic functions are
illustrated in Fig. A.3-1.

Figure A.3-1 The real part, , of a two-
dimensional harmonic function:  arbitrary νx
and νy. For this illustration we have assumed that arg{F} = 0 so that
the white and dark regions represent positive and negative values of
the function, respectively.

The Fourier theorem may be generalized to functions of two
variables. A function f(x, y) may be decomposed as a superposition
integral of harmonic functions of x and y,



(A.3-1) Inverse Fourier Transform

(A.3-2) Fourier Transform

where the coefficients F (νx,νy) are determined by use of the two-
dimensional Fourier transform

Our definitions of the two-and one-dimensional Fourier transforms,
(A.3-2) and (A.1-2), respectively, differ in the signs of their
exponents. The choice of these signs are, of course, arbitrary, as
long as opposite signs are used in the Fourier and inverse Fourier
transforms. In this book we have adopted the convention that
exp(j2πνt) has positive temporal frequency ν, while exp[ −j2π(νxx +
νyy)] has positive spatial frequencies νx and νy. We have elected to
use different signs in the spatial (two-dimensional) and temporal
(one-dimensional) cases to simplify the notation used in Chapter 4
(Fourier optics), in which the traveling wave exp 

 has temporal and spatial
dependences of opposite sign.

Properties
Many properties of the two-dimensional Fourier transform are clear
generalizations of those of the one-dimensional Fourier transform,
but others are unique to the two-dimensional case:



(A.3-3)

(A.3-4)

(A.3-5)

Convolution Theorem. The two-dimensional convolution of two
functions, f1(x, y) and f2(x, y), with Fourier transforms F1(νx,νy)
and F2(νx,νy), respectively, is written as

The Fourier transform of the convolution f(x, y) is

so that convolution in the spatial domain is equivalent to
multiplication in the Fourier domain, as in the one-
dimensional case.

Separable Functions. If f(x, y)= fx(x)fy(y) is the product of one
function of x and another of y, then its two-dimensional
Fourier transform is a product of one function of νx and
another of νy. The two-dimensional Fourier transform of f(x, y)
is then related to the product of the one-dimensional Fourier
transforms of fx(x) and . We
provide two examples: (1) the Fourier transform of 

, which represents an impulse located at
(x0,y0), is the harmonic function ; (2) the
Fourier transform of the Gaussian function  is
the Gaussian function .

Circularly Symmetric Functions. The Fourier transform of a
circularly symmetric function is also circularly symmetric.
Consider, for example, the circ function, which is denoted by
the symbol circ(x, y), and is given by

Its Fourier transform is given by



(A.3-6)

where J1 is the Bessel function of order 1. Both of these circularly
symmetric functions are illustrated in Fig. A.3-2.

Figure A.3-2 (a) The circ function and (b) its two-dimensional
Fourier transform.
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APPENDIX B 
LINEAR SYSTEMS
This appendix provides a review of the essential characteristics of
one-and two-dimensional linear systems.

B.1 ONE-DIMENSIONAL LINEAR SYSTEMS
Consider a system whose input and output are the functions f1(t)
and f2(t), respectively. The system is characterized by a rule that
relates the output to the input. In general, the rule may take the
form of a simple mathematical operation such as f2(t) = log[f1(t)],
an integral transform, or a differential equation. An example is a
harmonic oscillator that undergoes a displacement f2(t) in response
to a time-varying force f1(t).

Linear Systems

A system is said to be linear if it satisfies the principle of
superposition, i.e., if its response to the sum of any two inputs is the
sum of its responses to each of the inputs separately. The output at
time t is, in general, a weighted superposition of the input
contributions at different times τ,

where h(t; τ) is a weighting function representing the contribution
of the input at time τ to the output at time t. If the input is an
impulse at time τ, so that f1(t) = δ(t − τ), then (B.1-1) yields f2(t) =
h(t; τ). Thus h(t; τ) is the impulse response function of the
system (also known as the Green's Function).

Linear Shift-Invariant Systems



(B.1-2)
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A linear system is said to be time-invariant or shift-invariant if,
when its input is shifted in time, its output shifts by an equal time,
but otherwise remains the same. The impulse response function is
then a function of the time difference h(t; τ) = h(t − τ). Under these
conditions (B.1-1) becomes

The output f2(t) is then the convolution of the input f1(t) with the
impulse response function h(t) [see (A.1-4)]. If f1(t) = δ(t), then
f2(t) = h(t); if f1(t) = δ(t − τ), then f2(t) = h(t − τ), as illustrated in
Fig. B.1-1.

Figure B.1-1 Response of a linear shift-invariant system to
impulses.

The Transfer Function

In accordance with the convolution theorem discussed in Appendix
A [see (A.1-3)], the Fourier transforms F1(ν), F2(ν), and H(ν) of f1(t),
f2(t), and h(t), respectively, are related by

If the input f1(t) is a harmonic function F1(ν) exp(j2πνt), the output
f2(t) = H(ν)F1(ν) exp(j2πνt) is also a harmonic function of the same
frequency but with a modified complex amplitude F2(ν) =
F1(ν)H(ν), as illustrated in Fig. B.1-2. The multiplicative factor H(ν)



is known as the system's transfer function; it is the Fourier
transform of the impulse response function. Equation (B.1-3)
embodies the essence of the usefulness of Fourier methods in the
analysis of linear shift-invariant systems. To determine the output
of a system for an arbitrary input, we simply decompose the input
into its harmonic components, multiply the complex amplitude of
each harmonic function by the transfer function at the appropriate
frequency, and superpose the resultant harmonic functions.

Figure B.1-2 Response of a linear shift-invariant system to a
harmonic function.

Examples

Ideal system: H(ν)=1 and h(t) = δ(t); the output is a replica of
the input.

Ideal system with delay: H(ν) = exp(−j2πντ) and h(t) = δ(t −
τ); the output is a replica of the input delayed by time τ.

System with exponential response: H(ν) = τ/(1 + j2πντ) and
h(t) = e −t/τ for t ≥ 0, and h(t)=0 otherwise; this represents the
response of a system described by a first-order linear
differential equation, e.g., that representing an RC circuit with
time constant τ. An impulse at the input results in an
exponentially decaying response.

Chirped system: H(ν) = exp(−jπν2) and h(t) = e−jπ/4 exp(jπt2);
the system distorts the input by imparting to it a phase shift
proportional to ν2. An impulse at the input generates an output
in the form of a chirped signal, i.e., a harmonic function whose
instantaneous frequency (the derivative of the phase) increases
linearly with time. This system describes the propagation of
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(B.1-5) Hilbert Transform

optical pulses through media with a frequency-dependent
phase velocity; it also describes changes in the spatial
distribution of light waves as they propagate through free space
(see Secs. 23.3A and 4.1C, respectively).

Linear Shift-Invariant Causal Systems

The impulse response function h(t) of a linear shift-invariant causal
system must vanish for t < 0 since the system's response cannot
begin before the application of the input. The function h(t) is
therefore not symmetric and its Fourier transform, the transfer
function H(ν), must be complex. It can be shown1 that if h(t) = 0 for
t < 0, then the real and imaginary parts of H(ν), denoted H′ (ν) and
H″ (ν), respectively, are related by

where the Cauchy principal values of the integrals are to be
evaluated, i.e.,

Functions that satisfy (B.1-4) and (B.1-5) are said to form a Hilbert
transform pair, H″ (ν) being the Hilbert transform of H′ (ν).

If the impulse response function h(t) is also real, its Fourier
transform must be symmetric, H(−ν) = H* (ν) (see Appendix A, Sec.
A.1). As a result, the real part H′ (ν) then has even symmetry, and
the imaginary part H″ (ν) has odd symmetry. The integrals in (B.1-4)
and (B.1-5) may then be rewritten as integrals over the interval (0,
∞), and the resultant equations are known as the Kramers–
Kronig relations:
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(B.1-7) Kramers–Kronig Relations

(B.1-8)

(B.1-9)

(B.1-10)

(B.1-11)

In summary, the Hilbert-transform relations, or the Kramers–
Kronig relations, relate the real and imaginary parts of the transfer
function of a linear shift-invariant causal system, so that if one part
is known at all frequencies, the other part may be determined.

Example: The Harmonic Oscillator

The linear system described by the differential equation

describes a harmonic oscillator with displacement f2(t) under an
applied force f1(t), where ω0 is the resonance angular frequency and
ζ is a coefficient representing damping effects. The transfer function
H(ν) of this system may be obtained by substituting f1(t) =
exp(j2πνt) and f2(t) = H(ν) exp(j2πνt) in (B.1-8), which yields

where ν0 = ω0/2π is the resonance frequency, and Δν = ζ/2π. The
real and imaginary parts of H(ν) are therefore, respectively,

Since the system is causal, H′ (ν) and H″ (ν) satisfy the Kramers–
Kronig relations. When ν0 ≫ Δν, H′ (ν) and H″ (ν) are narrow



(B.1-12)

(B.1-13)
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functions centered about ν0. For ν ≈ ν0, ,
whereupon (B.1-10) and (B.1-11) may be approximated by

Equation (B.1-12) has a Lorentzian form. The transfer function of
the harmonic-oscillator system is used in Secs. 5.5 and 15.1 to
describe dielectric and atomic systems.

B.2 TWO-DIMENSIONAL LINEAR SYSTEMS
A two-dimensional system relates a pair of two-dimensional
functions, f1(x, y) and f2(x, y), called the input and output functions.
These functions may, for example, represent optical fields at two
parallel planes, with (x, y) representing position variables; the
system comprises the free space and optical components that lie
between the two planes.

The concepts of linearity and shift invariance defined in the one-
dimensional case are easily generalized to the two-dimensional
case. The output f2(x, y) of a linear system is related to its input f1(x,
y) by a superposition integral

where h(x, y; x′,y′) is a weighting function that represents the effect
of the input at the point (x′, y′) on the output at the point (x, y). The
function h(x, y; x′, y′) is the impulse response function of the
system (also known as the point-spread function).

The system is said to be shift-invariant (or isoplanatic) if
shifting its input in some direction shifts the output by the same
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distance and in the same direction without otherwise altering it (see
Fig. B.2-1). The impulse response function then depends on
differences of position, h(x, y; x′, y′) = h(x−x′, y − y′ ), whereupon
(B.2-1) becomes the two-dimensional convolution of h(x, y) with
f1(x, y):

Applying the two-dimensional convolution result provided in (A.3-
4) of Appendix A yields

where F2(νx, νy), H(νx, νy), and F1(νx,νy) are the Fourier transforms
of f2(x, y), h(x, y), and f1(x, y), respectively.

Figure B.2-1 Response of a two-dimensional linear shift-invariant
system.

A harmonic input of complex amplitude F1(νx,νy) therefore
produces a harmonic output of the same spatial frequency but with
complex amplitude F2(νx, νy) = H(νx, νy) F1(νx, νy), as illustrated in
Fig. B.2-2. The multiplicative factor H(νx, νy) is the system transfer
function, which is the Fourier transform of its impulse response



function. Either of these functions allows us to characterize the
system completely and

Figure B.2-2 Response of a two-dimensional linear shift-invariant
system to harmonic functions.

In summary, a two-dimensional linear shift-invariant system is
characterized by its impulse response function h(x, y) or its transfer
function H(νx,νy). For example, a system with h(x, y) = circ(x/ρs, y/
ρs) smears each point of the input into a patch in the form of a circle
of radius ρs. It has a transfer function H(νx, νy) = ρsJ1(2πρsνρ)/νρ,
where , which has the shape illustrated in Fig. A.3-
2(b). The system severely attenuates spatial frequencies higher than
0.61/ρs lines/mm.
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APPENDIX C 
MODES OF LINEAR SYSTEMS
This Appendix provides a brief overview of modes of linear systems
that are described explicitly by input–output relations that take the
form of a matrix or integral operation, or implicitly by a linear
ordinary or linear partial differential equation.

Consider first a linear system described by an explicit input–output
relation characterized by a linear operator L that operates on an
input vector X to generate a corresponding output vector Y:

The vector X may be an array of complex numbers, represented by a
column matrix, or a complex function of one or more variables. The
modes of such a system are those special inputs that remain
unaltered (except for a multiplicative constant) upon passage
through the system. They thus obey

where q is an index that labels the mode. The vector Xq is known as
the eigenvector, and the associated multiplicative constant λq,
which is generally a complex number, is called the eigenvalue. The
condition set forth in (C.1-2) is known as an eigenvalue problem.

Consider next a linear dynamical system whose state is described by
N continuous variables constituting a vector X(t). The evolution of
any of the N variables of this N-dimensional vector is, in general,
dependent on all N variables. However, the same system may be
described in a new coordinate system whereupon the N new
variables evolve independently, so that the description of the system



decomposes into N independent one-dimensional systems. These
decoupled variables are the modes of the system.

Consider finally a linear system characterized implicitly by a linear
partial differential equation that may be cast in the form of (C.1-2),
where L is a differential operator and X is a complex function of one
or several variables. In this case, the modes are simply solutions of
the differential equation and the eigenvectors are called
eigenfunctions. The notion of an input and an output is not
meaningful in these circumstances.

We proceed to describe a number of applications of modal analysis
in photonics. Before commencing, however, we briefly review a
number of geometrical concepts from linear algebra. Associated
with each pair of vectors X and Y is a complex scalar quantity (X, Y)
called the inner product. The square root of the inner product of a
vector X with itself, (X, X), is known as the norm of X and is a
measure of its “length.” The inner product of two vectors of unit
norm can be thought of as the cosine of the “angle” between them.
Two vectors are said to be orthogonal if their inner product is
zero. If the vectors comprise arrays of complex numbers, {Xi} and
{Yi}, i = 1, 2,..., N, then . If, on the other hand, the
vectors are complex functions X(t) and Y(t), then 

.

Two classes of operators L that lead to solutions of the eigenvalue
problem with special properties are considered in turn:

Hermitian operators. Hermitian operators are defined by the
property (X, LY)= (LX, Y), i.e., the inner product is the same no
matter to which of the two vectors the operator is applied. The
eigenvalues of a Hermitian operator are real and the eigenvectors
are orthogonal. Further, the eigenvectors of a Hermitian operator
obey the variational principle, which is based on a scalar 

, called the variational energy. This principle
states that the eigenvector X1 with the lowest eigenvalue minimizes
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Evar; the eigenvector X2 with the next lowest eigenvalue minimizes
Evar, subject to the condition that it is orthogonal to X1, and so on.

Unitary operators. Passive, lossless physical systems are
described by unitary operators, which are defined by the norm-
preserving property (LX, LX) = (X, X). An example is the “rotation”
operation. The eigenvalues of unitary operators are unimodular, i.e.,
|λq| = 1, and therefore represent pure phase.

1) Modes of a Discrete Linear System

A discrete linear system is described by a matrix relation Y = MX,
where the input vector X is a set of N complex numbers (X1, X2,. . . ,
XN) arranged in a column matrix, M is an N × N matrix that
represents the linear system, and the output vector Y is also a
column matrix of dimension N. The modes are those input vectors
that remain parallel to themselves upon transmission through the
system, so that the matrix equation

is obeyed. Thus, the modes of the system are the eigenvectors Xq of
the matrix M, and the scalars λq are the corresponding eigenvalues,
which are determined by solving the algebraic equation det(M − λI)
= 0, where I is the identity matrix. There are N such modes, labeled
by the index q = 1, 2, ..., N.

The special case of binary systems (N = 2) is particularly important
in optics. In a binary system, each vector is a pair of complex
numbers (X1, X2) arranged in a column matrix X. The system is
characterized by a 2 × 2 square matrix M whose elements are
denoted A, B, C , and D. The relation Y = MX signifies

The eigenvalues are determined by solving the algebraic equation (A
− λ)(D − λ) − BC = 0 for the two eigenvalues λ1 and λ2.



The following are examples of optical systems described by binary
linear systems:

Application: Polarization matrix optics. In polarization matrix
optics (Sec. 6.1B), the vector (X1, X2) represents the components of
the input electric field in two orthogonal directions (the Jones
vector), and (Y1, Y2) similarly represents the output electric field.
The matrix M is the Jones matrix of the system. In this case, the
modes are the polarization states that are maintained as light is
transmitted through the system.

Application: Ray matrix optics. In geometrical paraxial optics
(Sec. 1.4), the position and angle of an optical ray are described by a
vector (X1, X2), and the effect of optical components, such as lenses
and mirrors, is described by a matrix M, called the ray-transfer
matrix or the ABCD matrix. For a closed optical system, such as a
resonator, the modes are ray positions and angles that self-
reproduce after a round trip, so that they are confined within the
resonator.

Application: Multilayer matrix optics. In multilayer matrix
optics (Sec. 7.1A) light is reflected and refracted at each boundary,
so that there are forward-and backward-traveling waves at each
plane, with amplitudes described by a vector X =(X1, X2). A system
containing a set of boundaries between an input and an output
plane is described by a wave-transfer matrix M. The modes of such a
system are the vectors that self reproduce upon transmission
through the system, so that if the system is replicated periodically,
as in a 1D photonic crystal (Sec. 7.2), the propagation modes are the
modes of the system M.

2) Modes of a Continuous System Described by an Integral
Operator

Linear systems represented by integral operators are discussed in
Appendix B. Consider, for example, a function of time f(t), such as
an optical pulse or a broadband optical field, transmitted through a
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linear time-invariant system such as an optical filter. The system is
described by the convolution operation (A.1-4):

In this system, the vectors X and Y are the functions f(t) and g(t),
respectively, and the operator L is an integral operator. The modes
of this system are the harmonic functions exp(j2πνt). This is
evident since the input function exp(j2πνt) generates another
harmonic output function H(ν) exp(j2πνt), where H(ν) is the
Fourier transform of h(t). In this case, there is a continuum of
modes with continuous eigenvalues H(ν). Here, the index q is the
frequency ν, which takes continuous values.

Another example is a linear shift-invariant system that operates on
a two-dimensional (2D) function f(x, y) of the position (x, y), as
described in (B.2-2):

The eigenfunctions are 2D harmonic functions exp[j2π(νxx + νyy)],
and the eigenvalues are H(νx,νy), the 2D Fourier transform of h(x,
y). Again, there is a continuum of eigenfunctions, labeled by the
spatial frequencies (νx,νy).

Translational symmetry and harmonic modes. It is not
surprising that harmonic functions are the modes of a shift-
invariant system. Because the harmonic function is invariant to
time shift, i.e., it remains a harmonic function if translated in time,
it is the eigenfunction of the time-invariant (stationary) linear
system. Similarly, because 2D harmonic functions are invariant to
translation in the plane, they are the eigenfunctions of the space-
invariant (homogeneous) linear system.

If the linear system is not space-invariant, i.e., does not enjoy
translational symmetry, then in the 2D case it is represented by the
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more general linear operation described in (B.2-1):

The eigenfunctions, which are now not necessarily harmonic
functions, are determined by solving the eigenvalue problem posed
in (C.1-2), which in this case takes the form of an integral equation

The functions fq(x, y) and the constants λq are the eigenfunctions
and eigenvalues of the system, respectively, and the index q labels a
discrete set of modes.

Application: Optical resonator modes. An example is provided
by light traveling between the two parallel mirrors of a laser
resonator (Sec. 11.2E). The distributions of the optical field in the
transverse plane at the beginning and at the end of a single round
trip are the input and output of the system. The modes of the
resonator are those field distributions that maintain their form after
one round trip. The kernel h(x, y; x',y') in (C.1-7) represents
propagation in free space and reflection from one of the mirrors,
followed by backward free-space propagation and reflection from
the other mirror. Clearly, the presence of curved mirrors, or mirrors
of finite extent, makes this system shift-variant. If the mirrors are
spherical and are assumed to modulate the incoming light by a
phase factor that is a quadratic function of the radial distance, then
the resonator modes are Hermite–Gaussian functions of x and y
(see Sec. 3.3). In the presence of apertures, (C.1-7) can only be
solved numerically, as considered in Sec. 11.2E.

3) Modes of a System Described by an Ordinary Differential
Equation
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The dynamics of certain physical systems are characterized by a set
of coupled ordinary differential equations. For example, the
dynamics of N coupled oscillators are described by N differential
equations that are conveniently written in matrix form as

where X is a column matrix with components (X1, X2,. . . , XN ),  ≡
d2X/dt2, and M is an N × N matrix with time-independent
coefficients, so that the system is time invariant.

Time invariance requires that the modes be harmonic functions that
take the form exp(jωt), i.e., the vector X(t)= X(0) exp(jωt). Hence,
substitution in (C.1-8) yields

This equation represents a discrete-system eigenvalue problem. Its
eigenvalues provide the resonance frequencies ω1, ω2, ..., ωN of the
modes, and its eigenvectors are called the normal modes. All
components of the eigenvector Xq of mode q oscillate at the same
resonance frequency ωq, without alteration of their relative
amplitudes or phases. In this sense, the modes are stationary
solutions that are decoupled from one another.

4) Modes of a System Described by a Partial Differential
Equation

Fields and waves are described by partial differential equations such
as Maxwell's equations, which characterize the dynamics of the
electric and magnetic fields in a dielectric medium. Similarly, the
Schrödinger equation expresses the dynamics of the wavefunction
of a particle subject to a specified potential. If these physical
systems are stationary, i.e., if the dielectric medium and the
potential are time independent, then each mode must be a
harmonic function of time that takes the form exp(jωt) with some
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frequency ω. The wave equation is then converted into the
generalized Helmholtz equation

where η(r)= εo/ε(r) is the electric impermeability of the dielectric
medium [see (7.0-2)]. Analogously, the Schrödinger equation (14.1-
1) yields the time-independent Schr¨odinger equation (14.1-3),

where V(r) is the potential and E = ℏω.

Both of these equations take the form of an eigenvalue problem
(C.1-2), where L is a Hermitian differential operator characterized
by the function η(r) or V(r). The eigenvalues, which are real,
provide the frequencies ωq of the modes (and hence the
corresponding energies Eq in the caseof the Schröodinger equation).
The eigenfunctions are the spatial distributions of the
electromagnetic field (or the wavefunction) for each mode. Note
that the field (or the wavefunction) of the qth mode evolves with
time as exp(jωqt) at all positions, so that each mode is stationary, as
required.

Modes of fields/waves in a homogeneous medium with
boundary conditions. If the dielectric medium is homogeneous,
i.e., the impermeability η(r) is constant, then the system is shift-
invariant. To be consistent with this translational symmetry, the
modes of the electromagnetic system must be harmonic functions
of position, i.e., plane waves. Similarly, if the potential V(r) is
constant, then the modes are plane-wave wavefunctions, so that the
particle is equally likely to be found anywhere.

In other situations, η(r) and V(r) are constant within a finite region
bounded by a surface that imposes certain boundary conditions. For
example, the electromagnetic modes of a cavity resonator with



perfectly conducting surfaces can be determined by requiring that
the parallel components of the electric field vanish at the surface.
For a rectangular resonator, the modes are harmonic functions of
position — standing waves oscillating in unison (see Sec. 11.3C).
Similarly, the modes of a particle in a quantum box (dot) are
obtained by requiring that the wavefunction vanishes at the
boundaries (see Sec. 17.1G).

In yet another geometry, a homogeneous dielectric medium may be
bounded in one direction, e.g., by two parallel planar mirrors. Here,
the boundary conditions correspond to a discrete set of standing
waves in the direction orthogonal to the mirrors (transverse
direction), with traveling waves in the parallel (axial) direction, so
that the modes travel in this optical waveguide as harmonic
functions in the axial direction, without altering their transverse
distributions (see Sec. 9.1). If βq is the propagation constant of mode
q, then the eigenvalue is the phase factor exp(−jβqz).

Modes of fields/waves in a periodic medium. As is evident
from the previous examples, the modes of a system described by a
partial differential equation are dictated by the spatial distribution
of the medium, e.g., the function η(r) or V (r). If this function is
constant, the modes must be invariant to arbitrary translation. If it
is periodic, then the modes must be invariant to translation by a
period. This type of translational symmetry requires that the modes
be Bloch waves (see Sec. 7.2A). For example, if the medium is
homogeneous in the x and y directions but periodic in the z
direction, a Bloch mode takes the form of a harmonic function
exp(−jKz), modulated by a periodic standing wave pK(z) with period
equal to that of the medium; the dependence on x and y is, of
course, harmonic. For a given value of K, the frequencies of the
modes and the shapes of the corresponding standing waves pK(z)
depend on the shape of the periodic function η(r) or V(r). This type
of translational symmetry results in a spectrum of eigenvalues (and
hence frequencies ω or energies E = ℏω) in the form of bands that
are separated by bandgaps within which no modes are allowed.



Thus, an electron in a periodic potential distribution exhibits the
well-known band structure of solids (see Secs. 14.1D and 17.1A).
Likewise, an optical field in a periodic dielectric medium, i.e., a
photonic crystal, exhibits a band structure with photonic bandgaps
(see Secs. 7.2 and 7.3).
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SYMBOLS AND UNITS
Roman Symbols and Acronyms



a = Radius of an aperture or fiber [m]; also, Radius of a
spherical scattering particle [m]; also, Radius of a circle [m];
also, Distance between locations [m]; also, Lattice constant
[m]; also, Length of a thin metallic rod [m]; also, Chirp
parameter for an optical pulse

a0 = Bohr radius (radius of ground state of Bohr hydrogen
atom; a0 ≈ 0.53 Å) [m]

α = Complex amplitude or magnitude of an optical wave; also,
Normalized complex amplitude of an optical field (|α|2 =
photon-flux density)

a = Normalized field amplitude in a cavity (|a|2 = field energy
in units of photon number)

a = Acceleration of a carrier [m · s−2]

a = Primitive vector defining a lattice unit cell [m]

a = Complex-amplitude vector

A = Complex envelope of a monochromatic plane wave; also,
Pulse amplitude

A(r) = Complex envelope of a monochromatic wave

A(ν) = Fourier transform of the complex envelope of an optical
pulse

A = Complex vector envelope of a monochromatic plane wave;
also, Vector potential [V·s·m−1]

𝒜 = Absorbance

𝒜(r, t)= Complex envelope of a polychromatic (e.g., pulsed)
wave

𝒜(t)= Complex envelope of an optical pulse

A = Area [m2]; also, Element of the ABCD ray-transfer and
wave-transfer matrices M



Ac = Coherence area [m2]

Aij = Element of Jacobian transformation matrix

Ar = Relative atomic mass

Ai  = Airy function

A = Jacobian transformation matrix

𝔸 = Einstein A coefficient [s−1]

AC = Alternating current

ACS = American Chemical Society

ADC = Analog-to-digital converter

ADM = Add–drop multiplexer

ADP = Ammonium dihydrogen phosphate

AGIL = All gas-phase iodine laser

AM = Amplitude modulation

AMLCD = Active-matrix liquid-crystal display

AMOLED = Active-matrix organic light-emitting display

AND = AND logic gate
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AOC = Active optical cables

AOM = Acousto-optic modulator

APD = Avalanche photodiode

APS = American Physical Society

ASE = Amplified spontaneous emission

ASK = Amplitude shift keying



AWG = Arrayed waveguides

b = Radius of a circle [m]; also, Chirp coefficient [s2]

b = Bowing parameter

B = Magnetic flux-density complex amplitude [Wb · m−2 or T];
also, Bandwidth [Hz]; also, Bandwidth of an electrical circuit
[Hz]; also, Spatial bandwidth [m−1]; also, Spectral width
supporting net gain in a laser medium [Hz]

B = Magnetic flux-density complex amplitude vector [Wb · m−2

or T]

B0 = Bit rate [b · s−1]

B = Power-equivalent spectral width [Hz]

B = Magnetic flux density vector [Wb · m−2 or T]

B = Element of the ABCD ray-transfer and wave-transfer
matrices M

𝔹 = Einstein B coefficient [m3 · J−1 · s−2]

BBO = Beta barium borate

BER = Bit error rate

BGR = Bragg grating reflector

BPF = Bandpass filter

BPP = Bulk plasmon polariton

BPSK = Binary phase shift keying

BRF = Birefringent filter

BSO = Bismuth silicon oxide

c = Speed of light [m · s−1]; also, Phase velocity [m · s−1]

co = Speed of light in free space [m · s−1]

C = Electrical capacitance [F]



C  = Fresnel integral

 = Coupling coefficient in a directional coupler [m−1]

C = Element of the ABCD ray-transfer and wave-transfer
matrices M

C-band = Conventional optical fiber telecommunications band
(1530–1565 nm)

CAD = Computer-aided design

CAPD = Conventional avalanche photodiode

CARS = Coherent anti-Stokes Raman scattering

CATV = Cable television

CCD = Charge-coupled device

CCT = Correlated color temperature

CCW = Counterclockwise

CD = Compact-disc

CDM = Code-division multiplexing

CDMA = Code-division multiple access

CFL = Compact fluorescent lamp

CLSM = Confocal laser-scanning microscopy

CMOS = Complementary metal-oxide-semiconductor

COB = Chip-on-board light-emitting diode

COIL = Chemical oxygen–iodine laser

CPA = Chirped-pulse amplification

CRI = Color rendering index

CVD = Chemical vapor deposition

CW = Continuous-wave; also, Clockwise

CWDM = Coarse wavelength-division multiplexing



dr = Incremental volume [m3]

ds = Incremental length [m]

d = Coefficient of second-order optical nonlinearity [C · V−2]

deff = Effective coefficient of second-order optical nonlinearity
[C · V−2]

dijk = Component of second-order optical nonlinearity tensor [C
· V−2]

diJ = Component of second-order optical nonlinearity tensor
(contracted indices) [C · V−2]

d(ω3; ω1, ω2)= Coefficient of second-order optical nonlinearity
(dispersive medium) [C · V−2]

d = Distance, Length, Thickness [m]

db = Propagation length of a plasmon wave along its boundary
[m]

dd = Thickness of dielectric layer in a layered metamaterial [m]

dex = Mean distance traveled by a photon in a random laser
before exiting [m]

dm = Thickness of metallic layer in a layered metamaterial [m]

dmin = Minimum distance [m]

dp = Penetration depth [m]

dp = Distance of coupling prism from a waveguide [m]

dpulse = Length of a mode-locked optical pulse [m]

dS = Length along a small dimension [m]

dst = Mean distance traveled by a photon in a random laser
before stimulating a clone photon [m]



D = Diameter [m]; also, Electric flux-density complex
amplitude [C · m−2]; also, Width of an optical beam [m]

Ds = Width of an acoustic beam [m]

D* = Specific detectivity of a photodetector 

D = Electric flux-density complex amplitude vector [C · m−2]

Dw = Waveguide dispersion coefficient [s · m−2]

Dx, Dy = Lateral widths [m]

Dλ = Material dispersion coefficient [s · m−2]

Dν = Material dispersion coefficient [s2 · m−1]

D = Electric flux density vector [C · m−2]

D = Element of the ABCD ray-transfer and wave-transfer
matrices M

DBR = Distributed Bragg reflector

DC = Direct current

DCF = Dispersion-compensating fiber

DD = Direct detection

DESY = Deutsches Elektronen-Synchrotron

DEW = Directed-energy weapon

DFB = Distributed-feedback

DFF = Dispersion-flattened fiber

DFG = Difference-frequency generation

DGD = Differential group delay

DH = Double-heterostructure

DIP = Dual-inline package

DKDP = Deuterated potassium dihydrogen phosphate



DMD = Digital micromirror device

DMUX = Demultiplexer (also abbreviated as DEMUX)

DNG = Double-negative medium

DPC = Digital photon-counting device

DPS = Double-positive medium

DPSS = Diode-pumped solid-state

DQPSK = Differential quaternary phase shift keying

DRO = Doubly resonant oscillator

DSF = Dispersion-shifted fiber

DSP = Digital signal processing

DSPP = Doubly stochastic Poisson process

DUV = Deep ultraviolet, stretching from 200 to 300 nm

DVD = Digital-video-disc

DWDM = Dense wavelength-division multiplexing

DWELL = Quantum-dot-in-well

DWELL-QDIP = Quantum-dot-in-well quantum-dot infrared
photodetector

e = Magnitude of electron charge [C]

 = Unit vector in the x direction

E = Electric-field complex amplitude [V · m−1]; also, Steady or
slowly varying field [V · m−1]

EL = Local-oscillator electric-field complex amplitude [V · m−1]

Es = Signal electric-field complex amplitude [V · m−1]

E = Electric-field complex amplitude vector [V · m−1]



Ei = Electric-field complex amplitude vector within a scattering
sphere [V · m−1]

Es = Scattered electric-field complex amplitude vector [V · m−1]

E0 = Incident electric-field complex amplitude vector [V · m−1]

ε = Electric field vector [V · m−1]

E = Energy [J]; also, Radiant energy [J]

EA = Acceptor energy level [J]; also, Activation energy [J]

Ebeam = Electron-beam energy in a free-electron laser [GeV]

Ec = Energy at the bottom of the conduction band [J]

ED = Donor energy level [J]

Ef = Fermi energy [J]

Efc = Quasi-Fermi energy for the conduction band [J]

Efv = Quasi-Fermi energy for the valence band [J]

Eg = Bandgap energy [J]

Ek = Kinetic energy [J]

Emax = Maximum kinetic energy [J]

Er = Rotational energy [J]

Ev = Energy at the top of the valence band [J]

Ev = Luminous energy [lm · s]

Evar = Variational energy

Eν = Energy spectral density [J · Hz−1]

E-band = Extended optical fiber telecommunications band
(1360–1460 nm)

EAM = Electroabsorption modulator



ECLD = External-cavity laser diode

EDFA = Erbium-doped fiber amplifier

e-e-o = Extraordinary-extraordinary-ordinary designations for
waves 1, 2, and 3

EIT = Electromagnetically induced transparency

ELI = Extreme Light Infrastructure

E/O = Electronic-to-optical

e-o-e = Extraordinary-ordinary-extraordinary designations for
waves 1, 2, and 3

e-o-o = Extraordinary-ordinary-ordinary designations for waves
1, 2, and 3

EQE = External quantum efficiency

EUV = Extreme-ultraviolet, stretching from 10 to 100 nm

f = Focal length of a lens [m]; also, Frequency [Hz]; also,
Frequency of sound [Hz]

f(E)= Fermi function

fa = Probability that absorption condition is satisfied

fc(E)= Fermi function for the conduction band

fcol = Collision rate [s−1]

fe = Probability that emission condition is satisfied

fg = Fermi inversion factor

fv(E)= Fermi function for the valence band

f = Frequency of sound [Hz]; also, Modulation frequency [Hz]

f = Volume fraction of a homogeneous medium occupied by
scatterers (filling ratio)



F = Focal point of an optical system; also, Excess noise factor of
a photodetector

FP = Purcell factor

F# = F-number of a lens

F = Finesse of a resonator; also, Force [kg · m · s−2]

Fp = Ponderomotive force [kg · m · s−2]

Fml = Elements of the matrix F

F = Hermitian matrix for generalized Helmholtz equation
posed as an eigenvalue problem

FB = Fiber bundle

FBG = Fiber Bragg grating

FDM = Frequency-division multiplexing

FDMA = Frequency-division multiple access

FEL = Free-electron laser

FET = Field-effect transistor

FFT = Fast Fourier transform

FIR = Far infrared, stretching from 20 to 300 μm

FM = Frequency-modulated

FON = Fiber-optic network

FPA = Focal-plane array

FPI = Fabry–Perot interferometer

FROG = Frequency-resolved optical gating

FSK = Frequency shift keying

FTIR = Frustrated total internal reflection

FUV = Far ultraviolet, stretching from 100 to 200 nm



FWHM = Full-width at half-maximum

FWM = Four-wave mixing

g = Resonator g-parameter; also, Gravitational acceleration
constant at earth's surface [m · s−2]

g(r1, r2)= Normalized mutual intensity

g(r1, r2, τ)= Complex degree of coherence

g(ν)= Lineshape function of a transition [Hz−1]

g(τ)= Complex degree of temporal coherence

g0 = Gain factor

gν0(ν)= Electron–photon collisionally broadened lineshape
function in a semiconductor [Hz−1]

g = Coupling coefficient in a parametric interaction [m−3]

g = Fundamental spatial frequency of a periodic structure; also,
Degeneracy parameter

g = Primitive vector defining a reciprocal-lattice unit cell [m−1]

G = Gain of an amplifier; also, Gain of a photodetector; also,
Conductance [Ω− 1]

G(r1, r2)= Mutual intensity [W · m− 2]

G(r1, r2, τ)= Mutual coherence function [W · m−2]

G(ν)= Gain of an optical amplifier

G(τ)= Temporal coherence function [W · m−2]

GA(τ)= Pulse-envelope autocorrelation function

GI(τ)= Intensity autocorrelation function [J2 · m−4 middot; s−

1]

GR = Gain of a Raman amplifier



G = Coherency matrix [W · m−2]; also, Gyration vector of an
optically active medium; also, Wavevector of a phase grating
[m− 1]

G = Photoionization rate in a photorefractive material

G0 = Rate of thermal electron–hole generation in a
semiconductor [m−3 · s− 1]

G = Reciprocal-lattice vector [m− 1]

Gn  = Hermite–Gaussian function of order n

GB = Gain–bandwidth product [Hz]

GFP = Group-IV photonics; also, Green fluorescent protein

GR = Generation–recombination

GRIN = Graded-index

GVD = Group velocity dispersion

h = Complex round-trip amplitude attenuation factor in a
resonator; also, Planck's constant [J·s]

h(t)= Impulse response function of a linear system

h(x, y)= Impulse response function of a two-dimensional linear
system

hD(t)= Photodetector impulse response function

ħ = h/2π [J · s]

H = Principal point of an optical system; also, Magnetic-field
complex amplitude [A · m−1]

H = Magnetic-field complex amplitude vector [A · m−1]

H = Magnetic field vector [A · m−1]

H(ν)= Transfer function of a linear system [H(f) for low-
frequency signals]



H′(ν)= Real part of the transfer function of a linear system

H″(ν)= Imaginary part of the transfer function of a linear
system

H(νx, νy)= Transfer function of a two-dimensional linear
system

He(f)= Envelope transfer function of a linear system

H0 = Transfer-function magnitude

 = Hankel function of the first kind of order l

 = Hermite polynomial of order n

H = Horizontal polarization

HAPLS = High-repetition-rate Advanced Petawatt Laser System

HD = High definition

HG = Hermite–Gaussian

HHG = High-harmonic generation

HNLF = Highly nonlinear fiber

HOE = Holographic optical element

HOM = Hong–Ou–Mandel

HOMO = Highest occupied molecular orbital

HVPE = Hydride vapor-phase epitaxy

HXR = Hard-X-ray

i = Electric current [A]; also, Integer; also, 

id = Dark current [A]

ie = Electron current [A]

ih = Hole current [A]

ip = Photoelectric current (photocurrent) [A]



is = Reverse current in a semiconductor p–n diode [A]

it = Threshold current of a laser diode [A]

iT = Transparency current for a laser-diode amplifier [A]

I = Optical intensity (also called Irradiance) [W · m−2]

I(t)= Intensity of an optical pulse [W · m−2]

IL = Local-oscillator intensity [W · m−2]

Is = Saturation optical intensity of an amplifier or absorber [W ·
m−2]; also, Acoustic intensity [W · m−2]; also, Signal intensity
[W · m−2]

Is = Optical intensity of a scattered wave [W · m−2]

It = Threshold intensity of a laser [W · m−2]

Iν  = Spectral intensity [W · m−2 · Hz−1]

I0 = Optical intensity of an incident wave [W · m−2]

I0  = Modified Bessel function of order zero

𝒥 = Fourier transform of intensity profile; also, Moment of
inertia [kg · m2]

I = Identity matrix

I = In-phase component of the field

IC = Integrated circuit

ICL = Interband cascade laser

IEEE = Institute of Electrical and Electronics Engineers

IF = Intermediate frequency

IG = Ince–Gaussian

IM = Intensity modulation



IP = Internet protocol

IR = Infrared

IRE = Institute of Radio Engineers

ISI = Intersymbol interference

ITO = Indium tin oxide

ITU = International Telecommunications Union

j = ; also, Integer

J = Electric current density [A · m−2]

Je = Electron current density [A · m−2]

Jh = Hole current density [A · m−2]

Jl  = Bessel function of the first kind of order l

Jp = Photoelectric current density [A · m−2]

Jt = Threshold current density of a laser diode [A · m−2]

JT = Transparency current density of a laser-diode amplifier [A ·
m−2]

J = Jones vector

𝒥 = Total angular-momentum quantum number

𝒥 = Electric current density vector [A · m−2]

k = Wavenumber [m−1]; also, Integer; also, Spatial angular
frequency [rad · m−1]

ke = Complex effective wavenumber of a host medium with
embedded scatterers [m−1]

ko = Free-space wavenumber [m−1]



kr = Reflected wavenumber [m−1]; also, Upshifted wavenumber
of a Bragg-reflected wave [m−1]

ks = Downshifted wavenumber of a Bragg-reflected wave [m−1]

ks = Wavenumber inside a scattering medium [m−1]

kT =  = Transverse component of the wavevector [m−1]

kx, ky = Wavevector components in x and y directions [m−1];
also, Spatial angular frequencies in x and y directions [rad ·
m−1]

k0 = Central wavenumber [m−1]

k = Wavevector [m−1]

kg = Grating wavevector [m−1]

kr = Reflected wavevector [m−1]; also, Upshifted wavevector of
a Bragg-reflected wave [m−1]

ks = Downshifted wavevector of a Bragg-reflected wave [m−1]

k = Ionization ratio for an avalanche photodiode

k = Boltzmann's constant [J · K−1]

K = Undulator (magnetic-deflection) parameter in a free-
electron laser

Km  = Modified Bessel function of the second kind of order m

Kα = Designation of X-ray line arising from transition from n =
2 to n = 1 atomic shells

K = Bloch wavenumber [m−1]

K = Bloch wavevector [m−1]

KDP = Potassium dihydrogen phosphate

KGW = Potassium gadolinium tungstate



KTP = Potassium titanyl phosphate

KYW = Potassium yttrium tungstate

l = Length [m]; also, Integer

lc = Coherence length [m]

l = Azimuthal quantum number

l0 = Optical pathlength of the central frequency component of a
pulse

L = Length [m]; also, Distance [m]; also, Electrical inductance
[H]; also, Loss factor; also, Number of incoming optical beams
to an acousto-optic switch; also, Integer

Lc = Coherence length in a parametric interaction [m]

Lp = Soliton–soliton interaction period [m]

Lv = Luminance [cd · m−2]

L0 = π/2  = Coupling length (transfer distance) in a directional
coupler [m]

ℒ = Linear operator

L = Orbital angular momentum quantum number
2S+1L𝒥 = Term symbol for angular-momentum quantum
numbers with LS coupling

L = Angular momentum [J · s]

 = Laguerre polynomial of degree m

 = Generalized Laguerre polynomial of degree m, order l,
and index (m, l)

L-band = Long optical fiber telecommunications band (1565–
1625 nm)

LB0 = Bit-rate–distance product [km · Gb · s−1]



LAN = Local-area network

LANL = Los Alamos National Laboratory

LASER = Light amplification by stimulated emission of
radiation

LaWS = Laser Weapon System (U.S. Navy)

LBO = Lithium triborate

LC = Liquid crystal

LCD = Liquid-crystal display

LCLS = Linac Coherent Light Source at SLAC National
Accelerator Laboratory operated by Stanford University

LCP = Left-circularly polarized

LD = Laser diode

LED = Light-emitting diode

LEP = Light-emitting polymer material

LG = Laguerre–Gaussian

LHS = Left-hand side

LIGO = Laser Interferometer Gravitational-wave Observatory

LINAC = Linear accelerator

LLNL = Lawrence Livermore National Laboratory

LMA = Large mode-area

LO = Local oscillator

LP = Linearly polarized

LPE = Liquid-phase epitaxy

LSP = Localized surface plasmon (localized surface plasmon
polariton)

LuAG = Lutetium aluminum garnet



LUMO = Lowest unoccupied molecular orbital

LWFA = Laser wakefield acceleration

LWI = Lasing without inversion

LWIR = Long-wavelength infrared, stretching from 8 to 14 μm

m = Mass of a particle [kg]; also, Free electron mass [kg]; also,
Integer; also, Contrast or modulation depth

mc = Effective mass of a conduction-band electron [kg]

mp = Proton mass [kg]

mr = Reduced mass of an electron–hole pair in a
semiconductor [kg]

mv = Effective mass of a valence-band hole [kg]

m0 = Free electron mass [kg]

m = Magnetic dipole moment [A · m2]

m = Photon number; also, Photoelectron number

m0 = Photoelectron-number sensitivity of an optical receiver

m= Magnetic quantum number

M = Magnification in an image system; also, Number of modes;
also, Magnetization density complex amplitude [A · m−1]; also,
Number of harmonics; also, Integer

Mv = Illuminance [lx]

M = Magnetization density complex amplitude vector [A · m−1]

M = Figure of merit indicating strength of acousto-optic effect
in a material [m2 · W−1]

M = Magnetization density vector [A · m−1]

M = Mass of an atom or molecule [kg]



M(ν)= Density of modes in a resonator [m−3 ·Hz−1 for 3D
resonator; m−1·Hz−1 for 1D resonator]

Mr = Reduced mass of an atom or molecule [kg]

M = Ray-transfer matrix; also, Wave-transfer matrix

M2 = Factor representing deviation of optical-beam profile from
Gaussian form

MAN = Metropolitan-area network

MBE = Molecular-beam epitaxy

MC = Mode converter

MCF = Multicore fiber

MCP = Microchannel plate

MEMS = Microelectromechanical system

MI = Michelson interferometer

MIM = Metal–insulator–metal

MIMO = Multiple-input multiple-output

MIR = Mid infrared, stretching from 2 to 20 μm

MIRACL = Mid-infrared advanced chemical laser

MIS = Metal–insulator–semiconductor

MKS = Meter/kilogram/second unit system

MMF = Multimode fiber

MOCVD = Metalorganic chemical vapor deposition (same as
MOVPE)

MOFA = Master-oscillator fiber-amplifier

MOPA = Master-oscillator power-amplifier

MOSFET = Metal-oxide-semiconductor field-effect transistor

MOT = Magneto-optical trap



MOVPE = Metalorganic vapor phase epitaxy (same as MOCVD)

MPM = Multiphoton microscopy

MQD = Multiquantum dot

MQW = Multiquantum well

M-ROADM = Multi-degree reconfigurable optical add–drop
multiplexer

MUV = Mid ultraviolet, stretching from 200 to 300 nm

MUX = Multiplexer

MWIR = Medium-wavelength infrared, stretching from 3 to 5
μm

MZI = Mach–Zehnder interferometer

MZM = Mach–Zehnder modulator

n = Refractive index; also, Integer

n(r)= Refractive index of an inhomogeneous medium

n(θ)= Refractive index of extraordinary wave in a uniaxial
crystal

nb = Effective refractive index associated with SPP at metal–
dielectric boundary

ne = Extraordinary refractive index

no = Ordinary refractive index

np = Refractive index of a prism

ns = Refractive index of a scattering volume

n2 = Optical Kerr coefficient (nonlinear refractive index) [m2 ·
W−1]

n = Photon-number density [m−3]

ns = Saturation photon-number density [m−3]



n = Photon number

 = Mean photon number

 = Spectral photon number [Hz−1]

n0 = Number-state photon number; also, Photon-number
sensitivity of an optical receiver

n= Principal quantum number

n = Concentration of electrons in a semiconductor [m−3]

ni = Concentration of electrons/holes in an intrinsic
semiconductor [m−3]

n0 = Equilibrium concentration of electrons in a semiconductor
[m−3]

N = Group index; also, Integer; also, Number of atoms; also,
Number of stages; also, Number of optical cycles; also, Number
of resolvable spots of a scanner; also, Order of a higher-order
soliton

NF = Fresnel number

N = Number density [m−3]; also, N = N2 − N1 = Population
density difference [m−3]

Na = Atomic number density [m−3]

NA = Number density of ionized acceptor atoms in a
semiconductor [m−3]

ND = Number density of ionized donor atoms in a
semiconductor [m−3]; also, Number density of donor atoms in a
photorefractive material [m−3]

 = Number density of ionized donor atoms in a
photorefractive material [m−3]

Ns = Number density of scatterers [m−3]



Nt = Laser threshold population difference [m−3]

N0 = Steady-state population difference in the absence of
amplifier radiation [m−3]

NA = Numerical aperture

NEA = Negative-electron-affinity

NEP = Noise-equivalent power

NIF = National Ignition Facility

NIM = Negative-index material

NIR = Near infrared, stretching from 0.760 to 2 μm

NL = Nonlinear

NLDC = Nonlinear directional coupler

NOLM = Nonlinear optical loop mirror

NRI = Negative refractive index

NRZ = Non-return-to-zero

NUV = Near ultraviolet, stretching from 300 to 390 nm

NZ-DSF = Non-zero dispersion shifted fiber

O-band = Original optical fiber telecommunications band
(1260–1360 nm)

OA = Optical amplifier

OADM = Optical add–drop multiplexer

OAM = Orbital angular momentum

OC = Optical carrier

OCT = Optical coherence tomography

ODMUX = Optical demultiplexer (also abbreviated as
ODEMUX)

O/E = Optical-to-electronic



o-e-e = Ordinary-extraordinary-extraordinary designations for
waves 1, 2, and 3

OEIC = Optoelectronic integrated circuit

o-e-o = Ordinary-extraordinary-ordinary designations for waves
1, 2, and 3

OEO = Optical-electrical-optical

OFA = Optical fiber amplifier

OFC = Optical frequency comb; also, Optical frequency
conversion

OH = Hydroxyl radical

OLED = Organic light-emitting diode

OM = Optical mode

OMUX = Optical multiplexer

o-o-e = Ordinary-ordinary-extraordinary designations for waves
1, 2, and 3

OOK = ON–OFF keying

OPA = Optical parametric amplifier

OPC = Optical phase conjugation

OPCPA = Optical parametric chirped-pulse amplification

OPD = Organic photodetector

OPO = Optical parametric oscillator

OR = OR logic gate

OSA = Optical Society of America

OTDM = Optical time-division multiplexer

OXC = Optical cross-connect

p = Probability; also, Momentum [kg · m · s−1]; also, Graded-
index fiber profile parameter



p(n)= Probability of n events

p(n)= Photon-number distribution

p(x, y)= Aperture function or pupil function

pab = Probability density for absorption (mode containing one
photon) [s−1]

psp = Probability density for spontaneous emission (into one
mode) [s−1]

pst = Probability density for stimulated emission (mode
containing one photon) [s−1]

p = Electric dipole moment [C · m]

p = Normalized electric-field quadrature component

p = Elasto-optic (strain-optic) coefficient

Pijkl = Component of the photoelasticity tensor

PIK = Component of the photoelasticity tensor (contracted
indices)

p = Concentration of holes in a semiconductor [m−3]

p0 = Equilibrium concentration of holes in a semiconductor
[m−3]

𝒫 = Electric polarization-density complex amplitude [C · m−2];
also, Probability of impact ionization

𝒫(νx,νy)= Fourier transform of the aperture function p(x, y)

Pab = Probability density for absorption (mode containing many
photons) [s−1]

 = Microsphere-resonator adjoint Legendre function

PNL = Complex amplitude of the nonlinear component of the
polarization density [C · m−2]



Psp = Probability density for spontaneous emission (into any
mode) [s−1]

Pst = Probability density for stimulated emission (mode
containing many photons) [s−1]

P = Electric polarization-density complex amplitude vector [C ·
m−2]

𝒫 = Electric polarization density vector [C · m−2]

PL = Linear component of the polarization density [C · m−2]

PNL = Nonlinear component of the polarization density [C ·
m−2]

P = Optical power (also called Radiant power or Radiant flux)
[W]

Pe = Electrical power [W]

Pi = Incident optical power [W]

PL = Local-oscillator power [W]

Po = Output optical power [W]; also, Average output optical
power [W]

Pp = Peak pulse power [W]

Pp = Optical pump power [W]

Pr = Received optical power [W]

Ps = Signal (optical) power [W]

Ps = Optical power of a scattered wave [W]

Pt = Threshold optical pump power [W]

Pv = Luminous flux [lm]

Pν = Power spectral density [W · Hz−1]



Pπ = Half-wave optical power in a Kerr medium [W]

P = Degree of polarization

P = Optical power [dBm]

Pc = Optical power loss associated with splicing and coupling
[dBm]

Pm = Optical power allotted for safety margin [dBm]

Pr = Receiver optical power sensitivity [dBm]

Ps = Source optical power [dBm]

PAL-SLM = Parallel aligned spatial light modulator

PBG = Photonic bandgap

PBS = Polarizing beamsplitter

PCB = Printed circuit board

PCF = Photonic-crystal fiber

PC-LED = Phosphor-conversion LED

PCM = Pulse code modulation

PD = Photodetector

PDE = Photon detection efficiency

PET = Positron-emission tomography

PG-FROG = Polarization-gated frequency-resolved optical
gating

PIC = Photonic integrated circuit

PIN = p-type–i-type–n-type photodiode

PLASER = Powder laser

PLC = Planar lightwave circuit

PLED = Polymer organic light-emitting diode



PM = Phase modulation

PMD = Polarization mode dispersion

PMT = Photomultiplier tube

P-OLED = Polymer light-emitting diode

PPLN = Periodically poled lithium niobate

PPV = Poly(p-phenylene vinylene)

PROM = Pockels readout optical modulator

PRR = Pulse repetition rate

PSK = Phase shift keying

PWFA = Plasma wakefield acceleration

PWM = Pulse-width modulation

q = Electric charge [C]; also, Wavenumber of an acoustic wave
[m−1]; also, Integer (mode index, diffraction order, quantum
number); also, Spatial angular frequency [rad · m−1]

q(z)= Complex Gaussian-beam parameter [m]

q = Quantum defect

q = Wavevector of an acoustic wave [m−1]

Q = Electric charge [C]; also, Quality factor of an optical
resonator or a resonant circuit

Qa = Absorption efficiency

Qs = Scattering efficiency

Q = Quadrature component of the field

QAM = Quadrature amplitude modulation

QCL = Quantum cascade laser

QCSE = Quantum-confined Stark effect

QD = Quantum dot



QDIP = Quantum-dot infrared photodetector

QED = Quantum electrodynamics

QOCT = Quantum optical coherence tomography

QPM = Quasi-phase matching; also, Quadratic phase modulator

QPSK = Quaternary phase shift keying

QWIP = Quantum-well infrared photodetector

r = Radial distance in spherical and cylindrical coordinates [m]

rn = Radii of allowed electron orbits in Bohr atom [m]

r = Position vector [m]

 = Unit vector in radial direction in spherical coordinates

r = Complex amplitude reflectance; also, Complex round-trip
amplitude attenuation factor in a resonator

|r| = Magnitude of round-trip amplitude attenuation factor in a
resonator

r+ = Frequency-upshifted Bragg amplitude reflectance

r− = Frequency-downshifted Bragg amplitude reflectance

r(ν)= Rate of photon emission/absorption from a
semiconductor [s−1 · m−3 · Hz−1]

r = Linear electro-optic (Pockels) coefficient [m · V−1]; also,
Rotational quantum number

rijk = Component of the linear electro-optic (Pockels) tensor [m
· V−1]

rIk = Component of the linear electro-optic (Pockels) tensor
(contracted indices) [m · V−1]

r = Electron–hole recombination coefficient [m3 · s−1]



rnr = Nonradiative electron–hole recombination coefficient [m3

· s−1]

rr = Radiative electron–hole recombination coefficient [m3 ·
s−1]

rect  = Pulse of unit height and unit width centered about 0

R = Radius of curvature [m]; also, Electrical resistance [Ω]

R(z) = Radius of curvature of a Gaussian beam [m]

R(τ) = Field autocorrelation function

RL = Load resistance [Ω]

Rm = Distance from the focal point to the mth ring of a Fresnel
zone plate [m]

R0 = Radius of cylinder in which a meridional ray is confined
[m]

R(θ) = Jones matrix for coordinate rotation by an angle θ

ℜ = Intensity or power reflectance; also, approximate
reflectance of a Bragg reflector

ℜe = Exact intensity or power reflectance of a Bragg reflector

R = Pumping rate [s−1 · m−3]; also, Recombination rate in a
semiconductor [s−1 · m−3]; also, Electron–hole injection rate in
a semiconductor [s−1 · m−3]

Rt = Laser threshold pumping rate [s−1 · m−3]

R = Lattice vector [m]

R = Responsivity of a photon source [W·A−1]; also,
Responsivity of a photon detector [A·W−1]

Rd = Differential responsivity of a laser diode [W · A−1]



ℝnl (r)= Hydrogen-atom associated Laguerre function of order l
and index n

R = Ratio of complex-envelope polarization-component
magnitudes

RC = Resistor–capacitor combination

RC = Resonant-cavity

RCLED = Resonant-cavity light-emitting diode

RCP = Right-circularly polarized

REFA = Rare-earth-doped fiber amplifier

RF = Radio-frequency

RFA = Raman fiber amplifier

RFID = Radio-frequency identification

RFL = Raman fiber laser

RHS = Right-hand side

RMS = Root-mean square

ROADM = Reconfigurable optical add–drop multiplexer

RW = Ridge waveguide

Rx = Receiver

RZ = Return-to-zero

s = Length or distance [m]; also, Scale factor

s(x, t)= Strain wavefunction

sij = Component of the strain tensor

s = Photorefractivity proportionality constant for
photoionization cross section

s(r1, r2, ν)= Normalized cross-spectral density



s= Quadratic electro-optic (Kerr) coefficient [m2 · V−2]; also,
Spin quantum number

sijkl = Component of the quadratic electro-optic (Kerr) tensor
[m2 · V−2]

SIK = Component of the quadratic electro-optic (Kerr) tensor
(contracted indices) [m2 · V−2]

sinc  = Symmetric function with peak value of unity at 0
[sinc(t) ≡ sin(πt)/(πt)]

S = Poynting-vector magnitude [W·m−2]; also, Transition
strength (oscillator strength) [m2·Hz]

S(r)= Complex amplitude for a radiation source [V · m−3]

S  = Fresnel integral

S0 = Strain amplitude

S = Complex Poynting vector [W · m−2]

S(t)= Source of optical radiation created by an incident field [V ·
m−3]; also, Spin angular-momentum quantum number

S = Poynting vector [W · m−2]

S(r)= Eikonal [m]

S(r1, r2, ν) = Cross-spectral density [W · m−2 · Hz−1]

S(λo) = Wavelength power spectral density [W · m−1];

S(ν) = Spectral intensity of an optical wave or pulse [W ·m−2

·Hz−1]; also, Power spectral density [W · m−2 · Hz−1]

S(ν, t) = Spectrogram of an optical pulse [S(ν, t)= |Φ(ν, t)|2]

S = Scattering matrix

S = Projection of photon-spin angular momentum along the
wavevector (helicity) [J · s]



S[·] = Stokes parameters

S-band = Short optical fiber telecommunications band (1460–
1530 nm)

SACM = Separate absorption, charge, and multiplication

SAM = Separate absorption and multiplication

SAPD = Superlattice avalanche photodiode; also, Staircase
avalanche photodiode

SASE = Self-amplified spontaneous emission

SBN = Strontium barium niobate

SBS = Stimulated Brillouin scattering

SCF = Single-core fiber

SCG = Supercontinuum generation

SCIDCM = Single-carrier-injection double-carrier
multiplication

SCISCM = Single-carrier-injection single-carrier multiplication

SDH = Synchronous digital hierarchy

SDL = Semiconductor disk laser

SDM = Space-division multiplexing

SEED = Self-electro-optic-effect device

SESAM = Semiconductor saturable-absorber mirror

SFG = Sum-frequency generation

SGDFB = Sampled-grating distributed-feedback

SH = Second harmonic

SHG = Second-harmonic generation

SHG-FROG = Second-harmonic generation frequency-resolved
optical gating



SI = International system of units; also, Step-index

SLA = Semiconductor laser amplifier

SLAC = National Accelerator Laboratory at Stanford University

SLED = Superluminescent diode

SLM = Spatial light modulator

SMD = Surface-mounted device

SMF = Single-mode fiber

SMOLED = Small-molecule organic light-emitting diode

SNG = Single-negative medium

SNOM = Scanning near-field optical microscopy

SNR = Signal-to-noise ratio

SNSPD = Superconducting nanowire single-photon detector

SOA = Semiconductor optical amplifier

SOI = Silicon-on-insulator

SONET = Synchronous optical network

SOS = Silica-on-silicon

SPAD = Single-photon avalanche diode

SPASER = Surface-plasmon amplification by stimulated
emission of radiation

SPDC = Spontaneous parametric downconversion

SPE = Single-photon emitter

SPIE = The International Society for Optical Engineering

SPM = Self-phase modulation

SPP = Surface plasmon polariton

SPR = Surface plasmon resonance

SQUID = Superconducting quantum-interference device



SQW = Single quantum well

SRO = Singly resonant oscillator

SRS = Stimulated Raman scattering

SSFS = Soliton self-frequency shift

SSPD = Superconducting single-photon detector

STS = Synchronous transport signal

SVE = Slowly varying envelope

SXR = Soft-X-ray

t = Time [s]

ti = Ionization time [s]

tr = Recombination time [s]

tsp = Spontaneous lifetime [s]; also, Effective spontaneous
lifetime [s]

t = Complex amplitude transmittance; also, Normalized time
for an optical pulse

T = Temperature [°K]

T = Jones matrix

T = Intensity or power transmittance; also, Power-transfer or
power-transmission ratio

T = Transit time [s]; also, Counting time [s]; also, Switching
time [s]; also, Bit time interval [s]; also, Resolution time (T =
1/2B where B = Bandwidth) [s]; also, Period of a wave (T = 1/ν
where ν = frequency) [s]; also, Transit time of sound across an
optical beam

TF = 1/νF = Inverse of Fabry–Perot resonator-mode frequency
spacing (TF = 2d/c) [s]; also, Period of a mode-locked laser
pulse train [s]



Tlm = Element of transmission or interconnection matrix

T0 = Ground-state orbital period in Bohr hydrogen atom (T0 ≈
150 as) [s]

T2 = Electron–phonon collision time [s]

T = Transmission matrix; also, Interconnection matrix

TADF = Thermally activated delayed fluorescence

TDM = Time-division multiplexing

TDMA = Time-division multiple access

TE = Transverse electric

TEM = Transverse electromagnetic

TES = Transition-edge sensor

TFF = Thin-film filter

TFT = Thin-film transistor

TGG = Terbium gallium garnet

THG = Third-harmonic generation

TIR = Total internal reflection

TM = Transverse magnetic

TMD = Transition-metal dichalcogenide

TOAD = Terahertz optical asymmetric demultiplexer

TPD = Triphenyl diamine derivative

TPLSM = Two-photon laser scanning fluorescence microscopy

TSI = Time-slot interchange

TST = Time–space–time

TV = Television receiver

Tx = Transmitter



2PM = Two-photon microscopy

3PM = Three-photon microscopy

u = Displacement [m]

u(r, t)= Wavefunction of an optical wave

 = Unit vector

u= Number of electrons in a subshell

U(r)= Complex amplitude of a monochromatic optical wave

u(r, t)= Complex wavefunction of an optical wave

U(t) = Complex wavefunction of an optical pulse

U(t1, t2)= Joint temporal wavefunction for two-photon light

U(x1, x2) = Joint spatial wavefunction for two-photon light

Us(x) = Probability amplitude of location of maximally
entangled photons

Us(r) = Complex amplitude of a scattered monochromatic
optical wave

U0(r)= Complex amplitude of an incident monochromatic
optical wave

U(x)= Unit step function [U(x) = 1 if x > 0 and U(x) = 0 if x <
0]

U-band = Ultra-long optical fiber telecommunications band
(1625–1675 nm)

ULSI = Ultra-large-scale integration

UV = Ultraviolet

UVA = Ultraviolet-A band, stretching from 315 to 400 nm

UVB = Ultraviolet-B band, stretching from 280 to 315 nm

UVC = Ultraviolet-C band, stretching from 100 to 280 nm



v = Group velocity of a wave [m · s−1]

v(r, ν)= Fourier transform of the wavefunction of an optical
wave

vs = Velocity of sound [m · s−1]

v = Velocity of an atom or object [m · s−1]; also, Drift velocity of
a carrier [m · s−1]

ve = Velocity of an electron [m · s−1]

vh = Velocity of a hole [m · s−1]

v = Velocity vector of a charge carrier [m · s−1]

v = Vibrational quantum number

V = Vertex; also, Volume [m3]; also, Modal volume [m3]; also,
Voltage [V]

V(r, ν)= Fourier transform of the complex wavefunction of an
optical wave

V(λo) = Photopic luminosity function (photopic luminous
efficiency function)

V(ν) = Fourier transform of the complex wavefunction of an
optical pulse

V(ν1, ν2) = Joint spectral wavefunction for two-photon light

V(νx1, νx2)= Joint wavevector wavefunction for two-photon
light [kx1 = 2πνx1 and kx2 = 2πνx2]

VB = Battery voltage [V]

Vc = Critical voltage for a liquid-crystal cell [V]

Vs(νx) = Fourier transform of Us(x)

Vπ = Half-wave voltage of an electro-optic retarder or
modulator [V]



V0 = Built-in potential difference in a p–n junction [V]; also,
Switching voltage of a directional coupler [V]

V = Visibility

V = Verdet constant [rad · m−1 · T−1]

V = Fiber V parameter

V(r)= Potential energy [J]

V = Abbe number of a dispersive medium

V = Vertical polarization

VCSEL = Vertical-cavity surface-emitting laser

VECSEL = Vertical external-cavity surface-emitting laser

VLSI = Very-large-scale integration

VOx = Vanadium oxide

VPE = Vapor-phase epitaxy

VUV = Vacuum ultraviolet, stretching from 10 to 200 nm

w = Width [m]; also, Radius of a thin metallic rod [m]; also,
Length of an acousto-optic cell [m]

w = Integrated photon flux (integrated optical power in units of
photon number)

wd = Width of the absorption region in an avalanche
photodiode [m]

wm = Width of the multiplication region in an avalanche
photodiode [m]

W = Time-averaged electromagnetic energy density [J · m−3]

W(t) = Window function; also, Window function for short-time
Fourier transform

W(z)= Width (radius) of a Gaussian beam at an axial distance z
from the beam center [m]



W0 = Waist radius of a Gaussian beam [m]

W = Electromagnetic energy density [J · m−3]

W = Probability density for absorption of pump light [s−1]

Wi = Probability density for absorption and stimulated
emission [s−1]

W = Ionization energy of an atom [J]; also, Photoelectric work
function [J]

WAN = Wide-area network

WC = Wavelength converter

WCI = Wavelength-channel interchange

WDM = Wavelength-division multiplexing

WDMA = Wavelength-division multiple access

WG = Waveguide

WGM = Whispering-gallery mode

WGR = Waveguide grating router

WKB = Wentzel–Kramers–Brillouin

WLAN = Wireless local-area network

WOLED = White organic light-emitting diode

WPE = Wall-plug efficiency

WSS = Wavelength-selective switch

x = Position coordinate [m]; also, Displacement [m]

 = Unit vector in the x direction in Cartesian coordinates

χ(t)= Inverse Fourier transform of the susceptibility of a
dispersive medium χ(ν)

x = Normalized electric-field quadrature component



X = Normalized photon-flux density at the input to an optical
amplifier

X = Input vector to a linear system

Xq = Eigenvectors associated with an eigenvalue problem

X(u) = Real function associated with the Hermite–Gaussian
beam

X(2)(ω1, ω2) = Second-order nonlinear susceptibility

X  = Normalized rate of change of the radial distribution in
the core of a step-index fiber

XC = Cross-connect

XGM = Cross-gain modulation

XOR = Exclusive OR gate

XPM = Cross-phase modulation

XUV = Extreme ultraviolet

y = Position coordinate [m]

 = Unit vector in the y direction in Cartesian coordinates

Y = Normalized photon-flux density at the output of an optical
amplifier

Y = Output vector from a linear system

Y(v)= Real function associated with the Hermite–Gaussian
beam

Y  = Normalized rate of change of the radial distribution in
the cladding of a step-index fiber

YAG = Yttrium aluminum garnet

YIG = Yttrium iron garnet

YLF = Yttrium lithium fluoride



z = Position coordinate (Cartesian or cylindrical coordinates)
[m]

zmin = Location of the minimum width for a chirped Gaussian
pulse [m]

zNL = Nonlinear characteristic length of a Kerr medium [m]

zp = Soliton period [m]

zT = Talbot distance [m]

z0 = Rayleigh range of a Gaussian beam [m]

|z0| = Dispersion length of a Gaussian pulse traveling through
a dispersive medium [m]

 = Unit vector in the z direction in Cartesian coordinates

z = Normalized distance for an optical pulse

Z = Atomic number; also, Electrical-circuit impedance [Ω]

Z  = Real function associated with the Hermite–Gaussian
beam

Greek Symbols



α = Apex angle of a prism; also, Twist coefficient of a twisted
nematic liquid crystal [m−1]; also, Attenuation or absorption
coefficient [m−1]; also, Intensity extinction coefficient: α = αa +
αs [m−1]; also, Linewidth-enhancement factor for a laser diode

αa = Absorption coefficient of a scattering material [m−1]

αe = Electron ionization coefficient in a semiconductor [m−1]

αh = Hole ionization coefficient in a semiconductor [m−1]

αm = Loss coefficient of a resonator attributed to a mirror [m−1]

αp = Mean value of p for a coherent state

αr = Effective overall distributed loss coefficient [m−1]

αs = Loss coefficient of a laser medium [m−1]

αs = Scattering coefficient [m−1]

αx = Mean value of x for a coherent state

αν = Angular dispersion coefficient [Hz−1]

α = Attenuation coefficient of an optical fiber [dB/km]

β = kz = Propagation constant [m−1]; also, Phase-retardation
coefficient of a twisted nematic liquid crystal [m−1]

β′ = First derivative of β with respect to ω [m−1 · s]

β″ = Second derivative of β with respect to ω [m−1 . s2]

β(ν)= Propagation constant in a dispersive medium [m−1]

β0 = β(ν0)= Propagation constant at the central frequency ν0

[m−1]

β = Spontaneous-emission coupling coefficient



γ = Field attenuation coefficient [m−1]; also, Field extinction
coefficient [m−1]; also, Lateral decay coefficient in a waveguide
[m−1]; also, Lorentz factor in special relativity (γ = [1 −
(v/c)2]−1/2); also, Coupling coefficient in a parametric device
[m−1]; also, Nonlinear coefficient in soliton theory

γb = Amplitude attenuation coefficient of a traveling surface
plasmon polariton [m−1]

γB = Magnetogyration coefficient [m2 · Wb−1]

γm = Field extinction coefficient of an evanescent wave [m−1]

γR = Photorefractivity recombination-rate coefficient

γ = Gain coefficient of an optical amplifier [m−1]

γ(ν) = Gain coefficient of an optical amplifier [m−1]

γm = Maximum gain coefficient of a quantum-well laser-diode
amplifier [m−1]

γp = Peak gain coefficient of a laser-diode amplifier [m−1]

γR = Raman gain coefficient [m−1]

γβ(ν) = Gain coefficient of a subset of atoms [m−1]

γ0(ν) = Small-signal gain coefficient of an optical amplifier
[m−1]

Γ = Phase retardation; also, Power confinement factor in a laser
diode or waveguide photodiode; also, Crystallographic symbol
for irreducible Brillouin zone

Γm = Power confinement factor in a waveguide

δ = Secondary-emission gain random variable

δ  = Delta function or impulse function

δx = Increment of x



δθ = Angular divergence of an optical beam

δθs = Angular divergence of an acoustic beam

δν = Spectral width of a resonator mode [Hz]

Δ = Thickness of a thin optical component [m]; also, Fractional
refractive-index change in an optical fiber or waveguide (Δ ≈ (n1
− n2)/n1)

Δn = Concentration of excess electron–hole pairs [m−3]

ΔnT = Concentration of injected carriers for a semiconductor
optical amplifier at transparency [m−3]

Δx = Increment of x

Δν = Spectral width or linewidth [Hz]; also, Atomic linewidth or
transition linewidth [Hz]

Δνc = 1/τc = Spectral width [Hz]

ΔνD = Doppler linewidth [Hz]

ΔνFWHM = Full-width-at-half-maximum spectral width [Hz]

ΔνL = Laser linewidth [Hz]

Δνs = Linewidth of a saturated amplifier [Hz]

ΔνST = Schawlow–Townes minimum laser linewidth [Hz]

ϵ = Electric permittivity of a medium [F · m−1]; also, Focusing
error [m−1]

ϵ′ = Real part of the electric permittivity of a medium [F · m−1]

ϵ″ = Imaginary part of the electric permittivity of a medium [F ·
m−1

ϵb = Effective permittivity associated with SPP at metal–
dielectric boundary [F · m−1]



ϵc = Effective permittivity of a conductive medium [F · m−1]

ϵd = Electric permittivity of the dielectric medium in a layered
metamaterial [F · m−1]

ϵe = Effective permittivity of a host medium with embedded
objects [F · m−1]

ϵij = Component of the electric permittivity tensor [F · m−1]

ϵm = Electric permittivity of the metallic medium in a layered
metamaterial [F · m−1]

ϵo = Electric permittivity of free space [F · m−1]

ϵr = Relative permittivity or dielectric constant

ϵs = Electric permittivity of a scattering volume [F · m−1]

ϵ = Electric permittivity tensor [F · m−1]

ζ(z)= Excess axial phase of a Gaussian beam; also, Fraction of
electron–hole pairs that successfully contribute to detector
photocurrent

ζ = Damping coefficient of a harmonic oscillator [s−1]; also,
Scattering rate or collision frequency (ζ = 1/τ where τ =
scattering time or collision time) [s−1]

η = Impedance of a dielectric medium [Ω]; also, Photodetector
quantum efficiency; also, Photon detection efficiency

ηc = Power-conversion efficiency (also called Overall efficiency
and Wall-plug efficiency)

ηd = External differential quantum efficiency

ηe = Extraction efficiency; also, Transmission efficiency

ηex = External efficiency

ηi = Internal quantum efficiency



ηo = Impedance of free space [Ω]

ηo = Optical-to-optical efficiency

ηOFC = Optical frequency conversion efficiency

ηs = Differential power-conversion efficiency (also called Slope
efficiency)

ηs = Optical-to-optical slope efficiency

ηSHG = Second-harmonic generation efficiency

η = Electric impermeability

ηij = Component of the electric impermeability tensor

η = Electric impermeability tensor

θ = Angle; also, Twist angle in a liquid crystal; also, Deflection
angle of a prism

 = 90° − θ = Complement of angle θ

θa = Acceptance angle

θB = Brewster angle

θB = Bragg angle

θc = Critical angle

 = Complementary critical angle

θd = Deflection angle of a prism

θmax = Maximum angle

θp = Angle of incidence of a ray at the surface of a prism from
its interior

θr = Angle of reflection

θs = Deviation angle of maximum spatial frequency; also, Angle
subtended by a source



θ0 = Divergence angle of a Gaussian beam

 = Unit vector in polar direction in spherical coordinates

ϑ = Threshold

Θlm(θ)= Hydrogen-atom associated Legendre function

κ = Elastic constant of a harmonic oscillator [J · m−2]

λ = Wavelength [m]

λA = Long-wavelength limit [m]; also, Activation wavelength
[m]

λc = Cutoff wavelength [m]

λF = Wavelength spacing of adjacent Fabry–Perot resonator
modes [m]

λFEL = Wavelength of light emitted by a free-electron laser [m]

λg = Bandgap wavelength (long-wavelength limit) of a
semiconductor [m]

λo = Free-space wavelength [m]

λp = Plasma wavelength of a metal [m]

λp = Wavelength of maximum blackbody energy density [m];
also, Peak wavelength [m]

λq = Eigenvalues associated with an eigenvalue problem

λZD = Zero-dispersion wavelength of a medium [m]

λ0 = Central wavelength [m]

λdB = de Broglie wavelength [m]

Λ = Spatial period of a grating or periodic structure [m]; also,
Wavelength of acoustic wave [m]

Λu = Spatial period of undulator in a free-electron laser [m]



μ = Magnetic permeability of a medium [H · m−1]; also, Carrier
mobility in a semiconductor [m2 · s−1 · V−1]; also, Mean of a
random variable

μ′ = Real part of the magnetic permeability of a medium [H ·
m−1]

μ″ = Imaginary part of the magnetic permeability of a medium
[H · m−1]

μe = Effective magnetic permeability of a host medium with
embedded objects [H · m−1]

μe = Electron mobility [m2 · s−1 · V−1]

μh = Hole mobility [m2 · s−1 · V−1]

μij = Component of the magnetic permeability tensor [H · m−1]

μo = Magnetic permeability of free space [H · m−1]

μ = Magnetic permeability tensor [H · m−1]

ν = Frequency [Hz]; also, Spatial frequency [m−1]

νA = Anti-Stokes-shifted frequency [Hz]

νB = Brillouin frequency [Hz]

νB = Bragg frequency [Hz]

νc = Cutoff frequency [Hz]

νF = Frequency spacing between adjacent Fabry–Perot modes
(free spectral range) [Hz]

νi = Offset frequency for an optical frequency comb [Hz]

νi = Instantaneous frequency [Hz]

νp = Pump frequency [Hz]



νp = Frequency of maximum blackbody energy density [Hz];
also, Peak frequency of electrolu minescence spectrum [Hz]

νq = Frequency of mode q [Hz]

νR = Raman frequency [Hz]

νs = Spatial bandwidth of an imaging system [m−1]; also, Signal
frequency [Hz]; also, Laser frequency [Hz]

νS = Stokes-shifted frequency [Hz]

νx, νy = Spatial frequencies in the x and y directions [m−1]

ν0 = Central frequency [Hz]

νρ = Radial component of the spatial frequency: νρ = 
[m−1]

ξ = Coupling coefficient in four-wave mixing

ξsp(ν)= Amplifier noise photon-flux density per unit length
[m−3 · s−1]

ρ = Rotatory power of an optically active medium [m−1]; also,
Resistivity [Ω · m]; also, ρ =  = radial distance in a
cylindrical coordinate system [m]

ρc = Coherence distance [m]

ρm = Radius of the center of the mth ring of a Fresnel zone
plate [m]

ρs = Radius of the Airy disk [m]; also, Radius of the blur spot of
an imaging system [m]

ϱ = Mass density of a medium [kg · m−3]; also, Charge density
[C · m−3]; also, Retardance of a birefringent medium [m]

ϱ(k)= Wavenumber density of states [m−2]



ϱ(ν)= Spectral energy density [J · m−3 · Hz−1]; also, Optical joint
density of states [m−3 · Hz−1]

ϱc(E)= Density of states near the conduction band edge [m−3 ·
J−1 in a bulk semiconductor]

ϱν(E)= Density of states near the valence band edge [m−3 · J−1

in a bulk semiconductor]

ρ(ν)= Normalized Lorentzian cavity mode [Hz−1]

σ = Conductivity [Ω−1 · m−1]

σ(ν)= Transition cross section [m2]

(ν)= Average transition cross section [m2]

σa = Absorption cross section [m2]

σab = Effective transition cross section for absorption [m2]

σem = Effective transition cross section for emission [m2]

σf = Transfer-function bandwidth [Hz]

σmax = Maximum transition cross section [m2]

σq = Circuit-noise parameter

σr = Circuit-noise current RMS value [A]

σs = Scattering cross section [m2]

σx = Standard deviation of a random variable x; RMS width of a
function of x

 = Variance of a random variable x

σ0 = σ(ν0)= Transition cross section at the central frequency ν0

[m2]

σ0 = Conductivity at low frequencies [Ω−1 · m−1]



σλ = Spectral width [m]

στ = Temporal width [s]

σ = Conductivity tensor [Ω−1 · m−1]

τ = Lifetime [s]; also, Decay time [s]; also, Pulse width [s]; also,
Relaxation time [s]; also, Scattering time [s]; also, Collision
time [s]; also, Width of a function of time [s]; also, Excess-
carrier electron–hole recombination lifetime in a
semiconductor [s]

τc = Coherence time [s]

τcol = Mean time between collisions [s]

τd = Delay time [s]

τe = Electron transit time [s]

τh = Hole transit time [s]

τm = Multiplication time in an avalanche photodiode [s]

τnr = Nonradiative electron–hole recombination lifetime [s]

τp = Resonator photon lifetime [s]

τpulse = Duration of a mode-locked optical pulse [s]

τr = Radiative electron–hole recombination lifetime [s]

τR = Receiver-circuit time constant [s]

τRC = RC time constant [s]

τs = Saturation time constant of a laser transition [s]

τ21 = Lifetime of a transition between energy levels 2 and 1 [s]

ϕ = Angle in a cylindrical or spherical coordinate system; also,
Photon-flux density [m−2 · s−1]

ϕ(p)= Particle momentum wavefunction [s1/2 · kg−1/2 · m−1/2]



ϕ(p)= Wavefunction for p quadrature component of the electric
field

ϕs(ν)= Saturation photon-flux density [m−2 · s−1]

ϕν = Spectral photon-flux density [m−2 · s−1 · Hz−1]

 = Unit vector in azimuthal direction in spherical coordinates

φ = Phase or phase difference or phase shift

φ(t)= Phase of the complex envelope of an optical pulse

φ(ν)= Phase-shift coefficient of an optical amplifier [m−1]

φL = Local-oscillator phase

φ0 = Phase shift from reflection at a resonator mirror

Φ = Photon flux [s−1]

Φ(ν, τ)= Short-time Fourier transform; also, Wigner
distribution function

Φm(ϕ)= Hydrogen-atom harmonic function

Φν = Spectral photon flux [s−1 · Hz−1]

χ = Electric susceptibility; also, Electron affinity [J]

χ′ = Real part of the electric susceptibility χ

χ″ = Imaginary part of the electric susceptibility χ

χ(ν) = Electric susceptibility of a dispersive medium

χe = Effective electric susceptibility

χij = Component of the electric susceptibility tensor

χm = Electric susceptibility of a metal at high frequencies (ω ≫
ωp)

χ(3) = Coefficient of third-order optical nonlinearity [C · m ·
V−3]



 = Component of the third-order optical nonlinearity tensor
[C · m · V−3]

 = Imaginary part of the nonlinear third-order susceptibility
χ(3)

 = Component of the third-order optical nonlinearity tensor
(contracted indices) [C · m · V−3]

 = Real part of the nonlinear third-order susceptibility χ(3)

χ = Polarization-ellipse angle of ellipticity

χ = Electric susceptibility tensor

ψ = Normalized amplitude of an optical pulse

ψ(r, t)= Particle wavefunction [m−3/2 · s−1/2]

ψ(x) = Particle position wavefunction [m−1/2]

ψ(x) = Wavefunction for x quadrature component of the
electric field

ψ(ν) = Spectral phase of an optical pulse

ψ = Polarization-ellipse orientation of major axis

Ψ(ε)= Nonlinear polarization density [C · m−2]

Ψe(f) = Envelope transfer function phase

ω = Angular frequency [rad · s−1]

ωB = Bragg angular frequency [rad · s−1]

ωi = Instantaneous angular frequency [rad · s−1]

ωI = Heterodyne intermediate (angular) frequency [rad · s−1]

ωL = Local-oscillator frequency [rad · s−1]

ωp = Plasma frequency of a metal [rad · s−1]; also, Pump
angular frequency [rad · s−1]



ωr = Upshifted angular frequency of a Bragg-reflected wave
[rad · s−1]

ωs = Downshifted angular frequency of a Bragg-reflected wave
[rad · s−1]; also, Angular frequency below which a surface
plasmon polariton can exist [rad·s−1]; also, Signal frequency
[rad · s−1]

ω0 = Central angular frequency [rad · s−1]; also, Localized
surface plasmon resonance frequency [rad · s−1]

Ω = Angular frequency of an acoustic wave [rad · s−1]; also,
Angular frequency of a harmonic electric signal [rad · s−1]; also,
Solid angle [sr]

Mathematical Symbols



 = Result decreased to the nearest integer

 = Result increased to the nearest integer

det{·} = Determinant of a matrix

Tr{·} = Trace of a matrix

{·}T = Transpose of a matrix

{·}−1 = Inverse of a matrix

 = Mean of the quantity x

 = Ensemble average over x

d = Differential

∂ = Partial differential

▽ = Gradient operator

▽· = Divergence operator

▽× = Curl operator

▽2 = Laplacian operator (▽2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 in
Cartesian coordinates)

 = Transverse Laplacian operator (  = ∂2/∂x2 + ∂2/∂y2 in
Cartesian coordinates)
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plane wave



pulsed waves

scanning

spatial frequency

spatial frequency and angle

spatial harmonic function

spatial spectral analysis

transfer function

Fourier transform

autocorrelation

circularly symmetric function

convolution

correlation

far-field

one-dimensional

optical

pairs

Parseval's theorem

properties

separable functions

short-time

spectroscopy

table

two-dimensional

using lens

window function



Fourier, Jean-Baptiste Joseph

Franken, Peter

Franz-Keldysh effect

Fraunhofer

approximation

diffraction

Fraunhofer, Josef von

Frequency

-resolved optical gating

beat

conversion

instantaneous

modulation, spatial

of light

shifter, acousto-optic

Fresnel

approximation

biprism

diffraction

equations

integrals

lens

number

reflection

zone plate



Fresnel, Augustin-Jean

 

Gabor, Dennis

Gain

amplifier, parametric

amplifier, reflection

CAPD

conversion

laser amplifier

laser diode

photoconductive detector

Raman

saturated

SCIDCM CAPD

SCISCM staircase APD

secondary-emission

semiconductor optical amplifier

Gain coefficient

amplifier, parametric

peak

quantum-well SOA

Raman

saturated

small-signal

SOA



Gate, photonic logic

Gauss, Carl Friedrich

Gaussian

chirped pulse

pulse

pulse, Gaussian-beam analogy

Gaussian beam

𝕄2 factor

ABCD law

q-parameter

Bessel-beam comparison

characterization

collimation

complex amplitude

complex envelope

confocal parameter

depth of focus

divergence angle

elliptic

expansion

focusing

Gaussian-pulse analogy

Gaussian-pulsed

Gouy effect

intensity



parameters

paraxial approximation

phase

power

properties

pulsed

quality

radius of curvature

Rayleigh range

reflection from spherical mirror

relaying

shaping

single-photon

spherical-mirror resonator

spot size

standing wave

through arbitrary system

through components

through free space

through graded-index slab

through thin lens

through transparent plate

vector

waist radius

wavefronts



width

Gaussian optics, see Paraxial optics

General Electric Corporation

Geometrical optics, see Ray optics

Goos-Hanchen effect

shift

waveguide

Gordon, James P.

Gouy effect

Graded-index

GRIN material

SELFOC slab

fiber

lens

optics

ray equation

ray equation, paraxial

slab

Graphene photonics

Grating

coupler

diffraction

Grazing incidence

Group

delay



index

velocity

velocity dispersion

velocity, fiber

velocity, photonic crystal

velocity, waveguide

Group-IV photonics

2D materials

allotropes

array detector

avalanche photodiode

GeSn-on-Si laser

graphene photonics

microcavity laser

photodiode

Schottky-barrier photodiode

SiC Schottky diode

silicon photonics

transition-metal dichalcogenides

Guided-wave optics

Gyration vector

 

Harmonic oscillator

analogy with optical mode

energy



quantum theory

Heaviside, Oliver

Helmholtz equation

coupled

coupled paraxial

generalized

nonlinear

optical fiber

paraxial

two-dimensional

Hermite polynomials

Hermite-Gaussian beam

axial phase

complex amplitude

elliptic

excess phase

Hermite polynomials

Hermite-Gaussian functions

intensity

power confinement

superposition

Hermite-Gaussian functions

Hermitian operator

Hero's principle, 6

Hertz, Heinrich



Heterodyne

optical

Heterostructures

organic semiconductors

photoconductor

photodiode

SOAs

High-harmonic generation

in Ar

optical frequency comb

recollisional model

Hilbert transform

Hole burning

spatial

spectral

Hologram

computer-generated

grating vector

holographic optical element

interconnection

interconnection capacity

Laguerre-Gaussian beam

metasurface

oblique plane wave

point source



rainbow

volume

Holography

ambiguity term

apparatus

computer-generated

dynamic

Fourier-transform

hologram

holographic code

object wave

off-axis

optical correlation

real-time

reconstructed wave

reference wave

spatial filters

surface-relief

volume

Huygens, Christiaan

Huygens-Fresnel principle

Hyperbolic

media: Type-I & Type-II

medium

metamaterial



 

IBM Corporation

Imaging

2-f

4-f

4-f impulse response function

4-f system transfer function

diffraction limit

equation

equation, incoherent light

focal-plane array (FPA)

functional

hyperbolic medium

image intensifier

incoherent light

incoherent vs. coherent

multiphoton microscopy

near-field

negative-index slab

optical correlation

paraxial system

perfect

phase object

point-spread function

scanning near-field microscopy



single-lens

single-lens impulse response function

single-lens transfer function

single-photon

spatial filtering

spherical mirror

structural

subwavelength

thick lens

thin lens

three-photon microscopy

two-photon

two-photon microscopy

two-point resolution

X-ray

Impedance

complex

imaginary

Impermeability, electric

effect of electric field

in magneto-optic material

tensor

Impulse response function

4-f imaging

free space



incoherent light

single-lens imaging

Ince-Gaussian beam

Incoherent light, see Coherence

Index ellipsoid

acoust-optic modification

electro-optic modification

Index of refraction, see Refractive index

Infrared

frequencies

LWIR band

molecular-fingerprint region

MWIR band

optical fiber

sensor card

wavelengths

Injection lasers, see Laser diodes

Instantaneous frequency

Insulators

band structure

Integrated

optics

photonics

Intensity

autocorrelation function



average

Bessel beam

Bessel-like beam

electromagnetic

elliptic Gaussian beam

Gaussian beam

Hermite-Gaussian beam

instantaneous

irradiance

Laguerre-Gaussian beam

measurement for pulse

optical

partially coherent light

polychromatic light

random

scattered

spectral density

Interconnect, optical

circulator

computer-com

diffractive

free-space

guided-wave

holographic

inter-board



inter-chip

interconnection matrix

intrachip

introduction to

isolator

nonreciprocal

nonreciprocal, multiport

optochip

rationale

refractive

Interference

Bragg reflection

double-slit experiment

equation

finite number of waves

Fourier-transform spectroscopy

Fresnel zone plate

infinite number of waves

light from extended source

multiple waves

oblique-plane-wave

OCT

partially coherent light

plane-wave and spherical-wave

QOCT



single-photon

spherical-wave

two-photon

two-wave

visibility

Interferometer

double-slit

Fabry-Perot

Fabry-Perot, nonlinear

finesse

gravitational-wave

gyroscope

Hong-Ou-Mandel

interferogram

LIGO

Mach-Zehnder

Michelson

Michelson stellar

multipath

MZI,NL

nonlinear

role of spatial coherence

role of temporal coherence

Sagnac

Sagnac, nonlinear



self-referenced spectral

single-photon

spectral

stellar

temporal

Invisibility cloak

metamaterials

Ionization

coefficients

coefficients, history-dependent

coefficients, position-dependent

energy of a donor electron

energy of an atom

energy of Ar

energy of H

ratio

Ions

actinide metals

electron configuration

lanthanide metals

noble-gas lasers

term symbol

transition metals

Irradiance

Isolator, optical



 

John, Sajeev

Jones matrix

cascaded devices

coordinate transformation

diagonal

field version

half-wave retarder

linear polarizers, cascaded

normal modes

polarization rotator

polarizer

quarter-wave retarder

wave retarder

wave-retarder cascade

Jones vector

coordinate transformation

field version

normal modes

orthogonal expansion

two-photon

 

Kaminow, Ivan Paul

Kao, Sir Charles Kuen



Keck, Donald B.

Kerr

coefficient

effect

lens

medium

medium characteristic length

switch

Kerr, John

Kramers-Kronig relations

 

Laguerre

-Gaussian beam

generalized polynomial

polynomial

Laguerre, Edmond Nicolas

Laser

Q-switched

Ag19+

alexandrite

Ar+-ion

ArF exciplex

Brillouin fiber

broadening, homogeneous



broadening, inhomogeneous

C5+

cascaded Raman fiber

cascaded silicon Raman

cavity dumping

ceramic hosts

chemical

CO

CO2

coherent-state generation

cooling

Cr2+:ZnS

Cr2+:ZnSe

Cr3+:colquiriite

Cr3+:crysoberyl

Cr3+:sapphire

Cr4+:forsterite

crystalline hosts

Cu Kα

dopant ions

DPSS

dye

efficiency

Er3+:silica fiber



excimer

exciplex

extreme-ultraviolet

Fe2+:ZnS

Fe2+:ZnSe

fiber

four-level pumping

free-electron

frequency pulling

gain clamping

gain switching

gas

glass hosts

H2O

HAPLS

HCN

He-Ne

in-band pumping

incoherent-feedback

InGaAsP

inner-shell photopumped

intracavity tilted etalon

ion

ionized-atom plasma

Kr+-ion



KrF exciplex

lasing without inversion

linewidth

loss coefficient

metal-nanocavity

methanol

microcavity

microdisk

microring

microring, coupled

mode locking, active

mode locking, passive

mode-locked

molecular

MOPA

multiple-mirror resonator

multiquantum-dot

multiquantum-well

multiquantum-wire

nanocavity

nanoring

nanosphere

Nd3+:CaF2

Nd3+:glass

Nd3+:YAG



Nd3+:YVO4

Ne Kα

non-plasmonic nanocavity

number of modes

optical vortex

oscillation conditions

oscillation frequencies

output characteristics

overall efficiency

petawatt

phase noise

phonon-terminated

photon lifetime

photonic-bandgap fiber

photonic-crystal

photonic-crystal array

plaser

plasmonic nanocavity

polarization

powder

power-conversion efficiency

pulsed

pumping

quantum cascade

quantum-confined



quantum-dot

quantum-well

quantum-wire

quasi-three-level pumping

quasi-two-level pumping

radar

Raman fiber

random

rate equations

rhodamine-6G dye

ribbon fiber

ruby

SASE

Schawlow-Townes linewidth

Se24+

seed

SGDFB

silicon Raman

slab-waveguide fiber

solid-state

spatial distribution

spectral distribution

spontaneous lifetime

strained-layer QW

theory of oscillation



thin-disk

three-level pumping

threshold

thresholdless

Ti3+:sapphire

Tm3+:silica-fiber

transient effects

transition parameters

trapping

two-level pumping

U3+ :CaF2

unipolar

unstable-resonator

vibronic

W46+

wall-plug efficiency

wavelengths

X-ray

X-ray free-electron

Yb3+:silica fiber

Yb3+:YAG

Yb3+:YAG thin-disk

ZnO

Laser amplifier

ASE



bandwidth

broadband

coherent

Doppler-broadened medium

Er3+:silica fiber

four-level pumping

gain

gain coefficient

gain coefficient, saturated

gain, saturated

homogeneously broadened

in-band pumping

in-line

incoherent optical

inhomogeneously broadened

line

MOFA

MOPA

National Ignition Facility

Nd3+:glass

noise

nonlinearity

optical fiber

phase-shift coefficient

photon statistics



population inversion

postamplifier

power amplifier

preamplifier

pumping

quasi-three-level pumping

quasi-two-level pumping

rare-earth-doped fiber

rate equations

rates and decay times

ruby

saturation

saturation time constant

spontaneous lifetime

steady-state

theory

three-level pumping

transition characteristics

two-level pumping

wavelengths

Laser diodes (LDs)

bipolar

broad-area

buried-heterostructure

communications component



compare with LEDs

compare with SLEDs

confinement factor

differential responsivity

distributed Bragg reflector

distributed-feedback

double-heterostructure

efficiency

external differential efficiency

external-cavity

extraction efficiency

far-field radiation pattern

gain condition

gain-guided

Ge

GeSn-on-Si

group-IV

III–antimonide

III–V quantum-dot-on-Si

in-band pumping

index-guided

interband

interband cascade

IV–VI

lead-salt



light-current curve

linewidth

linewidth-enhancement factor

mode-locked

multimode MQW

PbSnSe

PbSnTe

phase noise

power output

power-conversion efficiency

ridge-waveguide

Schawlow-Townes linewidth

single-mode

single-mode MQW

slope efficiency

spatial characteristics

spectral characteristics

threshold

VCSEL

VECSEL

wall-plug efficiency

wavelength-tunable

Layered media

off-axis wave

Lens



aspheric

biconcave

biconvex

collimating

compound

converging

cylindrical

diverging

dome

double-convex

electro-optic

expanding

focal length

focal point

focusing

Fourier transform

Fresnel

Fresnel zone plate

graded-index

hyperlens

imaging

Kerr

LED

meniscus

perfect



plano-concave

plano-convex

principal point

relaying

sequence

shaping

spherical

superlens

thick

thin

time

vertex point

Lidar

coherent

PIC

Light

classical

guide

interaction with atoms

interaction with semiconductors

line

nonclassical

Light-emitting diodes (LEDs)

additive color mixing

AMOLED



arrays

bioinspired

Ce3+:YAG phosphor

characteristics

chip-on-board (COB)

color rendering index (CRI)

communications component

compare with incandescent

compare with LDs

compare with SLEDs

complementary colors

correlated color temperature

device structures

die geometries

discrete

edge-emitting

electronic circuitry

external efficiency

extraction efficiency

illumination applications

indication applications

infrared applications

internal efficiency

light-current curve

lighting



materials

optics for

organic

output photon flux

overall efficiency

phosphor-conversion

photonic-crystal

plasmonic

power-conversion efficiency

quantum-dot

resonant-cavity

response time

responsivity

retrofit lamps

roughened-surface

solid-state lighting

spatial pattern

spectral distribution

surface-emitting

surface-mounted device

trapping of light

ultraviolet applications

visible applications

wall-plug efficiency

white



WOLED

Line broadening

collision

Doppler

homogeneous

inhomogeneous

lifetime

Linear system

causal

Hilbert transform

impulse response function

isoplanatic

Kramers-Kronig relations

modes

one-dimensional

point-spread function

shift-invariant

supermodes

time-invariant

transfer function

two-dimensional

Lineshape function

Linewidth

-enhancement factor

laser



laser diode

Schawlow-Townes

transition

Liquid crystal

cholesteric

electro-optics of

ferroelectric

modulator

nematic

optics of

parameters

smectic

switch, photonic

twisted nematic

wave retarder

Liquid-crystal display (LCD)

active matrix

passive-matrix

segmented

Lithography

electron-beam

EUV

focused ion-beam

holographic

micro-



multiphoton

X-ray

LLNL

Localized surface plasmon

LED

nanolaser

resonance

Logic

photonic logic gates

Lorentz

oscillator

relativistic factor

Lorentzian

Luminescence

betaluminescence

bioluminescence

cathodoluminescence

chemiluminescence

electroluminescence

fluorescence

multiphoton fluorescence

phosphorescence

photoluminescence

radioluminescence

sonoluminescence



up-conversion fluorescence

Luminous

efficacy

flux

Magnetic

dipole moment

field

flux density

Magnetization density

Magneto-optics

Faraday effect

magnetogyration coefficient

switch, photonic

Verdet constant

Magnification

Gaussian beam

shift-variant

spherical boundary

spherical lens

spherical mirror

time lens

Maiman, Theodore H.

Manley-Rowe relations

Maser

astrophysical



Master-oscillator fiber-amplifier

examples

Master-oscillator power-amplifier examples

Material

double-negative (DNG)

double-positive (DPS)

equation

hyperbolic

left-handed

negative-index (NIM)

single-negative (SNG)

Matrix optics

ABCD matrix

arbitrary paraxial system

Bragg grating

layered media

periodic media

periodic systems

ray-transfer matrix

scattering matrix

scattering vs. wave-transfer

simple components

thick lens

transmission matrix

wave-transfer matrix



Maurer, Robert D.

Maxwell's equations

boundary conditions

complex permeability

complex permittivity

dielectric constant

electric field

electric flux density

impermeability tensor

in a medium

in conductive medium

in free space

magnetic field

magnetic flux density

magnetization density

permeability

permeability tensor

permittivity

permittivity tensor

polarization density

relative permittivity

speed of light

vector potential

wave equation

Maxwell, James Clerk



Media, see Materials

Metals

band structure

bound-electron absorption

conductive media

conductivity

Drude model

group velocity

loss

optics of

photoemission

plasma frequency

plasmonics

reflectance

work function

Metamaterials

holey metallic film

hyperbolic

invisibility cloak

metasurfaces

negative-index

negative-permeability

negative-permittivity

optical fiber

optics of



photonic-crystal

point-dipole approximation

Metameric white light

Metasurfaces

complementary

holey metallic film

hologram

phase modulator

reflection

refraction

Snell's law, modified

Michelson stellar interferometer

Micro-optics

Microcavity, see Microresonator

Microcavity lasers

Microresonator

microcavity

microdisk

micropillar

microsphere

microtoroid

modal density

modal volume

photonic-crystal

quality factor



rectangular

Microscopy

multiphoton

near-field

three-photon

two-photon

Mie scattering

Miniband

QCL

Mirror

collimator

elliptical

paraboloidal

planar

spherical

variable-reflectance spherical

MIT Lincoln Laboratory

Mixing, optical

Mode locking

applications

examples

external-cavity LDs

fiber lasers

harmonic

Kerr-lens



methods

optical frequency comb

parameters

properties

QCLs

QD lasers

saturable absorber

SESAM

VECSELs

Modes

discrete linear system

eigenfunction

eigenvalue

eigenvector

homogeneous medium

integral operator

linear system

normal

ordinary differential equation

partial differential equation

periodic medium

resonator

supermodes

zero-point energy

Modulation



amplitude shift keying

binary phase shift keying

constellation

differential phase shift keying

digital

field

frequency shift keying

intensity

multilevel coding

on-off keying

phase shift keying

pulse code

quadrature amplitude

quaternary phase shift keying

spectral efficiency

Modulator

acousto-optic

electroabsorption

intensity

intensity, acousto-optic

intensity, electro-optic

intensity, magneto-optic

intensity, push-pull

interferometric

liquid-crystal



Mach-Zehnder

multiquantum-well

optically addressed SLM

parallel-aligned SLM

phase

phase, acousto-optic

phase, cascaded

phase, electro-optic

phase, opto-optic

quadratic phase

spatial light

spatial light, acousto-optic

spatial light, liquid-crystal

Molecules

covalent bonding

dye

ionic bonding

rotating diatomic

van der Waals bonding

vibrating diatomic

vibrating triatomic

Momentum

electromagnetic

localized photon

localized wave



photon

radiation pressure

Momentum, angular

photon orbital

photon spin

Mourou, Gerard

Multiphoton

absorption

detection

fluorescence

lithography

microscopy

photoluminescence

Multiple access

code-division

frequency-division

time-division

Multiplexing

code-division

CWDM

DWDM

electronic

frequency-division

optical

space-division



time-division

wavelength-division

Multiquantum

-dot lasers

-well lasers

-wire lasers

well

 

Nano-optics, see Nanophotonics

Nanocavity lasers

Nanophotonics

nanolasers

subwavelength imaging

Nanoresonator

metallic nanodisk

metallic nanosphere

Nanosphere

dielectric

metallic

scattering from

Near-field imaging

Negative-index

materials

metamaterials

Network, fiber-optic



broadcast-and-select

bus

interface

local-area (LAN)

mesh

multi-hop broadcast-and-select

ring

star

topologies

wavelength-routed

WDM

Newton, Sir Isaac

Nobel laureates

Nobel lectures

Noise

1/f

ASE

background

circuit

dark-current

gain

generation-recombination (GR)

laser phase

optical amplifier

photoconductor



photocurrent

photodetector

photoelectron

photon

pink

semiconductor optical amplifier

shot

superluminescent diode

thermal

Nondiffracting beams

Nondiffracting waves

Nonlinear optical coefficients

Nonlinear optics

anharmonic oscillator

anisotropic dispersive medium

anisotropic medium

Born approximation

chi-two medium

coherence length, wave-mixing

coupled waves

coupled-waves

cross-phase modulation

DFG

differential-equation description

dispersive medium



downconversion

electro-optic effect

extreme

five-wave mixing

four-wave mixing

frequency conversion

HHG

holography, real-time

idler

integral-transform description

introduction to

Kerr effect, optical

Kerr medium

Manley-Rowe

Miller's rule

nonlinear coefficients

nonparametric

parametric

parametric interactions

periodic poling

phase conjugation

phase matching

phase-mismatching tolerance

photonic-crystal soliton

plane-wave conjugation



polarization density

poling

pump

quasi-phase matching

Raman gain

rectification, optical

rectification, pulsed optical

refraction, nonlinear

scattering theory

Schrodinger equation, nonlinear

second-order

self-focusing

SFG

SFG and SHG combined

SHG

SHG efficiency

SHG phase mismatch

signal

solitary wave

soliton self-frequency shift

soliton, spatial

soliton, spatiotemporal

soliton, temporal

SPDC

spherical-wave conjugation



SPM

supercontinuum generation

THG

third-order

three-wave mixing

THz pulse generation

tuning curves

two-wave mixing

ultrafast

up-conversion

Volterra-series expansion

walk-off effect

wave equation

wave restoration

Nonlinear-optic devices

amplifier, parametric

amplifier, phase-sensitive

amplifier, reflection

amplifier, transmission

DFG

downconverter

FPI

intensity autocorrelator

lens, optical Kerr

loop mirror



modulator, opto-optic phase

MZI

oscillator, doubly resonant

oscillator, parametric

oscillator, phase-conjugation

oscillator, singly resonant

router, directional-coupler

router, nonlinear MZI

router, nonlinear Sagnac

router, soliton

SFG

streak camera

switch, FWM

switch, optical Kerr

switch, photonic

switch, Sagnac

switch, SFG

switch, SHG

switch, XPM

up-converter

Nonparametric processes

Normal modes

anisotropic medium

optically active medium

polarization system



Numerical aperture

Ohm's law

Optical

frequency comb

Kerr effect

lattices

molasses

OADM

pathlength

phase conjugation

sectioning

tweezers

Optical activity

gyration vector

normal modes

rotatory power

Optical coherence, see Coherence

Optical coherence tomography

frequency-domain

quantum

time-domain

Optical components

active-matrix LCD

active-matrix OLED

antireflection coatings



axicons

backlight

beam combiners

beam directors

beamsplitters

catadioptric

circulator

collimators

diffraction gratings

electro-optic prism

fiber couplers

fibers

filter, acousto-optic

frequency shifter, acousto-optic

graded-index

integrated

isolator

LED optics

lenses

mirrors

modulators, acousto-optic

passive-matrix LCD

photonic lantern

plates

polarizers



prisms

resonators

scanners, acousto-optic

segmented LCD

space switches, acousto-optic

spatial light modulator

spectrum analyzer, AO

spiral phase plate

superprism

thin films

waveguide couplers

waveguides

Optical fiber amplifier

communications component

compare with SOA

Optical fiber communications

analog

analog coherent

attenuation

attenuation compensation

balanced homodyne receiver

balanced mixer

bit error rate

coherent

coherent receiver advantages



components

direct vs. heterodyne

direct vs. homodyne

dispersion

dispersion compensation

dispersion management

evolution

eye diagram

fibers

heterodyne receiver

heterodyne vs. direct

homodyne BPSK

homodyne OOK

homodyne QPSK

homodyne vs. direct

homodyne vs. heterodyne

introduction to

local oscillator

modulation

multiplexing

networks

optical amplifier

performance

photodetector

photonic integrated circuit



power budget

receiver sensitivity

soliton

SONET standard

sources

systems

time budget

Optical indicatrix, see Index ellipsoid

Optical materials

2D

fused silica

GaAs

glass, BK7

glass, phosphate

glass, phosphosilicate

host glass

LiNbO3

LiTaO3

periodically poled

quartz

soft glasses

TeO2

TMDs

Optical receiver

analog receiver sensitivity



bipolar-transistor amplifier

bit error rate

circuit-noise parameter

digital receiver sensitivity

FET amplifier

on-off keying (OOK)

resistance-limited

sensitivity

signal-to-noise ratio

SNR dependence on APD gain

SNR dependence on bandwidth

SNR dependence on photon flux

Optical system, periodic

grin plate

harmonic trajectory

lens sequence

lens-pair sequence

periodic trajectory

ray position

resonator

Organic semiconductors

Oscillator

harmonic

Lorentz

optical parametric



phase-conjugation

Paraboloidal

approximation

mirror

surface

wave

Parametric

amplifier

downconverter

oscillator

oscillator, doubly resonant

oscillator, singly resonant

processes

switches

Paraxial

approximation

Helmholtz equation

imaging system

optics

ray equation

rays

system, focal length

system, focal point

system, principal point

system, vertex point



wave

wave equation, generalized

Parseval's theorem

Partially coherent light, see Coherence

Pauli exclusion principle

Pendry, Sir John

Penetration depth

Periodic media

2D periodic structure

Fourier optics

matrix optics

Periodic table

elements

semiconductors

Permeability, magnetic

complex

negative

tensor

Permittivity, electric

complex

effect of electric field

effective

frequency-dependent

in magneto-optic material

negative



relative

tensor

Perot, Alfred

Phase

-mismatching tolerance

-sensitive amplifier

-shift coefficient

amplifier

matching

noise

spiral

velocity

Phosphorescence

Photoconductors

detection circuit

doped extrinsic

extrinsic

gain

intrinsic

noise

response time

spectral response

Photodetectors

array detectors

array readout circuitry



avalanche photodiodes

bolometer

CCD readout circuitry

charge-coupled device (CCD)

circuit noise

CMOS readout circuitry

communications component

digital photon-counting device

electron-multiplying CCD

external photoeffect

extrinsic photoconductive

focal-plane array (FPA)

FROG

gain

gain noise

general properties

Golay cell

intensified CCD (ICCD)

intensity, pulse

intensity-autocorrelation

internal photoeffect

introduction to

microbolometer

microchannel plate

minimum-detectable signal



negative-electron-affinity

noise

noise-equivalent power

optical-pulse

optical-pulse phase

organic

performance measures

photoconductors

photodiodes

photoelectric

photoelectric emission

photoemission equation

photomultiplier

photon detection efficiency

photon-number-resolving

phototube

plasmonic

pyroelectric

QDIP

quantum efficiency

QWIP

Ramo's theorem

RC time constant

reach-through APD

resonant-cavity



response time

responsivity

SACM APD

SAM APD

secondary emission

signal-to-noise ratio

silicon photomultiplier (SiPM)

single-photon

specific detectivity

spectral intensity, pulse

spectrogram, pulse

streak camera

superconducting

thermal

thermocouple

thermopile

transit-time spread

transition-edge sensor (TES)

two-photon

vacuum photodiode

Photodiodes

p–i–n junction

p–n junction

avalanche

comparison with APDs



depletion layer

edge-illuminated

evanescently coupled

group-IV

heterostructure

metal-semiconductor

modes of operation

open-circuit operation

photon-trapping microstructures

photovoltaic operation

response time

reverse-biased operation

Schottky-barrier

short-circuit operation

solar cell, multi-junction

traveling-wave configuration

Photoelastic

effect

tensor

Photoluminescence

applications

multiphoton

quantum dots

Photometry

illuminance



luminous efficacy

luminous flux

photopic luminosity function

Photon

antibunching

at beamsplitter

boson

energy

Gaussian-wavepacket

helicity

in Fabry-Perot resonator

in Gaussian beam

in Mach-Zehnder

in Young interferometer

interference

lifetime

momentum

monochromatic

optics

orbital angular momentum

polarization

polychromatic

position

position and time

spin angular momentum



time

transmission through polarizer

wavepacket

Photon detectors, see Photodetectors

Photon stream

number of photons

partitioned

photon flux

photon-flux density

photon-number statistics

randomness

spectral density

Photon-number statistics

Bernoulli

Bernoulli trial

binomial

Bose-Einstein

coherent light

counting time

doubly stochastic

exponential density function

geometric

Mandel's formula

mean

mean under absorption



negative-binomial

noncentral-chi-square density

noncentral-negative-binomial

partitioned distribution

partitioned SNR

photon number

photon-number distribution

Poisson

random partitioning

random selection

signal-to-noise ratio

sub-Poisson

thermal light

uniform

variance

Photonic

bandgap

integrated circuits

lantern

Photonic crystal

2D

3D

band structure

bandgap

Bloch modes



dispersion relation

fabrication

fibers

group velocity

holes and poles

holes on diamond lattice

inverse-opal

laser

laser array

lattice defects

metal-dielectric array

metamaterial

omnidirectional reflection

one-dimensional

optics

optics, introduction to

phase velocity

point defects

projected dispersion diagram

silicon

soliton generation

switch, photonic

thresholdless laser

waveguide

woodpile



Yablonovite

Photorefractivity

applications

real-time holography

simplified theory

Planck

Planck's constant

spectrum

Planck, Max

Plane wave

acoustic

conjugate

electromagnetic TEM

partially coherent

pulsed

quasi-plane wave

reflection

refraction

wavefronts

wavefunction

Plasma

frequency

wavelength

Plasmonics

LEDs



nanolasers

photodetectors

resonator

switch, photonic

waveguide

Pockels

coefficient

effect

readout modulator (PROM)

Pockels, Friedrich

Poincaré sphere

Point-spread function

Poisson, Simeon Denis

Polarization

p

s

-maintaining fiber

autocorrelation

circular

coherency matrix

complex envelope

complex polarization ratio

coordinate transformation

cross-correlation

degree



electric-field vector

ellipse

Jones matrix

Jones vector

linear

matrix representation

mode dispersion

normal modes

optics

optics, introduction to

orthogonal

orthogonal expansion

orthogonal Jones vectors

parallel

partial

photon

Poincare sphere

rotator

Stokes parameters

transverse-electric

transverse-magnetic

two-photon

unpolarized light

Polarization devices

rotator



Polarization density

Polarization devices

anti-glare screen

cascade

circulator

coordinate transformation

dichroic

Faraday rotator

fast and slow axes

half-wave retarder

intensity control

isolator

linear-polarizer cascade

nonlinear Kerr switch

nonreciprocal

normal modes

polarizer

polarizing beamsplitter

quarter-wave retarder

rotator

router

wave retarder

wave-retarder cascade

Polychromatic light

intensity



Ponderomotive force

Postulates

Born postulate

Einstein postulates

ray optics

wave optics

Power

electromagnetic

Gaussian beam

optical

scattered

spectral density

Poynting

theorem

vector

Principal

axes

refractive indices

Principal point

SELFOC lens

arbitrary paraxial system

Prism

chirp filter

coupler

dispersion compensation



electro-optic

laser-line selector

spatial

superprism

Prokhorov, Aleksandr M.

Propagation

along principal axis

anisotropic medium

free space

gain of spatial coherence

homogeneous medium

partially coherent light

van Cittert-Zernike theorem

Pulse, optical

attosecond

characteristics

chirp filtering of

chirp parameter

chirped

chirped-Gaussian

complex envelope

compression

detection

dispersion length

down-chirped



Fourier-transform-limited

frequency-to-space mapping

FROG

Gaussian

Gaussian beam

Gaussian, bandwidth-limited

in dispersive media

instantaneous frequency

intensity autocorrelation

intensity detection of

light bullet

linear filtering

nonseparability

phase detection of

plane wave

propagation in fiber

rectification

sech

shaping

slowly varying

soliton

soliton self-frequency shift

soliton, spatiotemporal

soliton, temporal

spatial characteristics



spectral intensity

spectral intensity detection

spectral phase

spectral shift

spectral width

spectrogram

spherical wave

SPM

spread

streak-camera detection

sub-femtosecond

supercontinuum light

temporal broadening

temporal width

three-wave mixing

THz pulse generation

time-to-space mapping

time-varying spectrum

transform-limited Gaussian

up-chirped

wavepacket

Pupil function

generalized

Purcell factor

 



Quadric representation

Quantum

circuits

cutting

defect

electrodynamics

entanglement

mechanics

optics

Quantum cascade laser (QCL)

heterogeneous

single-frequency

strained-layer

tunable

Quantum dot

infrared photodetector (QDIP)

Quantum dots

applications

artificial atoms

core-shell

excitons

fabrication

lasers

LEDs

mode-locked lasers



photoluminescence

self-assembly

silicon photonics

single-photon emitter

SOAs

synthesis

Quantum number

azimuthal

magnetic

orbital angular momentum

overall angular momentum

principal

rotational

spin

vibrational

Quantum state

amplitude-squeezed

binomial

biphoton

coherent

entangled

Fock

intensity-squeezed

number

phase-squeezed



photon-number-squeezed

quadrature-squeezed

sub-Poisson

thermal

twin-beam

two-photon

Quantum well

infrared photodetector (QWIP)

lasers

SOAs

Quantum wire

lasers

Quantum-confined

excitons

lasers

structures

Quasi-phase matching

Radar

Doppler

laser

Radiometry

irradiance

radiant flux

Raman

-Nath scattering



cascaded fiber laser

cascaded silicon laser

distributed fiber amplifier

fiber amplifier

fiber laser

gain

lumped fiber amplifier

scattering

silicon laser

stimulated scattering

Stokes shift

Ramo's theorem

Random light, see Statistical optics

Rate equations

amplifier radiation absent

amplifier radiation present

broadband radiation

photon-number

population-difference

thermal light

Ray equation

paraxial

Ray optics

introduction to

postulates



relation to electromagnetic optics

relation to quantum optics

relation to wave optics

Ray-transfer matrix

4 × 4

SELFOC plate

air followed by lens

arbitrary paraxial system

cascade of components

determinant

free-space

inverse

lens system

parallel transparent plates

planar boundary

planar mirror

skewed rays

special forms

spherical boundary

spherical mirror

spherical-mirror resonator

thick lens

thin lens

Rayleigh

-Jeans formula



inverse fourth-power law

range

scattering

Rayleigh, Lord (John William Strutt)

Reciprocal

lattice

Rectification, optical

pulsed

Reflectance

at boundary

between GaAs and air

between glass and air

from a Bragg grating

from a plate

of a conductive medium

power

quarter-wave film

Reflection

at a dielectric boundary

at a DPS-SNG boundary

at a metasurface

at a mirror

at an absorbing boundary

Bragg grating

Brewster angle



circularly polarized light

critical angle

external

frustrated total internal

internal

omnidirectional

phase shift

total internal

transverse-electric polarization

transverse-magnetic polarization

Refraction

all-angle

at a dielectric boundary

at a hyperbolic medium

at a metasurface

at a spherical boundary

at normal incidence

Brewster angle

conical

double

external

internal

negative

nonlinear

rays in anisotropic media



transverse-electric polarization

transverse-magnetic polarization

without reflection

Refractive index

air

anisotropic media

extraordinary

frequency-dependent

group

negative

optical materials

ordinary

resonant medium

Sellmeier equation

Resolution

acousto-optic filter

acousto-optic scanner

electro-optic scanner

liquid-crystal display

multiphoton lithography

multiphoton microscopy

optical-pulse detection

routing device

wavelength demultiplexer

Resonant medium



anharmonic oscillator

Lorentz oscillator

Resonator

g-parameters

axial modes

bow-tie

circular (2D)

cold

concentric

conditionally stable

confinement condition

confocal

diffraction loss

energy per mode

Fabry-Perot

fiber-ring

finesse

finite apertures

free spectral range

frequencies

guided-wave

integrated-optic-ring

losses

microdisk

micropillar



microresonator

microring

microsphere

microtoroid

modal density (1D)

modal density (2D)

modal density (3D)

modal volume

modes

modes, standing wave

modes, traveling wave

multiple microring

nanodisk

nanoresonator

nanosphere

number of modes

optics

periodic optical system

photonic modes

photonic-crystal

planar-mirror

plano-concave

plasmonic

quality factor

rectangular (2D)



rectangular (3D)

ring

size vs. resonance wavelength

spectral width

spherical-mirror

stability diagram

stable

symmetric

transmittance

transverse modes

traveling wave

unstable

whispering-gallery modes

Resonator, spherical-mirror

axial modes

free spectral range

Gaussian modes

Hermite-Gaussian modes

modes

ray-transfer matrix

resonance frequencies

symmetric

transverse modes

Responsivity

avalanche photodiode



differential

LD

LED

photodetector

SLED

Retarder

half-wave

quarter-wave

quartz

Ring

aperture

benzene

network

resonator

Rotator

Faraday

nonreciprocal polarization

polarization

Router, passive optical

add-drop multiplexer

arrayed waveguides

broadcast-and-select

demultiplexer

intensity-based

introduction to



Mach-Zehnder interferometer

multipath interferometer

multiplexer

phase-based

polarization-based

waveguide grating

wavelength-based

wavelength-division multiplexer

Russell, Philip St John

 

Saturable absorber

bistable device

Scalar wave optics, see Wave optics

Scanner

acousto-optic

electro-optic

holographic

Scattering

and absorption

and attenuation

anti-Stokes

Bragg diffraction

Brillouin

CARS

coefficient



Debye-Sears

dielectric nanosphere

efficiency

elastic

Huygens-Fresnel principle

Maxwell-Garnett mixing rule

metallic nanosphere

Mie

quasi-static approximation

Raman

Raman-Nath

Rayleigh

small scatterers

stimulated Brillouin

stimulated Raman

Stokes

strong

volume fraction

weak

Scattering matrix

beamsplitter

dielectric boundary

dielectric slab

homogeneous medium

lossless medium



lossless symmetric system

relation to wave-transfer matrix

Schawlow, Arthur

Schrodinger equation

nonlinear

time-dependent

time-independent

Schultz, Peter C.

Second-harmonic generation

efficiency

phase mismatch

switch

Self-focusing

Self-phase modulation

in supercontinuum generation

pulse, optical

Sellmeier equation

Semiconductor optical amplifiers

bandwidth

compare with OFAs

double-heterostructure

gain

gain coefficient

heterostructures

peak gain coefficient



pumping

quantum-dot

quantum-well

SLEDs

switch, photonic

waveguide

Semiconductors

k-selection rule

p–i–n junction

p–n junction

p–n junction, biased

absorption

AlGaAs

AlGaN

AlInGaN

AlInGaP

allotropes

alloy broadening

Auger recombination

bandgap energy

bandgap wavelength

bowing parameter

Brillouin zone

bulk

carrier concentrations



carrier generation

carrier injection

carrier recombination

carriers

degenerate

density of states

density of states, joint

depletion layer

direct-bandgap

dopants

doped extrinsic

drift velocity

effective mass

electroluminescence

electron affinity

elemental

energy bands

energy-momentum relations

excitons

extrinsic

Fermi function

Fermi inversion factor

fundamentals

GaAs

GaAsP



gain coefficient

GaN

heterojunction

VI materials

nitride materials

V materials

impact ionization

indirect-bandgap

InGaAs

InGaAsP

InGaAsSb

InGaN

interaction with light

internal efficiency

intrinsic

VI materials

Kronig-Penney model

law of mass action

minibands

mobility

multiquantum-well

nanocrystals

nonradiative recombination

occupancy probabilities

optics



organic

periodic table

photoconductors

photoemission

quantum dots

quantum wells

quantum wires

quantum-confined

quasi-equilibrium

recombination coefficient

recombination lifetime

refractive index

SESAM

Shockley equation

Si photonics

SiC

silicon photonics

superlattice

transition probabilities

Vegard's law

Semimetals

band structure

graphene

massless Dirac fermions

Shockley, William B.



Shot noise

Silicon photonics

direct-mounting integration

flip-chip integration

heteroepitaxy

heterogeneous integration

hybrid approach

microring laser

OEIC

PIC

PLC

quantum dots

Single-mode

fiber

waveguide

Skin depth, see Penetration depth

Slow light

Snell's law

at a boundary

at a metamaterial boundary

at a metasurface

modified

negative refractive index

proof

Solids



covalent

doped dielectric media

ionic

metallic

molecular

van der Waals

Soliton

N-soliton wave

collision

condition

dark

directional-coupler router

envelope

fundamental

generation

higher-order

interaction

laser

optical fiber communications

period

photonic-crystal

sech pulse

self-frequency shift

solitary wave

spatial



spatial-temporal analogy

spatiotemporal

switch, photonic

temporal

vector

SONET

Sonoluminescence

Spatial

coherence

dispersiveness

filter

frequency

harmonic function

hole burning

Lambertian pattern

laser emission pattern

LD emission pattern

LED emission pattern

solitons

spectral analysis

Spatial light modulator

acousto-optic

bistable

digital micromirror device

electro-optic



liquid-crystal

optically addressed

parallel-aligned (PAL-SLM)

Pockels readout optical (PROM)

Speckle

Spectral

density

hole burning

packet

width

Spectrogram

Wigner distribution function

Spectrum analyzer

acoustic

interferometric

optical

Speed of light

Spherical wave

complex amplitude

conjugate

intensity

paraboloidal approximation

partially coherent

pulsed

reflection



wavefronts

wavefunction

Spin

-allowed transitions

-forbidden transitions

-orbit coupling

-spin coupling

angular momentum

electron

multiplicity

photon

singlet state

triplet state

Spontaneous emission

atoms

enhanced

inhibited

occupancy probability

peak rate

Purcell factor

semiconductors

spectral intensity

transition rate

Stark effect

light shift



quantum-confined

Statistical optics

gain of spatial coherence

imaging with incoherent light

interference

interferometry

introduction to

longitudinal coherence

optical intensity

partial polarization

quantum interferometry

spatial coherence

spectrum

temporal coherence

transmission of random light

Step-index fiber

Stimulated Brillouin scattering

Stimulated emission

atoms

occupancy probability

semiconductors

semiconductors, indirect-gap

transition rate

Stimulated Raman scattering

Stokes



parameters

vector

Stokes, George Gabriel

Strain

sensor

tensor

Sum-frequency generation

Supercontinuum generation

Superlattice

quantum cascade laser

Superluminescent diodes (SLEDs)

compare with LDs

compare with LEDs

light-current curve

Surface plasmon

resonance spectroscopy

resonance

Surface plasmon polariton

at DPS-SNG boundary

at metal-dielectric boundary

nanolaser

surface-charge wave

Susceptibility, electric

complex

frequency-dependent



resonant medium

tensor

Switch

acousto-optic

electro-optic

electroabsorption

ferroelectric liquid crystal

waveguide

Switch, photonic

acousto-optic

all-optical

architectures

Banyan switch

buffer

characteristics

circuit switching

configurations

electro-optic

energy required

Franz-Keldysh effect

FWM

heat dissipation

implementations

introduction to

liquid-crystal



magneto-optic

mechano-optic

MEMS

nonlinear Kerr

nonlinear optical retardation

nonlinear Sagnac interferometer

opto-optic

optoelectronic

optomechanical

packet

parametric

photonic-crystal

plasmonic

programmable delay

QCSE

quantum limit

quantum-confined Stark effect

ROADM

second-harmonic generation

semiconductor

SFG

SOA

soliton, vector

soliton-collision

space



space-wavelength

switching time

thermo-optic

time-space-time

time-division demultiplexer

time-division multiplexer

time-domain

time-slot interchange

TOAD

wavelength converter

wavelength selector

wavelength-channel interchange

wavelength-selective

XGM

XPM

Tail

band

Fermi

Urbach

Talbot effect

TEM wave

Temperature

BEC formation

blackbody spectrum

correlated color



Doppler cooling limit

earth

single-photon recoil limit

sub-recoil cooling

sun

thermographic images

Tensor

conductivity

constraints

elasto-optic

electric permittivity

electric susceptibility

first-rank

fourth-rank

geometrical representation

impermeability

index ellipsoid

linear electro-optic

magnetic permeability

photoelasticity

quadratic electro-optic

quadric representation

second-order nonlinearity

second-rank

strain



strain-optic

third-order nonlinearity

third-rank

zeroth-rank

Terahertz

frequencies

Term symbol

actinide metals

atoms

He

lanthanide metals

occupied subshells

rare-earth elements

transition metals

Thermal light

blackbody radiation

rate equation

Rayleigh-Jeans formula

spectrum

Stefan-Boltzmann law

thermography

Wien's law

Thermo-optic effect

Third-harmonic generation

Three-wave mixing



pulsed

Time

-varying spectrum

lens

Townes, Charles H.

Transfer function

4-f imaging system

free space

single-lens imaging

Transformation optics

cylindrical focusing

refraction at normal incidence

refraction without reflection

transformation principle

Transition

absorption

excitonic

free-carrier

impurity-to-band

interband

intersubband

intraband

miniband

phonon

spontaneous



stimulated

Transmittance

biprism

complex-amplitude

diffraction grating

Fabry-Perot

Fresnel biprism

graded-index plate

optical components

plate of varying thickness

power

prism

thin lens

transparent plate

Tyndall, John

 

Ultrafast optics

introduction to

linear

nonlinear

pulse characteristics

pulse compression

pulse detection

pulse propagation in fibers

pulse shaping



Ultraviolet

EUV band

frequencies

UVA band

UVB band

UVC band

VUV band

wavelengths

Uncertainty relation

duration-bandwidth

field quadratures

Heisenberg

position-momentum

time-energy

Undulator

Uniaxial crystal

Units, radiometric and photometric

illuminance

irradiance

luminous efficacy

luminous flux

radiant flux

Up-conversion

fluorescence

 



Vacuum state

van Cittert-Zernike theorem

VCSELs

VECSELs

Vector

beam

potential

Velocity

group

information

phase

Verdet constant

Veselago, Victor Georgievich

Visibility

Visible

frequencies

wavelengths

Vortex, optical

laser

phase singularity

topological charge

 

Wave

-particle duality

acoustic plane



beating

complex amplitude

complex analytic signal

complex envelope

complex representation

complex wavefunction

conjugate

cylindrical

evanescent

in a GRIN slab

localized

monochromatic

nondiffracting

paraboloidal

paraxial

partially coherent

plane

polychromatic

pulsed

quasi-monochromatic

quasi-plane

restoration

retarder

retarder, dynamic

retarder, liquid-crystal



retarder, voltage-controlled

spherical

standing

stationary

wavefronts

wavefunction

wavelength

Wave equation

diffusion equation

generalized paraxial

in free space

in homogeneous medium

in inhomogeneous medium

in medium

in nonlinear dispersive medium

in nonlinear medium

SVE

SVE, nonlinear

Wave optics

introduction to

postulates

vs. electromagnetic optics

vs. ray optics

Wave-transfer matrix

antireflection film



beamsplitter

cascade of elements

dielectric boundary

dielectric slab

homogeneous medium

lossless medium

lossless system

relation to scattering matrix

Wavefronts

anisotropic medium

helical

plane-wave

spherical-wave

Wavefunction

complex

electron

entangled-photon

harmonic-oscillator

plane-wave

quantum mode

single-photon

spherical-wave

two-photon

Waveguide, optical

arrays



asymmetric planar

bounce angles

Bragg-grating

channel

cladding

confinement factor

core

coupled-mode theory

couplers

coupling

cutoff

cylindrical

dispersion relation

evanescent wave

extinction coefficient

fiber

field distributions

GaAs/AlGaAs

glass

Goos-Hanchen effect

group velocity

InGaAsP

input coupling

LiNbOs

materials



metal-insulator-metal

metal-slab

modes

multimode fields

number of modes

numerical aperture

optical-power flow

periodic

photonic-crystal

planar dielectric

planar-mirror

plasmonic

power-transfer ratio

propagation constants

rectangular dielectric

rectangular mirror

side coupling

silica-on-silicon

silicon-on-insulator

single-mode

switch

transfer distance

two-dimensional

Wavelength

γ-ray



-division multiplexer

activation

bandgap

converter

de Broglie

infrared

laser

laser amplifier

plasmon

ultraviolet

visible

X-ray

zero-dispersion

Wavenumber

complex

Wavepacket

mode

random sequence

single-photon

velocity

Wavevector

Width of a function

1/e-

3-dB

FWHM



Gaussian

measures of

power-equivalent

power-RMS

root-mean-square (RMS)

Wiener-Khinchin theorem

Wigner distribution function

WOLED

Wolf, Emil

 

X-ray

energies

hard-X-ray (HXR) band

imaging

optical components

soft-X-ray (SXR) band

wavelengths

 

Yablonovitch, Eli

Yablonovite

Young, Thomas

 

Zeeman effect
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