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Preface

I started the work on liquid crystal colloids around the year 2000 as a continuation
of our experiments on forces between surfaces in liquid crystals. We were using the
atomic force microscope (AFM) as a tool to measure structural forces in the nematic
and smectic liquid crystals. In those experiments, liquid crystal was confined to a
very narrow gap, between 1 and 100 nanometres, typically between a perfectly
smooth crystalline surface of mica and the micrometre diameter glass microsphere
attached to the cantilever of the AFM. We were looking for the fluctuation forces,
also called the Casimir force, of the nematic director field confined to the thin gap
between the mica and the microsphere. We never observed the Casimir force,
simply because it was to tricky to separate it from the much stronger mean-field
forces, which were caused by the gradient of the order parameter in that gap. These
mean-field forces between the two surfaces at the nanometre separation were indeed
strong, and I was questioning myself whether similar forces between the surfaces
of the particles in the nematic liquid crystal exist at a much larger separation, of the
order of a micron or so. At the same time, two articles came along my desk: one
was the Science paper by Poulin, Stark, Lubensky and Wietz, showing beautiful
images of the attraction of water droplets in nematics. The other was a paper on
photonic crystals by Yablonovitch and Gmitter, published in Physical Review
Letters in 1989. When reading these papers, I asked myself whether it is possible to
build photonic crystals by putting small colloidal particles into nematic liquid
crystals, combining the essence the above-mentioned both papers. This was around
the year 2000.

At that time, the experiments with colloidal particles in nematics were practically
a kind of science fiction, since no tool was available for grabbing individual
micrometre diameter particles inside the measuring cell and moving them to an
arbitrary position. However, we were lucky that in that period laser tweezers started
to emerge as very powerful non-contact tweezers, which use light to trap and
manipulate the particles even when they are floating in the nematic liquid crystal
sandwiched between two rather thick glass plates.

As mentioned before, we started the experiments with laser tweezers by good
luck, using low refractive glass beads, putting them in the nematic liquid crystal and
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trying to see whether the tweezers are able to grab such a particle and move it. It
came as a big surprise to the three of us, Miha Škarabot, Igor Poberaj and myself,
when we saw that glass beads could nicely be trapped in the nematic liquid crystal,
although the refractive index of glass is lower than the refractive indices of both
nematic liquid crystal used in the experiments. I explained this anomalous trapping
by noting that polarisation of the laser tweezers is an important parameter and that
the second important phenomenon is the action of the strong electric field of the
laser tweezers on the nematic liquid crystal itself. We could soon explain this
anomalous trapping on a general grounds by considering elastic deformation of
nematic liquid crystal by light and the polarisation of light, which selectively grabs
the nematic director along the direction of larger polarizibility and moves the
particle together with the field.

After the work on this anomalous trapping of colloids by optical tweezers was
published, there was a lot of excitement and new ideas on what physics experiments
could be done with the laser tweezers. This result opened the exciting pathway to
the assembly of the first 2D nematic colloidal crystal in 2006. Another milestone
occurred in the same year 2006, when Miha Ravnik proposed to use local quench
of the nematic liquid crystal colloids from the isotropic phase to the nematic phase
and entangle two colloidal particles. This was soon realised in the experiment by
using the absorption of the laser tweezers in the nematic liquid crystal colloids to
melt the nematic and then quench it. The result was colloidal entanglement, where
colloidal particles could be entangled by topological defect loops. The entangle-
ment later provided the most complex colloidal binding in the nematic liquid
crystals, i.e. knotting and linking of colloids, which was observed by Uroš Tkalec
and myself in 2010. Linking and knotting of the nematic liquid crystal opened the
doors to the experimental topology in liquid crystals and what followed were
several years of very creative and exciting exploration of this complex phenomenon
by many different groups all over the world.

Along the work on nematic colloids, I began in 2007 with Matjaž Humar a
parallel work on an entirely new line of research with the aim of using the nematic
dispersions for microphotonics. There was only a slight hint at that time that liquid
crystals could provide a beautiful setting for the realisation of tiny photonic ele-
ments, such as optical microcavities, microlasers and photonic microfibers. Indeed,
all this was found latter in the dispersions of nematic or cholesteric liquid crystals in
other immiscible fluids, such as water. This led me to consider whether one could
use the structural forces for binding and entangling colloidal particles in the
nematics together with the photonic properties of nematic dispersions. The aim is to
create a soft matter analogue to the solid state microphotonic circuits, where instead
of silicon, a soft matter is used to self-assemble into a topological photonic soft
matter. At present, we have clear proof that such technology based on soft matter
self-assembly is indeed possible.

This work is written as a kind of retrospective of all the mentioned studies and it
follows, more or less chronologically, the experimental work performed in the last
decade, starting from the year 2004. It turns out that telling the story in a
chronological order is the best way to present the development of ideas from simple
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beginnings to very complex issues. Most of the work in this book was performed in
my laboratory at the J. Stefan Institute; however, the book would be far from
complete without including the work of other researchers from very different lab-
oratories around the world. I did my best to include all relevant work in this field
and I hope that I have not missed any important references.

Ljubljana, Slovenia Igor Muševič
December 2016
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Chapter 1
Introduction

Abstract Basics of the orientational order, phase transitions and Landau-de Gennes
theory are presented. We briefly discuss optical properties of liquid crystals, which is
necessary for understandingoptical experiments in thesematerials.Basic introduction
to topological defects in nematic liquid crystals is given, including winding number,
topological charge, Euler characteristic, genus of colloids, and elastic energy of
topological defects.

1.1 Molecular Order in Nematic Liquid Crystals

A nematic liquid crystal is a state of the matter which is intermediate between the
isotropic liquid and the fully ordered solid crystal [1]. A nematic liquid-crystalline
phase is usually formed of elongated, rod-like organic molecules, which are sponta-
neously ordered with their long axes parallel to each other, as illustrated in Fig. 1.1.
The direction of this average molecular ordering is called the director. The centres of
gravity of molecules show no long-range ordering and the matter is therefore a fluid.

The nematic phase is usually obtained by changing the temperature and that is
why it is also called a thermotropic nematic liquid crystal. It is therefore stable within
a certain temperature range. If heated above a certain temperature, which is called
the clearing point (Tc), the orientational order of long molecular axes is lost and the
nematic liquid crystal transforms into an isotropic fluid, as illustrated in Fig. 1.1. In
this isotropic phase, there is no orientational order of long molecular axes and the
centres of gravity of molecules are randomly distributed in space. On the other hand,
if a nematic liquid crystal phase is cooled down, it usually transforms into a more
solid-like phase; usually, this is the smectic-A phase, which still displays orienta-
tional order of liquid crystal molecules, but its positional disorder transforms into a
1-dimensional (1D) solid. Thismeans that in the smectic-Aphase, themolecules form
layers, which are parallel to each other, as illustrated in Fig. 1.1. Within each layer,
which is liquid-like, the molecules are oriented along the normal to the layers. Upon
further cooling, the smectic A phase may transform into other partially positionally
ordered, i.e. layered phases, such as the smectic C, smectic B, smectic H, etc.

© Springer International Publishing AG 2017
I. Muševič, Liquid Crystal Colloids, Soft and Biological Matter,
DOI 10.1007/978-3-319-54916-3_1
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2 1 Introduction

Fig. 1.1 Different phases of a thermotropic liquid crystal. The smectic-A, nematic and isotropic
phase of a liquid crystal

The degree of orientational ordering of the rod-like molecules in the nematic
liquid-crystalline phase is determined by the nematic order parameter S. Like any
other order parameter within Landau theory of phase transitions (LdG) [2–4], this
order parameter is equal to zero, S = 0, in the isotropic phase, and obtains a finite
value in the nematic phase. It is given in a form of a second order Legendre
polynomial:

S = 1

2
· 〈(3cos2θ − 1)〉 =

∫
f (θ)

1

2
(3cos2θ − 1)d� (1.1)

Here, θ is the angle between long axis of a selected molecule within the molecular
ensemble and the average direction of all molecules forming the nematic phase,
which is called a director n, see Fig. 1.2. The brackets 〈〉 denote the time -average of
the angles θ over the ensemble of molecules. f (θ) is the orientational distribution
function of molecular axes in space, and d� is the differential of the solid angle. It
is clear from this expression that the nematic order parameter of a fully disordered
isotropic phase is S = 0, whereas the maximum possible order parameter is S = +1.
This occurswhen all themolecules are perfectly aligned along the director. The values
of the order parameter S are therefore formally restricted to the interval [−1/2, 1],
with +1 corresponding to fully aligned molecules along the director. The negative
value of S = −1/2 formally corresponds to a statewhere all themolecules are aligned
perpendicularly to the director. This state is different from the fully aligned state with
S = +1 and is physically realised in liquid crystals with disc-like molecules or in
special cases when the rod-like molecules are orientationally disordered and form
pancake-like probability distribution.

Let us remind that the order parameter S, which specifies the local degree of order-
ing, is a scalar quantity and therefor cannot not describe the orientational collective
ordering of the nematic molecules in space. To this aim, one has to combine the
director field n with the degree of local order S, which naturally leads to a second-
rank tensor Q, also called the Q-tensor, which describes both the degree of local
order and its “direction”. This tensor is expressed as:
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Fig. 1.2 a Snapshot of molecular ordering in the nematic phase. Note the uniaxial symmetry of
this phase. b The corresponding order parameter tensor has the shape of a rotational ellipsoid with
the largest eigenvalue along the director

Qi j = S

2
(3nin j − δi j ) (1.2)

Here, ni , i = x, y, z are the Cartesian components of the director n, TheQ tensor
is traceless uniaxial tensor, with its largest eigenvalue S along the director, which is
the C∞ symmetry axis of the nematic phase, allowing arbitrary rotation of this phase
around the director. The other two eigenvalues are equal and smaller, − S

2 and their
corresponding eigenvectors are directed perpendicular to the director.

In some special cases, such as in external electric or magnetic field, and confine-
ment, the local ordering is not uniaxial, but is forced into biaxial form [5]. In this
case the two degenerate eigenvalues become different and the biaxial order parameter
tensor is given by:

Qi j = S

2
(3nin j − δi j ) + P

2
(e(1)

i e(1)
j − e(2)

i e(2)
j ) (1.3)

In the above expression, e(2) = n × e(1) is the secondary director and P =
〈sin2θcos(2Φ)〉. In this biaxial case, the order parameter tensor is a real, symmetric
and traceless tensor, which has now three distinct eigenvalues. The first eigenvalue is,
like before, equal to S, which is the nematic degree of order, and the corresponding
eigenvector is along the director. Obviously, the nematic director represents the direc-
tion corresponding to the eigenvalue S and it is clear that the two orientations of the
vectorsn and−n are equivalent. The director field is, loosely speaking, the “headless”
vector, which specifies the direction of the largest tensor eigenvalue. The other two
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eigenvalues are − 1
2 (S + P) and − 1

2 (S − P). Their two corresponding eigenvectors
specify the orientation and the biaxiality P of the order parameter tensor.

The biaxiality P therefore describes the lost uniaxiality and the broken continuous
rotational symmetry around the director. The possible values of the biaxiality P are
in the interval [−3/2,+3/2]. A special value P = 0 corresponds to the uniaxial
nematic order and |P| = 3

2 corresponds to complete ordering along the secondary
director e(1). Whereas the known nematic phases are uniaxial in bulk, local biaxiality
can develop in confined nematics and especially in the cores of topological defects.
In this case, the tensorial ordering field displays fully complex behaviour.

Because the order parameter tensor describes the uniaxial ordering of the mole-
cules in the nematic phase, this tensor is also proportional to the material properties
of this phase. Namely, the material properties, or better, the corresponding tensors
(such as dielectric and magnetic) must be of the same symmetry and proportional
to the tensor, describing the molecular ordering, which are the sources of material
properties. This means that the dielectric, magnetic and optical properties of the
nematic liquid crystals are uniaxial. This unaxiality can be visualised in 3D as a
closed surface in the shape of a rotational ellipsoid, as illustrated in Fig. 1.2

The uniaxial material properties of the nematic phase are responsible for practical
applications of these materials. As an example, one can see that an external electric
field applied to a nematic liquid crystal will force the molecules to align along the
field direction. This will induce rotation of liquid crystal molecules, which will find
the minimum free energy, when the director is aligned with the electric field. This
collective molecular rotation will change the optical properties of the nematic phase,
which will be discussed in the next subsection.

1.2 Landau-de Gennes Theory of the Nematic-Isotropic
Phase Transition

Phase transitions in thermotropic liquid crystals can be described within the Landau-
de Gennes (LdG) theory, which is built around the order parameter of any specific
phase transition, which is of interest to us [1].More generally, the order parameter is a
spatially inhomogeneous tensorial field and the free energy is a functional of this field.
LdG theory is a mean-field theory that considers the free energy density expansion
in terms of the equilibrium order parameter and neglects the time fluctuations of
the order parameter field. In practice, the temperature region, where the fluctuation
effects are relevant for the liquid crystal physics, is in most cases very small, i.e. of
the order of milli Kelvin.

The free energy functional of the isotropic-nematic (I-N) phase transition is con-
structed as a Taylor expansion of the local free-energy density f in the order para-
meter tensor, and takes into consideration also spatial derivatives of this field [5].
If the nematic liquid crystal is confined by surfaces, additional surface terms that
specify the energy costs related to the molecular orientation at the surface have to
be considered in the free energy expansion. The LdG free energy density expansion
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Fig. 1.3 a Free energy density fQ as a function of the order parameter S, calculated for different
temperatures around the isotropic-nematic phase transition. The localminima determine the stability
of the phase with a given value of S. b Temperature dependence of the equilibrium value of the
order parameter S. Because this is the first-order phase transition, the order parameter “jumps” from
zero to a finite value at the phase transition. Image courtesy of M. Ravnik [5]

for the I-N phase transition in bulk, therefor not considering the surface effects, is
(Fig. 1.3):

fQ = 1

2
A · Qi j Q ji + 1

3
B · Qi j Q jk Qki Q ji + 1

4
C · (Qi j Q ji )

2 (1.4)

All terms in this expansion have to be invariant to all symmetry operations, which
are allowed in the nematic phase, or the symmetry group, related to the I-N phase
transition. In the Eq.1.4, the first-quadratic term describes the free energy increase
due to the emergence of nematic ordering. The cubic term is allowed by symmetry
and is responsible for the first-order nature of this transition, which is therefore
discontinuous. The quartic term has the role of stabilising the free energy density.
The coefficients A, B and C of this LdG free energy density expansion depend on
the material.

Like in anyLdGexpansion, the parameter of the quadratic term, A = α(T − T ∗
N I ),

is temperature-dependent, and “drives” the I-N phase transition. It is responsible for
the onset of the nematic order, when the temperature T decreases throughout the
transition. Namely, positive value of A > 0 correspond to the stability of the isotropic
phase with vanishing S = 0, since any additional value of the nematic order δS costs
some free energy. When this coefficient changes sign at T ∗

N I , and becomes negative
in the nematic phase, A < 0, it stabilizes finite value of the order parameter, S �= 0.
This change of the sign of the quadratic term in the free energy expansion is therefore
responsible for the spontaneous onset of the nematic ordering below T ∗

N I .
The coefficient B of the cubic term is negative by symmetry, B < 0, which means

that the coefficient C of the quartic term has to be positive,C > 0. IfC were negative,
C < 0, the free energy corresponding to the quartic term would always be negative
and would thus have no lower bounds. Obviously, C > 0 is necessary to stabilise the
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free energy.Typical values of these coefficients are:α � 105 J/m3K , B � −106 J/m3,
and C � 106 J/m3.

If we consider an unbound (bulk) nematic liquid crystal that is also not distorted,
the minimisation of the total free energy F = ∫

f (r)dV is straightforward and the
nematic degree of order in the equilibrium nematic phase is:

Seq = 1

2

⎡
⎣−B

3C
+

√(
B

3C

)2

− 8a(T − T ∗
N I )

3C

⎤
⎦ T ≤ T ∗

N I (1.5)

The equilibrium value of the order parameter is temperature-dependent as illus-
trated in Fig. 1.3b and the magnitude of the order increases with decreasing temper-
ature T . One can also see that the degree of order is the result of the balanced quartic
and quadratic terms, which determine the minimum of the free energy density.

1.3 Elastic Distortions of Nematic Liquid Crystals

In the Eq.1.4 we have not considered any variation of the order parameter tensor in
space. However, in most cases of interest and in particular in nematic liquid crystals
with defects, the spatial dependence of the Q-tensor is of prime importance. In reality,
these spatial inhomogeneities of the Q tensor represent elastic deformations of the
nematic liquid crystal. Because the nematic liquid crystal is a state of spontaneously
broken rotational symmetry, it develops an “orientational rigidity”, or elasticity, and
is therefore able to transmit elastic torques. The situation is similar to spontaneously
broken translational symmetries in solids, which are able to transmit static forces.

The elastic free energy volume density, expanded in terms of the spatial derivatives
of the tensorial order parameter is [5]:

felast = 1

2
L1 · δQi j

δxk
· δQi j

δxk
+ 1

2
L2 · δQi j

δx j
· δQik

δxk
+ 1

2
L3 · Qi j

δQkl

δxi
· δQkl

δx j
(1.6)

The expansion coefficients L1, L2 and L3 are the corresponding tensorial elastic
constants, accounting for the three basic deformation modes. xi are the Cartesian
coordinates and the summation over repeated indices has to be done. In the expres-
sion above, the elastic constants Li are independent of the degree of nematic order
and this will be considered further on in this section. This expansion contains a min-
imal number of symmetry invariants that describe the three deformation modes in a
nematic liquid crystal. Other invariants are allowed by symmetry as well, and lead
to more complex free energy density.

The free energy density expansion given by the Eqs. 1.4 and 1.6 has to be used
when the nematic order is spatially inhomogeneous, such as in nematic colloids. In
this case, the colloidal inclusions induce the appearance of the topological defects,
which are the singularities of the nematic ordering field. They appear in a form



1.3 Elastic Distortions of Nematic Liquid Crystals 7

Fig. 1.4 Graphic visualisation of the basic elastic deformations in the nematic liquid crystal:
a splay, b twist and c bend deformation. Image courtesy of M. Ravnik [5]

of points, called hedgehogs, and defect lines, called disclinations, which all have
a core with a very low order parameter. The core of the liquid crystal is therefore
somewhat molten, which brings about huge differences in local free energy density.
However, there are alsomany cases when the defects in nematic liquid crystals can be
completely neglected and the degree of the nematic order can be considered constant
throughout the sample. In these cases, we can consider only the elastic deformation
of the nematic liquid crystal without taking into account the changes in the degree of
ordering, and the tensorial free energy density can be greatly simplified. Formally,
it is rewritten in the director representation, also called the standard Frank-Oseen
elastic free energy density (Fig. 1.4):

f FOelast = 1

2
K1 · (∇ · n)2 + 1

2
K2 · [n · (∇ × n)]2 + 1

2
K3 · [n × (∇ × n)]2 (1.7)

There are three terms in this expression, each corresponding to a specific elastic
deformation with a specific elastic constant. K1 is the splay elastic constant, K2 is
the twist elastic constant and K3 is the bend elastic constant. The corresponding
deformations are called splay, twist and bend deformation, and they are visualised
in Fig. 1.2.

Having rewritten the tensorial free energy density into elastic free energy density,
the elastic constants Ki must be related to the LdG expansion coefficients Li . Indeed,
the relation between the LdG coefficients and elastic constants Ki is:

L1 = (K3 + 2K2 − K1)

9S2
(1.8)

L2 = 4
(K1 − K2)

9S2
(1.9)
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Table 1.1 Values of elastic constants of 5CB and 8CBnematic liquid crystals 5K below the clearing
point

Liquid crystal K1 K2 K3 Note

5CB 9 pN 4.8 pN 11 pN T = TN I − 5K

8CB 13 pN 6 pN 13 pN T = TN I − 5K

Note the elastic constants are strongly temperature dependent. For 8CB K2 and K3 diverge when
approaching the smectic [6] phase. The values of the elastic constants are taken from Ref. [6]

L3 = 2
K3 − K1

9S3
(1.10)

The elastic constants Ki are to the leading order proportional to the square of the
magnitude of the order parameter S with corrections. These relations can be very
useful when considering the analysis of different experiments. Typical values of the
elastic constants of some selected materials are presented in the Table1.1:

1.4 Interactions of Liquid Crystals with Surfaces

Interactions of liquid-crystal molecules with surfaces are the key to the technology of
liquid-crystal displays [1, 7]. In these devices, liquid crystal has to be homogeneously
ordered over large surface areas, which can be achieved with different alignment
techniques. When liquid-crystal molecules are in contact with a solid, a liquid or a
vapour, the intermolecular interactions between the liquid-crystal molecules in the
interior and on the interface to the outside of the liquid crystal are different. As in
any liquid, this gives rise to the well-known surface tension phenomenon, which
accounts for the free energy that is necessary for the creation of a unit surface of a
given interface.

Unlike ordinary, disordered fluids, liquid-crystalline phases exhibit spontaneous
molecular ordering, which gives rise to anisotropic material properties, including the
anisotropy of surface tension. Thismeans that the free energy of the liquid-crystalline
phase will depend on the orientation of liquid-crystal molecules in relation to the
surface of confining material and will thus be anisotropic. Formally, this is described
with the introduction of an additional term in the LdG free energy expansion, which
is also called Rapini-Papoular surface free energy functional:

fS = 1

2
Wsur f ace · (Qi j − Qo

i j )
2 (1.11)

The surface free energy density fS shows quadratic increase, when the order
parameter tensor Qi j deviates from the preferred order parameter Qo

i j . The expansion
coefficientWsur f ace is called the uniformsurface anchoring strength. For homeotropic
(perpendicular) surface anchoring of liquid-crystal molecules on the interface, the
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easy axis is normal to the surface. In the case of planar (parallel) surface anchoring
of liquid-crystal molecules, the easy axis is lying within the confining surface and
points into a given (predetermined) direction.On somematerials, there is no preferred
direction for planar anchoring, which is then called a degenerate planar anchoring,
and the molecules are free to choose any direction within the surface. Degenerate
planar anchoring is difficult to achieve, a good example of such a surface is the liquid
crystal-liquid interface.

In the director notation, the Rapini-Papoular free energy density is rewritten into:

fS = 1

2
Wa · sin2 Φ (1.12)

where Wa is the anchoring energy coefficient and Φ is the angle between the easy
axis and the director. Typical values of the anchoring coefficient Wa range from
10−3 J/m2, which corresponds to very strong surface anchoring, down to 10−7 J/m2,
which corresponds to weak surface anchoring. Typical values of a nematic liquid
crystal surface anchoring on polyiimide materials, nylon or solid crystals are of the
order of 10−4 J/m2. Weak anchoring of nematic liquid crystals is usually obtained on
surfaces covered with surfactant molecules, with typical anchoring coefficient being
10−5 J/m2.

When considering the orientation of the nematic director at the interface and the
nematic director field is elastically deformed, it is useful to consider the concept of
the surface extrapolation length (or Kleman-de Gennes length). For example, if we
are considering the homeotropic alignment of a nematic and we turn on an external
magnetic or electric field, which is parallel to the surface, the molecules will tend
to align along the field direction for positive magnetic (or electric) anisotropy. Far
away from the interface, this alignmentwill be complete; however,when approaching
the interface, there will be an elastically distorted region that will terminate at the
interface with a finite deviation of the nematic direction from the normal. If the
director profile is extrapolated beyond the interface, it will reach the undistorted
value at some separation from the surface. This separation is called the surface
extrapolation length and is given as a ratio of the corresponding elastic constant and
the anchoring strength:

ξs = K

Wa
(1.13)

For a weak surface anchoring (Wa ∼ 10−6 J/m2) and the typical elastic constant
K ∼ 10−11 N, the extrapolation length is around ξ ∼ 10µm. For very strong surface
anchoring (Wa ∼ 10−3 J/m2), the extrapolation lengthdecreases to around∼ 100 nm,
but is still much larger than the typical liquid crystal molecules (several nm).

In reality, any confining interface, whether it is solid, liquid, gas or vacuum,
will induce a given preferential direction of the liquid crystal director at that inter-
face. Perhaps the best known insight into the physics of liquid-crystal interactions
with surfaces is given by the Scanning Tunneling Microscopy (STM) experiments
with cyanobiphenyls on crystalline graphite. It was discovered that the liquid crystal
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Fig. 1.5 Meaning of the surface extrapolation length ξs . For infinitely strong anchoring, the angle
φ, which is measuring the distortion of the liquid crystal, would start with the value 0 exactly at the
surface at z = 0. Because of finite anchoring strength, the distortion starts with a finite value of the
angle φ at the surface. However, one can imagine that the distortion starts “inside” the surface at
some imaginary position z = −ξS = −K/W . Image courtesy of M. Ravnik [5]

molecules are actually crystallised on the graphite because of the strong electron
interaction of biphenyl rings with graphite surface, see for example Ref. [7]. This
surface-induced crystallisation of the molecular order is actually observed in many
experiments as a “surface memory effect” (Fig. 1.5).

In contact with any solid, liquid crystal develops the first interfacial layer, which
is smectic-like or even crystalline-like [7]. When such an interface is heated into the
isotropic phase and cooled back down, one can observe the same surface pattern as
in the beginning. The interface therefore has a “memory”, which actually originates
from the first, strongly adsorbed layer of liquid-crystal molecules, which melts into
the isotropic phase only at very high temperatures.

When such a solid (glass, polymer, crystal) surface is rubbed mechanically along
a given direction, one observes that the liquid-crystal molecules tend to align them-
selves along this “rubbing direction” [7]. There were several explanations of this
effect, ranging from the idea of creating micro grooves by rubbing to the deposi-
tion of extra material on the surface. Some experiments reported melting of polymer
backbones due to high local temperatures, whichwere caused by the friction between
the rubbing cloth and the substrate [7]. In all cases, external mechanical action cre-
ates a preferred direction of a different origin, which efficiently aligns liquid-crystal
molecules even over extremely large distances.

In contrast to rubbing a substrate, one can also deposit organic surfactant
molecules on the substrate, which can be a very efficient way of generating
desired alignment. One example is the silanisation of glass surfaces with octade-
cyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (DMOAP silane), which
creates excellent homeotropic alignment of most cyanobiphenyl liquid crystals. It
was shown that the DMOAP creates a dense monolayer of silane molecules cova-
lently bound to the oxygen in the glass [7]. The first layer of cyanobiphenyl liquid
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Table 1.2 Alignment of some selected nematic liquid crystals on various surfaces

Liquid crystal Surface Alignment Anchoring
energy
coefficient
(J/m2)

Note Ref.

5CB Polyimide
PI-2555

Parallel – Nissan
Chemicals

[8]

5CB Rubbed Nylon Parallel 10−5 − 10−4 Wθ [7]

5CB Rubbed Nylon Parallel 5 × 10−6 −
5 × 10−5

Wϕ [7]

5CB Graphite Parallel – STM [7]

5CB PVCN Parallel 10−5 Wθ [7]

n-CB Polyimide
(BPDA-PDA)

Parallel – – [7]

n-CB Polystyrene Parallel – Normal to
rubbing

[7]

5CB Clean glass Parallel – –

8CB Rubbed Nylon Parallel 3 × 10−6 Wθ [7]

8OCB DMOAP on
glass

Normal 1 × 10−4 ABCR GmbH [7]

Note the temperature dependence of the anchoring energy coefficients [7]

crystals was shown to be smectic-like but in the layers towards the bulk, the usual
nematic ordering takes place. Table1.2 gives some typical examples of alignment on
different substrates together with surface anchoring strengths.

The surface anchoring of liquid-crystal molecules on fluid interfaces is quite
different from anchoring on solid interfaces. On many fluids, including water and
glycerol, the alignment is planar. However, the anchoring between two fluid phases
can be modified by adding surfactant molecules. These have two different parts, each
of which prefers one liquid to the other. The free energy of these molecules will be
minimised after they are included into the interface, which gives us the possibility
of tuning the anchoring of fluid-liquid-crystal interfaces. If sodium dodecyl sulfate
(SDS) is added to the water, the planar alignment will switch to homeotropic for SDS
concentration above 5mM. Strong homeotropic anchoring of a nematic liquid crystal
can be obtained on PDMS, both polymerised and non-polymerised. However, this
interface is not very stable and is subject to ageing and smearing. Similar problems
were observed for polystyrene-nCB interface. Another special family of materials
are fluorinated oils, which form sharp interfaces both to hydrophilic and hydrophobic
fluids. Liquid crystal anchoring on different fluorinated oils can be either planar
or homeotropic. Table1.3 presents some typical examples of alignment of nematic
liquid crystals on water interface with added surfactants (Fig. 1.6).
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Table 1.3 Type of alignment for some liquid crystal-fluid interfaces, where the amphiphilic mole-
cules were added to achieve either normal or planar surface alignment

Sample Liquid crystal Amphiphilic Anchoring Ref.

1 5CB, K15 Pure water Planar [9]

2 5CB, K15 Water + Tween
60

Homeotropic [10]

3 5CB, K15 Water + 5mM
SDS

Homeotropic [9, 10]

4 5CB, K15 Water + 5%PVA Planar [10]

5 5CB, K15 Pure glycerol Planar [11]

6 5CB, K15 Glycerol + 2–4%
lecithin

Homeotropic [11]

7 5CB, K15 PDMS Homeotropic [9]

8 CCN47/55 Glycerol + 2–4%
lecithin

Homeotropic [11]

9 ZLI 2620 Water + PVA Planar [10]

Note that anchoring on fluid interfaces is degenerate

Fig. 1.6 a An uniformly rubbed polymer film (such as polyimide) will usually result in a strong
planar anchoring. b When surfactant molecules with appropriate structure (i.e. an alkyl tail) are
deposited on a solid substrate, stronghomepotropic alignmentwill likely be induced. Image courtesy
of M. Nikkhou [8]

1.5 Optical Properties of Nematic Liquid Crystals

Because nematic liquid crystals are uniaxialy ordered fluids with long-range orienta-
tional order, they display anisotropic optical properties [1]. This means that the speed
of light propagation in a nematic liquid crystal depends not only on the direction of
propagation, but also on the direction of polarisation.

Modes of light propagation in matter are governed by the Maxwell’s equations
of electromagnetic field [12–14], which can be combined into the wave equation for
the electric and the magnetic fields:
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∇ × ∇ × E(r) − ω2

c2o
· ε(r) · E(r) = 0 (1.14)

Here, E(r) is the electric field o the electromagnetic wave, ε(r) is the dielectric
constant of the material, ω is the frequency of the electromagnetic field, and co is
the speed of light in vacuum. In an optically inhomogeneous material, the dielectric
tensor ε(r) might be a complicated function of position, while for isotropic matter,
this is simply a scalar quantity, independent on position and direction of the electric
field of light.

In an infinite and optically isotropicmatter the eigensolutions of thewave equation
(1.14) are linearly polarized and propagating plane waves:

E(r, t) = Eo · ei(k·r−ω·t) (1.15)

Here, k = (kx , ky, kz) is the wave vector of the electromagnetic wave with the
frequency ω, the magnitude of which is related to the phase velocity c and frequency
by k = ω/c. The phase velocity of the wave is related to the dielectric constant of
the material by the equation c = 1/

√
εε◦μ◦, which follows from the eigenvalue of

the wave equation.
In an anisotropic matter, ε is no longer a scalar quantity, but a tensor ε with three

distinct eigenvalues εxx , εyy and εzz , the form of which is simplified in optically
uniaxial materials to:

ε =
⎡
⎣εxx 0 0

0 εxx 0
0 0 εzz

⎤
⎦ (1.16)

The solutions of the wave equation (Eq. 1.15) are now quite different compared
to isotropic matter. In general, there are two distinct eigenvalues and two distinct
eigenvectors for phase velocity of light, which correspond to the velocity of the
ordinary (co) and extraordinary (ce) electromagnetic wave, respectively.

co = c◦
n◦

(1.17)

ce = c◦
ne

(1.18)

The phase velocity of the ordinary wave (co) does not depend on the direction of
propagation, and is therefore a remnant of the isotropic phase. On the contrary, the
phase velocity of the extraordinarywave (ce) depends on the direction of propagation.
The corresponding refractive indices are given by (Fig. 1.7):

n2o = εxx (1.19)

1

n2e
= sin2 α

εzz
+ cos2 α

εxx
(1.20)
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Fig. 1.7 Dielectric tensor in
a liquid crystal can be
visualized as a closed
ellipsoidal surface with three
different principal values,
εxx , εyy ,and εzz . In a nematic
liquid crystal two
eigenvalues are equal and the
material is optically uniaxial,
with the optical axis along
the z-axis in Fig. 1.2

Here, α is the angle between the direction of wave propagation and the optical
axis (i.e. z-axis). Both velocities are equal only when the waves are propagating
along the optical axis of the material, in our case this means along the director. The
eigenvectors of both waves (i.e. their polarizations) are always orthogonal to each
other. The maximum difference in the phase velocity of the extraordinary and the
ordinary wave is related to the birefringence of the material:

Δn = ne − n◦ (1.21)

Whereas the solutions of the wave equation in a homogeneous and infinite sample
of a nematic liquid crystal are simply plane waves, the optics becomes complicated
when the liquid crystal is distorted or even contains topological defects. There are
no simple approaches to the optics of nematic liquid crystals in general; instead, one
has to use numerical approaches to the solution of wave equations, which are known
as the Jones-matrix approach [12] or the Berreman approach [15]. These approaches
rely on dividing a liquid crystal into thin slices, which are birefringent and have a
different orientation of the optical axis. The state of polarisation of light, propagating
perpendicularly to this set of slices, is then calculated as a sequence ofmultiplications
of thewave amplitudewith a transfermatrix that reflects the local optical properties of
the material. Both Jones’ and Berreman’s approach disregards spatial lensing effects
that result in spatially inhomogeneous amplitude of propagating light. The liquid-
crystal material therefore acts as a complicated phase grating with no amplitude
variations. This is problematic when the birefringence of the material is high.

When the optical properties of a liquid crystal are changing gradually along the
direction of light propagation with a spatial period p, the Mauguin limit of wave
propagation could be used when the wavelength of the propagating light is much
smaller than the product p · Δn:

λ << p · Δn (1.22)



1.5 Optical Properties of Nematic Liquid Crystals 15

Within this limit, the product of the birefringence and the rate of spatial change of
the optical axis is much smaller than the wavelength of the light considered. In this
case, the eigen-waves are linearly polarised ordinary and extraordinary waves, which
follow the orientation of the local optical axis. This is therefore a type of a wave-
guiding, or adiabatic, regime, where the polarisation of light follows the structure of
the medium.

1.6 Topological Defects in Nematic Liquid Crystals

Topological defects in matter and fields [16–19] are remnants of the spontaneously
broken symmetry of the higher-temperature disordered phase [4]. Topological defects
are ubiquitous in nature and are observed as Abricosov vortices in type-II supercon-
ductors [20], superfluid vortices in 3He [21, 22] and Bose-Einstein condensates [23],
as quasiparticles in the fractional quantum Hall effect, fermionic atoms in optical
lattices and defects inmagneticmaterials [24–26] and field theories [27]. Topological
defects emerge in optical vortices [28, 29] and describe the orbital angular momen-
tum of light [30]. In all cases, topological defects are regions in 3D space, where the
order parameter of the corresponding phase is singular or ill-defined. The emergence
of topological defects is described within the Kibble-Zurek mechanism of monopole
production across a given phase transition [31, 32].When the system is rapidly cooled
from its isotropic phase, it develops “seeds” of the low-temperature phase after the
phase transition temperature is crossed. With time, these seeds grow into domains
and when they finally meet each other, they necessarily form defects because of the
mismatch of the fields in different domains. In later stages, this network of defects
exhibits a coarsening dynamics via merging and coalescence of domains.

Nematic liquid crystals are particularly suitable for optical observation of topo-
logical defects. These appear in the form of point defects, also called hedgehogs, and
disclination lines [33–36], and are characterised by a defect core, which is disordered
and of the size of the molecule. Because of the softness of the nematic liquid crystal,
the topological defects are large objects in nematics and are easily observable under
an optical microscope. Optical analysis of defects is further simplified because of
the birefringence of liquid crystals, which makes the distorted regions around the
topological defects easily observable in polarising microscopy.

1.6.1 Winding Number and Topological Charge

Topological defects in nematic liquid crystals are characterised by their winding
number (or strength of a defect) and their topological charge [35, 37–40]. As an
example, Fig. 1.8 shows point and line defects as observed between crossed polarisers
in a typical nematic liquid crystal cell with degenerate planar surface anchoring. One
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Fig. 1.8 a Image of a nematic planar cell taken between crossed polarisers. b Enlarged region
around a defect with four dark brushes. The schematic drawing of possible molecular orientation
is shown around this defect

can see points, which are surrounded with dark and bright brushes, as well as lines
joining these points, which are also accompanied by different shades of light.

It is not quite easy to determine the in-plane orientation of liquid-crystalmolecules
in the dark regions. However, we know that the long axis must be either parallel or
perpendicular to the polariser and the analyser in the dark region. There are several
possible and different kinds of brushes around each point defect. Those with four
dark brushes, such as in Fig. 1.8 might correspond to the “radial” director orientation,
which is shown in Fig. 1.8b.

Let us now consider a selected point defect, as illustrated in Fig. 1.8 and we
construct a circular path around this defect. In the next step,wemonitor the orientation
of the director on that path as we move in a clockwise manner around the defect.
One can immediately see that the total angle of director rotation as we complete one
circle is a multiple of π . This winding of the director as we move along the closed
path encircling the defect is described by the winding number (strength) k:

k = α

2 · π
(1.23)

Here, the angle α is the total angle of the rotation of the director, as we encircle
the defect. Because the director is a headless vector, the winding number can obtain
fractional values+1/2 and 1/2 for most of the simple cases, where the director winds
for an angle π or −π , as we complete one circular path. In reality, defects with
winding numbers +1/2 and −1/2 are often observed when making a cross-section
of the disclination lines. The two cross-sections of a disclination line with +1/2 and
1/2 winding number are shown in Fig. 1.9a and b.

Integer winding numbers |k| = 1 correspond to the director field, which is a cross
section of a point defect in a nematic. There are three possible director configurations
in this case, corresponding to radial, circular and hyperbolic hedgehog, all illustrated
in Fig. 1.10 (a–c) [35]. Higher winding numbers of defects are possible; however
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Fig. 1.9 a Cross-section of a disclination line with +1/2 winding number. Note the clockwise
rotation of the director (green dashed lines), as we move in a clockwise manner along a closed
path encircling the disclination core, coloured gold. bCross-section of a disclination line with−1/2
winding number. Note the opposite, i.e. anti-clockwise, rotation of the director, as compared to (a).
Image courtesy of M. Ravnik [5]

their total free energy increaseswith increasingwinding number because of increased
elastic deformation. This reduces the possibility of their occurence and observability
in real samples. Higher winding number defects were recently observed in chiral
nematic droplets by Posnjak et al. [41].

The winding number itself is a topological invariant that describes the topolog-
ical properties of defects to a certain extent. However, there is another much more
important quantity that is attributed to the topological defects, called the topologi-
cal charge. The topological charge q of a point defect in a nematic director field is
calculated as an integral over arbitrary closed surface σ embracing this defect [35]:

q = 1

8π

∮
σ

εi jk · n
(

∂n
∂x j

× ∂n
∂xk

)
· dSi (1.24)

The integral over the closed surface in Eq. 1.24 is well known as the Gauss law
in electrostatics, where the flux of the electric field is calculated over the closed
surface and gives the electric charge embraced by the surface. In Eq. 1.24 εi jk is the
Levi-Cività totally asymmetric tensor and xi are the Cartesian coordinates. Note that
Eq.1.24 is odd in the director field and as a consequence the sign of the topological
charge is not well-defined since +n and −n are formally equivalent in nematics.
However, it is a convention that different point hedgehogs are assigned different
values of their topological charge, including the sign. The charge of a radial hedgehog
is by convention q = +1, and the charge of a hyperbolic hedgehog is q = −1. The
values of topological charges of defects are important because of the natural law
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Fig. 1.10 a A radial hedgehog is characterised by a director field emanating from the point defect
and pointing radially outward. This defect and its field are similar to an electric charge, which can be
considered as a defect or singularity of the electric field. Note that the electric field is a vector field,
whereas the director field is in fact originating from the tensorial field. When we move along the
closed path encircling this defect, the director rotates for 2π , corresponding to the winding number
k = +1. b A circular hedgehog, where the director field is encircling the point hedgehog. The
corresponding winding number is also +1. c A hyperbolic hedgehog, where the director “avoids”
the singular point in a hyperbolic manner. The winding number of this defect is −1. Reprinted
figure with permission from T. C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E57, 610
(1998). Copyright (1998) by the American Physical Society
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of conservation of the total topological charge, when there are several topological
charges in a given sample. For vectorial fields, the combined topological charge of two
hedgehogs is simply algebraic sum of their respective charges q1 + q2. In nematics,
the non-vectorial nature of the director field causes complications, because the sign
of the charge has no meaning. Combined topological charge of two hedgehogs is
either |q1 + q2| or |q1 − q2| [35].

Winding number k can also be associated to a point hedgehog by intersecting it
with a measuring plane, encircling it with a closed path and performing the analysis
of director rotation, as we move along that closed path. We obtain the integer value
of the winding number k = +1 for a radial hedgehog for any chosen plane. This has
an obvious interpretation: if we consider all possible orientations of a director field
around a radial hedgehog, we observe that each orientation is met only once. The
same applies for a hyperbolic hedgehog point defect which has the negative winding
number k = −1. In other words, the director field wraps the full solid angle only
once, hence its topological charge is |q| = 1.

Topological charges play a fundamental role in the classification of defects inmat-
ter and fields, and form the basis of a homotopy theory [40]. The law of conservation
of topological charges is one of the fundamentals of physics. This law is responsible
for the processes of creation, annihilation and transformation of topological charges.
One of the well known examples are electric charges and law of conservation of
total electric charge. To a certain extent, the methods of measuring both the winding
number and the topological charge are somehow similar to the Ampere law from
classical magnetism and the Gauss law from electrostatics. The total flux of the elec-
tric field through a closed surface embracing the electric charge is the measure of
the electric charge inside that testing surface. Formally, the total flux of the electric
field is obtained by the Gaussian integral across the closed surface.

Unlike simple objects, such as a sphere, topologically more complex objects, such
as a torus, induce different values of the topological charge of the nematic director
field, when inserted into a nematic liquid crystal as will be discussed in Sect. 2.1.

Fig. 1.11 a A vectorial field oriented perpendicular to the surface of the sphere wraps the full solid
angle only once. bA vectorial field perpendicular to the surface of a torus wraps the full solid angle
twice. Each direction of the field is met twice, when travelling along the closed surface. Image
courtesy of U. Jagodic

http://dx.doi.org/10.1007/978-3-319-54916-3_2
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This will be understood by considering how many times the director wraps the full
solid angle, when we consider it on two different objects: a sphere and a torus, as
shown in Fig. 1.11.

1.6.2 Euler Characteristic and Genus of Colloids

For each closed surface (such as a sphere or a torus), there is a topological invariant,
called the Euler characteristic χ , which does not change under smooth transforma-
tions of that surface, which are allowed in topology [18]. Euler characteristic for a
closed surface is calculated by drawing a polygonal set on the surface, followed by
counting the number of vertices Vt , the number of edges Ed and the number of faces
Fc (O.D. Lavrentovich [42]):

χ = Vt − Ed + Fc (1.25)

It can be shown that Euler characteristic χ does not depend on the choice of the
network, but depends on the type of the closed surface chosen. Gauss-Bonnet theo-
rem relates the Euler characteristic of the closed surface to the Gaussian curvature,
integrated over a closed surface S:

2πχ =
∮
S
KdS =

∮
S
dθdφ · ν ·

[
∂ν

∂θ
× ∂ν

∂φ

]
(1.26)

Here K = κ1κ2 is the local Gaussian curvature and κi are the two principal cur-
vatures at that point on the surface. The vector ν is the local normal to the surface at
the point under consideration. θ and φ are the two angles defining the position of the
chosen point on the surface. For a sphere or any closed surface, which is obtained
by smoothly morphing the surface, one finds the Euler characteristic is χ = 2, and

Fig. 1.12 By attaching a single handle to a sphere, one obtains a sphere with a handle, which
can be smoothly transformed into a coffee mug. This is a closed surface with a genus g = 1,
which is different from the genus of the sphere g = 0. In topology, it is allowed to apply smooth
transformation to the coffee mug in order to obtain a torus. A torus and a coffee mug are therefore
topologically the same objects, characterised by g = 1. Image courtesy of U. Jagodič
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for a torus or torus-like closed surface, the Euler characteristics is χ = 0. The Euler
characteristic is also related to the “genus” g of the surface:

χ = 2(1 − g) (1.27)

The genus g is the number of “handles” attached to a sphere, resulting in the
formation of “handle-bodies” (or “pretzels”). For example, a torus is obtained by
attaching a single handle to the sphere and then smoothly transforming this closed
surface into a torus, as shown in Fig. 1.12.By addingmore handles, additional “holes”

Fig. 1.13 List of some representative objects and their Euler characteristic χ
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are obtained, and at a larger genus, the objects correspond to pretzels with g holes.
List of some representative objects, their Euler characteristic χ and genus g is shown
in Fig. 1.13.

Consider now any closed surface S, bounding a region of space V , which is
inserted into a vectorial field n and this field is forced to align perpendicularly at
all points of this inserted surface. The topological charge mc of this region of space
V bounded by the surface S is the degree of n along S, or, in another words, the
number of times the orientation of director visits each possible direction in space.
If the vector sign is attributed to the director the sign of the topological charge is
assigned to that particular object. The degree n along S is calculated by integrating
the Jacobian of n(r) over that surface (Senyuk et al. [43]):

mc = 1

4π

∮
S
dθdφ · n ·

[
∂n
∂θ

× ∂n
∂φ

]
(1.28)

Because the vector field n(r) is locally perpendicular to the surface and therefore
along the local unit normal field of the surface S, this integral reduces to the total
Gaussian curvature from Eq. 1.26 integrated over the closed surface, divided by 4π .
TheGauss-Bonnet theorem states that the total Gaussian curvature of a closed surface
is quantized in units of 4π and remains constant under all continuous deformations
of the surface. This means that the hedgehog charge mc of the vectorial field n(r)
aligned locally perpendicular to the surface S is

mc = ±2πχ

4π
= ±(1 − g) (1.29)

The choice of the sign (±) formc depends on the assignment of the direction to the
director field at the surface. Let us now come back to this picture of a closed surface
S, immersed into the vectorial field, which is forced to align along the normal to
the surface. We assume that far away from this surface, the field n is homogeneous,
and therefore the net topological charge of this region will be zero. Because of that,
the field n is forced to create topological defects close to the surface S, because it
is in general not possible to transit from the vicinity of the surface to a far-away
position without creating topological defects. This means that the topological charge
of the surface mc should be compensated by the topological charge of all defects md

accompanying that surface [43],

mc + md = 0 (1.30)

For a vector field n, The Euler characteristic of the surface χ therefore defines
total topological charge md of all defects (mi , i = 1, ..., N ) of that vector field [43],
which are accompanying the closed surface:

md =
∑
i

mi = ∓χ

2
= ∓(1 − g) (1.31)
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For a sphere, the Euler characteristic equals χ = 2 and according to the
Gauss theorem, there should be a single topological charge accompanying the sphere.
This is indeed observed in the experiments, and the defect appears in a form of a
point hedgehog or a Saturn ring, carrying the unit hedgehog charge. Gauss theorem
for more complex handlebodies with higher genus was experimentally proved by
Senyuk et al. [43] and will be discussed in Sect. 6.2.

1.6.3 Elastic Energy of Topological Defects

There are two kinds of topological defects in nematic liquid crystals: line defects
also called disclinations, and point defects [1, 4, 35, 36, 42, 44]. The winding
number of line defects is 1/2, which implies rotation of the director by π as we
move around a closed path encircling the defect line. The winding number of point
hedgehogs,which are usually observed in nematics is k = 1, although higherwinding
numbers and higher charges were reported recently in chiral nematic droplets [11].
Because each topological defect implies strong elastic deformations, these regions
are accumulating a lot of elastic energy. Within the director free energy approach
one can calculate the energy of elastic distortion for lines and points in nematics.

For the 1/2 disclinations presented in Fig. 1.9, the free energy per unit length of
such a disclination is (Lubensky et al. [35, 37]):

ε = 1

4
π ln

(
R

rc

)
+ εcore (1.32)

Here R is the radius of the cylindrical surface embracing the disclination and rc is
the core of the defect. Within the core of the defect, the order parameter is depressed
and the free energy of the core is εcore. A typical dimension of the core of a point
defect is rc ∼ 10 nm.

The energies of the three hedgehog configurations shown in Fig. 1.10 are calcu-
lated by embracing each hedgehog with a sphere of a radius R and then calculating
the elastic energy using the director free energy density in Eq. 1.7. In a spherical
region with a radius R the energies of three simple hedgehogs shown in Fig. 1.10
are [35]:

Eradial = 8π(K1 − K24)R (1.33)

Ecirc = 8π

15
(3K3 + 5K2 + 2K3 − 5K24)R (1.34)

Ehyper = 8π

15
(3K1 + 2K3 + 5K24)R (1.35)

In these expressions, the saddle-splay elastic energy termwas added and K24 is the
corresponding elastic constant. For zero saddle-splay term the hyperbolic hedgehog
has the lower energy and the circular hedgehog has the most bend deformation.

http://dx.doi.org/10.1007/978-3-319-54916-3_6


Chapter 2
Dipolar and Quadrupolar Nematic Colloids

Abstract This chapter starts with discussion of long range forces between particles
in nematic liquid crystals. The relation between topological defects and elastic distor-
tion around spherical micro-particles in a nematic liquid crystal with perpendicular
surface anchoring is discussed. The origin of the structural force in nematic colloids
is explained, including particles of different symmetry and shape, but simple topol-
ogy, such as microspheres, microcylinders and Janus particles. The interaction of
nano-particles in nematic liquid crystals and the onset of ferromagnetism in nematic
dispersion of magnetic nano-platelets is described in detail. The chapter concludes
with the effects of chirality on the nematic colloidal interactions.

2.1 Dipolar Nematic Colloids: Elastic Dipoles with
Hedgehogs

When a small microsphere is inserted into a nematic liquid crystal, the molecules
are forced to align perpendicularly at all points of the closed surface, as shown
in the schematic Fig. 2.1. One can immediately see that this requirement causes
frustration for the liquid crystalmolecules: they are naturally aligned homogeneously
at distances far away from themicrosphere, and they are forced to align perpendicular
all along the spherical surface of the particle. As a result, a topological defect has to
be formed in the vicinity of the inserted microsphere and it appears in a form of a
hyperbolic hedgehog defect, carrying a topological charge of q = −1, as discussed
previously. This topological charge has to be compensated by another topological
charge in order to preserve the total charge neutrality of the whole system. This
charge-compensating defect is in fact a virtual radial hedgehog, which is residing in
the center of the microsphere and carries the charge of q = +1.

This pair of topological charges forms a topological dipole, which is attributed to
the colloidal particle. It is analogous to an electric dipole, which is formed of two
opposite electric charges ±e◦, separated by a distance d. The director field around
the inserted colloidal particle is strongly distorted and thus carries elastic energy,
which is why this topological dipole is often called the elastic dipole.

© Springer International Publishing AG 2017
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Fig. 2.1 Formation of a hyperbolic hedgehog defect (blue-haze object), when a microsphere with
perpendicular surface anchoring is inserted into a nematic liquid crystal. There are actually two
topological defects, which form spontaneously during the insertion of the microsphere: a virtual
radial hedgehog carrying the topological charge q = +1 is formed in the center of the sphere
(red dot) and a hyperbolic hedgehog defect, indicated by the blue-haze dot, is formed at a dis-
tance rd from the center of the sphere. The hyperbolic hedgehog carries a topological charge of
q = −1, which compensates for the topological charge of the virtual radial hedgehog in the center
of the microsphere. Together they form a topological dipole, also named elastic dipole which is
compensated in topological charge

The dipolar colloidal particles were first reported by Poulin et al. [45, 46] in exper-
iments, where small water droplets were dispersed into a nematic liquid crystal, as
shown in Fig. 2.2a–c. They observed rather strong forces between water droplets,
which were of long range and strongly anisotropic. If left free, several isolated water
droplets spontaneously formed chains, which were directed along the far-field direc-
tor, as shown in Fig. 2.2a.

A closer inspection of a chain of water droplets (Fig. 2.2b) reveals dark water
dropletswith remnant of the characteristicMaltese cross due to the crossed polarisers,
which occurs due to the birefringent nematic liquid crystal surrounding the optically
isotropic water droplets. However, in between each pair of water droplets, one can
clearly see in Fig. 2.2b a dark and distorted cross, marked with red arrow. This is a
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Fig. 2.2 a Microscope image of a nematic-water emulsion taken between crossed polarisers.
A chain of water droplets residing in a larger nematic droplet is distinguished. b A magnified
view of the water chains. Note the dark crosses residing in between each water droplet, marked
by red arrow. c A magnified view of a nematic droplet containing a single water droplet. From
P. Poulin, H. Stark, T.C. Lubensky, and D.A. Weitz, Science 275, 1770 (1997). Reprinted with
permission from AAAS

hedgehog point defect, created in the nematic host after water droplets were inserted.
The separation between twodroplets increaseswith droplet radius, and there is always
one hedgehog defect fewer than there are water droplets. These water chains are
stable and robust structures and do not coalesce spontaneously. This indicates that
the hedgehog defects, residing in between each pair of water droplets, have the role
of a topological and energy barrier that prevents spontaneous coalescence of water
droplets.

Observation of a series of hedgehog defects separating the water droplets can be
qualitatively understood by considering the total topological charge q in a nematic
liquid crystal. Because the boundary conditions on the director field are uniform, the
total topological charge of a uniform nematic liquid crystal is q = 0. If the nematic
liquid crystal is confined to a droplet surrounded by water (as it is in our case, shown
in Fig. 2.2a and c), its topological charge is equal to q = +1. Normal boundary
conditions at the liquid crystal-water interface therefore force the creation of a radial
hedgehog at each droplet. However, if a water droplet is added into the interior of
the nematic droplet, it creates its own topological defect, a hedgehog with a charge
q = −1, which compensates the radial hedgehog to the total charge of 0. We then
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Fig. 2.3 Microscope image of a nematic liquid crystal with small droplets of glycerol, as observed
between crossed polarisers. Themicrodroplets spontaneously form chains of particles, which follow
the local orientation of the nematic director on a free interface towards the air. This makes a pair of
topological defects clearly visible. Image courtesy of V.S.R. Jampani

have a situation, when there is a single water droplet in the center of the nematic
droplet and no defects are needed (Fig. 2.2c).

However, when the second water droplet is added into a nematic droplet, it brings
an additional hyperbolic hedgehog defect, which has to be positioned in between
the two water droplets. The total topological charge is therefore conserved, because
the second droplet brings already compensated topological charge. It is clear that a
system of N water droplets in a nematic droplet induces N − 1 hyperbolic hedgehog
defects in the nematic host.

Agregation of particles in the nematic liquid crystal, which is similar to this
spontaneous formation of water chains in the host liquid crystal was observed already
in the 1970s, when the topological defects in liquid crystals were studied by Cladis
et al. [47] and Rault [48]. They dispersed microscopic gas bubbles in a liquid crystal
and analyzed the free interface of the nematic liquid crystal with air. Surprisingly,
they observed spontaneous organisation of micro-bubbles into well-ordered chains,
which were following the local orientation of the liquid crystal molecules. This
decoration of the director lines helped to visualise the surface ordering of a nematic
liquid crystal and the details of topological defects, as shown in Fig. 2.3. After those
experiments and prior to the publication of Poulin et al. in 1997 [45], there were
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Fig. 2.4 The elastic interaction between two dipolar colloidal particles. If their elastic dipoles pel
are collinear and pointing in the same direction, they will be attracted by a pair of elastic forces F
to minimize the distorted volume

several studies of particle aggregation, as discussed by Poulin et al. [49] and later by
Raghunathan et al. [50] on the dispersion of 60 and 120nm latex particles in lyotropic
nematic solution. The conclusion of these studieswas that there is clearly a power-law
attractive force between colloidal inclusions in the lyotropic nematic liquid crystals,
but the smallness of the particles prevented the observation of topological defects.
The first line of studies was initiated by the theoretical paper by Brochard and de
Gennes [51] on possible collective ferromagnetic order of magnetic nanoparticles in
the nematics, whereas the second experiment on nematic colloids at that time was
the study of Kreuzer et al. [52] on the erasable optical storage effect in the nematic
liquid crystal filled with 7–40nm silica nanoparticles.

The spontaneous formation of water or colloidal chains in the nematic liquid
crystal is a clear indication of forces between colloidal particles due to the liquid
crystal. The force between a pair of colloidal particles (solid, liquid or gas-like) in a
liquid crystal can be explained in terms of the elastic distortion of the liquid crystal
surrounding each colloidal particle, as shown in Fig. 2.4. This distortion is strongly
anisotropic due to the hyperbolic hedgehog and is concentrated in its vicinity, as
illustrated by the blue region in Fig. 2.4. If two such particles are brought closer
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together, their regions of elastic distortion will start to overlap. This overlapping of
elastically distorted regions can be either in favour of both particles, or not (in terms
of total free energy). When the elastic distortion is energetically favourable for both
particles (meaning that it lowers the total free energy of the system), they will tend
to share that region as much as possible. It is then clear that there will be a pair of
attractive forces between the two particles, and bymoving the particles closer to each
other, they will lower their total free energy. This will result in the attraction of the
two dipolar colloidal particles with their elastic dipoles parallel and collinear, as in
Fig. 2.4.

2.2 Quadrupolar Nematic Colloids and Saturn Rings

In the experimentswith nematic emulsions, Poulin et al. [45] observedwater droplets,
which were accompanied by hyperbolic point hedgehog defects and there was no
evidence of ring-like topological defects, encircling the droplets, which were pre-
dicted a couple of years before the experiment. These ring-like defects, also called
Saturn ring defects, were predicted in 1995, by E.M. Terentyev [53] and his pre-
diction was based on numerical simulations. Director structure around a colloidal
particle suspended in a nematic liquid crystal was soon analyzed also by Kuksenok
et al. [54] and H. Stark [55]. The reason why a ring topological defect should exist
instead of a point hyperbolic hedgehog is the topologically allowed transformation
of a hyperbolic hedgehog into a hyperbolic ring, as shown schematically in Fig. 2.5a.

The transformation of a hyperbolic hedgehog point defect into a –1/2 disclination
ring is performed by opening the point into a ring and filling in the vertical lines of the
director field. When considering the far field of the nematic director, the disclination
ring is still “seen” as a hyperbolic hedgehog. This means that the ring is assigned
the same topological point charge q = −1. Similarly, a radial point defect could be
smoothly transformed into a +1/2 disclination ring, as illustrated in Fig. 2.5b.

While from the point of view of topology this smooth transformation of points
into loops is allowed, the energies of points and loops might be quite different, not
only because of the size but also because of the type and degree of deformation.
Detailed analysis of the energies of points and loops is thoroughly discussed by H.
Stark [37]. It is evident that opening point defects into rings increases the elastic
energy of distortion, which means these are rare objects in nematic colloids. Quite
recently, Wang et al. [56] were able to determine the structure of topological defects
at a nanoscale by templating defect cores with amphiphilic molecules and imaging
them with TEM microscopy.

Indeed, the first experiments by Poulin et al. [45] found no evidence of spherical
colloidal particles accompanied by defect rings, although theywere predicted already
in 1995 by Terentyev [53]. In this work, it is predicted that a suspended spherical
particle with perpendicular surface anchoring of liquid crystal molecules introduces
on its surface a closed disclination loop, which was called the Saturn ring, shown in
Fig. 2.7.
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Fig. 2.5 aA schematic drawing of the director field around an isolated hyperbolic hedgehog defect.
This defect can be opened into a hyperbolic defect ring, which preserves the total topological charge
of q = −1. Note that the winding number changes from k = −1 for a point to k = −1/2 for a
hyperbolic ring. b A radial hedgehog defect with charge q = +1 and winding number k = +1 can
be opened into a k = +1/2 defect ring, which preserves the total topological charge q = +1

As it happens many times in science, it turns out that the Saturn rings were
observed much earlier than 1995, when they were predicted. In the year 1990, Prat-
ibha and Madhusudana [57] were studying mixtures of rod-like (NR) and disc-like
(ND) nematic liquid crystals in the range of coexistence of two nematic phases, NR
and ND. They observed radial point defects of charge q = +1 in NR droplets in an
otherwise continuous ND medium, as shown in Fig. 2.6a. However, they noticed an
additional ring surrounding the NR droplets in the disc nematic liquid crystal, sur-
rounding the NR droplet. This ring has the opposite charge of q = −1 and therefore
compensates the charge of the radial point defect, as shown in Fig. 2.6b

Detailed experimental analysis of the conditions for emergence of Saturn ring
defects showed that they can be observed in four different cases: (i) For weak sur-
face anchoring, a point hedgehog is transformed into a Saturn ring encircling the
colloidal particle. This was demonstrated by Mondain-Monval in 1999 [58] for ther-
motropic nematic liquid crystal E7 in water with surfactants (SDS, Pluronic F68).
By adjusting the amount of SDS, dipolar configuration with point hedgehogs could
be transformed into the Saturn ring for weak surface anchoring. (ii) Saturn ring
defects around colloidal particles in the nematic are observable when particles with
homeotropic anchoring are confined to thin planar cells. This was demonstrated by
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Fig. 2.6 a Coexistence of NR and ND phases in a mixture with 30mol % of C7OHBT in 3CHP3B.
Note the bright cross in the centre of each droplet indicating radial point defect and the ring-like
halo surrounding the droplet. b Schematic diagram of the director configuration with a radial point
defect in the NR droplet and the –1/2 ring defect surrounding the NR droplet. Image courtesy of
M. Pratibha

Fig. 2.7 Saturn rings around colloidal particles in thin planar cells. a Saturn ring is clearly visible,
when larger colloidal particles with homeotropic surface anchoring are observed in a planar nematic
cell under an optical microscope. b With smaller microspheres, the ring is barely observed and
appears in a form of two dark spots. c Schematic drawing of the director field around Saturn-like
colloidal particle

Gu and Abbott [59] for larger, 100µm diameter glass spheres in a 120µm thick
planar liquid-crystal cell, as shown in Fig. 2.7. (iii) An external electric field applied
along the dipolar axis of an elastic dipole induces a transition to an elastic quadru-
pole with the Saturn ring [60, 61]. (iv) If the diameter of the colloidal microsphere is
decreased, a transition from a dipolar configuration at large diameters to quadrupolar
configuration is induced at some critical diameter. This was demonstrated by Völtz
et al. [62] in experiments with gas bubbles of variable diameter in nematics.
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Using an external electric field, a dipolar colloidal particle could be transformed
into a quadrupolar one, as demonstrated by Loudet et al. [61]. Once the electric
filed has been turned of, the Saturn ring relaxes back into the hedgehog point defect.
Typical ring velocities for this topological transformation are of the order of several
µm per second.

2.3 Forces Between Spherical Colloidal Particles
in Nematic Liquid Crystals

When nematic colloidal dispersion is put in a thin layer between two glass plates, one
can immediately observe that the colloidal particles have spontaneously assembled
into irregular structures, which, however, show some local ordering such as chains,
shown in Fig. 2.8.

This observation clearly demonstrates the existence of a force between a pair of
(or several) colloidal particles, which are inserted into the nematic liquid crystal.
If the sample with a nematic dispersion is heated into the isotropic phase of the

Fig. 2.8 Microscope image of spontaneously assembled structures of dipolar colloidal particles in
a thin nematic liquid-crystal cell. The diameter of silica microspheres is 2.3µm and their surface
is treated with DMOAP for good homeotropic alignment
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liquid crystal, the colloidal clusters spontaneously disassemble due to the Brownian
motion of individual particles. This is an evidence of the colloidal force, which has
its origin in the nematic liquid crystal surrounding the particles. As we have seen
in the beginning of Sect. 2.1, colloidal particles in nematic liquid crystals are not
only accompanied by a topological defect (in a form of a point or a loop) but also
surrounded by a large area where the liquid crystal is strongly distorted. The reason
for this distortion is liquid-crystal alignment along the closed surface of the colloidal
particles, which has to transform in the far-field into a homogeneous nematic liquid
crystal. Because of the orientational long-range order, this elastic distortion is also
of long range and spreads out from the surface as a power-law.

Consider now two colloidal particles together with their elastically distorted
regions, each of which surrounds the colloidal particle up to the distance of several
particle diameters. When two particles are far away from each other, these elastically
distorted regions, originating from each particle, do not overlap significantly. How-
ever, when the particles are brought together, their distorted regions start to overlap.
This overlapping could be either in favor or not in favor of both particles. When in
favor, the particles will tend to share this common region as much as possible, which
will drive the particles closer together. It is clear that there will be an attractive force
due to the elastic deformation between the two particles. We call it structural force
for evident reasons. On the contrary, the particles will be repelled from each other by
the elastic distortion when the overlapping is not in favor and the energy increases
by approaching the particles.

It is then clear that the elastic distortion of a nematic liquid crystal, created by the
insertion of the particle into the liquid crystal, generates forces between particles. In
terms of physics, this is a generalized force and has its origin in elastic deformation.
It can be expressed as the total derivative of the free energy F with respect to the
separation between the particles d:

F = −∂F

∂d
(2.1)

Alternatively, this structural force has a topological origin. By inserting parti-
cles into a continuous nematic ordering field, topological defects are created, which
mediate the force between the inserted particles. Topological defects are therefore
the generators of forces between colloidal inclusions.

2.3.1 Forces Between Spherical Dipolar Colloidal Particles
in Nematics

Sharing of fields is a common concept in physics and could be used to explain, for
example, the electrostatic attraction or repulsion between the electric charges. This
simple analysis of nematic colloidal forces using hand-waving arguments is nicely
illustrated in a simple experiments with two dipolar nematic colloidal particles in a
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Fig. 2.9 Attraction of particles in a nematic liquid crystal. a Selected snapshots from a video
showing the attraction of two dipolar colloidal particles placed collinearly with respect to the far-
field director. Both dipoles are pointing into the same direction. b The dipoles are now anti-parallel,
but they are also placed side-by-side, not collinearly as in a. Snapshots of colloidal motion show
their attraction

planar nematic cell, as shown in Fig. 2.9.We select two colloidal particles by the laser
tweezers and we bring them close together. There are several options of positioning
the particles, and we should consider only two: the particles will either be placed
along the far-field director of the planar cell (collinear position) or they will be
placed along the line perpendicular to the far-field director (side-by-side position).
In addition, we can choose the direction of each dipole, as they can be set either
parallel or perpendicular to each other. One can see from Fig. 2.9 that the interaction
between two elastic dipoles is similar to the interaction of electric dipoles. This
analogy was indeed developed in the theory of elastic forces in nematic colloids.

Figure2.9a shows selected snapshots from a video showing the interaction of
two parallel and collinear dipoles. One can see the rather slow motion of colloidal
particles when they are well separated. However, with gradual approaching, the
speed of approaching increases and reaches maximum when the two particles bind
together into a chain. Figure2.9b shows a different situation for the two dipolar
colloidal particles, which were brought together with their dipoles anti-parallel, but
they are placed side-by-side. This manipulation was done with laser tweezers and
will be explained in Chap.3.

The mathematical description of the structural force between two colloidal parti-
cles in a nematic liquid crystal is quite difficult problem because of nonlinearity of
the system. The resulting equations are highly nonlinear and the interaction of several
particles is a many-body problem. Another complication is the anisotropy of elastic

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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deformation of a nematic liquid crystal and large difference between the elastic con-
stants. If one considers the interaction of two colloidal particles, one can immediately
see that different types of interactions will be more pronounced for different interac-
tion scenarios. Finally, the ordering field is a tensorial field, where the local degree
of the order parameter in principle depends on the particle separation. Because the
elastic constants depend on the degree of order, this complicates the problem even
further. In more simple cases, we use the director approach, where the degree of
order remains unchanged throughout the system at all times. In the other extreme,
one can consider fully tensorial Landau-de Gennes description, where the degree of
order is variable. However, one usually uses a one elastic constant approximation to
keep the numerical difficulties solvable.

For the purpose of this book, we shall briefly review the approach based on
the electrostatic analogy and multipole expansion, as introduced by Lubensky
et al. [35]. Within this approach the interactions between the particles are linearized
because the nonlinear regions with strong elastic deformation close to the particles
are excluded from the analysis. These regions are properly consider to construct the
“far field” behaviour, where spatial gradients of the director field are small and the
corresponding equations governing the elasticity are linear.

When a colloidal particle with well-defined surface-anchoring conditions is
inserted into the infinite and homogeneous nematic liquid crystal, it will locally
distort the nematic director field and induce the formation of topological defects,
which are the singularities of the ordering field. Because of the constraint of topo-
logical charge conservation, which should be kept zero at all times, the distorted
director field should smoothly approach the homogeneous nematic director field at
far separation from the particle. In addition, we have to consider the invariance of the
director field direction, as+n and−n are indistinguishable. We should also consider
the far-field form of the distortion induced by the colloidal particle. These deviations
of the local director from the far-field director are considered to be small. At large
separations |r| from the colloidal particle, the full nonlinear Frank elastic free energy
Eq.1.7 is replaced by the harmonic expression:

Fhar = 1

2
K

∑

i=x,y

∫
d3r(∇ni )

2 (2.2)

Here, the director components are described by the notation ni , i = x, y for the
components of the director n perpendicular to the far-field director n◦. The Euler-
Lagrange minimisation leads to the Laplace equation for the director field compo-
nents ni :

∇2ni = 0 (2.3)

At large separations r from the particles, the solutions to the Laplace equation
can be expanded in multipoles.

ni = Ai

r
+ pi · r

r3
+ ciklrkrl

r5
+ · · · (2.4)
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Here Ai , pi and cikl are expansion coefficients and ri are Cartesian coordinates of
the position vector r. Because of the invariance with respect to the rotation above the
z- axis, and the absence of the azimuthal component to n (i.e. without the twist of n
around the z-axis), the monopole term Ai equals zero. Furthermore, the coefficient
of the second dipolar term (pi · r) equals to (p · n) · ei . Here, p is identified as the
vector of the dipole moment of the particle-defect configuration, whereas p · n is
the z- component of this dipole. The parameter cikl of the third term in Eq.2.4 is
identified as the amplitude of the quadrupole moment tensor of the droplet-defect
combination.

Based on themultipole expansion and electrostatic analogy, each colloidal particle
creates far-field distortions of the director n, determined at large distances by the
equations:

nx = pz
x

r3
+ 2c

zx

r5
(2.5)

ny = pz
y

r3
+ 2c

zy

r5
(2.6)

This far-field director interacts with the director fields of other particles, leading
to an effective particle-particle interaction that can be expressed as pair-wise interac-
tion between dipole and quadrupole densities. The resulting pair interaction energy
U (R) between two colloidal particles at positions r and r, (R = r − r,), with their
respective dipole and quadrupole moments (pz, p,

z, c, c
,) is thus:

U (R) = 4πK

[
pz p

,
zVPP(R) + 4

9
cc,VCC(R) + 2

3
(cp,

z − c, pz)VPC(R)

]
(2.7)

where:

VPP(R) = 1

R3
(1 − 3 cos3 θ) (2.8)

VCC(R) = 1

R5
(9 − 90 cos2 θ + 105 cos4 θ) (2.9)

VPC(R) = cos θ

R4
(15 cos2 θ − 9) (2.10)

The three terms clearly correspond to dipole–dipole (VPP ), quadrupole–
quadrupole (VCC ) and mixed dipole-quadrupole (VPC ) pairwise interaction energy,
and they all display the well-known power-law dependencies, similar to the interac-
tion of electric multipoles.

Using this pair-interaction potential between dipolar, quadrupolar and mixed
densities, one can calculate the force between the two particles as a function of
their separation R. By remembering that the force is spatial derivative of the pair-
interaction energy, the force between two dipolar colloidal particles should exhibit
the 1/R4 dependence on their separation R. Similarly, two quadrupolar colloidal
particles should interact with a force showing the 1/R6 power law dependence on
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Fig. 2.10 a The large
particle is to the right of the
smaller particle. b The
inverse configuration. The
attractive force in case (a) is
larger than in case (b).
Adapted from Lubensky et
al., PRE 1997

their separation R, whereas a dipole-quadrupole force should fall as the 1/R5 power
law.

Let us now consider this pair-interaction potential to determine the force between
two microspheres as a function of their mutual separation, as shown in Fig. 2.10. The
particles are labeled 1 and 2, respectively and they have different radii, a1 and a2. The
particles are placed collinearly at a separation R and along the far-field director, as
illustrated in Fig. 2.10. The pair interaction force F between two colloidal particles,
normalized to the elastic constant K , is:

F
4πK

= −α2a21a
2
2
6

R4
+ β2a31a

3
2
120

R6
− αβa21a

2
2(a1 − a2)

24

R5
(2.11)

Here, α and β are the dipolar and quadrupolar coefficients within the dipole
ansatz. The centres of particles are separated by R, and we have used one elastic
constant approximation with elastic constant K . The leading term in the Eq.2.11
is the attractive dipole–dipole force, which is proportional to R−4. It is therefore
analogous to the electrostatic force between two electric dipoles. The quadrupolar
part of the force depends as R−6, whereas the mixed dipole-quadrupole force scales
intermediately as R−5.

This comprehensive analysis of pair interaction of elastic multipoles and in partic-
ular topological dipoles by Lubensky et al. [35] stresses the importance of topology
and discusses the role and structure of topological hedgehog defects in dipolar col-
loidal interaction, which has proven much later to be fundamental in the mechanism
of topological entanglement of colloids. Further mean field approaches to nematic
colloids include investigations of power-law forces between particles in nematics by
Ramaswamy et al. [63], the stability of colloidal clusters by Lev and Tomchuk [64]
and the effects of confining walls on colloidal pair interaction by Fukuda et al. [65,
66].While these studies concentrated ondirector approach, thus discarding the effects
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of spatially varying the degree of order, Fukuda et al. [65, 66] have used fully ten-
sorial Landau-de Gennes approach to the analysis of colloidal pair interaction in the
nematic liquid crystal. Pergamentschik and Uzunova have used a refined approach to
the colloidal nematostatics [67, 68]. They observed that, in spite of the analogy to the
electrostatics, the three-dimensional colloidal nematostatics is substantially different
in both its mathematical structure and its physical implications. They formulated a
general tensorial structure of the elastic multipoles that allows for a classification
of different types of nematic colloids. In this approach, the elastic multipoles have
one extra tensorial index, so an elastic dipole is characterized by three coefficients:
(i) isotropic strength, (ii) anisotropy and chirality, and (iii) a two-component vector
along the unperturbed director [69, 70]. Instead of a single electric dipole, they found
several different pure and mixed types of elastic dipoles. A review of this approach
can be found in Ref. [68]. Chernyshuk et al. [71] have considered the theory of
colloidal elastic interaction in the presence of an external electric or magnetic field
using the Green’s function method.

The first experimental confirmation of the power law dependence of the force
between two dipolar colloidal particles in the nematicwere given by Poulin et al. [72].
Instead of solid colloidal particles, they were using droplets of a ferrofluid, dispersed
in the nematic liquid crystal. A ferrofluid is water-based dispersion of tiny super-
paramagnetic particles. These particles have zero permanent magnetic moment, but
are easily magnetised. In a small external magnetic field, each droplet will therefore
develop a rather strong magnetic moment, directed along the external magnetic field.

When such a paramagnetic droplet is inserted into a nematic liquid crystal, their
interfaces can induce dipolar topological configuration. If one observes a planar
nematic cell with a multitude of super-paramagnetic droplets, one can easily find
pairs of such droplets, which form chains because of their dipolar attraction. If an
external field is now applied in a direction perpendicular to the sample, it will induce
a magnetic moment in each super-paramagnetic droplet. Because their induced mag-
netic moments are parallel and they are placed side-by-side, they will start to repel
because of the repulsion of their parallel magnetic moments. This repulsive force
will be stronger if the magnetic field is increased. Taking all forces into account,
one observes that two dipolar colloids will be more and more separated when the
external magnetic field is increased up to ∼100G, as shown in Fig. 2.11.

Once the particle separation is increased beyond several particle diameters (to
around 20µm), the magnetic field is turned off and the structural force due to elastic
attraction draws the droplets back together as illustrated in Fig. 2.11d and e. The
initial velocity just after switching off the field is rather small, but the speeds of the
two droplets increase as they approach each other. The trajectory of the approach is
a straight line joining the centres of the two droplets and is parallel to the far-field
director.

In the experiment, one determines the elastic attractive force as a function of
particle separation using a standard method of video microscopy. The process of
attraction is filmed at a sufficiently high frame rate and is captured from the start
at large separations to the end when the droplets come into close contact and have
zero velocity. The method is fully described in Chap.3. Here, let us just mention the

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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Fig. 2.11 a In zero
magnetic field, the two
colloids are attracted by
elastic force. When an
external magnetic field is
applied, the colloids are
repelled from each other by
magnetic repulsion of their
magnetic moments, as shown
in b and c. After switching
off the magnetic field in c,
the elastic attraction pulls the
superparamagnetic droplets
together, shown in d and
e. Reprinted figure with
permission from P. Poulin,
V. Cabuil, D.A. Weitz, Phys.
Rev. Lett. 79, 4862 (1997).
Copyright (1997) by the
American Physical Society

most important steps in determining the force. It turns out that the motion of each
sphere is strongly overdamped because of the high viscosity and high Stokes drag
force on a sphere. This means that the acceleration in the second Newton law is zero
at all times at the force acting on a given sphere is balanced by the viscous force on
that sphere due to the Stokes drag. Because the viscous force is proportional to the
velocity of the microspheres, one needs to know the velocity during the approach of
the particles at all times. This is determined by numerically deriving the trajectory
of the particles as a function of time. The trajectory is simply reconstructed from
the taken video frames by using standard video particle tracking software. One also
needs to know the Stokes drag coefficient for that particular microsphere, which is
determined with an independent experiment in which the Brownian motion of the
sphere is monitored and analysed.

Using this simple method, Poulin et al. [72] were able to measure the attractive
structural force on a selected microsphere as a function of particle separation, which
is shown in Fig. 2.12 for three different diameters of the microspheres. The log-
log plot in Fig. 2.12 clearly shows the power-law dependence of the attractive force
between two dipolar and collinear microspheres in a nematic liquid crystal. The solid
lines are the best fits to the data and have a slope of −4. This clearly confirms the
predicted power-law dependence for the collinear attraction of two elastic dipoles
in a nematic liquid crystal, F(r) = R−4. Because the force is expected to scale
as a fourth power of the particle size, F ∼ a+4, the inset to Fig. 2.12 shows the
separation-dependence of the measured attractive force divided by the fourth power
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Fig. 2.12 Force F , acting
on a dipolar ferro-fluid
microdroplet as a function of
separation r for three
different diameters of the
pairs of droplets. Solid lines
are best fit to the power law,
with the slope equal to −4.
The inset shows the scaling
of the force with the particle
size. Reprinted figure with
permission from P. Poulin,
V. Cabuil, D.A. Weitz, Phys.
Rev. Lett. 79, 4862 (1997).
Copyright (1997) by the
American Physical Society

of the particle diameter. One can clearly see that all three independent measurements
fall on the same line, which confirms the predicted size-dependence of the elastic
force between dipolar nematic colloids. It should be noted that this observation of the
power-lawdependence of the attractive elastic force between nematic colloids is quite
limited in the interval of measured separations. This interval is rather narrow, and
is typically less than one decade in experimentally accessible separations. At small
separations, the two particles are practically in contact and the attractive elastic force
is balanced by a strong repulsion due to near contact of the two surfaces. On the other
hand, if the two particles are separated for more than several particle diameters, the
elastic attraction becomes very small and is comparable to the Brownian noise due
to thermal fluctuations of the positions and orientational fluctuations of the nematic.
There is therefore a limiting maximum separation, determined by the noise level
in the system, which prevents measuring colloidal interaction forces in a separation
interval larger than one decade. This experimental limitation is present for practically
all measurements of the structural forces in liquid-crystal colloids.

The elastic force for simple collinear attraction along the far-field director of
a planar cell is of course the simplest possible geometry, easily realised by using
simple experimental set-up. However, it is expected that the two dipolar colloidal
particles will show complex pattern of attraction or repulsion if they are positioned
at an arbitrary angle with respect to the far-field director. However, in order to be
able to measure the anisotropy of the dipolar colloidal force, one has to be able to
position the particles at an arbitrary and predetermined mutual angle of attraction.
This can be realised by using the laser tweezers as a practical tool to grab, move, and
precisely position an individual particle at a predetermined position. This technique
is described in detail in Chap.3.

Figure2.13a–c shows an example of the measurement of the pair-interaction
potential (not the force itself, but its integral along the trajectory of the particle) for
two dipolar silica microspheres in a nematic liquid crystal 5CB [73]. The sequence
of microphotographs in Fig. 2.13 shows the attraction between the two dipolar

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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Fig. 2.13 The pair-interaction between two dipolar colloidal particles. a Collinear attraction
between two dipoles that were aligned “head-to-tail”. b The direction of the upper dipole was
reversed, resulting in a strong repulsion at the beginning of the experiment. This was followed by
a curved motion of both particles, indicating strongly anisotropic repulsion and attraction. In the
final state, the two particles have anti-parallel dipoles and their centres are tilted with respect to
the far-field director. c The pair-potential, as measured along the trajectories of both particles. The
potential is calculated by integrating the work of the attractive force along the trajectory of a selected
particle. The inset shows the dipolar force for parallel and “head-to-tail” attraction. The solid line
is the 1/R4 power-law for the elastic force

colloids for two possible orientations of their dipoles. In both cases, the particles
were positioned collinearly along the far-field nematic director, however, their two
dipoles were oriented either in the same (a) or in the opposite direction (b). In the first
case, the two particles are always attracted and start approaching each other from
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the beginning of the experiment. In the second scenario in Fig. 2.13b, they are first
strongly repelled from each other (see the dark trace, which is the trajectory of parti-
cles). After some time they find themselves side-by-side and start attracting because
of their anti-parallel dipoles. The inset to Fig. 2.13c shows the force of attraction for
parallel and “head-to-tail” attraction of two dipolar colloidal particles in Fig. 2.13a,
which clearly shows the expected 1/r4 power law attraction.

Focusing on the small particle separations, Noel et al. [74] analysed the short-
range repulsive force between two dipolar iron colloidal particles in a nematic liquid
crystal, resulting from the presence of a hedgehog defect between the two particles. If
one considers two collinear nematic dipolar colloids and themagnetic field is applied
along their axes parallel to the line joining their centers, the induced magnetisation
will induce stronger magnetic attraction between the two colloidal particles. The
particles will be therefore forced to approach closer together and the magnetic force
will be balanced by an elastic short-range repulsion between two colloidal particles.
This repulsion is due to the hyperbolic hedgehog defect, located in between two
dipolar colloids. By monitoring and measuring the positions of the two particles
as a function of the magnetic field, one is able to calculate the short-range elastic
repulsion. It was found that at a given threshold force, the point hedgehog defect,
which is residing in between the two colloidal particles,was expelled and transformed
into a Saturn ring located between the particles. In this way it provided enough
space for the particles to come closer together. Before the threshold for this sudden
transformation, the short-range repulsion showed a quadratic dependence on the
particle separation. The elastically distorted point hedgehog therefore acts as an
elastic spring separating the two particles [74]. The experimental measurements of
the separation dependence of the structural force between dipolar colloids in nematics
have been reported by several groups [75–77]. The inelastic collisions of nematic
dipolar colloidal particles using a bi-directional hydrodynamic flow of the nematic
was studied by Pishnyak et al. [78].

2.3.2 Forces Between Spherical Quadrupolar Colloidal
Particles in Nematics

The force between two nematic colloidal particles with quadrupolar symmetry of the
elastic distortion was first measured by Smalyukh et al. [79]. They were using laser
tweezers to manipulate small fluorescently labeled microspheres made of melamine
resin with the diameter of 3µm. The microspheres were treated to produce tangen-
tial degenerate alignment with a very small azimuthal anchoring coefficient. The
positions of microparticles were monitored by using a fast Fluorescent Confocal
Polarising Microscope (FCPM). This made it possible to not only follow the posi-
tions of the particles (and determine their velocity and the force acting on them),
but also allowed for the visualisation of the director distortion around the particles,
which is shown in Fig. 2.14.
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Fig. 2.14 Colloidal aggregation of quadrupolar microspheres with degenerate tangential surface
anchoring. a, b Polarized images of textures around a pair and several colloidal particles. One
can clearly see two surface defects on each particle, called “boojums”. c Scheme of the director
distortions around the microspheres in tilted chains (e, f). Reprinted figure with permission from
I.I. Smalyukh, O.D. Lavrentovich, A.N. Kuzmin, A.V. Kachynski, and P.N. Prasad, Phys. Rev. Lett
95, 157801 (2005). Copyright (2005) by the American Physical Society

Isolatedmicrosphereswith tangential anchoring create distortions of thequadrupo-
lar type (symmetry), with two surface boojums (see Fig. 2.14c) located at the
interface between the microsphere and the nematic liquid crystal. The elastic distor-
tion rapidly decays with distance from the surface and vanishes at the distance of
approximately one particle diameter. If the spheres are free tomove around due to the
Brownian motion, they spontaneously attract and form chains of particles, which are
oriented at 25–35◦ with respect to the far-field director, as shown in Fig. 2.14b, f. In
thick cells, this chains are free to glide along the conical surface, embedded with its
axis along the far-field director. Two individual optical traps were used to grab and
position two spheres in a predetermined geometry and at different angles with respect
to the far field director. By holding one sphere fixed with a strong beam, the second
sphere was moved by the second optical trap on a circular trajectory encircling the
fixed sphere. The trap stiffness (see the explanation in Chap. 3) of this slowly circu-
lating beam was kept low-enough to allow for radial deviation of the second particle,
when being moved around the fixed one. The interaction between the two particles
resulted in deviation of the second particle from the centre of the trap. By knowing
the trap elastic constant, one could therefore determine the force acting on the circu-
lating sphere at a given separation. This measurement was repeated for several radii
of circulation. The experiments indeed revealed a strong angular anisotropy of the
quadrupolar interaction force and also confirmed the predicted 1/R6 dependence of
the quadrupolar elastic force for the direction of maximum attraction.

The application of laser traps to colloidal trapping and manipulation might have
some side effects, which could influence local structure of the nematic liquid crystal
within the focal region of strongly focused laser light. These side effects inmeasuring

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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colloidal forces in nematic liquid crystals could be bypassed by using magneto-
optic traps to control the force between colloidal particles. Whereas completely
transparent (non-absorbing) colloidal particles are used in laser tweezer experiments,
superparamagnetic colloidal particles are used in magneto-optical trapping. Because
they are based on iron and similar magnetic materials, these superparamagnetic
particles are strongly absorbing the laser light and are not used in laser trapping
experiments. Besides superparamagnetic solid microspheres, liquid droplets filled
with superparamagnetic dispersion of small particles can be used (see the experiment
of Poulin et al. [72]).

Kotar et al. [80] used superparamagnetic spheres with 4.5µm diameter with tan-
gential anchoring of the 5CB nematic liquid crystal in a thick homeotropic cell. They
were using the magneto-optic tweezers, which provided a rather homogeneous mag-
netic field, which could be oriented along arbitrary direction in space. Themagnitude
of the field could be varied up to tens of mT, and the direction of the field could be
varied with a frequency of several hundreds Hz. If the magnetic field is aligned per-
pendicularly to the cell surface and therefore parallel to the nematic liquid-crystal
molecules inside the cell, the induced magnetic moments of the spheres are par-
allel. This results in a strong magnetic repulsion between two superparamagnetic
microspheres. In the experiments, Kotar et al. [80] used rotating magnetic field,
which was in plane with the surfaces of the cell. This kind of rotating magnetic field
induces an effective attractive interaction between the two spheres, which forces the
microspheres very close together. After the magnetic field was switched off, the two
microspheres repelled from each other and the trajectories of the two particles were
monitored as a function of time up to several tens of seconds, as shown in Fig. 2.15a.

Regardless of the initial separation, the trajectories of the particleswere practically
identical for different experiments. Knowing the Stokes coefficients for the spheres
and the magnetic force between the spheres allows us to calculate the colloidal force,
mediated by the nematic liquid crystal. This structural force was determined over
two decades of force strength, i.e. in the interval between 0.1 and 10 pN. The interval
of separation was between one and two diameters of the spheres, which is a rather
narrow interval of separation. Nevertheless, the authors could determine that the
repulsive force between two quadrupolar and collinear nematic colloids, separated
by x , decays as a power law:

F = 4πW 2x8◦
K R6

(
1 − Wr◦

56K

)
≈ C

x6
(2.12)

One can see from the solid fit in Fig. 2.15b that the force between two quadrupolar
colloidal particles decays as F ∝ 1/x6, which confirms theoretical predictions by
Ruhwandl and Terentjev [81] and Lubensky et al. [35].

Whereas these experiments were all done in a rather thick nematic liquid-crystal
cells, the effects of confinement on the inter-particle pair-potential were investi-
gated by Vilfan et al. [82]. They were using magneto-optic tweezers to induce a
strong attractive force between two super-paramagnetic micro-spheres with tangen-
tial boundary conditions,with diameter of 4.4µm, in homeotropic cellswith different
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Fig. 2.15 a Time dependence of the separation x between the two quadrupolar nematic colloids.
They were brought together by the assistance of external magnetic field and then released. There
is a repulsive elastic force between the particles due to quadrupolar symmetry of distortion. The
inset shows schematic director field. b The elastic repulsive force between two colloidal particles
with tangential anchoring of liquid crystal molecules. The force shows a power law dependence
F ∝ x−6 (solid line). The solid line is the best fit to Eq.2.12. The inset shows the velocity of the
particles as a function of their separation with the best fit of v ∝ 1/x6. Reprinted figures with
permission from J. Kotar, M. Vilfan, N. Osterman, D. Babič, M. Čopič, I. Poberaj, Phys. Rev. Lett.
96, 207801 (2006). Copyright (2006) by the American Physical Society

thicknesses (8 and 6.5µm). The inter-particle force F was measured by balancing
the liquid-crystal-mediated repulsive force and the calibrated and attractive mag-
netic force. The magnetic force was set by an electric current through the coils of
the magneto-optic trap and the equilibrium separation between the twomicrospheres
was measured. The magnetic field was reduced step by step and the corresponding
micro-sphere separation wasmeasured. In this way, they could measure the magnetic
force in the interval of centre-to-centre separation between 1.05 and 2.7 diameters of
colloidal particles. The resulting force was then integrated along the particle separa-
tion in order to get the inter-particle pair potential. This pair potential between two
quadrupolar colloidal particles in a thin homeotropic layer of 5CB nematic liquid
crystal is shown in Fig. 2.16 for two different thicknesses of the cell.

For small separations, the quadrupolar force decays as a power law with an expo-
nent β ≈ 5.1 − 5.4, which is close to, but different from the predicted exponent
β = −6. However, this power law is valid for only for a limited range of interpar-
ticle separations. The decay of the force is definitely faster for particle separation
approaching the value equal to the cell thickness. This is interpreted in terms of the
screening of the inter-particle force by the confining walls. Because the molecules
of liquid crystal are strongly anchored at the confining walls, their influence com-
petes with the elastic distortion generated by each of the micro-spheres. At smaller
microsphere separation, the influence of the two walls cannot penetrate the narrow
space between the two beads. However, when this space increases, the influence
of the two walls gets stronger. Based on the length-scale arguments, we expect
that the effect of the surfaces, which tend to make the liquid crystal between the



2.3 Forces Between Spherical Colloidal Particles in Nematic Liquid Crystals 47

Fig. 2.16 The interparticle potential shown in the log-log plot as a function of normalized colloidal
separation x/D for different thicknesses h. The diameter of beads is D = 4.4µm. For small sepa-
ration x/D, the potential shows power law dependence (solid lines), whereas for larger separation,
it show exponential decay (dashed lines). Reprinted figure with permission from M. Vilfan, N.
Osterman, M. Čopič, M. Ravnik, S. Žumer, J. Kotar, D. Babič, I. Poberaj, Phys. Rev. Lett. 101,
237801 (2008). Copyright (2008) by the American Physical Society

micro-spheres uniform, will become important when the micro-sphere separation
equals to the wall separation. At much larger separations, most of the liquid crystal
between the two spheres will be forced by the walls to be uniform. The free energy
will not depend on separation of the particles, which means there will be no force of
nematic origin.

Such an exponential screening of the inter-particle interaction is also expected
from the analogy with classical electrostatics. Here, the colloidal particles are anal-
ogous to electric quadrupoles placed between two parallel conductive plates. The
homeotropic anchoring of liquid-crystal molecules on the confining walls is anal-
ogous to the electric field at the conductive wall surface, which is perpendicular
to the conductive surface. The analogy with electrostatics gives an effective decay
length λ of the screened structural force of λ ∼ 0.16h, which is in excellent agree-
ment with experimentally observed screening length of λ ∼ 0.14h. Here h is the
thickness of the sample. Screening of the interaction of colloidal particles with weak
homeotropic surface anchoring was analyzed experimentally by Sung-Jo Kim and
Jong-Hyun Kim [83].

The interaction of quadrupolar nematic colloids with homeotropic surface anchor-
ing of liquid-crystal molecules was studied by Škarabot et al. [84]. Silica spheres of
2.32 and 4.7µm diameters were used in the experiments. Their surfaces were cov-
ered with a monolayer of silane (DMOAP), which ensures a very strong homeotropic
surface anchoring of a nematic liquid crystal. In thick cells of 5CB nematic liquid
crystals, these colloids usually obtain dipolar configuration because of the very strong
surface anchoring of the 5CB. However, if these colloids are confined in a very thin
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Fig. 2.17 Colloids with homeotropic surface anchoring in wedge-type 5CB cell. a Schematics:
in thinner parts, the particles are of quadrupolar symmetry, whereas in thicker parts of the cell,
the colloids are dipolar. b At a critical cell thickness, both types of particles are observed. Dipolar
colloids form linear chains along the nematic director (defined by the rubbing direction), whereas
quadrupolar colloids form kinked chains perpendicular to the rubbing direction. c Histogram pre-
senting the number of dipolar and quadrupolar colloidal particles at different cell thicknesses. The
diameter of particles is 2.32µm

planar cell, one observes two types of symmetry of the colloidal particles: dipolar
and quadrupolar nematic colloids. This is most easily obtained in wedge-type pla-
nar cells, where the cell thickness varies from hundreds of nanometers to several
micrometers. An example of colloidal particles in a wedge-type cell is shown in
Fig. 2.17.

At the critical thickness of the cell,which is 3.5µmfor 2.32µmhomeotropic silica
microspheres, both types of particles are observed, as shown in Fig. 2.17b. At larger
thickness, the number of dipolar colloids increases, whereas at smaller thickness
the percentage of quadrupolar particles increases. The interactions of quadrupolar
particles were studied by simply selecting two or several microspheres in the region
abundant with quadrupoles. Using the laser tweezers, the particles were positioned
at a predetermined separation and released, as illustrated in Fig. 2.18.

These experiments showed that quadrupole–quadrupole interaction is much
weaker than the dipole–dipole interaction. The pair-binding energy (which equals to
the work of the force separating the particles from the bound state to infinity) are of
the order of several hundreds of kBT . This is an order of magnitude weaker than the
dipole–dipole interaction, which reaches several thousands of kBT for the same size
of particles.
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Fig. 2.18 Interaction of an isolated quadrupolar colloid with a cluster of quadrupolar colloids.
a, b In this position, the particle is attracted to the pair of quadrupolar particles from the side, which
results in a growth of chains. c The quadrupole–quadrupole interaction as a function of separation
for a quadrupole approaching a pair of already assembled quadrupoles

There are numerous very detailed studies of force between colloidal particles
in nematic liquid crystals, mainly performed by optical tweezers. Takahashi et al.
[75, 85] measured the inter-particle force for two elastic dipoles and found the r−4

dependence, in agreement with theoretical predictions. Screening of the dipole–
dipole force in cells with different thickness was measured by Kondo et al. [76].
These experiments confirmed exponential screening of the pair-interaction colloidal
force in very thin nematic liquid crystal cells.

2.3.3 Mixed Interaction: Dipolar Spherical Particles Interact
with Quadrupolar Particles in Nematic

The experiments that we have analysed in the previous two sections clearly confirmed
the power-law nature of the nematic-mediated force between colloidal particles in
nematic liquid crystals. For dipolar colloids, this force scales as F ∼ R−4, whereas
the force between two quadrupoles scales as F ∼ R−6. Although all of this was
proved for a limited interval of particle separation, it basically confirms theoretical
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Fig. 2.19 Microscopic images of (a) dipolar and (b) quadrupolar 4µm colloidal particles. Dipolar
colloids are characterised by their dark hyperbolic hedgehog defect; quadrupolar colloids have the
Saturn ring around them. c A pair of dipole-quadrupole particles is attracted along the nematic
director. Schematics of the director field is shown in d. e Dipole-quadrupole pair is attracted in a
direction perpendicular to the far-field director. f The schematics of the corresponding director

predictions (Lubensky et al. [35], Ruhmwandl and Terentjev [86]). Theory also pre-
dicted that the interaction between elastic dipoles and elastic quadrupoles should
scale as a natural intermediate between the two power laws, resulting in F ∼ R−5

separation-dependence of the nematic-mediated force between an elastic dipole and
an elastic quadrupole.

This theoretical prediction of the mixed type of interaction was experimentally
confirmed by Ognysta et al. [87–89]. They were using wedge-type planar nematic
cells with their thickness tuned in such a way that the region around the critical
thickness was experimentally accessible. For 4µmparticles of acrylic resin, surface-
coated with DMOAP silane, the critical thickness was in the range 6 − 7µm. In that
region, they could easily find isolated dipolar and quadrupolar colloidal particles, as
shown in Fig. 2.19a.

It was found that a single pair of dipolar and quadrupolar colloidal particles has
three stable equilibrium arrangements, presented in Fig. 2.19c and e. Figure2.19c
shows the first stable configuration, where the dipolar colloidal particle is attracted
directly along the director to the quadrupolar colloidal particle. There is a hyperbolic
hedgehog point defect sitting in between the particles and stabilising them. In the
second case, the dipole-quadrupole pair is stabilised in a side-wise fashion, as is
shown in Fig. 2.19e. The third stable configuration is a mirror image of the second
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Fig. 2.20 a Trajectories of the dipolar colloidal particle after it was released from the optical trap
near the quadrupolar colloidal particle, which is placed at the origin. Blue lines (2–4, 6–8, 10–12)
show the attractive trajectories, red lines (1, 5, 9) show repulsive trajectories, and black dashed lines
are calculated by using an electrostatic ansatz. Open circles and black dots indicate the starting
positions. The Saturn ring orientation corresponds to trajectories 5–9. It is tilted like in Fig. 2.19f
for trajectories 10–12 and in the opposite direction for trajectories 2–4. The thickness of the cell
is h = 7µm. b The interaction potential as a function of separation between a pair of a dipolar
and a quadrupolar colloidal particle for the starting position 7. Inset log-log plot of the interaction
force with the best fit to a power-law exponent of β = −5.1 ± 0.25. Vertical dashed lines indicate
boundaries of the fitting region; their values are indicated at the top

one. In these two cases, the Saturn ring of the quadrupolar particle is tilted away
from its configuration in the isolated state at an angle of ∼25◦.

The force between an elastic dipole and elastic quadrupole was measured by
positioning a quadrupolar particle to a fixed point, whereas the dipolar particle was
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positioned with a second optical trap at different separation from the quadrupolar
particle and also at different angles with respect to the far-field nematic director, as
labeled 1–12 in Fig. 2.20a.

After the dipolar particles was released from the particle trap, it either approached
to or was repelled from the quadrupolar particle, which is illustrated by differently
labeled trajectories in Fig. 2.20a. Fromsomepositions (labeled 1, 5 and9), the particle
was repelled from the quadrupolar neighbour, whereas for other starting positions,
it was attracted to it. These attractive trajectories (in blue colour in Fig. 2.20a) are
curved, except for the collinear approach from the position No. 7 in Fig. 2.20a.

To test the predicted 1/R5 separation-dependence of the dipole-quadrupole inter-
action force, the force along the trajectory was determined experimentally, using the
standard method described in Chap.3. For this case, the interparticle force shows a
power-law dependence over the centre-to-centre separation, which is shown in the
log-log plot in the inset to Fig. 2.20b. Although the range of separation is less than
one decade, one can clearly see that the observed dipolar-quadrupolar colloidal inter-
action follows the F ∼ R−5.1 power law, which is close to the expected exponent for
the dipole-quadrupole interaction. This power-law exponent does not depend signif-
icantly on the thickness of the cell. The pair interaction potential between the elastic
dipole and the elastic quadrupole is shown in Fig. 2.20b. The pair interaction energy
is quite large (6000 kBT), which is due to the relatively large diameter of the parti-
cles. Note that the force and the corresponding inter-particle potential depend on the
fourth power of the particle diameter. It was also observed that this pair-interaction
energy depends on the thickness of the nematic liquid-crystal layer.

2.4 Forces Between Micro-rods in a Nematic Liquid Crystal

We have already mentioned that rod-like colloidal particles are topologically equiv-
alent to spherical colloidal particles, since they both have zero handles and the cor-
responding genus g = 0. We expect a single defect close to a micro-rod in a nematic
liquid crystal, similar to the single topological defect accompanying the sphere in a
form of a hyperbolic point hedgehog or a hyperbolic –1/2 Saturn ring. Figure2.21
shows for comparison a spherical homeotropic colloidal particle with the Saturn ring
encircling the sphere, and to the right is a micrometer-diameter homeotropic micro-
rod with a Saturn ring encircling it. This is therefore a direct proof of topological
equivalency of a sphere and a cylinder.

The simplest material in the form of elongated cylinders are glass micro-rods,
which are produced by cutting alkaline-free glass fibres and are mainly used as
spacers that maintain constant gap and constant thickness of a liquid crystal in liquid
crystal displays. For technological reasons, the distribution of their diameter is very
precise (within tens of nanometres) but their length distributionmight be quite broad.
An example of glass micro-rods of 1.5µm diameter (PF-15S Nippon Electric Glass)
is shown in Fig. 2.22. Distribution of the lengths of the micro-rods is quite broad and

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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Fig. 2.21 a Saturn ring defect is encircling a homeotropic glass micro-sphere in a planar nematic
cell. b Saturn ring is also encircling a homeotropic glass micro-rod in a planar nematic cell

Fig. 2.22 Distribution of
lengths of 1.5µm diameter
micro-rods, as determined by
measuring the lengths of 660
micro-rods under an optical
microscope. The insert
shows a SEM image of
micro-rods

is centred around approximately 8µm, so that a typical micro-rod has an aspect ratio
of 1:5.

Rod-like colloidal particles in nematic liquid crystals should therefore behave
quite similarly to spherical colloidal particles. The director structure around elon-
gated colloidal particles, topological defects and the resulting structural forces were
studied theoretically by a number of authors [90–98]. On the other hand there are
only few experimental studies of rods in nematic liquid crystals [99, 100].

If glass micro-rods of µm diameter are treated to induce perpendicular surface
alignment (Tkalec et al. [99]) and inserted into a planar aligned nematic liquid crystal
cell, one always observes only two characteristic types of director pattern, which are
shown and illustrated in Fig. 2.23a–f. The first kind of director pattern is similar to the
dipolar configuration around micro-spheres in a nematic liquid crystal and is called
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Fig. 2.23 a–c Micro-rods of dipolar symmetry. a A dipolar micro-rod with homeotropic surface
anchoring in a planar cell of 5CB, observedwithout polarisers.bUsing a red plate (i.e.λ-plate for 530
nm), the differently coloured regions indicate different orientations of the liquid-crystal molecules.
c The director, as reconstructed from b. d–f Quadrupolar micro-rods. d Unpolarised image of a
micro-rod, which was spontaneously oriented perpendicularly to the nematic cell director. e The
same micro-rod, as observed using the red plate. f Schematic drawing of the director, as deduced
from e

a dipolar micro-rod. Figure2.23a is a non-polarised micrograph of such a dipolar
micro-rod, where the hedgehog point defect is located on the top-end of the rod.

The director orientation can be easily reconstructed using the optical technique
with a λ-plate (also called the red-plate), which is inserted in between the polar-
izer and the sample. The correspondence between different colours and different
molecular director orientations under observation using the red plate is explained in
Fig. 2.24. In all images, the red color corresponds to vertical orientation of the long
axes of molecules whereas bluish and yellowish colours correspond to clockwise and
anticlockwise rotation of the director, respectively. This enables one to reconstruct
the director patterns around arbitrary-shaped colloidal particles.

The second type of rods are oriented perpendicular to the overall director field
in the nematic cell and their appearance under optical microscope is shown in
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Fig. 2.24 Relation between the orientation of the liquid crystal molecules and the color observed
under a polarizingmicroscope,with theλ-plate inserted at 45◦ with respect to polariser P and crossed
analyser A. This correspondence between the colours and molecular orientation is observed when
the birefringence of the liquid crystal is small and we are in the first order of retardation. By
increasing the retardation, interchanged colour scheme is observed

Fig. 2.23d, e. It is immediately recognised that this kind of rod is in fact equiva-
lent to a quadrupolar micro-sphere and there should be a Saturn ring encircling such
a rod along its longer dimension. This could indeed be tested by the laser tweezers,
where one is able to grab the Saturn ring and pull it away, as discussed in more detail
in Chap.5.3, which explains topological charge production and entanglement on a
fibre in a nematic liquid crystal.

The simple optical observation and reconstruction of the director field confirms
without a doubt the topological equivalence of micro-rods and micro-spheres with
homeotropic surface anchoringof nematic liquid crystals. Similarly tomicro-spheres,
the micro-rods are accompanied either by a hyperbolic hedgehog or a Saturn ring. In
the first case, the rods will be oriented along the overall director in the planar nematic
cell and the point hedgehog will be located either on the top- or on the bottom-end of
the rod. In the second situation, there will be a Saturn ring encircling the micro-rod
all along its axis, and the micro-rod will be oriented perpendicularly to the overall
director. In reality, one indeed observes both types of director distortions.

Defects on short micro-rods can be manipulated using the laser tweezers (Tkalec
et al. [99]) and the ring can be shrunk into a point or vice versa. Very long fibers
with length orders of magnitude larger than the diameter are a special case with a
very rich topology. In such case, one is able to create, with the use of a localised
temperature quench, a variety of topological defects attached to the fiber (Nikkhou
et al. [101]), which will be discussed in Sect. 5.3.

Detailed analysis of a larger number of micro-rods in a nematic liquid crystal
shows that majority of micro-rods are of dipolar type and are oriented along the
director, as shown in Fig. 2.25. The blue colour of the histogram of their orientation
corresponds to the dipolar and the red colour corresponds to quadrupolar micro-rods.
Dipolar micro-rods have a rather narrow distribution of around 10◦ with respect to
the director. On the contrary, quadrupolar micro-rods have rather broad distribution
and are oriented in a relatively large interval of 60−90◦ with respect to the director.

http://dx.doi.org/10.1007/978-3-319-54916-3_5
http://dx.doi.org/10.1007/978-3-319-54916-3_5
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Fig. 2.25 Distribution of angles between the rubbing direction and the long-axis of 1.5µmdiameter
micro-rodswith homeotropic surface anchoring. The blue colour corresponds to dipolarmicro-rods,
the red colour represents the orientation of quadrupolar micro-rods. The cell thickness is 4µm,
which is very close to the critical thickness of 3µm, where dipolar and quadrupolar rods coexist.
The inset shows the same data, but here the number of dipolar (blue) and quadrupolar (red) rods is
shown as a function of their length

It seems that this broad distribution is due to the imperfect ends of the micro-rods,
which are produced by a random breaking of the glass. This produces geometric
irregularities, which are very important for pinning of topological defects that appear
exactly at both ends of the particle.

Topological defects on these fibres can bemanipulated to a certain degree with the
laser tweezers. Figure2.26 shows an example where the point defect was opened into
a Saturn ring, encircling themicro-rod along its shorter dimension in a planar nematic
cell. This position is energetically unfavourable and causes the defect to slowly slide
towards the end of the fibre where it closes back to a point defect. Hyperbolic point
defect could also be grabbed and stretched, as shown in Fig. 2.27.

There are several interesting questions related to micro-rods, such as how the
micro-rods interact, what is the strength of their binding, andwhat are the topological
rules to be obeyed during the interaction.We should note that the interaction ofmicro-
rods is important to understand because there was a great interest in the interaction
of nano-fibres in liquid crystals. On micro-rods, the interaction can be easily studied
by optical methods, whereas this is not possible for nano-fibres with a diameter of
hundreds of nanometres.

Before the interaction forces are measured, one needs to determine the viscosity
coefficients, which are quite different for such an anisotropic particle. This is done
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Fig. 2.26 a The position of the Saturn ring encircling the fibre in a planar nematic cell is unstable,
the ring spontaneously slips back into the point defect, sitting at the top-end of the micro-rod. b
Using the laser tweezers, one can grab and force the point defect of the dipolar micro-rod to open
into a Saturn ring, visible in the middle of the rod in the last image

Fig. 2.27 a, b Point
hedgehog of a dipolar
micro-rod can be grabbed
and stretched into a line
defect by the laser tweezers

by performing the Brownian motion experiment where the micro-rod is let free to
perform a random Brownian walk in a planar cell. It is intuitively expected that
this random thermal motion is easier along the longer dimension of the rod because
of the lower resistance to flow. This is indeed observed in the experiments, where
thousands of video frames are taken during several minutes of the thermal motion of
the micro-rod and the trajectory of the particle is determined.
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Fig. 2.28 a Brownian
motion of a dipolar
micro-rod in the nematic
liquid crystal. Note the
extreme anisotropy of the
movement, which is partially
caused by macroscopic flow
of the liquid crystal. b For
each time interval, the length
of the movement of the
micro-rod is measured and
plotted in a histogram, where
the number of steps of
chosen length are presented.
Note that due to macroscopic
flow, probably caused by
external stimuli, the rod is
carried in one direction and
the histogram presenting
movements along n is
displaced along +y

Figure2.28 shows an experiment on a micro-rod, which shows that their motion
is highly anisotropic. The micro-rod experiences much more vivid motion along
the director than in the perpendicular direction. The anisotropy of motion and the
possible flow of the liquid crystal (this is always a problem in tracking experiments)
could easily be analysed by showing the distribution of the length of displacement,
which the micro-rod performs in a precisely determined time interval, which in this
case is 300ms. The y-axis in Fig. 2.28b presents the number of such steps out of the
total 11 000 steps recorded in the experiments. There are two such distributions in
Fig. 2.28b, one for the direction along the director and the second in the direction
perpendicular to it. The distribution of steps along the director is obviously displaced
for some length, which indicates macroscopic flow of the liquid crystal and is not
related to the self-diffusion of this particle. The widths of these two distributions tell
us the self-diffusion coefficient D for each direction. By using the Stokes-Einstein
relation, we can determine the product of the characteristic dimension of the particle
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and the viscosity, which in this case are 0.8·10−6 and 2.2·10−6 kg/s respectively. The
anisotropy of the self-diffusion coefficients is approximately 1:3, which is close to
the aspect ratio of the particles, 1:5.

Once the self-diffusion coefficients D are determined for each direction, one is
able to calculate the force on the particle, which is acting during the interaction of two
micro-rods in the nematic liquid crystal. The standard procedure of video tracking
of particles’ positions is used, which is described in detail in Sect. 3.3. There are two
characteristic geometries of the attraction of the two micro-rods: (i) the two rods are
positioned side by side and parallel to each other, (ii) the two rods are positioned
along the director and they interact collinearly.

A series of snapshots of two parallel dipolar micro-rods interacting side by side
is shown in Fig. 2.29a. Indeed, they behave similarly to spherical colloidal dipolar
particles with anti-parallel orientations of their dipoles. They slowly attract and bind
into a pair of rods, which are inclined by an angle of approximately 10◦ with respect

Fig. 2.29 a Side-by-side attraction of a pair of micro-rods with opposite direction of their topo-
logical dipoles. b The dipolar force versus micro-rod separation, extracted from a series of video
images taken from a. c Lateral dipolar potential of two micro-rods with antiparallel direction of
their topological dipoles

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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Fig. 2.30 Overview of
stable configurations of
dipolar micro-rods in planar
cells. a Chains of micro-rods
of dipolar symmetry. b The
same structure under the
red-plate. c Schematics of
the director field. d–f
“Bubble-gum” configuration
of the two originally
antiparallel and collinear
dipolar micro-rods. g–i
Side-by-side stable
configuration of two
antiparallel dipolar
micro-rods

to the overall director. This inclination is due to the even-odd effect, characteristic
for interactions of dipolar colloids, described in Sect. 4.1. The instantaneous force
of interaction as a function of micro-rods separation is shown in Fig. 2.29b. The
magnitude of the force is typical for the interaction of micrometre-sized colloidal
particles. It reaches the highestmagnitude of−2.5pN at approx. 6µmseparation. For
closer separation the force diminishes and is balanced by repulsion in the equilibrium
position. By integrating this interaction force along the trajectory of the particle, one
is able to calculate the interaction energy, which is shown in Fig. 2.29c. In this case
as well, the obtained binding energies are typical for micrometre-diameter nematic
colloids and are of the order of several 1000 kBT .

Similar to the interaction of two collinear spherical colloidal particles of dipolar
symmetry, the dipolar rods can also interact collinearly, provided that their dipoles

http://dx.doi.org/10.1007/978-3-319-54916-3_4
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Fig. 2.31 a–c Side-by-side
stable configuration of two
quadrupolar micro-rods in a
planar cell. d–f Top-down
configuration of two
quadrupolar micro-rods

are pointing in the same direction. The overview of possible structures, assembled
from dipolar rods by using the laser tweezers, are shown in Fig. 2.30.

The overall similarities between dipolar rods and dipolar spherical colloids are
evident. The panels (c), (f) and (i) on the far right of Fig. 2.30 show the schematics
of the director field around the assemblies of rods on the nematic liquid crystal.
In contrast to dipolar micro-rods, quadrupolar micro-rods exhibit only two stable
configurations, which are shown in Fig. 2.31. The first one is a side-by-side attraction
of two quadrupolar micro-rods and the other is a top-down configuration.

Understanding themechanismof interactionof cylinder-like objects in the nematic
liquid crystal is important for possible applications in dispersions of nanofibers. It
is known that uniformly aligned assemblies of nanofibres exhibit very distinguished
material properties, such as tensile strength. There is a relatively large number of
theoretical studies of nematic dispersions of cylinders. Andrienko et al. [92–94] used
molecular dynamics and Monte Carlo simulations, whereas Hung et al. [102] used
fully tensorial LdG theory. In both cases, the actual sizes of the particles are relatively
small for the reason of computational complexity. As a consequence, the symmetry of
the equilibrium order parameter field around each cylinder is quadrupolar. For this
reason, theoretical predictions could be compared only to experimentally studied
interactions of quadrupolar rods. Hung et al. [102] succeeded in reproducing the
–1/2 defect line encircling the micro-rod and being in the plane parallel to the long
axis of the rod. Interestingly, there is another solution for the topological defect line
which is distributed around the elongatedparticle, thus forming an “axially symmetric
coat”. From the point of symmetry, these solutions are equal to the experimentally
observed ones. The difference between the theoretical predictions and experimental
observations is that in our case, the defect around the micrometre-sized colloidal
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rod is unstable and may transform into a point defect, located at the end of the rod.
Whereas the interactions of micro-rods are understood in 2D, it is not clear what
are the possible 3D structures, assembled from dipolar micro-rods. Most likely this
would be an equivalent to the tetragonal 3D lattice observed for spherical particles.
However, the problem with micro-rods is their non-uniform length, which might add
a considerable amount of disorder to any 3D micro-rod assembly.

2.5 Janus Colloids and Platelets in Nematic Liquid Crystals

The geometrical shape of colloidal micro-particle with genus g = 0 determines to a
large extent the symmetry of the distorted nematic director around the particle. How-
ever, there is a special class of particles, called Janus particles, which have different
parts of the surface treated with different surfactants. An example of a Janus particle
is a glass micro-sphere, which is half-coated with a thin layer of metal, such as gold
and the other half is silanized with DMOAP (Conradi et al. [103]). If the silica part
of the surface is coated with DMOAP silane, inducing perpendicular liquid crystal
alignment, we obtain a Janus colloidal particle with two hemispheres: one induces
homeotropic alignment and the other tangential alignment. It actually turns out that
the strength of the anchoring depends on the sequence of deposition steps. If the glass
sphere was silanized first and then Au was deposited afterwards (DMOAP/Au), pla-
nar anchoring on Au was stronger than the homeotropic anchoring on DMOAP.
If Au was deposited first and then the spheres were silanized (Au/DMOAP), the
homeotropic anchoring of DMOAP was stronger than planar anchoring on Au. SEM
images of Au-capped silica micro-spheres are shown in Fig. 2.32.

Fig. 2.32 SEM image of 4.3µm silanated silica particles coated with 3 nm of Cr and 50 nm of Au
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For an isolated Janus microsphere in a nematic liquid crystal, there are four dif-
ferent director configurations, as found in the experiments. In the first configuration,
shown in Fig. 2.33, DMOAPwas deposited first and this was followed byAu vacuum
deposition. The micro-sphere is oriented with its Au-silanated interface parallel to
the planar nematic cell, and there are two point hedgehogs located on the two oppo-
site sides of the hemisphere. These point hedgehogs sitting on the surface are called
boojums. This indicates that the whole sphere has adopted planar surface alignment,
as the Au anchoring is stronger and prevails the weaker homeotropic anchoring on
DMOAP hemisphere.

The second configuration is obtainedwith capped colloids,where theAu layerwas
deposited first and DMOAP layer was applied afterwards (i.e. Au/DMOAP colloids).
This configuration is shown in Fig. 2.34 and one can see that the Au cap of the
Janus (Au/DMOAP) microsphere is rotated by 90◦ with respect to the configuration
in Fig. 2.33a and a hyperbolic point defect is residing at the pole of the Au cap.
This leads to the conclusion that the homeotropic anchoring on DMOAP is very
strong and prevails over the weaker planar anchoring on Ah hemisphere, which was
deposited before the DMOAP. The observed elastic dipole of a capped particle is
almost indistinguishable from an elastic dipole formed around a non-capped, only
silanated particle.

When the dipolar Au/DMOAP capped colloidal particles in the nematic liquid
crystal were manipulated with a laser tweezers, irreversible reorientations into two
additional stable states were observed. The first configuration is shown in Fig. 2.35a
and b, which is a capped colloid with a Saturn ring, positioned roughly at the border
line between the homeotropic and planar hemisphere. The second stable state is
shown in Fig. 2.36, and represents a mixed configuration with a surface boojum at
the planar site (golden hemisphere) and a Saturn ring analog, positioned at the border
line between the homeotropic and planar hemisphere. In both stable states, the border
line between the two hemispheres remains positioned perpendicular to the rubbing
direction and the original dipolar structure could not be reestablished by any possible
means. This implies, that the original dipolar colloidal state was a metastable state,
most probably induced by a liquid crystal flow during filling the cell with dispersion.

Topologically, capped colloidal particles and surrounding nematic defects are
a combination of surface and bulk point defects. Defect loops are topologically
equivalent (homotopic) to points. Point defects are topologically characterized by
their topological charge q. Topological charge of a bulk hedgehog defect is calcu-
lated by performing the integral in Eq.1.24 over a closed surface that surrounds the
defect. For surface defects, the nematic director profile exists only in half-space.
The integration in Eq.1.24 is therefore performed only over the liquid crystal-filled
hemisphere, that surrounds the point defect and q. For a capped particle being dis-
persed in a uniform planar cell, the total topological charge of a single particle and
surrounding defects should equal 0. Figure2.37 shows stable and metastable states
of Janus microspheres, as calculated using numerical LdG approach. Homeotropic
hemisphere imposes topological charge of magnitude 1/2, which is fully compen-
sated by either a surface ‘boojum-ring’ (0◦ profile in Fig. 2.37a) or a bulk –1/2 defect
arc (90◦ profile in Fig. 2.37a), i.e. half of the Saturn ring, depending on the orien-
tation of the particle. Planar hemisphere can generate only surface boojum defects

http://dx.doi.org/10.1007/978-3-319-54916-3_1
http://dx.doi.org/10.1007/978-3-319-54916-3_1
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Fig. 2.33 Microscope images of a 4.3µmDMOAP/Au cappedmicrosphere in a 10µm thick planar
cell of 5CB. The particle was first completely covered with DMOAP and then one hemisphere was
sputtered with Au. The arrows indicate rubbing direction of the planar cell. a The capped colloidal
particle between crossed polarizers.bNopolarizers are used.Redarrows indicate two symmetrically
positioned boojum defects. c Polarized image with an inserted λ-retardation plate. The directions of
crossed polarizers and retardation plate are indicated.d Schematics of the director field. Gold-coated
hemisphere is on top and DMOAP-covered hemisphere on bottom. Boojum defects are drawn in
gray

and together they also have a net zero topological charge. When calculating the net
charge from different contributions (characteristics), the rules of summation have to
be applied in accordance with the nematic director being an improper vector with
the n → −n symmetry, to give proper total topological charge.

When one attempts to qualitatively generalize the behavior of colloidal parti-
cles with patterned surfaces, one should consider them as superpositions of only-
homeotropic and only-planar “single-anchoring particles”. Volume pieces of the
single-anchoring particles’ director fields corresponding to proper surface regions
are to be stuck together to tile in the surface of the patterned particle in order to
qualitatively obtain the director profile around the chosen patterned particle. At the
intersections between different volume pieces typically defects form. Equilibrium
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Fig. 2.34 Microscope images of a 4.3µmAu/DMOAP cappedmicrosphere in a 10µm thick planar
cell of 5CB. a Dipolar capped colloidal particle with slightly opened hedgehog defect, as observed
with no polarizers. The inset shows a schematic drawing of the director field. b Dipolar colloidal
capped particle between crossed polarizers

Fig. 2.35 Au/DMOAP capped microsphere with a Saturn ring defect. The arrows indicate rubbing
direction of the planar cell. a The quadrupolar capped colloidal particle between crossed polarizers.
b No polarizers are used. c Polarized image with inserted retardation plate. d Schematics of the
director field with the Saturn ring encircling Janus microsphere. Particle diameter is 4.3 µm and
cell thickness 10 µm
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Fig. 2.36 Microscope images of a 4.3µm Au/DMOAP capped microsphere of a boojum-ring
configuration in a 10µm thick planar cell of 5CB. The arrows indicate rubbing direction of the
planar cell. a The capped colloidal particle between crossed polarizers. b No polarizers are used.
c Polarized image with inserted retardation plate. d Schematics of the director field. Surface boojum
and boojum-ring defect are visualized in gray

particle orientations are sensible to relative strengths of the homeotropic and planar
anchoring which could be used to optimize the desired particle orientations.

In addition tomicro-spheres andmicro-rods, a variety of differently shapedmicro-
particles were studied in the nematic liquid crystals, including polyhedra, nano-
prisms [104], ellipsoidal particles [105] and different platelets [106]. In all cases, the
number of topological defects accompanying the particle is determined by the topo-
logical charge conservation.However, complicated geometry of the particle induces a
rather complicated defect structure. Such defect structures are difficult to distinguish
experimentally, but have been predicted numerically using 3-dimensional numerical
modeling of topological defects on triangles, squares, pentagons and hexagons in
nematics (Dontabhaktuni et al. [107]).
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Fig. 2.37 LdG simulations of capped colloidal particle at different fixed orientations with respect
to the non-perturbed far-field director (a) for strong planar and strong homeotropic anchoring
WP = WH = 10−2 J/m2 and (b) for strongplanarWP = 10−2 J/m2 andweakhomeotropic anchor-
ing WH = 10−5 J/m2. Defects are visualized in red as isosurfaces of the nematic degree of order
S = 0.51 (bulk S = 0.533). Homeotropic hemisphere is darkened. Image courtesy of Miha Ravnik

2.6 Nanoparticles in a Nematic Liquid Crystal

Dispersions of nanoparticles in a nematic liquid crystal have attracted a lot of atten-
tion because of possible applications as plasmonic materials and metamaterials in
photonics. I addition, dispersions of ferromagnetic solid nanoplatelets in nematic liq-
uid crystals have shown for the first time ferromagnetic response of a liquid (Mertelj
et al. [125, 126]), which is discussed in Sect. 2.8.

In plasmonic dispersions, small particles of a metal exhibiting large plasmonic
response are dispersed in the nematic liquid crystal. It is characteristic of plasmonic
nanoparticles (such as gold, silver, etc.) to absorb strong light within a given fre-
quency band. This effect is due to forced oscillations and resonance of a cloud of
nearly free electronswithin the plasmonic nanoparticles. The external electric field of
the light drives the electrons in motion inside the metal nanoresonator via the electric
force, which becomes resonant at some characteristic resonant frequency, which is
also called the plasmonic frequency. The nanoparticle and its cloud of electrons can
be viewed as a large electric dipole, driven into mutual motion by the electric force of
the light. Because of resonance, energy is dissipated in the material in the nanopar-
ticle, meaning that the plasmonic nanoparticles strongly absorb light and induce
heating of the environment, where they are embedded. Due to the particles’ (and the
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resonator’s) small size, the resonant frequency depends on two important factors: (i)
the shape and the size of the particle, (ii) the electric constant of the environment.
For this reason, the plasmon frequency will be shifted and the plasmonic nanoparti-
cles aggregate because of the interaction of oscillating dipoles of the neighbouring
nanoparticles. Plasmonic materials are therefore useful as absorbers and nanosen-
sors, which are sensitive to dielectric properties of their surroundings. There are
several studies of the optical properties and assembly of plasmonic nanoparticles
in nematic liquid crystals, including gold nanoplatelets of high aspect ratio [108],
plasmonic gold nanorods [109], gold nanodots [110] and silver nanoparticles [111].
Shape-dependent oriented optical trapping of plasmonic nanoparticles in various
forms was analyzed by Senyuk et al. [112]. A comprehensive review of nanoparticle
ordering in liquid crystals was written by Blanc et al. [113]. Surface plasmons on the
surfaces of metals could lead to extremely miniaturized photonic circuits because of
their interaction with light and surface propagation wavelengths, which are orders
of magnitude smaller compared to optical wavelengths [114].

Metamaterials are synthetic, i.e. artificial materials, which have a negative reflec-
tive index. They were theoretically described by Pendry et al. [115] and are also
called the “left-handed materials”. This expression is related to the three fundamen-
tal vectors, which describe the propagating electromagnetic plane wave: the vector
of the strength of the electric field E, the vector of the strength of the magnetic
field H, and the wave vector of the electromagnetic field k. Normal materials have
a positive dielectric constant and a positive magnetic susceptibility, and these three
vectors form the right-handed triad. In left-handed materials, the dielectric constant
is negative and the three vectors form the left-handed triad. It is clear that negative
dielectric constant could be obtained only in some sort of resonance, where there is
strong change in the phase of the oscillation. The same applies to the negative mag-
netic susceptibility, and both could be realised in artificially modelled and created
structures, such as the horse shoe split ring resonators. The interest in the fabri-
cation of metamaterials is their possible application in super-lenses and cloaking
material [116], which could render a material object invisible in illuminated light.

While plasmonic and metamaterials are nanoparticle nematic dispersion that are
interesting for photonics, another class of very interesting materials are the fer-
romagnetic nematic liquid crystals. These are nematic liquid crystals that exhibit
spontaneous magnetization and were recently discovered in nematic dispersions of
small magnetic nano-platelets. They will be described in detail in Sect. 2.8 of this
Chapter.

The basic requirement for the size of plasmonic dispersions, metamaterials and
ferromagnetic nematic liquid crystals is that their basic building blocks be much
smaller than the wave lengths of the light in question. Usually this is the visible
part of the spectrum, which implies that the basic building blocks are of the size
of tens of nanometres. Nematic dispersions of nanoparticles are therefore a natural
candidate for plasmonic materials, metamaterials and ferromagnetic nematic liquid
crystals. This means that we have to understand the strength and the nature of the
forces between nanoparticles in the nematic liquid crystals, if we want to understand
the nature and stability of these materials.
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It is clear from basic arguments that the interaction between two colloidal particles
(with perpendicular surface anchoring) in the nematic liquid crystal vanishes in the
two limiting cases: (i) for a given surface extrapolation length, the pair interaction
force will approach zero for particle sizes smaller than this surface extrapolation
length. In the case when the particle is smaller than the surface extrapolation length,
there will be effectively no surface interaction and the particle will be invisible to
the surrounding liquid crystal. (ii) For very strong, i.e. infinite surface strength, the
colloidal pair interaction will tend to zero as the colloidal diameter goes to zero. It is
then clear that the surface anchoring strength is the crucial point, which determines
theminimum size of the particles that would still interact in the nematic liquid crystal.
For weak surface anchoring (10−6 J/m2), the surface extrapolation length is of the
order of a micron, which means that sub-micron particles in the nematic will not
interact. One could realise very strong surface anchoring in the experiments, for
example by using silica particles and silane surface agents, which give very strong
homeotropic surface anchoring of the order of 10−4 J/m2. In this case, the surface
extrapolation length is of the order of several nanometers, and one could expect that
nanoparticles in the nematic liquid crystal will significantly interact, in spite of their
vivid Brownian motion.

In the following we will describe a series of experiments on silica particles, rang-
ing in diameters from several micrometres down to 20nm, performed by Škarabot
and Muševič [117] and Ryzhkova and Muševič [118, 119]. Because they are per-
fectly spherical and they could all be chemically functionalised in the same way, this
series of particles represents a good systematic study of the effect of the particle size
on a colloidal pair interaction. The experiments have been performed with fluores-
cently labelled silica nanoparticles with diameter from 22 to 450nm (Micromod).
These particles contain a high amount of covalently bound rhodamine B, which is
excited at 569nm, and they emit fluorescent light at 585nm. The fluorescence of
these particles is extremely stable in organic solvents and buffers. The scanning
electron microscope images of these particles are presented in Fig. 2.38, together
with histograms of the particles’ sizes, showing a standard deviation of +/ − 10%.

Strong surface anchoring of the nematic liquid crystal was insured by functional-
izing the particles with DMOAP silane. After dispersing silanated particles in the
nematic liquid crystal 5CB, the nano-particles tend to form clusters. It is therefore
necessary to break up these clusters by thoroughly sonicating the dispersion in an
ultrasound bath. The duration of sonication has to be increased for smaller particles,
where several hours are needed to break up clusters of 22nm colloids.

Due to their small size, nano-particles are difficult to observe in the nematic liquid
crystal dispersions. The optical limit is set by the Abbe’s law of diffraction, stating
that two point sources cannot be distinguished with an optical microscope when
their separation is smaller than the wave length of the light used for the observation,
divided by the numerical aperture of the microscope. The numerical aperture can
be as high as N .A. = 1.6 for index-matched objectives of optical microscopes. If
blue light is used for microscope observation, the theoretical limit of the resolution
of a very good optical microscope (not considering STED microscopes) is close to
300 nm. This means that sub-micron particles are difficult to observe in the nematic
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Fig. 2.38 SEM images of silica nanocolloids and histograms of colloidal size distribution. a 450-,
b 270-, c 90-, g 60-, h 35-, and i 22-nm-sized particles functionalised with DMOAP. d–f and j–l
show histograms of colloidal size distribution, derived from analysis of SEM images. The calculated
mean values of colloidal diameters are d 450, e 270, f 90, j 60, k 35, and l 22 nm. The scale bars
are 200nm in all panels

liquid crystal, which is even more difficult because of the poor contrast of the refrac-
tive indices of the particle with respect to the liquid crystal.

There are two solutions to this problem, which could facilitate observation and
tracking of the positions of nanoparticles in the nematic liquid crystal. The first
solution is using fluorescent nanoparticles, which could be easily traced by following
their emitted light. The problem is the rather low level of emitted fluorescent light,
which implies photon counting techniques. The second possible solution is the dark-
field microscopy, which uses a specially structured light for the illumination of small
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particles. Using a specially designed optical system, the light used for illumination is
structured in a form of a thin and hollow cone, which enters the optical illumination
system. The optical system is in fact a strongly focusing objective, which focuses
this cone of light to the focal point, where the particle under observation is located.
The particle is therefore illuminated by a hollow cone of light, which illuminates
this particle practically from all sides at high incident angles. The light which is
collected by the microscope objective, used to observe the particle, is only due to
the scattering of this illuminated light cone and there is no direct, i.e. background
illumination. Because only scattered light is collected, the nanoparticle appears as a
bright object on a dark background, hence the expression dark-field microscopy.

Dark-filmmicroscopy is therefore a natural candidate for observing nanoparticles
in the nematic liquid crystal. The source of scattering of light in this dark-field
microscopy is double: (i) the light is scattered at the interface between the particle
and the liquid crystal due to different refractive indices, (ii) the light is scattered
form the elastic distortion of liquid crystal around the particle (if any left because
of the smallness of particles), which could be quite extended. Figure2.39 shows two
examples of 125nm silica nanocolloids in 5CB, observed with polariser only and
between crossed polarisers.

Fig. 2.39 a SEM image of
silica nanospheres with
average diameter of 125 nm.
b–e DMOAP-silanated
single nanosphere of
diameter 125nm in the 3µm
thick layer of planar nematic
5CB. bMicrograph of a
125nm nanocolloid in 5CB,
with polariser only inserted.
c The same particle as in a
but between crossed
polarisers. d Non-polarised
micrograph of another
125nm nanocolloid in 5CB.
e The same particle as in c
but now between crossed
polarisers
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As shown in Fig. 2.39, 125 nm diameter silica nanospheres are readily observable
in transmission optical microscopy either without polarisers or using crossed polaris-
ers. This figure clearly demonstrates that 125nm colloidal particles are stable either
as dipolar colloids (panels (b) and (c)) or quadrupolar colloids. The difference can be
observed even in unpolarised images, as the dipolar colloidal particle in (b) has one
dark point (on top), which is the point defect. The symmetry of the colloidal particle
is most easily distinguishable in crossed polarised images, shown in panels (c) and
(e). The dipolar particle in panel (c) has one dark line running along the symmetry
axis of the dipolar configuration of this particle. On the contrary, quadrupolar sym-
metry of the particle is visible from the dark cross, superposed to the bright image
of the particle between crossed polarisers in Fig. 2.39e.

The reason why the same diameter of particle can appear either as a dipole or
a quadrupole is in the process of preparation of particles using wet chemistry and
surface cleaning. There is always some distribution of surface properties, which
finally determines whether the particle appears as a dipole or a quadrupole. The
diameter of approximately 100nm is also the limiting diameter, where fine features of
the particle between crossed polarisers can be distinguished. For smaller sizes, which
are well below the optical defection limit, the polarised pattern becomes blurry, and
one is not able to distinguish whether a single nanocolloid is a dipole or a quadrupole.
In this range bellow 100 nm, one can use the aggregation properties of nanoparticles
for distinguishing them, because dipolar nanoparticles form chains along the director,
whereas quadrupolar nanoparticles tend to form kinked chains perpendicular to the
director. Note that the aggregation energies of quadrupolar nematic colloids are an
order of magnitude smaller than the dipolar. Several examples of aggregated sub-
micrometre colloids with homeotropic surface anchoring in 5CB planar nematic cells
are shown in Fig. 2.40.

2.6.1 Self-diffusion and Pair Interaction of Nanocolloids in
the Nematic Liquid Crystal

Sub-micrometre-sized silica particles in the nematic liquid crystal are truly Brownian
particles. They exhibit vivid and random Brownian motion due to their interaction
with molecules of the liquid crystal. It is possible to follow and video-record their
motion by using fluorescence signal from fluorescently labelled nanocolloids, or by
observing them in dark-field microscopy, therefore collecting light that the particles
scatter. These two techniques were used for tracking nanocolloidal particles in liquid
crystals by Ryzhkova et al. [118, 119]. Figure2.41 shows Brownian trajectories
of various sizes of silanised silica nanocolloids in a nematic liquid crystal 5CB.
Particles with diameter larger than 100nm were video-monitored by using bright
field method. Typically, particle trajectories of 18 000 snapshots are recorded for
many experiments, and their trajectory is extracted from the video frames by using
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Fig. 2.40 Sub-micrometre colloids with homeotropic surface liquid crystal orientation in the pla-
nar nematic cell. a–c Colloids with diameter d = 310nm spontaneously self-assemble in dipolar
nanocolloidal chains parallel to the rubbing direction. The orientation of the liquid crystal around
colloidal chains can be deduced from the polarised image (b) and by inserting the red-wave plate, (c).
Blue and yellow stripes indicate opposite tilt of liquid crystal around the chain in c. d–g Nanopar-
ticles with diameters ranging from 870nm down to 125nm are assembled into dipolar colloidal
chains

the particle tracking method described in Sect. 3.3. Particles smaller than 100nm
were successfully recorded using dark-field microscopy.

The analysis of a randomwalk of the particle enables one to calculate the diffusiv-
ity along (D||) and perpendicular (D⊥) to the liquid crystal director. The analysis of
the distribution of randomwalks shows that the displacement probability distribution
versus the length of a Brownian step can be ideally approximated by the Gaussian
function. The width of this distribution is then measured and is directly related to the
diffusivity of the particle.

The dependence of the self-diffusion coefficients of silica nanospheres on the
inverse colloidal diameter is presented in Fig. 2.41g. As expected, diffusivity is larger
for smaller colloidal particles, and there is a difference betweendipolar andquadrupo-
lar particles. The particles’ diffusion is also very anisotropic and is larger along the
nematic director.

For a colloidal particle in the nematic liquid crystal, both diffusion coefficients D||
and D⊥ correspond to a colloidal diameter that is larger than the real diameter of the
particle. This is due to the elastic distorted region of the nematic liquid crystal around
the particle, moving together with the particle, thus effectively increasing its size.
The effective size of the particle is therefore a sum of the real colloidal diameter and

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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Fig. 2.41 Brownian trajectories of silanised silica nanocolloids in a nematic liquid crystal 5CB.
The particle mean diameter is a 450, b 270, c 90, d 60, e 35, and f 22nm. The time between
steps is 5, 3.52, 20, 20, 20, and 20ms, respectively. Videos a and b are acquired with bright-field
microscopy; c–f are taken with dark-field microscopy. 18 000 trajectory steps are recorded in each
experiment. g Dependence of diffusion coefficients of quadrupolar and dipolar colloids along D||
(black and red squares) and perpendicular D⊥ (black and red circles) to the liquid crystal director
are shown

the thickness of the distorted nematic region around the particle. Using the Stokes-
Einstein relation between the diffusivity and the diameter of the particle for the
motion in a plane, one can estimate the effective particle diameter, which is plotted
in Fig. 2.42.Dipolar colloids always appear bigger than the quadrupole colloids of the
same diameter. This is a consistent result in view of the fact that dipolar configuration
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Fig. 2.42 Nanoparticles
appear bigger than they
actually are. Dependence of
the effective particle size on
the real colloid diameter.
Black squares are data for
dipolar colloids with point
defect; Red dots are data for
quadrupolar colloids with
Saturn-ring defect. The
effective colloid diameter is
calculated from
corresponding diffusion
coefficients

is stable for strong surface anchoring, which has smaller extrapolation length and
therefore larger region of distorted nematic around the colloidal particle.

The separation dependence and strength of the nanocolloidal pair interaction is
determined using the following steps. First, two nanocolloids are brought together
using the laser tweezers. They are then released and their motion is video-monitored,
making thousands of snapshots of their mutual attraction and eventually binding.
Several examples of snapshots from such movies are shown in Fig. 2.43. Second, the
diffusion coefficients for the same time of particles are measured by following and
recording the Brownian motion of the isolated colloidal particle. Third, the force of
the pair interaction is obtained by calculating the Stokes drag force on one of the two
particles during the interaction. Forth, this force is then integrated over the path of
the attraction and one obtains the pair binding energy for different colloidal sizes.

Figure2.44 shows the calculated pair binding energies W◦ in units of kBT for
silanised silica particles with diameter ranging from 22 to 450nm. The binding ener-
gies are bigger for the pair of dipoles and nearly permanent binding could be observed
even for 35nm diameter silica nano-colloids. The corresponding binding energies of
particles bigger than 100nm are exceeding 400 kBT , whereas below this diameter,
the pair binding energy falls down to zero. The smallest size of nanocolloids for
which an association was observed was of the order of 22 nm, an example is shown
in Fig. 2.43f. The observed pair binding energy of nano-colloids is in fact surprising,
as it was a general opinion that colloids smaller than 100nm would never interact
significantly. However, these surprising results explain many of the experimental
difficulties observed with time-stability of as prepared nematic nanocolloidal disper-
sions. Namely, one usually observes that after several hours there is practically no
freely moving nanocolloidal particle in the nematic dispersion, and they all either
aggregate in clusters or attach to the surfaces of the container cell. The observed
strong interaction of even sub-100 nm nano-colloids explains this phenomenon as
it amplifies itself: once two nano-colloids bind into a cluster, this cluster is bigger
and interacts strongly with surrounding isolated nano-colloids. The cluster therefore
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Fig. 2.43 Series of snapshots of two nanocolloids attracted into a dipolar pair. Mean diameter of
colloids: a 450, b 270, c 90, d 60, e 35, and f 22 nm. Images a and b are acquired with bright-light
microscopy; images c–f are taken with dark-field microscopy. Image size is 11 × 11µm2

Fig. 2.44 Dependence of
dipolar colloidal
pair-binding energy on
particle diameter: Squares
indicate pair-binding energy
of parallel dipolar particles;
circles indicate pair-binding
energy of antiparallel dipolar
particles. The measured
binding energy of the dipolar
pair is decreasing by
reducing the colloid size

collects nano-colloids and grows in size until all the available and freely floating
nano-colloids are collected.

It was recently shown by Ryzhkova et al. [119] that silica nanocolloids are elec-
trically charged in the nematic liquid crystal 5CB. This was observed by applying
an external electric field and monitoring the motion of an individual 22nm diameter
silica microsphere. Upon the reversal of the electric field, the velocity of the particle
was reversed as well, as shown in Fig. 2.45. Bymeasuring the velocity of the particle,
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Fig. 2.45 a Dark-field images of 22nm DMOAP-coated silica particles moving along the applied
electric field. Note that the particles are moving opposite to the field. b Time dependence of the
particle velocity. The parameters of the applied electric field are the following: the electric-field
strength is 105V/m, the wave form is rectangular, and the frequency is 1Hz. c The dependence of
the average particle’s velocity on the applied electric-field strength

it was possible to determine the average electric charge of the particle, which turned
out to be quite significant, as shown in Fig. 2.46.

It turns out that a typical 22nm silica nanoparticle carries approximately 35 elec-
tron charges, giving a surface charged density of ∼10−3 As/m2. Electric charging
of silanated glass surfaces was also independently observed in a previous study of
the electric force studies between a flat silanated glass surface and a silanated silica
microsphere attached to the measuring cantilever of an Atomic Force Microscope in
the force spectroscopy mode [7]. This surface charge density corresponds to rather
large electric fields at the surfaces of nanocolloidal particles of the order of 25V/µm.
This field might be strong-enough to influence the surface orientation of liquid crys-
tal molecules. For positive dielectric anisotropy of the nematic liquid crystal, such
as 5CB, the total surface anchoring might be amplified compared to electrically neu-
tral surface. Interestingly, surface charge density is much lower for larger diameter
particles, and the surface charge density falls with the inverse particle size, as shown
in Fig. 2.46b.
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Fig. 2.46 a A total electric
charge of DMOAP silanated
silica nanoparticle as a
function of its diameter.
Dotted line is a guide to the
eyes only. b Surface charge
density of a particle,
determined from data in
panel a, as a function of
inverse diameter of the
particle. The dotted line is
the best linear fit

2.6.2 Interaction of Nanocolloids with Topological Defects

The segregation of nano-colloids in topological singularities is interesting because
of possible application in artificially engineered types of matter with new physical
properties, such as metamaterials for superlenses and invisibility cloaking. Topo-
logical defect are easily created and controlled in the nematic liquid crystals using
various approaches, such as particle inclusions, surface patterning, and light manip-
ulation. In principle, complexly structured 3D arrays of topological lines could be
created; the question therefore is whether these topological defect lines could act as
trapping sites for small particles like nano-colloids, quantum dots, polymers, fluo-
rescent molecules etc. The physical mechanism behind this nano-colloidal trapping
by topological singularities is simple. The singularity itself presents a high energy
region, where the order parameter is depressed and the liquid crystal is elastically
deformed, and this all requires a lot of free energy. If some part of this energetically
unfavourable region is replaced by foreign particles, free energy is decreased. This
decrease of energy therefore generates a structural force, which should drive small
particles into topological singularities.

There are several experimental studies and numerical simulations predicting and
showing the effects of thismechanism. In one of the studies, polymerswere used tofill
the singular disclination lines of the blue phase of liquid crystals in order to stabilise
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Fig. 2.47 Series of snapshots of nanocolloids attracted into microparticle-induced topological
defects. The distorted region around nanocolloids exhibits a, c dipolar and b, d Saturn ring
(quadrupolar) configuration. Nanocolloidal size is 90nm. Micrograph size is 13 × 13µm2

this phase, therefore increasing the phase temperature into the isotropic phase. If the
included monomers are polymerised, this results in a cross-linked polymer structure
following the blue phase disclination lines [5, 120]. Even more, the liquid crystal
can be removed and infiltrated with another liquid crystal, causing the temperature
range of the blue phase to increase significantly. In a different study, 2.3µm colloids
were infiltrated into the Saturn ring of a bigger colloidal particle, resulting in a
necklace-like decorated Saturn ring, electrically equivalent to a split ring resonator.

Details of the mechanism of inclusion of nanoparticles into defect lines were
studied by Ryzhkova et al. [118] with 90nm diameter silica colloids, interacting
with Saturn rings and hedgehog defects around 5µm silica micro-spheres. Laser
tweezers were used to position 90nm diameter nanoparticles in the vicinity of the
bigger silica micro-sphere where they were released. Because these bigger particles
generate either a Saturn ring or a point hedgehog defect, nano-colloids are attracted
towards these topological singularities, as presented in Fig. 2.47. The upper set of
panels shows snapshots of a small nanocolloid (indicated by the arrow) which is
attracted towards the hedgehog point defect on the right side of the bigger colloid.
This attraction is anisotropic, and the small particle, which is of dipolar symmetry,
is driven from the side into the point defect core. For quadrupolar particles, the
symmetry of the interaction is quite different, as the particle is attracted directly to
the core of the point defect, as shown in Fig. 2.47b.

The lower two panels (c, d) in Fig. 2.47 show the interaction of a dipolar
(Fig. 2.47c) and a quadrupolar nanoparticle (d) with the Saturn ring of the bigger
colloidal particle. In both cases the nanocolloids are attracted to the Saturn ring at
an angle of approximately 45◦, and there is no detectable difference in the dynamics
of either the dipolar or the quadrupolar nanocolloids.

The binding energies of nanocolloids into the singularities were determined by the
particle tracking technique and are plotted in Fig. 2.48 for 450, 270 and 90nm col-
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Fig. 2.48 Dependence of nanocolloid binding energywithmicroparticle-induced point and Saturn-
ring defects in 5CB

loids. For 90nm nanocolloids, which are the smallest colloids that could bemeasured
in this geometry, the binding energy is still significant and ranges from 300–600kBT .
Smaller particles are practically not traceable, because of the strong scattering of
illuminating light from the disclination lines. Nevertheless, even these results clearly
show that sub-100 nm particles could easily be trapped into the Saturn rings. An
interesting study of the interaction of colloidal nanoparticles of different shapes was
performed by Senyuk et al. [112]. Here, the higher reflectivity of metal particles
allowed for a reliable and easier observation of aggregation of nanocolloids in liquid
crystals.

Fig. 2.49 BODIPY amphiphilic molecules self assemble in liquid crystal defects. a, d The –1/2
disclination shown in bright-field micrograph. b, e The uniform distribution of BODIPY monomer
molecules is seen in fluorescence micrographs taken at the emission wavelength 510–562 nm.
c, f The distribution of BODYPY (panel c) and BODIPY-C5 (panel f) in and around the –1/2
defect line in nematic liquid crystal 5CB as seen in the fluorescent images taken at the emission
wavelength 606–684 nm. Scale bars 20µm. g Super-resolution fluorescence image showing details
of distribution of PC-C12 inside –1/2 disclination line in 5CB. Scale bar 100 nm. Reprinted by
permission from Macmillan Publishers Ltd: Nature Materials 15, 106 (2015), Xiaoguang Wang,
Daniel S. Miller, Emre Bukusoglu, Juan J. de Pablo and Nicholas L. Abbott, copyright (2015)
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Quite recently, Wang et al. [121] presented interesting images of self-assembled
molecular structures,whichwere infiltrated into the core of the –1/2 disclination lines,
including the Saturn rings. They studied the aggregation of fluorescent molecules
of BODIPY, conjugated to different fatty acids and dispersed in the nematic liquid
crystal 5CB.Additional colloidal particles were introduced into the 5CBwith a chiral
additive, which created clearly visbile disclination lines, similar to knotted colloidal
structures.

BecauseBODIPY is a fluorescentmolecule that changes the initial spectrumwhen
forming self-associated structures of the amphiphiles, it was possible to trace and
detect any significant trapping and collective assembly of these molecules into the
–1/2 disclination lines. For BODIPY alone, dispersed in 5CB, there was no flu-
orescent contrast between the disclination lines and the nematic surroundings, as
illustrated in Fig. 2.49a–c. However, when BODIPY and the conjugated amphiphile
were added above the critical concentration of 95µm, fluorescent contrast was
clearly resolved from the –1/2 line as shown in panel (f) of Fig. 2.49. Using the

Fig. 2.50 Formation and cross-linking of self-assembled amphiphilic molecules infiltrating a –1/2
Saturn ring. a Bright field of a Saturn ring. b Fluorescence image of a distribution of lipid DIYNE
PC doped with BODIPY-C5 in nematic liquid crystal 5CB. c Schematic picture of a Saturn ring
encircling the spherical particle. d, e The distribution of diyne PC in isotropic nematic 5CB as seen
in bright field (d) and fluorescence images (e). f Fluorescence images of a polymerised Saturn ring
core with diameter of 20nm that was released from the equator of the microparticle. Scale bars
50µm. g TEM image of the polymerised core of the Saturn ring shown in f. Scale bars 100nm
(main image); 20nm (inset). Reprinted by permission from Macmillan Publishers Ltd: Nature
Materials 15, 106 (2015), Xiaoguang Wang, Daniel S. Miller, Emre Bukusoglu, Juan J. de Pablo
and Nicholas L. Abbott, copyright (2015)
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super-resolution optical microscopy (STORM), it was actually possible to image the
fluorescence of another fluorescent molecule (ATTO) which were trapped into the
core of the –1/2 defect, as shown in Fig. 2.49g. The width of this region was of the
order of 80 nm. Images with better resolution were obtained from BODIPY-labelled
amphiphiles assembled in –1/2 defect lines by using cryogenic transmission elec-
tron microscopy. This showed ordered tubular-like structures of BODIPY-labelled
amphiphiles in the cores of disclination lines. The assembly of individual molecules
into the cores of the –1/2 disclination lines is therefore possible because these mole-
cules spontaneously form a kind of a collectively ordered tubular structure (phase)
and interact among themselves.

Topological defect lines were used as a template for directing the BODIPY-C5
self assembly, as shown in Fig. 2.50. Here, the Saturn ring around a colloidal particle
was filled with BODIPY-C5 amphiphiles (Fig. 2.50a–c), which could reversibly be
dissolved back to the nematic liquid crystal by heating it into the isotropic phase.
By using photoreactive lipids, the self-assembled amphiphile structures could be
polymerized in the core of the disclination loop, which could be diss-assembled from
the colloidal particle by heating it into the isotropic phase, as shown in Fig. 2.50f.
TEM images in Fig. 2.50g clearly prove the lamellar structure of amphiphiles, self
assembled in the cores of the –1/2 disclination loops.

2.7 Vortices and Nematic Colloids

So far, we have considered topological defects, which are singularities of the order
parameter tensor, appearing as points and closed loops in nematic colloids. Yet,
there is another, less studied class of nonsingular defects in nematics, which was first
observed by Williams et al. [122] in their studies of nematic topological defects in
capillaries. They noticed that the free energy, which is stored in a singular defect,
could be released by escaping of the director into the third dimension. In the case
of nematic liquid crystals in a capillary, the point defects situated on the axis of the
capillary could escape along this axis, leaving behind a smooth, but splayed nematic
liquid crystal. This escape strongly reduces spatial variations of the nematic order
and prevents local melting of the nematic due to high elastic deformation. This class
of defects is rarely observed in Nature.

Interestingly, the first signs of nonsingular defects binding colloidal particles
were reported by Poulin et al. [72], who observed a tubular-like, smoothly deformed
region between two tightly bound colloidal particles in an achiral nematic liquid
crystal. They called this kind of binding the “bubble-gum” defect, because it could
be stretched continuously like a bubble-gum, connecting the two colloidal particles.
Whereas this kind of binding is rarely observed in achiral nematic colloids, it turns
out that chirality strongly promotes this kind of topological defects. Somehow, chiral
liquid crystal environment triggers and stimulates a transformation of singular point
defects into nonsingular structures, as will be discussed further on.
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When silica particles with perpendicular surface anchoring are introduced in a
chiral nematic liquid crystal with rather low chirality, interesting phenomenon of a
spontaneous formation of a “bubble-gum” colloidal binding is observed [123]. An
example is shown in Fig. 2.51 where 4.72µm silica microspheres with perpendicular
surface alignment were introduced into a 5CB-filled glass cell of 8µm thickness and
a total twist of 90◦. This twist was imposed by rubbing both surfaces of the cell in
perpendicular directions.One can see fromFig. 2.51a that colloidal particles appear in
a form of dipoles, with their axes tilted at 45◦ with respect to both rubbing directions,
which are in this case horizontal and vertical on either surface. This orientation of the
dipole is not surprising, as the point hedgehog chooses its orientation in the middle
of the cell, where it is located and the director is oriented there at 45 degrees. By
bringing the two particles at a separation of approximately∼10µm, the particles are
strongly attracted to each other, as shown in the sequence of frames in Fig. 2.51a.
Whereas in a usual case of achiral nematic such two dipoles would bind together
with their dipoles antiparallel, another mechanism is obviously acting in the chiral
nematic liquid crystal. As seen from the last panel of Fig. 2.51a, both point hedgehogs

Fig. 2.51 a In a 90◦ TN cell, two antiparallel dipolar colloidal particles spontaneously fuse into a
“bubble gum” dimer. b An isotropic droplet formed by the laser tweezers separates the particles.
After switching off the light, the particles are attracted by two thin birefringent lines. Note the
difference between final states in a and b. c Separation dependence of the attractive potential
determined from a (circles) and b (squares). d The corresponding forces. Cell thickness h = 8µm
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somehow fuse together and form an axially symmetric, tubular-like structure, which
is connecting both particles. The line orienting their centres of gravity is now oriented
at 45◦, i.e. along the director in the middle of the twisted cell.

By using the laser tweezers, one is able to melt the liquid crystal forming this
tubular bond, pushing the particles apart, as shown in Fig. 2.51b. After the light is
switched off, the tubular-like bond is reconstructed in a fraction of a second, forming
a string-like elongated region, pulling both particles together. When reaching the
equilibrium, the original binding is recovered, as shown in the last panel of Fig. 2.51b.
Using the particle tracking method, one could reconstruct the separation dependence
of the force (Fig. 2.51d) and the attractive pair potential. The structural force due to
this nonsingular binding is typically ten times bigger compared to singular binding
and so is the corresponding potential. It reaches values of ∼10.000 kBT , which is
the highest value observed for binding of nematic colloids.

These strings, observed in Fig. 2.51b are characteristic of the escaped nonsin-
gular ring disclination, which must have been created from two singular hedgehog
defects, which were present at the beginning of the experiment. R.B. Meyer pro-
posed the “director-field escape” mechanism [124] which transforms two hedgehog
point defects belonging to the antiparallel pair of dipoles into a toroidal escaped
and nonsingular disclination loop, encircling the line linking two interacting col-
loidal particles. Topologically, such a smooth loop carries a topological charge of
–2 with the local winding number of –1. These escaped hyperbolic defect rings are
extremely rare in planar cells but are ubiquitous in chiral nematic liquid crystals,
which indicates that the chiral environment increases the relative stability of nonsin-
gular topological structures. This chiral environment embedding colloidal particles
therefore has a similar role as the chiral spin-orbit interaction in magnetic systems,
which generates magnetic vortices and skyrmions. A detailed analysis of the optical
appearance of nonsingularly bound colloidal dimers in chiral nematic cells clearly
shows that there are actually two types of dimers, which are optically different, as
illustrated in Fig. 2.52a–f.

Because there are two different colloidal dimers observed in the experiments in
chiral nematic cells, one immediately conjectures that these two types of colloids
should differ in their chirality. This means that somehow the nonsingular, elastically
distorted field connecting both particles is intrinsically chiral, and there are two pos-
sibilities for the chirality of this region: a left-handed or a right-handed structure. So
how could this chiral region be generated from two hyperbolic hedgehog defects?
The answer is the way how these two point defects could escape and form a non-
singular structure. The mechanism is illustrated in Fig. 2.52g–j. It shows the cross
section of a singular hyperbolic line, where the order parameter of the defect core is
low due to strong splay deformation. This stress is released if the director escapes
into the third dimension, i.e. out of the plane of the Fig. 2.52g–i. Because of this
escape, the singularity of the director field in the centre of the originally singular
defect line disappears and a nonsingular escape director field is established with
minor variations of the order parameter and lower free energy. By connecting the
escaped defect line into a loop, a chiral object is created, with the symmetry of a
belt-like object shown in Fig. 2.52j. As the director field could escape in two different
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Fig. 2.52 a Two colloidal dimers of different chirality in a 90◦ right-twisted cell (R). Energetically
preferable left twisted dimer (L-dimer) between crossed (a, b) and parallel (c) polarisers. R dimer
between crossed (d, e) and parallel polarisers (f). The R-handed nematic twist is indicated in a and
d. Scale bar in a–f is 2µm. g Cross section of a non-escaped hyperbolic line. h, i Escaping of (g)
into the third dimension. j The escaped hyperbolic rings are chiral. Dark solid lines show the local
director. k Left-handed and l right-handed escaped colloidal dimer, calculated from LdG theory.
Colour arrows indicate handedness of rings
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Fig. 2.53 aAnisotropy of attraction between twoL-colloidal dimers in a 90◦ R-twisted cell. Starting
positions are labelled 1–12, ending positions of the approaching dimer are drawn. b Separation
dependence of the attractive potential between two colloidal dimers of opposite chirality, determined
for trajectories starting from positions No. 3 and 5, presented in a. Cell thickness h = 8µm

directions, two different chiral belt-like objects could therefore be created, as shown
in the cross sections in Fig. 2.52h and i. The 3D illustration of these chiral belt-like
objects is shown in Fig. 2.52j, clearly illustrating their chirality. Here the left-handed
belt is viewed in themiddle and one also sees the right-handed belt, therefore we have
two different and non-superposable chiral objects. This hypothesis of the escape of
the hyperbolic line defect was supported also by an extended LdG analysis of the
colloidal pair interaction in twisted nematic cells. The results of the modelling are
shown in Fig. 2.52k and l. There are indeed twometastable dimer configurations with
opposite handedness of the elastically distorted region between the two particles.

It was not surprising to find that colloidal dimers interacted strongly with each
other, leading to the formation of dimer clusters, chains, and 2D colloidal crystals
in as-prepared samples [123]. The reason for this interaction is quite simple, as
each colloidal dimer represents a new colloidal entity, which creates significant elas-
tic distortion of the liquid crystal surroundings. Two colloidal dimers are therefore
expected to interact elastically, and this interaction is analysed using the laser tweez-
ers tomanipulate a selected chiral colloidal dimer. Figure2.53a shows the schematics
of the experimental arrangement, where one colloidal dimer was kept in the centre
of the field of view, and the other colloidal dimer of the same or opposite chiral-
ity was positioned close to the first dimer. After being released, dimer trajectories
in Fig. 2.53a are clearly attracted from any of the starting positions 1−12, and the
dimers spontaneously pack into a square 2D lattice in short time.

The strength and the range of the dimer pair potential were measured using video-
microscopy and particle tracking technique described in Chap. 3 and are shown in
Fig. 2.53b. The pair interaction is quite strong and is of the order of 5.000 kBT per
5µmdiameter particle.Dimers of opposite chirality exhibit roughly the same binding
strength as the dimers of the same chirality. This means that using this dimer pair
colloidal interaction, one is able to assemble rather large 2D colloidal crystals with
pure chirality of dimers (either left (L) or right (R)) or mixed chirality.

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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Fig. 2.54 2D colloidal crystals assembled from chiral dimers by laser tweezers. a L dimers in
R-TN cell between crossed and d parallel polarisers. R dimers in R-TN cell between crossed b and
parallel polarisers e. c 2D mixed colloidal crystal from equal number of R and L dimers between
crossed and f parallel polarisers. Note the colour difference between R and L dimers. Scale bar
in a–f is 5µm. g L and h R colloidal crystals, as obtained from numerical modeling in R-handed
nematic. The iso-surface corresponds to the geometrical escape parameter S = 0.8. Colour arrows
indicate handedness of the ring

Figure2.54 shows three selected 2D colloidal crystals, assembled from chiral col-
loidal dimers. Figure2.54a and b present L-handed and R-handed colloidal crystals,
respectively, whereas Fig. 2.54c presents mixed (L+R) chirality colloidal crystals.
One can see from the images taken between parallel polarisers that there is a clear
optical difference between L- and R-handed crystals; this becomes even more evi-
dent when crystals are observed between crossed polarisers. Colloidal interaction in
chiral nematic crystal cells therefore provides for an easy assembly of chiral colloidal
crystals, which might be interesting for optical applications. In all cases shown in
Fig. 2.54, the unit cell is square with basis, which is quite a rare example in colloidal
crystals and is most likely due to the very specific nature of the angular dependence
of the pair colloidal interaction.
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2.8 Ferromagnetism in Dispersions of Magnetic Platelets in
Nematic Liquid Crystals

It was predicted in 1970 by Brochard and de Gennes [51] that a truly fluid ferro-
magnetic phase could be stable in dispersions of magnetic nanoparticles in a nematic
liquid crystal. In a ferromagnetic nematic, the orientational order of the nematic liq-
uid crystal imposes spontaneous and collective orientational ordering of anisotropic
magnetic nanoparticles and a collectivemagnetic ordering appears. This spontaneous
magnetization of a nematic is quite different than the magnetization in ferro-fluids,
which is induced only by the presence of an external magnetic field. This prediction
inspired many experiments, in which magnetic nanoparticles of different shapes and
sizes were dispersed in the nematic liquid crystal. No ferromagnetism was observed
in suspensions of spherical or ill-defined magnetic particles until the experiments
were reported by A. Mertelj et al. in 2013 [125, 126] in nematic dispersions of thin
magnetic platelets.

When monodomain magnetic nanoparticles are dispersed and entropically sta-
bilised in isotropic liquids, one obtains a ferrofluid. This is a stable colloid disper-
sion of magnetic nanoparticles that behaves as a paramagnetic or superparamagnetic
fluid. Because individual nanoparticles are so small, they are repealed either by the
entropic stabilisation (i.e. their vivid Brownian motion) or the electric double-layer
repulsion. Due to thermal movement, there is no macroscopic magnetic moment
of such an ensemble of magnetic nanoparticles. However, when an external mag-
netic field is turned on, individual magnetic moments tend to align along the field
direction, which causes aggregation of nanoparticles in nanocolloidal chains. The
chaining of particles along the lines of the external magnetic field is somehow sim-
ilar to the chaining of colloidal particles in the nematic liquid crystal, discussed in
Sect. 2.3.1. This chaining has two important consequences: (i) because of the mag-
netic chains, the viscosity of a ferrofluid increases with increasing magnetic field,
and (ii) because of the magnetic ordering, the magnetic susceptibility is increased
and the fluid behaves as a (super) paramagnet.

Previous experiments with magnetic nanoparticle dispersions in nematic liquid
crystals either used rod-shaped magnetic nanoparticles such as ferrite, or the shape
of the nanoparticles was not well defined. They all resulted in the aggregation of
nanoparticles introduced in the nematic liquid crystal. This aggregation could be
avoided by using a very diluted suspension of elongated ferromagnetic particles
dispersed in the nematic liquid crystal. Because of the strong dilution, the interactions
between themagnetic particles are very small and nomacroscopicmagnetisationwas
observed in the experiments. Typical response of such a diluted magnetic dispersion
was paramagnetic, which contributed to the overall response of the nematic director
to an external magnetic field, but no true ferromagnetism was observed.

We have discussed in Sects. 2.6.1 and 2.6.2 the interactions and self-diffusion
of nanoparticles of different shapes in the nematic liquid crystal. These kinds of
nanoparticles are typically made of silica glass or other isotropic material, and in
nematic dispersion they experience pair-interaction forces, which are the nematic
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colloidal forces. These forces are of elastic origin and are strong enough to induce
spontaneous aggregation of nanoparticles on a longer term. The nanoparticles expe-
rience a rapid Brownian motion and, at a given concentration, spontaneously form
aggregates, which act as bigger trapping sites for other nanoparticles until practi-
cally all nanoparticles are aggregated and expelled to the confining surfaces. This
mechanism of aggregation is effective down to the 20 nm diameter of nanoparticles.
It is therefore clear that another, repulsive, force is needed, which could compensate
the attractive nematic colloidal force of elastic origin. If the colloids are made of
an isotropic material, it would be possible, in principle, to stabilise nanocolloidal
dispersions by surface charging of nanoparticles. This electric repulsion between
silica nanoparticles coated with DMOAP was in fact observed in the experiments.
However, the spontaneous charging of silica nanoparticles in the nematic liquid crys-
tal does not assure enough electrical charge on nanoparticles to counterbalance the
attractive elastic colloidal force.

In contrast to the experiments using rod-likemagnetic particles,Mertelj et al. [125]
used ferromagnetic platelets made of barium hexaferrite. The platelets used were
quite thin, around 5 nm, and the distribution of the platelet diameterwas around 70nm
with a rather large standard deviation of 3.8 nm. TEM image of barium hexaferrite
magnetic platelets is shown in Fig. 2.55b.

Barium hexaferrite has high magnetocrystalline anisotropy with spontaneous
magnetisation perpendicular to the plane of the platelets. When such platelets are
dispersed in the nematic liquid crystal, the liquid crystal molecules are anchored per-
pendicular to the surface of the platelets. Each platelet therefore acts as a pancake-like
colloidal particle with homeotropic surface anchoring. Such a platelet is therefore an
elastic quadrupolar particle interacting elastically with neighbouring platelets, which
are also elastic quadrupoles. We know from Sect. 2.3.2 that elastic quadrupoles inter-
act in a very anisotropic way. In a planar nematic cell, the quadrupoles tend to form
kinked chains with their direction of attraction at an angle of approximately 50◦ with
respect to the director. For a different mutual orientation of the line joining a pair of
colloidal particles, the elastic interaction is purely repulsive. However, our platelets
are not only pancake-like colloidal particles, they also carry a rather large sponta-
neousmagneticmoment, which is oriented perpendicular to the platelet, as illustrated
with a red arrow in Fig. 2.55a. Now, the magnetic interaction between two ferromag-
netic platelets is also important and this interaction is repulsive at the angle where
the platelets are elastically attracted. There is therefore a competition between the
elastic colloidal interaction and magnetic interaction. This competition is of course
non-trivial in nature, but the experiments show that it results in a spontaneous and
macroscopic ordering of magnetisation of dispersed nanoplatelets.

When a suspension of magnetic platelets with number concentration of
10+13 − 10+14 cm−3 in the nematic liquid crystal 5CB is introduced into a planar
glass cell, the suspension is first kept at a temperature above the nematic-isotropic
transition of 5CB. If such a sample is slowly cooled down, one observes sponta-
neous segregation of magnetic nanoplatelets in elongated aggregates. This aggrega-
tion is due to the appearance of many domain interfaces between the isotropic and
nematic phase during slow cooling. These interfaces act as extremely efficient trap-
ping sites for dispersed nanoplatelets and collect practically all nanoparticles during
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Fig. 2.55 Organisation of magnetic platelets in a nematic liquid crystal matrix. a A schematic
drawing of the platelets (red discs), the nematic director field (blue lines) and the lines of magnetic
field (orange lines). Small blue dots represent the cross-sections of the tiny Saturn rings around
each platelet. The magnetic moments of the platelets are indicated by red arrows. b TEM image
of barium hexaferrite platelets lying flat on a surface. Reprinted by permission from Macmillan
Publishers Ltd: Nature 504, 237 (2013), Alenka Mertelj, Darja Lisjak, Miha Drofenik and Martin
Čopič, copyright (2013)

slow cooling down. According to the experiments, the situation is quite different if
the sample of magnetic nematic suspension is quenched from the isotropic phase
into the nematic phase in a small magnetic field of approximately 5–10 mT. In this
case, there is no formation of well-developed domain walls andmuch less trapping of
nanoparticles as well asmuch less extraction of nanoparticles from the nematic liquid
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Fig. 2.56 Ferromagnetic domains in the planar nematic can be switched by an external magnetic
field. All images are taken under crossed-polariser P and analyser A as shown in a. a In the absence
of magnetic field, the ferromagnetic nematic is uniformly ordered. b, c An external magnetic field
of 3.2 mT is applied either along the director (pointing to the right), or in the opposite direction,
pointing to the left in c. dMagnetic field of 16 mT is applied perpendicular to the nematic director,
which induces the formation of domain walls, visible as dark lines. Platelet concentration in 5CB
is 0.16 wt%. Reprinted by permission from Macmillan Publishers Ltd: Nature 504, 237 (2013),
Alenka Mertelj, Darja Lisjak, Miha Drofenik and Martin Copic, copyright (2013)

crystal to the defect cores. Initially, small domains of several micrometer diameter
are formed, which grow up to macroscopic domains of several hundred microme-
ters. If the external magnetic field is applied in-plane of such a rapidly quenched
ferromagnetic nematic suspension, the magnetic response is linear in the field, and
therefore depends on the direction of the field as illustrated in Fig. 2.56.

The first panel in Fig. 2.56a shows the ferromagnetic dispersion of barium hexa-
ferrite in 5CB between crossed polarisers, with the director pointing horizontally.
If an in-plane magnetic field is applied along the director and is pointing to the
right side, one observes the appearance of domains. These domains are brighter,
which indicates that the nematic liquid crystal is distorted by the external magnetic
field. If the direction of the magnetic field is reversed, the contrast of the domains
is also reversed. The originally dark domains become brighter and the originally
bright ones become darker. Therefore, we have two types of spontaneously formed
domains, which differ in their response to the external magnetic field. Only one kind
of domains responds to the field which is parallel to the nematic director, and the
other type responds when the direction of the field is reversed. If the magnetic field
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is applied in the direction perpendicular to the director, one observes switching of
both types of domains and the domain walls become clearly visible, as shown in
Fig. 2.56d. This behaviour clearly shows that the spontaneous magnetisation of the
ferromagnetic-nematic dispersion is along the director and that two types ofmagnetic
domains are formed, with magnetisations in opposite directions. This is a clear proof
of spontaneously appearing ferromagnetism in a dispersion of barium hexaferrite
nanoplatelets in the nematic liquid crystal 5CB.

Having two types of magnetically ordered domains in the nematic matrix, one
should be able to observe the ferromagnetic hysteresis loop when such a sample
is exposed to an external magnetic field varying in magnitude and direction. These
magnetisation curves were indeed observed in ferromagnetic-nematic suspension
using vibrating-sample magnetometer and are shown in Fig. 2.57. The hysteresis
loop indeed shows the presence of a spontaneously formed ferromagnetic liquid
state. It clearly shows magnetisation saturation and the coercitive magnetic field,
which is of the order of several mT at a platelet concentration of 0.3 wt%.

Ferromagnetic response of a nematic liquid crystal is possible because the col-
loidal interactions between ferromagnetic solid platelets prevent aggregation of
platelets and produce macroscopic spontaneous magnetisation. The shape of the dis-
persed solid particles is very important for the onset of spontaneous polar order,
as well as the quadrupolar symmetry of the elastic deformation of the nematic
liquid crystal around such a colloidal inclusion. With rod-like particles, dipolar

Fig. 2.57 Hysteresis loops of the measured magnetisation of monodomain ferromagnetic nematic
samples. The magnetisation curves are different for different concentrations of the particles. When
the concentration of the platelets is small, themagnetisation returns reversibly to its initial value. For
larger concentrations, the magnetisation curve shows a well-developed hysteresis, which is centred
around zero. Reprinted by permission from Macmillan Publishers Ltd: Nature 504, 237 (2013),
Alenka Mertelj, Darja Lisjak, Miha Drofenik and Martin Copic, copyright (2013)
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symmetry would be induced, which would promote dipolar chaining of colloidal
particles along the nematic director. At the same time, this colloidal chaining would
also be favourable for stacking of magnetic dipole moments in a registry. This would
result in overall chaining of rod-like magnetic inclusions, which is in favour of
both interactions. On the other hand, quadrupolar symmetry of the elastic distor-
tion around the magnetic platelet with magnetic moment perpendicular to it causes
repulsion between two platelets placed collinearly and along the direction of mag-
netisation. This quadrupolar interaction becomes attractive at an angle of around
50◦ between the two platelets, but then the magnetic interaction becomes repulsive.
Overall, the competition of both interactions reduces the total interaction energy to
less than kT , but is still sufficient to induce ferromagnetic ordering by the magnetic
interaction.

A ferromagnetic nematic liquid crystal is therefore a liquid, which shows all the
common properties of a magnet. Monodomain samples of uniform magnetisation
can be prepared by cooling in an external magnetic field. By reversing the magnetic
field, the magnetisation can be flipped and the material shows domain walls and
their motion. Such a material is therefore a combination of an ordered fluid and an
ordered magnetisation field, which mutually interact. It can therefore be considered
as a multi-ferroic fluid, in which the application of an external electric field couples
to the dielectric anisotropy of a liquid crystal and induces change of the magnetic
properties due to the coupling of two fields. Vice versa, the external magnetic field
couples to the magnetisation and thus promotes change in the dielectric constant of
the nematic field, which is coupled to the magnetisation field. Because of its fluidity
and softness, a ferromagnetic nematic liquid crystal is an intriguing new material
that responds to very small magnetic fields and might find use in new devices.

Whereas ferromagnetism in an ordered fluid is by itself a fascinating phenomenon,
it opens up new and interesting questions, such as the mutual interplay of nematic
ordering andmagnetisation, long range orientational order and the nature of topolog-
ical defects [127, 128]. These are separately well-explored in nematic liquid crystals
and in magnetism. By merging both fields, a new class of topological defects should
emerge, where the singularities of the tensorial ordering field andmagnetisation field
are coupled.

2.9 Forces Between Particles in Chiral Nematic Liquid
Crystals

Chirality of the medium in which the colloidal particles are dispersed has a strong
influence on the pair-interaction forces. It will be shown in Chaps. 5 and 6 that
chirality promotes colloidal entanglement up to the most complex form of colloidal
knotting and linking. This makes the topology of chiral nematic colloids very rich in
various topological phenomena. In this section we shall discuss the effect of chirality
of the nematic liquid crystal on the long-range interaction of colloidal particles.

http://dx.doi.org/10.1007/978-3-319-54916-3_5
http://dx.doi.org/10.1007/978-3-319-54916-3_6
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Fig. 2.58 Colloidal pair-attraction in chiral nematic cells. a Snapshots of a colloidal pair in a
2π cell demonstrate metastable state in the pair-interaction. Between 120 and 360s the particles
fluctuate at a practically fixed separation. b In 3π cell, the particles are temporarily bound between
180 and 600s. c Trajectory of a particle approaching a second particle in a 2π cell. Metastable state
is shaded. d Colloidal trajectory in a 3π cell reveals three metastable regions

In view of the spatial periodicity of the chiral nematics, it is natural to expect that
the pair-interaction force between two colloidal particles reflects the signature of
periodicity of the chiral nematic liquid crystal. Indeed, the experiments of Jampani
et al. [129, 130] revealed the oscillatory nature of the pair-interaction force in chiral
nematic colloids and screening at large separations. These are new phenomena that
are not observable in non-chiral nematic colloids and are attributed solely to the
chirality of the system. Jampani et al. [129, 130] have used silica particles with a
diameter of d = 4.7µm treated with DMOAP to obtain strong perpendicular surface
anchoring. The particles were dispersed in right-handed nematic cell of 5CB doped
with various amounts of chiral dopant CB15 to tune the helical pitch p. The thickness
of the liquid crystal was held constant to h = 5 − 6µm and the amount of chiral
dopant varied between the experiments tomatch amultiple of half-pitch h = N (p/2)
in glass cells, which are denoted as Nπ cells.
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Fig. 2.59 Metastable states
and the pair-interaction
potential for chiral nematic
colloids. The time evolution
of the surface-to-surface
separation of a pair of
colloidal particles with a
diameter of 4.7µm in a
chiral nematic liquid crystal
with variable chirality. The
inset shows the
pair-attraction in planar,
homogeneous liquid crystal
cell

The forces between colloidal particles were measured by positioning a selected
pair at the starting centre to centre separation of several µm. After the particles were
released form the optical trap, their movement was video-monitored, which allowed
for the reconstructionof their trajectories and calculationof pair interaction forces and
pair interaction elastic potentials. Figure2.58a shows snapshots of the colloidal pair
in the 2π cell during their interaction, indicating that in the time interval 120–360s,
their separation does not change substantially. The pair exhibits Brownian motion
around their centres of gravity, as if they experienced a local energy minimum.
Similar behaviour of temporal arrest in a local energy minimum is also observed for
higher chirality, such as in the 3π cell illustrated in Fig. 2.58b.

The reconstructed trajectories from Fig. 2.58a, b are shown in Fig. 2.58c, d and
clearly show the existence of a singleminimum for a 2π cell and two localminima for
a 3π cell. In both cases, the particles spent some time in the local energy minimum,
typically several hundreds of seconds for 2π and 3π cells. The particles would
eventually be kicked out of this metastable state by thermal fluctuations and start
a rapid approach, which always ends with a spontaneous entanglement of the two
colloidal particles.

The experiments clearly indicate that the number of metastable states in chiral
nematic colloids depends on the chirality of the surrounding liquid crystal. By con-
ducting experiments in chiral nematics with a higher twist, the number of metastable
states is increased, as shown in Fig. 2.59. We can also see that the strength of the
pair-interaction decreases with increasing chirality, because the time the two colloids
need to come into the final state is longer for higher chirality. Whereas it takes only
80s in a planar cell, 4min are needed in a π cell and 45min in a 4π cell. The second
conclusion is that the number of metastable states increases with increased chirality.

The energies of these metastable states in chiral nematic colloids are analysed
by calculating the work done by the attractive colloidal force mediated by the chiral
nematic liquid crystal and the results are shown inFig. 2.60a.Here, the pair interaction
potential is shown as a function of time for various chirality. The metastable states
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Fig. 2.60 a Elastic energy
of a 4.7µm colloidal particle
as a function of time, as it
approaches the second
particle, shown for cells with
different chirality. b Critical
starting separation for the
colloidal pair-attraction as a
function of chirality. c
Critical separation for the
onset of spontaneous
entanglement as a function
of chirality

are clearly observable as nearly flat parts of the energy-vs-time curve. When the
Brownian motion of colloidal particles in these metastable states is analysed, the
depth of this local potential well is several kBT .

The experiments indicate that the colloidal pair interaction is strongest when the
helical period p is equal to the diameter of the colloid p = 2R, as indicated by the
blue triangles in Fig. 2.60a. If the chirality is increased, the colloidal pair interaction
becomes weaker. The analysis shows that the colloidal interaction can be separated
into the far field and near field sections and the range decreases with increasing
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chirality. To characterise this decrease of the pair interaction force with increasing
chirality, the critical pair separation was determined for each chirality, as shown
in Fig. 2.60b. If the starting separation is larger than the critical, the colloids do
not attract within a reasonable time of measurement, which is several hours. If the
starting separation is smaller than the critical, the pair attracts and finally entangles.
Figure2.60b clearly shows that the critical pair separation decreases linearly with
increasing chirality. This could be explained by considering the spatial dependence
of the interaction which is carrying a perturbation. At Nπ turns of the director, the
perturbation is a N -times scaled down version of the field at π turns. This scaling
of all distances with the pitch is also observed in the positions of metastable states
(Fig. 2.59), which makes the range of interactions shorter with increasing chirality.
Similar screening of the pair interaction is observed for the near field where the
entanglement takes place, as shown in Fig. 2.60c.

The structure of the Saturn ring defects around silica microspheres with per-
pendicular surface anchoring was also studied in cholesteric liquid crystals with
a variable pitch by Gvozdovskyy et al. [131]. The pitch was varied by illuminat-
ing the chiral nematic mixture, which responded to the light by a change in the
pitch. Spontaneous winding of the Saturn ring around each colloidal particle and the
interaction with the Gradnjean-Cano lines was observed. An interesting experiment
with the colloidal particles in the chromonic liquid crystals revealed spontaneous
twisting of the chromonic liquid crystal structure around the inserted particle Nych
et al. [132]. There is a number of theoretical (Lintuvuori et al. [133, 134]) and exper-
imental [113, 134, 135] studies of the spontaneous aggregation and interaction of
colloidal particles in chiral nematics.



Chapter 3
Optical Trapping and Manipulation
of Nematic Colloids

Abstract The chapter starts with discussion and analysis of optical trapping of
particles in isotropic fluids and then continues with a question why optical trapping
in nematic colloids is so different compared to the isotropic liquids. Different mech-
anisms of this anomalous trapping in birefringent fluids are discussed and optical
techniques of measuring the forces between nematic liquid crystals are presented in
details.

3.1 Optical Tweezing of Particles in Isotropic Media

Small particles can be trapped and moved by a strongly focused laser beam if they
are transparent and their index of refraction is larger than the index of refraction of
the surrounding medium. This phenomenon was discovered in 1970s with the advent
of the first commercially available lasers and triggered an intense research of laser
optics. In 1966, Rawson and May [136] and soon later May et al. [137] reported that
small dust particles inside a cavity of the He-Ne laser were trapped and accelerated
by light to move along straight or kinked trajectories. These phenomena are caused
by an intense and spatially non-uniform electromagnetic field of a Gaussian laser
beam. They were explained using a simple physical picture in terms of radiation
pressure of photons refracting on the surfaces of particles.

These pioneering experiments were followed in 1970 by a seminal experiment of
A. Ashkin [138], who was able to show that micron-sized transparent particles could
be accelerated and trapped in stable optical-potential wells, using only the force of
radiation pressure from a 1W of continuous Ar+ laser light at the wavelength of
514.5nm. He was using transparent latex spheres of 0.59–2.68µm diameter, which
were freely floating in water. A TEM00-mode beam of an argon laser with radius of
the waist w = 6.2µm was focused horizontally through a 120µm-thick glass cell
and focused on a single particle. If a beam with milli-Watts of power hits a 2.68µm
sphere off-centre, the sphere is immediately drawn into the beam axis and accelerated
in the direction of the light. The sphere moves with a constant velocity of microns
per second, until it hits the glass wall, where it remains trapped in the beam.
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Fig. 3.1 Gradient optical force in the regime of ray optics. The gradually shaded red boxes represent
the gradient profiles of the incident light, the dark red color indicates high intensity. a Lateral
component of the trapping force. The particle is located on the right side of focal point, so the
intensity of the left ray is bigger than the right ray. Each ray is refracted and transmitted through
the particle, so they have different momenta (p∗

1 and p
∗
2). The momentum changes of both rays Δp1

and Δp2 causes an equal and opposite reaction force, Fnet , which pushes the particle to the left and
towards the focal point. bAxial component of trapping force. Two incident rays with same intensity
and different direction are passing through the particle, which is placed below the focal point. The
resultant momentum on the particle produces an opposite reaction force, which is directed to the
focal point. Image courtesy of M. Nikkhou

In a series of subsequent experiments, Ashkin et al. [139–146] demonstrated
many different variants of laser trapping and manipulation of micrometer dielectric
particles, including amethodwith two counter-propagating and focused argon beams
in a cell with water dispersion of latex spheres. The particles were observed to move
into the brightest part of the beam, where they decelerated rapidly and stopped at a
stable equilibrium point.

Ashkin explained this phenomenon on the basis of ray-optics and considered the
Fresnel refraction of rays of the Gaussian beam on a sphere with a higher refractive
index than the surroundings, as shown in Fig. 3.1. Let us first consider the situation
when the sphere is displaced laterally from the axis of a Gaussian laser beam, as
shown in Fig. 3.1a. We shall consider two rays impinging on the curved surface of
the sphere. The less-intense ray from the edge of the Gaussian beam is refracted
twice on the curved surface of the sphere, and we do not consider the reflected ray,
which gives rise to the scattering force. After exiting the sphere, the direction of this
weaker ray is towards the optical axis. If we now consider the stronger ray in the
centre of the Gaussian beam, we can see that it will be refracted on the sphere in a
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direction pointing away from the optical axis. After passing through the sphere, the
beams will be highly divergent.

We know that each photon carries a momentum, p = �k. Because the direction
of refracted light is changed, so is the momentum of the corresponding photons. The
photons from the more intense part, which carry a larger momentum, are deflected
away from the optical axis and the change of their momentum p∗

1 is directed away
from the optical axis. The photons from the less intensive part of the beam are
deflected towards the optical axis, with the momentum change of p∗

2. In overall the
momentumof light after refraction on the sphereΔp is directed away from the optical
axis.

Because of the conservation of the momentum, this change of momentum of light
Δp is accompanied by a reaction force Fnet , exerted by light on the sphere. This
force Fnet is opposite to the direction of the change of the momentum of light and
therefore points towards the optical axis and towards the focal point. This means that
the light refraction on a sphere forces the sphere to move towards the region of more
intense light. In the end, the sphere will find equilibrium exactly in the centre of
the Gaussian beam, where the light-scattering forces will be totally symmetric and
will cancel each other totally, as shown in Fig. 3.1b. The force due to the change of
the momentum of light caused by refraction is also called the gradient force, or the
trapping force. It is understood that the situation is quite different if the refractive
index of the sphere is smaller than the surroundings, because in that case, the rayswill
be refracted differently. This will cause a gradient force, which will be directed out
of the most intense light field, and the low-refractive-index particle will be expelled
from the beam.

The gradient optical force on a dielectric microsphere can be calculated analyti-
cally in the ray-optics regime (also named Mie regime), as discussed in
Refs. [145, 147–149]. We first consider a single ray of power P hitting a dielec-
tric sphere at an angle of incidence θ , having an incident momentum n1P/c. The net
force on a sphere is given by [148]:

Fz = Fscattering = n1P

c
·
{
1 + R cos 2θ − T 2[cos(2θ − 2ϕ) + R sin 2θ ]

1 + R2 + 2R cos 2ϕ

}
(3.1)

Fy = Fgradient = n1P

c
·
{
R sin 2θ − R cos 2θ − T 2[cos(2θ − 2ϕ) + R sin 2θ ]

1 + R2 + 2R cos 2ϕ

}
(3.2)

In the above expressions, θ and ϕ are the angles of incidence and refraction, c is
the speed of light in vacuum, n1 is the refractive index of the surrounding medium.
The two angles, θ and ϕ are connected via Snell’s law of refraction, R and T are the
Fresnel reflection and transmission coefficients at incident angle θ , which depend on
light polarization.

The Fz component in Eq.3.1. is called the scattering force and acts in the direction
of the incident light. The Fy in Eq.3.2. is the gradient force and is directed towards
the optical axis and the focal point of the focusing lens. The total force on the sphere
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due to reflection and refraction of that ray is the sum of contributions of all reflected
and refracted rays, and are therefore exactly calculable. For beams of complex shape,
such as highly convergent TEM00 laser beam, used in the single-beam gradient trap,
the overall scattering and trapping forces are the vector sums of the scattering and
gradient force contributions of the individual rays of the beam and are therefore
calculated numerically. It can be shown that the gradient force is conservative and
the work of this force along a closed path equals zero. More details can be found in
Ashkin [148].

If the diameter of the microsphere is reduced, we leave the ray-optics regime and
enter into the Rayleigh regime, where the size of the microsphere is much smaller
than the wavelength of the incident light. In this case, we can use induced point
dipole picture, where the scattering and gradient forces are given by Ashkin [145]:

Fz = Fscattering = I◦
c

· 128π
5r6

3λ4
(
m2 − 1

m2 + 2
)nmedium (3.3)

In the above expression, E is the electric field of light, I◦ is the intensity of light,
r is the radius of the particle and m = n2/n1 is the effective index, equal to the
index of the particle divided by the index of the surrounding medium nmedium . The
scattering force is always directed perpendicularly to the wavefronts of the laser light
and therefore pushes the particle in the direction of light propagation.

The gradient force, which is responsible for the stable trapping of dielectric parti-
cles with the dielectric constant larger than the dielectric constant of the surrounding
material, is directed along the direction of the intensity gradient and is given by:

Fy = Fgradient = −n3br
3

2
(
m2 − 1

m2 − 2
)∇E2 (3.4)

The gradient trapping force is therefore directly related to the gradient of the
electric energy, which is therefore the mechanism, responsible for trapping high
refractive index particles. This force is directed towards the regions of highest light
intensity. It is clear that the high gradient of the electric energy of the light field and
the highest trapping force is obtained when the laser light is focused to the smallest
possible dimension, which is limited by the diffraction of light.

If we consider the total electric energy of a dielectric sphere and the surrounding
dielectric medium in the presence of a uniform Gaussian beam, we can conclude that
the electric energy is at its lowest value when the high-dielectric sphere is positioned
in the most intense region of the Gaussian beam. This is because the electric energy
of the sphere in the electric field of the light ray will be the lowest. If the sphere is
moved away from the brightest region, it will be replaced by the material with lower
dielectric constant, which will increase the total electric energy of the system (it is
negative in sign). As a result, the gradient force will appear, which will move the
sphere with the higher dielectric constant into the centre of the Gaussian beam.
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The direction of the gradient force will be opposite if the dielectric constant of the
sphere is lower than the surrounding medium. In such case, it is energetically more
favourable to move the sphere away from the bright region and fill the emptied space
with a higher-dielectric-constant surrounding medium. The low-dielectric-constant
sphere will be therefore expelled from the brightest region of the Gaussian beam.

The gradient force is crucial for the operation of the optical tweezers and provides
for a restoring force, which forces the particle to always move towards the regions
of highest intensity, provided the index refraction of the particle is bigger than the
refractive index of the surrounding medium. The focused beam can therefor be con-
sidered as a parabolic potential pot in the first order approximation. The light gradient
force acts as a spring with a spring constant k, which forces the colloidal particle
to move towards the regions of strong light. In the absence of damping, the particle
will therefore freely oscillate in the optical trap with its natural resonant frequency
(Molloy and Padgett [150]):

fres = 1

2π
·
√

k

m
(3.5)

Here k is the elastic constant or stiffness of the optical trap andm is themass of the
trapped particle. For typical dimensions of the trapped object of R = 1µm and the
stiffness of the optical trap of the order of 0.05pN nm−1, the resonant frequencies of
trappedmicroparticles is typically∼50kHz. Ifwe consider trapping in a viscousfluid,
the movement of the trapped particle is hindered by the Stokes drag force 6πRηv,
which provides damping to the harmonic oscillations in a parabolic potential.

Trapping experiments in colloidal science and also biology are performed around
room temperature (i.e. 300K), which means that our trapped particle is exposed to
the rapid bombardment of the molecules in the fluid around the trapped particle.
This gives rise to a random fluctuating force of thermal origin, which produces a
mean-squared deviation of the position of the particle along a selected axis:

1

2
kBT = 1

2
k〈x2〉 (3.6)

For a typical micrometer colloidal particle and tweezers stiffness, the rms devia-
tion is of the order of 10nm and it is very unlikely that the particle will spontaneously
diffuse out of the optical trap that has a typical range of capture of 300nm. This rms
displacement becomes important when trapping small particles of the molecular
scale.

In practice, Gaussian single-mode beams from a high-power laser sources are
strongly focused by using high numerical aperture microscope objectives. Prior to
entering the objective aperture, the laser beam is expanded to completely fill the
available aperture D of the microscope lens with a focal length f . Having assured
this, the Gaussian beam will be focused to a diffraction-limited diameter d◦ [151]

d◦ = 2 f λ

D
= λ

N A
(3.7)
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Fig. 3.2 Schematic of the optical set-up consisting of two different laser-tweezers operating at
1064nm (Nd:YAG laser) and 514.5nm (Ar+ laser). For details see article by N. Osterman [152].
Image courtesy of M. Nikkhou

where N A is the numerical aperture of the focusing lens. The experimental realisation
of typical laser tweezers is shown in Fig. 3.2.

In reality, colloidal particles of typical micrometre diameters are used in exper-
iments and the electric field strengths of a typical laser beam are of the order of
104−105 V/m. Upon focusing, these field strengths could be increased by two orders
of magnitude, reaching field strengths of the order of 107 V/m or 10V/µm. One can
immediately see that the strength of the electric field on a focused laser beam is strong
enough to influence considerably the collective order of liquid-crystal molecules in
the nematic phase. These effects of the influence of a focused laser beam on a nematic
liquid crystal are actually the basis of laser-trapping phenomena in nematic liquid
crystals and will be explained in the Sect. 3.2.

We conclude this discussion of the principles of laser tweezing of colloidal parti-
cles in isotropic fluids by emphasising that nowadays, laser tweezers are commonly
used in many scientific disciplines besides physics, including chemistry, biophysics
and medicine [153–160]. The reason for this is simple: one is able to grab from a
distance an object under an optical microscope, simply by moving the laser trap or a
multitude of traps with a slight movement of a computer joystick. Complex tweezers,
including multi-colour tweezers, are nowadays available, which allow a number of
traps to be generated holographically or by using acousto-optic beam steering and
multiplexing.
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3.2 Trapping and Manipulation of Particles
in Nematic Liquid Crystals

Optical trapping of dielectric particles in nematic liquid crystals is substantially
different from optical trapping in isotropic fluids, and the physics involved is sub-
stantially different from the physics of trapping in isotropic liquids.

The first experiment on optical trapping of silica microspheres with diameter
0.97µm in a nematic liquid crystal was performed by Muševič et al. in 2004 [161].
The refractive index of silica, n = 1.37, is substantially smaller than both refractive
indices of the nematic liquid crystal used in the experiments E12 and 5CB. The
ordinary refractive index of the nematic E12 is n = 1.52 and the extraordinary index
is n = 1.74; and both values are higher than the refractive index of silica. The surfaces
of silica particles were coated with DMOAP silane to induce strong perpendicular
anchoring of liquid crystal molecules and the silica microsphere dispersion was put
inside a homeotropic nematic cell with a thickness much larger than the colloidal
diameter.

Contrary to expectations, silica particles were attracted into the focus of the laser
tweezers. This attraction was of long range and very strong. The question that arises
is how can one trap dielectric particles with lower refractive index compared to the
indices of the surrounding fluids? The answer is given by a careful observation of
video images taken during the trapping of silica microsphere by rather strong and
linearly polarised laser tweezers.When the laser is focused at one point in the nematic
liquid crystal, the strength of the electric field of the light field of the laser tweezers
is extremely large for laser power (typically 100mW at the focal point) used in the
experiments, reaching up to E = 106 V/m = 10V/µm. This electric field is linearly
polarised inside the nematic liquid crystal because, inside the cell, it propagates
along the optical axis of the nematic liquid crystal in the homeotropic cell. However,
the linearly polarised electric field of light exerts mechanical torque on collectively
aligned liquid-crystal molecules due to the coupling of the strong electric field of
lightE and dielectric anisotropy for optical frequencies (i.e. birefringence).When the
field exceeds a certain value, the light may induce a local Fredericksz transition by
turning the illuminated liquid-crystal molecules with their long axes directed along
the light polarisation for positive birefringence.

This optically induced Fredericksz transition is observable as a change in the
local transmittance of the nematic liquid-crystal cell and is presented in a sequence
of images in Fig. 3.3. This sequence of video images was taken during the approach
of the colloidal particle, which can be seen as a bright circle with a darkMaltese cross
in Fig. 3.3a, which was taken between crossed polarisers. The region of the nematic
liquid crystal illuminated by the focused laser tweezers appears as as brighter diffuse
area above the colloidal particle in Fig. 3.3a. This region is called a “ghost” because
it cannot be seen without crossed polarisers. It corresponds to a locally elastically
distorted liquid crystal, forced by the torque of linearly polarised light to turn from
the regionally out-of-plane position to in-plane position. This localised and distorted
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Fig. 3.3 a Sequence of micrograph images under crossed polarisers, showing the trapping of a
0.97µm silica colloidal particles by 64mW laser line at 1064nm. Note the apparent size of a
0.97µm colloid and the bright spot of the ghost at the laser focus. This ghost is formed due to the
local birefringent area created by the laser-light-induced distortion of the director field. b If 5CB
is used instead of E12, the laser power (64mW) is strong enough to locally melt the 5CB into the
isotropic phase. This isotropic island is now seen as a black ghost because of crossed polarisers

region of a nematic liquid crystal therefore acts as an artificially created colloidal
particle, which interacts with the real silica colloidal particle.

If the laser power is further increased or if one uses a nematic liquid crystal with
a lower clearing point, such as the clearing point of 5CB compared to E12, one is
able to locally melt the liquid crystal into the isotropic phase. This is illustrated in a
sequence of images in Fig. 3.3b, which were taken in 5CB with the same colloidal
particles dispersed in it. The molten circular island is optically isotropic and appears
completely dark between crossed polarisers in Fig. 3.3b. Because the nematic liquid
crystal is homeotropic, it also appears dark between crossed polarisers in Fig. 3.3b.
The colloidal particle is now positioned on “top” of the black ghost in Fig. 3.3b and
is attracted towards the molten volume of the nematic liquid crystal.

This simple experiment clearly demonstrates that optical trapping of particles in
nematic liquid crystals is fundamentally different than optical trapping of particles
in isotropic fluids [161–164]. Of course, the scattering and the gradient force, which
we have mentioned in the Sect. 3.1 are still present, but are much less important than
these new forces, which are obviously present when the optical trap is positioned
into a birefringent and long-range-ordered fluid, such as a nematic liquid crystal.
The ordinary isotropic trapping forces are observable if the nematic colloidal disper-
sion is heated up to the isotropic phase. In this case, silica particles are clearly and
strongly repelled from the optical trap because their refractive index is smaller than
the refractive index of the isotropic liquid crystal.

It was found that there are four different mechanism are responsible for this
“forbidden trapping” of low-refractive-index particles in high-refractive-index liquid
crystals. In order of increasing laser power, these mechanism are:

(i) At low laser power, i.e. below the threshold for the optical Fredericksz transi-
tion, the linearly polarised light of the laser tweezers couples dielectrically to the
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Fig. 3.4 Illustration of the
top view of a homeotropic
silica microsphere in a
nematic liquid crystal. Green
ellipsoids are liquid crystal
molecules around the
equator of the microsphere.
Note the inhomogeneous
region of distorted nematic
liquid crystal around the
microsphere. A linearly
polarised light will act on
this colloidal particle in such
a manner as to minimise the
electric energy. This means
that local director will be
aligned along the
polarisation of the beam in
the equilibrium position

anisotropic dielectric constant of the liquid crystal. In the equilibrium position the
director is aligned along the electric field of light, resulting in the lowest possi-
ble electric energy. A spherical colloidal particle that induces perpendicular surface
anchoring of liquid crystal molecules is surrounded by a strongly anisotropic region
of a liquid crystal, as illustrated in Fig. 3.4. The electric energy of the liquid crystal in
a linearly polarised light field will be minimum if the local director is parallel to the
light polarisation. This will generate a structural force which will position the col-
loidal particle in such away as to obtain theminimumenergy, as illustrated in Fig. 3.4.
The experiments with homeotropic colloidal particles and a linearly polarised laser
trap indeed show that below the threshold for optical Fredericksz transition, the col-
loidal particle is trapped exactly at its surface. The orientation of the particle is such
that the local normal to the particle surface is directed along the polarisation of the
beam. Roughly speaking, this physical mechanism of laser trapping is based on the
minimisation of the electric energy of the elastically distorted region around the
colloidal particles in the laser trap.
(ii) When the laser power of the optical trap exceeds the threshold for the optical
Fredericksz transition, the nematic liquid crystal is elastically distorted by polarized
light. This distortion is not visiblewithout polarised light of observation, but becomes
clearly visible as a bright diffuse region above the threshold. In this case, we can
imagine that a colloidal particle “sees” an artificial colloidal particle created by the
strong laser tweezers. The force of interaction between the real particle and the ghost
colloid depends in a complex manner on the mutual position of the particles, and the
resulting trajectories during trapping are “spider-like”, as illustrated in Fig. 3.5.
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Fig. 3.5 a Spider-like trajectories during the optical trapping of a 0.97µm silica colloid in a 15µm
homeotropic 5CB cell. The laser power is 35mW, which is well above the optical Fredericksz
transition. The starting positions are labeled 1–8. b The set of spider-like trajectories rotates as a
whole as the polarisation of the laser light is rotated for 90◦

The strength of confinement of silica particle in such a light trap was determined
from the recorded time series of the coordinates r = (x(t), y(t)) of the particle
during its Brownian motion in the plane of the cell. The probability density p(r) to
find a particle at a given distance r from its equilibrium position is

p(r) = A · r · exp(− U (r)

kB · T ) (3.8)

In the vicinity of the equilibrium point, the potential well U (r) can be treated as
a parabolic one, U (r) = 1

2ktrap · r2. The spring constant of the optical trap ktrap is
therefore obtained by fitting the experimentally determined probability distribution
p(r).

The results are shown in Fig. 3.6 for a laser power of 8 and 32mW, respectively.
Figure3.6a shows the positions (approximately 5000 points out of 15.000 recorded)
of a colloid in the x−y plane, recordedduring theBrownianmotion,whereasFig. 3.6b
shows the corresponding histograms for each coordinate. The probability distribution
p(r) is presented in Fig. 3.6c. It is symmetric with respect to x in y coordinates and
shows perfect agreement to a Gaussian fit. Finally, the reconstructed profile of the
laser trapping potential is presented in Fig. 3.6d, together with a parabolic fit. The
corresponding spring constant of the trap is ktrap = 9.2(1± 0.1) pN/µm for 32mW
laser power and is reduced to ktrap = 2.0(1 ± 0.1) pN/µm for 8mW power, as
expected.
(iii) By further increasing the laser power, the liquid crystal is locally heated because
of the light absorption, which creates a temperature gradient around the optical trap.
In a practical way, this can be realised by using a glass cell with a thin layer of
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(a)

(b)

(c)

(d)

Fig. 3.6 a The positions of 5000 points out of 15.000 recorded during the Brownian motion of a
0.97µm silica particle in an optical trap in homeotropic E12. b The corresponding histogram for
each coordinate. c The probability density p(r) for the Brownian cloud at two power levels. The solid
lines are the best fits to Eq.3.8. d The reconstructed profile of the optical potential. The parabolic
fit yields spring constants of the trap ktrap = 9.2(1 ± 0.05) pN/µm for 32mW laser power and
ktrap = 2.0(1 ± 0.05) pN/µm for 8mW

indium-tin-oxide (ITO) deposited on the inner surfaces of glass. The light of the
tweezers is locally absorbed by the ITO, which creates a temperature gradient with
a hotspot in the optical trap and decreasing temperature in the liquid crystal. As a
result of local heating, the degree of order of liquid crystal molecules (S) depends on
the position and this spatial variation of the liquid-crystalline order generates forces
on the particles, as first proposed by Samitsu et al. [165]. The orientational order is
depressed in the hottest spot and less depressed as we move away from this spot. An
example of the temperature-induced inhomogeneities of the order parameter in the
nematic liquid crystal cell is shown in Fig. 3.7.

One can see from Fig. 3.7a that the illuminated part of the nematic liquid crystal
shows different birefringent colours compared to the rest of the cell. Because this
crystal is viewed between crossed polarisers positioned at 45◦ with respect to the
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Fig. 3.7 aMicrograph of a 5µm-thick layer of E12 under crossed polarisers, locally heated by the
laser tweezers with a power of 30mW. The rubbing direction is at 45◦ with respect to the polarisers.
The hot spot becomes visible as a green area due to different local change of the birefringence of
the heated nematic liquid crystal. bWavelength dependence of the intensity of the transmitted line
measured along the dashed line shown in (a)

rubbing direction of the cell, we can explain this colour change as a local change
in the birefringence of the liquid crystal. This change of birefringence is caused
by locally increased temperature due to heat dissipation of the absorbed light. The
change in the birefringence must be accompanied by the change of local degree of
order S, which can be measured by taking the line spectrometry, as illustrated in
Fig. 3.7b. Finally, one can calculate the change of order from the measured change
in birefringence. It turns out that in the hottest spot in Fig. 3.7, the order is depressed
for∼4% as compared to the surroundings. If the colloidal particle is positioned close
to this “hotspot”, it is attracted directly into the spot, as illustrated in Fig. 3.8.

The analysis of this trapping mechanism [166] shows that particles are attracted
to the hotspot because the degree of the orientational order S is lower in the hot
region, which means that the elastic constants of the liquid crystal at the hotspot are
lower than in the surroundings. Let us remind that the elastic constants of a nematic
liquid crystals are proportional to the square of the order parameter and therefore
decrease with increasing temperature. Having this in mind, we can see that the elastic
free energy of the colloidal particle is lowered if the particle moves into the region
with lower elastic constants. This generates a very efficient trapping force due to the
gradient of the order parameter, which is so efficient that even individual fluorescent
molecules could be trapped in the hot region [166]. Similar transport of particles due
to the gradient of the order parameter is reviewed by O.D. Lavrentovich [167]. We
should note that the classical Soret effect, which is responsible for the transport of
particles in a temperature gradient, is here excluded by the experimental evidence.
(iv) At an ultimate power level of the optical trap, the liquid crystal is locally molten
and an isotropic island is created within the surrounding nematic phase of the liquid
crystal, as shown in Fig. 3.9.

The isotropic island clearly shows a distinct interface with the nematic
surrounding, visible as a dark grey line in Fig. 3.9a. This isotropic-nematic interface
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Fig. 3.8 aAdipolar colloidal particle is positioned close to the optical trap. Due to light absorption,
the trap locally increases the temperature and decreases the order parameter. b The same as in (a),
but between crossed polarizers. c Trajectories of the dipolar colloidal particle, as it is attracted by
the S-gradient force into the trap “hot-spot”

Fig. 3.9 Images of a locally molten 5CB a with no polarisers, b between crossed polarisers, and
c with a lambda-plate added. d Schematic sketch of the director around the isotropic molten region.
e Trapping trajectories for two different orientations of a dipolar, 2.32µm colloidal particle
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is optically sharp, since the isotropic-nematic transition is of first order and there-
fore discontinuous. At the interface, we have the coexistence of the isotropic and
nematic phase, which have different refractive indices. This makes the interface
visible. When observed between crossed polarisers oriented at 45◦ to the rubbing
direction (Fig. 3.9b), the isotropic island appears black, whereas the surrounding
nematic is coloured. The colour is different in a narrow rim surrounding the island,
indicating a region of gradually changing birefringence from the interface out.

The anchoring of the nematic surrounding of this isotropic island can be deter-
mined with the use of the lambda-plate, as shown in Fig. 3.9c. Yellow and blue
quadrants of the rim surrounding the island clearly prove the parallel anchoring
of the nematic phase on the interface to the isotropic phase. This is illustrated in
Fig. 3.9d, where the isotropic island appears as a kind of colloid with tangential
surface anchoring, which should exhibit two boojums on each side of the island.

It is now clear from the above that this isotropic island, created by the laser trap,
is acting as an artificial two-dimensional colloid with tangential surface anchoring,
which of course interacts with other colloidal particles. The corresponding mecha-
nism is quite strong, as expected for any colloidal interaction in the nematic liquid
crystals.

In addition to “forbidden” optical trapping and manipulation of colloidal parti-
cles with low refractive index in high-refractive-index nematic liquid crystal, normal
trapping of high-refractive-index colloids attracted a lot of attention. One of the ear-
liest observations of the interaction of laser tweezers with liquid-crystal textures was
reported byHotta et al. [168] and Iwashita et al. [169], whomanipulated defects in the
lyotropic phase. Soon after that, Joudkazis et al. [170] reported the first laser tweez-
ers manipulation and switching of nematic microdroplets, using optical tweezers.
By using a circularly polarised beam, they were able to spin the nematic micro-
droplets at a sub-millisecond rotation time [171]. This phenomenon is due to the
dielectric torque exerted by a circulating electric field and the transfer of the spin-
angular momentum of circularly polarised light to the birefringent droplets. The
mechanism of the angular momentum transfer was studied in detail by Gleeson and
Wood [172]. Recently, similar experiments with circularly polarised light were per-
formed on chiral nematic liquid-crystal droplets [172–174]. In these droplets, planar
surface anchoring induces an onion-like spherical Bragg structure of the cholesteric
droplet, which is either left- or right-handed [175]. Because chiral nematic structure
is a Bragg mirror, which selectively reflects only the light with the same handed-
ness as the chiral nematic structure, interesting opto-mechanical effects are observed.
They include a selective trapping of chiral microdroplets by circularly polarised trap,
pushing and stabilising chiral microdroplets by a single circular beams or a pair of
counter-propagating circular beams [176].

Laser tweezers were used in low-refractive-index nematic liquid crystals to trap
and measure forces between high-refractive-index colloids made of polystyrene
or melamine resin. Smalyuk et al. had used laser tweezers extensively [177] and
in and combination with other optical methods, such as the Fluorescence Confo-
cal Polarising Microscopy (FCPM) and multimodal nonlinear microscopy [178,
179], to study long range order and nematic defect structures [180, 181]. Recently,
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Lucchetti et al. [182] have performed a detailed analysis of colloidal trapping in
nematic liquid crystals. The influence of an external electric field on the optoe-
lastic interaction between the optical trap and colloidal particle was considered
by Criante et al. [183]. Large area optoelastic manipulation of colloidal particles
in lyotropic nematics using photoresponsive surface monolayers was studied by
Martinez et al. [184]. Whereas in all these studies, a Gaussian beam profile was used
for trapping, the group of I. Smalyuk have used Laguerre-Gaussian beam profile to
optically create 3D structures in chiral nematic liquid crystal [29, 178, 185]. These
chiral structures, also called “torons”, carry a topological charge of −2. Multistable
optical switching of triple-twisted-particles was also demonstrated. Torons will be
discussed in Sect. 8.3.

3.3 Measuring Forces Between Nematic Colloids by
Video-Microscopy and Particle Tracking

Althoughmeasuring the structural forces between colloidal particles in nematic liquid
crystals might seem like an impossible task, it is in fact very simple and straight-
forward. The method for measuring forces in nematic colloids was developed in
the colloidal physics and is based on the simple video-microscopy technique [186].
Consider, for simplicity, two colloidal particles in a fluid, which are attracted to each
other by a force generated by the fluid itself. The two particles are first set in motion
and accelerated towards each other according to the Newton’s law. Since the parti-
cles are moving in a viscous fluid, the viscous drag force starts to increase as it is
proportional to the particle velocity in the linear regime:

FStokes = 6πRηv (3.9)

This relation, which is also known as a Stokes’ drag force, tells us that the net force
on a particle will diminish with time, until the viscous drag force due to increased
velocity will be equal in strength but opposite in direction to the structural force on
the particle. Finally, the velocity of the particle will be constant in time and there
will be zero total force and therefore zero acceleration on the particle:

FStokes + Fstructural = 0 (3.10)

Looking at the Eq.3.10, one can immediately notice that it is possible to determine
the unknown structural force Fstructural at a given time, if one is able to determine
the Stokes’ drag force FStokes at that time. Let us recall that the Stokes’ drag force
on the particle at a given time is determined by the velocity of the particle v(t) at
that time. If one can therefore measure the velocity of the particle, it is possible to
determine the unknown force at the same given time. The instantaneous velocity
of the particle can be calculated if one has recorded the trajectory of the particle,
because the velocity is the time-derivative of the trajectory:

http://dx.doi.org/10.1007/978-3-319-54916-3_8
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v = dr
dt

(3.11)

The problem is therefore reduced to measuring and recording the trajectory r(t)
of a small particle, driven by an external force, which can be done simply by taking
video images of the motion of the particle. By using an appropriately high frame rate,
one takes images separated in time by a very small time interval. In reality, the frame
rate is between a hundred Hz and thousands of Hz and the time interval between
consecutive images ranges from 10ms to tens of µs. In a typical experiment, one
records hundreds of thousands of video frames, each showing the selected particle
at slightly different position.

The next question is how to extract the position of the particle in a given frame.
If one is able to do this, one can obtain the complete trajectory of the particle driven
by external force. The position of the particle in a video frame is determined by
overlapping a graphical object, such as small circle, over the image of the particle.
For example, if the particle appears as a bright circular spot on a dark background,
one creates a circular object of approximately the same size as the colloid and lets the
computer program find the best overlapping of that object with the bright image of
the colloidal particle. As a result, one can obtain the position of the particle in a plane
of the image with a surprising accuracy of the order of several nm. This accuracy
depends only on the image quality and can be obtained with sufficient illumination
and vibration isolation of the experimental set-up.

Let us note that the nm precision in the measurement of the position of the particle
has nothing to do with diffraction-limited resolution of an optical microscope. Due
to diffraction effects, even a sub-micron and nanometer sized colloidal particle will
be observed as a diffraction-limited spot, determined by the optical properties of
the microscope (such as the numerical aperture of the objective) and the wavelength
of the light used to illuminate the object. However, the centre of gravity of this
diffraction-limited image can be determined with a precision, which is much lower
than the diffraction limitation value. This is typically 200–400nm for a good optical
microscope and blue-light illumination.

Once the trajectory of a particle is numerically reconstructed from the recorded
video images, the velocity of the particle is determined as a ratio between the twoposi-
tions and the corresponding time interval, i.e. the trajectory is numerically derived.
As we now have the instantaneous velocity of the particle, we can also determine
the instantaneous force, provided that we know the Stokes’ drag coefficient of the
particle 6πRη. The Stokes’ drag coefficient for a given particle can be determined
by monitoring the Brownian motion of the same particle, when it is free to randomly
move in the same fluid. This was first proposed and used in nematic liquid-crystal
colloids by Loudet et al. [187], who monitored the Brownian motion of a silicone oil
droplet with quadrupolar distortion of the nematic liquid crystal around it. Brownian
trajectory of a 1µm diameter droplet was video imaged by using the time interval of
80 ms and thus sampled a trajectory with 18000 Brownian steps. After the trajectory
was recorded, the length of each step was measured and the histogram of particle
displacements was constructed both for the movement along and perpendicular to
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the director. The histograms could be well fitted to the Gaussian function, where
the width of the Gaussian distribution determines the self-diffusion coefficient D for
each direction. The probability P that the colloid would diffuse a certain distance δ

in the time τ is:

P(δ) = P◦(τ ) · exp
( −δ2

Δ2(τ )

)
(3.12)

here, P◦(τ ) is the normalisation constant and Δ(τ) is the width of the Gaussian
distribution, which is related to the self-diffusion constant D of the particle exhibiting
random walk

Δ2 = 4Dτ (3.13)

The self-diffusion constant D can therefore be determined experimentally by
fitting the histograms of particle displacements to Gaussian function. On the other
hand, D is given by the Stokes-Einstein relation for the random walk of spherical
particles with radius R in a fluid with viscosity η:

D = kBT

6πηR
(3.14)

It is clear from this expression that the diffusion of particles in the nematic liquid
crystal is very anisotropic because of the anisotropy of liquid crystal viscosity η.

Figure3.10 shows an example of a typical thermal motion experiment, where
around 3000 positions of a selected 125nm dipolar particle were recorded in a time-
interval of 300s. Because the nematic phase is orientationally ordered and has a
rotation symmetry axis along the director, the random motion of colloidal particles
is characterised by two independent diffusion coefficients D||/⊥ = kBT/6πη||/⊥R,
with two different viscosity coefficients for motion along or perpendicular to the

Fig. 3.10 Trajectory of a
125nm dipolar particle in a
time interval of 300s in a
planar nematic liquid crystal
cell of 5µm thickness, filled
with E12
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Fig. 3.11 a histograms of
the displacements of 125nm
dipolar nanospheres between
two positions separated by
the time of τ = 640ms. b
Diffusion constants of
nanospheres for two
perpendicular directions of
motion are proportionate to
the inverse colloidal diameter
down to d = ∼500nm.
Below this size, the diffusion
coefficients of nanocolloids
are quite constant

director n. In a Brownian motion, the mean square displacement (MSD) of a particle
grows linearly with time τ . It was recently demonstrated that at short times [188], the
anisotropic diffusion in a nematic becomes anomalous with theMSD growing slower
or faster with time τ . The anomalous diffusion occurs at time scales comparable to
the relaxation times of director fluctuations around the diffusing microsphere.

One can see from Fig. 3.11 that the diffusion coefficients for a colloidal particle
in a nematic liquid crystal are different for the motion along and perpendicular to the
director. In general, diffusion coefficient for dipolar colloids is larger formotion along
the director (Fig. 3.11b) than in the perpendicular direction. For dipolar colloids, this
difference in the effective viscosities is of the order of 10%. For quadrupolar particles,
it is much lower, whereas it is much higher for microrods with an aspect ration of
4:1, as discussed in Sect. 2.4. (Tkalec et al. [99]).

When the diffusion coefficients D||/⊥ are determined from the histograms, one
can determine the two Stokes’ drag coefficients for that particle:

http://dx.doi.org/10.1007/978-3-319-54916-3_2
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6πη||/⊥R = kBT

D||/⊥
(3.15)

Once the two Stokes drag coefficients are determined, the structural force Fstr

can be calculated at each point on the trajectory of the colloidal particle. From the
known force, one can calculate the work done by this force along the trajectory of
the particle by numerical integration:

Astr =
∫
path

Fstr · ds (3.16)

The work of the structural force done along the trajectory of the particle is equal to
the change of the elastic (binding) energy of the two colloidal particles. An example
of the binding potential is shown in Fig. 3.12 for two dipolar nanoparticles of 125nm
diameter, which are spontaneously attracted to each other.

In nematic colloids, one is able tomeasure the pair-interaction potential (or forces)
for very different sizes of particles, ranging from several micrometer down to tens of

Fig. 3.12 a Two dipolar nanoparticles of 125 nm diameter are attracted along the nematic director
into a dipolar pair. b The pair-potential energy as a function of separation of two 125 nm dipolar
nanoparticles
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nanometers. Particularly interesting video monitoring experiments were performed
by Ryzhkova et al. [118, 119] on a series of silica nanospheres with the diameter
from 2µm to 22nm. The Brownian motion of such small colloidal particles in a
nematic liquid crystal is very fast, and it is an experimental challenge to track such
small particles emitting very low light and moving very fast. This can be done with
the dark-field video microscopy and a fast and ultra-sensitive CMOS camera. Using
the state of the art technique, it was possible to determine the pair-interaction and
binding energy of only tens-of-nm diameter silica particles in 5CB.



Chapter 4
2D and 3D Colloidal Crystals
and Superstructures

Abstract This chapter is devoted to colloidal crystals assembled by the nematic
structural forces. We give an overview the structure and properties of photonic
crystals, which is followed by examples of realisation of photonic crystals form
nematic colloidal crystals: 2D dipolar and quadrupolar nematic colloidal crystals
and binary nematic colloidal crystals. The assembly of 3D nematic photonic crys-
tals is described, as well as assembly of colloidal particles of very different sizes in
nematic liquid crystals.

4.1 Photonic Crystals

In Chap.2, we have seen that small spherical particles dispersed in a nematic liquid
crystal exhibit new types of forces, which are quite different from the forceswhich are
common for ordinary colloids.Whereas in water-based colloids, the forces which are
responsible for the interaction of colloidal particles are mainly of electric origin, the
colloidal forces in nematic colloids are caused by the elastic distortion of long-range-
ordered nematic fluid. The differences in the nature of forces result in differences
in their strength. Whereas in water-based colloids, the strength of electrostatic and
van der Waals force depends on the surface charge and the differences in refractive
indices of colloids and the fluid, the forces between nematic colloids depend on the
size of inclusions, elasticity of the liquid crystal and the surface anchoring strength.

Unlike completely isotropic electrostatic and van derWaals force, structural forces
in nematic colloids are strongly anisotropic. They also are accompanied by topolog-
ical features, including topological defects in the nematic solvent, which are absent
in classical colloidal systems. The strength of anisotropy and the topological nature
of the particle forces in nematic colloids raise an interesting question about what
kind of colloidal crystals do this forces form. This question is not only interesting
per se, but also because of its implications for technology. One wonders whether the
forces in nematic colloids could be used for self-assembly or directed-assembly of
regular colloidal crystals, which could be used as photonic crystals.

© Springer International Publishing AG 2017
I. Muševič, Liquid Crystal Colloids, Soft and Biological Matter,
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Fig. 4.1 a Schematic 3D view of a cubic photonic crystal, which is formed of regularly spaced
dielectric microspheres with a crystal lattice a of the order of the wavelength of visible light.
b Dispersion relation for electromagnetic waves propagating through a photonic crystal shows
periodic structure and forbidden frequency bands. These bands are due to the Bragg scattering and
interference of light. Image courtesy E. Zupanič

Photonic crystals were invented in 1989 when Yablonovitch and Gmitter [189]
were considering the optical properties of regular crystal structures formed of
dielectric and transparent objects of the size of the wavelength of light. An example
of a photonic crystal is shown in Fig. 4.1.

Optical properties of a photonic crystal can be understood considering the analogy
with the motion of electrons and the corresponding electron energy spectrum in a
regular crystal structure.Weknow that the dispersion relation for electrons in periodic
potential is periodic in the reciprocal, k-space and exhibits forbidden energy levels
between the valence and conductive bands. These forbidden energy levels are due
to the interference of electron wave-function and Bragg-scattering of electrons on a
periodic potential formed by a crystalline lattice.

An electromagnetic wave experiences the same interference effects when propa-
gating through a regular crystal formed of transparent dielectric objects. In analogy
to the energy levels of electrons in solid crystals we expect that the dispersion rela-
tion for electromagnetic waves propagating along different direction in a photonic
crystal ω(k) will have the same structure. There will be a “valence and conductive”
bands for light in a photonic crystal, separated by a forbidden frequency band. This
means that no light can propagate in a photonic crystal if its frequency is within
this forbidden frequency gap. If not propagating, such light will be reflected from a
photonic crystal, which will act as a perfect and lossless Bragg mirror.

Bragg mirroring of photonic crystals is nowadays used in design and manufac-
turing of photonic microcircuits to confine the light and allow its flow through “con-
ducting channels” confined between Bragg mirrors. Fascinating photonic structures
can be assembled simply by etching thin dielectric materials, as the one shown in
Fig. 4.2.
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Fig. 4.2 The light from a nanowire light source is coupled into a photonic crystal waveguide.
a SEM image of the nanowire light-emitting diode, which faces the photonic crystal waveguide.
The waveguide terminates with a large hole, which serves as the output scattering site, more clearly
visible in (c). Scale bar 20µm. b Current-voltage relation for the nanowire light-emitting diode.
c Superposition of the emitted light and the SEM image of the waveguide. The white irregular
object on the left side of the waveguide is where the light is coupled (and partially scattered) into
the waveguide (i.e. Input). The small bright object in the hole on the left side is the light transmitted
along the photonic crystal waveguide (i.e. Output). Scale bar 5µm. Reprinted by permission from
Macmillan Publishers Ltd: Hong-Gyu Park, Carl J. Barrelet, Yongning Wu, Bozhi Tian, Fang Qian
and Charles M. Lieber, Nature Photonics 2, 622–626 (2008); copyright (2008)

In this chapter, we shall overview the assembly of 2D and 3D colloidal crystals
made of spherical microparticles in a nematic liquid crystal, which could potentially
be used as photonic crystals. For perpendicular surface anchoring, these particles
appear in two different topological forms: as elastic dipoles and elastic quadrupoles.
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It is possible to obtain both types of colloids, provided they are confined in a precisely
thickness-tuned planar nematic cells. For thickness below the critical thickness, the
colloidal particles appear as quadrupoles, whereas in thicker parts, they appear as
elastic dipoles. In the intermediate interval of thicknesses around the critical thick-
ness, we have both types of particles available. In this interval of thickness, it is
therefore possible to assemble purely dipolar colloidal crystals, purely quadrupolar
colloidal crystals or a mixed type of colloidal crystals, consisting of elastic dipoles
and quadrupoles. Of course all these crystals will be of a planar type, i.e. consist-
ing only of a single layer of colloids, confined in a nematic crystal between two
tightly spaced glass plates. The last subsection of this chapter describes the assem-
bly of nematic colloidal crystals in 3D. As expected, this is a much more difficult
experimental task. In thick nematic cells, one needs to control the z-position (i.e.
perpendicular to the glass surface) of colloidal particles in addition to viewing and
presenting 3D distribution of colloidal particles. This is possible by using confo-
cal optical imaging, which allows for reconstruction of 3D colloidal crystals in the
nematic liquid crystal.

When discussing possible 2Dcolloidal structures, consisting of dipolar, quadrupo-
lar or both types of colloidal particles in the nematic liquid crystal, it is useful to
summarise the anisotropy of pair interactions for each type of colloidal particles.
This is illustrated in Fig. 4.3, which shows the angular dependence of colloidal pair
interactions for dipole-dipole, dipole-quadrupole and quadrupole-quadrupole inter-
actions.

It is evident from Fig. 4.3 that dipole-dipole interaction results primarily in the
formation of linear chains. On the other hand, the pure quadrupole-quadrupole inter-
actions allows more freedom of colloidal assembly, which results in kinked chains or

Fig. 4.3 Schematic representation of angular dependence of colloidal pair interactions. a Dipole-
dipole interaction, b dipole-quadrupole interaction and c quadrupole-quadrupole interaction. The
white dots are hyperbolic hedgehog defects and the black rings are Saturn ring defects. The central
particle is the referential one and the remaining particles are placed along the direction of the
strongest attraction to the referential particle. In the red-shaded sectors, pair-wise interaction is
repulsive. Image courtesy A. Nych
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Fig. 4.4 Experimental images of several basic arrangements of 4µm colloids in a planar nematic
cell between crossed polariser (top row) and in unpolarised light (second row). Image courtesy
A. Nych

small quadrupolar clusters. Finally, one can see from themixed interaction in Fig. 4.3
that binary nematic colloids, consisting of dipoles and quadrupoles, should exhibit
a huge variety of 2D colloidal motives.

Some examples of colloidal clusters assembled from pure dipoles, pure quadru
poles or mixed dipole-quadrupole structures are shown in Fig. 4.4. It is clear already
from this very simple presentation that the variety of themixed type colloidal crystals
is huge.

4.2 Two-Dimensional Dipolar Colloidal Crystals
in Nematic Liquid Crystals

2D dipolar and quadrupolar colloidal crystals are assembled by using laser-tweezers-
assistedmanipulation of colloidal particles in a planar cell filledwith a nematic liquid
crystal [73, 84, 190]. If the thickness of the cell is much larger than the diameter
of colloidal particle with perpendicular surface anchoring, dipolar colloidal particles
are spontaneously formed. In a cell, we observe spontaneous formation of chains of
dipolar colloidal particles or colloidal aggregates with spontaneously ordered parts,
as shown in Fig. 4.5.

Fig. 4.5 a Dipolar colloidal
chains are spontaneously
formed in nematic colloids.
b In a dense sample, dipolar
colloidal clusters are formed,
which exhibit several
different kinds of local
colloidal binding
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Fig. 4.6 The orientation of the topological dipole can be reversed by locally melting the nematic
liquid crystal and dragging the molten crystal in a preferred direction for the new orientation of the
dipole

In order to control the assembly of dipolar colloids into chains and 2D clusters,
one should be able to control the position of the hedgehog point defect on a selected
particle. This can be done with the help of laser tweezers and is shown in Fig. 4.6,
where the direction of the topological dipole is reversed. This is done by increasing
the power of the laser tweezers, which results in local melting of the nematic liquid
crystal. The tweezers focus is positioned on the colloidal particle so that the isotropic
phase symmetrically surrounds the particle. After the isotropic island is dragged
“downwards” in Fig. 4.6 with the use of tweezers, the topological defect appears on
the opposite side of the particle after the tweezers is switched off.

Reversal of the dipole orientation with themelting-and-dragging technique can be
understood if we remember that there are two energetically equivalent positions of
the hyperbolic hedgehog defect. This is because of the invariance of the director sign,
which leaves two possible and equivalent positions of the point defect close to the
particle. Bymelting the liquid crystal and dragging the isotropicmelt, the point defect
is preferably deposited on the same side of the colloid where the isotropic melt was
positioned last. Having control over the orientation of the dipolar colloidal particle,
we are able to selectively add colloidal particles to the pre-existing colloidal clusters,
manipulate the particles, and measure the forces between deliberately positioned
pairs of particles. An example is shown in Fig. 4.7, where the formation of colloidal
chains is shown. The colloidal particles were prepared with their dipoles oriented in
the same direction and were added one by one to form a chain of dipoles oriented
along the far-field director.

Fig. 4.7 Dipolar chains of
colloidal particles are formed
by laser-tweezers assisted
manipulation of individual
colloidal particles and their
incorporation into colloidal
chains
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Fig. 4.8 The interaction
between a dipolar colloidal
chain and an isolated dipolar
colloidal particle. The
arrows indicated the
direction of the topological
dipoles. a For parallel
orientation of the topological
dipoles and side position, the
colloidal particle is repelled
from chain. b If the direction
of the topological dipole is
reversed, the colloidal
particle is strongly attracted
to the chain. c Using the
particle tracking software,
the energies of repulsion (red
squares) and attraction
(green circles) of a single
colloidal particle from the
dipolar chain are calculated.
Note the energy scale and the
strength of interaction

After formation of colloidal chains where all topological dipoles of particles
in the chain are pointing in the same direction, one is wondering how regular 2D
clusters could be formed from such a chain? To this aim, we measure the interaction
of an additional colloidal particle, which is positioned close to the chain, as shown in
Fig. 4.8. There are two possible directions of its dipole. In Fig. 4.8a the dipole of the
neighbouring particle is pointing along the direction of the dipoles, in the chain. One
can clearly see that this particle is repelled from the chain, after it is released from the
optical trap. If the direction of the topological dipole of this extra particle is reversed,
it is clearly attracted to the chain, as demonstrated in Fig. 4.8b. Using the technique
of video microscopy, described in Chap.3, one can determine the interaction force
and the interaction potential between an isolated dipolar colloidal particle and a
colloidal chain of 8 dipolar particles, as shown in Fig. 4.8c. The interaction potential
is extremely strong, reaching more than 4000 kBT for antiparallel orientation of
dipoles and strong repulsion of 1000 kBT at one colloidal diameter separation.

http://dx.doi.org/10.1007/978-3-319-54916-3_3
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Fig. 4.9 Attraction between a pair of dipolar nematic colloidal chains with reversed directions of
their dipoles

The observation that a singular dipolar colloidal particle is strongly attracted to
an already assembled dipolar colloidal chain is an important step towards directed
assembly of macroscopic dipolar colloidal crystals in 2D. It is natural to antici-
pate that two dipolar chains with antiparallel topological dipoles should attract each
other, whereas two chains with parallel dipole moments should repel. This is indeed
observed in the experiments where two dipolar colloidal chains are brought close
together using the laser tweezers and then released, as shown in Fig. 4.9.

In a real-time experiment, one can see clear attraction between the two chains
under the microscope. The chains start moving towards each other from a separa-
tion of tens of µm, as shown in Fig. 4.9. Upon approaching, they start to tilt away
from the rubbing direction until they firmly attach to each other and form a robust,
elongated and tilted crystallite. Analysing the forces between two colloidal chains of
five particles each, one finds the binding energy exceeding 10 000 kBT for 2.32µm
diameter silica spheres. The binding energy is extremely large and is of the order of
1000 kBT per colloidal particle.

There is an interesting geometric feature observed during the assembly of col-
loidal chains - an odd - even effect, illustrated in Fig. 4.10. A crystallite formed of an
even number of colloidal chains is always tilted with respect to the far-field nematic
director; its tilt is symmetric and as high as 30◦ for two colloidal chains. The mag-
nitude of the tilt decreases with increasing number of chains and is absent for an
odd number of colloidal chains. The origin of this odd-even effect in the tilt of the
colloidal chains is understood by considering the elastic distortion of the nematic
liquid crystal around colloidal chains, as illustrated in Fig. 4.10e.

In case of an odd number of chains, there is a region of strong elastic distortion
located at both ends of the chains. It is energetically more favourable to relax the
strong distortion by a slight rotation of the crystallite. In case of an odd number
of chains, the distortion is symmetric, which leaves the crystallite directed exactly
along the far-field director. This understanding of the mechanism of dipolar colloidal
assembly allows for directed assembly of large-scale dipolar colloidal crystals. It
could be done either by preparing 2D blocks of particles by using the laser tweezers
or assembling the 2D crystal particle by particle. The process results in large-size 2D
dipolar colloidal crystals, which are formed of pairs of antiparallel dipolar chains, as
illustrated in Fig. 4.11. The 2D dipolar colloidal crystal has a general parallelogram
unit cell with the lattice constants a = (2.95 ± 0.03)µm, b = (2.84 ± 0.02)µm,
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Fig. 4.10 a–d Odd-even effect in the tilt of 2D dipolar nematic colloidal assemblies. e For an
even number of dipolar colloidal chains, regions of strong elastic deformation are present when the
assembly is oriented along the rubbing direction. This strain is released by slight rotation of the
chains. f For an odd number of dipolar colloidal chains, the elastic distortion is symmetric and the
overall elastic torque is balanced. Any rotation does not decrease the elastic energy

Fig. 4.11 a An example of a 2D dipolar nematic colloidal crystal assembled by the laser-tweezers
manipulation. The crystal consists of 280 silica spheres of 2.32µm diameter and is stable for more
than a year at laboratory conditions. b The lattice vectors and the unit cell of the dipolar colloidal
crystal shown in a. c Enlarged detail of the colloidal lattice
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Fig. 4.12 a, b 2D dipolar colloidal crystal of 4.7µm diameter silica microspheres shrinks upon
the application of 5V across the 9.9µm thick planar nematic cell of 5CB. c, d Diffraction of the
532nm laser light from 2D dipolar colloidal crystal shown in (a), (b) at 0V (c) and 5V (d)

and γ = 61◦ ± 1◦, as indicated in Fig. 4.11b. This 2D colloidal crystalline structure
is extremely robust against external perturbations and remains untouched for several
months. The crystal can also be grabbed by laser tweezers and slowly moved to a
new position as a single whole, which further illustrates its extreme robustness.

Such a 2D dipolar nematic colloidal crystal is not only very robust, but also
responds to an external electric field applied perpendicularly to the plane of the
crystal [191]. The 2D dipolar crystal is inherently anisotropic, as it is formed of
strongly bound colloids forming a colloidal chain, whereas the chain-to-chain inter-
action is somewhat weaker and the crystal is correspondingly softer in this lateral
direction. This is indeed reflected in the elastic response of the crystal to an external
electric field, as illustrated in Fig. 4.12a, b. The crystal shrinks as awhole already at an
electric field of 0.2V/µm. The shrinking is stronger in a transverse direction, indicat-
ing softer elasticity between two neighbouring chains. At approximately 0.5V/µm,
the crystal shrinks for 20% in this transverse direction, whereas it shrinks for only
2% along the chains. This is because there are topological defects in between the
colloidal particles forming the chains and because they are very resistant to external
field. This electric-field response of the 2D dipolar colloidal crystal can be nicely
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observed via the diffraction of light in such a crystal in Fig. 4.12c, d. The square-like
diffraction pattern changes upon the application of the electric field and the crystal
acts as a tunable diffraction grating.

Fig. 4.13 Amajority of self-assembled quadrupolar colloidal clusters are just kinked chains, shown
in (a). However, in some parts of the sample, spontaneously ordered 2D quadrupolar crystallites
are observed, such as the one in the encircled region

Fig. 4.14 a, b Quadrupolar colloidal chains can grow in a form of kinked (a) or straight chains
(b). c The quadrupole–quadrupole interaction as a function of separation between the particles. The
black squares correspond to (a), the red circles correspond to (b)
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4.3 Two-Dimensional Quadrupolar Colloidal Crystals
in Nematic Liquid Crystals

The interaction of quadrupolar nematic colloids [84] are quite different and much
weaker compared todipolar nematic colloids [73].Roughly speaking, the quadrupole-
quadrupole binding energy is an order of magnitude smaller than the dipole-dipole
binding energy. As a consequence, quadrupolar colloidal crystals are quite fragile
and easily perturbed by external forces caused by, for example, liquid crystal flow and
temperature change. When the sample of a quadrupolar colloidal crystal is prepared
with the same particles that form dipolar colloids in thicker cells, one can observe
clusters of quadrupolar particles, which are spontaneously formed in the thinner parts
of the cell, as shown in Fig. 4.13.

In order to be able to assemble 2Dquadrupolar colloidal crystals, one first analyses
the rules of attraction and repulsion of an individual quadrupole with a quadrupolar
chain or cluster. Several example of the interaction of quadrupolar colloids, resulting
in the growth of kinked or straight chains or smaller crystallites, is shown in Fig. 4.14.
Figure4.14a, b shows a spontaneous assembly of a quadrupolar colloidal particle to

Fig. 4.15 a An isolated quadrupolar particle is attracted laterally to an already formed quadrupolar
chain. b The lateral quadrupolar interaction is weaker and amounts to 1/3 of the head-to-head
quadrupolar interaction
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Fig. 4.16 a Large-scale quadrupolar nematic colloidal crystal, assembled by using the laser tweez-
ers. b The lattice vectors for 2.32µm colloidal particles in a 2.7µm planar nematic cell are
a = (2.69 ± 0.04)µm, b = (3.01 ± 0.05)µm and γ = (56 ± 1)◦. c Unlike the dipolar col-
loidal crystal, the quadrupolar crystal is fragile and sometimes spontaneously disrupts over a period
of a month

an already assembled pair of quadrupolar colloidal particles. The structural force
is the strongest for a slightly off-axis attraction of the particle, which results in the
formation of either kinked chains or tilted straight chains.

One can see from Figs. 4.14 and 4.15 that the quadrupolar interaction is also
anisotropic. Quadrupoles have the preference of forming straight and tilted, or kinked
chains, whereas any lateral interaction of an additional particle is much weaker.
This is reflected in the appearance of macroscopic 2D quadrupolar colloidal crystal,
assembled from hundreds of particles, shown in Fig. 4.16a. Small irregularities are
clearly visible, also reflecting the history of formation of such a crystal, which was
assembled “by hand” using the laser tweezers manipulation of individual particles.
The unit cell of a quadrupolar colloidal crystal is an oblique one, corresponding to a
slightly distorted hexagonal order, as shown in Fig. 4.16b.

4.4 Numerical Simulations of Two-Dimensional
Quadrupolar Colloidal Crystals in Nematic
Liquid Crystals

In line with experimental investigations of nematic colloidal crystals in 2D, theoret-
ical analyses were performed by M. Ravnik and S. Žumer to understand the nature
of the liquid-crystal ordering in nematic colloidal systems [5, 192]. The Landau-de
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Gennes (LdG) formalism with full tensorial description had to be used in these cases
because of the smallness of the colloidal particles and the presence of a multitude
of topological defects in these systems. The degree of nematic ordering depends
strongly on the position, which means that the director field has to be considered
as a fully tensorial field. The order parameter tensor is a 3 × 3 symmetric traceless
matrix whose invariants are used to construct the free energy F of the nematic liquid
crystal, constrained by the surfaces of colloidal particles and the surfaces of the cell:
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The first term in Eq.4.1 describes the increase of the free energy due to spatial
inhomogeneities of the nematic orientation and order. The second term represents
the contribution of the bulk nematic free energy due to the magnitude of the nematic
order. The third term represents the interaction of the nematic liquid crystal with the
surfaces of the colloidal particles and is of the standard Rapini-Papoular type. For the
sake of numerical simplification, the elastic constants are taken to be equal (L), which
is the single elastic constant approximation. A(T), B, and C are the conventional
nematic material constants, which describe the isotropic-nematic phase transition.
W is the strength of the surface anchoring andQ0

ij is the order parameter preferred by
the surface. The confining surfaces are taken into account by prescribing the average
orientation of the nematic molecules parallel to each other on both surfaces. The
order parameter at the confining surfaces is equal to the bulk order parameter. These
three energy terms therefore cover all three fundamental liquid-crystal phenomena
relevant to the experiments: elasticity, possible formation of topological defects, and
finite interaction of a liquid crystal with the surfaces of the colloids.

We shall not enter further into the discussion of the numerical techniques neces-
sary to obtain the equilibrium order parameter tensor profile, meaning that the tensor
should be fully defined at all points of a 3D mesh describing the sample. In short, the
free energy F is minimised according to the Euler–Lagrange formalism, which ends
with two separate equations describing the bulk behaviour of the order parameter
and the surface or boundary conditions. One obtains a set of 6 coupled non-linear
partial differential equations that need to be solved together with a constraint that the
Q-tensor has to remain traceless. One usually applies numerical algorithms based
on explicit Euler finite difference relaxation algorithm on a cubic mesh with suit-
able numerical parameter values. An additional requirement is that the maximum
cell thickness can be set to 2µm and the largest feasible diameter of the colloidal
particles is 1µm. Larger dimensions substantially increase the time needed for the
minimisation of the free energy. Furthermore, one usually starts with a chosen col-
loidal configuration, such as an orthorhombic unit cell, with a suitable number of
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Fig. 4.17 Stable quadrupolar and dipolar nematic colloidal crystals in two dimensions. a Crystal
with quadrupolar symmetry. The Saturn defects are localised and surround the colloids. The image
represents iso-surfaces, where the magnitude of order parameter is S = 0.45. b Schematic view
of the quadrupolar director field, with the heavy line representing the Saturn defect. c Free energy
landscape of F, calculated for a unit cell with a total of two quadrupolar colloids bound by Saturn
defects. d Stable 2D crystal with dipolar symmetry. The hyperbolic hedgehog defects have opened
into small rings because of the strong confinement. Again, a surface with S = 0.45 is shown. e
Schematic view of a 2D stable crystal of dipolar nematic colloids. The arrows indicate the direction
of the topological dipole; note the antiferroelectric arrangement of dipoles. Thin lines represent
the local direction of nematic molecules. f Calculated F for a unit cell with a total of two dipolar
colloids
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colloidal particles. At such parameter values of the starting geometry, several equilib-
rium order parameter tensor profiles and defect configurations are found as a solution
of the Euler–Lagrange equations, and they depend primarily on the initial conditions,
chosen at the start of simulations. The starting tensor profile is usually expanded in
multipole series and the corresponding results, giving stable configurations of a 2D
dipolar colloidal crystal are shown, in Fig. 4.17 for elastic quadrupoles and dipoles.

Figure4.17a, b show one of the stable solutions for the 2D nematic quadrupolar
crystal, where the director field with local quadrupolar symmetry is periodic in two
dimensions. The Saturn rings of each colloidal particle are clearly localised around
each particle, and together they form a hexagonal lattice. The binding force between
the colloids comes from sharing of the elastically distorted regions around individual
colloids. The calculated lattice constants are in good agreementwith the experiments.
This numerically calculated crystal could also artificially be stretched in the x and y
directions and the corresponding free energy is constructed for these two distortions.
One can clearly see the minimum of the free energy (green area in Fig. 4.17c), which
proves that quadrupolar colloids are bound collectively in two dimensions by liquid-
crystal Frank elasticity.

A stable2D colloidal structure with local dipolar symmetry of the director field
is presented in Fig. 4.17d. Because of the smallness of the numerical system, which
results in strong confinement of colloids, the hyperbolic hedgehog defect does not
remain intact but “opens” into a small loop with the same topological properties.
Because of this opening, the separation along the dipolar chains is reduced and the
anisotropy of the lattice is enhanced. The calculated lattice constants of the oblique
2D dipolar lattice are in reasonable agreement with experiments. The correspon-
dence between the numerical predictions and experimental results are better for the
quadrupolar 2D crystal, which is due to the numerical limitations preventing calcu-
lations for thick samples with bigger colloidal particles.

4.5 Binary Colloidal Crystals in Nematic Liquid Crystal:
Mixture of Dipoles and Quadrupoles

When considering the assembly of dipolar and quadrupolar colloidal particles, one
faces a huge variety of possible combinations of binding dipoles and quadrupoles
[87, 88]. Besides choosing either a dipole or a quadrupole, one is free to chose
the direction of the dipolar particles where two orientations of dipolar particles are
possible. Furthermore, dipoles can be assembled not only in straight chains of parallel
dipoles, but also in kinked chains of anti-parallel dipoles which grow in a direction
perpendicular to the rubbing direction. Figure4.18 shows schematic representation of
clusters of dipolar, quadrupolar or mixed-type colloids together with corresponding
“chemical” formulas which help to organise the schemes of all possible bindings of
dipoles and quadrupoles.
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Fig. 4.18 Experimental images and schematic representation of several basic arrangements of
dipoles and quadrupoles together with the corresponding “chemical-like” formula. We take the
dipolar moment of the particle as positive, when the hyperbolic hedgehog defect (black dot) points
along the x axis, i.e. to the right on all images

“Chemical-like” formulas describing the structure of colloidal clusters consisting
of dipoles and quadrupoles were introduced in order to organise the classification of
all possible colloidal 2D motifs. For notational purposes, we assign positive sign to
a dipolar colloidal particle when its hyperbolic hedgehog defect points along the x
axis, as shown in Fig. 4.18. In these terms, the configuration of three collinear dipolar
particles in Fig. 4.18a is represented as D+

3 because it consist of three dipolar particles
lying along the nematic director. We ascribe a formula D+

2 D
− to the configuration

in Fig. 4.18b, which consists of two positively oriented and one negatively oriented
dipolar particle. Configuration in Fig. 4.18c is represented as D+Q because it is
formed of a positive dipolar and a quadrupolar particle. Configurations in Fig. 4.18d,
e are represented as D+Q̃, where Q̃ implies that the quadrupolar ring is distorted. The
rest of configurations in Fig. 4.18d–i are uniquely described by the corresponding
formulas.

This chemical-like notation can successfully be applied to describe periodic 2D
colloidal structures of binary nematic colloidal mixtures. In this case, one formula
is ascribed to one particular structure, and the formula tells the structure of the
elementary crystallographic cell of that structure. Of course, simple lattices will
have simple “chemical” structure of the unit cells and more complex lattices are
represented by sophisticate formulas.

The simplest example of a 2D binary colloidal structure composed of one dipole
and one quadrupole is a unit cell is presented in Fig. 4.19. Although it possesses all
possible kinds of bonds between the dipolar and the quadrupolar colloid, the structure
is stabilised solely by dipole-quadrupole interaction. The structure is not dense and
contains regularly spaced voids of the same shape, unlike the densely packed 2D
crystalline lattices composed of pure dipolar or pure quadrupolar colloids.
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Fig. 4.19 Structure D+Q made of 4µm colloidal particles under crossed polarisers (a) and unpo-
larised light (b). The schematic view of the lattice is shown in (c), whereas d shows the elementary
building block

In this simple lattice in Fig. 4.19, all dipoles are aligned in the same direction
and this crystal is “ferroelectric” in the topological sense. It was quite interesting to
find that the voids in the lattice in Fig. 4.19 could be occupied by additional dipolar
colloids, which would point into the opposite direction, therefore compensating the
topological dipoles of the original lattice, as shown in Fig. 4.20. There is a large
variety of 2D colloidal motifs of dipolar and quadrupolar particles, which are sum-
marised in Fig. 4.21. Altogether 12 different colloidal motifs have been identified
and assembled.
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Fig. 4.20 Structure DQD under crossed polarisers (a), and unpolarised light (b). Together with
schematic representation (c) and the elementary building block (d)

4.6 Three-Dimensional Nematic Colloidal Crystals

Optical observation and manipulation of nematic colloidal crystals in thin nematic
cells is quite simple, as only a single layer of colloidal particles is usually assembled
in such cells. This layer is of thickness of several µm and can easily be analysed
using an ordinary transmission optical microscope. On the other hand, observation
and manipulation of colloidal clusters of large volume and dimensions is quite a
difficult task because of the limited depth of the field of view along the thickness
of the sample. This requires use of confocal optical microscopes, which are able to
image and reconstruct optical objects of large dimensions in 3D. However, confocal
microscopes are not fast enough to allow real-time imaging of objects under study.
This makes assembly and study of 3D nematic colloidal crystals quite difficult.
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Fig. 4.21 a–p Overview of some of 2D colloidal motifs, assembled from elastic dipoles and
quadrupoles. Images are organized in pairs, the left panel shows crossed polarisers images, right
panel shows schematic drawings of the crystal structure

Nevertheless, Nych et al. [193] succeeded in assembling, imaging and controlling
3D nematic dipolar colloidal crystals with more than a hundred of colloidal particles
assembled in colloidal blocks of 3-colloidal layer thickness. This kind of crystal was
prepared by putting dipolar colloidal particles of 4µm diameter in a rather thick
homeotropic nematic cell with thickness of at least 25µm. As a starting point, one
observes colloidal arrangement in such a thick homeotropic cell when the density of
colloids is low and allows for the spontaneous assembly of a single colloidal layer
in a homeotropic nematic cell. The resulting structure is shown in Fig. 4.22, where a
checkerboard colloidal pattern can be seen (Fig. 4.22c).

This checkerboard appearance of a colloidal layer can be understood in terms of
dipole orientation, which is different when the topological dipole points towards the
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Fig. 4.22 Colloidal particles with dipolar symmetry in a thin homeotropic layer of a nematic liquid
crystal. a, b 2.32µm dipolar silica microspheres in 5CB homeotropic cell. In a the topological
defect is above the microsphere, in b the defect is below the microsphere. Scale bar, 2µm. c Quasi-
2D checkerboard structure formed by 4.32µm silica particles in 10µm thick homeotropic cell. d
A vertical cross-section of a checkerboard colloidal crystal shown in (c)

observer or when it points in the opposite direction, as shown in Fig. 4.22a, b. When
let free, the dipolar colloids in a homeotropic cell will spontaneously self-assemble
with neighbouring dipoles alternating in their orientation. This means that a particle
with its dipole pointing up will be surrounded by nearest neighbours with their
dipoles pointing down. This alternation in the orientation of the directions of dipoles
is indeed observable when measuring the cross-section of such a checkerboard 2D
colloidal crystal. The cross-section is shown in Fig. 4.22d and one can clearly see
that the positions of neighbouring colloidal particles are alternating in height and the
direction of the dipoles in neighbours is also opposite.
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Proceeding from one layer to several layers of colloidal particles is quite an
elaborate task, since one has to prepare blocks of colloidal particles, where each
block consists of several colloidal layers. The term “colloidal layer” means that
several layers of colloidal particles are arranged in neighbouring planes, which are
parallel to the surfaces of the confining cell. It turns out the successful strategy is to
prepare colloidal chains of several particles, which are directed along the depth of the
cell. The assembly of such a chain of dipolar particles in a thick homeotropic nematic
cell is shown in Fig. 4.23a. The first frame is a crossed-polarisers image of 3 colloidal
particles, floating freely in the nematic liquid crystals and obviously positioned at the
same height, measured from the surface. The small red cross indicates the position
of the laser tweezers. The colloidal particles are shown as bright circles, transmitting
light between crossed polarisers, with an additional Maltese cross due to crossed
polarisers and the direction of observation along the optical axis of the nematic
liquid crystal.

With the tweezers switched on, one is able to grab and drag the selected col-
loidal particle (lowest particle) next to the red cross in Fig. 4.23a. When this particle
approaches the central one, it clearly goes out of the focal plane, i.e. it sinks below
the central colloidal particle, and obviously attaches to it. This attachment results in
a chain of two colloidal particles, which is oriented along the optical axis, and the
visible particle clearly becomes brighter. The reason for this is the increased distor-
tion of the nematic liquid crystal due to the presence of two particles in the chain and
larger elastic distortion. In the next step, the third particle is grabbed and brought to
the vicinity of the chain of two colloidal particles. Again, the third particle sinks out
of the focal plane and obviously attaches as the third particle in the colloidal chain
directed along the optical axis. This chain again becomes brighter than before.

After that, several chains are prepared, each one consisting of three colloidal
particles. The dipoles of each chain are all aligned, but different chains have different
orientation of their dipoles. The orientation can again be distinguished, similar to
the case of a single particle presented in Fig. 4.22a. Figure4.23b shows snapshots
from a video of spontaneous assembly of 3 dipolar chains, which were brought
close to each other by the laser tweezers. After they are attracted, the three chains
form a distorted trio of vertical colloidal chains. It looks like these three bodies
are topologically frustrated, which is similar to the orientational frustration in spin
systems, such as the Kagome lattice. In that case, a pair of spins has the lowest
energy in the antiparallel orientation, but when the third spin is added, it is frustrated
in the orientation. It cannot be simultaneously up, to satisfy one of the neighbours,
and down, to satisfy the other. The formation of such a frustrated trio is actually the
most critical part of the 3D nematic colloidal crystals assembly. If the fourth chain
is added, the orientational frustration is released and a final colloidal block of four
chains of microspheres is formed, as shown in the first panel of Fig. 4.23c.

After building several separated and well-ordered blocks of 2 × 2 × 3 colloidal
particles, a bigger, 3D, dipolar colloidal crystal can be easily assembled by guiding
and directing colloidal blocks using the laser tweezers. Figure4.23c shows such
an example, where a larger colloidal block of 2 × 4 × 3 particles is assembled
from two smaller blocks. These blocks are spontaneously attracted to each other
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Fig. 4.23 Laser-tweezers assembly of a 3Ddipolar colloidal crystal observed under crossed polaris-
ers. a Three isolated colloidal particles of 4µm diameter in the ZLI-2806-filled homeotropic cell of
25µm thickness appear as bright objects with a dark cross in the centre. Using laser tweezers, one
particle is brought close the other and they spontaneously form a chain of two particles in a direction
perpendicular to the plane of the image. The pair appears like a single but larger and brighter particle
(3rd image from the left). The third particle is brought to the couple and it spontaneously forms a
dipolar colloidal chain of three particles on top of each other. b Three chains, each made of three
dipolar particles, are brought close to each other and they start to assemble into a frustrated colloidal
trio. Note the tilting of the chains. c Two colloidal blocks of 2 × 2 × 3 particles self-assemble into
2 × 4 × 3 blocks. d Colloidal blocks of 2 × 2 × 3 and 2 × 4 × 3 particles assemble in the final
6 × 6 × 3 dipolar colloidal crystal. The assembly at the initial stage was guided by laser tweezers
until blocks started to attract themselves. Scale bar, 10µm. In all images, the small red cross is the
optical trap, used to direct the colloidal assembly
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by the elastically distorted liquid crystal in between them. The elastic distortion is
minimised by spontaneous attraction and assembly of colloidal blocks. Figure4.23d
shows another example of assembly of a 6 × 6 × 3 dipolar colloidal crystal from
two smaller colloidal blocks. The tweezers are operated at such a power that they
cause elastic attraction of colloidal blocks to the focus of the tweezers. In this way,
the tweezers act as a kind of welding machine which fuses colloidal blocks into a
perfectly ordered final colloidal crystal.

The arrangement of individual colloidal particles in such a 3D dipolar colloidal
crystal can be determined by using Fluorescence Confocal Polarising Microscopy
(FCMP). In this case, a fluorescent dye is added to the liquid crystal and the dye
molecules align with their radiative dipole moment along the local director. By
selecting a polarisation during the imaging, one is able to reconstruct the director
pattern around colloidal particles. One FCPM cross-section of a 3D dipolar colloidal
crystalis shown in Fig. 4.24a for two different positions of the focal plane.

The colloidal particles appear dark because they do not fluoresce. In Fig. 4.24a,
one can clearly see the regular arrangement of colloidal particles in a square lattice.
By taking subsequent FCPM cross-sections along the depth of the cell, one finds that
the colloidal particles are arranged in a regular tetragonal Bravais lattice with basis.

Fig. 4.24 Structure of a 3D dipolar nematic colloidal crystal. a Fluorescent confocal polarising
microscopy image of two horizontal cross-sections of a 3D 6 × 6 × 3 dipolar colloidal crystal,
assembled from 4µm diameter colloidal particles in the homeotropic aligned nematic liquid crystal
ZLI-2806. The images were acquired by refocusing along the z-axis direction by 2.6µm. Scale bar,
5µm. b The 3D representation of the fluorescent confocal polarizing microscopy image of a 6 × 6
× 3 3D dipolar colloidal crystal. Here, the fluorescence intensity was inverted to show the in-plane
arrangement of the particles in theXY ,YZ andXZ planes. Scale bar, 5µm. cNumerical simulation of
a 3D dipolar nematic colloidal crystal. Point topological defect opened into small loops, somewhat
larger as observed in experiments, and are visualized as iso-surfaces of fixed nematic degree of
order S. Scale bar, 1µm. d Free energy of one colloidal crystal unit cell as a function of the lattice
constants A and B in units of particle radius R. e Schematic drawing of the crystal structure showing
the tetragonal Bravais lattice with basis
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Fig. 4.25 Electric-field-induced shrinkage and rotation of a 3D dipolar nematic colloidal crystal.
a 4 × 4 × 3 dipolar nematic colloidal crystal made of 4.32µm colloids in E7 shrinks under an
applied electric field. The dielectric anisotropy of the host LC is positive, �ε > 0. Scale bar,
10µm. b Relative lateral shrinkage |A − A◦|/A◦, as a function of applied voltage for 3D crystal
in E7 (�ε > 0) nematic liquid crystal mixture. The electric field (f = 1kHz) is applied along the
B-axis of the elementary cell. Dashed line is guide to the eyes. c Fluorescent confocal polarizing
microscopy images of electric-field-induced rotation of a 3D, 4 × 4 × 3 dipolar nematic colloidal
crystal in a ZLI-2806 liquid crystal with negative dielectric anisotropy, �ε < 0. Scale bar, 5µm. d
Schematic views of 3D dipolar crystal and liquid crystal configuration without field (left) and after
electric field is applied, inducing rotation of 3D nematic colloidal crystal as a whole (right). The
crystal follows the liquid crystal molecules, which tend to align perpendicular to the field because
of their negative dielectric anisotropy. e Microscope images of electric-field-induced rotation of a
single colloidal chain in ZLI-2806 liquid crystal. The chain in the left panel points into the panel
and is rotated from this direction by the field. f Angle of rotation of a colloidal crystal as a function
of applied electric field

The 3D representation of colloidal crystals, as reconstructed from FCPM images is
shown in Fig. 4.24b. Numerical analysis basically confirms the observed tetragonal
structure of the 3D dipolar nematic colloidal crystal. It shows that such a crystal is
composed of dipolar colloidal chains (see Fig. 4.24c, e), which are all pointing in the
same direction. There is an additional chain in between four neighbouring chains,
which has the dipole moment oriented in the opposite direction. These chains form
the basis of the unit cell.

Similar to the electric field response of a 2D dipolar colloidal crystal, the 3D
dipolar colloidal crystal shows a large response to an external electric field. If the
field is applied along the optical axis, as shown in Fig. 4.25a, the crystal shrinks for
nearly 30 % at a very low electric field of 0.37V/µm, provided that the liquid crystal
has positive dielectric anisotropy. An interesting phenomena is observed if the 3D
dipolar colloidal crystal is assembled in a homeotropic cell of a nematic liquid crystal
with negative dielectric anisotropy. In this case, the electric field induces a rotation
of the crystal as a whole, as shown in Fig. 4.25c.
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The experiments on 3D nematic colloidal crystals give clear evidence that it is
possible to assemble photonic crystals out of colloidal particles in a nematic liquid
crystal. Whereas the laser tweezers allow for manual assembly of such photonic
crystals, other matters of manipulation of a very large number of colloidal particles
could be used for the same purpose. For example, the microfluidic technique could
be used to assemble 3D nematic colloidal crystals, and it is expected that advanced
techniques such as the optoelectronic tweezers could be used as well.

4.7 Hierarchical Assembly of Nematic Colloids

In all experiments so far described in nematic colloids, colloidal particles of the
same diameter were used. They might differ in surface properties, but in all cases
their dimension was kept equal in order to reduce any possible mismatch in the
colloidal sizes and positions. However, interesting phenomena are observed if one
considers the interaction of two colloidal microspheres of very different diameters.
For example, one could consider the interaction of 1µm diameter homeotropically
treated microsphere with a much larger, 19µm colloidal microsphere, as presented
in Fig. 4.26 [194].

In this image, one can see in panel (a) a non-polarised image of the interaction
of a small colloidal particle, which is attracted into the Saturn ring of a much bigger
colloidal particle. One can clearly observe that the small particle is attracted into the
Saturn ring of the bigger colloidal particle over separation of the order of 20µm.
From the recorded sequence of images in Fig. 4.26a one can calculate the attractive
potential between the smaller colloidal particle and the Saturn ring, which is shown
in Fig. 4.26b. Similar to the colloidal pair interaction in nematic liquid crystal, the
interacting potential of two very different particles is of long range and very strong,
exceeding thousands of kT for 1.5µm diameter dipolar colloidal particle.

This simple experiment of interaction of a small dipolar colloidal particle with a
Saturn defect ring in fact reveals a simple physical mechanism, which is behind this
phenomenon. If we consider well-separated particles, there are two contributions to
the elastic energy in this system. The first contribution comes from the elastically
distorted region around the small particle, and the second contribution is due to the
elastic distortion of the Saturn ring. It is possible to lower the total elastic energy
by bringing the smaller colloidal particle close or into the core of the Saturn ring
defect. In this case, the two defect regions are shared between the two entities and this
sharing lowers the total free energy of the system. Of course, this is a simple picture,
whichmissesmany details, such as the obviously curved trajectory of the particle and
the mismatch between the dipolar symmetry of the smaller particle and the threefold
symmetry of the cross-section of the Saturn ring. However, the experiments tell us
this is indeed the essence of the mechanism of attraction.
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Fig. 4.26 a Small colloidal
particle of 1.5µm diameter
is attracted into the Saturn
ring of a 19µm colloidal
particle, following the black
dashed path. b Binding
potential of the small
colloidal particle along the
trapping path. c Numerical
calculation: 100nm
nanoparticle is attracted into
the Saturn ring encircling a
1µm colloidal particle.
d The calculated binding
potential of the small particle
as a function of the particle
separation for trajectories at
different of-centredness “z”
from the central x − y plane

Having this in mind, one could imagine that smaller particles should be attracted
to any defect line in the nematic liquid crystals, created in quite different ways.
Defect lines should therefore act as collectors of particles, which could be used for
interesting purposes. The question arises, whether one could create artificially more
sophisticated scaffolds or even a network of decorated defect lines, connecting or
surrounding several large colloidal particles. Figure4.27 shows a more complicated
system of two big colloidal particles, which were brought together and forced to
entangle their Saturn rings. The phenomenon of entanglement will be discussed in
more details in Chap.5. For the reason of understanding the present experiment, the
reader can imagine that two colloidal particles in Fig. 4.27 are connected together
by a single defect line, which forms a Figure-of-eight. In this figure a perpendicular
alignment of the nematic liquid crystal was chosen for the measuring cell, so that
the entangled rings appear as dark circles in the plain of the image. By bringing a
smaller colloidal particle into the vicinity of such an entangled colloidal pair, one
can clearly see it is attracted and bound to the figure-of-eight defect line (Fig. 4.27a).

Spatial organisation of smaller colloidal particles, which were manually assem-
bled into the defect ring of the figure-of-eight, is shown in Fig. 4.28 and clearly

http://dx.doi.org/10.1007/978-3-319-54916-3_5
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Fig. 4.27 a Sequence of images showing the attraction of 2.32µm dipolar colloidal particles into
the entangled defect loop around two colloidal particles. b The potential of the smaller colloidal
particle in the vicinity of the figure-of-eight defect line. c Trapping sequence of smaller 100nm
particles into the figure-of-eight defect line entangling a pair of 1µm particles. Step 0 corresponds
to the final configuration and step 24 to the final configuration in the numerical simulations

shows the spiralling shape of the line. The images were taken in different focus of
the microscope, which brought into focus particles of different heights. Whereas the
binding energy of micrometre-size colloidal particles into the Saturn ring of a much
bigger particle is nearly 10 000 kT , the question arises, what is the smallest diameter
of the particle that could still be trapped into the Saturn ring defect. This was first
numerically calculated [194] for rather small 100nm particles interacting with a Sat-
urn ring around 1µm particle, and that is also shown in Fig. 4.26d. Binding energies
depend on the surface anchoring strength and are of the order of 1000 kBT . By reduc-
ing the dimension of the smaller particle, binding energy decreases monotonously
to zero at approximately 50nm small-colloid diameter. The theoretical prediction is
that nematic nanocolloids of tens of nanometres diameter should still be effectively
trapped into nematic defect lines. This prediction was in fact confirmed several years
later in the experiment performed by Ryzhkova et al. [118, 119]. Using dark field
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Fig. 4.28 a Smaller colloidal particles are trapped into the defect loop, twisting around a larger
colloidal pair (diameter 10µm). Images were taken at different heights of the microscope focus.
b Red-plate image of an entangled colloidal pair with smaller colloids trapped into the entangled
defect line

microscopy, it was possible to follow the motion of tens of nanometre diameters
silica particles into the defect line of bigger colloidal particles. This is discussed in
Sect. 2.6.

The experiments with colloidal particles of different sizes clearly demonstrate that
a rich variety of colloidal superstructures could be formed or even self-assembled
in nematic colloids. Some of these hierarchical structures are interesting for possi-
ble applications, such as the ring-like structure in Fig. 4.29. Here, the Saturn ring
of the bigger colloidal particle is completely filled with smaller colloidal particles
which form a kind of necklace encircling the particle. Providing that these smaller
particles are made of conductive material, such a structure could function as a dis-
tributed split-ring-resonator (SRR) with the electrical scheme shown in the insert to
Fig. 4.29b. Here, the capacitor C is formed of the two conductive surfaces of the

http://dx.doi.org/10.1007/978-3-319-54916-3_2
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Fig. 4.29 a Possible split
ring resonator superstructure,
formed of small colloidal
particles trapped into the
Saturn ring of the large
particle. b A calculated
stable colloidal ring
superstructure of small
100nm and a large 1µm
particles. The inset shows
schematic electrical circuit
corresponding to a Saturn
ring filled with conductive
colloidal particles.
c Calculated binding energy
of a small particle with
diameter d into the core of
the Saturn ring, formed
around a 1µm colloidal
particle for two different
anchoring strengths W at the
particle surfaces. Lines are
parabolic fits

neighbouring smaller colloidal spheres in close proximity. The inductance L comes
from the smaller conductive particles themselves. Such a colloidal ring therefore
represents a distributed LS circuit which is in fact an electromagnetic resonator. The
natural resonances of such micro-rings filled with nanometre particles should be in
the teraHertz region, corresponding to the wave length of tens of micrometres.



Chapter 5
Entanglement of Nematic Colloids

Abstract This chapter describes topologically nontrivial nematic colloids, starting
with a simple entanglement of two spherical particles in the nematic liquid crystal.
We continue with the description of knotted and linked nematic colloids, where the
full spectrum of experimental topology is demonstrated. The topological aspects are
further discussed in the experiments of topological charge production and colloidal
entanglement by optically controlled quench around a micro-fiber in the nematic
liquid crystal.

5.1 Entanglement of Colloidal Particles
in a Homogeneous Nematic

So far, we have been discussing the interaction of colloidal particles in nematic crys-
tals, mediated by isolated topological defects, such as hedgehog point defects or
Saturn rings. In all these cases each colloidal particle was accompanied by its own
topological defect, which generated the necessary force of assembly. The first evi-
dence of colloidal interaction, mediated by topological entities much different than
isolated topological defects could be traced back to the numerical experiments of
Guzman et al. in 2003 [195]. They were studying possible defect structures around
two closely positioned colloidal particles with homeotropic surface anchoring in a
nematic liquid crystal. By using molecular simulation and a dynamic field theory
approach, Guzman et al. found evidence of new defect structures neither predicted
nor observed before [195]. Instead of two separated Saturn rings, belonging to each
particle, each pair of particleswas connected by an unusual “3-ring” defect configura-
tion, as shown in Fig. 5.1. This image shows the contour plot of the tensorial ordering
field, corresponding to the order parameter of S = 0.26, thus tracing the regions of
well-reduced order parameter. Because of the depressed order, these regions must
correspond to the topological defects which are known to have reduced order in their
cores.

This pioneering numerical study of two particle disclination rings was followed
by a numerical study by Araki and Tanaka in 2006 [196]. They found a similar
topological structure in a form of a single defect line encircling closely spaced
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Fig. 5.1 A 3-ring defect
loop structure around two
spheres, showing the contour
plot with S = 0.26.
Reprinted figure with
permission from O. Guzmán,
E.B. Kim, S. Grollau,
N.L. Abbott, J.J. de Pablo,
Phys. Rev. Lett. 91(23),
235507 (2003). Copyright
(2003) by the American
Physical Society

colloidal particles in a form of the figure-of-eight. At an early stage of their numerical
separations, Araki and Tanaka also observed a 3-ring structure, similar to the one in
Fig. 5.1, but the structure was unstable and only transient. In the course of time, this
3-ring structure developed into a new structure with a single-stroke declination line,
surrounding and embracing both colloidal particles, as shown in Fig. 5.2.

Nearly simultaneously with the work of Araki and Tanaka, the Ljubljana group
was independently performing numerical studies of a numerical quench of a pair of
colloidal particles using LdG approach and reported at the Keystone ILC
Conference [197]. The nematic was numerically rapidly cooled down from the iso-
topic to the nematic phase. These numerical experiments, which were performed
prior to real experiments on real colloids, predicted an unusual phenomenon, where
two colloidal particles were spontaneously entangled by the cooling surrounding liq-
uid. This entanglement was soon observed in the experiments performed byMuševič
and Škarabot in 2006 and published in 2007 together with numerical analysis [198].

A snapshot of images taken from the movie showing the numerical quenching
experiment is shown in Fig. 5.3. At the beginning, a pair of colloidal particles, each of
onemicrometre diameter, are closely spaced and surroundedwith the isotropicmelt of
the nematic liquid crystal. When the “numerical temperature” is suddenly decreased,
the liquid crystal undergoes the isotropic-nematic phase transition, which nucleates
a huge number of densely packed topological defects in the newborn nematic phase
(first panel (a) in Fig. 5.3).

During the course of time, this dense tangle of topological defects annihilates and
at a later stage of coarsening dynamics leaves behind a single topological loop. The
loop is now encircling both colloidal particles and forms a figure-of-eight structure,
which strongly binds the two colloidal particles together.
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Fig. 5.2 The formation of defect loops around two colloidal particles in the nematic liquid crystal.
At early stage, there is a transient defect structure, which is formed in both cases, shown as the
first snapshot in a and b (t̃ = 30). This structure is unstable and rapidly transforms into either:
a two separated colloidal particles, each having its own Saturn ring, or b new type of topological
configuration, where a single defect loop is entangling both colloidal particles. Reprinted figure
with permission fromT.Araki, H. Tanaka, Phys. Rev. Lett. 97(12), 127801 (2006). Copyright (2006)
by the American Physical Society

Fig. 5.3 Snapshots from the movie, showing numerical quenching of a pair of colloidal particles in
the nematic. a Just after starting the quench, a dense mosaic of nematic patches comes out from the
isotropic melt. b In the course of time, this mosaic of patches coarsens into a network of topological
defects of densely packed topological defect lines, surrounding the two colloids. c At a later stage,
just before reaching the equilibrium state, only few isolated defect loops still exist. Among them,
the most prominent is the figure-of-eight defect loop, which is a truly stable topological state that
exists indefinitely. Defects are represented by drawing the surfaces of constant order parameter S
(coloured yellow, corresponding to S = 0.5). Courtesy of M. Ravnik
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This was an exciting numerical prediction and it took little time to be realised in
real experiments. These were performed by using the laser tweezers to position two
independent colloidal particles of 19µm diameter and homeotropic surface anchor-
ing in a planar nematic cell with a homogeneous thickness of 21µm. Because the
thickness of the nematic layers is only slightly bigger than the microsphere’s diam-
eter, the topological defect now appears as a Saturn ring, encircling each of the two
colloidal particles. The laser tweezers were used to position the two particles as close
as possible.

By using a strong light of the laser tweezers, the nematic liquid crystal was locally
molten, as shown in Fig. 5.4a. This melting is due to the absorption of the laser
tweezers light in a thin layer of indium-tin-oxide, deposited on one or both glasses
of the cell. Because of the first-order phase transition, the isotropic melt is clearly
separated by a well visible interface with the rest of the nematic liquid crystal.
Then, the strong light of the laser tweezers was shut down, and the molten isotropic
island began to rapidly cool down because of the ceased absorption of light. In a
fraction of a second the isotropic melt reaches the phase transition temperature,
where the newborn nematic phase starts to appear in the course of time. In first
stages, this newborn nematic phase appears as a very fine mosaic of disordered
patches of the nematic liquid crystal, oriented randomly in space. This situation
is shown in Fig. 5.4b. By further cooling down with time, this fine mosaic gets
gradually more rough, which is due to the expansion and growth of each micro-

Fig. 5.4 Snapshots from the movie, showing real quenching of a pair of colloidal particles in the
nematic. a In the isotropic phase, the particles are surrounded by the disordered liquid crystal. b
Just below the isotropic nematic phase transition, a dense mosaic of nematic defect patches comes
out from the isotropic melt. c In the course of time, this mosaic of patches coarsens into a network
of topological defects of densely packed topological defect lines, surrounding the two colloids.
d At a later stage, just before reaching the equilibrium state only few isolated defect loops still
exist. Among them, the most prominent is the figure-of-eight defect loop, which is a truly stable
topological state shown in e, which exists indefinitely f
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domain (Fig. 5.4c, d). At this stage, a dense network of topological defects is formed
where the newly formed nematic grains meet each other. At a certain time, the
temperature of the nematic reaches its equilibrium value, but the nematic sample is
still out of equilibrium because of the dense remnant tangle of topological defects.
Then, the process of coarsening dynamics takes place,where this topological network
partially and gradually annihilates, which is accompanied by the growth of a uniform
nematic texture, as shown in Fig. 5.4d. Just before reaching the equilibrium state,
only a small number of defect loops are present; most of them annihilate into the
vacuum, but there is one loop which remains. This is shown in the experimental
image in Fig. 5.4f, which is in excellent and nearly one-to-one correspondence with
the numerical images shown in Fig. 5.3.

This mechanism of formation of dense network of topological defects is called
the Kibble–Zurek mechanism [31] and applies at an early stage of defect texture
formation. It was first invented by Kibble in 1970s to explain the emergence of
cosmic strings in theUniverse. Because of themathematical correspondence between
the cosmic fields, and fields relevant to condensed matter, the same mechanism was
applied to a condensedmatter systembyZurek [32]. In condensedmatter, theKibble–
Zurekmechanism is used to describe the emergence of topological defects of different
material fields, such as themagnetisation inmagnetic systems or electric polarisation
field in ferroelectrics [199].

A rather striking similarity between the predictions of the LdG theory and real
experiments on real samples gives us confidence that theory is indeed able to direct
experiments inmany situations. In this case, it clearly led to the discovery of colloidal
entanglement in nematic liquid crystals, which was the the foundation for many
topological studies in the following decade. The reason for this is the fact that we
could realise for the first time the manipulation of individual topological entities,
such as the two Saturn rings in our case, into more complex topological objects. In
this experiment, shown in Fig. 5.4, it was the entanglement of two colloidal particles
by a single topological loop, which formed the geometrical shape, reminiscent of
number 8. For this reason, this new topological entity was called figure-of-eight.

By performing a large number of experiments (124 in this case), other types of
topological entanglement of a single colloidal pair were found. The first topological
state, which was the most stable (36%), was the figure-of-eight. The second observed
state,whichwas the secondmost stable, (13%offinal states)was thefigure-of-omega,
which is presented in Fig. 5.5. In this case, we also observe a single topological loop,
which is encircling and strongly binding both particles, but this loop now has the
appearance of the Greek letter Omega (Ω). Instead of being simply twisted as in the
case of the figure-of-eight, the figure-of-omega makes an additional small loop in
between the two colloidal particles and in the plain perpendicular to the plain of the
cell. Again, a striking agreement is found between the experimentally obtained and
numerically calculated structure as shown in Fig. 5.5.

In most of the experiments the figure-of-omega configuration was found unstable
and transformed slowly into another more stable configuration, shown in Fig. 5.5d.
This state is called the entangled hyperbolic defect and was obtained in 3% of
direct quench experiments. The inspection of the structure shows that there are two
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Fig. 5.5 Assembling entangled colloidal pairs by thermal quench using light. The diameter of the
particles is 19µm, the cell thickness is 21µm. a “Figure of eight” entangled state. The disclination
loops are visible under non-polarizing optical microscope due to the scattering of light. bNumerical
simulation of the time evolution of entanglement, measured in the number of iteration steps. Defects
are represented by drawing the surfaces of constant order parameter S (colored red, corresponding to
S = 0.5). cEvolution of the “figure of omega” entangled state.d “Figure of omega”was unstable and
transformed into the “entangled hyperbolic defect”. e The calculated “figure of eight” structure.
f Close look at the director field in the gap between the microspheres for the “figure of eight”.
g Calculated “figure of omega” structure. h Calculated “entangled hyperbolic defect” structure

topological defects in this case. The first defect, most readily visible from the numeri-
cal simulation in Fig. 5.5h, is a simple loop, entanglingwithout twisting both colloidal
particles. However, in order to satisfy the law of conservation of topological charge,
there must be a second defect, which is observed as a small loop or even a point
defect, located in-between the two colloidal particles. The formation of this defect is
clearly visible from the snapshots of images in Fig. 5.5d, where the formation of the
defect in between the particles pushes the two particles slightly apart. This way, there
is enough room between the surfaces of the two colloidal particles to accommodate
the point defect.

It is intuitively clear that the entanglement of two colloidal particles generates the
force, which binds the two particles together. This is due to the fact that any forced
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separation of the two colloidal particles increases the overall length of the topological
defect line entangling both defects. Now, this increase in length of the defect line
leads to the increase of the energy of the system, because additional length of the
defect has to be created by elongation. This means that external work is put into the
system and the total elastic energy of the entangled colloidal pair is increased. The
increase of the elastic energy upon colloidal displacement is the basic definition of
a force. In other words, the entangling defect line exerts a force on both colloidal
particles, which pushes them together simply to reach the smallest possible length
of the defect loop to reach the lowest possible energy state.

This structural force due to colloidal entanglement was measured in the experi-
ments as shown in Fig. 5.6. Instead of a single laser tweezers trap two independent
light traps were formed, each grabbing one colloidal particle. After the optical traps
were separated, the two colloidal particles followed that trap movement and sepa-
rated from each other. This is shown in the first panel of Fig. 5.6, where one can see
two light traps indicated by two small red crosses on each side. The colloidal particles
are well separated from the natural equilibrium separation and one can clearly see a
pair of defect lines, appearing as two dark strings, connecting both particles. These
two dark lines are simply the two projections of the figure-of-eight loop, which is
stretched by the laser tweezers. In the next step, the tweezers are shut down and
one can clearly see from the sequence of panels in Fig. 5.6a that the two particles
approach each other. The same experiment was performed on the entangled point
defect colloidal pair, shown in Fig. 5.6b. From the recorded video images of the two
colloidal particles approaching each other by the force of the entangling defect line,
one is able to calculate the instantaneous force on each particle, and the integration of
work of this force along the path of the colloidal particle results in the elastic poten-
tial as a function of the colloidal pair separation. This binding potential is shown in
Fig. 5.6c for the figure-of-eight structure, and the insert to this figure shows the force
of entanglement as a function of separation. The binding forces in the figure-of-eight
structure are of the order of 10pN and the force of the equilibrium state is zero
because the force of the entanglement is balanced by the contact repulsion between
the two colloids.

The binding potential of entangled colloidal pairs are of the order of 10000 kBT
and are much stronger than the binding potential, generated by isolated point defects.
This is shown in Fig. 5.6c and d for the figure-of-eight and the entangled hyperbolic
defect structure.

The entanglement is not limited to a single colloidal pair. The quenching exper-
iments rapidly demonstrated that it is possible to entangle an arbitrary number of
colloidal particles, which readily form entangled colloidal chains. Figure5.7 shows
two examples of colloidal wires assembled by entangling 4, 6 and 5 colloidal parti-
cles. Two different types of wires were observed, the figure-of-eight colloidal wire,
shown in Fig. 5.7a, b and the entangled hyperbolic defect colloidal wire, stretched
by the laser tweezers in Fig. 5.7c.

There are several important aspects related to the observation of entanglement
of colloidal particles in the nematic liquid crystal by closed loops. First, there is an
interesting signature in the formation of the entangled topological defect, as they
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Fig. 5.6 Measuring the force of entanglement by stretching and releasing the colloidal pair using
light. a Using focused light of the laser tweezers (two red crosses on left and right), the “figure
of eight” colloidal pair is first stretched and then released by switching-off the light. The diameter
of the particles is 4.7µm, the thickness of the cell is 6µm. The force and the binding energy are
calculated from the video frames (a), and shown in c. b The same is done for “entangled hyperbolic
defects”, shown in d. e The pair binding energy, calculated for the “figure of eight”, as a function
of particle separation x , normalized to the particle diameter d. f The pair binding energy, calculated
for the “entangled point defect” as a function of separation x , normalized to the particle diameter d
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Fig. 5.7 Colloidal wires assembled by entanglement. a Right-handed “figure of eight" colloidal
wire assembled from 19µm glass spheres. b “Figure of eight” colloidal wire made of 4.7µm
microspheres, stretched by light of the laser tweezers (red crosses). In the absence of light, the aver-
age equilibrium surface-surface separation between neighboring spheres is 160nm. c “Entangled
hyperbolic defect” colloidal wire, stretched by laser tweezers. Without light, the average equilib-
rium surface-surface separation between neighboring spheres is 1100nm. d Calculated structure of
stretched “figure of eight” colloidal wire. e Calculated structure of stretched “entangled hyperbolic
defect” colloidal wire
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are created nearly exclusively by quenching from the isotropic phase. Whereas the
conservation of the topological charge assures that in this system the topological
charge of defect loops equals the number of colloidal particles, it does not prescribe
the nature of the loops. The spontaneous formation of entangled defect loops is there-
fore ultimately connected to the symmetry breaking through the Kibble mechanism.
In contrast to an empty space, where all relics of the disorder phase annihilate after
coarsening, in our case, the relics condense at colloidal particles in a form of nematic
braids of various complexities, as discussed by Ravnik et al. [200]. This topologi-
cal condensation brings the physics of this experiment into close relation to other
observations of entanglement, such as the entanglement of vortices in superconduc-
tors and superfluids, theory of strings and cosmological Kibble mechanism of string
formation. The observation of entanglement raised new questions about the nature
of topological charge in liquid crystals and the forms of the topological charge mate-
rialisation. Eventually it triggered the development of novel topological analyses of
the charge in nematic braids by Čopar et al. [201, 202].

The second important aspect is the simple observation that originally isolated
defect loops, such as Saturn rings could be fused and reshaped via thermal quench.
This has led to the discovery of colloidal knots and links in chiral nematic colloids
which will be described in the next section. It should be noted that in planar nematic
cells only linear entangled colloidal wires were observed. Any attempt to entangle
colloidal particles in 2D, i.e. in structures different fromwires, absolutely failed. The
underlying reason is quite simple and is due to the fact that these topological lines
can propagate only in a direction perpendicular to the director. Eventually they could
be deviated from that direction by a small angle to allow bending of lines along the
surfaces of colloidal particles. However, it was absolutely impossible to direct such
a line along the director of a planar cell. If a chiral structure is taken instead of a
homogeneous one, the lines can propagate practically in any direction in the sample
by choosing proper position with respect to the helical structure.

The third important observation is related to the photonic character of entangled
colloidal wires. If the refractive index ofmicrospheres is higher than the surrounding,
each microsphere acts as an optical microresonator, which confines light. Because
of the total reflection at the sphere-liquid interface, the optical waves inside the
spherical cavity get totally reflected each time they hit the interface. This results in
multiple and subsequent total reflections (or bouncing of light) in the interface and
the light is circulating inside the microsphere. If the light reaches the point of origin
with the same phase and amplitude, we have a condition for an optical resonance.
These optical waves, which can be loosely described as circulating light waves inside
the high reflective index object, are called Whispering Gallery Mode resonances. If
two or many such resonators are positioned close to each other, such as the case of
our entangled microspheres, the light could be transferred from one resonator to the
other and back. We therefore have a series of optical resonators which are coupled
together and the electromagnetic modes of series of resonators are also described
as a photonic molecule. These photonic molecules are therefore easily realised by
entangling colloidal microsphere in a nematic liquid crystal.
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5.2 Knots and Links in Chiral Nematic Colloids

In this section we demonstrate that the richness of phenomena observable in chiral
nematic colloids is much larger than in non-chiral, homogeneous nematic liquid
crystals. By choosing chiral nematic crystals and colloidal particleswith homeotropic
surface conditions it was possible to realise knots and links of topological defects,
which could be reconfigured by the light of the laser tweezers.

Knots are fascinating topological objects and historic symbols of complexity that
have fascinated the human mind since the dawn of our history. Knots and links are
treated within the mathematical discipline of topology, but have always played a
prominent role in physical and life sciences. In supra-molecular chemistry, com-
plex links could be demonstrated as interlinked molecular rings [203, 204], called
catenanes, and interlocked molecules, called rotaxanes. Polymer molecules can be
knotted and entangled and this has proven to be essential for the crystallization and
rheological properties of polymers [205]. Knotted fields have also been predicted
in classical field theory [206] and knotted structures were observed in interfering
light beams [207]. Knots and links of light appear as lines of zero intensity [208]. In
hydrodynamics, hydrodynamic vortices could be entangled [209], and in biological
systems, molecular knots and links are very important. The entanglement of DNA
molecules [210] plays a crucial role in vital processes or replication, transcription,
and recombination.

In chiral nematic liquid crystals, knots and links and evenMöbius structures were
first observed by Yves Bouligand in his detailed studies of topological defects in
cholesteric liquid crystals by using an optical microscope [211]. However, these
features remained unexplored because of the difficulty of their precise control and
the lack of means to manipulate them. With the invention of laser tweezers and
fluorescent confocal microscopes it was possible to get a completely new insight
into the 3D structure and obtain perfect control over the creation and manipulation
of defect lines in nematic liquid crystals by a strong light of the laser tweezers. Liquid
crystals proved to be a particulary suitable system for study of topological properties
of knots and links of defect loops, because they appear at microscopic scales and
could therefore be observed and analysed with an optical microscope.

In a work of Tkalec et al. [212] and later Jampani et al. [213] it was demonstrated
for the first time that microscopic loops of topological defects could be knotted and
linked into complex patterns of arbitrary complexity. The medium that supported
knots and links is a chiral nematic liquid crystal with colloidal inclusions. An indi-
vidual colloidal particle in a chiral nematic cell requires thewell-known single-defect
loop structure, known as a Saturn ring and shown in Fig. 5.8a. Because the chiral
nematic liquid crystal is twisted for 90◦ in the measuring cell, the Saturn ring is tilted
at 45◦ with respect to the molecular alignment at the cell walls, and is slightly twisted
because of the twisting environment.

When the laser tweezers were used to bring together two or several identical
colloidal particles, they spontaneously fused their rings, leading to the formation of
longer loops that entangle two particles. By bringing together three ormore of several
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Fig. 5.8 Topological defect lines tie links and knots in chiral nematic colloids. a A twisted
defect ring is topologically equivalent to the unknot and appears spontaneously around a single
microsphere. The molecular orientation on the top and bottom of the cell coincides with the ori-
entation of the crossed polarizers. b–e Defect loops of colloidal dimer, trimer and tetramers are
equivalent to the unknot. f The Hopf link is the first nontrivial topological object, knitted from two
interlinked defect loops. In a–f, the corresponding loop conformations were calculated numerically
by using the Landau-de Gennes free-energy model. g–j A series of alternating torus knots and
links on 3 × q particle arrays are knitted by the laser-inducted defect fusion. The defect lines are
schematically redrawn by using a programme for representing knots to show the relaxationmapping
from the initial planar projection to the final knot diagram, which was performed by the sequence of
Reidemeister moves. The designations of knots follow the standard notationCN

i , whereC indicates
the minimal number of crossings, i distinguishes between different knot types, and N counts the
number of loops in multicomponent links. These panels were drawn using KNOTPLOT 1.0. Scale
bars, 5µm
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particles, it was necessary to use a rather strong light of the laser tweezers to locally
heat the nematic liquid crystal, which resulted in heat-assisted fusion of defect loops
into more complex colloidal structures shown in Fig. 5.8b–f. By choosing the focal
plane of the microscope at different heights, it was possible to follow the defect
lines through the liquid crystal and determine the resulting shape of the loop. Lower
panels in Fig. 5.8a–f show the numerically calculated equilibrium of the colloidal
superstructure together with defect loops. One immediately notices a one-to-one
correspondence between the experimental panels in the upper row and the numerical
panels in the lower row. A more detailed analysis of the shape and interrelation
of topological loops reveals that the structures with up to 4 colloidal particles are
topologically trivial. They are all formed of a single loop which embraces one, two,
three or four colloidal particles without being knotted and linked.

Knottedness or linkedness can be analysed by performing moves called Reide-
meister moves, also shown in panels (g–j). One is allowed to twist, stretch or perform
other actions on the loops, apart from cutting and rejoining them. One can immedi-
ately see that the loop in Fig. 5.8e is in fact a simple loop, in topology also called
the unknot. The first topologically non-trivial structure is observed in four entangled
colloidal particles, shown in panel (f) of Fig. 5.8. There are clearly two loops which
are not separated, and could never be separated without being cut. They form the
famous topological object called the Hopf link.

The true richness of knots and links in chiral nematic liquid crystal colloids is
revealedwhen the colloidal clusters are extended to the regular colloidal array of p×q
particles, as shown in the first example of Fig. 5.8g. The laser tweezers were used
on selected points on the array, which resulted into the reconnections of topological
defect loops, which will be described in more detail in the Fig. 5.9. Series of nematic
knots and links, realised on 3 × q particle array is shown in panels (g–j) of Fig. 5.8.
To identify the topology of the entangled defect loops, we performed a sequence
of Reidemeister moves, which preserved the overall topology of the tangle. These
Reidemeister moves virtually transform the real conformation of the loops into its
planar projection with the minimum number of crossings by smoothing the twisted
parts of the loops. It was found that the negative or left-handed crossings are favoured
in a left twisted nematic liquid crystal because of the overall chirality of themeasuring
cell. The resulting mappings of the topological loops reveal a rather surprising result.
There is a series of alternating torus knots and link, starting with the Trefoil knot, the
Solomon link, the Pentafoil knot and the Star of David. This series of generic knots
and links shows that the confining regular lattice of colloidal particles allows for the
production of torus links and knots of arbitrary complexity. This can be achieved
simply by adding and interweaving additional rows of colloidal particles, that is by
increasing q.

The knots and links could also be retied by using the laser tweezers, which is
illustrated in Fig. 5.9. The first panel in Fig. 5.9a shows an array of 3 × 4 particles
and we concentrate on the encircled region. This region shows a local detail of the
local crossing of the two defect loops which appears to be situated in-between the
four colloidal particles. On this side, the two defect loops are simply crossing each
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Fig. 5.9 Rewiring of knots and links by use of laser tweezers. a A right-handed trefoil knot
is realised on a four-by-three colloidal array. The dashed circles indicate a unit tangle that can
be rewired with the laser beam. The tangle consists of two perpendicular line segments and the
surrounding molecular field. b By rewiring the unit tangle that corresponds to a 2π/3 rotation of
the encircled tetrahedron, a new composite knot, shown in c, is knitted. The sequence of tangle
re-wirings in b, d, and f results in switching between knots and links, demonstrated in a, c, and e.
Scale bars, 5µm

other and one is positioned above the other, as shown in the red-black crossing in
panel Fig. 5.9a.

If we look at this region from a perspective, we will see what is shown in the
Fig. 5.9b. There are two colloidal particles painted yellow and there are two blue
coloured defect lines crossing each other one on top of the other. If we further
concentrate on the artificially created tetrahedron ending with red points, we can
see that the director field is practically perpendicular at each of the surface of this
tetrahedron. This is illustrated in a zoom-out drawing in Fig. 5.9b. An interesting
observation here is that this tetrahedron could be rotated by 120◦ around each of the
four of its symmetry axes. This transforms the director field on the surfaces of the
tetrahedron into itself, but there is a huge change in the configuration of both sections
of defect lines: they are moved to a different position by this rotation. This moving
to a different position by rotating the tetrahedron around any of its symmetry axes
means that the unit tangle (this is the name of the local crossing) is reconnected.

Although this is only a possible mathematical operation, it can indeed be realised
in practice by the action of the laser tweezers. So by focusing the light on the encircled
unit tangle in Fig. 5.9a, the local action of the light transforms this unit tangle into
another configuration, shown in Fig. 5.9c. Note that the unit tangle configuration is
now different, as shown by two bypassing and curved defect loops, which originate in
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the originally crossed red andblue defect loops.Under the action of the laser tweezers,
this crossing was broken and reconnected in a way that each red section is now
connected to blue sections. Looking at the panel in Fig. 5.9c, one can immediately
notice that the topology of the defect tangle in this colloidal array is now changed.
By applying the next transformation of this unit tangle, the third possible tangle state
is reached, as shown in Fig. 5.9e. Again, mathematically this represents a rotation of
the virtual tetrahedron around a symmetry axis for 120◦, as shown in Fig. 5.9d. Local
rotation results in rewiring of the unit tangle into the third possible configuration,
shown in the insert to Fig. 5.9e. If this is continued, one can again reach the point-
of-origin colloidal structure presented in Fig. 5.9a.

It is clear from the experiment described above that there are three possible and
topologically different unit tangles at each side surrounded by four colloidal particles.
Using the laser tweezers one can transform these unit tangles one into another and
this results in a global change of the topology of the tangled colloidal cluster as a
whole. For our 3×4 array shown in Fig. 5.9 this means that the topologywas changed
from the original trefoil knot Fig. 5.9a into the left-handed composite knot in Fig. 5.9c
and the two-component link (Fig. 5.9e). Therefore a simple modification of a single
crossing site results in three different topological structures. One could immediately
guess there is a huge variety of all possible topological states, which could be reached
by applying the rewiring technique at any other unit tangle. During this process, one
might reach the same structure after performing different operations, and there is
a given number of possible states that could be realised on a predetermined p × q
array.

The optical retying of knots and links is directly related to the changes in the
orientational field of the nematic host. The defect loops that we are knitting and
tying into knots and links are not only structure-less things, but are surrounded by the
nematic director field. They therefore posses a threefold rotational symmetry of the
hyperbolic molecular orientational profile in the plain, which is locally perpendicular
to the defect line. This is shown in the insert to Fig. 5.10a. This threefold symmetry
pattern can twist as we move along the disclination loop and makes the defect loops
three-sided strips which are a generalisation of the well-knowMöbius strip. Because
we always have closed loops, it is clear that only fractional values of the internal
twist of the loop are allowed. This is because the director field should be continuous
everywhere except in the core of the loops, and should match its original pattern
as we move away from and return back to the same point on the loop. This allows
rotation of the director field pattern by an integer multiple of 120◦. In topology, this
rotation by a discrete angle is called the self-linking number and counts the number
of turns of the binom around the curb tangent for algebraic curves. In our case, it
counts the number of discrete turns of the director field around the defect loop.When
we have multiple loops in the system, the summation of the self-linking number of
all the loops is used as a natural generalisation of this invariant. The quantisation of
the self-linking number is directly related to the geometric, or Berry’s phase.

The self-linking number SL and the number of loops N can be used for a unique
classification of all possible loop conformations - that is all the available knot types
on a given p × q particle array. Figure5.10b shows the classification of the possible
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Fig. 5.10 Topological classification and made-to-order assembly of linked and knotted nematic
braids. a The defect loops have a local threefold rotational symmetry of the hyperbolic cross
section and correspond to three-sided strips, analogous to the Möebius strip. They can be distinctly
characterised by the number of loops N and the self-linking number SL of fractional values. b The
classification of all possible knots and links on a three-by-four particle array by SL and N. The
hierarchical ordering of knots and links, depicted by distinct colours and standard knot symbols,
are shown. c Made-to-order assembly of Borromean rings on a particular p × q particle array.
The feasible tangle combinations were tested with the numerical algorithm based on the Jones
polynomials and Kauffman bracket approach. The selected configuration was identified by direct
comparison with polynomials in the enumerated Table of Knot Invariants [214] and then assembled
by using laser tweezers. d The distribution of prime knots and links on a four-by-four particle array
shows a large diversity of topological conformations with minimum crossing numbers up to 10. The
probability of occurrence of a particular knot or link decreases with its complexity, as measured by
the minimum crossing number

topological objects, which could be realised on a three-by-four particle array. This
was determined by testing all the possible configurations of unit tangles. Using the
self-linking number and the number of loops, the knots and links arrange hierar-
chically and regularly alternate between the knoted/unknoted and linked/unlinked
structures. This observation is promising for predicting the complexity of the knots
and links that can be realised on a specific p × q particle array.
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Because there is perfect control over the tangle crossings by using the laser tweez-
ers and because there is a theoretical tool for finding all possible conformations of
nematic base, it is possible to assemble a desired topological structure by demand.
This is illustrated in the assembly of the well-known Borromean rings as an exam-
ple of a complex topological structure. The smallest possible colloidal array for the
formation of Borromean rings is calculated to be four-by-four. By using a computer
algorithmbased on calculating the polynomial invariants fromknot theory, the type of
the tangleswere identified for each crossing for each side, as shown in Fig. 5.10c. Fol-
lowing this theoretical recipe, it was possible to reconnect all tangles into the desired
conformation, which resulted in a colloidal array, linked by Borromean rings.

Figure5.10d shows the diversity of possible topological structures, which could
be assembled on a four-by-four particle array. Almost fourty different knot and
link types were identified among 39 possible tangle combinations with minimum
crossing numbers up to ten. For this array 35% are prime knots or links, 29% are
unknots, 18% are unlinks, and 18% are more complex composite links. Such a large
diversity of topological object suggests that it is possible to design any knot or link
on a sufficiently large colloidal array [215]. Chiral nematic colloids are a system,
especially rich in knots and links. In other soft matter systems and polymers, the
occurrence of knotted structures is fairly low and rarely reaches several percents of
possible structures.

The analysis of knots of linkswas later spread to higher chirality of the surrounding
liquid crystal and the natural parameter which describes the degree of chirality in
chiral nematic colloids that is the ratio of the helical period p to the diameter of
colloidal particles d. The experiments were performed in planar cells with their
rubbing directions which determined that the surface alignments of the liquid crystal
were set parallel on both surfaces. At a fixed thickness of the measuring cell h
and fixed diameter of the colloidal particle d, the cells were constructed so that the
thickness was just slightly bigger than the colloidal diameter d. The chirality was
then varied by varying the helical period of the chiral nematic liquid crystal. This
was done by adding the proper amount of the chiral dopant to the non-chiral nematic
crystals. This way, the measuring cells were constructed, where the total twist of
the chiral nematic structure was set to the multiples of π (π , 2π and 3π cells). The
colloidal particles were chemically treated to induce perpendicular surface alignment
of the liquid crystal. After introducing colloidal dispersion, laser tweezers and optical
microscopy were used to analyse the structure of topological defects around the
colloidal particles. At a later stage, the interaction and the entanglement of colloidal
particles in cells with variable chirality were studied.

Figure5.11 shows the structure of defect loops in π -, 2π - and 3π -twisted cells
together with the results of the LdG numerical analysis displayed in the far right pan-
els. These structures were determined by grabbing defect loops with laser tweezers
and observing the defect loop structure under an optical microscope with a variable
height of the focal plane, as shown in Fig. 5.12. In all cases, one could clearly deter-
mine the winding patterns of defect loops, most clearly visualised in panel (d) and
(e) of Fig. 5.11. It is then easy to understand why this winding occurs. Let us begin
from the simple, non-twisted cell and a colloidal particle, which is encircled by the
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Fig. 5.11 a Unpolarised and polarised images of 20µm silica colloidal particle with homeotropic
surface anchoring in a h =22µm thick and right-handed π -twisted cell of 5CB. The right panel
shows the result of LdG numerical analysis. The red line presents the regions of the CLC with the
order parameter S = 0.51. The size of the colloidal particle is 3µm and the cell thickness is 3.2µm.
b The as in a, but the twist of the cell is now 2π . c The same as in a, but the twist of the cell is now
3π . d Numerical LdG calculation of winding of the defect loop in planar, π -, 2π -, and 3π -twisted
CLC cells. Defects are shown in red as iso-surfaces of S = 0.51. e Top and side view of the winding
of the defect line in a 10 π -twisted CLC cell
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Fig. 5.12 a Silica microsphere of diameter d = 20µm with homeotropic surface anchoring in a
right-handed 2π -twisted nematic cell with thickness h = 22µm. Note the defect line wrapping
around the colloidal particle. The circular object on the right side of the left panel is the isotropic
island of 5CB, produced by local heating with high-power laser tweezers, indicated with a small
cross. The laser power was 170mW for each trap. The right panel shows how the molten island
of 5CB attracts the defect line and stretches it in the x direction. b Two equal beams of the laser
tweezers were used to stretch the defect line in the y direction. c The defect line is stretched by two
beams in the y direction, and the images between crossed polarisers are shown for two different
z positions of the focal plane of the microscope, separated by 16µm. d Schematic view of the
laser-tweezers-stretched defect line, wrapping the colloidal particle in the 2π -twisted nematic cell
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Saturn ring shown in the side view on the first panel of Fig. 5.11d. Now we imagine
that the upper glass is turned forπ , thus forming a π -twisted chiral nematic structure.
Because the sample was twisted, the originally flat Saturn ring is also twisted for π

and forms the figure-of-eight side projection pattern, shown in the second panel of
Fig. 5.11d. Further twisting of the cell results in a more chiral structure and a more
twisted Saturn ring. This originally flat Saturn ring is therefore winding around the
colloidal particle and can form highly twisted and densely packed winding patterns,
as shown in panel (e) of Fig. 5.11.

The winding of the defect loop around colloidal particles in the chiral nematic
liquid crystal has a pronounced effect on the pair interaction of colloidal particles, as
discussed in Sect. 2.9 of this book. However, it also strongly affects the entanglement
of a pair of colloidal particles, which was proved in quenching experiments.Whereas
in nonchiral nematic cells, three different colloidal entangled states are stable, the
richness of the entangled states is much bigger in chiral nematic cells. Because of
the twisted environment, more entangled colloidal structures are stable and can be
more easily formed due to more freedom of propagation of defect lines through the
twisted structure of the chiral nematic liquid crystal. Similar defect structures were
analyzed by Čopar et al. in densely packed 3D colloidal lattices [216].

The entangled pair colloidal structures were studied in detail in π -twisted cells, as
shown in Fig. 5.13. In these experiments, the elements of a pair of colloidal particles
were positioned close to each other in a π -twisted cell by using the laser tweezers.
Then, the laser power was increased to melt the liquid crystal around the colloidal
pair into the isotropic phase. After switching off the light, the colloidal pair was
found to be spontaneously entangled by defect tangles of different complexity. The
quenching experiments showed at least 17 different entanglements in a π -twisted
cell. Some of them are shown in Fig. 5.13, together with results of numerical LdG
calculations. A closer inspection of the entangled colloidal dimers reveals that they
are all variations of the same structure. These variations can be obtained by applying
themethod of localised tetrahedral rotation to the orthogonal defect lines crossing (or
tangles). The differences between the dimer structures can be considered as localised
re-wirings at four tetrahedrally shaped rewiring sites, as schematically illustrated in
Fig. 5.14.

The topological analysis using tetrahedral rotations shows that there are 81
possible but only 36 topologically different dimers. Due to different geometry and
symmetry, these structures are energetically different. In real experiments,weobserve
six stable structures, all of them being predicted by the above mentioned analysis.
The observed entangled colloidal dimers can be classified into two categories with
different numbers of closed defect loops. Structures in Fig. 5.13a–d are entangled
by a single closed defect loop. By performing Reidemeister moves on the defect
lines, we observe the projection of the loop onto a plane, and find that no structure
in Fig. 5.13a–d is a knotted one. In the structure, entangled by two defect loops in
Fig. 5.13f, we find that this is the before discussed Hopf link. If the number of inter-
acting colloidal particles in chiral nematic cell is increased to three or more particles,
the topology becomes even richer, as shown in Fig. 5.15.

http://dx.doi.org/10.1007/978-3-319-54916-3_2
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Fig. 5.13 Entangled colloidal dimers in the right-handed π -twisted CLC cell of h = 22µm
thickness. All structures were obtained by quenching a colloidal pair from the isotropic phase,
created by local heating with the laser tweezers. Left panels are taken in unpolarised light; panels in
the middle are taken between crossed polarizers right panels present either numerically calculated
colloidal dimers (S = 0.51) or just a schematic presentation of defect loop topology, as depicted
from left panels. In a total of 176 experiments performed, the various structures a–f appear in a
6.8%, b 7.3%, c 6.2%, d 26.1%, e 5.1%, and f 10.8% of the experiments
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Fig. 5.14 Schematic depiction of entangled colloidal dimers with four rewiring sites labeled
A–D. The rewiring sites are local tetrahedrons, where disclinations can take different paths, forming
different entangled structures. The chosen structures (a–d) only differ in the top (B) and the bottom
(D) rewiring sites, i.e., tetrahedrons. Rewiring of the tetrahedron D transforms the structure a into
b. Subsequent transformations into d and c are performed in a similar manner, as shown in the
figure. a is the most symmetric entangled dimer that is invariant to rotations for 2π /3 around any
of the principal axes

The colloidal trimer in Fig. 5.15a is entangled by a single defect loop, which is an
unknot, similar to the tetramer in Fig. 5.15b. However, the second colloidal trimer in
Fig. 5.15c is entangled by two interlinked defect loops, it is therefore a Hopf link. The
latter is also shown for the colloidal tetramer in Fig. 5.15d. For this tetramer, another
topological structure is found in Fig. 5.15e, where three defect loops are mutually
interlinked, thus forming a short chain of topological loops. And finally, there is a
knotted structure shown in Fig. 5.15f. It has three crossings with a single loop and is
known as a trefoil knot.

The observation of knotted and linked defect loops in chiral nematic colloids,
formed of a dispersion of spherical microparticles in a chiral nematic crystal, trig-
gered large interest in the topology of liquid crystal colloids. Whereas all these
experiments were performed by using a topologically simple microsphere of genus
g = 0, further studies concentrated on topologically more complicated objects, such
as tori, handlebodies, knotted and linked colloidal particles and colloidal particles
with non-orientable surfaces.
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Fig. 5.15 Entangled colloidal clusters in the right-handed π -twisted CLC cell. The images on
the left are taken under crossed polarisers. The panels in the middle column represent drawings
of the defect loops, as deduced from images on the left. The right panels show the topologically
minimised defect loop structure, after performing Reidemeister moves. These panels were drawn
using KNOTPLOT 1.0. a–e Colloidal particles of diameter d = 20µm in h = 22µm thick cell.
f Colloidal cluster of h = 10µm silica microspheres in a h = 12µm thick cell

5.3 Charge Production and Entanglement on a Fibre
in a Nematic Liquid Crystal

Several years ago, topological charge was considered an exotic mathematical for-
mulation with little importance to physical phenomena. However, in recent years,
it started to play an important role in very different fields, materials, and systems,
such as superconductors, a superfluids, systems of cold atoms, or soft ferromagnets.
Topology, which is a mathematical discipline studying deformable surfaces, is now
being considered as an important aspect in topological insulators, light transport,
polymer chemistry, electromagnetism and acoustics. Strange enough, this field has
witnessed a revival in liquid crystals, where it was intensively studied in the 1970s by
Yves Bouligand and others [211, 217–221]. However, 40 years ago, there were no
methods and instruments to video image in 2D, micro image in 3D, and grab micron-
sized particles by laser tweezers. Today, we have methods of imaging 3D structures
and fields on the sub-micron scale, visualise them in 3D and move and manipulate
micrometre-sized objects in liquid crystals by using the laser tweezers. This is the
reason why topological phenomena could be precisely studied in the experiments
performed over the last five years.

An interesting question, connected to the conservation law for the topological
charge, has emerged when considering possible applications of nematic colloids in
photonics. The idea is to have microphotonic elements, such as lasers, fibres and
optical microcavities dispersed in a nematic liquid crystal, where they are entangled
together using the entanglement mechanism, described in this chapter. However,
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fibres are equivalents to rods an these are equivalent to spheres, because they can
be smoothly transformed by shaping their surface continuously, which is allowed in
topology. This means they are all objects of genus g = 0, which we know produces
only one topological point defect. This is due to the conservation of the overall
topological charge, and the newborn defect compensates for the topological charge
of the insertedobjectwith genus g = 0.However, in real applicationoneneeds to have
more than one topological charge on the fibre, as we need to connect several photonic
microelements to the fibre. The question arises of how to produce an arbitrary number
of topological charges on a single fibre with genus g = 0?

The law of conservation of topological charge does not prohibit the existence
of a multitude of charges on the fibre, as the only fundamental request is that the
total topological charge be equal 0. This means that pairs of topological defects of
opposite charges could exist on the fibre; the question is how to create them. This
was explained in the experiments reported by Nikkhou et al. in 2015 [8, 101, 222].

It is well-known from particle physics that particle and anti-particle pairs could be
created by smashing elemental particles together with high energies. A similar mech-
anism is considered to be responsible for the emergence of matter and anti-matter
on the cosmological scale. This, the so-called mechanism of monopole creation on
the cosmological scale was first considered by Kibble and was later on introduced to
condensedmatter by Zurek [32].Monopoles, which are the singularities of a physical
field, are produced by a rapid quench across the phase transition which is attributed
to that particular field. Typically, there is a disordered phase of this field at high
temperatures, whereas at lower temperatures, the field gets spontaneously ordered
by the symmetry breaking, which occurs exactly at the phase transition. A quench
is a rapid decrease of the temperature across the phase transition, which nucleates
small regions of the newborn ordered phase, surrounded by disordered field around
them. During the evolution, these regions grow and meet each other at phase bound-
aries, leaving behind topological defects in a form of points, strings, walls, etc. The
very nature of these defects depends on the nature of the order in field. In liquid
crystals, this is the field of orientational order it is a tensorial field and corresponding
monopoles are topological point defects, loops of string-like objects and non-singular
soliton walls.

Kibble–Zurek production of topological defects in liquid crystals was studied by
many authors in the past [22, 223, 224], mostly concentrating on the time evolution
of defects, their coarsening and annihilation. These studies were performed by using
optical microscopy, and quenching, which could be a thermal quench, a pressure
quench, or a sudden application of an electric field. In all cases, this quench was
applied to rather large samples, where the boundary conditions of the quench were
not really well controlled and only average properties of the sample topology were
measured and studied.

Instead of applying a non-localised quench on an ill-defined sample, one can use
the laser tweezers to apply a local temperature quench to a nematic liquid crystal, as
shown in Fig. 5.16. We use the absorption of the focused beam of the laser tweezers
to locally heat the nematic liquid crystal into the isotropic phase (Fig. 5.16a). This
creates a 100µm diameter island of a molten (isotropic) liquid crystal, which is
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Fig. 5.16 Creation and annihilation of topological charges on a fibre. a The nematic liquid crystal
is heated into the isotropic phase by the strong light of the laser tweezers, this creating an isotropic
island (Iso). At t = 0 the light is switched off and the nematic liquid crystal is quenched into the
nematic phase (N ). The dense tangle of defects annihilates in less than a second. b The nematic
liquid crystal is quenched from the isotropic island surrounding a fibre. A pair of defects is created,
each carrying an opposite topological charge. c If let free, the pair annihilates into the vacuum.
d LdG simulation of the Saturn ring and the Saturn anti-ring with opposite charges and windings.
e The sign of the charge is tested using the repulsive force between like topological charges. f An
arbitrary number of ring-anti-ring pairs can be created on a fibre. a–c, f were taken between crossed
polarisers and the red plate, which shows the average molecular orientation in different colours

than rapidly quenched by shutting off the light. The island undergoes a rapid phase
transition that leaves behind a dense tangle of defects. In less than a second, this
tangle annihilates back to the uniformly ordered ground state of the nematic liquid
crystal, which is the vacuum state with no stable defects.

However, there is marked change in the outcome of tangle coarsening, when the
local melting experiment is performed in a sample containing a fibre. This is shown
in Fig. 5.16b, where a rather long fibre was inserted during the fabrication of the
sample, so that it is now embedded completely into the nematic liquid crystal. This
liquid crystal was again locally molten by the laser tweezers, producing an island
of the isotropic phase, which contains the fibre. When the light is switched off, in
hundreds of milliseconds the dense tangle nearly annihilates completely and leaves
behind a well-separated pair of topological defects, which are obviously stabilised
by the perpendicular alignment of molecules on the fibre. Having in mind the law
of conservation of topological charge, one immediately suspects that this should
be a particle and its anti-particle or, in the case of liquid crystals, it should be a
Saturn ring and the Saturn anti-ring. They should behave like a particle and anti-
particle and should have topologically different structures and properties, such as the
opposite winding number and the opposite topological charge. Only in this case, the
overall topological charge is preserved, thus assuring the charge neutrality. If they are
well-separated from each other, these two rings are indeed inherently individually
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stable and cannot be annihilated separately. Each of them could be grabbed by the
laser tweezers and moved away from the other or closer to each other. If they are
positioned close together using the laser tweezers and let free, theywill be attracted to
each other through the elastically distorted nematic liquid crystal. They start sliding
and accelerating to each other, until they annihilate into the vacuum, as shown in
Fig. 5.16c. The localised temperature quench could be repeated on other parts of the
fibre, producing additional pairs, and practically an arbitrary number of ring-anti-ring
pairs can be created (Fig. 5.16f).

Careful observation of each of the two rings (such as in the last panel in Fig. 5.16b)
clearly resolves a quite different optical appearance of these two rings. Because this
panel was imaged between crossed polarisers and with the red plate inserted, one
can clearly see reddish and bluish regions close to the fibre, which alternate in side
when one is moving along the fibre and across each ring defect. This alternation
in colour means an alternation of liquid crystal orientation, clearly pointing to the
different internal structure of the Saturn ring and the Saturn anti-ring. The molecular
arrangement around such a pair of rings is illustrated in Fig. 5.16d by using the LdG
theory. One can immediately recognise the characteristic three-fold cross-section
of the familiar Saturn ring (lower ring in Fig. 5.16d). It has a winding number of
−1/2 and has a topological charge of −1. The upper ring in Fig. 5.16d is the anti-
particle of the Saturn ring; it has the opposite winding number of +1/2 and the
opposite topological charge of +1. By observing Fig. 5.16d, one can see that the
region between the two rings is actually in favour of both rings. This means that the
rings prefer to approach each other as much as possible, to share as much of this
common distortion and the use common elastic energy. This immediately leads to
the conclusion that the attractive force, resulting in ring attraction and annihilation
is actually due to the elastic distortion of the nematic liquid crystal between the two
rings.

The topological charge of each ring could be tested using a small reference charge,
such as the small colloidal particle with a Saturn ring in Fig. 5.16e. The Saturn ring
of this small test particle has a −1 charge and is therefore repelled from the Saturn
ring on the fibre and attracted to the Saturn anti-ring nearby. In reality, it takes tens of
seconds for the particle to travel the separating path of several tens of micrometres
and be attracted to the anti-ring on the fibre. This method of testing the topological
charge is very simple and flexible and could be used for testing unknown topological
charges in 2D systems, simply relying on the fact that equally charged parts of
multipoles are repelled and the oppositely charged parts are attracted.

If the two rings are put far away from each other, they exhibit much suppressed
Brownian motion due to thermal fluctuation of the surrounding liquid crystal. In this
case, the rings are stable for a very long time; however, when they are closer than
a critical separation of the order of several fibre’s diameter, the resulting structural
force starts pulling them together until they annihilate, which is shown in a sequence
of frames in Fig. 5.17a. The dynamics of Saturn ring annihilation can be analysed
by tracking their positions in an off-line analysis of recorded video frames. Using
rather high frame rate, thousands of frames could be collected within the process of
annihilation. This means that the trajectories of each of the rings can be very well
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Fig. 5.17 Dynamics of charge annihilation on a fibre. a A pair consisting of a Saturn ring and
an anti-ring is annihilated on a fibre. The length of the fibre is ∼400µm, the diameter is 8µm
and the cell thickness if 65µm. b The positions of the + (red) and the − (blue) Saturn rings as a
function of time during pair annihilation. The inset shows the relative velocity of the two rings. The
open symbols are data from the experiment; the closed symbols (black) are data from the numerical
simulation. The red line is a linear fit to the blue data points. c Numerical simulation of the ring and
anti-ring attraction, showing the director (yellow, vertical plane) and velocity fields (red, horizontal
plane)

reproduced as a function of time.An example of the annihilation event of the two rings
is shown in Fig. 5.17b for the positively and negatively charged ring separately. There
is clearly an asymmetry in the dynamics of the+ and the− ring, which is commonly
observed for opposite topological charges in liquid crystals. This asymmetry is most
pronounced in the velocities of the+ and the− ring, which is obtained by calculating
numerical time derivative of positions in Fig. 5.17b. It turns out that the +1/2 ring is
faster than the −1/2 ring and the ratio of their velocities is approximately v+/v− ≈
1.5. This result is similar to previously reported experiments on topological string
attraction and annihilation in nematic cells, which also consistently reported faster
dynamics of defects of positive winding number. The relative velocity of the two
rings as a function of their separation shows a power-law dependance v ≈ 1/dα with
the exponent α ≈ 2.2 ± 0.2.

This experimentally observed dynamics of the annihilation of rings on the fibre
can be compared against the rings’ dynamics calculated from nematodynamics. In
this case, the Beris–Edwards model of nematodynamics was used with the hybrid
lattice Boltzmann method. The one-elastic-constant approximation was considered
and the material parameters were those of 5CB. The rings were initially positioned
at some distance and left to attract and annihilate, following numerical calculations.
Some snapshots from the simulation of the attraction of the Saturn ring and the anti-
ring pair are presented in Fig. 5.17c. These snapshots show the core of the defects and
the string lines represented by arrows. The differences between the + and − rings
are clearly shown in theoretical points added to the experimental data in Fig. 5.17b.
The agreement is reasonably good.
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Whereas in situation discussed above the fibre was set parallel to the overall orien-
tation of the nematic liquid crystal in the cell, interesting topology of the monopoles
on the fibre is observed when the fibre is rotated by 90◦ and set perpendicular to
the bulk orientation of the nematic liquid crystal. In the experiments, this is done by
using the laser tweezers to grab one end of the fibre and rotate it to the final direction
by moving the laser focus. It turns out that the perpendicular position of the fibre
with respect to the liquid crystal is unstable. If let free, this fibre slowly rotates by
the torque of the surrounding liquid crystal, ending parallel to the liquid crystal after
a long time.

In this perpendicular orientation one observes a gigantic Saturn ring, which encir-
cles the fibre all along its long axis. One part of this really long defect loop is shown
in the first panel of Fig. 5.18a. The existence of such an elongated loop defect is
understood, as a fibre is topologically equivalent to a sphere. The genus of the fibre
is therefore g = 0, and only one defect should spontaneously appear in the ground
state, which is in this case a single −1/2 Saturn ring. Because it is long and very
soft, this ring can be cut with laser tweezers and reshaped into an arbitrary number
of isolated sections with different topologies and charges.

There are many ways of performing this cutting and sectioning, and one example
is shown in Fig. 5.18a. Here, the gigantic Saturn ring with the winding number−1/2
is first cut into two separate loops by laser tweezers. This forms a smooth and narrow
region in-between the two loops, which is called a topological soliton and is shown
within the dashed ellipse in Fig. 5.18a, panel (iii). This soliton region connects the
two loops which must have opposite winding numbers, in this case it is +1/2 for the
left loop and −1/2 for the right loop. After the loop on the right is further cut into
two separate loops (Fig. 5.18b), an isolated −1/2 loop is formed that rapidly shrinks
into a point hedgehog carrying a −1 charge. Now, the right neighbouring loop has
the winding number of +1/2, so that we have an alternation of the winding numbers
sign, as we move along the fibre. By further performing the cut on the +1/2 right
loop, another point hedgehog with a +1 charge is created, and so on. The sign of
the charge of each point defect can be tested by a small dipolar particle, as shown
in Fig. 5.18c, and finally an alternating sequence of + and − point hedgehogs with
attached dipolar colloids can be formed, as shown in Fig. 5.18d.

Returning back to the first cut of the gigantic Saturn ring with a charge −1, one
realises that an unusual loop must have been created during the first cut. Because
of the conservation of the total topological charge, the total charge of all newly
created point defects is always −1. Now, if one of the loops in Fig. 5.18a (i i i) has
a topological charge of −1, the other loop must be of zero topological charge. So
the question arises whether zero charge loops could be created on a fibre. This is
indeed observed in a very simple case of quenching the topological soliton, as shown
in Fig. 5.18e. The topological soliton is a topologically smooth region which carries
no topological charge but only propagates the topological flux from one end to the
other end of the sample. By quenching the soliton, one could in some cases obtain
a stable loop out of nothing, which is shown in panel (i i i) in Fig. 5.18e. Because it
was made from vacuum, this loop must have oppositely charged ends, which could
be tested using a test dipolar colloidal particle, as shown in Fig. 5.18f. If the +1 end
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Fig. 5.18 Point charges and charge-neutral loops on a fibre. a After inserting a glass fibre into a
thicker layer of the nematic liquid crystal, a gigantic Saturn ring with a −1 charge is created (i).
The true image is on the left; the LdG simulation is on the right. This ring is cut by the tweezers (i i),
creating a narrow region of a topological soliton in between the two loops with opposite winding
numbers (i i i). The LdG simulation is shown in (iv). b The second cut with the laser tweezers
creates a second soliton on the right, isolating a closed loop in between. This loop shrinks into the
−1 monopole (i i i). The LdG analysis demonstrates the −1 monopole (hyperbolic hedgehog), with
two closed loops on each side, with the winding numbers +1/2 (iv). c The topological charge of
the−1 point defect is tested with an elastic dipole. The+1 part of the dipole is attracted towards the
monopole on the fibre, identifying it as the−1 charge. dA sequence of alternating charges is created
on a fibre, attracting a series of dipolar particles. e A topological soliton is seen as a dark-shaded
region below the fibre, and the LdG simulation is shown on the right (i). A microquench produces
a long-lived charge-neutral loop, surrounded by two solitons (i i i). The LdG numerical simulation
of a charge-neutral loop on a fibre is shown in (iv). f The charge of the charge-nautral loop is tested
by the+1 end of the dipolar particle. This+ end is repelled from the left section of the loop towards
the right section, demonstrating oppositely charged sections

of this particle is exposed to the+1/2 end of this loop, the particle is weakly repelled
from that part and attracted towards the oppositely charged end of the loop. So in
total, this loop has two sections with opposite winding numbers which must meet
and interconnect in two different points on the loop. A careful observation of the
structure of this loop (Fig. 5.18e (iii)) indeed reveals some irregularities, but these
are too small to be resolved optically.

Using the optical microscope, it is difficult to find and analyse the transition
between the sections of the loop with the +1/2 and −1/2 winding numbers because
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Fig. 5.19 Topological rules on a fibre. a A charge-neutral loop has a−1/2 winding number on one
side and a +1/2 on the other, with two transitions through the twist profile. The colours indicate
different local structures of the loop. The yellow and blue iso-surfaces indicate locations with a
high bend and splay, whereas green highlights the twist deformation. Loops of this type are freely
created and annihilated, as they do not contribute to the topological charge. b The fibre cross-
section has three possible states: two states with an escaped disclination line of the winding number
−1, with opposite escape directions, and the symmetric states with two −1/2 disclinations on the
top and bottom. c The fibre can have any succession of the cross-sections from b. The transitions
between cross-sections carry the topological charge, which can be assigned to entire point defects
and loops, as well as to loop endings. The charge is closed in a box (two examples are shown), and
the Gauss law measures the topological charge-that is, the number of escaped line exiting the box.
The direction of the topological flux depends on the direction of the escape and is shown by arrows.
The topological charges are marked

of complicated optical properties of deformed liquid crystal. This could be discerned
by performing numerical calculations, which indeed find metastable charge-neutral
loops which have a +1/2 winding number on one side and a −1/2 on the other. This
is shown in Fig. 5.19a where two transition regions are presented in different colours
showing how the +1/2 profile gradually transforms into the −1/2 profile.

The creation of alternating pairs of + and − charges and the formation of charge-
neutral loops are governed by a simple set of topological rules. The only requirement
is that any additional defect created on the fibre has to preserve the zero total winding
number of the homogeneous direction field far away from the fibre. This can be
achieved in three different ways: with two −1/2 disclination lines on the top and
bottom of the fibre, or by having a soliton in the form of an escaped region with the
winding number of −1 running on one side of the fibre with two possible directions
of escape, as shown in Fig. 5.19b.

Similar to electrostatic charges, the topological charge of the loops and points can
be determined by a Gauss law. In our case, the Gauss integral is reduced to counting
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the number of soliton lines carrying the topological flux away from or towards the
defect. These solitons can originate from the charge and can terminate only at the
topological charge. At each point of origin and end the only two possible charges are
the +1 and −1 point defects and the +1/2 and −1/2 fractional charges, which can
be assigned to the end sections of the loops. A whole loop can therefore either have
the same-signed end and be a point monopole or have opposite-signed ends being a
zero charged loop.

5.4 Elastic Interactions and Entaglement of Microspheres
and Fibres in a Nematic Liquid Crystal

We have seen in the previous section that the multitude of topological charges could
be created on a fibre using thermal quenching in different geometries of the fibre.
During this process, loops or points of opposite charge or even zero charge loops
are deliberately created and positioned to an arbitrary place on the fibre using the
laser tweezers. The question then arises how do these topological defects on a fibre
interact within an extra colloidal particle positioned close to the fiber. We have
also observed in the previous section that such particles do elastically interact with
charges on the fibre, and this serves us as a method to determine the unknown
topological charge. However, there are other questions related to the entanglement
of the external colloidal particles with the rings and loops on the fibre. Is it possible
to entangle rings of opposite winding numbers, how stable is this, and what is the
structure of the resulting entanglement? These and other questions were answered
by Nikkhou et al. [8, 101, 222], who performed systematic experiments and analysis
of entanglement and elastic interaction with differently charged rings and particles.

Let us first consider the geometry where the fibre is set on the rubbing direction, as
shown in Fig. 5.20. After the quench, several pairs of topological charges are created,
as shown in the last panel of Fig. 5.20.

Fig. 5.20 Using a stronger light of the tweezers creates a larger isotropic island and two pairs of
Saturn rings are created after the quench in this case
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In the first set of experiments, the entanglement of a −1/2 Saturn ring on the
microsphere is entangled with a −1/2 ring in the microfibre. The colloidal particle
is brought close to the −1/2 ring on the fibre and the thermal quench is applied to
the particle and to the −1/2 ring on the fibre. As a result, three entangled defect
structures are found, as shown in Fig. 5.21. These entangled structures are identical

Fig. 5.21 The entanglement of the −1/2 Saturn ring of the fibre with the Saturn ring of a
microsphere. Micro-fibre with the diameter of 12µm and microsphere with the diameter of 10µm
are bound together by thermal quench using a focused laser light. a Figure-of-eight is created from
one twisted loop. b Figure-of-omega is made from a single loop encircling the colloids with a
twist segment between them, which is curved like an additional small loop. c An entangled hyper-
bolic defect is formed from two loops by a direct quench, or by transformation from an unstable
figure-of-omega
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Fig. 5.22 Probability
distribution for the formation
of different fibre-sphere
entanglement with −1/2
winding number for each
starting ring. The analysis is
done for one hundred
experiments

to the entanglement of two microspheres which have been predicted by Araki and
Tanaka [196] and then observed by the Ljubljana group [198].

Figure5.21 clearly shows the evolution of the entanglement out of the disordered
region after the quench. In Fig. 5.21a a single disclination loop is created out of
a dense tangle of topological defects after the quench. The loop is encircling the
microfibre and microsphere in the form of a twisted loop, known as a figure-of-eight.
Another kind of binding with a single loop is shown in Fig. 5.21b, known as a figure-
of-omega. This entanglement is unstable and usually transforms into a more stable
configuration called the entangled hyperbolic defect, shown in Fig. 5.21c. In all these
three cases, the winding number of both merging loops is the same, −1/2.

In the case of the figure-of-eight, the disclination line first starts from the front of
the microsphere and then goes below the fibre and comes from behind over the fibre.
Then, it goes again down below the microsphere and connects to the first end. From
top view, this twisted loop looks like a number 8. For the figure-of-omega, the loop
is more complicated, as it makes an additional small loop between the fibre and the
microsphere (see last panel of Fig. 5.21b). This middle part of the loop is similar to
the Greek letter omega when observed from the side.

The entangled hyperbolic defect is formed from the separated defect rings which
are oriented perpendicular to each other. The bigger ring is encircling the fibre and
the sphere and binds them together. The smaller ring is placed between the fibre
and the sphere and is a −1 hyperbolic defect with an escaped core. By repeating
the experiments, we have found that after the quench, the figure-of-eight is created
most frequently. The second most frequent structure is the entangled hyperbolic
defect, whereas the figure-of-omega is very rarely created. The probabilities for the
formation of different types of entanglement are shown in Fig. 5.22.

The entanglement of the−1/2 ring on the fibre with the−1/2 ring on the colloidal
particle is in fact topologically equivalent to the well known entanglement of two
microspheres in the nematic liquid crystal. However, the question is whether one
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Fig. 5.23 The entanglement of the +1/2 Saturn anti-ring on the microfibre with the −1/2 Saturn
ring on the microsphere. The nematic liquid crystal around the microfibre (diameter 12µm) with
a Saturn anti-ring and microsphere (diameter 10µm), carrying the Saturn ring, is quenched. Two
kinds of entanglement are created. a A twisted loop encircling both the fibre and the sphere. b A
sphere looses its Saturn ring, which is attracted towards the fibre and transforms into a−1 hyperbolic
point defect. This defect is connected to the Saturn anti-ring on the fibre. c Schematic representation
of these two entanglements. The left panel shows the binding by a loop and the right panel shows
the binding by a point defect

could entangle the −1/2 ring on the colloidal particle with the +1/2 ring on the
microfibre?

In order to study the entanglement between the two rings of opposite winding
numbers, the microsphere with −1/2 Saturn ring is brought closer to the +1/2 ring
on the fibre and this region is then thermally quenched by the laser beam. Two
different kinds of bindings are created, as shown in Fig. 5.23. In Fig. 5.23a the time
sequence of images shows a creation of a single loop out of a dense tangle of defects.
This loop is simply encircling the microfibre and the microsphere with a small twist
in the middle sections. The first panel in Fig. 5.23c shows its schematic view. The
disclination line is slightly twisted. It is interesting to note that this single ring,
entangling the original +1/2 and −1/2 rings, has to be a charge-neutral ring. This
means it has to be composed of a section having a +1/2 winding, which smoothly
transforms into a sectionwith a−1/2winding. This change in the winding number in
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Fig. 5.24 Entanglement and binding of a microsphere with halves of the charged loop. The panels
show the optical images in unpolarised light and the accompanying panels show the schematics.
a The − end of the loop of the fibre embraces the microsphere. The hedgehog point defect of the
microsphere is still there and is attached to the fibre. b The − end of the loop is encircling the
microsphere and an additional smaller loop, originating from the point hedgehog, is encircling this
part of the fibre’s loop. c In a reversed orientation of the microsphere’s hedgehog, the microsphere
is now bound to the − end of the loop from its + end. d This binding between the − end of the
loop and the hedgehog point defect is similar to the bubble-gum configuration. e The microsphere
is bound to the + end of the loop with its − point defect

twoparts of the loop somehow takes care of the conservation of the overall topological
charge of two original loops, which is equal to 0.

The second type of binding of the +1/2 and −1/2 rings is shown in Fig. 5.23b.
Interestingly, the−1/2 ring of the microsphere shrinks into a−1 point defect, which
is now sitting in-between the fibre and the sphere, connecting the microsphere to the
Saturn ring with a positive topological charge.

When the fibre is rotated from parallel to the orientation perpendicular to the
overall nematic director orientation, the entanglement and binding of microspheres
with defects on the fibre is even more complex. Figure5.24 shows some selected
examples, how a microsphere is connected to or entangled to the far segments of the
loop, created on a fibre by cutting the original gigantic Saturn ring.

In the first set of experiments, shown in Fig. 5.24a–d, a microsphere is exposed
towards the −1/2 end of the loop. By quenching the liquid crystal around this −1/2
end of the loop and the microsphere, four different kinds of binding or entanglement
are created, as shown in Fig. 5.24a–d. The upper panels show the true microscope
images of these bindings under unpolarised light, and the bottom panels show their
schematic representation.

In Fig. 5.24a, the end of the loop encircles the dipolar microsphere, and the
hedgehog point defect of the microsphere is located on the top end of the sphere
and is attracted towards the fibre. Figure5.24b presents another kind of binding,
which is similar to the hyperbolic defect entanglement observed with two entangled
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microspheres. In this case, there is a smaller ring between the fibre and the sphere.
The microsphere can also be attached to the end of this −1/2 loop segment from
its + end, as shown in Fig. 5.24c, or from the − end as shown in Fig. 5.24d. In this
case, the binding resembles the bubble-gum structure observed for twomicrospheres.
Finally, we can observe the interaction of the microsphere with the +1/2 winding
section of the loop. In this case, the sphere can be only bound in one way, as we can
see in Fig. 5.24e. The microsphere is attached to the +1/2 end of the loop with the
hedgehog point defect, carrying negative topological charge.



Chapter 6
Colloidal Particles of Complex Topology
in Nematics

Abstract In this chapter, we discuss topological properties of the nematic
director field around colloidal particles of complex shape with homeotropic and
planar surface anchoring.We present experiments with colloidal handlebodies, knot-
and link-shaped microparticles, Koch-star colloids, spiraling and ribbed rods in the
nematics. Theoretical predictions for the topology of a nematic liquid crystal around
non-orientable surfaces, such as a Möbius strip, are discussed as well.

6.1 Topology of Colloidal Particles Is Important

In previous chapters we discussed topological properties and interaction forces
between colloidal particles of simple topology, such asmicrospheres andmicrofibers.
These simple objects were studied from the beginning of research on nematic col-
loids, because there was no technology available for the production of colloidal
particles with complex topology, such as tori, mutually connected tori forming han-
dlebodies, mutually linked tori, colloidal spirals, Koch-star particles or knots made
of polymers. With the advancement of technology, novel techniques of fabrication of
complex colloidal particles were introduced into the field of liquid crystals, such as
lithographical fabrication of silica handlebodies [43, 225] and spirals [226] or two-
photon polymerisation of a polymer in 3D [227], which made it possible to fabricate
microobjects of arbitrary topology, including knotted particles [228].

The topology of objects that are immersed in a nematic liquid crystal is certainly
important for the topology of the director field of the nematic liquid crystal, which
is forced to align on the closed surface of this object. We therefore have a situation
where the topology of the objects is in a way imprinted into the topology of the
surrounding nematic field. This interplay allows for testing of basic laws of topology
in real experiments.

One of the first attempts to imprint the topology of nanoobjects into the surround-
ing nematic liquid crystal was described in an article entitled “Chiral Nematic Order
in Liquid Crystals Imposed by an Engineered Inorganic Nanostructure” by Robbie,
Broer and Brett [229]. They fabricated an array of densely packed helical columns of
MgF2 deposited on a glass substrate via glancing angle vacuum deposition. During
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Fig. 6.1 SEM micrographs
of MgF2 structures, which
are formed during the
deposition and synchronised
glass sample rotation.
Helical, screw-like posts
with as many as 15 helical
turns are spontaneously
formed, filling densely the
glass surface. The helical
period is 350nm and the
refractive index of MgF2 is
n = 1.38. Reprinted by
permission from Macmillan
Publishers Ltd: K. Robbie,
D. Broer, M. Brett, Nature
399(6738), 764 (1999),
copyright (1999)

the deposition, the substrate was slowly and steadily rotated, which resulted in a
growth of well-isolated, well-separated helical columns with 15 turns and a helical
pitch of 350nm. SEM micrograph of a densely packed array of helical columns is
shown in Fig. 6.1.

One can intuitively expect that the helical shape of each helical column of MgF2
will induce a local helical structure of an achiral nematic liquid crystal which is
infiltrated into this porous helical “forest”. Because of the imprinted helicity, the
nematic liquid crystal is expected to exhibit reflection of circularly polarised light
passing through this film. For left-handed helices, as shown in Fig. 6.1, one expects
the light with left-handed circular polarisation to be reflected, whereas right-handed
circular polarisation will be transmitted through this film. This was indeed observed
in the experiment.

These helical columns of inorganic material were therefore one of the first studies
of the interaction of geometrically non-trivial colloidal particles (helices) immersed
in the nematic liquid crystal. The induced chirality due to the surface anchoring of a
liquid crystal is expected to be transmitted only over short distances. Nevertheless,
this local chirality, induced by the helical shape of the colloidal particle, is important
from two aspects: (i) Helical shape of the rod is expected to make the topology of
the surrounding nematic much richer compared to a straight rod. Local turns could
provide means of stabilisation of localised topological defects. (ii) Because of the
more complex topological defects surrounding the helical rod, the pair interaction of
these rods should be more complex and selective in chirality.

Whereas controlled evaporation of inorganic matter on a rotating sample results
in a growth of macroscopic areas of densely packed chiral columns, this technique
does not allow for the fabrication of micro-colloids of arbitrary shape and topology.
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Recently, two quite different techniques have been used to fabricate complex micro-
colloidal particles ofmicroscopic dimensions: (i) photolithographyof planar colloids,
such as platelets, tori, and handlebodies, and (ii) 3D two-photon polymerisation of a
light sensitive polymer. These two new techniques allow the exploration of complex
nematic colloids, which are also named “topological colloids” by Senyuk et al. [43].
This chapter is devoted to the overview of studies of unusual colloidal particles in
the nematics, such as handlebodies, polymer knots and links, Möbius rings, Koch
stars, spirals and spiral rods.

6.2 Colloidal Handlebodies in Nematics

The motivation for studying topological properties of solid handlebodies made of
silica and immersed in a nematic liquid crystal was to explore basic theorems of
topology in real experiments. The central quantity that determines the topological
properties of handlebodies is the genus of the handlebody. This can be illustrated
by comparing a coffee mug and a doughnut [43]. Although they look quite different
(and also serve different purposes), they are topologically equal from the point of
view of topology. A coffee mug and a doughnut are objects with genus g = 1, and
as such they are fundamentally different from, say, a ball or a solid cylinder, which
are attributed the genus g = 0. A coffee mug can be smoothly reshaped, without
cutting, into a doughnut or a torus, but there is noway of transforming it into a sphere.
Obviously, the difference is in the number of “holes” penetrating the object, which
also defines the genus of that object.

To study the interplay of particle topology and accompanying defects in liquid
crystals, Senyuk et al. [43] have fabricated planar handlebodies made of silica with
a number of handlebody holes (equal to the genus of the particle g) varying from
1 to 5. The surfaces of these particles were characterised by an Euler characteristic
χ = −2g, which ranges from χ = 0 (tori) to χ = −8. These silica particles were
rather thin, with a square cross-section of 1µm × 1µm and ring diameters ranging
from 5 to 10µm. The surfaces of these silica handlebodies were treated to induce
perpendicular surface anchoring of the nematic liquid crystal. They were dispersed
in the nematic liquid crystal and then introduced into cells with either perpendicular
or planar surface anchoring.

Figure6.2 shows several examples of silica handlebodies in homeotropic nematic
cells of 5CBwith the rings of the handlebodies aligned perpendicularly to the director
and therefore parallel to the cell surfaces, as illustrated in Fig. 6.2i–l. Figure6.2a
shows g = 5 silica handlebody in homeotropic cell and between crossed polarisers.
Far away from the handlebody, the field of view is dark because we are observing the
sample along the optical axis and the polarisers are crossed. One can clearly see the
transmitted light at the outer perimeter of the handlebody due to the perpendicular
surface anchoring of the nematic liquid crystal at the edge of the handlebody, which
is in fact a closed −1/2 ring. This outer ring is similar to the Saturn ring around a
spherical microparticle with perpendicular surface anchoring.
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Fig. 6.2 Colloids in a form of handlebodies with perpendicular surface anchoring in a homeotropic
nematic cell align perpendicularly to the far-field director. (a–d) Polarised images of handlebodies
with g = 5 in a homeotropic nematic cell, imaged with different polarisation techniques. a Crossed-
polarisers image. bA λ retardation plate was added between crossed polarisers at 45◦. c Bright-field
image. d 3 PEF-PM image. e, h The images of single (e), double (f), triple (g) and quadruple (h)
colloidal handlebodies in a homeotropic nematic cell as observed by 3 PEF-PM. The images (d,
h) are combinations of 3 PEF-PM fluorescence intensity images for two orthogonal polarisations
of the excitation light. They are shown in green and magenta colours, corresponding to green and
magenta arrows indicating the polarization direction. The cross section shown on the bottom of
panels (d, h) are taken along dashed yellow lines. i, l The schematic drawing of the director field n
(black lines) around the genus g colloidal handlebodies. The outer disclination loops are shown in
red and they carry them = −1 hedgehog charge. The inner disclination loops are shown asmagenta
lines and carrym = +1 hegehog charge.Magenta spheres are the hyperbolic point defects with the
hedgehog charge m = +1. Reprinted by permission from Macmillan Publishers Ltd: B. Senyuk,
Q. Liu, S. He, R.D. Kamien, R.B. Kusner, T.C. Lubensky, I.I. Smalyukh, Nature 493(7431), 200
(2012), copyright (2012)

One can also see from Fig. 6.2a that there are two possible states in the interior
of each ring forming the handlebody. One of the rings is dark in the centre, which
indicates that the nematic liquid crystal simply penetrates the ring and there is only
a remnant defect ring, following closely the inner edge of the handlebody ring.
The other four rings have a different structure and appear bright, with a dark cross
following the orientation of the polariser and the analyser. This indicates that the
liquid-crystal molecules are partially parallel to the polarisation of the rings, which
is only possible if there is a point defect in the centre of each of the bright rings.
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The schematic structures of a bright and a dark ring are illustrated in the drawing in
Fig. 6.2i and j. In both cases, there are two topological defects for each ring of the
handlebody. There is always an outer ring with a−1/2 winding number cross-section
and a hyperbolic point defect in the centre (Fig. 6.2i) forming a bright interior of the
ring, or a −1/2 winding number defect loop attached closely to the inner edge of the
dark ring. In this latter case, the nematic crystal simply penetrates the majority of
the ring interior, resulting in a dark ring between crossed polarisers.

The internal structure of the nematic around handlebodies with different genus
was studied with fluorescent confocal polarized microscopy. The examples of the
polarised fluorescence captured from the nematic surrounding the handlebodies are
shown in Fig. 6.2d–h. The cross sections through the plane of the handlebodies are
coloured green and magenta, indicating horizontal (x) or vertical (y) direction of
local orientation of the nematic. If we look at Fig. 6.2e, we can clearly resolve the
point defect located in the fluorescent centre of the left-sided ring, whereas the ring
on the right side shows the fluorescent signal only form the inner and outer edges of
the ring. By comparing this panel with panels in Fig. 6.2i and j, one can realise two
possible states of a single toroidal ring in the nematic. There are therefore two defects
with the handlebody with the genus g = 1, and by the increasing the genus of the
object, the number of topological defects accompanying that particle also increases.
There are three defects for the handlebody with two tori and genus g = 2, shown in
Fig. 6.2k: a hyperbolic point defect in the ring on the right side, a hyperbolic ring in
the interior of the left ring and a single −1/2 closed loop encircling the handlebody
on the outer side. Accordingly, a handlebody with three tori and genus g = 3, shown
in Fig. 6.2l, has four topological defects: two points and two rings. In general, a
handlebody with genus g shows typically g + 1 individual singularities.

Figure6.3 shows crossed polarisers, red-plate and non-polarised images of tori
and simple handlebody with homeotropic surface anchoring in a planar nematic cell,
where the plane of the handlebody is parallel to the far-field director. For the case of
a simple tori with one hole and genus g = 1, one observes two point singularities; a
hyperbolic defectwith−1 topological charge, situated outside the tori (a red sphere in
Fig. 6.3j) and+1 hyperbolic point defect located inside the tori. The outer hyperbolic
point defect can sometimes open into a small ring, as illustrated inFig. 6.3k and shown
onmicrographs in Fig. 6.1b, e, h. If another ring is attached andwe have a handlebody
made of two connected rings having genus g = 2, an additional hyperbolic point
defect appears in the interior of the added ring, as shown schematically in Fig. 6.3l.

The experiments show that the sum of the hedgehog charges attributed to induced
point defects and disclination loops around the handlebody compensates for the
hedgehog charge mc, which is attributed to the colloidal particle, in this case a han-
dlebody. The charge of the handlebody is uniquely determined by particle topology.

The relation between the topological charge of induced defects and the topo-
logical charge of the particle can be understood using Gauss–Bonnet theorem. The
topological charge, which is attributed to the particle, is determined by the topology
of its surface and is equal to the degree of the director field along the surface. This
degree is calculated by integrating the Jacobian of the director field over that surface.
Because the director aligns perpendicularly to each point of the surface, this integer
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Fig. 6.3 Colloidal handlebodies in planar nematic cells are aligned along the far field director n◦.
a, c Crossed-polarisers images. d, f Crossed polarisers images with added red (λ) plate. g, i Images
are taken in bright field. In polarised images (a, c), topological defects are clearly visible as dark
discontinuities or intersections of dark brushes. Using the red plate (d, f), one can determine local
orientation of the director and identify the structure of the director around the topological defects.
In bright field images (g, i) topological defects are visible as bright or dark regions. The brightness
of such region is due to scattering of light on topological defect and depends on the position of
the defect with respect to the focal plane. j, l Schematic drawing of the nematic director (black
lines) around colloidal handlebodies with perpendicular surface anchoring of the nematic.Magenta
spheres indicate the m = +1 topological charge hyperbolic defects. The red spheres indicate the
m = −1 hyperbolic point defects. The red loop in panel (k) shows a small disclination ring with
hedgehog charge m = −1, which is obtained by opening the red dot in panel (j) into a ring.
Reprinted by permission from Macmillan Publishers Ltd: B. Senyuk, Q. Liu, S. He, R.D. Kamien,
R.B. Kusner, T.C. Lubensky, I.I. Smalyukh, Nature 493(7431), 200 (2012), copyright (2012)
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of the Jacobian reduces the total Gauss curvature of the surface divided by 4π . Here,
one can use the Gauss–Bonnet theorem, which states that the total Gauss curvature
of a closed surface is quantised in units of 4π and is equal to 4 π (1 − g). This is a
conserved quantity, which remains unchanged against all continuous deformations of
the surface. It therefore follows that the topological charge of the surface of the han-
dlebody is +/− (1− g). For a microsphere in a nematic, the hedgehog charge of the
sphere is therefore± 1, and has to be compensated by an external, topology induced
hedgehog charge of opposite sign. It follows that the sum of all defect charges must
exactly cancel out the degree on the colloidal surface S. This total hedgehog charge
of point defects and disclination loops has to add up to +/ − (1 − g), regardless of
the orientation of the particle in the nematic liquid crystal.

Interesting considerations of the topological charge of hedgehog point defects
induced around and inside a simple ring or two connected rings parallel to the far-
field nematic director field are shown in Fig. 6.4a–d. If we first concentrate on a
simple tori, presented in Fig. 6.4a and c, we see an unusual situation, where the
opposite topological charge has to be attributed to the same structure of the nematic
director field, which is schematically shown in details in Fig. 6.4e and f. Recall that
the simple ring (tori), shown in Fig. 6.4a, has a genus g = 1 and that the topological
charge of the total Gauss curvature of such a ring is (1 − g), therefore equal to 0.
This means that the total topological charge of the two hedgehog defects, which are
observed in this case and shown in Fig. 6.3j, also has to be zero. Because of that, the
two hedgehog point defects, shown by red and magenta spheres in panels (a) and
(c), must have opposite topological charges. Their 3D projection, which is shown
in Fig. 6.4e and f is from the point of view of director field (which is a headless
vector) exactly equal. However, by attributing the lines of force to the director field,
we clearly see that there is a distinction in the topological charge of the red and the
magenta labeled defects in Fig. 6.4a and c.

Looking at the Fig. 6.4b and d, which show a handlebody made of two connected
rings, we see three hedgehog defects. The topological charge of the handlebody is
(1 − g), which equals to −1 in this case. The −1 charge of this handlebody has to
be compensated with a total +1 charge of all defects which appear in this situation.
There are therefore three hedgehog defects, one carrying the topological charge −1
(red sphere in Fig. 6.4d) and two identical hedgehogs, each with charge +1, residing
in the interior of each hole. This makes the total topological charge of the ring and
the defects equal to zero.

We should mention here that the topology sets the requirement for the minimum
number of topological defects, which is g+1 in all cases. Of these, g−1 defects are
of the same charge and are dictated by the particle topology and the two additional
defects with opposite signs (carrying total zero charge) appear to relax the elastic
distortion of the director and minimise the total free energy. This relaxation depends
in detail on the elastic constants of the nematic liquid crystal. An interesting situation
of the merging of point singularities into non-singular (escape) rings is shown for
a simple tori perpendicular to the far-field nematic director. The topology requires
the formation of two point defects of opposite charge (red and magenta spheres
in Fig. 6.4g). However, these two point defects can transform into a non-singular
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Fig. 6.4 (Continued)
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�Fig. 6.4 Topology of director field around genus g colloidal handlebodies with perpendicular sur-
face anchoring of nematic liquid crystal in a planar nematic cell. Diagrams a, f show the vectorial
presentation of the director field,where the arrows indicating direction have been added consistently.
Red spheres are hyperbolic hedgehogs with negative unit charge. Magenta spheres are hyperbolic
hedgehogs with positive unit charge, as shown in (e, f). g, h Director field in a vectorial repre-
sentation showing an energetically unstable configuration with point defects of opposite hedgehog
charges shown in (g). The two insets to (h) show details of the vectorial field of the escaped and
axially symmetric configuration which in nonsingular and therefore has lower elastic energy. The
nonsingularity is obtained by an “escape into the third dimension”. Reprinted by permission from
Macmillan Publishers Ltd: B. Senyuk, Q. Liu, S. He, R.D. Kamien, R.B. Kusner, T.C. Lubensky,
I.I. Smalyukh, Nature 493(7431), 200 (2012), copyright (2012)

entity, which was already described in Sect. 2.7: Vortices in nematic colloids. Briefly
speaking, one first opens each point singularity into an open loop with corresponding
winding number. We then have two loops of opposite winding numbers, which can
merge together and become non-singular by escaping into the third dimension. The
corresponding cross-sections of this merged non-singular loop are shown by the
magenta and red boxes in Fig. 6.4h.

These optical studies of the number and structure of topological defects that
are accompanying handle bodies, which induce perpendicular surface anchoring of
the nematic liquid crystal, demonstrate the full strength of topological conservation
laws and also clearly illustrate the ambiguity in defining the sign of the topological
charge. Whereas for vectorial fields (such as the electric field) this can be uniquely
prescribed, it is clearly shown that this is not possible for non-vectorial fields such
as the director field of nematic liquid crystals. Because of the tensorial nature of this
field, we see from the experiments on simple rings in the nematic liquid crystal that
opposite topological charge has to be attributed to the same liquid crystal defect.

6.3 Knot- and Link-Shaped Microparticles in Nematics

Knots and linkswere first discovered in 2Darrays ofmicrosphereswith perpendicular
surface anchoring of liquid crystals by Tkalec et al. [212]. Knots and links were
formed from −1/2 disclination lines, which were originally present as Saturn rings
encircling isolated microspheres. When brought together, these rings fused together
either spontaneously or under an action of the laser tweezers into complex defect
loops encircling several particles and forming either knots or links of practically
arbitrary complexity.

Along this idea of having knotted and linked nematic director around colloidal
inclusions, Martinez et al. [228] produced knot shaped and link shaped microparti-
cles of solid polymer, which were then immersed in the nematic liquid crystal. The
surfaces of these particles were previously treated chemically to induce either par-
allel or perpendicular orientation of liquid-crystal molecules. Because by inserting
the particle into the nematic field a certain volume of a liquid crystal is excluded

http://dx.doi.org/10.1007/978-3-319-54916-3_2
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Fig. 6.5 Knotted particles made of polymer. a Optical micrographs of a photopolymerised trefoil
colloidal torus knots T (3, 2), which are either left-handed (panel 1 and 2) or right-handed (panels
3 and 4). Their models are shown in green. The inset to panel 3 shows 3 PEF-PM image of the
particle. b SEMmicrograph of an array of torus knots made of polymer. c, e Enlarged SEM images
of the torus knots made of polymer. Reprinted by permission from Macmillan Publishers Ltd: A.
Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Žumer, I.I. Smalyukh, Nat. Mater. 13(3), 258
(2014), copyright (2014)

and replaced by the polymeric object of complex topology. This particle induces,
via surface anchoring of liquid crystal molecules, non-trivial configurations of the
surrounding nematic director field. The topology of the surrounding field was stud-
ied for polymeric particles in a form of torus knots and torus links. In topology, a
torus knot is a special kind of knot that lies on the surface of a torus, which is itself
unknotted in R3. Similarly, a torus link is a link which lies on the surface of a torus
in the same way. Each torus knot and link is specified by a pair of integers p and q
and is denoted by T (p, q). These particles are formed of polymeric tubes that are
looped p times through the hole of the imaginary torus and make q revolutions about
the torus rotational symmetry axis. Several examples of torus knots are shown in
Fig. 6.5, where most “popular” knots are the trefoil knot, shown in Fig. 6.5c, d and
the pentafoil torus knot shown in Fig. 6.5e. These are SEM images of polymer torus
knots, prepared by 3D two-photon polymerisation technique, explained earlier [227].
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Fig. 6.6 A colloidal particle in a form of a trefoil knot with tangential surface anchoring of nematic
liquid crystal. a Bright-field optical micrograph of the particle without any polariser. b The same
particle in the nematic liquid crystal viewed between crossed-polarisers. c Crossed-polarised image
with 530nm retardation plate added. The slowaxis of the plate is along the blue arrow.The red dots in
(a, b) indicate the positions of surface boojums. d, e 3 PEF-PM cross-sections obtained for different
positions of the imaging plane. These images are actuallymade by superposing two different images
(coloured in green and red) taken at two orthogonal excitation polarisations indicated by crossed
green and red arrows. f Numerically calculated director of the top right part of the cross section
in panels (d, e). g Fluorescence intensity from the knotted colloidal particles represented in 3D.
The blue plane indicates the imaging plane of panels (d, e). h 3D representation of the director
field due to incorporated knotted particle. Surface boojums are located at the points where different
colours meet. i Numerically calculated director field at the interface between the knotted particle
and the liquid crystal. The areas coloured in green and magenta indicate reduced order parameter
(S = 0.42) corresponding to the surface boojums −1 and +2 2D defects. Reprinted by permission
from Macmillan Publishers Ltd: A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Žumer,
I.I. Smalyukh, Nat. Mater. 13(3), 258 (2014), copyright (2014)

After surface treatment, these particles are dispersed in a liquid crystal, which is
in some cases fluorescently labeled and the resulting nematic liquid crystal deforma-
tion is observed by polarising or fluorescent confocal microscopy. In this case, the
three-photon excitation fluorescence polarising microscopy (3PEF-PM) was used
with the control of polarisation of the excitation beam which allowed for the full
reconstruction of the 3D nematic orientation field.

When a trefoil polymer particle with parallel surface anchoring is inserted into
the nematic liquid crystal, this knotted colloid induces strong elastic deformation
of the nematic liquid crystal. It was found that in a stable configuration with a
minimum elastic distortion energy, the trefoil colloids align with their torus plane
perpendicular to the far-field nematic director. This is shown in opticalmicrographs in
Fig. 6.6a–c, which show unpolarised (a), cross polarised (b) and red-plate (c) images
of a trefoil polymeric knot in a homeotropic nematic liquid crystal cell. By inspecting
unpolarised images in Fig. 6.6a, one can observe small dark spots, which alludes to
the presence of point defects, located on the surface of the polymer particle inducing
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parallel surface anchoring. These boojums appear on that part of the surface, which
is directly facing the view of observation and therefore the far-field nematic director.
These surface defects are presumably surface boojums, which appear dark in bright-
field micrographs because they scatter light.

The nature of these surface defects was revealed by probing the local azimuthal
orientation of the director field around the particles by using 3 PEF-PM imaging. This
method is highly sensitive to any rotation of the light-radiating dipole moment of
the molecule and allows for reconstruction of the local orientation of nematic liquid
crystal in 3D. The orientation of the nematic director in a given plane of imaging is
colour-encoded, as indicated in Fig. 6.6d, e and more clearly presented in Fig. 6.6h.
This colour coding immediately indicates the positions of surface boojums, which is
very clearly presented in the numerically-generated image in Fig. 6.6h. Each surface
boojum appears as a point, around which a rainbow-like pattern is observed. This
allows for easy counting of the number of surface boojums and it appears that each
trefoil polymeric knot has 12 boojums on its surface. The positions of these boojums
are located to the regions of the particle, where the particle’s surface is perpendicular
to the far-field director. The colour encoding also allows for easy recognition of the
winding number of each boojum defect, which is either −1 or +1. The sign of the
winding number can be recognised bymonitoring the sequence of colours aswemove
along a closed loop around the boojum. It turns out that half of these boojums have a
positive winding number +1 and are accompanied by equal number of −1 winding
number counterparts. These counterpart boojums reside on the directly opposite side
of the knotted tube.

Whereas parallel surface anchoring results in the formation of localised point
defects (surface boojums), it is expected that perpendicular surface anchoring of
liquid crystal molecules on the surface of knotted polymer particles will display
more complex topology of the nematic director field. This was indeed observed
in the experiments with torus particle knots with perpendicular surface anchoring,
dispersed in the nematic liquid crystal. These particle knots align with their torus
plane perpendicular to the far-field director, which is their ground state. However,
several metastable orientations were also observed and they could be reached by
local melting of liquid crystal followed by laser tweezers manipulation. By using
fluorescent confocal microscopy, “slices” of the director field could be obtained
for different polarisations of the fluorescence-excitation beam. Some examples of
trefoil polymeric knots with perpendicular surface anchoring in the nematic liquid
crystal are shown in Fig. 6.7a, b. Because of 3D nature of these objects and high
elastic distortion of the nematic liquid crystal, the optical images are not really
clearly resolving the nature of the topological defects, associated with these trefoil
knotted particles. This could be resolved by using 3PEF-PM, and two examples
of the fluorescent images for two different directions of excitation polarisation are
shown in Fig. 6.7d, e. The analysis of the images shows the presence of two defect
lines, which are marked by red arrows in Fig. 6.7d, e. This means that the trefoil
polymer colloid is accompanied by two singular defect lines with −1/2 winding
number. It is clear that these lines must be closed in a loop and the question is
what is the resulting topology of these singular loops attached to and following the



6.3 Knot- and Link-Shaped Microparticles in Nematics 197

Fig. 6.7 Polymer trefoil knotted particle with perpendicular surface anchoring in a planar nematic
cell. a Photomicrograph of the particle between crossed polarisers. b The same particle between
crossed polarisers with a red plate added with its axis at 45◦. c Numerically calculated director field
in a cross-section perpendicular to the knotted tube, marked in panel (f). d, e 3 PEF-PM images
of a knotted particle in the nematic. The excitation polarisation is different for each image and is
indicated by the green double arrow. Red arrows indicate defect lines. f Numerically calculated
director field around a polymer trefoil knotted particle. The torus plane is orthogonal to the far-
field director n◦. The green and magenta lines show regions with depressed order parameter and
therefore visualise the defect lines. g, i Bright phase micrographs of trefoil colloidal knots with
their torus plane parallel to the far-field director. h, j The same particle as in panels (g, i) as
seen between crossed-polarisers and inserted full wave retardation plate. Reprinted by permission
from Macmillan Publishers Ltd: A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Žumer,
I.I. Smalyukh, Nat. Mater. 13(3), 258 (2014), copyright (2014)
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surface of the trefoil polymer microparticle. A very convincing answer is given by
numerical simulation of the nematic director field around a trefoil polymer knot with
perpendicular surface anchoring, which are presented in Fig. 6.7f. One can see that
twodefect loops are closely following the surface of the trefoil-knottedmicroparticles
and they themselves form two distinct trefoil knots. We therefore have three distinct
objects, closely interlocked by the nematic director: (i) the trefoil polymeric knot,
and (ii) two trefoil-knotted −1/2 singular loops. It is interesting to find from the
experiments that these defect loops are actually both torus knots of the same type
as the polymeric particle. Moreover, they are mutually linked into a two-component
link. This link of line defects is additionally linked with the particle knot as shown
in the inset of the numerically generated Fig. 6.7f.

We therefore have a complex topological situationwith three distinct objects, each
having its own topological charge, which are mutually linked knots. The question
ariseswhether this is consistentwith the requirement of a zero total topological charge
in this system. A trefoil knot particle has Euler characteristic zero, which implies
that the topological charge of the trefoil knot particle is also zero. This requires that
the net topological charge of the two knotted −1/2 defect loops must equal to zero
(under modulo 2, [40]).

6.4 Möbius Strips and Non-orientable Surfaces in Chiral
Nematics

Knotted particles which we were discussing in previous Sect. 6.3 are examples of 3D
bodies with orientable surfaces. In mathematics, orientability of the surface implies a
consistent choice of normal vector which is attributed to the local part of the surface.
If we choose a certain point on a trefoil knotted polymeric particle, shown in Fig. 6.7,
and we move along the polymeric tube, we can return after one circulation to the
same point of departure with the same orientation of the surface normal. However,
there are also non-orientable surfaces, such as the one-sided Möbius strip, which is
a classic non-orientable surface. By choosing a point of departure on a 180◦-twisted
Möbius strip and following the strip, we come to the same point of departure, but
now the surface normal is flipped by 180◦. This implies inconsistency in defining the
surface normal and such a surface is said to be non-orientable.

In the context of topology, the classification theorem of surfaces states [230]
that any compact surface can be classified by its genus, orientability, and number
of boundary components, as discussed by Machon and Alexander [231]. We have
already seen that the genus of the surface is equal to the number of holes penetrating
the body or the number of handlebodies which are possessed by the surface. A sphere
has genus g = 0 and a torus has genus g = 1. The orientability of the surface implies
whether one can make a consistent choice of the normal vector to the surface. As
we already mentioned, the one-sided Möbius strip is a well known non-orientable
surface. The last descriptor of surfaces is the number of boundary components for a
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Fig. 6.8 Topological characteristics of different compact surfaces, which are embedded into a
nematic liquid crystal in 3D.The surface prefers perpendicular anchoring of liquid crystalmolecules.
If the surface is closed and orientable (such as a sphere), it generates point defects or closed loops,
which are elements of the second homotopy group. If the surface has boundaries and is non-
orientable (such as the Möbius strip), it generates disclination lines in the surrounding nematic
liquid crystal. Reprinted with permission of Proceedings of the Academy of Sciences of the United
States, T. Machon, G.P. Alexander, Proc. Natl. Acad. Sci. U. S. A. 110(35), 14174 (2013)

given surface, which is the number of distinct connected components in the surface
boundary. For example, a 2D disc has one boundary component (closed line) and a
torus has no boundary components.

All these elements that classify the surfaces should have important consequences
for the type and number of topological defects generated when such a surface is
embedded into a real 3D space. In our case, we are interested in topological defects,
which should arise when different types of surfaces are embedded into a nematic
liquid crystal and the tensorial field describing the orientation of a liquid crystal is
forced to align locally on the surface. Clearly there will be a topological incompat-
ibility between the surface and the ordering field, and the topological implications
of each type of surface will generate different types of accompanying defects in
the surrounding liquid crystal. The classification of defects is then separated into 4
different classes of surfaces [231]: orientable or non-orientable surface and closed
surface or surface with boundaries, as illustrated in Fig. 6.8.

Closed and orientable surfaces such as spheres and tori are known to induce
defects corresponding to the element 1− g of the second homotopic group, where g
is the genus of the surface. For example, spherical colloids can nucleate either a point
or a disclination loop (Saturn ring) but this ring can always be shrunk continuously
into a point, so it is properly classified by the second homotopic group. In general,
orientable surfaces are never able to generate elements of the fundamental homotopic
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group, disclinations. Their surface orientability ensures that any disclination loop can
always be removed in pairs or shrunk into points.

A very special example is a closed and non-orientable surface, such as the Klein
bottle [231]. It turns out that such an object cannot be embedded in real 3D space
without self-intersecting. This means that any representation of such a closed and
non-orientable surfaces in a nematic liquid crystal is not possible and was not con-
sidered any further [231]. Orientable surfaces with boundaries, such as an infini-
tesimally thin (2D) disk, have trivial topological consequences for the surrounding
liquid crystal. Because they are orientable, it is topologically necessary that no lines
are generated in this case. Furthermore, they cannot generate any elements of the
second homotopic group (points and loops).

Non-orientable surfaces with boundary necessarily generate a non-trivial element
of the fundamental homotopic group, which is a disclination line. There are different
kinds of disclination loops which can be generated in this way and there are four
distinct homotopic classes of disclination loops (G.P. Alexander et al. [232]). In all
cases, the disclination must have a zero hedgehog charge.

Whereas non-orientability of the surface requires the existence of a disclination
loop, the precise formof these defects and their equilibrium configuration are dictated
by the free energy of the distorted liquid crystal. The embedding of non-orientable
surfaces in a nematic liquid crystal were first discussed by Machon and Alexander
in 2013 [231]. When considering the realisation of a 2D non-orientable surface, they
selected Möbius strips with different degrees of twisting, which were embedded
in a nematic liquid crystal and enforced perpendicular orientation of liquid crystal
molecules on the surface of the strips. However, practical realisation of such an
object requires finite thickness of the strip, because it has to be fabricated from some
material. The problem which arises is how to ensure a 2D behaviour in terms of the
3D nature of such an object. This can be resolved in theory by considering Möbius
strips of finite thickness and taking different boundary conditions for the surface of
the strip and its edge. In this case, the surface of the strip enforces perpendicular
surface anchoring, whereas along the edge the surface anchoring of the liquid crystal
is planar degenerate. This is illustrated in Fig. 6.9.

A Möbius strip with homeotropic boundary condition therefore necessarily gen-
erates a closed disclination loop of zero hedgehog charge, which entangles the sur-
face. This can be explored by numerical simulations using the continuum Landau-de
Gennes modeling, and for a non-chiral nematic liquid crystal the result is a single
disclination loop entangling theMöbius strip. Because it has zero topological charge,
the cross-section of this disclination loop shows a twisted−1/2 profile on the outside
of the strip and changes into a +1/2 twisted profile on the inside.

Whereas the “canonical form” of the Möbius strip has one half-twist (p = 1),
this can be generalised to a larger number of half twists the surface makes upon
reconnecting. If the parameter p, measuring the number of half-twists, is even, the
Möbius strip will be orientable surface with boundary and will have the topology of
an annulus. However, if the number of half-twists is odd, then the surface is non-
orientable and has the same topology as the canonicalMöbius twist. The embeddings
are in all cases distinct. For a single half-twist, the boundary of a Möbius strip is a
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Fig. 6.9 Landau-de Gennes simulation of topological defects on Möbius strip, which induces
perpendicular surface anchoring of the nematic liquid crystal on flat faces. Planar anchoring is
considered on the short edge, so this object represents a 2D surface embedded into a liquid crystal.
The defect line is encircling the strip, and it carries zero topological charge. This means that the
defect line cross-section should change from a +1/2 winding number profile on the inside of the
strip into a −1/2 profile on the outside. Reprinted with permission of Proceedings of the Academy
of Sciences of the United States, T.Machon, G.P. Alexander, Proc. Natl. Acad. Sci. U. S. A. 110(35),
14174 (2013)

simple knot. For p half-twists, this boundary is a torus knot (p, 2) if p is an odd
number and link if p is even. This can be realised by simply drawing lines along the
edges of the Möbius strip with a different number of half-twists. Disclination lines
that follow the surface of the multiply-twisted Möbius strip will have the same shape
and properties as the boundary of the colloid. This means that these disclination line
will form knots and links.

The results of numerical analysis of disclination lines following the surface of
multiply-twisted Möbius strips showed that knotted and linked disclinations can
indeed be realised in chiral nematic liquid crystal. These knots and links obey the
fundamental topological requirements, but their stabilisation is not just a question
of topology. The free energy of the elastically distorted liquid crystal is important as
well, and it turns out that the chirality of the nematic liquid crystal has an important
role in the energetic stabilisation of these configurations. This is very similar to the
stability of knotted and linked nematic colloids, which are stable and observable
in experiments only in chiral nematic liquid crystals. In the achiral nematic liquid
crystals, knotted defects are unstable and topological defects transform into isolated
loops and points. The results are presented in Fig. 6.10, where knotted and linked
disclinations are clearly visible. For example, the structure in Fig. 6.10a is a Hopf
link, where two closed loops are linked together. The next structure in Fig. 6.10b is
a trefoil knot. The structure in Fig. 6.10c is a Solomon’s knot and Fig. 6.10d shows
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Fig. 6.10 WhenMöbius strips with p half-twists are embedded into a chiral nematic liquid crystal,
the disclinations are knotted and linked. They belong to torus knots and links of the type (p, 2).
a Hopf link corresponds to p = 2, b Trefoil knot corresponds to p = 3, c Solomon’s knot
corresponds to p = 4 and d cinquefoil knot corresponds to p = 5. The red spheres in the centre
indicate hedgehogs, which are positioned symmetrically above and below the strip. Reprinted
with permission of Proceedings of the Academy of Sciences of the United States, T. Machon,
G.P. Alexander, Proc. Natl. Acad. Sci. U. S. A. 110(35), 14174 (2013)

a cinquefoil knot. In addition to these defect loops, isolated defects are observed in
the centre of the structure, which turn out to be pairs of hedgehogs, positioned above
and below the strip.

The disclination loops forming torus knots and links following the structure of
the Möbius strips are not the only singularities generated by embedding a Möbius
strip into a cell with fixed perpendicular boundary condition. In order to match the
surface alignment on the cell walls, two hyperbolic hedgehogs are generated, which
are positioned above and below the strip. The cross-section through the colloid has a
profile reminiscent of a double-twist cylinder, which is also named “torus” texture,
and is observable in different representations. All have in common a double-twist
torus, which is a building block of blue phases.
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6.5 Koch Stars Colloids in Nematics

We have discussed in Sect. 5.3 the production and stabilisation of a multitude of
topological charges on a fibre in a nematic liquid crystal. Although a fibre itself
is topologically equivalent to a sphere, both having genus g = 0, in contrast to a
microsphere, a long fibre can carry a larger number of pairs of topological charges.
Depending on the orientation of the fibre in the nematic liquid crystal, these topo-
logical charges appear in a form of one or several pairs of rings (i.e. Saturn ring
and Saturn anti-ring). In another orientation, defects will appear in a form of one
or several pairs of point defects with opposite topological charge. Altogether, these
topological charges accompanying the fibre add-up to a single topological charge of
a radial hedgehog. On a fibre, the charges can slide towards each other, and if let
free, they will mutually annihilate, leaving only a single hedgehog as required by the
conservation of the total topological charge. There are several ways of stabilising the
positions of topological charges on an object in a liquid crystal, and they all rely on
a creation of an artificial friction, which will prevent the sliding of charges along the
object and their pairwise annihilation.

If we consider a single torus with homeotropic surface anchoring of a nematic
liquid crystal, the conservation of topological charge requires the appearance of two
topological singularitieswith compensating topological charge,whichwere observed
as a defect ring encircling the torus and a hedgehog positioned inside the opening of
the torus. However, this torus can be smoothly transformed in any other topologically
equivalent object with the same genus but different geometrical shape. One of the
interesting transformations is shaping fractal-like colloidal particle out of a smooth
torus.

Fractals are ubiquitous objects based on a very useful concept of self-similarity
on different scales. The main feature that characterises a fractal is an exact or a
quasi self-similarity to a part of itself. In the case of a perfect fractal, this geometric
shape is self-repeating over all length scales. As a result of this scale-invariance, no
characteristic length can be assigned to an ideal fractal object. Fractal properties are
observed in nature in different contexts such as polymer networks, growth phenom-
ena, porous media, classes, brain networks and structure details of genomes. Among
the elementary fractal shapes is the Koch fractal, which is introduced by a simple
iterative method, often visualised with the shape of the Koch snowflake, as shown in
Fig. 6.11.

By generating the Koch fractal, the number of geometrical irregularities grows
very fast. If we consider an ideal Koch fractal particle immersed in a nematic liquid
crystal, we see that each geometric irregularity might host a topological defect. A
fractal particle with strong surface anchoring of liquid crystal molecules will there-
fore host a stable constellation of a large number of topological defects. The question
then arises, how does this develop with increasing number of fractal iterations. In
theory, this can be explored by constructing ideal Koch fractal particles with well-
defined surface anchoring and the corresponding director field is obtained by the
free energy minimisation taking in the account tensorial nature of the nematic order

http://dx.doi.org/10.1007/978-3-319-54916-3_5
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Fig. 6.11 Construction of a
Koch fractal of different
iterations. Note the rapidly
increasing number of shape
irregularities after each step
of iteration

parameter. On the other hand, Koch fractal particles can be fabricated with two-
photon polymerisation and their defect structure can be studied using the optical
techniques.

To explore the topological properties of a nematic field induced by fractal geom-
etry, the iteration of Koch fractals was used, which links together chosen parts of
iteratively down-scaled equilateral triangles. The zero Koch iteration corresponds
to an equilateral triangle and therefore has a threefold rotational symmetry axis,
whereas the higher Koch iterations have a sixfold rotational symmetry axis.

Real Koch star particles were produced [233] by using 3D two-photon direct laser
writing technique, which produces Koch star colloidal particles with very thin walls,
as shown in Fig. 6.12. Scanning electron microscopy images of the four iterations of
the particle, shown in Fig. 6.12, demonstrate perfect shape and surface smoothness
of the polymer particles. This technique itself is able to reproduce four iterating
families of Koch star particles, limited by the optical resolution of the system, which
is around 120nm cross-section of the voxel in the imaging plane. After the polymer
Koch star particles were surface treated to induce homeotropic anchoring of nematic
liquid crystal, they were introduced into 30µm glass cells with strong planar surface
alignment. Because of this different surface alignment of liquid crystal on the particle
and the surfaces of the cell, the polymer particles are levitated inside the cell by the
force of elastic distortion of the liquid crystal.

Optical images of Koch star colloidal particles in the nematic liquid crystal of low
optical birefringence are shown in Fig. 6.13a–f. In all panels, the far-field nematic
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Fig. 6.12 Koch star fractal particles imaged by scanning electronmicroscopy. The particles are pro-
duced by direct laser writing into a photosensitive polymer using 3D 2-photon laser polymerization
system Photonic Professional by Nanoscribe GmbH

director is vertical, as illustrated in Fig. 6.13a (II). Because the polymeric particles
have very thin walls and are produced by moving the laser beams to the photo
resist, there might be hidden optical artifacts, either because of direct laser writing
or optical diffraction. For this purpose, the liquid crystal and the particles are first
heated into the isotropic phase to observe any optical irregularities. The images of
particles in the isotropic phase are shown in the first column (panels a I, f I). Although
the liquid crystal and the polymer are nearly index matched, there are still visible
optical artifacts due to optical diffraction and optical inhomogeneities caused by
direct laser writing. However, these are minor optical distractions when compared
to the strongly distorted and birefringent nematic liquid crystal pattern around and
inside these particles when the system is cooled into the nematic phase, as is shown
in panels (a II, f II) in Fig. 6.13.

The zero-iteration Koch star particles are shown in Fig. 6.13a, b. In the nematic
phase, there are two stable orientations of this triangle-like particle in a planar nematic
cell. In one of the stable positions, shown in Fig. 6.13b, columns II and III, one of
the sides is perpendicular to the rubbing direction. In this case, this is the lower
side of the triangular particles shown in Fig. 6.13b (II), (III). The nematic director
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Fig. 6.13 (Continued)
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� Fig. 6.13 Nematic topological states stabilized by fractal Koch-star colloidal particles. aI–eI,
Optical unpolarized images of Koch-star particles in the isotropic phase of the CCN mixture at
70 ◦C. aI–eI The same particles as in panels I, now observed between crossed polarizers. The
rubbing direction, indicating the far-field planar orientation of the nematic is shown by arrows in
panels (aII–aIV).Defects are recognized as point regions in the optical image, surroundedby rapidly
varying color and intensity of the transmitted light, indicating strong director distortion. aIII–eIII
The same particles as in panels 2aII–eII, now viewed between crossed polarizers and red plate
added at 45◦. Different colors are due to different in-plane orientations of the nematic molecules.
aIV–eIV, LdG numerical modeling illustrating contour plots of the scalar order parameter in the
midplane of the particles with lb/ξ = 100 and ξ is the correlation length of the liquid crystal
molecules in the x − y coordinate plane containing the coordinate center. The calculated director
field in the x − y plane of the contour plots is also superposed

is practically undistorted along this lower side and strongly distorted on the other
two sides. There is also strong distortion of the director field inside the triangle,
which is specially localised in the corners of the triangle. By rotating the polariser
and ioniser, one can determine the location of topological defects in the corners of
the triangle in Fig. 6.13b (II), (III). This orientation is also found to be stable using
nematic calculations, which are shown in Fig. 6.13b (IV). These defects are actually
pairs of defects with opposite topological winding numbers and charges. Each of
the three pairs of defects in each corner of the triangle therefore compensates the
winding, giving total winding zero, as expected for the total charge of the torus.
Remember that any iteration of the Koch star particle is topologically equivalent to
the torus. A torus has genus g = 1 and it is known that colloidal handlebodies with
genus g are accompanied by defects with a total topological charge of +/ − (1g),
which is 0 in our case. All Koch star particles should therefore have an even number
of topological defects which mutually compensate their winding and charge, to keep
the total charge of any Koch star particle 0 at all times. In addition to these defects,
observable in the plane of the Koch star particles, an additional closed defect loop is
observed, which is running all around the upper edge of the particle.

The first iteration Koch star particles (star of David) is shown in Fig. 6.13c. In
the experiments, there are several stable orientations of these particles in the planar
cell and some of them are more abundant than others. Elastic distortions are clearly
visible between crossed polarisers and in red-plate images. Most of the distortion is
concentrated in the inner and outer corners of the Koch particles, which are therefore
hosting topological defects. By using the laser tweezers, it was not possible to detach
any defect line from the particle, although it is predicted from theory to be running
all along the edge of the particle. However, one is able to pull the two −1/2 defects,
labeled by the two arrows in Fig. 6.13c (II). By counting the number of defects, one
can see 8 pairs of defects in the corners, four inner corners do not show any defects,
only splayed nematic profile. By using the laser tweezers, one is able to grab and
move only one pair of defects labeled with arrows in Fig. 6.13c (II).

Unlike the zero and the first iteration, the second iterationKoch star particles show
two stable orientations in the planar nematic cells, which are presented in Fig. 6.13c,
d for different polarisations of the illuminating light. The configuration in Fig. 6.13c
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Fig. 6.14 Fractal geometry as generator of defect pairs. a–c, Pairs of+1/2 (in red) and−1/2 defects
and surrounding director field (in gray) as generated by Koch particles of iterations N = 1 − 3 at
angles ϕ = 0 and ϕ = 30◦ of the particles relative to the far-field undistorted nematic director. The
director and defects are plotted in the later mid-plane cross-section of the particle; these indicated
2D defect points are formally just two-dimensional cross-sections of actual 3D defect loops that
entangles the whole particle. d Number of the defect pairs for different iterations as obtained from
experiments and numerical modelling. Particles of size lb/ξ = 100 are used in the numerical
analysis

occurs with 70% probability and the symmetry axis of the Koch particle is parallel
to the far-field nematic director. Defects for both second iteration Koch particles are
different for each of the two stable orientations. They can be identified by observing
the particles at different orientations of the analyzer. This shows the presence of 28
pairs of defects with mutually compensating winding and charge. This number of
self-compensated defect pairs is also observed for the second stable orientation. The
exact 3D morphology of the defects is strongly affected by the sharpness of the real
particle edges, as they can pin or even locally suppress sections of defect loops. The
generation of topological defects and corresponding topological states in the fractal
Koch cavities is therefore a result of the interconnection between geometry of the
object and its topology. Local fractal surface modulations induce local formation of
defect pairs to minimise the elastic energy of distortion.
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As already mentioned, Koch particles are topologically equivalent to tori, thus
having zero total topological charge. This charge is also conserved when immersing
these particles into a uniformly aligned nematic field. This requires that the net topo-
logical charge of all the surrounding defect structures must be equal to zero. Using
numerical calculations, it was found that the number of defect pairs grows expo-
nentially with iterations. Figure6.14 shows comparison with theoretically predicted
number of defect pairs and experimentally observed number for different iterations.
Present state of the art of nano-manufacturing of Koch particles allows for produc-
tion of three iterations of Koch star particles, and the number of observed defects
perfectly matches the predictions of the LdG theory [233].

6.6 Spiraling Rods, Flat Spirals and Ribbed Rods
in Nematics

The case of Koch star colloidal particles in the nematic liquid crystals clearly demon-
strates how the geometry of the particles influences the number of topological defects
accompanying the particle. Here we discuss similar examples of the generation and
stabilisation of oppositely charged topological defects on genus g = 0 colloidal
particles, which are shaped into 3D spiraling rods, straight but ribbed rods and flat,
2D-like spirals with perpendicular surface anchoring in the nematic liquid crystal.
These particles are produced either by 3D direct laser writing (3D spirals and ribbed
rods) or by photolithographic techniques. SEM images of 3D spiraling rods pro-

Fig. 6.15 SEM images of spiral colloidal particles produced by 3D direct laser writing technique.
Image courtesy of M. Nikkhou [8]
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Fig. 6.16 Existence of several topological rings on a small microhelix. aMicrohelix under crossed
polarisers with inserted λ-wave-plate. By comparing the colours in the vicinity of the microhelix
and a dipolar microsphere, one can recognise the sign of the defect rings around the helix in different
regions. b Schematic representation of the director around the Saturn rings and Saturn anti-rings on
the microhelix. c, d Dipolar microsphere with a point defect on top is repelled from the microhelix,
which represents the opposite director field in the vicinity of the dipole and microhelix. The dashed
lines show the repulsion trajectories. Image courtesy of M. Nikkhou [8]

duced by direct laser writing are shown in Fig. 6.15. The length of the spiraling rods
is several tens of μm, typical diameter of the rod is 2µm and there are several turns
along the length of the spiral.

After the surfaces of spiral colloids are chemically treated to induce strong per-
pendicular surface anchoring of the nematic liquid crystal, they are dispersed in the
nematic liquid crystal and this dispersion is introduced into a planar nematic liquid
crystal cell. The particles are preferentially aligned with their spiraling axis along
the far-field director, and there is a strong deformation of liquid crystal along the
spiral. This deformation is clearly visible in the red-plate image shown in Fig. 6.16a.
This red-plate image also shows a microsphere with perpendicular surface anchor-
ing of the nematic liquid crystal in the vicinity. The presence of this microsphere
helps us determine the director profile from the red and blue sections of the nematic
liquid crystal around the spiraling colloids. Remember that the director field around
the homeotropic microsphere with hyperbolic hedgehog defect is well-known (see
Sect. 2.1).

Because of colour encoded information of the local orientations of the nematic
liquid crystal in the red-plate image, one is able to reconstruct the nematic director
around a spiraling colloid, which is shown in Fig. 6.16b.One can clearly recognise the

http://dx.doi.org/10.1007/978-3-319-54916-3_2
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presence of defect rings, which are encircling the spiraling microrod at the positions
of its extreme. Because of the conservation of topological charge, this microrings
must alternate in charge and winding number. In other words, we have the sequence
of a Saturn ring (charge −1) followed by a Saturn anti-ring (charge +1) and so on.
This situation is therefore identical to what we observed in the case of long fibers in a
nematic liquid crystal, presented in Sect. 5.3. The difference with a long and straight
fiber is that the spiraling rod stabilises the positions of the charges and anti-charges. It
is easy to understand that moving, for example, a+1 ring towards a−1 ring requires
an external force and energy. Spiraling rod therefore generates a kind of energy
maxima and minima, where the topological charges and anti-charges are resting in
their minimum free energy positions. Another way of considering this alternating
charge stabilisation is that the spiraling rod increases the friction for sliding defect
rings along the rod. This sliding, which is rather free in the case of a straight fiber, is
here energy costly and accompanied with the dissipation of energy.

Besides recognising the sign of the topological charge from the red-plate images,
these charges can also be tested by an external elastic dipole as shown in Fig. 6.16c,
d. When the elastic dipole is oriented with its −1 hyperbolic hedgehog on top, the
hedgehog will be repelled from the −1 charged region (Saturn ring) on the spiraling
rod. If the elastic dipole is transferred to the other side of the spiraling rod, its −1
hegehog will be attracted to the +1 section of the rod, which is now exposed to the
outside because it is residing in the neighbouring half-turn with respect to the −1
hedgehog. It should be noted here, that such a simple spiraling rod can actually host
a variety of different combinations of topological charges, which can all be accessed
by locally heating the liquid crystal with the laser tweezers. Different constellations
of the topological charges can be obtained, such as a single ring spanning over two
half-turns of the spiral and so on.

Similar stabilisation of topologically oppositely charged defect rings are obtained
on micro-ribbed rods immersed in the nematic liquid crystal. These ribbed colloids
are again produced by 3D direct laser writing, surface functionalized and introduced
into the nematic liquid crystal. Because of their specific geometry, thesemicro-ribbed
rods can host a sequence of defect rings with alternating topological charge. An
example of such ribbed microrod is shown in Fig. 6.17a–c. The non-polarised image
clearly shows light-intensity modulation along the rod, which indicates a presence

Fig. 6.17 Unpolarizednematic liquid crystal. a Unpolarizrd image. b Crossed polarizers. c Red
plate image. Image courtesy of M. Nikkhou

http://dx.doi.org/10.1007/978-3-319-54916-3_5
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of topological defect rings. These are further resolved in crossed polarised image in
Fig. 6.17b. Finally, the red-plate image of the ribbed rod, shown in Fig. 6.17c, helps
us reconstruct the director field.

Finally, similar stabilisation of a multitude of topological defects on a simple
genus g = 0 colloidal particle in the nematic liquid crystal was demonstrated for flat
colloidal spirals (Senyuk et al. [104]). These particles were produced using direct
writing laser photolithography, which is a different technique from 3D, two-photon
polymerisation. Because of lithography, these spirals are rather thin, made of 1µm
thick silica layer and shaped into one, two or three arms spiral using direct laser
writing in the photoresist applied on top of silica layer. Similar to spiraling rods and
ribbed cylinders, these 2D spirals host a multitude of different topological defects,
which can be analysed by polarised and confocal fluorescent images and compared
to theoretical predictions. Interestingly, surface point defects in a form of boojums
with opposite topological charge were observed for tangential surface anchoring of
the nematic liquid crystal. In contrast to simple microsphere, which is accompanied
by two −1 boojums, spiraling geometry induces the formation of pairs of oppo-
sitely charged surface boojums. They appear because of the geometry and elastic
deformation, but their topological charge is mutually compensated for each pair, so
that in total, such a flat spiral with tangential surface anchoring is accompanied by
topological defects with a total charge of −1. This charge is distributed between two
surface point boojums.



Chapter 7
Nematic Microdroplets, Shells
and Handlebodies

Abstract This chapter discusses the structure and topology of nematic
microdroplets for different surface anchoring and chirality. The most interesting
case are chiral nematic microdroplets with perpendicular surface anchoring, where
knots and links were predicted. We show experimental results on these droplets,
which show elastically assembled point defects, skyrmions, and torons in a liquid
microsphere. Nematic shells and handlebodies are briefly discussed from the topo-
logical standpoint.

7.1 Structure and Topology of Nematic Microdroplets

Liquid crystal droplets, handlebodies and shells are made by dispersing liquid crystal
in an immiscible fluid, such as water, glycerol or different sorts of oils. Because of
the chemical incompatibility and immiscibility, the interface is formed between the
liquid crystal and the surrounding fluid. Because any interface is associated with an
energy cost of creating it, liquid crystal microdroplets tend to minimise the surface
free energy, which results in perfect spherical shape for a typical nematic dispersion.
However, the liquid crystal structure inside the droplet is also associated with elastic
deformation and surface energy. While the energy of elastic deformations is usually
much smaller than the surface energy, there are some examples when these two
contributions are of comparable magnitude. This results either in a shape change
and the spherical droplet transforms into a tactoid [132, 234, 235], or the surface
anchoring breaks and the interior of the droplet releases the elastic distortion and
becomes practically uniform.

In the equilibrium state of a liquid crystal droplet, one has to consider theminimum
of the free energy functional, which can be separated into a volume and a surface
contribution (O.D. Lavrentovich, [42]):

F = FV + FS =
∫
V
fdV +

∫
S
σdS (7.1)
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The volume integral is taken throughout the volume of the droplet and f is the
bulk free energy density of the liquid crystal. S is the area of the bounding surface,
and σ is the surface free energy per unit area.

If the interior of the droplet is isotropic liquid, the surface free energy is constant
and the equilibrium shape is found by minimising the surface energy at constant
volume. The droplet is stable in a spherical shape of radius R = (3V/4π)1/3. If such
a droplet somehow starts growing, for example from a metastable isotropic phase
that is surrounding the droplet, then the free energy of the bulk nematic is negative,
FV = 4

π
fR3 < 0 and the surface term 4πσR2 > 0 is positive. Negative bulk free

energy means that it is more favorable to nucleate the nematic phase within the
surrounding isotropic phase. In this case the volume and the surface energies will be
equal at a critical radius of Rc = 2σ/f . If such an embryonic droplet has a radius R
larger than the critical radius Rc, it will grow indefinitely, because the bulk energy is
proportional to R3 and is therefore always larger in magnitude (but negative in sign)
compared to the surface energy, which is positive and increases as R2.

In liquid crystal droplets, the energy balance between the bulk nematic and the
surface energy is far more complex, because the surface energy is not a scalar quan-
tity, but depends on the surface orientation of themolecules. The total surface energy,
which is obtained by integrating the surface free energy density over the surface there-
fore depends on the local and global director orientation at the surface. Moreover, it
appears that the surface and bulk energies are often comparable.

The surface energy of a nematic-liquid interface is considered in a form of two
contributions. The first is the normal surface energy, which describes the energy
needed to extend the area of the surface while preserving the equilibrium direc-
tor orientation. This contribution to the surface energy is typically in the range of
Wa ≈ 10−3 − 10−2 J/m2 for the cyano biphenyl-glycerol interface. The anisotropic
part of the surface free energy is several orders of magnitude smaller compared to the
normal surface energy and is of the order Wa ≈ 10−6 − 10−5 J/m2. It is also known
that surfactants (detergents) are able to decrease the surface energy by an order of
magnitude.

When considering various contributions of the surface and elastic terms, we con-
sider that the isotropic part of the surface energy is of the order of σR2, whereas
the anisotropic surface energy is of the order of WaR2. The total energy of elastic
deformation will be of the order of KR, where K ≈ 10−11 N is the bulk elastic
constant. Because the elastic energy increases linearly with the radius R, the surface
term will dominate and the realistic liquid crystal droplets are practically spherical.
A typical length l� = K/σ is of the order of a molecular length, which means that the
shape could be different from spherical for very small liquid crystal nanodroplets.
However, in some cases the isotropic surface tension could be quite small, like in
the case ow water-based liquid crystals, such as in chromonic liquid crystals [234,
235]. In this case the elasticity is important and the shape of the droplets becomes
non-spherical, and we have elongated “tactoids”.

Nematic droplets were first theoretically studied by E. Dubois Violette and
O. Parody in 1969 [236] and they predicted two possible configurations depending on
whether the surface anchoring conditions are perpendicular or parallel to the nematic-
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Fig. 7.1 Schematic structure of nematic droplets with perpendicular surface anchoring for different
sizes. The characteristic length is the surface extrapolation length. This figure was inspired by the
illustration of O.D. Lavrentovich in Ref. [42])

isotropic interface. Although liquid crystal droplets are nearly always of spherical
shape, the internal structure of the director field inside the droplet is strongly influ-
enced by their size. This is shown schematically in Fig. 7.1, where nematic droplets
with perpendicular surface anchoring are shown for different sizes. The crossover
length is the surface extrapolation length defined by the ratio of the elastic energy and
the amplitude of the angular dependent anchoring energy, K/W , and is illustrated
in Fig. 7.1. If the droplets are much larger than this surface extrapolation length, the
interior of the droplet will adopt a radial configuration with a radial hedgehog defect
in the centre. The elastic distortion is of the splay type.

If the radius of the droplet is decreasing, the anisotropic surface energy decreases
as ∼R2, whereas the energy of elastic deformation decreases as ∼R. This means that
the surface energy costs decreases faster than the elastic contribution. As a result, it
will be more favourable for smaller droplets to change the surface anchoring energy
and relax the cost of the elastic deformation. This will result in a gradual approach
of the director field inside the droplet to a practically uniform director for very small
droplets. In these very small droplets it is simply energetically too costly to cause
any elastic distortion inside such a small volume. The interior of a very small droplet
will be practically uniform and the surface free energy will be slightly increased.
The crossover diameter of a droplet is of the order of the surface extrapolation length
λ ≈ K/W and is of the order of 1µm. If the droplets are much larger than this
crossover size, they are considered as being “large” and they will contain topological
defects and will be elastically deformed. On the other side, there will be no defects
and small elastic deformation for droplets which are “small” i.e. much smaller than
the surface extrapolation length K/W .

This crossover in the internal structure is therefore a very useful criterion for the
selection of the type of microdroplets. When considering very small droplets of the
order of the wavelength of the visible light, they will strongly scatter light but their
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Fig. 7.2 a Schematic of a radial nematic droplet with homeotropic surface anchoring and a single
radial hedgehog, located in the centre of the sphere. b Schematic of a bipolar nematic structure for
a nematic droplet with planar nematic anchoring

interior will have little distortion and will therefore be topologically trivial. If one
is interested in the topology of nematic or chiral nematic droplets, then very large
droplets should be considered. Theywill be rich in topological phenomena and plenty
of defects could be observed.

The number and type of topological defects in a spherically shaped liquid crystal
droplets are determined by their net topological charge, which in term has to obey
the Poincare and Gauss theorems (O.D. Lavrentovich [43]). The Poincare theorem
states that the sum of all charges m of the vectorial field T on the closed surface is
equal to the Euler characteristic of the surface, which is 2 in the case of a sphere.
The Gauss theorem states that if the vector field is normal to the closed surface, then
the sum of the topological charges N of all point defects inside the sphere is equal to
one half of the Euler characteristic E/2, which is equal to one in the case of a sphere.
For a nematic sphere with homeotropic surface anchoring, there should be one radial
hedgehog located in the centre of the sphere, as illustrated in the Fig. 7.2a.

If the surface anchoring conditions are planar instead of perpendicular, the trivial
possibility are two surface boojums, residing at the poles of the droplet, which is now
called a bipolar nematic droplet, schematically shown in Fig. 7.2b. In principle, it is
possible to have additional topological defects in both structures, which will obey the
conservation of the total topological charge and nutually compensate their charges.
These topological states will have higher energy and will not be stable, but will
decay into the one of the two possible configurations shown in Fig. 7.2. The nematic
droplets are topologically simple and the most interesting topological phenomenon
is the transition of a droplet from a radial nematic into bipolar nematic and vice versa.
This is achievable by varying the surface anchoring conditions by adding surfactant
molecules.

One of the earliest studies of a transition from the bipolar to the radial structure
and back was demonstrated by Volovik and Lavrentovich [237]. Starting from the
bipolar nematic droplet of 30µm radius, the change of the surface anchoring was
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Fig. 7.3 a, e Schematic drawing of the transformation of the director field and the boojums from
a radial nematic droplet shown in a to the bipolar nematic droplet shown in e. At the beginning the
surface anchoring conditions are homeotropic and gradually change to planar in panel e. The cores
of the hedgehogs are shown by circle the cores of the boojums are shown by semi-circles, and the
cores of the defect rings by rectangles. The schematics was following the illustration in a paper by
Volovik and Lavrentovich [237]

gradually transformed by adding the lecithin surfactant to the glycerol where the
droplets were floating. At some point of added lecithin concentration, an additional
ring was formed at the inner equator of the droplet, as shown in Fig. 7.3b, whereas the
two boojums disappeared from the poles by “sinking” into the surrounding glycerol.
The remaining ring then shrunk into a point hedgehog located at one of the poles,
which was then expelled from the surface to the centre of the droplet, when the
anchoring conditions changed to strong homeotropic anchoring (Fig. 7.3f).

Structural transformation of bipolar droplets into radial configuration could also
be triggered by external agents and molecules. For example, Lin et al. have shown
that the presence of endotoxin could trigger such a transition at already very small
endotoxin concentrations of ≈1pg/ml [238, 239]. This surface sensitivity could
be used in an entirely new line of biosensors [240]. These microdroplet-based
biosensors could be remotely read-out by using lasing emission from the Whis-
pering Gallery Modes, as proposed by Humar andMusevic [9, 241–243]. They were
analysing the changes of the spectrum of the WGMs, circulating in the interior of
the nematic droplet. The droplets were floating in water, where increasing solution
of the surfactant SDS was added, thus changing the surface anchoring from perpen-
dicular to parallel. More details are presented in Sect. 9.2. Topological structure and
dynamics of defects in nematic droplets was studied and discussed in a number of
publications [36, 244–247].

Structure and optical properties of nematic microdroplets with various surface
anchoring conditions were extensively studied within the context of Polymer Dis-
persed Liquid Crystals (PDLC), which was discovered by J.W. Doane et al. in
1986 [248]. A dense polymer dispersion of sub-micrometer nematic droplets appears
in a form of a milky film which strongly scatters light because of the mismatch of
the refractive index of polymer and that of the liquid crystal inside the droplet. When
an external electric field is applied, it forces the nematic molecules in the droplet
to align into the field direction. This is accompanied by a change of the refractive
index of the interior of the droplet, which could be matched to the refractive index
of the polymer by a proper selection of the materials. In this case, a strongly scat-
tering PDLC film becomes transparent for particular direction of light propagation.
The influence of external electric field on the director structure in nematic droplets
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was discussed in a number of articles [249–253]. Segregation of small particles in
the topological defects of nematic droplets was studied experimentally and using
Gay-Berne simulations [254].

7.2 Structure and Topology of Chiral Nematic
Microdroplets with Parallel Surface Anchoring

It is clear that the topology and structure of chiral nematic droplets is expected to be
much richer compared to nematic droplets, which exist in two different ground states,
i.e. the radial and the dipolar droplet structure. The first studies of chiral nematic
droplets were reported by Robinson and Ward in 1957 [255, 256], when studying
concentrated solutions of polypeptides. They observed a spiral-shaped optical pattern
with a radial disclination, which was latter explained by Pryce and Frank. According
to thatmodel, the internal structure of the chiral nematic dropletswith parallel surface
anchoring would look like a spiral or a series of concentric rings, winding from the
surface to the centre of the sphere and back. An example of such a droplet is shown
in Fig. 7.4.

The internal structure and topology [257, 258] of chiral nematic droplets is
expected to be quite different for the two possible surface anchoring. Chiral nematic
droplets with parallel surface anchoring at the interface with the exterior carries
medium have been extensively studied and three different structures were found in
the experiments: (i) radial spherical structure (RSS), also known as the spherulitic
texture or the Frank-Pryce model, (ii) diametrical spherical structure (DSS), and

Fig. 7.4 A chiral nematic
droplet with pitch p ≈ 1µm
and parallel surface
anchoring, floating in
glycerol. The series of
concentric rings corresponds
to spiraling cholesteric
layers, which are
topologically connected with
a defect running from the
surface to the centre of the
droplet
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(iii) planar bipolar structure (PBS). Schematic presentations of the three most com-
monly observed structures are shown in Fig. 7.5.

The director structure of chiral nematic droplets with degenerate planar surface
anchoring were recently studied by Seč et al. [259] within the fully tensorial Landau-
de Gennes module and six metastable orientational profiles were found. In addition
to DSS, RSS and PBS, the new bipolar structure (BS), the Lyre and theYeti structures
were predicted. The latter two were never predicted or observed up to date.

The diametrical spherical structure shown in Fig. 7.5b is the most symmetric one.
It shows cylindrical symmetry with the symmetry axis along the direction which
connects the centres of the ring defects shown in red colour in Fig. 7.5. The director
forms uniformly curved cholesteric layers with their normals along the radial direc-
tion. The ring defects form a series of concentrically positioned tori of the double
twist cylinder, whereas the central torus resembles the triple twist torus structure
similar to the one observed by Smalyuk et al. [185]. The series of ring defects appear
in order to compensate for the director field imposed by the tori. The numerical cal-
culation always finds an even number of defect ring regardless of the ration of the
cholesteric pitch to the droplet diameter. This linear series of defect rings and surface
boojums is found similar to the previously predicted+1 diametrical disclination line
with one difference that in this study it actually appears in a form of alternating rings
of tau and lambda lines. Such a structure is essentially different from the dissociated
models of the+1 line in the cholesteric, where the line decomposes into non-singular
lambda lines.

The radial spherical structure shown in Fig. 7.5a is most commonly observed in
the experiments and consists of distorted double twist tori with a variable minor
radii. There are no singular bulk defect in the nematic director in the RSS structure,
but instead cholesteric λ disclinations appear running from the centre of the droplet
to the surface. These escaped disclinations are found to be a double helix of two
intertwined cholesteric lambda cholesteric lines as visualised inFig. 7.5a. This double
helix defect structure is quite different from the Frank-Pryce model where the non-
singular disclination lines with the winding number +2 are predicted.

The third structure is the bipolar structure shown in Fig. 7.5d. It is cylindrically
symmetric and characterised by only two surface defects which are positioned dia-
metrically. This bipolar structure actually gradually evolves from the well-known
bipolar structure in chiral nematic droplets and the cholesteric winding is switched
on. It is essentially formed from a λ + 1 disclination line which is spanning diamet-
rically along the symmetry axis of the cylindrically organised droplet. The central
region is most uniformly aligned along the symmetry axis and is surrounded by
distorted double twist tori.

The fourth structure is the planar bipolar structure. In this structure, the two surface
boojums are attached to the interface and the chiral nematic structure winds through
the interior of the droplet. Theoretical studies of chiral nematic droplets with parallel
surface anchoring were performed by the group of Žumer et al. [249, 260]. There are
quite some experimental studies of the structure and organisation of chiral nematic
droplets with parallel surface anchoring. They were mainly driven by the interest
in applying chiral nematic droplets in polymer dispersions, thus forming polymer
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Fig. 7.5 Schematic view of a diametrical spherical structure (DSS), b radial spherical structure
(RSS), c bipolar structure (PBS), d planar bipolar structure (PBS), e Lyre structure and f Yeti
structure. Regions with reduced nematic degree of order are shown in red (iso-surface of S = 0.48),
whereas blue and yellow regions show the splay-bend parameter. Reproduced from D. Seč et al.
Soft Matter, 2012, 8, 11982, with permission of The Royal Society of Chemistry
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Fig. 7.6 Crossed polarizers images of chiral nematic droplets with different chiralities. a, bDroplet
with low chirality, P > R. c Droplet with very high chirality P << R. Reprinted figure with
permission from F. Xu, P. Crooker, Phys. Rev. E 56(6), 6853 (1997). Copyright (1997) by the
American Physical Society

dispersed cholesteric liquid crystals [250–252, 261, 262]. This kind of displays
is both reflective and coloured and usually the direct anisotropy of the material
is negative. The pitch of the liquid crystal is chosen to exhibit a visible selective
reflection in a planar texture. When this material is placed in droplets in zero field,
light is weakly scattered and the display appears dark. If a large voltage is applied,
the droplets are reoriented into the planar texture with helical axes parallel to the
field and the display appears coloured.

The structure of chiral nematic droplets with parallel surface anchoring with
various radii R and an intrinsic pitch P were studied experimentally by Xu and
Crooker [261]. They found different textures for different ratios of the pitch to the
radii of the chiral nematic microdroplets. In this study, the diameters of droplets
ranged from less than 1 to over 100µm and two different mixtures with two different
pitch values were used. Depending on the ratio of P/R, the droplets exhibited three
different characteristic structures presented in Fig. 7.6.

For low chirality, the structures are similar but not quite identical to those predicted
by Bezič and Žumer [263]. The droplets exhibit rotational symmetry and when their
axis is perpendicular to the light, a series of concentric rings is observed with two
dark regions near the edge. These features are similar to non-chiral nematic droplets
with a twisted bipolar nematic configuration. Structural transitions in chiral nematic
dropletswith variable strength of a planar surface anchoringwere studied numerically
and experimentally by Zhou et al. [264].

For high chirality, Xu and Crooker [261] observed two different manifestations:
either as a concentric ring pattern with a radial defect running from the centre to the
surface, which is characteristic of the Frank-Pryce structure, or a singular defect line
of the Frank-Pryce structure, which is converted to a nonsingular line by escaping
the director in the radial direction, as shown in Fig. 7.7f.
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Fig. 7.7 Chiral nematic droplets with low chirality, P < R, between crossed polarisers. a View of
the droplet, when the disclination line is parallel to polariser, b disclination line is here set parallel to
light beam, i.e. running into the plane of this figure. c Schematic picture of the director field within
the Frank-Pryce model with unescaped χ = 2 line. d, e Numerical simulation of a and b from
Frank-Pryce model in c. f Escaped Frank-Pryce model with escaped χ = 2 line; g and hNumerical
simulation of the structure in a and b from the model in f. Reprinted figure with permission from
F. Xu, P. Crooker, Phys. Rev. E 56(6), 6853 (1997). Copyright (1997) by the American Physical
Society

7.3 Structure and Topology of Chiral Nematic
Microdroplets with Perpendicular Surface Anchoring

Whereas chiral nematic droplets with parallel surface anchoring attracted a lot of
interest because of their possible applications in polymer dispersed chiral nematic
displays, there are few studies of the structures of chiral nematic droplets with per-
pendicular surface anchoring. It can be understood that this perpendicular surface
anchoring causes frustration when the internal structure of the droplet is chiral.
The most comprehensive theoretical analysis of the structure and topology of chi-
ral nematic droplets with perpendicular surface anchoring was performed by Seč
et al. [265]. Theywere using Landau free energyminimisation and topological theory
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Fig. 7.8 Knots in homeotropic cholesteric droplets might be obtained by thermal quench. a Short
after the numerical thermal quench a highly disordered state is obtained for N = 5. Disclination
lines are visualized by showing the areas with depressed order parameter S = 0.48. A few millions
of simulation steps later, the system relaxes to a metastable state, where it stays in a local free energy
minimum. c The type of the knot could be deciphered by performing Reidemeister moves, therefore
geometrically simplifying the disclination line. In this case, the disclination forms a trefoil knot
shown in d. Reprinted by permission from Macmillan Publishers Ltd: D. Seč, S. Čopar, S. Žumer,
Nat. Commun. 5, 3057 (2014), copyright (2014)

to analyse the structure and topology of defect lines formed during thermal quench
of the chiral nematic droplet. The tendency of the cholesteric to create layer-like
helical structure competes with the spherical boundary conditions of the droplets,
thus creating a frustrated environment with amultitude of metastable states. In such a
droplet, the disclinations are not allowed to pass through the boundary, which results
in confined closed disclination loops.

By performing a temperature quench and therefore rapidly cooling down the liquid
crystal through the nematic-isotropic transition, metastable structures are observed,
as illustrated in Fig. 7.8.

After a thermal quench, formation of liquid crystal domains results in a multi-
tude of randomly positioned singular disclination lines with winding number −1/2
between the domain walls, as shown in Fig. 7.8a. After the structures are relaxed to
the local energy minima, the resulting metastable structure often includes knotted
and linked disclinations. After numerically extracting the curve of these disclina-
tion loops, the defect tangle is simplified using standard Reidemeister moves. The
topology of the simplified tangle can be analysed. There is a large variety of states
that can be obtained and it was predicted that the type of knots or links should
depend on the ratio of the chiral pitch to the droplet radius. The chirality parameter
N was introduced, which measures the number of π turns of the director along the
droplet diameter. For chirality parameter larger than 3, the complexities of predicted
topological states quickly increases, as shown in Fig. 7.9.

For N = 4, only multiple unlinked loops and Hopf links are predicted, while
for N = 5, a set of links is predicted, as shown in Figs. 7.8 and 7.9: Trefoil knot
(Fig. 7.8d), Solomon link (Fig. 7.9c), Hopf link (Fig. 7.9d),Whitehead link (Fig. 7.9e)
and a three-component link (Fig. 7.9f). All these topological states were predicated
for relatively small droplets with variable surface anchoring.

It is quite surprising that until recently there were only a few experimental studies
of the 3D ordering of chiral nematic liquid crystal in spherical droplets with perpen-
dicular surface anchoring. Candau et al. [266] studied the cholesteric droplets with
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Fig. 7.9 Several different knots and links are obtained for N = 5. a A single loop is an unknot.
b Three separated loops. c Solomon link with an extra loop. d Example of a Hopf link. e Example
of aWhitehead link. f A three-component link denoted as 633 on the Rolfsen table with an additional
unlinked loop. For the visualisation purposes, the disclination lines are presented as regions of
reduced order parameter and colour coded for better visualisation. The insets show a schematic
view of the corresponding knots and links. Reprinted by permission from Macmillan Publishers
Ltd: D. Seč, S. Čopar, S.Žumer, Nat. Commun. 5, 3057 (2014), copyright (2014)
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Fig. 7.10 Optical images of complexmetastable states in chiral nematic dropletswith perpendicular
surface anchoring of liquid crystal molecules. In all cases the helical pitch p = 55µm. a, c Droplet
diameter is d = 105µm, corresponding to N = 3.8. b, d Droplet diameter is d = 125µm, which
correspond to N = 4.5. The images in a, b are taken between crossed polarisers. b, d Bright field
imaging. Scale bar, 50µm.Bottom row shows some illustration of numerically predicted topological
states fromRef. [265],whereN = 5. These are differently knotted and linked loops, as schematically
presented in the upper right corners of each panel. Sketches are adapted from Ref. [265]. This
figure is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). Authors: T. Orlova, S.J. Asshoff, T. Yamaguchi,
N. Katsonis, E. Brasselet, Nat. Commun. 6, 7603(2015)

http://creativecommons.org/licenses/by/4.0/
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either parallel or perpendicular surface anchoring. For strong chirality, they observed
radial distribution of the helical axis with a radial disclination similar to the droplets
with parallel surface anchoring. There was no supporting experimental evidence of
the interfacial transition layer, where this structure should fit to the transitional inter-
facial surface anchoring. Kurik and Lavrentovich reported on the observations of an
equatorial disclination and point surface singularity [267].

Several experimental studies were intrigued by the numerical predictions of knots
and links in chiral nematic microdroplets. Orlova et al. [268] studied topological
diversity in frustrated cholesteric droplets using polarisation microscopy. In the most
interesting region of the chirality parameter N = 5, they observed indications of
quite complex topological structures, which looked like linked and knotted discli-
nation loops, shown in Fig. 7.10. It was concluded by Orlova et al. [268] that the
polarisation microscopy alone does not give conclusive arguments for the unam-
biguous identification of the topological states of higher complexity. This is because
of possible optical artifacts in optical microscopy, which is due to polarisation effects
and lensing. Periodic birefringent structures are known to induce strong polarisation
effects which depended of the ratio of the wavelength of light used and the heli-
cal pitch. In addition to these phase effects, these structures also act as birefringent
lenses, which are able to focus light in quite unexpected manner. Polarisation effects
and lensing depend on the birefringence and the characteristic length of distortion
of the liquid crystal and are likely to cause strong optical artifacts, where twisted
layers could appear as singular lines and so on. Fluorescent confocal microscopy was
used to analyze the structure of chiral nematic droplets with perpendicular surface
anchoring by Guo and Song [269] but no director reconstruction was performed,
so only qualitative discussion of the 3D fluorescent intensity distribution within the
droplet was possible.

7.4 Skyrmions and Torons in Chiral Nematic Microdroplets

Polarisation microscopy alone cannot give unambiguous answer to the existence
of knots and links in chiral nematic droplets with perpendicular surface anchoring.
Posnjak et al. [11] introduced a new method of reconstruction of the 3D director
field from nematic droplets using fluorescent polarised confocal microscopy. They
showed that in chiral nematic droplets of considerable size (tens of micrometers) no
knots and links are stable but a variety of different point defects and nonsingular
structures, such as skyrmions and torons are observed.

Whereas skyrmions and torons were reported in a number of experimental stud-
ies of chiral nematic liquid crystals confined to very thin homeotropic layers and
are described in Chap.8, the question of their stability in other geometries, such as
microdroplets, remained relatively unexplored. The problem here is reliable recon-
struction of the 3D nematic director in a spherical geometry, where many optical
artifacts obscure the optical investigations and make them unreliable. Whereas sim-
ple topological defects like single points or single rings in liquid crystalmicrodroplets

http://dx.doi.org/10.1007/978-3-319-54916-3_8
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could be reliably observed in low-chirality microdroplets, it is much more difficult
to analyse the topology of droplets containing highly chiral nematic liquid crystal.
Besides polarising optical microscopy, which can give us information on a partic-
ular cross-section of the droplet, fluorescent confocal polarised microscopy is the
best candidate for reconstruction of the 3D director in a droplet. In most cases, the
director is reconstructed indirectly from the measured FCPM intensities, either by
hand, by visually comparing themeasured and the calculated FCPM intensities, or by
observing the orientation of the in-plane director component on a selected intensitys
iso-surface.

A new method of reconstruction of the 3D director field and topological defects
through FCPM imaging was reported recently (Posnjak et al. [11]), which is using
a numerical approach for director construction from fluorescent 3D images taken at
different light polarisations. Let us remember that in a FCPM experiment, the light
is collected from the focal region, which is diffraction-limited and forms a voxel of
around 200nm diameter with a depth of 500nm. In this region, the vector of light
polarisation is lying in the focal plane and the detected fluorescent intensity IFCPM is
proportional to the fourth power of the cosine of the molecular tilt θ with respect to
the vector of polarisation

IFCPM = Ioffset + Inorm · cos4 θ (7.2)

It is clear that FCPM cannot resolve the out-of-focal plane tilt, because the mole-
cules tilted by +θ and θ with respect to the focal plane emit the same amount of
fluorescent light. In other words, the FCPM cannot determine the correct sign of the
z-component of the director (i.e. along the optical axis) and there are two possibilities
for the orientation of themolecule in eachmeasuring voxel. If the number of sampled
voxels in the droplet is equal toM, there areM possible configurations. Because there
are two possibilities for director orientation in each voxel, the liquid crystal droplet
divided in M voxels is therefore similar to a system of M 1

2 spins, which are inter-
acting with each other. In a similar way, the neighbouring voxels interact elastically
with each other, which brings in the analogy to the interactions of two neighbouring
spins with two possible states for each spin. Minimization of the free energy of such
a system ofM coupled voxels is therefore formally equivalent toM interacting spins.
Finding the minimal free energy of such a system is an optimisation problem, which
was solved by Posnjak et al. [11] by using a simulated annealing algorithm, first
used for optimising the placement and wiring of components in electronic systems.
The second problem with the detected fluorescent intensity is its highly nonlinear
dependence on the out-of plane molecular tilt θ. Most of the variation of the fluo-
rescent intensity is concentrated around θ ≈ 45◦, which makes it difficult to reliably
reconstruct the director in those regions, where the molecules lie practically within
the focal plane or are perpendicular to it.

Using the simulating annealing algorithm, 3D nematic director fields of chi-
ral nematic droplets were fully and reliably reconstructed. In the experiments, the
droplets were made by dispersing a mixture of very low birefringent liquid crystals
in a glycerol, realising nearly perfect refractive index matching. The liquid crystal
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materials were doped with a small amount of fluorescent dye BTBP, which aligns
with the radiative dipole parallel to the liquid crystal molecules. The fluorescent
intensities were taken at four different polarisations of fluorescent excitations and
the data were corrected for bleaching, deconvolution, abberations and background
corrections. In non-chiral nematic droplets with perpendicular surface anchoring, a
single point defect was observed in the centre of the droplet after director reconstruc-
tion. This was followed by increasing chirality of the liquid crystal, adding chiral
dopants. The parameter which determines topological complexity of chiral nematic
droplets is called the chirality parameter N and is equal to the diameter of the droplet
divided by half of the intrinsic pitch of chiral nematic liquid crystal. Pitch is the
distance over which the director rotates by 360◦.

In the case of low-chirality, N = 1.5, one can see from the 3D reconstructed
director profile that the original point defect is expelled from the centre of the droplet
towards the surface, as shown in Fig. 7.11a, b. The droplet has a symmetry axis and
if one examines the reconstructed director field in a plane perpendicular to this axis
(Fig. 7.11b), one can see that the director twists along any diametrical line by almost
2π. This means that the local cross-section corresponds to a double twist cylinder
and forms a 2-dimensional skyrmion, which is known as the Bloch-type skyrmion
in chiral magnets. This 2D skyrmion is bound by a point defect on one side and
connects smoothly to the opposite surface. The non-polarised transmission images
of the droplets with the same type of structure as in Fig. 7.11a, b are shown in
Fig. 7.11c, d. One can clearly see the defects while the twisted cholesteric layers
appear as dark lobes, which is due to optical lensing effects.

By increasing the chirality parameter to N = 3, one can clearly see 3 collinear
point defects, which are connected with two skyrmion-like profiles as shown in
Fig. 7.11e, f. The skyrmion profile can be observed from the cross-section, taken
along the dashed line in Fig. 7.11e and shown in Fig. 7.11f. The two skyrmions share
a common hyperbolic point defect. By further increasing the chirality parameter,
N = 46, similar skyrmion-like structures were found, but with additional cholesteric
layers with a twist. This results in droplets with two point defects and a single
disclination loop, as shown in Fig. 7.12a, b, with the central part of the droplet
forming a typical double-twist cylinder. At this value of the chirality parameter
one can observe up to five point defects and even more twists in the skyrmionic
structures, as shown in Fig. 7.12c, d. The innermost layer markedwith a dashed circle
in Fig. 7.12c resembles a toron structure observed in thin homeotropic and unwound
chiral nematic layers. In a droplet, the torons are nested along outer concentric layers
instead of uniform director far-field in flat homeotropic cells.

The topology of a sphere with homeotropic anchoring forces the defect inside the
sphere to have a total of+1 topological charge, which is realised as a single defect in
the case of a non-chiral droplet. In chiral nematic droplets with homeotropic anchor-
ing, multiple point (and eventually single loop) defects are stabilised by twisted
cholesteric areas, which provide elastic repulsion forces, pushing the defects away
from each other. Interestingly, the 3 and 5 point defect structures must have hedge-
hog defects of opposite topological charges which mutually compensate in pairs,
leaving a total charge of +1 of the remaining, uncompensated point hedgehog. The
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Fig. 7.11 a Cross-section of the reconstructed vector field in a droplet with a single point defect,
expelled to the surface of the droplet, obtained at N = 1.5. b Cross-section of the droplet shown in
a, taken along the dashed line in a. c, d transmission microscopy pictures of the same droplet as in
a, b with different orientations of the symmetry axis. Location of the point defect is marked with
red arrow and the cholesteric layers with blue arrow. e Three collinear point defects are observed in
the reconstructed director of a droplet with increased chirality parameter N = 3.0. f Reconstructed
director in a cross section taken along the dashed line in e. g, iUnpolarised transmissionmicroscopy
pictures of droplets with three point defects and different orientation of the symmetry axis. In g,
the symmetry axis is in the focal plane, in i it is perpendicular to the focal plane, whereas in h, it is
tilted out of the focal plane

topology is further complicated because the point defects are deformed by neigh-
bouring twisted sections and do no form simple radial or hyperbolic hedgehogs. The
signs of topological charges of these hedgehog cannot simply be determined by the
geometry of the surrounding director field, but the director filed must be considered
as a whole in order to assign the topological charge signs consistently.

In spite of large number of experiments performed on chiral nematic droplets with
homeotropic surface anchoring, no signs of linked or even knotted defect loops were
observed. These were predicted based on the LdG numerical simulations, performed
on much smaller droplets of typical diameter 1µm. In contrast, the experiments are
performed on droplets with the diameter of tens of µm. A possible reason for this
discrepancy between theory and experiments is a large difference in the diameters of
theoretically analyzed and experimentallymeasured droplets. In smaller droplets, the
structures are muchmore confined and the point defects may be forced by the surface
and confinement to open into defect loops, which makes it possible to stabilise knots
and links in chiral nematic droplets.
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Fig. 7.12 Points and loops in droplets with higher chirality. a, b The director field, reconstructed
from 3D FCPM images in two perpendicular cross-sections in a chiral nematic droplet with N = 5.
Two point defects (yellow dots) and a disclination ring (purple dots) can be seen in a. The cross
section shown in b includes the disclinations ring. c A different droplet with N = 6, showing a
total of 5 point defects (yellow dots) with the region inside the dashed circle corresponding to a
toron. In this cross-section, the elongation of the droplet along the z axis is an optical artefact due
to refractive index mismatch between the liquid crystal and surrounding medium, as well as the
birefringence of the LC. In this case the effect is pronounced because of the size of the droplet and
the type and particular orientation of the director structure. d The reconstructed director projection
on the x − y plane. e, h Transmission microscopy pictures of droplets with different orientations of
the symmetry axis. Panels e and g show droplets with the symmetry axis in the image plane, f and
h with the symmetry axis perpendicular to the image plane. Locations of point defects are marked
with red, disclination line with purple and cholesteric layers with blue arrows

7.5 Toroidal Nematics and Handlebodies

Spherical nematic droplets are easily obtained by simply mixing a nematic liquid
crystal with another, immiscible fluid. This mixing results in a dispersion of nematic
droplets in the continuous phase and the droplets are of perfect spherical shape due
to the surface tension. In some extreme cases, when the surface tension is very small,
like in water-based chromonic lyotropic nematics, spherical droplets are deformed
into tactoid objects. A spherical droplet is topologically simple object with genus
g = 0, which implies the formation of a single topological defect with charge −1
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inside a nematic structure. This is due to the Gauss-Bonnet theorem, which dictates
that the total topological charge on the bounding surface must be equal to the one
half of Euler characteristic of that surface (O.D. Lavrentovich [43]). Let us remind
that Euler characteristic χ is a topological invariant given by χ = 2(1− g), where g
is the genus of the surface, or the number of its handles. This theorem implies that in
the ground state of a confined system there will be topological defects. In the case of
a sphere, which has Euler characteristic χ = 2, a single topological defect should be
present in the sphere. Twisting, bending, stretching or deforming the sphere in some
other manner does not change its Euler characteristic, which remains equal to 2.

However, the Euler characteristic of an object can be changed by adding handles
to that object. Adding a handle to a sphere creates a torus and the Euler characteristic
of a torus is χ = 0. Creating nematic droplets with handles is a major experimental
challenge, which was first resolved by the group of Fernandez-Nieves in 2013 [270].
To make nematic toroidal droplets, they injected a nematic liquid crystal through
a tiny needle into a rotating bath containing a yield-stress material, which was a
mixture of polyacrylamide microgels with glycerol, ethanol, polyvinyl alcohol and
majority of ultra-purewater. The presence of polyvinyl alcohol guarantees degenerate
tangential anchoring of liquid crystal at the interface to the external carrier fluid.
During the rotation of the bath and injection of the liquid crystal, a ring of a liquid
crystal closes into a torus immersed in the bath, as shown in Fig. 7.13a.

If such a nematic ring be formed in a simple liquid, it would spontaneously
close and transform into a spherical droplet. However, the carrier fluid in a form
of microgel has its own yield-stress, which prevents coalescence of a liquid crystal
torus into a liquid crystal droplet. Once the torus has been formed, the elasticity
of the surrounding continuous microgel phase provides the supporting force which
overcomes the surface tension and prevents transformation of the toroidal droplet
into a spherical droplet. Using this simple technique, nematic tori with very different
aspect ratios ξ = |R+a|

a ranging from 1 to 20 could be formed. Here, a is the tube
radius and R is the inner radius of the torus. Top view of a nematic toroid is shown
in Fig. 7.13b, c in brightfield (b) and between crossed polarisers (c). The structure
of the nematic is completely smooth, with no observable topological defects. This is
indeed expected for degenerate parallel surface anchoring, because the director can
simply close into itself by looping once along the interior of the toroid.

However, when viewing such a nematic toroid from the side and between crossed
polarisers, the images are quite surprising as shown in Fig. 7.13d–f. For convenience,
the lower images in Fig. 7.13g, i give the bright field view of the same configuration
as in Fig. 7.13d–f. By comparing Fig. 7.13d, g, i.e. when the plane of the toroid is
coinciding with the direction of the polariser, the central part of the toroidal nematic
particle is bright instead of being completely dark. Namely, if the interior of the
nematic toroid is structured so that the nematic director is running in the plane
of the toroid, then the molecules in the centre of Fig. 7.13d, g should be parallel
to the polariser and the Fig. 7.13d should appear completely dark between crossed
polarisers. Because this is clearly not the case, the interior of the nematic toroid
should be twisted in the radial direction. This twist influences the propagation of
light and makes the side view of the toroidal particle transmitting some light between
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Fig. 7.13 Liquid droplets are forming tori. aA toroidal liquid crystal droplet is formed by injecting
the liquid crystal into a material with yield stress. b Bright field image of a toroidal droplet of a
nematic liquid crystal. The tube radius is a and the inner radius is R. c Crossed polarisers image of
the same droplet. d Cross polarizers image taken from the side of the droplet with ξ = 1.8 when
viewed at 0◦. e, f The same droplet viewed at 45◦ and 90◦ with respect to the incident polarisation
direction. The central part of the toroid remains bright for all orientations. gi Bright field images
of the same droplet and orientation corresponding to panels d–f. Scale bar: 100µm. Reprinted
with PNAS permission from “Stable nematic droplets with handles” by E. Pairam, J. Vallamkondu,
V. Koning, B.C. van Zuiden, P.W. Ellis, M.A. Bates, V. Vitelli, A. Fernández-Nieves, Proc. Natl.
Acad. Sci. U. S. A. 110(23), 9295 (2013)

crossed polarisers. This twist is also evident for different orientations of the toroidal
particle as shown in Fig. 7.13e, f, h, i. Similar spontaneous twisting could be observed
in twisted bipolar droplets and theoretical studies of DNA in toroidal geometries.
Careful analysis of different nematic toroids reveals that this twisted configuration
is stable for a very large interval of the aspect ratio ξ.

Spontaneous twisting of the interior of nematic toroids can be understood by
considering the Frank elastic free energy of such a nematic, where the usual elastic
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Fig. 7.14 Saddle-splay elasticity is important for spontaneous chiral symmetry breaking in nematic
tori. a Illustration of the circular cross-section indicating the polar angle ϑ, radial separation r from
the centre and the azimuth angle �. The director field is presented with nails, so one has the
impression of the molecular tilt. The aspect ration of the torus is ξ = 2 and the configuration
corresponds to a twisting strength ω = 0.49. b Normalized free energy as a function of ω for two
different values of (K2K24)/K3. There is a single minimum for K24)/K3 = 0.02 that splits into two
minima for (K2K24)/K3 = 0.01. c The phase diagram denoting the regions of non-twisted tori (red
shaded area) and twisted tori (yellow shaded area). Reprinted with PNAS permission from “Stable
nematic droplets with handles” by E. Pairam, J. Vallamkondu, V. Koning, B.C. van Zuiden, P.W.
Ellis, M.A. Bates, V. Vitelli, A. Fernández-Nieves, Proc. Natl. Acad. Sci. U. S. A. 110(23), 9295
(2013)

constants for splay (K1), twist (K2) and bend (K3) are included and the saddle-splay
deformation is considered as well with elastic constant K24. By using an ansatz for
the director field, the free energy of the toroid nematic can be analytically expressed
as a function of the variational parameter ω, which is a measure for the degree of the
radial twist. In the limit of large aspect ratio ξ, the Frank free energy can be expanded
to quartic order in ω:

F

π2K3a
≈ 1

ξ
+ (4

K2 − K24

K3
ξ − 5

4ξ
)ω2 + 1

2
ξω4 (7.3)

This simple form of the Frank free energy is actually very frequently meet in the
Landau theory of phase transitions, where ω plays the role of the order parameter
of the transition in question. If the coefficient of the quadratic term is positive, the
Frank free energy will have a minimum at ω = 0, as illustrated in Fig. 7.14b.

For ξ = 0, the internal structure of the toroid nematic will not be twisted. The
twist will appear spontaneously when the coefficient of the quadratic term changes
sign, and we shall have a transition from non-twisted to spontaneously twisted toroid
neamtic. The analysis of the toroid nematic landscape given by the Eq.7.3 shows
the phase diagram, presented in Fig. 7.14c. It is the ratio of the saddle-splay elastic
constant K24 to twist elastic constant K2, which determines the phase boundary at a
given aspect ratio of the nematic toroid. A more detailed numerical analysis of this
spontaneous chiral symmetry breaking in toroid nematic was analysed by Koning et
al. [271]. The comparison of the experimental measurement of the twist angle with
theoretical prediction provide a robust and simple method to measure saddle-splay
elastic constant K24.
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Notably, nematic toroidswith degenerate planar surface anchoring have no defects
in their ground state, but this changes in case if we add handles to this toroid. By
adding handles, the Euler characteristic χ and hence the total topological charge
decrease by −2 with each additional handle. The Poincare–Hopf theorem tells us
about the appearance of additional charges by addition of handles, but it tells us
nothing about the shape and location of these defects. This can be predicted by
numerical modeling of the elastic free energy of nematic handlebodies, which is
presented in Fig. 7.15a, b.

The result is interesting and quite expected for a double torus, where the theory
predicts two different configurations of two defects, each with topological charge
−1. The defects are located either at the innermost regions of the inner ring of each
torus, as shown in Fig. 7.15a or in the outermost regions where the two tori meet, as
shown in Fig. 7.15b. In both cases, the defects are located in local saddle geometry,
where the Gaussian curvature is negative. Remember that the Gaussian curvature is
the product of two principal curvatures at the selected point.

Nematic handle droplets were studied experimentally by forming individual tori,
which were then merged together by the addition of the liquid crystal in the region
between them. The top view of a typical double toroidal nematic is shown in
Fig. 7.15c, d. When such a droplet is viewed along its side and between crossed
polarisers, one can clearly observe the defect in the very centre of the droplets as
shown in Fig. 7.15d. This defects were identified as−1 topological defects. The same
technique could be used to form more complex nematic handlebodies, like triple tori
shown in Fig. 7.15f, g. In this case, four point defects are formed, located in the
region of negative Gaussian curvature.

Nearly simultaneously with the experiments of Pairam et al. [270], a similar study
of topological properties of nematic handlebodies with degenerate planar anchoring
were performed by Campbell et al. [272]. In this case, the nematic handlebodies were
much smaller in size and were produced lithographically. These micrometer sized
handlebodies were made by first producing silica handlebodies by photolithographic
technique and then the hollow handlebody microstructures were obtained by replica
methods. This produced nematic handlebodies of square, micrometer sized cross-
section with variable genus from g = 1 to g = 5. There was a notable difference

� Fig. 7.15 Genus g = 2 and g = 3 nematic droplets. a, b Numerical simulations of two different
director profiles that show two surface defects (dark spots). Each defect has topological charge −1,
and is located in regions of negative Gaussian curvature. c Bright field image of a double toroid
with g = 2.Dark spots are the two surface defects. d The same torus viewed under cross-polarisers.
e Crossed polarizers image of a g = 2 toroid. The image is focused to the region where the two
tori meet, indicating the topological defect with charge |s| = 1. There is another s = −1 defect
at the front of the double toroid. f Bright field image of g = 3 toroid with handles arranged in
side-by-side fashion. g Another form of g = 3 toroid with the same topology as in f. h g = 3
toroid viewed between crossed polarizers and from the side. Note the presence of point defects in
regions where the dark brushes meet. Scale bar is 100µm. Reprinted with PNAS permission from
“Stable nematic droplets with handles” by E. Pairam, J. Vallamkondu, V. Koning, B.C. van Zuiden,
P.W. Ellis, M.A. Bates, V. Vitelli, A. Fernández-Nieves, Proc. Natl. Acad. Sci. U. S. A. 110(23),
9295 (2013)
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between the double twisted nematic structures in circular cross-section, millimeter
sized handlebodies and these much smaller handlebodies, which display no double
twist nematic structure. This could be explained by slightly rounded square cross-
section of the handle bodies which energetically does not favour the double twist as in
the case of circular cross-section. Using three photon polarised fluorescent confocal
microscopy, the 3Ddirector distribution could be compared to theoretical predictions.
The experiment showed that thesemicrometer sized nematic handlebodies host topo-
logically stable half integer bulk defect lines, which are anchored at opposite side
of handlebody surface. However, the small micrometer size of these handlebodies
makes it difficult to obtain high resolution confocal imaging and reconstruction of
3D director field from the measured fluorescence.

The studies of nematic handlebodies with degenerate planar surface anchoring
were followed by the studies of nematic handlebodies with perpendicular surface
anchoring of the nematic liquid crystal by Tasinkevych et al. [273]. In contrast to
topologically rather poor planar nematic handlebodies, these homeotropic nematic
handlebodies display a large diversity of topological configurations including ones
with linked and knotted half-integer defect lines. Nematic handlebodies were pro-
duced by replica method and were of micrometer size with genus g varying from
1 to 5 and the corresponding Euler characteristics χ = 2(1 − g) ranging from 0
to −8. The closed confining surfaces of handlebodies were chemically treated to
impose strong homeotropic (normal) anchoring of liquid crystal molecules, so that
the director locally aligns along the inner normal to the bounding surface. The topol-
ogy of the confining surface dictates the existence of bulk defects of net topological
hedgehog charge m = ±(1g) in the nematic liquid crystal. The existence of these
topological defects assures the conservation of the topological charge and compen-
sates the hedgehog charge of the ordering field on the inner closed confining surface
of the nematic handle body, which is required by the Gauss-Bonnet and Poincare–
Hopf theorems. This means that the nematic interior of a single torus with g = 1 is
topologically uncharged, meaning that there are no defects present and the nematic
toroidal structure is smooth as observed in the experiments. In a nematic handle-
body with genus g = 2, which is made by merging together to nematic tori, the
total hedgehog topological charge must be m = ±1. With increasing genus, nematic
handlebodies should host an increasing number of topological defects. Here the sign
of the topological charge depends on the choice of vector field direction.

The actual appearance of topological defects inside nematic handlebodies with
homeotropic surface anchoring strongly depends on the energy of the director field
embedding topological defects, more precisely on the elastic deformation, elastic
constants, surface anchoring and the energy cost of melting the nematic order in the
singular areas of defect cores.

For simple nematic toroids with g = 1, three different configuration of director
field are predicted numerically as shown in Fig. 7.16: (i) a single disclination loop
with winding number s = 1 (Fig. 7.16a), (ii) two disclination loops with winding
numbers s = 1/2 (Fig. 7.16b) or (iii) non-singular, solitonic “escaped” director
configuration containing no singular defects (Fig. 7.16e). The stability of each of
these three structures was analysed numerically and it was found that they depend on
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Fig. 7.16 aNumerical simulation of a single s = 1 disclination ring in a nematic toroid with g = 1.
The ring is visualised by plotting the isosurfaces of reduced order parameter S = 0.2. b The second
solution shows two s = 1/2 disclination rings, and is shown with order parameter isosurfaces of
S = 0.25 shown in blue; R = 2.5µm, r = 0.1R, a = 10. The insets show details of the director field
n(r) around the defects. c Numerical solution showing the Hopf link. d Trefoil torus knot of half-
integer disclination loops with order parameter isosurfaces of S = 0.3, R = 1µm, r = 0.2µm,
α = 6. e Escaped director field n(r) in a plane of a torus for R = 10µm, r = 0.1R, α = 10.
f Dependence of the excess Landau de Gennes free energy (compared to uniform nematic), as a
function of r at R = 10r for the two rings and escaped structures. g–j Computer simulated images
of nematic tori. g Crossed polarizers image of torus with two defect rings. h 3PEF-PM image of
the torus with two defect rings. i Crossed polarizers image of a torus with escaped director n(r).
j 3PEF-PM image of a torus with escaped director. k Optical micrograph of nematic torus between
crossed polarizers. l The same torus as in j but with a red plate added. m Bright field image of
the same torus as in k and l. n Experimental 3PEF-PM image, which is obtained by overlaying
images with different polarizations of light, set to 0◦ (red), 45◦ (green), 90◦ (blue), and 135◦ (pink)
and corresponding to h. Reprinted with PNAS permission from “Splitting, linking, knotting, and
solitonic escape of topological defects in nematic drops with handles” by M. Tasinkevych, M.G.
Campbell, I.I. Smalyukh, Proc. Natl. Acad. Sci. U. S. A. 111(46),16268 (2014)

the torus major and minor radii, R and r, respectively. The shape of the cross-section
also strongly influences the stability of each of these structures. The structures with
a single s = 1 loop or two s = 1/2 loops are stable at small to intermediate values
of the minor radius r. Both the single s = 1 and the pair of s = 1/2 disclination
loops carry topological charges m = 0. Whereas these loops are unstable in a bulk
nematic and annihilate, they are energetically stabilised by the surface confinement
and perpendicular boundary conditions in nematic toroidal drops. The ground state
with two equal s = 1/2 disclinations, shown in Fig. 7.16b exhibits repulsion between
two equally topologically charged loops.
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In addition to these three rather simple topological structures, numerical stud-
ies predict the existence of links and knots of s = 1/2 defect loops. Figure7.16c
shows a possible realisation of a Hopf link of two s = 1/2 defect loops, linked
in the nematic torus. Figure7.16d shows another topologically interesting structure,
which is a trefoil knot of a single s = 1/2 defect loop, knotted inside the nematic
toroid.Comparisons of theoretical and experimentalmicrographs of nematic toriwith
homeotropic surface anchoring are shown in Figs. 7.16g, n. The first set of panels
(g, j) is generated from numerical simulations. Panels (g) and (h) show numeri-
cally calculated optical microscopy texture with two defect rings between crossed
polarisers (g) and three photon fluorescence intensity (h). Panels (i) and (j) show
numerically calculated microscopy textures of escaped nematic structure between
crossed-polarisers (i) and three photon fluorescence intensity (j). The experimental
obtained optical micrograph are shown in Fig. 7.16k, n. Panel k is a crossed-polarised
micrograph and panel (l) is obtained with added red plate. Panel (m) is a micrograph
in unpolarised light and panel (n) shows the three photon fluorescence intensity.
The comparison of the image in panel (k) shows a close similarity to the theoreti-
cal simulation in panel (g), indicating the presence of two disclination lines, rather
than a single escaped non-singular line, which gives quite different cross-polarised
micrographs in panel (i).

Quite interesting structures were numerically predicted and experimentally
observed in µm-sized nematic handlebodies with homeotropic surface anchoring.
In contrast to g = 1 nematic toroids, the Poincare–Hopf index theorem requires
existence of defects of non-zero net charge. In numerical separation, this is realised
in the presence of multiple s = 1/2 defect loops, where the number of loops depends
on genus g. in g = 2 nematic handlebodies, three half integer disclination loops
are predicted running along the whole handlebody perimeter, whereas the others
encircle the two holes of the handlebody. The existence of multiple s = 1/2 loops
in nematic handlebodies is somehow similar to the predicted existence of knotted
and linked loops in chiral nematic microdroplets. Here, the emergence of closed
loops can be attributed to the smallness of the structures, which induce strong elastic
deformation via strong surface anchoring. This imposed stress is then released by
locally melting the liquid crystal and forming disordered liquid isotropic cores of
extended defect loops, rather than concentrating the nematic disorder in hedgehog
point defects. However the inherent problem with the smallness of these structures
is the difficulty in the precise and reliable imaging and reconstruction of the director
field in real nematic handlebodies.

7.6 Nematic Shells

The idea of producing nematic shells was first proposed by D.R. Nelson [274]
as a way to produce colloidal particles with spatially oriented preferred bonding
sites, which could be interesting for self-assembly of colloidal crystals with inter-
esting photonic properties. It is discussed in Chap.9: Photonic properties of nematic

http://dx.doi.org/10.1007/978-3-319-54916-3_9
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dispersions, that building photonic crystals out of colloidal crystals attracted enor-
mous scientific interest for possible application in controlling light. Water-based col-
loids interact via Coulomb and van der Waals interactions, which are isotropic and
result in a limited number of structurally different colloidal crystals. Directionality
of colloidal interaction can be induced by grafting surfaces of colloidal particles with
localised linkers, such as predetermined number of chemical groups, DNA strands,
or kinesin molecules. However, it is difficult with this method to control the number
and position of binding sites and the method is highly impractical. Controlled fab-
rication of colloidal particles which would act as tetravalent colloids is of particular
interest. It was predicted (Ho et al. [275]) that assembly of tetravalent colloids into
a diamond lattice structure and appropriate dielectric contrast would result in a pho-
tonic crystal with a very large photonic band gap. From a more general perspective,
colloidal particles with a predictable1-, 2-, 3-, or 4-fold valence would also allow
creation of functionalized microobjects, thus mimicking molecular characteristics of
organic chemistry.

Nelson proposed to cover a spherical colloidal particle or droplet with a thin layer
of a nematic liquid crystal. This nematic phase could be formed of very different
objects, such as orientational ordered triblock copolymers, gemini lipids, metallic or
semiconducting nanorods or conventional thermotropic nematic liquid crystals. By
covering a spherical particle with a thin orientationally ordered liquid, topological
defects must be created in such a nematic shell, when the liquid crystal is forced
to align parallel to the spherical surface. The formation of topological defects is
inevitable, as it is not possible to cover the spherical surface smoothly, without
having regions of vanishing order. The nematic shell, covering the spherical particle
therefore creates a kind of “topological shell” with defects as topological inclusions.
If such a shell with defects could be decorated with linker molecules concentrated
in the regions of defects, one would obtain nanoscale binding sites, which would
introduce a valance ability to micro-particles. The pair interaction of such valance
colloids could then result in the hybridisation of these topological bonds between
colloidal particles. If one is able to create a tetrahedral arrangements of topological
defects in a nematic shell, such a colloidal particle would exhibit a 4-fold valence,
similar to the sp3 hybridised chemical bond associated with e.g. carbon, silicon and
germanium.

The idea of these valanced colloidal particles is related to the paper by Lubensky
and Prost, who have studied the ground states of more general order parameters with
a p-fold symmetry on a sphere [276]. They pointed out that the ground state of a
2D nematic texture of a sphere consists of four s = 1/2 disclination at the vertices
of the tetrahedral. This can be explained by the Poincare and Hopf theorem, which
establishes that for nematic fields the total topological charge on a spherical surface
must be 2. As result of the emergence of four defects each with topological charge
s = 1/2, the total topological charge on a shell add up to 4 × 1/2 = 2. Nelson
analysed the constellation of topological defects in a nematic shell by analysing
the elastic free energy and found the repulsive interaction between the like-charged
topological defects, which pushes defects as far apart from one another as possi-
ble. Besides the possibility of having four topological defects of strength 1/2, other
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Fig. 7.17 a Vectorial field covering the surface of a sphere shows splayed configuration with two
+1 vortices at each pole. b Splay configuration of a headless director field covering the sphere shows
four disclinations, which are located at the vertices of a tetrahedron. Reprinted with permission
from the article “Toward a Tetravalent Chemistry of Colloids”, David R. Nelson, Nano Lett. 2, 1125
(2002). Copyright (2002) American Chemical Society

combinations of defects with different strengths are also possible. The only require-
ment is that their sum topological charge is equal to 2. So in principle it is possible
to have two topological defects with strength 1, as shown in Fig. 7.17a. This state
is the state of pure splay for a vectorial order parameter on a sphere. However, for
a headless vector on a sphere, this bipolar configuration has to be transformed for
topological reasons to the tetrahedron configuration of four defects with 1/2 strength,
shown in Fig. 7.17b.

The texture in Fig. 7.17bwas predicted to be stable when the splay elastic constant
K1 is lower than the bend elastic constant K3. In the opposite case, when K1 > K3,
the bend texture of the headless nematic director is energetically preferred in the
nematic shell, as shown in Fig. 7.18.

Topological defects in thin nematic shells were studied by Lopez-Leon et al.
[277–280]. The spherical nematic shells were fabricated by producing double emul-
sions with amicrocapillary device. Here we have two immiscible fluids such as water
and the nematic liquid crystal, and the design of the microfluidic device enables to
coat a water droplet with a thin nematic shell, immersed in a water environment. By
using this method it is possible to fabricate reasonably small nematic shells, typically
with the outer diameter in the range of 30–500µm with a shell thickness of 1µm.
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Fig. 7.18 WhenK1 > K3, the director field shows abend-like structure on a sphere. ForK1 < K3 the
lower energy configuration is the splay texture, shown in Fig. 7.17b. Polymer linkers are emerging
from the four disclinations. Reprinted with permission from the article “Toward a Tetravalent
Chemistry of Colloids”, David R. Nelson, Nano Lett. 2, 1125 (2002). Copyright (2002) American
Chemical Society

This thickness could be further lowered by increasing the volume of the inner drop
once the double emulsion is formed. This is achieved by adding salt (up to 40 %)
to the inner water droplet, which generates the osmotic pressure between the salty
core and the external water. Water starts diffusing from outside through the partially
permeable liquid crystal into the salty water core, which increases the volume of the
inner droplet and therefore decreases the thickness of the nematic shell, which has
to cover larger and larger water core. The nematic shells are imaged using optical
microscopy and changing the focal plane of the microscope to precisely locate the
position of topological defects. Examples of microscope images of nematic cells are
shown in Fig. 7.19.

Three different constellations of topological defectswere observed in thin nematic
shells with a diameter of R ≈ 50µm and thickness of h ≈ 1µm. Figure7.19b, c
shows the tetrahedron constellation of 1/2 topological defects in a thin nematic shell.
Their positions were determined by focusing the microscope to different depths,
therefore bringing into focus each of the four topological defects (Fig. 7.19b, c).
The polarisation image in Fig. 7.19c clearly show that these are 1/2 defects because
they display a single dark brush, accompanied by a bright brush. This means that
on a circular path surrounding such defect, the liquid crystal molecules are rotated
by π. The angular positions of defects were determined by measuring positions of
all defects in a large number of shells with similar inner and outer diameters. The
resulting distributions are Gaussian, as shown in Fig. 7.19e, f and the angles where
these distributions are centred clearly show that defects are located on the vertices
of a tetrahedron.

Besides this predicted tetrahedral structure, which is expected to be the ground
state for nematic order on the surface of a sphere, two other constellations were
observed, which involve higher charged defects of strength s = 1. The first structure
is a constellation of three defects and in shown in Fig. 7.19g, h. Two of these defects
have the winding number 1/2 and the third defect has a higher winding number of
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Fig. 7.19 Defects in thin nematic shells. a Schematic drawing of the shell geometry, showing
displacement of the centers due to gravitation. b, c Four s = 1/2 defects are visible between
crossed polarizers and the images are taken at different positions of the focal plane. d Presentation
of defect constellation on a shell. e Histogram of the central angle between defects θ. f Histogram
of the surface angle between defects, α. g, h Three defects are visible between crossed polarizers,
the images are taken at different positions of the imaging plane. i Constellation of three defects in
a nematic shell and j corresponding geometry. k Histogram of the surface angle α1. l Histogram
of the surface angle α2. m, n Constellation with two defects, as seen between crossed polarizers
at different imaging planes. o Schematic drawing of two defect constellation shown in m, n. p
Histogram of the angle θ for two defect constellation. Reprinted by permission from Macmillan
Publishers Ltd: T. Lopez-Leon, V. Koning, K.B.S. Devaiah, V. Vitelli and A. Fernandez-Nieves Nat.
Physics 7, 391 (2011), copyright (2011)

s = 1. These add up to the total topological charge of 2, which is consistent with the
requirement of the Poincare–Hopf theorem. These three defects form an isosceles
triangle, where the unequal angle is due to the single s = 1 defect, shown in Fig. 7.19j.
The third constellation of defects in a thin nematic shell only has two s = 1 defects,
as shown in Fig. 7.19m, n. They are located diametrically, as shown in Fig. 7.19o,
which is confirmed by the measured angular distributions, having peak at 180◦. The
spatial constellation of defects is determined only by the elasticity of the nematic
liquid crystal, if the thickness of the shell is uniform. However, in these water-liquid
crystal-water emulsions, the difference between the densities of water and liquid
crystal cause buoyancy forces, which displace the inner water droplet upwards. As a
result, the nematic shell is always thinner on the upper part and thicker on the lower
part, as illustrated in Fig. 7.19a. This buoyancy force allows for controlled tuning
of the shell-thickness inhomogeneity, which is achieved using osmosis. Figure7.20
presents the evolution of the defect constellation for different thickness of the nematic
shell and three different types of the structures.

By increasing the nematic shell inhomogeneity, a continuous change in the defect
arrangement was observed and the defects were always driven to the thinnest part of
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Fig. 7.20 Constellations of defects for different thickness inhomogeneity of a nematic shell. a–c
Constellations of four defects between crossed polarizers at a u/u◦ = 1.6, b u/u◦ = 7.8 and c
u/u◦ = 23.9. d–f Nematic shells with three defects: d u/u◦ = 1.2, e u/u◦ = 4.6 and f u/u◦ = 6.8.
g–i Constellations of two defects in a nematic shell, g u/u◦ = 7.1, h u/u◦ = 13.3 and i u/u◦ =
53.7. Reprinted by permission from Macmillan Publishers Ltd: T. Lopez-Leon, V. Koning, K.B.S.
Devaiah, V. Vitelli and A. Fernandez-Nieves, Nat. Physics 7, 391 (2011), copyright (2011)

the shell with increasing thickness inhomogeneity. Figure7.20a, c shows the change
in defect constellation for 4 s = 1/2 defects. Here the parameter umeasures the dif-
ference in normal thickness of the nematic shell. Figure7.20d, f shows the changing
constellation of three topological defects, which are nicely presented in the interme-
diate inhomogeneity in Fig. 7.20e. In this panel, there are two s = 1/2 defects on
the righthand side of the image and one s = 1 defect on the left. They are clearly
differentiated by a number of dark brushes. Figure7.20g–i present the change of
constellation of two s = 1 defects. It should be noted that in all this constellations
s = 1/2 defects are actually 1/2 disclination lines running from the outer to the inner
surface. On the other hand, the s = 1 defect is a surface boojum, residing at the
water-liquid crystal interface.
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Theoretical studies of defects in nematic shells have shown that such a nematic
coating could provide control of the valency and direction of the bonding sites using
temperature, shape, elastic anisotropy or external fields. An interesting study was
performed by Gharbi et al. [281] by incorporating small colloidal particles into the
nematic shells. These particles are treated to produce strong homeotropic anchoring
and when dispersed in a planar nematic shell, there are two force mechanisms which
control the position of such an inclusion in the shell. First, the capillarity and the
contact angle of the nematic liquid crystal on a colloidal inclusion with the diameter
larger than the thickness of the shell. Capillary forces due to interfacial tension are
much stronger than the elastic forces, produced by director distortion in the vicinity
of the cell. The second force mechanism is the elastic distortion around a colloidal
inclusion in the nematic shell.

The experiments were performed by producing nematic shell from water-LC-
water double emulsions generated by microfluidic device. The addition of polyvinyl
alcohol (PVA) ensured planar condition at the water-nematic liquid crystal inter-
face. On the other hand, silica colloidal particles of 2µm diameter were treated with
DMOAP to produce strong homeotropic anchoring. When single bead of diame-
ter 2µm was inserted into a thin nematic shell of typical thickness of 23µm, one
could observe three topologically different nematic liquid crystal textures around the
inserted microsphere, shown in Fig. 7.21.

In the first situation, shown in Fig. 7.21a, b, the colloidal inclusion induces uniform
radial distortion and themicrosphere acts as a pure+1 topological defect, surrounded
by a 2D vector field. Under crossed polarisers, one can see four extinction brushes
(Fig. 7.21a) and no accompanying topological defect. This means that the nematic
director is radial, as shown in the schematic drawing accompanying Fig. 7.21b. In
another situation, shown in Fig. 7.21c, d, the microsphere is accompanied by a topo-
logical defect of charge 1/2, whereas the sphere itself acts as a topological defect of
charge +1. The 1/2 defect is clearly visible as a dark spot in unpolarised image in
Fig. 7.21d, whereas the polarising image in Fig. 7.21c clearly supports the schematic
drawing accompanying panel (d). The third situation in shown in Fig. 7.21e, f and
the topological defect is of 1 charge, accompanying the microsphere with+1 charge.
In these cases, the microsphere and the accompanying defect are thus topologically
equivalent to a single structure with a net topological charge of +1, +1/2 and 0.
Although this seems odd at the first sight, it does not violate the law of the net
topological charge of a 2D shell, which should add up to +2. However, the con-
servation of the total topological charge does not prescribe or impose restrictions
on the way this charge is obtained. In a very thin nematic shell, which presents a
basically 2D nematic geometry, energetically stable defects have a charge of ±1/2.
A homeotropic microsphere would repel +1/2 defect, but attract 1/2 defect. Further
on, combinations with either one or two 1/2 defects are possible, which explains the
topological characteristics of observed structures.

When the thickness of the shell is varying, the effects of the thickness non-
uniformity of the shell become pronounced. In this case, the particles are usually
located in thicker part of the shell, whereas defects are forced to be located in the
thinner part of the shell, as shown in Fig. 7.22. The exact positioning of the spheres
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Fig. 7.21 Small colloidal particle with perpendicular surface anchoring of liquid crystal molecules
in a 2 ∼ 3µm thin nematic shell. Three different director configurations are observed. a Crossed
polarizers image of a bead with no visible defects. b Bright field image together with a schematic
drawing of the director around the bead. c Cross polarizers image of another bead showing a defect
where two dark brushes meet, therefore indicating a −1/2 defect. d Bright field image of the
bead in c, together with schematics of the director. e Cross polarizers image of the third possible
configuration: a bead is accompanied by a −1 defect due to the four dark brushes around the point
defect. f Bright field image of the bead shown in e together with director schematics. Reproduced
from M.A. Gharbi, D. Seč, T. Lopez-Leon, M. Nobili, M. Ravnik, S. Žumer, C. Blanc, Soft Matter
9(29), 6911 (2013) with permission of The Royal Society of Chemistry

and defects in walls balance between the elastic and capillary forces and makes the
analysis quite complicated. Beads and their associated defects appear at the thicker
hemisphere of the shell, and this is due to capillary forces. They are trapped by the
two interfaces delimiting the shell and they migrate towards the position where they
fulfill the requirements of the Young equation. The rest of the defects organise them-
selves in the lower hemisphere of the shell where the nematic layer is thinner. The
number of possible configurations in microspheres increases drastically with their
number.

A lot of effort was devoted to understanding arrangements of topological defects
in nematic shells, because this is the key advantage of shells, if they are to be used as
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Fig. 7.22 Experimentally observed free +1/2 topological defect for a single bead in a nematic
shell. The images in the top line are taken between crossed polarizers. The white arrows in left
panels indicate positions of the beads. Defect is usually located in the thinnest part of the shell. The
particle and disclinations bear an effective winding number a s = +1, b s = +1/2 and c s = 0.
The simulated structures are shown bellow the experimental images, black spheres are the particles,
red dots indicate defects, i.e. iso-surfaces of the nematic degree of order S = 0.48. Reproduced
from M.A. Gharbi, D. Seč, T. Lopez-Leon, M. Nobili, M. Ravnik, S. Žumer, C. Blanc, Soft Matter
9(29), 6911 (2013) with permission of The Royal Society of Chemistry

artificial “atoms” with their covalent bonds coinciding with the position of topologi-
cal defects on a shell. It is clear that themain problem is the inhomogeneous thickness
of the nematic shell, which is the consequence of density mismatch between the shell
and the interior core. This causes gravitational effects and buoyancy,which inevitably
results in different thicknesses of the upper and the lower part of the shell. In general,
the repulsion between the pairs of boojums competes with the minimisation of the
distance between the defects within a pair, which attract each other. If the inhomo-
geneity of the thickness is very large (Koning et al. [280]), the defects undergo a
confinement transition to the thinnest part of the shell. There, they make a kind of
de-confinement transition which maximises their mutual separation. Various exper-
imental geometries were studied in nematic shells, such as the combination of the
planar and perpendicular alignment on the inner and outer interface, behaviour at the
nematic-isotropic phase transition and the shell structure at the nematic-smectic A
transition (Liang et al. [282]). In conclusion, the inhomogeneous thickness of nematic
shells due to density mismatch and buoyancy seems to be the major obstacle, which
might prevent using the nematic shells as artificial atoms with spatially directed
bonding sites. The other important problem is the minimum size attainable with a
microfluidic technique, which is limited to several tens of µm diameters, whereas
for microoptical applications, much smaller shells would be a great advantage.

Whereas simple nematic shells are quite easily produced in a microfluidic device,
nematic shell handlebodies are much more difficult to produce in real experiments.
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So far, there are theoretical predictions (Jesenek et al. [283]) on defect formation in
toroid nematic shells. The existence of topological defects on handlebody nematic
shells is governed by topological reasons and determined by the Euler-Poincare sur-
face topological characteristic χ = 2(1g), where g is the genus of the surface, which
is equal to the number of handles of the particular surface. For spherical topology,
g = 0, whereas for toroid topology, g = 1, and the number of topological defects
equals to 0. This means that from the topological point of view, there should be no
topological defects stabilised on a thin toroid nematic shell. However, it is possible
to keep the total topological charge to zero and still have pairs of opposite topologi-
cal charges, which could be stabilised by some mechanism on the toroidal nematic
shell. Here, the geometry of the shell supporting the metastable states of oppositely
charged topological defect could dictate the number and stability of these pairs. A
similar mechanism of geometrical stabilisation of mutually compensating topolog-
ical charges was observed for Koch-star colloidal particles, discussed in Sect. 6.5.
Creation and stabilization of a multitude of charged neutral pairs of topological
defects on curved shells was studied by Mesarec et al. [284].

Numerical studies have indeed shown that the Gaussian curvature K of a surface,
which is hosting these pairs of topological defects, could indeed stabilise topological
states on toroid nematic shells, where several mutually compensating topological
defects could coexist. It turns out that topological defects with positive winding
numbers are attracted to regions where K attains its maximum value whereas low
local Gaussian curvature of the shell attracts topological defects with negative wind-
ing number (Jesenek et al. [283]). Furthermore, regions which exhibit both posi-
tive and negative Gaussian curvature could induce unbinding of oppositely charged
topological defect, therefore acting as a kind of dissociation site. Interestingly, local
Gaussian curvature plays the role of an external field, whereas the topological charge
od the defect attains the role of the electric charge. Gaussian curvature of handlebody
nematic shells could have an interesting role in Kibble–Zurek mechanism produc-
tion of topological charge. A comprehensive recent review of defect structures in
nematic liquid crystal shells of different shapes was written byMirantsev et al. [285].
Curvature of the nematic field and topological defects are discussed within the frame
of structural forces and self assembly by F. Serra [286].

http://dx.doi.org/10.1007/978-3-319-54916-3_6


Chapter 8
Topological Particle-Like Structures
in Chiral Nematics

Abstract This chapter describes some topologically interesting structures that can
be observed in chiral nematics, such as skyrmions and torons in 2D chiral nematics.
They can be considered as a kind of topological entities, forming more complex
structures.

8.1 Strange Imperfections and Self-formed Structures
in Chiral Nematic Liquid Crystals

In previous sections we have discussed dispersions of solid-like or liquid-like objects
in nematic liquid crystals. In both cases, colloidal particles and the medium are dis-
tinct from each other and separated by the interface, either because of solid structure
of colloidal particles or chemical immiscibility of one liquid in another. These parti-
cles (solid or liquid) may be of different shapes of topologies, and they induce a large
variety of topological defects due to the surface anchoring of liquid-crystal ordering
field.

In contrast to that, one can find in the literature on liquid crystals descriptions
of interesting phenomena in a form of topological objects that are self-formed in a
liquid crystal by a liquid crystal. They could be considered as a kind of “particles”
that mutually interact and form more complex structures. One of the earliest exam-
ples is the spherulitic liquid crystal, first described in two different publications in
1994. The two publication appeared nearly simultaneously, one reporting on the
“bubble domain texture” (Kawachi et al. [286]) and the other on the exactly the same
phenomenon, this time named “spherulitic liquid crystals” (Haas and Adams [287]).
In addition, a number of topological studies of chiral nematic liquid crystals were
reported by Yves Bouligand in Journal de Physique in the 1973–1984 period [211,
217–219, 221, 288] and Pirkl et al. [289]. At that time, methods of observations
of different textures in liquid crystals were limited to simple polarising microscope
observations, as there were no laser tweezers or confocal fluorescent microscopes
available yet. It has taken nearly 30 years to prove experimentally the internal
structure of these particle-like objects, spontaneously formed in chiral nematic liq-
uid crystals, which caused a revival of the experimental and theoretical topology
of liquid crystals after the year 2010. This section will review various types of
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topologically interesting particle-like structures in chiral nematic liquid crystals,
such as the spontaneous formation of skyrmions and Torons in thin layers of chiral
nematic liquid crystal with strong perpendicular anchoring at the confining surfaces.

8.2 Skyrmions in 2D Chiral Nematics

Skyrmions are inhomogeneous localised structures, which were first introduced as
a new topological concept in 1960s by the British physicist Tony Hilton Royle
Skyrme [290, 291]. Mathematically, a skyrmion is defined as a topological spa-
tial feature of a particular physical field, which is preserved (self protected) under
arbitrary continuous deformation. This mathematical concept attracted the attention
of the physics community in 1962, when Skyrme found that it could explain how
subatomic particles, such as neutrons and protons, could exist as discrete objects,
shaped in a continuous nuclear field. These particles could be considered as stable
geometric twists in an otherwise homogeneous background, resembling whirlpools
in water. The idea went through ups and downs in nuclear theory, being obscured
first by the idea of quarks and later by the string theory.

Quite unexpectedly, skyrmions were first observed as real physical objects in
quantumHall devices exhibiting unusual quantum effects in external magnetic fields,
such as ultra-precise jumps in the electronic current. It was found that these subtle
quantum effects could best be described in terms of topological features. This was
a natural habitat for skyrmions, which were first predicted and then electronically
detected in quantum Hall devices in the mid 1990s.

Physical realisation of skyrmions in condensed matter was described within a
classical model of an isotropic ferromagnet by Belavin and Polyakov in 1975 [292].
They demonstrated that skyrmion localised states belong to metastable states of the
ferromagnet and presented the analytical solutions for describing them. Skyrmions
were then observed in magnetic systems by electron microscopy as swirling mag-
netisation in magnetic materials.

There are two basic types of magnetic skyrmions, which are shown in 2D images
in Fig. 8.1. The arrows show the spin magnetisation in 2D, which forms two different
axially symmetric structures. The first is the Bloch-type skyrmion, where the mag-
netisation twists by 180◦ as we move from the homogeneous far-field towards the
centre of the skyrmion. It is therefore a helical-like object with no singularity and
smoothly embedded into the uniform far-field background.

The second type of the skyrmion is shown in Fig. 8.1b and is called Neel-type
skyrmion, with a cycloidal-like rotation of the spins from the periphery to the centre.
The Neel-type skyrmions are expected to emerge in polar magnets and were recently
observed in a magnetic semiconductor GaV4S8 [293].

Theory of skyrmions in liquid crystalswasfirst developed byBogdanov et al. [294]
and later byLeonov et al. [295].Analytical solutions for static 2Daxially symmetrical
localised states were found by minimising the free energy for the nematic liquid
crystal. These objects have higher energy than the homogeneous state, hence, they
can represent only local minima of the energy. They were found to be metastable
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Fig. 8.1 Bloch- and Néel-type 2D skyrmions. a In a Bloch-type skyrmion, the spins rotate in the
tangential planeswhenmoving from the periphery to the core. This is therefore a twisted and smooth
structure in 2D. b In a Néel-type skyrmion, the spins rotate in a radial direction from periphery
to the core. This is a cycloid-like smooth structure, embedded in a uniform far-field background.
Reprinted by permission from Macmillan Publishers Ltd: I. Kézsmárki, S. Bordács, P. Milde,
E. Neuber, L. Eng, J. White, H.M. Ronnow, C. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura,
D. Ehlers, V. Tsurkan, A. Loidl, Nat. Mater. 14(11), 1116 (2015), copyright (2015)

and could be annihilated by the influence of applied internal electric or magnetic
fields. The structure and the stability of these nematic skyrmions crucially depends
on the values of the nematic elastic constant. While these idealised 2D skyrmions
in nematic liquid crystal are interesting, in real materials, one has to consider the
3D skyrmion-like objects. It is also natural to consider that the skyrmion structures
should be stabilised by the intrinsic chirality of liquid crystals, as the skyrmion
structure implies spontaneous twist. Fukuda and Zumer predicted the existence of
several types of periodic, 2D skyrmion lattices in very thin films of a blue phase liquid
crystals [296]. These materials are highly chiral and the tendency to spontaneously
twist is expected to stabilize the 2D skyrmion lattices.

The experimental evidence of the existence of 2D skyrmion structures, also called
“baby-skyrmions” [297, 298], was first reported byAckerman et al. [299]. They have
studied laser-induced realignment of a cholesteric liquid crystal confined into a thin
layer with homeotropic surface anchoring and they observed a variety of smooth
(solitonic) and singular localised structures, which were formed after the localised
treatmentwith laser tweezers. These structureswere imaged in 3Dusing FCPM [300]
and 3PEF-PM and were correspondingly classified based on their skyrmion number
and singular defects accompanying various twist configurations.

One of the examples of smooth, solitonic, baby-skyrmion structures is shown in
Fig. 8.2. It is a localised object, smoothly embedded in the far-field, homeotropically
aligned, and unwound chiral nematic liquid crystal. It is axially symmetric, as can be
seen from the FCPMvertical cross-sections in Fig. 8.2b–d.Here, the z-axis is directed
perpendicularly to the confining surfaces. Figure8.2a shows the in-planefluorescence
cross-section with an excitation polarisation directed along the y-axis. This image
clearly shows the twist of the director by π as we move from the periphery of the
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Fig. 8.2 Baby-skyrmions in a chiral nematic liquid crystal. a Fluorescence confocal polarized
microscope image taken in the midplane of the cell. The direction of polarization is indicated
with “P”. b–d x–z vertical cross-sections of three different baby-skyrmion structures as imaged
by FCPM with polarization indicated as “P”. (e.g.) Schematic drawing of the nematic director. e
Strong surface anchoring. f, g Weak surface anchoring. The twist-disclinations, which are forming
loops, are shown in red. The director structure along these closed loops is forming a Möbius strip.
The red dots in (g) are surface boojums. Reprinted figure with permission from P.J. Ackerman,
R.P. Trivedi, B. Senyuk, J. van de Lagemaat, I.I. Smalyukh, Phys. Rev. E 90(1), 012505 (2014).
Copyright (2014) by the American Physical Society

object towards its centre. This twist is also evident from the vertical cross-sections in
Fig. 8.2b, d, which is also showing the proposed structure, a baby-skyrmion presented
in schematic drawings in Fig. 8.2e–g. This double twist cylinder (meaning it has a
twist along the x- and the y-axis) terminates on the confining surfaces, where the
director matches the vertical surface boundary conditions by small loops of singular
twist disclinations.

8.3 Torons in 2D Chiral Nematics

In 1974, two independent publications reported on the observation of strange
structures in chiral nematic liquid crystals confined to a thin layer with a strong
homeotropic surface anchoring. The structures looked like a dispersion of colloidal
particles in a uniform nematic background and were consequently named “bub-
ble domain” or “Spherulitic liquid crystals” (Kawachi et al. [286] and Haas and
Adams [287]). Both groups independently studied the behaviour of the MBBA liq-
uid crystal doped with cholesteryl chlorite or oleyl carbonate, which induced chiral
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phase of MBBA with a predetermined helical pitch p. If such a chiral nematic
mixture is introduced into a thin cell with homeotropic surface anchoring, one
observes different structures for different thickness d of the layer. If the liquid crystal
layer is much thicker than the pitch, one observes stripped domain texture, which
consists of the cholesteric fingers topologically smooth structures with no singulari-
ties. However, if the ratio of the pitch to the thickness is in a narrow range, typically
between 3 < p/d < 5, the pitch is too large or the cell thickness is too small and the
intermediate spherulitic or bubble-like texture is formed. In some cases this structure
is induced by applying an external electric field, which induces some hydrodynamic
instabilities, therefore triggering the onset of formation of bubble-like objects.

Thefirst sketch of the possible structure of these bubbleswas proposedbyKawachi
et al. [286] and was followed by different studies with different suggestions of the
internal structures of the bubbles. Pirkl et al. [289] proposed an alternative to the
Steibs model by studying the experimental phase diagram for the appearance of these
structures and proposing a topological model consisting of a double twisted toroidal
structures accompanied by two hedgehog point defects located along the axes of the
double twisted toroid structure. In the far field, this toroid, bubble-like structure is
transformed smoothly into a uniformly aligned cholesteric liquid crystal, which is
unwound by the presence of two confining walls with strong homeotropic surface
anchoring. The first sketch of the topological structure, which was subsequently
named “toron”, is shown in Fig. 11. in Pirkl et al. [289].

Whereas the study of Pirkl et al. [289] did not give a direct evidence of the internal
organisation of the bubble-like structure, the evidence was revealed by Smalyukh
et al. in 2010 [185]. They were also studying strongly frustrated chiral nematic
liquid crystals in a thin layer with strong homeotropic surface anchoring, where the
thickness was chosen with a ratio of 0.75 < d/p < 1. In such a strong confinement,
chiral nematic liquid crystal is unwoundby the stronghomeotropic surface anchoring.

Theywere using laser tweezerswithLaguerre–Gaussian beam,whichwas focused
to the unwound chiral nematic liquid crystal. These Laguerre–Gaussian vortex beams
belong to a family of beams with helical phase fronts and phase singularities. They
are characterised by the topological charge l, comprising l-intertwined helical sur-
faces of the phase fronts. The integer charge value defines the number of twists the
phase of the light makes in one wavelength and the Laguerre–Gaussian photons are
carrying an orbital angular momentum of m · h per photon. When such a beam is
focused into the bulk of an unwound chiral nematic liquid crystal and the power is
increased, the electric field of light couples with the positive dielectric anisotropy
of the liquid crystal and tends to rotate liquid crystal molecules perpendicular to the
beam direction, i.e. along the oscillating electric field. At a lower power level, the
Laguerre–Gaussian beam induces only a reversible elastic deformation, however, at a
second threshold, this distortion transforms into a permanent, particle-like structure,
as shown in Fig. 8.3.

The particle-like structures are of axial symmetry, and there are three different dis-
tinct structures, denoted by T 3-1, T 3-2 and T 3-3, as shown in Fig. 8.3. The internal
structure of these particle-like excitations can be reconstructed by using the fluo-
rescent confocal polarising microscopy (FCPM) with circularly polarised light and
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Fig. 8.3 Crossed polarizers opticalmicrographs of different torons, which are labelled, as explained
in Fig. 8.5. a The smallest toron is T3-1, and is shown in the center of this micrograph. There are
two torons of the type T3-2, which have the opposing winding. The largest structure is the T3-3
toron. The letters “CU” were written by optically inducing formation of torons. The orientation of
the polarizer P and analyser A is also shown. b–g Time sequence of optical micrographs showing
manipulation and transformation of individual torons using the infrared laser tweezers. Reprinted
by permission from Macmillan Publishers Ltd: I.I. Smalyukh, Y. Lansac, N.A. Clark, R.P. Trivedi,
Nat. Mater. 9(2), 139 (2010), copyright (2010)

compared to computer simulations using Landau-de-Gennes theory. Example of 3D
FCPM image of the structure, which is called a toron, is shown in Fig. 8.4a. This
image was taken with circularly polarised probing light, where the electric field of
the probing light is oscillating in the plane of the sample (x–y plane). Bright regions
denote the areas where the director (and the radiative dipole moment of dye mole-
cules) is also lying in the x–y plane. The structure therefore has a toroidal shape with
inner dark region indicating vertical alignment of the director (i.e. along the z axis),
which is also observed in the outside regions. This toroid-like liquid crystal structure
is therefore smoothly embedded into the uniform and unwound chiral nematic liquid
crystal. The cross-section in the equatorial plane is shown in Fig. 8.4c, clearly show-
ing vertical alignment of liquid crystal molecules inside and outside of the toroid.
The x–z vertical cross-section is shown in Fig. 8.4d and also supports toroid structure
but with two singularities along the z axis of the toroid, where the direction of the
director is obviously not well defined.

The director structure of the toron can be resolved with the help of numerical
simulations and the results are shown in Fig. 8.4b. Red points indicate the points
of escape of the director and are therefore cross-section of a red circle, positioned
in the central cross-section of the toroid in a plane perpendicular to the axis of
the toron. In contrast to red points, which belong to a non-singular defect, the two
blue dots are point hedgehog defects of hyperbolic type. The presence of these two
hedgehogs indicates that the toroid structure carries a topological charge of +2,
which is attributed to the escape circle in the central region of the toron. This charge
is compensated by the charge of the two hyperbolic hedgehogs, each carrying a
topological charge of −1.
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Fig. 8.4 Structure of torons, as elucidated by FCPM imaging and numerical simulations. a 3D rep-
resentation of T3-1 toron obtained by FCPM imaging using circular polarisation of the fluorescence
excitation beam. b Vertical cross section of the T3-1 toron obtained by numerical minimization. c
FCPM cross section through the midplane intersecting the T3-1 toron. The two red lines indicate
the positions of the vertical cross sections, shown in (d) and (e). d FCPM image of the cross-section
indicated by the green-red line in (c). e Numerically calculated FCPM intensity cross section as
shown in (c), using circularly polarized excitation beam and the director field shown in (b). The
ratio of the cell thickness and the helical pitch is d/p = 1 in both the experiments and numerical
simulations. Reprinted by permission from Macmillan Publishers Ltd: I.I. Smalyukh, Y. Lansac,
N.A. Clark, R.P. Trivedi, Nat. Mater. 9(2), 139 (2010), copyright (2010)

The general structure of a toron is shown in Fig. 8.5. There are three possible
toron structures denoted with T 3-1, T 3-2 and T 3-3. In all cases, the common central
structure is shown in Fig. 8.5a. It is a double-twist cylinder looped on itself around
the z-axis. In the mid plane of this toroid, the liquid crystal structure is skyrmion
like, which can also be seen in the numerically generated director in Fig. 8.4b. When
moving from left to right, the director rotates from the originally vertical direction
through the horizontal direction, back to vertical direction in the centre of the toron.
This is a 180◦ twist, which repeats on the other side of the toron, thus resulting in a
total full 2π angle twist from one side of the toron to the other. The toron therefore
contains a twist-escaped disclination ring, which is shown by the red line in Fig. 8.5a.
This winding number +1 defect ring is equivalent to the +2 point defect, which
was also discussed when analysing “bubblegum” topological defects accompanying
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Fig. 8.5 Different types of torons can be generated by Laguerre–Gaussian beams. a Toron with
escaped and non-singular disclination ring, similar to the bubble-gum colloidal structure with a
vortex-like defect in Sect. 2.7, carrying the topological charge +2. Red line shows non-singular
ring of strength +1. b Hyperbolic −1 point defect can open into a −1/2 disclination ring, shown
in (c), therefore preserving the topological charge. d Toron of the type T3-1 with a constellation of
two −1 hyperbolic point defects, neutralizing the +2 charge of the escape core ring of the toron.
e Toron of the type T3-2 containing one hyperbolic point defect and a hyperbolic ring. f Toron
of the type T3-3 with two s = −1/2 defect rings. g–j Distributions of light intensity for different
Laguerre–Gaussian beams, carrying the topological charge marked with red numbers. The square
cross-sections are 4 µm wide, different cross sections are indicated with red letters. Reprinted by
permission fromMacmillan Publishers Ltd: I.I. Smalyukh, Y. Lansac, N.A. Clark, R.P. Trivedi, Nat.
Mater. 9(2), 139 (2010), copyright (2010)

two microspheres with homeotropic surface anchoring. This double-twist cylinder
therefore carries a topological charge of +2, which has to be somehow compensated
by the opposite topological charges. This additional topological charges can appear
in two different forms: either as a hyperbolic point defect carrying a charge of −1,
shown in Fig. 8.5b or as small −1/2 ring, shown in Fig. 8.5c. These two charges
appear in three different combinations with a double twist cylinder, as illustrated in
Fig. 8.5d–f.

The toron T3-1 has two hyperbolic−1 point defects shown in Fig. 8.5d. The T3-3
toron is also up–down symmetric and has two −1/2 disclination rings shown by the
blue lines in Fig. 8.5(f). The third type of toron, T3-2, is up–down asymmetric as it
has a combination of a hyperbolic hedgehog and −1/2 disclination ring.

http://dx.doi.org/10.1007/978-3-319-54916-3_2


Chapter 9
Photonic Properties of Nematic
Microdroplets

Abstract This chapter is an excursion from the nematic colloidal dispersions to
the nematic emulsions, and we consider the structure and optical properties of
micrometer-diameter nematic micro-droplets. The concept of liquid crystal photon-
ics based on nematic dispersions is presented, as well as the structure and operation
of tunable optical micro-cavities, omnidirectional liquid crystal micro-lasers and
smectic liquid micro-fibers.

9.1 Photonics from Liquid Crystals

We have seen previously in Chap.4 that the term “photonics” was invented by
Yablonovitch and Gmitter [189] who published a theoretical paper entitled “Pho-
tonic band structure: The phase-centred-cubic case” in Physical Review Letters in
1989. By using the term “band gap” they establish clear physical correspondence
between the well-known band-structure of electron levels in crystals and the band
structure of dispersion relation for light, propagating in periodic dielectric structures.
This is because the underlying differential equations are quite similar, and because
the solutions of these equations must be periodic in space. Photonic properties of
photonic crystals were discussed in Sect. 4.1 of this book.

Consequently, in case of the analysis of light propagation in periodic structures,
the concept in the Brilliouin zone has to be introduced in the reciprocal, k-space. This
is because of the spatial periodicity of the dielectric function of the material, which
plays a similar role as the periodic crystal potential for the motion of electrons. As
a direct consequence of the structural periodicity of the material, the corresponding
dispersion relation, ω(k), which describes the relation between the frequency ω and
the wave vector k of light modes in the material, must exhibit a band-like structure.
The band structure of dispersion relation means there are some forbidden frequency
gaps in this relation and the light within a certain frequency interval is not allowed
to propagate inside the periodic matter and is therefore Bragg-reflected from the
surface of that material. The concept of photonic bands in periodic and structured
media is nowadays the pillar of emerging micro-photonic integrated circuits and
architecture [301–305].
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The concept of the photonic band gap has also been verywell known in liquid crys-
tals already since the discovery of cholesteric liquid crystals. When the cholesteric
liquid crystal layer is illuminated by white light, it reflects an arrow band of light
frequencies, and the layer appears vividly coloured. Even more interesting are the
polarisation properties of the reflected light which turns out to be circularly polarised,
and the handedness of this polarisation is the same as the handedness of the spher-
ical cholesteric liquid crystal structure. The cholesteric liquid crystal is therefore
an example of a spontaneously formed 1D photonic band gap material which acts
as a perfect narrow band chiral mirror. There are other examples of spontaneously
formed photonic structures in liquid crystals, and a notable example is the blue phase
(BP) of liquid crystals. There are three different BP phases, all of them are chiral.
They are all periodic in 3D, and they all imply a spontaneous appearance of a 3D
lattice of topological defects. These topological defects appear emerge as structural
imperfections which fill the space between the geometrically regular building blocks
of the blue phases which are twisted cylinders. Because of the orientational period-
icity of liquid crystal molecules forming the blue phases, they present 3D photonic
structures which appear coloured when observed in white light.

A spatially periodic liquid-crystal phase that possesses a photonic band gap is an
essential ingredient for lasers based on liquid crystals [306–329]. In a liquid-crystal
laser, the spatially modulated structure provides an optical resonator, where the res-
onances are due to the spatial periodicity of the structure and corresponding Bragg
reflections of light waves. In addition to having an optical resonator, which provides
multiple passes of light through the resonator, an optical gain material has to be
added to the resonator to amplify the light. In such a complex structure, there are two
important physical mechanisms taking place when light with a given frequency is
travelling along the direction of the spatial modulation. If the frequency of the light is
within the forbidden frequency gap of the structure, the light will be Bragg-reflected
back and forth within the resonator. However, if dye molecules are added and uni-
formly distributed within this spatially periodic structure, the light can be amplified
by the process of stimulated emission. In order for this process to take place, the dye
molecules must first be excited into higher electron energy levels, which involves
illuminating the resonator using short light pulses. When these molecules emit flu-
orescent photons, they are Bragg-reflected by the surrounding periodic lattice and
with a certain probability they create another identical photon through the process of
stimulated emission from another excited dye molecule. The process of light ampli-
fication by stimulated emission in such distributed-feedback photonic structures will
eventually result in lasing. This will take place when the light amplification exceeds
the optical losses in the photonic structure, which plays the role of the distributed-
feedback optical resonator. There are, therefore, two necessary components to form
liquid-crystal lasers: the periodic structure, forming the optical resonator, and the
dye molecules, playing the role of the optical amplification medium. Such a laser
is usually triggered by an external pulsed-laser source, and the liquid-crystal laser
emits the laser light along the direction of the periodic modulation of the refractive
index.
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Fig. 9.1 Position-sensitive wavelength of the emitted laser light in a cholesteric liquid-crystal dye
laser covering the full visible range. Two different cholesteric liquid crystals with two different
dyes were injected into the glass cell from opposite sides. In this way, the pitch gradient was
spontaneously achieved across the cell via the mixing of both liquid crystals. By pumping the dye
laser at different positions, different wavelengths of the output light were selected. Image courtesy
of Hideo Takezoe

Figure9.1 shows an example of lasing in a cholesteric cell with a cholesteric
liquid crystal and different fluorescent dyes. This cell is locally illuminated with
short-wavelength excitation laser pulses (not visible in the images) and a cholesteric
structure generates a strong laser beam, which propagates along the direction of
the helical axis. The colour of the laser light is defined by the helical period of the
structure and the corresponding position of the photonic band gap in the spectrum.
Because in Fig. 9.1 the pitch depends on the position inside the cell, different laser
colours can be generated by exciting different spots on the cell. In all cases, liquid-
crystal lasers are dye lasers, and have all the advantages and disadvantages associated
with such lasers.

Lasers based on liquid crystals have been well known for a long time [151, 306];
their basic advantage is their spontaneous formation of periodic structures. The first
dye-doped cholesteric liquid-crystal lasers were realized independently by Kopp et
al. [42, 307] and later by Taheri et al. [308]. Later on, the lasing was realized in a
series of liquid-crystal structures and phases, such as the chiral ferroelectric smec-
tic phase [319], liquid-crystal polymers [310, 318, 323, 325, 326], chiral nematic
elastomers [309], cholesteric glasses [324, 328], an intermediate phase between the
chiral nematic phase and the smectic A phase [316], and blue phases I and II [311,
329]. The liquid-crystal dye lasers described in these studies exhibit a very small
thickness of the order of ten micrometres, but have large lateral dimensions, as they
are fabricated in centimetre-sized glass cells filled with liquid crystals. The actual
active area of such a laser is in fact relatively small, as the lasing takes place only
from the region of the liquid crystal, which is illuminated with an external pumping
laser. This area is small: of the order of tens of micrometres. One obvious question
is how to reduce the dimensions of such lasers to micrometre-sized objects?

A natural way of producing micrometre-sized lasers from liquid crystals is to
disperse the liquid crystal in another liquid in which it is immiscible [10, 330]. Then,
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Fig. 9.2 Millions of microdroplets of a nematic liquid crystal in a thin layer of PDMS, as seen
under crossed polarizers. Image courtesy of M. Humar

because of the chemical incompatibility, the liquid crystal will spontaneously form
micrometre-sized droplets with a perfect spherical shape, as shown in Fig. 9.2. It
was recently demonstrated that such small droplets of a nematic liquid crystal, or a
cholesteric liquid crystal, dispersed in an immiscible fluid could be used as optical
microcavities that are tuneable with an electric field [241] and microlasers [331]. If
the nematic liquid crystal is replaced by a chiral nematic liquid crystal with a helical
period in the range of optical frequencies, we can obtain an unusually structured
droplet that acts as a three-dimensional Bragg-onion microresonator. In this case,
the liquid-crystal molecules at the interface are oriented parallel to the interface,
and the helical structure is formed all the way to the centre of the droplet, where a
topological defect is situated.

These appealing properties of immiscible liquids and soft matter have triggered
the idea of soft matter photonics [332–336], where basic photonic elements such
as photonic crystals, wave guides, optical microcavities, and microlasers should
be assembled entirely of soft matter microdroplets. This Chapter is devoted to the
description of these basic elements; they are all self-grown from dispersion of various
liquid crystals in various liquids and prove to be fascinating elements for micro-
photonics.
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9.2 Whispering Gallery Mode Resonances in Nematic
Microdroplets

Probably the first liquid matter optical microelement was the liquid optical microres-
onator, studied byAshkin andDziedzic in 1977 [337]. Considering a simple spherical
microdroplet of liquid being levitated in air, onefinds that light could be trapped inside
such a microsphere by total internal reflection. Because the index of reflection of the
liquid droplet is much higher than the refractive index of air, the light can circulate
inside the microsphere with a series of consecutive total internal reflections at the
liquid-air interface. If the circulating light reaches the point of origin with the same
phase after one circulation, the resonance condition for this light mode is fulfilled.
This kind of optical resonances are called Whispering Gallery Modes (WGM) or
morphology-dependent resonances. Although the sphere is a geometrically perfect
object sustaining optical resonances, these resonances could be supported in bodies
with other shapes. For example, if one considers a transparent cube made of high-
refractive index material, it can be immediately recognised that WGM resonances
are possible in this case as well, but now with only four consecutive total inter-
nal reflections at each surface of the cube. Similarly, morphology-dependant optical
resonances could be found in other objects, including the topologically interesting
tori.

In optical resonators, optical modes are confined to very small volumes [338], and
as a consequence, local electric fields could be very high. If the material is loss-less,
and has a high refractive index, the quality factor of such a resonator could be very
high, and Q-factors of the order of 1010 have been reported. Optical microresonators
are extremely interesting for application as laser sources [151, 339, 340], and all-
optical switches [338]. Their tunability is one of the most desirable properties, and
it was reported in literature that optical resonances could be tuned by size, shape,
temperature, or external field [338, 341–343]. The largest tunability can be obtained
by the mechanical deformation of the resonator, but this method is slow, inaccurate,
and not practical for real applications. Solid-state optical microresonators can be
tuned electrically, however, the range of tunability is usually quite small [342, 343].
A different method of tuning is controlled heating and temperature-induced changes
of the refractive indices and dimensions [344], but this is energetically very costly.

Liquid optical microresonators are appealing because of their perfect spherical
shape, dictated by the surface tension. Whereas optical resonators based on isotropic
liquids are difficult to tune, it was demonstrated in 2009 by Humar et al. [241] that
small droplets of a nematic liquid crystal in an external fluid or polymer matrix is a
low-loss microresonator, which can be tuned efficiently by an external electric field.
Nematic microdroplets are prepared by mixing a small amount (several percents by
weight) of a fluorescently-labelled nematic liquid crystal, such as E12 or 5CB, in
another fluid. This could be water, glycerine, fluorinated oil, polydimethylsiloxane
(PDMS), or another polymer. Themethods of preparation of this kindof liquid-crystal
dispersions are very well known from the previous studies of polymer-dispersed
liquid crystals (PDLCs). In contrast to submicron-sized liquid-crystal droplets used
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Fig. 9.3 a When the nematic LC molecules are aligned perpendicularly at the interface to the
external fluid, the droplet exhibits a “radial” nematic structure with the radial point defect in the
centre. The defect carries the topological charge of +1 and has the winding number +1. b For
planar surface anchoring of nematic liquid crystal molecules, the droplet is “bipolar” and there are
two surface hedgehog defects at each pole. Each of them carries 1/2 fractional topological charge
and has the winding number of +1/2

in PDLC materials, droplets with diameters of tens of micrometers are used for
optical microresonators. The reason for such large droplets is in the curvature of the
surface and the associated leaking of light, circulating in such an optical resonator.
Smaller droplets with larger surface curvature emit more light from the internal
optical modes, and their Q-factors are correspondingly low.

An important aspect is the surface alignment of the liquid crystal, forming the
droplet. Two characteristic optical resonators made of a nematic liquid crystal are
possible, as shown in the schematic drawing in Fig. 9.3. They are different in the type
of surface alignment of nematic liquid crystal molecules and the resulting topological
defects.

Let us first discuss the optical properties of a radial nematic microdroplet, embed-
ded in an external medium, which has a refractive index lower than each of the
refractive indices of the nematic. An example of such a droplet in polymer is shown
in unpolarised light and between crossed polarisers in Fig. 9.4a and b, respectively.

When viewed between crossed polarisers, one can see from Fig.9.4b a uniaxial
dark cross, which clearly indicates radial organisation of the director field inside the
droplet. Sometimes this uniaxial cross is slightly curved, which indicates that the
interior of the droplet is not purely radial but is bent and twisted. This happens when
the splay elastic constant of the liquid crystal is large, and the energy is minimised
by spontaneously bending and twisting the director field, thereby transforming some
splay energy into the energetically more favourable bend-twist energy. There is a
topological defect in the centre of the droplet, which, interestingly, appears to be
strongly fluctuating when the droplet is observed under the microscope.

Optical resonance properties of nematic microdroplets are most easily revealed
by labelling the droplet with a fluorescent dye. This is done by dispersing a small
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Fig. 9.4 Light in the liquid-crystal microdroplets. a Microdroplet of nematic liquid crystal E12
in PDMS. b The same droplet under crossed polarisers. c Structure of the director field inside the
microdroplet with perpendicular surface anchoring. The lines representing the director field merge
in the centre, where a radial hedgehog defect is located. d Light intensity under illumination by
a strongly focused beam of the Ar+ laser tweezers, which is illuminating the left side rim of the
droplet indicated by the black cross. Note the strong intensity on the other side, indicating the
circulation of the light inside the droplet. e Schematic view of WGMs in a liquid-crystal droplet
with the electric field oscillating in the radial direction.Green beam is the excitation light, red beam
indicates the detected light
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amount of dye into the nematic liquid crystal prior tomaking a dispersion of droplets.
The dye molecules are usually rod-like or platelet-like, and they usually tend to order
with respect to the surrounding liquid crystal molecules. Rod-like fluorescent dyes
tend to line their long axis parallel to the nematic director, this is the case for the Nile
red and BTBP fluorescent dyes.

The incorporation of a small number of fluorescentmolecules into the nematic host
provides the generation of light homogeneously and throughout the whole volume of
the nematic liquid crystal. This is done by using a laser lightwith the proper excitation
wave length, which causes excitation of molecular levels and a subsequent emission
of fluorescent light. If the dye is illuminated with a very short light pulse (such
as a nanosecond laser source), the typical fluorescent decay time is in the order of
nanoseconds to microseconds.

Having the “internal” light source in the formof fluorescentmolecules, fluorescent
photons could occupy available lightmodes in the nematic liquid crystal droplet. This
means that WGM resonances are occupied by the emitted fluorescent photons, and
light starts circulating inside the nematic microcavity, according to the resonant
conditions. Because of the inherent leakiness of the WGM resonances and because
of additional light leakage, induced by fluorescent molecules, some light from these
resonances will leave the nematic resonator. Hence, it should be observed under an
optical microscope when the fluorescence in the nematic droplet is excited. This is
indeed observed in the experiment where the nematic droplet is locally illuminated
by the focus light from the Ar+ laser tweezers, as illustrated in Fig. 9.4d. When the
left side of the droplet is illuminated locally, one observes a rather bright rim at
the equator of the droplet and the strong source of light on the opposite pole of the
droplet. This can easily be explained by light circulation in WGM resonances and
the corresponding leakage of light, which is the strongest on the opposite side of
the illuminated spot. The observed fluorescent ring and strong fluorescent emission
from the ring clearly demonstrate this light is due to the WGM resonances.

The analysis of the polarisation properties of the emitted light shows that the
electric field is directed radially. The WGM resonances in the radial nematic droplet
are therefore transverse magnetic mode resonances (TM), which is consistent with
the internal structure of the droplet. One should recall that the nematic liquid crystal
is highly birefringent; the extraordinary index of refraction is sensed by light which
is polarised along the long molecular axis, as shown in Fig. 9.5. The ordinary index
of refraction is sensed by light which is travelling along the long molecular axis or
is polarised perpendicularly to the long molecular axis. Usually, the extraordinary
refractive index is larger than the ordinary one, which means that the refractive index
contrast is the largest for the TM WGMs. These WGMs have their electric field
oscillating radially and are therefore sensing a higher dielectric constant. The Q-
factor for TM modes is therefore higher than for the transverse electric modes (TE),
and these resonances are stronger and sharper.

In principle, one should be able to observe two sets of resonances in a radial
nematic microdroplet, corresponding to TE and TM resonant modes. However, this
depends on the diameter of the droplet and the associated leakage of WGM reso-
nances, which is stronger for smaller droplets with a strongly curved surface.
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Fig. 9.5 Schematic view of the electric field oscillations in a transverse electric (TE) and b TM
WGMs. The prolate objects represent the liquid-crystal molecules, pointing with their exis in the
radial direction. c The reference frame with the representation of the uniaxial director tensor of the
nematic liquid crystal with eigenvalues ε‖ and ε⊥

Fig. 9.6 Spectrum of light circulating in a liquid-crystal droplet. aA single set ofWGM resonances
is observed in a 10.1µm droplet of E12 in PDMS, corresponding to the lowest radial modes (n = 1)
with TM polarisation. b In a larger radial birefringent droplet (12.6µm) second radial modes appear
with n = 2. The inset shows details of a WGM spectral line in a 53µm-diameter E12 droplet. The
linewidth is approximately 0.055nm, and the liquid crystal cavityQ-factor is of the order of∼12000.
This spectrum was measured using a high-resolution micro-Raman spectrophotometer

The spectrum of light, emitted from a 10µm-diameter droplet of the nematic
liquid crystal E12 in PDMS is presented in Fig. 9.6a. There is a broad fluorescent
background and a series of very sharp intensity peaks which correspond to WGM
resonances. For this rather small size of the droplet, only one polarisation of WGM
resonances is supported by the droplet resonator, and this set of modes corresponds
to the fundamental WGM TMmodes with n = 1. Here, n is the radial number of the
mode, which determines the number of maxima in the radial intensity distribution
inside the sphere. For ordinary liquids, one usually observes both sets of modes
(TE and TM) due to the liquids’ optical isotropic properties. However, nematic
liquid crystals are highly selective in this respect, and only the modes sensing the
extraordinary index of refraction are stable in smaller droplets. In somewhat larger
droplets, such as the 12.6µm droplet of E12, shown in Fig. 9.6b an additional set
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of WGM resonances is observed. It turns out that this additional set corresponds to
higher radial TMmodes with n = 2. We expect that TE modes would appear in even
larger droplets as well.

The mode numbers in Fig. 9.6a, b were determined by fitting the experimentally
obtained spectra to the numerically calculated resonant frequencies of the radial
anisotropic dielectric microspheres. As the mode numbers are very sensitive to the
material parameters, the angular mode number l could be determined with the pre-
cision of ±1.

The sharpness of the WGM resonant peaks is directly related to the Q-factor of
the microresonator; high quality resonators support narrower resonant lines, and by
measuring the widths of the resonances, one is able to determine the Q-factor of
the liquid-crystal cavities. An example of the high-resolution spectra of WGM res-
onances in a 53µm-diameter droplet of E12 is shown in the inset to Fig. 9.6b. The
linewidth of the resonance is very low, 0.055nm, and the Q-factor of the nematic
liquid crystal cavity is of the order of 12000. This is quite a surprising number
considering that liquid crystals are very well known for their high light scattering
cross-sections. Light scattering in nematic liquid crystals occurs due to the orien-
tational fluctuations of the NLC molecules. Because of high birefringence (typical
value 0.1) and the softness of the liquid-crystal orientational fluctuations, light scat-
tering is very strong from the thermally induced collective fluctuations of the NLC
molecules. The scattering is so strong that in a bulk nematic liquid crystals it can be
easily observed under an optical microscope.

Rather large Q-factors of the nematic microcavities indicate low scattering losses
due to nematic fluctuations. This can in fact be understood by considering the dis-
tribution of the electric field of the WGM resonances, which is concentrated at the
interface between the nematic liquid crystal and the surrounding fluid. Due to strong
orientational anchoring at this interface, the amplitude of the orientational fluctua-
tions of NLC molecules seems to be quite low at a position of the maximum of the
WGM field. This is in fact confirmed when the droplet is observed under the micro-
scope: one can easily observe strong fluctuations of the NLC in the centre of the
droplet, including strong positional fluctuation off the defect itself. However, there
are no observable thermal fluctuations off the center of the droplet, which means
that either the amplitude of the fluctuations is smaller, or the frequencies of these
fluctuations are much higher. Higher frequencies of relaxation modes in nematic
liquid crystals also lead to a lower amplitude of the mode and lower scattering cross-
section [1].

As the nematic liquid crystals are well known for their large optical response to an
external electric field, one expects that the frequencies of WGM resonances should
be sensitive to the applied external field [241]. The effect of the field is very easily
analysed by observing the droplet under the microscope with crossed polarisers,
as shown in Fig. 9.7a and b. In zero electric field, one can observe a twisted dark
cross on the texture of the droplet. However, this twisted cross straightens into a
rather broad dark cross when an external field of only 2.6Vµm−1 is applied. The
comparison of the two images in Fig. 9.7a and b clearly shows that a rather small
electric field has a strong influence on the internal structure of a NLC droplet. In
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Fig. 9.7 Liquid crystal microresonator in an external electric field. a Crossed-polariser micrograph
of a 9.3µm droplet of E12 in PDMS at 1.9VRMSµm−1. b The same droplet at 2.6VRMSµm−1. c,
d Schematic drawing of the alignment of NLC molecules at different levels of the external electric
field

this case, the nematic liquid crystal E12 with positive dielectric anisotropy was used,
making it very straightforward to understand what happens to the internal structure
of the originally radial nematic droplet when the external electric field is applied.
This is shown in Fig. 9.7c and d.

In zero field, the droplet of E12 in PDMS has a radial structure with a point
topological defect in the centre. Even a small electric field of 1.9VRMSµm−1 induces
distortion of the nematic director inside the droplet. As the molecules tend to align
along the electric field, the point defect becomes surrounded with a disc-region of a
highly splayed nematic liquid crystal. At even larger fields, this point defect opens
into a small ring, located in the equatorial plane of the droplet. As the electric field
increases, the ring opens and allows the uniform nematic to penetrate through the
ring. Finally, at very large fields, most of the interior of the droplet is oriented along
the electric field and the ring is completely opened and pushed to the equator of the
droplet. This defect transformation under the application of an external field is rather
well known and expected, and it preserves the topological charge of the original point
defect.

The electric-field-induced transformation of the nematic liquid-crystal micro-
droplet has an important impact on the resonant frequencies of the WGMs. By
following the circular path of the WGM light, one can see from Fig. 9.7d that the
electric field of light senses an inhomogeneous refractive index when circulating. By
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Fig. 9.8 Electric-field-induced shift of TM WGM resonances. a Wavelength shift in a 16-µm-
diameter microresonator, filled with E12 nematic liquid-crystal and SPP-106 fluorescent dye. The
colour scale indicates the intensity of detected light. Note the enhancement of the resonances at
discretewavelengths.bRange of tunability of E12microresonators as a function of droplet diameter,
determined at 2.6VRMSµm−1

considering the electric field of the TMmode which is pointing radially inwards one
can see that in the vicinity of the defect ring, the refractive index is lower, which
causes the shortening of the overall optical path for this mode. This reduction of the
optical path also reduced the resonant wavelength for resonant WGMs, which indi-
cates that WGM resonances should shift into the blue region with increasing electric
field. This expected decrease of the wavelength of the TM WGM resonances in a
radial nematic liquid-crystal microresonator is indeed observed in the experiments
and is shown in Fig. 9.8.

In a case of a very small field there is also very little influence of the field; between
0.5 V/µm. The wave length shift increases nearly linearly with increasing electric
field. This blue-shift has no hysteresis and is completely reversible. The magnitude
of the electric-field-induced WGM shift depends on the diameter of the droplet, but
is as high as 20nm at 2.6 V/µm in 17µm diameter radial microdroplets of E12, as
illustrated in Fig. 9.8b. This value is one to two others of magnitude larger that any
mechanism of tuning in solids. The experimentally measured blue-shift in Fig. 9.8a
has not reached the saturation regime yet. One could estimate the maximum possible
WGMshift for a droplet by calculating the decrease of the optical path length between
the initial radial configuration and an asymptotic configuration at very high fields,
where the entire interior of the droplet is uniformly aligned along the field. This can be
achieved by integrating the effective index of refraction around the circumference of
the droplet, where simultaneously the rotation on the local axis is taken into account.
For the nematic liquid crystal E12 the maximum range of tunability is as high as
6.7% or 41nm at 600nm.

We should note as a final comment of this section that the configuration of the
nematic liquid crystal inside the droplet could not only be changed by applying
external field (such as electric or nematic), but is also very sensitive to the chemi-
cal changes at the interface of the droplet with the medium outside the droplet. This
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could most easily be realised by placing nematic droplets in water with added surfac-
tant molecules, which prefer to bind at the liquid crystal-water interface. Depending
on the concentration of the specific surfactant one could therefore reach different
configurations of the nematic droplet: radial or bipolar. This change in the internal
configuration of the droplet has a similar effect on the spectrum ofWGM resonances
as the external electric field described in this Section. This gives us an exciting
opportunity to use a structural transition in nematic microdroplets as a sensing mech-
anism, where the read-out is simply the WGM optical spectra emitted from such a
droplet. One could therefore create freely floating or even actively driven microsen-
sorswhich are excited by light, and also the read-out is taken by collecting the emitted
light from the microdroplet. An example of such a mechanism will be described in
Sect. 9.3.

9.3 Nematic Microdroplets as WGM Microlasers

In a WGMmicroresonator, the modes could be considered as light circulating inside
the microdroplet by consecutive total internal refractions at the interface. If the
light amplification medium is added inside such a resonator, one might obtain a
WGM microlaser, where the light is amplified by stimulated emission during the
circulation of resonant modes. Whereas this kind of experiments have been demon-
strated for isotropic liquid droplets, the first experiments on WGM lasing in nematic
microdroplets were performed in 2011 by Humar and Musevic [242]. Droplet of
a NLC 5CB which were doped with 0.1 wt% fluorescent dye 7-dyethilamino-3,4-
benzophenoxazin-2-1 (Nile red) which serves as the light amplification medium
and is uniformly distributed inside the nematic microdroplet. These microdroplets
were produced bymechanical mixing of the dye-doped 5CB and thewater solution of
SodiumDodecyl Sulphate (SDS). Depending on the molar concentration of the SDS,
the 5CB nematic microcroplets obtain different internal configuration. At high con-
centration of SDS, exceeding 2.0mM, the 5CB droplets are of a radial configuration.
For zero molar concentration of SDS, the anchoring of 5CB on water is weak and
planar, and one obtains practically uniformly aligned nematic liquid crystal inside
the microdroplets of the diameter of tens of µm.

In a typical lasing experiment one is using a pulsed source of a short wavelength
light, which excites the electronic levels of the fluorescent gain medium (pumping
light). In the case of Nile red fluorescent molecules, a frequency-doubled Nd-YAG
nanosecond pulsed laser emitting 532nm pulsed light is used. The laser is slightly
focused through the optical microscope onto the sample, forming several tens of
µm diameter illuminated region of fluorescently labelled liquid crystal. At a low
level of the pumping light the sample emits usual fluorescence, which under the
microscope appears as a uniformly redish-glowing light, emitted after the electrons
of the molecules fall back to the ground state. In this regime, there is not enough
photons produced by stimulated light emission and the emitted spectrum is broadband
and incoherent. However, if one increases the level of the pumping light, the threshold
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Fig. 9.9 Fluorescence and lasing spectra of radial and bipolar nematic microdroplets. a At the
SDS concentration of 4mM the 5CB droplet is in the radial configuration with a point defect in
the centre. The lines inside the droplet indicate molecular orientation. The fluorescence shows
characteristic spectrum of WGMs. b In pure water with no SDS added, the 5CB droplet is in the
bipolar configuration. Nomodes are visible in the fluorescence spectra of the microdroplet. cAbove
the lasing threshold of 0.25mJ/cm2, lasing of the WGMs is clearly observable in the radial droplet
configuration. dAbove the lasing threshold of 0.7mJ/cm2 several groups of lasingmodes are clearly
recognisable in the spectrum of 5CB microdroplet with bipolar director configuration

of lasing is eventually reached. In this regime, each emitted photon produces another
photon by stimulated emission, and this process is amplified through the periodic
light circulation inside the sphericalmicroresonator. In contrast to the incoherent light
emitted by fluorescence emission below the lasing threshold, this light is coherent
and strongly monochromatic. Under an optical microscope this is observed by the
characteristic laser-speckles, which could only be formed by the interference of
coherent light, emitted from the sample.

Whereas the transition from fluorescence to lasing is observed qualitatively by
the naked eye through the optical microscope, this process is also analysed by taking
the spectra of light emitted from the nematic liquid-crystal micro-droplet at different
levels of the pumping light. This is shown in Fig. 9.9 for two configurations of the
13.7µm 5CB nematic microdroplet.

At high concentration of SDS solution, the configuration of 5CB is radial, and at
lowpumping levels, one can see the characteristic spectra ofWGMresonances shown
in Fig. 9.9a. One can see two different sets of resonances, corresponding to different
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Fig. 9.10 The intensity of the laser line as the pump laser intensity is increased, for a radial 5CB
nematic microdroplet and, b bipolar 5CB nematic microdroplet, both 13.7µm in diameter. The
lines are drawn as a guide for the eye. In both cases a clear threshold for lasing is observed

radial numbers, and these resonant peaks are of practically uniform height. However,
the strength of these peaks becomes quite different when the lasing threshold is
exceeded, as shown in Fig. 9.9c. One can see from this Figure that only two of the
WGM resonant lines are strongly enhanced, whereas the rest of the resonances are
practically gone. Furthermore, one could see in comparison to Fig. 9.9a that there is
very low and broad fluorescent background, as seen in Fig. 9.9a below the threshold.

Above the lasing threshold the fluorescent background is strongly depressed and
some of the lines are strongly enhanced. The mechanism of light amplification there-
fore “picks” and amplifies some of the resonant lines which become very strong.
Whereas in a radial nematic liquid-crystal microresonator, the WGM resonances
and WGM lasing lines are nearly equally spaced single peaks, this situation is quite
different for the nearly uniformly aligned liquid-crystal droplet in pure water, shown
in Fig. 9.9b, d. Below the lasing threshold there is practically no detected WGM
resonances, but above the threshold there is a series of sharp lasing lines, forming a
characteristic band-like structure. Figure9.10 shows the measured light intensity of
the spectral lines (including fluorescent background) with increasing pumping inten-
sity. In both cases, one can observe a characteristic “knee” in the output intensity,
which is typical for the threshold of lasing. This threshold of lasing is rather low for
radial nematic droplets (0.25 mJ/cm2) and is approximately three times higher than
the lasing threshold for the bipolar configuration (0.7 mJ/cm2)

WGM microlasers made of liquid crystals are therefore sensitive to the chemical
conditions at their surfaces, and this could be used as a way to detect the presence
of targeted molecules, floating in the surrounding liquid and binding to the micro-
lasers’ surfaces [345, 346]. As this process of binding could influence the anchoring
condition of LC molecules and therefore the interior structure of the droplet as well,
this kind of microlasers could be used as sensors of targeted molecular species.
WGMmicrolasers are therefore wireless, optically addressed, and optically read-out
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Fig. 9.11 Changes of the
structure of a small droplet
of the nematic liquid crystal
at increasing concentrations
of SDS. a The lines represent
the orientation of the long
axes of the LC molecules.
The dots are point defects,
where the orientation is not
defined. In pure water, the
LC molecules align parallel
to the water-LC interface and
the structure is bipolar. By
increasing the SDS
concentration, the surface
anchoring of LC molecules
gradually changes towards
the perpendicular molecular
orientation, obtained at
2.0mM of SDS and beyond.
b Non-polarised optical
microscope images of 17µm
diameter microdroplets of
5CB in water and SDS. The
“inner” ring is observable at
0.2mM of SDS. The point
defect evoles at the surface
and sinks into the center at
0.8mM concentration of
SDS. Scale bar 10µm. c The
same images as in (b), taken
between crossed polarisers. d
The spectrum of laser light,
emitted from a 13µm 5CB
droplet in water with various
concentrations of SDS
added. e Part of the lasing
spectrum in the “chaotic”
regime of intermediate SDS
concentrations (0.3 –
0.4mM) of a 16µm droplet

microsensors, where the shift of the lasing line gives the information on the chemical
conditions of their interface.

An example of such a sensing process is observed when a liquid crystal droplet
is immersed in the water solution of SDS with varying concentration. For a low
SDS concentration, the surface anchoring of LC molecules is planar, whereas at
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a certain threshold concentration, a transition to the radial structure is expected
and observed. This process is shown in Fig. 9.11 where panel (b) shows a series
of nonpolarised optical micrographs of a 5CB microdroplet in water with varying
SDS concentration from 0 to 2.0mM. For zero SDS concentration the droplet is
practically homogeneous, as shown in the upper schematic panel (a). Here, the two
surface boojums are virtual ones. They are situated outside of the LC microdroplet.
With increasing SDS concentration, a ring defect is observed in the second panel
at the 0.2mM concentration, which then gradually transforms into a radial point
hedgehog located in the centre of the microdroplet at 2.0mM SDS concentration.
The changes induced by different surfactant concentrations are completely reversible
since the surfactant molecules residing on the interface are always in thermodynamic
equilibriumwith the surrounding water solution and can therefore adsorb and desorb
from the interface.

When the droplets are excited and lasing starts, one can analyse the spectrum of
the emitted light at different SDS concentrations, which is shown in Fig. 9.11d and
e. It is clear from from the recorded spectra that the changes of the lasing spectra are
quite dramatic and show two characteristic regimes. At low SDS concentration up to
0.3mM, there is a typical band-structure lasing spectrum consisting of several bands
with finely spaced narrow lasing lines. This band-like structure is characteristic of
the bipolar configuration of the nematic microdroplet and is due to the presence
of the two surface boojum defects. Each line of this band corresponds to a stable
trajectory of circulating light with a plane of trajectory inclined with aspect to the
line connecting both boojums. On the other hand, the spectrum is very simple above
0.6mM SDS concentration where only a series of sharp equidistant lasing lines are
observed, characteristic of the radial nematic droplet. In-between the spectrum is
rather chaotic and extremely sensitive to the variations of the SDS concentration.
This is understandable because it corresponds to the intermediate regime, where
dramatic changes into the interior structure of the droplets are taking place at even
the smallest variation of the SDS concentration.

9.4 3D Microlasers from Cholesteric Liquid Crystal
Droplets

WGM microlasers, described in the previous section, could be realised form both
normal, isotropic, and nematic LC. The difference is in the spontaneous order of
NLC, which brings new phenomena into the interplay when the LC is confined to a
droplet: internal structure, topology, and response to external fields.Whereas nematic
liquid crystals therefore bring substantial novelty toWGMmicrolasers and their tun-
ing, interesting phenomena are observed whenmicrodroplets of chiral nematic liquid
crystals are considered as optical microresonators and optical microcavities in gen-
eral. In the following, we shall consider a spherical microdroplet of a chiral nematic
liquid crystal, perfectly shaped into a spherical form by the action of the surface
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Fig. 9.12 a A typical cholesteric droplet with a pitch p = 2.2µm in glycerol. The light and dark
concentric shells are due to the spatial variation of the refractive index of the cholesteric liquid
crystal in the radial direction. b Close up of the centre of the cholesteric droplet, when viewing in
the direction parallel to the disclination line. c Cholesteric droplet with PBG in the visible range
of light, viewed under crossed polarisers and white-light illumination. d–f Omnidirectional (3D)
lasing in a cholesteric droplet illuminated by laser pulses (λ = 532nm) and aweakwhite background
illumination. d Below the lasing threshold (1.6mJ/cm2), a bright spot of radiating monochromatic
light can be observed in the centre of the droplet. f Lasing becomes very intense at a high pump
power (12mJ/cm2). Image courtesy of Matjaz Humar

tension. The liquid-crystal molecules at the interface will have planar anchoring on
the external medium (solid or fluid), which imposes an interesting organisation of
the chiral nematic liquid crystal in the interior of such a droplet.

Microdroplets of chiral liquid crystals with planar surface anchoring have been
considered in the past for purely theoretical reasons because of rich topology. It
turns out that the chiral nematic liquid crystal organises itself in several fascinating
structures, with the helical direction pointing from the surface towards the centre
of the droplet. One therefore obtains a layered structure, also called an onion-like
structure with the layer periodicity equal to the helical period the chiral nematic
liquid crystals. As it is not possible to fill a spherical object with a chiral nematic
liquid crystalwithout defects, there are twomost probable structures and twodifferent
kinds of topological defectswhich appear in chiral nematicmicrodroplets with planar
surface anchoring [258]. The first is the diametrical spherical structure (DSS) with
a disclination line extending from one to the other surface through the centre of
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Fig. 9.13 The schematic view of the arrangement of CLC molecules in a cholesteric microdroplet
with parallel anchoring of the LC molecules at the surface. The helical structure of the liquid
crystal originates from the centre of the droplet and gives rise to concentric shells of constant
refractive index. This dielectric structure is optically equivalent to the well-known Bragg-onion
optical microcavity. Image courtesy of Matjaz Humar

the droplet. The second is the most common radial spherical structure (RSS) with a
disclination line extending from the surface to the centre of the droplet. An example
of such a droplet is shown in Fig. 9.12a, where the helical period is visible as a series
of concentric dark lines filling the droplet uniformly and completely. One can also see
a broad and irregular λ line extending from the centre towards the surface. This is the
topological defect line of the double helix of two intertwined cholesteric λ cholesteric
lines. Figure9.12b shows details of the structure in the centre of the droplet, where
one can see the origin of the cholesteric layers formation and winding. In both cases,
the helical periodwas of the order of 2.2µm in order tomake the cholesteric structure
inside the droplet observable with an optical microscope.

A chiral nematic microdroplet with planar surface anchoring and perfect onion-
like structure is an interesting optical object due to the optical anisotropy of the
medium which is combined with the chirality of the material. This kind of materials
are known to selectively reflect light and therefore act as chiral mirrors for light.
If such a chiral mirror is wrapped into a sphere as in the case of our chiral nematic
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droplet, it shows new and surprising optical properties, such as the chirality-selective
reflector, which plays an important role in laser trapping of such chiral nematicmicro-
droplets with laser tweezers. More importantly, such a chiral nematic microdroplet
acts as a special kind of optical cavity, which results in interesting polarization-
dependent optomehanics [175, 347, 348]. If we consider molecular distribution in a
chiral nematic droplet with planar surface anchoring, as shown in Fig. 9.13, one can
immediately see that in terms of optics, this structure is the so-called Bragg-onion
microcavity. Such a microcavity is formed of a series of nested and concentric lay-
ers of transparent dielectric material with consecutively higher and lower refractive
index. Because of this regular variation of the index of refraction as one is mov-
ing from the centre to the surface of such a resonator, it acts as a Bragg spherical
microcavity. In terms of optics, such a microcavity will Bragg-reflect any light with
a frequency in the forbidden Bragg region towards the centre of the cavity.

If optical gain is added into the Bragg-onion microcavity, made of chiral nematic
microdroplets, an interesting lasing device is obtained. In such a device, light ampli-
fication takes place for photons which are Bragg-reflected from the Bragg resonator
radially inwards or outwards. This means that above that lasing threshold, where the
optical gain exceeds losses, such a lasing device should emit light in all directions
equally. This is therefore a 3D omnidirectional microlaser which emits coherent light
in all directions.

Such a 3D microlaser was indeed realised by Humar and Muševič in 2010 [331]
by taking chiral nematic microdroplets of chiral nematic material with a sufficiently
short helical period. Fluorescent dye was added into this kind of droplets to act as an
optically amplifying medium, and the helical period (or Bragg-reflection interval)
was selected to match the maximum emission of the fluorescent dye. When such a
droplet of fluorescently labelled chiral nematic liquid crystal is illuminated with a
pulsed light, exciting the fluorescent, one observes lasing, as shown in Fig. 9.12d–f.
At low pumping levels the chiral nematic microdroplet shows weak fluorescence,
uniformly distributed within the volume of the droplet, as shown in Fig. 9.12d. By
increasing the pumping level, one observes a tiny and very bright spot of monochro-
matic light emerging only from the centre of the droplet. By increasing the intensity
of the pumping light, the spot remains a spot but becomes much stronger. If the
droplet is then rotated and observed from a different direction, one can always see
the same picture: a single bright spot of monochromatic light emerging from the
centre of the droplet. There is a simple and unique explanation of this phenomenon:
a chiral nematic microdroplet emits laser light in all directions, and the presence of
characteristic speckles in the bright spot is the proof of the coherence of the emitted
light.

The threshold characteristics for 3D lasing of the chiral nematic microdroplets
weremeasuredby increasing the intensity of the pumpingpulses. The emitted spectral
line intesity was also measured, as shown in Fig. 9.14. A typical threshold behaviour
is observed with a threshold energy of 20 nJ for a 1 ns pumping pulse, uniformly
illuminating a circular area of the sample of 40µm diameter.

The line width of the emitted laser line is typically 0.1nm, which is comparable
to the line widths of lasing in thin planar chiral nematic layers or liquid crystal
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Fig. 9.14 Lasing characteristics of a single droplet of dye-doped CLC. a The spectra of light
emitted from the center of the CLC microdroplet at different energies of the pumping pulse. b
The radiated laser-light intensity as a function of the input-pulse energy density. The threshold
for lasing is clearly seen at ∼1.8mJ/cm2. c Magnified lasing spectrum showing a laser linewidth
of ∼0.10nm. d The threshold for lasing as a function of the diameter of the CLC microdroplet.
All the spectra were measured using an imaging spectrometer with a 0.05nm resolution (Andor,
Shamrock SR-500i) and cooled EM-CCD camera (Andor, Newton DU970N). Image courtesy of
Matjaz Humar

blue phase. With decreasing diameter the threshold for lasing increases, as shown in
Fig. 9.14d, and the smallest droplets thatwere lasingweremade of high-birefringence
liquid-crystal droplets of 15µm diameter. The typical emitted average power of such
a 3D microlaser is up to 0.05 mW at a 200Hz repetition rate. Another phenomenon
observed in these LC spherical lasers is the thermal fluctuations of the intensity,
which might be related to the strong, low-frequency orientation fluctuations of the
liquid crystal within the microdroplet.

Because the 3D microlaser is made of chiral nematic liquid crystals and exhibits
helical internal organisation, one expects that the output light would be circularly
polarised. The reason for this is that the Bragg reflector is reflecting only circularly
polarised light of the same handedness as the helical structure of the chiral nematic
liquid crystal. The other helicity of light is not reflected back and forth, and there
is no resonance condition for this polarisation. It turns out to be quite difficult to
determine the polarisation properties of the emitted light, and no clear proof of the
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Fig. 9.15 Lasing spectrum
of a single CLC droplet
compared to the reflection
spectrum of a 30µm planar
cell filled with the same CLC
mixture. The reflection
spectrum was measured for
light propagating along the
helix of the CLC. Image
courtesy of Matjaz Humar

circular nature of 3D emitted light was convincingly presented. On the other hand,
such a laser shows the characteristic band-edge lasing, which is shown in Fig. 9.15.

In Fig. 9.15, the lasing line of the 3D microlaser is superposed to the reflection
spectra of the same chiral liquid crystal in a planar cell. The lasing line is clearly
positioned at the red edge of the reflection band, which is due to the highest density
of photon states, at the band edges characteristic for chiral liqiud crystal microlasers.

The spatial uniformity of lasing intensitywasmeasured by inserting the 3Dmicro-
laser into a glass capillary,which allowed forwide-anglemeasurements of the emitted
light intensity [331]. This turns to be quite uniform and confirms a simple observation
when rotating the sample with 3Dmicrolasers. Although all lasers that we know emit
light into a given direction, this is a simple consequence of the construction of their
optical resonator. This is usually a 1D resonator made of reflective mirrors or Bragg
gratings, which allow for photon reflection and optical amplification via stimulated
emission in 1D. The laser is made to emit light along a given direction by meeting
one of the reflective elements slightly transmissive. However, other types of lasers
are known, such as tori, which emit light within a plane, containing the equator of the
tori. The microlaser emits light in full solid angle for a spherical resonator with radial
Bragg reflectors. Although this laser seems odd at the first glance, it may have clear
advantages in some special cases, such as internal source holography, sensing, or
imaging. In this case, the volume is uniformly emitted from an internal point source
of coherent light, which is reflected by the surrounding medium and collected with
an outside detector. The Bragg-onion laser is therefore a natural candidate for such
microscopic applications.

As a final note, we should comment on the range of wave-lengths which could be
emitted by such a laser and its tuning. The range of possible wave-lengths, emitted
by such a laser is determined by two limiting factors: the natural helical period of the
chiral nematic LC and the range of light emission of the light amplifyingmedium. As
far as the helical pitch is concerned, chiral nematic liquid crystals show an extremely
large tuning range, accessible by chemical synthesis from 200nm to a micrometre
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helical period. Besides using chemical tuning, helical period can also bemade tunable
by temperature or external electric fields. Both temperature and external fields are
known to have a strong influence on the helical period of the chiral nematic liquid
crystals. Light amplification in 3D microlasers could be achieved by using various
fluorescent materials, such as dye molecules, quantum dots, or even individual atoms
(such as Erbium), which are attached to the molecules forming the liquid-crystal
phase. There are various advantages in using a particular fluorescent source. Organic
dyes are very well known for their high quantum yield, they also dissolve very well
and at high molecular concentration in liquid crystals. This makes them a highly
efficient fluorescent source, which provides for low threshold microlasing. However,
their disadvantage is bleaching and molecular instability. A typical 3D microlaser
based on fluorescent organic dyes will therefore bleach with time because there is no
regeneration of the fluorescent material. In this respect, quantum dots are superior
materials, but their disadvantage is their limited solubility in nematic liquid crystals.
One way to solve this problem is to chemically attach quantum dots to the molecules
that constitute the liquid-crystal phase. Finally, organo-metallic complexes in a form
of rod-like molecules incorporating fluorescent Er atoms are known to form the
nematic phase. In this case, the emitted light is rather narrow, which has a strong
constraint on the properties of the optical resonator, as it has to be tuned to this
emitted wavelength.

3D microlasers have been investigated in different aspects and forms, such as
band-edge random lasing in paintable laser emulsions [349], and random sphere
microlasers [350, 351]

9.5 Wave Guiding and Lasing in Smectic a Liquid Crystal
Fibres

A straightforward way tomake dispersions of liquid-crystal material a carrier immis-
cible liquid is simply mechanically mixing a small amount of LC in this medium.
This produces spherical droplets of LC, because the surface tension tends tominimise
the surface. The elasticity of the liquid-crystal material forming the droplet is in most
cases irrelevant, as the surface energy contribution is much larger than the elastic
energy, stored in deformed liquid crystals. In some special cases, such as chromonic
liquid-crystal droplets of non-spherical shapes are observed, known as tactoids. In
this case, the internal elasticity of the confined liquid crystal imposes force to the
interface and deforms it into a non-spherical, tactoidal shape. This happens when
the surface energy is low and the elastic distortion of the interior of the droplet
becomes important. Another example of non-spherical liquid crystal microdroplets
are nematic droplets threaded by cellulose fibres [352].

However, there is a special case showing unusual solubility of smectic-A liquid
crystals in contact with the water solution of some surfactants, such as cetyl ammo-
nium bromide (CTAB) [353, 354]. If a droplet of smectic-A material is exposed
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to such a surfactant solution, an interesting phenomenon of the instability of this
smectic-A surface is observed. The surface wrinkles and occasionally ejects tiny jets
of the smetic-A liquid crystal, which self-forms into tiny liquid fibers. This phenom-
enon of smetic-A fiber growth is observed only at surfactant concentrations which
are much higher than the critical micellar concentration of the given surfactant. For
CTAB inwater, this is approximately 1mMat 25 ◦C.Below this concentration, CTAB
is uniformly dispersed in water and starts forming micelles above this critical con-
centration. The growth of smectic-A fibers into the CTAB dispersion is similar to
processes of growth of tubular-like structures at the interface of lyotropic lamellar
liquid crystals and water. These myelin figures are tubular-like structures consisting
of cylindrically bent water-surfactant bi-layers. In contrast to lyotropic myelin fig-
ures which have poor optical contrast (i.e. the difference in the two optical indices),
smectic-A fibers have very large optical contrast, as the refractive index of lyotropic
myelin figures is 1.33 and the refractive index of smectic-A materials is 1.5 and
above). This makes smectic fibers in water an appealing candidate for optical wave
guides, but their internal structure remains open. One could actually conjecture that
the only possible organisation of smectic-A material in these fibers is in a series
of coaxial smectic layers, rolled-up into hollow tube-like structures. A fiber would
therefore be organised as a radial stacking of coaxial smectic layers, ending with
perpendicular molecular orientation at the interface to the external water and form-
ing a line topological defect in the centre of the fiber. Such a coaxial organisation
of smectic fibers is indeed confirmed by simple optical observations of microfibers
between crossed polarisers, as shown in Fig. 9.16.

Figure9.16a shows a smectic fiber made of 8CB LC in water solution of C16TAB
with added fluorescent Nile red [354]. The structure is extremely homogeneous
under crossed polarisers and is obviously highly birefringent. There are two hemi-
spherical endings at each end of this fiber and there is clearly a line connecting
both hemispheres through the centre of the fiber. Using red plate imaging (the inset
to Fig. 9.16a), one is able to determine the orientation of the LC molecules in the
fiber. The orientation is clearly radial, as seen by blue and yellow parts of the fiber.
More precisely the arrangement of LC molecules can be determined by Fluorescent
Confocal Polarising Microscopy (FCPM), which is collecting polarised light from
the fluorescent molecules, dissolved in the LC. In the case of Nile red molecules,
it is known they behave as molecular rods, which align with the rod-like molecules
in the smectic-A liquid crystal. Their radiative dipole moment, which is pointing
along their long axis is therefore locally aligned with the surrounding liquid-crystal
molecules and determines the polarisation of locally emitted light. If such a 8CB
fluorescently labelled microfiber is scanned with confocal polarising microscope,
one can clearly determine the direction of fluorescent molecules within the imag-
ing plane, which also determined the local direction of the 8CB molecules. Such a
FCPM cross-section is shown in Fig. 9.16b and c for two different polarisations of
the emitted light. In panel (b), the polarisation of the collected light is along the axis
of the fiber, and one can see that light with this polarisation is emerging only from
the hemispherical end of the fiber. If the same fiber is now scanned for perpendicular
light polarisation, the bright regions are distributed along the surface of the fiber. It
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Fig. 9.16 Polarising microscopy and FCPM images of smectic-A microfibers of 8CB (doped with
0.01 wt.% of Nile red) in aqueous C16TAB solution. a 8CB microfiber (diameter 10µm) between
crossed polarisers demonstrating the strong birefrigence of the smectic fiber. The inset shows a
thinner fiber (diameter 3µm), which has adopted a bend S-like shape, between crossed polarisers
with the addition of a red (λ) wave plate. The alternating yellow/blue colour sequence indicates the
the LC molecules, and thus the local optical axis, are always aligned perpendicular to the surface
of the fiber. b FCPM image of a smectic-A 8CB microfiber (diameter 35µm) with the polarisation
of the exciting light along the axis of the microfiber. High fluorescence intensity is observed at
the spherical tip of the fiber. c FCPM image of the same fiber with the polarisation of the exciting
light perpendicular to the axis of the microfiber. High fluorescence intensity is observed along the
cylindrical body of the fiber. The distribution of the fluorescence intensities in both images indicates
that the Nile red molecules, and thus the LC molecules, are oriented perpendicular to the surface
of the fiber. d Schematic drawings of the coaxial arrangement of the smectic layers in a microfiber.
Top cross section parallel to the fiber axis. Bottom cross section perpendicular to the fiber axis. The
red line or dot indicates the topological line defect. The rod-like LC molecules (not shown in the
drawings) are oriented perpendicular to the layer planes and the fiber surface

is straightforward to determine the schematic structure of the fiber, which is shown
in panel (d). The smectic layers are rolled into smectic tubes which fit nicely one
into another and form a concentric series of smectic layers. The end of the fiber is
naturally completed by a hemispherical arrangement of smectic layers which are dis-
torted and curved but are well known from smectic-A structures. And finally, there
must be a topological defect line in the centre of each fiber, where the molecule’s
direction is ill-determined and therefore singular.

One can see from Fig. 9.16a that the fibers are very uniform in diameter and that
there is practically no structural defect observable throughout the length of the fiber.
The reason for this is the smectic layering which perfectly defines the diameter of
the fiber as the layers are obviously not ruptured at any point on the surface of the
fiber. Regarding their optical properties, there are two interesting features of smectic
microfibers. First, they are of high optical quality, and they are highly birefringent
with the optical axis pointing radially outwards, and there is a topological line defect
in the core. Because of this topological line defect, one expects these microfibers
to likely support Gaussian–Laguerre electromagnetic waves. It was demonstrated
in several experiments with light propagation through topological defects in liquid
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Fig. 9.17 Light guiding through 8CB smectic-A microfibers doped with 0.01 wt % of Nile red.
The concentration of C16TAB surfactant in the surrounding aqueous medium is 20mM. The power
of the applied continuous Ar+ laser beam for fluorescence excitation is 1mW. a–b A focused Ar+
beam is positioned at different points at the hemispherical cap of a 20µm thick fiber. The spiral-
shaped trajectories of the guided light are clearly visible because of the fluorescence. c–d Light
guiding by a thin (2µm) 8CB microfiber. The fluorescence is excited at the lower (c) or left (d)
end of the microfiber using different polarisations of the Ar+ beam. The insets show the respective
other end of the fiber at a higher magnification, the bright spot at the fiber end indicating the leaking
of the guided light. The angle between the major axis of the microfiber and the polarisation of the
Ar+ beam is 0 in (c) and 90◦ in (d). The corrugated appearance of the thin fiber is a result of some
random bending and the small thickness of the fiber. There is no indication for an axial variation of
the fiber thickness. e The intensity I of the emitted fluorescent light as a function of position (i.e.
length) along the thin microfiber in (c, d) remains fairly constant. Note the intensity peak at the end
of the microfiber, corresponding to the bright spot shown in the insets in (c, d)

crystals that the Gaussian, plane wave beam picks up the topological defect from the
matter and transforms the light wave into topologically nontrivial waves. Topological
defects of the matter are therefore imprinted into the electromagnetic waves as phase
singularities. Second, both ends of the fiber are kept with birefringent hemispheres
which act as perfect spherical lenses.

The guiding of light by smectic fibers is observed by using the technique of
fluorescent labelling of the fiber [354]. Without this labelling it is very difficult to
couple light into the fiber and observe the its propagation along the fiber. By adding
fluorescent molecules, which align themselves along the local orientation of the
liquid crystal, it is possible to create light inside the fiber simply by shining a slightly
focused excitation beam towards the selected part of the fiber. As fluorescent light
is produced at the illuminated volume, it propagates in all directions and some of it
is accepted by the cylindrical fiber and is guided along the fiber by the total internal
reflection (TIR) at the interface between the fiber and the surrounding water. During
this light propagation fluorescent light is emitted all along the guiding light, which
makes it visible to the external observer.
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An example of light generation and propagation in a smectic-A fiber with a rather
large diameter is shown in Fig. 9.17a–d. In these images, a focused beam of the
Ar+ laser tweezers was positioned on the fluorescently labelled 8CB microfiber,
and intense fluorescent spiralling pattern of light was observed along the fiber. The
changes in this fluorescent pattern were clearly visible if the tweezers were posi-
tioned on another spot. In thinner 8CB microfibers, as shown in Fig. 9.17c, d, the
fluorescent light is emitted nearly uniformly across and along the fiber and the bright
spot is observed on the other side, where the light leaks out of the fiber. Figure9.17e
shows the intensity of the emitted fluorescent light, measured all along the fiber.
No substantial intensity drop was observed and the losses are lower than 5% over
130µm over the length of the fiber. The amount of generated light is the highest

Fig. 9.18 An example of lasing from a large, 50µm-diameter Nile red-doped 8CB microfiber in
a 100mM C16TAB water solution. The power of the pumping laser is below the lasing threshold
in (a) and above the threshold in (b). In both cases the pumping pulsed laser beam is illuminating
a 20µm diameter region encircling the black cross. The polarisation of the pumping light is along
the tangent to the fiber at this position. Note the very distant laser speckles in (b), shining from the
surface of the fiber at hundreds ofµm separation (see enlarged section shown in (c)). Thinner fibers
(thickness of a few µm) showed essentially the same behaviour
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when the polarisation of the fluorescent excitation beam matches the major axis of
the tube.

Smectic-A fibers are perfectly transparent optical objects of cylindrical symmetry,
which obviously support wave-guiding of light along their axis. However, if one
considers a cross section of the fiber, it is clear that such fibers could also support
Whispering GalleryModes resonances (WGMs). In this case, light is not transported
along the axis (as in wave guiding) but is circulating in a direction perpendicular to
this axis along the circular cross section of the fiber. This kind of resonances are well
known frommicrophotonics and are called “morphological resonances”. In our case,
the diameter of the fiber is very uniform, i.e. within one smectic layer (1nm), and
one expects rather large spatial coherence of the WGMs in the lasing regime. For
this purpose, the fiber is locally illuminated with a pulsed pumping beam (532nm)
which excites a rather large part of the fiber, as shown in Fig. 9.18a. In this image,
fluorescent light is primarily emitted from the illuminated region, but the light is also
fluorescently emitted from the surrounding, where it was partially excited by the light
guided through the fiber.When the intensity of the pumping beam is increased, a clear
difference can be noticed at some threshold value of the density. This regime is shown
in Fig. 9.18b, where it clearly observable that there is a thin sheet of monochromatic
red light apparently shining from the surface of the fiber. By looking at the enlarged
part of the fiber far away from the illuminated region, one can clearly see interference
speckles shining from the tiny light sheet at the interface of the fiber.

Considering lasing from the WGM resonances, there is a simple explanation for
this sheet of speckles. InWGM resonantors with an optical gain, the light is amplified
by stimulated emission by light circulating within the resonator. In our case, the light
is circulating along the circumference of the circular cross section of the fiber; due to
fluorescent dyes, this light is amplified by the stimulated emission of photons and the
fiber therefore acts as a cylinder WGM laser. Such a laser emits light from theWGM
modes localised at the interface of the exterior. When viewed under the microscope,
the most intensity is emitted from the interface. This is therefore the reason for
the strong monochromatic light emanating from the surface of the fiber. Spectral
properties of light emitted from this interfacialWGM layer show lasing lines, similar
to the WGM resonances in spherical droplets. However, the number of resonances
is higher compared to WGM lasers made of LC droplets. The observed threshold of
WGM lasing is comparable to the threshold for lasing ofWGMs in spherical nematic
droplets and therefore confirms the same underlying physical mechanism.
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40. S. Čopar, Phys. Rep. 538(1), 1 (2014)
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249. S. Žumer, S. Kralj, J. Bezič, Mol. Cryst. Liq. Cryst. 212, 163 (1992)
250. P.P. Crooker, H.S. Kitzerow, F. Xu, in Proceedings of SPIE, vol. 2175 (International Society

for Optics and Photonics, 1994), pp. 173–182
251. F. Xu, H.S. Kitzerow, P. Crooker, Phys. Rev. A 46(10), 6535 (1992)
252. F. Xu, H.S. Kitzerow, P. Crooker, Phys. Rev. E 49(4), 3061 (1994)
253. E.M. de Groot, G.G. Fuller, Liq. Cryst. 23(1), 113 (1997)
254. J.K. Whitmer, X. Wang, F. Mondiot, D.S. Miller, N.L. Abbott, J.J. de Pablo, Phys. Rev. Lett.

111(22), 227801 (2013)
255. C. Robinson, J. Ward, Nature 180(4596), 1183 (1957)
256. C. Robinson, J.C. Ward, R.B. Beevers, Disc. Faraday Soc. 25, 29–42 (1958)
257. M. Kurik, O. Lavrentovich, Mol. Cryst. Liq. Cryst. 72(7–8), 239 (1982)
258. M. Kurik, O. Lavrentovich, J. Exp. Theor. Phys. Lett. 33(10), 528 (1981)
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21(25), 30233 (2013)



Index

A
Abberations, 228
Abbe’s law of diffraction, 69
Abricosov vortices, 15
Alignment, 8–12, 34, 43, 53, 62, 63, 145,

159, 165, 173, 202, 204, 254, 262,
267

Ampere law, 19
Amphiphilic molecules, 12, 30, 80, 81
Anchoring energy coefficient, 9, 11
Anchoring strength, 8–11, 69, 119, 146, 148
Angular momentum transfer, 112
Anisotropic part of the surface free energy,

214
Annihilation, 19, 173–175, 203
Anti-ring, 174, 175
Assembly of plasmonic nanoparticles, 68
Atomic Force Microscope, 77
ATTO, 82
Au-capped silica micro-spheres, 62

B
Baby-skyrmion, 251, 252
Band-edge lasing, 278
Band-structure of electron levels, 257
Barium hexaferrite, 89, 91, 92
Beam steering, 104
Bend elastic constant, 7, 240
Beris-Edwards model of nematodynamics,

175
Berreman, 14
Berry’s phase, 163
Biaxial, 3
Biaxiality, 4
Binding potential of entangled colloidal

pairs, 155

Bipolar nematic droplet, 216, 217
Bipolar structure, 219, 220
Birefringence, 14, 15, 55, 105, 110, 112, 204,

226, 230, 266, 277
Bleaching, 228, 279
Bloch-type skyrmion, 228, 250, 251
Blue phase, 202, 251, 258, 259, 277
Blue phase of liquid crystals, 78
BODIPY-C5 amphiphiles, 82
Boltzmann method, 175
Boojum-ring, 63, 66
Boojum defects, 64
Borromean rings, 164, 165
Bose-Einstein condensates, 15
Bragg mirror, 112, 120
Bragg-onion microcavity, 276
Bragg-onion microresonator, 260
Bragg reflector, 277, 278
Bragg scattering, 120
Bragg structure, 112
Bragg spherical microcavity, 276
Bravais lattice, 142
Brilliouin zone, 257
Brownian motion, 34, 40, 44, 69, 72, 75, 88,

95, 96, 108, 109, 114, 116, 118, 174
Brownian particles, 72
Brownian trajectories, 72, 74
Brownian walk, 57
Bubble domain, 252
Bubble domain texture, 249
Bubble-gum, 60, 82, 183, 184, 256

C
Capped colloids, 63
Charge neutrality, 25, 173
Charge-neutral loop, 177, 178

© Springer International Publishing AG 2017
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