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Preface

This volume contains a collection of lecture notes provided by the key speak-
ers of the Schladming Winter School in Theoretical Physics, “43. Interna-
tionale Universitätswochen für Theoretische Physik”, held in Schladming,
Austria. This school took place from February 26 till March 4, 2005, and was
titled Spin Physics, Spintronics, and Spin-Offs.

Until 2003 the Schladming Winter School, which is organized by the Di-
vision for Theoretical Physics of the University of Graz, Austria, has been
devoted primarily to topics in subatomic physics. A few years ago, however,
it was decided to broaden the scope of this school and, in particular, to in-
corporate hot topics in condensed matter physics. This was done in an effort
to better represent the scientific activities of the theory group of the Physics
Department at the University of Graz, resulting in the 42nd Winter School on
“Quantum Coherence in Matter: From Quarks to Solids,” held in 2004, and
the 43rd Winter School on “Spin Physics, Spintronics, and Spin-Offs” in 2005.
A compilation of lecture notes from the 2004 event have been released in the
Springer series Lecture Notes in Physics LNP689 titled Quantum Coherence:
From Quarks to Solids.

Spin is a fundamental property of elementary particles with important
consequences on the macroscopic world. Beginning with the famous Stern–
Gerlach experiment, research has been conducted to provide a sound micro-
scopic understanding of this intriguing physical property. Indeed, the spin
degree of freedom has physical implications on practically all areas of physics
and beyond: from elementary particle physics, atomic-molecular physics, con-
densed matter physics, optics, to chemistry and biology.

Recently, the spin degree of freedom has been “rediscovered” in the con-
text of quantum information storage and processing, colloquially summarized
as “quantum computation.” In addition, a relatively young field of solid-state
device physics termed “spintronics,” with the attempt to utilize the spin-
rather than the charge-degree of freedom, has emerged. Each of these two
topics is well worthy of its own school; however, in an attempt to provide
an even broader perspective and to also attract students from elementary
particle physics this winter school has included not only lectures and talks
from both fields, but topics from elementary particle physics as well. As in
past years, the Schladming Winter School and this compilation of lecture
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notes is intended for advanced undergraduate and graduate students up to
senior scientists who want to learn about or even get into this exciting field of
physics. Research in this area is interdisciplinary and has both fundamental
and applied aspects.

Listed below, in alphabetical order, are the speakers and titles of their
lectures:

Enrico Arrigoni, Technical University of Graz, “Spin Pairing and High-
Temperature Superconductors”

Tomasz Dietl, Polish Academy of Sciences, Warsaw, “Semiconductor Spin-
tronics”

Stefano Forte, University of Milano, “Spin in Quantum Field Theories”
Elliot Leader, Imperial College, London, “Nucleon Spin”
Yuli V. Nazarov, Delft University, “Spin Currents and Spin Counting”
Igor Žutić, NRL, Washington DC, “Spin-Polarized Transport in Semicon-

ductor Junctions: From Superconductors to Magnetic Bipolar Transistors”

Next to these lectures, there were a number of invited and contributed
talks. For details, we refer to our Schladming Winter School web page
http://physik.uni-graz.at/itp/iutp/index-iutp.html. This volume contains the
lecture notes presented by T. Dietl, E. Arrigoni, S. Forte, and E. Leader.
What has been said before about the flavor of the lectures also applies to the
lecture notes presented in this volume.

In “Semiconductor Spintronics,” Tomasz Dietl gives an overview of the
modern field of spintronics, containing a brief history, motivation behind the
field, past achievements, and future challenges. It should be mentioned that
Prof. Dietl’s Award of the Agilent Technologies Europhysics Prize 2005 (with
David D. Awschalom and Hideo Ohno) was announced during the Winter
School.

In “Lectures on Spin Pairing Mechanism in High-Temperature Supercon-
ductors,” Enrico Arrigoni first reviews the essentials of conventional phonon-
based superconductivity and then discusses alternative pairing mechanisms
based on the Hubbard model, which may play a role in high-temperature
superconducting materials with an antiferromagnetic phase.

In “Spin in Quantum Field Theories,” Stefano Forte gives a pedagogi-
cal introduction to spin in quantum field theory, largely avoiding the usual
framework of relativistic quantum field theory. This paper is intended as a
bridge between elementary particle (relativistic quantum field theory) physics
and condensed matter physics (nonrelativistic quantum field theory).

In “Nucleon Spin,” Elliot Leader discusses proton (nucleon) spin and pit-
falls encountered in the interpretation of its origin from the nucleon’s con-
stituents.

We are grateful to the lecturers for presenting their lectures in a very
pedagogical way at the school and for taking the time for preparing the
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manuscripts for publication in this book. We feel that this volume represents
a good overview of current research on spin-related physics.

We acknowledge financial support from the main sponsors of the school:
the Austrian Federal Ministry of Education, Science, and Culture, as well as
the Government of Styria. We have received financial, material, and techni-
cal support from the University of Graz, the town of Schladming, RICOH
Austria, and Hornig Graz. We also thank our colleagues, staff, and students
at the Physics Department for their valuable technical assistance, as well as
all participants and speakers for making the 43rd Schladming Winter School
a great success.

Graz, Walter Pötz
July 2006 Jaroslav Fabian

Ulrich Hohenester
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Semiconductor Spintronics

T. Dietl

Institute of Physics, Polish Academy of Sciences and ERATO Semiconductor
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02668 Warszawa, Poland and Institute of Theoretical Physics, Warsaw University,
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Abstract. These informal lecture notes describe the recent progress in semicon-
ductor spintronics in a historic perspective as well as in comparison to achieve-
ments of spintronics of ferromagnetic metals. After outlining motivations behind
spintronic research, selected results of investigations on three groups of materi-
als are presented. These include non-magnetic semiconductors, hybrid structures
involving semiconductors and ferromagnetic metals, and diluted magnetic semi-
conductors either in paramagnetic or ferromagnetic phase. Particular attention is
paid to the hole-controlled ferromagnetic systems whose thermodynamic, micro-
magnetic, transport, and optical properties are described in detail together with
relevant theoretical models.

1 Why Spintronics?

The well-known questions fuelling a broad interest in nanoscience are: will
it still be possible to achieve further progress in information and commu-
nication technologies simply by continuing to miniaturize the transistors in
microprocessors and the memory cells in magnetic and optical discs? How
to reduce power consumption of components in order to save energy and to
increase battery operation time? How to integrate nowadays devices with
biological molecules and functionalities?

Since 70s, the miniaturization by obeying Moore’s law has persistently
lead to an exponential increase in the quantity of information that can be
processed, stored, and transmitted per unit area of microprocessor, memory,
and fiberglass, respectively. A modern integrated circuit contains now one
billion transistors, each smaller than 100 nm in size, i.e., a five hundred times
smaller than the diameter of a human hair. The crossing of this symbolic
100 nm threshold at the outset of the 21st century ushered in the era of
nanotechnology. As the size of transistors decreases, their speed increases,
and their price falls. Today it is much less expensive to manufacture one
transistor than to print a single letter. Despite the series of successes that
industrial laboratories have scored over the past 40 years in surmounting one
technical and physical barrier after another, there is a prevalent sense that
in the near future a qualitative change is now in store for us in terms of the
methods of data processing, storing, encoding, and transmission. For this rea-
son, governments in many countries are financing ambitious interdisciplinary

T. Dietl: Semiconductor Spintronics, Lect. Notes Phys. 712, 1–46 (2007)
DOI 10.1007/3-540-38592-4 1 c© Springer-Verlag Berlin Heidelberg 2007



2 T. Dietl

programs aimed at insuring active participation in the future development of
nanotechnology.

Among the many proposals for where to take such research, the field of
spintronics, i.e., electronics aimed at understanding electron spin phenomena
and at proposing, designing, and developing devices to harness these phe-
nomena, is playing a major role. The hopes placed in spintronics are founded
on the well-known fact that since magnetic monopoles do not exist, random
magnetic fields are significantly weaker than random electric fields. For these
reasons, magnetic memories are non-volatile, while memories based on an
accumulated electric charge (dynamic random access memory, or DRAM)
require frequent refreshing.

One of the ambitious goals in the spintronics field is to create magnetic
random access memory (MRAM), a type of device that would combine the
advantages of both magnetic memory and dynamic random access memory.
This requires novel methods of magnetizing memory cells and reading back
the direction of such magnetization, which would not involve any mechanical
systems. Another important step along this path would be the ability to con-
trol magnetization isothermally, by means of light or electric field. Modern
devices expend relatively large amounts of energy on controlling magnetiza-
tion (i.e., storing data), as they employ Oersted magnetic fields generated by
electric currents.

The development of more “intelligent” magnetization control methods
would also make it possible to build spin transistors, devices composed of
two layers of ferromagnetic conductors separated by non-magnetic mater-
ial. It stands to reason that if carriers injected into the non-magnetic layer
preserve their spin direction, then the electric conductivity depends on the
relative direction of the magnetization vectors in the ferromagnetic layers.
This could offer a means of producing an energy-conserving and fast switch-
ing device, as it would allow current to be controlled without changing the
carrier concentration. An obvious prerequisite for such a transistor to oper-
ate is the efficient injection of spin-polarized carriers made of ferromagnetic
material into the non-magnetic area. Also, there should be no processes that
could disrupt the spin polarization. Simultaneously, researchers are seeking
ways of generating, amplifying, and detecting spin currents: here, the under-
lying conviction is that the movement of electrons with opposite spins does
not entail any losses, yet can carry information. This would lay the founda-
tions for the development of low-power devices, characterized by significantly
reduced heat dissipation. Another important issue is to develop methods for
injecting spin-polarized carriers into semiconductors. Apart from the possi-
bility of designing the magnetization sensors and spin transistors, polarized
carrier injection could prove to be useful as a method for the fast modulation
of semiconductor lasers and would allow surface-emission lasers to work in a
single mode fashion.
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Perhaps the most important intellectual challenge to be faced in spintron-
ics is to create a hardware for quantum information science. Researchers over
the world have joined efforts to lay the theoretical foundations for this new
discipline [1], one notable example being the Horodecki family from Gdańsk
[2]. Experiments conducted by David Awschalom’s group in Santa Barbara
show that spin degrees of freedom are of particular importance as they main-
tain their phase coherence significantly longer than orbital degrees of freedom
do [3]. Electron spin is therefore much more suitable than electron charge for
putting into practice modern ideas for performing numerical computations
using the superposition and entanglement of quantum states. Spin nanostruc-
tures might consequently alter the basic principles not only in the design of
electronic elements, but also in the very computer architecture that has been
in use for half a century. It is noteworthy that quantum encoders are already
now being sold and installed: such devices use the polarization of light to
encode the transmitted information, and the unauthorized interception and
reading of this information appears to be impossible.

Today’s research on spin electronics involves virtually all material families.
The most advanced are studies on magnetic multilayers. As demonstrated in
80s by groups of Albert Fert [4] in Orsay and Peter Grünberg [5] in Jülich,
these systems exhibit giant magnetoresistance (GMR). According to theory
triggered by these discoveries and developed by Józef Barnaś from Poznań
and co-workers [6], GMR results from spin-dependent scattering at adjacent
interfaces between non-magnetic and magnetic metals, which changes when
the magnetic field aligns magnetization of particular layers. Since 90s, the
GMR devices have been successfully applied in reading heads of high-density
hard-discs. Recent works focuss also on spin-dependent tunnelling via an ox-
ide film. Remarkably, for the case of crystalline MgO sandwiched between
contacts of amorphous Fe-Co-B layers, the difference between tunnelling re-
sistance for anti-parallel and parallel orientations of magnetization, the TMR,
reaches a factor of three at 300 K [7, 8, 9]. Moreover, the magnetization di-
rection can be switched by an electric current below 106 A cm−2[10], opening
the doors for a direct magnetization writing by current pulses. Last but not
least such structures can be used for injecting highly polarized spin currents
to semiconductors, such as GaAs [11].

These informal lecture notes on semiconductor spintronics exploit and
update author’s earlier reviews [12, 13, 14, 15, 16, 17, 18], where more sys-
tematic references to original papers can be found. Particular attention is paid
here to those results of research on spin properties of semiconductors, which
appear relevant in the context of disruptive classical and quantum informa-
tion and communication technologies. First part of the paper shows briefly
how spin effects specific to non-magnetic semiconductors can be exploited
in spintronic devices. This is followed by a presentation of chosen prop-
erties of hybrid semiconductor/ferromagnetic metal structures. The main
body of the paper is devoted to diluted magnetic semiconductors (DMS),
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especially to materials exhibiting the ferromagnetic order, as they combine
complementary resources of semiconductor materials and ferromagnetic met-
als. Here, the fundamental research problem is to identify the extent to which
the methods that have been so successfully applied to controlling the den-
sity and degree of spin polarization of carriers in semiconductor structures
might be employed to control the magnetization magnitude and direction.
Apart from the possibility of designing the aforementioned magnetoresistive
sensors and spin aligners, ferromagnetic semiconductors are the materials of
choice for spin current amplification and detection. Furthermore, their out-
standing magnetooptical properties can be exploited for fast light modulation
as well as optical isolators, perhaps replacing hybrid structures consisting of
paramagnetic DMS, such as (Cd,Mn)Te, and a permanent magnet.

In the course of the years semiconductor spintronics has evolved into a
rather broad research field. These notes are by no means exhaustive and,
moreover, they are biased by author’s own expertise. Fortunately, however,
in a number of excellent reviews the issues either omitted or only touched
upon here has been thoroughly elaborated in terms of content and references
to the original papers. For instance, the progress in fabrication and studies of
spin quantum gates of double quantum dots has been described by van Viel
et al. [19]. A comprehensive survey on spin-orbit effects and the present status
of spin semiconductor transistors has been completed by Žutić, Fabian, and
Das Sarma [20]. Finally, Jungwirth et al. [21] have reviewed various aspects
of theory of (Ga,Mn)As and related materials. Excellent reviews on the entire
semiconductor spintronics are also available [22, 23].

2 Non-magnetic Semiconductors

2.1 Overview

The beginning of spintronic research on non-magnetic semiconductors can be
traced back to the detection of nuclear spin polarization in Si illuminated by
circularly polarized light reported in late 60s by Georges Lampel at Ecole
Polytechnique [24]. Already this pioneering experiment involved phenomena
crucial for semiconductor spintronics: (i) the spin-orbit interaction that allows
for transfer of orbital (light) momentum to spin degrees of freedom and (ii)
the hyperfine interaction between electronic and nuclear spins. Subsequent
experimental and theoretical works on spin orientation in semiconductors,
carried out in 70s mostly by researchers around Ionel Solomon in Ecole Poly-
technique and late Boris P. Zakharchenya in Ioffe Institute, were summarized
in a by now classic volume [25].

More recently, notably David Awschalom and his co-workers first at IBM
and then at Santa Barbara, initiated the use of time resolved optical magneto-
spectroscopies that have made it possible to both temporally and spatially
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explore the spin degrees of freedom in a wide variety of semiconductor ma-
terials and nanostructures [26]. The starting point of this experimentally
demanding technique is the preparation of spins in a particular orientation
by optically pumping into selected electronic states. The electron spin then
precesses in an applied or molecular magnetic field produced by electronic
or nuclear spins. The precessing magnetic moment creates a time dependent
Faraday rotation of the femtosecond optical probe. The oscillation and decay
measure the effective Landé g-factor, the local magnetic fields, and coherence
time describing the temporal dynamics of the optically injected spins.

Present spintronic activities focuss on two interrelated topics. The first is
to exploit Zeeman splitting and spin-orbit interactions for spin manipulation.
To this category belongs, in particular, research on spin filters and detectors,
on the Datta-Das transistor [20], on optical generation of spin currents [27]
and on the spin Hall effect [28]. The other topic is the quest for solid-state
spin quantum gates that would operate making use of spin-spin exchange [29]
and/or hyperfine interactions [30]. An important aspect of the field is a dual
role of the interactions in question in non-magnetic semiconductors: from one
hand they allow for spin functionalities, on the other they account for spin
decoherence and relaxation, usually detrimental for spin device performance.
This, together with isotope characteristics, narrows rather severely a window
of material parameters at which semiconductor spin devices might operate.

2.2 Spin Relaxation and Dephasing

Owing to a large energy gap and the weakness of spin-orbit interactions,
especially long spin life times are to be expected in the nitrides and oxides.
Figure 1 depicts results of time-resolved Faraday rotation, which has been
used to measure electron spin coherence in n-type GaN epilayers [31]. Despite
densities of charged threading dislocations of 5 × 108 cm−2, this coherence
yields spin lifetimes of about 20 ns at temperatures of 5 K, and persists up
to room temperature.

Figure 2 presents a comparison of experimental and calculated magnetore-
sistance (MR) of a ZnO:Al thin film containing 1.8 · 1020 electrons per cm3

[32]. Here, spin effects control quantum interference corrections to the clas-
sical Drude-Boltzmann conductivity. A characteristic positive component of
MR, signalizing the presence of spin-orbit scattering, is detected below 1 mT
at low temperatures. This scattering is linked to the presence of a Rashba-like
term λsoc(s×k) in the kp hamiltonian of the wurzite structure, first detected
in n-CdSe in the group of the present author [33]. As shown in Fig. 2, a quite
good description of the findings is obtained with λso = 4.4 · 10−11 eV cm,
resulting in the spin coherence time 1 ns, more than 104 times longer than the
momentum relaxation time. Importantly, this low decoherence rate of wide-
band gap semiconductors is often coupled with a small value of the dielectric
constant that enhances characteristic energy scales for quantum dot charg-
ing as well as for the exchange interaction of the electrons residing on the



6 T. Dietl

Fig. 1: Spin scattering time τ2 of n-GaN at various magnetic fields (a), tem-
peratures (b) (n = 3.5 × 1016 cm−3), and electron concentrations at 5 K (c)
(after Beschoten et al. [31])

neighboring dots. This may suggest some advantages of these compounds for
fabrication of spin quantum gates. Another material appealing in this con-
text is obviously Si, and related quantum structures, in which the interfacial
electric field controls the magnitude of the Rashba term [34] and material
containing no nuclear spins can be obtained.

2.3 An Example of Spin Filter

Turning to the case of narrow-gap semiconductors we note that strong spin-
orbit effects specific to these systems results, among other things, in a large
Zeeman splitting of the carrier states, which can be exploited for fabrication
of efficient spin filters. As an example, we consider quantum point contacts
patterned of PbTe quantum wells embedded by Bi-doped Pb0.92Eu0.08Te bar-
riers [35, 36]. Owing to biaxial strain, the fourfold L-valley degeneracy of the
conduction band in PbTe is lifted, so that the relevant ground-state 2D sub-
band is formed of a single valley with the long axis parallel to the [111] growth
direction. As discussed recently [36], the paraelectric character of PbTe re-
sults in efficient screening of Coulomb scattering potentials, so that signatures
of ballistic transport can be observed despite of significant amount of charged
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Fig. 2: Resistance changes in the magnetic field for n-ZnO (symbols) com-
pared to calculations (solid lines) within the weak localization theory for the
2D case. Curves are vertically shifted for clarity (after Andrearczyk et al.
[32])

defects in the vicinity of the channel. At the same time, the electron density
can be tuned over a wide range by biasing a p-n junction that is formed be-
tween the p+ interfacial layer and the n-type quantum well [36]. Furthermore,
a rather large magnitude of electron spin splitting for the magnetic field along
the growth direction, corresponding to the Landé factor |g ∗ | ≈ 66, can serve
to produce a highly spin-selective barrier. According to results displayed in
Fig. 3, spin-degeneracy of the quantized conductance steps starts to be re-
moved well below 1 T, so that it has become possible to generate entirely
polarized spin current carried by a number of 1D subbands [35].

3 Hybrid Structures

3.1 Overview

The hybrid nanostructures, in which both electric and magnetic field are
spatially modulated, are usually fabricated by patterning of a ferromagnetic
metal on the top of a semiconductor or by inserting ferromagnetic nanopar-
ticles or layers into a semiconductor matrix. In such devices, the stray fields
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subbands on the magnetic field and gate voltage for PbTe nanoconstriction
of a wide (Pb, Eu)Te/PbTe/(Pb, Eu)Te quantum well (after Grabecki et al.
[35])

can control charge and spin dynamics in the semiconductor. At the same
time, spin-polarized electrons in the metal can be injected into or across the
semiconductor [37, 38]. Furthermore, the ferromagnetic neighbors may affect
semiconductor electronic states by the ferromagnetic proximity effect even
under thermal equilibrium conditions. Particularly perspective materials in
the context of hybrid structures appear to be those elemental or compound
ferromagnets which can be grown in the same reactor as the semiconductor
counterpart.

3.2 Spin Injection

It is now well established that efficient spin injection from a ferromagnetic
metal to a semiconductor is possible provided that semiconductor Sharvin
resistance is comparable or smaller than the difference in interface resistances
for two spin orientations. Often, to enhance the latter, a heavily doped or
oxide layer is inserted between the metal and as-grown semiconductor. In
this way, spin current reaching polarization tens percents has been injected
form Fe into GaAs [11, 39]. At the same time, it is still hard to achieve TMR
above 10% in Fe/GaAs/Fe trilayer structures without interfacial layer [40],
which may suggest that the relevant Schottky barriers are only weakly spin
selective.



Semiconductor Spintronics 9

The mastering of spin injection is a necessary condition for the demon-
stration of the Datta-Das transistor [41], often regarded as a flag spintronic
device. In this spin FET, the orientation of the spins flowing between fer-
romagnetic contacts, and thus the device resistance, is controlled by the
Rashba field generated in the semiconductor by an electrostatic gate. Re-
cently, a current modulation up to 30% by the gate voltage was achieved in a
Fe/(In,Ga)As/Fe FET at room temperature [42]. This important finding was
obtained for a 1 µm channel of narrow gap In0.81Ga0.19As, in which TMR
achieved 200%, indicating that the destructive role of the Schottky barriers
got reduced. Furthermore, an engineered interplay between the Rashba and
Dresselhaus effects [43, 44] resulted in a spin relaxation time long comparing
to spin precession period and the dwell time.

3.3 Search for Solid-state Stern-Gerlach Effect

The ferromagnetic component of hybrid structures can also serve for the gen-
eration of a magnetic field. This field, if uniform, produces a spin selective
barrier that can serve as a local spin filter and detector. A non-homogenous
field, in turn, might induce spatial spin separation via the Stern-Gerlach (S-
G) mechanism. Figure 4(a) presents a micrograph of a Stern-Gerlach device,
whose design results from an elaborated optimization process [45]. A local
magnetic field was produced by NiFe (permalloy, Py) and cobalt (Co) films.
The micromagnets resided in deep groves on the two sides of the wire, so that
the 2D electron gas in the modulation-doped GaAs/AlGaAs heterostructure
was approximately at the center of the field, and the influence of the com-
peting Lorentz force was largely reduced. Hall magnetometry was applied in
order to visualize directly the magnetizing process of the two micromagnets
in question.

As shown in Fig. 5, a current increase in counters was detected when a field
gradient was produced by an appropriate cycle of the external magnetic field
at 100 mK. The range of magnetic fields where the enhancement was observed
corresponded to the the presence of the field gradient according to the Hall
magnetometry, which also showed that Py magnetization diminished almost
twofold prior to a change in the direction of the external magnetic field. This
effect, associated with the formation of closure domains in soft magnets,
explained why the current changes appeared before the field reversal. The
relative change ∆I of counter current depended on VG, ∆I/I increased from
0.5% at zero gate voltage to 50% close to the threshold. Furthermore, for VG

about −0.8 V ∆I was negative. It was checked that results presented in Fig. 5
were unaltered by increasing the temperature up to 200 mK and independent
of the magnetic field sweep rate.

Theoretical studies [45] of the results shown in Fig. 5 demonstrated that
semiconductor nanostructures of the kind shown in Fig. 4 can indeed serve
to generate and detect spin polarized currents in the absence of an external
magnetic field. Moreover, the degree and direction of spin polarization at
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Fig. 4: (a) Scanning electron micrograph of the spin-filter device. Fixed AC
voltage V0 is applied between emitter (E) and “counters” (1), (2); VG is the
DC gate voltage. The external in-plane magnetizing field (B‖) is oriented as
shown. (b) The in-plane magnetic field By (wider part of the channel is in
front) calculated for half-plane, 0.1 µm thick magnetic films separated by a
position dependent gap W (x) and magnetized in the same directions (satu-
ration magnetization as for Co). (c) By calculated for antiparallel directions
of micromagnet magnetizations. (d) Counter currents I1 and I2 as a func-
tion of the gate voltage at V0 = 100 µV and B‖ = 0; upper curve (shown in
gray) was collected during a different thermal cycle and after longer infra-red
illumination (after Wróbel et al. [45])

low electron densities can easily be manipulated by gate voltage or a weak
external magnetic field. While the results of the performed computations
suggest that the spin separation and thus Stern-Gerlach effect occurs un-
der experimental conditions in question, its direct experimental observation
would require incorporation of spatially resolved spin detection.
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4 Diluted Magnetic Semiconductors

4.1 Overview

This family of materials encompasses standard semiconductors, in which a
sizable portion of atoms is substituted by such elements, which produce local-
ized magnetic moments in the semiconductor matrix. Usually, magnetic mo-
ments originate from 3d or 4f open shells of transition metals or rare earths
(lanthanides), respectively, so that typical examples of diluted magnetic semi-
conductors (DMS) are Cd1−xCoxSe, Ga1−xMnxAs, Pb1−xEuxTe and, in a
sense, Si:Er. A strong spin-dependent coupling between the band and local-
ized states accounts for outstanding properties of DMS. This coupling gives
rise to spin-disorder scattering, giant spin-splittings of the electronic states,
formation of magnetic polarons, and strong indirect exchange interactions
between the magnetic moments, the latter leading to collective spin-glass,
antiferromagnetic or ferromagnetic spin ordering. Owing to the possibility
of controlling and probing magnetic properties by the electronic subsystem
or vice versa, DMS have successfully been employed to address a number of
important questions concerning the nature of various spin effects in various
environments and at various length and time scales. At the same time, DMS
exhibit a strong sensitivity to the magnetic field and temperature as well as
constitute important media for generation of spin currents and for manip-
ulation of localized or itinerant spins by, e.g., strain, light, electrostatic or
ferromagnetic gates. These properties, complementary to both non-magnetic
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semiconductors and magnetic metals, open doors for application of DMS as
functional materials in spintronic devices.

Extensive studies of DMS started in 70s, particularly in the group of
Robert R. Ga�la̧zka in Warsaw, when appropriately purified Mn was em-
ployed to grow bulk II-VI Mn-based alloys by various modifications of the
Bridgman method [46]. Comparing to magnetic semiconductors, such as Eu
chalcogenides (e.g., EuS) and Cr spinels (e.g., CdCr2Se4) investigated earlier
[47], DMS exhibited smaller defect concentrations and were easier to dope by
shallow impurities. Accordingly, it was possible to examine their properties
by powerful magnetooptical and magnetotransport techniques [12, 46, 48, 49].
Since, in contrast to magnetic semiconductors, neither narrow magnetic
bands nor long-range magnetic ordering affected low-energy excitations, DMS
were named semimagnetic semiconductors. More recently, research on DMS
have been extended toward materials containing magnetic elements other
than Mn as well as to III-VI, IV-VI [50] and III-V [51] compounds as well as
group IV elemental semiconductors and various oxides [52]. In consequence, a
variety of novel phenomena has been discovered, including effects associated
with narrow-bands and magnetic phase transformations, making the border-
line between properties of DMS and magnetic semiconductors more and more
elusive.

A rapid progress of DMS research in 90s stemmed, to a large extend,
from the development of methods of crystal growth far from thermal equilib-
rium, primarily by molecular beam epitaxy (MBE), but also by laser ablation.
These methods have made it possible to obtain DMS with the content of the
magnetic constituent beyond thermal equilibrium solubility limits [53]. Simi-
larly, the doping during MBE process allows one to increase substantially the
electrical activity of shallow impurities [54, 55]. In the case of III-V DMS [51],
in which divalent magnetic atoms supply both spins and holes, the use of the
low-temperature MBE (LT MBE) provides thin films of, e.g., Ga1−xMnxAs
with x up to 0.07 and the hole concentration in excess of 1020 cm−3, in which
ferromagnetic ordering is observed above 170 K [56]. Remarkably, MBE and
processes of nanostructure fabrication, make it possible to add magnetism to
the physics of semiconductor quantum structures. Particularly important are
DMS, in which ferromagnetic ordering was discovered, as discussed in some
details later on.

4.2 Magnetic Impurities in Semiconductors

A good starting point for the description of DMS is the Vonsovskii model,
according to which the electron states can be divided into two categories:
(i) localized magnetic d or f shells and (ii) extended band states built up of
s, p, and sometimes d atomic orbitals. The former give rise to the presence
of local magnetic moments and intra-center optical transitions. The latter
form bands, much alike as in the case of non-magnetic semiconductor alloys.
Indeed, the lattice constant of DMS obeys the Vegard low, and the energy
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gap Eg between the valence and the conduction band depends on x in a
manner qualitatively similar to non-magnetic counterparts. According to the
Anderson model, the character of magnetic impurities in solids results from
a competition between (i) hybridization of local and extended states, which
tends to delocalized magnetic electrons and (ii) the on-site Coulomb inter-
actions among the localized electrons, which stabilizes the magnetic moment
in agreement with Hund’s rule.

Figure 6 shows positions of local states derived from 3d shells of transi-
tion metal (TM) impurities in respect to the band energies of the host II-VI
and III-V compounds. In figure the levels labelled “donors” denote the ion-
ization energy of the magnetic electrons (TM2+ → TM3+ or dn → dn−1),
whereas the “acceptors” correspond to their affinity energy (TM2+ → TM1+

or dn → dn+1). The difference between the two is the on-d-shell Coulomb
(Hubbard) repulsion energy U in the semiconductor matrix. In addition, the
potential introduced by either neutral or charged TM can bind a band car-
rier in a Zhang-Rice-type singlet or hydrogenic-like state, respectively. Such
bound states are often experimentally important, particularly in III-V com-
pounds, as they correspond to lower energies than the competing d-like states,
such as presented in Fig. 6.

In the case of Mn, in which the d shell is half-filled, the d-like donor
state lies deep in the valence band, whereas the acceptor level resides high in
the conduction band, so that U ≈ 7 eV according to photoemission and in-
verse photoemission studies. Thus, Mn-based DMS can be classified as charge
transfer insulators, Eg < U . The Mn ion remains in the 2+ charge state,
which means that it does not supply any carriers in II-VI materials. How-
ever, it acts as a hydrogenic-like acceptor in the case of III-V antimonides
and arsenides, while the corresponding Mn-related state is deep, presumably
due to a stronger p-d hybridization, in the case of phosphides and nitrides.
According to Hund’s rule the total spin S = 5/2 and the total orbital momen-
tum L = 0 for the d5 shell in the ground state. The lowest excited state d∗5

corresponds to S = 3/2 and its optical excitation energy is about 2 eV. Thus,
if there is no interaction between the spins, their magnetization is described
by the paramagnetic Brillouin function. In the case of other transition met-
als, the impurity-induced levels may appear in the gap, and then compensate
shallow impurities, or even act as resonant dopant, e.g., Sc in CdSe, Fe in
HgSe or Cu in HgTe. Transport studies of such systems have demonstrated
that inter-site Coulomb interactions between charged ions lead to the Efros-
Shklovskii gap in the density of the impurity states, which makes resonant
scattering to be inefficient in semiconductors [59]. Furthermore, spin-orbit in-
teraction and Jahn-Teller effect control positions and splittings of the levels
in the case of ions with L �= 0. If the resulting ground state is a magnetically
inactive singlet there is no permanent magnetic moment associated with the
ion, the case of Fe2+, whose magnetization is of the Van Vleck-type at low
temperatures.
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4.3 Exchange Interaction Between Band and Localized Spins

The important aspect of DMS is a strong spin-dependent coupling of the effec-
tive mass carriers to the localized d electrons, first discovered in (Cd,Mn)Te
[60, 61] and (Hg,Mn)Te [62, 63]. Neglecting non-scalar corrections that can
appear for ions with L �= 0, this interaction assumes the Kondo form,

HK = −I(r − R(i))sS(i) , (1)
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where I(r − R(i)) is a short-range exchange energy operator between the
carrier spin s and the TM spin localized at R(i). When incorporated to the
kp scheme, the effect of HK is described by matrix elements 〈ui|I|ui〉, where
ui are the Kohn-Luttinger amplitudes of the corresponding band extreme. In
the case of carriers at the Γ point of the Brillouin zone in zinc-blende DMS,
the two relevant matrix elements α = 〈uc|I|uc〉 and β = 〈uv|I|uv〉 involve
s-type and p-types wave functions, respectively. There are two mechanisms
contributing to the Kondo coupling [48, 64, 65]: (i) the exchange part of the
Coulomb interaction between the effective mass and localized electrons; (ii)
the spin-dependent hybridization between the band and local states. Since
there is no hybridization between Γ6 and d-derived (eg and t2g) states in
zinc-blende structure, the s-d coupling is determined by the direct exchange.
The experimentally determined values are of the order of αNo ≈ 0.25 eV,
where No is the cation concentration, somewhat reduced comparing to the
value deduced from the energy difference between S ± 1 states of the free
singly ionized Mn atom 3d54s1, αNo = 0.39 eV. In contrast, there is a strong
hybridization between Γ8 and t2g states, which affects their relative position,
and leads to a large magnitude of |βNo| ≈ 1 eV. If the relevant effective mass
state is above the t2g level (the case of, e.g., Mn-based DMS), β < 0 but
otherwise β can be positive (the case of, e.g., Zn1−xCrxSe [66]).

4.4 Electronic Properties

Effects of Giant Spin Splitting

In the virtual-crystal and molecular-field approximations, the effect of the
Kondo coupling is described by HK = IM(r)s/gµB , where M(r) is magne-
tization (averaged over a microscopic region around r) of the localized spins,
and g is their Landé factor. Neglecting thermodynamic fluctuations of magne-
tization (the mean-field approximation) M(r) can be replaced by Mo(T,H),
the temperature and magnetic field dependent macroscopic magnetization of
the localized spins available experimentally. The resulting spin-splitting of
s-type electron states is given by

�ωs = g∗µBB + αMo(T,H)/gµB , (2)

where g∗ is the band Landé factor. The exchange contribution is known
as the giant Zeeman splitting, as in moderately high magnetic fields and
low temperatures it attains values comparable to the Fermi energy or to
the binding energy of excitons and shallow impurities. For effective mass
states, whose periodic part of the Bloch function contains spin components
mixed up by a spin-orbit interaction, the exchange splitting does not depend
only on the product of Mo and the relevant exchange integral, say β, but
usually also on the magnitude and direction of Mo, confinement, and strain.
Furthermore, because of confinement or non-zero k the Bloch wave function
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contains contributions from both conduction and valence band, which affects
the magnitude and even the sign of the spin splitting [49, 62, 63, 67]. The
giant Zeeman splitting is clearly visible in magnetooptical phenomena as well
as in the Shubnikov-de Haas effect, making an accurate determination of
the exchange integrals possible, particularly in wide-gap materials, in which
competing Landau and ordinary spin splittings are small.

The possibility of tailoring the magnitude of spin splitting in DMS struc-
tures offers a powerful tool to examine various phenomena. For instance, spin
engineering was explored to control by the magnetic field the confinement of
carriers and photons [68], to map atom distributions at interfaces [69] as well
as to identify the nature of optical transitions and excitonic states. Further-
more, a subtle influence of spin splitting on quantum scattering amplitude
of interacting electrons with opposite spins was put into evidence in DMS
in the weakly localized regime in 3D [33], 2D [70, 71], and 1D systems [72].
The redistribution of carriers between spin levels induced by spin splitting
was found to drive an insulator-to-metal transition [73] as well as to gener-
ate universal conductance fluctuations in DMS quantum wires [72]. Since the
spin splitting is greater than the cyclotron energy, there are no overlapping
Landau levels in modulation-doped heterostructures of DMS in the quantum
Hall regime in moderately strong magnetic fields. This made it possible to
test a scaling behavior of wave functions at the center of Landau levels [74].
At higher fields, a crossing of Landau levels occurs, so that quantum Hall
ferromagnet could be evidenced and studied [75]. At the same time, it has
been confirmed that in the presence of a strong spin-orbit coupling (e.g., in
the case of p-type wave functions) the spin polarization can generate a large
extraordinary (anomalous) Hall voltage [76]. Last but not least, optically [77]
and electrically controlled spin-injection [78] and filtering [79] were observed
in all-semiconductor structures containing DMS.

Spin-disorder Scattering

Spatial fluctuations of magnetization, disregarded in the mean-field ap-
proximation, lead to spin disorder scattering. According to the fluctuation-
dissipation theorem, the corresponding scattering rate in the paramagnetic
phase is proportional to Tχ(T ), where χ(T ) is the magnetic susceptibility
of the localized spins [12, 80]. Except to the vicinity of ferromagnetic phase
transitions, a direct contribution of spin-disorder scattering to momentum re-
laxation turns out to be small. In contrast, this scattering mechanism controls
the spin lifetime of effective mass carriers in DMS, as evidenced by studies of
universal conductance fluctuations [81], line-width of spin-flip Raman scat-
tering [80], and optical pumping efficiency [82]. Furthermore, thermodynamic
fluctuations contribute to the temperature dependence of the band gap and
band off-set. In the case when the total potential introduced by a magnetic
ion is grater than the width of the carrier band, the virtual crystal and mole-
cular field approximations break down, a case of the holes in Cd1−xMnxS.
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A non-perturbative scheme was developed [83, 84] to describe nonlinear de-
pendencies of the band gap on x and of the spin splitting on magnetization
observed in such situations.

4.5 Magnetic Polarons

Bound magnetic polaron (BMP), that is a bubble of spins ordered ferro-
magnetically by the exchange interaction with an effective mass carrier in
a localized state, modifies optical, transport, and thermodynamic proper-
ties of DMS. BMP is formed inside the localization radius of an occupied
impurity or quantum dot state but also around a trapped exciton, as the po-
laron formation time is typically shorter than the exciton lifetime [85]. The
BMP binding energy and spontaneous carrier spin-splitting are proportional
to the magnitude of local magnetization, which is built up by two effects:
the molecular field of the localized carrier and thermodynamic fluctuations
of magnetization [86, 87, 88, 12]. The fluctuating magnetization leads to de-
phasing and enlarges width of optical lines. Typically, in 2D and 3D systems,
the spins alone cannot localized itinerant carriers but in the 1D case the
polaron is stable even without any pre-localizing potential [83]. In contrast,
a free magnetic polaron – a delocalized carrier accompanied by a travelling
cloud of polarized spins – is expected to exist only in magnetically ordered
phases. This is because coherent tunnelling of quasi-particles dressed by spin
polarization is hampered, in disordered magnetic systems, by a smallness of
quantum overlap between magnetizations in neighboring space regions. In-
terestingly, theory of BMP can readily be applied for examining effects of the
hyperfine coupling between nuclear spins and carriers in localized states.

4.6 Exchange Interactions between Localized Spins

As in most magnetic materials, classical dipole-dipole interactions between
magnetic moments are weaker than exchange couplings in DMS. Direct d-d
or f-f exchange interactions, known from properties of magnetic dimmers,
are thought to be less important than indirect exchange channels. The lat-
ter involve a transfer of magnetic information via spin polarization of bands,
which is produced by the exchange interaction or spin-dependent hybridiza-
tion of magnetic impurity and band states. If magnetic orbitals are involved
in the polarization process, the mechanism is known as superexchange, which
is merely antiferromagnetic and dominates, except for p-type DMS. If fully
occupied band states are polarized by the sp-d exchange interaction, the
resulting indirect d-d coupling is known as the Bloembergen-Rowland mech-
anism. In the case of Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction,
the d-d coupling proceeds via spin polarization of partly filled bands, that is
by free carriers. Since in DMS the sp-d is usually smaller than the width of
the relevant band (weak coupling limit) as well as the carrier concentration is
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usually smaller than those of localized spins, the energetics of the latter can
be treated in the continuous medium approximation, an approach referred
here to as the Zener model. Within this model the RKKY interaction is fer-
romagnetic, and particularly strong in p-type materials, because of a large
magnitudes of the hole mass and exchange integral β. It worth emphasiz-
ing that the Zener model is valid for any ratio of the sp-d exchange energy
to the Fermi energy. Finally, in the case of systems in which magnetic ions
in different charge states coexist, hopping of an electron between magnetic
orbitals of neighboring ions in differing charge states tends to order them
ferromagnetically. This mechanism, doubted the double exchange, operates
in manganites but its relevance in DMS has not yet been found.

In general, the bilinear part of the interaction Hamiltonian for a pair of
spins i and j is described by a tensor Ĵ ,

Hij = −2S(i)Ĵ (ij)S(j) , (3)

which in the case of the coupling between nearest neighbor cation sites in the
unperturbed zinc-blende lattice contains four independent components. Thus,
in addition to the scalar Heisenberg-type coupling, Hij = −2J (ij)S(i)S(j),
there are non-scalar terms (e.g., Dzialoshinskii-Moriya or pseudo-dipole).
These terms are induced by the spin-orbit interaction within the magnetic
ions or within non-magnetic atoms mediating the spin-spin exchange. The
non-scalar terms, while smaller than the scalar ones, control spin-coherence
time and magnetic anisotropy. Typically, J (ij) ≈ −1 meV for nearest-
neighbor pairs coupled by the superexchange, and the interaction strength
decays fast with the pair distance. Thus, with lowering temperature more and
more distant pairs become magnetically neutral, Stot = 0. Accordingly, the
temperature dependence of magnetic susceptibility assumes a modified Curie
form, χ(T ) = C/T γ , where γ < 1 and both C and γ depend on the content of
the magnetic constituent x. Similarly, the field dependence of magnetization
is conveniently parameterized by a modified Brillouin function BS [89],

Mo(T,H) = SgµBNoxeffBS [SgµBH/kB(T + TAF )] , (4)

in which two x- and T -dependent empirical parameters, xeff < x and TAF >
0, describe the presence of antiferromagnetic interactions.

4.7 Magnetic Collective Phenomena

In addition to magnetic and neutron techniques [90], a variety of optical
and transport methods, including 1/f noise study of nanostructures [81],
have successfully been employed to characterize collective spin phenomena in
DMS. Undoped DMS belong to a rare class of systems, in which spin-glass
freezing is driven by purely antiferromagnetic interactions, an effect of spin
frustration inherent to the randomly occupied fcc sublattice. Typically, in
II-VI DMS, the spin-glass freezing temperature Tg increases from 0.1 K for
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x = 0.05 to 20 K at x = 0.5 according to Tg ∼ xδ, where δ ≈ 2, which
reflects a short-range character of the superexchange. For x approaching 1,
antiferromagnetic type III ordering develops, according to neutron studies.
Here, strain imposed by the substrate material–the strain engineering–can
serve to select domain orientations as well as to produce spiral structures
with a tailored period [91]. Particularly important is, however, the carrier-
density controlled ferromagnetism of bulk and modulation-doped p-type DMS
described next.

5 Properties of Ferromagnetic Semiconductors

5.1 Overview

Since for decades III-V semiconductor compounds have been applied as
photonic and microwave devices, the discovery of ferromagnetism first in
In1−xMnxAs [92] and then in Ga1−xMnxAs by Hideo Ohno and collabora-
tors in Sendai [93] came as a landmark achievement. In these materials, sub-
stitutional divalent Mn ions provide localized spins and function as acceptor
centers that provide holes which mediate the ferromagnetic coupling between
the parent Mn spins [94, 95, 96]. In another technologically important group
of semiconductors, in II-VI compounds, the densities of spins and carriers
can be controlled independently, similarly to the case of IV-VI materials, in
which hole-mediated ferromagnetism was discovered by Tomasz Story et al.
in Warsaw already in the 80s [97]. Stimulated by the theoretical predictions
of the present author [94], laboratories in Grenoble and Warsaw, led by late
Yves Merle d’Aubigné and the present author, joined efforts to undertake
comprehensive research dealing with carrier-induced ferromagnetism in II-
IV materials containing Mn. Experimental studies conducted with the use of
magnetooptical and magnetic methods led to the discovery of ferromagnetism
in 2D and [54] 3D II-VI materials [55] doped by nitrogen acceptors.

Guided by the growing amount of experimental results, the present author
and co-workers proposed a theoretical model of the hole-controlled ferromag-
netism in III-V, II-VI, and group IV semiconductors containing Mn [98, 99].
In these materials conceptual difficulties of charge transfer insulators and
strongly correlated disordered metals are combined with intricate properties
of heavily doped semiconductors, such as Anderson-Mott localization and
defect generation by self-compensation mechanisms. Nevertheless, the theory
built on Zener’s model of ferromagnetism and the Kohn-Luttinger kp theory
of the valence band in tetrahedrally coordinated semiconductors has quan-
titatively described thermodynamic, micromagnetic, transport, and optical
properties of DMS with delocalized or weakly localized holes [21, 98, 99, 100],
challenging competing theories. It is often argued that owing to these stud-
ies Ga1−xMnxAs has become one of the best-understood ferromagnets.
Accordingly, this material is now employed as a testing ground for various



20 T. Dietl

ab initio computation approaches to strongly correlated and disordered sys-
tems. Moreover, the understanding of the carrier-controlled ferromagnetic
DMS has provided a basis for the development of novel methods enabling
magnetization manipulation and switching.

5.2 p-d Zener Model

It is convenient to apply the Zener model of carrier-controlled ferromagnetism
by introducing the functional of free energy density, F [M(r)]. The choice of
the local magnetization M(r) as an order parameter means that the spins
are treated as classical vectors, and that spatial disorder inherent to magnetic
alloys is neglected. In the case of magnetic semiconductors F [M(r)] consists
of two terms, F [M(r)] = FS [M(r)] +Fc[M(r)], which describe, for a given
magnetization profile M(r), the free energy densities of the Mn spins in the
absence of any carriers and of the carriers in the presence of the Mn spins,
respectively. A visible asymmetry in the treatment of the carries and of the
spins corresponds to an adiabatic approximation: the dynamics of the spins
in the absence of the carriers is assumed to be much slower than that of
the carriers. Furthermore, in the spirit of the virtual-crystal and molecular-
field approximations, the classical continuous field M(r) controls the effect
of the spins upon the carriers. Now, the thermodynamics of the system is
described by the partition function Z, which can be obtained by a functional
integration of the Boltzmann factor exp(−

∫
drF [M(r)]/kBT ) over all mag-

netization profiles M(r) [87, 88]. In the mean-field approximation (MFA), a
term corresponding to the minimum of F [M(r)] is assumed to determine Z
with a sufficient accuracy.

If energetics is dominated by spatially uniform magnetization M , the spin
part of the free energy density in the magnetic field H can be written in the
form [101]

FS [M ] =
∫ M

0

dMoh(Mo) − MH . (5)

Here, h(Mo) denotes the inverse function to Mo(h), where Mo is the avail-
able experimentally macroscopic magnetization of the spins in the absence
of carriers in the field h and temperature T . In DMS, it is usually pos-
sible to parameterize Mo(h) by the Brillouin function that, according to
Eq. (4), takes the presence of intrinsic short-range antiferromagnetic interac-
tions into account. Near TC and for H = 0, M is sufficiently small to take
Mo(T, h) = χ(T )h, where χ(T ) is the magnetic susceptibility of localized
spins in the absence of carriers. Under these conditions,

FS [M ] = M2/2χ(T ) , (6)

which shows that the increase of FS with M slows down with lowering tem-
perature, where χ(T ) grows. Turning to Fc[M ] we note that owing to the
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giant Zeeman splitting of the bands proportional to M , the energy of the
carriers, and thus Fc[M ], decreases with |M |, Fc[M ] − Fc[0] ∼ −M2. Ac-
cordingly, a minimum of F [M ] at non-zero M may develop in H = 0 at
sufficiently low temperatures signalizing the appearance of a ferromagnetic
order.

The present authors and co-workers [98] found that the minimal hamil-
tonian necessary to describe properly effects of the complex structure of the
valence band in tetrahedrally coordinated semiconductors upon Fc[M ] is the
Luttinger 6 × 6 kp model supplemented by the p-d exchange contribution
taken in the virtual crystal and molecular field approximations,

Hpd = βsM/gµB . (7)

This term leads to spin splittings of the valence subbands, whose magnitudes
– owing to the spin-orbit coupling – depend on the hole wave vectors k in a
complex way even for spatially uniform magnetization M . It would be tech-
nically difficult to incorporate such effects to the RKKY model, as the spin-
orbit coupling leads to non-scalar terms in the spin-spin Hamiltonian. At the
same time, the indirect exchange associated with the virtual spin excitations
between the valence subbands, the Bloembergen-Rowland mechanism, is au-
tomatically included. The model allows for biaxial strain, confinement, and
was developed for both zinc blende and wurzite materials [99]. Furthermore,
the direct influence of the magnetic field on the hole spectrum was taken
into account. Carrier-carrier spin correlation was described by introducing a
Fermi-liquid-like parameter AF [54, 94, 96], which enlarges the Pauli suscep-
tibility of the hole liquid. No disorder effects were taken into account on the
ground that their influence on thermodynamic properties is relatively weak
except for strongly localized regime. Having the hole energies, the free energy
density Fc[M ] was evaluated according to the procedure suitable for Fermi
liquids of arbitrary degeneracy. By minimizing F [M ] = FS [M ]+Fc[M ] with
respect to M at given T , H, and hole concentration p, Mn spin magnetization
M(T,H) was obtained as a solution of the mean-field equation,

M(T,H) = xeffNogµBSBS [gµB(−∂Fc[M ]/∂M +H)/kB(T +TAF )] , (8)

where peculiarities of the valence band structure, such as the presence of var-
ious hole subbands, anisotropy, and spin-orbit coupling, are hidden in Fc[M ].
Near the Curie temperature TC and at H = 0, where M is small, we expect
Fc[M ] − Fc[0] ∼ −M2. It is convenient to parameterize this dependence by
a generalized carrier spin susceptibility χ̃c, which is related to the magnetic
susceptibility of the carrier liquid according to χ̃c = AF (g ∗µB)2χc. In terms
of χ̃c,

Fc[M ] = Fc[0] − AF χ̃cβ
2M2/2(gµB)2 . (9)

By expanding BS(M) for small M one arrives to the mean-field formula for
TC = TF − TAF , where TF is given by
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TF = xeffNoS(S + 1)AF χ̃c(TC)β2/3kB . (10)

For a strongly degenerate carrier liquid |εF |/kBT � 1, as well as ne-
glecting the spin-orbit interaction χ̃c = ρ/4, where ρ is the total density-
of-states for intra-band charge excitations, which in the 3D case is given by
ρ = m∗

DOSkF /π2
�

2. In this case and for AF = 1, TF assumes the well-known
form, derived already in 40s in the context of carrier-mediated nuclear ferro-
magnetism [102]. In general, however, χ̃c has to be determined numerically
by computing Fc[M ] for a given band structure and degeneracy of the carrier
liquid. The model can readily be generalized to various dimensions as well as
to the case, when M is not spatially uniform in the ground state.

The same formalism, in addition to TC and Mn magnetization M(T,H),
as discussed above, provides also quantitative information on spin polariza-
tion and magnetization of the hole liquid [99]. Furthermore, it can be ex-
ploited to describe chemical trends as well as micromagnetic, transport, and
optical properties of ferromagnetic DMS, the topics discussed in the subse-
quent sections.

5.3 Curie Temperature – Chemical Trends

Large magnitudes of both density of states and exchange integral specific
to the valence band make TF to be much higher in p-type than in n-type
materials with a comparable carrier concentration. Accordingly, in agree-
ment with theoretical evaluations [94], no ferromagnetic order was detected
above 1 K in n-(Zn,Mn)O:Al, even when the electron concentration exceeded
1020 cm−3 [103]. At the same time, theoretical calculations carried out with
no adjustable parameters explained satisfactorily the magnitude of TC in
both (Ga,Mn)As [98, 104] and p-type (Zn,Mn)Te [55]. Furthermore, theo-
retical expectations within the p-d Zener model are consistent with chemi-
cal trends in TC values observed experimentally in (Ga,Mn)Sb, (Ga,Mn)P,
(In,Mn)As, (In,Mn)Sb, (Ge,Mn), and p-(Zn,Be)Te though effects of hole lo-
calization [99, 55] preclude the appearance of a uniform ferromagnetic or-
der with a univocally defined TC value in a number of cases. In addition
to localization, a competition between long-range ferromagnetic interactions
and intrinsic short-range antiferromagnetic interactions [100], as described
by TAF > 0 and xeff < x, may affect the character of magnetic order [105].
It appears that the effect is more relevant in II-VI DMS than in III-V DMS
where Mn centers are ionized, so that the enhanced hole density at closely
lying Mn pairs may compensate antiferromagnetic interactions [98]. In both
groups of materials the density of compensating donor defects appear to grow
with the Mn concentration [95, 55]. In the case of (Ga,Mn)As the defect in-
volved is the Mn interstitial [106], which can be driven and passivated at the
surface be low temperature annealing [107].

According to evaluations carried out by the present author and co-workers
[98] room temperature ferromagnetism could be observed in a weakly com-



Semiconductor Spintronics 23

pensated (Ga,Mn)As containing at least 10% of Mn. At the same time,
because of stronger p-d hybridization in wide band-gap materials, such as
(Ga,Mn)N and (Zn,Mn)O, TC > 300 K is expected already for x = 5%, pro-
vided that the hole concentration would be sufficiently high. However, it was
clear from the beginning [98] that the enhancement of the hole binding energy
by p-d hybridization as well as a limited solubility of magnetic constituent
together with the effect of self-compensation may render the fabrication of
high temperature ferromagnetic DMS challenging. Nevertheless, a number of
group has started the growth of relevant systems, the effort stimulated even
further by a number of positive results as well as by numerous theoretical
papers suggesting, based on ab initio computations, that high temperature
ferromagnetism is possible in a large variety of DMS even without band
holes. Today, however, a view appears to prevail that the high temperature
ferromagnetism, as evidenced by either magnetic, magnetotransport or mag-
netooptical phenomena, results actually from the presence of precipitates of
known or so-far unknown ferromagnetic or ferrimagnetic nanocrystals con-
taining a high density of magnetic ions. At the same time, it becomes more
and more clear that the ab initio computations in question suffered from im-
proper treatment of correlation and disorder, which led to an overestimation
of tendency towards a ferromagnetic order. It seems at the end that, as argued
initially [94, 98], the delocalized or weakly localized holes are necessary to
stabilize a long-range ferromagnetic order in tetrahedrally coordinated DMS
with a small concentration of randomly distributed magnetic ions.

5.4 Micromagnetic Properties

Magnetic Anisotropy

As the energy of dipole-dipole magnetic interactions depends on the dipole
distribution, there exists the so-called shape anisotropy. In particular, for thin
films, the difference in energy density corresponding to the perpendicular and
in-plane orientation of magnetization M is given by

E = µoM
2/2 , (11)

which leads to the anisotropy field µoHA = µoM of about 60 mT for
Ga0.95Mn0.05As.

Already early studies of the ferromagnetic phase in (In,Mn)As [108] and
(Ga,Mn)As [109] demonstrated the existence of magnetic anisotropy, whose
character and magnitude implied a sizable contribution of a microscopic ori-
gin. Magneto-crystalline anisotropy is usually associated with the interaction
between spin and orbital degrees of freedom of the magnetic ion d-electrons.
According to the model advocated here, these electrons are in the d5 configu-
ration. For such a case the orbital momentum L = 0, so that effects stemming
from the spin-orbit coupling are expected to be rather weak. It was, however,
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Fig. 7: Experimental (full points) and computed values (thick lines) of the
ratio of the reorientation to Curie temperature for the transition from perpen-
dicular to in-plane magnetic anisotropy. Dashed lines mark expected temper-
atures for the reorientation of the easy axis between 〈100〉 and 〈110〉 in-plane
directions (after Sawicki et al. [111])

been noted that the interaction between the localized spins is mediated by
the holes that have a non-zero orbital momentum l = 1 [98]. An important
aspect of the p-d Zener model is that it does take into account the anisotropy
of the carrier-mediated exchange interaction associated with the spin-orbit
coupling in the host material [98, 99, 110].

A detail theoretical analysis of anisotropy energies and anisotropy fields
in films of (Ga,Mn)As was carried out for a number of experimentally im-
portant cases within the p-d Zener model [99, 110]. In particular, the cu-
bic anisotropy as well as uniaxial anisotropy under biaxial epitaxial strain
were examined as a function of the hole concentration p. Both shape and
magneto-crystalline anisotropies were taken into account. The perpendicular
and in-plane orientation of the easy axis is expected for the compressive and
tensile strain, respectively, provided that the hole concentration is sufficiently
small. However, according to theory, a reorientation of the easy axis direction
is expected at higher hole concentrations. Furthermore, in a certain concen-
tration range the character of magnetic anisotropy is computed to depend
on the magnitude of spontaneous magnetization, that is on the temperature.
The computed phase diagram for the reorientation transition compared to
the experimental results for a film is shown in Fig. 7. In view that theory
is developed with no adjustable parameters the agreement between experi-
mental and computed concentrations and temperature corresponding to the
reorientation transition is very good. Furthermore, the computed magnitudes
of the anisotropy field Hu [99] are consistent with the available findings for
both compressive and tensile strain.
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According to the discussion above, the easy axis assumes the in-plane
orientation for typical carrier concentrations in the most thoroughly studied
system (Ga,Mn)As/GaAs. In this case the easy axis is expected to switch
between 〈100〉 and 〈110〉 in-plane cubic directions as a function of p [99, 110].
Surprisingly, however, only the 〈100〉 biaxial magnetic symmetry has so-far
been observed in films of (Ga,Mn)As/GaAs at low temperatures. Neverthe-
less, the corresponding in-plane anisotropy field assumes the expected mag-
nitude, of the order of 0.1 T, which is typically much smaller than that corre-
sponding to the strain-induced energy of magnetic anisotropy. It is possible
that anisotropy of the hole magnetic moment, neglected in the theoretical
calculations [99, 110], stabilizes the 〈100〉 orientation of the easy axis.

In addition to the cubic in-plane anisotropy, the accumulated data for
both (Ga,Mn)As/GaAs and (In,Mn)As/(In,Al)As point to a non-equivalence
of [110] and [−110] directions, which leads to the in-plane uniaxial magnetic
anisotropy. Such a uniaxial anisotropy is not expected for D2d symmetry of
a Td crystal under epitaxial strain [112, 113]. Furthermore, the magnitude
of the corresponding anisotropy field appears to be independent of the film
thickness [114], which points to a puzzling symmetry breaking in the film
body.

Magnetic Stiffness and Domain Structure

Another important characteristics of any ferromagnetic system is magnetic
stiffness A, which describes the energy penalty associated with the local twist-
ing of the direction of magnetization. Remarkably, A determines the mag-
nitude and character of thermodynamic fluctuations of magnetization, the
spectrum of spin excitations as well as the width and energy of domain walls.
An important result is that the magnetic stiffness computed within the 6× 6
Luttinger model is almost by a factor of 10 greater than that expected for a
simple spin degenerate band with the heave-hole band-edge mass [115]. This
enhancement, which stabilizes strongly the spatially uniform spin ordering,
stems presumably from p-like symmetry of the valence band wave functions,
as for such a case the carrier susceptibility (the Lindhard function) decreases
strongly with q [116].

The structure of magnetic domains in (Ga,Mn)As under tensile strain has
been determined by micro-Hall probe imaging [117]. The regions with magne-
tization oriented along the [001] and [00-1] easy axis form alternating stripes
extending in the [110] direction. As shown in Fig. 8, the experimentally deter-
mined stripe width is W = 1.5 µm at 5 K for 0.2 µm film of Ga0.957Mn0.043As
on Ga0.84In0.16As, for which tensile strain of εxx = 0.9% is expected. Accord-
ing to micromagnetic theory, W is determined by the ratio of the domain wall
energy to the stray field energy. As shown in Fig. 8, the computed value with
no adjustable parameters W = 1.1 µm [118] compares favorably with the
experimental finding, W = 1.5 µm at low temperatures. However, the model
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Fig. 8: Temperature dependence of the width of domain stripes as measured
by Shono et al. [117] for the Ga0.957Mn0.043As film with the easy axis along
the growth direction (full squares). Computed domain width is shown by the
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predicts much weaker temperature dependence of W than that observed ex-
perimentally, which was linked [118] to critical fluctuations, disregarded in
the mean-field approach.

5.5 Optical Properties

Magnetic Circular Dichroism

Within the Zener model, the strength of the ferromagnetic spin-spin interac-
tion is controlled by the k ·p parameters of the host semiconductor and by the
magnitude of the spin-dependent coupling between the effective mass carriers
and localized spins. In the case of II-VI DMS, detailed information on the ex-
change-induced spin-splitting of the bands, and thus on the coupling between
the effective mass electrons and the localized spins has been obtained from
magnetooptical studies [12]. A similar work on (Ga,Mn)As [119, 120, 121]
led to a number of surprises. The most striking was the opposite order of
the absorption edges corresponding to the two circular photon polarizations
in (Ga,Mn)As comparing to II-VI materials. This behavior of circular mag-
netic dichroism (MCD) suggested the opposite order of the exchange-split
spin subbands, and thus a different origin of the sp-d interaction in these
two families of DMS. A new light on the issue was shed by studies of pho-
toluminescence (PL) and its excitation spectra (PLE) in p-type (Cd,Mn)Te
quantum wells [54]. As shown schematically in Fig. 9, the reversal of the order
of PLE edges corresponding to the two circular polarizations results from the
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Fig. 9: Photoluminescence excitation spectra (PLE), that is the photolumi-
nescence (PL) intensity as a function of the excitation photon energy in-
tensity, for σ+ (solid lines) and σ− (dotted lines) circular polarizations at
selected values of the magnetic field in a modulation-doped p-type quantum
well of Cd0.976Mn0.024Te at 2 K. The photoluminescence was collected in σ+

polarization at energies marked by the narrowest features. The sharp max-
imum (vertical arrow) and step-like form (horizontal arrow) correspond to
quasi-free exciton and transitions starting at the Fermi level, respectively.
Note reverse ordering of transition energies at σ+ and σ− for PL and PLE
(the latter is equivalent to optical absorption). The band arrangement at
150 Oe is sketched in the inset (after Haury et al. [54])

Moss-Burstein effect, that is from the shifts of the absorption edges associated
with the empty portion of the valence subbands in the p-type material.

The above model was subsequently applied to interpret the magnetoab-
sorption data for metallic (Ga,Mn)As [99, 120]. More recently, the theory
was extended by taking into account the effect of scattering-induced mixing
of k states [122]. As shown in Fig. 10, this approach explains the slop of the
absorption edge as well as its field-induced splitting assuming the value of
the p-d exchange energy βN0 = −1 eV.

Recently, the formalisms suitable for description of either interband [99]
or intraband [123] optical absorption were combined [124] in order to examine
theoretically optical (dynamic) conductivity in the whole spectral range up to
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Fig. 10: Transmission of Ga0.968Mn0.032As film for two circular light polar-
izations in the Faraday configuration in the absence of the magnetic field
(data shifted up for clarity) and in 5 T at 2 K (points) [120]. Solid lines
are calculated for the hole concentration p = 7×1019 cm−3, exchange energy
N0β = −1 eV, and allowing for scattering-induced breaking of the k selection
rules [122]

2 eV. Furthermore a possible presence of optical absorption involving defect
states was taken into account. In this way, the most general quantitative the-
ory of optical and magnetoptical effects in magnetic semiconductors available
to date was worked out. A good quantitative description of experimental data
[125, 126] was obtained verifying the model. However, some discrepancies in
the low photon energy range were detected, which confirmed the presence of
quantum localization effects. At the same time, a disagreement in the high
energy region pointed to the onset of intra-d band transitions. The Faraday
and Kerr rotations were also computed showing a large magnitude and a
complex spectral dependence in the virtually whole studied photon energy
range up to 2 eV, which suggests a suitability of this material family for
magnetooptical applications.

5.6 Charge Transport Phenomena

Hall Effect in Ferromagnetic Semiconductors – Theory

The assessment of magnetic characteristics by means of magnetotransport
studies is of particular importance in the case of thin films of diluted magnets,
in which the magnitude of the total magnetic moment is typically small. For
this reason, recent years have witnessed a renewed interest in the nature
of the anomalous Hall effect (AHE), which–if understood theoretically–can
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serve to determine the magnitude of magnetization. Also magnetoresistance,
to be discussed later on, provides information on the magnetism and on the
interplay between electronic and magnetic degrees of freedom.

The Hall resistance RHall ≡ ρyx/d of a film of the thickness d is empiri-
cally known to be a sum of ordinary and anomalous Hall terms in magnetic
materials [127],

RHall = R0µoH/d + RSµoM/d . (12)

Here, R0 and RS are the ordinary and anomalous Hall coefficients, respec-
tively (R0 > 0 for the holes), and M(T,H) is the component of the mag-
netization vector perpendicular to the sample surface. While the ordinary
Hall effect serves to determine the carrier density, the anomalous Hall effect
(known also as the extraordinary Hall effect) provides valuable information
on magnetic properties of thin films. The coefficient RS is usually assumed
to be proportional to Rα

sheet, where Rsheet(T,H) is the sheet resistance and
the exponent α depends on the mechanisms accounting for the AHE.

If the effect of stray magnetic fields produced by localized magnetic mo-
ments were been dominating, RS would scale with magnetization M but
would be rather proportional to R0 than to Rsheet. There is no demagnetiza-
tion effect in the magnetic field perpendicular to the surface of a uniformly
magnetized film, B = µoH. However, this is no longer the case in the pres-
ence of magnetic precipitates, whose stray fields and AHE may produce an
apparent magnetization-dependent contribution the host Hall resistance.

When effects of stray fields can be disregarded, spin-orbit interactions
control totally RS . In such a situation α is either 1 or 2 depending on the
origin of the effect: the skew-scattering (extrinsic) mechanism, for which the
Hall conductivity is proportional to momentum relaxation time τ , results in
α ≈ 1 [127]. From the theory point of view particularly interesting is the
intrinsic mechanism for the Hall conductivity σAH = RSM/(Rsheetd)2] does
not depend explicitly on scattering efficiency but only on the band structure
parameters [21, 128, 129].

For both extrinsic and intrinsic mechanisms, the overall magnitude of the
anomalous Hall resistance depends on the strength of the spin-orbit interac-
tion and spin polarization of the carriers at the Fermi surface. Accordingly,
at given magnetization M , the effect is expected to be much stronger for
the holes than for the electrons in tetrahedrally coordinated semiconductors.
For the carrier-mediated ferromagnetism, the latter is proportional to the
exchange coupling of the carriers to the spins, and varies – not necessarily
linearly – with the magnitude of spin magnetization M . Additionally, the
skew-scattering contribution depends on the asymmetry of scattering rates
for particular spin subbands, an effect which can depend on M in a highly
nontrivial way. Importantly, the sign of either of the two contributions can
be positive or negative depending on a subtle interplay between the orienta-
tions of orbital and spin momenta as well as on the character (repulsive vs.
attractive) of scattering potentials.
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Recently, Jungwirth et al. [129] developed a theory of the intrinsic AHE
in p-type zinc-blende magnetic semiconductors, and presented numerical re-
sults for the case of (Ga,Mn)As, (In,Mn)As, and (Al,Mn)As. The derived
formula for σAH corresponds to that given earlier [128, 130, 131] in the weak
scattering limit. The intrinsic AHE can also be regarded as a zero-frequency
limit of σxy(ω), where σ(ω) is the dynamic (optical) conductivity tensor,
related directly the Kerr effect, widely studied in experimentally and theo-
retically in ferromagnetic metals [132]. For the hole concentration p such that
the Fermi energy is much smaller than the spin-orbit splitting ∆o but larger
than the exchange splitting h between the majority jz = −3/2 and minority
jz = +3/2 bands at k = 0, ∆o � |εF | � h, Jungwirth et al. [129] predict
within the 4 × 4 spherical Luttinger model

σin
AH = e2hmhh/[4π2

�
3(3πp)1/3] . (13)

Here the heavy hole mass mhh is assumed to be much larger than the light
hole mass mlh, whereas σin

AH becomes by the factor of 24/3 greater in the
opposite limit mhh = mlh. In the range h 
 |εF | 
 ∆o the determined value
of σin

AH is positive, that is the coefficients of the normal and anomalous Hall
effects are expected to have the same sign. However, if the Fermi level were
approached the split-off Γ7 band, a change of sign would occur.

A formula for σin
AH was also derived [133] from 4 of Jungwirth et al.

[129]), employing the known form of the heavy hole Bloch wave functions
uk,jz

[116]. Neglecting a small effect of the spin splitting on the heavy hole
wave functions, σin

AH was found to be given by the right hand side of 14
multiplied by the factor (16/9) ln 2 − 1/6 ≈ 1.066 [133].

In order to evaluate the ratio of intrinsic and skew-scattering mechanisms,
the general theory of the AHE effect in semiconductors [128, 129, 130, 131]
was applied [15]. Assuming that scattering by ionized impurities dominates,
this ratio is then given by [131, 134, 135],

σin
AH

σss
AH

= ±f(ξ)(NA + ND)/(prskF �) . (14)

Here, f(ξ) ≈ 10 is a function that depends weakly on the screening di-
mensionless parameter ξ; (NA + ND)/p is the ratio of the ionized impurity
and carrier concentrations; rs is the average distance between the carriers in
the units of the effective Bohr radius, and � is the mean free path. Similarly,
for spin-independent scattering by short range potentials, V (r) = V δ(r−ri)
[130] was applied [133]. Assuming that scattering by ionized impurities is
negligible,

σin
AH

σss
AH

= −3/[πV ρ(εF )kF �] , (15)

where ρ(εF ) is the density of states at the Fermi level. Of course, the overall
sign depends on the sign of the scattering potential V .
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In order to find out which of the two AHE mechanisms operates predomi-
nantly in p-type tetrahedrally coordinated ferromagnetic semiconductors, we
note that scattering by ionized impurities appears to dominate in these heav-
ily doped and compensated materials. This scattering mechanism, together
with alloy and spin disorder scattering, limits presumably the hole mobility
and leads ultimately to the metal-to-insulator transition (MIT). Since at the
MIT rs ≈ 2 and kF � ≈ 1 one expects from 15 that as long as the holes re-
main close to the localization boundary the intrinsic mechanism accounts for
the AHE. It would be interesting to know how quantum localization correc-
tions affect the anomalous Hall conductivity as well as how to extend theory
towards the insulator side of the MIT. A work in this direction was reported
[136].

Obviously, the presence of the AHE makes a meaningful determination of
the carrier type and density difficult in ferromagnetic semiconductors. Usu-
ally, the ordinary Hall effect dominates only in rather high magnetic fields or
at temperatures several times larger than TC . It appears, therefore, that a
careful experimental and theoretical examination of the resistivity tensor in
wide field and temperature ranges is necessary to separate characteristics of
the spin and carrier subsystems.

Comparison Between Theoretical and Experimental Results

As mentioned above, because of the dominance of the anomalous Hall term in
wide temperature and field ranges, it is not straightforward to determine the
carrier type and concentration in ferromagnetic semiconductors. Only at low
temperatures and under very high fields, the anomalous Hall term saturates,
so that the ordinary Hall coefficient can be determined from the remaining
linear change of the Hall resistance in the magnetic field. Note that although
magnetization saturates in relatively low magnetic fields, the negative MR
usually persists, and generates the field dependence of the anomalous Hall
coefficient.

Magnetotransport data collected for (Ga,Mn)As in a wide temperature
and field ranges [95, 137] were exploited to test the theory of the AHE [129].
The results of such a comparison are shown in Fig. 11. There is a good
agreement between the theoretical and experimental magnitude of the Hall
conductivity. Importantly, no significant contribution from skew scattering
is expected for the (Ga,Mn)As sample in question [137], for which (NA +
ND)/p ≈ 5, rs ≈ 1.1, and kF � ≈ 0.8, so that σin

AH/σss
AH ≈ 57.

Another material for which various contributions to Hall resistance were
analyzed is Zn0.981Mn0.019Te:N containing 1.2× 1020 holes per cm3 [133]. In
Fig. 12, ρyx/ρxx − µB, i.e., the spin dependent Hall angle, is compared to
the magnetization measured in a vibrating sample magnetometer [138] for
this film. The normal Hall angle µB = µµoH was subtracted assuming a
constant hole mobility µ i.e., assigning the conductivity changes entirely to
variations in the hole concentration. This assumption is not crucial for the
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Fig. 11: Full numerical simulations of the anomalous Hall conductivity σAH

for GaAs host with hole densities p = 1020, (dotted lines), 2 × 1020 (dashed
lines), and 3.5 × 1020 cm−3 (solid lines). Filled circle represents measured
Hall conductivity (Fig. 2). The saturation mean-field value of the splitting
h between Γ8 heavy hole subbands was estimated from nominal sample pa-
rameters. Horizontal error bar corresponds to the experimental uncertainty
of the p−d exchange integral. Experimental hole density in the (Ga,Mn)As
sample is 3.5 × 1020 cm−3 (after Jungwirth et al. [129])

present highly doped sample, but it proves to be less satisfactory for the
less doped samples. As shown in Fig. 12, a reasonable agreement is found by
taking,

ρyx/ρxx = µB + ΘM/MS , (16)

where MS is the saturation value of magnetization and Θ = 0.04 is the
adjustable parameter. For the sample in question, the maximum value of
hole polarization, (pup − pdown)/(pup + pdown), has been estimated to be of
the order of 10% [138].

Here, similarly to the case of (Ga,Mn)As, the sign and magnitude of the
anomalous Hall coefficient indicated that the intrinsic mechanism is involved.
The value of Θ was evaluated theoretically from 13 by adopting parameters
suitable for the sample in question, mhh = 0.6mo, ρxx = 5 × 10−3 Ωcm
and the saturation value of the splitting h = 41 meV. This leads to σin

AH =
13.1 (Ωcm)−1 and Θin = 0.065 [133], in a reasonable agreement with the
experimental value Θ = 0.04. Since a contribution from the light hole band
will enhance the theoretical value, it was concluded [133] that the present
theory describes the anomalous hole effect within the factor of about two.

It is important to note that there exist several reasons causing that the
Hall effect and direct magnetometry can provide different information on
magnetization. Indeed, contrary to the standard magnetometry, the AHE
does not provide information about the magnetization of the whole samples
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Fig. 12: Comparison of the normalized anomalous Hall effect (lines) with the
normalized magnetization M/MS (crosses); from top to bottom: 1.7, 2.8, 4.2,
7, 10, 30, and 50 K; the data are shifted for clarity (after [138])

but only about its value in regions visited by the carriers. Near the metal-
insulator boundary, especially when the compensation is appreciable, the car-
rier distribution is highly non-uniform. In the regions visited by the carriers
the ferromagnetic interactions are strong, whereas the remaining regions may
remain paramagnetic. Under such conditions, magnetotransport and direct
magnetic measurements will provide different magnetization values [98]. In
particular, MS at T → 0, as seen by a direct magnetometry, can be much
lower than that expected for a given value of the magnetic ion concentration.
High magnetic fields are then necessary to magnetize all localized spins. The
corresponding field magnitude is expected to grow with the temperature and
strength of antiferromagnetic interactions that dominate in the absence of
the holes.

Anisotropic Magnetoresistance and Planar Hall Effect

In cubic materials the conductivity tensor is diagonal in the absence of an ex-
ternal magnetic field. However, non-zero values of strain make the resistance
to depend on the orientation of current in respect to crystallographic axes.
Furthermore, the spin-orbit interaction accounts for anisotropic magnetore-



34 T. Dietl

sistance (AMR), that is the dependence of resistance on the angle between the
current and magnetization, an effect particularly useful for position sensing
in engines. Under these conditions, even if magnetization remains in-plane
the resistivity tensor may assume a non-diagonal form. This leads to the ap-
pearance of a Hall voltage, a phenomenon known as the planar Hall effect
(PHE) [139]. The information on the orientation of in-plane magnetization,
which can be obtained from AMR and PHE is, thus, complementary to that
provided by AHE which is sensitive only to the perpendicular component
of magnetization. In particular, AMR and PHE can trace the character of
in-plane magnetization reorientation at the coercive field and serve to deter-
mine the corresponding anisotropy fields. Last but not least, AMR and PHE
are sensitive probe of spin anisotropy at the Fermi surface associated with
the strain and spin-orbit interaction for non-zero magnetization. The corre-
sponding theory of AMR was developed by Jungwirth et al. [140] within the
Drude-Boltzmann formulation of charge transport in solids.

To test the theoretical predictions concerning effects of biaxial strain upon
AMR, (Ga,Mn)As samples under compressive and tensile strain were studied
for longitudinal and two perpendicular orientations of the magnetic field in
respect to electric current [141]. As show in Fig. 13, above 0.5 T, negative
magnetoresistance is observed, whose magnitude is virtually independent of
experimental configuration. However, the absolute value of resistance ρ in
this range depends on the field direction, which is the signature of AMR.
These data provide information on processes of the field-induced rotation of
magnetization for various orientations of the field in respect to crystal and
easy axes. In particular, the values of the field corresponding to the resistance
maxima are expected to be of the order of the anisotropy field.

If only spin-orbit effects were controlled AMR, its magnitude would de-
pend only on the angle between the current and field directions. Accord-
ing to Fig. 13, this is not the case since AMR depends also on the di-
rections of the field and current in respect to crystal axes. It is conve-
nient to introduce AMRop = [ρxx(H ‖ x) − ρxx(H ‖ y)]/ρxx(H ‖ y) and
AMRop = [ρxx(H ‖ x) − ρxx(H ‖ z)]/ρxx(H ‖ z), where the current and
growth directions are denoted by x and z, respectively, and ρxx is the lon-
gitudinal resistivity. Importantly, the sign and order of magnitude of AMR
is consistent with theoretical expectations [140, 142]. In particular, the pre-
dicted difference in sign of AMRop−AMRip in the case of compressive and
tensile strain is corroborated by the data. On the other hand, the dependence
of AMRop and AMRip at given strain on the current direction appears as chal-
lenging. It may result from the lowering of the symmetry of the (Ga,Mn)As
films from the expected D2d to C2v, as discussed in Sect. 3.

Particularly intriguing are hysteretic resistance jumps observed for sam-
ples under compressive strain and for the field pointing along the growth
direction. We assign this effect to a large ratio of the anisotropy and coercive
fields, which makes that even a rather small misalignment, and thus a minute
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Fig. 13: Left panel : Field-induced changes in resistance of
Ga0.95Mn0.05As/GaAs (compressive strain) lower panel : current along
[110]; middle panel : current along [100]) and of Ga0.957Mn0.043As/(In,Ga)As
under tensile strain (lower panel, current along 〈110〉) for three orientations of
the magnetic field in respect to current direction at 2 K. Right panel : field and
temperature dependencies of resistance in Ga0.95Mn0.05As/GaAs (compres-
sive strain, upper panel) and in tensile strained Ga0.957Mn0.043As/(In,Ga)As
(lower panel) for magnetic field perpendicular to the film plane. Starting
from up, subsequent curves at H = 0 correspond to temperatures in K: 70,
60, 80, 50, 90, 40, 100, 30, 125, 20, 2, 5, 10, 150, 200, 300 (upper panel)
and to 50, 60, 40, 70, 30, 80, 90, 20, 100, 2, 10, 5, 125, 150, 200, 300 (lower
panel). The thick solid lines superimposed on 2 K data in positive magnetic
field side show Kawabata’s theory predictions (after Matsukura et al. [141])

in-plane field, can result in magnetization switching between in-plane easy
directions. These results provide, therefore, information on resistance values
in a demagnetized state for the studied current directions.

Low and High Field Magnetoresistance

Apart from AMR, there is a number of other effects that can produce a siz-
able magnetoresistance in magnetic semiconductors, especially in the vicin-
ity of the localization boundary [12], where quantum corrections to Drude-
Boltzmann conductivity become important. In particular, carrier diffusion in
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the molecular field of randomly oriented spin clusters that form above TC

shifts the metal-to-insulator transition towards higher carrier concentrations
[71]. The resulting temperature dependent localization may lead to a resis-
tance maximum at TC , which will be destroyed by the magnetic field. This
accounts presumably for the field and temperature dependence of resistivity
near TC visible clearly in Fig. 13.

However, the negative magnetoresistance hardly saturates even in rather
strong magnetic fields, and occurs also at low temperatures, where the spins
are fully ordered ferromagnetically according to the Hall effect data. This
surprising observation was explained by the present author and co-workers
[133, 141] in terms of weak localization orbital magnetoresistance. Indeed, in
the regime in question the giant splitting of the valence band makes both spin-
disorder and spin-orbit scattering relatively inefficient. Under such conditions,
weak localization magnetoresistance can show up at low temperatures, where
phase breaking scattering ceases to operate. According to Kawabata [143],

�ρ/ρ ≈ −�σ/σ = −nve2Co(e/�B)1/2/(2π2
�) , (17)

where Co = 0.605, σ is the conductivity, and 1/2 ≤ nv ≤ 2 depending on
whether one or all four hole subbands contribute to the charge transport. For
the samples under compressive and tensile strain, the above formula gives
�ρ/ρ = −0.13nv and −0.25nv, respectively at B = 9 T. These values are
to be compared to experimental data of Fig. 13, �ρ/ρ = −0.09 and -0.14
at 2 K. The fitting to Eq. (17) reproduces the data at 2 K quite well (thin
solid lines in Fig. 13 and gives nv = 1.46 and 0.82 for the compressive and
tensile samples, respectively, as could be expected for ferromagnetic films of
(Ga,Mn)As. Since negative magnetoresistance takes over above Bi ≈ 1 T,
we can evaluate a lower limit for the spin-disorder scattering time, τs =
m ∗ /(eBikF l) = 8 ps for the hole effective mass m∗ = 0.7mo and kF l = 0.5,
where kF the Fermi momentum and l the mean free path.

5.7 Spin Transport Phenomena

To this category belongs a number of effects observed in heterostructures of
(Ga,Mn)As, and important for perspective spintronic devices, such as spin
injection of holes [144, 145] and electrons in the Zener diode [146, 147], giant
magnetoresistance (GMR) [148], tunnelling magnetoresistance (TMR) [149,
150, 151], tunnelling anisotropic magnetoresistance (TAMR) [152, 153], and
domain wall resistance [154, 155].

Since in most semiconductor spin transport devices the relevant length
scale is shorter that the phase coherence length, a formulation of theory in
terms of the Boltzmann distribution function f is not valid. Recently, theory
that combines an empirical tight-binding approach with a Landauer-Büttiker
formalism was developed [156, 157]. In contrast to the standard kp method,
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this theory describes properly the interfaces and inversion symmetry break-
ing as well as the band dispersion in the entire Brillouin zone, so that the
essential for the spin-dependent tunnelling Rashba and Dresselhaus terms as
well as the tunnelling via k points away from the zone center are taken into
account. This approach [156, 157], developed with no adjustable parameters,
explained experimentally observed large magnitudes of both electron current
spin polarization up to 70% in the (Ga,Mn)As/n-GaAs Zener diode [158] and
TMR of the order of 300% in a (Ga,Mn)As/GaAs/(Ga,Mn)As trilayer struc-
ture [151]. Furthermore, theory reproduced a fast decrease of these figures
with the device bias as well as it indicated that the magnitude of TAMR
should not exceed 10% under usual strain conditions.

5.8 Methods of Magnetization Manipulation

Since magnetic properties are controlled by band holes, an appealing possi-
bility is to influence the magnetic ordering isothermally, by light or by the
electric field, which affect the carrier concentration in semiconductor struc-
tures. Such tuning capabilities of the materials systems in question were
put into the evidence in (In,Mn)As/(Al,Ga)Sb [159, 160] and modulation
doped p-(Cd,Mn)Te/(Cd,Mg,Zn)Te [54, 161] heterostructures, as depicted in
Figs. 14 and 15. Actually, these findings can be quantitatively interpreted by
considering the effect of the electric field or illumination on the hole density
under stationary conditions and, therefore, on the Curie temperature in the
relevant magnetic layers. Interestingly, according to experimental findings
and theoretical modelling, photocarriers generated in II-VI systems by above
barrier illumination destroy ferromagnetic order in the magnetic quantum
well residing in an undoped (intrinsic) region of a p-i-p structure [54, 161]
but they enhance the magnitude of spontaneous magnetization in the case of
a p-i-n diode [161], as shown in Fig. 15.

Another method of magnetization manipulation, suitable for low-power
switching of bits in magnetic memories, was invoked by Luc Berger [162] and
John Slonczewski [163], who considered since dozen of years magnetization
reversal by a transfer of spin momentum from the current of spin polarized
carriers to localized magnetic moments in ferromagnetic metals. In the case
of semiconductors, the current-induced magnetization reversal was demon-
strated in submicron pillars of (Ga,Mn)As/GaAs/(Ga,Mn)As [164]. Further-
more, spin-polarized current was shown to displace magnetic domain walls in
(Ga,Mn)As with the easy axis perpendicular to the film plane [165, 166].

6 Summary and Outlook

As an outcome of the great progress made in the field of semiconductor spin-
tronics in the past few years as reviewed above, spin transistors were for the
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Fig. 14: Magnetization hysteresis loops determined by measurements of
anomalous Hall effect at constant temperature of 22.5 K for various gate volt-
ages in field-effect transistor with (In,Mn)As channel (after Ohno et al. [160])

first time described in The International Technology Roadmap for Semicon-
ductors: Update 2004 Emerging Research Devices. Here it was also suggested
that spin transistors might replace unipolar silicon transistors, which have
been so successfully employed since the 1960s. It is, however, also obvious
from this review that a number of challenges are ahead, so that semiconduc-
tor spintronics will attract a lot of attentions of the research community in
the years to come.

From the device physics perspective, further works on magnetooptical
isolators and modulators as well as on electrically controlled spin current
generation, injection, detection, filtering, and amplification, particularly in
spin bipolar devices [20] are expected. At the same time, further advance-
ment in low-power magnetization switching will allow the development of
new generation magnetic random access memories (MRAM) and, perhaps,
extend the use of magnetism towards logics. Last but not least a progress in
manipulation of single electron or nuclear spins in scalable solid-state devices
can be envisaged, though a time scale in question is hard to predict.

Similarly to other branches of condensed matter physics, breakthrough
achievements will be triggered by developments of new materials. Further
progress in p-type doping and magnetic ion incorporation to standard semi-
conductors will make it possible to synthesize functional high temperature
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Fig. 15: Effect of temperature (a), bias voltage (b), and illumination (c) on
photoluminescence of structure consisting of modulation doped p-(Cd,Mn)Te
quantum well and n-type barrier. Zero-field line splitting (marked by arrows)
witnesses the appearance of a ferromagnetic ordering (a) which does not show
up if the quantum well is depleted from the holes by reverse bias of p-i-n
diode (b). Low-temperature splitting is enhanced by additional illumination
by white light (c), which increases hole concentration in quantum well (after
Boukari et al. [161])

ferromagnetic DMS. At the same time, a control over ferromagnetic precip-
itates in various semiconductors will result in composite materials that will
be useful as magnetooptical media and for high density memories. Particular
attention will be paid to insulating ferrimagnetic oxides and nitrides, which
could serve as spin selective barriers up to well above room temperature.
Moreover, efforts will be undertaken to convert them into functional mag-
netic semiconductors by elaboration of purification methods and mastering
doping protocols that will produce high mobility electrons and holes in these
systems. Another line of research will be devoted to search for nonmagnetic
barrier materials in which transmission coefficients could be electrically ad-
justed to optimize either reading or writing process in MRAM cells. Par-
ticularly prospective appear multiferroic systems, as in these multifunctional
materials the coupling between magnetic and electric polarizations offers new
device paradigms.

The important aspect of extensive studies on ferromagnetism in semi-
conductors discussed in this review is the demonstration of suitability of
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empirically-constrained theoretical methods in quantitative description of a
large body of thermodynamic, micromagnetic, transport, and optical proper-
ties of ferromagnetic semiconductors. In particular, a successful description of
spintronic effects in both nonmagnetic and magnetic semiconductors is possi-
ble provided that all peculiarities of the host band structure, especially those
associated with the spin-orbit interaction, are carefully taken into account.
Indeed, as a result of such an effort (Ga,Mn)As has reached the status of the
best understood ferromagnet. At the same time, research on DMS has dis-
closed shortcomings of today’s computational materials science in predicting
and elucidating magnetic properties of solids. It appears that this failure of
ab initio methods (prediction of ferromagnetism in systems where it is absent
and inability to explain its nature in materials where it does exist) originates
from the co-existence of strong correlation with electronic and magnetic dis-
order in DMS. This calls for novel computation protocols that will be able to
handle randomness and correlation on equal footing, also at non-zero temper-
atures, and will allow for the existence of electronic and/or chemical nanoscale
phase separations. Such computational tools, together with advanced meth-
ods of spatially resolved material characterization, will in particular answer a
persistently raised question on whether a high temperature ferromagnetism
is possible in materials containing no magnetic ions.

With no doubt, in course of the years semiconductor spintronics has
evolved into an important branch of today’s materials science, condensed
matter physics, and device engineering.
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77. M. Oestreich, J. Hübner, D. Hägele, P.J. Klar, W. Heimbrodt, W.W. Rühle,

D.E. Ashenford, B. Lunn: Appl. Phys. Lett. 74, 1251 (1999)
78. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, L.W.

Molenkamp: Nature 402, 787 (1999)
79. A. Slobodskyy, C. Gould, T. Slobodskyy, C.R. Becker, G. Schmidt, L.W.

Molenkamp: Phys. Rev. Lett. 90, 246 601 (2003)
80. T. Dietl, M. Sawicki, E. Isaacs, M. Dahl, D. Heiman, M. Graf, S. Gubarev,

D.L. Alov: Phys. Rev. B 43, 3154 (1991)
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Abstract. The aim of these lectures is to present a brief introduction, appropriate
for non-experts in the field, on the physics of high-temperature superconductors,
focusing in particular on their pairing mechanism. These notes are a summary of
the short lecture held at the Schladming Winter School, and are certainly not a
complete review on the topic. For a more complete and appropriate overview, the
reader is referred to the extended literature on the subject.

After a short introduction about “conventional” superconductors and about the
BCS phonon-mediated pairing mechanism, I will present one of the models which
is commonly used to describe the physics of these materials, namely, the Hubbard
model. Here, I will show how the Pauli principle naturally leads to the superex-
change mechanism, i.e. to an antiferromagnetic coupling between electron spins on
neighboring orbitals. In undoped compounds this coupling leads to an insulating an-
tiferromagnetic phase. Upon doping, charge carriers (holes) are introduced into the
copper-oxide layers and destroy long-range antiferromagnetism which is replaced by
short-range antiferromagnetic fluctuations. In the last part of these lectures I will
show how these magnetic fluctuations can lead to an effective attraction between
charge carriers and to pairing, which is the main ingredient of superconductivity.

1 Introduction

Superconductivity was first discovered 1911 in mercury by H. Kamerling
Omnes at Leiden University. However, the theoretical explanation for this
phenomenon was given only 46 years later by Bardeen, Cooper and Schrief-
fer [1]. In order to become superconductor, Mercury was cooled down below
a critical temperature Tc ≈ 4K. In the years following Omnes’ discovery,
superconductivity was observed in a number of additional elements and com-
pounds. However, until about 20 years ago, the maximum Tc obtained was
around 20K (Fig. 2). In 1986, Bednorz and Müller from IBM in Zürich broke
this barrier and first observed superconductivity with Tc ≈ 35K in a new
compound, LaBaCuO [2]. A few months later P. Chu from the University of
Huston, reported superconductivity at Tc ≈ 90K in YBaCuO. In few years,
a large number of new superconducting materials were discovered, with Tc ’s
above the melting point of liquid nitrogen (Fig. 2).

It was quickly realized that these new materials were quite different from
the binary and ternary “conventional” superconductors found before 1986.
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In particular, it was very soon clear that the superconducting mechanism
was different. Up to now, there is not yet a complete agreement about the
mechanism for these High-Temperature Superconductors (HTSC).

In these lectures, I will first present a short introduction about the “con-
ventional” superconducting mechanism and then present a simple description
of one of the most widely accepted theories for the HTSC mechanism, namely
the one based on spin-mediated pairing.

2 Superconductivity

The term superconductivity is related to dissipationless current transport,
which is reached upon cooling below the superconducting transition tempera-
ture. However, this is not the whole story. One additional important property
of superconductors is the Meissner effect, namely, the fact that magnetic-field
lines are (at least partially) expelled from the bulk of a superconductor. This
effect can be observed by putting a magnet on a piece of superconducting
YBaCuO: the repulsion of the magnetic lines holds the magnet floating on
top of the superconductor, see Fig. 1.

Fig. 1: Meissner effect. Magnetic-field lines are expelled from the bulk of a
superconductor. Due to this effect, a magnet levitates on top of a supercon-
ductor

What is the microscopic origin of such a dissipationless state? Figures 3
and 4 schematically show how the pairing between charge carriers (electrons)
taking place in a superconductor, produce a “rigid” (coherent) state con-
sisting of a coherent superposition of electron pairs (Cooper pairs). Current-
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Fig. 2: The discovery of superconductivity: Tc versus years

dissipative scattering processes, e.g. with impurities, cannot take place, be-
cause they first need to break a Cooper pair, which costs an energy of the
order of the Cooper-pair binding energy ∆(∝ KBTc).

Fig. 3: Current dissipation in a non-superconducting state

The fundamental question is, how can electrons, which normally repel
each other due to the Coulomb interaction, form bound pairs? As explained
in Sect. 3, in conventional superconductors, the attractive force is provided
by so-called phonons, i.e. by the lattice which is made of positively charged

Electron

Lattice Ion

Current dissipation

Average Current
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Fig. 4: Superconducting state made of a rigid coherent state of Cooper pairs

ions oscillating around their equilibrium position. On the other hand, the
pairing mechanism is probably different in HTSC, as discussed in Sects. 5
and 6. One of the most widespread idea, which will be discussed in Sect. 6 is
that pairing in HTSC is mediated by magnetic fluctuations.

3 Phonon-Mediated Effective Attraction
between Electrons

Let us first consider the simple picture of Fig. 5. Here the lattice is schemati-
cally represented as an elastic layer, while electrons are “billiard balls” which
locally deform the layer with their “weight”. A second ball is attracted by the
deformation produced by the first one, so that putting two balls close together
reduces the elastic deformation energy. The elastic layer, thus, mediates an
effective attraction between the balls.

A more realistic picture is shown in Fig. 6. Here, a negatively charged
electron locally polarizes the positively charged lattice. Since ions are heavier
than electrons, the local lattice distortion and associated positive polarization
survives for some time after the electron has gone away (retardation effect).
A second electron then feels the attraction of the local positive polarization
and follows the path of the first electron. This picture already shows how
this relatively weak “elastic” effect can overwhelm the repulsive Coulomb
interaction thanks to the retardation effect.

We want now to describe the effective attraction between electrons as an
interaction mediated by the exchange of “elastic waves” (see Fig. 5). These
waves are the quanta of elastic lattice deformation and are referred to as
phonons because they are responsible for the transmission of sound in solids.
Phonons play a role similar to “mesons” in high-energy physics by mediating
a force between electrons.

T<Tc

Electron

Lattice Ion

Current without dissipation 

coherent  Current

Pairing :
coherent motion

Gap 
Energy to break a pair

∆ :
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Fig. 5: Simple picture of the attraction between two “particles” due to a
minimization of the elastic energy

Fig. 6: Illustration of the retardation effect

As a starting point for this description we shall adopt a tight-binding
Hamiltonian, containing creation (c†R,σ) and destruction (cR,σ) operators for
an electron at lattice site R with spin projection σ. These lattice electrons are
coupled via their density n(R) ≡

∑
σ c†R,σcR,σ to a local elastic displacement

(phonon) described by the field u(R) with conjugate momentum P (R). The
total Hamiltonian for this system is given by

∑

R,R′

T (R−R′) c†R,σcR′,σ +g
∑

R

√
Ω n(R) u(R)+

∑

R

1
2
[
P (R)2 + Ω2u(R)2

]
.

(1)
Here, T (R−R′) is the hopping matrix element for electrons, g is the electron-
phonon coupling constant, and Ω is the phonon frequency. For simplic-
ity, we have considered optical (i.e. dispersionless) phonons, and we have

How can electron pair ?!?

1 Electron in lattice 2 electrons

pair formation attraction via exchange
of "lattice Waves" (phonons)

−− −−

Retardation effect

+ +

++

+ +

++

 effective attraction
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conveniently absorbed the ionic mass M into the displacement field u, its
momentum P , and g.

In the so-called antiadiabatic limit, one can neglect the P term, so that
one can complete the square in the last two terms of Eq. (1):

g
∑

R

n(R)
√

Ωu(R) +
∑

R

1
2
Ω2u(R)2 =

∑

R

1
2
Ω2ū(R)2 −

∑

R

1
2

g2

Ω
n(R)2 (2)

with

ū ≡ u +
gn(R)

Ω
. (3)

The new phonon field ū is now decoupled from the electrons, which, however,
feel an effective attractive interaction

Veff,ph = −1
2

∑

R

g2

Ω
n(R)2 . (4)

From the discussion above, it is clear that the antiadiabatic limit is un-
physical: it means that phonons move much faster than electrons, which
is precisely the opposite to what happens in reality. For this reason, we
need to introduce retardation effects. This is done via the introduction of
a Matsubara-frequency (ωλ) term, which modifies Eq. (4) to

Veff,ph = −1
2

∑

R

g2 Ω

ω2
λ + Ω2

n(R)2 . (5)

In momentum space this becomes

− 1
2N

∑

k,k′,q,σ,σ′

g2
q D(q, ωλ) c†k+q,σc†k′−q,σ′ck′,σ′ck,σ , (6)

where N is the number of lattice sites, the electron operators should be now
considered as Fermi (Grassmann) fields with an implicit Matsubara-frequency
dependence, and we have introduced the phonon propagator

D(q, ωλ) ≡ 2 Ωq

ω2
λ + Ω2

q

. (7)

Here, we have introduced a q dependence of the phonon frequency Ω and of
the coupling constant g.

The expression Eq. (6) can be also obtained via a diagrammatic expan-
sion, which is represented in Fig. 7:

As discussed above, the retardation term ωλ is important when taking
into account the Coulomb repulsion between the electrons. The latter is much
stronger than the attraction Eq. (6). However, fortunately pairing can take
advantage of the retardation of the phonon-mediated attractive term (as
already discussed in Fig. 6).
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Fig. 7: Diagrammatic representation of the effective phonon-mediated
electron-electron interaction. Solid lines are ingoing and outgoing electron
lines (whose propagators don’t contribute to the diagram). The wavy line is
the phononic propagator D(q, ωλ)

4 BCS Theory

How does one exploit the attractive term Eq. (6) to get the superconducting
state? Within the theory developed by Bardeen, Cooper and Schrieffer [1],
which was termed accordingly BCS theory, one takes into account retardation
effects by restricting the effective attraction Eq. (6) to particles within a
typical phonon energy �ΩD around the Fermi energy. For larger energies
(ωλ � Ωd), the interaction term (originating from the propagator Eq. (7)) is
cut off. This is equivalent to say that higher electronic energies correspond
to time scales that are too fast to see the phononic-mediated attraction.

After having taken for granted that in this energy range the attractive
part of the interaction “wins” over the repulsion, as suggested above (this is
proven in more detail within Eliashberg’s theory [3]), one can consider the
purely fermionic attractive model:

H =
∑

k,σ

ξk c†k,σck,σ − 1
2N

∑

k,k′,q,σ,σ′

V (q)c†k+q,σc†k′−q,σ′ck′,σ′ck,σ , (8)

where −V (q) is the (attractive) electron-electron interaction, and the fermi-
onic (electron) operators are written in momentum space, in which the
“kinetic”-energy term ξk = εk−µ (here, the chemical potential µ is included)
is diagonal.

This model is solved by decoupling the interaction part in an unusual way,
namely, one assumes that the operator ck′,σ′ ck,σ has a finite expectation value
φk for k′ = −k and σ′ = −σ:

φk ≡ 〈c−k,↓ ck,↑〉 . (9)

Equation (8) then yields the following form

g

g
k

k

D
(q

,ω
λ
)

k − q

k + q
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H =
∑

k,σ

ξk c†k,σck,σ − 1
N

∑

k,q,σ

V (q)
[
c†k+q,↑c

†
−k−q,↓φk + H.C.

]
. (10)

In order to avoid introducing Bogolubov transformations, we carry out a
particle-hole transformation for the spin-down particles c†−k,↓ = dk,↓, and
obtain the following expression (in matrix notation)

H =
∑

k

(
c†k,↑, d

†
k,↓

)(
ξ(k) −∆∗

k

−∆k −ξk

)(
ck,↑
dk,↓

)

+ const. , (11)

where
∆k ≡ 1

N

∑

q

φk−qV (q) . (12)

The eigenvalues of the matrix in Eq. (11) are

± E(k) ≡ ±
√

ξ2
k + ∆2

k . (13)

The ground-state energy of Eq. (11) is obtained by summing over negative
eigenvalues, yielding EGS = −

∑
k E(k). Evaluating the expectation value

〈d†k,↓ck,↑〉 = φk = −∂EGS

∂∆k
=

∆k

E(k)
(14)

we obtain the BCS self-consistent gap equation [1]

∆k =
1
N

∑

k′

V (k − k′)
∆k′

Ek′
. (15)

Retardation effects included in Eq. (6) can be considered in a rough way by
setting V (k, k′) to a constant V whenever the electron momenta k and k′ lie
within an energy shell δD of width �ΩD from the FS. From Eq. (12) one can
then approximately take ∆k = ∆ independent of k in this region. In this way,
one can rewrite the self-consistent equation Eq. (15) as

1
V

=
1
N

δD∑

k

1
√

ξ(k)2 + ∆2
≈ n0

2

∫
�ΩD

0

dξ
1

√
ξ2 + ∆2

≈ n0 log
�ΩD

∆
, (16)

where n0 is the density of states at the Fermi level (summed over spins). The
solution for n0V 
 1 can be written as

∆ ≈ �ΩDe−
1

n0V . (17)

It is clear from Eq. (16) that a repulsive interaction (V < 0) only gives
a solution with a vanishing gap ∆ = 0. We will see below for the case of
High-Tc superconductors that this is not always true.
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An important effect contained in the solution Eq. (17) is the fact that
the gap ∆ is proportional to the phononic frequency ΩD ∝ 1/

√
MIon, where

MIon is the ionic mass. Since the transition temperature Tc is in turn pro-
portional to ∆, one obtains the well-known isotope effect. This means that
by replacing the nuclei by isotopes with different masses, Tc becomes pro-
portional to the inverse squared isotopic mass. This experimental fact was
one of the key observation suggesting that phonons could be at the origin of
the superconducting mechanism. In HTSC the isotope effect is much smaller,
especially at the doping where Tc is maximum (top of the “dome” in Fig. 8),
thus questioning a possible phononic (-only) mechanism in these materials.

5 High-Temperature Superconductors

High-temperature superconducting materials have, in contrast to conven-
tional superconductors, a quite complicated crystal structure (Fig. 9). More-
over, these materials, when undoped, are in fact insulators. A metallic (and
superconducting) state is obtained upon replacing some of the rare earth
(e. g. La with Sr in LaCuO) or adding oxygen (in YBaCuO). There is an
optimal value of the doping x for which the superconducting Tc is maximum
(Fig. 8).

Fig. 8: Crystal structure of La2−xSrxCuO4, and the effect of replacing (dop-
ing) La with Sr. Phase diagram as a function of doping x and temperature
T
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Fig. 9: Crystal structure of La2CuO4 (A) and YBa2Cu3O7 (B)

Despite the complicated structure, it has soon become clear that the im-
portant electron dynamics takes place on a subset of this structure, namely
on the ubiquitous copper-oxide layers. Moreover, only three orbitals per unit
cell are important to describe the electronic structure, namely the Cu-dx2−y2

and the O px and py orbitals (Fig. 10).
The electron dynamics in these orbitals is described by the three-band

(Emery) model [4]

H3b = −tpd

∑

δ=x,y

∑

〈RR′〉σ
αRR′δ

(
p†δRσdR′σ + H.C.

)

−tpp

∑

〈〈RR′〉〉σ
α′

RR′

(
p†xRσpyR′σ + H.C.

)

+∆
∑

Rσ

∑

δ=x,y

p†δRσpδRσ +
Ud

2

∑

Rσ

nd
Rσnd

R−σ

(Fig. 11). Here, d†Rσ and p†δRσ create a hole (not an electron!) in the copper
3dx2−y2 and in the oxygen 2pδ (δ = x, y) orbital, respectively. 〈. . .〉 denotes
next neighbors Cu-O orbitals and 〈〈. . .〉〉 next neighbors O-O orbitals. εd and
εp are the on-site energies of the copper and the oxygen orbitals, respectively.
We have set the zero of the energy on the copper site εd = 0, and introduced
the charge-transfer gap ∆ = εp − εd. The Coulomb repulsion between two
holes is taken into account by the term U . αRR′δ and α′

RR′ contain the sign
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Fig. 10: The copper-oxide planes with their relevant orbitals. Modeling of
these planes via a three- (left) and a single-band (right) Hubbard model

Fig. 11: Parameters of the three-band Hubbard model describing the most
relevant orbitals in the CuO2 layers

of the phases of the Cu-O and O-O hopping due to the d and p symmetries of
the Cu and O orbitals, respectively, according to the convention in Fig. 11.

This model can be further simplified by restricting only to the Cu orbitals
and considering the O orbitals as an effective “bridge” between them (this is
not completely correct in hole-doped HTSC, however, we won’t go into detail
here. For a more rigorous treatment see [5]). This is the single-band Hubbard
model:

H1b = −t
∑

σ

∑

〈RR′〉

(
c†RσcR′σ + h.c.

)
+ U

∑

R

nR↑nR↓ (18)

with the same conventions as in Eq. (1), and 〈RR′〉 means that the lattice
sum is restricted to nearest-neighbor Cu orbitals. The single-band Hubbard

 5 
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Fig. 12: Single-band Hubbard model

Fig. 13: Superexchange mechanism: due to Pauli principle, the electron spins
on two neighboring site prefer to stay antiparallel in order to gain the energy
∝ −t2/U

Hamiltonian was independently introduced by Hubbard [6] and Gutzwiller
[7] in an attempt to describe the effect of electron correlation in transition
metal compounds.

At half filling and for large U/t, an important effect takes place (Fig. 13).
Two particles on neighboring sites prefer to have their spin antiparallel in
order to be able to delocalize to the neighboring site. The amplitude for this
process is ∝ t/U as obtained from second-order perturbation theory. This
gives an energy gain ∝ −J/2 ≈ −2t4/U for antiparallel configurations with
respect to parallel ones. Therefore, in a square lattice, particles tend to order
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Fig. 14: Detecting antiferromagnetic order via neutron scattering

antiferromagnetically. This ordered phase can be detected, for example, by
neutron scattering (Fig. 14).

Doped holes frustrate and eventually destroy the antiferromagnetic state.
However, strong antiferromagnetic fluctuations survive deep into the super-
conducting phase, as shown by neutron-scattering experiments. Many theo-
ries consider magnetic fluctuations responsible for the pairing mechanism in
HTSC. A simple view on how this can take place will be presented in Sect. 6.

6 Pairing Mediated by Spin Fluctuations:
Linear Response to Magnetic Excitations

The magnetic-mediated pairing is similar to the one produced by phonons
discussed in Sect. 3. In the former case, however, the bosons responsible for
the interaction between the charge carriers are magnetic excitations, also
called spin waves. A spin wave can be considered as a local perturbation of
the antiferromagnetic (AF) state which can then propagate in space. In a
pure AF state, long-wave spin waves have a very long lifetime (Goldstone
modes), while in a state with short-range AF order, spin waves are strongly
damped.

We now consider a simple approximation to the Hubbard Hamiltonian
Eq. (18), which will help us understanding how spin waves propagate in a
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non-antiferromagnetic state and how these can induce an effective interaction
between electrons. Starting from Eq. (18), we add an external spin-dependent
potential Vext(R, σ) and consider the linear response to this potential. We
approximate the total Hamiltonian within a space-dependent mean field-
approach, i.e. each particle is affected only by the “average” interaction with
all other particles. This mean-field Hamiltonian reads

H = Hkin +
∑

R,σ

(Vext(R, σ) + Vint(R, σ)) n(R, σ) (19)

where Hkin contains the kinetic part of the Hubbard Hamiltonian Eq. (18)
(including the chemical potential), while the (mean-field) interaction poten-
tial can be obtained from Eq. (18)

Vint(R, σ) ≡ Uρ(R,−σ) , (20)

where ρ(R, σ) ≡< n(R, σ) > is the mean density. We consider the fluctuation
of ρ in the presence of a total potential

Vtot(R, σ) ≡ Vext(R, σ) + Vint(R, σ) − U ρ0/2 (21)

up to linear order in Vtot. In Eq. (21), for convenience, we have subtracted
the homogeneous (constant) part of the interaction potential, ρ0 being the
average particle density.

In a non magnetic homogeneous state ρ(R, σ) = ρ0/2 + δρ(R, σ), where
δ(R, σ) is induced by the non-homogeneous potential Vtot, we can write, to
lowest order in Vtot,

δρ(R, σ) ≈ −
∑

R′

χ0(R − R′)Vtot(R′, σ) , (22)

where we have introduced the polarisability χ0, and we have exploited trans-
lation invariance by a lattice vector. The choice of the minus sign in the
convention for χ0 in Eq. (22) reflects the fact that we expect a negative δρ in
the presence of a positive Vtot (at least at short distances), so that we choose
the sign in Eq. (22) in order to have a positive χ0. By inserting Eq. (20) into
Eq. (21) and Eq. (22), and by going over to momentum space q (in which the
convolution becomes a product), we obtain a self-consistent equation for δρ

δρ(q, σ) = −χ0(q) (Vext(q, σ) + Uδρ(q,−σ)) . (23)

Equation (23) can be easily decoupled by introducing the total charge
and spin densities:

δρ(q) ≡ δρ(q, ↑) + δρ(q, ↓) S(q) ≡ δρ(q, ↑) − δρ(q, ↓) , (24)

as well as the external charge potential and magnetic field
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Vext(q) = Vext(q, ↑) + Vext(q, ↓) h(q) = Vext(q, ↑) − Vext(q, ↓) . (25)

In this way, Eq. (23) becomes

δρ(q) = −χ0(q)(Vext(q) + Uδρ(q)) = − χ0(q)
1 + Uχ0(q)

Vext(q) , (26)

and

S(q) = −χ0(q)(h(q) − US(q)) = − χ0(q)
1 − Uχ0(q)

h(q) . (27)

Equation (27) already suggests the possibility of a magnetic instability: if
Uχ0(q) approaches 1 for some q, then the corresponding Fourier component
S(q) of the spin density will become nonzero even for vanishing external
magnetic field h. Clearly, q = 0 corresponds to a ferromagnetic, q = (π, π) to
an antiferromagnetic instability1.

Close to such an instability, the static spin susceptibility

χs(q) ≡
χ0(q)

1 − Uχ0(q)
(28)

will be strongly peaked at this wave vector.
For the sake of simplicity, we now assume to be close to such an instability,

so that we can take χsU � 1 and neglect the charge susceptibility χ0(q)
1+Uχ0(q)

(although the calculation with inclusion of this term is straightforward). Our
goal is to evaluate the total potential

Vtot(q, σ) = Vext(q, σ) + Uδρ(q,−σ) ≈ Vext(q, σ) − U

2
σS(q) (29)

= Vext(q, σ) − U

2
σ[−χs(q)h(q)] (30)

= Vext(q, σ) +
U

2
χs(q)(Vext(q, σ) − Vext(q,−σ)) (31)

= Vext(q, σ)
(

1 +
U

2
χs(q)

)

− Vext(q,−σ)
U

2
χs(q) . (32)

If we take Vext as the Hubbard interaction originating from a density pertur-
bation n(q, σ), then

Vext(q, σ) = Un(q,−σ) (33)

Vtot(q, σ) is thus the total potential acting on a charge density with momen-
tum q and spin σ in the presence of the density Eq. (33). One can interpret
this in terms of an effective interaction

Veff,↑↑(q) = −U2

2
χs(q) (34)

1 From now on, we will work in units of the lattice constant (Cu-Cu distance)a = 1
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and

Veff,↑↓(q) = U

(

1 +
U

2
χs(q)

)

≈ U2

2
χs(q) . (35)

This means that particles with parallel spin experience an effective spin-
mediated attractive interaction, while particles with antiparallel spin a repul-
sive one.

In Eq. (35) we have neglected the contribution from transverse spin fluc-
tuations, as well as time-dependent effects. These can be obtained more ap-
propriately within a diagrammatic approach. The diagrams leading to the
effective interactions are plotted in Fig. 15. The diagrams in (A) yield a
contribution

U(1 + (Uχ0)2 + (Uχ0)4 + · · ·) =
U

1 − (Uχ0)2
(36)

which is equal to Eq. (35) close to a magnetic instability for which 1−(Uχ0) 

1. In addition, one obtains a contribution from transverse spin fluctuations,
plotted in (B):

U2χ0(1 + (Uχ0) + (Uχ0)2 + · · ·) =
U2χ0

1 − (Uχ0)
(37)

notice, however, that due to particle exchange, the polarisability χ0 is eval-
uated not at the momentum transfer q but at k − k′ − q.
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Fig. 15: Diagrams contributing to the effective interaction Veff,↑↓ between
opposite spins. Diagrams in (B) contain the contribution from transverse
spin fluctuations, not taken into account in Eq. (35). Dashed lines represent
the Hubbard interaction U , solid lines are Fermion propagators. One closed
fermionic loop (bubble) corresponds to the polarisability χ0
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The idea of a superconducting pairing mechanism originating from mag-
netic fluctuations was originally suggested by Emery [8] and by Berk and
Schrieffer [9]. They were interested in a mechanism for superconductivity in
nearly ferromagnetic materials in which χs(q) is strongly peaked at q = 0.

As discussed in Sect. 4, a repulsive interaction seems to suggest that it
is impossible to get a superconducting state with antiparallel spin (singlet
state). This is not true. Here, the q dependence of the interaction plays a
crucial role. As a matter of fact, close to an AF instability, χs(q), and thus
Veff,↑↓(q) is peaked around (π, π). In order to illustrate the consequences of
this strong q dependence, we take a model Veff with this property [10, 11]:

Veff,↑↓(q) ≈
V0

1 + ξ2 [(qx − π)2 + (qy − π)2]
. (38)

The Fourier transform in real space of Eq. (38) will decay on a typical distance
(AF correlation length) ξ, will be positive at R = 0 so that particles on
the same site will repel each other, and, most importantly, Eq. (38) will
be negative at nearest-neighbor sites |R| = 1. This can be seen from the
most important contribution to the Fourier integral at (π, π) yielding a phase
eiπRx+iπRy , which is −1 at R = (1, 0) and equivalent points. This means that
particles on nearest-neighbor sites will attract each other and will be able to
form Cooper pairs.

In momentum space this can be seen by invoking again the BCS gap
equation Eq. (15) with V replaced with −Veff,↑↓ (here, Veff,↑↓ > 0):

∆k = − 1
N

∑

k′

Veff,↑↓(k − k′)
∆k′

Ek′
. (39)

Clearly, there is no solution for a constant (s-wave) ∆k. On the other hand,
if Veff is strongly peaked at k − k′ = Q ≡ (π, π) one can look for a solution
in which ∆k+Q = −∆k, so that one obtains

∆k =
1
N

∑

k′

Veff,↑↓(k − k′ − Q)
∆k′

Ek′−Q
. (40)

One possible solution is obtained by assuming an angular dependence of the
gap function in the form

∆k = ∆0(cos kx − cos ks) . (41)

This form changes sign under a rotation by an angle π/2, and belongs to the so
called dx2−y2 irreducible representation of the square lattice symmetry [12].
The presence of a dx2−y2 form of the superconducting gap in HTSC has
been supported by many experiments [12, 13, 14, 15], and is by now a well
accepted result. The present discussion suggests that a dx2−y2 pairing gap is
consistent with a magnetic mechanism for high-Tc superconductivity, while at
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the same time probably excluding a (pure) phononic mechanism in which the
effective interaction is not strongly q-dependent. In addition, the magnetic
mechanism is supported by the observation of a strong magnetic resonance
in the neutron-scattering spectrum of many HTSC in the superconducting
phase [16, 17, 18].

Similar conclusions are reached within the Nearly Antiferromagnetic
Fermi Liquid theory by Pines [10], in which the spin susceptibility is taken
phenomenologically from experiments in the form Eq. (38). A related the-
ory based on AF spin fluctuations was developed by Moriya and cowork-
ers [19]. Schrieffer proposed the so-called “spin-bag” magnetic pairing mech-
anism based on the idea that local AF order is still present upon doping
and that a particle (hole) is dressed with a spatially (typically a few lattice
constants) extended spin cloud, which is due to the frustration of the local
antiferromagnetic order. Two particles tend to pair because in this way they
minimize the frustration of the AF order [20], similarly to the effect displayed
in Fig. 5. On the other hand, Schrieffer criticizes the spin-wave mediated pair-
ing discussed in Sect. 6, suggesting that vertex corrections to the diagrams
shown in Fig. 15 are crucial and could dramatically reduce the effective in-
teractions [21]. This is due to the fact that spin waves in an antiferromagnet
are in fact Goldstone modes, i.e. they should become exact eigenstates of the
Hamiltonian (i.e. decoupled from other excitations) in the long wavelength
limit. Indeed, a strong reduction of the electron-spin-wave vertex has been
confirmed by recent Quantum-Monte Carlo calculations [22].

Despite the fact that many experiments and theories support a magnetic-
based pairing mechanism, recent measurements suggest that electron-phonon
coupling could also play an important role in HTSC after all. There are
strong indications for a superconductivity-induced phonon renormalization,
for a large isotope coefficients away from optimal doping [23], and of a strong
electron-phonon coupling in the electron dispersion, as observed by angle-

Fig. 16: A vertex correction to the phonon-mediated electron-electron inter-
action. Dashed lines describe the bare electron-electron interaction U, and
wavy lines describe the phonon propagator

phonon line
interaction line

fermionic line
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resolved photoemission spectroscopy [24]. In this respect, the combined ef-
fect of electron-phonon and electron-electron interaction may play an im-
portant role. Indeed, vertex corrections due to electron-electron interaction
(see Fig. 16) introduce a strong q dependence in the electron-phonon cou-
pling [23, 25, 26, 27], possibly making an electron-phonon mechanism consis-
tent with dx2−y2 pairing.
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Abstract. I introduce spin in field theory by emphasizing the close connection
between quantum field theory and quantum mechanics. First, I show that the spin-
statistics connection can be derived in quantum mechanics without relativity or
field theory. Then, I discuss path integrals for spin without using spinors. Finally, I
show how spin can be quantized in a path-integral approach, without introducing
anticommuting variables.

1 From Quantum Mechanics to Field Theory

Even though everybody learns about spin in their childhood in the context
of nonrelativistic quantum mechanics, many of the more interesting dynam-
ical features of spin are only introduced in relativistc quantum field theory.
In these lectures, which were originally addressed to an audience of (mostly)
condensed-matter physicists, I discuss some relevant aspects of spin dynamics
in quantum field theory by showing their origin in quantum mechanics. In the
first lecture, after a brief discussion of the way spin appears in nonrelativistic
(Galilei invariant) or relativistic (Lorentz invariant) dynamics, I show how
the spin-statistics connection can be obtained with minimal assumptions in
nonrelativistic quantum mechanics, without invoking relativity or field the-
ory. In the second lecture I show how spin can be quantized in a path-integral
approach with no need for introducing quantum fields. In the third lecture I
discuss the dynamics of relativistic spinning particles and show that its quan-
tization can be described without using anticommuting variables. A fourth
lecture was devoted to the quantum breaking of chiral symmetry – the axial
anomaly – and its origin in the structure of the spectrum of the Dirac oper-
ator, but since this subject is already covered in many classic lectures [1] it
will not be covered here. We will see that even though the standard methods
of quantum field theory are much more practical for actual calculations, a
purely quantum-mechanical approach helps in understanding the meaning of
field-theoretic concepts.
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2 Spin and Statistics

2.1 The Galilei Group and the Lorentz Group

In both relativistic and non-relativistic dynamics we can understand the
meaning of quantum numbers in terms of the symmetries of the Hamil-
tonian and the Lagrangian and associated action. Indeed, the invariance of
the Hamiltonian determines the spectrum of physical states: eigenstates of
the Hamiltonian are classified by the eigenvalues of operators which commute
with it, and this gives the set of observables which are conserved by time evo-
lution. However, the invariance of the dynamics is defined by the invariance
of the action. This is bigger than that of the Hamiltonian, because it also
involves time-dependent transformations. For example, in a nonrelativistic
theory the action must be invariant under Galilei boost: the change between
two frames that move at constant velocity with respect to each other. But
the Hamitonian in general doesn’t possess this invariance: Galilei boosts ob-
viously change the values of the momenta, and the Hamiltonian in general
depends on them. The set of operators which commute with all transforma-
tions that leave the action invariant defines the quantum numbers carried by
elementary excitations of the system (elementary particles).

A nonrelativistic theory must have an action which is invaraint upon the
Galilei group. The Galilei transformations, along with the associate quantum-
mechanical operators are [2]:

– space translations: xi → x′
i = xi + ai; Pi = −i∂i

– time translation: t → t′ = t + a; H = i d
dt

– Galilei boosts: xi → x′
i = xi + vit; pi → pi + mvi; Ki = −it∂i − mxi

– rotations: xi → x′
i = Rijxj ; Ji = εijkxj∂k + σi

The generator of rotations is the sum of orbital angular momentum and spin.
The generators of the Galilei group form the Galilei algebra:

[Ji, Jj ] = εijkJk; [Pi, Pj ] = 0; [Ki,Kj ] = 0; [Ji,H] = [Ki,H] = 0;
[ki,H] = iPi; [Ji, Pj ] = εijkPk; [Ji,Kj ] = εijkKk; [Ki, Pj ] = iMδij .

(1)

In order to close the algebra it is necessary to introduce a (trivial) mass op-
erator M which commutes with everything else:

[M,Pi] = [M,Ki] = [M,Ji] = [M,H] = 0. (2)

The Casimir operators, which commute with all generators, are

C1 = M ; C2 = 2MP0−PiPi; C3 = (MJi − εijkPjKk) (MJi − εilmPlKm) .
(3)

In terms of quantum-mechanical operators the Casimirs correspond to
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– C1 = m (mass);
– 1

2mC2 = −i d
dt −

p2

2m (internal energy);
– C3 = σiσi (spin).

We see that spin is one of the three numbers which classify nonrelativistic
elementary excitations, along with mass and internal energy.

In the relativistic case, the action is invariant under the Poincaré group.
The transformations and associate operators are now:

– translations: xµ → x′
µ = xµ + aµ; Pµ = −i∂µ

– Lorentz transf.:
xµ → x′µ = Λµ

νxν ; pµ → p′µ = Λµ
νpν ;

Jµν = xµP ν − xνPµ + Σµν

rotations: Ji = 1
2εijkJk = εijkxjPk + σi

boosts: Ki = J i0.

The Poincaré generators form the algebra

[Jµν , Jρσ] = i (gµρJνσ − gνρJµσ + gµσJνρ + gνσJµρ) ;
[Pµ, Jρσ] = −i (gµρP σ − gµσP ρ) ; [Kµ, P ν ] = 0 (4)

Explicitly, the algebra of boosts and rotations is

[Ji, Jj ] = εijkJk; [Ji,Kj ] = εijkKk; [Ki,Kj ] = −iεijkKk

[Ji, Pj ] = εijkPk; [Ki,H] = iPi; [Ki, Pj ] = iHδij . (5)

The Casimir operators are now just two:

C1 = PµPµ; C2 = WµWµ, (6)

in terms of the momentum generator and the Pauli-Lubanski operator

Wµ = εµνρσPνJρσ. (7)

The corresponding quantum-mechanical operators are

– C1 = P 2; eigenvalue M2 (mass);

– C2 = W 2 = mσ2; eigenvalue M2s(s + 1) (mass×spin),

where the latter identification is clear if one chooses the rest frame, as we
shall discuss in greater detail in Sect. 4.3.

Galilei transformations can be obtained from Poincaré transformations in
the limit v 
 1 by assuming the scaling laws M ∼ 1, J ∼ 1, P ∼ v, H ∼ v2

K ∼ 1/v.
Summarizing, both in nonrelativistic and relativistic theories spin is one

of the quantum numbers that classify elementary excitations. In quantum
mechanics, the state vectors of physical systems are expanded on a basis
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of irreducible representations of the rotation group (in the nonrelativistic
case) or the Lorentz group (in the relativistic case). In quantum field theory,
one-particle states are, respectively, Galilei or Poincaré irreducible represen-
tations. In the relativistic case, rotations are implicitly defined by the Pauli-
Lubanski vector Eq. (7) as the subgroup of the Lorentz group which leaves
the four-momentum invariant.

In more than two spatial dimensions the rotation group O(d) is doubly
connected (i.e., π1[O(d )] = ZZ 2); its universal cover is the group Spin(d),
which, in the usual d = 3 case, is isomorphic to SU(2). When d = 2 (planar
systems) the rotation group is O(2), which, being isomorphic to the circle S1

is infinitely connected (π1[O(2)] = ZZ ); its universal cover is the real line RR .
It follows that in more than two dimension the wave function can carry either
a simple-valued (Bosons) or a double valued (Fermions) representation of the
rotation group, and in two dimensions it may carry an arbitrarily multivalued
one (anyons [4]).

The multivaluedness of the representation of rotations is classified by the
value of the phase which the wave function acquires upon rotation by 2π
about an arbitrary axis (the z axis, say):

R2π
z ψ(q1, . . . , qn) = e2πiJzψ(q1, . . . , qn) = e2πiσψ(q1, . . . , qn) , (8)

where Jz = Lz + σ, and in the last step we have used the fact that the
spectrum of orbital angular momentum is given by the integers, so upon 2π
rotation it is only spin that contributes to the phase.

2.2 Statistics and Topology

The wave function for a system of n identical particles must be invariant
in modulus, and thus acquire a phase, upon interchange of the full set of
quantum numbers qi of the i-th and j-th particle:

ψ(q1, . . . , qi, . . . , qj , . . . , qn) = e2πiσψ(q1, . . . , qj , . . . , qi, . . . , qn) . (9)

The parameter σ, which is only defined modulo integers, is the statistics of
particles i, j. We now prove the spin-statistics theorem, which states that the
statistics is a universal property of particles i, j, and it is equal to their spin
(also in d = 2, where the spin as we have seen can be generic).

The proof is based on an analysis of the quantisation of systems defined on
topologically nontrivial configuration spaces. Indeed, if Cd is the configuration
space for a single particle in d dimensions, the configuration space for a system
of n particles in d dimensions is

C̄d
n = Cd

n −D , (10)

where D is the set of points where the full set of quantum numbers of two or
more particles coincide. These points must be excised from space, otherwise
Eq. (9) with xi = xj implies that necessarily σ = 0 .
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If the particles are identical, points which differ by their interchange must
be identified. The configuration space then becomes the coset space

Cd
n =

C̄d
n

Sn
, (11)

where Sn is the group of permutations of n objects. The topological structure
of the configuration space changes when going from two to more than two
dimensions, just like the topological structure of the rotation group discussed
in Sect. 2.2. Indeed, if d = 2 the space Eq. (10), i.e. before dividing out per-
mutations, is multiply connected: a closed path traversed by the i-th particle
in which particle j is inside the loop formed by particle i cannot be deformed
into a path in which particle j is outside the loop. The configuration space
Cn
2 is then also multiply connected, and its fundamental group is the braid

group π1(Cn
2 ) = Bn, as we shall discuss explicitly below.

In more than two dimensions, the space C̄n
d is simply connected: all closed

path traversed by a particle can be continuously deformed into each other,
because in more than two dimensions one cannot distinguish the inside of a
one-dimensional curve from its outside. However, the configuration space Cn

d

is multiply connected. This implies that a topologically nontrivial closed path
in Cn

d must correspond to an open path in C̄n
d , because all closed paths in C̄n

d

can be deformed into each other. Furthermore, points in Cn
d that correspond

to same point in C̄n
d are in one-to-one correspondence with elements of Sn,

because Sn acts effectively, i.e. only the identity of Sn maps all points of
C̄n

d onto thenselves. It follows that equivalence classes of paths in C̄n
d are in

one-to-one correspondence with elements of the permutation group:

π1(Cn
d ) = Sn . (12)

Hence, the multiply connected nature of the configuration space is directly
linked with the presence of identical particle, and specifically to the response
of the system upon permutations, i.e. to statistics.

Therefore, let us consider quantization on a multiply connected space. The
way nontrivial statistics is obtained can be understood by studying this prob-
lem in a path-integral approach [3], where transition amplitudes are written
in terms of the propagator K(q′, q)

Sfi ≡ 〈ψf |ψi〉 = 〈ψf |q′t′〉〈q′t′|qt〉〈qt|ψi〉 =
∫

dq dq′ ψ∗
f (q′)K(q′, q)ψi(q) ,

(13)
which in turn can be written as a sum over paths

K(q′, t′; q, t) =
∫

q(t)=q; q(t′)=q′
Dq(t0) ei

∫ t′
t

dt0 L[q(t0)] . (14)

Closed paths on a multiply connected space fall into homotopy classes.
Moreover, open paths can also be classified in homotopy classes by a choice



72 S. Forte

Fig. 1: Paths Pi are assigned to homotopy classes by connecting them to a
base point through a mesh. Changing the base point from x to y can change
the absolute class assigment of a path, but not the relative assignment of a
pair of paths

of mesh (Fig. 1). Namely, one chooses an arbitrary reference point x (base
point) and then one assign to each point in space a path connecting it to the
base point. The homotopy class of an open path can then be defined as the
homotopy class of the closed path formed by the given open path and the
mesh that connects it to the base point. Once all paths (closed and open)
are grouped into equivalence classes, the path integral is in general defined
as follows

K(q′, t′; q, t) =
∑

α

χ(α)Kα(q′, t′; q, t) , (15)

where Kα(q′, t′; q, t) is computed including in the sum over paths only paths
in the α-th homotopy class, and χ(α) are weights which depend only on the
equivalence class (homotopy class) of a given path.

The weighted sum (15) must satisfy the following physical requirements:

– (a) physical result must be independent of the choice of mesh;
– (b) amplitudes must satisfy the superposition principle, which in turn

implies the convolutive property

K(q′′, t′′; q, t) =
∫

dq′〈q′′t′′|q′t′〉〈q′t′|qt〉 =
∫

dq′K(q′′, t′′q′t′; )K(q′t′; q, t) .

(16)

The necessary and sufficient condition for these requirements to be satisfied
is that the weights χ(α) satisfy

|χ(α)| = 1 (17)
χ(α ◦ β) = χ(α)χ(β) , (18)
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Fig. 2: Graphical representation of Eq. (20)

where in Eq. (18) α and β are the homotopy classes of paths with a common
endpoint, and α ◦ β is the homotopy class of the path obtained by joining
them.

The proof that Eq. (18) implies property (b) is immediate:
∑

γ

χ(γ)Kγ(q′, t′; q, t) =
∑

α,β

χ(α)χ(β)
∫

dq′Kα(q′′, t′′q′t′; )Kβ(q′t′; q, t) .

(19)
The proof that Eq. (17) implies property (a) is also easy: let P be the closed
path obtained composing the open path p which connectes points a and b
with a mesh C (Fig. 2)). Upon changing the mesh to C̄, the path P becomes
the path P̄ , which in turn can be obtained by composing P with the closed
paths λ ≡ C̄(a)C−1(a) and µ = C(b)C̄−1(b):

P̄ (ab) = C̄(a)p(ab)C̄−1(b)
= C̄(a)C−1(a)C(a)p(ab)C−1(b)C(b)C̄−1(b) (20)
= λP (ab)µ .

Because µ and λ do not depend on the original path, but only on the two
meshes, the factor χ(λµ) which relates the two class assignments

χ̄(α) = χ(λµ)χ(α) (21)

is universal. It follows that
∑

γ

χ̄(γ)Kα(q′, t′; q, t) = χ(λµ)
∑

γ

χ(γ)Kα(q′, t′; q, t) , (22)

so if χ are phases the transition probability is unchanged.
This proves that conditions (17–18) are sufficient for requirements (a-

b) to be satisfied, the proof that they are also necessary is somewhat more
technical and we shall omit it. Conditions Eqs. (17–18), taken jointly, mean
that phases χ provide one-dimensional unitary representation of π1(Cn

d ), i.e.
the permutation group Sn (in more than two dimensions) or the braid group
(in two dimensions).
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2.3 Bosons, Fermions and Anyons

The relation between spin and statistics now follows from the structure of
the path integral. First, we observe that there are only two unitary one-
dimensional irreducible representations of the permutation group Sn: the
trivial one (where χ = 1 for all permutations), and the alternating one,
where χ = 1 if the permutation is even and χ = −1 if it is odd (i.e., if they
may be performed by an even or odd number of interchanges, respectively).
Now, note that the wave function at time t is given by the path integral in
terms of some boundary condition at time t0:

〈q, t|ψ〉 =
∫

dq0K(q, t; q0, t0)ψ0(q0, t0) . (23)

Two evolutions that lead to final states which only differ by the interchange
of the coordinates qi, qj in configuration space differ by the factor χ: hence,
χ = −1 correspond to σ = 1

2 (σ = 0). However, an interchange of coordinates
qi, qj can also be realized by a rotation by π of the system about any axis
through the center of mass of the two particles (or a rotation about any axis
followed by a translation), which in turn is generated by the corresponding
angular momentum operator

|qjqi〉 = eiπJij
z |qiqj〉 , (24)

where J ij
z is the component along the (arbitrarily defined) z axis of the an-

gular momentum of particles i, j. The constraint that σ can only be either
integer or half-integer is understood as a consequence of the trivial fact that
two interchanges, or a rotation by 2π, must bring back to the starting con-
figuration.

It follows that if χ = −1, so σ = 1
2 , and the spectrum of J ij

z is given by the
odd integers. We can then view the contribution of χ to the path integral as
the result of having added an extra internal effective interaction, which shifts
the angular momentum of the pair of particles i, j by an integer, i.e. the an-
gular momentum of each particle by a half-integer. This establishes the spin-
statistics theorem in a nonrelativistic theory. The results is a consequence of
the fact that fermionic statistics, which is usually given as a property of wave
functions, has been lifted through the path-integral formalism to a property
of particle paths, and attributed to a weight given to paths. The fact that
either trivial or alternating representations of permutations are possible is
then directly related to the existence of either single-valued or double-valued
representations of rotations.

In order to understand this better, let us now consider the case of planar
systems [4], both because we can then generalize this spin-statistics connec-
tion to arbitrary spin and statistics (anyons), and also because we can then
work out an explicit representation for the effective interaction associated
to the χ weigths, which will lead us to the spin action which we shall then
discuss in the next section.
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In d = 2, χα provide an abelian irreducible representation of the braid
group. Indeed, each particle trajectory on a multiply-connected space defines
an inequivalent braid (Fig. 3). Each braid, in turn, is uniquely defined as
a sequence of interchanges of pairs of neighbouring particles. This can be
represented algebraically by introducing the operator σi which exchanges
particles i and i + 1 (Fig. 4). Two braids are equivalent if they can be
deformed into each other. For instance (Fig. 5)

σiσi+1σi = σi+1σiσi+1 (25)
σiσi+1σi �= σiσi+1σ

−1
i . (26)

In fact, all independent relations between braids are Eq. (25) and

σiσj = σjσi if |i − j| > 1 . (27)

In terms of χ Eq. (27) implies

χ(σiσj) = χ(σi)χ(σj) if |i − j| > 1 , (28)

while Eq. (25) implies

Fig. 3: Braids defined by particles’ trajectories

Fig. 4: The exchange operator σi and its inverse
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a b

Fig. 5: Graphical representation of Eq. (25) (a) and Eq. (26) (b)

Fig. 6: Graphical representation of Eq. (27)

χ(σi) = χ(σj) for all i, j . (29)

Equations (28,29) in turn imply that the weight for a generic path (braid)
is

χ(σi1 . . . σin
) = χ(σi1) . . . χ(σin

) = exp

(

2iσ

n∑

k=1

εk

)

, (30)

where ε = +1 for a direct exchange and ε = −1 for its inverse σ−1
i , and

σ coincides with the statistics parameter Eq. (9). The cases of bosons and
fermions are recovered when σ = 0 or σ = 1

2 , respectively, but now σ can
take any real value (anyons). Indeed, in two dimensions two subsequent in-
terchanges do not necessarily take back to the starting point, because a path
where particle i traverses a loop encircling particle j cannot be shrunk to a
point (identity). Hence, two interchanges do not necessarily bring back to the
starting configuration, and the constraint that 2σ = 1 no longer applies. Ac-
cordingly, as already mentioned, in two dimension the rotation group admits
arbitrarily multivalued representations.

The χ weights can be represented explicitly in in terms of the variation
of relative polar angle Θ(x) ≡ tan−1

(
x2

x1

)
of particles i and j along the

particles’ paths:

χ = exp



−2iσ
∑

i<j

∆Θij



 = exp



−iσ
∑

i	=j

∫
dt

d

dt
Θ (xi(t) − xj(t))



 .

(31)
Using this representation, the weighted path integral Eq. (15) becomes

K(q′, t′; q, t) =
∫

q(t)=q; q(t′)=q′
Dq(t0) e

i
∫ t′

t
dt0

(
L[q(t0)]−σ

∑
i�=j

d
dt0

Θ[xi(t0)−xj(t0)]
)

(32)
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=
∞∑

nij, (i�=j) =−∞
e−iσ(∑ i�=j Θ̂(xi(t

′)−xj(t
′))+2πnij)K(n)

0 (q′, t′; q, t)eiσ
∑

i�=j Θ̂(xi(t)−xj(t)) .

Hence, the weights χ can be viewed as the consequence of having added to
the Lagrangian L the effective interaction term

Leff [q(t)] = −σ
∑

i	=j

d

dt
Θ[xi(t) − xj(t)] . (33)

If the starting Lagrangian L described bosonic exitations, the interaction
Eq. (33) endows these excitations with statistics σ.

Equation (32) shows that the effect of the statistics-changing interaction
can be absorbed in a redefinition of the wave function by a phase:

ψ0(q, t) = eiσ
∑

i�=j Θij(t)ψ(q, t) : (34)

the wave function ψ0 is propagated by the path-integral defined in terms of
the bosonic Lagrangian L. However, it is defined on a space of paths rather
than a space of coordinates, and it satisfies “twisted” boundary conditions:
upon rotation by 2π it acquires a phase

R2πψ0(q, t) = ei2πσn(n−1)ψ0(q, t) , (35)

and correspondingly the spectrum of eigenvalue of the angular momentum
operator (which generates rotations) is

j = j0 + σn(n − 1) , (36)

where j0 is the spectrum of angular momentum for the original Lagrangian.
We see explicitly that for a system of of particles the angular momentum of
the pair is shifted by 2σ i.e. each particle has acquired spin σ.

The effective statistics-changing Lagrangian Leff Eq. (33) looks intrinsi-
cally nonrelativistic, in that it depends on the polar angle as a function of
time. However, it also admits a covariant formulation, which will turn out to
be closely related to the formulation of a path integral for spin. To see this,
define a covariant particle current

jµ =
n∑

i=1

(

1,
dxi

dt

)

δ(2)(x − xi) =
n∑

i=1

∫
ds δ(3)(x − xi)

dxµ

ds
, (37)

where s is any covariant parametrization along the particle path (e.g. the
path-length). Furthermore, add to the action I0 =

∫
dtL(t) a covariant cou-

pling of the current to a gauge potential Aµ:

I = I0 + Ic + If (38)

Ic =
∫

d3x jµ(x)Aµ(x) (39)

If = − 1
2σ

∫
d3x εµνρAµ(x)∂νAρ(x) . (40)
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The action Ic for the gauge potential Aµ is quadratic and can be integrated
out:

Ieff [j] ≡ −i ln
∫
DAµ ei(Ic+If ) = πσ

∫
d3x d3y jµ(x)Kµν(x, y)jν(y) , (41)

in terms of the Green function Kµν(x, y) for the operator εµρν∂ν :

Kµν(x, y) = − 1
2π

εµρν
(x − y)ρ

|x − y|3 (42)

εµνρ∂νKρσ(x, y) = δµ
σδ(3)(x − y) . (43)

The effective current-current interaction

Ieff = σ
∑

i,j

Iij , Iij = −1
2

∫
dxµ

i dxν
j εµρν

(xi − xj)
ρ

|xi − xj |3
(44)

is formally identical to the interaction of the current jµ with a Dirac magnetic
monopole potential Ãµ:

xµ

|x|3 = εµαβ∂αÃβ(x) . (45)

It is now easy to recover the form Eq. (33) of the spin-statistics changing
interaction. To this purpose, we choose an explicit “Coulomb gauge” repre-
sentation for the potential Ãβ(x):

Ãµ(t,x) =
(

0,− εabx
b

r(t − r)

)

, r2 = |x|2 = t2 − x2
1 − x2

2 , (46)

and we parametrize paths with time, s = t.
We get

Iij = −1
2

∫ T

0

dt

∫ T

0

dt′
dxµ

i (t)
dt

(
∂µÃν(xi − xj) − ∂νÃµ(xi − xj)

) dxν
j (t′)
dt′

=
∫ T

0

dt εab

(
dxa

i

dt
−

dxa
j

dt

)
(xi(t) − xj(t))b

|xi(t) − xj(t)|2
+ Ig , (47)

where Ig is a rotationally invariant surface term which has no effect on spin
and statistics. Now, terms with i = j in Eq. (47) vanish by antisymmetry,
while terms with i �= j can be rewritten using the identity

∂aΘ(x) = −εab xb

|x|2 , (48)

which immediately implies that

Iij = −
∫

dt
d

dt
Θ(xi − xj) + Ig , (49)
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i.e., up to the irrelevant Ig, the same as the action obtained from the effective
Lagrangian Eq. (33).

Summarizing, we have found that nontrivial statistics is enforced by
weighing topologically inequivalent paths in the path integral, that inequiv-
alent paths are those which correspond to interchanging the coordinates of
two or more particles, and that these weights can be obtained as the result
of adding to the Lagrangian an effective interaction term, which shifts the
spectrum of the total angular momentum by a half-integer contribution per
particle. Furthermore, in two dimensions we have obtained an explicit local
representation of this effective interaction term, which is formally equivalent
to the interaction of the particle current with a Dirac magnetic monopole
localized on each other particle.

3 A Path Integral for Spin

Spin is usually quantized by introducing degrees of freedom which live in
an internal space. In particular, the quantization of Fermions is usually per-
formed by introducing anticommuting variables. However, in the previous
section we have seen that it is possible to represent the effect of fermionic
statistics in terms of an interaction defined in configuration space, and then
path-integrating over this space. In this section we shall see that it is also
possible to obtain the path-integral quantization of a spin degree of free-
dom by constructing the configuration space for a classical spin, and then
path-integrating over evolutions in this configuration spaces with a suitable
weight.

3.1 The Spin Action

It is well-known that the classical action for a free (relativistic) particle coin-
cides with the arc-length L of the path xµ(s) traversed by it, and in fact its
quantization [10] can be obtained by by summing over paths with a weight
given by an action which coincides with the arc-length L:

I = m

∫
ds

√(
dxµ

ds

)2

= mL . (50)

Hence, the quantization of the spinning particle is obtained by first defining
the space of paths, and then introducing as a weight over it the simplest
geometric invariant of the paths.

The path-integral quantization of spin can be obtained in a similar way.
The configuration space for spin is the set of points spanned by a vector

s = σe (51)
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with fixed modulus |s| = σ, namely the two-sphere S2. This can be viewed
as the result of the action of the rotation group on a reference vector, namely,
the coset of the rotation group over the subgroup of rotations that leave
the reference vector invariant (little group): S2 = SO(3)/SO(2). The sim-
plest invariant over this space is the solid angle subtended by a closed path.
Therefore, parametrizing the vector e in spherical coordinates

e =




sin θ cos φ
sin θ sinφ

cos θ



 (52)

we define the spin action as

Is =
∫

dtL(θ, φ) = s

∫
dt cos θφ̇ . (53)

Equation (53) provides us with a spin action in the sense that the time-
evolution (transition amplitude) for spin wave functions

|φ〉 = |m〉〈m|φ〉; 〈m|φ〉 =
e−imφ

√
2π

(54)

is given by

〈f |i〉 = 〈φf |ei
∫

H(t) dt|φi〉,=
∫

e(tf )=e(φf ); e(ti)=e(φi)

De ei
∫

dtLs−V (J) , (55)

where H(t) is a Hamiltonian which describes the spin dynamics (e.g. the
coupling with an external magnetic field, H = s · B) and the boundary
conditions are given in terms of φ only (which is equivalent to specifying
an eigenvalue m of the third component of angular momentum). This result
can be proven by direct computation [5, 6]. We shall instead first show that
the action Is Eq. (53) leads to the correct classical dynamics of spin, then
quantize it using the general principles of geometric quantization.

Let us first take a closer look at the spin action. Its geometric interpreta-
tion becomes apparent by rewriting it as

Is = σ

∫

C

cos θφ̇dt = σ

∫

C

cos θdφ (56)

= σ

∫

S

d cos θdφ = σ

∫

S

dS · e = σ

∫

S

(
∂e

∂s
× ∂e

∂t

)

· e , (57)

where C is the path travsersed by the vector e Eq. (52), and the second step
Eq. (57) holds when the path is closed, in which case S is th surface bound
by C. In such case, Eq. (57) shows explicitly that the spin action coincides
with the solid angle subtended by C.

Equation (57) shows manifestly that there is a 4π ambiguity in the defin-
ition of the spin action, which corresponds to the possibility of choosing the
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upper or lower solid angle subtended by C on the sphere. In order for this am-
biguity to be irrelevant, the parameter σ, which as we shall see corresponds
to the value of spin, must be quantized in half-integer units. The connection
between the spin action and the effective two-dimensional statistics action
Eq. (44) becomes clear by rewriting it as

Is = σ

∫

S

dS · ∇ × Ã[e] , (58)

where Ã is the Dirac monopole potential Eq. (45), in the space of spin vectors:

e = ∇ × Ã[e] (59)

3.2 Classical Dynamics

In order to verify that the spin action defines the action for a classical spin
degree of freedom, we first check that it leads to the Poisson bracket

{si, sj} = εijksk . (60)

This is easily done using the Faddeev-Jackiw formalism [7] for the Hamil-
tonian treatment of systems defined by first-order Lagrangians, i.e. by a La-
grangian of the form

L = fi(x)
dxi

dt
− V (x) . (61)

Namely, it easy to see that the Euler-Langrange equations implied by the
Langrangian Eq. (61) have the form

fij
dxj

dt
=

∂V

∂xi
(62)

fij ≡ ∂fj

∂xi
− ∂fi

∂xj
. (63)

This coincides with the canonical Hamiltonian form

dxi

dt
= {xj , xi} ∂V

∂xj
= {V, xi} (64)

if the Poisson brackets are given by

{xi, xj} = (f−1)ji (65)

It can be shown that the same result is found in the more standard approach,
where the Lagrangian Eq. (61) is viewed as defining a constrained dynamics,
which is then treated defining suitable Dirac brackets.

Specializing this formalism to the spin action we see that its Dirac monom-
pole form Eq. (58) has the form of Eq. (61) with
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fi = σÃi[e] . (66)

Using the definition Eq. (63) this leads to

fij = σ
(
∂iÃj − ∂jÃi

)
= σεijkek . (67)

Because
f−1

ij =
1
σ2

fij (68)

the Poisson Brackets are

{ei, ej} =
1
σ

εijkek , (69)

which, identifying the spin vectore s with

s = σe , (70)

immediately lead to the spin Poisson brackets Eq. (60). This also shows that
the parameter σ gives the value of spin.

3.3 Geometric Quantization

The spin action can be quantized using the formalism of geometric or “coad-
joint orbit” quantization [8, 9]. Namely, we view the time evolution of the
(unit) spin vector e(t) as the result of the action of a rotation matrix Λ(t)
on a reference vector e0:

e(t) = Λ(t)e0 . (71)

This defines a path (orbit) in S2 = SO(3)/SO(2), where SO(2) is the little
group of e0 (the set of Λ matrices which leaves e0 invariant).

The path in S2 can be lifted to a path in SO(3) by assigning a frame, e.g.
by defining the vector

n(t) ≡ ė(t)
|ė(t)| (72)

which satisfies
n · e = 0 . (73)

The triple e, n, and
b(t) ≡ e(t) × n(t) . (74)

defines a time-dependent frame, which coincides with the standard Frenet
frame if e(t) is viewed as the tangent vector to some path, in which case n
and b are the unit normal and binormal, respectively. The matrix Λ is then
fully specified by Eq. (71) and

n(t) = Λ(t)n0 . (75)
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It is convenient in particular to choose the set of reference vectors



v(3)0 = e0

v
(1)
0 = n0

v
(2)
0 = b0



 (76)

as
v
(a)
0 i = δa

i . (77)

It is then easy to see that the quantity
(
Λ−1Λ̇

)ij

= v(i) · v̇(j) (78)

is an element of the SO(3) algebra, the so–called Maurer-Cartan form, given
by (

Λ−1Λ̇
)

ij
=
∑

ab

Cab(Mab)ij ; (Mab)ij =
(
δa
i δb

j − δa
j δb

i

)
. (79)

The coefficients Cij can be extracted by exploiting the fact that the generators
are orthogonal under tracing:

Cij =
1
4

tr
(
MijΛ

−1Λ̇
)

=
1
2
v(i) · v̇(j) . (80)

We can now use this gometric formalism to rewrite yet again the spin
action Eq. (53) as

Is = σ

∫

S

(
∂e

∂s
× ∂e

∂t

)

· e = σ

∫
dt ḃ · n + integers

= σ

(

tr
∫

dt
1
2

(
Λ−1Λ̇M12

)
+ integers

)

. (81)

Note that any spin-dependent potential V (σ) can be re-written in terms of
Λ by exploiting Eq. (80) to express the spin vector e in terms of Λ:

ei = σεijk

(

Λ−1 M12

2
Λ

)

jk

. (82)

This new form Eq. (81) of the spin action has a twofold advantage: first, it
does not depend on the representation, and second, it is amenable to geomet-
ric quantization. To demonstrate its representation-independence, let us show
how the spinor representation is recovered from it. For spin 1

2 , the generators
are

Mij = −iεijkσk , (83)

where σi are the usual Pauli matrices. We then have

tr
1
2

(
Λ−1Λ̇M12

)
= tr

(
Λ−1Λ̇

σ3

2i

)
= tr

(

Λ−1Λ̇

(
11 + σ3

2i

))

. (84)
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The connection to (Pauli) spinors is found by introducing the reference
two-component spinor

ψ0 =
(

1
0

)

, (85)

upon which the matrix Λ is taken to act in the spinor representation, namely

ψ(t) = T [Λ(t)]ψ0 , (86)

where T [Λ(t)] is the spinor representation of the rotation Λ. The relation
between the spinor and vector representation is provided by constructing
spinor bilinears

ψ∗σiψ = Λijψ
∗
0σiψ0 = Λije

j
0 . (87)

Using this relation, and noting that

|ψ0〉〈ψ0| =
(

11 + σ3

2

)

(88)

it is easy to rewrite the spin action Is Eq. (81) as

Is =
1
2

∫
dt

i
ψ∗(t)

d

dt
ψ(t) , (89)

which has the form of the kinetic term for a Pauli spinor ψ(t). A generic
spin-dependent potential V (σ) can be written in terms of ψ by using the
relation

e = ψ∗(t)σψ(t) . (90)

The quantization of spin is now reduced to the general problem [9] of
quantizing a system whose confiuration space is the space of states |ψ〉 which
are orbits of a group G:

|φ〉 = T (g)|φ0〉 , (91)

where g ∈ G is an element of the group of which T (g) provides a unitary
representation. The axioms of quantum mechanics imply that transition am-
plitudes for this system are given by the path integral

〈f |i〉 =
∫

Dg eiIw[g] (92)

with the action

Iw[g] =
∫

dt 〈φ0|
[

T (g−1(t))
d

idt
T (g(t)) − H(g(t))

]

|φ0〉 , (93)

where H is a generic spin-dependent potential (or Hamiltonian, which coin-
cides with the potential for a first-order Lagrangian).

The spin action Eq. (81) is seen to coincide with the kinetic term of the
geometric action Eq. (93) if one identifies the representation matrix T (g)
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with Λ Eq. (71), and one observes that the projector on the state |φ0〉 can
be expressed in terms of the generator C0

ijM
ij of the little group of |φ0〉:

|φ0〉〈φ0| = C0
ijM

ij . (94)

Indeed, we get
∫

dt 〈φ0|
[

T (g−1(t))
d

idt
T (g(t))

]

|φ0〉 =
∫

dt trC0
ijM

ijΛ−1(t)Λ̇(t) (95)

which coincides with the spin action if we choose C0
ijM

ij = M12. Hence,
the spin path integral Eq. (55) with the spin action Eq. (53) follows from
geometric quantization of the space of SO(3) orbits.

The relation of this result to the usual sum over paths à la Feynman is
apparent if we specialize again to the case of spin 1

2 . The sum over paths
is performed by dividing the time evolution from ti to tf into discrete time
steps ∆t = tf−ti

N so that tj = ti + (j − 1)∆t, and then letting N → ∞. For a
spin system we get

〈f |i〉 = 〈ψf |e−i
∫ tf

ti
H dt|ψi〉 =

N∏

j=1

∫
dΛj〈ψj+1|e−i∆tH(tj)|ψj〉 . (96)

The evolution along an infinitesimal time slice is then given by

〈ψj+1|e−i∆tH(ti)|ψj〉 ≈ 〈ψj+1| (1 − i∆tH(tj)) |ψj〉

= 1 +
1
2
∆tψ∗ d

dt
ψ − i∆tH(tj) (97)

≈ ei[ψ∗ d
idt ψ−∆tH(ti)] ,

which coincides with the geometric quantization result Eq. (93). The first-
order quantization of spin is a simple consequence of the fact that a spin
Hamiltonian does not contain a quadratic kinetic term: the action is then
entirely determined by the first-order parallel transport of the spin vector.

The meaning of these results is that first, the probabilty for the time
evolution between two spin states is given by

〈f |i〉 =
∫

ef (tf )=ef (Λf ); ei(ti)=ei(Λi)

De ei[Is[e]−
∫

dt H(t,e)] (98)

and furthermore, the matrix element of any spin-dependent operator F (σ)
can be determined as

〈f |F (σ)|i〉 =
∫

ef (tf )=ef (Λf ); ei(ti)=ei(Λi)

De ei[Is[e]−
∫

dt H(t,e)]F (e) . (99)

Summarizing, we have seen that the path-integral quantization of a “sta-
tic” spin degree of freedom – as e.g. in the Heisenberg model – can be given in
terms of a geometrically determined first-order spin action. The usual formal-
ism in the spin-1

2 case is obtained by specializing to the spinor representation
of spin vectors, but it does not require anticommuting variables or relativity.
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4 Relativistic Spinning Particles

As discussed in the introduction, in a relativistic theory physical states are
irreducile representations of the Poincaré group, i.e. they carry mass and
spin: the one-particle state |m, s〉 satisfies

P 2|m, s〉 = m2|m, s〉; W 2|m, s〉 = m2s(s + 1) , (100)

where the Pauli-Lubanski operator W , defined in Eq. (7), generates Lorentz
tranformations which leave the particle momentum invariant, because by
construction WµPµ = 0. In particluar, in the rest frame of the particle (for
massive particles) p = (m,0), so W = (0, s). In a general frame, spin spans
the three dimensional (d − 1 dimensional) space orthogonal to momentum.
This introduces a coupling between spin and momentum which determines
the dynamics of a relativistic spinning particle, both at the classical and
quantum level.

4.1 Path Integral for Spinless Particles

Before discussing the quantization of spinning particles, let us review the
path-integral quantization of a massive spinless particle [10]. As we mentioned
already, the action Eq. (50) of a spinless free particle, or the kinetic term in
the action for an interacting spinless particle, coincides with the arc-length of
the path traversed by the particle. This can be written in various equivalent
ways: the simple integral of the arc-length element ds =

√
dxµdxµ Eq. (50)

can be rewritten in terms of an induced metric g(s) along the path

I0 =
∫

ds

[
1
√

g
1
2

(
dxµ

ds

)2

+
m2

2
√

g

]

. (101)

Both at the classical and at the quantum level, the equation of motion for g
is the constraint

g =
ẋ2

m2
, (102)

which shows that indeed g(s) is the induced metric

dx2 = g(s)ds2 , (103)

and leads back to the original form Eq. (50) of the action when substituted
in Eq. (101).

The action Eq. (101) can in turn be rewritten in first-order form

I0 =
∫

ds

[

pµ
dxµ

dt
−

√
g

2
(
p2 − m2

)
]

, (104)

where the momentum (tangent vector) pµ is also fixed by a constraint
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pµ =
1
√

g
ẋµ (105)

which again leads back to the original form Eq. (101) when subsitituted in the
action Eq. (104). This first-order form of the action is the most suitable for
geometric quantization, i.e. for describing the dynamics of the spinning par-
ticle similarly to the way we have described the dynamics of spin in Sect. 3.3.
The classical equations of motion can be obtained from any of these equiv-
alent forms of the action, and express energy-momentum conservation. For
instance, using the first-order form Eq. (104) we get immediately the Euler-
Lagrange equations

d

dt
pµ = 0, p2 = m2 . (106)

Path-integral quantization [10] can be perfomed by exploiting the “gauge
invariance”, i.e. the reparametrization invariance of the system [8]. The
(Euclidean) path integral

〈x′|x〉 = N
∫

x(0)=x; x(1)=x′
Dx(s) e−m

∫ 1
0 ds

√
ẋ2

(107)

can be rewritten introducing the induced metric g(s) Eq. (102) as

〈x′|x〉 = N
∫

x(0)=x; x(1)=x′
Dx(s)Dg(s) δ(∞)

(
ẋ2 − g

)
e−m

∫ 1
0 ds

√
g . (108)

Reparametrization invariance is now manifest, because upon a general repa-
rametrization s → f(s), the metric g(s) transforms as g(s) → g(f(s))[ḟ(s)]2.
We can now perform the path integral by fixing the gauge, e.g. by imposing
the condition

ġ(s) = 0 . (109)

Because the path-length is

L =
∫ 1

0

ds
√

ẋ2 =
∫ 1

0

ds
√

g(s) (110)

the gauge conditionEq. (109) implies

g(s) = L2 . (111)

We can thus write the gauge-fixed path-integral as

〈x′|x〉 = N
∫ ∞

0

dL

∫

x(0)=x; x(1)=x′
Dx(s)Dg(s) δ(∞)

(
ẋ2 − g

)
δ
(
g − L2

)
e−mL

= N
∫ ∞

0

dL

∫

x(0)=x; x(1)=x′
Dx(s) δ(∞)

(
ẋ2 − L2

)
e−mL . (112)

After gauge-fixing, a residual integration over path lengths L remains.
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The path-integral can be re-written in terms of geometric variables along
the path: this leads to geometric quantization again. We introduce a tangent
vector along the path, which for classical paths (those which satisfy the Euler-
Lagrange equations) coincides with the particle four-momentum:

eµ =
ẋµ

|ẋ| =
ẋµ

L
. (113)

We can replace the path-integration over trajectories by a path-integration
over the tangent vectors eµ. However, the boundary conditions now become
a non-local constraint:

xµ′ − xµ =
∫ L

0

ds eµ(s) . (114)

We thus get finally

〈x′|x〉 = N
∫ ∞

0

dL

∫
De(s) e−mLδ(∞)

(
e2 − 1

)
δ(3)(xµ′ − xµ −

∫ L

0

ds eµ(s))

= N
∫

dLdp

∫
De(s) e−mLδ(∞)

(
e2 − 1

)
eip·(x′−x−

∫ L
0 ds e(s)) . (115)

The usual expression of the bosonic (Klein-Gordon) propagator is ob-
tained by regularizing the formal expression Eq. (115). To this purpose, we
cut off paths which are coarse on a scale ∼ ε (where, of course ε has the
dimensions of [length]). We then take the continuum limit with a mass renor-
malization condition, expressed by defining a renormalized mass Mphys such
that

m ∝ εM2
phys . (116)

The propagator K(p) is obtained as the Fourier transform of the renormalized
position-space amplitude:

K(p) = lim
ε→0

N
∫

dL e−mL

∫
De(s)e−

ε
2

∫ L
0 ds ė2

e−ip·
∫ L
0 ds e(s)δ(∞)

(
e2 − 1

)

= N
∫

dL e−LεM2
physe−Lεp2

= N 1
p2 + M2

phys

. (117)

Up to the irrelevant albeit infinite normalization constant N , we have thus
recovered the standard form of the Klein-Gordon propagator.

4.2 The Classical Spinning Particle

The spinning particle is now obtained by coupling a spin degree of freedom
to the spinless particle of Sect. 4.1, with dynamics governed by the action
discussed in Sect. 3.1. This can be done in an elegant geometric way by
combining the translational and spin configuration spaces. To this purpose,
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in one time and d− 1 space dimensions, we define a set of d− 1 orthonormal
vectors eµ, nµ

(1),. . . ,n
µ
(d−2), which can in turn be obtained by action of a

Lorentz transformation matrix Λ on a set of reference vectors
{

eµ = Λµ
ν t̂ν

n(i)
µ = Λµ

ν n̂0 (i)
µ . (118)

The reference vectors

t̂µ =
(

1
0

)

, n̂
(i)
0

µ = δi
µ (119)

define a basis in one time and d − 1 space dimensions. The set of vectors
eµ, nµ

(i) completely specifies the matrix Λ: indeed, the first vector has d −
1 independent components (being unimodular), the second, orthogonal to
it, has d − 2 independent components and so on, so that overall they have∑d−2

i=0 (d − i − 1) = 1
2d(d − 1) independent components, like the O(d − 1, 1)

matrix Λ.
In the four-dimensional case we are interested in, the matrix Λ has six

independent components. We take the vector eµ as the unit tangent to the
particle trajectory, so that classically is is identified with momentum up to
an overall factor of m:

eµ =
ẋµ

|ẋ| ; pµ = meµ (120)

and at the quantum level it is the variable one path-integrates over (compare
Eq. (115)). The vector nµ

(1) is then identified with the spin vector discussed
in the previous section, it has two independent components and lives in the
S2 orthogonal to eµ:

eµnµ
(1) = 0; sµ = σnµ

(1) (121)

At the quantum level, the two independent vectors pµ and sµ entirely specify
the configuration of the system, whereas at the classical level the canonical
coordinate xµ must also be given.

The action for the spinning particle is now simply obtained by combining
the action for the spinless particle Eq. (104) with the spin action Eq. (81):
by writing both in terms of Λ, the momentum-spin orthogonality constraint
is automatically enforced. We get

I =
∫

ds

[

pµ
dxµ

dt
−

√
g

2
(
p2 − m2

)
]

+ σ tr
(
Λ−1Λ̇M12

)
. (122)

It is straightforward to check that, at the classical level, the correct dy-
namics is obtained: the Euler-Lagrange equations are found by varying the
action upon the most general Poincaré transformation, namely a translation
of xµ, and a Lorentz transformation of Λ. The variation upon translations
gives trivially the spinless equation of motion Eq. (106) (energy-momentum
conservation). The most general Lorentz variation is
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δΛ = iωµνMµνΛ , (123)

upon which the action transforms as

δI = −i tr (ωµνMµνK) + iσ tr
(

S
d

dt
ωµνMµν

)

(124)

Kµν ≡ (ẋµpν − xν ṗν) (125)
Sµν = σ

(
Λ−1M12Λ

)
µν

. (126)

Demanding that the action be stationary leads to the Euler-Lagrange equa-
tions

d

dt
(xµpν − xνpµ + Sµν) = 0 . (127)

Equation (127) expresses the set of conservation laws of a Lorentz invari-
ant Lagrangian: in particular, the (i, j) components give the conservation
of (total) angular momentum, while the (0, i) components give the equation
p = d

dt (xE) which relates momentum to velocity in the usual way.

4.3 Quantum Spinning Particles and Fermions

The dynamics of the spinning particle, described by the action Eq. (122), is
given on the space of Lorentz orbits Λ(t) which evolve according to Eq. (118)
the pair of vectors pµ Eq. (120), sµ Eq. (121). The path integral then follows
from geometric quantization [9] Eqs. (92,93):

〈x′, s′|x, s〉 =
∫

dp eip·(x′−x)
∫

dL e−mL

∫
DΛ(s)e−i

∫ L
0 ds [p·Λt̂−σ tr (Λ−1Λ̇M12)] .

(128)
In practice, the path integral is found by combining the spin path integral
Eq. (98) and the spinless particle path integral Eq. (115).

Let us now discuss in particular the spin-1
2 case in the spinor formulation,

and show how the Dirac equation is recovered. We can do this promoting to
the Lorentz group the connection between spinor and vector representations
of the rotation group Eq. (90). This is based on the transformation law of
Dirac matrices, which connect the four-vector representation Λ of the Lorentz
group with the corresponding spinor representation T (Λ):

T (Λ−1)γµT (Λ) = Λµ
νγν . (129)

Now, it is easy to show that given an unimodular vector vµ, the spinor ψ
such that

ψ∗γµψ = vµ (130)

satisfies the condition
vµγµψ = ψ (131)
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(in Euclidean space, in Minkowski space the spinor ψ∗ must be replaced by
ψ̄ ≡ ψ∗γ0).

In our case, we associate to the one-particle state with normalized mo-
mentum eµ the spinor ψ[eµ] which satisfies the condition

pµγµψ = mψ , (132)

i.e. the Dirac equation. In practice, we can determine ψ[eµ] by acting with
the spinor representation T (Λ) of the transformation Λ Eq. (118)

ψ = T (Λ)ψ0 (133)

on the reference spinor ψ0 such that ψ∗
0γµψ0 = t̂µ, i.e. (using Eq. (131) such

that
γ0ψ0 = ψ0 . (134)

If one uses the so-called Dirac representation for the γ matrices, γ0 =(
11 0
0 − 11

)

(where each entry is a 2 × 2 block), so

ψ =
(

φ
0

)

, (135)

where φ is any two-component spinor.
The condition that the spin vector be given by sµ fixes entirely the spinor

(up to an overall U(1) phase): if Λ is such that Λµ
νsν

0 = sµ, then, choosing

according to Eq. (119) sν
0 =






0
1
0
0




, the spinor ψ is given by

ψ = T (Λ)ψ0; φ0 ≡
(

1
0

)

. (136)

It is easy to see that the spinor constructed in this way is an eigenstate of the
projection of the Pauli-Lubanski operator along the spin vector sµ = 1

2nµ:

Wµnµψ = ±m

2
ψ(p, s) . (137)

This is obvious in the rest frame, because then Wµsµ = msiε
ijkσjk = ms ·σ,

where σ are Pauli matrices, and Eq. (136) together with the relation between
the spin vector and Pauli matrices Eq. (90) implies that

s · σφ = ± 1
2φ . (138)

In other words, in the rest frame Wµsµ is just the standard spin operator
and φ is the two-component spinor Eq. (86) discussed in Sect. 3.3. But since
in the rest frame the low components of ψ Eq. (135) vanish, this implies
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Wµsµψ = ± 1
2mψ . (139)

In a generic frame, the four-vector sµ is boosted by Λ, so

Wµnµ = WµΛ−1ν
µnµ = T (Λ)WµT−1(Λ)nµ , (140)

but so is the spinor ψ in such a way that [Eq. (133)] the eigenvector condition
still holds:

T (Λ)WµT−1(Λ)nµT (Λ)ψ0 = ±m

2
T (Λ)ψ0 (141)

Let us now consider the propagator K(p), i.e. momentum-space path in-
tegral, related by Fourier transformation to the path-integral Eq. (128). We
have found that in the spin-1

2 case, if the spinor representation is adopted,
states along the path are instantaneous eigenstates of eµγµ, according to
Eq. (132). In follows that momentum eigenstates, which are the boundary
conditions to the momentum-space path-integral (i.e. states of definite eµ)
automatically satisfy the Dirac equation. Furthermore, the spinor states sat-
isfy

ψ∗γµψ = eµ , (142)

i.e., eµ is obtained by acting with γµ on the instantaneous spinor states along
the path. But in Sect. 3.3 we have proven [Eq. (99)] that the expectation value
of any function F (σ) can be obtained by path-integration of the function
F (Λ) with a weight given by the spin action itself. Applying this in reverse,
we see that averaging with the spin action produces the same result as taking
matrix element of instantaneous (path-otrdered) functions of γµ, where γµ is
identified with eµ thanks to Eq. (142).

The propagator is therefore given by

K(p) =
∫

dL e−mL

∫
DΛ(s)e−i

∫ L
0 ds [pµeµ−σ tr (ΛΛ̇M12)]

=
∫

dL e−mLe−iLpµγµ

(143)

=
1

p/µ +m
,

i.e. the usual Dirac form.
The link with Fermi statistics is understood by observing that the spin

factor upon 2π rotation transforms as

tr
(
Λ−1Λ̇RM12R

−1
)

= Ri
j ẑ

jεijk tr
(
Λ−1Λ̇Mjk

)
(144)

so if σ = 1
2 the path-integral Eq. (128) acquires a phase eiπ = −1. In the more

conventional approach, this follows from the anticommuting properties of the
γ matrices, and it requires anticommuting (Grassmann) variables. In the geo-
metric approach which we have followed this is not necessary, because the
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anticommutation properties follows automatically from the fact that phys-
ical states are localized on paths (so ordering along the path is enforced),
and paths are given weights that transform nontrivially upon rotations. This
provides an explicit realization of the general spin-statistics relation derived
in Sect. 2: once spin is obtained as a consequence of an interaction defined in
configuration space, the link with statistics follows from the fact that particle
interchange can be perfomed by 2π rotation.

Finally, it is interesting to observe that the dynamical coupling of spin
and momentum which follows from the geometric interpretation of spin as a
vector in the space which is orthogonal to momentum actually changes the
nature of the sum over paths: the Hausdorff dimension of paths dh that con-
tribute to the regularized and renormalized Euclidean path integral in the
continuum limit is not the same for Bose and Fermi particles [11]. The Haus-
dorff dimension relates the typical length scale L of paths which dominate the
propagator in the continuum limit to the momentum p which is propagated:

L ∼ pdH (145)

It can be proven that dH = 2 for Bosons while dH = 1 for Fermions [11].
A rough and ready way to see this is to compare the bosonic propagator
Eq. (117) and the fermionic propagator Eq. (143): it appears that the scaling
limit requires taking Lma ∼ constant with a = 2 for Bosons and a = 1 for
Fermions. This means that Bosonic paths are coarser then Femionc paths:
Bosonic propagation is an ordinary random walk (like Brownian motion),
whereas Fermionic propagation is a directed random walk, essentially because
the spin interaction quenches fluctuations of the tangent vector to the path.

5 Conclusion

The discussion of spin presented in these lectures was rooted in quantum
mechanics, and has used few field-theoretic concepts. Yet, we have been able
to derive many results which usually require the full framework of relativistic
quantum field theory: the spin-statistics connection, multivalued spin wave
functions, the spin propagator, the Dirac equation. In fact, we have shown
that the quantization of spin both in a nonrelativistic and a relativistic set-
ting follows from general properties of the configuration space for orbits of the
rotation group, viewed as a subgroup of the Galilei or Poincaré group, respc-
tively. It thus appears that the standard field-theoretic approach is is merely
a convenient way of achieving the quantization of systems of elementary ex-
citations which provide irreducible representations of the Galilei or Poincaré
group, because field theory automatically combines quantum mechanics with
the relevant symmetry group in a local, unitary way. Of course, the standard
field-theoretic approach, with anticommuting variables and spinors, is by far
more convenient for the sake of practical computations. However, we have
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attempted to show that the origin of the quantum field theoretic features of
spin in the way symmetry is realized in quantum mechanics.
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Abstract. Spin in a relativistic context is a subtle concept!
This was brought out dramatically in 1988, when the results of the Euro-

pean Muon Collaboration (EMC) experiment at CERN on polarized deep inelastic
lepton-hadron scattering (usually abbreviated as “polarized DIS”) seemed to imply
that the contribution to the proton’s spin coming from the spin of its quarks was
compatible with zero. The EMC paper was the most cited experimental paper for
several years, and led to a major theoretical effort which eventually showed that
the 20 year old, and long accepted, theoretical treatment was incomplete.

More recently, a classic and much cited paper on angular momentum sum rules,
i.e. theoretical relations between the nucleon spin and the angular momentum of
its constituents, was also shown to be incorrect.

Both these matters will be covered in the lectures.

1 Introduction

Deep inelastic lepton-hadron scattering has played a seminal role in the devel-
opment of our present understanding of the sub-structure of elementary par-
ticles. The discovery of Bjorken scaling in the late nineteen-sixties provided
the critical impetus for the idea that elementary particles contain almost
pointlike constituents and for the subsequent invention of the Parton Model.
DIS continued to play an essential role in the long period of consolidation
that followed, in the gradual linking of partons and quarks, in the discovery
of the existence of missing constituents, later identified as gluons, and in the
wonderful confluence of all the different parts of the picture into a coherent
dynamical theory of quarks and gluons – Quantum Chromodynamics (QCD).

Polarized DIS, involving the collision of a longitudinally polarized lepton
beam on a polarized target (either longitudinally or transversely polarized)
provides a different, complementary and equally important insight into the
structure of the nucleon. Whereas ordinary DIS probes simply the number
density of partons with a fraction x of the momentum of the parent hadron,
polarized DIS can partly answer the more sophisticated question as to the
number density of partons with given x and given spin polarization, in a
hadron of definite polarization, either along or transverse to the motion of
the hadron.

E. Leader: Nucleon Spin, Lect. Notes Phys. 712, 95–128 (2007)
DOI 10.1007/3-540-38592-4 4 c© Springer-Verlag Berlin Heidelberg 2007
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But what is quite extraordinary and unexpected ab initio is the rich-
ness and subtlety of the dynamical effects associated with the polarized case.
Whereas the unpolarized scaling functions F1,2(x) have a simple interpre-
tation in the Naive Parton Model (where the nucleon is considered as an
ensemble of essentially free massless partons) and a straightforward gener-
alisation in the framework of perturbative QCD, the spin dependent scaling
functions g1,2(x) are much more subtle, each fascinating in its own way. The
function g1(x) which, at first sight, seems trivial to deal with in the Naive
Parton Model, turns out, within perturbative QCD, to have an anomalous
gluon contribution associated with it. And g2(x) turns out not to have any
interpretation at all in purely partonic language.

What is also fascinating is the extraordinary interplay of theory and ex-
periment in the study of g1(x). For a long time the theory of g1(x) remained
comfortably at the level of the Naive Parton Model. Then, in 1988, came the
disturbing results of the European Muon Collaboration (EMC) [1], which dif-
fered significantly from the naive theoretical predictions. These results could
be argued to imply that the sum of the spins carried by the quarks in a
proton (Squarks

z ) was consistent with zero, rather than with 1/2 as given in
the quark model, suggesting a “spin crisis in the parton model” [2]. This led
to an intense scrutiny of the basis of the theoretical calculation of g1(x) and
the discovery of the anomalous gluon contribution [3]. So surprising was this
discovery that the calculation was immediately checked by three different
groups [4, 5, 6] who all arrived at the same result. (Somewhat fortuitously,
as it turns out, as was demonstrated in [5]).

The above argument, leading to the spin crisis, is based upon a sum rule
relating the projection along its direction of motion of the angular momentum
of the nucleon to the spin and orbital angular momentum of its constituents.
Although the sum rule is very intuitive in appearance, it turns out that the
derivation of such sum rules is quite tricky.

A key element in deriving such sum rules is a precise knowledge of the
tensorial structure of the expectation values of the angular momentum oper-
ators Ji in a state |p , σ〉 of the nucleon, labeled by its momentum p, and with
some kind of specification of its spin state, denoted here non-commitally by
σ.

In a much cited paper [7], Jaffe and Manohar stressed the subtleties in-
volved in deriving general angular momentum sum rules. As they point out,
too naive an approach leads immediately to highly ambiguous divergent in-
tegrals, and a careful limiting procedure has to be introduced in order to
obtain physically meaningful results. In this it is essential to work with non-
diagonal matrix elements 〈p′, σ|J |p , σ〉 and this can have some unexpected
consequences. Jaffe and Manohar comment that to justify rigorously the steps
in such a procedure requires the use of normalizable wave packets, though
they do not do this explicitly in their paper.
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It turns out that despite all the care and attention to subtleties, there are
flaws in the analysis in [7] and the results presented there are not entirely
general [10]. Indeed there are cases where the results of [7] are incorrect. We
shall present the correct results as well as a new angular momentum sum rule
for the case of a fast moving nucleon polarized perpendicular to its direction
of motion.

These lectures are based mainly on the Physics Report The theory and
phenomenology of polarized deep inelastic scattering by Anselmino, Efremov
and Leader [8], my book Spin in particle physics [9], and the article Critique
of the angular momentum sum rules and a new angular momentum sum rule
by Bakker, Leader and Trueman [10]. For a historical and fundamentally
pedagogical introduction see An introduction to gauge theories and modern
particle physics by Leader and Predazzi [11].

2 Polarized Lepton-Nucleon Deep Inelastic Scattering

Consider the inelastic scattering of polarized leptons on polarized nucleons:

l + N → l′ + X

in which only the final lepton is detected, so that X stands for a sum over
all possible states compatible with the usual strong interaction conservation
laws. We are interested in this reaction at high energy and large momentum
transfer, where the parton model is applicable and where perturbative QCD
calculations should be reliable.

We denote by m the lepton mass, k (k′) the initial (final) lepton four-
momentum and s (s′) its covariant spin four-vector, such that s · k = 0
(s′ · k′ = 0) and s · s = −1 (s′ · s′ = −1); the nucleon mass is M and
the nucleon four-momentum and spin four-vector are, respectively, P and S.
Assuming one photon exchange, see Fig. 1, the differential cross-section for
detecting the final polarized lepton in the solid angle dΩ and in the final
energy range (E′, E′ + dE′) in the laboratory frame, P = (M,0), k =
(E,k), k′ = (E′,k′), can be written as (for a pedagogical and historical
introduction see, for example [11])

d2σ

dΩ dE′ =
α2

2Mq4

E′

E
Lµν Wµν , (1)

where q = k − k′ and α is the fine structure constant.
In Eq. (1) the leptonic tensor Lµν is known exactly and is given in terms

of Dirac spinors by

Lµν(k, s; k′, s′) = [ū(k′, s′) γµ u(k, s)]∗ [ū(k′, s′) γν u(k, s)] (2)

The unknown hadronic tensor Wµν describes the interaction between the
virtual photon and the nucleon and depends upon four scalar structure func-
tions (like inelastic form factors) the unpolarized structure functions F1,2 and
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X

q

PN

k
‚

lkl

Fig. 1: Feynman diagram for inelastic lepton-hadron scattering

the spin-dependent sructure functions g1,2, which have to be measured and
can then be studied in theoretical models, in our case in the QCD-modified
parton model. These can only be functions of the scalars q2 and q ·P . It turns
out to be more convenient to work with

Q2 ≡ −q2 and xBj ≡ Q2/2q · P = Q2/2Mν (3)

where ν = E − E′ is the energy of the virtual photon in the Lab frame. xBj

is known as “x-Bjorken”, and we shall simply write it as x.
The cross-section for unpolarized scattering is given by

d2σ

dx dy
=

4πα2s

Q4
[xy2F1 + (1 − y)F2] (4)

where y = P · q/P · k = ν/E and s = (P + k)2. (In this and all the following
we neglect lepton masses and assume s � M2 and Q2 � M2).

It was thought that analogous to the nucleon elastic form factors, F1,2

would decrease rapidly as Q2 increased. The discovery at SLAC in 1969 that
there is almost no dependence on Q2 at fixed x was referred to as “Bjorken
scaling”. By analogy with the elastic scattering of point-like particles, where
the form factors are constants, the SLAC results were interpreted as the
scattering of the virtual photon on some point-like constituents inside the
nucleon, the partons. After many years of experimentation and analysis it
became clear that the partons had the same internal quantum numbers as the
constituent quarks which had been used to construct low energy models of the
hadrons, and which had been assigned masses of order of 1/3 of the nucleon
mass. The partonic quarks are usually taken to be massless in the kinematic
regime where the parton model is applicable, and the precise relation between
the constituent and partonic quarks (just quarks from now on) is not known.

In this picture the nucleon is viewed as simply a beam of parallel moving
quarks and the reaction is visualized as in Fig. 2.

The input for this is the unpolarized quark number density q(x′)
i.e. the number density of quarks with a fraction x′ of the parent nucleon’s
momentum as shown in Fig. 3. It is easy to show that in DIS the photon
interacts only with quarks which have x′ = xBj ≡ x.
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lepton

proton

photon

quark
xP

Fig. 2: Parton model interpretation of inelastic lepton-hadron scattering

proton
quarks

p=xP

P

Fig. 3: The unpolarized quark density q(x)

Of course there is a q(x) for each flavour of quark: u(x), d(x), s(x) and
their anti-quarks.

In this simple parton model F1 and F2 no longer depend on Q2 are given
by:

F1(x) =
1
2

[
4
9
u(x) +

1
9
d(x) +

1
9
s(x) + antiquarks

]

(5)

with F2 = 2xF1. In Eq. (5) the numerical factors are the squares of the
quark electric charges. Note the crucial fact that the value of x appearing in
the parton densities is the same as the value of the experimental quantity
Bjorken-x at which F1 is measured. This follows from the assumption that
the quarks all move parallel to their parent hadron, the so-called collinear
approximation i.e. with p = xP and no transverse momentum pT .

Once the q(x) were reasonably well determined from experiment it became
clear that something was missing. Given the physical meaning of the q(x) it
is manifest that the “second moment”

∫ 1

0

dxxqf (x)

represents the fraction of the nucleon’s momentum carried by the quarks of
flavour f . Summing this over all the quark flavours should give 1, but was
found to yield � 1/2.

Fortunately the invention of QCD provided the (electrically neutral) glu-
ons as the missing partons needed to carry the rest of the nucleon’s momen-
tum.
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QCD also induced dynamical corrections to the simple parton model re-
sults, the most important for the unpolarized case being a gentle breaking
of scaling, so that the parton densities become functions of (x,Q2), with a
slow calculable logarithmic dependence on Q2. It may seem strange that the
parton densities depend on Q2. After all, Q2 is a kinematical variable in a
particular physical reaction, whereas the parton densities are a property of
an isolated nucleon. What is hidden is the fact that in a field theoretic con-
text the parton densities are defined as hadronic matrix elements of certain
operators and these have to be renormalized. The renormalization scale or
renormalization point µ2

R is supposed to be arbitrary, and it turns out to be
most efficacious to choose µ2

R = Q2 in the theory of DIS. In addition infinities
appear linked to the masslessness of the partons.These are rendered harmless
by factorizing i.e. by splitting the QCD contribution into a soft and a hard
part. The splitting is at some arbitrary factorization scale µ2

F , and the infi-
nite soft part is absorbed into the definition of the parton density. Strictly
speaking then, the parton densities are functions of three variables: x, µ2

R

and µ2
F ! Again, it is simplest to choose µ2

F = Q2. Thus the Q2 in the struc-
ture functions refers to the kinematics of the experiment, whereas the Q2 in
the parton densities refers to the renormalization scale and the factorization
scale at which they are defined. With this convention there is a very nice
picture of what is happening physically. Namely, at fixed x what the virtual
photon “sees” in the nucleon depends upon its virtuality Q2 or frequency. As
Q2 increases the “resolution” increases.

Consider now the case where the lepton and the target nucleon are polar-
ized longitudinally, i.e. along or opposite to the direction of the lepton beam,
usually taken as along the positive OZ axis. Under reversal of the nucleon’s
spin direction the cross-section difference is given by

d2σ
→⇐

dx dy
− d2σ

→⇒

dx dy
=

16πα2

Q2

[

(1 − y

2
) g1 −

2M2xy

Q2
g2

]

. (6)

In the kinematic range of interest the second term should be negligible so
that Eq. (6) provides a method of measuring the spin-dependent structure
function g1(x).

If the nucleons are polarized transversely in the scattering plane, that is
the nucleon spin is perpendicular to the direction of the incoming lepton,
then one finds

d2σ→⇑

dx dy
− d2σ→⇓

dx dy
= −16α2

Q2

(
2Mx

Q

)√
1 − y

[y
2
g1 + g2

]
. (7)

In principle Eqs. (6) and (7) allow measurement of both g1 and g2, but the
transverse asymmetry is much smaller and therefore much more difficult to
measure. Only in the past few years has it been possible to gather information
on g2 which turns out to be smaller than g1.



Nucleon Spin 101

Let us now turn to the interpretation of g1 in the parton model. Note
that there is no parton model for g2 – its calculation is totally ambiguous.

3 The Spin Crisis in the Parton Model

For some twenty years prior to the EMC experiment the accepted expression
for g1 was completely analogous to Eq. (5) with the unpolarized quark density
replaced by the (longitudinal) polarized density ∆q(x) shown in Fig. 4:

Fig. 4: The longitudinal polarized quark density ∆q(x)

Let q+/−(x)dx be the number density of quarks whose helicities are
along/opposite to the helicity of the nucleon. Then

∆q(x) ≡ q+(x) − q−(x) (8)

Of course
q(x) = q+(x) + q−(x) (9)

(Note that the third independent kind of quark density, the transverse
polarized parton density (sometimes called transversality) ∆T q(x) shown in
Fig. 5 in which the nucleon is transversely polarized and q↑ and q↓ are the
number density of quarks whose transverse spin is along or opposite to the
spin of the nucleon, and

∆T q(x) ≡ q↑(x) − q↓(x) (10)

does not play a role in DIS, but will be of interest later on.)

Fig. 5: The transversely polarized quark density ∆T q(x)

The expression for g1 is then:

g1(x) =
1
2

{
4
9
∆u(x) +

1
9
∆d(x) +

1
9
∆s(x) + antiquarks

}

(11)
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It is useful to rearrange this by defining combinations of quark densi-
ties which have specific transformation properties under the group of flavour
transformations SU(3)F . Define:

∆q3 = (∆u + ∆u) − (∆d + ∆d) (12)

∆q8 = (∆u + ∆u) + (∆d + ∆d) − 2(∆s + ∆s) (13)

∆Σ = (∆u + ∆u) + (∆d + ∆d) + (∆s + ∆s) (14)

which transform respectively as the third component of an isotopic spin
triplet, the eighth component of an SU(3)F octet and a flavour singlet.
Eq. (11) then becomes:

g1(x) =
1
9

[
3
4
∆q3(x) +

1
4
∆q8(x) + ∆Σ

]

(15)

Taking the first moment of this yields

Γ1 ≡
∫ 1

0

g1(x)dx =
1
12

[

a3 +
1√
3
a8 +

4
3
a0

]

(16)

where

a3 =
∫ 1

0

dx ∆q3(x)

a8 =
1√
3

∫ 1

0

dx ∆q8(x)

a0 = ∆Σ ≡
∫ 1

0

dx ∆Σ(x) (17)

The significance of these first moments lies in the fact that they can
be related to hadronic matrix elements of currents which are measurable in
other processes. To see this we need to briefly mention the Operator Product
Expansion.

The fundamental understanding of the Q2-behaviour of the moments in
unpolarized DIS came originally from a study of the Operator Product Ex-
pansion. Later it was discovered that the same results could be obtained in
the QCD Improved Parton Model.

It can be shown that the hadronic tensor Wµν involved in the expression
for the deep inelastic cross-section [see Eq. (1)] is given by the Fourier trans-
form of the nucleon matrix elements of the commutator of electromagnetic
currents Jµ(x):

Wµν(q;P, S) =
1
2π

∫
d4x eiq·x〈P, S|[Jµ(x), Jν(0)]|P, S〉 (18)

where Sµ is the covariant spin vector specifying the nucleon state of mo-
mentum Pµ. It is convenient to introduce an amplitude Tµν which is closely
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related to the forward T -matrix element for Compton scattering of a virtual
photon of 4-momentum q and helicities λ and λ′. In the convention for the
T̂ -operator

Ŝ = Î + i(2π)4 δ4(Pf − Pi) T̂

one has
〈P, S; q, λ′|T̂ |P, S; q, λ〉 = 4πα ε∗µ(λ′)Tµν εν(λ) (19)

where
Tµν(q;P, S) = i

∫
d4x eiq·x〈P, S|T (Jµ(x)Jν(0))|P, S〉 (20)

is given in terms of the time ordered product of the currents. It can be shown
that

Wµν =
1
π

Im Tµν . (21)

The behaviour of Tµν (and therefore Wµν) in the deep inelastic limit is
controlled by the behaviour of the product of currents near the light cone
x2 = 0 and can be derived from Wilson’s Operator Product Expansion.

It is important to note that the expressions Eqs. (18) and (20), for which
the operator product approach can be utilized, only arise because of the fully
inclusive nature of the deep inelastic reaction being considered. Indeed the
starting point from which Eq. (18) can be derived is the expression

Wµν ∝
∑

X

〈P, S|Jµ|X〉〈X|Jν |P, S〉

which appears in the formula for the cross-section. Only if the sum is over
all final states |X〉 does this reduce to Eq. (18).

The Operator Product Expansion gives results for the moments of g1,2

in terms of hadronic matrix elements of certain operators multiplied by per-
turbatively calculable coefficient functions. It turns out that the the ai in
Eq. (16) are hadronic matrix elements of the octet of quark SU(3)F axial-
vector currents Jj

5µ (j = 1, . . . , 8) and the flavour singlet axial current J0
5µ

taken between proton states of definite momentum and spin direction.
The octet currents are

Jj
5µ = ψ̄γµγ5

(
λj

2

)

ψ (j = 1, 2, . . . , 8) (22)

where the λj are the usual Gell-Mann matrices and ψ is a column vector in
flavour space

ψ =




ψu

ψd

ψs



 , (23)

and the flavour singlet current is

J0
5µ = ψ̄γµγ5ψ . (24)
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The forward matrix elements of the Jj
5µ can only be proportional to Sµ

and the aj are defined by

〈P, S|Jj
5µ|P, S〉 = MajSµ

〈P, S|J0
5µ|P, S〉 = 2Ma0Sµ . (25)

Analogous to Eq. (22) one introduces an octet of vector currents

Jj
µ = ψ̄γµ

(
λj

2

)

ψ (j = 1, . . . ,8) (26)

which are conserved currents to the extent that SU(3)F is a symmetry of the
strong interactions.

Now it is precisely the above octets of currents that control the β-decays
of the neutron and of the octet of hyperons. This means that the values of a3

and a8 are known from other measurements. Consequently the measurement
of Γ1 can, via Eq. (16), be interpreted as a measurement of the flavour singlet
a0.

The result of the EMC experiment was that a0 ≈ 0, which, as we shall
see, is somewhat startling.

Let us consider now the physical significance of ∆Σ(x). Since, via Eq. (8),
q±(x) count the number of quarks of momentum fraction x with spin com-
ponent ± 1

2 along the direction of motion of the proton (let us call this the
z-direction), the total contribution to Jz coming from a given flavour quark
is

Sz =
∫ 1

0

dx

{(
1
2

)

q+(x) +

(

−1
2

)

q−(x)

}

=
1
2

∫ 1

0

dx ∆q(x) . (27)

It follows that
a0 = 2Squarks

z (28)

where Squarks
z is the contribution to Jz from the spin of all quarks and anti-

quarks.
We see that a0 is playing two roles. Here we have argued that it measures

the z component of the spin carried by the quarks; in the second of equations
Eq. (25) 2a0 measures the expectation value of the flavour singlet axial-vector
current. What is the connection? From Noether’s Theorem the spin density
operator for a spin 1/2 particle is 1/2ψ̄(x)γρσνλψ(x). For ρ = 0, ν = 1, λ = 2
corresponding to spin in the z direction, this is just 1/2 times the axial vector
current with µ = 3. Thus, if the nucleon state is written as a superposition
of partonic states, the expectation value of the axial-vector current should
indeed be twice the spin carried by the spin 1/2 quarks. But, as we shall see
presently, the existence of the axial anomaly complicates this somewhat.
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Now in the simple parton model p⊥ = 0 and all quarks move parallel
to the parent hadron, i.e. for a quark of momentum p, p = xP. Hence
any orbital angular momentum carried by the quarks is perpendicular to P
and thus does not contribute to Jz. Hence, in the simple parton model, one
expects for a proton of helicity +1/2:

Squarks
z = Jz = 1/2 . (29)

We stress that this ignores p⊥ effects and assumes only quark and antiquark
constituents are polarized.

The EMC result for the value of a0, on the contrary, implied that
(

Squarks
z

)

Exp

= 0.03 ± 0.06 ± 0.09 . (30)

It was this highly unexpected result which was termed the “spin crisis in the
parton model” [2].

4 Resolution of the Spin Crisis: The Axial Anomaly

Consider the axial current

Jf
5µ = ψ̄f (x) γµγ5 ψf (x) (31)

made up of quark operators of definite flavour f . (An implicit colour sum is
always implied). From the free Dirac equation of motion one finds that

∂µJf
5µ = 2imqψ̄f (x) γ5 ψf (x) (32)

where mq is the mass of the quark of flavour f .
In the chiral limit mq → 0 Eq. (32) appears to imply that Jf

5µ is con-
served. If this were really true there would be a symmetry between left and
right-handed quarks, leading to a parity degeneracy of the hadron spectrum
e.g. there would exist two protons, of opposite parity. However, the formal
argument from the free equations of motion is not reliable and, as shown
originally by Adler, and by Bell and Jackiw [12] (in the context of QED),
there is an anomalous contribution arising from the triangle diagram shown
in Fig. 6.

As a consequence the axial current is not conserved when mq = 0. One
has instead, for the QCD case

∂µJf
5µ =

αs

4π
Ga

µνG̃µν
a =

αs

2π
Tr [Gµν G̃µν ] (33)

where αs is the QCD analogue of the fine structure constant, and where G̃a
µν

is the dual field tensor
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γµ γ5

Fig. 6: The anomalous triangle diagram

G̃a
µν ≡ 1

2
εµνρσGρσ

a (34)

and where a field vector or tensor without a colour label stands for a matrix.
In this case

Gµν ≡
(

λa

2

)

Ga
µν . (35)

The result Eq. (33), which emerges from a calculation of the triangle
diagram (Fig. 6) using mq = 0 and the gluon virtuality k2 �= 0, is really a
particular limit of a highly non-uniform function. If we take mq �= 0, k2 �= 0
the RHS of Eq. (33) is multiplied by

T (m2
q/k2) = 1 −

2m2
q/k2

√
1 + 4m2

q/k2
ln

(√
1 + 4m2

q/k2 + 1
√

1 + 4m2
q/k2 − 1

)

. (36)

We see that the anomaly corresponds to T → 1 for (m2
q/k2) → 0. On the other

hand, for on-shell gluons, k2 = 0, and mq �= 0, i.e. in the limit (m2
q/k2) → ∞

the terms cancel, T → 0, and there is no anomaly.For gluons bound inside a
nucleon one sould utilize k2 �= 0 and the anomalous contribution is relevant.

The anomaly induces a pointlike interaction between J0
5µ and gluons. That

it is pointlike can be seen by taking different gluon momenta k1 and k2 in
Fig. 6 and noting that the amplitude does not depend on the momentum
transfer k1−k2 when mq = 0. Therefore, in computing the matrix element of
J0

5µ in a hadron state, we will get a contribution from the gluon components
of the hadron as well as the more obvious contribution from quarks. From
Adler’s expression [ABJ 69] for the triangle diagram, modified to QCD, one
finds for the forward gluonic matrix element of the flavour f current (our
convention is ε0123 = 1)
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〈k, λ|Jf
5µ|k, λ〉 =

iαs

2π
εµνρσ kνε∗ρ(λ)εσ(λ)T (m2

q/k2)

= −αs

2π
Sg

µ(k, λ)T (m2
q/k2) (37)

where λ is the gluon helicity and we may take

Sg
µ(k, λ) ≈ λkµ (38)

as the covariant spin vector for almost massless gluons.
We may then compute the gluonic contributions to the hadronic expecta-

tion value 〈P, S|J0
5µ|P, S〉. In this case the gluons being bound will be slightly

off-shell i.e. k2 �= 0, but small. The full triangle contribution involves a sum
over all quark flavours. We take mu,md and ms to be 
 k2 whereas mc,mb

and mt are � k2. The function T (m2
q/k2) thus takes the values:

T = 1 for u, d, s

T = 0 for c, b, t (39)

and the gluon contribution is then given by [see Eq. (25)]

agluons
0 (Q2) = −3

αs

2π

∫ 1

0

dx ∆G(x,Q2)

≡ −3
αs(Q2)

2π
∆G(Q2) (40)

or from Eq. (16)

Γ gluons
1p (Q2) = −1

3
αs(Q2)

2π
∆G(Q2) . (41)

In the above we have implicitly taken into account QCD corrections which
have the effect of replacing αs by the effective or running coupling αs(Q2)
which varies logarithmically with Q2. ∆G(x,Q2), the polarized gluon density,
is the difference between the number density of gluons with the same helicity
as the nucleon and those with opposite helicity; its integral ∆G(Q2) is the
total helicity carried by the gluons. In the above we have explicitly stressed
that the gluon density is Q2 dependent. This will be of interest presently.

The result Eq. (40) is of fundamental importance. It tells us that the
simple parton model formulae Eq. (17) and (28) for a0 (and hence for Γ p

1 in
terms of the ∆qf ) are incorrect. We now have, instead,

a0 = ∆Σ − 3
αs

2π
∆G (42)

We see immediately that it has the fundamental implication that the small
measured value of a0 does not necessarily imply that ∆Σ is small.

There are several interesting and surprising aspects to the result Eq. (40).
Firstly, we argued above that the axial-vector current is, effectively, the spin
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density operator for spin 1/2 particles. Yet in Eq. (37) its matrix element be-
tween gluon states is proportional to the spin vector of the gluons. The point
is that the fields in the axial-vector current are not free fields (as signalled
by the factor α(Q2)) and in a perturbative expansion would contain terms
involving gluon fields. Secondly, the simple parton model is usually thought
of as the limit when the QCD coupling is switched off. Moreover because
QCD possess the property of asymptotic freedom i.e the effective coupling
goes to zero logarithmically as Q2 → ∞, we would expect that as Q2 → ∞
the term agluons

0 (Q2) should vanish, and Eq. (42) would reduce to the simple
parton model result Eq. (17). However it can be shown that the first moment
∆G(Q2) tends to infinity logarithmically as Q2 → ∞, thus exactly cancelling
the decrease in α(Q2) and the gluonic term survives!

The “spin crisis” was signalled via Eq. (29), which is an intuitive statement
that the angular momentum of the nucleon should be made up of the angular
momentum of its constituents. This is an example of an angular momentum
sum rule, and it seems obviously true. However, as we shall now see, such
relations in a relativistic theory are highly non-trivial. After studying these
sum rules we shall return to reconsider Eq. (29) when allowing for the fact
that partons have intrinsic perpendicular momentum and that the parton
densities depend on the renormalization scale.

Angular momentum sum rules require explicit expressions for the matrix
elements of the angular momentum operators. Obtaining these is non-trivial.

5 Matrix Elements of Angular Momentum Operators:
The Problem

In the standard approach one relates the matrix elements of the angular
momentum operators to those of the energy-momentum tensor.

Let Tµν(x) be the total energy-momentum density which is conserved

∂µTµν(x) = 0 . (43)

Later we shall distinguish between the conserved canonical energy-momentum
tensor Tµν

C , which emerges from Noether’s theorem, and which is, generally,
not symmetric under µ ↔ ν, and the symmetrised Belinfante tensor Tµν ,
which for QCD is given by

Tµν(x) =
1
2

(Tµν
C (x) + T νµ

C (x)) (44)

and which is also conserved. For the moment, however, this distinction is
irrelevant.

Being a local operator, Tµν(x) transforms under translations as follows

Tµν(x) = eix·P Tµν(0)e−ix·P , (45)
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where the Pµ are the total momentum operators of the theory.
By contrast the various angular momentum density operators which are

of interest, the orbital angular momentum densities

Mµνλ
orb (x) ≡ xνTµλ

C (x) − xλTµν
C (x) (46)

or the version constructed using the symmetrised stress-energy tensor,

Mµνλ(x) ≡ xνTµλ(x) − xλTµν(x) (47)

are not local operators (we shall call them compound) and do not transform
according to Eq. (45).

Note that, strictly speaking, the operators relevant to the angular mo-
mentum are the components M0ij where i, j are spatial indices. However, for
reasons of simplicity in utilising the Lorentz invariance of theory, it may be
preferable to deal covariantly with the entire tensor Mµνλ. We shall loosely
refer to them also as angular momentum densities.

The total angular momentum density is

Jµνλ(x) = Mµνλ
orb (x) + Mµνλ

spin (x) , (48)

where the structure of Mµνλ
spin depends on the type of fields involved. From

Noether’s theorem Jµνλ(x) is a set of conserved densities, i.e.,

∂µJµνλ(x) = 0 . (49)

As a consequence of the densities being conserved, it follows that the total
momentum operators

P ν ≡
∫

d3xT 0ν(x) (50)

and the total angular momentum operators J ,

Jz = J3 = J12 , (cyclical) (51)

with
J ij ≡

∫
d3xJ0ij(x) (52)

are conserved quantities, independent of time.
The relationship between the Mµνλ(x), constructed using the symmetrical

energy-momentum density and the Jµνλ(x) constructed from the canonical
energy-momentum tensor is extremely interesting. One can show that

M0ij(x) = J0ij(x) + [E of M terms] + [divergence terms] . (53)

The [E of M terms] vanish if it is permissible to use the equations of motion
of the theory. The [divergence terms] are of the form ∂αFα0ij(x).
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We shall be primarily interested in the expectation values of the physical
operators, i.e. in their forward matrix elements. If Fα0ij(x) were a local op-
erator, it would follow directly that the forward, momentum-space, matrix
elements of the divergence terms in Eq. (53) vanish. But it is not a local oper-
ator. Nonetheless, a careful treatment using wave packets [13] demonstrates
that the forward matrix elements do indeed vanish.

Dropping, as is customary, the [E of M terms], we shall thus assume the
validity of

〈p, σ|
∫

d3xM0ij(x, 0)|p, σ〉 = 〈p, σ|
∫

d3xJ0ij(x, 0)|p, σ〉 . (54)

Of primary interest are the matrix elements of the angular momentum
operators Jk or, equivalently, the J ij . Consider the forward matrix element,
at t = 0,

M0ij(p, s) ≡ 〈p, s|
∫

d3xM0ij(x, 0)|p, s〉

=
∫

d3x〈p, s|xiT 0j(x) − xjT 0i(x)|p, s〉

=
∫

d3x xi 〈p, s|eiP ·xT 0j(0)e−iP ·x|p, s〉 − (i ↔ j)

=
∫

d3x xi 〈p, s|T 0j |p, s〉 − (i ↔ j) . (55)

where s is the rest frame spin vector. The integral in Eq. (55),
∫

d3xxi, is
totally ambiguous, being either infinite or, by symmetry, zero.

The essential problem is to obtain a sensible physical expression, in terms
of p and s, for the above matrix element. The fundamental idea is to work with
a non-forward matrix element and then to try to approach the forward limit.
This is similar to what is usually done when dealing with non-normalizable
plane wave states and it requires the use of wave packets for a rigorous
justification.

It will turn out that the results are sensitive to the type of relativistic
spin state employed, so in the next Section we present a brief resumé of the
properties of relativistic spin states.

We mentioned in the Introduction that one of the classic papers on this
subject is incorrect. The most crucial error in that treatment is the mishan-
dling of the matrix elements of a covariant tensor operator. If Tµλ transforms
as a second-rank tensor its non-forward matrix elements do not transform
covariantly. This was the motivation, decades ago, for Stapp to introduce
M -functions [14]. Namely, even if the spin state is specified by the covariant
spin vector S, the covariance is spoilt, for canonical spin states by the Wigner
rotation, and, for helicity states by the analogous Wick helicity rotation [15].
Only by first factoring out the wave-functions (in our case Dirac spinors) i.e.
by writing
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〈p′, S′|Tµλ|p, S〉 = ū(p′, S′)T µν(p′, p)u(p, S) . (56)

does the remaining M -function, in this case T µν(p′, p), transform covari-
antly. For local operators the transformations of the spinors u and ū cancel
between themselves for forward matrix elements and so the result does have
the naively expected tensor expansion. This is not true in general for com-
pound operators, in particular the angular momentum and boost operators.

6 Relativistic Spin States

The definition of a spin state for a particle in motion, in a relativistic theory, is
non-trivial, and is convention dependent. Namely, starting with the states of a
particle at rest, which we shall denote by |0,m〉, where m is the spin projection
in the z-direction, one defines states |p, σ〉 for a particle with four-momentum
p by acting on the rest frame states with various boosts and rotations, and
the choice of these is convention-dependent. Note that in this section and the
following ones we are using p to denote the nucleon momentum. The states
are on-shell so p2 = M2

There are three conventions in general use [9]

(a) Canonical or boost states as used e.g. in Bjorken and Drell [16] or Peskin
and Schroeder [17]

|p,m〉 = B(v)|0,m〉 (57)

where B(v) is a pure boost along v = p/p0, and p = (p, θ, φ) denotes the
three-vector part of pµ

(b) Jacob-Wick helicity states [18]

|p, λ〉JW = Rz(φ)Ry(θ)Rz(−φ)Bz(v)|0,m = λ〉 (58)

where Bz is a boost along OZ, and the later introduced, somewhat sim-
pler

(c) Wick helicity states [15]

|p, λ〉 = Rz(φ)Ry(θ)Bz(v)|0,m = λ〉 (59)

Recall that the physical meaning of helicity is the projection of J along
the direction of motion of the particle i.e. along P̂ .

From the canonical states of spin-1
2 one can construct the states

|p, s〉 = B(v)|0, s〉 = B(v)D 1/2
m1/2(R(s))|0,m〉 (60)

which, in the rest frame, are eigenstates of spin with spin eigenvector along
the unit vector s. The rotation R(s) rotates a unit vector in the z-direction
into s by first a rotation about y and then a rotation about z.



112 E. Leader

The canonical states, with their reference to a rest frame, are clearly not
suitable for massless particles like gluons. Helicity states, on the other hand,
can be used for both massive and massless particles. However, it turns out
that the results for the matrix elements for the canonical states are much
more intuitive, so we will generally use them for M �= 0.

The reason we are emphasizing this distinction between canonical and
helicity states is that the matrix elements of the angular momentum operators
between helicity states are quite bizarre! Since, for arbitrary p, helicity states
are just linear superpositions of canonical states, one may wonder why this is
so. It results from the facts (i) that the coefficients in the linear superposition
are p-dependent, i.e. depend upon the polar angles of p and (ii) that the
matrix elements of the angular momentum operators contain derivatives of
δ-functions, and these, as usual, must be interpreted in the sense of partial
integration, i.e.

f(p, p′)
∂

∂pi
δ3(p − p′) = −δ3(p − p′)

∂

∂pi
f(p, p′) (61)

In almost all studies of hard processes, where a mixture of perturbative
and non-perturbative QCD occurs, nucleons are taken to be in helicity states
moving with high energy along the z-axis, and typically one is utilizing matrix
elements of local products of quark or gluon field operators between these
states. For these operators there is no problem in dealing with diagonal matrix
elements. But when it comes to an angular momentum sum rule for the
nucleon, care must be taken to decide whether one is dealing with helicity
states |pz, λ〉, where pz = (E, 0, 0, p) or with canonical states |pz, sz〉, where
sz = (0, 0, 2λ). The point is that even though the initial states are the same,

|pz, λ〉 = |pz, sz〉 (62)

the singular nature of Ji forces one to deal with non-diagonal matrix elements
i.e. to utilize 〈p′, σ| where p′ is not along the z-axis, and for these

〈p′, λ| �= 〈p′, sz| (63)

In [10] it is shown that it is possible to give a rigorous derivation of the
structure of the expectation values for canonical states

〈p, s|Ji|p, s〉 ≡ Lp′→p〈p′, s|Ji|p, s〉 (64)

where s is a unit vector along the rest frame spin eigenvector, and for helicity
states

〈p, λ|Ji|p, λ〉 ≡ Lp′→p〈p′, λ|Ji|p, λ〉. (65)

In general, for the arbitrary ith component of J , for spin-1
2

〈p, λ|Ji|p, λ〉 �= 〈p, s = 2λp̂|Ji|p, s = 2λp̂〉 (66)
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even though s lies along the direction of p̂ in both cases, and even if p is
along OZ where Eq. (62) holds. Only for the specific component of J along
p̂ do the matrix elements agree, i.e. for arbitrary p,

〈p, λ|J · p|p, λ〉 = 〈p, s = 2λp̂|J · p|p, s = 2λp̂〉 . (67)

In using the sum rules based on Eq. (64) or Eq. (65) for arbitrary i to
test any model of the nucleon in terms of its constituents, it is essential to
construct wave-functions appropriate to the type of spin state being used
for the nucleon. The equations Eq. (64) and (65) contain delta functions
and derivatives of delta-functions and this is the reason for the special care
required. In the following we use canonical states wherever possible, except
when discussing gluons where we are forced to use helicity states.

7 Matrix Elements of Angular Momentum Operators:
The Results

Since it is claimed that well known results in the literature are incorrect, in
[10] pains were taken to derive the correct expressions in three different ways,
two involving explicit physical wave packets and the third, totally indepen-
dent, based upon the rotational properties of the state vectors. Surprisingly
it turns out that the results are very sensitive to the type of relativistic spin
state used to describe the motion of the particle i.e. whether a canonical
(i.e. boost) state or a helicity state is utilized. We shall present results for the
matrix elements of the angular momentum operators, valid in an arbitrary
Lorentz frame, both for helicity states and canonical states.

The bulk of the analysis in [10] is based on a straightforward wave-packet
approach. However, this is rather subtle for particles with non-zero spin. The
key points requiring care are:

(1) The wave packets should be strictly physical, i.e. a superposition of physi-
cal plane-wave states. This requirement turns out to be incompatible with
some of the steps in [7].

(2) Care is needed in the treatment of the Lorentz covariance properties of
the matrix elements involved in the subsidiary steps of the analysis, as
mentioned in the discussion of Eq. (56). This leads to tensorial structures
which differ in some cases from those in [7].

(3) Because the results differ from [7] the matrix elements have been stud-
ied in a totally different and independent way. This does not use wave
packets and is based upon the transformation properties of momentum
states under rotations. This very direct approach holds for arbitrary spin,
whereas in the wave packet treatment it was only possible to deal with
spin-1/2 particles. It is much simpler than the wave packet approach and
it avoids all the issues of ambiguous integrals, which in the old fashioned
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treatment force one to utilize wave packets. It also brings to light some
peculiar and unintuitive properties of helicity states, and this must be
taken into account when deriving spin sum rules. This is important since
we have to deal with gluons in our sum rules.

The approach via wave packets is long and complicated, so we shall only
utilize the latter method here.

7.1 Canonical Spin State Matrix Elements

In order to utilize the rotational properties of the canonical or boost spin
states we need to display explicitly the Wigner boost operators used in defin-
ing the states of a moving particle in terms of the rest frame spin states
quantized in the z-direction |0,m〉. Then the transformation properties of
the states becomes explicit.

The state for a spin-s particle at rest in an eigenstate of spin, with spin
pointing along the s direction, is given by

|0, s〉 = D s
ms(R(s))|0,m〉 (68)

where R(s) rotates a unit vector in the z-direction into s by first a rotation
about y and then a rotation about z, a common convention. Note that we
have constructed an eigenstate with spin eigenvector along s and the state is
thus completely specified no matter what the spin of the particle is.

We will use the definitions of the Lorentz group generators given in
Weinberg [19]. In this section we will write the three vector rotation and
boost operators in terms of the integrated tensor M ij

Ji =
1
2
εijkM jk

Ki = M i0 . (69)

where on the left hand side i = x, y, z. For a particle of mass M in motion
the boost (or canonical) state is defined by

|p,m〉 = B(v)|0,m〉 = exp(iζ p̂ · K)|0,m〉 , (70)

where v = p/p0, cosh ζ = p0/M , and p̂ is the unit vector along p.
Now consider a rotation about axis-i through an angle β. The unitary

operator which effects this in Hilbert space is given in terms of the angular
momentum operator Ji:

U [Ri(β)] = exp(−iβJi) (71)

and for a particle of arbitrary spin-s

U [Ri(β))]|p,m〉 = |Ri(β)p, n〉D s
nm(RW (p, β)) . (72)
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where RW (p, β) is the Wigner rotation (see for example [9]). For a pure
rotation the Wigner rotation RW is very simple

RW (p, β) = Ri(β);

independent of p. Therefore,

〈p′,m′|U [Ri(β)]|p,m〉 = 〈p′,m′|Ri(β)p, n〉D s
nm(Ri(β))

= 2p0(2π)3δ(3)(p′ − Ri(β)p)D s
m′m(Ri(β)) ,

using the conventional normalization

〈p′,m′|p,m〉 = 2p0(2π)3δ(3)(p′ − p)δm′m . (73)

Thus

〈p′,m′|Ji|p,m〉 = i
∂

∂β
〈p′,m′|U [Ri(β)]|p,m〉|β=0

= 2p0(2π)3
[

iεijkpj
∂

∂pk
δm′m

+ i
∂

∂β
D s

m′m(Ri(β))
∣
∣
β=0

]

δ(3)(p′ − p) .

Now [22]

i
∂

∂β
D s

m′m(Ri(β))
∣
∣
β=0

= (Si)m′m

where the three (2s + 1) dimensional matrices Si are the spin matrices for
spin-s which satisfy

[Sj ,Sk] = iεjkl Sl

Thus, our final result for the matrix elements of the angular momentum
operators for arbitrary spin, from Eq. (74), becomes

〈p′,m′|Ji|p,m〉 = 2p0(2π)3
[

Si + iεijkpj
∂

∂pk

]

m′m

δ(3)(p′ − p) . (74)

For spin-1
2 , of course, the Si are just 1

2 times the Pauli matrices σi. For
arbitrary spin they are still very simple:

(Sz)m′m = mδm′m

(Sx)m′m =
1
2

[C(s,m) δm′,m+1 + C(s,−m) δm′,m−1]

(Sy)m′m =
−i

2
[C(s,m) δm′,m+1 − C(s,−m) δm′,m−1]
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where

C(s,m) =
√

(s − m)(s + m + 1)

For the case of spin- 1
2 Eq. (74) is exactly equivalent to the result one obtains

after much labor using the wave packet approach. It is completely general.
The second term will vanish if integrated over symmetric wave packets, so
does not appear in the wave packet treatment. However it must be kept for
analyzing the Lorentz transformation properties, as we will see, and must,
as usual, always be interpreted in the sense of partial integration. It is very
easy to verify that the form Eq. (74) satisfies the usual commutation relation
relations and so is consistent with rotational invariance.

Combining the result Eq. (74) for the case of spin-1
2 with Eq. (68) leads

directly to

〈p′, s|Ji|p, s〉 = 2p0(2π)3
[
1
2

si + i(p × ∇p)i

]

δ3(p′ − p) . (75)

We shall compare this result with that of [7] in Sect. 8.4.
Note that the term involving the derivative of a delta-function is a partic-

ular manifestation of the ambiguous integral in Eq. (55) and in a wave packet
treatment corresponds to the orbital angular momentum about the origin of
the packet as a whole, and vanishes for a symmetric packet. However, when
dealing with the matrix elements between particles of definite momentum, as
in Eq. (75), it is essential to keep the delta-function term and, moreover, to
interpret it as explained in Eq. (61). In fact it will play a crucial role in the
comparison between matrix elements involving canonical states and helicity
states. We shall refer to this term as theorbital angular momentum.

For the purpose of deriving sum rules our result for the matrix elements
non-diagonal in the spin label is actually more useful, namely, for a spin-1/2
particle

〈p′,m′|Ji|p,m〉 = 2p0(2π)3
[
1
2
σi + iεijkpj

∂

∂pk

]

m′m

δ(3)(p′ − p) . (76)

The proof that these results are consistent with Lorentz invariance is
rather complicated. It can be shown [10] that the matrix elements of the
rotation and boost operators are consistent with the commmutation relations
of these operators.

7.2 Helicity State Matrix Elements

We now turn to the case of helicity states which have some rather surprising
properties. One can proceed just as in the canonical case; the main difference
is that the Wigner rotation becomes a Wick helicity rotation (see for example
[9]), always about the z-axis. This simplifies things somewhat; all the com-
plication is in calculating the rotation angle. The result is also convention
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dependent, depending on whether one uses the original Jacob and Wick de-
finition [18] or the later one due to Wick [15] [see Eqs. (58) and (59)]. We
give here the result for the first case. The result of this messy calculation is
that, for p = (p, θ, φ)

〈p′, λ′|Ji|p, λ〉JW = (2π)32p0 [ληi + i(p × ∇)i] δ(3)(p′ − p)δλ′λ (77)

where

ηx = cos(φ) tan(θ/2), ηy = sin(φ) tan(θ/2), ηz = 1. (78)

Although these components look a little odd – the singularity at θ = π results
from the ambiguity of Jacob and Wick helicity states at that point – it is
easy to verify some important properties: they are manifestly diagonal in λ,
which is required since rotations preserve the helicity, and they satisfy the
requirement that the projection of J along the direction of motion i.e. along
p̂ gives the helicity. Namely one finds

〈p′, λ′|p̂ · J |p, λ〉JW = λ 2p0 (2π)3δ(3)(p′ − p) δλ′λ

and no orbital angular momentum piece survives as expected.
It is enlightening to consider these amplitudes from a different direction:

comparing the definitions of canonical (boost) states to helicity states we
have for the case of spin-1/2

|p, s〉 = |p,m〉D 1/2
m1/2(R(s))

= |p, λ〉JWD 1/2
λm (R−1(p))D 1/2

m1/2(R(s))

= |p, λ〉JWD 1/2
λ1/2(R

−1(p)R(s)) .

This has the appearance of an ordinary unitary change of basis, but because
of the compound nature of Ji when we apply this to the canonical form, using
the spin-1/2 version of Eq. (75), we get

〈p′, λ′|Ji|p, λ〉JW = (2π)3 2p0D 1/2
mλ (R(p))D 1/2

m′λ′(R(p′))∗

×
[

iεijkpj∂k +
1
2

σi

]

m′m

δ(3)(p′ − p) .

We cannot use the unitarity of the D’s because p �= p′, and we must first
pass the first D 1/2(R(p)) through the derivative before setting them equal.
This produces an extra term

− (2π)3 2p0 iεijkD 1/2
m′λ′(R(p′))∗pj∂kD 1/2

mλ (R(p))δ(3)(p′ − p) (79)

which is tedious to evaluate in the general case. The result of this labour is
identical to Eqs. (77, 78).
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8 Angular Momentum Sum Rules

Now that we have an expression for the matrix elements of the angular mo-
mentum operators we can equate the results using on the one hand the nu-
cleon state itself, on the other an expression for the nucleon state in terms of
its constituents i.e. a Fock space expansion of the nucleon state.

8.1 General Structure of Sum Rules:
Parton Transverse Momentum

Consider a nucleon with momentum along OZ, p = (0, 0, p), in a canonical
spin state with rest-frame spin eigenvector along s, where s could be longi-
tudinal sL or transverse sT . Sum rules can be constructed by equating the
expression Eq. (76) for the nucleon matrix elements 〈p′,m′|Ji|p,m〉 with the
expression obtained when the nucleon state is expressed in terms of the wave
functions of its constituents (partons; quarks and gluons). Recall, however,
that the parton picture of the nucleon is only supposed to be valid when
observing a very fast moving nucleon, so we will take limit p → ∞ at the end
in order to obtain the parton model sum rules.

There is great interest in such sum rules especially if the partonic quanti-
ties can be related to other physically measurable quantities. A classic exam-
ple was Eq. (29), which, as discussed earlier, gave rise to the “spin crisis”. We
will now investigate more carefully the origin and generalization of Eq. (29)
and look at other similar possibilities, using Eq. (76) as the relevant starting
point.

We have mentioned the importance of a wave-packet approach in order
to deal with the derivative of the delta-function in the equations above. As
it happens, however, when constructing sum rules, the expression in terms of
constituents automatically produces a term which cancels the delta-function,
irrespective of the actual model wave-functions used, so we need only concern
ourselves with the spin term in Eq. (76) for the nucleon state matrix element.
However, this term must be retained in the partonic state matrix elements.

The nucleon state is expanded as a superposition of n-parton Fock states.
It is clear from such a basic concept as the Uncertainty Relations that if the
partons are confined inside the nucleon they must possess both longitudinal
AND transverse momentum. In the high energy, high momentum transfer
reactions we have been considering it was usually assumed that the intrinsic
parton transverse momentum kT could be ignored (the collinear approxima-
tion discussed previously), but recently it has been appreciated that certain
physical effects which are observed suggest that the transverse momentum is
in some circumstances non-negligible. Moreover, it turns out that some par-
tonic effects of transverse momentum are surprisingly large [20, 21] and can
generate phenomena which would be impossible to reproduce in the collinear
treatment:
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– the presence of an intrinsic kT alters the relationship between the light-
cone momentum fraction x of the parton and the Bjorken-xBj , so that
x �= xBj . Although the shift is small and proportional to k2

T /(x
√

s)2, it
can have a substantial effect in the region of x where the parton densities
are varying rapidly. This is a kind of enhanced effect and can lead to up
to an order of magnitude change in a cross section.

– In the presence of transverse momentum, certain spin-dependent effects
can be generated by soft mechanisms and can be used to understand the
large transverse single spin asymmetries (SSA) found in many reactions
like A↑ + B → C + X and the large hyperon polarizations in processes
like A + B → H↑ + X.

Thus in the partonic Fock states and their associated wave functions the
state of the ith parton must be specified by a full three-dimensional momen-
tum ki.

For a nucleon moving along OZ with momentum P , the parton densi-
ties q(k) = q(kz,kT ) will now specify the number density of partons with
momentum in d3k = dkzd

2kT = Pdxd2kT , with

q(x) =
∫

d2kT q(x,kT ) (80)

where q(x,kT ) = P q(kz,kT ).
The calculation of the angular momentum matrix elements is long and

notationally complicated, so we shall be rather schematic, and will not display
flavour and colour labels. We write, for the nucleon state,

|p,m〉 = [(2π)32p0]1/2
∑

n

∑

{σ}

∫
d3k1√

(2π)32k0
1

· · · d3kn√
(2π)32k0

n

×ψp,m(k1, σ1, · · ·kn, σn)δ(3)(p − k1 · · · − kn)|k1, σ1, · · ·kn, σn〉 .

(81)

where σi denotes either the spin projection on the z-axis or the helicity, as
appropriate. ψp,m is the partonic wave function of the nucleon normalized so
that
∑

{σ}

∫
d3k1 · · · d3kn|ψp,m(k1, σ1, · · ·kn, σn)|2δ(3)(p − k1 − · · · − kn) = Pn .

(82)
with Pn denoting the probability of the n-parton state. We substitute this ex-
pansion for the nucleon state in the matrix element of the angular momentum
operators and we take for the Fock-state matrix elements

〈k′
1, σ

′
1, . . . ,k

′
n, σ′

n|Ji|k1, σ1, . . . ,kn, σn〉 =
∑

r

〈k′
r, σ

′
r|Ji|kr, σr〉

∏

l 	=r

(2π)3

× 2k0
l δ(3)(k′

l − kl)δσ′
lσl

. (83)
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After some manipulation the nucleon matrix element can be written as:

〈p′,m′|Ji|p,m〉 = (2π)3 2p0

∑

n

∑

σ,σ′

∫
d3k d3k′ δ(3)(p′ − p + k − k′)

×ρm′ m
σ′ σ (k′,k)a 1

√
(2π)32k′

0

〈k′, σ′|Ji|k, σ〉 1
√

(2π)32k0

(84)

where we have introduced a density matrix for the internal motion of type
“a” partons in a proton of momentum p:

ρm′ m
σ′ σ (k′,k)a ≡

∑

n,r(a)

∑

σi

∑

σ′
r

δσ σr
δσ′ σ′

r

×
∫

d3k′
r d3k1 · · · d3kr · · · d3kn δ(3)(k − kr) δ(3)(k′ − k′

r)

×ψ∗
p′m′(k1, σ1, · · ·k′

r, σ′
r, · · ·kn, σn)ψpm(k1, σ1, · · ·kr, σr, · · ·kn, σn)

× δ(3)(p − k1 · · · − kr · · · − kn) (85)

Here a, which we will frequently suppress, denotes the type of parton: quark,
anti-quark or gluon. The sum goes over all Fock states and, within these
states, over the spin and momentum labels r corresponding to the parton
type a. Equations. (84) and (85) are the basis for the angular momentum
sum rules.

The two terms in Eq. (76) applied to the parton matrix elements in
Eq. (84) suggest a spin part and an orbital part for quarks and gluons. First
consider the spin part of the matrix element when k is the momentum carried
by a quark.

〈p′,m′|Ji|p,m〉quarkspin = (2π)3 2p0 δ(3)(p′ − p)
∫

d3kd3k′ δ(3)(k − k′)

×
∑

σ,σ′

1
2
(σi)σ′ σ ρm′ m

σ′ σ (k′,k)q , (86)

where here σi denotes the Pauli spin matrix of Eq. (76).
The spin part for the gluons is completely analogous, but now σ and σ′

in Eqs. 84 and (85) refer to the gluon helicity λ. From Eq. (77), which is
diagonal in helicity, we obtain

〈p′,m′|Ji|p,m〉gluonspin = (2π)3 2p0 δ(3)(p′ − p)
∫

d3kd3k′ δ(3)(k − k′)

× ηi λ ρm′ m
λ λ (k′,k)G . (87)

The orbital part is somewhat different because of the derivative of the
δ-function that enters. We have mentioned the need for a proper wave packet
treatment when dealing with states of definite momentum, but here the par-
tons are not in plane wave states and the partonic wave function ψ plays the
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role of a wave packet. Thus we may proceed directly by inserting the orbital
piece of Eqs. (76,77) as was done for the spin part.

After some manipulation and integration by parts, the orbital piece pro-
duces two terms. One involves a derivative of a delta-function containing the
nucleon momenta and eventually yields

2p0(2π)3iεijkpj
∂

∂pk
δ(3)(p′ − p) δmm′ (88)

which, as mentioned earlier, will just cancel the derivative of the delta-
function in Eq. (76) arising from the matrix element between nucleon states.

The other term yields

2p0(2π)3δ(3)(p′ − p)〈Li〉am′ m (89)

where 〈Li〉am′ m is the contribution from the internal angular momentum aris-
ing from partons of type a, given by

〈Li〉am′ m =
∑

n

∑

{σ}

∫
d3k1 · · · · · · d3knψ∗

p,m′(k1, σ1, . . . ,kn, σn)

∑

r(a)

{[−i(kr × ∇kr
)i]ψp,m(k1, σ1, · · ·kr, σr, · · ·kn, σn)}

δ(3)(p − k1 − · · · − kn) (90)

where the sum over r(a) means a sum over those r-values corresponding to
partons of type a. Note that a can refer to both quarks and gluons; the
structure of Eq. (90) is the same for both.

Putting Eqs. (89), (86) and (87) into Eq. (84), utilizing Eq. (76) for its
LHS, and cancelling the factors 2p0(2π)3δ(p′ − p), we end up with the most
general sum rule for a spin-1/2 nucleon:

1
2
(σi)m′ m =

∫
d3k

[
1
2
(σi)σ′ σ ρm′ m

σ′ σ (k,k)q+q̄ + λ ηi(k) ρm′ m
λ λ (k,k)G

]

+〈Li〉q+q̄
m′ m + 〈Li〉Gm′ m . (91)

In fact Eq. (91) contains only two independent sum rules, a longitudinal
one and a transverse one. Recall that the nucleon is moving along OZ. Then
for m = m′ the terms in Eq. (91) are only non-vanishing when i = z i.e. for
Jz and parity ensures that the two cases m = ±1/2 give identical results –
this leads to the longitudinal sum rule. For m = −m′ the terms are only
non-vanishing for i = x or i = y i.e. for Jx,y. Again all four possible cases
m = ±m′ ; i = x, y lead to the same result – this is the transverse sum rule.

The density matrix appearing in Eq. (91) is defined in terms of parton
wave-functions in Eq. (85). We shall now show how, in the sum rules, this can
be related to the parton densities utilized in DIS and other hard processes.
We shall suppress all irrelevant labels in the following.
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8.2 The Longitudinal Sum Rule

Consider the case of longitudinal polarization with m = m′ = 1/2. The LHS
of Eq. (91) is equal to 1/2. On the RHS, for the quark spin term in Eq. (91)
the integrand will contain

1
2
ρ++
++ − 1

2
ρ++
−− (92)

where we have used ± to indicate ±1/2.
Now, schematically,

ρm′ m
σ′ σ =

∑

X=all

ψ∗
m′(σ′,X)ψm(σ,X) . (93)

But the number density of quarks with spin along or opposite to OZ
for a proton with spin along OZ can be expressed in terms of the quark
wave-functions, namely

q±(k) =
∑

X=all

|ψ+(±,X)| 2 . (94)

We see therefore that the expression in Eq. (92) is just

1
2
[q+(k) − q−(k)] . (95)

Substituting this expression into Eq. (91) and carrying out the integration
over d2kT and using Eq. (80) and then Eq. (8) yields 1

2

∫
dx∆q(x). Summing

over all quarks and antiquarks thus gives 1
2∆Σ.

A similar analysis for the gluons yields ∆G =
∫

dx∆G(x).
Including the orbital terms in Eq. (91) we finally have the longitudinal

sum rule
1
2

=
1
2
∆Σ + ∆G + 〈Lq

z〉 + 〈LG
z 〉 (96)

to be compared to the simple parton model result Eq. (29)

Squarks
z =

1
2
∆Σ =

1
2

. (97)

Equation (96) is not new. It agrees with the result derived in [7], because
the expression for the matrix elements of the angular momentum operators
given in [7] is correct precisiely for the case where the spin of the nucleon is
along its momentum. This is very fortunate, since the sum rule has such an
intuitive structure that it had been in use for years, long before the formal
proof was given in [7].

We will return to discuss Eq. (96) later, in particular to comment on the
question of the Q2 dependence which we have so far suppressed in Eq. (96).
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8.3 The Transverse Case: The New Sum Rulexs

Let us turn now to the transverse sum rule. Here the nucleon is moving along
OZ and is polarized along OX. The LHS of Eq. (91) is then equal to 1/2.
The quark spin contribution to the RHS is

1
2

∫
d3k

1
2
[
ρ+−
+− + ρ+−

−+ + ρ−+
−+ + ρ−+

+−
]

(98)

where + and - refer to ±1/2. The relation of this expression to quark densities
is here rather complicated. By rotating the system through π about the z-
axis, it is easy to see that elements of ρm′,m

σ′,σ with (−1)m−m′−σ+σ′
= −1 are

odd under this rotation and so will integrate to zero when integrated over kT .
This enables us to rewrite the expression Eq. (98), the quark contribution,
in a way that has a nice interpretation, viz.

1
2

∫
d3k

1
2
[
ρ+ +
+− + ρ+ +

−+ + ρ−−
+− + ρ−−

−+ + ρ+−
+− + ρ+−

−+ + ρ−+
−+ + ρ−+

+−
]

. (99)

Consider the proton state with spin oriented along OX, perpendicular to
the direction of motion

|p, sx〉 =
1√
2
{|p,m = 1/2〉 + |p,m = −1/2〉} (100)

To understand the content of expression Eq. (99) write schematically

ρm′ m
σ′ σ =

∑

X=all

ψ∗
m′(σ′,X)ψm(σ,X) (101)

Now the number density of quarks with spin along or opposite to OX, denoted
by ±ŝx in a proton spinning along OX is

q±ŝx/sx
(k) =

∑

X=all

|ψsx
(±ŝx,X)| 2 (102)

where, via Eq. (100),

ψsx
(±ŝx) =

1
2
[ψ+(+) ± ψ+(−) + ψ−(+) ± ψ−(−)] (103)

so that (suppressing the
∑

X=all)

qŝx/sx
(k) − q−ŝx/sx

(k) = Re{ [ψ+(+) + ψ−(+) ]∗[ψ−(−) + ψ+(−) ] } (104)

which, via Eq. (101), is exactly the integrand in Eq. (99). Thus the expression
Eq. (98) is equal to

1
2

∫
d3k [ qŝx/sx

(k)−q−ŝx/sx
(k) ] =

1
2

∫
dx d2kT [ qŝx/sx

(x,kT )−q−ŝx/sx
(x,kT ) ]

(105)
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and there is an an analogous term for the antiquarks.
Now the structure of the integrand in Eq. (105) is known [23]. One has

qŝx/sx
(x,kT ) − q−ŝx/sx

(x,kT ) = ∆′
T (x, k2

T )

+ cos 2φ
k2

T

2M2
h⊥

1T (x, k2
T ) + sinφ

kT

M
h⊥

1 (x, k2
T )

(106)

where φ is the azimuthal angle of kT and ∆′
T qa(x, k2

T ) is related to the trans-
verse density introduced in Eq. (10), namely,

∆T qa(x) =
∫

d2kT ∆′
T qa(x, k2

T ) . (107)

The unknown functions h⊥
1T (x, k2

T ) and h⊥
1 (x, k2

T ) play no role in the sum
rule, since their terms integrate out to zero.

Substituting Eq. (106) into Eq. (105) and integrating over the direction
of kT , we end up with the quark spin contribution to the RHS of Eq. (91):

1
2

∫
dx
∑

a,ā

∆T qa(x) . (108)

We turn now to the gluon contribution to the RHS of Eq. (91), which is
∫

d3k ηx(k)
(

1
2

[ρ+ +
1 1 −ρ+ +

−1−1+ρ−−
1 1 −ρ−−

−1−1+ρ+−
1 1 −ρ+−

−1−1+ρ−+
1 1 −ρ−+

−1−1 ]
)

,

(109)
where ±1 refers to the gluon helicity. Once again we have added in terms
which integrate to zero in order to get a nice interpretation in terms of den-
sities. (Recall that in Eq. (78) ηx contains the factor cosφ, and the factor
ρm′,m

λ′ λ with (−1)m′−m−λ′+λ = +1 can be shown to be even under φ → π±φ.)
Now consider

∆Gh/sx
≡ G1/sx

− G−1/sx

=
∑

X=all

{|ψsx
(1,X)|2 − |ψsx

(−1,X)|2} (110)

Carrying out the analogue of Eq. (103) we find that the RHS of Eq. (110) is
exactly equal to the terms in parenthesis in Eq. (109). Thus the gluon spin
contribution to the RHS of Eq. (91) is

∫
d3k ηx(k)∆Gh/sx

(k) =
∫

dx d2kT ηx(k)∆Gh/sx
(x, kT ) (111)

It is easy to see, geometrically, that ∆Gh/sx
(x,kT ) contains a factor kx

and we make this explicit by writing [24]
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∆Gh/sx
(x,kT ) =

kx

M
gG
1T (x, k2

T ) . (112)

Then the contribution of the gluon spin to the RHS of Eq. (91) i.e. to the
proton whose spin is in the x-direction is

∆Gh/sx
=
∫

dx d2kT ηx
kx

M
gG
1T (x, k2

⊥)

= π

∫
dx kT dkT

√
x2p2 + k2

T − x p

M
gG
1T (x, k2

T )) . (113)

where we have used Eq. (78). As p → ∞ this piece vanishes and so the gluon
spin does not contribute to the transverse spin sum rule.

Finally, the internal orbital angular momentum terms 〈Lx〉qsx
and 〈Lx〉Gsx

are obtained from Eq. (90) by the replacement

ψp, m → ψp, sx
=

1√
2

[
ψp, 1/2 + ψp,−1/2

]
(114)

Putting together the various pieces of the RHS of Eq. (91) we obtain a
new, transverse spin sum rule. Since the same result holds when considering
Jy with the proton polarized along OY , we prefer to state the result in the
more general form: for a proton in an eigenstate of transverse spin with
eigenvector along sT

1
2

=
1
2

∑

q, q̄

∫
dx ∆T qa(x) +

∑

q, q̄, G

〈LsT
〉a (115)

where LsT
is the component of L along sT .

This has a very intuitive appearance, very similar to Eq. (96).
The function ∆T qa(x) does not play any role in DIS but could be mea-

sured in other processes, notably doubly polarized Drell-Yan reactions like

p(sT ) + p(sT ) → leptonpair + X ,

in semi-inclusive hadronic reactions like

p + p(sT ) → H + X

where H is a detected hadron, typically a pion, [25], and in semi-inclusive
DIS reactions with a transversely polarized target [26, 27] like

� + p(sT ) → � + H + X .

8.4 Comparison with Results in the Literature

The sum rules Eq. (96) and Eq. (115) are based upon our expression Eq. (91)
for the matrix elements of the angular momentum operators, and as stressed
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earlier, this expression is in disagreement with the results in the literature.
It is interesting to compare results and the consequences for the sum rules.

If we rewrite the spin type term in the Jaffe-Manohar result [7] in terms
of the independent vectors p and s, we find, for the expectation value

〈Ji〉JM =
1

4Mp0

{

(3p2
0 − M2)si −

3p0 + M

p0 + M
(p · s)pi

}

(116)

to be compared to our result

〈Ji〉 =
1
2
si (117)

arising from the first term in Eq. (75). In general these are different. However,
one may easily check that if s = p̂ the Jaffe-Manohar value agrees with
Eq. (117), while if s ⊥ p̂ they are not the same.

The agreement for s = p̂ is consistent with the much used and intuitive
longitudinal sum rule given in Eq. (96).

But for the transverse case no sum rule is possible with the Jaffe-Manohar
formula because, as p → ∞, Eq. (116) for i = x, y diverges.

9 Interpretation of the Sum Rules

Once it is accepted that the partons possess intrinsic transverse momentum
i.e. perpendicular to the motion along OZ of the nucleon, they can have
orbital angular momentum L with a component along OZ, as exemplified in
Eq. (96), which also allows for the possibility that the gluons are polarized and
can have orbital angular momentum. As discussed earlier, the axial anomaly
allows us to escape the conclusion that the EMC result implies a very small
value of ∆Σ, so it is not impossible that the RHS of Eq. (91) is dominated
by ∆Σ. On the other hand, for an object the size of a nucleon the r in an
orbital angular momentum term like r × p can be of order 1 fermi and with
pT of order a few hundred MeV, it is easy to produce half a unit of orbital
angular momentum along OZ.

In the simple parton model we visualize partons almost like real physical
particles and the above comments are meaningful in such a framework. We
assume implicitly that quantities like ∆Σ, for example, have some objective
physical significance. Unfortunately QCD teaches us the unpleasant fact that
this is not so. Firstly the quantities ∆Σ and ∆G on the RHS of Eq. (96), as
determined from studies of polarized DIS, depend on Q2. Of course the Q2

of a DIS experiment has no meaning in Eq. (96) which refers to an isolated
nucleon, but, as discussed earlier, what Q2 actually corresponds to, in a
parton density, is the value of the renormalization scale and the factorization
sclae, taken equal for simplicity, and taken equal to Q2 in DIS. So measuring a
given parton density in a reaction at some value of Q2 really means measuring
the parton density at renormalization scale µ2

R = factorization scale µ2
F = Q2.
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But what makes the interpretation even more problematic is that at the
level of what is called next to leading order or NLO perturbative QCD the
behaviour of the quantities in Eq. (96) becomes also scheme dependent i.e.
depends upon what type of renormalization scheme is being utilized, so they
cannot be physical quantities. Moreover, there are, in principle, an infinite
number of possible renormalization schemes!

Perhaps the most natural scheme is the so-called JET scheme (for a dis-
cussion of this and other schemes see e.g. [28]), which has the nice property
that the first moment ∆Σ is independent of the renormalization scale, or, in
the context of DIS, is independent of Q2. Thus there would seem to be some
physical sense in thinking of this as the spin carried by the quarks. In the
most recent analysis of the world data on polarized DIS it was found that
∆Σ = 0.32 ± 0.06 in the JET scheme [29]. This is considerably larger than
the result in the infamous EMC experiment, but still a long way from the
naive value 1. However, in this scheme, the other three terms on the RHS
of Eq. (96) do depend on µ2, so it is not clear what physical significance
they have. Since, as already mentioned, ∆G(Q2) grows like lnQ2 as Q2 in-
creases, it must be that the orbital angular momentum terms become large
and negative as Q2 increases.

All of this is highly unintuitive, and we are left with the unpleasant, but
unavoidable, conclusion that in higher orders of QCD the partons more and
more lose their nice simple particle-like properties, and the question, as to
which constituents carry what fraction of the nucleon’s spin, becomes more
and more intractable and, maybe, meaningless.
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