
A FIRST COURSE IN
GRAPH

THEORY

GARY CHARTRAND
and

PING ZHANG
Western Michigan University

DOVER PUBLICATIONS, INC.
Mineola, New York



Copyright

Copyright © 2012 by Gary Chartrand and Ping Zhang
All rights reserved.

Bibliographical Note
This Dover edition, first published in 2012, is a revised and corrected republication of Introduction to Graph Theory , originally

published in 2005 by McGraw-Hill Higher Education, Boston.

Library of Congress Cataloging-in-Publication Data

Chartrand, Gary.
A first course in graph theory / Gary Chartrand and Ping Zhang.

p. cm.
Previous edition published as: Introduction to graph theory. Boston : McGraw-Hill Higher Education, c2005
Includes bibliographical references and index.
ISBN-13: 978-0-486-48368-9
ISBN-10: 0-486-48368-1
   1. Graph theory. I. Zhang, Ping, 1957– II. Chartrand, Gary. Introduction to graph theory. III. Title.

QA166.C455 2012
511′.5—dc23

2011038125

Manufactured in the United States by Courier Corporation
48368101

www.doverpublications.com

http://www.doverpublications.com/


Dedicated to the memory of the many mathematicians whose contributions, linked in a variety of
ways, have led to the development of graph theory.

From Königsberg to König’s book,
So runs the graphic tale.
And still it grows more colorful …

 

      – – – Blanche Descartes (1969)
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PREFACE

Perhaps it’s not so surprising that when we (the authors) were learning mathematics, we thought
that we were being taught some well-known facts – facts that had been around forever. It wasn’t until
later that we started to understand that these facts (the word “theorem” was beginning to become part
of our vocabulary) had not been around forever and that people had actually discovered these facts.
Indeed, names of people were becoming part of the discussion.

Mathematics has existed for many centuries. In the ancient past, certain cultures developed their
own mathematics. This was certainly the case with Egypt, Babylonia, Greece, China, India and Japan.
In recent centuries, there has become only one international mathematics. It has become more
organized and has been divided into more clearly defined areas (even though there is significant
overlap). While this was occurring, explanations (proofs) as to why mathematical statements are true
were becoming more structured and clearly written.

The goal of this book is to introduce undergraduates to the mathematical area called graph theory,
which only came into existence during the first half of the 18th century. This area didn’t start to
develop into an organized branch of mathematics until the second half of the 19th century and there
wasn’t even a book on the subject until the first half of the 20th century. Since the second half of the
20th century, however, the subject has exploded.

It is our intent to describe some of the major topics of this subject to you and to inform you of
some of the people who helped develop and shape this area. In the beginning, most of these people
were just like you – students who enjoyed mathematics but with a great sense of curiosity. As with
everything else (though not as often talked about), mathematics has its non-serious side and we’ve
described some of this as well. Even the most brilliant mathematicians don’t know everything and
we’ve presented some topics that have not been well-studied and in which the answers (and even the
questions) are not known. This will give you the chance to do some creative thinking of your own. In
fact, maybe the next person who will have an influence on this subject is you.

Part of what makes graph theory interesting is that graphs can be used to model situations that
occur within certain kinds of problems. These problems can then be studied (and possibly solved)
with the aid of graphs. Because of this, graph models occur frequently throughout this textbook.
However, graph theory is an area of mathematics and consequently concerns the study of
mathematical ideas – of concepts and their connections with each other. The topics and results we
have included were chosen because we feel they are interesting, important and/or are representative
of the subject.

As we said, this text has been written for undergraduates. Keeping this in mind, we have included
a proof of a theorem if we believe it is appropriate, the proof technique is informative and if the
proof is not excessively long. We would like to think that the material in this text will be useful and
interesting for mathematics students as well as for other students whose areas of interest include
graphs. This text is also appropriate for self-study.

We have included three appendixes. In Appendix 1, we review some important facts about sets



and logic. Appendix 2 is devoted to equivalence relations and functions while Appendix 3 describes
methods of proof. We understand how frustrating it is for students (or anyone!) who try to read a
proof that is not reader-friendly and which leaves too many details for the reader to supply.
Consequently, we have endeavored to give clear, well-written proofs.

Although this can very well be said about any area of mathematics or indeed about any scholarly
activity, we feel that appreciation of graph theory is enhanced by being familiar with many of the
people, past and present, who were or are responsible for its development. Consequently, we have
included several remarks that we find interesting about some of the “people of graph theory.” Since
we believe that these people are part of the story that is graph theory, we have discussed them within
the text and not simply as footnotes. We often fail to recognize that mathematics is a living subject.
Graph theory was created by people and is a subject that is still evolving.

There are several sections that have been designated as “Excursion.” These can be omitted with
no negative effect if this text is being used for a course. In some cases, an Excursion is an area of
graph theory we find interesting but which the instructor may choose not to discuss due to lack of time
or because it’s not one of his or her favorites. In other cases, an Excursion brings up a sidelight of
graph theory that perhaps has little, if any, mathematical content but which we simply believe is
interesting.

There are also sections that we have designated as “Exploration.” These sections contain topics
with which students can experiment and use their imagination. These give students opportunities to
practice asking questions. In any case, we believe that this might be fun for some students.

As far as using this text for a course, we consider the first three chapters as introductory. Much of
this could be covered quite quickly. Students could read these chapters on their own. It isn’t
necessary to cover connectivity and Menger’s Theorem if the instructor chooses not to do so. Sections
8.3, 9.2, 10.3 and 11.2 could easily be omitted, while material from Chapters 12 and 13 can be
covered according to the instructor’s interest.

Solutions or hints for the odd-numbered exercises in the regular sections of the text, references, an
index of mathematical terms, an index of people and a list of symbols are provided at the end of the
text.

It was because of discussions we had with Robert Ross that we decided to write “An Introduction
to Graph Theory.” We thank him for this and for his encouragement. We especially thank John
Grafton, Senior Reprint Editor at Dover Publications, whose encouragement led us to revise the
book, with its new title “A First Course in Graph Theory.” We are most grateful to the reviewers of
the original edition who gave us many valuable suggestions: Jay Bagga, Ball State University;
Richard Borie, University of Alabama; Anthony Evans, Wright State University; Mark Ginn,
Appalachian State University; Mark Goldberg, Rensselaer Polytechnic Institute; Arthur Hobbs, Texas
A&M University; Garth Isaak, Lehigh University; Daphne Liu, California State University, Los
Angeles; Alan Mills, Tennessee Technological University; Dan Pritikin, Miami University; John
Reay, Western Washington University; Yue Zhao, University of Central Florida.

Gary Chartrand and Ping Zhang
May 2011



Chapter 1

Introduction

1.1 Graphs and Graph Models

A major publishing company has ten editors (referred to by 1, 2, …, 10) in the scientific, technical
and computing areas. These ten editors have a standard meeting time during the first Friday of every
month and have divided themselves into seven committees to meet later in the day to discuss specific
topics of interest to the company, namely, advertising, securing reviewers, contacting new potential
authors, finances, used and rented copies, electronic editions and competing textbooks. This leads us
to our first example.

Example 1.1 The ten editors have decided on the seven committees: c1 = {1, 2, 3}, c2 = {1, 3, 4,
5}, c3 = {2, 5, 6, 7}, c4 = {4, 7, 8, 9}, c5 = {2, 6, 7}, c6 = {8, 9, 10}, c7 = {1, 3, 9, 10}. They have
set aside three time periods for the seven committees to meet on those Fridays when all ten editors
are present. Some pairs of committees cannot meet during the same period because one or two of
the editors are on both committees. This situation can be modeled visually as shown in Figure 1.1.

Figure 1.1: A graph

In this figure, there are seven small circles, representing the seven committees and a straight line
segment is drawn between two circles if the committees they represent have at least one committee
member in common. In other words, a straight line segment between two small circles (committees)
tells us that these two committees should not be scheduled to meet at the same time. This gives us a
picture or a “model” of the committees and the overlapping nature of their membership.

What we have drawn in Figure 1.1 is called a graph. Formally, a graph G consists of a finite
nonempty set V of objects called vertices (the singular is vertex) and a set E of 2-element subsets of
V called edges. The sets V and E are the vertex set and edge set of G, respectively. So a graph G is
a pair (actually an ordered pair) of two sets V and E. For this reason, some write G = (V, E ). At
times, it is useful to write V(G) and E(G) rather than V and E to emphasize that these are the vertex



and edge sets of a particular graph G. Although G is the common symbol to use for a graph, we also
use F and H, as well as G′, G″ and G1, G2, etc. Vertices are sometimes called points or nodes and
edges are sometimes called lines. Indeed, there are some who use the term simple graph for what we
call a graph. Two graphs G and H are equal if V(G) = V(H) and E(G) = E(H), in which case we
write G = H.

It is common to represent a graph by a diagram in the plane (as we did in Figure 1.1) where the
vertices are represented by points (actually small circles – open or solid) and whose edges are
indicated by the presence of a line segment or curve between the two points in the plane
corresponding to the appropriate vertices. The diagram itself is then also referred to as a graph. For
the graph G of Figure 1.1 then, the vertex set of G is V(G) = {c1, c2, …, c7} and the edge set of G is

Let’s consider another situation. Have you ever encountered this sequence of integers before?

Every integer in the sequence is the sum of the two integers immediately preceding it (except for the
first two integers of course). These numbers are well known in mathematics and are called the
Fibonacci numbers. In fact, these integers occur so often that there is a journal (The Fibonacci
Quarterly, frequently published five times a year!) devoted to the study of their properties. Our
second example concerns these numbers.

Example 1.2 Consider the set S = {2, 3, 5, 8, 13, 21} of six specific Fibonacci numbers. There are
some pairs of distinct integers belonging to S whose sum or difference (in absolute value) also
belongs to S, namely, {2, 3}, {2, 5}, {3, 5}, {3, 8}, {5, 8}, {5, 13}, {8, 13}, {8, 21} and {13,
21}. There is a more visual way of identifying these pairs, namely by the graph H of Figure 1.2. In
this case, V(H) = {2, 3, 5, 8, 13, 21} and

Figure 1.2: Another graph

When dealing with graphs, it is customary and simpler to represent an edge {u, v} by uv (or vu). If
uv is an edge of G, then u and v are said to be adjacent in G. The number of vertices in G is often
called the order of G, while the number of edges is its size. Since the vertex set of every graph is
nonempty, the order of every graph is at least 1. A graph with exactly one vertex is called a trivial
graph, implying that the order of a nontrivial graph is at least 2. The graph G of Figure 1.1 has order



7 and size 13, while the graph H of Figure 1.2 has order 6 and size 9. We often use n and m for the
order and size, respectively, of a graph. So, for the graph G of Figure 1.1, n = 7 and m = 13; while for
the graph H of Figure 1.2, n = 6 and m = 9.

A graph G with V(G) = {u, v, w, x, y} and E(G) = {uv, uw, vw, vx, wx, xy} is shown in Figure
1.3(a). There are occasions when we are interested in the structure of a graph and not in what the
vertices are called. In this case, a graph is drawn without labeling its vertices. For this reason, the
graph G of Figure 1.3(a) is a labeled graph and Figure 1.3(b) represents an unlabeled graph.

Figure 1.3: A labeled graph and an unlabeled graph

Let us now turn to yet another situation.

Example 1.3 Suppose that we have two coins, one silver and one gold, placed on two of the four
squares of a 2 × 2 checkerboard. There are twelve such configurations, shown in Figure 1.4, where
the shaded coin is the gold coin.

Figure 1.4: Twelve configurations

A configuration can be transformed into other configurations according to certain rules.
Specifically, we say that the configuration ci can be transformed into the configuration 

 if cj can be obtained from ci by performing exactly one of the following
two steps:

(1) moving one of the coins in ci horizontally or vertically to an unoccupied square;

(2) interchanging the two coins in ci.

Necessarily, if ci can be transformed into cj, then cj can be transformed into ci. For example, c2 can
be transformed (i) into c1 by shifting the silver coin in c2 to the right, (ii) into c4 by shifting the gold



coin to the right or (iii) into c8 by interchanging the two coins (see Figure 1.5).

Figure 1.5: Transformations of the configuration c2

Now consider the twelve configurations shown in Figure 1.4. Some pairs ci, cj of these
configurations, where 1 ≤ i, j ≤ 12, i ≠ j, can be transformed into each other and some pairs cannot.
This situation can also be represented by a graph, say by a graph F where V(F) = {c1, c2, …, c12} and
cicj is an edge of F if ci and cj can be transformed into each other. This graph F is shown in Figure
1.6.

Let’s look at a somewhat related example.

Example 1.4. Suppose that we have a collection of 3-letter English words, say

ACT, AIM, ARC, ARM, ART, CAR, CAT, OAR, OAT, RAT, TAR.

Figure 1.6: Modeling transformations of twelve configurations

We say that a word W1 can be transformed into a word W2 if W2 can be obtained from W1 by
performing exactly one of the following two steps:

(1) interchanging two letters of W1;

(2) replacing a letter in W1 by another letter.

Therefore, if W1 can be transformed into W2, then W2 can be transformed into W1. This situation can
be modeled by a graph G, where the given words are the vertices of G and two vertices are
adjacent in G if the corresponding words can be transformed into each other. This graph is called



the word graph of the set of words. For the 11 words above, its word graph G is shown in Figure
1.7.

Figure 1.7: The word graph of a set of 11 words

In this case, a graph G is called a word graph if G is the word graph of some set S of 3-letter
words. For example, the (unlabeled) graph G of Figure 1.8(a) is a word graph because it is the word
graph of the set S = {BAT, BIT, BUT, BAD, BAR, CAT, HAT }, as shown in Figure 1.8(b). (This idea is
related to the concept of “isomorphic graphs,” which will be discussed in Chapter 3.)

We conclude this section with one last example.

Example 1.5 Figure 1.9 shows the traffic lanes at the intersection of two busy streets. When a
vehicle approaches this intersection, it could be in one of the nine lanes: L1, L2, …, L9.

Figure 1.8: A word graph



Figure 1.9: Traffic lanes at street intersections

This intersection has a traffic light that informs drivers in vehicles in the various lanes when they
are permitted to proceed through the intersection. To be sure, there are pairs of lanes containing
vehicles that should not enter the intersection at the same time, such as L1 and L7. However, there
would be no difficulty for vehicles in L1 and L5 to drive through this intersection at the same time.
This situation can be represented by the graph G of Figure 1.10, where V(G) = {L1, L2, …, L9} and
two vertices (lanes) are joined by an edge if vehicles in these two lanes cannot safely enter the
intersection at the same time, as there would be a possibility of an accident.

What we have just seen is how five different situations can be represented by graphs. Actually, in
each case, there is a set involved: (1) a set of committees, (2) a set of integers, (3) a set of
configurations consisting of two coins on a 2 × 2 checkerboard, (4) a set of 3-letter words, (5) a set
of traffic lanes at a street intersection. Certain pairs of elements in each set are related in some
manner: (1) two committees have a member in common, (2) the sum or difference (in absolute value)
of two integers in the set also belongs to the set, (3) two configurations can be transformed into each
other according to some rule, (4) two 3-letter words can be transformed into each other by certain
movements of letters, (5) cars in certain pairs of traffic lanes cannot enter the intersection at the same
time. In each case, a graph G is defined whose vertices are the elements of the set and two vertices of
G are adjacent if they are related as described above. The graph G then models the given situation.
Often questions concerning the situations described above arise and can be analyzed by studying the
graphs that model them. We will encounter such questions throughout the text and discuss how graphs
can be used to help us answer the questions.



Figure 1.10: The graph G in Example 1.5

Exercises for Section 1.1

1.1 What is a logical question to ask in Example 1.1? Answer this question.

1.2 Create an example of your own similar to Example 1.1 with nine editors and eight committees
and then draw the corresponding graph.

1.3 Let S = {2, 3, 4, 7, 11, 13}. Draw the graph G whose vertex set is S and such that ij ∈ E (G)
for i, j ∈ S if i + j ∈ S or |i − j| ∈ S.

1.4 Let S = {−6, −3, 0, 3, 6}. Draw the graph G whose vertex set is S and such that ij ∈ E (G) for i,
j ∈ S if i + j ∈ S or |i − j| ∈ S.

1.5 Create your own set S of integers and draw the graph G whose vertex set is S and such that ij ∈
E (G) if i and j are related by some rule imposed on i and j.

1.6 Consider the twelve configurations c1, c2, …, c12 in Figure 1.4. For every two configurations ci
and cj, where 1 ≤ i, j ≤ 12, i ≠ j, it may be possible to obtain cj from ci by first shifting one of
the coins in ci horizontally or vertically and then interchanging the two coins. Model this by a
graph F such that V(F) = {c1, c2, …, c12} and cicj is an edge of F if ci and cj can be transformed
into each other by this 2-step process.

1.7 Following Example 1.4,

(a) give an example of ten 3-letter words, none of which are mentioned in Example 1.4 and
whose corresponding word graph has at least six edges. Draw this graph.

(b) give a set of five 3-letter words whose word graph is shown in Figure 1.11 (with the
vertices appropriately labeled).

Figure 1.11: The graph in Exercise 1.7(b)

(c) give a set of five 3-letter words whose word graph is shown in Figure 1.12 (with the



vertices appropriately labeled).

Figure 1.12: The graph in Exercise 1.7(c)

1.8 Let S be a finite set of 3-letter and/or 4-letter words. In this case, the word graph G(S) of S is
that graph whose vertex set is S and such that two vertices (words) w1 and w2 are adjacent if
either (1) or (2) below occurs:

(1) one of the words can be obtained from the other by replacing one letter by another letter,
(2) w1 is a 3-letter word and w2 is a 4-letter word and w2 can be obtained from w1 by the

insertion of a single letter (anywhere, including the beginning or the end) into w1.

(a) Find six sets S1, S2, …, S6 of 3-letter and/or 4-letter words so that for each integer i (1 ≤ i
≤ 6) the graph Gi of Figure 1.13 is the word graph of Si.

(b) For another graph H (of your choice), determine whether H is a word graph of some set.

Figure 1.13: The graphs for Exercise 1.8(a)

1.9 Define a word graph differently from the word graphs defined in Example 1.4 and Exercise 1.8
and illustrate your definition.

1.10 Figure 1.14 illustrates the traffic lanes at the intersection of two streets. When a vehicle
approaches this intersection, it could be in one of the seven lanes: L1, L2, …, L7. Draw a
graph G that models this situation, where V(G) = {L1, L2, …, L7} and where two vertices are
joined by an edge if vehicles in these two lanes cannot safely enter this intersection at the same
time.



Figure 1.14: Traffic lanes at a street intersection in Exercise 1.10

1.2 Connected Graphs

In order to analyze certain situations that can be modeled by graphs, we must have a better
understanding of graphs. As with all areas of mathematics, there is a certain amount of terminology
with which we must first be familiar in order to discuss graphs and their properties. Becoming aware
of this fundamental terminology is our current goal. First, let’s review some concepts and introduce
others. Recall that a graph G consists of a finite nonempty set V of vertices and a set E of 2-element
subsets of V called edges. If e = uv is an edge of G, then the adjacent vertices u and v are said to be
joined by the edge e. The vertices u and v are referred to as neighbors of each other. In this case, the
vertex u and the edge e (as well as v and e) are said to be incident with each other. Distinct edges
incident with a common vertex are adjacent edges.

As we mentioned earlier, although graphs are defined in terms of sets, it is customary and
convenient to represent graphs by (and, in fact, to consider them as) diagrams. A graph G with vertex
set V = {u, v, w, x, y} and edge set E = {uv, vw, vx, vy, wy, xy} is shown in Figure 1.15. Since this
graph has five vertices and six edges, its order is 5 and its size is 6. In this graph G, the vertices u and
v are adjacent, while u and w are not adjacent. The vertex v is incident with the edge vw but not with
the edge wy. The edges uv and vw are adjacent, but uv and xy are not adjacent.



Figure 1.15: A graph G and some of its subgraphs

A graph H is called a subgraph of a graph G, written H ⊆ G, if V(H) ⊆ V(G) and E(H) ⊆ E(G).
We also say that G contains H as a subgraph. If H ⊆ G and either V(H) is a proper subset of V(G) or
E(H) is a proper subset of E(G), then H is a proper subgraph of G. So the graph H of Figure 1.15 is
a subgraph of the graph G shown in that figure; indeed, H is a proper subgraph of G. If a subgraph of a
graph G has the same vertex set as G, then it is a spanning subgraph of G.

A subgraph F of a graph G is called an induced subgraph of G if whenever u and v are vertices of
F and uv is an edge of G, then uv is an edge of F as well. Therefore, the graph H of Figure 1.15 is not
an induced subgraph of the graph G of Figure 1.15 since, for example, v, x ∈ V(H) and vx ∈ E (G)
but vx ∉ E(H). On the other hand, the graph F of Figure 1.15 is an induced subgraph of G. If S is a
nonempty set of vertices of a graph G, then the subgraph of G induced by S is the induced subgraph
with vertex set S. This induced subgraph is denoted by G[S]. For a nonempty set X of edges, the
subgraph G[X] induced by X has edge set X and consists of all vertices that are incident with at least
one edge in X. This subgraph is called an edge-induced subgraph of G. Sometimes S G and X G are
used for G[S] and G[X], respectively. The graph F′ of Figure 1.15 is an edge-induced subgraph of G
in that figure; indeed, F′ = G[X′], where X′ = {e, e′}.

Any proper subgraph of a graph G can be obtained by removing vertices and edges from G. For an
edge e of G, we write G − e for the spanning subgraph of G whose edge set consists of all edges of G
except e. More generally, if X is a set of edges of G, then G − X is the spanning subgraph of G with
E(G − X) = E(G) − X. For the graph G of Figure 1.15 and e = vy, the subgraph G − e is shown. If X =
{e1, e2, …, ek}, then we also write G − X as G − e1 − e2−… − ek.

For a vertex v of a nontrivial graph G, the subgraph G − v consists of all vertices of G except v
and all edges of G except those incident with v. For a proper subset U of V(G), the subgraph G − U
has vertex set V(G) − U and its edge set consists of all edges of G joining two vertices in V(G) − U.
Necessarily, G − U is an induced subgraph of G. For U = {u, y} in the graph G of Figure 1.15, G − U
is the subgraph F shown in that figure.

If u and v are nonadjacent vertices of a graph G, then e = uv ∉ E(G). By G + e, we mean the graph
with vertex set V(G) and edge set E(G) ∪ {e}. Thus G is a spanning subgraph of G + e.

Many of the concepts that occur in graph theory and which we will investigate in detail later



concern various ways in which one can “move about” in a graph. In particular, if we think of the
vertices of a graph as locations and the edges as roads between certain pairs of locations, then the
graph can be considered as modeling some community. There is a variety of kinds of trips that can be
taken in the community.

Let’s start at some vertex u of a graph G. If we proceed from u to a neighbor of u and then to a
neighbor of that vertex and so on, until we finally come to a stop at a vertex v, then we have just
described a walk from u to v in G. More formally, a u − v walk W in G is a sequence of vertices in G,
beginning with u and ending at v such that consecutive vertices in the sequence are adjacent, that is,
we can express W as

where k ≥ 0 and vi and vi + 1 are adjacent for i = 0, 1, 2, …, k − 1. Each vertex vi (0 ≤ i ≤ k) and each
edge vivi + 1 (0 ≤ i ≤ k − 1) is said to lie on or belong to W. Notice that the definition of the walk W
does not require the listed vertices to be distinct; in fact, even u and v are not required to be distinct.
However, every two consecutive vertices in W are distinct since they are adjacent. If u = v, then the
walk W is closed; while if u ≠ v, then W is open. As we move from one vertex of W to the next, we
are actually encountering or traversing edges of G, possibly traversing some edges of G more than
once. The number of edges encountered in a walk (including multiple occurrences of an edge) is
called the length of the walk. Thus the length of the walk W defined in (1.1) is k.

For the graph G of Figure 1.16,

is therefore a walk, indeed an x − w walk of length 5 (one less than the number of occurrences of
vertices in the walk). A walk of length 0 is a trivial walk. So W = (v) is a trivial walk. (By this
definition, those people who feel guilty about not exercising need not feel guilty any longer as going
for a daily “walk” just became easier.)

Provided we continue to proceed from a vertex to one of its neighbors (and eventually stop), there
is essentially no conditions on a walk. However, there will be occasions when we want to place
restrictions on certain types of walks.

Figure 1.16: Illustrating walks in a graph

Borrowing terminology from the Old West, we define a u − v trail in a graph G to be a u − v walk
in which no edge is traversed more than once. Thus, the x − w walk W in (1.2) is not an x − w trail as
the edge wy is repeated. On the other hand,

is a u − v trail in the graph G of Figure 1.16. Notice that this trail T repeats the vertex w. This is
perfectly permissible. Although the definition of a trail stipulates that no edge can be repeated, no



such condition is placed on vertices.
A u − v walk in a graph in which no vertices are repeated is a u − v path. While the u − v trail T

in (1.3) is not a u − v path in the graph G of Figure 1.16 (since the vertex w is repeated),

is a u − v path. If no vertex in a walk is repeated (thereby producing a path), then no edge is repeated
either. Hence every path is a trail.

If a u − v walk in a graph is followed by a v − w walk, then a u − w walk results. In particular, a u
− v path followed by a v − w path is a u − w walk W but not necessarily a u − w path, as vertices in W
may be repeated. While not every walk is a path, if a graph contains a u − v walk, then it must also
contain a u − v path. This is our first theorem.

Theorem 1.6 If a graph G contains a u − v walk of length l, then G contains a u − l path of
length at most l.

Proof. Among all u − v walks in G, let

be a u − v walk of smallest length k. Therefore, k ≤ l. We claim that P is a u − v path. Assume, to the
contrary, that this is not the case. Then some vertex of G must be repeated in P, say ui = uj for some i
and j with 0 ≤ i < j ≤ k. If we then delete the vertices ui + 1, ui + 2, …, uj from P, we arrive at the u − v
walk

whose length is less than k, which is impossible. Therefore, as claimed, P is a u − v path of length k ≤
l.

A circuit in a graph G is a closed trail of length 3 or more. Hence a circuit begins and ends at the
same vertex but repeats no edges. A circuit can be described by choosing any of its vertices as the
beginning (and ending) vertex provided the vertices are listed in the same cyclic order. In a circuit,
vertices can be repeated, in addition to the first and last. For example, in the graph G of Figure 1.16,

is a circuit. A circuit that repeats no vertex, except for the first and last, is a cycle. A k-cycle is a
cycle of length k. A 3-cycle is also referred to as a triangle. A cycle of odd length is called an odd
cycle; while, not surprisingly, a cycle of even length is called an even cycle. In the graph G of Figure
1.16, the circuit C in (1.4) is not a cycle, while

is a cycle, namely a 4-cycle. If a vertex of a cycle is deleted, then a path is obtained. This is not
necessarily true for circuits, however.

The vertices and edges of a trail, path, circuit or cycle in a graph G form a subgraph of G, also
called a trail, path, circuit or cycle. Hence a path, for example, is used to describe both a manner of



traversing certain vertices and edges of G and a subgraph consisting of those vertices and edges. The
graph G of Figure 1.16 is shown again in Figure 1.17. Thus the subgraphs G1, G2, G3, G4 of the graph
G are a trail, path, circuit and cycle, respectively.

Figure 1.17: Trails, paths, circuits and cycles as subgraphs of a graph

We will have a special interest in graphs G in which it is possible to travel from each vertex of G
to any other vertex of G. If G contains a u − v path, then u and v are said to be connected and u is
connected to v (and v is connected to u). So, saying that u and v are connected only means that there
is some u − v path in G; it doesn’t say that u and v are joined by an edge. Of course, if u is joined to v,
then u is connected to v as well. A graph G is connected if every two vertices of G are connected,
that is, if G contains a u − v path for every pair u, v of vertices of G. By Theorem 1.6, G is connected
if and only if G contains a u − v walk for every pair u, v of vertices of G. Since every vertex is
connected to itself, the trivial graph is connected.

A graph G that is not connected is called disconnected. A connected subgraph of G that is not a
proper subgraph of any other connected subgraph of G is a component of G. The number of
components of a graph G is denoted by k(G). Thus a graph G is connected if and only if k(G) = 1.
While the graph G of Figure 1.16 is connected, the graph H of Figure 1.18 is disconnected since, for
example, there is no s − w path in H. There is no x − z path either. The graph H has three components,
namely H1, H2 and H3 and so k(H) = 3.

For subgraphs G1, G2, …, Gk, k ≥ 2, of a graph G, with mutually disjoint vertex sets, we write G =
G1 ∪ G2 ∪ … ∪ Gk if every vertex and every edge of G belong to exactly one of these subgraphs.
In this case, G is the union of the graphs G1, G2, …, Gk. In particular, we write G = G1 ∪ G2 ∪ …
∪ Gk if G1, G2, …, Gk are components of G. That is, every graph is the union of its components.
Therefore, we can write H = H1 ∪ H2 ∪ H3 for the graphs in Figure 1.18.

Figure 1.18: A disconnected graph and its components



Components can also be defined by means of an equivalence relation. (Equivalence relations are
reviewed in Appendix 2.1.)

Theorem 1.7 Let R be the relation defined on the vertex set of a graph G by u R v, where u, v ∈
V(G), if u is connected to v, that is, if G contains a u − v path. Then R is an equivalence relation.

Proof. It is immediate that R is reflexive and symmetric. It remains therefore only to show that R is
transitive. Let u, v, w ∈ V(G) such that u R v and v R w. Hence G contains a u − v path P′ and a v −
w path P″. As we have seen earlier, following P′ by P″ produces a u − w walk W. By Theorem 1.6,
G contains a u − w path and so u R w.

The equivalence relation described in Theorem 1.7 produces a partition of the vertex set of every
graph G into equivalence classes. The subgraph of G induced by the vertices in an equivalence class
is a component of G. Exercise 1.14 asks you to show this. As a consequence, we have the following:

Each vertex and each edge of a graph G belong to exactly one component of G. This
implies that if G is a disconnected graph and u and v are vertices belonging to different
components of G, then u v ∉ E (G).

The following theorem provides a sufficient condition for a graph of order at least 3 to be
connected.

Theorem 1.8 Let G be a graph of order 3 or more. If G contains two distinct vertices u and v
such that G − u and G − v are connected, then G itself is connected.

Proof. Suppose that G contains distinct vertices u and v such that G − u and G − v are connected.
To show that G itself is connected, we show that every two vertices of G are connected. Let x and
y be two vertices of G. We consider two cases.

Case 1. {x, y} ≠ {u, v} , say u ∉ {x, y}. Then x and y are vertices in G − u. Since G − u is
connected, there is an x − y path P in G − u. Hence P is in G and x and y are connected in G.

Case 2. {x, y} = {u, v}, say x = u and y = v. We show that u and v are connected in G. Since the
order of G is at least 3, there is a vertex w in G such that w ≠ u, v. Since G − v is connected, G − v
contains a u − w path P′. Furthermore, since G − u is connected, G − u contains a w − v path P″.
Therefore, P′ followed by P″ produces a u − v walk. By Theorem 1.6, G contains a u − v path and so
u and v are connected in G.

If G is the disconnected graph consisting of two vertices u and v and no edges, then the subgraphs
G − u and G − v are (trivially) connected. Therefore, in Theorem 1.8, it is essential that the order of
the graph under consideration be at least 3.

If u and v are vertices in a connected graph G, then there must be a u − v path in G. However, it is
quite possible that G contains several u − v paths. For example, in the graph G of Figure 1.16, all of
the following are u − y paths:

The length of P′ is 2, the length of P″ is 3 and the length of P′′′ is 4. There is no u − y path of length 1



in this graph since u and y are not adjacent and there are no u − y paths of length 5 or more as G only
has five vertices.

Let G be a connected graph of order n and let u and v be two vertices of G. The distance between
u and v is the smallest length of any u − v path in G and is denoted by dG(u, v) or simply d(u, v) if the
graph G under consideration is clear. Hence if d(u, v) = k, then there exists a u − v path

of length k in G but no u − v path of smaller length exists in G. A u − v path of length d(u, v) is called
a u − v geodesic. In fact, since the path P in (1.5) is a u − v geodesic, not only is d(u, v) = d(u, vk) = k
but d(u, vi) = i for every i with 0 ≤ i ≤ k. Exercise 1.16 asks you to verify this. If u = v, then d(u, v) =
0. If uv ∉ E(G), then d(u, v) = 1. In general, 0 ≤ d(u, v) ≤ n − 1 for every two vertices u and v (distinct
or not) in a connected graph of order n. For the vertices u and y in the graph G of Figure 1.16, d(u, y)
= 2. If G is disconnected, then there are some pairs x, y of distinct vertices of G such that there is no x
− y path in G. In this case, d(x, y) is not defined.

At times, it is useful to visualize the vertices of a connected graph according to their distances
from a given vertex. The graph H of Figure 1.19(a) is redrawn in Figure 1.19(b) to indicate those
vertices at a given distance from the vertex t. The vertex t (the only vertex whose distance from t is 0)
is drawn at the top. The vertices one level down are the neighbors of t. The next level consists of
those vertices whose distance from t is 2 and so on. Observe that two adjacent vertices must either
belong to the same level or to neighboring levels.

Figure 1.19: Distances from a given vertex

The greatest distance between any two vertices of a connected graph G is called the diameter of G
and is denoted by diam(G). The diameter of the graph H of Figure 1.19 is 3. The path P′ = (y, u, r, s)
is a y − s geodesic whose length is diam(H).

If G is a connected graph such that d(u, v) = diam(G) and w ≠ u, v, then no u − w geodesic can
contain v, for otherwise d(u, w) > d(u, v) = diam(G), which is impossible.

Let’s return to Theorem 1.8, where we proved that if a graph G of order 3 contains two distinct
vertices u and v such that G − u and G − v are connected, then G is connected. Actually, the converse
of this theorem is also true; that is, if G is a connected graph of order at least 3, then G must contain
two vertices u and v such that G − u and G − v are both connected. We are now in a position to prove
this theorem as well.

Theorem 1.9 If G is a connected graph of order 3 or more, then G contains two distinct vertices



u and v such that G − u and G − v are connected.

Proof. Let u and v be two vertices of G such that d(u, v) = diam(G). We claim that G − u and G − v
are both connected. Suppose that this is not the case. Then at least one of G − u and G − v is
disconnected, say G − v is disconnected. Therefore, G − v contains two vertices x and y that are not
connected in G − v. However, since G is connected, the vertices u and x are connected in G, as are
u and y.

Let P′ be an x −u geodesic in G and let P″ be a u − y geodesic in G. Since dG(u, v) = diam(G), the
vertex v cannot lie on either P′ or on P″, so P′ and P″ are paths in G − v. The path P′ followed by P″
produces an x − y walk W in G − v. By Theorem 1.6, G − v contains an x − y path and so x and y are
connected in G − v. This is a contradiction.

Theorem 1.9 gives a property that every connected graph of order at least 3 must have. That is,
Theorem 1.9 provides a necessary condition for a graph to be connected. Actually, Theorem 1.9 is
true even if the order of G is 2, but we stated Theorem 1.9 as we did so we could combine Theorems
1.8 and 1.9 into a single necessary and sufficient condition for a graph to be connected, which we
state next.

Theorem 1.10 Let G be a graph of order 3 or more. Then G is connected if and only if G
contains two distinct vertices u and v such that G − u and G − v are connected.

Exercises for Section 1.2

1.11 Let G be the graph of Figure 1.20, let X = {e, f}, where e = ru and f = vw, and let U = {u, w}.
Draw the subgraphs G − X and G − U of G.

Figure 1.20: The graph G in Exercises 1.11 and 1.12

1.12 For the graph G of Figure 1.20, give an example of each of the following or explain why no
such example exists.

(a) An x − y walk of length 6.
(b) A v − w trail that is not a v − w path.
(c) An r − z path of length 2.
(d) An x − z path of length 3.
(e) An x − t path of length d(x, t).



(f) A circuit of length 10.
(g) A cycle of length 8.
(h) A geodesic whose length is diam(G).

1.13 (a) Give an example of a connected graph G containing three vertices u, v and w such that d(u,
v) = d(u, w) = d(v, w) = diam(G) = 3.

(b) Does the question in (a) suggest another question?

1.14 For a graph G, a component of G has been defined as (1) a connected subgraph of G that is not
a proper subgraph of any other connected subgraph of G and has been described as (2) a
subgraph of G induced by the vertices in an equivalence class resulting from the equivalence
relation defined in Theorem 1.7. Show that these two interpretations of components are
equivalent.

1.15 Draw all connected graphs of order 5 in which the distance between every two distinct vertices
is odd. Explain why you know that you have drawn all such graphs.

1.16 Let , be a u − v geodesic in a connected graph G. Prove
that d(u, vi) = i for each integer i with 1 ≤ i ≤ k.

1.17 (a) Prove that if P and Q are two longest paths in a connected graph, then P and Q have at least
one vertex in common.

(b) Prove or disprove: Let G be connected graph of diameter k. If P and Q are two geodesics
of length k in G, then P and Q have at least one vertex in common.

1.18 A graph G of order 12 has vertex set V(G) = {c1, c2, …, c12} for the twelve configurations in
Figure 1.4. A “move” on this checkerboard corresponds to moving a single coin to an
unoccupied square, where

(1) the gold coin can only be moved horizontally or diagonally,
(2) the silver coin can only be moved vertically or diagonally.

Two vertices ci and cj (i ≠ j) are adjacent if it is possible to move ci to cj by a single move.

(a) What vertices are adjacent to c1 in G?

(b) What vertices are adjacent to c2 in G?

(c) Draw the subgraph of G induced by {c2, c6, c9, c11}.

(d)n Give an example of a c1 − c7 path in G.

1.19 Theorem 1.10 states that a graph G of order 3 or more is connected if and only if G contains
two distinct vertices u and v such that G − u and G − v are connected. Based on this, one might
suspect that the following statement is true. Every connected graph G of order 4 or more
contains three distinct vertices u, v and w such that G − u, G − v and G − w are connected. Is
it?

1.20 (a) Let u and v be distinct vertices in a connected graph G. There may be several connected
subgraphs of G containing u and v. What is the minimum size of a connected subgraph of G
containing u and v? Explain your answer.



(b) Does the question in (a) suggest another question to you?

1.3 Common Classes of Graphs

As we continue to study graphs, we will see that there are certain graphs that are encountered often
and it is useful to be familiar with them. In many instances, there is special notation reserved for these
graphs.

We have already seen that paths and cycles are certain kinds of walks and subgraphs in graphs.
These terms are also used to describe certain kinds of graphs. If the vertices of a graph G of order n
can be labeled (or relabeled) v1, v2, …, vn so that its edges are v1v2, v2v3, …, vn–1 vn, then G is called
a path; while if the vertices of a graph G of order n ≥ 3 can be labeled (or relabeled) v1, v2, …, vn so
that its edges are v1v2, v2v3, …, vn–1 vn and v1vn, then G is called a cycle. A graph that is a path of
order n is denoted by Pn, while a graph that is a cycle of order n ≥ 3 is denoted by Cn. Several paths
and cycles are shown in Figure 1.21.

Figure 1.21: Paths and cycles

A graph G is complete if every two distinct vertices of G are adjacent. A complete graph of order
n is denoted by Kn. Therefore, Kn has the maximum possible size for a graph with n vertices. Since
every two distinct vertices of Kn are joined by an edge, the number of pairs of vertices in Kn is 
and so

Therefore, the complete graph K3 has three edges, K4 has six edges and K5 has ten edges. The five
smallest complete graphs are shown in Figure 1.22. Notice that P1 and K1 represent the same graph,
as do P2 and K2, as well as C3 and K3. Although there are edges that cross in the drawings of K4 and
K5, the points of intersection do not represent vertices.

Figure 1.22: Complete graphs



The graphs that are drawn in Figures 1.21 and 1.22 bring up some points that need to be discussed.
Although we have attempted to draw these graphs in a manner that makes them easy to visualize, this
is certainly not a requirement when drawing a graph, as its vertices can be placed in any convenient
location. Figure 1.23 shows a variety of ways to draw the path P4 and the complete graph K4.

Figure 1.23: The graphs P4 and K4

Since the disconnected graph G in Figure 1.24 has two components that are complete graphs of
order 4, one that is C5 and one that is P3, we write this graph as G = 2K4 ∪ C5 ∪ P3.

Figure 1.24: The graph G = 2K4 ∪ C5 ∪ P3

The complement  of a graph G is that graph whose vertex set is V(G) and such that for each pair
u, v of distinct vertices of G, uv is an edge of  if and only if uv is not an edge of G. Observe that if
G is a graph of order n and size m, then  is a graph of order n and size . The graph  then
has n vertices and no edges; it is called the empty graph of order n. Therefore, empty graphs have
empty edge sets. In fact, if G is any graph of order n, then G − E(G) is the empty graph . By
definition, no graph can have an empty vertex set. A graph H and its complement are shown in Figure
1.25. Both of these graphs are connected. Although a graph and its complement need not both be
connected, at least one must be connected.

Figure 1.25: A graph and its complement

Theorem 1.11 If G is a disconnected graph, then  is connected.



Proof. Since G is disconnected, G contains two or more components. Let u and v be two vertices
of . We show that u and v are connected in . If u and v belong to different components of G,
then u and v are not adjacent in G and so u and v are adjacent in . Hence  contains a u − v path
of length 1. Suppose next that u and v belong to the same component of G. Let w be a vertex of G
that belongs to a different component of G. Then uw, vw ∉ E(G), implying that uw, vw ∈ E( ) and
so (u, w, v) is a u − v path in .

We now turn to graphs whose vertex sets can be partitioned in special ways. A graph G is a
bipartite graph if V(G) can be partitioned into two subsets U and W, called partite sets, such that
every edge of G joins a vertex of U and a vertex of W. It’s not always easy to tell at a glance whether
a graph is bipartite. For example, the connected graphs G1 and G2 of Figure 1.26 are bipartite, as
every edge of G1 joins a vertex of U1 = {u1, x1, y1} and a vertex of W1 = {v1, w1}, while every edge
of G2 joins a vertex of U2 = {u2, w2, y2} and a vertex of W2 = {v2, x2, z2}. The bipartite nature of
these graphs is illustrated in Figure 1.26. By letting U = U1 ∪ U2 and W = W1 ∪ W2, we see that
every edge of G = G1 ∪ G2 joins a vertex of U and a vertex of W. This illustrates the observation that
a graph is bipartite if and only if each of its components is bipartite.

Certainly not every graph is bipartite. For example, consider the 5-cycle C5 in Figure 1.27. If C5
were bipartite, then its vertex set could be partitioned into two sets U and W such that every edge of
C5 joins a vertex of U and a vertex of W. The vertex v1 must belong to either U or W, say v1 ∈ U.
Since v1v2 is an edge of C5, it follows that v2 ∈ W. Since v2v3 is an edge of C5, it follows that v3 ∈
U. Similarly, v4 ∈ W and v5 ∈ U. However, v1, v5 ∈ U and v1v5 is an edge of C5. This is a
contradiction. Therefore, C5 is not bipartite. In fact, no odd cycle is bipartite. Indeed, any graph that
contains an odd cycle is not bipartite. The converse is true as well, which may come as a surprise.

Theorem 1.12 A nontrivial graph G is a bipartite graph if and only if G contains no odd cycles.

Proof. We have already seen that if a graph contains an odd cycle, then it’s

Figure 1.26: Bipartite graphs



Figure 1.27: A 5-cycle: A graph that is not bipartite

not bipartite. To prove the converse, let G be a nontrivial graph having no odd cycles. We show that
G is bipartite. Because of our earlier observation that a graph is bipartite if and only if each of its
components is bipartite, we may assume that G is connected. Let u be any vertex of G, let U consist of
all vertices of G whose distance from u is even and let W consist of all vertices whose distance from
u is odd. Thus {U, W} is a partition of V(G). Since d(u, u) = 0, it follows that u ∈ U. We claim that
every edge of G joins a vertex of U and a vertex of W.

Assume, to the contrary, that there exist two adjacent vertices in U or two adjacent vertices in W.
Since these two situations are similar, we will assume that there are vertices v and w in W such that
vw ∈ E(G). Since d(u, v) and d(u, w) are both odd, d(u, v) = 2s + 1 and d(u, w) = 2t + 1 for
nonnegative integers s and t. Let P′ = (u = v0, v1, …, v2s + 1 = v) be a u − v geodesic and let P″ = (u =
w0, w1, …, w2t + 1 = w) be a u − w geodesic in G. Certainly, P′ and P″ have their initial vertex u in
common but they may have other vertices in common as well. Among the vertices P′ and P″ have in
common, let x be the last vertex. Perhaps x = u. In any case, x = vi for some integer i ≥ 0. Thus d(u, vi)
= i. Since x is on P″ and wi is the only vertex of P″ whose distance from u is i, it follows that x = wi.
So x = vi = wi. However then, C = (vi, vi + 1, …, v2s + 1, w2t + 1, w2t, …, wi = vi) is a cycle of length

and so C is an odd cycle, which is a contradiction.

We know that if G is a bipartite graph, then V(G) can be partitioned into two subsets U and W,
called partite sets, such that every edge of G joins a vertex of U and a vertex of W. However, this
does not mean that every vertex of U is adjacent to every vertex of W. If this does happen, however,
then we call G a complete bipartite graph. A complete bipartite graph with |U| = s and |W| = t is
denoted by Ks, t or Kt, s. If either s = 1 or t = 1, then Ks, t is a star. Several complete bipartite graphs
are shown in Figure 1.28, including the star K1, 3. Observe that K2, 2 is the same graph as C4, although
it is certainly not drawn the same way that we drew C4 in Figure 1.21. When two graphs G and H are
the same except possibly for the way that they’re drawn or their vertices are labeled, then we write G
≅ H. (The technical term for this is that these graphs are isomorphic. We’ll discuss this in Chapter 3.)
If the structures of G and H are different, then we write G  H.



Figure 1.28: Complete bipartite graphs

Bipartite graphs belong to a more general class of graphs. A graph G is a k-partite graph if V(G)
can be partitioned into k subsets V1, V2, …, Vk (once again called partite sets) such that if uv is an
edge of G, then u and v belong to different partite sets. If, in addition, every two vertices in different
partite sets are joined by an edge, then G is a complete k-partite graph. If |Vi| = ni for 1 ≤ i ≤ k, then
we denote this complete k-partite graph by Kn1 , n2, …, nk. The complete k-partite graphs are also
referred to as complete multipartite graphs. If ni = 1 for every i (1 ≤ i ≤ k), then Kn1, n2, …, nk is the
complete graph Kk. Complete 2-partite graphs are thus complete bipartite graphs. Several complete
multipartite graphs are shown in Figure 1.29.

Figure 1.29: Complete multipartite graphs

There are several ways to produce a new graph from a given pair of graphs. For two vertex-
disjoint graphs G and H, we have already mentioned the union G ∪ H of G and H as that
(disconnected) graph with vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H). The join G + H
consists of G ∪ H and all edges joining a vertex of G and a vertex of H. The join of P3 and K2 is
shown in Figure 1.30.

Figure 1.30: The join of two graphs

For two graphs G and H, the Cartesian product G × H has vertex set V(G × H) = V(G) × V(H),
that is, every vertex of G × H is an ordered pair (u, v), where u ∈ V(G) and v ∈ V(H). The
Cartesian product of G and H is often denote by G  H as well. Two distinct vertices (u, v) and (x,
y) are adjacent in G × H if either (1) u = x and vy ∈ E(H) or (2) v = y and ux ∈ E (G). Figure 1.31
shows the Cartesian product of P3 and K2.



Figure 1.31: The Cartesian product of two graphs

Some additional comments about Cartesian products of graphs are useful. First, the definition of
Cartesian product tells us that the order in which the graphs G and H are written is structurally
irrelevant, that is, G × H and H ×G are the same graph, that is, they are isomorphic graphs.

There is an informal way of drawing the graph G × H (or H × G) that doesn’t require us to label
the vertices. Replace each vertex x of G by a copy Hx of the graph H. Let u and v be two vertices of
G. If u and v are adjacent in G, then we join corresponding vertices of Hu and Hv by an edge. If u and
v are not adjacent in G, then we add no edges between Hu and Hv. This is illustrated in Figure 1.32.

Notice that K2 × K2 is the 4-cycle. The graph C4 × K2 is often denoted by Q3 and is called the 3-
cube. More generally, we define Q1 to be K2 and for n ≥ 2, define Qn to be Qn − 1 × K2. The graphs
Qn are then called n-cubes or hypercubes. The n-cube can also be defined as that graph whose
vertex set is the set of ordered n-tuples of 0s and 1s (commonly called n-bit strings) and where two
vertices are adjacent if their ordered n-tuples differ in exactly

Figure 1.32: The Cartesian product of two graphs

one position (coordinate). The n-cubes for n = 1, 2, 3 are shown in Figure 1.33, where their vertices
are labeled by n-bit strings.

Figure 1.33: The n-cubes for 1 ≤ n ≤ 3



Exercises for Section 1.3

1.21 Draw the graph 3P4 ∪ 2C4 ∪ K4.

1.22 Let G be a disconnected graph. By Theorem 1.11,  is connected. Prove that if u and v are any
two vertices of , then  or . Therefore, if G is a disconnected graph,
then diam( ) ≤ 2.

1.23 Consider the following question: For a given positive integer k, does there exist a connected
graph G whose complement  is also connected and contains four distinct vertices u, v, x, y for
which ?

(a) Show that the answer to this question is yes if k = 1 or k = 2.
(b) Find the largest value of k for which the answer to this question is yes.

1.24 Determine whether the graphs G1 and G2 of Figure 1.34 are bipartite. If a graph is bipartite,
then redraw it indicating the partite sets; if not, then give an explanation as to why the graph is
not bipartite.

1.25 Let G be a graph of order 5 or more. Prove that at most one of G and G is bipartite.

Figure 1.34: Graphs in Exercise 1.24

1.26 Suppose that the vertex set of a graph G is a (finite) set of integers. Two vertices x and y are
adjacent if x + y is odd. To which well-known class of graphs is G a member?

1.27 For the following pairs G, H of graphs, draw G + H and G × H.

(a) G = K5 and H = K2.

(b) G = 5 and H = 3.

(c) G = C5 and H = K1.

1.28 We have seen that for n ≥ 1, the n-cube Qn is that graph whose vertex set is the set of n-bit
strings, where two vertices of Qn are adjacent if they differ in exactly one coordinate.

(a) For n ≥ 2, define the graph Rn to be that graph whose vertex set is the set of n-bit strings,
where two vertices of Rn are adjacent if they differ in exactly two coordinates. Draw R2
and R3.

(b) For n ≥ 3, define the graph Sn to be that graph whose vertex set is the set of n-bit strings,



where two vertices of Sn are adjacent if they differ in exactly three coordinates. Draw S3
and S4.

1.4 Multigraphs and Digraphs

There are occasions when graphs may not be an appropriate model for a problem we are
investigating. We now describe two variations of graphs that we will encounter from time to time. In
a graph, two vertices are either adjacent or they are not, that is, two vertices are joined by one edge
or no edges. A multigraph M consists of a finite nonempty set V of vertices and a set E of edges,
where every two vertices of M are joined by a finite number of edges (possibly zero). If two or more
edges join the same pair of (distinct) vertices, then these edges are called parallel edges. In a
pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to
itself. Such an edge is called a loop. If a loop e joins a vertex v to itself, then e is said to be a loop at
v. There can be any finite number of loops at the same vertex in a pseudograph. In Figure 1.35, M1
and M2 are multigraphs, M3 is a pseudograph and M4 is a graph. In fact, M4 is a multigraph and all
four are pseudographs.

Figure 1.35: Multigraphs and pseudographs

If M is a multigraph with vertex set V, then it is no longer appropriate to regard an edge of M as a
2-element subset of V as we must somehow indicate the multiplicity of the edge.

Let’s return to Example 1.2 where we considered the set S = {2, 3, 5, 8, 13, 21} as well as those
pairs of integers of S whose sum or difference (in absolute value) belongs to S. The graph H of Figure
1.2 models this situation. In H there is an edge joining the vertices 3 and 5, indicating that 3 + 5 ∈ S
or |3 − 5| ∈ S. In this case, however, both 3 + 5 ∈ S and |3 − 5| ∈ S, but there is no way of knowing
this from H. The multigraph M of Figure 1.36 supplies this information. However, even in this case,
the existence of a single edge between a pair i, j of vertices doesn’t tell us whether i + j ∈ S or |i − j |
∈ S; it only tells us that one of these occurs. Thus the multigraph M of Figure 1.36 is a better model
of this situation.



Figure 1.36: A multigraph

A digraph (or directed graph) D is a finite nonempty set V of objects called vertices together
with a set E of ordered pairs of distinct vertices. The elements of E are called directed edges or
arcs. If (u, v) is a directed edge, then we indicate this in a diagram representing D by drawing a
directed line segment or curve from u to v. Then u is said to be adjacent to v and v is adjacent from
u. The vertices u and v are also said to be incident with the directed edge (u, v). Arcs (u, v) and (v, u)
may both be present in some directed graph. If, in the definition of digraph, for each pair u, v of
distinct vertices, at most one of (u, v) and (v, u) is a directed edge, then the resulting digraph is an
oriented graph. Thus an oriented graph D is obtained by assigning a direction to each edge of some
graph G. The digraph D is also called an orientation of G. Figure 1.37 shows two digraphs D1 and
D2, where D2 is an oriented graph but D1 is not.

Figure 1.37: Digraphs

Next, we return to Example 1.3, where we considered twelve configurations of two coins (one
silver, one gold), which were denoted by c1, c2, …, c12. Now, we say that ci can be transformed into
cj if cj can be obtained by moving one of the coins in ci to the right or up. Modeling this situation
requires a digraph, namely, the digraph D shown in Figure 1.38, which is an oriented graph.



Figure 1.38: Modeling twelve configurations by a digraph

Exercises for Section 1.4

1.29 (a) Let S = {2, 3, 4, 7, 11, 13}. Construct the multigraph M whose vertex set is S and where ij
is an edge for distinct elements i and j in S whenever i + j ∈ S and ij is an edge whenever
|i − j| ∈ S. In other words, i and j are joined by two edges if both i + j ∈ S and | i − j | ∈
S.

(b) How are the problem and solution in (a) affected if we remove the word “distinct”?

1.30 Consider the twelve configurations ci, 1 ≤ i ≤ 12, in Figure 1.38. Draw the digraph D, where
V(D) = {c1, c2, …, c12} and where (ci, cj) is a directed edge of D if it is possible to obtain cj
by rotating the configuration ci either 90° or 180° clockwise about the midpoint of the
checkerboard.

1.31 Using the twelve configurations in Figure 1.38, define a transformation different from the one
described in Exercise 1.30 which can be modeled by a digraph but not by a graph.

1.32 Let S and A be two finite nonempty sets of integers. Define a digraph D with V(D) = A, where
(x, y) is an arc of D if x ≠ y and y − x ∈ S.

(a) Draw the digraph D for A = {0, 1, 2, 3, 4} and S = {−2, 1, 2, 4}.
(b) What can be said about D if A and S consist only of odd integers?
(c) How can the question in (b) be generalized?
(d) If |A| = |S| = 5, how large can the size of D be?

1.33 A digraph D has vertex set {−3, 3, 6, 12} and (i, j) ∈ D if i ≠ j and i | j, that is, j is a multiple
of i. Draw the digraph D.



Chapter 2

Degrees

2.1 The Degree of a Vertex

There are many numbers, referred to as parameters, associated with a graph G. Knowing the values
of certain parameters provides us with information about G but rarely tells us the entire structure of
G. (These comments are tied in with the concept of isomorphic graphs, which will be discussed in
Chapter 3.) We’ve already mentioned the best known parameters: the order and the size. There are
also numbers associated with each vertex of a graph. We now consider the best known of these.

The degree of a vertex v in a graph G is the number of edges incident with v and is denoted by
degG v or simply by deg v if the graph G is clear from the context. Also, deg v is the number of
vertices adjacent to v. Recall that two adjacent vertices are referred to as neighbors of each other.
The set N(v) of neighbors of a vertex v is called the neighborhood of v. Thus deg v = |N(v)|.

A vertex of degree 0 is referred to as an isolated vertex and a vertex of degree 1 is an end-
vertex (or a leaf). The minimum degree of G is the minimum degree among the vertices of G and is
denoted by (G); the maximum degree of G is denoted by Δ(G). So if G is a graph of order n and v
is any vertex of G, then

The graph G of Figure 2.1 has order 6 and size 5. Each vertex of G is labeled with its degree. Since
G contains an isolated vertex, namely u, it follows that (G) = 0. Furthermore, w has the largest
degree in G and so Δ(G) = deg w = 4. Both v and z are end-vertices of G since deg v = deg z = 1. If
we add the degrees of the vertices of G, we obtain 0 + 1 + 1 + 2 + 2 + 4 = 10, which happens to be
twice the size of G. This is not a coincidence as we show in our next theorem, which is often referred
to as The First Theorem of Graph Theory, so-called because it is likely that anyone studying graph
theory for the first time would discover this result as his or her own first theorem on the subject.
Although we’ve already discovered some theorems in Chapter 1, we’ll follow the trend and also
refer to the following theorem as the First Theorem of Graph Theory.

Figure 2.1: A graph G with (G) = 0 and Δ(G) = 4



Theorem 2.1 (The First Theorem of Graph Theory) If G is a graph of size m, then

Proof. When summing the degrees of the vertices of G, each edge of G is counted twice, once for
each of its two incident vertices.

The First Theorem of Graph Theory is useful in solving problems such as the following.

Example 2.2 A certain graph G has order 14 and size 27. The degree of each vertex of G is 3, 4
or 5. There are six vertices of degree  4. How many vertices of G have degree 3 and how many
have degree 5?

Solution. Let x be the number of vertices of G having degree 3. Since the order of G is 14 and six
vertices have degree 4, eight vertices have degree 3 or 5. So there are 8 − x vertices of degree 5.
Summing the degrees of the vertices of G and applying the First Theorem of Graph Theory, we
obtain

and so 8 − x = 3. Thus G has five vertices of degree 3 and three vertices of degree 5.

The method we used to solve the problem in Example 2.2 tells us that there is a unique solution.
Perhaps other methods of solving this problem might have occurred to you, such as trying to draw the
graph. Consider the graph of Figure 2.2, each of whose vertices is labeled by its degree. This graph
has order 14, size 27 and six vertices of degree 4, which are characteristics of the graph G of
Example 2.2. We see that the graph of Figure 2.2 has five vertices of degree 3 and three vertices of
degree 5, solving the problem. Even though this provides the correct answers to our question, the
explanation is not correct; for how do we know that the graph we have just drawn is the graph G
referred to in the problem and therefore gives us the correct answer?

Figure 2.2: A graph of order 14 and size 27

Another possible “solution” might go something like this: We know that we are looking for



integers x and y such that x + y = 8 and

3x + 4 ⋅ 6 + 5y = 2 ⋅ 27 = 54.

By observation, we see that x = 5 and y = 3 satisfy this equation. Thus we have “solved” the problem.
But this “solution” also has its drawbacks. How do we know that this is the only solution? (Of
course, we could try all possible values of x and y.) The solution that we gave for Example 2.2 shows
that there is only one solution for each of x and y and that the solutions do not depend on the graph
under consideration (provided it has order 14, size 27 and six vertices of degree 4). Just as when
asked to solve x2 − x = 3x − 4 for a real number x, it is not enough to simply note that x = 2 is a root.
It is required to find all roots and even if x = 2 is the only root, we are obliged to show that this is so.

Suppose that G is a bipartite graph of size m with partite sets U = {u1, u2, …, us}and W = {w1, w2,
…, wt}. Since every edge of G joins a vertex of U and a vertex of W, it follows that adding the
degrees of the vertices in U (or in W) gives the number of edges in G, that is,

A vertex of even degree is called an even vertex, while a vertex of odd degree is an odd vertex.
Returning to the graph G of Figure 2.2, we see that it has six even vertices and eight odd vertices. In
particular, the number of odd vertices of G is even. We show that this is the case for every graph.

Corollary 2.3 Every graph has an even number of odd vertices.

Proof. Let G be a graph of size m. Divide V(G) into two subsets V1 and V2, where V1 consists of
the odd vertices of G and V2 consists of the even vertices of G. By the First Theorem of Graph
Theory,

The number  is even since it is a sum of even integers. Thus

which implies that  is even. Since each of the numbers deg v, v ∈ V1, is odd, the
number of odd vertices of G is even.

There is a great deal of information that can be learned about a graph from the degrees of its
vertices. For example, if a graph G of order n contains a vertex of degree n − 1, then G is connected.
In order to see why this is true, suppose that deg w = n − 1. Therefore, w is adjacent to all other
vertices of G. To show that G is connected, we need to show that every pair x, y of vertices of G are
connected, that is, G contains an x − y path. This is certainly true if one of x and y is w. If neither x nor
y is w, then since w is adjacent to both x and y, it follows that (x, w, y) is an x − y path and
consequently G contains an x − y path.

This degree condition is certainly not necessary for a graph to be connected. For example, for n ≥



This degree condition is certainly not necessary for a graph to be connected. For example, for n ≥
4, the path Pn of order n is connected but contains no vertex of degree greater than 2. Next, we
present another degree condition that implies that a graph is connected and more.

Theorem 2.4 Let G be a graph of order n. If

for every two nonadjacent vertices u and v of G, then G is connected and diam(G) ≤ 2.

Proof. We show that every two distinct vertices of G are connected by a path of length at most 2.
Let x, y ∈ V(G). If xy ∈ E(G), then (x, y) is a path and x and y are certainly connected. Hence we
may assume that xy ∉ E(G). Therefore, deg x + deg y ≥ n − 1, which implies that there must be a
vertex w that is adjacent to both x and y. So (x, w, y) is a path in G, as desired.

Theorem 2.4 implies that if G is a graph of order n such that deg v ≥ (n−1)/2 for every vertex v of
G, then G must be connected.

Corollary 2.5 If G is a graph of order n with (G) ≥ (n − 1)/2, then G is connected.

Proof. For every two nonadjacent vertices u and v of G,

By Theorem 2.4, G is connected.

According to Corollary 2.5, if G is a graph of order n = 7 and (G) ≥ (7 − 1)/2 = 3, then G is
connected. Also, if G is a graph of order n = 8 and (G) ≥ (8 − 1)/2 = 3.5, then G is connected. Of
course, in the latter case, this says that if G is a graph of order n = 8 and (G) ≥ 4, then G is
connected. For an even integer n, Corollary 2.5 then says that if G is a graph of order n with (G) ≥
n/2, then G is connected.

Let’s return to Theorem 2.4. This theorem tells us then that if the sum of the degrees of any two
nonadjacent vertices of a graph G of order n is “large enough,” then G is connected. According to
Theorem 2.4, n − 1 is large enough. Obviously, if the sum of the degrees of any two nonadjacent
vertices of G is at least n, then G must be connected as well. But what if the sum of the degrees of any
two nonadjacent vertices of G is at least n − 2? Does that also guarantee that G is connected? What
we are now discussing is the sharpness of the bound in Theorem 2.4. That is, would Theorem 2.4
still be true if we replace n − 1 by a smaller integer? If not, then Theorem 2.4 cannot be improved and
the bound is sharp.

As it turns out, the bound in Theorem 2.4 is sharp. For example, suppose that n is even, say n = 2k
and consider the graph G = 2Kk, that is, G is the disconnected graph with two components each of
which is Kk (see Figure 2.3). If u and v are two nonadjacent vertices in this graph G, then u and v
must be in different components and each has degree k − 1. So

Therefore, if the sum of the degrees of any two nonadjacent vertices of a graph G of order n is at least



n − 2, then there is no guarantee that G is connected.

Figure 2.3: A disconnected graph of order n = 2k such that the sum of the degrees of any two
nonadjacent vertices is n − 2

Observe also that if G is a disconnected graph of order n, then (since G has at least two
components) some component G1 of G has order n1 that is at most n/2. Every vertex of G1 has degree
at most n1 − 1 ≤ (n/2) − 1 = (n − 2)/2 and so (G) ≤ (n − 2)/2. (This observation actually provides a
proof by contrapositive of Corollary 2.5.) If G has three components, then the order of some
component of G is at most n/3. More generally, if G has k components, then the order of some
component of G is at most n/k.

The concept of degree has counterparts in both multigraphs, pseudographs and digraphs. For a
vertex v in a multigraph or pseudograph G, the degree deg v of v in G is the number of edges of G
incident with v, where there is a contribution of 2 for each loop at v in a pseudograph. For the
pseudograph G of Figure 2.4,

Figure 2.4: Illustrating degrees in a multigraph and a digraph

For a vertex v in a digraph D, the outdegree od v of v is the number of vertices of D to which v is
adjacent, while the indegree id v of v is the number of vertices of D from which v is adjacent. For the
digraph D of Figure 2.4,

Exercises for Section 2.1

2.1 Give an example of the following or explain why no such example exists:

(a) a graph of order 7 whose vertices have degrees 1, 1, 1, 2, 2, 3, 3.
(b) a graph of order 7 whose vertices have degrees 1, 2, 2, 2, 3, 3, 7.



(c) a graph of order 4 whose vertices have degrees 1, 3, 3, 3.

2.2 Give an example of the following or explain why no such example exists:

(a) a graph that has no odd vertices.
(b) a noncomplete graph, all of whose vertices have degree 3.
(c) a graph G of order 5 or more with the property that deg u ≠ deg v for every pair u, v of

adjacent vertices of G.
(d) a noncomplete graph H of order 5 or more with the property that deg u ≠ deg v for every

pair u, v of nonadjacent vertices of H.

2.3 The degree of each vertex of a certain graph of order 12 and size 31 is either 4 or 6. How many
vertices of degree 4 are there?

2.4 Give an example of a graph G of order 6 and size 10 such that (G) = 3 and Δ(G) = 4.

2.5 The degree of every vertex of a graph G of order 25 and size 62 is 3, 4, 5 or 6. There are two
vertices of degree 4 and 11 vertices of degree 6. How many vertices of G have degree 5?

2.6 Prove that if a graph of order 3n (n ≥ 1) has n vertices of each of the degrees n − 1, n and n + 1,
then n is even.

2.7 (a) Prove that if G is a bipartite graph of size m with partite sets U and W, then 
.

(b) Let G be a bipartite graph of order 22 with partite sets U and W, where |U| = 12. Suppose
that every vertex in U has degree 3, while every vertex of W has degree 2 or 4. How many
vertices of G have degree 2?

2.8 Let G be a graph of order n. If deg u + deg v + deg w ≥ n − 1 for every three pairwise
nonadjacent vertices u, v and w of G, must G be connected?

2.9 Show that if G is a disconnected graph containing exactly two odd vertices, then these odd
vertices must be in the same component of G.

2.10 We have already seen that if G is a graph of order n such that deg u + deg v ≥ n − 2 for every
two nonadjacent vertices u and v of G, then G might be disconnected.

(a) Show that there exists a connected graph G of order n such that deg u + deg v ≥ n − 2 for
every two nonadjacent vertices u and v and for which deg x + deg y = n − 2 for some pair
x, y of nonadjacent vertices of G.

(b) Let G be a graph of order n. Prove that if deg u + deg v ≥ n − 2 for every pair u, v of
nonadjacent vertices of G, then G has at most two components.

(c) Is the bound in part (b) sharp?

2.11 Corollary 2.5 states that if G is a graph of order n with (G) ≥ (n − 1)/2, then G is connected.
Is the bound (n − 1)/2 sharp, that is, in this case, can (n − 1)/2 be replaced by (n − 2)/2 and
obtain the same conclusion?

2.12 Prove that if G is a graph of order n such that Δ(G) + (G) ≥ n − 1, then G is connected and
diam(G) ≤ 4. Show that the bound n − 1 is sharp.



2.13 Let G be a graph of order n ≥ 2.

(a) Prove that if deg v ≥ (n − 2)/3 for every vertex v of G, then G contains at most two
components.

(b) Show that the bound in (a) is sharp.

2.14 A graph G has the property that every edge of G joins an odd vertex with an even vertex. Show
that G is bipartite and has even size.

2.15 A certain connected graph G has the property that for every two vertices u and v of G, the
length of each u − v path is even or the length of each u − v path is odd. Prove that G is
bipartite.

2.16 The degree of every vertex of a graph G of order 2n + 1 ≥ 5 is either n + 1 or n + 2. Prove that
G contains at least n + 1 vertices of degree n + 2 or at least n + 2 vertices of degree n + 1.

2.17 Let G be a connected graph containing a vertex w such that (1) deg w  0 (mod 3) and (2) deg
u + deg v ≡ 0 (mod 3) for every two adjacent vertices u and v of G. Prove that G is bipartite
and contains no vertex x such that deg x ≡ 0 (mod 3).

2.18 Let G be a graph of order 8 with v(G) = {v1, v2, …, v8} such that deg vi = i for 1 ≤ i ≤ 7. What
is deg v8?

2.2 Regular Graphs

We have already mentioned that 0 ≤ (G) ≤ Δ(G) ≤ n − 1 for every graph G of order n. If (G) =
Δ(G), then the vertices of G have the same degree and G is called regular. If deg v = r for every
vertex v of G, where 0 ≤ r ≤ n − 1, then G is r-regular or regular of degree r. The only regular
graphs of order 4 or 5 are shown in Figure 2.5. There is no 1-regular or 3-regular graph of order 5, as
no graph contains an odd number of odd vertices by Corollary 2.3.

Figure 2.5: Some regular graphs

A 3-regular graph is also referred to as a cubic graph. The graphs K4, K3,3 and Q3 are cubic



graphs; however, the best known cubic graph may very well be the Petersen graph, shown in Figure
2.6. We will see this graph again. (Indeed, Section 8.5 is devoted to this graph.)

Figure 2.6: The Petersen graph

By Corollary 2.3, there are no r-regular graphs of order n if r and n are both odd. However,
provided 0 ≤ r ≤ n − 1, there are no other restrictions on the existence of an r-regular graph of order
n. In the next proof, we will be considering a graph G with vertex set V(G) = {v1, v2, …, vn} and
performing arithmetic on the subscripts of the vertices. We follow the standard practice of performing
the arithmetic modulo n. For example, if n = 6 and i = 5, then the vertex vi + 2 denotes v1.

Theorem 2.6 Let r and n be integers with 0 ≤ r ≤ n − 1. There exists an r-regular graph of order
n if and only if at least one of r and n is even.

Proof. As we already mentioned, there is no r-regular graph of order n if r and n are both odd. It
remains only to verify the converse. So let r and n be integers with 0 ≤ r ≤ n − 1 such that at least
one of r and n is even. We construct an r-regular graph Hr, n of order n. Let V(Hr, n ) = {v1, v2, …,
vn}. First, assume that r is even. Then r = 2k ≤ n − 1 for some nonnegative integer k ≤ (n − 1)/2.
For each i (1 ≤ i ≤ n), we join vi to vi + 1, vi + 2, …, vi + k and to vi − 1, vi − 2, …, vi − k. If we think of
arranging the vertices v1, v2, …, vn cyclically, then each vertex vi is adjacent to the k vertices that
immediately follow vi and the k vertices that immediately precede vi. Thus Hr, n is r-regular. For r
= 4 and n = 10, the graph H4, 10 is shown in Figure 2.7(a).

Second, assume that r is odd. Then n = 2l is even. Also, r = 2k + 1 ≤ n − 1 for some nonnegative
integer k ≤ (n − 2)/2. We join vi to the 2k vertices described above as well as to vi + l. In this case, we
again think of arranging the vertices v1, v2, …, vn cyclically and joining each vertex vi to the k
vertices immediately following it, the k vertices immediately preceding it and the unique vertex
“opposite” vi. Thus Hr, n is r-regular. For r = 5 and n = 10, the graph H5, 10 is shown in Figure 2.7(b).

The graphs Hr, n  described above are called Harary graphs, named for Frank Harary. We will
visit him again. Also, we will visit these graphs again in Section 5.3.

The proof of Theorem 2.6 that we have presented is a constructive proof, that is, we actually
constructed a graph with the desired properties and didn’t



Figure 2.7: A 4-regular graph and a 5-regular graph, both of order 10

simply show that some graph with these properties exists. Although the proof of Theorem 2.6 doesn’t
suggest it, there is little restriction on the subgraphs that regular graphs can contain. Of course, if H is
an r-regular graph, then H cannot contain any graph G as a subgraph if Δ(G) > r. On the other hand, if
G is a graph with Δ(G) ≤ r for some integer r, then G is a subgraph (indeed, an induced subgraph) of
some r-regular graph H, as we now see.

Theorem 2.7 For every graph G and every integer r ≥ Δ(G), there exists an r-regular graph H
containing G as an induced subgraph.

Proof. If G is r-regular, then we let H = G. Thus, we may assume that G is not an r-regular graph.
Suppose that G has order n and V(G) = {v1, v2, …, vn}. Let G′ be another copy of G with 

, where each vertex  in G′ corresponds to vi in G for 1 ≤ i ≤ n. We
now construct a graph G1 from G and G′ by adding the edges  for all vertices vi(1 ≤ i ≤ n) of G
for which deg vi ≤ r. Then G is an induced subgraph of G1 and (G1) = (G) + 1. If G1 is r-regular,
then we let H = G1. If not, then we continue this procedure until we arrive at an r-regular graph Gk,
where k = r − (G). The graph Gk is the desired graph H.

To illustrate the construction described in Theorem 2.7, consider the graph G of Figure 2.8, where
Δ(G) = 4 and (G) = 2. We seek a 4-regular graph H containing G as an induced subgraph. First, we
construct a graph G1 from two copies of G by joining all pairs of corresponding vertices in these
copies whose degrees are less than 4. Then Δ(G1) = 4, (G1) = 3 and G is an induced subgraph of G1.
We then construct H from two copies of G1 by joining all pairs of corresponding vertices in these
copies whose degrees are 3. Then H is 4-regular and G is an induced subgraph of H.

Theorem 2.7 appears in the first book entirely devoted to graph theory, published in 1936 and
written by Dénes König. Although König stated and proved the theorem for multigraphs, the proof he
presented suggests the proof we gave for graphs in Theorem 2.7. The proof of Theorem 2.7 does not
construct an r-regular graph of smallest order containing a given graph G with Δ(G) ≤ r as



Figure 2.8: A 4-regular graph H containing G as an induced subgraph

an induced subgraph. Paul Erdös and Paul J. Kelly discovered a method for finding the smallest order
of such an r-regular graph. We consider an example dealing with this problem.

Example 2.8 For the graph G of Figure 2.9, find a 5-regular graph H of minimum order
containing G as an induced subgraph.

Figure 2.9: The graph G in Example 2.8

Solution. Since (G) = 2 and the order of G is 6, the order of such a graph H must be at least 9.
However, there does not exist a 5-regular graph of order 9, so the order of H must be at least 10.
Hence to construct a 5-regular graph containing G as an induced subgraph, it is necessary to add at
least four vertices u, v, w, x  to G (see Figure 2.10(a)). Joining u, v, w, x  to the vertices of G and to
each other as indicated in Figure 2.10(b) produces a 5-regular graph H containing G as an induced
subgraph. Thus the minimum order of such a graph H is 10.

Figure 2.10: The graph H in Example 2.8



Exercises for Section 2.2

2.19 Construct an r-regular graph of order 6 and an s-regular graph of order 7 for all possible
values of r and s.

2.20 Show that if G is a connected graph that is not regular, then G contains adjacent vertices u and
v such that deg u ≠ deg v.

2.21 (a) Find spanning subgraphs G0, G1, G2, G3 of the Petersen graph, where Gr is r-regular for 0 ≤
r ≤ 3.

(b) Find induced subgraphs F0, F1, F2, F3 in the Petersen graph, where Fr is r-regular for 0 ≤ r
≤ 3.

(c) How can the problem in (b) be revised so that it would be more interesting (and more
challenging)?

2.22 For the graph G of Figure 2.11, construct a 3-regular graph H containing G as an induced
subgraph

(a) using the proof of Theorem 2.7. What is the order of H?
(b) such that H has the smallest possible order. What is this order?

Figure 2.11: The graph G in Exercise 2.22

2.23 For each of the following paths, construct a 3-regular graph H of minimum order containing the
path as an induced subgraph: (a) P5, (b) P6, (c) P7.

2.24 What is the minimum order of a 3-regular graph H containing the graph G in Figure 2.12 as an
induced subgraph?

Figure 2.12: The graph G in Exercise 2.24

2.25 (a) Let v be a vertex of a graph G. Show that if G − v is 3-regular, then G has odd order.

(b) Let G be an r-regular graph, where r is odd. Show that G does not contain any component
of odd order.

2.26 (a) Show that a graph G is regular if and only if  is regular.

(b) Show that if G and  are both r-regular for some nonnegative integer r, then G has odd
order.

2.27 Prove that if G is an r-regular bipartite graph with r ≥ 1 and partite sets U and W, then |U| = |W|.



2.28 Investigate the following question: Does there exist a graph G and an integer r with (G) ≤ r
and Δ(G) ≤ r, such that the r-regular graph H in Theorem 2.7 that contains G as an induced
subgraph has the smallest order among all r-regular graphs with this property?

2.29 (a) Prove that if G is a graph of order n, then (G) + ( ) ≤ n − 1.

(b) Prove, for a graph G of order n, that (G) + ( ) = n − 1 if and only if G is regular.
(c) Prove that a graph G is regular if and only if G contains a vertex v such that degG v = (G)

and .

(d) What can we say about a graph G with the property that for every vertex v of G, either
degG v = (G) or  but not both?

2.30 Beginning with G = K1, use the construction in Theorem 2.7 to produce a 3-regular graph H
(containing G as an induced subgraph). What famous graph is H?

2.3 Degree Sequences

Although we’ve been discussing graphs all of whose vertices have the same degree, it is more typical
for the vertices of a graph to have a variety of degrees. If the degrees of the vertices of a graph G are
listed in a sequence s, then s is called a degree sequence of G. For example, all of the sequences

are degree sequences of the graph G of Figure 2.13, each of whose vertices is labeled by its degree.
The sequence s is non-increasing, s′ is non-decreasing and s″ is neither. Determining a degree
sequence of a graph is not difficult. There is a converse question that is considerably more intriguing,
however.

Figure 2.13: A graph with degree sequence 4, 3, 2, 2, 2, 1, 1, 1, 0

Suppose that we are given a finite sequence s of nonnegative integers. Is s a degree sequence of
some graph? A finite sequence of nonnegative integers is called graphical if it is a degree sequence
of some graph. Of course, all of the sequences in (2.2) are graphical.

Example 2.9 Which of the following sequences are graphical?

(1) s1 : 3, 3, 2, 2, 1, 1

(2) s2 : 6, 5, 5, 4, 3, 3, 3, 2, 2



(3) s3 : 7, 6, 4, 4, 3, 3, 3

(4) s4 : 3, 3, 3, 1

Solution.

  (1) The sequence s1 is graphical. Indeed, it is a degree sequence of the graph G1 of Figure 2.14.

Figure 2.14: A graph with degree sequence 3, 3, 2, 2, 1, 1

  (2) Since s2 has an odd number of terms that are odd integers, s2 cannot be a degree sequence of a
graph (for otherwise, such a graph would have an odd number of odd vertices, contradicting
Corollary 2.3). Therefore, s2 is not graphical.

  (3) The sequence s3 is also not graphical; for otherwise, s3 would be a degree sequence of a graph
of order 7 and containing a vertex of degree 7. (The degree of any vertex in a graph of order 7
is at most 7 − 1 = 6.)

  (4) The sequence s4 contains four terms, all of which are at most 4 − 1 = 3. Also, s4 contains an
even number of terms that are odd integers. Yet, s4 is not graphical. Assume, to the contrary,
that s4 is graphical. Then there is a graph G4 of order 4 with V(G4) = {u, v, w, x} such that deg
u = deg v = deg w = 3 and deg x = 1. This implies that each of u, v and w is adjacent to all other
vertices of G4, including x, but x is adjacent to only one of u, v and w. This is impossible.

The sequence s4 shows that determining which sequences are graphical is potentially difficult. We
present a theorem that will help us to efficiently decide whether a given sequence is graphical. This
theorem is due to Václav Havel and S. Louis Hakimi and is often referred to as the Havel-Hakimi
Theorem, despite the fact that Havel and Hakimi gave independent proofs and wrote separate papers
that include this theorem. To use this theorem, we assume that we are beginning with a non-increasing
sequence.

Theorem 2.10 A non-increasing sequence s : d1, d2, …, dn (n ≥ 2) of non-negative integers,
where d1 ≥ 1, is graphical if and only if the sequence

is graphical.

Proof. First, assume that s1 is graphical. Then there is a graph G1 with V(G1) = {v2, v3, …, vn}
such that



We construct a graph G from G1 by adding a new vertex v1 and the d1 edges v1vi for 2 ≤ i ≤ d1 + 1.
Since degG vi = di for 1 ≤ i ≤ n, it follows that s is a degree sequence of G and so s is graphical.

Proving the converse is more challenging. Assume that s is graphical. Suppose that a graph H has
degree sequence s and contains a vertex u of degree d1 such that u is adjacent to vertices whose
degrees are . Then s1 is a degree sequence of H − u and the proof of the converse
is complete. We show next that there must be a graph H with degree sequence s containing a vertex u
of degree d1 that is adjacent to vertices whose degrees are .

Assume, to the contrary, that there is no graph with degree sequence s containing a vertex of
degree d1 that is adjacent to vertices whose degrees are . Among all graphs with
degree sequence s, let G be one with V(G) = {v1, v2, …, vn} such that deg vi = di for 1 ≤ i ≤ n and the
sum of the degrees of vertices adjacent to v1 is as large as possible. Since v1 is not adjacent to
vertices having degrees  (that is, v1 is not adjacent to vertices with the next d1
highest degrees), v1 must be adjacent to a vertex vs having a smaller degree than a vertex vr to which
v1 is not adjacent. That is, there exist vertices vr and vs with dr > ds such that v1 is adjacent to vs but
not to vr. Since deg vr = dr > ds = deg vs, there exists a vertex vt such that vt is adjacent to vr but not to
vs. Consider the graph G′ obtained from G by removing the edges v1vs and vrvt and adding the edges
v1vr and vsvt (see Figure 2.15, where a dashed line means no edge).

Figure 2.15: Edges in (and not in) G and G′ in the proof of Theorem 2.10

Then G and G′ have the same vertex set; indeed, s is a degree sequence of both G and G′.
However, the sum of the degrees of the vertices adjacent to v1 in G′ is larger than that in G, which
produces a contradiction.

We now illustrate Theorem 2.10 with the following two examples.

Example 2.11 Decide whether the sequence s : 5, 4, 3, 3, 2, 2, 2, 1, 1, 1 is graphical.

Solution. Deleting 5 from s and subtracting 1 from the next five terms, we obtain

 : 3, 2, 2, 1, 1, 2, 1, 1, 1.

Reordering this sequence (so that a non-increasing sequence results and we can apply Theorem 2.10
again), we have



s1 : 3, 2, 2, 2, 1, 1, 1, 1, 1.

By Theorem 2.10, s is graphical if and only if s1 is. To decide whether s1 is graphical, we choose to
continue this procedure since s1 is relatively complicated. Deleting 3 from s1 and subtracting 1 from
the next three terms, we obtain

 = s2 : 1, 1, 1, 1, 1, 1, 1, 1.

By Theorem 2.10, s1 is graphical if and only if s2 is. But s2 is so simple that we can quickly observe
that s2 is a (actually the) degree sequence of the graph G2 = 4K2 of Figure 2.16. Therefore, s2 is
graphical, so s1 and s are graphical as well.

Figure 2.16: The graphs G2, G1 and G in Example 2.11

In Example 2.11, we stopped when we arrived at the sequence s2, as it was clear that s2 is a
degree sequence of some graph, namely s2 is the degree sequence of the graph G2 of Figure 2.16.
Recall that the sequence  was obtained from s1 by deleting 3 from s1 and subtracting 1 from
the next three terms of s1. Consequently, if we add a new vertex v1 to G2 and join v1 to three vertices
of degree 1 in G2, then we obtain a graph G1 (see Figure 2.16) with degree sequence s1.

In Example 2.11, the sequence s1 was obtained from  by rearranging its terms to produce a non-
increasing sequence. The sequence  was, in turn, obtained from s by deleting the first term 5 from s
and subtracting 1 from the next five terms of s. Therefore, if we add a new vertex v to G1 and join v to
the vertex of degree 3, to two vertices of degree 2 and to two vertices of degree 1, then we obtain a
graph G with degree sequence s. So we have just constructed a graph with degree sequence s.
Informally, we have just described an efficient algorithm for deciding whether a given sequence of
nonnegative integers is graphical. We present one additional example to illustrate how to proceed
when the sequence is not graphical.

Example 2.12 Decide whether the sequence s : 7, 7, 4, 3, 3, 3, 2, 1 is graphical.

Solution. Deleting the first term 7 from s and subtracting 1 from the next seven terms of s, we
obtain

s1 =  : 6, 3, 2, 2, 2, 1, 0.

Perhaps we can see that s1 is not graphical but nevertheless let’s continue. Deleting the first term 6
from s1 and subtracting 1 from the next six terms of s1, we obtain



s2 =  : 2, 1, 1, 1, 0, −1.

Since s2 contains the negative number −1 and, of course, no vertex can have a negative degree, it is
now very clear that s2 is not graphical. By Theorem 2.10, the sequence s1 is not graphical and so
neither is s.

Another way to show that the sequence in Example 2.12 is not graphical is to observe that if it
were graphical, then there would be a graph G of order 8 with degree sequence s, implying that G has
two vertices of degree 7 and so all other vertices of G have degree at least 2. Hence G can have no
vertex of degree 1.

Exercises for Section 2.3

2.31 Prove that a sequence d1, d2, …, dn is graphical if and only if n − d1 − 1, n − d2 − 1, …, n − dn
− 1 is graphical.

2.32 Use Theorem 2.10 to determine which of the following sequences are graphical. For each of
those that are graphical, construct a graph, as in Example 2.11, for which the given sequence is
a degree sequence of the graph.

(a) s1 : 5, 3, 3, 3, 3, 2, 2, 2, 1   (b) s2 : 6, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1

(c) s3 : 6, 5, 5, 4, 3, 2, 1   (d) s4 : 7, 5, 4, 4, 4, 3, 2, 1   (e) s5 : 7, 6, 5, 4, 4, 3, 2, 1.

2.33 Prove that for every integer x with 0 ≤ x ≤ 5, the sequence x, 1, 2, 3, 5, 5 is not graphical.

2.34 For which integers x (0 ≤ x ≤ 7), if any, is the sequence 7, 6, 5, 4, 3, 2, 1, x graphical?

2.35 If the sequence x, 7, 7, 5, 5, 4, 3, 2 is graphical, then what are the possible values of x (0 ≤ x ≤
7)?

2.36 Let S = {2, 6, 7}. Prove that there exists a positive integer k such that the sequence obtained by
listing each element of S a total k times is a degree sequence of some graph. What is the
minimum value of k?

2.4 Excursion: Graphs and Matrices

As we know, a graph G can be defined by two sets, namely its vertex set V(G) and edge set E(G) or
by a diagram. A graph can also be described by a matrix and for some purposes this is especially
useful.

Let G be a graph of order n and size m, where V(G) = {v1, v2, …, vn} and E(G) = {e1, e2, …, em}.
The adjacency matrix of G is the n × n matrix A = [ai j], where



while the incidence matrix of G is the n × m matrix B = [bi j], where

These matrices are shown for the graph G of Figure 2.17.

Figure 2.17: The adjacency matrix and incidence matrix of a graph

Here are a few useful observations about the adjacency matrix and incidence matrix. First, these
matrices are dependent on how the vertices and edges of G are labeled. In any case, the adjacency
matrix is a symmetric n × n matrix where every entry on the main diagonal is 0. The number of 1s in
row i (or column i) is the degree of the vertex vi. While the number of 1s in row i of the incidence
matrix is also the degree of vi, the number of 1s in each of its columns is 2 since there are exactly two
vertices incident with every edge.

Two u − v walks are considered equal if, as sequences, they are identical, term by term. Let’s
now return to the graph G and its adjacency matrix A shown in Figure 2.17. The square A2 and the
cube A3 of A are given in Figure 2.18. If we look at the entries along the main diagonal in A2, we see
that these are the degrees of the vertices of G. This is not only true in general but each entry in each
power of A represents some characteristic of the graph G.

Theorem 2.13 Let G be a graph with vertex set V(G) = {v1, v2, …, vn} and adjacency matrix A =
[ai j]. Then the entry  in row i and column j of Ak is the number of distinct vi − vj walks of
length k in G.

Figure 2.18: Powers of an adjacency matrix



Proof. We proceed by induction. We begin with A = A1. Each entry  of A is either 1 or

0, according to whether vivj is or is not an edge of G. Hence  gives the number of vi − vj walks
of length 1 in G. Assume, for a positive integer k, that the number of vi − vj walks of length k in G is
given by . From the definition of matrix multiplication, the (i, j)-entry  in Ak  + 1 is the dot

product of row i of Ak and column j of A, that is,

Every vi − vj walk W of length k + 1 is produced by beginning with a vi − vt walk W′ of length k for
some vertex vt adjacent to vj and then following W′ by vj. By the induction hypothesis, the number of
vi − vt walks of length k is , while t is adjacent to j if and only if atj = 1. Hence by (2.3), 

 does indeed provide the number of vi − vj walks of length k + 1 in G.

In view of Theorem 2.13,  is twice the number of triangles in G that

contain vi. Indeed, knowing what each entry of Ak represents allows us to compute powers of
adjacency matrices, at least small powers of adjacency matrices of graphs of small orders without
actually multiplying matrices. For example, for the graph G of Figure 2.17, the entry  of A3 is the
number of distinct v4 − v1 walks in G of length 3. Since there are six v4 − v1 walks of length 3 in G,
namely:

it follows that , as we have seen.

Exercises for Section 2.4

2.37 For the adjacency matrix A of the graph G1 of Figure 2.19, determine A2 and A3 without
computing A or performing matrix multiplication.

2.38 For the adjacency matrix A of the graph G2 of Figure 2.19, determine A2 and A3 without
computing A or performing matrix multiplication.



Figure 2.19: Graphs for Exercises 2.37-2.39

2.39 For the adjacency matrix A of the graph G3 of Figure 2.19, determine A4 without computing A or
performing matrix multiplication.

2.40 For G = Kr, r with partite sets U = {v1, v2, …, vr} and W = {vr + 1, vr + 2, …, v2r}, determine the
adjacency matrix A of G and its powers A2, A3 and A4 without performing matrix multiplication.

2.41 (a) For the incidence matrix B in Figure 2.17, compute BBt, where Bt is the transpose of B.

(b) For a graph G with V(G) = {v1, v2, …, vn}, what does the (i, j)-entry of BBt represent in
G?

2.5 Exploration: Irregular Graphs

Recall that a graph G is regular if every two vertices of G have the same degree. We’ve already
discussed the existence of regular graphs. We now consider graphs that are opposite to regular graphs
and the existence of such graphs. A graph G of order at least 2 is irregular if every two vertices of G
have distinct degrees. Before proceeding further with this line of discussion, however, let us pause a
bit.

In the Fall 1988 issue (Volume 10, No. 4) of the magazine Mathematical Intelligencer, the British
mathematics educator and writer David Wells asked the readers to evaluate 24 theorems for their
beauty. Two years later (Volume 12, No. 3), he reported the results of the responses he received. The
theorem that finished first was

eiπ = −1.
There was a tie for second place:

Euler’s Polyhedral Formula: V − E + F = 2.
There are infinitely many primes.

We will visit Euler’s Polyhedral Formula later (expressed in a different form), as well as two
other theorems that made David Wells’ list, including a theorem that was one of six theorems that
tied for 15th place:

The Party Theorem At any party, there is a pair of people who have the same number of
friends present.

The so-called Party Theorem can be described in terms of graphs. Let G be a graph whose
vertices are the people present at the party. Join two vertices by an edge if the two vertices (people)
are friends. The number of friends that a person has at the party is then the degree of that vertex
(person) in G. According to the Party Theorem, there are always two vertices with the same degree.
This theorem can be restated using the terminology we introduced a short while ago.

Theorem 2.14 No nontrivial graph is irregular.



Proof. Assume, to the contrary, that there exists a graph G of order n ≥ 2 whose vertices have
distinct degrees. These degrees must be among the n integers 0, 1, 2, …, n −1. So G must have one
vertex of each such degree. Let u and v be the vertices of G such that deg u = 0 and deg v = n − 1.
Since deg u = 0, it follows that u is adjacent to no vertex of G, including v. On the other hand, since
deg v = n − 1, it follows that v is adjacent to all other vertices of G, including u. This is
impossible.

In view of Theorem 2.14, there appears to be little reason to discuss irregular graphs. There are
other options, however. Recall that we defined a nontrivial graph G to be irregular if every two
vertices of G have distinct degrees. But what if we were to redefine what we mean by degree?

Let F be a nontrivial graph. For a graph G and a vertex v of G, define the F-degree F deg v of v in
G as the number of copies (unlabeled subgraphs, induced or not, having the same structure) of F in G
that contain v. For example, for F = K3 and the graph G of Figure 2.20, the vertices of G are labeled
with their F-degrees.

Figure 2.20: Illustrating F-degrees in a graph G

Observe that if F = K2, then F deg v = deg v for every vertex v of a graph G. So the F-degree of a
vertex is a generalization of the ordinary degree of a vertex. Speaking of generalizations, we see that
the following theorem generalizes the First Theorem of Graph Theory (Theorem 2.1).

Theorem 2.15 Let F be a graph of order k ≥ 2 and let G be a graph. If G contains m copies of
the graph F, then

Proof. Equality (2.4) follows since every copy of F is counted k times, once for each of the k
vertices contained in this copy.

For example, the graph F = K3 of Figure 2.20 has order 3 and the sum of the F-degrees of the
vertices of G is 9, which implies that G contains three triangles.

Corollary 2.16 Let F be a graph of even order and let G be a graph. Then G has an even number
of vertices with odd F-degree.

Let F be a nontrivial graph. A graph G is F-regular if every two vertices of G have the same F-
degree, while G is F-irregular if every two vertices of G have distinct F-degrees. If F = K2, then F-



regularity and regularity are the same, as are F-irregularity and irregularity. So, for F = K2, there are
no nontrivial F-irregular graphs. For F = K3, the F-degrees of the vertices of two graphs G1 and G2
are shown in Figure 2.21. The graph G1 is F-regular but not regular, while the graph G2 is regular but
not F-regular.

Figure 2.21: F-degrees in the graphs G1 and G2

For F = P3, the vertices of the graph G of Figure 2.22 are also labeled with their F-degrees. The
six copies of P3 containing v are also shown in Figure 2.22. Observe that this nontrivial graph G is F-
irregular. The graph G of Figure 2.22 shows that even though there exists no K2-irregular graph, P3-
irregular graphs do exist. In fact, there is a conjecture on this topic.

Conjecture 2.17 Let F be a nontrivial connected graph. There exists an F-irregular graph if
and only if F ≠ K2.

Once again, recall that we defined a graph G to be irregular if every two vertices of G have
distinct degrees and showed that no nontrivial graph is irregular. We saw that if we redefined degree
in a new way, then irregular graphs do exist. But what if we define degree in the standard manner and
re-interpret what we mean by a graph, say we consider multigraphs instead? Since the multigraph

Figure 2.22: An F-irregular graph



Figure 2.23: An irregular multigraph

M of Figure 2.23 is irregular (its vertices are labeled with their degrees), we see that irregular
multigraphs exist.

Now that we know irregular multigraphs exist, what problems might be interesting to study? If M
is a multigraph and all parallel edges joining pairs of vertices of M are replaced by a single edge,
then the resulting graph G is called the underlying graph of M. Consider the graph G = K3 of Figure
2.24, which is the underlying graph of the multigraph M of Figure 2.23. Of course, G is not irregular.
In view of the multigraph M of Figure 2.23, we see that it’s possible to replace one or more edges of
some graph by parallel edges to produce an irregular multigraph. Which graphs have this property?
That is, which graphs are the underlying graphs of irregular multigraphs? Before attempting to answer
this question, we note that we can represent the multigraph M of Figure 2.23 in the simpler manner
shown in Figure 2.24, where each edge of G is assigned a positive integer that represents the number
of parallel edges joining a particular pair of vertices in the multigraph. This is referred to as a
weighted graph. Irregular multigraphs can therefore be referred to as irregular weighted graphs.

Figure 2.24: A graph, a multigraph and a weighted graph

Among the nontrivial connected graphs, K2 is the only graph that is not the underlying graph of an
irregular weighted graph.

Theorem 2.18 Let G be a connected graph of order 2 or more. Then G is the underlying graph
of an irregular multigraph (weighted graph) if and only if G ≠ K2.

Exercises for Section 2.5

2.42 For F = K4, give an example of two graphs H1 and H2 such that H1 is F-regular but not regular,
while H2 is regular but not F-regular.

2.43 Give an example of a connected graph F and a connected graph G such that G is regular and G
contains vertices u and v such that F deg u − F deg v ≥ 2.

2.44 For F = P3, give an example of an F-irregular graph of order 7 or more.



2.45 Investigate F-degrees for a disconnected graph F of your choosing.

2.46 Find an irregular multigraph whose underlying graph is

(a) P3, (b) P4, (c) C4, (d) C5, (e) K4.

2.47 (a) Find an irregular multigraph (weighted graph) whose underlying graph is C4 such that the
sum s of the weights of its edges is minimum.

(b) For the integer s in (a), investigate the following question: For which integers s′ > s is
there an irregular weighted graph whose underlying graph is C4 and such that the sum of
the weights of its edges is s′?

2.48 Prove Theorem 2.18.

2.49 For a given graph G, color each edge of G either red or blue. A vertex v of the colored graph G
has degree (a, b) if v is incident with a red edges and b blue edges. Define a graph G to be 2-
color irregular if there exists a red-blue coloring of the edges of G such that no two vertices of
G have the same degree. Is the graph H of Figure 2.25 2-color irregular?

Figure 2.25: The graph in Exercise 2.49



Chapter 3

Isomorphic Graphs

3.1 The Definition of Isomorphism

Recall that two graphs G and H are equal if V(G) = V(H) and E(G) = E(H). We have called two
graphs G and H “isomorphic” if they have the same structure and have written G ≅ H to indicate this.
That is, G ≅ H if the vertices of G and H can be labeled (or relabeled) to produce two equal graphs.
We now make all of this more precise.

Suppose that you are asked to give an example of three graphs having order 5 and size 5. Would
the three graphs H1, H2 and H3 given in Figure 3.1 be an acceptable answer to this question?

Figure 3.1: Graph(s) of order 5 and size 5

By repositioning the vertices of H2, we have redrawn H2 as in Figure 3.2. Similarly, we can
redraw H3 as in Figure 3.2.

It should now be clear that the graphs of Figure 3.1 differ only in the way they are labeled and in
the way they are drawn, that is, they have the same structure. In a certain sense then, we have only
given an example of one graph of order 5 and size 5. That is, the graphs of Figure 3.1 are simply
disguised forms of the same graph, namely, the 5-cycle C5. For example, the redrawing of H2 shown
in Figure 3.2 suggests that (1) u2 in H2 is playing the role of u1 in H1, (2) w2 is playing the role of v1,
(3) y2 is playing the role of w1, (4) v2

Figure 3.2: A graph of order 5 and size 5



is playing the role of x1 and (5) x2 is playing the role of y1. The manner in which the vertices of H2
correspond to the vertices of H1 is not unique, however. Two other drawings of H2 shown in Figure
3.3 suggest that there are other correspondences between the vertices of H1 and the vertices of H2.
Indeed, there are several such correspondences.

Figure 3.3: Other drawings of the graph H2

As we have said, when two graphs differ only in the way they’re drawn and/or labeled, then they
are said to be isomorphic. Formally, two (labeled) graphs G and H are isomorphic (have the same
structure) if there exists a one-to-one correspondence  from V(G) to V(H) such that uv ∈ E(G) if
and only if (u) (v) ∈ E(H). In this case,  is called an isomorphism from G to H. Thus, if G and H
are isomorphic graphs, then we say that G is isomorphic to H and we write G ≅ H. If G and H are
unlabeled, then they are isomorphic if, under any labeling of their vertices, they are isomorphic as
labeled graphs. If two graphs G and H are not isomorphic, then they are called non-isomorphic
graphs and we write G  H.

As is implied by the redrawing of the graph H2 in Figure 3.2, the function  : V(H1) → V(H2)
defined by

is an isomorphism and so H1 ≅ H2. Intuitively then, two graphs are isomorphic if it is possible to
redraw one of them so that the two diagrams are the same. This highly informal interpretation of
isomorphism, although often suitable, is not satisfactory in all cases and so it may be necessary to rely
on the formal definition. In this context then, we consider two graphs to be the “same” graph if they
are isomorphic and to be “different” if they are not isomorphic. From this point of view, there is only
one graph of order 1, two graphs of order 2 and four graphs of order 3. There are eleven (non-
isomorphic) graphs of order 4 and these are shown in Figure 3.4.

Figure 3.4: The eleven graphs of order 4

Let’s look at the definition of isomorphism more closely. First, in order for two graphs G1 and G2



to be isomorphic, there must be a one-to-one correspondence from the vertex set of G1 to the vertex
set of G2. This means that it must be possible to pair off the vertices of G1 with the vertices of G2.
Therefore, |V(G1)| = |V(G2)| and so G1 and G2 have the same order. It is certainly not surprising that
we would want two graphs to be of the same order if we want to consider them to be the same graph.

Continuing to analyze the definition of isomorphic graphs, we see that not only must there be a
one-to-one correspondence from V(G1) to V(G2) but two vertices u1 and v1 of G1 are adjacent in G1 if
and only if the corresponding vertices (u1) and (u2) are adjacent in G2. So adjacent vertices in G1
are mapped to adjacent vertices in G2, while nonadjacent vertices in G1 are mapped to nonadjacent
vertices in G2. This implies that for G1 and G2 to be isomorphic, they must have the same size – again
not a particularly surprising piece of information.

Hence if two graphs are isomorphic, then they must have the same order and the same size. The
contrapositive of this statement says that if two graphs have different orders or different sizes, then
they are not isomorphic. For example, even though the graphs F′ and F″ of Figure 3.5 have the same
size 6, they are not isomorphic because their orders are different. Also, the graphs H′ and H″ of
Figure 3.5 have the same order 6 but cannot be isomorphic since their sizes are different.

Figure 3.5: Non-isomorphic graphs

On the other hand, if two graphs have the same order and the same size, then there is no guarantee
that the graphs are isomorphic. For example, the graphs G1 and G2 of Figure 3.6 have order 6 and size
6, yet they are not isomorphic. In order to see this, assume, to the contrary, that they are isomorphic.
Then there exists an isomorphism : V(G1) → V(G2). Hence there are three vertices of G1 that map
into u2, v2 and z2 of G2. Since u2, v2 and z2 are pairwise adjacent and form a triangle, so too are the
vertices of G1 that map into these three vertices of G2. However, G1 doesn’t contain a triangle and so
a contradiction is produced.

Figure 3.6: Two non-isomorphic graphs

Let’s revisit the definition of isomorphism yet again. Two graphs G and H are isomorphic if there
exists a one-to-one correspondence  from V(G) to V(H) such that every two adjacent vertices of G
are mapped to adjacent vertices of H and every two nonadjacent vertices of G are mapped to
nonadjacent vertices of H. Recall that a function  with these properties is an isomorphism.



However, since  and , the same function  also maps
adjacent vertices of  to adjacent vertices of  and nonadjacent vertices of  to nonadjacent
vertices of . This observation provides us with the following theorem.

Theorem 3.1 Two graphs G and H are isomorphic if and only if their complements   and  are
isomorphic.

Let’s consider the two graphs H1 and H2 shown in Figure 3.7. Both graphs have order 6 and size
9; so H1 and_H2 might be isomorphic but we don’t know this for sure. Since 1 = G1 and 2 = G2
(where G1 and G2 are the graphs shown in Figure 3.6) and G1 and G2 are not isomorphic, it follows
by Theorem 3.1 that H1 and H2 are also not isomorphic. It is possible to see that H1 and H2 are not
isomorphic without the aid of Theorem 3.1, however. Assume, to the contrary, that H1 and H2 are
isomorphic. Then there exists an isomorphism : V(H1) → V(H2). The vertices v1, x1 and z1 are
mutually adjacent in H1 and form a triangle and so (v1) , (x1) and (z1) form a triangle in H2.
However, H2 contains no triangle and a contradiction is produced.

Figure 3.7: Two graphs H1 and H2

A graph and its complement may, in fact, be isomorphic. A graph G is self-complementary if G ≅ 
. Of course, this can only occur if G and  have the same size, namely . In order

for  to be an integer, either 4 | n or 4 | (n − 1), that is, either n ≡ 0 (mod 4) or n ≡ 1 (mod 4).
Figure 3.8 shows four self-complementary graphs.

Figure 3.8: Self-complementary graphs

Not only are the orders the same and the sizes the same of two isomorphic graphs, so too are the
degrees of their vertices.

Theorem 3.2 If G and H are isomorphic graphs, then the degrees of the vertices of G are the
same as the degrees of the vertices of H.

Proof. Since G and H are isomorphic, there is an isomorphism  : V(G) → V(H). Let u be a vertex



of G and suppose that (u) = v, where v therefore belongs to H. We show that degG u = degH v.
Suppose that u is adjacent to x1, x2, …, xk in G and not adjacent to w1, w2, …, wl. Thus |V(G)| = k +
l + 1. Then (u) = v is adjacent to (x1), (x2), …, (xk) in H and not adjacent to (w1) , (w2),
…, (wl). Therefore, degH v = k = degG u.

Theorem 3.2 not only tells us that two isomorphic graphs G and H have the same degree sequence
but the proof of this theorem also says that if  is an isomorphism from V(G) to V(H) and u is a vertex
of G, then degG u = degH (u), that is, under an isomorphism a vertex can only map into a vertex
having the same degree.

So now we know that if G and H are isomorphic graphs, then their orders are the same, their sizes
are the same and the degrees of their vertices are the same. On the other hand, if the degrees of their
vertices are the same, then their orders must be the same and their sizes must also be the same. As
with the order and size, two graphs having the same degree sequences is only a necessary condition,
not a sufficient condition, for two graphs to be isomorphic. For example, the degree sequences of the
non-isomorphic graphs G1 and G2 of Figure 3.6 are both 2, 2, 2, 2, 2, 2; while the degree sequences
of the non-isomorphic graphs of Figure 3.7 are both 3, 3, 3, 3, 3, 3.

Therefore, the challenge for determining whether two graphs are isomorphic is when the two
graphs have the same degree sequence. Let’s consider some examples of this.

Example 3.3 Determine whether the graphs F1 and F2 of Figure 3.9 are isomorphic.

Figure 3.9: The two graphs in Example 3.3

Solution. Since both F1 and F2 have the degree sequence 4, 3, 3, 2, 1, 1, they may be isomorphic.
But they are not. Assume, to the contrary, that F1 ≅ F2. Then there exists an isomorphism : V(F1)
→ V(F2). The vertex x1 is the only vertex of F1 having degree 4. Thus (x1) has degree 4 in F2.
Since x2 is the only vertex of F2 having degree 4, it follows that (x1) = x2. Since both v1 and z1 are
adjacent to x1 in F1, both (v1) and (z1) are adjacent to (x1) = x2 in F2. Because 

, it is also the case that . But
this says that x2 is adjacent to two end-vertices in F2, which is not the case. This is a contradiction.

The argument just given to show that the graphs F1 and F2 of Figure 3.9 are not isomorphic can be
simplified. The vertex of degree 4 in F1 is adjacent to two end-vertices; while the vertex of degree 4
in F2 is not. Therefore, F1 and F2 are not isomorphic.



Indeed, let G1 and G2 be two graphs. We might as well assume that G1 and G2 have the same
degree sequence; otherwise, we know immediately that G1  G2. If G1 has some property that
doesn’t depend on how G1 is drawn or how G1 is labeled and G2 does not have this property, then G1
= G2. For example, if G1 contains two vertices of degree 3 that are mutually adjacent to a vertex of
degree 2 and G2 does not, then G1 = G2. If G1 contains two triangles that have a common vertex and
G2 doesn’t, then G1  G2. If G1 contains eight triangles and G2 contains only seven triangles, then G1 

 G2. This last statement brings up an important point, however. If the explanation that was given as
to why two graphs are not isomorphic is that one has eight triangles and the other has seven triangles,
then this is probably not convincing since it may not be clear that all triangles in both graphs have
been accounted for. It would be preferable to locate a property that is easier to justify (assuming that
the two graphs are in fact not isomorphic).

Example 3.4 Determine whether the graphs H1 and H2 of Figure 3.10 are isomorphic.

Figure 3.10: The two graphs in Example 3.4

Solution. First, observe that H1 and H2 have the degree sequence 4, 3, 3, 2, 2, 2. Hence further
consideration is needed. Because these two graphs do not “appear” to be isomorphic, we seek
some structural difference. Observe that H1 contains two adjacent vertices of degree 2 (namely y1
and z1), while H2 does not. Thus H1  H2.

What we are observing is that if G and H are isomorphic graphs, : V(G) → V(H) is an
isomorphism and the vertex u of G is mapped by  to the vertex v of H, then any property that u has in
G must be a property that v has in H provided this property doesn’t depend on how the graphs are
drawn or labeled. More generally, any structural property of G must also be possessed by H. For
example,

(1) if G contains a k-cycle for some integer k ≥ 3, then so does H and
(2) if G contains a u − v path of length k, then H contains a (u) − (v) path of length k.

These remarks give the following theorem.

Theorem 3.5 Let G and H be isomorphic graphs. Then

(a) G is bipartite if and only if H is bipartite and
(b) G is connected if and only if H is connected.



As expected, two digraphs D1 and D2 are isomorphic if there exists a one-to-one correspondence 
: V(D1) → V(D2) such that (u1, v1) ∈ E(D1) if and only if ( (u1), (v1)) ∈ E(D2). Digraphs will be

studied in detail in Chapter 7.

Exercises for Section 3.1

3.1 Give an example of three different (non-isomorphic) graphs of order 5 and size 5.

3.2 Give an example of three graphs of the same order, same size and same degree sequence such
that no two of these graphs are isomorphic.

3.3 For each of the pairs G1, G2 of graphs in Figures 3.11(a) and 3.11(b), determine (with careful
explanation) whether G1 and G2 are isomorphic.

Figure 3.11: The graphs in Exercise 3.3

3.4 Which pairs of graphs in Figure 3.12 are isomorphic? Explain your answer.

Figure 3.12: The graphs in Exercise 3.4

3.5 Let G1 and G2 be two graphs with V(G1) = {u1, v1, w1, x1, y1, z1} and V(G2) = {u2, v2, w2, x2, y2,
z2}. If v1 has degree 3 and is adjacent to a vertex of degree 2, while v2 has degree 3 and is not
adjacent to a vertex of degree 2, can we conclude that G1  G2 Explain your answer.

3.6 Let G1 and G2 be two graphs having the same degree sequence. If G1 contains a vertex of degree
2 that is adjacent to a vertex of degree 3 and a vertex of degree 4, while G2 contains a vertex of
degree 2 that is adjacent to two vertices of degree 3, can we conclude that G1  G2 Explain
your answer.

3.7 Is the solution of the following problem correct?

Problem: Determine whether the graphs G1 and G2 of Figure 3.13 are isomorphic.



Figure 3.13: The two graphs in Exercise 3.7

Solution. The graph G1 has a 5-cycle C. Two vertices of C are connected by a path of length 2,
lying inside C. The graph G2 does not contain such a 5-cycle, however. Therefore, G1  G2.

3.8 Which pairs of graphs in Figure 3.14 are isomorphic? Explain your answer.

3.9 Determine whether the graphs G1 and G2 of Figure 3.15 are isomorphic. Explain your answer.

Figure 3.14: Graphs in Exercise 3.8

Figure 3.15: Two graphs in Exercise 3.9

3.10 Does there exist a disconnected self-complementary graph?

3.11 Let G be a self-complementary graph of order n = 4k, where k ≥ 1. Let U = {v : deg v ≤ n/2}
and W = {v : deg v ≥ n/2}. Prove that if |U| = |W|, then G contains no vertex v such that deg v =
n/2.

3.12 Let G and H be two self-complementary graphs with disjoint vertex sets, where H has even
order n. Let F be the graph obtained from G ∪ H by joining each vertex of G to every vertex of
degree less than n/2 in H. Show that F is self-complementary.

3.13 Suppose that there exist two connected graphs G and H and a one-to-one function  from V(G)
onto V(H) such that dG(u, v) = dH( (u), (v)) for every two vertices u and v of G. Prove or
disprove: G and H are isomorphic.

3.14 Prove or disprove: Let G and H be two connected graphs of order n, where V(G) = {v1, v2, …,
vn}. If there exists a one-to-one correspondence : V(G) → V(H) such that dG(vi, vi + 1) = dH(
(vi), (vi + 1)) for all i (1 ≤ i ≤ n − 1), then G ≅ H.

3.15 Prove or disprove: Let G and H be two connected graphs. If there exists a one-to-one
correspondence : V(G) → V(H) and two distinct vertices u, v ∈ V(G) such that dG(u, v) ≠
dH( (u), (v)), then G  H.

3.2 Isomorphism as a Relation



Let us state once again that a graph G1 is isomorphic to a graph G2 if there exists an isomorphism  :
V(G1) → V(G2). Isomorphism therefore produces a relation on any set of graphs, namely, a graph G1
is related to a graph G2 if G1 is isomorphic to G2. This relation is an equivalence relation. This says
that isomorphism is reflexive (every graph is isomorphic to itself), isomorphism is symmetric (if G1
is isomorphic to G2, then G2 is isomorphic to G1) and isomorphism is transitive (if G1 is isomorphic
to G2 and G2 is isomorphic to G3, then G1 is isomorphic to G3).

The proof that isomorphism is an equivalence relation relies on three fundamental properties of
bijective functions (functions that are one-to-one and onto): (1) every identity function is bijective,
(2) the inverse of every bijective function is also bijective, (3) the composition of two bijective
functions is bijective. (See Appendix 2 for a review of these terms and facts.)

Theorem 3.6 Isomorphism is an equivalence relation on the set of all graphs.

Proof. First, we show that isomorphism is reflexive, that is, every graph is isomorphic to itself. Let
G be a graph and consider the identity function : V(G) → V(G) defined by (v) = v for each vertex
v of G. Thus  is bijective. Certainly, two vertices u and v of G are adjacent if and only if (u) = u
and (v) = v are adjacent. Therefore,  is an isomorphism and so G is isomorphic to G.

Next, we show that isomorphism is symmetric. Let G1 and G2 be graphs and assume that G1 is
isomorphic to G2. Therefore, there exists an isomorphism : V(G1) → V(G2). Since  is a bijective
function, its inverse −1: V(G2) → V(G1) exists and is a bijective function. Let u2 and v2 be any two
vertices in G2 and suppose that −1(u2) = u1 and −1(v2) = v1. Hence (u1) = u2 and (v1) = v2. If u2
a nd v2 are adjacent vertices in G2, then u1 and v1 are adjacent vertices in G1 since  is an
isomorphism. On the other hand, if u2 and v2 are not adjacent, then u1 and v1 are not adjacent.
Therefore, u2 and v2 are adjacent in G2 if and only if −1 (u2) and −1(v2) are adjacent in G1. Hence 
−1 is an isomorphism and so G2 is isomorphic to G1.

Finally, we show that isomorphism is transitive. For graphs G1, G2 and G3, assume that G1 is
isomorphic to G2 and G2 is isomorphic to G3. Hence there exist isomorphisms : V(G1) → V(G2) and
: V(G2) → V(G3). Consider the composition   : V(G1) → V(G3). Since  and  are bijective, so

is   . Since  is an isomorphism, vertices u1 and v1 of G1 are adjacent if and only if (u1) and 
(v1) are adjacent in G2. Because  is an isomorphism, (u1) and ( 1) are adjacent in G2 if and only
if ( (u1)) and ( (v1)) are adjacent in G3. Therefore, u1 and v1 are adjacent in G1 if and only if (   

)(u1) and (   )(v1) are adjacent in G3 and so    is an isomorphism. Hence G1 is isomorphic to
G3.

One of the major consequences of knowing that isomorphism is an equivalence relation on a set of
graphs is that this produces a partition of this set into equivalence classes (subsets) which are
isomorphism classes here. Every two graphs in the same isomorphism class are isomorphic and
every two graphs in different isomorphism classes are not isomorphic.

Suppose that we are asked for all graphs with degree sequence s: 2, 2, 2, 2, 2, 2, 2, 2, 2. What we
are clearly seeking here are non-isomorphic graphs. The answer to this question is given in Figure
3.16. (There are four such graphs!)



Figure 3.16: All graphs with degree sequence s: 2, 2, 2, 2, 2, 2, 2, 2, 2

Consider the graphs H and G of Figure 3.17. We defined a graph H to be a subgraph of a graph G,
written H ⊆ G, if V(H) ⊆ V(G) and E(H) ⊆ E(G). This, in fact, is the definition if the graphs H and
G are labeled (that is, if the vertex sets of H and G have been specified). The graphs H and G of
Figure 3.17 are not labeled, however. For unlabeled graphs H and G, we say that H is isomorphic to
a subgraph of G if for any labeling of the vertices of H and G, the labeled graph H is isomorphic to a
subgraph of the labeled graph G. Consequently, for the graphs H and G of Figure 3.17, H is
isomorphic to a subgraph of G.

Figure 3.17: A subgraph H of a graph G

Exercises for Section 3.2

3.16 How many (non-isomorphic) graphs have the degree sequence s: 6, 6, 6, 6, 6, 6, 6, 6, 6?

3.17 Consider the (unlabeled) graphs H1, H2, H3 and G of Figure 3.18.

(a) Is H1 isomorphic to a subgraph of G?

(b) Is H2 isomorphic to a subgraph of G?

(c) Is H3 isomorphic to a subgraph of G?

Figure 3.18: Graphs in Exercise 3.17

3.18 Does there exist a graph with exactly three components, exactly two of which are not
isomorphic?

3.19 We are given a collection of n graphs G1, G2, …, Gn, some pairs of which are isomorphic and
some pairs of which are not. Show that there is an even number of these graphs that are
isomorphic to an odd number of graphs. [Hint: Construct a graph G with V(G) = {v1, v2, …,
vn}, where vivj ∈ E(G) if and only if Gi is isomorphic to Gj.]



3.3 Excursion: Graphs and Groups

While it may be quite difficult to determine that two isomorphic graphs G1 and G2 are in fact
isomorphic if G1 and G2 are drawn differently or labeled differently, there is no difficulty in showing
that G1 and G2 are isomorphic if they are drawn and labeled identically. In this case, we then have a
single graph, say G and surely the identity function : V(G) → V(G), where (v) = v for all v ∈ V(G),
is an isomorphism. Consequently, for the graph H of Figure 3.19, the function 1: V(H) → V(H)
defined by 1(v) = v for every vertex v of H is an isomorphism.

Figure 3.19: A graph H

There are other isomorphisms from the graph H of Figure 3.19 to itself, however. For example, the
function 2: V(H) → V(H) defined by

is an isomorphism as well. There are two other isomorphisms from the graph H to itself, namely 3
and 4, defined by

and

An isomorphism from a graph G to itself is called an automorphism of G. Since composition is
associative, the identity function is an automorphism, the inverse of an automorphism is an
automorphism and the composition of two automorphisms is an automorphism, it follows that the set
of all automorphisms of a graph G forms a group under the operation of composition. This group is
denoted by Aut(G) and is called the automorphism group of G. For example, for the graph H of
Figure 3.19, Aut(H) = { 1, 2, 3, 4}.

Since every automorphism of a graph is a permutation on V(G), automorphisms can be expressed,
more simply, in terms of permutation cycles. (See Appendix 2 for a review of permutations.) For the
graph H of Figure 3.19, the elements of Aut(H) can be expressed as

For example, expressing 4 as the “product” of the permutation cycles (v1 v2) and (v5 v6) means that
(1) 4 maps v1 into v2 and v2 into v1, (2) 4 maps v5 into v6 and v6 into v5 and (3) 4 fixes all other



vertices of H (that is, 4 maps any other vertex of H into itself).
The group table for the automorphism group of the graph H of Figure 3.19 is shown in Figure 3.20.

The reason for the entry 2 in row 4, column 3 of the group table is because the “product” of 4 and 
3 is 2. That is, since

it follows that 4 3 = 2. However, this can be seen more easily when the automorphisms are
expressed in terms of permutation cycles. Since

we can see, reading from right to left, that (1) v1 is mapped into v2 by 4 3 and v2 is mapped into v1
by 4 3, (2) both v3 and v4 are fixed by 4 3 and (3) v5 is mapped into v6 by 3 and v6 is mapped
into v5 by 4, resulting in v5 being fixed by 4 3. Similarly, (4) v6 is fixed by 4 3. That is,

Figure 3.20: The group table for Aut(H)

As another illustration of an automorphism group, consider the graph F of Figure 3.21. The
elements of Aut(F) and the group table are given in that figure as well. For example, the
automorphism 5 maps u to v, maps v to w and maps w to u, leaving all other vertices fixed. If we
write  for 5, then 2 =  = 6. Furthermore, if we write  for 2, then 3 = 5 2 =  and 4 = .
Consequently, each of the elements of Aut(F) can be expressed in terms of  and , namely,

Because of this property,  and  are generators for the group Aut(F) and { , } is a generating set
for this group.



Figure 3.21: The graph F and the group table for Aut(F)

For a vertex v of a graph G, the set of all vertices into which v can be mapped by some
automorphism of G is an orbit of G. In fact, if a relation R is defined on V(G) by x R y if (x) = y for
some  ∈ Aut(G), then R is an equivalence relation on V(G). The distinct equivalence classes
resulting from this relation are the orbits of G. Two vertices u and v are similar if they belong to the
same orbit. For the graph H of Figure 3.20, there are four orbits, namely, {v1, v2}, {v3}, {v4} and {v5,
v6}; while for the graph F of Figure 3.21, there are also four orbits: {u, v, w}, {x}, {y}, {z}. There
can be great advantages to knowing the orbits of a graph G. If it is useful to have some structural
information about each vertex of G, then it may not be necessary to consider all vertices of G because
of the similarity of certain vertices. In such a case, we need only consider one vertex from each orbit
as a representative of the orbit. If a graph G of order n has n distinct orbits, then Aut(G) consists of a
single automorphism, namely, the identity automorphism. The graph G of Figure 3.22 is one such
graph.

Figure 3.22: A graph of order 7 with seven distinct orbits

On the other hand, if a graph G contains a single orbit, then every two vertices of G are similar
a nd G is called vertex-transitive. The graph G1 of Figure 3.23 is vertex-transitive. Since an
automorphism can only map a vertex into a vertex of the same degree, every vertex-transitive graph is
regular. The converse is not true, however. For example, the 3-regular graph G2 of Figure 3.23 is not
vertex-transitive since, for example, u belongs to a triangle of G2 (in fact, two triangles), while w
belongs to no triangle of G2. Therefore, no automorphism of G2 maps u into w. Among the well-
known vertex-transitive graphs are the complete graphs, the cycles, the complete bipartite graphs Ks, s
and the Petersen graph.



Figure 3.23: A vertex-transitive graph and a regular graph that is not vertex-transitive

A few fundamental ideas from group theory are useful to review, beginning with the definition of a
group itself. A group is a nonempty set A (finite or infinite) together with an associative binary
operation  on A containing an identity element e (necessarily unique) such that e  a = a  e = a for
every element a ∈ A and having the added property that for every element a ∈ A, there exists an
inverse element b (necessarily unique) in A with b  a = a  b = e. Such a group is often denoted by
(A, ). Because the operation  is associative, (x  y)  z = x  (y  z) for all x, y, z ∈ A. If a  b = b 

 a for all a, b ∈ A, then (A, ) is an abelian group. The group Aut(H) for the graph H of Figure 3.20
is abelian, while Aut(F) is a nonabelian group for the graph F of Figure 3.21. (If the main topic of this
text had been group theory, then G would have been used to denote a group. However, graphs have
the priority here!)

If (A, ) is a group and B is a subset of A such that (B, ) is a group, then (B, ) is called is a
subgroup of A. Two groups (A, ) and (B, *) are isomorphic if there exists a bijective function : A
→ B such that (x  y) = (x) * (y) for all x, y ∈ A. It is often common to refer to the operation 
on a group (A, ) as multiplication and write a  b as ab instead. In this case, we commonly denote
the group by A, with the operation understood.

A common type of group to consider is a group of permutations, where the operation is
composition. In fact, a well-known theorem of Arthur Cayley states that every group is isomorphic to
a group of permutations. As we have mentioned, the automorphism group of a graph is a permutation
group. The group of all permutations on a set of cardinality n is called the symmetric group Sn and
its order is n!. The automorphism group of a graph G of order n is a group of permutations on the
vertex set V(G), that is, the automorphism group of a graph G of order n is a subgroup of Sn. By a
theorem of Joseph-Louis Lagrange, the order of Aut(G) divides n! (the order of Sn).

Since the automorphism group of every graph has finite order, we will only be interested in finite
groups. If a group of order n has a single generator, then the group is cyclic of order n. Neither
Aut(H) nor Aut(F) for the graphs H and F of Figures 3.20 and 3.21, respectively, are cyclic. In
particular, Aut(H) is the so-called Klein four group (named for Felix Klein), while Aut(F) is the
symmetric group S3 of order 6. There is another interesting class of groups that appears often in group
theory. First, we consider a member of this class.

Example 3.7 Determine Aut(C5).

Solution. Let G = C5, where the vertices of G are labeled as in Figure 3.24.

Figure 3.24: The graph G of Example 3.7

One of the automorphisms of G is  = (v1 v2 v3 v4 v5), which can be thought of as a “rotation” of



G. Another automorphism of G is 1 = (v2 v5)(v3 v4), which can be thought of as a “reflection” of G.
The automorphism group of G consists of the identity , the four rotations

and the five reflections

Letting  = 1, we see in the group table of Aut(G) shown in Figure 3.25 that  and  are generators
since

In general, the automorphism group of the cycle Cn has order 2n. This group is called a dihedral
group and is commonly denoted by Dn. Thus the dihedral group D5 has order 10 and its group table is
shown in Figure 3.25. Furthermore, D3 = S3.

A finite group A can have, indeed may require, a large generating set, although it is customary not
to include the identity element of A as a generator. There is a digraph that one commonly associates
with a group A = {a1, a2, …, an} and a generating set Δ for A. The Cayley color digraph DΔ(A),
named for the famous mathematician Arthur Cayley, has A as its vertex set where (ai, aj), i ≠ j, is an
arc of DΔ(A) if aj = aib for some generator b ∈ Δ. Furthermore, we label (or color) this arc by b.
Consequently, every vertex ai of DΔ(A) is adjacent to the vertex aib for each b ∈ Δ. In addition,
every

Figure 3.25: The group table of Aut(G) in Example 3.7

vertex aj of DΔ(A) is adjacent from the vertex ajb−1 for each b ∈ Δ. That is, the outdegree and the
indegree of every vertex of DΔ(A) is |Δ|. We now consider some examples of Cayley color
digraphs.



Example 3.8 For the Klein four group A = {a1, a2, a3, a4}, whose group table is given in Figure
3.26, the Cayley color digraph is shown in the same figure for the generating set Δ = {a2, a4}.

Figure 3.26: The group table and the Cayley color digraph in Example 3.8

Example 3.9 For the cyclic group A = {e, a, a2, a3} whose group table is given in Figure 3.27,
the Cayley color digraphs are shown in the same figure for the two generating sets Δ1 = {a} and
Δ2 = {a, a2}.

Just as every graph has an automorphism group, so too does every digraph. In the case of a Cayley
color digraph D, those automorphisms  of D that preserve colors (that is, such that the arcs (u, v)
and ( u, v) have the same color (generator) for every arc (u, v) of D) form a subgroup of the
automorphism group of the digraph D (whose arcs are not colored).

The topic of automorphism groups of graphs appeared in the first book on graph theory, in fact,
early in the book. On page 5 of the first section (The Basic Concepts) of the first chapter
(Foundations) of his 1936 book, Dénes König posed the following question (translated from
German):

Figure 3.27: The group table and Cayley color digraphs in Example 3.9

When can a given abstract group be interpreted as the group of a graph and if this is the
case, how can the corresponding graph be constructed?

In the early 1900s, Germany was known for its mathematicians who excelled in group theory. One
of the best known was Ferdinand Georg Frobenius (1849-1917), who made numerous important
contributions to several areas of mathematics, but especially to group theory. One of Frobenius’
doctoral students was Issai Schur (1875-1941), who died on his 66th birthday (January 10).

Schur, a gifted mathematician, became well known for his work in groups, particularly on
representation theory, although Schur did research in many areas of mathematics. Indeed, through



Schur’s efforts, Berlin became known for the study of groups. Schur was very popular with students;
often his lectures at the University of Berlin were given to overflow audiences. However, beginning
in 1933, events in Germany made life very difficult for Schur, who was Jewish. In 1935 Schur was
dismissed from his position at the university and the remainder of his life was often unbearable.

While at the University of Berlin, Schur supervised several doctoral students, including Richard
Rado, whom we will meet in Chapter 11, Richard Brauer (1901-1977), well known for his work in
algebra and number theory and Helmut Wielandt (1910-2001), who made major contributions to the
study of permutation groups and linear algebra. Another of Schur’s students was Roberto Frucht
(1906-1997).

Roberto Frucht entered the University of Berlin in 1924 at the age of 18. Although Frucht’s
favorite mathematical area was tensor calculus, he could not find a doctoral advisor in that area.
Being an admirer of Schur, Frucht asked him if he would agree to be his advisor and Schur agreed –
provided Frucht would write his thesis in an area of interest to Schur. Consequently, Frucht switched
to group theory and received his Ph.D. in 1930.

At that time, Frucht’s father lost his job and earning a living became a top priority for Frucht.
Finding a job as a mathematician in Germany was difficult during that period, except as a high school
teacher. However, German citizenship was required for that and Frucht was a Czechoslovakian
citizen. Consequently, Frucht moved to Trieste, Italy to work at an Italian insurance company. Frucht
stayed in Italy until 1938. During that period, his life was relatively inactive, mathematically
speaking. However, one day in 1936 he received a catalog from Akademische Verlagsgesellschaft
advertising a book in graph theory (by Dénes König). Frucht immediately ordered the book and he
became an enthusiastic graph theorist the very day that the book arrived.

König’s question on automorphism groups attracted the attention of Frucht immediately. After
being unsuccessful for several months trying to solve the problem, he found a solution that seemed
rather easy (after he had found it). In 1939 Frucht escaped from Italy to South America shortly before
the outbreak of World War II. After working as an actuary in Argentina for a while, he was successful
in acquiring a position at the Universidad Santa Maria in Valparaiso, Chile. He continued his interest
in graph theory and remained in Chile the rest of his life.

Theorem 3.10 (Frucht’s Theorem) For every finite group A, there exists a graph G such that
Aut(G) is isomorphic to A.

To prove Theorem 3.10, Frucht used his result that for every finite abstract group A, the group of
color-preserving automorphisms of the Cayley color digraph DΔ(A) is isomorphic to A. The next step
for Frucht was to convert DΔ(A) into a graph G so that the automorphisms of G correspond to the
color-preserving automorphisms of DΔ(A) in an appropriate manner.

Although this can be accomplished in a number of ways, one way is to replace each arc (u, v)
labeled b1 ∈ Δ in DΔ(A) by a path (u, u1, v1, v) where u1 and v1 are new vertices and place a pendant
edge at u1 and attach a path of length 2 at v1. If there is another generator, say b2, then replace any arc
(u, v) labeled b2 in DΔ(A) by a path (u, u2, v2, v) and attach a path of length 3 at u2 and a path of length
4 at v2. This procedure is continued if there are additional generators. See Figure 3.28.



Figure 3.28: Constructing a graph G from DΔ(A)

For example, consider the Cayley color digraph DΔ(A) in Example 3.8, which is redrawn in
Figure 3.29. The associated graph G is also shown in that figure, where b1 = a2 and b2 = a4. By
Frucht’s theorem, Aut(G) is isomorphic to A (the Klein four group).

Figure 3.29: Constructing a graph G from DΔ(A)

Exercises for Section 3.3

3.20 For the graph H of Figure 3.19, give an example of a permutation on V(H) that preserves
degrees but which is not an automorphism of H.

3.21 Determine the automorphism group of K3.

3.22 Determine the automorphism group of K1, 3.

3.23 Determine the automorphism group of Pn for n ≥ 2.

3.24 Determine the automorphism group of C4.

3.25 For each of the graphs H1 and H2 in Figure 3.30, determine

(a) the orbits of the graph.
(b) the automorphism group of the graph.



Figure 3.30: The graphs in Exercise 3.25

3.26 For the graph G2 in Figure 3.23, determine

(a) the orbits of G2.

(b) the automorphism group of G2.

3.27 Prove that Aut(G) and Aut( ) are isomorphic for every graph G.

3.28 For the group A = {e, a, b} whose group table is given in Figure 3.31,

(a) find a generating set Δ and the corresponding Cayley color digraph.
(b) use the Cayley color digraph in (a) to construct a graph G such that Aut(G) ≅ A.

Figure 3.31: The group table in Exercise 3.28

(c) find a graph H of order 12 such that Aut(H) ≅ A.

3.29 Consider the group A = {e, a, b, c} whose group table is given in Figure 3.32, where a2 = b2 =
c2 = e.

(a) For Δ = {a, b}, find the corresponding Cayley color digraph.
(b) Use the Cayley color digraph in (a) to construct a graph G such that Aut(G) ≅ A.

Figure 3.32: The group table in Exercise 3.29

3.30 Consider the group A = {e, a, b, c, d} whose group table is given in Figure 3.33.

(a) For Δ = {a}, find the corresponding Cayley color digraph.
(b) Use the Cayley color digraph in (a) to construct a graph G such that Aut(G) ≅ A.



Figure 3.33: The group table in Exercise 3.30

3.31 Let A = S3 be the symmetric group on the set {1, 2, 3}. For Δ = {(123), (12)},

(a) find the corresponding Cayley color digraph,
(b) use the Cayley color digraph in (a) to construct a graph G such that Aut(G) ≅ A.

3.32 Use each of the Cayley color digraphs in Example 3.9 to construct a graph G such that Aut(G) ≅
A.

3.4 Excursion: Reconstruction and Solvability

Figure 3.34 shows a deck of five cards, each with a drawing of a graph.

Figure 3.34: A deck of cards

Since we can’t see the graph drawn on each card, we separate the cards, which are shown in
Figure 3.35. We’ve also numbered the cards now. What do you notice about the graphs on these five
cards? Of course, the graphs on cards 1 and 2 are isomorphic, as are the graphs on cards 3 and 4.
However, the observation we are looking for is that all graphs have order 4.

Figure 3.35: A deck of five cards



It turns out that there exists a certain graph G of some order n such that for each v ∈ V(G), the
unlabeled subgraph G − v is drawn on one of the cards in the deck given in Figure 3.35. We can see
that n = 5 in two ways. First, n must equal 5 since there are five cards. Also, each subgraph G − v, v
∈ V(G), has order n − 1 = 4 and so n = 5.

If the value of a parameter for a graph G or whether a graph G has a certain property can be
determined from the (unlabeled) graphs G − v, v ∈ V(G), then this parameter or property is said to be
recognizable for G. The observations we have made above provide a proof in general for the
following.

Theorem 3.11 The order of every graph is recognizable.

Before continuing, let’s look at the (very small) deck of cards in Figure 3.36. Since there are only
two cards in the deck and each card is the (trivial) graph of order 1, the graph G in question has order
2. Actually, there are two (non-isomorphic) graphs of order 2, namely K2 and K2. Of course, the size
of K2 is 1 and the size of 2 is 0. But, whether G = 2 or G = 2, the two graphs G − v in each case
are K1. That is, if G = K2 or G = 2, then there is no way to determine the size of G from the
subgraphs G − v, v ∈ V(G). Therefore, the sizes of K2 and 2 are not recognizable. This is the
exception, however, rather than the rule.

Figure 3.36: A deck of two cards

Theorem 3.12 The size of every graph of order at least 3 is recognizable.

Proof. Suppose that G is a graph of order n ≥ 3 and size m. Let V(G) = {v1, v2, …, vn}. Of course,
in the deck consisting of the subgraphs G − vi, 1 ≤ i ≤ n, the vertices will not be labeled. Let e be
an edge of G, say e = v1v2. The edge e then appears in each of the subgraphs G − vi for 3 ≤ i ≤ n but
appears in neither G − v1 nor G − v2. Suppose that the size of G − vi is mi (1 ≤ i ≤ n). In the sum 

, every edge is counted n − 2 times. That is,

Let card i (1 ≤ i ≤ 5) in Figure 3.35 display the subgraph G − vi, which has size mi. Thus

By Theorem 3.12, m = 15/(5 − 2) = 5. Hence the size of the graph G in question described by the deck
in Figure 3.35 is 5.



Now that we know that the size of every graph G of order at least 3 is recognizable, we can show
that one additional feature of G is recognizable.

Theorem 3.13 A degree sequence of every graph of order at least 3 is recognizable.

Proof. Let G be a graph of order n ≥ 3 and size m, where V(G) = {v1, v2, …, vn}. From Theorem
3.12, m can be determined from the subgraphs G − vi (1 ≤ i ≤ n). Suppose that the size of G − vi is
mi for 1 ≤ i ≤ n. That is, the size of G is m but when the vertex vi is removed from G, the size of the
resulting subgraph G − vi is mi. Consequently, deg vi = m − mi and so m − m1, m − m2, …, m − mn
is a degree sequence for G.

Returning to the subgraphs G − vi (1 ≤ i ≤ 5) shown on the deck of the cards in Figure 3.35, we see
that m1 = m2 = 4, m3 = m4 = 3 and m5 = 1. Since we have already seen that the size m of G is 5, it
follows that 1, 1, 2, 2, 4 is a degree sequence of G. In particular, deg v5 = 4 so that v5 is adjacent to
each of the four vertices of the graph G − v5 given in card 5. Hence we now know precisely (up to
isomorphism) what the mystery graph G is for the deck of cards in Figure 3.35. The graph G is shown
in Figure 3.37.

Figure 3.37: The graph G for the deck of cards in Figure 3.35

Consequently, from the deck of cards in Figure 3.35 that gives the subgraphs G − vi (1 ≤ i ≤ 5), we
have not only been able to determine the order of G, the size of G and a degree sequence for G, we
have been able to determine G itself.

A graph G of order n ≥ 2 is reconstructible if G can be uniquely determined (up to isomorphism)
from its subgraphs G − vi (1 ≤ i ≤ n). Thus, the graph G of Figure 3.37 is reconstructible. From our
earlier remarks, neither graph of order 2 is reconstructible. It is believed by many but has not been
verified by any that every graph of order 3 or more is reconstructible.

The Reconstruction Conjecture Every graph of order 3 or more is reconstructible.

This conjecture is believed to have been made in 1941 and is often attributed jointly to Paul J.
Kelly (1915-1995) and Stanislaw M. Ulam. Kelly, who spent many years as a faculty member at the
University of California at Santa Barbara, obtained a number of results on this topic. Ulam was born
on April 3, 1909 in Lemberg, Poland (now Lvov, Ukraine) and became interested in astronomy,
physics and mathematics while a teenager and learned calculus on his own. He entered the
Polytechnic Institute in Lvov in 1927. One of his professors there was Kazimierz Kuratowski, whom
we will visit again in Chapter 9. Ulam studied under Stefan Banach and received his Ph.D. in 1933.

In 1940, Ulam acquired a position as an assistant professor at the University of Wisconsin (where
Kelly was studying for his Ph.D.). Three years later, John von Neumann asked to meet Ulam at a
railroad station in Chicago. This led to Ulam going to the Los Alamos National Laboratory in New



Mexico to work on the hydrogen bomb with the physicist Edward Teller. While at Los Alamos, Ulam
developed the well-known Monte Carlo method for solving mathematical problems using a statistical
sampling method with random numbers. Throughout his life, he made important contributions in many
areas of mathematics. Ulam died on May 13, 1984.

The Reconstruction Problem is to determine whether the Reconstruction Conjecture is true.
Solving the Reconstruction Problem requires verifying that there do not exist two non-isomorphic
graphs G and H such that the set of subgraphs G − v, v ∈ V(G), and the set of subgraphs H − v, v ∈
V(H), are the same. If there are two non-isomorphic graphs G and H with this property, then these
graphs must have the same order, the same size and the same degree sequence, as all of these
parameters and properties are recognizable. Furthermore, any two such graphs G and H must both be
connected or must both be disconnected. This is a consequence of Theorem 1.10, which states that a
graph G of order 3 or more is connected if and only if G contains two distinct vertices u and v such
that G − u and G − v are connected.

Theorem 3.14 For all graphs of order at least 3, both connectedness and disconnectedness are
recognizable properties.

Proof. By Theorem 1.10, at least two of the subgraphs G − v, v ∈ V(G), are connected if and only
if G is connected.

The Reconstruction Problem concerns providing some information about a certain graph (or
certain graphs) and asks us to show that only one graph G satisfies the given information, as well as
to identify what this graph G is. In this case, the given information is a collection of subgraphs of G,
namely all subgraphs of the type G − v, where v ∈ V(G). However, we could be given a wide variety
of information concerning a graph. Proceeding in a manner we discussed earlier, let’s assume that we
are given pieces of information concerning a graph G, where each item is written on a card. The set
of all such cards is our deck. Any graph G that satisfies all information in the deck is called a
solution of the deck. The question then becomes to determine all solutions of the deck. A deck may
then have a unique solution, two or more solutions or no solution at all. If, for a given graph G of
order n ≥ 3, a deck consists of all n subgraphs of the type G – v, where v ∈ V(G) and if the the
Reconstruction Conjecture is true, then the deck has a unique solution, namely G.

Example 3.15 Find all graphs G for which the deck of cards shown in Figure 3.38 gives the
subgraphs G − v, where v ∈ V(G).

Figure 3.38: The deck of cards for Example 3.15

Solution. First, observe that the order of any solution G of this deck is 6. The sum of the sizes of
the graphs on the deck is 6 + 5 + 5 + 4 + 4 + 6 = 30. Then the size of a solution G is 30/(6 − 2) =
7.5. This is impossible and so the graphs on the deck in Figure 3.38 are not the subgraphs G − v, v



∈ V(G), of any graph G. Thus this deck has no solution.

Example 3.16 Determine the solutions of the deck of cards shown in Figure 3.39.

Figure 3.39: The deck of cards for Example 3.16

Solution. Suppose that G is a solution. By Card #1, all subgraphs G − v of a solution G contain at
most two triangles and by Card #2 exactly one subgraph G − v, say G − v1, contains exactly two
triangles. The two triangles in G − v1 are either disjoint, have one vertex in common or have an
edge in common, as in Figure 3.40.

Figure 3.40: Possible subgraphs of a solution

We can eliminate the subgraph in Figure 3.40(a) because of Card #3. If the subgraph in Figure
3.40(c) occurs, then by Card #5, G must contain at least two additional vertices x and y. In that case,
both G − x and G − y contain at least two triangles, contradicting Card #2. Necessarily then G
contains the subgraph in Figure 3.40(b) with one additional vertex z. Furthermore, this subgraph must
be an induced subgraph since G − v1 has exactly two triangles. Certainly, z must be adjacent to the
vertex of degree 4 because of Card #5. If z is adjacent to any other vertices in the subgraph in Figure
3.40(b), then Card #2 is contradicted. Hence we arrive at only one graph G, namely, the graph G of
Figure 3.41. Card #4 is not needed. (It was a Joker!)

Exercises for Section 3.4

3.33 Give an example of two non-isomorphic graphs G and H of order 3 or more containing vertices
u and v, respectively, such that G − u and H − v are isomorphic or explain why no such
example exists.



Figure 3.41: The unique solution to the deck in Figure 3.39

3.34 For the deck D of cards given in Figure 3.42, where card i contains the subgraph Gi = G − vi, vi
∈ V(G), for some graph G, answer the following with explanation.

(a) What is the order n of G?
(b) What is the size m of G?
(c) What are the degrees of the vertices of G?
(d) Is G connected?
(e) What are the solutions of D?

Figure 3.42: The deck of cards for Exercise 3.34

3.35 For a graph G of order n and size m, the subgraphs G − v for v ∈ V(G) are given on the deck of
cards in Figure 3.43. Answer the following with explanation.

(a) What is n?
(b) What is m?
(c) Is G connected?
(d) What is a degree sequence of G?
(e) Find all solutions of the deck.

3.36 Determine the solutions G of the deck of cards shown in Figure 3.44.

3.37 Determine the solutions of the deck of cards shown in Figure 3.45.

3.38 Determine the solutions of the deck of two cards shown in Figure 3.46.



Figure 3.43: The deck of cards for Exercise 3.35

Figure 3.44: The deck of cards for Exercise 3.36

3.39 Determine the solutions of the deck of two cards shown in Figure 3.47.

3.40 Determine the solutions of the deck of one card shown in Figure 3.48.

3.41 Determine the solutions of the deck of two cards shown in Figure 3.49.

3.42 Let G = 3K2 + K1.

(a) Give an example of a deck of cards for which G is the unique solution. Show your work.
(b) Find a deck with a small number of cards for which G is the unique solution. Show your

work.
(c) Give an example of a deck D of cards for which G and one other graph are the only two

solutions of D. Show your work.

3.43 Give an example of a deck of cards having exactly two solutions of order 3 or more.

3.44 Give an example of a deck of three cards having no solution, where any subdeck consisting of
two of the three cards has at least one solution.



Figure 3.45: The deck of cards for Exercise 3.37

Figure 3.46: The deck of cards for Exercise 3.38

Figure 3.47: The deck of cards for Exercise 3.39

Figure 3.48: The deck of cards for Exercise 3.40

Figure 3.49: The deck of cards for Exercise 3.41



Chapter 4

Trees

4.1 Bridges

Suppose that there are some villages in a sparsely populated region where country roads allow us to
travel directly between certain pairs of these villages. Since the traffic along these roads is ordinarily
light, it is not surprising that very few roads have been built in this region. In fact, suppose that we
have the situation illustrated in Figure 4.1, where there are seven villages denoted by v1, v2, …, v7
and six roads. Not only can this map be modeled by the graph G of Figure 4.1, the map essentially is a
graph.

Figure 4.1: A graph model of villages and roads

There are two interesting features of the map (and the graph) of Figure 4.1. First, you may have
heard of the traveler who stops someplace during his trip and asks a local resident for directions to
some location: “How do you get there?” only to get the response “You can’t get there from here.”
Well, fortunately, we don’t have that situation with the villages in Figure 4.1. Indeed, it is possible to
travel along country roads from each of the seven villages to all other villages. In other words, the
graph G of Figure 4.1 is connected. Although this is a very positive feature (an essential feature, one
might say), the map and graph also have a negative feature. Namely, if it ever became necessary to
close any of the roads due to road construction, flooding or a major snowstorm, then it would no
longer be possible to travel between every two villages. In terms of the graph G of Figure 4.1, this
says that if we were to remove any edge of G, then the resulting graph would no longer be connected.
An edge with this property plays an important role in graph theory.

Recall that if e is an edge of a graph G, then G − e is the subgraph of G having the same vertex set
as G and whose edge set consists of all edges of G except e. Also, if X is a set of edges of G, then G



− X is the subgraph possessing the same vertex set as G and all edges of G except those in X. If G has
order n, then G − E(G) is the empty graph .

An edge e = uv of a connected graph G is called a bridge of G if G − e is disconnected. In this
case, G − e necessarily contains exactly two components, one containing u and the other containing v.
If the vertex v, say, has degree 1, then the component of G − e containing v is a single vertex, in which
case G − v has only one component; that is, if v is an end-vertex of a connected graph G, then G − v is
connected. An edge e is a bridge of a disconnected graph if e is a bridge of some component of G.
Recall that k(G) is the number of components of a graph G. Thus an edge e is a bridge of a graph G if
and only if k(G − e) = k(G) + 1. In the disconnected graph G of Figure 4.2, the edges u2u5, v3v4, v4v5
and w1w2 are bridges (which are indicated in bold). No other edges of G are bridges.

Figure 4.2: A disconnected graph with four bridges

The following theorem makes it easy to determine which edges in a graph are bridges.

Theorem 4.1 An edge e of a graph G is a bridge if and only if e lies on no cycle of G.

Proof. First, suppose that e = uv is an edge of G that is not a bridge and that e lies in the component
G1 of G. (Of course G1 = G if G is connected.) Then G1 − e is connected. Hence there exists a u − v
path P in G1 − e. However, P together with e form a cycle containing e in G1 and therefore in G as
well.

We now verify the converse. Suppose that e = uv lies on a cycle C of G and that e (and C) belong
to the component G1 of G. Then there is a u − v path P′ in G1 not containing e. We show that G1 − e is
connected. Let x and y be any two vertices of G1 − e. We show that x and y are connected in G1 − e.
Since G1 is connected, G1 contains an x − y path Q. If e is not on Q, then Q is an x − y path in G1 − e
as well. On the other hand, if e lies on Q, then replacing e in Q by the u − v path P′ produces an x − y
walk. By Theorem 1.6, G1 − e contains an x − y path.

The graph G of Figure 4.1 is connected and has no cycles. Therefore, every edge of G is a bridge.
Graphs with these two properties are especially important and will be the main subject of this
chapter.

Exercises for Section 4.1

4.1 Give an example of a nontrivial connected graph G with the properties that (1) every bridge of G
is adjacent to an edge that is not a bridge, (2) every edge of G that is not a bridge is adjacent to



a bridge, (3) G contains two nonadjacent bridges and (4) every two edges of G that are not
bridges are adjacent.

4.2 Prove that every connected graph all of whose vertices have even degrees contains no bridges.

4.3 Prove that if uv is a bridge in a graph G, then there is a unique u − v path in G.

4.4 Let G be a connected graph and let e1 and e2 be two edges of G. Prove that G − e1 − e2 has three
components if and only if both e1 and e2 are bridges in G.

4.5 (a) Let G be a connected graph of order n, where every edge of G is a bridge. What is the size
of G?

(b) Let G be a disconnected graph of order n having k components, where every edge of G is a
bridge. What is the size of G?

4.6 Let G be a connected graph of order n ≥ 3 without bridges. Suppose that for every edge e of G,
each edge of G − e is a bridge. What is G? Justify your answer.

4.2 Trees

A graph G is called acyclic if it has no cycles. A tree is an acyclic connected graph. Therefore, the
graph G of Figure 4.1 is a tree. When dealing with trees, we often use T rather than G to denote a tree.
By Theorem 4.1, every edge in a tree is a bridge. Indeed, we could define a tree as a connected
graph, every edge of which is a bridge. Figure 4.3 shows all six trees of order 6. The tree T1 = K1,5 is
a star and T6 = P6 is a path. The number of end-vertices in the trees of Figure 4.3 ranges from 2 to 5.
We’ll have more to say about this shortly. A tree containing exactly two vertices that are not end-
vertices (which are necessarily adjacent) is called a double star. The trees T2 and T3 in Figure 4.3
are double stars.

Figure 4.3: The trees of order 6

Another common class of trees consists of the “caterpillars.” A caterpillar is a tree of order 3 or
more, the removal of whose end-vertices produces a path called the spine of the caterpillar. Thus
every path and star (of order at least 3) and every double star is a caterpillar, as is every tree shown
in Figure 4.3. The trees T′ and T″ of Figure 4.4 are also caterpillars but T′″ is not.



Figure 4.4: Two caterpillars and a tree that is not a caterpillar

There are occasions when it is convenient to select a vertex of a tree T under discussion and
designate this vertex as the root of T. The tree T then becomes a rooted tree. Often the rooted tree T
is drawn with the root r at the top and the other vertices of T drawn below, in levels, according to
their distances from r. An example is given in Figure 4.5.

Acyclic graphs are also referred to as forests. Therefore, each component of a forest is (not
surprisingly) a tree. Of course, the one fact that distinguishes trees from forests is that a tree is
required to be connected, while a forest is not required to be connected. Since a tree is connected,
every two vertices in a tree are connected by a path. In fact, we can say more.

Theorem 4.2 A graph G is a tree if and only if every two vertices of G are connected by a
unique path.

Figure 4.5: A rooted tree

Proof. First, let G be a tree. Then G is connected by definition. Thus every two vertices of G are
connected by a path. Assume, to the contrary, that there are two vertices of G that are connected by
two distinct paths. Then a cycle is produced from some or all of the edges of these two paths. This
is a contradiction.

For the converse, suppose that every two distinct vertices of G are connected by a unique path.
Certainly then, G is connected. Assume, to the contrary, that G has a cycle C. Let u and v be two
distinct vertices of C. Then C determines two distinct u − v paths, producing a contradiction. Thus G
is acyclic and so G is a tree.

As we have already observed, each tree in Figures 4.3 and 4.4 has two or more end-vertices. All
nontrivial trees have this property.

Theorem 4.3 Every nontrivial tree has at least two end-vertices.

Proof. Let T be a nontrivial tree and among all paths in T, let P be a path of greatest length.



Suppose that P is a u − v path, say P = (u = u0, u1, …, uk = v), where k ≥ 1. We show that u and v
are end-vertices of G. Necessarily, neither u nor v is adjacent to any vertex not on P, for otherwise,
a path of greater length would be produced. Certainly, u is adjacent to u1 on P and v is adjacent to
uk  −1 on P. Moreover, since T contains no cycles, neither u nor v is adjacent to any other vertices in
P. Therefore, deg u = deg v = 1.

One major consequence of this result is that if T is a tree of order k + 1 ≥ 2, then for each end-
vertex v of T, the subgraph T − v is a tree of order k. This fact is useful for induction proofs of results
concerning trees. We illustrate this idea now by showing that the size of every tree is one less than its
order, another useful property of trees.

Theorem 4.4 Every tree of order n has size n − 1.

Proof. We proceed by induction on n. There is only one tree of order 1, namely K1, which has size
0. Thus the result is true for n = 1. Assume for a positive integer k that the size of every tree of
order k is k − 1. Let T be a tree of order k + 1. By Theorem 4.3, T contains at least two end-
vertices. Let v be one of them. Then T′ = T − v is a tree of order k. By the induction hypothesis, the
size of T′ is m = k − 1. Since T has exactly one more edge than T′, the size of T is m + 1 = (k − 1) +
1 = (k + 1) − 1, as desired.

Let’s illustrate some of the ideas that we’ve just discussed.

Example 4.5 The degrees of the vertices of a certain tree T of order  13 are 1, 2 and 5. If T has
exactly three vertices of degree 2, how many end-vertices does it have?

Solution. Since T has three vertices of degree 2, it has ten vertices of degree 1 or 5. Let x denote
the number of end-vertices of T. So T has 10 − x vertices of degree 5. Since T has 13 vertices, T
has 12 edges by Theorem 4.4. Summing the degrees of the vertices of T and applying the First
Theorem of Graph Theory, we obtain

Note that drawing a tree of order 13 with three vertices of degree 2, two vertices of degree 5 and
eight end-vertices does not answer the question. It only says that the tree we drew has eight end-
vertices, not necessarily that the tree T in Example 4.5 has eight end-vertices. Of course, our solution
tells us that every tree with the property described in Example 4.5 has eight end-vertices.

We can now determine the size of a forest in terms of its order and the number of components it
has.

Corollary 4.6 Every forest of order n with k components has size n − k.

Proof. Suppose that the size of a forest F is m. Let G1, G2, …, Gk be the components of F, where k
≥ 1. Furthermore, suppose that Gi has order ni and size mi for 1 ≤ i ≤ k. Then  and 



. Since each component Gi (1 ≤ i ≤ k) is a tree, it follows by Theorem 4.4 that mi =
ni − 1. Therefore,

Again by Theorem 4.4, a tree of order n is a connected graph containing n − 1 edges. Indeed,
every connected graph of order n contains at least n − 1 edges. Although this can be verified in
several ways, we establish this fact using a proof by minimum counterexample in order to illustrate
this useful method of proof. (Proof by minimum counterexample is reviewed in Appendix 3.)

Theorem 4.7 The size of every connected graph of order n is at least n − 1.

Proof. It is not difficult to see that the theorem is true for connected graphs of order 1, 2 or 3.
Assume that the theorem is false however. Then there exists a connected graph G of smallest order
n whose size m is at most n − 2. Necessarily, n ≥ 4. Since G is a nontrivial connected graph, G
contains no isolated vertices.

We claim that G contains an end-vertex; for assume, to the contrary, that the degree of every
vertex of G is at least 2. Then the sum of the degrees of the vertices of G is 2m ≥ 2n; so m ≥ n ≥ m +
2, which is impossible. So, as we claimed, G contains an end-vertex.

Let v be an end-vertex of G. Since G is connected, has order n and size m ≤ n − 2, it follows that
G − v is connected and has order n − 1 and size m − 1 ≤ n − 3, contradicting the assumption that G is
a connected graph of smallest order whose size is at least 2 less than its order.

Let G be a tree of order n and size m. By the definition of a tree and Theorem 4.4, G has the
following three properties: (1) G is connected, (2) G is acyclic, (3) m = n − 1. In fact, if G is a graph
of order n and size m that satisfies any two of these three properties, then G is a tree.

Theorem 4.8 Let G be a graph of order n and size m. If G satisfies any two of the properties:

(1) G is connected,      (2) G is acyclic,      (3) m = n − 1,

then G is a tree.

Proof. First, if G satisfies (1) and (2), then G is a tree by definition. Thus, we may assume that G
satisfies (1) and (3) or G satisfies (2) and (3). We consider these two cases.

Case 1. G satisfies (1) and (3). Since G is connected, it suffices to show that G is acyclic.
Assume, to the contrary, that G contains a cycle C. Let e be an edge of C. Then e is not a bridge of G
by Theorem 4.1. So G − e is a connected graph of order n and size n − 2, which contradicts Theorem
4.7. Therefore, G is acyclic and so is a tree.

Case 2. G satisfies (2) and (3). Since G is acyclic, it suffices to show that G is connected. Since
G satisfies (2) and (3), it follows that G is a forest of order n and size m = n − 1. By Corollary 4.6,
the size of G is n − k, where k is the number of components of G. Hence n − 1 = n − k and so k = 1.
Therefore, G is connected.



If T is a tree of order k, then it should be clear that T is isomorphic to a subgraph of Kk. Of course,
(Kk) = k − 1. Not only is T isomorphic to a subgraph of Kk, the tree T is isomorphic to a subgraph of

every graph having minimum degree at least k − 1.

Theorem 4.9 Let T be a tree of order k. If G is a graph with  (G) ≥ k − 1, then T is isomorphic
to some subgraph of G.

Proof. We proceed by induction on k. The result is certainly true for k = 1 since every graph
contains a vertex. It is also true for k = 2 since every graph without isolated vertices contains
edges.

Assume for every tree T′ of order k − 1, where k ≥ 3, and for every graph H with minimum degree
at least k − 2 that T′ is isomorphic to a subgraph of H. Now, let T be a tree of order k and let G be a
graph with (G) ≥ k − 1. We show that T is isomorphic to a subgraph of G.

Let v be an end-vertex of T and u the vertex of T adjacent to v. Then T − v is a tree of order k − 1.
Since (G) ≤ k − 1 > k − 2, it follows by the induction hypothesis that T − v is isomorphic to a
subgraph F of G. Let u′ denote the vertex of F corresponding to u in T. Since degG u′ ≤ k − 1 and the
order of F is k − 1, the vertex u′ is adjacent to a vertex w of G that does not belong to F (see Figure
4.6). Therefore, T is isomorphic to the subgraph of G obtained by adding the vertex w and the edge
u′w to F.

Figure 4.6: The subgraph T − v of G in the proof of Theorem 4.9

Exercises for Section 4.2

4.7 (a) Draw all trees of order 5. (b) Draw all forests of order 6.

4.8 Prove that if every vertex of a graph G has degree at least 2, then G contains a cycle.

4.9 Show that a graph of order n and size n − 1 need not be a tree.

4.10 Give an example of each of the following or explain why no such example exists.

(a) A graph that is not a tree in which every edge is a bridge.
(b) A tree of order 4 whose complement is not a tree.
(c) A tree T containing exactly three vertices that are not end-vertices and such that T is not a

caterpiller.

4.11 For k = 2, 3, 4, give an example of a tree Tk with Δ(Tk) = k such that no two vertices of the



same degree are adjacent to the same vertex.

4.12 (a) Give an example of a tree T and an edge e of T such that the two components of T − e are
isomorphic.

(b) Show that there exists no tree T containing two distinct edges e1 and e2 such that the two
components of T − e1 are isomorphic and the two components of T − e2 are isomorphic.

(c) Show that there exists a tree T containing two distinct edges e1 and e2 such that (1) 
 and (2) for the two components T1 and T′1 of T′e1 and the two

components T2 and T′2 of T − e2, we have  and .

4.13 A certain tree T of order 21 has only vertices of degree 1, 3, 5 and 6. If T has exactly 15 end-
vertices and one vertex of degree 6, how many vertices of T have degree 5?

4.14 A certain tree T of order 35 is known to have 25 vertices of degree 1, two vertices of degree 2,
three vertices of degree 4, one vertex of degree 5 and two vertices of degree 6. It also contains
two vertices of the same (unknown) degree x. What is x?

4.15 A tree T with 50 end-vertices has an equal number of vertices of degree 2, 3, 4 and 5 and no
vertices of degree greater than 5. What is the order of T?

4.16 (a) Give an example of a tree of order 6 containing four vertices of degree 1 and two vertices
of degree 3. (Only one tree has these properties.)

(b) Find all trees T where two-thirds of the vertices of T have degree 1 and the remaining one-
third of the vertices have degree 3.

4.17 (a) Give an example of a tree of order 8 containing six vertices of degree 1 and two vertices of
degree 4. (Only one tree has these properties.)

(b) Find all trees T where 75% of the vertices of T have degree 1 and the remaining 25% of
the vertices have degree 4.

(c) Find all trees T where 75% of the vertices of T have degree 1 and the remaining 25% of
the vertices have another degree (a fixed degree).

(d) Find all trees T where 25% of the vertices of T have degree 1 and the remaining 75% of
the vertices of T have another degree (a fixed degree).

4.18 A certain tree T of order n contains only vertices of degree 1 and 3. Show that T contains (n −
2)/2 vertices of degree 3.

4.19 Let T be a tree of order n and size m having ni vertices of degree i for i ≥ 1. Then 
and .

(a) Prove that n1 = 2 + n3 + 2n4 + 3n5 + 4n6 + ….

(b) A tree T has three vertices of degree 2, five vertices of degree 3, two vertices of degree 4
and no vertices of degree 5 or more. According to the formula in (a), how many end-
vertices does T have?

4.20 Prove or disprove:



(a) If G is a graph of order n and size m with three cycles, then m ≥ n + 2.
(b) There exist exactly two regular trees.

4.21 Let T be a tree of order n. Prove that T is isomorphic to a subgraph of .

4.22 Let T be a tree of order n. Show that the size of the complement  of T is the same as the size
of Kn − 1.

4.23 Find all trees T such that  is also a tree.

4.24 (a) Find all those graphs G of order n ≥ 4 such that the subgraph induced by every three
vertices of G is a tree or show that no such graph exists.

(b) State and solve a generalization of the problem in (a).

4.3 The Minimum Spanning Tree Problem

If the seven villages illustrated in Figure 4.1 really did exist, quite possibly the villages developed
one by one; and as a new village developed, a new road was constructed that connected this village
to the previously developed villages. For example, suppose that the three villages v1, v2 and v3
already existed with a road between v1 and v2 and a road between v2 and v3. Furthermore, suppose
that the settlement v4 developed into a village. Then it would be logical to construct a paved road
between v4 and one of v1, v2 and v3. Of course, it might be preferable to construct a road between v4
and an intermediate location along an existing road, which in turn may lead to a new development at
this junction. But let’s assume that this doesn’t occur. However, just as with many decisions in life,
the decision as to which road should be built would most likely be a financial one.

On the other hand, suppose that initially no roads existed between any pair of the villages v1, v2,
…, v7 (as might be the case if these are the seven Olympic dormitories that are to be constructed to
house the athletes at a forthcoming Olympic Games). Then we need to construct roads between pairs
of dormitories. Which roads will be constructed is quite possibly a financial decision here as well.
Before proceeding further, let us consider a new concept.

If a connected graph G of order n has no cycles, then, of course, G is a tree. On the other hand,
suppose that G contains cycles. Let e1 be an edge lying on a cycle of G. By Theorem 4.1, e1 is not a
bridge and G − e1 is connected. If G − e1 contains cycles, then let e2 be an edge lying on a cycle of G
− e1. Then G − e1 − e2 is connected. Eventually, we arrive at a set X = {e1, e2, …, ek} of edges of G
such that G − X is a tree. The tree G − X just constructed is a subgraph of G that has the same vertex
set as G.

We can look at the observation we just made in another way. Let G be a connected graph.
Consider the empty graph H with vertex set V(G). Add an edge f1 of G to H. Then add another edge f2
of G to H. Next, add another edge f3 of G to H, where f3  {f1, f2} and such that no cycle is produced.
We continue this until we have added edges f1, f2, …, fn − 1 of G to H, producing a graph F of order n,
size n − 1 and no cycles. By Theorem 4.8, F is a tree with V(F) = V(G). We know it’s possible to
construct a tree in this manner as we can always choose the edges of G − X mentioned above.



We have just described two ways of producing trees T that are subgraphs of a given connected
graph G such that V(T) = V(G). Recall that a subgraph H of a graph G is a spanning subgraph of G if
H contains every vertex of G. A spanning subgraph H of a connected graph G such that H is a tree is
called a spanning tree of G. For the connected graph G of Figure 4.7, two different spanning trees T1
and T2 of G are also shown in Figure 4.7. We have now observed the following.

Figure 4.7: Two spanning trees in a graph

Theorem 4.10 Every connected graph contains a spanning tree.

Once again, let’s return to the example we considered in Figure 4.1, where there are seven
villages and six roads. The graph describing this situation is a tree. Hence it is possible to travel
between every two villages. Indeed, there is a unique path between every two villages. To travel
between villages v1 and v6, we are forced to pass through v2, v3 and v4, even if we didn’t want to.
Therefore, the trip between v1 and v6 may be inconvenient. Of course, to make the trip between pairs
of the villages more convenient, we could always build a new road (between v1 and v6, say).
However, this would cost more money (possibly a great deal of money). But how was it decided
initially that the six roads in Figure 4.1 were the ones to be constructed? Certainly, whichever roads
were chosen should produce a connected graph. If the resulting graph contains a cycle, then there are
edges in the graph that are not bridges. That is, if producing a connected graph was our primary goal,
then we could have accomplished this for less money by constructing roads so that the resulting graph
is a tree. But how did we choose those particular six roads to build?

Suppose that we have a number of villages (such as the villages v1, v2, …, v7) and we would like
to build roads as cheaply as possible so that, at the conclusion, the resulting graph is connected. How
do we do this? Assume that we have an accurate estimate of the cost of building a road between each
pair of villages. If the cost of building a road between some pair of villages is exorbitant (because
any such road would have to pass through quicksand, private property or through or over a mountain,
for example), then we do not even consider building such a road. This problem can be stated in terms
of graphs.

Let G be a connected graph each of whose edges is assigned a number (called the cost or weight
of the edge). We denote the weight of an edge e of G by w(e). Recall that such a graph is called a
weighted graph. For each subgraph H of G, the weight w(H) of H is defined as the sum of the weights
of its edges, that is,

We seek a spanning tree of G whose weight is minimum among all spanning trees of G. Such a



spanning tree is called a minimum spanning tree. The problem of finding a minimum spanning tree in
a connected weighted graph is called the Minimum Spanning Tree Problem.

The importance of the Minimum Spanning Tree Problem is due to its applications in the design of
computer, communications and transportation networks. The history of this problem was researched
by Ronald L. Graham and Pavol Hell in 1985. (We will encounter Graham again in Chapter 11.) They
concluded that the Minimum Spanning Tree Problem was initially formulated by Otakar  in 1926
because of his interest in the most economical layout of a power-line network. He also gave the first
solution of the problem. Prior to , however, the anthropologist Jan Czekanowski’s work on
classification schemes led him to consider ideas closely related to the Minimum Spanning Tree
Problem.

Over the years, this problem has been solved in a variety of ways using a number of algorithms.
One of the best known was discovered by Joseph Bernard Kruskal (1928-2010). Kruskal was from a
family of five children, three boys and two girls. All boys became mathematicians. Kruskal received
his Ph.D. from Princeton in 1954. His advisors were Paul Erd s and Roger Lyndon. Throughout his
life he was an active researcher, with much of his work in mathematics and linguistics. He spent much
of his life working at Bell Laboratories. However, it was only two years after completing his
doctoral degree that the paper was published containing the algorithm that bears his name.

Kruskal’s Algorithm: For a connected weighted graph G, a spanning tree T of G is constructed as
follows: For the first edge e1 of T, we select any edge of G of minimum weight and for the second
edge e2 of T, we select any remaining edge of G of minimum weight. For the third edge e3 of T, we
choose any remaining edge of G of minimum weight that does not produce a cycle with the previously
selected edges. We continue in this manner until a spanning tree is produced.

Figure 4.8 shows how a spanning tree of a connected weighted graph is constructed using
Kruskal’s Algorithm. We now show that Kruskal’s Algorithm produces a minimum spanning tree in
every connected weighted graph.

Figure 4.8: Constructing a spanning tree by Kruskal’s Algorithm



Theorem 4.11 Kruskal’s Algorithm produces a minimum spanning tree in a connected weighted
graph.

Proof. Let G be a connected weighted graph of order n and let T be a spanning tree obtained by
Kruskal’s Algorithm, where the edges of T are selected in the order e1, e2, …, en −1. Necessarily
then, w(e1) ≤ w(e2) ≤ … ≤ w(en − 1) and the weight of T is

We show that T is a minimum spanning tree of G. Assume, to the contrary, that T is not a minimum
spanning tree. Among all minimum spanning trees of G, let H be one that has a maximum number of
edges in common with T. Since H and T are not identical, there is at least one edge of T that is not in
H. Let ei be the first edge of T that is not in H. Therefore, if i > 1, then the edges e1, e2, …, ei −1
belong to both H and T. Now define G0 = H + ei. Then G0 has a cycle C. Since T has no cycle, there is
an edge e0 on C that is not in T. The graph T0 = G0 − e0 is therefore a spanning tree of G and

Since H is a minimum spanning tree of G, it follows that w(H) ≤ w(T0). Consequently, w(H) ≤ w(H) +
w(ei) − w(e0) and so w(e0) ≤ w(ei). By Kruskal’s Algorithm, certainly w(e0) = w(ei) if i = 1. Suppose
then that i > 1. By Kruskal’s Algorithm, ei is an edge of minimum weight that can be added to the
edges e1, e2, …, ei − 1 without producing a cycle. However, e0 can also be added to e1, e2, …, ei − 1
without producing a cycle. Thus w(ei) ≤ w(e0), which implies that w(ei) = w(e0) when i > 1 as well.
Therefore, w(T0) = w(H) and so T0 is also a minimum spanning tree of G. However, T0 has more
edges in common with T than H does, which is a contradiction.

Another well-known algorithm for finding a minimum spanning tree in a connected weighted
graph was developed by Robert Clay Prim (born in 1921). Like Kruskal, he received his Ph.D. from
Princeton (in 1949). He was vice president of research at the Sandia Corporation. The paper
containing the algorithm that bears his name was published in 1957. This algorithm was originally
discovered by the Czech mathematician Vojt ch Jarnik in 1930 but the algorithm is named for Prim.

Prim’s Algorithm:  For a connected weighted graph G, a spanning tree T of G is constructed as
follows: For an arbitrary vertex u for G, an edge of minimum weight incident with u is selected as the
first edge e1 of T. For subsequent edges e2, e3, …, en − 1, we select an edge of minimum weight among
those edges having exactly one of its vertices incident with an edge already selected.

Figure 4.9 illustrates how to construct a spanning tree of a connected weighted graph by Prim’s
Algorithm. Again, a tree obtained by Prim’s Algorithm is also a minimum spanning tree, as we show
next.



Figure 4.9: Constructing a spanning tree by Prim’s Algorithm

Theorem 4.12 Prim’s Algorithm produces a minimum spanning tree in a connected weighted
graph.

Proof. Let G be a nontrivial connected weighted graph of order n and let T be a spanning tree
obtained by Prim’s Algorithm, where the edges of T are selected in the order e1, e2, …, en − 1 and
where e1 is incident with a given vertex u. Thus the weight of T is

Assume, to the contrary, that T is not a minimum spanning tree. Let  be the set of all minimum
spanning trees of G having a maximum number of edges in common with T. If no tree in  contains
e1, then let k = 0 and let H be any tree in ; otherwise, let k be the maximum positive integer for
which there is a tree H   such that H contains e1, e2, …, ek. Hence no tree in  contains all of the
edges e1, e2, …, ek  + 1, where 0 ≤ k < n − 1. If H does not contain e1 and so k = 0, then let U = {u}. If
k ≤ 1, let U be the vertex set of the tree with edge set {e1, e2, …, ek}. So U consists of the k + 1
vertices that are incident with one or more of the edges e1, e2, …, ek. By Prim’s Algorithm, ek+1 joins
a vertex of U and a vertex of V(T) − U.

The subgraph H + ek  + 1 therefore contains a cycle C and ek  + 1 is on C. Necessarily, C contains an
edge e0 distinct from ek  + 1 such that e0 also joins a vertex of U and a vertex of V(T) − U. By the
construction of T from Prim’s Algorithm, w(ek  + 1) ≤ w(e0). Now T′ = H + ek  + 1 − e0 is a spanning tree
of G whose weight is w(T′) = w(H)+w(ek+1) − w(e0). Since H is a minimum spanning tree, w(H) ≤
w(T′) and so w(H) ≤ w(H) + w(ek+1) − w(e0), which implies that w(e0) ≤ w(ek  + 1). Consequently,
w(e0) = w(ek  + 1) and w(H) = w(T′). Therefore, T′ is also a minimum spanning tree of G. If e0 does not
belong to T, then T′ is a minimum spanning tree having more edges in common with T than H does,
which is impossible since H  . Hence e0 belongs to T, which implies that T′ has the same number



of edges in common with T that H does and so T′  . Necessarily, e0 = ej for some j > k + 1. Since
T′ contains all of the edges e1, e2, …, ek  + 1, this contradicts the defining property of H.

Exercises for Section 4.3

4.25 Determine all spanning trees for the graphs G and H in Figure 4.10. Which of these spanning
trees are isomorphic?

Figure 4.10: The graphs in Exercise 4.25

4.26 Prove that an edge e of a connected graph is a bridge if and only if e belongs to every spanning
tree of G.

4.27 Apply both Kruskal’s and Prim’s Algorithms to find a minimum spanning tree in the weighted
graph in Figure 4.11. In each case, show how this tree is constructed, as in Figures 4.8 and 4.9.

Figure 4.11: The weighted graph in Exercise 4.27

4.28 Apply both Kruskal’s and Prim’s Algorithms to find a minimum spanning tree in the weighted
graph in Figure 4.12. In each case, show how this tree is constructed, as in Figures 4.8 and 4.9.

Figure 4.12: The weighted graph in Exercise 4.28

4.29 Let G be a connected weighted graph whose edges have distinct weights. Prove that G has a
unique minimum spanning tree.



4.30 Let G be a connected weighted graph and T a minimum spanning tree of G. Show that T is a
unique minimum spanning tree of G if and only if the weight of each edge e of G that is not in T
exceeds the weight of every other edge on the cycle in T + e.

4.31 Show, for each integer k ≥ 2, that there exists a connected weighted graph containing exactly k
unequal minimum spanning trees.

4.4 Excursion: The Number of Spanning Trees

We have already mentioned that every connected graph G contains a spanning tree. It is essential, of
course, that G is connected, for otherwise G has no spanning trees. Also, if G is itself a tree, then G
contains exactly one spanning tree, namely G itself. On the other hand, if G is a connected labeled
graph that is not a tree, then G contains more than one spanning tree. But how many? In this section,
we are concerned with counting the number of (unequal) spanning trees of a labeled connected graph.
To simplify the consideration of a number of graphs, we intend that vertex labels are present even if
none are shown. Spanning trees with different edge sets are therefore different. We now consider two
examples.

Example 4.13 Determine the number of spanning trees of the graph G of Figure 4.13.

Figure 4.13: The graph in Example 4.13

Solution. Observe that at least one edge of each cycle of G must be absent from every spanning tree
of G. We consider the number of spanning trees of G that (1) do not contain e4 and (2) contain e4.
First, any spanning tree that does not contain e4 must contain exactly five of the six edges e1, e2, e3,
e5, e6, e7. Hence there are six spanning trees of G that do not contain e4. Second, any spanning tree
that contains e4 must not contain exactly one of e1, e3, e6 and must not contain exactly one of e2, e5,
e7. Therefore, there are 3 · 3 = 9 spanning trees that contain e4. So there are 6 + 9 = 15 spanning
trees of G.

Example 4.14 Determine the number of spanning trees of the graph G of Figure 4.14.



Figure 4.14: The graph in Example 4.14

Solution. At least one of the edges e3, e5, e6 is absent in each spanning tree of G. This divides the
spanning trees of G into three mutually disjoint categories.

Category 1 consists of those spanning trees containing none of the edges e3, e5, e6. Then a
spanning tree is obtained by deleting any of the remaining six edges e1, e2, e4, e7, e8, e9. Hence there
are 6 such spanning trees.

Category 2 consists of those spanning trees containing exactly one of the edges e3, e5, e6.
Suppose first that e3 belongs to a spanning tree but e5 and e6 do not. Then exactly one of e1 or e2 does
not belong to a spanning tree and exactly one of e4, e7, e8, e9 does not belong to a spanning tree.
Therefore, the number of spanning trees of G containing e3 but neither e5 nor e6 is 2 · 4 = 8. By the
symmetry of G, the number of spanning trees of G containing exactly one of the edges e3, e5, e6 is 3 · 8
= 24.

Category 3 consists of those spanning trees containing exactly two of the edges e3, e5, e6.
Suppose first that e3 and e5 belong to a spanning tree but e6 does not. Then such a spanning tree is
obtained by deleting exactly one edge in each of the following three pairs of edges: (1) e1, e2; (2) e4,
e8; (3) e7, e9. Therefore, the number of spanning trees of G containing e3 and e5 but not e6 is 23 = 8.
Again, by symmetry, the number of spanning trees of G containing exactly two of the three edges e3,
e5, e6 is 3 · 8 = 24.

Therefore, the total number of spanning trees of G is 6 + 24 + 24 = 54.

We now turn to the problem of determining the number of spanning trees in a complete graph Kn.
Since Kn is a tree for n = 1 or n = 2, we need only consider n ≥ 3. Since K3 is a cycle of length 3,
each spanning tree is obtained by deleting one of the three edges, that is, the number of spanning trees
of K3 is 3 (see Figure 4.15).



Figure 4.15: The spanning trees of K3

Determining the number of spanning trees of K4 (see Figure 4.16) is more troublesome, but one
way of computing this is by observing that any spanning tree of K4 contains (1) none, (2) exactly one
or (3) exactly two of the edges v1v2, v1v3 and v2v3. Since the number of spanning trees in each of these
three cases is 1, 6 and 9, respectively, the number of spanning trees of K4 is 1 + 6 + 9 = 16.

Figure 4.16: The complete graph K4

Actually, computing the total number of of spanning trees of the graph G = Kn, where V(G) = {v1,
v2, …, vn}, is the same as computing the number of distinct trees with vertex set {v1, v2, …, vn}. The
following formula was established in 1889 by Arthur Cayley and is often referred to as the Cayley
Tree Formula. As a consequence of this formula, it becomes clear why there are 16 spanning trees of
K4.

Theorem 4.15 The number of distinct trees of order n with a specified vertex set is nn − 2.

We have encountered Cayley several times already. Arthur Cayley was born on August 16, 1821
in Richmond, Surrey, England. He showed great skill with numerical calculations as a youngster. In
1838 he entered Trinity College, Cambridge and had three papers published while still an
undergraduate. He graduated in 1842 and then spent four years teaching as a Cambridge fellow, at
which time he continued to publish at a high rate. When his fellowship expired, Cayley found himself
without a position. He then studied law and became a lawyer in 1849, an occupation he continued for
the next 14 years. Although a skilled lawyer, Cayley considered this as a way to make money so that
he could do what he really enjoyed: mathematics. During his 14 years as a lawyer, Cayley authored
more than 200 mathematical papers.

In 1849 Cayley wrote a paper on permutations connecting his ideas with those of Augustin Louis
Cauchy. In 1854 he wrote two remarkable papers on abstract groups. At that time the only known
groups were permutation groups. Cayley defined an abstract group and gave a table to display the
multiplication in the group. He also recognized that matrices formed groups.

In 1863 Cayley was appointed a professor of Pure Mathematics at Cambridge. Although Cayley
was earning only a fraction of what he earned as a lawyer, he was happier as he was able to work on
mathematics full-time. He was a prolific researcher his entire life and when he died on January 26,
1895 in Cambridge, he had published over 900 papers, a number exceeded only by Leonhard Euler,
Paul Erd s and Cauchy.

Although we will not be presenting a proof of Theorem 4.15, there are several quite different
proofs of this formula. In fact, John W. Moon wrote a paper in 1967 in which he describes ten



different proofs of this famous theorem (and even more proofs have been found since). Moon, a
professor at the University of Alberta in Canada throughout much of his academic career, did a great
deal of research on trees (and on a class of digraphs that we will visit in Chapter 7). With an interest
in music, as has been the case with a number of mathematicians, Moon has a philosophy about the
creative aspect of mathematics that is no doubt not unlike that of many mathematicians:

The sense of pleasure and satisfaction that comes when one has discovered something new
is hard to describe to non-mathematicians; and sometimes there is almost a sense of awe,
that one has been privileged to have a peek at what lies behind the mystery of things.

And when you can share the experience with a co-worker, so much the better.

There is a method of determining the number of spanning trees of any graph. The next theorem is
implicit in the work of Gustav Kirchhoff who was born in Königberg, Prussia in 1824. (We will visit
that city again in Chapter 6.) Kirchhoff is well known for his research on electrical currents, which he
announced in 1845. This led to Kirchhoff’s laws, the first of which states that the sum of the currents
into a vertex equals the sum of the currents out of the vertex. Two years later, in 1847, he graduated
from the University of Königberg. It was during that year that he published the paper that led to his
theorem on counting spanning trees. Kirchhoff spent much of his life working on experimental
physics. When his health began to fail, he accepted a position as chair of mathematical physics in
1875 (12 years before he died) in Berlin as this did not present the problems his poor health was
causing him in carrying out experiments. Since the proof of the theorem on counting spanning trees is
complex, we will not include it.

By a cofactor of an n × n matrix M = [mij], we mean (−1)i+j det(Mij), where det(Mij) indicates the
determinant of the (n − 1) × (n − 1) submatrix Mij of M, obtained by deleting row i and column j of
M. The following result is often called the Matrix Tree Theorem.

Theorem 4.16 Let G be a graph with V(G) = {v1, v2, …, vn}, let A = [aij] be the adjacency matrix
of G and let C = [cij] be the n × n matrix, where

Then the number of spanning trees of G is the value of any cofactor of C.

We illustrate the Matrix Tree Theorem with a simple example. The graph G of Figure 4.17 clearly
contains three spanning trees. The adjacency matrix A and the matrix C are also shown in Figure 4.17.

Figure 4.17: Illustrating the Matrix Tree



The (3, 3)-cofactor of C is expanded along the 3rd row, obtaining

Exercises for Section 4.4

4.32 Show that there is only one positive integer k such that no graph contains exactly k spanning
trees.

4.33 Let F be a subgraph of a connected graph G. Prove that F is a subgraph of some spanning tree
of G if and only if F contains no cycles.

4.34 (a) Find the number of spanning trees in the graph G of Figure 4.18.

(b) Find the number of spanning trees in the graph Gk for k ≥ 5 of Figure 4.18. [Note that (a) is
the case where k = 4.]

Figure 4.18: The graphs in Exercise 4.34

4.35 (a) Find the number of spanning trees in the graph G of Figure 4.19.

(b) Find the number of spanning trees in the graph Gk for k ≥ 6 of Figure 4.19. [Note that (a) is
the case where k = 5.]

Figure 4.19: The graphs in Exercise 4.35



4.36 Find the number of spanning trees in the graph G of Figure 4.20.

4.37 (a) According to the Cayley Tree Formula, how many distinct trees are there with vertex set S =
{u, v, w, x, y}?

(b) Divide the trees in (a) into classes so that two trees are in the same class if and only if they
are isomorphic. Determine the number of such classes and the number of trees in each
class by considering the number of ways each can be labeled with the elements of S.

Figure 4.20: The graph in Exercise 4.36

4.38 Use the Matrix Tree Theorem to confirm the number of distinct trees with vertex set {v1, v2, v3,
v4}.

4.39 (a) Use the Matrix Tree Theorem to determine the number of spanning trees of the graph of
Figure 4.21.

(b) Draw all spanning trees in the graph G of Figure 4.21.

Figure 4.21: The graph in Exercise 4.39

4.40 Let T and T′ be two spanning trees of a connected graph G of order n. Show that there exists a
sequence T = T0, T1, …, Tk = T′ of spanning trees of G such that Ti and Ti + 1 have n − 2 edges
in common for each i with 1≤ i ≤ k − 1.



Chapter 5

Connectivity

5.1 Cut-Vertices

It is probably clear by now that one of the most important properties that a graph can possess is that
of being connected. Figure 5.1 shows seven graphs of order 7. The graph G1 is a tree, G4 = C7 and G7
= K7. Obviously, all of these graphs are connected. However, some appear to be “more connected”
than others. Indeed, the main goal of this chapter is the introduction of measures of how connected a
graph is.

Figure 5.1: Connected graphs

Some graphs are so slightly connected that the removal of a single edge results in a disconnected
graph. We have already seen this and an edge with this property is a bridge. The graph G2 has a
bridge. So does G1. In fact, every edge of G1 is a bridge since G1 is a tree. We now turn from
connected graphs containing an edge whose removal results in a disconnected graph to connected
graphs containing a vertex whose removal results in a disconnected graph.

Recall that if v is a vertex of a nontrivial graph G, then by G − v we mean the (induced) subgraph
of G whose vertex set consists of all vertices of G except v and whose edge set consists of all edges
of G except those incident with v. This concept is illustrated in Figure 5.2. In fact, if U is a proper
subset of the vertex set of G, then G − U is the (induced) subgraph of G whose vertex set is V(G) − U
and whose edge set consists of all edges of G joining two vertices in V(G) − U. A vertex v in a
connected graph G is a cut-vertex of G if G − v is disconnected. More generally, a vertex v is a cut-
vertex in a graph G if v is a cut-vertex of a component of G. In the graph G of Figure 5.2, v and x are
the only cut-vertices. In the graph G − v, the vertex x is not a cut-vertex; however, s is a cut-vertex of
G − v. Consequently, for U = {s, v}, the graph G − U is disconnected. The graphs G1, G2 and G3 of
Figure 5.1 also contain cut-vertices but no other graphs in Figure 5.1 contain cut-vertices.



Figure 5.2: The graphs G and G − v

Notice that the graph G of Figure 5.2 not only contains the cut-vertex v, it contains three bridges,
two of which are incident with v. We have already noticed that the two graphs of Figure 5.1 with
bridges, namely G1 and G2, contain cut-vertices as well (although G3 contains a cut-vertex but no
bridges). In fact, except for the graph K2, every connected graph with bridges contains cut-vertices as
well. Recall by Theorem 4.1 that an edge e in a graph G is a bridge if and only if e lies on no cycle of
G.

We now establish some facts about cut-vertices. Since a cut-vertex in a graph G is a cut-vertex of
a component of G, we restrict ourselves to connected graphs.

Theorem 5.1 Let v be a vertex incident with a bridge in a connected graph G. Then v is a cut-
vertex of G if and only if deg v ≥ 2.

Proof. Suppose that uv is a bridge of G. Then deg v ≥ 1. Assume that deg v = 1. Since v is an end-
vertex of G, the graph G − v is connected and so v is not a cut-vertex of G.

For the converse, assume that deg v ≥ 2. Then there is a vertex w different from u that is adjacent
to v. Assume, to the contrary, that v is not a cut-vertex. Thus G − v is connected and so there is a u −
w path P in G − v. However then, P together with v and the two edges uv and vw form a cycle
containing the bridge uv. This contradicts Theorem 4.1.

One immediate consequence of Theorem 5.1 is that if a vertex v of a nontrivial tree T is not an
end-vertex of T, then v is a cut-vertex of T. Another immediate consequence of Theorem 5.1 is stated
next.

Corollary 5.2 Let G be a connected graph of order 3 or more. If G contains a bridge, then G
contains a cut-vertex.

I f v is a cut-vertex in a connected graph G, then, of course, G − v contains two or more
components. If u and w are vertices in distinct components of G − v, then u and w are not connected in
G − v. On the other hand, u and w are necessarily connected in G. These observations lead us to the
following theorem.

Theorem 5.3 Let v be a cut-vertex in a connected graph G and let u and w be vertices in distinct
components of G − v. Then v lies on every u − w path in G.



We can now present a characterization of vertices in a connected graph G that are cut-vertices of
G.

Corollary 5.4 A vertex v of a connected graph G is a cut-vertex of G if and only if there exist
vertices u and w distinct from v such that v lies on every u − w path of G.

Proof. Suppose that v is a cut-vertex of G. Then G − v is disconnected. Let u and w be vertices in
different components of G − v. It then follows by Theorem 5.3 that every u − w path in G contains
v.

On the other hand, if G contains two vertices u and w such that every u − w path in G contains v,
then there is no u − w path in G − v. Thus u and w are not connected in G − v and so G − v is
disconnected. Therefore, v is a cut-vertex of G.

By Corollary 5.4, if v is a vertex in a connected graph G that is not a cut-vertex of G, then for
every two vertices u and w of G that are distinct from v, there is a u − w path that does not contain v.

While the concepts of bridges and cut-vertices are parallel concepts and have a number of
similarities, they have some major differences as well. We have seen that it’s possible for every edge
of a connected graph G to be a bridge. Of course, G must then be a tree. On the other hand, every
nontrivial connected graph must contain vertices that are not cut-vertices.

Theorem 5.5 Let G be a nontrivial connected graph and let u  V(G) . I f v is a vertex that is
farthest from u in G, then v is not a cut-vertex of G.

Proof. Assume, to the contrary, that v is a cut-vertex of G. Let w be a vertex belonging to a
component of G − v that does not contain u. Since every u − w path contains v, it follows that d(u,
w) > d(u, v), which is a contradiction.

It is now immediate that every nontrivial connected graph contains at least two vertices that are
not cut-vertices.

Corollary 5.6 Every nontrivial connected graph contains at least two vertices that are not cut-
vertices.

Proof. Let u and v be vertices of a nontrivial connected graph G such that d(u, v) = diam(G). Since
each of u and v is farthest from the other, it follows by Theorem 5.5 that both u and v are not cut-
vertices of G.

Exercises for Section 5.1

5.1 Give an example of a graph that

(a) contains more bridges than cut-vertices.
(b) contains more cut-vertices than bridges.

5.2 (a) For each integer k ≥ 2, give an example of a connected graph G containing a vertex v such



that G − v has k components.

(b) Give an example of a connected graph G of order 3 or more containing vertices u and v
such that G − u − v has fewer components than G − u.

5.3 Prove or disprove:

(a) If a vertex v of a graph G lies on a cycle of G, then v is not a cut-vertex.
(b) If a vertex v of a graph G does not lie on any cycle of G, then v is a cut-vertex.
(c) A tree of order 3 or more has more cut-vertices than end-vertices.
(d) A tree of order 3 or more has more cut-vertices than bridges.

5.4 Prove that if v is a cut-vertex of a graph G, then v is not a cut-vertex of the complement  of G.

5.5 Find a counterexample to each of the following statements.

(a) If G is a connected graph of order 13 and v is a cut-vertex of G, then there exists a
component of G − v containing at least 7 vertices.

(b) If G is a connected graph containing only even vertices, then G contains no cut-vertices.
(c) If G is a connected graph with a cut-vertex, then G contains a bridge.
(d) If G is a connected graph with a bridge, then G contains a cut-vertex.

5.6 Prove that a 3-regular graph G has a cut-vertex if and only if G has a bridge.

5.7 Prove that if T is a tree of order at least 3, then T contains a cut-vertex v such that every vertex
adjacent to v, with at most one exception, is an end-vertex.

5.8 (a) Let G be a nontrivial connected graph. Prove that if v is an end-vertex of a spanning tree of
G, then v is not a cut-vertex of G.

(b) Use (a) to give an alternative proof of the fact that every nontrivial connected graph
contains at least two vertices that are not cut-vertices.

(c) Let v be a vertex in a nontrivial connected graph G. Show that there exists a spanning tree of
G that contains all edges of G that are incident with v.

(d) Prove that if a connected graph G has exactly two vertices that are not cut-vertices, then G
is a path. [Recall that if a tree contains a vertex of degree exceeding 2, then T has more than
two end-vertices.]

5.2 Blocks

We now turn our attention from connected graphs containing cut-vertices to connected graphs that
contain no cut-vertices. A nontrivial connected graph with no cut-vertices is called a nonseparable
graph. Hence all of the graphs G4, G5, G6 and G7 of Figure 5.1 are nonseparable. In addition, K2 is a
nonseparable graph; indeed, K2 is the only nonseparable graph of order 2. Since nonseparable graphs
of order 3 or more contain no cut-vertices, they contain no bridges; that is, every edge lies on a cycle.
In fact, more can be said.



Theorem 5.7 A graph of order at least 3 is nonseparable if and only if every two vertices lie on
a common cycle.

Proof. First, suppose that G is a graph of order at least 3 such that every two vertices of G lie on a
common cycle. Assume, to the contrary, that G is not nonseparable. Since every two vertices lie on
a common cycle, every two vertices are connected and so G is connected. Because G is not
nonseparable, G must contain a cut-vertex, say v. Let u and w be two vertices that belong to
different components of G − v. By assumption, u and w lie on a common cycle C on G. However
then, C determines two distinct u − w paths of G, at least one of which does not contain v,
contradicting Theorem 5.3. Therefore, G contains no cut-vertices and so G is nonseparable.

We now verify the converse. Let G be a nonseparable graph of order at least 3. Since G contains
no cut-vertices, it follows by Corollary 5.2 that G contains no bridges. Assume, to the contrary, that
there are pairs of vertices of G that do not lie on a common cycle. Among all such pairs, let u, v be a
pair for which d(u, v) is minimum. If d(u, v) = 1, then uv  E(G) and uv must lie on a cycle, as we
observed earlier. Therefore, d(u, v) = k ≥ 2.

Let P = (u = v0, v1, …, vk  −1, vk = v) be a u − v path of length k in G. Since d(u, vk − 1) = k − 1 < k,
there is a cycle C containing u and vk  −1. By assumption, v is not on C. Since vk  − 1 is not a cut-vertex
of G and u and v are distinct from vk  − 1, it follows that there is a v − u path Q that does not contain vk

−1. Since u is on C, there is a first vertex x of Q that is on C. Let Q′ be the v − x subpath of Q (see
Figure 5.3) and let P′ be a vk  − 1 − x path on C that contains u. (If x ≠ u, then the path P′ is unique.)
However, the cycle C′ produced by proceeding from v to its neighbor vk  − 1, along P′ to x and then
along Q′ to v contains both u and v, a contradiction.

Figure 5.3: The cycle C and paths P′, Q′ in the proof of Theorem 5.7

If a nontrivial connected graph is not nonseparable, then it must contain cut-vertices as well as
certain nonseparable subgraphs that are of special interest. A maximal nonseparable subgraph of a
graph G is called a block of G. That is, a block of G is a nonseparable subgraph of a graph G that is
not a proper subgraph of any other nonseparable subgraph in G. Each block of G is an induced
subgraph of G. Therefore, if G itself is nonseparable, then G has only one block, namely the graph G.
On the other hand, if G is connected and has cut-vertices, then G has two or more blocks. Figure 5.4
shows a connected graph G with two cut-vertices u and v and four blocks B1, B2, B3 and B4. So, just
as a disconnected graph has special connected subgraphs called components, a connected graph with
cut-vertices contains special nonseparable subgraphs called blocks.

There is another way to look at blocks. First, we describe an equivalence relation that is defined
on the edge set of a nontrivial connected graph. (Again, recall that equivalence relations are reviewed
in Appendix 2.)



Theorem 5.8 Let R be the relation defined on the edge set of a nontrivial connected graph G by
e R f, where e, f  E(G), if e = f or e and f lie on a common cycle of G. Then R is an equivalence
relation.

Proof. It is immediate that R is reflexive and symmetric, so we need only show that R is transitive.
Let e, f, g  E(G) such that e R f and f R g. If e = f or f = g, then it follows that e R g. Hence we
may assume that e and f lie on a cycle C and that f and g lie on a cycle C′. If e lies on C′ or g lies
on C, then e R g. Thus we may assume that this does not occur.

Figure 5.4: A connected graph and its blocks

Let e = uv and suppose that P is the u − v path on C not containing e. Let x be the first vertex of P
belonging to C′ and y the last vertex of P belonging to C′. Furthermore, let P′ be the x − y path on C′
that contains g and let P″ be the x − y path on C that contains e. Then P′ and P″ produce a cycle C″
containing both e and g. Therefore, e R g.

The equivalence relation R described in Theorem 5.8 produces a partition of the edge set of every
nontrivial connected graph G into equivalence classes. Each subgraph of G induced by the edges in an
equivalence class is in fact a block of G. The following corollary of Theorem 5.8 provides properties
of blocks in a nontrivial connected graph.

Corollary 5.9 Every two distinct blocks B1 and B2 in a nontrivial connected graph G have the
following properties:

(a) The blocks B1 and B2 are edge-disjoint.

(b) The blocks B1 and B2 have at most one vertex in common.

(c) If B1 and B2 have a vertex v in common, then v is a cut-vertex of G.

Proof. That every two distinct blocks are edge-disjoint is an immediate consequence of Theorem
5.8. We now verify (b). Assume, to the contrary, that B1 and B2 have two distinct vertices u and v
in common. Since B1 and B2 are connected subgraphs of G, there is a u − v path P− in B1 and a u −



v path P″ in B2. Furthermore, since B1 and B2 are edge-disjoint, so too are P′ and P″. Let w be the
first vertex that P′ and P″ have in common after u (possibly w = v). The u − w subpath Q′ of P′ and
u − w subpath Q″ of P″ form a cycle in G containing an edge e1 of B1 and an edge e2 of B2. Hence
e1 and e2 belong to the same block of G, which is impossible. This verifies (b).

It remains to verify (c). Suppose that two blocks B1 and B2 of G have a vertex v in common. Then
v is incident with an edge e1 = vv1 in B1 and an edge e2 = vv2 in B2. Assume, to the contrary, that v is
not a cut-vertex of G. By Corollary 5.4, G has a v1 − v2 path P not containing v. Then P together with
v and the edges e1 and e2 produce a cycle containing e1 and e2. This is impossible, however, since e1
and e2 belong to distinct blocks of G.

We have indicated two ways that blocks can be described. Exercise 5.15 asks you to show that
these two interpretations of blocks are equivalent.

Exercises for Section 5.2

5.9 For the graph G of Figure 5.5, determine the cut-vertices, bridges and blocks of G.

Figure 5.5: The graph G in Exercise 5.9

5.10 Prove that a connected graph G of size at least 2 is nonseparable if and only if any two adjacent
edges of G lie on a common cycle of G.

5.11 Prove that if G is a graph of order n ≥ 3 such that deg v ≥ n/2 for every vertex v of G, then G is
nonseparable.

5.12 If a connected graph G contains three blocks and k cut-vertices, what are the possible values
for k? Explain your answer.

5.13 Prove or disprove: If G is a connected graph with cut-vertices and u and v are vertices of G
such that d(u, v) = diam(G), then no block of G contains both u and v.

5.14 Let G be a connected graph containing a cut-vertex v and let G1 be a component of G − v.

(a) Show that the induced subgraph G[V(G1)  {v}] of G is connected.

(b) Show that the induced subgraph G[V(G1)  {v}] of G need not be a block of G.

5.15 For a nontrivial connected graph G, a block of G has been defined as (1) a nonseparable
subgraph of G that is not a proper subgraph of any other nonseparable subgraph of G and has
been described as (2) a subgraph of G induced by the edges in an equivalence class resulting



from the equivalence relation defined in Theorem 5.8. Show that these two interpretations of
blocks are equivalent.

5.16 Give an example of a graph G with the following properties:

(a) every two adjacent vertices lie on a common cycle,
(b) there exist two adjacent edges that do not lie on a common cycle.

5.3 Connectivity

A connected graph G with cut-vertices has the property that G can be disconnected by the removal of
a single vertex. On the other hand, nonseparable graphs contain no cut-vertices. In a sense then,
nonseparable graphs are more highly connected than connected graphs with cut-vertices. This
suggests a way of measuring the connectedness of graphs. By a vertex-cut in a graph G, we mean a
set U of vertices of G such that G − U is disconnected. A vertex-cut of minimum cardinality in G is
called a minimum vertex-cut. If G is not complete, then G contains two nonadjacent vertices. The
removal of all vertices of G except these two nonadjacent vertices produces a disconnected graph. In
other words, every graph that is not complete has a vertex-cut. On the other hand, the removal of any
proper subset of vertices of a complete graph results in another complete graph. Therefore, a
connected graph contains a vertex-cut if and only if G is not complete.

If U is a minimum vertex-cut in a noncomplete connected graph G, then G − U is disconnected and
contains components G1, G2, …, Gk, where k ≥ 2. Every vertex u  U is adjacent to at least one
vertex in Gi for each i (1 ≤ i ≤ k); for otherwise U − {u} is also a vertex-cut, which is impossible.
The structure of such a graph G is indicated in Figure 5.6, where there are no edges between any two
distinct components of G − U.

Figure 5.6: A minimum vertex-cut in a graph

For a graph G that is not complete, the vertex-connectivity (or simply the connectivity) (G) of
G is defined as the cardinality of a minimum vertex-cut of G; if G = Kn for some positive integer n,
then (G) is defined to be n − 1. (The symbol  is the Greek letter kappa.) In general then, the
connectivity (G) of a graph G is the minimum value of |U| among all subsets U of V(G) such that G
− U is either disconnected or trivial. Therefore, for every graph G of order n,

Thus a nontrivial graph G has connectivity 0 if and only if G is disconnected; a graph G has



connectivity 1 if and only if G = K2 or G is a connected graph with cut-vertices; and a graph G has
connectivity 2 or more if and only if G is a nonseparable graph of order 3 or more. For the graphs of
Figure 5.1, (G1) = (G2) = (G3) = 1, (G4) = (G5) = 2, (G6) = 4 and (G7) = 6.

As it turns out, we will often be more interested in graphs that cannot be disconnected by
removing some prescribed number of vertices. For a nonnegative integer k, a graph G is said to be
k-connected if (G) ≥ k. Therefore, a k-connected graph is also -connected for every integer  with
0 ≤  ≤ k. In particular, the graphs G4, G5, G6 and G7 of Figure 5.1 are all 2-connected. The graphs G6
and G7 are also 3-connected, although neither G4 nor G5 is 3-connected. Thus G is 1-connected if and
only if G is nontrivial and connected, while G is 2-connected if and only if G is nonseparable and has
order at least 3. In general, a graph G is k-connected if and only if the removal of fewer than k
vertices does not result in a disconnected or trivial graph.

The connectivity of a graph G provides a measure of “how connected” G is. There are other
measures, including a common one involving the edges of G. An edge-cut in a nontrivial graph G is a
set X of edges of G such that G − X is disconnected. An edge-cut X of a connected graph G is minimal
if no proper subset of X is an edge-cut of G. If X is a minimal edge-cut of a connected graph G, then G
− X contains exactly two components G1 and G2. Necessarily then, X consists of all those edges of G
joining G1 and G2.

If X is an edge-cut of a connected graph G that is not minimal, then there is a proper subset Y of X
that is a minimal edge-cut. An edge-cut of minimum cardinality is called a minimum edge-cut. While
every minimum edge-cut is a minimal edge-cut, the converse is not true. For the graph H of Figure
5.7, consider the sets X1 = {e3, e4, e5}, X2 = {e1, e2, e6} and X3 = {e1, e6} of edges of H. All three of
these sets are edge-cuts because all of the graphs H − X1, H − X2 and H − X3 are disconnected. Both
X1 and X3 are minimal edge-cuts, while X2 is not a minimal edge-cut as X3 is a proper subset of X2.
The set X3 is a minimum edge-cut, while X1 and X2 are not.

Figure 5.7: Illustrating edge-cuts in a graph

The edge-connectivity λ(G) of a nontrivial graph G is the cardinality of a minimum edge-cut of G,
while we define λ(K1) = 0. (The symbol λ is the Greek letter lambda.) Thus λ(G) is the minimum
value of |X| among all subsets X of E(G) such that G − X is either a disconnected or trivial graph. For
every graph G of order n,

Note that λ(G) = 0 if and only if G is disconnected or G is trivial, while λ(G) = 1 if and only if G is
connected and contains a bridge. For the graph H of Figure 5.7, λ(G) = 2 since X3 = {e1, e6} is a
minimum edge-cut in H.

For a nonnegative integer k, a graph G is k-edge-connected if λ(G) ≥ k. Consequently, every k-



edge-connected graph is -edge-connected for every integer  with 0 ≤  ≤ k. Therefore, every 1-
edge-connected graph is nontrivial and connected and every 2-edge-connected graph is a connected
graph of order 3 or more that contains no bridges. For example, the graphs G3, G4 and G5 of Figure
5.1 are 2-edge-connected graphs that are not 3-edge-connected.

Theorem 5.10 For every positive integer n, λ(Kn) = n − 1.

Proof. By definition, λ(K1) = 0. Let G = Kn for n ≥ 2. Since every vertex of G has degree n − 1, if
we remove the n − 1 edges incident with a vertex, then a disconnected graph results. Thus λ(G) ≤ n
− 1. Now let X be a minimum edge-cut of G. So |X| = λ(G). Then G − X has exactly two components
G1 and G2, where G1 has order k, say, and G2 has order n − k. Since (1) X consists of all edges
joining G1 and G2 and (2) G is complete, it follows that |X| = k(n − k). Because k ≥ 1 and n − k ≥ 1,
we have (k − 1)(n − k − 1) ≥ 0 and so

Hence λ(G) = |X| = k(n − k) ≥ n − 1. Therefore, λ(Kn) = n − 1.

As we noted earlier, complete graphs do not contain vertex-cuts. But for a graph G that is not
complete, the cardinality of a minimum vertex-cut in G can never exceed the cardinality of any edge-
cut in G. Indeed, the following theorem provides us with inequalities concerning the connectivity,
edge-connectivity and minimum degree of a graph. The proof is similar, in part, to the argument we
just used to show that λ(Kn) = n − 1 in Theorem 5.10.

Theorem 5.11 For every graph G,

Proof. If G is disconnected or trivial, then (G) = λ(G) = 0 and the inequalities hold; while if G =
Kn for some integer n ≥ 2, then (G) = λ(G) =  (G) = n − 1. Thus we may assume that G is a
connected graph of order n ≥ 3 that is not complete. Hence (G) ≤ n − 2.

First, we show that λ(G) ≤ (G). Let v be a vertex of G with deg v = (G). Since the set of the 
(G) edges incident with v in G is an edge-cut of G, it follows that

It remains to show that (G) ≤ λ(G). Let X be a minimum edge-cut of G. Then |X| = λ(G) ≤ n − 2.
Necessarily, G − X contains exactly two components G1 and G2. Suppose that the order of G1 is k.
Thus the order of G2 is n − k, where k ≥ 1 and n − k ≥ 1. Consequently, every edge in X joins a vertex
of G1 and a vertex of G2. We consider two cases.

Case 1. Every vertex of G1 is adjacent in G to every vertex of G2. Thus |X| = k(n − k). Since (k −
1)(n − k − 1) ≥ 0, it follows that



and so λ(G) = |X| = k(n − k) ≥ n − 1. However, λ(G) ≤ n − 2; so this case cannot occur.

Case 2. There exist vertices u in G1 and v in G2 such that u and v are not adjacent in G. We
now define a set U of vertices of G. For each e  X, we select a vertex for U in the following way. If
u is incident with e, then choose the other vertex in G2 that is incident with e as an element of U;
otherwise, select the vertex that is incident with e and belongs to G1 as an element of U. Then |U| ≤
|X|. Since u, v  U and there is no u − v path in G − U, it follows that G − U is disconnected and so U
is a vertex-cut. Hence

as desired.

Theorem 5.11 is due to Hassler Whitney. Although a mathematician who made a number of
important contributions to graph theory, Whitney was primarily interested in topology. Whitney was
born in New York on March 23, 1907 and received his Ph.D. from Harvard in 1932 under the
direction of George David Birkhoff. Whitney’s doctoral dissertation was written in graph theory. He
stayed on at Harvard until 1952, when he accepted an offer from the Institute for Advanced Study at
Princeton. He remained there until he retired in 1977. During his life he was the recipient of many
mathematical awards: the National Medal of Science (1976), the Wolf Prize (1983) and the Steel
Prize (1985).

Although research was a large part of Whitney’s professional life, he contributed to mathematics
in many ways. During 1944-1949 he edited the American Journal of Mathematics and during 1949–
1954 he edited Mathematical Reviews. During 1953-1956, he chaired the National Science
Foundation mathematical panel. On the personal side, Whitney was an avid mountain climber. In fact,
the Whitney-Gilman Ridge on Cannon Cliff in Franconia, New Hampshire was named for him and his
cousin, who were the first to climb it (on August 3, 1939). Whitney died on May 10, 1989.

Both inequalities in Theorem 5.11 can be strict as the graph G in Figure 5.8 shows, where (G) =
1, λ(G) = 2 and (G) = 3. For cubic graphs, however, the connectivity and edge-connectivity are
always equal.

Theorem 5.12 If G is a cubic graph, then (G) = λ(G).

Figure 5.8: A graph G with λ(G) = 1, (G) = 2 and (G) = 3

Proof. For a cubic graph G, it follows that (G) = λ(G) = 0 if and only if G is disconnected. If 
(G) = 3, then λ(G) = 3 by Theorem 5.11. So two cases remain, namely (G) = 1 or (G) = 2. Let U
be a minimum vertex-cut of G. Then |U| = 1 or |U| = 2. So G − U is disconnected. Let G1 and G2 be
two components of G − U. Since G is cubic, for each u  U, at least one of G1 and G2 contains
exactly one neighbor of u.



Case 1. (G) = |U| = 1. Thus U consists of a cut-vertex u of G. Since some component of G − U
contains exactly one neighbor w of u, the edge uw is a bridge of G and so λ(G) = (G) = 1.

Case 2. (G) = |U| = 2. Let U = {u, v}. Assume that each of u and v has exactly one neighbor, say
u′ and v′, respectively, in the same component of G − U. (This is the case that holds if uv  E(G).)
Then X = {uu′, vv′} is an edge-cut of G and λ(G) = (G) = 2. (See Figure 5.9(a) for the situation
when u and v are not adjacent.)

Figure 5.9: A step in the proof of Case 2

Hence we may assume that u has one neighbor u′ in G1 and two neighbors in G2; while v has two
neighbors in G1 and one neighbor v′ in G2 (see Figure 5.9(b)). Therefore, uv  E(G) and X = {uu′,
vv′} is an edge-cut of G; so λ(G) = (G) = 2.

The connectivity of a graph G of a given order n and size m can only be so large. For example, if
m < n − 1, then G is disconnected by Theorem 4.7 and so (G) = 0. If m ≥ n − 1, then there is a sharp
upper bound for (G), which we present next. (See Appendix 1 for a review of the floor and ceiling
of a real number.)

Theorem 5.13 If G is a graph of order n and size m ≥ n − 1, then

Proof. Since the sum of the degrees of the vertices of G is 2m, the average degree of the vertices of
G is 2m/n and so (G) ≤ 2m/n. Since (G) is an integer, (G) ≤ 2m/n . By Theorem 5.11, (G) ≤ 
2m/n .

The bound given in Theorem 5.13 is sharp in the sense that for every two integers n and m with 
, there exists a graph G of order n and size m such that (G) = 2m/n . If m =

n − 1, then every tree T of order n has the desired property as

Hence we may assume that .
It is useful to describe a class of graphs Hr,n for integers r and n with 2 ≤ r < n such that Hr,n has



order n, is “nearly” r-regular, has size m and (Hr,n) = r = 2m/n . These graphs are referred to as
the Harary graphs, named for Frank Harary. (We will visit Harary again in Chapter 6). For the
purpose of describing these graphs, we introduce a new concept.

Let G be a connected graph of diameter d. For an integer k with 1 ≤ k ≤ d, the kth power Gk of G
is the graph with V(Gk) = V(G) such that uv is an edge of Gk if 1 ≤ dG(u, v) ≤ k. The graphs G2 and G3

are referred to as the square and cube, respectively, of G. The square  of C8 and the cube  of P6
are shown in Figure 5.10.

Figure 5.10: The square and cube of two graphs

If G is a connected graph, then not only is G2 connected, it is 2-connected.

Theorem 5.14 If G is a connected graph of order at least 3, then its square G2 is 2-connected.

We are now prepared to describe the Harary graphs Hr, n for integers r and n with 2 ≤ r < n. First,
let V(Hr,n) = {v1, v2, …, vn}; in fact, each graph Hr,n contains the n-cycle C = (v1, v2, …, vn, v1).
Suppose first that r is even, say r = 2k. Then Hr,n = Ck. In fact, the graph  shown in Figure 5.10 is
the Harary graph H4,8. Hence for r is even, Hr,n is an r-regular graph of order n.

Suppose next that r is odd, say r = 2k + 1 ≥ 3. First assume that n is even, say n = 2 . Then Hr,n

consists of the graph Hr−1, n = Ck together with all edges vivi +  for 1 ≤ i ≤ . Hence for r odd and n
even, the Harary graph Hr,n is also an r-regular graph of order n. The graph H5,8 is shown in Figure
5.11. Next assume that n is odd, say n = 2  + 1, where then  > k. In this case, Hr,n is obtained from
Hr −1, n = Ck by adding the edges vivi+ +1 for 1 ≤ i ≤  together with the edge v1v1 + . Hence for r odd
and n odd, the Harary graph Hr,n is a graph of order n containing n − 1 vertices of degree r and one
vertex of degree r + 1. The graph H5,9 is shown in Figure 5.11. Our interest in the Harary graphs
comes from the following fact.



Figure 5.11: The Harary graphs H5,8 and H5,9

Theorem 5.15 For every two integers r and n with 2 ≤ r < n,

If r is even or if r is odd and n is even, then Hr, n is an r-regular graph of order n and so has size m
= rn/2. Thus 2m/n  = r. On the other hand, if r and n are both odd, then Hr, n contains n − 1 vertices
of degree r and one vertex of degree r + 1 and so m = (rn + 1)/2. In this case as well, 2m/n  = r and
so by Theorem 5.13 (Hr, n) ≤ r. In fact, (Hr,n) ≤ (Hr,n) = r. While it is a bit tedious to show that 
(Hr,n) = r in general at this point, we will discuss this further in the next section.

Exercises for Section 5.3

5.17 Does it make sense to define the concept of a minimal vertex-cut in a graph? If so, how would
this be defined and what would be a natural question to ask? If not, why is this the case?

5.18 Let PG be the Petersen graph. Give an example of

(a) a minimum vertex-cut in PG.
(b) a vertex-cut U in PG such that U is not a minimum vertex-cut of PG and no proper subset

of U is a vertex-cut of PG.

5.19 Prove or disprove: Let G be a nontrivial graph. For every vertex v of G, (G − v) = (G) or 
(G − v) = (G) − 1.

5.20 Let G be a connected graph of order n = 4 and let k be an integer with 2 ≤ k ≤ n − 2.

(a) Prove that if G is not k-connected, then G contains a vertex-cut U with |U| = k − 1.
(b) Prove that if G is not k-edge-connected, then G contains an edge-cut X with |X| = k − 1.

5.21 Give an example of a graph with the following properties or explain why no such example
exists.

(a) a 2-connected graph that is not 3-connected.
(b) a 3-connected graph that is not 2-connected.
(c) a 2-edge-connected graph that is not 3-edge-connected.



(d) a 3-edge-connected graph that is not 2-edge-connected.

5.22 (a) Prove that if G is a k-connected graph and e is an edge of G, then G − e is (k − 1)-
connected.

(b) Prove that if G is a k-edge-connected graph and e is an edge of G, then G − e is (k − 1)-
edge-connected.

5.23 (a) Prove that if G is a k-connected graph, then G + K1 is (k + 1)-connected.

(b) Prove that if G is a k-edge-connected graph, then G + K1 is (k + 1)-edge-connected.

5.24 Let G be a graph of order n and let k be an integer with 1 ≤ k ≤ n − 1. Prove that if (G) ≥ (n +
k − 2)/2, then G is k-connected.

5.25 Give an example of a graph G with the following properties or explain why no such example
exists.

(a) (G) = 2, λ(G) = 3 and (G) = 4
(b) (G) = 3, λ(G) = 2 and (G) = 4
(c) (G) = 3, λ(G) = 3 and (G) = 2
(d) (G) = 2, λ(G) = 2 and (G) = 3

5.26 Prove that if G is a graph of order n such that (G) ≥ (n − 1)/2, then λ(G) = (G).

5.27 Prove or disprove:

(a) If G is a graph with (G) = k ≥ 1, then G − U is disconnected for every set U of k vertices
of G.

(b) If G is a graph with λ(G) = k ≥ 1, then G − X is disconnected for every set X of k edges of
G.

(c) If G is a connected graph and U is a minimum vertex-cut, then G − U contains exactly two
components.

(d) If G is a graph of order n that is not complete and contains a vertex v of degree n − 1, then
v belongs to every vertex-cut of G.

(e) If G is a graph of order n that contains a vertex v of degree n − 1, then every edge-cut of G
contains an edge incident with v.

5.28 (a) Show that if G is a 0-regular graph, then (G) = λ(G).

(b) Show that if G is a 1-regular graph, then (G) = λ(G).
(c) Show that if G is a 2-regular graph, then (G) = λ(G).
(d) By (a) − (c) and Theorem 5.12, if G is r-regular, where 0 ≤ r ≤ 3, then (G) = λ(G). Find

the minimum positive integer r for which there exists an r-regular graph G such that (G)
≠ λ(G). Verify your answer.

(e) Find the minimum positive integer r for which there exists an r-regular graph G such that
λ(G) ≥ (G) + 2.

(f) The problem in (e) should suggest another question to you. Ask and answer such a
question.



5.29 Give an example of

(a) a connected graph G such that every vertex of G belongs to a minimum vertex-cut but some
edge of G belongs to no minimum edge-cut.

(b) a connected graph H such that every edge of H belongs to a minimum edge-cut but some
vertex of H belongs to no minimum vertex-cut.

5.30 For a graph G, define  and , each maximized
over all subgraphs H of G. How are  and  related to  and λ(G), respectively,
and to each other?

5.31 In the graph G of Figure 5.12, the vertices represent street intersections and the edges represent
roads.

Figure 5.12: The graph in Exercise 5.31

(a) What is the maximum number k such that if road repairs are done at the same time to any k
roads (making use of these roads impossible), then it is still possible to travel between
every two intersections?

(b) What is the maximum number k such that if intersection repairs are done at the same time
to any k intersections (making use of these intersections impossible), then it is still
possible to travel between every two intersections that are not under repair?

5.32 Verify Theorem 5.14: If G is a connected graph of order at least 3, then its square G2 is
2-connected.

5.4 Menger’s Theorem

We have now seen that one measure of the connectedness of a graph is its vertex-connectivity which,
depends on the minimum number of vertices that must be removed to result in a disconnected or
trivial graph. We will see that connectivity can be looked at in another manner.

A set S of vertices of a graph G is said to separate two vertices u and v of G if G − S is
disconnected and u and v belong to different components of G − S. Thus, if S separates u and v, then
surely u and v are nonadjacent vertices and S is a vertex-cut of G. Certainly, the cardinality of S must
be at least as large as (G). Such a set S is called a u − v separating set. A u − v separating set of
minimum cardinality is called a minimum u − v separating set. An internal vertex of a u − v path P
is a vertex of P different from u and v. A collection {P1, P2, …, Pk} of u − v paths is called
internally disjoint if every two of these paths have no vertices in common other than u and v.



There are many theorems in mathematics which state that the minimum number of elements in some
set equals the maximum number of elements in some other set. The following theorem is such a “min-
max” theorem. It is referred to as Menger’s theorem.

Theorem 5.16 (Menger′s Theorem) Let u and v be nonadjacent vertices in a graph G. The
minimum number of vertices in a u − v separating set equals the maximum number of internally
disjoint u − v paths in G.

Proof. We proceed by induction on the size of the graph. Certainly, the result is true vacuously for
all empty graphs. Assume that the result is true for all graphs of size less than m, where m is a
positive integer, and let G be a graph of size m. Let u and v be two nonadjacent vertices of G.
Suppose that there are k vertices in a minimum u − v separating set. Certainly, G can contain no
more than k internally disjoint u − v paths. We show, in fact, that G contains k internally disjoint u
− v paths. Since the result is true for k = 0 and k = 1, we may assume that k ≥ 2. We consider three
cases.

Case 1. There exists a minimum u − v separating set U in G containing a vertex x that is
adjacent to both u and v. Then the size of the subgraph G − x is less than m and U − {x} is a
minimum u − v separating set in G − x consisting of k − 1 vertices. By the induction hypothesis, there
are k − 1 internally disjoint u − v paths in G − x. These paths together with the path (u, x, v) constitute
k internally disjoint u − v paths in G.

Case 2. There exists a minimum u − v separating set W in G containing a vertex in W that is not
adjacent to u and a vertex in W that is not adjacent to v. Let W = {w1, w2, …, wk}. Let Gu be the
subgraph of G consisting of all u − wi paths in G, where only wi  W for each i (1 ≤ i ≤ k) and let G′u
be the graph obtained from Gu by adding a new vertex v′ and joining v′ to each vertex wi for 1 ≤ i ≤ k.
Let Gv and G′v be defined similarly, where G′v is obtained from Gv by adding the new vertex u′.
Representations of the graphs Gu, G′u, Gv and Gvv are shown in Figure 5.13.

Figure 5.13: The graphs Gu, G′u, Gv and G′v in Case 2

Since W contains a vertex that is not adjacent to u and a vertex that is not adjacent to v, the size of
each of the graphs G′u and G′v is less than m. Since W is a minimum u − v separating set in G′u, it
follows by the induction hypothesis that G′u contains k internally disjoint u − v′ paths, each consisting
of a u − wi path Pi followed by the edge wiv′. Similarly, there are k internally disjoint u′ − v paths in



G′v, each consisting of a wi − v path Qi preceded by the edge u′wi. Since W is a u − v separating set in
G, the two graphs Gu and Gv have only the vertices of W in common. Therefore, the k paths obtained
by following Pi by Qi for each i (1 ≤ i ≤ k) are internally disjoint u − v paths in G.

Case 3. For each minimum u − v separating set S in G, either every vertex of S is adjacent to u
and not adjacent to v or every vertex of S is adjacent to v and not adjacent to u. Let P = (u, x, y,...,
v) be a u − v geodesic in G and let e = xy. Consider the subgraph G − e in G. Certainly, every
minimum u − v separating set in G − e contains at least k − 1 vertices. We claim, in fact, that a
minimum u − v separating set in G − e contains k vertices, for assume, to the contrary, that G − e
contains a minimum u − v separating set Z = {z1, z2, …, zk  − 1}. Then Z  {x} is a minimum u − v
separating set in G. Since x is adjacent to u, each vertex zi (1 ≤ i ≤ k − 1) is also adjacent to u and not
adjacent to v. On the other hand, Z  {y} is a minimum u − v separating set in G and each zi (1 ≤ i ≤ k
− 1) is adjacent to u. This implies that y is also adjacent to u, which contradicts the fact that P is a u −
v geodesic. Therefore, as claimed, k is the minimum number of vertices in a u − v separating set in G
− e. By the induction hypothesis, there are k internally disjoint u − v paths in G − e. Hence there are k
internally disjoint u − v paths in G as well.

In the graph G of Figure 5.14, U = {w1, w2, w3} is a u − v separating set. Since there is no u − v
separating set with fewer than three vertices, U is a minimum u − v separating set. By Theorem 5.16,
there are three internally disjoint u − v paths in G (as indicated in bold in Figure 5.14).

Figure 5.14: Illustrating Menger’s Theorem

As we mentioned above, Theorem 5.16 is referred to as Menger’s Theorem, named for Karl
Menger who was born in Vienna, Austria on January 13, 1902. Menger developed a talent for
mathematics and physics at an early age and entered the University of Vienna in 1920 to study
physics. The following year he attended a lecture by Hans Hahn on Neueres über den Kurvenbegriff
(What’s new concerning the concept of a curve) and Menger’s interests turned towards mathematics.
In the lecture it was mentioned that there was no satisfactory definition of a curve (at that time),
despite unsuccessful attempts to do so by a number of distinguished mathematicians, including Georg
Cantor, Camille Jordan and Giuseppe Peano. Some mathematicians including Felix Hausdorff and
Ludwig Bieberbach felt that it was unlikely that this problem would ever be solved. Despite being an
undergraduate with limited mathematical background, Menger solved the problem and presented his
solution to Hahn. This led Menger to work on curve and dimension theory.

Menger became quite ill while a student and his studies were interrupted. During this time both of
his parents died. He eventually returned to the university where he completed his studies under Hahn



in 1924. The next year Menger went to Amsterdam to work with Luitzen Brouwer and Menger
broadened his mathematical interests. In 1927 Menger returned to the University of Vienna to accept
the position of Chair of Geometry. It was during that year that he published the paper “Zur
allgemeinen Kurventheorie” (Menger’s theorem). Menger himself referred to this result as the “n-arc
theorem” and proved it as a lemma for a theorem in curve theory.

In the spring of 1930, Karl Menger traveled to Budapest and met many Hungarian mathematicians,
including Dénes König. Menger had read some of König’s papers. During his visit, Menger learned
that König was working on a book that would contain what was known at that time about graph
theory. Menger was pleased to hear this and mentioned his theorem to König, which had only been
published three years earlier. König was not aware of Menger’s work and, in fact, didn’t believe that
the theorem was true. Indeed, the very evening of their meeting, König set out to construct a
counterexample. When the two met again the next day, König greeted Menger with “A sleepless
night!”. König then asked Menger to describe his proof, which he did. After that, König said that he
would add a final section to his book on the theorem, which he did. This was a major reason why
Menger’s theorem became so widely known among those interested in graph theory.

Because of the political situation in Austria in 1938, Menger left for a position in the United States
at the University of Notre Dame. While there, his work emphasized geometry, which didn’t have the
impact of his earlier work since geometry was not a subject of great interest to many, especially in the
United States. Menger went to the Illinois Institute of Technology in 1948 and spent the rest of his life
in the Chicago area. Menger was considered one of the leading mathematicians of the 20th century.
He died on October 5, 1985.

With the aid of Menger’s theorem, Hassler Whitney was able to present a characterization of k-
connected graphs.

Theorem 5.17 A nontrivial graph G is k-connected for some integer k ≥ 2 if and only if for each
pair u, v of distinct vertices of G there are at least k internally disjoint u − v paths in G.

Proof. Since the result holds if G is complete, we may assume that G is not complete. Assume that
G is a k-connected graph, where k ≥ 2. Let u and v be two distinct vertices of G. Suppose first that
u and v are not adjacent and let U be a minimum u − v separating set. Then |U| ≥ (G) ≥ k. By
Theorem 5.16, G contains at least k internally disjoint u − v paths. Next, suppose that u and v are
adjacent, where e = uv. Then G − e is (k − 1)-connected (see Exercise 5.22). Let W be a minimum
u − v separating set in G − e. Thus

By Theorem 5.16, G − e contains at least k − 1 internally disjoint u − v paths, and so G contains at
least k internally disjoint u − v paths.

For the converse, assume that G is a graph containing at least k internally disjoint u − v paths for
every pair u, v of distinct vertices of G. Let U be a minimum vertex-cut of G. Then |U| = (G). Let x
and y be vertices in distinct components of G − U. Thus U is an x − y separating set of G. Since there
are at least k internally disjoint x − y paths in G, it follows by Theorem 5.16 that (G) = |U| ≥ k.
Therefore, G is k-connected.

Whitney’s theorem (Theorem 5.17) then gives us an alternative method for determining the
connectivity of a graph G. Not only is (G) the minimum number of vertices whose removal from G
results in a disconnected or trivial graph but (G) is the maximum positive integer k for which every



two vertices u and v in G are connected by k internally disjoint u − v paths in G.
In the preceding section we described for integers r and n with 2 ≤ r < n a class of graphs Hr,n of

order n called the Harary graphs. Each such graph contains a n-cycle C = (v1, v2, …, vn, v1). If r = 2k
is even, then Hr,n is the kth power Ck of C. If r = 2k + 1 is odd and n = 2  is even, then Hr,n consists
of Hr − 1, n = Ck together with the edges vivi +  for 1 ≤ i ≤ ; while if r = 2k + 1 and n = 2  + 1 are
both odd, then Hr,n consists of Hr −1, n = Ck together with the edges vivi+  for 1 ≤ i ≤  and the
additional edge v1v1 + . We saw that (Hr,n) = r in each case and that 2m/n  = r; thus (Hr,n) ≤ r.
Theorem 5.15 states that the connectivity of Hr,n is, in fact, r for all such r and n. To verify that 
(Hr,n) = r, we need only show that (1) the removal of fewer than r vertices from Hr,n results in a
nontrivial connected graph or (2) every two vertices u and v in Hr, n are connected by r internally
disjoint u − v paths (see Exercise 5.38).

The following result indicates one way of constructing a k-connected graph from a given k-
connected graph. With the aid of Whitney’s theorem, Theorem 5.18 can then be used to provide a
proof of Corollary 5.19. Proofs of both Theorem 5.18 and Corollary 5.19 are left as exercises.

Theorem 5.18 Let G be a k-connected graph and let S be any set of k vertices. If a graph H is
obtained from G by adding a new vertex w and joining w to the vertices of S, then H is also k-
connected.

We have mentioned that a collection {P1, P2, …, Pk} of u − v paths are internally disjoint if every
two distinct paths in the collection have only u and v in common, that is, each internal vertex in one of
the paths lies on no other path in the collection. More generally, for k + 1 distinct vertices u, v1, v2,
…, vk, a collection {P1, P2, …, Pk} of k paths, where Pi is a u − vi path (1 ≤ i ≤ k), are internally
disjoint if every two distinct paths in the collection have only u in common. For 2k distinct vertices
u1, u2, …, uk, v1, v2, …, vk, a collection {P1, P2, …, Pk} of k paths, where Pi is a ui − vi path (1 ≤ i ≤
k), are disjoint if no two distinct paths in the collection have a vertex in common.

Corollary 5.19 If G is a k-connected graph and u, v1, v2, …, vk are k + 1 distinct vertices of G,
then there exist internally disjoint u − vi paths (1 ≤ i ≤ k) in G.

We saw in Theorem 5.7 that if a graph G is a 2-connected graph (that is, a nonseparable graph of
order at least 3), then every two vertices of G lie on a common cycle. Gabriel Dirac obtained a
generalization of this result for k-connected graphs.

Theorem 5.20 If G is a k-connected graph, k ≥ 2, then every k vertices of G lie on a common
cycle of G.

Proof. Let S = {v1, v2, …, vk} be a set of k vertices of G. We show that there exists a cycle in G
containing every vertex of S. Among all cycles in G, let C be one containing a maximum number 
of vertices of S. We claim that  = k. Assume, to the contrary, that  < k. Since G is k-connected, k
≥ 2, it follows that G is 2-connected and so 2 ≤  < k by Theorem 5.7. We may assume that C
contains the vertices v1, v2, …, vl of S and that the vertices of S on C appear in the order v1, v2, …,



v  as we proceed cyclically about C.
Since  < k, there is a vertex u  S that does not belong to C. Furthermore, since 2 ≤  < k, the

graph G is -connected as well. Suppose first that the order of C is . Applying Corollary 5.19 to the
vertices u, v1, v2, …, v , we see that G contains internally disjoint u − vi paths Pi (1 ≤ i ≤ ).
Replacing the edge v1 v2 by P1 and P2 produces a cycle containing the vertices u, v1, v2, …, v , which
gives a contradiction.

Hence we may assume that C contains a vertex v0  S. Since 2 ≤  + 1 ≤ k, the graph G is (  + 1)-
connected. Applying Corollary 5.19 to the vertices u, v0, v1, v2, …, v , we see that G contains
internally disjoint u − vi paths Pi (0 ≤ i ≤ ). Let v′i (0 ≤ i ≤ ) be the first vertex of Pi that belongs to
C (possibly v′i = vi) and let P′i be the u − v′i subpath of Pi. Since there are  + 1 paths P′i and v
vertices of C that belong to S, there are distinct vertices v′r and v′t, where 0 ≤ r, t ≤ , for which there
is a v′r − v′t path P′ on C having no interior vertices belonging to S. Deleting the interior vertices of P′
from C and adding the paths P′r and P′t produces a cycle containing the vertices u, v1, v2, …, v ,
which is a contradiction.

All of the results mentioned in this section concern connectivity. There are also edge-connectivity
analogues of both Theorems 5.16 and 5.17. We state these next.

Theorem 5.21 For distinct vertices u and v in a graph G, the minimum number of edges of G
that separate u and v equals the maximum number of pairwise edge-disjoint u − v paths in G.

Theorem 5.22 A nontrivial graph G is k-edge-connected if and only if G contains k pairwise
edge-disjoint u − v paths for each pair u, v of distinct vertices of G.

Exercises for Section 5.4

5.33 Let G be a 5-connected graph and let u, v and w be three distinct vertices of G. Prove that G
contains two cycles C and C′ that have only u and v in common but neither of which contains w.

5.34 Prove Theorem 5.18: Let G be a k-connected graph and let S be any set of k vertices. If a
graph H is obtained from G by adding a new vertex w and joining w to the vertices of S, then
H is also k-connected.

5.35 Prove Corollary 5.19: If G is a k-connected graph and u, v1, v2, …, vk are k + 1 distinct
vertices of G, then there exist internally disjoint u − vi paths (1 ≤ i ≤ k) in G.

5.36 Let G be a k-connected graph of order n ≥ 2k and let U and W be two disjoint sets of k vertices
of G. Prove that there exist k disjoint paths connecting U and W.

5.37 Determine the connectivity and edge-connectivity of the n-cube Qn.

5.38 Verify that (Hr, n) = r by showing that every two vertices u and v in Hr, n are connected by r
internally disjoint u − v paths for the following values r and n. (a) r = 3 and n = 8. (b) r = 4 and
n = 8.



5.5 Exploration: Powers and Edge Labelings

We have seen for integers r and n with 2 ≤ r < n that the Harary graphs Hr, n have minimum degree r,
order n and size m with (G) = r = 2m/n . These graphs were defined in terms of powers of cycles.
We also mentioned that the square of every connected graph of order 3 or more is 2-connected. In
fact, if k and n are integers with 2 ≤ k < n and G is a connected graph of order n, then Gk is k-
connected (see Exercise 5.39).

In particular, for every connected graph G of order n ≥ 3 and every two distinct vertices u and v of
G, there exist in G2 two internally disjoint u − v paths P and P′. Of course, each edge of P and P′
belongs either to G or to G2 − E(G). Label each edge of G2 that belongs to G with the label 1 and
label each edge of G2 not belonging to G with the label 2. In general, an edge uv of Gk is labeled i (1
≤ i ≤ k) if dG(u, v) = i. Such a graph Gk is then called a distance-labeled graph. A path P in Gk is
called proper if every two adjacent edges in P have different labels. Later we will see that this is
related to the topic of graph colorings (discussed in Chapter 10). While for every connected graph G
of diameter 2 or more, the graph G2 contains a proper u − v path for every two vertices u and v, the
graph G2 need not contain two internally disjoint proper u − v paths. (See Exercises 5.40 and 5.41.)

Let G be a connected graph of diameter d ≥ 2 and let k be an integer with 2 < k < d. If Gk is a
distance-labeled graph and e is an edge labeled j where 1 < j ≤ k, then e is necessarily adjacent to an
edge labeled i for every integer i with 1 ≤ i < j (see Exercise 5.42). This property possessed by
distance-labeled graphs Gk suggests other concepts.

Let G be a connected graph. By a proper edge labeling of G we mean a labeling of the edges of G
from the set {1, 2, …, k} for some positive integer k such that no two adjacent edges are labeled the
same.

We now turn our attention to proper edge labelings of trees. A proper edge labeling of a tree T
from the elements of the set {1, 2, …, k} is called a Grundy labeling if the labeling has the property
that whenever an edge e is labeled j where 1 < j ≤ k, then e is adjacent to an edge labeled i for every
integer i with 1 ≤ i < j. Grundy labelings are named for Patrick Michael Grundy (1917–1959), whose
interests included combinatorial games. The maximum positive integer k for which a tree T has a
Grundy labeling from the set {1, 2, …, k} is called the Grundy index Γ′(T) of T. For every tree T, the
Grundy index Γ′(T) exists and Δ(T) ≤ Γ′(T) ≤ 2Δ(T) − 1. (See Exercise 5.43.) For example, Γ′(T) = 4
for the tree T of Figure 5.15.

Figure 5.15: A tree with Grundy index 4

By an achromatic edge labeling of a tree T we mean a proper edge labeling of T from the
elements of the set S = {1, 2, …, k} for some positive integer k such that for every two distinct
elements i and j of S, there exist adjacent edges labeled i and j. The maximum k for which T has an



achromatic edge labeling is called the achromatic index of T and is denoted by ′(T). For example,
ψ′(P9) = 4 (see Figure 5.16).

Figure 5.16: An achromatic edge labeling of P9

Exercises for Section 5.5

5.39 Prove that if G is a connected graph of order n and k is an integer with 2 ≤ k < n, then Gk is k-
connected.

5.40 Show for every connected graph G of diameter 2 or more and every two vertices u and v in G
that G2 contains a proper u − v path but not necessarily two internally disjoint proper u − v
paths.

5.41 Show for every connected graph G of diameter 3 or more and every two vertices u and v in G
that G3 contains two internally disjoint proper u − v paths but not necessarily three internally
disjoint proper u − v paths.

5.42 Let G be a connected graph of diameter d ≥ 2 and let k be an integer with 2 ≤ k ≤ d. Prove that
if Gk is a distance-labeled graph and e is an edge labeled j where 1 < j ≤ k, then e is adjacent
to an edge labeled i for every integer i with 1 ≤ i < j.

5.43 Show that the Grundy index Γ′(T) exists for every tree T and that

5.44 Does there exist an integer n < 9 such that ψ′(Pn) = 4?

5.45 Show that Γ′(T) ≤ ψ′(T) for every nontrivial tree T.

5.46 Give an example of a nontrivial tree T such that Γ′(T) ≠ ψ′(T).

5.47 Show that if ψ′(T) = k for some tree T, then .



Chapter 6

Traversability

6.1 Eulerian Graphs

Figure 6.1(a) shows the layout of a housing development in a community, where mailboxes are placed
along one side of each street (indicated by double lines in the diagram). Can a letter carrier make a
round trip through the development and pass by each mailbox but once? Figure 6.1(b) shows that the
answer to this question is yes.

Figure 6.1: A housing development and a route of a letter carrier

The streets in the housing development can be represented quite naturally by the graph G of Figure
6.2, where the vertices represent the street intersections and the edges represent the streets. In terms
of graph theory, the question for the letter carrier can be rephrased as follows: Does the graph G of
Figure 6.2 have a circuit that contains every edge of G? The letter carrier’s route shown in Figure
6.1(b) tells us that the circuit

in the graph G of Figure 6.2 has the desired property.



Figure 6.2: Modeling the streets of a housing development by a graph

This brings us to the main topic of this section. A circuit C in a graph G is called an Eulerian
circuit (pronounced oy-LEER-e-an) if C contains every edge of G. Since no edge is repeated in a
circuit, every edge appears exactly once in an Eulerian circuit. Certainly, only graphs with one
nontrivial component can contain such a circuit. For this reason, we restrict ourselves to connected
graphs when investigating the question of whether a graph has an Eulerian circuit. A connected graph
that contains an Eulerian circuit is called an Eulerian graph. In particular, the graph G of Figure 6.2
is an Eulerian graph.

An Eulerian circuit in a connected graph G is therefore a closed trail that contains every edge of
G. There will also be occasions when we will be interested in open trails that contain every edge of a
graph. For a connected graph G, we refer to an open trail that contains every edge of G as an
Eulerian trail. For example, the graph G of Figure 6.3 contains the Eulerian trail

Figure 6.3: A graph with an Eulerian trail

To understand why the adjective “Eulerian” is used here, let us go back several years, indeed a
few centuries, to 17th and 18th century Switzerland, when thirteen members of the remarkable
Bernoulli family became distinguished mathematicians. Among the most prominent were two
brothers, Jaques and Jean, the latter also known as John or Johann. Although the accomplishments of
Johann and the other Bernoullis were numerous, one of Johann’s major accomplishments may have
been to convince the father of a young Leonhard Euler (pronounced OY-ler) to have his son
discontinue studying theology and study mathematics instead. Later Johann Bernoulli became the
mathematical advisor of Euler. When one individual serves as the academic advisor (usually doctoral
advisor) of another, the advisor is referred by some as the academic father (or academic mother) of
the student. This provides a sense of “family” for teacher and student. Hence Johann Bernoulli could
be called the academic father of Euler.

Euler was born in Basel, Switzerland on April 15, 1707. While in his 20s, he became ill and lost
vision in one of his eyes. Later, he developed a cataract in his other eye and spent the last few years
of his life totally blind. However, just as the magnificent composer Ludwig van Beethoven did much
of his work while totally deaf, Euler did much of his mathematical research while totally blind.



During his lifetime, more than 500 research papers and books of his were published. After his death
(from a stroke) on September 18, 1783, another 400 were published. At that time and for a good many
years afterwards, Euler had more publications than any other mathematician, only to be exceeded in
the 20th century by Paul Erd s (pronounced AIR-dish), an academic descendant of Euler. We will
visit Paul Erd s later.

While Euler made significant contributions to every area of mathematics that existed during his
lifetime, it is a contribution he made to an area of mathematics that did not exist during his lifetime
that is of primary interest to us here.

The city of Königsberg, located in Prussia, would play an interesting role in Euler’s life and in the
history of graph theory. The River Pregel flowed through Königsberg, separating it into four land
areas. Seven bridges were built over the river that allowed the citizens of Königsberg to travel
between these land areas. A map of Königsberg, showing the four land areas (labeled A, B, C, D), the
location of the river and the seven bridges at that time are given in Figure 6.4.

Figure 6.4: Königsberg in the early 18th century

The story goes that the citizens of Königsberg enjoyed going for walks throughout the city.
Evidently, some citizens wondered whether it was possible to go for a walk in Königsberg and pass
over each bridge exactly once. This became known as the Königsberg Bridge Problem. Evidently
this problem remained unsolved for some time and became well known throughout the region. This
problem eventually came to the attention of Euler (who was believed to be in St. Petersburg at the
time). Although the subject of graph theory did not yet exist and certainly Euler’s solution of this
problem did not involve graphs, his solution had overtones of what would become graph theory. In
particular, the situation in Königsberg can be represented by the multigraph in Figure 6.5.

Figure 6.5: The Königsberg multigraph



When considering a walk W in some multigraph M, it is not enough to express W as a sequence of
vertices. For example, if u, v are consecutive vertices in W and there are parallel edges joining u and
v in M, then it must somehow be indicated which edge is being traversed, such as u, e, v.

In graph theory terms, the Königsberg Bridge Problem is: Does the multigraph M of Figure 6.5
contain an Eulerian circuit or an Eulerian trail? (Of course, Euler didn’t use these terms.) Suppose
that such a journey over the seven bridges of Königsberg was possible. Then it must begin at some
land area and end at a land area (possibly the same one). Such a journey must therefore result in a
trail of length 7 (one edge for each bridge) that encounters eight vertices (including repetition),
namely,

Each of the vertices vi (1 ≤ i ≤ 8) represents a land area (A, B, C or D). Certainly each land area must
appear in T. Observe that all four vertices of the multigraph M have odd degree. At least two vertices
of M are neither the initial nor the terminal vertex of T. Thus each time that such a vertex is entered
along T, it is exited. However, this implies that the vertex has even degree, which is impossible.
Consequently, a walk that passes over every bridge in Königsberg exactly once is impossible as well.

Königsberg was founded in 1255 and was the capital of German East Prussia. The Prussian Royal
Castle was located in Königsberg but it was destroyed during World War II, as was much of the city.
Because of the outcome of the war, it was decided at the Potsdam Conference in 1945 that a region
located between Poland and Lithuania, containing the city of Königsberg, should be made part of
Russia. In 1946, Königsberg was renamed Kaliningrad after Mikhail Kalinin, the formal leader of the
Soviet Union during 1919-1946. After the fall of the USSR, Lithuania and other former Soviet
republics became independent and Kaliningrad was no longer part of Russia. None of the attempts to
change its name back to Königsberg have been successful.

Returning to the multigraph M of Figure 6.5, we are led to ask what characteristic it possesses that
doesn’t allow it to have an Eulerian circuit or an Eulerian trail. We have already mentioned that all
four vertices of M have odd degree. This, it turns out, is the key observation. For a connected graph G
to be Eulerian, it is both necessary and sufficient that each vertex of G has even degree.

Theorem 6.1 A nontrivial connected graph G is Eulerian if and only if every vertex of G has
even degree.

Proof. Assume first that G is Eulerian. Then G contains an Eulerian circuit C. Suppose that C
begins at the vertex v (and therefore ends at u). We show that every vertex of G is even. Let v be a
vertex of G different from u. Since C neither begins nor ends at v, each time that v is encountered
on C, two edges are accounted for (one to enter v and another to exit v). Thus v has even degree.
Now to u. Since C begins at u, this accounts for one edge. Another edge is accounted for because C
ends at u. If u is encountered at other times, two edges are accounted for. So u is even as well.

For the converse, assume that G is a nontrivial connected graph in which every vertex is even. We
show that G contains an Eulerian circuit. Among all trails in G, let T be one of maximum length.
Suppose that T is a u − v trail. We claim that u = v. If not, then T ends at v. It is possible that v may
have been encountered earlier in T. Each such encounter involves two edges of G, one to enter v and
another to exit v. Since T ends at v, an odd number of edges at v has been encountered. But v has even
degree. This means that there is at least one edge at v, say vw, that does not appear on T. But then T



can be extended to w, contradicting the assumption that T has maximum length. Thus T is a u − u trail,
that is, C = T is a u − u circuit. If C contains all edges of G, then C is an Eulerian circuit and the proof
is complete.

Suppose then that C does not contain all edges of G, that is, there are some edges of G that do not
lie on C. Since G is connected, some edge e = xy not on C is incident with a vertex x that is on C. Let
H = G − E(C), that is, H is the spanning subgraph of G obtained by deleting the edges of C. Every
vertex of C is incident with an even number of edges on C. Since every vertex of G has even degree,
every vertex of H has even degree. It is possible, however, that H is disconnected. On the other hand,
H has at least one nontrivial component, namely, the component H1 of H containing the edge xy. This
means that H1 is connected and every vertex of H1 has even degree. Consider a trail of maximum
length in H1, beginning at x. As we just saw, this trail must also end at x and is an x – x circuit C′ of
H1.

Now if, in the circuit C, we were to attach C′ when we arrive at x, we obtain a circuit C″ in G of
greater length than C, which is a contradiction. This implies that C contains all edges of G and is an
Eulerian circuit.

Although Theorem 6.1 is credited to Leonhard Euler, as indeed it should, Euler’s proof was
incomplete. Euler failed to show that if every vertex of a connected graph G is even, then G is
Eulerian. While Euler did not give a proof with the care and precision that is normally done today, it
is quite likely that Euler felt this implication was clear. Nevertheless, it wasn’t until 1873 that the
missing portion of the proof was published. The proof was completed by Carl Hierholzer. Actually at
that time Hierholzer had died but he had told a colleague what he had done and his colleague kindly
wrote the paper for him and listed Hierholzer as its sole author.

With the aid of Theorem 6.1, it is now easy to characterize graphs possessing an Eulerian trail.

Corollary 6.2 A connected graph G contains an Eulerian trail if and only if exactly two vertices
of G have odd degree. Furthermore, each Eulerian trail of G begins at one of these odd vertices
and ends at the other.

Proof. Assume first that G contains an Eulerian trail T. Thus T is a u − v trail for some distinct
vertices u and v. We now construct a new connected graph H from G by adding a new vertex x of
degree 2 and joining it to u and v. Then C = (T, x, u) is an Eulerian circuit in H. By Theorem 6.1,
every vertex of H is even and so only u and v have odd degrees in G = H − x.

For the converse, we proceed in a similar manner. Let G be a connected graph containing exactly
two vertices u and v of odd degree. We show that G contains an Eulerian trail T, where T is either a u
− v trail or a v − u trail. Add a new vertex x of degree 2 to G and join it to u and v, calling the
resulting graph H. Therefore, H is a connected graph all of whose vertices are even. By Theorem 6.1,
H is an Eulerian graph containing an Eulerian circuit C. Since it is irrelevant which vertex of C is the
initial (and terminal) vertex, we assume that C is an x − x circuit. Since x is incident only with the
edges ux and vx, one of these is the first edge of C and the other is the final edge of C. Deleting x from
C results in an Eulerian trail T of G that begins either at u or v and ends at the other.

As a result of Theorem 6.1 and Corollary 6.2, it is now relatively easy to determine whether a
graph contains an Eulerian circuit or an Eulerian trail. Furthermore, Theorem 6.1 and Corollary 6.2
both hold if “graph” is replaced by “multigraph.”



Certainly, Cn, n ≥ 3, is Eulerian and Pn, n ≥ 2, contains an Eulerian trail. A complete graph is
Eulerian if and only if n ≥ 3 and n is odd; while Ks, t is Eulerian if and only if s and t are both even.
The graph K2,t contains an Eulerian trail if and only if t is odd. The n-cube Qn is Eulerian if and only
if n ≥ 2 and n is even. We have seen that the n-cube Qn, n ≥ 2, is defined as the Cartesian product of
the (n − 1)-cube Qn−1 and K2. This suggests a question.

Example 6.3 Find a necessary and sufficient condition for the Cartesian product G × H of two
nontrivial connected graphs G and H to be Eulerian.

Solution. We can think of G × H as being constructed by replacing each vertex v of G by a copy Hv
of H. Let x be a vertex of G × H. Then x belongs to Hv for some vertex v of G. The vertex x is
adjacent to its neighbors in Hv as well as to one vertex in Hu for every neighbor u of v in G. Thus

Hence degG×H x is even if and only if degHv
 x and degG v are both even or both odd (that is, they are

of the same parity).
If degHv

 x is even, then degG v is even for every vertex v of G; while if degHv
 x is odd, then degG v

is odd for every vertex v of G. We have therefore arrived at the following:

Let G and H be nontrivial connected graphs. Then G × H is Eulerian if and only if both G
and H are Eulerian or every vertex of G and H is odd.

Exercises for Section 6.1

6.1 The diagram of Figure 6.6 shows the nine rooms on the second floor of a large house with
doorways between various rooms. Is it possible to start in some room and go for a walk so that
each doorway is passed through exactly once? How is this question related to graph theory?

Figure 6.6: The diagram in Exercise 6.1

6.2 Let G1 and G2 be two Eulerian graphs with no vertex in common. Let v1  V(G1) and v2 
V(G2). Let G be the graph obtained from G1  G2 by adding the edge v1v2. What can be said
about G?



6.3 Let G1, G2 and G3 be pairwise disjoint connected regular graphs and let G = G1 + (G2 + G3) be
the graph obtained from G1, G2 and G3 by adding edges between every two vertices belonging
to two of G1, G2 and G3. Prove that if G1 and  are Eulerian but G2 and G3 are not Eulerian,
then G is Eulerian.

6.4 Give an example of a graph G such that

(a) both G and  are Eulerian.
(b) G is Eulerian but  is not.
(c) neither G nor  is Eulerian and both G and  contain an Eulerian trail.
(d) neither G nor  is Eulerian, but G contains an Eulerian trail and  does not.
(e) G contains an Eulerian trail and an edge e such that G − e is Eulerian.

6.5 Only one graph of order 5 has the property that the addition of any edge produces an Eulerian
graph. What is it?

6.6 Let G be a connected regular graph that is not Eulerian. Prove that if  is connected, then  is
Eulerian.

6.7 Let G be an r-regular graph of odd order n and let , where F and G have disjoint vertex
sets. A graph H is constructed from G and F by adding two new vertices u and v and joining u
and v to each other as well as to every vertex of G and F. Which of the following is true?

(a) H is Eulerian.
(b) H has an Eulerian trail.
(c) H has neither an Eulerian circuit nor an Eulerian trail.

6.8 (a) Show that every nontrivial connected graph G has a closed spanning walk that contains
every edge of G exactly twice.

(b) Which nontrivial connected graphs G have closed spanning walks that contain every edge
of G exactly three times?

6.2 Hamiltonian Graphs

Figure 6.7 shows a diagram of a modern art museum that is divided into 15 exhibition rooms. At the
end of each day, a security officer enters the reception room by the front door and checks each
exhibition room to make certain that everything is in order. It would be most efficient if the officer
could visit each room only once and return to the reception room. Can this be done?

This question can be rephrased in terms of graphs. A graph G can be associated with this museum
where the vertices of G are the exhibition rooms and two vertices (rooms) are joined by an edge if
there is a doorway between the two rooms. This graph G is shown in Figure 6.8. The question above
can now be asked as follows: Does the graph G of Figure 6.8 have a cycle that contains every vertex
of G? The answer is yes; indeed,



Figure 6.7: A digram of the exhibition rooms in a museum

is such a cycle. This brings us to the main topic of this section.

Figure 6.8: A graph that models the exhibition rooms and doorways of the museum of Figure 6.7

A cycle in a graph G that contains every vertex of G is called a Hamiltonian cycle of G. Thus a
Hamiltonian cycle of G is a spanning cycle of G. A Hamiltonian graph is a graph that contains a
Hamiltonian cycle. Therefore, the graph G of Figure 6.8 is Hamiltonian. Certainly the graph Cn (n ≥
3) is Hamiltonian. Also, for n ≥ 3, the complete graph Kn is a Hamiltonian graph.

A path in a graph G that contains every vertex of G is called a Hamiltonian path in G. If a graph
contains a Hamiltonian cycle, then it contains a Hamiltonian path. In fact, removing any edge from a
Hamiltonian cycle produces a Hamiltonian path. If a graph contains a Hamiltonian path, however, it
need not contain a Hamiltonian cycle. For example, the graph Pn clearly contains a Hamiltonian path
but Pn contains no cycles at all.

The graph G = K3,3 of Figure 6.9 is a Hamiltonian graph. For example, C = (u, x, v, y, w, z, u) is a
Hamiltonian cycle of G. Since G is 3-regular and every Hamiltonian cycle contains two edges
incident with each vertex of G, every Hamiltonian cycle of the graph G of Figure 6.9 fails to contain
exactly one of the three edges incident with each vertex of G. By redrawing G in Figure 6.9, we can
see more easily that G is Hamiltonian. Indeed, a Hamiltonian graph of order n consists of a cycle C of
length n, with possibly some additional edges joining non-consecutive vertices of C. Since a
Hamiltonian cycle C in a graph G of order n ≥ 3 is a connected 2-regular subgraph of order n, every



proper subgraph of C is a path or a (disjoint) union of paths. In particular, C contains no cycle of
order less than n as a subgraph, and certainly C contains no subgraph having a vertex of degree 3 or
more. Furthermore, since a Hamiltonian cycle C of G is a 2-regular subgraph, if G contains a vertex v
of degree 2 in G, then both edges of G incident with v must lie on C.

Figure 6.9: The Hamiltonian graph K3,3

The graph G of Figure 6.10 is not a Hamiltonian graph. In order to see this, let’s suppose that G is
Hamiltonian. Then G contains a Hamiltonian cycle C. Since C contains the vertex t, which has degree
2, both tu and tz lie on C. By the same reasoning, xy and xz lie on C, as do vw and vz. However, this
says that z is incident with three edges on C, which is impossible. Therefore, as we claimed, the
graph G of Figure 6.10 is not Hamiltonian.

Figure 6.10: A non-Hamiltonian graph

The famous Petersen graph (shown in Figure 6.11) is also not Hamiltonian. The Petersen graph is
a 3-regular graph of order 10. This graph can be considered as being constructed from two 5-cycles,
namely the outer-cycle C′ = (u1, u2, u3, u4, u5, u1), the inner-cycle C″ = (v1, v3, v5, v2, v4, v1) and the
five edges u1v1, u2v2, u3v3, u4v4, u5v5. (By interchanging the labels of C′ and C″, we see that it doesn’t
matter which 5-cycle is referred to as the outer-cycle or inner-cycle.) In fact, the length of a smallest
cycle in the Petersen graph is 5. There are several ways to show that the Petersen graph is not
Hamiltonian. We describe one of these.

Theorem 6.4 The Petersen graph is non-Hamiltonian.



Figure 6.11: The Petersen graph: A non-Hamiltonian graph

Proof. Suppose that the Petersen graph, which we will denote by PG, is Hamiltonian. Then PG
contains a Hamiltonian cycle C. This cycle contains ten edges. Two of the three edges incident
with each vertex of PG necessarily belong to C. Certainly, C contains all, some or none of the five
edges uivi (1 ≤ i ≤ 5); so at least five edges of C belong either to C′ or to C″. Therefore, either C′
contains at least three edges of C or C″ contains at least three edges of C. Without loss of
generality, assume that C′ contains at least three edges of C. First, observe that all five edges of C′
cannot belong to C since no cycle contains a smaller cycle as a subgraph. Suppose that C contains
exactly four edges of C′, say the edges u4u5, u5u1, u1u2, u2u3 (see Figure 6.12(a), where the dashed
edges of PG cannot belong to C). However, the cycle C must then contain the edges u4v4, u3v3 as
well as v1v3, v1v4 (see Figure 6.12(b)). But this implies that C contains an 8-cycle, which is
impossible.

Figure 6.12: The cycle C contains exactly four edges of C′

One case remains then, namely that C contains exactly three edges of C′. There are two
possibilities: (1) the three edges of C′ on C are consecutive on C′ or (2) these three edges are not
consecutive on C′. These possibilities are shown in Figures 6.13(a) and 6.13(b), respectively. The
situation in Figure 6.13(a) is impossible as u1v1 is the only edge incident with u1 that could lie on C.
Likewise, the situation in Figure 6.13(b) is impossible since C would have to contain the smaller
cycle (u4, v4, v1, v3, u3, u4). Therefore, as claimed, the Petersen graph is not Hamiltonian.



Figure 6.13: The cycle C contains exactly three edges of C′

The adjective “Hamiltonian” is named for the Irish mathematician William Rowan Hamilton
(1805–1865). Although Hamilton’s personal life was filled with sorrow, his professional life was
marked by numerous accomplishments. His interests included poetry, optics, astronomy and
mathematics (especially algebra). Indeed, as with poetry, Hamilton felt that mathematics too was
artistic. Hamilton became acquainted with the distinguished poet William Wordsworth and the two
had discussions about science and poetry. Wordsworth told Hamilton that his talents were with
science, however, not poetry. One thing that worked against Hamilton was his inability to write well.
Hamilton was knighted in 1835 for his accomplishments in physics and thus became Sir William
Rowan Hamilton. It was Hamilton who discovered quaternions (the first noncommutative division
algebra) and he spent much of his later years working on this topic.

Hamilton’s connection with graph theory was even more slight than Euler’s. This connection
involved a well-known geometric figure. A regular dodecahedron is a polyhedron having twelve
faces (all regular pentagons) and twenty corners with three edges of pentagons meeting at each corner
(see Figure 6.14).

Figure 6.14: A regular dodecahedron

A regular dodecahedron has been known to be used as a desk calendar since a month can be
displayed on each of its twelve faces. In 1857, Hamilton invented a game called the Icosian Game. It
consisted of a regular dodecahedron made from wood. Each corner of the dodecahedron was marked
with one of twenty cities beginning with different consonants. A goal of the game was to travel
“Around the World,” that is, to find a round trip that passed through each of the twenty cities exactly
once. To make it easier to remember which city had already been visited, there was a peg at each
corner so the journey could be described by a string that was wrapped around the peg at each city
visited. This game proved to be awkward and a board game version of it was produced (see Figure



6.15).

Figure 6.15: The graph of the dodecahedron

Hamilton sold the game to J. Jacques and Sons (well known even today as makers of quality chess
sets) for 25 pounds and obtained a patent for it in London in 1859. The game was a commercial
failure. In graph theory terms, the object of the game was to find a Hamiltonian cycle in the graph (of
the dodecahedron) in Figure 6.15. Of course, this term did not exist at that time but it was Hamilton’s
game that gave rise to his name being used for these terms. Curiously, some two years before this,
Thomas Penyngton Kirkman had asked in a paper of his whether there exists a cycle passing through
every vertex of certain polyhedra. So Hamilton was not the first to deal with Hamiltonian graphs.

Let’s see what we know about Hamiltonian graphs. If G is a Hamiltonian graph, then certainly G is
connected. Since G contains a Hamiltonian cycle, G has no cut-vertices and has order at least 3; so G
is 2-connected. This says that for every vertex v of G, the graph G − v is connected. If we remove
more vertices from G, then the number of components of the resulting graph cannot be too large.
Recall that k(G) denotes the number of components in a graph G.

Theorem 6.5 If G is a Hamiltonian graph, then for every nonempty proper set S of vertices of G,

Proof. Let S be a nonempty proper subset of V(G). Suppose that k(G − S) = k and that G1, G2, …,
Gk are the components of G − S. Since G is Hamiltonian, G contains a Hamiltonian cycle C.
Whenever C encounters a vertex of Gi for the last time (1 ≤ i ≤ k), the next vertex of C must belong
to S. This implies that S must contain at least k vertices, that is, k = k(G − S) ≤ |S|.

Theorem 6.5 gives a necessary condition for a graph to be Hamiltonian, that is, this theorem
describes a property possessed by every Hamiltonian graph. The main benefit of a necessary
condition lies in the contrapositive of the statement:

Let G be a graph. If k(G − S) > |S| for some nonempty proper subset S of V(G), then G is
not Hamiltonian.

That is, Theorem 6.5 gives us a sufficient condition for a graph to be non-Hamiltonian. In particular,
this gives us the obvious fact when a connected graph G contains a cut-vertex v (and where S = {v})
and k(G − v) ≤ 2 > 1 = |S|:



If a graph G contains a cut-vertex, then G cannot be Hamiltonian.

Consider the graph G of Figure 6.16, where S = {u, v, w}. Then G − S contains four components.
However then, k(G − S) = 4 > 3 = |S| and by Theorem 6.5, G is not Hamiltonian. This sufficient
condition for a graph to be non-Hamiltonian is not necessary, however; that is, there exist non-
Hamiltonian graphs G such that k(G − S) ≤ |S| for every nonempty proper subset S of V(G) (see
Exercise 6.9).

Figure 6.16: Illustrating Theorem 6.5

Although the definitions of Eulerian circuits and Hamiltonian cycles seem similar, these concepts
are, in fact, quite different. While we have seen that determining whether a graph contains an Eulerian
circuit is not difficult, determining whether a graph contains a Hamiltonian cycle can be exceedingly
difficult. Indeed, while there is a very simple characterization of Eulerian graphs (Theorem 6.1),
there is no such useful characterization of Hamiltonian graphs. This illustrates how making what
appears to be a small change in a problem, namely from seeking an Eulerian circuit to seeking a
Hamiltonian cycle, can change the problem from one that is easily solvable to one where no practical
method of solution appears to exist.

As is ordinarily the case when there is no characterization of graphs possessing a certain property,
one looks for sufficient conditions for a graph to have such a property. One sufficient condition for a
graph to be Hamiltonian that is not difficult to apply was discovered by Oystein Ore.

Theorem 6.6 Let G be a graph of order n ≥ 3. If

for each pair u, v of nonadjacent vertices of G, then G is Hamiltonian.

Proof. Assume, to the contrary, that there exists a non-Hamiltonian graph G of order n ≥ 3 such that
deg u + deg v ≥ n for each pair u, v of nonadjacent vertices of G. It may be the case that if we add
certain edges to G, then the resulting graph is still not Hamiltonian. Of course, if we add all
possible edges to G, we obtain Kn, which is obviously Hamiltonian. Add as many edges as
possible to G so that the resulting graph H is not Hamiltonian. Therefore, adding any edge to H
results in a Hamiltonian graph. Also, degH u + degH v ≥ n for every pair u, v of nonadjacent
vertices of H.

Since H is not complete, H contains pairs of nonadjacent vertices. Let x and y be two nonadjacent
vertices of H. Thus H + xy is Hamiltonian. Furthermore, every Hamiltonian cycle of H + xy must



contain the edge xy. This means that H contains a Hamiltonian x − y path P = (x = x1, x2, …, xn = y).
We claim that whenever x1xi is an edge of H, where 2 ≥ i ≥ n, then xi−1xn is not an edge of H (see
Figure 6.17), for otherwise,

is a Hamiltonian cycle of H, which is impossible. Hence for each vertex in {x2, x3, …, xn} that is
adjacent to x1, there is a vertex in {x1, x2, …, xn−1} that is not adjacent to xn. However, this means
that deg xn ≤ (n − 1) − deg x1 and so

This is a contradiction.

Figure 6.17: A step in the proof of Theorem 6.6

The bound given in Theorem 6.6 is sharp. For example, suppose that n = 2k + 1 ≥ 3 is an odd
integer. Let G be the graph obtained by identifying a vertex in a copy of Kk+1 and a vertex in another
copy of Kk+1. So G = K1 + (2Kk). For n = 7, the graph G is shown in Figure 6.18. Certainly G is non-
Hamiltonian since G contains a cut-vertex. If u and v are any two nonadjacent vertices of G, then deg
u = deg v = k and so deg u + deg v = 2k = n − 1. Hence the bound given in Theorem 6.6 cannot be
lowered to produce the same conclusion.

Figure 6.18: The graph G = K1 + (2K3)

There is a corollary to Theorem 6.6 due to Gabriel Dirac, whom we encountered earlier and
which is even easier to apply. Dirac was a distinguished research mathematician whose stepfather
Paul Dirac was well known for his work in quantum mechanics. In fact, Paul Dirac was awarded the
Nobel Prize for physics in 1933. Gabriel Dirac was a professor at Aarhus Universitet in Denmark.

Corollary 6.7 Let G be a graph of order n ≥ 3. If deg v ≥ n/2 for each vertex v of G, then G is
Hamiltonian.

Proof. Certainly, if G = Kn, then G is Hamiltonian. We may therefore assume that G is not
complete. Let u and v be two nonadjacent vertices of G. Thus



By Theorem 6.6, G is Hamiltonian.
If we look at the proof of Theorem 6.6 more carefully, then we might see that it provides a proof

of another result, due to J. Adrian Bondy and Vašek Chvátal.

Theorem 6.8 Let u and v be nonadjacent vertices in a graph G of order n such that deg u + deg v
≥ n. Then G + uv is Hamiltonian if and only if G is Hamiltonian.

Proof. If G is a Hamiltonian graph, then certainly G + uv is Hamiltonian for any two nonadjacent
vertices u and v of G. Thus we need only verify the converse.

Let G + uv be a Hamiltonian graph for two nonadjacent vertices u and v of a graph G and assume,
to the contrary, that G is not Hamiltonian. This implies that every Hamiltonian cycle in G + uv must
contain the edge uv and so G contains a Hamiltonian u − v path. Since degG u + degG v ≥ n, the proof
of Theorem 6.6 tells us that G contains a Hamiltonian cycle. This is a contradiction.

The closure C(G) of a graph G of order n is the graph obtained from G by recursively joining
pairs of nonadjacent vertices whose degree sum is at least n (in the resulting graph at each stage) until
no such pair remains. Figure 6.19 illustrates how to obtain the closure of a graph G, while Figure
6.20 shows three other graphs and their closures. (The graph G3 of Figure 6.20 is the graph of Figure
6.19.) In the graph G4 of Figure 6.20, the vertices u and v are the only two nonadjacent vertices
whose degree sum is at least 10 (the order of G4).

Repeated applications of Theorem 6.8 give us the following result.

Figure 6.19: Constructing the closure of a graph



Figure 6.20: Graphs and their closures

Theorem 6.9 A graph is Hamiltonian if and only if its closure is Hamiltonian.

A simple but useful consequence of Theorem 6.9 is stated next.

Corollary 6.10 If G is a graph of order at least 3 such that C(G) is complete, then G is
Hamiltonian.

We saw in Corollary 6.7 (Dirac’s theorem) that if the degree of every vertex is at least n/2 in a
graph G of order n ≥ 3, then G is Hamiltonian. Moreover, Ore’s theorem (Theorem 6.6) requires a
weaker condition to be satisfied for a graph to be Hamiltonian, as only the degree sum of every two
nonadjacent vertices must be at least n. Actually, Bondy and Chvátal’s Closure Theorem ( Theorem
6.8) implies this as well. Indeed, Theorem 6.8 suggests that many more graphs are Hamiltonian. Yet,
it is not clear what conditions on the degrees of the vertices of a graph G of order n ≥ 3 must be
satisfied in order for Theorem 6.8 to guarantee that G is Hamiltonian. An example of such a result
(which preceded Theorem 6.8 chronologically) is due to Lajos Pósa. The following theorem is even
more remarkable because Pósa was barely a teenager when he discovered this result. Despite having
a promising future in research, Pósa went on to devote himself to the mathematics education of the
everyday student in his native Hungary.

Theorem 6.11 Let G be a graph of order n ≥ 3. If for every integer j with , the
number of vertices of G with degree at most j is less than j, then G is Hamiltonian.



Proof. We show that C(G) is complete. Assume, to the contrary, that this is not the case. Among all
pairs of nonadjacent vertices in C(G), let u, w be a pair for which degC(G) u + degC(G) w is
maximum. Necessarily, degC(G) u + degC(G) w ≤ n − 1. We may also assume that degC(G) u ≤
degC(G) w. Let degC(G) u = k. Thus  and so

Let W be the set of all vertices distinct from w that are not adjacent to w. Therefore, u  W. Observe
that if v  W, then degC(G) v ≤ k, for otherwise

contradicting the defining property of the pair u, w. Therefore, the degree of every vertex of W is at
most k. So by hypothesis, |W| ≤ k − 1. Hence

which contradicts (6.1).
For j = 1, Theorem 6.11 says that G has no vertex of degree 1. For j = 2, the graph G is allowed to

have a vertex of degree 2. For j = 3, the graph G is allowed to have a vertex of degree 2 and a vertex
of degree 3 or two vertices of degree 3.

Exercises for Section 6.2

6.9 We have seen that the graph G of Figure 6.10 is not Hamiltonian. Show that k(G − S) ≤ |S| for
every nonempty proper subset S of V(G). What does this say about Theorem 6.5?

6.10 Let G be a 6-regular graph of order 10 and let u, v  V(G). Prove that G, G − v and G − u − v
are all Hamiltonian.

6.11 Prove that  is Hamiltonian for n ≥ 5.

6.12 Let G be a 3-regular graph of order 12 and H a 4-regular graph of order 11.

(a) Is G + H Eulerian?
(b) Is G + H Hamiltonian?

6.13 Give an example of a graph G that is

(a) Eulerian but not Hamiltonian. (Explain why G is not Hamiltonian.)
(b) Hamiltonian but not Eulerian. (Explain why G is not Eulerian.)
(c) Hamiltonian and has an Eulerian trail but is not Eulerian.
(d) neither Eulerian nor Hamiltonian, but has an Eulerian trail.

6.14 Give an example of a graph with the following properties or explain why no such example
exists:

(a) a 2-connected (that is, connected, order at least 3 and no cut-vertices) Eulerian graph that



is not Hamiltonian.
(b) a Hamiltonian graph G that is not Eulerian but whose complement  is Eulerian.

6.15 The subdivision graph of a graph G is that graph obtained from G by deleting every edge uv of
G and replacing it by a vertex w of degree 2 that is joined to u and v. Is it true that if the
subdivision graph of a graph G is Hamiltonian, then G is Eulerian?

6.16 Let G be a connected r-regular graph of even order n such that  is also connected. Show that

(a) either G or  is Eulerian.
(b) either G or  is Hamiltonian.

6.17 For a graph G of order n ≥ 3, the graph G(3) is obtained from G by adding a new vertex vS for
each 3-element subset S of V(G) and joining vS to each vertex in S. Find all such graphs G for
which G(3) is Hamiltonian.

6.18 Show that the bound in Corollary 6.7 is sharp.

6.19 Let G1 and G2 be two graphs of order n ≥ 3, each of which satisfies the hypothesis of Dirac’s
theorem (Corollary 6.7) on Hamiltonian graphs. A graph G is constructed from G1  G2 by
adding edges between G1 and G2 such that every vertex of G1 is joined to at least half the
vertices of G2 in such a way that every vertex of G2 is joined to at least half the vertices of G1.
Prove that G is Hamiltonian.

6.20 Let G be a graph of order n ≥ 3 having the property that for each v  V(G), there is a
Hamiltonian path with initial vertex v. Show that G is 2-connected (connected, order at least 3
and no cut-vertices) but not necessarily Hamiltonian.

6.21 Let G be a graph of order n ≥ 3 such that deg u+deg v ≥ n − 1 for every two nonadjacent
vertices u and v. Prove that G must contain a Hamiltonian path.

6.22 (a) Does there exist a graph G of order 10 and size 28 that is not Hamiltonian?

(b) Does there exist a graph H of order 10 and size 28 that is not Hamiltonian, where 8 of the
10 vertices have the following degrees: 5, 5, 5, 5, 5, 6, 6, 6?

6.23 (a) Does there exist a graph G of order n = 2k ≥ 6 and size m = k2+k−2 that is not Hamiltonian?

(b) Does there exist a graph H of order n = 2k ≥ 6 and size m = k2+k−2 that is not
Hamiltonian, where k vertices of H have degree k and k − 2 vertices of H have degree k +
1?

6.24 (a) A connected graph G of order n = 2k + 1 has k + 1 vertices of degree 2, no two of which are
adjacent, while the remaining k vertices have degree 3 or more. Show that G is not
Hamiltonian.

(b) Give an example of a Hamiltonian graph H of order n = 2k for some k ≥ 2, where k
vertices have degree 2, no two vertices of which are adjacent, while the remaining
vertices have degree 3 or more.



6.3 Exploration: Hamiltonian Walks

While certainly not every connected graph of order at least 3 contains a Hamiltonian cycle, every
connected graph does contain a closed spanning walk. Indeed, if every edge of a connected graph G is
replaced by two parallel edges, then the resulting multigraph M is Eulerian (see Figure 6.21). Since
an Eulerian circuit in M gives rise to a closed spanning walk in G in which each edge of G appears
twice, it follows that a connected graph of size m has a closed spanning walk of length 2m in G.

Figure 6.21: Closed spanning walks in graphs

A Hamiltonian walk in a connected graph G is a closed spanning walk of minimum length in G.
From our earlier observation, every connected graph G of size m contains a Hamiltonian walk and the
length of such a walk is at most 2m. The length of a Hamiltonian walk in G is denoted by h(G).
Therefore, for a connected graph G of order n ≥ 3, it follows that h(G) = n if and only if G is
Hamiltonian. The concept of a Hamiltonian walk was introduced by Seymour Goodman and Stephen
Hedetniemi in 1973.

Although it is often difficult to determine whether a graph G is Hamiltonian, we have seen that if G
satisfies any of a number of sufficient conditions, then G is Hamiltonian. However, none of these
conditions is necessary and so G can be Hamiltonian without satisfying any of these conditions. In
such a case, our only option may be to construct a Hamiltonian cycle in G. So the problem is reduced
to finding a way to list all of the vertices of G in a cyclic sequence (v1, v2, …, vn, v1) so that every
two consecutive vertices in the sequence are adjacent. Another way to say this is to list the vertices of
G in a cyclic sequence (v1, v2, …, vn, v1) such that d(vi, vi+1) = 1 for 1 ≤ i ≤ n − 1 and d(vn, v1) = 1. If
we also write v1 as vn+1, then the cyclic sequence (v1, v2, …, vn, vn+1 = v1) is a Hamiltonian cycle if
and only if

Looking at Hamiltonian cycles in this manner suggests another concept. For a connected graph G
of order n ≥ 3 and a cyclic ordering

of V(G), define the number d(s) by

Therefore, d(s) ≥ n for each cyclic ordering s of V(G). Moreover, G is Hamiltonian if and only if



there exists a cyclic ordering s′ of V(G) such that d(s′) = n. The Hamiltonian number h*(G) of G is
defined by

where the minimum is taken over all cyclic orderings s of V(G). For the graph G = K2,3 of Figure
6.22, d(s1) = 8 and d(s2) = 6 for the cyclic orderings

of V(G). Since G is a non-Hamiltonian graph of order 5 and d(s2) = 6, it follows that h*(G) = 6.
We are about to see that there is an alternative way to define the length h(G) of a Hamiltonian

walk in G. Denote the length of a walk W by L(W).

Theorem 6.12 For every connected graph G,

Figure 6.22: A graph G with h*(G) = 6

Proof. First, we show that h(G) ≤ h*(G). Let s : v1, v2, …, vn, vn+1 = v1 be a cyclic ordering of
V(G) for which d(s) = h*(G). For each integer i with 1 ≤ i ≤ n, let Pi be a vi − vi+1 geodesic in G.
Thus L(Pi) = d(vi, vi+1). The union of the paths Pi form a closed walk W in G containing all vertices
of G. Therefore,

Next, we show that h*(G) ≤ h(G). Let W be a Hamiltonian walk in G with L(W) = h(G). Suppose
that W = (x1, x2, …, xN, x1), where then N ≥ n. Define v1 = x1 and v2 = x2. For 3 ≥ i ≥ n, define vi to be
xji, where ji is the smallest positive integer such that . Then s : v1, v2,
…, vn, vn+1 = v1 is a cyclic ordering of V(G). For each i with 1 ≤ i ≤ n, let Qi be the vi − vi+1 subwalk
of W and so d(vi, vi+1) ≤ L(Qi). Since

we have the desired result.



As a consequence of Theorem 6.12, we can denote the Hamiltonian number of a graph G by h(G),
which is then the length of Hamiltonian walk in G.

For the graph G = K2,3 of Figure 6.22 and the cyclic orderings s1 : v1, v2, v3, v4, v5, v1 and s2 : v1,
v3, v2, v4, v5, v1 of V(G), we saw that d(s1) = 8 and d(s2) = 6. Actually, it is not difficult to show that
d(s) is either 8 or 6 for every cyclic ordering s of V(G). This suggests another parameter of a
connected graph. The upper Hamiltonian number h+(G) of a connected graph G is defined as

where the maximum is taken over all cyclic orderings s of V(G). Therefore, h+(G) = 8 for the graph G
of of Figure 6.22.

As another example, we consider the Petersen graph. Label the vertices of the Petersen graph PG
as shown in Figure 6.23. Since PG is a non-Hamiltonian graph of order 10, h(PG) ≥ 11. On the other
hand, let s : x1, x2, …, x11 = x1 be any cyclic ordering of the vertices of PG. Since diam(PG) = 2, it
follows that d(xi, xi+1) ≤ 2 for 1 ≤ i ≤ 10. Hence d(s) ≤ 2 · 10 = 20 and so h+(PG) ≤ 20. Therefore,

Figure 6.23: The Petersen graph

In fact, h(PG) = 11 and h+(PG) = 20. Moreover, consider the sequences si (1 ≤ i ≤ 10):

Since d(si) = 10 + i for 1 ≤ i ≤ 10, it follows that for each integer k with 11 ≤ k ≤ 20, there exists a
cyclic ordering s of V(PG) such that d(s) = k.



Exercises for Section 6.3

6.25 For G1 = Kn and G2 = Ks, t, where n ≥ 3 and 1 ≤ s ≤ t, find h(Gi) and h+(Gi) for i = 1, 2.

6.26 Give an example of a graph G of order n ≥ 3 such that h(G) = n + 1. Verify that your example is
correct.

6.27 Give an example of a graph G of order n ≥ 3 such that h(G) = 2n − 2. Verify that your example
is correct.

6.28 Let Cn be a cycle of order n ≥ 3.

(a) What is h+(Cn) if n is even?

(b) What can you say about h+(Cn) if n is odd?

6.29 (a) Prove that if G is a connected graph of order n and diameter d ≥ 2, then h+(G) ≤ nd.

(b) Is the upper bound in (a) is sharp?

6.30 Determine all graphs G for which h(G) = h+(G).

6.31 Instead of considering cyclic sequences of the vertices of a graph G (and studying the
Hamiltonian and upper Hamiltonian numbers), consider linear sequences of the vertices of G.

6.33 Ask and answer a question of your own concerning Hamiltonian numbers and/or upper
Hamiltonian numbers.

6.4 Excursion: Early Books of Graph Theory

Theorem 6.1, published in 1736, is considered to be the beginning of graph theory. It wasn’t until
1936, however, when the first textbook (in German) was written on graph theory by Dénes König.
König was born in Budapest, Hungary on September 21, 1884. König was interested in mathematics
at an early age, no doubt influenced by his father who was a well-known mathematics professor.
Indeed, he even published a paper as a high school student.

König spent nine semesters doing university work, the first four in Budapest and the last five in
Göttingen. He attended lectures by Hermann Minkowski on analysis situs, which is what topology
was called in its early days. The fact that Minkowski was interested in graph theory played a big role
in the mathematics König decided to work on. König received his doctorate in 1907 and wrote his
dissertation in geometry. He acquired a faculty position at the Technische Hochschule in Budapest
that year and remained a member of the faculty there until his death. Among the courses König taught
was graph theory, although the name “graph theory” never appeared in the catalogue at the university
until 1927. It fell under the heading of analysis situs prior to that time. In 1935 König became a full
professor. König was well known for his enthusiastic lectures, although his lectures were not always
well attended. Because of him, however, a number of dedicated students were introduced to this new
area of mathematics. Indeed, under his influence, Hungarian researchers turned to this field, including
Paul Erd s, Tibor Gallai and Paul Turán.



Although an excellent mathematician, König’s main accomplishment is probably the
popularization and recognition of graph theory. Because of his efforts, graph theory grew from being a
collection of isolated results in a branch of recreational mathematics to a recognized new area of the
mathematical sciences. Although he was belittled by some mathematicians, he was not discouraged.
He believed in the future of graph theory. Indeed, König would often begin a lecture on graph theory
by saying:

Graph theory is one of the most interesting of mathematical disciplines.

In 1936, König’s book Theorie der endlichen und unendlichen Graphen (the very first book ever
written solely on graph theory) was published in Leipzig although Oswald Veblen had discussed
graph theory in his 1922 book Analysis Situs, the first book written on topology. König worked on his
book with great care for many years. His book awakened the interest of many young mathematicians
in graph theory, although its impact was only felt after World War II. In 1944, after the occupation of
Hungary by the Nazis, König worked to assist persecuted mathematicians. Rather than be persecuted
himself, he committed suicide on October 19, 1944. In 1950 König’s book was reprinted in the
United States. For over 20 years, König’s work was the only book on graph theory, until 1958 when
Théorie des Graphes et Ses Applications by the French mathematician Claude Berge was published.

Claude Berge was born on June 5, 1926. He was the one individual to spread the word of graph
theory throughout France. Despite König’s book, prior to the 1950s many mathematicians thought
little of combinatorics and graph theory. Most French mathematicians tended to resist graph theory
and preferred the term “network” instead. However, because of Berge’s efforts, all this changed.

When graph theory was introduced to Berge, it was a subject that was unknown in France. It was
Berge’s intent to make some sense of this new field. At first, he worked on graph theory just for
himself, but in 1958 he published his book on graph theory (others would come later). He found the
subject interesting and alive with many applications. However, it wasn’t only the French to whom
Berge introduced graph theory. He traveled widely and lectured on the subject. Many of Berge’s
works were translated into other languages. In 1993 Berge was awarded the Euler Medal by the
Institute of Combinatorics and Its Applications.

Berge made contributions to other areas of mathematics, including game theory and topology. He
introduced an alternative to the Nash equilibrium (named after John Nash whose life was chronicled
in the 2002 academy award winning movie A Beautiful Mind) called the Berge equilibrium. Berge
also coined the term hypergraph.

Berge had many interests besides mathematics. He had a special affinity for Chinese works of art
and was a skillful chess player. Berge loved to write. In 1994 he authored a mathematical murder
mystery, titled Who Killed the Duke of Densmore? in which the detective investigates the murder of
the Duke of Densmore and uses graphs (actually interval graphs, which we do not discuss here) to
find the murderer. Berge died on June 30, 2002.

The next major book on graph theory, titled Theory of Graphs, was published in 1962 by the
American Mathematical Society, four years after Berge’s book. Its author, Oystein Ore (pronounced
OR-ah) was born in Oslo, Norway in 1899. Ore attended the University of Oslo, from which he
graduated in 1922. He received his Ph.D. in 1924. After this, he spent time in Paris and Gottingen and
then returned to the University of Oslo. In 1927 he went to the United States where he became a
professor of mathematics at Yale University. Ore wrote over a hundred papers and a number of
books.



Ore was well known for his work in algebra and number theory before he started working in graph
theory. He had much to do with introducing graph theory to the English-speaking world with his 1962
book. Ore once wrote, in reference to Euler’s solution to the Königberg Bridge Problem, that

The theory of graphs is one of the few fields of mathematics with a definite birth date.

Ore died during the summer of 1968, only a few months before Ore was to attend and be the
principal speaker at the first of nine quadrennial graph theory conferences to be held at Western
Michigan University.

Although some books dealing with special topics in graph theory and applications of graph theory
were published during 1959-1969, only two other major books on graph theory were published
before 1970, both in 1969. One of these was the 1969 book Teoriia Konechnykn Grafov  (Theory of
Finite Graphs) by Alexander A. Zykov, who has had the greatest influence on the development of and
interest in graph theory in Russia. Born in Kiev in 1922, Zykov was introduced to graph theory during
1943-44 while he was a student at Gor’kiy State University. He was in Novosibirsk during 1959-69
and organized a graph theory seminar at the Mathematical Institute of the Siberian branch of the
Academy Sciences in the USSR. Since 1969 Zykov has been at Odessa State Polytechnic University
in Ukraine, where he organized the Odessa seminar in discrete mathematics.

The second book, titled Graph Theory, was written by Frank Harary (1921-2005). Harary
received his Ph.D. in 1948 from the University of California in Berkeley and became a faculty
member at the University of Michigan, where he stayed until 1986. He then became a faculty member
at New Mexico State University.

While working with social psychologists at the University of Michigan, he independently
discovered graph theory. Harary spent much of his life traveling and lecturing on graph theory,
thereby introducing this subject to many mathematicians around the world. Along the way, he
acquired numerous co-authors, which led to hundreds of publications on all aspects of the subject.
Harary, known for his lucid writing style and his enthusiasm for the subject, was often referred to as
the Ambassador of Graph Theory.

At one time Alexander Zykov gave Frank Harary a framed set of three pictures of lions, namely
(1) a lion sleeping, (2) a lion awakening and (3) a lion roaring to represent (1) graph theory
yesterday, (2) graph theory today and (3) graph theory tomorrow. Although meant as a comical gift,
Zykov indicated that if one were to define “yesterday” as “before 1936,” “today” as “1936-1970”
and “tomorrow” as “after 1970,” then there is a certain amount of truth to this representation of graph
theory.

William T. Tutte (1917–2002), a mathematician who made numerous significant contributions to
graph theory, was a shy man with a clever sense of humor. Tutte loved to write poetry, often under the
pseudonym of Blanche Descartes. As Descartes, he reflected on graph theory in his 1969 poem titled
“The Expanding Unicurse”:

Some citizens of Königsberg
Were walking on the strand
Beside the river Pregel
With its seven bridges spanned.

“O Euler, come and walk with us,”
Those burghers did beseech.



“We’ll roam the seven bridges o’er,
And pass but once by each.”

“It can’t be done,” thus Euler cried.
“Here comes the Q. E. D.
Your islands are but vertices,
And four have odd degree.”

From Königsberg to König’s book,
So runs the graphic tale,
And still it grows more colorful,
In Michigan and Yale.

The mention of Michigan and Yale in the last line of the poem refers to the universities of Frank
Harary and Oystein Ore, respectively. We will encounter William Tutte again.



Chapter 7

Digraphs

7.1 Strong Digraphs

We saw in Section 6.1 that the street system of a town can be naturally represented by a graph. In this
case, the vertices of the graph are the street intersections in the town, while the edges of the graph are
the street segments between intersections. The street systems of two towns A and B are shown in
Figure 7.1 together with the graphs GA and GB that model them.

Figure 7.1: Two towns and two graphs modeling them

Both graphs GA and GB of Figure 7.1 have the important property that they are connected, meaning
that it is possible to travel between any two locations in both Town A and Town B. (Of course, this is
a characteristic one would expect of any town.) The graph GB has a bridge, however, while GA does
not. In fact, it may be the case that the street segment in Town B that gives rise to the bridge in GB is a
road that goes over a bridge in the town. Of course, a major disadvantage of having such a street in
Town B is that if it should ever become necessary to close that street, then traveling between some
pairs of locations in Town B is impossible. We have no such difficulties in Town A, however. The
fact that we can travel between any two street intersections in Town A even after one of its streets
may be closed allows us to do something else in Town A, as we are about to discover. Before



continuing with this discussion, however, it is convenient to revisit the concept of a digraph (directed
graph).

Recall that a digraph D consists of a finite nonempty set V of objects called vertices and a set E
of ordered pairs of distinct vertices. Each element of E is an arc or a directed edge. If a digraph D
has the property that for each pair u, v of distinct vertices of D, at most one of (u, v) and (v, u) is an
arc of D, then D is an oriented graph. An oriented graph can also be obtained by assigning a
direction to (that is, orienting) each edge of a graph G. The digraph D is then referred to as an
orientation of G. A digraph H is called a subdigraph of a digraph D if V(H)  V(D) and E(H) 
E(D).

A digraph D is symmetric if whenever (u, v) is an arc of D, then (v, u) is an arc of D as well. We
will rarely be interested in symmetric digraphs, however, since studying symmetric digraphs is really
the same as studying graphs.

Also, recall that if (u, v) is an arc of a digraph, then u is said to be adjacent to v and v is
adjacent from u. The vertices u and v are also said to be incident with the arc (u, v). The number of
vertices to which a vertex v is adjacent is the outdegree of v and is denoted by od v. The number of
vertices from which v is adjacent is the indegree of v and is denoted by id v. The sum of the
outdegrees of the vertices of a digraph D is the size of D, as is the sum of its indegrees.

Theorem 7.1 (The First Theorem of Digraph Theory) If D is a digraph of size m with V(D) =
{v1, v2, …, vn}, then

Now let D be a digraph. A sequence

of vertices of D such that ui is adjacent to ui + 1 for all i (0 ≤ i ≤ k − 1) is called a (directed) u − v
walk in D. Each arc (ui, ui + 1), 0 ≤ i ≤ k − 1, is said to lie on or belong to W. The number of
occurrences of arcs on a walk is the length of the walk. So the length of the walk W in (7.1) is k. A
walk in which no arc is repeated is a (directed) trail, while a walk in which no vertex is repeated is
a (directed) path. A u − v walk is closed if u = v and is open if u ≠ v. A closed trail of length at least
2 is a (directed) circuit; a closed walk of length at least 2 in which no vertex is repeated except for
the initial and terminal vertices is a (directed) cycle. Consequently, whenever we refer to any kind of
a walk in a digraph, we mean a directed walk, that is, we always proceed in the direction of the
arrows. As with graphs, the subdigraph of a digraph consisting of the vertices and arcs of a path,
cycle, trail or circuit is referred to by the same term.

To illustrate these concepts, consider the digraph D of Figure 7.2. Since (t, w) and (w, t) are both
arcs of D, the digraph D is not an oriented graph. First, W = (y, w, v, x, y, w, t) is a y − t walk of
length 6. The arc (y, w) occurs twice on W, so W is not a trail. However, T = (y, w, t, w, v) is a y − v
trail. Since the vertex w is repeated in T, it is not a path. Also, C = (v, t, w, t, u, v) is a circuit that is
not a cycle, while C′ = (v, x, y, w, v) is a cycle of length 4. The cycle C″ = (t, w, t) has length 2.



Figure 7.2: Walks in a digraph

The underlying graph of a digraph D is obtained by removing all directions from the arcs of D
and replacing any resulting pair of parallel edges by a single edge. Equivalently, the underlying graph
of a digraph D is obtained by replacing each arc (u, v) or pair (u, v), (v, u) of arcs by the edge uv. So
the graph G of Figure 7.2 is the underlying graph of the digraph D of that figure. Also, if D is an
orientation of a graph G, then G is the underlying graph of D.

While a graph is either connected or it’s not, for a digraph there is another alternative. A digraph
D is connected (sometimes called weakly connected) if the underlying graph of D is connected. In
particular, the digraph D of Figure 7.2 is connected. A digraph D is strong (or strongly connected)
i f D contains both a u − v path and a v − u path for every pair u, v of distinct vertices of D. The
digraph D of Figure 7.2 is not strong since there is no z − y path in D. Indeed, there is no path from z
to any other vertex of D.

Distance is defined in digraphs as well as in graphs. Let u and v be vertices in a digraph D. The
directed distance or, more simply, the distance (u, v) from u to v is the length of a shortest u − v
path in D. A u − v path of length (u, v) is a u − v geodesic. Once again, let us emphasize that the
paths we are discussing here are directed paths. In order for  (u, v) to be defined for every pair u, v
of vertices of D, the digraph D must be strong.

If D is a strong digraph, then necessarily every vertex of D has positive outdegree and indegree.
This is only a necessary condition for a digraph to be strong, however, not a sufficient condition.
Every vertex in the digraph D of Figure 7.3 has positive outdegree and indegree; yet, there is no u − x
path, for example.

Figure 7.3: A digraph that is not strong

While every u − v path in a digraph D is a u − v walk, we have seen that the converse is not true.
On the other hand, the presence of a u − v walk in D implies the existence of a u − v path in D. The
statement and proof are nearly identical to the corresponding result for graphs (Theorem 1.6).

Theorem 7.2 If a digraph D contains a u − v walk of length l, then D contains a u − v path of
length at most l.

Proof. Among all u − v walks in D, let W be one of minimum length. Suppose that W = (u = u0, u1,



…, uk = v). Then k ≤ l. If the vertices u0, u1, u2, …, uk are distinct, then W is a u − v path and the
proof is complete. Otherwise, there are vertices ui and uj such that ui = uj, where 1 ≤ i < j ≤ k. If
we delete ui + 1, ui + 2, …, uj from W, then we obtain a u − v walk

whose length is less than k, which is impossible. Thus W is a u − v path of length k ≤ l.

The following result provides a necessary and sufficient condition for a digraph to be strong.

Theorem 7.3 A digraph D is strong if and only if D contains a closed spanning walk.

Proof. Since every trivial digraph is strong, we may assume that D is non-trivial. First, let D be a
digraph that contains a closed spanning walk W = (w0, w1, …, wk = w0). Let u and v be any two
distinct vertices of D. Then u = wi and v = wj for integers i and j with 0 ≤ i < j ≤ k. Since W′ = (u =
wi, wi + 1, …, wj = v) is a u − v walk and W″ = (v = wj, wj + 1, …, wk = w0, w1, …, wi = u) is a v − u
walk, it follows by Theorem 7.2 that D contains both a u − v path and a v − u path.

Now we verify the converse. Let D be a strong digraph and suppose that V(D) = {v1, v2, …, vn}.
Since D is strong, D contains a vi − vi + 1 path Pi for i = 1, 2, …, n − 1. Let Pn be a vn − v1 path. For 1
≤ i ≤ n − 1, let Pi′ be the path obtained by deleting the final vertex of Pi. Then

is a closed spanning walk in D.

By Theorem 7.3, a digraph that contains a spanning circuit is strong. There is one type of spanning
circuit that is of added interest to us. An Eulerian circuit in a (strong) digraph D is a circuit
containing every arc of D. An Eulerian digraph is a digraph containing an Eulerian circuit. The
digraph D of Figure 7.4 is Eulerian and C = (u, v, w, y, z, x, y, x, w, u) is an Eulerian circuit.

Figure 7.4: An Eulerian digraph

Just as Eulerian graphs are easy to characterize, so too are Eulerian digraphs. Indeed, the proof is
similar to the proof of the characterization of Eulerian graphs (Theorem 6.1).

Theorem 7.4 A nontrivial connected digraph D is Eulerian if and only if od v = id v for every
vertex v of D.



Proof. First, let D be an Eulerian digraph. Then D contains an Eulerian circuit C. Let v be a vertex
of C. Assume first that v is not the initial vertex of C (and so v is not the terminal vertex either).
Whenever v is encountered on C, an arc is used to enter v and another is used to exit v. This
contributes 1 to both the indegree and outdegree of v. If v is encountered k times on C, then od v =
id v = k. If v is the initial vertex of C, then an arc is used to exit v. The final arc of C enters v. Any
other occurrences of v on C contribute 1 to both the indegree and outdegree of v and so od v = id v
in this case as well.

For the converse, let D be a nontrivial connected digraph for which od v = id v for every vertex v
of D. For a vertex u of D, let T be a trail of maximum length with initial vertex u. Suppose that T is a
u − v trail. Assume first that u ≠ v and that v is encountered k times on T, where k ≥ 1. Then T
contains k arcs directed towards v and k − 1 arcs directed away from v. However, since od v = id v,
there is an arc directed away from v that does not belong to T. This means, however, that T can be
extended to a longer trail with initial vertex u. Since this is impossible, u = v and T is a circuit C in
D. Consequently, D contains circuits and C is a circuit of maximum length in D.

We claim that C contains all of the arcs of D and that C is therefore an Eulerian circuit. Assume, to
the contrary, that C does not contain all of the arcs of D. Since D is connected, there is a vertex w on
C that is incident with arcs not on C. Let D′ = D − E(C) be the spanning subdigraph of D whose arcs
are those not belonging to C. Since odD v = idD v and odC v = idC v for every vertex v on C, it follows
that od D′ v = id D′ v for every vertex of D′. Let T′ be a trail of maximum length in D′ with initial
vertex w. As before, T′ is a circuit C′ in D″. If we attach C′ to C at w, then we produce a circuit C″ in
D containing more arcs than C, which is impossible. Hence C is an Eulerian circuit.

We mentioned earlier that in Town A ( Figure 7.1) it is possible to close down any street segment
in the town and, afterwards, still be able to travel between any two street intersections; while in
Town B this is not possible because of the existence of a bridge in the graph GB that models the street
system of this town. We also mentioned that this characteristic of Town A allows something else to
be done there. Suppose that the town commissioners in Town A, in their infinite wisdom, decide that
it would be convenient (for whatever reason) to convert all the streets in the town to one-way streets.
Can this be done? The answer to this question is of course yes but this is not the question that should
be asked. Is it possible to convert all the streets in Town A to one-way streets so that, afterwards, it
is possible to drive (legally) from any place in Town A to any other place. The answer to this
question is also yes and one way to accomplish this is shown in Figure 7.5. This new street system is
modeled by the digraph DA in Figure 7.5. You have probably noticed that the question that we have
just asked can be rephrased as follows: Does there exist a strong orientation of the graph GA of Figure
7.1? Of course, we now know that the answer to this question is yes. The more general question is:
Which graphs have strong orientations? The graphs GA and GB of Figure 7.1 provide the clue.



Figure 7.5: A digraph modeling the one-way streets system

Theorem 7.5 A nontrivial connected graph G has a strong orientation if and only if G contains
no bridges.

Proof. Suppose first that G is a nontrivial connected graph that contains a bridge, say e = uv. Let D
be any orientation of G. Then either (u, v) or (v, u) is an arc of D, say (u, v). Surely, D contains a u
− v path. We claim that there is no v − u path in D; for if D contains a v − u path P, then P can be
considered as a v − u path P′ in G that does not contain uv in G. However, the path P′ in G together
with the edge uv produce a cycle in G that contains e, which is impossible since e is a bridge.
Thus, as claimed, D contains no v − u path and so D is not strong.

To verify the converse, let G be a connected graph that contains no bridges. We show that G has a
strong orientation. Since G contains no bridges, G has a cycle C. If we direct the edges of C to
produce a directed cycle C′, then for every two vertices x and y on C′, there is both an x − y path and
a y − x path on C′. Thus, it is certainly possible to direct some of the edges of G to obtain a digraph D′
so that, afterwards, there is a set U of vertices of D′ where there is both an x − y path and a y − x path
for every two vertices x and y of U. If an edge of G that joins two vertices of U has not been assigned
a direction, then we may assign any direction and obtain the same conclusion.

Consequently, there is a set S of vertices of G of largest cardinality and an orientation D of the
edges of G joining two vertices of S such that, afterwards, for every two distinct vertices x and y in S
there is both an x − y path and a y − x path in D. If S = V(G), then the proof is complete. Assume,
however, that S ≠ V(G). Since G is connected, there must be a vertex u  S and a vertex v  S such
that uv  E(G). Since uv is not bridge, uv lies on a cycle

of G. Of course, u  S but u may not be the first vertex of C″ following v that belongs to S. Let w = vt
(t ≤ s) be the first such vertex. Now direct the edges uv, vv2, …, vt − 1vt as (u, v), (v, v2), …, (vt − 1, vt)
(see Figure 7.6) and let P be the (directed) v − vt path produced. If any other edge joins a vertex of T
= {v1, v2, …, vt − 1} and a vertex of S  T, then direct this edge arbitrarily. Let D′ be the resulting
digraph.



Figure 7.6: Producing a strong orientation

It then follows that for each pair x, y of vertices of S  T, there is both an x − y path and a y − x
path in D′. This contradicts S as being a proper subset of V(G) of largest cardinality for which there
exist both an x − y path and a y − x path for each pair x, y  S in an orientation of G.

It was mentioned in Chapter 5 that a graph G is 2-edge-connected if G is a nontrivial connected
graph that contains no bridges. Hence Theorem 7.5 can be restated as follows:

A nontrivial connected graph G has a strong orientation if and only if G is 2-edge-
connected.

Theorem 7.5 is due to Herbert E. Robbins (1915–2001). The paper in which this theorem appears,
titled “A theorem on graphs, with an application to a problem of traffic control,” was published in
1939 in the American Mathematical Monthly, only a year after he received his Ph.D. from Harvard
University in topology, under the direction of Hassler Whitney. This was only Robbins’ second
publication of what was to become a long and impressive list. Also, in 1939 at age 24, Robbins
began work on the classic book What Is Mathematics? with Richard Courant. This book has been
classified by Robbins as more of a literary work than a scientific work. A few years later Robbins
became interested in and devoted his research to statistical analysis, in which he made major
contributions. He spent many years as a Professor of Mathematical Statistics at Columbia University.
In 1958 he had a doctoral student, Herbert Wilf, who also has made major contributions to
combinatorics and graph theory.

Exercises for Section 7.1

7.1 (a) Prove that if D is an oriented graph of order 4 such that D − v is strong for every vertex v of
D, then D is strong.

(b) Show that no oriented graph D of order 4 has the property that D − v is strong for every
vertex v of D.

7.2 Prove that a graph G has an Eulerian orientation if and only if G is Eulerian.

7.3 Show that each of the graphs G1 and G2 in Figure 7.7 is orientable by assigning a direction to
each edge so that the resulting digraph is strong.



Figure 7.7: The graphs of Exercise 7.3

7.4 The converse  of a digraph D is obtained from D by reversing the direction of every arc of D.
Show that a digraph D is strong if and only if its converse  is strong.

7.5 Prove that a nontrivial digraph D is strong if and only if for every edge-cut S of the underlying
graph G of D separating V(G − S) into two sets A and B, there is an arc in D directed from A to
B and an arc in D directed from B to A.

7.6 Does there exist a nontrivial digraph D in which no two vertices of D have the same outdegree
but every two vertices of D have the same indegree?

7.2 Tournaments

It is difficult to know just how far back competitions go. There have been competitions between two
individuals (tennis, chess, bridge, jousting) and competitions between two teams (soccer, basketball,
baseball). There have even been competitions between frogs, as Mark Twain wrote of Dan’l Webster
in The Celebrated Jumping Frog of Calaveras County. In some competitions, there is a single match
between two individuals or two teams and the victor in the match decides the outcome of the
competition. In other competitions, often called tournaments, several individuals (or teams) are
involved and there is a formula to decide who plays whom. Losing a match causes that individual or
team to be eliminated and the tournament continues with those individuals who have won the earlier
matches. Other tournaments are “double elimination,” where a player or team is allowed to lose one
match but is eliminated when a second loss occurs.

Other tournaments are “round robin tournaments,” where each team plays every other team exactly
once in the competition and the outcome of the tournament is decided only after all these matches have
been played. For example, suppose that a round robin tournament involves eight teams (denoted by 1,
2, …, 8). Then every team must play each of the other seven teams once. In the first “round,” there are
then four matches, each involving a pair of teams. There are seven rounds in this round robin
tournament. Figure 7.8 shows how such a schedule might look. If only seven teams were involved,
then in any round robin tournament only three matches can take place in a round with one team not
playing (this team receives a “bye”). In this case, we can replace each occurrence of 8 in Figure 7.8
with “bye.” We will see in Section 8.2 how such schedules can be constructed.



Figure 7.8: A round robin tournament with eight teams

Round robin tournaments give rise quite naturally to a class of digraphs, not so coincidentally
called tournaments. A tournament is an orientation of a complete graph. Therefore, a tournament
can be defined as a digraph such that for every pair u, v of distinct vertices, exactly one of (u, v) and
(v, u) is an arc. A tournament T then models a round robin tournament. The vertices of T are the teams
in the round robin tournament and (u, v) is an arc in T if team u defeats team v. (Ties are not
permitted.)

Recall that two digraphs D and D′ are isomorphic, written D  D′, if there exists a bijective
function  such that (u, v)  E(D) if and only if . Such a
function  is called an isomorphism. There is only one tournament of order 1 and only one
tournament of order 2 (up to isomorphism). There are two tournaments of order 3 and four
tournaments of order 4. The tournaments of order 4 or less are shown in Figure 7.9. There are also 12
tournaments of order 5. Based on this information, it probably comes as a great surprise to learn that
there are over 154 billion tournaments of order 12.

Figure 7.9: Tournaments of order 4 or less

A tournament T is transitive if whenever (u, v) and (v, w) are arcs of T, then (u, w) is also an arc
of T. The tournaments T1, T2, T4 and T5 of Figure 7.9 are transitive. In fact, for every positive integer
n, there is a unique transitive tournament of order n (again, up to isomorphism). If T is a transitive
tournament of order n and i is an integer with 0 ≤ i ≤ n − 1, there is a vertex vi in T such that od vi = i.
Transitive tournaments have a property that no other tournaments have.

Theorem 7.6 A tournament T is transitive if and only if T has no cycles.

Proof. Let T be a transitive tournament and assume, to the contrary, that T contains a cycle C = (v1,
v2, …, vk, v1). Since (v1, v2) and (vk, v1) are arcs of T, there are vertices on C to which v1 is
adjacent and vertices on C from which v1 is adjacent. Hence there must be a vertex vi (2 ≤ i ≤ k −
1) such that (v1, vi) and (vi + 1, v1) are arcs of T. Since (v1, vi) and (vi, vi + 1) are arcs of a transitive
tournament, (v1, vi + 1) is an arc of T. This is a contradiction.

For the converse, assume that T is a tournament that contains no cycles. Let (u, v) and (v, w) be
two arcs of T. Since T contains no cycles, (w, u) is not an arc of T, implying that (u, w) is an arc of T
and so T is transitive.

As we have seen, if T is a transitive tournament of order n, then there is a unique vertex u of T



having outdegree n − 1, which is certainly the largest outdegree of any vertex of T. Therefore, u is
adjacent to all other vertices of T and so (u, v) ≤ 1 for every vertex v of T. Nearly the same thing is
true for any vertex of maximum outdegree in a tournament (transitive or not).

Theorem 7.7 If u is a vertex of maximum outdegree in a tournament T, then (u, v) ≤ 2 for
every vertex v of T.

Proof. Suppose that od u = k and let v1, v2, …, vk be the k vertices of T that are adjacent from u. If
there are no other vertices of T, then (u, v) ≤ 1 for every vertex v of T.

Assume then that there are some vertices of T adjacent to u, say w1, w2, …, wl (see Figure 7.10).
We have already noted that (u, vi) = 1 for 1 ≤ i ≤ k. We show that (u, wj) = 2 for each vertex wj
with 1 ≤ j ≤ l. If some vertex vi(1 ≤ i ≤ k) is adjacent to wj, then certainly (u, wj) = 2. On the other
hand, if this is not the case, then wj is adjacent to all of the vertices v1, v2, …, vk. Since wj is also
adjacent to u, it follows that od wj ≥ k + 1 ≥ k = od u, which is impossible.

Figure 7.10: A step in the proof of Theorem 7.7

Suppose that we have a collection of teams involved in a round robin tournament. As we have
seen, the results of the matches can be modeled by a tournament T (a digraph). The outdegree of a
vertex in T is then the number of matches won by this team. Let A be a team that has won the most
matches. According to Theorem 7.7, if B is any other team, then either (1) A defeated B or (2) A
defeated a team that defeated B.

As with graphs, a path P in a digraph D is a Hamiltonian path of D if P contains all vertices of D.
A cycle C in D is a Hamiltonian cycle if C contains every vertex of D. If D has a Hamiltonian cycle,
then D is a Hamiltonian digraph. We now describe a property possessed by all tournaments that was
first observed by László Rédei.

Theorem 7.8 Every tournament contains a Hamiltonian path.

Proof. Let P be a path of greatest length in a tournament T, say

If P contains every vertex of T, then P is a Hamiltonian path. Suppose then that P is not a Hamiltonian
path. Thus there exists a vertex v of T that is not on P (see Figure 7.11). Neither (v, v1) nor (vk, v) is
an arc of P, for otherwise T contains a path whose length exceeds the length of P. Thus (v1, v) and (v,



vk) are arcs of T. This implies, however, that there must be a vertex vi, 1 ≤ i ≤ k − 1, such that v is
adjacent from vi and vi + 1 is adjacent from v. However then, P′ = (v1, v2, …, vi, v, vi + 1, …, vk) is a
path whose length is greater than that of P, which is impossible.

According to Theorem 7.8 then, if we have any collection of teams that have participated in a
round robin tournament, then the teams can be ordered, say

Figure 7.11: A step in the proof of Theorem 7.8

as A1, A2, …, An, such that team A1 has defeated A2, team A2 has defeated A3 and so on. This doesn’t
necessarily mean that A1 is the best team and An is the worst team, however. For example, in the
strong tournament T of order 3 shown in Figure 7.12, there is no logical ordering of the three teams.
For example, (A1, A2, A3) and (A2, A3, A1) as well as (A3, A1, A2) are Hamiltonian paths. Indeed, the
only time that there is a clear ordering of the teams is when the resulting digraph (tournament) is
transitive.

Figure 7.12: Hamiltonian paths in a tournament

If T is a tournament that is not transitive, then not only does T contain a Hamiltonian path but, by
Theorem 7.6, T contains cycles. If T is strong, then even more can be said.

Theorem 7.9 Every vertex in a nontrivial strong tournament belongs to a triangle.

Proof. Let v be a vertex in a nontrivial strong tournament T. Since T is strong, od v > 0 and id v >
0. Let U be the set of vertices to which v is adjacent, and let W be the set of vertices from which v
is adjacent (see Figure 7.13). Thus U ≠ ø and W ≠ ø. Since T is strong, there is a v − w path for
each w  W. Such a path necessarily contains an arc (u, w) for some u  U and some w  W and so
v lies on the triangle (v, u, w, v).



Figure 7.13: A step in the proof of Theorem 7.9

While every tournament contains a Hamiltonian path, certainly not every tournament contains a
Hamiltonian cycle. If a tournament T contains a Hamiltonian cycle, then (by Theorem 7.3) T is strong.
What may be surprising is that the converse is true as well.

Theorem 7.10 A nontrivial tournament T is Hamiltonian if and only if T is strong.

Proof. We have already seen that every Hamiltonian tournament is strong. For the converse,
assume that T is a nontrivial strong tournament. Thus T contains cycles. Let C be a cycle of
maximum length in T. If C contains all of the vertices of T, then C is a Hamiltonian cycle. So
assume that C is not Hamiltonian, say

where 3 ≤ k < n. If T contains a vertex v that is adjacent to some vertex of C and adjacent from some
vertex of C, then there must be a vertex vi of C that is adjacent to v such that vi + 1 is adjacent from v.
In this case,

is a cycle whose length is greater than that of C, producing a contradiction. Hence, every vertex of T
that is not on C is either adjacent to every vertex of C or adjacent from every vertex of C. Since T is
strong, there must be vertices of each type.

Let U be the set of all vertices of T that are not on C and such that each vertex of C is adjacent to
every vertex of U and let W be the set of those vertices of T that are not on C such that every vertex of
W is adjacent to each vertex of C (see Figure 7.14). Then U ≠ ø and W ≠ ø.

Figure 7.14: A step in the proof of Theorem 7.10

Since T is strong, there is a path from every vertex of C to every vertex of W. Since no vertex of C
is adjacent to any vertex of W, there must be a vertex u  U that is adjacent to a vertex w  W.
However then,

is a cycle whose length is greater than that of C, a contradiction.
Theorem 7.10 is due to Paul Camion. The results of Rédei and Camion are the fundamental

theorems on traversability in tournaments. There is only one strong tournament T of order 4. Since
every vertex in a strong tournament belongs to a triangle, there is a vertex v in T such that T − v is also



strong. This statement is true for strong tournaments of every order greater than 4 as well. The proof
of the following result uses the same approach as the proof of the preceding result.

Theorem 7.11 If T is a strong tournament of order n  ≥ 4, then there exists a vertex v of T such
that T − v is a strong tournament.

Proof. Since the result is true for n = 4, we can assume that n ≥ 5. Assume, to the contrary, that the
theorem is false. Then there exists a strong tournament of order n ≥ 5 such that for every vertex v of
T, the tournament T − v is not strong. By Theorem 7.10, this implies that T contains no cycle of
length n − 1. Let C be a cycle of greatest length in T that is not a Hamiltonian cycle. Suppose that

where 3 ≤ k ≤ n − 2. If there exists a vertex x not on C that is adjacent to some vertices of C and
adjacent from some vertices of C, then there is some vertex vi on C such that (vi, x) and (x, vi + 1) are
arcs of T. However, then,

is a cycle of length k + 1, which is a contradiction.
This implies that every vertex of T that is not on C is either adjacent to all vertices of C or is

adjacent from all vertices of C. Let U be the set of vertices of T that are not on C and that are adjacent
from all vertices of C and let W be the set of vertices of T that are not on C and that are adjacent to all
vertices of C. Then U ≠ ø and W ≠ ø (see Figure 7.15).

Figure 7.15: A step in the proof of Theorem 7.11

Since T is strong, there exist vertices u  U and w  W such that (u, w) is an arc of T. However,
then,

is a cycle of length k + 1, which is impossible.
As a consequence of Theorem 7.11, every strong tournament of order n ≥ 3 contains an induced

strong tournament of order k for every integer k with 3 ≤ k ≤ n.

Exercises for Section 7.2

7.7 Prove that there is only one tournament T of order n, where 3 ≤ n ≤ 5, such that T and T − (u, v)



+ (v, u) are strong for every arc (u, v) of T.

7.8 If every vertex of some tournament of order n has the same outdegree x, then what is x?

7.9 Prove that a tournament T is transitive if and only if every two vertices of T have distinct
outdegrees.

7.10 Prove that if u and v are vertices of a tournament such that (u, v) = k, then id u ≥ k − 1.

7.11 Let T be a tournament of order n ≥ 3 with V(T) = {v1, v2, …, vn}. Prove that if od vi > id vi for
1 ≤ i ≤ n − 1, then T is not strong.

7.12 Prove or disprove:

(a) If every vertex of a tournament T belongs to a cycle in T, then T is strong.
(b) For every pair u, v of vertices in a strong tournament T, there exists either a Hamiltonian u

− v path or a Hamiltonian v − u path.
(c) If (u, v) is an arc of a strong tournament T, then (u, v) lies on a Hamiltonian cycle of T.

7.13 Let u and v be distinct vertices in a tournament such that (u, v) and (v, u) are defined. Show
that (u, v) ≠ (v, u).

7.14 (a) Show that if an odd number of teams play in a round robin tournament, then it is possible for
all teams to tie for first place.

(b) Show that if an even number of teams play in a round robin tournament, then it is not
possible for all teams to tie for first place.

7.15 Prove that if T is a strong tournament of order n ≥ 3, then T contains a cycle of length k for
every integer k with 3 ≤ k ≤ n.

7.3 Excursion: Decision—Making

In the United States presidential election of 2000, George W. Bush narrowly defeated Al Gore.
Although Gore received a higher popular vote total than Bush, the winner of the election was Bush
because his electoral vote total was higher than that of Gore.

During a typical year, there are numerous occasions when decisions are made by voting. Whether
it’s electing a president, a prime minister, a senator, a governor, a mayor or a student representative
on a committee, decisions must be made as to which individuals will hold these positions.
Furthermore, a procedure must be in place to determine how this decision will be made. The answer
may seem simple. The decision is made by voting. However, this is not as simple as it may first
appear. If there are several candidates for a certain position, then there is a variety of ways of
deciding the outcome of an election. It would seem that it is easy to decide the outcome of a two-
person election and in general this is true, with the aforementioned 2000 United States presidential
election being a possible exception (even though there were more than two candidates for president).
Making a decision among several choices is not restricted to governmental or college elections,
however.



Example 7.12 Al, his wife Barbara and their three children Cassie, Donna and Edwin have
discussed which new car they should purchase and have agreed that the choice should be made
from a General Motors car (GM), a Honda (H), a Chrysler (C), a Toyota  (T) and a Ford (F). Al
and Barbara also agreed that this should be a family decision and that each family member
would have an equal voice in the decision.

Actually, Al’s preferences coincide exactly with the order of cars listed above. That is, Al prefers
a General Motors car to a Honda, a Honda to a Chrysler and so on. Al’s preferences are given in the
tournament shown in Figure 7.16. For example, the directed edge from C to F indicates that Al prefers
a Chrysler to a Ford. The tournament in Figure 7.16 is called the tournament of paired comparisons
for Al’s preferences as it indicates his preferred choices for each pair of cars.

Figure 7.16: Al’s tournament of paired comparisons

The tournaments of paired comparisons for all family members are given in Figure 7.17. All of
these tournaments are transitive, as expected. For example, since Barbara prefers a Honda over a
Ford and a Ford over a Toyota, one would expect that she prefers a Honda over a Toyota, which, in
fact, she does. For the decision as to which car should be purchased, Figure 7.18 shows the single
tournament of paired comparisons for the entire family. For example, all three children prefer a Ford
over a General Motors car, while both parents prefer the General Motors car to a Ford. Since the
majority of the family members prefer a Ford to a General Motors car, the family prefers a Ford to a
General Motors car and so there is an arc from F to GM. All other arcs in this tournament are
obtained in the same manner. Now that we have all the information, the question is: Which car should
be purchased? This question doesn’t appear to have an easy answer. At least, it doesn’t seem to have
an obvious answer. The problem is that even though every tournament in Figure 7.17 is transitive, the
tournament in Figure 7.18 constructed from these five tournaments is not transitive.



Figure 7.17: The tournaments of paired comparisons for all five family members

Figure 7.18: The family tournament of paired comparisons

Let’s turn to another example.

Example 7.13 Suppose that a college is having an election for student president and this year
there are three candidates: Atkins, Bennett and Chapman.

In order to have the full input of the students, each student is asked to cast his/her vote by making
one of the choices listed below:

For example, checking the box in the third column in the list would mean that the first choice of the
person voting is Bennett (B), the second choice is Chapman (C) and the third choice is Atkins (A).
The voting takes place and here is the outcome:

What do we do with this information? Let’s construct a tournament T that provides the preferences
among these candidates. The vertex set of T is V(T) = {A, B, C}. We consider A and B first. Since
100 + 500 + 50 = 650 students prefer A over B and 75 + 425 + 350 = 850 prefer B over A, we see



that B is the clear choice over A and the directed edge (B, A) is drawn in T. Similarly, (C, A) is a
directed edge in T since 825 prefer C over A, while 675 prefer A over C. Also, (C, B) is an arc since
900 prefer C over B, while only 600 prefer B over C. This tournament is shown in Figure 7.19.

Figure 7.19: The tournament of paired comparisons for the college election

Looking at the tournament T in Figure 7.19, we see that not only is Chapman preferred over the
other two candidates, each of Bennett and Chapman is preferred over Atkins. Furthermore, the
number of voters with these preferences is quite one-sided. So the decision appears to be very clear.
Or is it? After all, how often do you see a voting decision made in this way? It is common to count
only the votes for the candidates who are the first choice of the voters. If this is done, then the
outcome of the election is

And the winner is: Atkins. On the other hand, there are often primary elections to determine the top
two vote-getters to face off in a general election. For example, in the election above, Chapman
received the least votes and would be eliminated from appearing on the ballot in the general election.
That is, in the general election, it would be Atkins versus Bennett. But we have already seen that
between these two candidates, Bennett would receive more votes than Atkins and would win quite
easily. Therefore, by the two most common ways of deciding an election, the winning candidate is not
the preferred candidate.

Exercises for Section 7.3

7.16 The preferences of 98 voters for three candidates are shown below.

(a) If the candidate who is the first choice of most voters wins, then who would win?
(b) Draw the tournament of paired comparisons. Indicate how you decided to draw the three

arcs. According to this tournament, which candidate should win?

7.17 This year there are four candidates for the president of the student council at a local college:
Archer (A), Benson (B), Chase (C) and Dawkins (D). Each student is asked to order his/her
preferences among the four candidates by voting for one of the 4! = 24 ordered lists of



candidates. A total of 408 students vote in the election and the outcome is as follows:

Of course, the question now is: Who won the election?
(a) Determine the winner of the election by counting only the first choice of each voter.
(b) Determine the winner of the election by eliminating the candidate who received the

smallest number of votes in (a) and then recounting the votes of the three remaining
candidates?

(c) Determine the winner of the election by eliminating the two candidates who received the
smallest number of votes in (a) and then recounting the votes of the two remaining
candidates?

(d) Determine the winner of the election by constructing the tournament of paired comparisons
of the four candidates.

(e) Who should win the election?

7.18 Return to Example 7.12 of the family trying to decide which of five cars to purchase. Edwin
has another idea to make the decision. Start with the Honda (H) and Ford (F) and determine
which of these is the preferred car of the family. Then do the same thing for the Toyota (T) and
the General Motors car (GM). Then compare the Chrysler (C) and the preferred car between H
and F. The preferred car here is compared against the car preferred between T and GM. Which
car does the family prefer using this method? Is this a good method?

7.4 Exploration: Wine Bottle Problems

There are games and problems in which success is attained by proceeding through a sequence of
steps. That is, in the process of playing the game or attempting to solve the problem, an individual
may find himself or herself at one of a number of states and from that state it is possible to move to
certain other states by a single (allowable) step. Such a situation can be modeled by a graph whose
vertices are the states and where two states A and B are adjacent if it is possible to proceed from A
to B by a single step. This is under the assumption that moving from A to B is reversible by a single
reverse step. If, on the other hand, there are states A and B such that it is possible to proceed from A
to B by single step but not so from B to A, then this situation is more appropriately modeled by a
digraph rather than a graph. We now look at a class of problems that can be modeled by digraphs.

Example 7.14 Three wine bottles A, B and C have capacities of 1, 3 and 4 liters, respectively.
These bottles are not graduated, however. That is, there are no markings on the bottles. So,



looking at a single bottle, it would be impossible to know exactly how much wine is in it, unless,
of course, the bottle was full or empty. The largest bottle is filled with wine and the other two
containers are empty. By a  pouring, we mean that the contents of some bottle X containing wine
is poured into a bottle Y until either bottle Y is filled or bottle X is empty. We wish to divide the
wine into two equal portions by pouring successively from one bottle to another. The problem
then is: Can we obtain 2 liters of wine in the largest bottle and 2 liters in the medium-size bottle
and if so, what is the fewest possible number of pourings needed to accomplish this?

At any particular time, suppose that bottle A contains a liters of wine, B has b liters of wine and C
has c liters of wine. Thus a + b + c = 4 and initially a = b = 0. Indeed, knowing only a and b tells us
how much wine is in all three bottles. To help us answer this question, we construct a digraph D such
that

where (a1, b1) is adjacent to (a2, b2) if we can proceed from (a1, b1) to (a2, b2) by a single pouring.
The answer to the question is therefore the distance from the vertex (0, 0) to the vertex (0, 2) in D.
The digraph D is shown in Figure 7.20.

Figure 7.20: The digraph of Example 7.14

Observe that while some steps are reversible, others are not. For example, there is an arc from (0,
1) to (0, 0) but not from (0, 0) to (0, 1). That is, if bottle A is empty and bottle B contains exactly 1
liter of wine, then the contents of bottle B can be poured into bottle C; while if bottle C contains 4
liters of wine, then it is not possible to pour exactly 1 liter of the contents of bottle C into bottle B.
Looking at the digraph D of Figure 7.20, we see that the distance from (0, 0) to (0, 2) is 3 and a
geodesic is the path

Consequently, beginning with the bottle C filled with wine, it is possible to divide the wine into two
equal portions by performing three pourings, but no fewer. Notice that there are paths from (0, 0) to
(0, 2) of greater length as well.



Exercises for Section 7.4

7.19 Three wine bottles A, B and C have capacities of 3, 5 and 8 liters, respectively. What is the
smallest number of pourings needed to produce

(a) two bottles, each containing 4 liters of wine?
(b) two bottles, one of which contains 2 liters of wine and the other 6 liters of wine?
(c) two bottles, one of which contains 1 liter of wine and the other 7 liters of wine?

7.20 Create a problem of your own (as in Exercise 7.19) by selecting different capacities of three
wine bottles.



Chapter 8

Matchings and Factorization

8.1 Matchings

A mathematics department at a university has acquired a collection of 12 different mathematics books
on a variety of subjects to be presented to students who have performed well on a competitive
mathematics exam (one book to each successful student). Of course, there would be a problem if more
than 12 students qualified for these books. It turns out, however, that this is not a problem as only 10
students did well enough on the exam to receive books. Nevertheless, another possible difficulty has
arisen. Some of the students already have copies of some books and there are some books that certain
students have no need for. The question is this: Is there a way of distributing 10 of the 12 books to the
10 students so that each student receives a book that he or she would like to have? The answer to this
problem may be no even though there are more books than students. For example, there may be three
or more books that no student wants. Also, perhaps there are four students only interested in the same
three books, in which case it would be impossible to distribute four books to these four students.

It may already be clear that this situation can be modeled by a graph G whose vertices are the
students, say S1, S2, …, S10 and the books, say B1, B2, …, B12, where two vertices of G are adjacent if
one of these vertices is a student and the other is a book that this student would like to have. Certainly
then, G is a bipartite graph with partite sets U = {S1, S2, …, S10} and W = {B1, B2, …, B12}. For
example, if student S1 would like to have any of the books B2, B3, B5, B7, then the graph G contains the
subgraph shown in Figure 8.1. What we are seeking then is a set A of 10 edges in the graph G (where
G is only partially drawn in Figure 8.1), no two of which are adjacent. If such a set A exists, then each
vertex Si (1 ≤ i ≤ 10) is incident with exactly one edge in A.

There is a related mathematical question here. Let U and W be two sets such that |U| = 10 and |W| =
12. Does there exist a one-to-one function f : U → W?

Figure 8.1: A subgraph of a bipartite graph

If this is all there is to the question, then the answer is yes. However, what if the image of each
element of U cannot be just any element of W? The image of each element of U is required to be an
element of some prescribed subset of W. Consequently, what we are asking is that if we know the sets



of possible images of the elements of U, is there a one-to-one function f : U → W that satisfies these
conditions?

This discussion leads us to some new concepts. A set of edges in a graph is independent if no two
edges in the set are adjacent. By a matching in a graph G, we mean an independent set of edges in G.
Thus the problem we were discussing asks whether a particular graph contains a certain matching.
Since many problems of this type involve bipartite graphs, as does the problem we were discussing,
we first consider these concepts for bipartite graphs only.

Let G be a bipartite graph with partite sets U and W, where r = |U| ≤ |W|. A matching in G is
therefore a set M = {e1, e2, …, ek} of edges, where ei = uiwi for 1 ≤ i ≤ k such that u1, u2, …, uk are k
distinct vertices of U and w1, w2, …, wk are k distinct vertices of W. We say that M matches the set
{u1, u2, …, uk} to the set {w1, w2, …, wk}. Necessarily, for any matching of k edges, we must have k
≤ r. The term “matching” is used since the edges of M match or pair off k elements of U with k
elements of W. The question in which we are interested can now be phrased as follows: Does G
contain a matching of cardinality r? Before continuing with this discussion, let’s consider two
examples.

Example 8.1 As a result of doing well on an exam, six students Ashley (A) , Bruce (B) , Charles
(C) , Duane (D) , Elke (E) and Faith (F) have earned the right to receive a complimentary
textbook in either algebra (a), calculus (c), differential equations (d) , geometry (g) , history of
mathematics (h) , programming (p) or topology (t) . There is only one book on each of these
subjects. The preferences of the students are

Can each of the students receive a book he or she likes?

Solution. This situation can be modeled by the bipartite graph G of Figure 8.2(a) having partite
sets U = {A, B, C, D, E, F} and W = {a, c, d, g, h, p, t}. We are asking if G contains a matching
with six edges. Such a matching does exist, as shown in Figure 8.2(b). From the matching shown in
Figure 8.2(b), we see how six of the seven books can be paired off with the six students.

Figure 8.2: A matching in a bipartite graph

Example 8.2 Seven seniors Ben (B), Don (D), Felix (F), June (J), Kim (K), Lyle (L) and Maria
(M) are looking for positions after they graduate. The University Placement Office has posted



open positions for an accountant (a) , consultant (c) , editor (e) , programmer (p) , reporter (r),
secretary (s) and teacher (t). Each of the seven students has applied for some of these positions:

Is it possible for each student to be hired for a job for which he or she has applied?

Solution. This situation can be modeled by the bipartite graph G of Figure 8.3, where one partite
set U = {B, D, F, J, K, L, M} is the set of students and the other partite set W = {a, c, e, p, r, s, t} is
the set of positions. A vertex u  U is joined to a vertex w  W if u has applied for position w.

The answer to this question is no as Ben, Felix, June and Lyle have only applied for some or all
the positions of consultant, editor and reporter. So not all of these four students can be hired for the
jobs for which they have applied. Consequently, not all seven students can be hired for the seven
positions. What we have observed for the bipartite graph G of Figure 8.3 is that there is no matching
with seven edges. What we gave for an explanation is that there is a subset X = {B, F, J, L } of U
containing four vertices whose neighbors belong to a set {c, e, r} of only three vertices. As we are
about to see, this is the key reason why this or any bipartite graph with partite sets U and W such that
r = |U| ≤ |W| does not contain a matching with r edges.

Let G be a bipartite graph with partite sets U and W such that |U| ≤ |W|. For a nonempty set X of U,
the neighborhood N(X) of X is the union of the neighborhoods N(x), where x  X. Equivalently, N(X)
consists of all those vertices of W that are the neighbors of one or more vertices in X. The graph G is
said to satisfy Hall’s condition if |N(X)| ≥ |X| for every nonempty subset X of U. This condition is
named for Philip Hall, whom we will visit

Figure 8.3: A graph modeling the situation in Example 8.2

shortly. The partite set U = {B, D, F, J, K, L, M } in the bipartite graph G of Example 8.2 (shown in
Figure 8.3) does not satisfy Hall’s condition since the subset X = {B, F, J, L } of U has the property
that |N(X)| < |X|. It turns out, however, that the bipartite graph G of Example 8.1 does satisfy Hall’s
condition.

Theorem 8.3 Let G be a bipartite graph with partite sets U and W such that r = |U| ≤ |W|. Then G
contains a matching of cardinality r if and only if G satisfies Hall’s condition.

Proof. If Hall’s condition is not satisfied, then there is some subset S of U such that |S| > |N(S)|.
Since S cannot be matched to a subset of W, it follows that U cannot be matched to a subset of W.



The converse is verified by the Strong Principle of Mathematical Induction. We proceed by
induction on the cardinality of U. Suppose first that Hall’s condition is satisfied and |U| = 1. Since
|N(U)| ≥ |U| = 1, there is a vertex in W adjacent to the vertex in U and so U can be matched to a subset
of W. Assume, for an integer k ≥ 2, that if G1 is any bipartite graph with partite sets U1 and W1, where

that satisfies Hall’s condition, then U1 can be matched to a subset of W1. Let G be a bipartite graph
with partite sets U and W, where k = |U| ≤ |W|, such that Hall’s condition is satisfied. We show that U
can be matched to a subset of W. We consider two cases.

Case 1. For every subset S of U such that 1 ≤ |S| < |U|, it follows that |N(S)| > |S|. Let u  U. By
assumption, u is adjacent to two or more vertices of W. Let w be a vertex adjacent to u. Now let H be
the bipartite subgraph of G with partite sets U − {u} and W − {w}. For each subset S of U − {u},
|N(S)| ≥ |S| in H. By the induction hypothesis, U − {u} can be matched to a subset of W − {w}. This
matching together with the edge uw shows that U can be matched to a subset of W.

Case 2. There exists a proper subset X of U such that  |N(X)| = |X|. Let F be the bipartite subgraph
of G with partite sets X and N(X). Since Hall’s condition is satisfied in F, it follows by the induction
hypothesis that X can be matched to a subset of N(X). Indeed, since |N(X)| = |X|, the set X can be
matched to N(X). Let M′ be such a matching.

Next, consider the bipartite subgraph H of G with partite sets U − X and W − N(X). Let S be a
subset of U − X and let

We show that |S| ≤ |S′|. By assumption, |N(X  S)| ≥ |X  S|. Hence

Since |N(X)| = |X|, it follows that |S′| ≥ |S|. Thus Hall’s condition is satisfied in H and so there is a
matching M″ from U − X to W − N(X). Therefore, M′  M″ is a matching from U to W in G.

Theorem 8.3 is also due to Philip Hall, who was a well-known algebraist. Hall was born on April
11, 1904 in Hempstead, London, England and grew to love mathematics as a young student. His
interest in mathematics was greatly influenced by the mathematics teachers he had, who were not only
fine mathematicians, they were enthusiastic mathematicians. Hall excelled in English as well.
Although neither outgoing nor athletic, Hall was popular as a student. He went on to King’s College
Cambridge where he was encouraged to study the work of William Burnside and became interested in
group theory. Hall received his B.A. in 1925. Only after a great deal of thought did he decide to
pursue an academic career.

Hall obtained a fellowship at King’s College in 1927. He corresponded with Burnside who was
very helpful to Hall, although the two never met. Later in 1927 Hall obtained an important result in
group theory, generalizing the Sylow theorems for finite solvable groups, which is now often called
Hall’s theorem. This theorem was published in 1928. Even though his fellowship was renewed in
1930, a second renewal appeared unlikely due to his lack of mathematical activity for three years. He
then published a paper in 1932 on groups of prime power order, perhaps his best known work. In



1933 he was then appointed a Lecturer at Cambridge. In 1935 his theorem on matchings (Theorem
8.3) was published, although it was not stated in terms of graph theory.

Except for a period during World War II when he worked for a Foreign Office at Bletchley Park,
he remained at Cambridge from 1933 to 1967. Hall spent much of his life making important
contributions to algebra and is considered one of the great mathematicians of the 20th century. A man
of high intellectual standards and sound judgment, Hall cared greatly for his students and his students
cared greatly for him. Hall was an elegant writer but when it became necessary for him to criticize
the writing of his students, he found gentle ways to suggest improvements. Even after his students left
upon completing their degrees, he remained in contact with them and encouraged them. He died on
December 30, 1982.

As we mentioned, Theorem 8.3 was not stated in terms of graphs. Let S1, S2, …, Sn be nonempty
finite sets. Then this collection of sets has a system of distinct representatives if there exist n
distinct elements x1, x2, …, xn such that xi  Si for 1 ≤ i ≤ n. Of course, in order for the sets S1, S2, …,
Sn to have a system of distinct representatives, |S1  S2  …  Sn| ≥ n.

For example, consider the sets S1, S2, …, S7, where

Then this collection of sets has a system of distinct representatives. In particular, 1, 2, …, 7 (that is, i 
 Si for i = 1, 2, …, 7) is a system of distinct representatives. On the other hand, the sets 

, where

do not have a system of distinct representatives as , so distinct
representatives do not exist for the sets .

These examples may very well suggest that what is needed for a collection of sets to have a
system of distinct representatives is exactly what is required in a bipartite graph G to have one partite
set U matched to a subset of the other partite set W of G.

Theorem 8.4 A collection {S1, S2, … Sn} of nonempty finite sets has a system of distinct
representatives if and only if for each integer k with  1 ≤ k ≤ n, the union of any k of these sets
contains at least k elements.

Proof. Suppose that {S1, S2, …, Sn} has a system of distinct representatives. Then, necessarily, for
each integer k with 1 ≤ k ≤ n, the union of any k of these sets contains at least k elements. So only
the converse needs to be verified.

Let {S1, S2, …, Sn} be a collection of n sets such that for each integer k with 1 ≤ k ≤ n, the union
of any k of these sets contains at least k elements. We construct a bipartite graph G with partite sets U
= {S1, S2, …, Sn} and , where a vertex Si (1 ≤ i ≤ n) in U is adjacent to a
vertex w in W if w  Si. Let X be any subset of U, where |X| = k with 1 ≤ k ≤ n. Since the union of any
k sets contains at least k elements, |N(X)| ≥ |X|. Therefore, G satisfies Hall’s condition. By Theorem



8.3, G contains a matching of cardinality n, which pairs off the sets S1, S2, …, Sn with n distinct
elements in S1  S2  …  Sn, producing a system of distinct representatives for these sets.

Hall actually proved Theorem 8.4 on sets which has Theorem 8.3 as an equivalent formulation. It
was in fact Dénes König who recognized Hall’s theorem as a theorem in graph theory. Theorem 8.3 is
sometimes stated in “more friendly” terms and goes by the name of the Marriage Theorem.

Theorem 8.5 (The Marriage Theorem) In a collection of r women and r men, a total of r
marriages between acquainted couples is possible if and only if for each integer k with 1 ≤ k ≤
r, every subset of k women is collectively acquainted with at least k men.

In Theorem 8.3 our interest was not only in matchings but matchings of maximum cardinality. Such
a matching is called a maximum matching. At this point, we no longer assume that we are dealing
with bipartite graphs only. If G is a graph of order n, then the cardinality of a maximum matching
cannot exceed . That is, if G is a graph of (odd) order 21 + 1, then no matching contains more
than  edges; while if G has (even) order 2k, then no matching contains more than k edges. If a graph
G of order 2k has a matching M of cardinality k, then this (necessarily maximum) matching M is
called a perfect matching as M matches every vertex of G to some vertex of G. For example, every
nonempty regular bipartite graph contains a perfect matching, a result obtained by Dénes König.

Theorem 8.6 Every r-regular bipartite graph (r ≥ 1) has a perfect matching.

Proof. Let G be an r-regular bipartite graph with partite sets U and W. Necessarily |U| = |W|. Let X
be a nonempty subset of U. Suppose that |X| = k ≥ 1. Since every vertex of X has degree r in G,
there are kr edges of G incident with vertices of X. Furthermore, since each vertex of W is incident
with at most r of these kr edges, every vertex in N(X) is incident with at most r edges and so |N(X)|
≥ k = |X|. By Theorem 8.3, G has a perfect matching.

There is a parameter directly associated with matchings (and maximum matchings). The edge
independence number ′(G) of a graph G is the maximum cardinality of an independent set of edges.
Therefore, if M is a maximum matching in G, then ′(G) = |M|. Furthermore, a graph G of order n has
a perfect matching if and only if n is even and ′(G) = n/2. For an integer n ≥ 3 and integers r and s
with 1 ≤ r ≤ s,

There is another parameter closely related to the edge independence number. A vertex and an
incident edge are said to cover each other. An edge cover of a graph G without isolated vertices is a
set of edges of G that covers all vertices of G. The edge covering number ′(G) of a graph G is the
minimum cardinality of an edge cover of G. An edge cover of G of cardinality ′(G) is a minimum
edge cover of G. Thus ′(G) is defined if and only if G has no isolated vertices. For an integer n ≥ 3
and integers r and s with 1 ≤ r ≤ s,

Therefore,



while

These illustrate the following theorem.

Theorem 8.7 For every graph G of order n containing no isolated vertices,

Proof. First, suppose that ′(G) = k. Then a maximum matching of G consists of k edges, which
then cover 2k vertices. The remaining n − 2k vertices of G can be covered by n − 2k edges. Thus 
′(G) ≤ k + (n − 2k) = n − k. Hence

It remains only to show that ′(G) + ′(G) ≥ n.
Let X be a minimum edge cover of G. Hence |X| =  = ′(G). Consider the subgraph F = G[X]

induced by X. We begin with an observation: F contains no trail T of length 3. If F did contain a trail
T of length 3 and e is the middle edge of T, then X − {e} also covers all vertices of G, which is
impossible. Therefore, F contains no cycles and no paths of length 3 or more, implying that every
component of F is a star.

Since a forest of order n and size n − k contains k components and the size of F is  = n − (n − l),
it follows that F contains n −  nontrivial components. Selecting one edge from each of these n − 
components produces a matching of cardinality n − l, that is, ′(G) ≥ n − l. Therefore,

Consequently, ′(G) + ′(G) = n.

Theorem 8.7 is due to Tibor Gallai, known as Tibor Grünwald in his early years. Gallai, a
Hungarian born in 1912, was a winner of national mathematics competitions, along with Paul Erd s
and Paul Turán and became life-long friends of both. As a consequence of his accomplishments,
Gallai was admitted to Pázmány University in Budapest. He was one of a group of enthusiastic
students in the 1930s in Budapest that included Paul Erd s, Paul Turán, George Szekeres and Esther
Klein. Some of these students attended the graph theory course given by Dénes König, who was a
professor at the Technical University of Budapest. This was to have a profound effect on Gallai’s
mathematical interests. Gallai helped König with his graph theory book and König mentioned some of
Gallai’s results in the book and used other ideas of Gallai. Many of Gallai’s contributions to graph
theory were to prove fundamental to the subject and aided in the rapid development of graph theory
and combinatorics. For example, he was among the first to recognize the importance of so-called min-
max theorems.

Gallai was an exceptionally modest individual and rarely made public appearances or attended
conferences. In fact, much of his work only became known through the efforts of his students. While
Gallai was quick to praise the work of others, he often underestimated the merits of his own
contributions, even though he had important results in many areas of graph theory. Consequently, he



was notoriously slow to publish his own results. Several of his results went unpublished, later to be
independently rediscovered (and published) by others. Gallai died in 1992.

Independence of vertices is an equally important topic in graph theory. A set of vertices in a graph
is independent if no two vertices in the set are adjacent. The vertex independence number (or the
independence number) (G) of a graph G is the maximum cardinality of an independent set of
vertices in G. An independent set in G of cardinality (G) is called a maximum independent set.

There is an analogous covering concept for vertices. A vertex cover in a graph G is a set of
vertices that covers all edges of G. The minimum number of vertices in a vertex cover of G is the
vertex covering number (G) of G. A vertex cover of cardinality (G) is a minimum vertex cover
in G. For an integer n ≥ 3 and integers r and s with 1 ≤ r ≤ s,

while

Here too observe that

There is an analogue to Theorem 8.7 for vertices, also due to Gallai. The proof is similar to the proof
of Theorem 8.7 and is left as an exercise. The results in Theorems 8.7 and 8.8 are often referred to as
the Gallai Identities.

Theorem 8.8 For every graph G of order n containing no isolated vertices,

The independence and covering concepts that we have just discussed for a graph G are
summarized below.

(G) vertex independence number maximum number of vertices, no two of which are adjacent
(G) vertex covering number minimum number of vertices that cover all edges of G
′(G) edge independence number maximum number of edges, no two of which are adjacent

′(G) edge covering number minimum number of edges that cover all vertices of G

Example 8.9 Determine the values of (G), (G), ′(G) and ′(G) for the graph G = K1+ 2K3 of
Figure 8.4.

Figure 8.4: The graph G in Example 8.9

Solution. Since the order of G is 7, it follows that . Because {tu, vw, yz} is
an independent set of three edges, ′(G) = 3. By Theorem 8.7, ′(G) = 4. Note that {tu, vw, wx, yz}



is a minimum edge cover for G.
The vertex w is adjacent to all other vertices of G. Furthermore, G[{t, u, v}] = K3 and G[{x, y, z}]

= K3. Thus (G) = 2. One example of a maximum independent set is {t, z}. By Theorem 8.8, (G) =
5. One example of a minimum vertex cover of G is {t, u, w, y, z}.

Exercises for Section 8.1

8.1 Let G be the bipartite graph with partite sets U = {u0, u1, …, u6} and W = {w0, w1, …, w6},
where the elements of U are the statements listed below, and wi = i for 0 ≤ i ≤ 6. Vertices ui
and wj (0 ≤ i, j ≤ 6) are adjacent if the integer wj is a correct response to the statement ui.

u0: The size of a nontrivial complete graph.
u1: The number of distinct u − u paths for vertices u and u in a tree.
u2: The number of Hamiltonian cycles in a transitive tournament.
u3: The number of bridges in a tree of order 6.
u4: The value of r for a nonempty r-regular graph of order 7.
u5: The maximum degree of a tree of order 5.
u6: The maximum number of cut-vertices among all graphs of order 5.

(a) Draw the graph G.
(b) Does G contain a perfect matching? If no, explain why not; if yes, draw a perfect matching

and indicate what this means in this case.

8.2 There are positions open in seven different divisions of a major company: advertising (a),
business (b), computing (c), design (d), experimentation (e), finance (f) and guest relations (g).
Six people are applying for some of these positions, namely:

(a) Represent this situation by a bipartite graph.
(b) Is it possible to hire all six applicants for six different positions?

8.3 Figure 8.5 shows two bipartite graphs G1 and G2, each with partite sets U = {v, w, x, y, z } and
W = {a, b, c, d, e}. In each case, can U be matched to W?



Figure 8.5: The graphs G1 and G2 in Exercise 8.3

8.4 A connected bipartite graph G has partite sets U and W, where |U| = |W| = k ≥ 2. Prove that if
every two vertices of U have distinct degrees in G, then G contains a perfect matching.

8.5 Prove that every tree has at most one perfect matching.

8.6 (a) Prove that every connected graph of order 4 that is not K1, 3 has a perfect matching.

(b) Let G be a connected graph of even order. Prove that if G contains no induced subgraph
isomorphic to K1, 3, then G has a perfect matching.

8.7 Give an example of a connected non-Hamiltonian graph that contains two disjoint perfect
matchings.

8.8 Show that the Petersen graph does not contain two disjoint perfect matchings. (Recall that the
smallest cycle in the Petersen graph has length 5.)

8.9 For each integer i with 1 ≤ i ≤ 4, give an example of a connected graph Gi of smallest order
such that (G) + ′(Gi) = 5 and (Gi) = i.

8.10 Show, for every connected graph G of order 6 with four independent vertices, that either (G)
= 5 or ′(G) ≥ 2.

8.11 Give an example of an infinite class of graphs G for which (G) = ′(G).

8.12 Prove or disprove:

(a) Every vertex cover of a graph contains a minimum vertex cover.
(b) Every independent set of edges in a graph is contained in a maximum independent set of

edges.

Figure 8.6: The graph G in Exercise 8.13

8.13 Determine the values of (H), (H), ′(H) and ′(H) for the graph H of Figure 8.6. Give an
example of a minimum vertex cover, a maximum independent set of vertices, a minimum edge
cover and a maximum independent set of edges of H.

8.14 Prove that a graph G without isolated vertices has a perfect matching if and only if ′(G) =
′(G).

8.15 Two vertex-disjoint graphs G1 and G2 have orders n1 and n2, respectively, where (1) n2 ≥ n1,
(2) n1 and n2 are of the same parity and (3) ′(G2) ≥ (n2 − n1)/2. Let G = G1 + G2. What is 
′(G)?

8.16 Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then 



.

8.2 Factorization

We have mentioned that a matching M in a graph G of order n is a perfect matching if n is even and
|M| = n/2. The subgraph F = G[M] induced by M is therefore a 1-regular spanning subgraph of G. A
1-regular spanning subgraph of a graph G is also called a 1-factor of G. Consequently, the edge set of
a 1-factor of a graph is a perfect matching of the graph. So a graph G has a 1-factor if and only if G
has a perfect matching.

For even integers n ≥ 4, the graphs Cn and Kn have 1-factors, while for positive integers r and s,
the complete bipartite graph Kr, s  has a 1-factor if and only if r = s. The Petersen graph PG (see
Figure 8.7) also has a 1-factor, for example, F = PG[X], where X = {ui ui : 1 ≤ i ≤ 5} is a 1-factor of
the Petersen graph. Of course, the Petersen graph is a 3-regular graph. Many other 3-regular graphs
have 1-factors. Indeed all of the graphs in Figure 8.7 have 1-factors.

Not every 3-regular graph contains a 1-factor, however. For example, the 3-regular graph H of
order 16 shown in Figure 8.8 does not contain a 1-factor. This brings up a question: Which graphs
contain 1-factors? Certainly, only graphs of even order can contain a 1-factor. If G is a Hamiltonian
graph of even order, then G contains a 1-factor. By taking every other edge in a Hamiltonian cycle, a
1-factor is obtained. Indeed, a Hamiltonian graph of even order contains two disjoint perfect
matchings.

Figure 8.7: 3-regular graphs containing 1-factors



Figure 8.8: A 3-regular graph containing no 1-factor

If G is a Hamiltonian graph of even order, then k(G − S) ≤ |S| for every nonempty proper subset S
of V(G), where, recall, k(G − S) denotes the number of components of G − S. This is a consequence
of Theorem 6.5. We have seen that the converse of this theorem is not true. For example, k(PG − S) ≤
|S| for every nonempty proper subset S of the vertex set of the Petersen graph PG but the Petersen
graph is not Hamiltonian. Yet the Petersen graph does contain a 1-factor.

We have already noted that the graph H of Figure 8.8 does not contain a 1-factor. If it did contain a
1-factor F, then exactly one edge of F is incident with the vertex v. Since H − v consists of three
components of odd order, two of these components must contain a 1-factor, which, of course, is
impossible. This implies that if G is a graph of even order containing a nonempty proper subset S of
V(G) such that G − S has more than |S| components of odd order, then G cannot contain a 1-factor. It
turns out that this observation is a critical one. A component of a graph is odd or even according to
whether its order is odd or even. We write ko(G) for the number of odd components of a graph G. In
particular, if G is a Hamiltonian graph of even order n (and thus G contains a 1-factor), then ko(G −
S) ≤ |S| for every proper subset S of V(G). The following theorem provides a characterization of
graphs containing a 1-factor.

Theorem 8.10 A graph G contains a 1-factor if and only if ko(G − S) ≤ |S| for every proper
subset S of V(G).

Proof. Assume first that G contains a 1-factor F. Let S be a proper subset of V(G). If G − S has no
odd components, then ko(G − S) = 0 and certainly ko(G − S) ≤ |S|. Suppose that ko(G − S) = k ≥ 1
and let G1, G2, …, Gk be the odd components of G − S. (There may also be even components of G
− S.) Since G contains the 1-factor F and the order of each subgraph Gi (1 ≤ i ≤ k) is odd, some
edge of F must be incident to both a vertex of Gi and a vertex of S and so ko(G − S) ≤ |S|.

For the converse, assume that ko(G − S) ≤ |S| for every proper subset S of V(G). In particular, for S
= , we have ko(G − S) = ko(G) = 0, that is, every component of G is even and so G has even order.
We now show by induction that every graph G of even order with this property has a 1-factor. There
is only one graph of order 2 having only even components, namely K2, which, of course, has a 1-
factor. Assume, for an even integer n ≥ 4, that all graphs H of even order less than n for which ko(H −
S) ≤ |S| for every proper subset S of V(H) have a 1-factor. Let G be a graph of order n satisfying ko(G
− S) ≤ |S| for every proper subset S of V(G). Thus every component of G has even order.



First, we make an observation. Since every nontrivial component of G contains a vertex that is not
a cut-vertex (Corollary 5.6), there are subsets R of V(G) for which ko(G − R) = |R|. (For example, we
could choose R = {v}, where v is not a cut-vertex of G.) Among all such sets, let S be one of
maximum cardinality and let G1, G2, …, Gk be the k odd components of G − S. Thus k = |S| ≥ 1.

Observe that G1, G2, …, Gk are the only components of G − S, for otherwise G − S has an even
component G0 containing a vertex u0 that is not a cut-vertex. Then for the set S0 = S  {u0} of
cardinality k + 1,

which is impossible. Therefore, as claimed, the odd components G1, G2, …, Gk are, in fact, the only
components of G − S.

Now, for each integer i with 1 ≤ i ≤ k, let Si be the set of vertices of S that are adjacent to at least
one vertex in Gi. Since G has only even components, each set Si is nonempty. We claim next that for
each integer  with 1 ≤  ≤ k, the union of any  of the sets S1, S2, …, Sk contains at least  vertices.
Assume, to the contrary, that there exists an integer j such that the union T of j of the sets S1, S2, …, Sk
has fewer than j elements. Without loss of generality, we may assume that 
and |T| ≤ j. Then

which is impossible. Thus, as claimed, for each integer  with 1 ≤  ≤ k, the union of any  of the sets
S1, S2, …, Sk contains at least  vertices.

By Theorem 8.4, there exists a set {v1, v2, …, vk} of k distinct vertices such that vi  Si for 1 ≤ i ≤
k. Since every graph Gi (1 ≤ i ≤ k) contains a vertex ui for which uivi  E(G), it follows that {uvui : 1
≤ i ≤ k} is a matching of G (see Figure 8.9).

Figure 8.9: A step in the proof of Theorem 8.10

Next, we show that if Gi (1 ≤ i ≤ k) is nontrivial, then Gi − ui has a 1-factor. Let W be a proper
subset of V(Gi − ui). We claim that

Assume, to the contrary, that ko(Gi − ui − W) ≥ |W|. Since Gi − ui has even order, ko(Gi − ui − W) and
|W| are either both even or both odd. Hence ko(Gi − ui − W) ≥ |W| + 2. Let S′ = S  W  {ui}. Then



which implies that ko(G − S′) = |S′|, contradicting our choice of S. Therefore, ko(Gi − ui − W) ≤ |W|, as
claimed.

By the induction hypothesis, if Gi (1 ≤ i ≤ k) is nontrivial, then Gi − ui has a 1-factor. The
collection of 1-factors of Gi − ui for all nontrivial graphs Gi (1 ≤ i ≤ k) and the edges in {uivi : 1 ≤ i ≤
k} produce a 1-factor of G.

Theorem 8.10 is due to William Thomas Tutte. Tutte was born on May 14, 1917 in Newmarket,
England. Tutte’s father was a gardener and his mother a caretaker. Although the family moved about
as his father attempted to obtain a more stable position, his father eventually became a gardener at a
hotel. The family lived in a flint cottage in the little village of Cheveley. Tutte went to the village
school from ages 6 to 11. Because of his performance on a competitive exam, he won a scholarship at
age 10 to attend a school in Cambridge. His parents felt that the distance to school was too great and
so Tutte was kept at home. A year later, however, he took the exam again and this time he was
permitted to go to school in Cambridge despite the lengthy commute each day.

In 1935 he entered Trinity College, Cambridge where he majored in chemistry and went on to do
graduate work in chemistry. In fact, he had two publications in chemistry. Despite his major,
chemistry was not Tutte’s first love. His primary interest was mathematics. He was active in the
Trinity Mathematical Society, where he met three undergraduates (all mathematics majors): Cedric
Smith, R. Leonard Brooks, Arthur Stone, who became life-long friends of Tutte. The four students
wrote a paper using electrical networks to solve a geometric problem, which became a standard
reference in the field.

Tutte’s academic career was then interrupted by World War II. At the invitation of his tutor in
January 1941, Tutte went to Bletchley Park, the organization of code-breakers in Great Britain. In
October 1941, Tutte encountered the first of a set of machine-coded messages from Berlin named
Fish. While the Bletchley code-breakers, among whom Alan Turing was the most prominent, had
success in deciphering naval and air force versions of Enigma codes, they did not have success with
the army version. Because of this, they turned to Fish, which was used only by the army. The Fish
code was used for high level communications between Berlin and the field commanders. Using only
samples of messages, Tutte was able to discover the structure of machines that generated these codes.
Tony Sale, who first described the work of Tutte and his colleagues, called this the “greatest
intellectual feat of the whole war.”

After World War II, Tutte returned to Cambridge, this time as a graduate student in mathematics.
While a graduate student, he published some work that he had started earlier: a characterization of
graphs containing 1-factors (Theorem 8.10). In his doctoral thesis, Tutte revitalized a subject that is
now known as matroid theory, an area of mathematics (generally credited as being introduced by
Hassler Whitney) that grew out of abstractions of different combinatorial objects (including graphs
and matrices).

Tutte completed his Ph.D. at the University of Cambridge in 1948, with minimal assistance from
his advisor Shaun Wylie. Tutte was invited to join the faculty at the University of Toronto at the
invitation of H. S. M. (Donald) Coxeter (1907-2003), one of the great geometers of the 20th century.
While in Toronto, Tutte became one of the preeminent researchers in the field of combinatorics. In
1957 the University of Waterloo in Canada was founded. Five years later Ralph G. Stanton (1923-
2010), the Chair of the Department of Mathematics there and well known for his work in



combinatorial designs, was successful in getting Tutte to join the Department. Tutte’s presence at
Waterloo was a major factor in the establishment of the reputation of the University. Although Tutte
retired in 1984, he continued to work in graph theory and related areas of discrete mathematics. In his
1998 book Graph Theory As I Have Known It, Tutte described how he arrived at many of his
fundamental results. He died on May 2, 2002.

Figure 8.7 shows several 3-regular graphs containing 1-factors, while Figure 8.8 shows a 3-
regular graph that does not contain a 1-factor. Even though the graph of Figure 8.8 has bridges, there
is no 3-regular graph without bridges that does not contain a 1-factor. This is a result of Julius
Petersen. In fact, it is often called Petersen’s theorem. Although this theorem preceded Theorem 8.10
historically, a simpler proof can be given with the aid of Theorem 8.10.

Theorem 8.11 (Petersen’s Theorem) Every 3-regular bridgeless graph contains a 1-factor.

Proof. Let G be a 3-regular bridgeless graph and let S be a subset of V(G) of cardinality k ≥ 1. We
show that the number ko(G − S) of odd components of G − S is at most |S|. Since this is certainly the
case if G − S has no odd components, we may assume that G − S has  ≥ 1 odd components G1, G2,
…, Gl. Let Xi (1 ≤ i ≤ l) denote the set of edges joining the vertices of S and the vertices of Gi.
Since every vertex of each graph Gi has degree 3 in G and the sum of the degrees of the vertices in
the graph Gi is even, |Xi| is odd. Because G is bridgeless, |Xi| ≠ 1 for each i (1 ≤ i ≤ ) and so |Xi| ≥
3. Therefore, there are at least 3l edges joining the vertices of S and the vertices of G − S.
However, since |S| = k and every vertex of S has degree 3 in G, at most 3k edges join the vertices
of S and the vertices of G − S. Therefore,

and so ko(G − S) ≤ |S|. By Theorem 8.10, G has a 1-factor.

Actually, Petersen proved a somewhat stronger result (whose proof is left as an exercise).

Theorem 8.12 Every 3-regular graph with at most two bridges contains a 1-factor.

In view of the graph H of Figure 8.8, the number of bridges in the statement of Theorem 8.12
cannot be increased to 3 and obtain the same conclusion.

If a 3-regular graph G contains a 1-factor F1 and the edges of F1 are removed from G (that is, the
edges of a perfect matching are removed from G), then a 2-regular graph H results. If, in turn, H
contains a 1-factor F2 and the edges of F2 are removed from H, the resulting graph F3 is itself a 1-
factor. If this were to occur, then G contains three pairwise edge-disjoint 1-factors. This brings us to
our next concept.

A graph G is said to be 1-factorable if there exist 1-factors F1, F2, …, Fr of G such that {E(F1),
E(F2), …, E(Fr)} is a partition of E(G). We then say that G is factored into the 1-factors F1, F2, …,
Fr, which form a 1-factorization of G. Consequently, every edge of G belongs to exactly one of these
1-factors. Since each set E(Fi), 1 ≤ i ≤ r, is a perfect matching, every vertex v of G is incident with
exactly one edge in each of the 1-factors F1, F2, …, Fr, that is, degG u = r, which implies that G is r-



regular. Therefore, every 1-factorable graph is regular. However, the converse is not true. In fact, the
3-regular graph H of Figure 8.8 doesn’t contain a single 1-factor. On the other hand, Theorem 8.11
only guarantees that a 3-regular graph has a 1-factor when it is bridgeless.

In 1884 Peter Tait wrote that he had shown every 3-regular graph is 1-factorable but this result
was “not true without limitation.” Petersen interpreted Tait’s vague remark to mean that every 3-
regular bridgeless graph is 1-factorable. However, in 1898 Petersen showed that even if a 3-regular
graph is bridgeless, this doesn’t mean that the graph is 1-factorable. He did this by giving an example
of a 3-regular bridgeless graph that is not 1-factorable: the Petersen graph (shown in Figure 8.7).

Theorem 8.13 The Petersen graph is not 1-factorable.

Proof. Assume, to the contrary, that the Petersen graph PG is 1-factorable. Thus PG can be
factored into three 1-factors F1, F2, F3. Hence the spanning subgraph H of PG with E(H) = E(F1) 
E(F2) is 2-regular and so H is either a single cycle or a union of two or more cycles. Since PG is
not Hamiltonian, H cannot be a single cycle and is therefore the union of two or more cycles. On
the other hand, since the length of a smallest cycle in PG is 5, it follows that H = 2C5. This is
impossible, however, since 2C5 does not contain a 1-factor.

Probably the best known 1-factorable graphs are the complete graphs of even order.

Theorem 8.14 For each positive ineteger k, the complete graph K2k is 1-factorable.

Proof. Since the result is true for k = 1 and k = 2, we assume that k ≥ 3. Let G= K2k, where V(G) =
{v0, v1, v2, …, v2k  − 1}. Let v1, v2, …, v2k  − 1 be the vertices of a regular (2k − 1)-gon and place v0
in the center of the (2k − 1)-gon. Draw each edge of G as a straight line segment. Let F1 be the 1-
factor of G consisting of the edge v0v1 and all edges of G perpendicular to v0v1, namely v2 v2k  − 1,
v3 v2k  − 2, …, vk vk  + 1. In general, for 1 ≤ i ≤ 2k − 1, let Fi be the 1-factor of G consisting of the
edge v0vi and all edges of G perpendicular to v0vi. Then G has a factorization into the 1-factors F1,
F2, …, F2k  − 1.

In the 1-factorization of K2k described in the proof of Theorem 8.14, the 1-factor F2 can be
obtained by rotating the 1-factor F1 clockwise through an angle of 2 /(2k − 1) radians. By rotating F1
through this angle twice, F3 is obtained and so on. For this reason, the 1-factorization described in the
proof is called a cyclic factorization. This 1-factorization is illustrated in Figure 8.10 for the case k
= 3.



Figure 8.10: A cyclic 1-factorization of K6

With the aid of Theorem 8.6, we can describe another class of 1-factorable graphs.

Theorem 8.15 Every r-regular bipartite graph, r ≥ 1, is 1-factorable.

Proof. Let G be an r-regular bipartite graph, where r ≥ 1. By Theorem 8.6, G contains a perfect
matching M1. Hence G − M1 is (r − 1)-regular. If r ≥ 2, then G − M1 contains a perfect matching
M2. Continuing in this manner and applying Theorem 8.6 r times, we see that E(G) can be
partitioned into perfect matchings, which gives rise to a 1-factorization of G.

A 2-factor in a graph G is a spanning 2-regular subgraph of G. Every component of a 2-factor is
therefore a cycle. A graph G is said to be 2-factorable if there exist 2-factors F1, F2, …, Fk such that
{E(F1), E(F2), …, E(Fk)} is a partition of E(G). Every 2-factorable graph is necessarily 2k-regular
then. That is, if G is a 2-factorable graph, then G is r-regular for some positive even integer r. In what
might be considered an unexpected result, Petersen showed that the converse of this statement is true
as well.

Theorem 8.16 A graph G is 2-factorable if and only if G is r-regular for some positive even
integer r.

Proof. We have already observed that every 2-factorable graph is r-regular for some positive even
integer r. Therefore, we need only establish the converse. Let G be an r-regular graph, where r =
2k and k ≥ 1. Without loss of generality, we may assume that G is connected. By Theorem 6.1, G is
Eulerian and therefore contains an Eulerian circuit C. (Of course, a vertex of G can appear more
than once in C. In fact, each vertex of G appears exactly k times in C.)

Let V(G) = {v1, v2, …, vn}. We construct a bipartite graph H with partite sets

where the vertices ui and wj (1 ≤ i, j ≤ n) are adjacent in H if vj immediately follows vi on C. Since
every vertex of G appears exactly k times in C, the graph H is k-regular. By Theorem 8.15, H is 1-
factorable and so H can be factored into k 1-factors .

Next, we show each 1-factor  (1 ≤ i ≤ k) of H corresponds to a 2-factor Fi of G. Consider the



1-factor , for example. Since  is a perfect matching of H, it follows that  is an
independent set of k edges of H, say

where the integers i1, i2, …, in are the integers 1, 2, …, n in some order and ij ≠ j for each j (1 ≤ j ≤
n). Suppose that it = 1. Then the 1-factor  gives rise to a cycle 

. If C(1) has length n, then the Hamiltonian cycle C(1) of G is a
2-factor of G. If the length of C(1) is less than n, then there is a vertex vl of G that is not on C(1).
Suppose that is = l. This gives rise to a second cycle . Continuing in
this manner, we obtain a collection of pairwise vertex-disjoint cycles that contain each vertex of G
once, producing a 2-factor F1 of G. In general then, the 1-factorization o f H into 1-factors 

 produces a 2-factorization of G into 2-factors F1, F2, …, Fk, as desired.
To illustrate the proof of Theorem 8.16, consider the 4-regular graph G = K2, 2, 2 shown in Figure

8.11(a). One Eulerian circuit of G is

Since V(G) = {v1, v2,, …, v6}, we construct a bipartite graph H (shown in Figure 8.11(b)) with partite
sets U = {u1, u2, …, u6} and W = {w1, w2, …, w6}. Since v1 v2 and v2v3 are edges of C, the edges u1
w2 and u2 w3 belong to H. Figure 8.11(c) shows a possible 1-factorization of H into the two 1-factors 

 and , which gives rise to the 2-factorization of G shown in Figure 8.11(d).

Figure 8.11: Constructing a 2-factorization of a 4-regular graph G

Since the complete graph K2k  + 1, where k ≥ 1, is 2k-regular, K2k  + 1 is 2-factorable. Some 2-



factorizations of K3, K5 and K7 are shown in Figure 8.12. Observe that not only does there exist a 2-
factorization of each of K3, K5 and K7 but there exists a 2-factorization of each of these graphs in
which each 2-factor is a Hamiltonian cycle. This is obvious in the cases of K3 and K5. A Hamiltonian
factorization of a graph G is a 2-factorization of G in which each 2-factor is a Hamiltonian cycle. A
graph G is Hamiltonian-factorable if there exists a Hamiltonian factorization of G. We now show
that for every odd integer n ≥ 3, the complete graph Kn is Hamiltonian-factorable. Before presenting a
proof of this fact, we make a few comments about complete graphs that will be useful in this proof
and in some future proofs.

For a graph G = Kn, where n ≥ 4, with V(G) = {v1, v2, …, vn}, certainly G contains the
Hamiltonian cycle C = (v1, v2, …, vn, v1). For every two distinct

Figure 8.12: Some 2-factorizations of K3, K5 and K7

vertices vi and vj of G (and on C), the distance dC(vi, vj) between vi and vj on the cycle C is one of the
integers 1, 2, …, n/2 if n is even and is one of the integers 1, 2, …, (n − 1)/2 if n is odd. In the
construction of Kn, it is at times useful to label the edge vivj with the number dC(vi, vj). Hence if n ≥ 3
is odd, then exactly n edges are labeled k for each integer k with 1 ≤ k ≤ (n − 1)/2. On the other hand,
if n ≥ 4 is even, then exactly n edges are labeled k for each integer k with 1 ≤ k ≤ (n − 2)/2, while n/2
edges are labeled n/2. This is illustrated in Figure 8.13 for K4 and K5. For K6, only the edges labeled
1 or 3 are shown. The edges not drawn in K6 are labeled 2. Sometimes it is convenient to enlarge a
given complete graph Kn to Kn + 1 by adding a new vertex to Kn and joining that vertex to all vertices
of Kn. When this occurs, we label each new edge in this construction with the integer 0.

Figure 8.13: Labeling the edges of a complete graph



Theorem 8.17 For every integer k ≥ 1, the complete graph K2k  + 1 is Hamiltonian-factorable.

Proof. Since the theorem is true for 1 ≤ k ≤ 3, we may assume that k ≥ 4. Let G = K2k  + 1 and H =
K2k, where V(H) = {v1, v2, …, v2k} and let V(G) = V(H)  {v0}. Let the vertices of H be the
vertices of a regular 2k-gon and let the edges of H be straight line segments (see Figure 8.14(a) for
the case k = 4). A Hamiltonian cycle C of G is now constructed from a Hamiltonian path P of H
that begins with v1, v2, v2k, v3, v2k  − 1 and then continues in this zig-zag pattern until arriving at the
vertex vk  + 1. The path P is a v1 − vk  + 1 path where edges are those parallel to v1 v2 or v2 v2k. The
cycle C in G is completed by placing v0 at some convenient location within the regular 2k-gon and
joining v0 to both v1 and vk  + 1 (see Figure 8.14(b) for the case when k = 4).

Figure 8.14: Forming a Hamiltonian cycle in K9

Observe that the Hamiltonian cycle C of G just constructed consists of two edges labeled with
each of the integers 0, 1, …, k − 1 and one edge labeled k. By rotating the Hamiltonian path P of H
clockwise through an angle of /k radians, a new Hamiltonian path P′ of H is constructed that is edge-
disjoint with P′. The path P′ is a v2 − vk  + 2 path. By joining v0 to v2 and vk  + 2, a new Hamiltonian
cycle C′ of G is obtained that is edge-disjoint with C. We continue this until k Hamiltonian cycles of
G are obtained producing a Hamiltonian factorization of G. (This is illustrated for the complete graph
K9 (k = 4) in Figure 8.15.) In general, for each i with 1 ≤ i ≤ k, the ith Hamiltonian cycle of G is

where the subscripts are expressed modulo 2k.

Figure 8.15: A Hamiltonian factorization of K9

More generally, a spanning subgraph F of a graph G is called a factor of G. The graph G is said
to be factorable into the factors F1, F2, …, Fk if {E(F1), E(F2), …, E(Fk)} is a partition of E(G). If



each factor Fi is isomorphic to some graph F, then G is F-factorable. For a graph G of order n, G is
(n/2)K2-factorable if and only if G is 1-factorable, while G is Cn-factorable if and only if G is
Hamiltonian-factorable.

We have seen that K9 is Hamiltonian-factorable (into four Hamiltonian cycles). Of course, we saw
earlier (by Theorem 8.16) that K9 is 2-factorable. That K9 is factorable into Hamiltonian cycles is
only one type of 2-factorization of K9. For example, K9 can be factored into copies of the graph 3K3.

Example 8.18 The graph K9 is also 3K3-factorable.

Solution. As in Figure 8.16, we place the vertices v1, v2, …, v8 cyclically as the vertices of a
regular 8-gon and place v0 in some convenient location within the 8-gon. A factor F1 = 3K3 of K9 is
shown in Figure 8.16, where two edges are labeled 0, 1, 2 and 3, as described in Figure 8.16 and
one edge is labeled 4. By rotating F1 clockwise through an angle of /4 radians three times, three
new factors F2, F3 and F4 are produced, each of which is 3K3. This produces a 3K3-factorization of
K9.

Figure 8.16: A 3K3-factorization of K9

The following problem was posed by Thomas Kirkman in 1850 and has since become known as
Kirkman’s Schoolgirl Problem:

A school mistress has fifteen schoolgirls whom she wishes to take on a daily walk. The girls
are to walk in five rows of three girls each. It is required that no two girls should walk in
the same row more than once a week. Can this be done?

If we think about Kirkman’s Schoolgirl Problem a bit, we see that the question can be rephrased



as follows: Is there a 5K3-factorization of K15? If we label the vertices of K15 by the schoolgirls,
numbered 1, 2, …, 15 say, then we see that a solution is given in the next table.

Although there is a 5K3-factorization of K15, it turns out that there is no cyclic 5K3-factorization of
K15 (which makes such a factorization more difficult to construct). Since we saw in Figure 8.16 that
K9 is 3K3-factorable, the following is true:

Nine schoolgirls can take four daily walks in three rows of three girls each so that no two
girls walk in the same row twice.

Suppose that the complete graph G = Kn of order n has a 2-factorization in which every component
of each 2-factor is a triangle. Then G is tK3-factorable for some positive integer t and so n = 3t. Since
the degree of every vertex of G is 2 in each 2-factor of G, every vertex has even degree in G.
Therefore, n − 1 is even and so n = 3t is odd, which implies that t is odd. Therefore, t = 2k + 1 for
some nonnegative integer k and n = 6k + 3. Hence G is (2k + 1)K3-factorable.

A Kirkman triple system of order n is a set S of cardinality n, a collection T of 3-element subsets
of S, called triples, and a partition  of T such that

(1) every two distinct elements of S belong to a unique triple in T and

(2) every element of S belongs to a unique triple in each element of .

Consequently, if there is a Kirkman triple system of order n, then n = 6k + 3 for some nonnegative
integer k. In fact, there is a Kirkman triple system of order 6k + 3 if and only if there is a (2k + 1)K3-
factorization of K6k  + 3. In 1971 Dijen Ray-Chaudhuri and Richard Wilson established the existence of
a Kirkman triple system for every nonnegative integer k.

Theorem 8.19 A Kirkman triple system of order n ≥ 3 exists if and only if n ≡ 3 (mod6).

Although it is impossible for K2k, k ≥ 2, to be Hamiltonian-factorable since K2k is (2k − 1)-
regular, K2k is very close to being Hamiltonian-factorable.

Theorem 8.20 For every integer k ≥ 1, the complete graph K2k can be factored into k − 1
Hamiltonian cycles and a 1-factor.

Proof. Since the result is true for k = 1 and k = 2, we assume that k ≥ 3. Let G = K2k, where V(G) =
{v0, v1, …, v2k  − 1}. Let v1, v2, …, v2k  − 1 be the vertices of a regular (2k − 1)-gon and place v0 in
the center of the (2k − 1)-gon. Join each two vertices of G by a straight line segment. Let G1 be the
spanning subgraph of G whose edges consist of (1) v0v1 and v0 vk  + 1, (2) all edges parallel to v0v1
and (3) all edges parallel to v0 vk  + 1. Then G1 = C2k. For 1 ≤ i ≤ k − 1, let Gi be the spanning



subgraph of G whose edges consist of (1) v0vi and v0vk  + i, (2) all edges parallel to v0vi and (3) all
edges parallel to v0vk  + i. Then Gi = C2k for each i (1 ≤ i ≤ k − 1) and every edge of G belongs to
some subgraph Gi (1 ≤ i ≤ k − 1) except for the edges v1v2k  − 1, v2v2k  − 2, …, vk  − 1vk  + 1 and v0vk,
which are the edges of a 1-factor Gk of G. Thus G can be factored into G1, G2, …, Gk. (See Figure
8.17 for the case k = 4.)

Figure 8.17: A factorization of K8

Exercises for Section 8.2

8.17 Determine which of the cubic graphs G1, G2 and G3 in Figure 8.18

(a) has a 1-factor,
(b) is 1-factorable.

Figure 8.18: The graphs in Exercise 8.17

8.18 Give an example of a 5-regular graph that contains no 1-factor.

8.19 Nine members of a book club meet for dinner each week (4 times a month) to discuss the book
they have read the preceding week. How can the nine people be seated at a circular dinner
table for each of the four meetings during a month so that every two members sit next to each
other exactly once during the month?

8.20 Use the technique employed in the proof of Theorem 8.11 to prove Theorem 8.12: Every
3-regular graph with at most two bridges contains a 1-factor.



8.21 Use Tutte’s characterization of graphs with 1-factors (Theorem 8.10) to show that K3,5 does not
have a 1-factor.

8.22 (a) Show that Petersen’s theorem (Theorem 8.11) can be extended somewhat by proving that if
G is a bridgeless graph, every vertex of which has degree 3 or 5 and such that G has at most
two vertices of degree 5, then G has a 1-factor.

(b) Show that the result in (a) cannot be extended further by giving an example of a bridgeless
graph G containing exactly three vertices of degree 5 such that all remaining vertices of G
have degree 3 but G has no 1-factor.

8.23 Prove that if the bridges of a 3-regular graph lie on a single path, then G has a 1-factor.

8.24 Show that every 3-regular bridgeless graph contains a 2-factor.

8.25 Show that Cn × K2 is 1-factorable for n ≥ 4.

8.26 Show, for the 4-regular graph G Figure 8.19, that for any 2-factorization of G exactly one of the
2-factors is a Hamiltonian cycle of G.

Figure 8.19: The graph G in Exercise 8.26

8.27 Figure 8.11 shows a 2-factorization of the graph G = K2, 2, 2 into the 2-factors F1 = 2C3 and F2
= C6. Give an example of a 2-factorization of this graph into two 2-factors  and  where 

 for i = 1, 2 and, employing the proof of Theorem 8.16, give an example of an
Eulerian circuit C* in G that produces this 2-factorization of G.

8.28 Let G be a 6-regular graph. Show that if G contains two edge-disjoint 1-factors, then G is 3-
factorable.

8.29 Show for every positive even integer n that the complete graph Kn can be factored into
Hamiltonian paths.

8.30 Solve the following 27-schoolgirl problem: A school mistress has 27 schoolgirls whom she
wishes to take on a daily walk. The girls are to walk in nine rows of three girls each. Show that
such walks can be made for thirteen days without two girls walking in the same row twice.

8.31 Does there exist a 2-factorization of K7 in which no 2-factor is a Hamiltonian cycle?

8.32 Does there exist a 2-factorization of K9 in which no two 2-factors are isomorphic?

8.3 Decompositions and Graceful Labelings



If a graph G has a factorization into subgraphs F1, F2, …, Fk, then, by definition, each subgraph
(factor) Fi, 1 ≤ i ≤ k, is required to be a spanning subgraph of G. There is a related concept that we
will discuss in this section.

A graph G is said to be decomposable into the subgraphs H1, H2, …, Hk if {E(H1) , E(H2), …,
E(Hk)} is a partition of E(G). Such a partition produces a decomposition of G. In other words, the
subgraphs Hi are not required to be spanning subgraphs of G. If, on the other hand, each subgraph Hi
is a spanning subgraph of G, then the decomposition is a factorization of G. If each Hi is isomorphic
to some graph H, then the graph G is H-decomposable and the decomposition is an H-decomposable.

A problem concerning this concept that has attracted a great deal of attention is: Which complete
graphs Kn are K3-decomposable? In order for a complete graph Kn to be K3-decomposable, the size
of Kn must be divisible by 3, that is, 3 must divide  and so n(n − 1)/6 must be an integer. Hence
either 3 | n or 3 | (n − 1). Furthermore, since every vertex of Kn has degree n − 1, each vertex must
belong to (n − 1)/2 triangles and so n must be odd. This says that either n = 3p for some odd integer p
or n = 3q + 1 for some even integer q. Therefore, either n = 6k + 1 or n = 6k + 3 for some integer k
and so either n ≡ 1 (mod 6) or n ≡ 3 (mod 6).

A Steiner triple system of order n is a set S of cardinality n and a collection T of 3-element
subsets, called triples, such that every two distinct elements of S belong to a unique triple in T.
Therefore, there is a Steiner triple system of order n if and only if Kn is K3-decomposable.
Consequently, in order for a Steiner triple system of order n to exist, either n ≡ 1 (mod 6) or n ≡ 3
(mod 6). In 1846 Kirkman showed that the converse holds as well.

Theorem 8.21 A Steiner triple system of order n ≥ 3 exists if and only if n ≡ 1 (mod 6) or n ≡ 3
(mod 6).

Trivially, there is a Steiner triple system of order 3 as K3 is obviously K3-decomposable. The first
interesting and nontrivial case is K7. One way to see that K7 is K3-decomposable is to let v1, v2, …, v7
be the vertices of a regular 7-gon and join each pair of vertices by a straight line segment. Consider
the triangle with vertices v1, v2 and v4, which we denote by H1 (see Figure 8.20). Proceeding as we
have earlier, we see that exactly one edge of H1 is labeled with one of 1, 2 and 3. As we rotate H1
clockwise through an angle of 2 /7 radians, another triangle H2 is produced. Continuing in this
manner, we obtain a K3-decomposition of K7. From the K3-decomposition of K7, we have now
produced a Steiner triple system of order 7 from the set {1, 2, …, 7}, namely:

The K3-decomposition is a cyclic decomposition of K7.



Figure 8.20: A cyclic K3-decomposition of K7

Steiner triple systems are named for Jakob Steiner, who was born in Utzenstorf, Switzerland on
March 18, 1796. Steiner, a son of farming parents, did not learn to read or write until he was 14 years
old. Within the next four years, his mathematical ability was recognized and he was permitted to start
attending a prestigious school in Switzerland at age 18, even then against the wishes of his parents. In
1818 Steiner went to the University of Heidelberg, where he gave private lessons in mathematics. In
1821 he went on to the University of Berlin, where he continued to support himself by teaching. While
in Berlin, he became acquainted with Niels Abel (after whom abelian groups are named), Carl Jacobi
(after whom Jacobians are named) and August Crelle.

Although not as well known or as brilliant as other mathematicians of his time, Crelle nevertheless
made important contributions to mathematics. Crelle was an extremely enthusiastic mathematician
who had a gift for organization and who recognized mathematical ability in others. In 1826 Crelle
founded a journal entirely devoted to mathematics (often referred to as Crelle’s Journal ) and titled
Journal für reine und angewandte Mathematik (the journal still exists). Prior to 1826 other
mathematics journals ordinarily reported on meetings of academies and societies where papers were
read. In Crelle’s Journal , however, the emphasis was on the mathematics. Crelle was in complete
charge and was the editor-in-chief for the first 52 volumes.

Crelle recognized the importance of Abel’s work and, in the first volume of his journal, published
Abel’s proof of the insolvability of quintic equations by radicals. Steiner was also a major
contributor to the first volume of Crelle’s journal. In addition to Abel and Steiner, other
mathematicians had their early works made famous by publishing their first paper in the journal,
including Lejeune Dirichlet and August Möbius. Almost all of Möbius’ research was published in
Crelle’s Journal.

Kirkman triple systems (introduced in the preceding section) are more demanding than Steiner
triple systems. Indeed, by Theorem 8.21 there is a Steiner triple system of order n ≥ 7 if n ≡ 1 (mod
6); however, none of these integers n is the order of a Kirkman triple systems as n ≡ 3 (mod 6) is a
necessary and sufficient condition for the existence of a Kirkman triple system of order n, as we saw
i n Theorem 8.19. Kirkman’s first paper was published in 1846. In this paper, Kirkman solved a
problem that appeared the previous year in the Lady’s and Gentleman’s Diary , namely, the existence
of Steiner triple systems was verified (Theorem 8.21). The curiosity of this paper is that it was
published seven years before a paper of Steiner’s appeared in Crelle’s Journal  in which Steiner
asked whether such systems exist. Despite the fact that Kirkman’s work preceded Steiner’s, these
systems are named for Steiner, not Kirkman. Recall also that Kirkman thought of the concept of



Hamiltonian cycles before Hamilton. Such was the fate of Kirkman.
Thomas Penyngton Kirkman was born on March 31, 1806 in Bolton, England. Although Kirkman’s

father did not want Kirkman to attend college, he did so and entered Trinity College Dublin in
Ireland. In 1835 Kirkman returned to England and entered the Church of England. By 1839 he was
vicar in the Parish of Southworth in Lancashire, a position he held for the next 52 years. The
Reverend Thomas Kirkman became increasingly interested in mathematics and made contributions to
combinatorics, quaternions, geometry and knot theory, although he is best remembered for his
schoolgirl problem. Kirkman died on February 4, 1895 in Bowdon, England.

Another important type of decomposition problem concerns trees. In 1967 Gerhard Ringel (1919-
2008) conjectured that if T is a tree of size m, then K2m + 1 is T-decomposable. This conjecture has
never been settled. However, it is related to another conjecture.

Let G be a graph of order n and size m. A one-to-one function f : V(G) → {0, 1, 2, …, m} is
called a graceful labeling of G if the induced edge labeling f′: E(G) → {1, 2, …, m} defined by

is also one-to-one. If f is a graceful labeling of a graph G of order n, then so too is the
complementary labeling g: V(G) → {0, 1, 2, …, m} of f defined by g(v) = m − f(v) for all v  V(G)
since, for e = uv,

A graph G possessing a graceful labeling is called a graceful graph.
Figure 8.21 shows five graceful graphs, including the complete graphs K3 and K4 and the cycle C4,

along with a graceful labeling of each of these graphs.

Figure 8.21: Graceful graphs

There are many graphs that are not graceful, however.

Example 8.22 The cycle C5 is not a graceful graph.

Solution. Let H = C5 (see Figure 8.22(a)). Assume, to the contrary, that H is graceful. Then there
exists a graceful labeling f : V(H) → {0, 1, 2, 3, 4, 5}. Since some edge of H is labeled 5 by the
induced edge labeling, there are two adjacent vertices of H labeled 0 and 5.

The only way for an edge of H to be labeled 4 is for its incident vertices to be labeled 0 and 4 or
1 and 5. Since either f or its complementary labeling assigns adjacent vertices the labels 0 and 4, we
may assume that three of the five vertices of H are labeled as in Figure 8.22(b). The vertex w cannot
be labeled 1 as there is already an edge labeled 4. If x is labeled 1, then w must be labeled 2 or 3,



neither of which results in a graceful labeling of H. Hence one of x and w is labeled 2 and the other is
labeled 3. However, neither produces a graceful labeling of H.

Figure 8.22: The graph H in Example 8.22

The rightmost graph shown in Figure 8.21 is, of course, a tree; in fact, it is a double star. The
labeling given there shows that this tree is a graceful graph. In fact, there is a well-known conjecture
due to Gerhard Ringel and Anton Kotzig.

Conjecture 8.23 Every tree is graceful.

If Conjecture 8.23 is true, then for each tree T of order n say, there is a graceful labeling f : V(T)
→ {0, 1, 2, …, n − 1}, which is necessarily a bijective function. Added interest in this conjecture
lies in the fact that its truth implies the truth of the earlier decomposition conjecture of Ringel. This
implication was established by Alexander Rosa, who is credited with founding the subject of graph
labelings. While the concept of graceful graphs is due to Rosa, who used the terminology -valuation,
the term “graceful” was introduced by Solomon Golomb.

Theorem 8.24 If T is a graceful tree of size m, then K2m + 1 is T-decomposable.

Proof. Since T is a graceful tree, there exists a graceful labeling f : V(T) → {0, 1, 2, …, m}. Let
V(T) = {v0, v1, …, vm} where we may assume that f(vi) = i for 0 ≤ i ≤ m. The induced edge labeling
assigns the labels 1, 2, …, m to the edges of T. Let G = K2m + 1, where V(G) = {v0, v1, …, v2m}. Let
the vertices of G be the vertices of a regular (2m+ 1)-gon and draw each edge of G as a straight
line segment. Consequently, T is a subgraph of G, where one edge of T is labeled i for each integer
i with 1 ≤ i ≤ m. Rotating T clockwise through an angle of 2 /(2m + 1) radians a total of 2m times
produces 2m + 1 trees isomorphic to T that form a cyclic T-decomposition of K2m + 1.

To illustrate the proof of Theorem 8.24, consider the tree T shown in Figure 8.23, where a
graceful labeling is given. A subgraph T1 of G = K9 that is isomorphic to T is also shown in Figure
8.23. A subgraph T2 of G isomorphic to T (whose edges are indicated by dotted lines) is obtained by
rotating T1 clockwise through an angle of 2 /9 radians.



Figure 8.23: A cyclic T-decomposition of K9

Theorem 8.24 is not only true for graceful trees, it holds for graceful graphs in general (see
Exercise 8.38).

Exercises for Section 8.3

8.33 Show that the graph K2, 2, 2 is not K1, 4-decomposable.

8.34 Find a P4-decomposition of K7.

8.35 Determine whether C6 and C8 are graceful.

8.36 Determine whether the graphs in Figure 8.24 are graceful.

Figure 8.24: Graphs in Exercise 8.36

8.37 For the tree T in Figure 8.25, show that K11 is T-decomposable.

Figure 8.25: The tree in Exercise 8.37

8.38 Let G be a graceful graph of size m.

(a) Prove that K2m + 1 is G-decomposable.

(b) Prove that K2m + 3 can be decomposed into 2m + 3 copies of G and a Hamiltonian cycle of
K2m + 3.



8.4 Excursion: Instant Insanity

Open the package. Notice that there are four different colors showing on each side of this
stack of blocks. You may NEVER, EVER see them this way again. Now mix them up and
then restack them so that there are again four colors, all different, showing on each side.

What is written above appears on an insert within packaging that contains four multi-colored
cubes that make up a puzzle called Instant Insanity, which is manufactured by Hasbro Inc. (makers
of toys and games). Each of the six faces of each cube is colored with one of the four colors red (R),
blue (B), green (G) and yellow (Y). The object of the puzzle is to stack the cubes as in Figure 8.26,
one on top of another, so that all four colors appear on each of the four sides.

On the reverse side of the insert is written: Give up? An address is supplied where a solution of
the puzzle can be obtained. Reading all of this can be quite intimidating. Indeed, even before we
attempt to solve the puzzle, we are being informed that it is very unlikely that we will be successful.
Let’s compute the number of ways in which four cubes can be stacked.

Figure 8.26: The stacking of four cubes

Select one of the cubes (which we’ll call the first cube) and place it on a table, say. There are
three ways this can be done, according to which pair of opposite faces will be the top and bottom of
the cube. These are the “buried” faces. Select one of the other four faces as the front face. Now place
the second cube on top of the first cube. Any of the six faces of the second cube can be chosen to
appear directly above the front face of the first cube and each of these six faces can be positioned
(rotated) in one of four ways. That is, there are 6 · 4 = 24 ways to place the second cube on top of the
first cube. Consequently, the number of ways to stack all four cubes on the top of one another is 3 ·
(24)3 = 41, 472. Now if there is only one way to stack the cubes so that all four colors appear on all
four sides, then using a trial-and-error method to solve the puzzle seems like a frustrating task and is
likely to result in … instant insanity.

Graph theory can help us to solve this tantalizing puzzle. Let’s see how this can be done. For this
purpose, it is convenient to have a way of representing a cube and the locations of the colors on its
faces. See Figure 8.27.



Figure 8.27: The six faces of a cube

We are now prepared to present an example.

Example 8.25 Consider the four multi-colored cubes given in Figure 8.28.

Solution. With each of the four cubes of Figure 8.28, we associate a pseudograph (therefore
allowing both parallel edges and loops) of order 4 and size 3. The vertex set of each pseudograph
is the set {R, B, G, Y} of four colors and there is an edge joining color c1 and color c2 (possibly c1
= c2) whenever there is a

Figure 8.28: The four cubes in an Instant Insanity puzzle

pair of opposite faces colored c1 and c2. If there are two (or three) opposite faces colored c1 and c2
where c1 ≠ c2, then the pseudograph has two (or three) parallel edges joining the vertices c1 and c2. If
c1 = c2, then there are two (or three) loops at c1. The pseudographs corresponding to the cubes of
Figure 8.28 are shown in Figure 8.29.

Figure 8.29: The four pseudographs in Example 8.25

A composite pseudograph M of order 4 (with vertex set {R, B, G, Y}) and size 12 and whose
edge set is the union of the edge sets of these four pseudographs is shown in Figure 8.29. In order to
distinguish which edges of M came from Cube #i (i = 1, 2, 3, 4), those three edges of M are labeled
by i. The pseudograph M constructed from the pseudographs of Figure 8.29 is shown in Figure 8.30.



Figure 8.30: The composite pseudograph of Example 8.25

Let’s pause for a moment while we review what we are seeking. Since our goal is to stack the four
cubes on top of one another so that all four colors appear on all four sides, all four colors must of
course appear on both the front and the back of the stack. If the front face of Cube #i (i = 1, 2, 3, 4) is
colored c1 and the opposite face of this cube (on the back of the stack) is colored c2, then there must
be an edge labeled i joining c1 and c2 in the pseudograph M.
If c1 = c2, then there must be a loop labeled i at vertex c1. Since each color appears exactly once on
the front and exactly once on the back of the stack, there must be a 2-regular spanning sub-
pseudograph M′ (a 2-factor) of M (where a loop is considered to have degree 2) such that there is
exactly one edge labeled 1, 2, 3 and 4. Similarly, corresponding to the right and left sides of the stack,
there is a 2-regular spanning sub-pseudograph M″ of M whose edge set is disjoint from that of M′. On
the basis of these observations, we seek two edge-disjoint spanning 2-regular sub-pseudographs,
where there is one edge labeled 1, 2, 3 and 4 in each of these two sub-pseudographs. If such a pair of
pseudographs does not exist, then the puzzle can have no solution. If such a pair M′, M″ of
pseudographs exists, then they can be used to solve the puzzle, that is, to stack the cubes
appropriately. Any 2-regular spanning sub-pseudograph must be one of the seventeen pseudographs
shown in Figure 8.31.

Figure 8.31: The seventeen 2-regular spanning pseudographs

Returning to our example, we see that the pseudograph M of Figure 8.30 contains the two edge-
disjoint 2-regular spanning sub-pseudographs M′ and M″, where the edges of these two pseudographs
are labeled 1, 2, 3 and 4 (shown in Figure 8.32(a)). The pseudograph M′ will correspond to the front



and back of the stack to be produced and M″ will correspond to the right and left sides. (We could
reverse M′ and M″ if we desire.) For the purpose and convenience of stacking the cubes, we direct
the edges of each component of M′ and M″ so that a directed cycle results. Thus two (directed)
pseudographs D′ and D″ are produced, as shown in Figure 8.32(b).

With the aid of the (directed) pseudographs D′ and D″ of Figure 8.32(b), we now stack the cubes.
Since the arc (G, B) is labeled 1 in M′, we place Cube #1 so that a green face appears in the front and
a blue face on the back. Since the arc (G, R) is labeled 1 in M″, we rotate this cube (keeping a green
face in the front and a blue face on the back) until we have a green face on the right and a red face on
the left. We now proceed in the same way with the other three cubes and … Voila! The puzzle has
been successfully solved (see Figure 8.33).

Figure 8.32: Two 2-regular spanning sub-pseudographs for Example 8.25

Figure 8.33: A solution for the puzzle in Example 8.25

This puzzle was conceived in 1900 by Fredrick Schossow using the four suits of playing cards
(hearts, diamonds, clubs, spades) on the faces. He introduced another version during World War I
where the flags of the allied nations were used to decorate the blocks. In 1900 this puzzle was called
The Great Tantalizer . However, by far the best known and most popular version of the puzzle is
based on the design by Franz (Frank) Armbruster in 1965 and consists of four plastic cubes with each
face having one of four different colors. (In those days, the colors used were red, blue, green and
white.)

Frank Armbruster began as an educational consultant in 1960. While working on teaching machine
designs, he saw similarities between what a teaching machine does and what a game does. In
particular, if the rules of the game are structured from the rules of the subject matter, then the game



will teach. Each has a set of structured rules, a goal and an opportunity for strategies.
Armbruster had been interested in puzzles for much of his life and started designing games as

teaching tools in 1965. He saw Instant Insanity as a great aid for teaching permutations and
combinations at the high school level. Originally the cubes were made of wood. Thinking that the
grain of wood used was giving an unintended clue to the solver, he turned to constructing the cubes
from plastic. Finding a way to hold six plastic squares in place while they were cemented was the
biggest challenge. Finally a method was devised and the puzzle was constructed. Armbruster was
able to schedule a lunch with a representative of Macy’s in San Francisco to discuss his puzzle. This
was the beginning of the puzzle as a commercial enterprise.

The first version of his famous puzzle Instant Insanity was licensed to the Parker Brothers Game
Company, which sold over 12 million copies during 1966-1967. It was listed in the 1966 Guinness
Book of Records as the best selling toy of the year, outselling the board game Monopoly. Although
best known for his Instant Insanity puzzle, Armbruster is an educator, spending fifteen years at the
Lockheed Corporation as an instructor and developing training methods.

Exercises for Section 8.4

8.39 Solve the Instant Insanity puzzle in Figure 8.34 by providing

(a) the pseudographs for each cube,
(b) the composite pseudograph for these four cubes,
(c) the related sub-pseudographs (Front-Back and Right-Left),
(d) a solution.

Figure 8.34: Instant Insanity puzzle for Exercise 8.39

8.40 Solve the Instant Insanity puzzle in Figure 8.35 by providing (a) - (d) as in Exercise 8.39.

Figure 8.35: Instant Insanity puzzle for Exercise 8.40

8.41 Solve the Instant Insanity puzzle in Figure 8.36 by providing (a) - (d) as in Exercise 8.39.

8.42 Show that the cubes in Figure 8.28 can be stacked in a way different than that shown in Figure



8.33 so that all four colors appear on all four sides.

8.43 Construct a set of four multicolored cubes so that all four colors appear on each cube and such
that the corresponding Instant Insanity puzzle has no solution.

Figure 8.36: Instant Insanity puzzle for Exercise 8.41

8.44 Construct a set of four multi-colored cubes so that all four colors appear on each cube and such
that the corresponding Instant Insanity puzzle has a unique solution.

8.45 For an integer k with 1 ≤ k ≤ 6 and k ≠ 4, suppose that we have a collection of k cubes where
each face of each cube is assigned one of the k colors {1, 2, …, k}. Investigate the puzzle of
stacking these cubes on top of one another such that on each of the four sides all k colors
appear.

8.5 Excursion: The Petersen Graph

Peter Christian Julius Petersen was born on June 16, 1839 in Sorø, Denmark. As a youngster,
Petersen attended a private school and then the Sorø Academy, founded by King Frederick II of
Denmark in 1586.

Petersen left school in 1854 because his parents couldn’t afford the expense of his education. He
then went to work for his uncle. When his uncle died, Petersen was left enough money to begin his
studies at the Polytechnical School in Copenhagen. By 1858 Petersen had already published a book (a
textbook on logarithms). Despite the fact that he passed the first part of a civil engineering
examination in 1860, he decided to study mathematics at the university rather than to continue with
engineering. At this time, however, the money that his uncle left him had run out and he took a position
as a teacher at a private school. During the next few years Petersen had a heavy teaching load, was
married and had a family but he continued to study hard.

In 1866 Petersen obtained the degree of magister of mathematics. While he was a high school
teacher, Petersen learned the importance of geometric reasoning and recognized his own talent for
writing textbooks. In fact, he wrote five textbooks in the 1860s, all on geometry. At the age of 30, he
finally started to work seriously on his doctoral dissertation.

Petersen received his Ph.D. in 1871 from Copenhagen University. On the occasion of receiving his
doctorate, Petersen wrote (translated from Danish):

Mathematics had, from the time I started to learn it, taken my complete interest and most
of my work consisted of solving problems of my own and of my friends and in seeking the
trisection of the angle, a problem that has had a great influence on my whole development.



Soon afterwards, Petersen became a faculty member at Copenhagen University. He was known as
an outstanding teacher. One anecdote about Petersen’s teaching refers to instances when he was
baffled during his lectures concerning textbooks he was using in which it was written “it is easy to
see” (and he was referring to books that he had written). Petersen was considered a masterful writer,
however. As far as his research was concerned, there were times when the elegance of his exposition
took precedence over rigor. Petersen was an independent thinker and in order to be original, he rarely
read the work of others with the unfortunate consequence that he occasionally obtained results that
were already known. He was also quite casual about referencing the work of others.

Although Petersen worked in and made contributions to many areas of mathematics, it is only
graph theory for which he is known. Indeed in his day he enjoyed an international reputation. Julius
Petersen’s contributions to graph theory were primarily contained within a single paper he wrote,
published in 1891 and titled Die Theorie der regulären graphs . Prior to 1891, the important results
on graph theory (including Leonhard Euler’s work on Eulerian graphs and Gustav Kirchhoff’s work
on spanning trees) were not results expressed in terms of graphs as there really was no graph theory
at that time. In the case of Petersen’s paper, however, an argument could be made that for the first
time a paper had been written containing fundamental results on the theory of graphs. Among the
important results occurring in this paper were Theorem 8.11, referred to as Petersen’s theorem
(Every 3-regular bridgeless graph contains a 1-factor.) and Theorem 8.16 (A graph G is
2-factorable if and only if G is r-regular for some positive even integer r) although these theorems
appeared in reverse order in Petersen’s paper.

Petersen’s 1891 paper was nearly co-authored with the mathematician James Joseph Sylvester
(whom we will meet again in Chapter 10). The two had been working on the same problem and they
corresponded extensively. Sylvester was outstanding at making conjectures, while Petersen supplied
the proofs. Sylvester provided the stimulus that Petersen needed. Petersen and Sylvester were
evidently making great progress towards a joint paper. In fact, Sylvester wrote to Felix Klein, editor
of Mathematische Annalen, of their intention to submit a joint paper to the journal. When Petersen
visited Sylvester in Oxford, however, it became clear that the two mathematicians were looking at the
problem differently. It was decided that the two would write separate papers, even though this didn’t
appeal to Petersen. During Petersen’s visit, he recognized that Sylvester was having health problems,
both physical and mental. Sylvester never wrote his paper and would never return to graph theory
again.

Sylvester was the first to use the term graph as it is used now. This occurred in an 1878 paper of
his but Petersen’s use of this term apparently caused it to be used more widely and finally it was
adopted by the mathematical community.

Even though Petersen’s major contribution to graph theory was his 1891 paper, that is not what he
is known for. His primary fame lies not for a single paper he wrote but for a single graph that
appeared in one of his papers: the Petersen graph. We have encountered this graph several times
already and we will continue to encounter it. Petersen first mentioned this graph, not in his 28-page
classic 1891 paper but in his 3-page 1898 paper “Sur le théorème de Tait” in which he presented this
graph as a counterexample to Peter Guthrie Tait’s “theorem”: Every 3-regular bridgeless graph is
1-factorable. His graph did not appear in the aesthetic way in which it is commonly drawn, as shown
in Figure 8.37(a), but in the less appealing way shown in Figure 8.37(b). Petersen died on August 5,
1910 in Copenhagen, Denmark.



Figure 8.37: The Petersen graph

Curiously, Petersen was not the first person to use the graph that bears his name. Evidently, the
first occurrence of this graph was 12 years earlier in an 1886 paper of Alfred Bray Kempe. (We will
visit both Kempe and Tait again in Chapter 10.) We mentioned earlier that the Petersen graph consists
of two disjoint 5-cycles joined by a particular matching of cardinality 5. If we denote the two 5-
cycles by C = (v1, v2, v3, v4, v5, v1) and , then the edges of the matching
are . There are numerous interesting ways to draw the Petersen graph.
Two additional ways are shown in Figure 8.38.

Figure 8.38: The Petersen graph (again)

The fact that the Petersen graph was introduced by Petersen as a counterexample would be a
prelude to the way this graph is commonly encountered, as it often appears as an example or
counterexample to graph theoretic statements.

Let’s look at a few characteristics of this famous graph. The Petersen graph is, of course, a 3-
regular graph of order 10 and therefore has size 15. We have already noted that the length of a
smallest cycle in this graph is 5. The length of a smallest cycle in a graph is referred to as its girth.
For an integer g ≥ 3, a g-cage is a 3-regular graph of minimum order that has girth g. It is easy to see
that K4 is the unique 3-cage and only slightly more difficult to see that K3, 3 is the unique 4-cage. It
turns out that the Petersen graph is the unique 5-cage. These three graphs are shown in Figure 8.39.

Figure 8.39: The 3-cage, 4-cage and 5-cage

Theorem 8.26 The Petersen graph is the unique 5-cage.



Proof. Let G be a 5-cage and let v1 be a vertex of G. Since deg v1 = 3, the vertex v1 has three
neighbors, say v2, v3 and v4. Because G contains no triangles, the set {v2, v3, v4} is independent.
Since the vertices v2, v3 and v4 also have degree 3, each of these vertices is adjacent to two
vertices in addition to v1, say

The vertices v5, v6, …, v10 are distinct since G contains no 4-cycles. Thus G contains the subgraph
shown H1 in Figure 8.40(a).

Figure 8.40: Subgraphs of a 5-cage G

This says that the order of G is at least 10. Since the Petersen graph PG is a 3-regular graph of
order 10 having girth 5, it follows that every 5-cage has order 10 and that PG is a 5-cage. It remains
to show that PG is the only 5-cage. Because G is a 5-cage, its order is 10 and V(G) = {v1, v2, …,
v10}. Consider the vertex v5, which must be adjacent to two vertices in the set {v6, v7, v8, v9, v10}.
Because G contains no triangles or 4-cycles, v5 is not adjacent to v6 and v5 cannot be adjacent to both
v7 and v8 or to both v9 and v10. Hence v5 is adjacent to exactly one of v7 and v8 and adjacent to exactly
one of v9 and v10. We may assume that v5 is adjacent to v7 and v9. Furthermore, v6 is adjacent to v8 and
v10. Hence G contains the subgraph H2 shown in Figure 8.40(b).

The vertex v7 is not adjacent to v8 or v9 as G has no triangles, so v7 must be adjacent to v10.
Consequently, v8 and v9 must be adjacent as well (see

Figure 8.41: The Petersen graph: the unique 5-cage

Figure 8.41(a)). Hence there is only one possibility for the graph G, namely that G is (isomorphic
to) the Petersen graph (Figure 8.41(b)).



The 6-cage, 7-cage and 8-cage are also unique and are known, respectively as the Heawood
graph, the McGee graph and the Tutte-Coxeter graph, shown in Figure 8.42.

Figure 8.42: The 6-cage, 7-cage and 8-cage

We have already seen that the Petersen graph is neither 1-factorable nor Hamiltonian. Even though
the Petersen graph PG is not Hamiltonian, it is close to having this property as PG − v is Hamiltonian
for every vertex v of PG.

8.6 Exploration: Bi-Graceful Graphs

We saw in Section 8.3 that a graph G is graceful if it has a graceful labeling. By a graceful labeling of
a graph G of size m is meant a one-to-one function f : V(G) → {0, 1, 2, …, m} having the property
that the induced edge labeling f′ : E(G) → {1, 2, …, m} defined by

is one-to-one as well. We also saw that if G is a graceful graph of size m, then the complete graph
K2m + 1 is G-decomposable. In fact, K2m + 1 is cyclically G-decomposable. Consider the cycle C = (v0,
v1, v2, …, v2m, v0) of length 2m + 1 where the vertices of C are arranged cyclically in a regular (2m +
1)-gon. A vertex labeled i in G, where i  {0, 1, 2, …, 2m} is placed at vi in C. This is illustrated for
the graceful graph G in Figure 8.43. By rotating G clockwise through an angle of 2 /9 radians a total
of eight times, a G-decomposition of K9 is obtained.

Figure 8.43: Placing the vertices of a graceful graph G of size m on regular (2m + 1)-gon



Alexander Rosa determined which cycles are graceful.

Theorem 8.27 A cycle Cn is graceful if and only if

We saw in Example 8.22 that C5 is not graceful. Despite this, K11 is cyclically C5-decomposable
however. See Figure 8.44.

Figure 8.44: A cyclic C5-decomposition of K11

Let G be a graph of size m and let Si = {i, 2m + 1 − i} for 1 ≤ i ≤ m. A bi-graceful labeling of G is
a one-to-one function f : V(G) → {0, 1, 2, …, 2m} that induces the edge labeling f′ : E(G) → {1, 2,
…, 2m} defined by

such that the set S = {f′(e) : e  E(G)} has the property that |S  Si| = 1 for all i (1 ≤ i ≤ m). A bi-
graceful labeling was called a ρ-valuation by Rosa. A graph admitting a bi-graceful labeling is a bi-
graceful graph. In particular, C5 is a bi-graceful graph (see Figure 8.45).

Figure 8.45: A bi-graceful labeling of C5

A co-graceful labeling of a graph G is a bi-graceful labeling for which S  Si = {2m + 1 − i} for
all i (1 ≤ i ≤ m). A graph admitting a co-graceful labeling is a co-graceful graph. In particular, C4 is
a co-graceful graph (see Exercise 8.52).



Exercises for Section 8.6

8.46 Prove that every graceful graph has a bi-graceful labeling that is not graceful.

8.47 Prove that if G is a bi-graceful graph of size m, then K2m + 1 is cyclically G-decomposable.

8.49 Is C6 bi-graceful?

8.50 Is C7 bi-graceful?

8.51 Is C9 bi-graceful?

8.52 Show that C4 is a co-graceful graph.



Chapter 9

Planarity

9.1 Planar Graphs

The directors of an amusement center have decided to open a new theme park in the center. The initial
plan for the theme park is to build six attractions, which are temporarily denoted by A1, A2, …, A6.
Figure 9.1(a) shows the initial location of the attractions.

Figure 9.1: Six attractions in a theme park

In the summer, the amusement center often becomes very hot and walking between attractions can
be uncomfortable. Preliminary studies indicate that the least amount of traffic is likely to occur
between attractions (1) A1 and A4, (2) A2 and A5 and (3) A3 and A6. The designers feel that,
despite the expense, it would be good for business to build an air-conditioned tube enclosing moving
walkways in both directions between all pairs of attractions except those in (1)– (3). One possible
concern is whether this can be done without any two tubes interfering with each other. Figure 9.1(b)
shows that the tubes can indeed be built without any pair intersecting. Figure 9.1(c) shows that if the
attractions are relocated, then an even better design for the location of the tubes can be given.

After time passes, it is decided that the attractions A1, A2, …, A6 need to be modified and they
are now called B1, B2, …, B6. Furthermore, it is decided to add a seventh attraction B7. (See Figure
9.2.) In addition, it is decided that moving walkway tubes should be built between every pair of
attractions, except the pairs {B1, B4}, {B1, B5}, {B2, B5}, {B2, B6}, {B3, B6}, {B3, B7} and {B4,
B7}. How should this be done?



Figure 9.2: Seven attractions in a theme park

There is a graph theory question (or two) here. The theme park with six attractions can be
modeled by the graph G6 of Figure 9.3(a) whose vertices are the attractions and whose edges are the
walkways. In a similar way, the theme park with seven attractions can be modeled by a graph G7. The
question that we are asking is: Is it possible to draw G6 and G7 in the plane so that none of their edges
cross. The answer for G6 is certainly yes and such a drawing for G6 is shown in Figure 9.3(b). The
answer for G7 is… well, we don’t know (at least not yet).

Figure 9.3: The graphs G6 and G7

A graph G is called a planar graph if G can be drawn in the plane so that no two of its edges
cross each other. Therefore, the graph G6 of Figure 9.3 is planar. We have yet to determine whether
the graph G7 is planar. A graph that is not planar is called nonplanar. A graph G is called a plane
graph if it is drawn in the plane so that no two edges of G cross. Thus, while a graph may be planar,
as drawn it may not be a plane graph, such as the graph G6 in Figure 9.3(a).

There is a well-known puzzle that has appeared in a number of books, magazines and comic
books. There are three utilities (gas, water and electricity) that need to be connected to three houses
by gas lines, water mains and electrical lines. Can this be done without any of the lines or mains
crossing each other? This situation is shown in Figure 9.4(a). This problem is referred to as the
Three Houses and Three Utilities Problem. There are reports that this problem may have been
introduced by the American puzzle-maker Sam Loyd, Sr. in 1900. The situation described in this
problem can be modeled by the graph of Figure 9.4(b), which, in fact, is the graph K3,3. In graph
theory terms then, the Three Houses and Three Utilities Problem asks whether the graph K3,3 is



planar.

Figure 9.4: The Three Houses and Three Utilities Problem

Before providing a solution to this problem, it is useful to make some observations about planar
graphs (actually connected planar graphs). First there are some well-known classes of planar graphs.
Every cycle is planar. Every path and every star are planar. Indeed, every tree is planar. Of course,
every graph that can be drawn in the plane without any two of its edges crossing is planar, as this is
the definition of a planar graph. It may appear that K3,3 is not planar but if it is not planar, then how do
we show this? After all, just because we don’t see how to draw a graph without its edges crossing
doesn’t mean that the graph is nonplanar. We are about to deal with questions such as this.

Consider the graph H shown in Figure 9.5(a). Of course, H is connected. But H is also planar as
we can see from Figure 9.5(b), where H is drawn as a plane graph.

A plane graph divides the plane into connected pieces called regions. For example, in the case of
the plane graph H of Figure 9.5(b), there are six regions. This graph H is redrawn in Figure 9.6,
where the six regions are denoted by R1, R2, …, R6. In every plane graph, there is always one region
that is unbounded. This is the exterior region. For the graph H of Figure 9.6, R6 is the exterior
region. The subgraph of a plane graph whose vertices and edges are

Figure 9.5: A planar graph and a plane graph

incident with a given region R is the boundary of R. The boundaries of the six regions of the graph H
of Figure 9.6 are also shown in that figure.



Figure 9.6: A plane graph and its regions

Notice that uv is a bridge in the graph H of Figure 9.6 and is on the boundary of one region only,
namely the exterior region. In fact, a bridge is always on the boundary of exactly one region (though
not necessarily the exterior region). An edge that is not a bridge lies on the boundary of two regions.
For example, vy lies on the the boundary of both R2 and R3. If we were to remove the edge vy, then the
resulting graph is a plane graph as well but has one less region as R2 and R3 become part of a single
region. On the other hand, the graph H − uv is disconnected but there is no change in the number of
regions. Another observation is useful.

If G is a connected plane graph with at least three edges, then the boundary of every
region of G has at least three edges.

Looking at the plane graph H of Figure 9.6 yet again, we see that H is a connected graph of order 9
and size 13 having six regions. Furthermore, the bridge is on the boundary of a single region (the
exterior region) and all other edges are on the boundaries of two regions. Letting n, m and r denote
the order, size and number of regions, respectively, we then have n = 9, m = 13 and r = 6. So in this
case, n − m + r = 2. In fact, n − m + r = 2 is true for all connected plane graphs. This is a
consequence of an observation made by Leonhard Euler who reported this to the German
mathematician Christian Goldbach in a letter dated November 14, 1750. This result first appeared in
print in 1752. This is referred to as the Euler Identity.

Theorem 9.1 (The Euler Identity) If G is a connected plane graph of order n, size m and having
r regions, then n − m + r = 2.

Proof. First, if G is a tree of order n, then m = n − 1 (by Theorem 4.4) and r = 1; so n − m + r = 2.
Therefore, we need only be concerned with connected graphs that are not trees. Assume, to the



contrary, that the theorem does not hold. Then there exists a connected plane graph G of smallest
size for which the Euler Identity does not hold. Suppose that G has order n, size m and r regions.
So n − m + r ≠ 2. Since G is not a tree, there is an edge e that is not a bridge. Thus G − e is a
connected plane graph of order n and size m − 1 having r − 1 regions. Because the size of G − e is
less than m, the Euler Identity holds for G − e. So n − (m − 1) + (r − 1) = 2 but then n − m + r = 2,
which is a contradiction.

Figure 9.7 shows a planar graph G and several ways of drawing G as a plane graph. However,
since G has a fixed order n = 7 and fixed size m = 9 and the Euler Identity holds (n − m + r = 7 − 9 +
r = 2), each drawing of G as a plane graph always produces the same number of regions, namely r =
4.

Figure 9.7: Different drawings of a planar graph

The Euler Identity has many useful and interesting consequences. One of these (which will allow
us to prove that some graphs are not planar) tells us that planar graphs cannot have too many edges.

Theorem 9.2 If G is a planar graph of order n ≥ 3 and size m, then

Proof. First, suppose that G is connected. If G = P3, then the inequality holds. So we can assume
that G has at least three edges. Draw G as a plane graph, where G has r regions denoted by R1, R2,
…, Rr. The boundary of each region contains at least three edges. So if mi is the number of edges
on the boundary of Ri (1 ≤ i ≤ r), then mi ≥ 3. Let

The number M counts an edge once if the edge is a bridge and counts it twice if the edge is not a
bridge. So M ≤ 2m. Therefore, 3r ≤ M ≤ 2m and so 3r ≤ 2m.

Applying the Euler Identity to G, we have

Solving the inequality (9.1) for m, we get m ≤ 3n − 6.
If G is disconnected, then edges can be added to G to produce a connected plane graph of order n

and size m′, where m′ > m. From what we have just shown, m′ ≤ 3n − 6 and so m < 3n − 6.

Theorem 9.2 provides a necessary condition for a graph to be planar and so provides a sufficient
condition for a graph to be nonplanar. In particular, the contrapositive of Theorem 9.2 gives us the
following:



If G is a graph of order n ≥ 3 and size m such that m > 3n − 6, then G is nonplanar.

There are now some immediate but interesting consequences of Theorem 9.2.

Corollary 9.3 Every planar graph contains a vertex of degree 5 or less.

Proof. Suppose that G is a graph every vertex of which has degree 6 or more. Let G have order n
and size m. Certainly, n ≥ 7. Then

Thus m ≥ 3n > 3n − 6. By Theorem 9.2, G is nonplanar.

We can now give an example of a nonplanar graph.

Corollary 9.4 The complete graph K5 is nonplanar.

Proof. The graph K5 has order n = 5 and size m = 10. Since m = 10 > 9 = 3n − 6, it follows that K5
is nonplanar by Theorem 9.2.

Let’s revisit the proof of Theorem 9.2, where we were discussing the r regions R1, R2, …, Rr of a
plane graph G. We mentioned that the number mi of edges on the boundary of Ri (1 ≤ i ≤ r) is at least
3. Of course, if there are exactly three edges on the boundary of each region, then mi = 3 for each i (1
≤ i ≤ r) and so M = 3r. We also mentioned that M counts an edge once if the edge is a bridge and
counts it twice if the edge is not a bridge. The only way for the inequality in (9.1) to be an equality is
for 3r = M = 2m, which means that the boundary of every region must contain exactly three edges and
that there are no bridges in G (which eliminates the possibility that G = K1, 3). Under these conditions,
m = 3n − 6. Therefore, the only way for the equality m = 3n − 6 to occur in a connected plane graph G
of order n ≥ 3 and size m is that the boundary of every region of G (including the exterior region) is a
triangle. Three examples of this are shown in Figure 9.8.

Figure 9.8: Maximal planar graphs

Notice that the graphs in Figures 9.8(a) and 9.8(b) are complete graphs but the graph in Figure
9.8(c) is K5 − e for some edge e. Indeed, if we have a connected planar graph G of order n and size
m, where m = 3n − 6 and n ≥ 5, then G is not complete. If we were to add an edge e between any two
nonadjacent vertices of G, then the graph G+e cannot be planar because its size m+1 exceeds 3n − 6.
This confirms what we learned in Corollary 9.4, namely, that K5 is not planar.



A graph G is maximal planar if G is planar but the addition of an edge between any two
nonadjacent vertices of G results in a nonplanar graph. Another way to say this is that a graph G is
maximal planar if G is planar but G is not a proper spanning subgraph of any other planar graph. For
1 ≤ n ≤ 4, the only maximal planar graph of order n is Kn. Thus all of the graphs in Figure 9.8 are
maximal planar. Necessarily then, if a maximal planar graph G of order n ≥ 3 and size m is drawn as
a plane graph, then the boundary of every region of G is a triangle and m = 3n − 6.

Now that we have a sufficient condition for a graph to be nonplanar, let’s return to the Three
Houses and Three Utilities Problem, which, if you recall, is equivalent to determining whether K3,3 is
planar. Attempts to draw K3,3 in the plane without edges crossing were unsuccessful, thereby leading
us to believe that K3,3 is nonplanar. The graph K3,3 has order n = 6 and size m = 9. Thus 3n − 6 = 12.
Therefore, m ≤ 3n − 6, which says … nothing. We only know that a graph is nonplanar if m > 3n − 6.
Therefore, we can make no conclusion about the planarity of K3,3 from Theorem 9.2. On the other
hand, if we recall that K3,3 is bipartite (and therefore contains no odd cycles) and look at the proof of
Theorem 9.2 in more detail, then we can finally prove what we believed to be true all along.

Theorem 9.5 The graph K3,3 is nonplanar.

Proof. Assume, to the contrary, that K3,3 is planar and draw K3,3 as a plane graph. Since n = 6 and
m = 9, it follows by the Euler Identity that n − m + r = 6 − 9 + r = 2 and so r = 5. Let R1, R2, …, R5
be the five regions and let mi be the number of edges on the boundary of Ri (1 ≤ i ≤ 5). Since K3,3
has no triangles, mi ≥ 4 for 1 ≤ i ≤ 5 and because K3,3 contains no bridges, it follows that

and so m ≥ 10. This is a contradiction.

Therefore, the Three Houses and Three Utilities Problem is solved! It is impossible to connect the
three utilities to the three houses without any gas or electrical lines or water mains crossing.

While Theorem 9.2 provides a necessary condition for a graph to be planar, it is only just that: a
necessary condition. This theorem can help us to prove that a graph is nonplanar but there are
nonplanar graphs that cannot be proved to be nonplanar by this theorem (such as K3,3). However,
there is a remarkable theorem that gives a condition that is both necessary and sufficient for a graph
to be planar. The theorem that we are about to present is due to Kazimierz Kuratowski.

Kazimierz Kuratowski was born in Warsaw, Poland on February 2, 1896. Because of the political
situation in 1913, Kuratowski left Poland then to study engineering at the University of Glasgow in
Scotland. He completed his first year at the university but while back home preparing to begin his
second year of studies, World War I broke out, making it impossible for him to return to Scotland.

The University of Warsaw in Poland had been under Russian control for decades and even
became an underground university. However, during 1915, the University of Warsaw was
reformulated as a Polish university. One of its first students was Kuratowski who took up
mathematics. He was greatly influenced by the faculty there, several of whom were interested in the
evolving mathematical field of topology. Kuratowski wrote his first research paper in 1917 and was



awarded his Ph.D. in 1921. In 1927, Kuratowski became a mathematics professor at the Technical
University of Lvov. The mathematicians there did a great deal of research, often working at tea shops
and cafés. It is while Kuratowski was in Lvov that he discovered and proved an important theorem in
graph theory, which we are about to state. In 1934 Kuratowski returned to Warsaw and became a
professor at the University of Warsaw. Life was disrupted greatly in 1939 during the German
invasion of Poland. An underground university was developed during World War II and Kuratowski
taught there. After World War II the entire Polish educational system had to be rebuilt and
Kuratowski took a leadership role in doing this. Although Kuratowski did a great deal of research
throughout his life, primarily in set theory and topology, it was his work in directing schools of
mathematical research and education that are perhaps most notable. He died where he was born, in
Warsaw, on June 18, 1980.

So what exactly is Kuratowski’s contribution to graph theory? It turns out that to determine which
graphs are planar and which are nonplanar, it is Corollary 9.4 and Theorem 9.5 that provide the keys,
where it is shown that K5 and K3,3 are nonplanar. Certainly, if H is a nonplanar subgraph of a graph G,
then G is nonplanar as well. In particular, if G contains either K5 or K3,3 as a subgraph, then G is
nonplanar.

We now know that a graph G of order n ≥ 3 and size m is nonplanar if any of the following occurs:
(1) m > 3n − 6, (2) G contains K5 as a subgraph, (3) G contains K3,3 as a subgraph. We have already
seen that K3,3 is a nonplanar graph of order n and size m for which the inequality m > 3n − 6 does not
hold. Furthermore, even if m > 3n − 6, then there is no guarantee that G contains either K5 or K3,3 as a
subgraph, as we now show.

Example 9.6 There exists a graph of order n  ≥ 3 and size m > 3n − 6 that contains neither K5
nor K3,3 as a subgraph.

Solution. Consider the graph G of order n = 7 and size m = 16 shown in Figure 9.9. Since m = 16 >
15 = 3n − 6, it follows that G is nonplanar. In fact, G − uv is a maximal planar graph.

Figure 9.9: A nonplanar graph

Assume, to the contrary, that G contains a subgraph F such that F = K5 or F = K3,3. Necessarily, F
must contain the edge uv, for otherwise, F is a subgraph of G − uv, which is impossible. If F = K5,
then u, v  V(F) and the remaining three vertices of F must be adjacent to both u and v. However,



only s and t are adjacent to both u and v. Thus F ≠ K5 and so we must have F = K3,3. Let U and W be
the two partite sets of F. Since uv  E(F), one of u and v belongs to U and the other belongs to W, say
u  U and v  W. Since the remaining two vertices of W are adjacent to every vertex in U, either W =
{v, s, t} or W = {v, s, x}. If W = {v, s, t}, then only u and z are adjacent to all three vertices of W,
which is impossible. If W = {v, s, x}, then only u and t are adjacent to all three vertices of W, again
which is impossible. Thus F ≠ K3,3, which produces a contradiction.

Because the graph G of Figure 9.9 is nonplanar and contains neither K5 nor K3,3 as a subgraph, it
follows that the nonplanarity of a graph doesn’t depend on the graph containing K5 or K3,3 as a
subgraph. As we are about to see, it does depend on something very close to this however.

Let’s now turn our attention to the graph G of Figure 9.10. If we replace the edge uv by a vertex s
of degree 2 and join s to u and v, then we obtain the graph G1. The graph G1 is referred to as a
subdivision of G. We might also think of producing G1 by inserting a vertex of degree 2 into the edge
uv of G.

Figure 9.10: Subdivisions of a graph

More formally, a graph G′ is called a subdivision of a graph G if G′ = G or one or more vertices
of degree 2 are inserted into one or more edges of G. Consequently, all of G, G1, G2 and G3 are
subdivisions of G. In fact, G2 is a subdivision of G1 as well.

Perhaps it is clear that every subdivision of a planar graph is planar and that every subdivision of
a nonplanar graph is nonplanar. This says that if G′ if a subdivision of a graph G, then G′ is planar if
and only if G is planar. Therefore, if H is a graph that contains a subdivision of K5 or a subdivision of
K3,3 as a subgraph, then H is nonplanar. Kuratowski’s amazing theorem states that the converse of this
statement is true as well. Proving Kuratowski’s theorem is a complex task and, consequently, no
proof of it is presented here.

Theorem 9.7 (Kuratowski’s Theorem) A graph G is planar if and only if G does not contain a
subdivision of K5 or K3,3 as a subgraph.

Let’s summarize what we’ve learned at this point. Suppose that we are given a graph G of order n
≥ 3 and size m and we wish to determine whether G is planar. To show that G is planar, certainly one
option is to draw G as a plane graph. One way to verify that G is nonplanar is to show that m > 3n −
6. However, if m ≤ 3n − 6, it may still be the case that G is nonplanar. A surefire way to verify that G
is nonplanar is to show that a subdivision of K5 or K3,3 is a subgraph of G. To show that G contains a
subdivision of K5 as a subgraph, we need to find a subgraph H containing five vertices of degree 4,



every two of which are connected by a path, all of whose interior vertices have degree 2 in the
subgraph H (see Figure 9.11(a)). To show that G contains a subdivision of K3,3 as a subgraph, we
need to find a subgraph F containing six vertices of degree 3, partitioned into two sets V1 and V2 of
three vertices each, such that every vertex in V1 is connected to every vertex in V2 by a path, all of
whose interior vertices have degree 2 in the subgraph F (see Figure 9.11(b)). What this also says is
that if G is a graph that contains (1) at most four vertices of degree 4 or more and (2) at most five
vertices of degree 3 or more, then G must be planar.

Figure 9.11: Subdivisions of K5 and K3,3

We now present an application of Theorem 9.7.

Example 9.8 Determine whether the graph G of Figure 9.12 is planar.

Figure 9.12: The graph G in Example 9.8

Solution. Certainly as drawn, G is not a plane graph. Of course, this neither proves nor disproves
that G is nonplanar (although one may be suspicious that this is the case). The graph G has order n
= 10 and size m = 17. Since m = 17 ≤ 3n − 6 = 24, we cannot use Theorem 9.2 to show that G is
nonplanar. On the other hand, just because m ≤ 3n − 6, this certainly does not imply that G is planar
either.

Next, let’s see if we can find a subgraph of G that is either a subdivision of K5 or a subdivision of
K3,3. Actually, G resembles K5 as it is drawn. However, only four vertices of G have degree 4 or
more. Therefore, it is impossible that G contains a subdivision of K5 as a subgraph. On the other
hand, the graph F shown in Figure 9.13 is a subgraph of G. Since F is a subdivision of K3,3, it follows
by Kuratowski’s theorem that G is indeed nonplanar.

We will see another characterization of planar graphs (Theorem 9.15), due to Klaus Wagner, in
Section 9.3.



Figure 9.13: A subdivision of K3,3 that is a subgraph of the graph G of Figure 9.12

Exercises for Section 9.1

9.1 Show that each of the graphs in Figure 9.14 is planar by drawing it as a plane graph. Verify that
the Euler Identity holds for each graph.

Figure 9.14: Graphs for Exercise 9.1

9.2 A connected k-regular graph of order 12 is embedded in the plane, resulting in eight regions.
What is k?

9.3 (a) The vertices of a certain graph G have degrees 3, 4, 4, 4, 5, 6, 6. Prove that G is nonplanar.

(b) The vertices of a certain graph G have degrees 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7. Prove that G
is nonplanar.

9.4 (a) Find all integers n such that Kn is planar.

(b) Find all pairs r, s of integers for which Kr, s is planar.

9.5 Show that there exists

(a) a 4-regular planar graph and a 4-regular nonplanar graph.
(b) a 5-regular planar graph and a 5-regular nonplanar graph.
(c) no r-regular planar graph for r ≥ 6.

9.6 Prove or disprove the following.

(a) Every subgraph of a planar graph is planar.
(b) Every subgraph of a nonplanar graph is nonplanar.
(c) If G is a nonplanar graph, then G contains a proper nonplanar subgraph.
(d) If G does not contain K5 or K3,3 as a subgraph, then G is planar.

(e) If G is a graph of order n and size m with m ≤ 3n − 6, then G is planar.



(f) If G is a graph with one or more triangles and contains no subdivision of K5 as a subgraph,
then G is planar.

9.7 Give an example of each of the following or explain why no such example exists.

(a) a planar graph of order 4.
(b) a nonplanar graph of order 4.
(c) a nonplanar graph of order 6 that contains neither K5 nor K3,3 as a subgraph.

(d) a plane graph having 5 vertices, 10 edges and 7 regions.
(e) a planar graph of order n ≥ 3 and size m with m = 3n − 6.
(f) a nonplanar graph of order n ≥ 3 and size m with m = 3n − 6.

9.8 Determine, with explanation, whether the graph K4 × K2 is planar.

9.9 Determine, with explanation, whether the graph of Figure 9.15 is planar.

Figure 9.15: The graph in Exercise 9.9

9.10 Determine, with explanation, whether the graph of Figure 9.16 is planar.

Figure 9.16: The graph in Exercise 9.10

9.11 Determine, with explanation, whether the graph G of Figure 9.17 is planar.

9.12 Determine, with explanation, whether the graph G of Figure 9.18 is planar. (See the graph G7 of
Figure 9.3(c).)



Figure 9.17: The graph in Exercise 9.11

Figure 9.18: The graph in Exercise 9.12

9.13 (a) Prove that if G is a connected planar graph of order n ≥ 3 and size m without triangles, then
m ≤ 2n − 4.

(b) Use (a) to show that K3,3 is nonplanar.

(c) Prove or disprove: If G is a planar bipartite graph, then G has a vertex of degree 3 or less.

9.14 Let G be a connected plane graph of order n ≥ 5 and size m.

(a) Prove that if the length of a smallest cycle in G is 5, then .

(b) Use (a) to show that the Petersen graph is nonplanar.
(c) Use Kuratowski’s theorem to show that the Petersen graph is nonplanar.
(d) Prove or disprove: If n < 20 and the length of a smallest cycle in G is 5, then G has a

vertex of degree 2 or less.

9.15 Prove that if G is a planar graph of order n ≤ 11, then G has a vertex of degree 4 or less.

9.16 Do there exist two non-isomorphic maximal planar graphs of the same order?

9.17 It is not difficult to show that  is planar if 3 ≤ n ≤ 5 and that  is nonplanar if n ≥ 9. This
leaves only  and  in question. For each of these three graphs, determine, with
justification, whether it is planar or nonplanar.

9.18 Prove that there exists no maximal planar graph G of order n ≥ 3 whose complement  is also
maximal planar.

9.19 If a maximal planar graph of order 100 is embedded in the plane, how many regions result?

9.20 Determine all maximal planar graphs, if any, where one-third of their vertices have degree 3,
one-third have degree 4 and one-third have degree 5.

9.21 Prove that if G is a maximal planar graph of order at least 4, then (G) ≥ 3.

9.22 Prove that there exists only one 4-regular maximal planar graph.

9.2 Embedding Graphs on Surfaces

If G is a planar graph, then we know that G can be drawn in the plane in such a way that no two edges



cross. Such a “drawing” is also called an embedding of G in the plane. In addition, we say that G can
be embedded in the plane. On the other hand, if G is nonplanar, then G cannot be embedded in the
plane, that is, it is impossible to draw G in the plane without some of its edges crossing.

Perhaps it is clear that if a graph G is planar, then G can be embedded on the sphere as well as the
plane. Furthermore, if a graph G can be embedded on a sphere, then it must be planar. Although these
observations may not seem particularly enlightening, this brings up the question of considering
surfaces other than the sphere on which a graph might be embedded. But what other surfaces are
there? A common surface is the torus, a doughnut-shaped surface (see Figure 9.19(a)). In Figure
9.19(b), we see that the graph K4 can be embedded on the torus. In fact, there is more than one way to
embed K4 on the torus (see Figure 9.19(c)).

Figure 9.19: Embedding K4 on the torus

Not only can K4 be embedded on the torus, so can K5. Figure 9.20(a) shows an embedding of K5
on the torus; Figure 9.20(b) shows an embedding of K3,3 on the torus.

Embedding graphs on a torus, as we did in Figure 9.20, can be difficult to visualize. However,
there are alternative ways to represent these embeddings as we will now explain. How is a torus
constructed? One way is to begin with a rectangular piece of material (the more flexible the better) as
in Figure 9.21 and

Figure 9.20: Embedding K5 and K3,3 on the torus

first make a cylinder from it by identifying sides a and c, which are the same after the identification
occurs. The sides b and d then become circles. These circles are then identified to produce a torus.



Figure 9.21: Constructing a torus

Now that we have seen how a torus can be constructed, we see that the torus can be represented
by a rectangle whose opposite sides have been identified. In Figure 9.22(a), the rectangle represents
a torus. So the points labeled A are the same point on the torus, the points labeled B are the same
point on the torus and the points labeled C are the same point. Embeddings of K5 and K3,3 on the torus
are shown in Figures 9.22(b) and 9.22(c), respectively.

Figure 9.22: Embedding K5 and K3,3 on the torus

There is another way to represent a torus and embedding a graph on a torus. We begin with a
sphere and drill two holes in its surface, as in Figure 9.23(a). Then we attach a handle on the sphere,
where the ends of handle are placed over the two holes as in Figure 9.23(b). The surface that we have
just constructed, namely a sphere with one handle, is, in actuality, a torus, although it looks different
than the previous way we constructed a torus. In Figure 9.23(c), an embedding of K5 on the torus is
shown, where one of the edges of K5 passes over the handle of the torus.



Figure 9.23: Embedding K5 on the torus

Just as a torus is a sphere with a handle, we can consider a sphere on which a number of handles
have been attached. We denote a sphere with k handles by Sk. The surface Sk is also called a surface
of genus k. Thus, S1 is the torus, while S0 is the sphere itself.

We are now prepared to make an important observation. Let G be a graph (any graph) and draw G
on the sphere. Of course, if G is planar, then we can draw G on the sphere in such a way that no two
of its edges cross; while if G is nonplanar, then we cannot do this. On the other hand, if G is
nonplanar, then we can draw G on the sphere so that only two edges cross at any point of intersection.
Whenever such a crossing of two edges occurs, we can attach a handle at an appropriate position and
pass one of the two edges over the handle so that these two edges no longer cross in the surface we
have just constructed. What we have just observed then is that every graph can be embedded on some
surface. The smallest nonnegative integer k such that a graph G can be embedded on Sk is called the
genus of G and is denoted by γ(G). Therefore, γ(G) = 0 if and only if G is planar; while γ(G) = 1 if
and only if G is nonplanar but G can be embedded on the torus. In particular, γ(K5) = 1 and γ(K3,3) =
1.

Throughout this chapter, we have only discussed connected graphs. Of course, disconnected
graphs are either planar or nonplanar, just as connected graphs are. In fact, perhaps it is clear that a
disconnected graph G is planar if and only if every component of G is planar. For this reason, as far
as studying planar graphs is concerned, we need only be concerned with studying connected graphs.
However, as we are about to see, this is not the only reason why we restrict ourselves to connected
graphs when studying planar graphs. Consider the disconnected plane graph G = 2K3 shown in Figure
9.24. Certainly G has order n = 6, size m = 6 and r = 3, whose three regions are denoted by R1, R2
and R3. Therefore, in this case, n − m + r = 6 − 6 + 3 = 3 and so the Euler Identity does not hold. This
may not be surprising since, after all, in the hypothesis of Theorem 9.1, the plane graph G is required
to be connected.

Figure 9.24: A disconnected plane graph

Let’s return to the two embeddings of K4 on the torus in Figures 9.19(b) and 9.19(c). These are
shown again in Figures 9.25(a) and 9.25(b), respectively, where, in addition, each embedding is
given when the torus is represented as a rectangle with opposite sides identified. We also add a third
embedding of K4 on the torus in Figure 9.25(c). Just as regions of the plane (or sphere) are created
when a planar graph is embedded in the plane (or sphere), so too are regions of the torus (or any
other surface) created when a graph is embedded on the torus (or other surface). Since these surfaces
are more complex, it may be more difficult to determine what the regions are in this case. A fact that
may be helpful is the following: Let G be a graph that is embedded on some surface. If a point A lies
in region R and a point A′ lies in region R′ and A can be connected to A′ by a curve on the surface that
never intersects a vertex or an edge of G, then R and R′ are the same region. If no such curve



connecting A and A′ exists, then R and R′ are different regions. Therefore, the embedding of K4 on the
torus shown in Figure 9.25(a) produces four regions (denoted by R1, R2, R3, R4). The embedding of
K4 on the torus shown in Figure 9.25(b) produces three regions (denoted by R1, R2, R3), while the
embedding of K4 in Figure 9.25(c) produces only two regions (denoted by R1, R2). So the number of
regions is r = 4 for the embedding in Figure 9.25(a), r = 3 for the embedding in Figure 9.25(b) and r
= 2 for the embedding shown in Figure 9.25(c). That is, even though K4 is connected, we don’t
always obtain the same value of n − m + r when the embedding takes place on the torus. Although this
may seem disappointing, there is a property that the embedding of K4 on the torus has in Figure
9.25(c) that the other two embeddings in Figure 9.25 do not have and, as it turns out, this is a critical
difference.

Let G be a graph that is embedded on some surface Sk, where k ≥ 0. Then, of course, regions on Sk
are produced. A region is called a 2-cell if any closed curve that is drawn in that region can be
continuously contracted (or shrunk) in that region to a single point. An embedding, every region of
which is a 2-cell, is called a 2-cell embedding. Let’s return to the embedding of G = 2K3 in the plane
(or on the sphere) that we considered in Figure 9.24. In that embedding, the two regions each of
whose boundary is a triangle are 2-cells, while the remaining region is not a 2-cell. This embedding
is shown on the sphere in Figure 9.26. Although the closed curve C in the exterior region can be
continuously contracted to a single point in that region, the closed curve C′ cannot.

In general, no embedding of a disconnected graph in the plane is a 2-cell embedding, while every
embedding of a connected graph in the plane is a 2-cell

Figure 9.25: Embedding K4 on the torus



Figure 9.26: An embedding of 2K3 on the sphere that is not a 2-cell embedding

embedding. However, if G is a connected graph that is embedded on a surface of positive genus, then
the embedding may or may not be a 2-cell embedding. Let’s recall the embeddings of K4 on the torus
given in Figures 9.25(a) and 9.25(b). Neither of these embeddings is a 2-cell embedding. Indeed, the
curves C and C′ shown in Figures 9.27(a) and 9.27(b), respectively, cannot be continuously
contracted in that region to a single point.

The embedding of K4 on the torus given in Figure 9.25(c) is a 2-cell embedding, however. In that
embedding, there are two regions and so n − m − r = 4 − 6 + 2 = 0. As we are about to see, whenever
a connected graph of order n and size m is 2-cell embedded on a torus resulting in r regions, then n −
m − r = 0. We present an even more general result.

Theorem 9.9 Let G be a connected graph that is 2-cell embedded on a surface of genus k ≥ 0. If
G has order n, size m and r regions, then

Proof. We proceed by induction on k. Let G be a connected graph of order n

Figure 9.27: Embeddings of K4 on the torus that are not 2-cell embeddings

and size m that is 2-cell embedded on a surface of genus 0. Then G is a plane graph. Suppose that G
has r regions, each of which is necessarily a 2-cell. Then n − m + r = 2 = 2 − 2 · 0 by the Euler
Identity. Hence the theorem holds when k = 0.

Assume, for every connected graph G′ of order n′ and size m′ that is 2-cell embedded on a surface
Sk, where k ≥ 0, resulting in r′ regions, that n′ − m′ + r′ = 2 − 2k. Let G be a connected graph of order



n and size m that is 2-cell embedded on Sk+1, resulting in r regions.
Let H be one of the k +1 handles of Sk+1. We may assume that no vertices of G lie on H. However,

since the embedding of G on Sk+1 is a 2-cell embedding, there are edges of G on H. Draw a closed
curve C around H, which must intersect some edges of G. Suppose that there are t ≥ 1 points of
intersection of C and edges on H. Let the points of intersection be vertices, where then each of the t
edges becomes two edges. Furthermore, the segments of C between vertices become edges. We add
two vertices of degree 2 along C to produce two additional edges. (This guarantees that there are no
parallel edges and that a graph results.) Denote the resulting graph by G1, which has order n1, size m1
and r1 regions. Observe that n1 = n + t + 2 and m1 = m + 2t + 2. Since each portion of C that became
an edge of G1 is in a region of G, the addition of such an edge divides that region into two regions,
each of which is a 2-cell. Since there are t such edges, r1 = r + t.

Figure 9.28: A step in the proof of Theorem 9.9

Next we cut the handle H along C and “patch” the two resulting holes, producing two duplicate
copies of the vertices and edges along C. Denote the resulting graph by G2, which is now 2-cell
embedded on Sk. Let G2 have order n2, size m2 and r2 regions, all of which are 2-cells. Then n2 = n1
+ t + 2, m2 = m1 + t + 2 and r2 = r1 + 2. Therefore,

By the induction hypothesis, n2 − m2 + r2 = 2 − 2k and so

Therefore, n − m + r + 2 = 2 − 2k and n − m + r = 2 − 2(k + 1).

It turns out that if G is a connected graph that is embedded on a surface of genus γ(G), then this
embedding is necessarily a 2-cell embedding. Hence we have the following corollary.

Corollary 9.10 If G is a connected graph of order n and size m that is embedded on a surface of
genus γ(G), resulting in r regions, then

We now have a corollary of Corollary 9.10.

Corollary 9.11 If G is a connected graph of order n ≥ 3 and size m, then



Proof. First, let G be embedded on a surface of genus γ(G) resulting in r regions. By Corollary
9.10, n − m + r = 2 − 2γ(G). Let R1, R2, …, Rr be the regions of G and let mi be the number of
edges on the boundary of Ri (1 ≤ i ≤ r). So mi ≥ 3. Since every edge is on the boundary of one or
two regions, it follows that

and so 3r ≤ 2m. Therefore,

Solving (9.2) for γ(G), we have

as desired.

If the graph G in the statement of Corollary 9.11 is planar, then γ(G) = 0 and the conclusion of this
corollary states that  or, equivalently, m ≤ 3n − 6, which returns us to Theorem 9.2.

The graph K5 has order n = 5 and size m = 10. By Corollary 9.11, γ(K5) ≥ 1/6 and so once again
we see that K5 is nonplanar. Of course, we have already seen that γ(K5) = 1. By Corollary 9.11, γ(K6)
≥ 1/2 and γ(K7) ≥ 1. In fact, it can be shown that γ(K6) = γ(K7) = 1. Indeed, the following formula was
obtained by Gerhard Ringel and J. W. T. (Ted) Youngs (1910–1970). (This formula will be revisited
in Chapter 10.)

Theorem 9.12 For n ≥ 3,

Exercises for Section 9.2

9.23 Embed each of the following graphs in Figure 9.29 on the torus (represented as a rectangle with
opposite sides identified).



Figure 9.29: The graphs in Exercise 9.23

9.24 Determine, with explanation, the genus of K6.

9.25 Determine, with explanation, the genus of K4, 4.

9.26 Determine, with explanation, the genus of the Petersen graph.

9.27 Prove or disprove:

(a) There exists a planar graph that cannot be embedded on the torus.
(b) There exists a nonplanar graph that cannot be embedded on the torus.
(c) If G is a graph of order n and size m, then G can be embedded on a sphere with m handles.
(d) If a graph G can be embedded on the torus, then γ(G) = 1.

9.28 By Theorem 9.12, γ(K7) = 1.

(a) Show that the boundary of every region in an embedding of K7 on the torus is a triangle.

(b) Let there be an embedding of K7 on the torus and let R1 and R2 be two neighboring regions.
Let G be the graph obtained by adding a new vertex y in R1 and joining y to the vertices on
the boundaries of both R1 and R2. Prove that γ(G) = 2.

9.3 Excursion: Graph Minors

As we have seen, Kuratowski’s theorem (Theorem 9.7) provides a characterization of planar graphs:
A graph G is planar if and only if G does not contain a subdivision of K5 or K3,3 as a subgraph.
This is not the only characterization of planar graphs, however.

For a graph G and an edge e = uv of G, a graph G′ is said to be obtained from G by contracting
the edge e (or identifying the vertices u and v) if G′ is (isomorphic to) the graph obtained by joining
u in the graph G − v to any neighbor of v not already adjacent to u. We also say that G′ is obtained
from G by an edge contraction. (By symmetry, G′ is also the graph obtained by joining v in G − u to
any neighbor of u in G not already adjacent to v.) This is illustrated for the graph G of Figure 9.30
and the edge e = uv. The graph G″ is obtained by contracting the edge xy in G′

Figure 9.30: Contracting an edge



If we were to begin with a graph G, contract an edge in the graph G to produce the graph G′,
contract an edge in G′ to produce the graph G″ and so on, until finally obtaining a graph H, then it is
possible to describe such a graph H more simply. Let G be a graph where {V1, V2, …, Vk} is a
partition of V(G) such that G[Vi] is connected for every integer i (1 ≤ i ≤ k). Let H be the graph with
vertex set {V1, V2, …, Vk} where V is adjacent to Vj (i ≠ j) if some vertex in Vi is adjacent to some
vertex in Vj in G. For example, in the graph G of Figure 9.30, if we let V1 = {x, y}, V2 = {z}, V3 = {u,
v}, V4 = {t} and V5 = {w}, then the resulting graph H in Figure 9.31 is isomorphic to the graph G″ of
Figure 9.30.

Figure 9.31: Edge contractions

A graph H is called a minor of a graph G if (a graph isomorphic to) H can be obtained from G by
a succession of edge contractions, edge deletions or vertex deletions (in any order). Consequently, the
graph H of Figure 9.31 is a minor of the graph G of that figure. Let’s consider another example,
namely the graph G1 of Figure 9.32, where we let V1 = {u1}, V2 = {u2}, V3 = {u3}, V4 = {v1, w1, x1},
V5 = {w2, x2} , V6 = {v3, w3, x3} and V7 = {x4}. Then the graph H1 can be obtained from G1 by
successive edge contractions. The graph H1 is consequently a minor of G1. By deleting the edge V1V2
and the vertex V7, we see that K3,3 is also a minor of G1.

Figure 9.32: Minors of graphs

Minors of graphs have some interesting implications. As the example in Figure 9.32 may suggest,
we have the following.

Theorem 9.13 If a graph G is a subdivision of a graph H, then H is a minor of G.



Also, if G is a graph that is embeddable on a surface Sk, where k ≥ 0, then any graph obtained
from G by an edge contraction, edge deletion or vertex deletion can also be embedded on Sk. This
leads to the following observation.

Theorem 9.14 If a graph H is a minor of a graph G, then γ(H) ≤ γ(G).

With the aid of these two observations, a characterization of planar graphs, due to Klaus Wagner
(1910-2000), can now be stated. In 1937, only a year after obtaining his Ph.D. from Universität zu
Köln (the University of Cologne), Wagner proved the following.

Theorem 9.15 (Wagner′s Theorem) A graph G is planar if and only if neither K5 nor K3,3 is a
minor of G.

In Example 9.8 we showed that the graph of Figure 9.12 (redrawn as the graph G of Figure 9.33)
is nonplanar. Despite the fact that the appearance of G might remind one of K5, this graph does not
contain a subdivision of K5 as a subgraph. In fact, we verified that G is nonplanar by showing that G
contains a subdivision of K3,3 as a subgraph. On the other hand, if we were to consider the parition
{V1, V2, V3, V4, V5} of V(G) for which V1 = {u1, v1, w1, x1, y1}, V2 = {v2}, V3 = {u2, y2}, V4 = {w2}
and V5 = {x2}, then we see that K5 is a minor of G and so G is nonplanar by Wagner’s theorem.

Figure 9.33: The graph G having K5 as a minor

Undoubtedly, the major theorem concerning minors is one obtained by Neil Robertson and Paul
Seymour in 1990.

Theorem 9.16 (The Graph Minor Theorem) For any infinite set S of graphs, there exist two
distinct graphs in S such that one of these graphs is a minor of the other.

Paul Seymour received his doctoral degree from Oxford University in 1975. He became a
professor at Princeton University after having spent several years working at Bellcore (Bell
Communications Research). Neil Robertson received his Ph. D. in 1969 from the University of
Waterloo under the direction of William Tutte and became a professor at Ohio State University. Much
of Robertson’s motivation comes from furthering the work of Tutte. His work on graph minors is
aimed at highlighting the structural features of graphs that are obtained by excluding a fixed graph as a
minor. Robertson, with interests in the fine arts, poetry and drama, considered it a privilege to work



in an area that is creativity driven.
We now describe a remarkable consequence of Theorem 9.16. Consider the surface Sk of genus k

≥ 0. Certainly, if G is a sufficiently small graph (in terms of order and/or size), then G can be
embedded on Sk. Hence if we begin with a graph F that cannot be embedded on Sk and perform
successive edge contractions, edge deletions and vertex deletions, then eventually we arrive at a
graph F′ that also cannot be embedded on Sk but such that any additional edge contraction, edge
deletion or vertex deletion of F′ produces a graph that can be embedded on Sk. We say that such a
graph F′ is minimally nonembeddable on Sk. Consequently, every minor of F′ that is distinct from F′
can be embedded on Sk. In particular, the graphs K5 and K3,3 are minimally nonembeddable on S0 (or
more simply, minimally nonplanar). Indeed, these are the only minimally nonplanar graphs. This
leads us to the following remarkable consequence of the Graph Minor Theorem and another
discovery of Robertson and Seymour.

Theorem 9.17 For each integer k ≥ 0, the set of minimally nonembeddable graphs on Sk is
finite.

Proof. By Wagner’s theorem, the statement is true for k = 0. Assume, to the contrary, that there
exists a positive integer k such that the set S of minimally nonembeddable graphs on Sk is infinite.
By the Graph Minor Theorem, S contains two non-isomorphic graphs G and H such that H is a
minor of G. However, G is minimally nonembeddable and H cannot be embedded on Sk. This is a
contradiction.

Theorem 9.17 has an immediate consequence.

Corollary 9.18 For every nonnegative integer k, there exists a finite set S of graphs such that a
graph G is embeddable on Sk if and only if H is not a minor of G for every graph H in S.

Although the number of minimally nonembeddable graphs on the torus is finite, it is known that this
number exceeds 800.

Exercises for Section 9.3

9.29 For the graphs G and G′ in Figure 9.34, show that G′ is a minor of G.

Figure 9.34: The graph G in Exercise 9.29

9.30 Show that the graph K5 is a minor of the Petersen graph, thereby showing that the Petersen



graph is nonplanar.

9.31 Prove that every nonplanar graph has K5 or K3,3 as a minor.

9.32 What graph results from

(a) a single edge contraction in K5?

(b) a single edge contraction in K3,3?

(c) two edge contractions in K3,3?

9.33 Theorem 9.13 states that: If a graph G is a subdivision of a graph H, then H is a minor of G.
Show that its converse is false.

9.4 Exploration: Embedding Graphs in Graphs

We saw in Theorem 2.7 that for every graph G and every integer r ≥ Δ(G), there exists an r-regular
graph H containing G as an induced subgraph. We say that G is embedded as an induced subgraph in
H. This result was presented by Dénes König in his 1936 book. Let’s recall how this result was
proved when r = Δ(G).

If G is r-regular, then H = G has the desired properties. Otherwise, let G′ be another copy of G
and join corresponding vertices in G and G′ whose degrees are less than r, producing the graph G1. If
G1 is r-regular, then H = G1 has desired properties. If G1 is not r-regular, then we continue this
procedure until arriving at an r-regular graph Gk, where k = Δ(G) − (G). This is illustrated for the
graph G of Figure 9.35, where Δ(G) = 3 and (G) = 1.

Figure 9.35: A graph H containing G as an induced subgraph

The construction presented by König to embed a graph G with maximum degree r as an induced
subgraph in an r-regular graph H doesn’t produce an r-regular graph of smallest order in general. In
fact, while the graph H of Figure 9.35 has order 16, the minimum order of a 3-regular graph
containing G as an induced subgraph is 6.

In 1963 Paul Erdös and Paul J. Kelly developed a method for determining the minimum order of
an r-regular graph H in which a given G with r = Δ(G) can be embedded as an induced subgraph. In
order to state their theorem, we need to present a few definitions.



Let G be a graph with maximum degree r whose vertex set is V(G) = {v1, v2, …, vn}. Let di denote
the degree of vi and let ei = r − di denote the deficiency of vi. In addition, let e = max{ei : 1 ≤ i ≤ n}
be the maximum deficiency and  the total deficiency. We can now state the theorem of
Erdös and Kelly.

Theorem 9.19 Let G be a graph of order n, where r  = Δ(G). Then k + n is the minimum order of
an r-regular graph H in which G can be embedded as an induced subgraph where k is the least
integer satisfying (1) kr ≥ s, (2) k2 − (r + 1)k + s ≥ 0, (3) k ≥ e and (4) (k + n)r is even.

Figure 9.36 shows four non-regular graphs Gi (1 ≤ i ≤ 4) and graphs Hi that are Δ(Gi)-regular
graphs of smallest order containing Gi as an induced subgraph. The first three pairs Gi, Hi of graphs
appear as illustrations in the article by Erdös and Kelly.

Figure 9.36: Four Δ(Gi)-regular graphs Hi (1 ≤ i ≤ 4) of minimum order containing Gi as an induced
subgraph

For each vertex v of each graph Hi (1 ≤ i ≤ 4) of Figure 9.36, there is an induced subgraph of Hi
containing v that is isomorphic to Gi. Of course, if v is a vertex of the original graph Gi, then this is
obvious. However, this is also true for each vertex added to Gi to produce Hi. Indeed, it is often the
case that for every vertex v of a Δ(G)-regular graph H of minimum order containing a given graph G
as an induced subgraph, there is an induced subgraph of H containing v that is isomorphic to G. This
does not always happen, however.

Figure 9.37 shows a graph G of order 10 obtained from the complete bipartite graph K3,3 by
subdividing two of its edges. Figure 9.37 also shows a 3-regular graph H of minimum order 12
containing G as an induced subgraph. However, there is no induced subgraph of H containing u that is
isomorphic to G.



Figure 9.37: A graph H having no induced subgraph containing u that is isomorphic to G

These observations lead to the following concept. A graph G is said to be uniformly embedded in a
graph H if for every vertex v of H, there is an induced subgraph of H containing v that is isomorphic
to G. Therefore, each of the graphs Gi (1 ≤ i ≤ 4) of Figure 9.36 is uniformly embedded in the graph
Hi.

For a graph G with maximum degree r, the r-regular graph H constructed by König has the
property that G is uniformly embedded in H. However, the graph G of Figure 9.37 is not uniformly
embedded in H.

Embeddings can be even more demanding. A graph G is homogeneously embedded in a graph H
if for each vertex x of G and each vertex y of H, there exists an embedding of G in H as an induced
subgraph with x at y. Equivalently, a graph G is homogeneously embedded in a graph H if for each
vertex x of G and each vertex y of H there exists an induced subgraph H′ of H and an isomorphism 
from G to H′ such that (x) = y.

A graph F of minimum order in which G can be homogeneously embedded is called a frame of
(or for) G and the order of F is called the framing number fr(G) of G. Therefore, if G is a graph of
order n, then fr(G) ≥ n.

For example, the framing number of the path P3 is 4 since P3 can be homogeneously embedded in
C4 (see Figure 9.38) and P3 cannot be homogeneously embedded any graph of order 3. The cycle C4
also has framing number 4 since C4 can be homogeneously embedded in itself.

Figure 9.38: Homogeneously embedding P3 in C4

The graph G = K1  K2 can be homogeneously embedded in C5 (see Figure 9.39); however, fr(G)
= 4 since G can also be homogeneously embedded in the graph 2K2 of order 4 and G cannot be
homogeneously embedded in any graph of order 3.



Figure 9.39: Homogeneously embedding K1  K2 in C5 and 2K2

If a graph G can be homogeneously embedded in a graph H, then (H) ≥ Δ(G). As another
illustration, consider the graph G of Figure 9.40.

Example 9.20 The graph G of Figure 9.40 has framing number 6.

Solution. Since Δ(G) = 3, it follows that if H is a graph in which G can be homogeneously
embedded, then (H) ≥ 3. Certainly, fr(G) ≥ 5. If fr(G) = 5, then a frame H of G can be constructed
by adding a new vertex y1 that is adjacent to at least u and v. However, degH y1 ≥ 3; so y1 must be
also adjacent to at least one of x and w, say y1 is adjacent to x. Let H1 be the graph constructed thus
far (see Figure 9.40). However, H1 fails to contain an induced subgraph isomorphic to G with u at
x1 and so G cannot be homogeneously embedded in H1. Therefore, fr(G) ≥ 6. Since G can be
homogeneously embedded in the graph H2 = K2, 2, 2 of order 6 shown in Figure 9.40, it follows that
fr(G) = 6.

Figure 9.40: Homogeneously embedding a graph

There is an important question that might have occurred to you: For a given graph G, how do we
know that the framing number of G exists? This is answered in the following theorem.

Theorem 9.21 For every graph G, there exists a graph in which G can be homogeneously
embedded.

In fact, even more can be said.



Theorem 9.22 For every graph G, there exists a regular graph in which G can be
homogeneously embedded.

Exercises for Section 9.4

9.34 Consider the graph G of Figure 9.41.

(a) Show that G can be homogeneously embedded in the 3-cube Q3.

(b) Determine the framing number of G.

9.35 Determine the framing number of 2K1  K2.

9.36 (a) Determine a frame for the graph K1, 3.

Figure 9.41: The graphs in Exercise 9.34

(b) Does there exist a planar graph H in which K1, 3 can be homogeneously embedded?

9.37 Determine the framing number of K1,t, where t ≥ 4.

9.38 Prove that if G is a graph of order n with fr(G) = n, then G has a unique frame.

9.39 Use Theorem 9.21 to prove Theorem 9.22.

9.40 Let G = . Give an example of an r-regular graph Hr of minimum order such that G can be
homogeneously embedded in Hr when

(a) r = 0,(b) r = 1,(c) r = 2,(d) r = 3.

9.41 Let G = P4. Does there exist a graph H such that (1) for every two adjacent vertices x1 and x2 of
G and every two adjacent vertices y1 and y2 of H and (2) for every two nonadjacent vertices x1
and x2 of G and every two nonadjacent vertices y1 and y2 of H, there exists an embedding of G
in H as an induced subgraph with x1 at y1 and x2 at y2?

9.42 Ask and answer a question of your own dealing with homogeneous embeddings of graphs.



Chapter 10

Coloring

10.1 The Four Color Problem

Wolfgang Haken
Smote the Kraken
One! Two! Three! Four!
Quoth he: ‘The monster is no more’.

What is this all about? We are about to explain. In the article “The mathematics of map coloring,”
which was published in a 1969 issue of the Journal of Recreational Mathematics, its author, the
distinguished mathematician H. S. M. (Donald) Coxeter, mentioned that in nearly every instance when
a map of the United States is colored to distinguish neighboring states, at most five or six colors are
used. What is the minimum number of colors that can be used to color the states in the United States if
every two states that share a common border are required to be colored differently? Two states that
share only a common point, however, such as Utah and New Mexico, are permitted to be colored the
same (see Figure 10.1). Since Nevada and Utah are neighboring states, that is, they share a common
boundary, they must be assigned different colors. In fact, Nevada has a ring of five neighboring states,
namely, Utah, Idaho, Oregon, California and Arizona. Therefore, each of these five states must be
assigned a color different from that used for Nevada. On the other hand, three colors are needed to
color the five states bordering Nevada. So four colors are needed in all to color these six states.
Indeed, all states in the United States can be colored with four colors.

Coloring regions (whether these are states, countries or counties) in a map with a minimum
number of colors such that neighboring regions (those sharing a common boundary) are colored
differently does not appear to be a question with which map-makers of the past were concerned.
Indeed, the mathematical



Figure 10.1: Western United States

historian Kenneth May found no evidence of this when he studied books on map-making.
So, if a map is divided into regions in some manner, what is the minimum number of colors

required if neighboring regions are to be colored differently? And why is this a question that should
even concern us? You might think that the answer to the first question depends on the map and you’d
be right – although we have already mentioned that coloring the states in the United States requires
four colors and that four colors suffice. One might expect, however, that this question would have a
very different answer if the map consisted of many regions (say billions) and the map was designed
so that many of the regions had a large number of neighboring regions.

Evidently, this question originated not with map-makers but with a mathematician. In 1852 Francis
Guthrie (1831–1899), a recent graduate of University College London, observed that the counties of
England could be colored with four colors so that neighboring counties were colored differently.
Francis Guthrie found maps where three colors weren’t enough but he felt that four colors were
enough for all maps and he attempted to prove this. He showed his “proof” to his younger brother
Frederick, who was taking a class at the time from the well-known Augustus De Morgan. Francis was
not completely happy with the proof he had given, however. With Francis’ permission, Frederick
showed what Francis had written to De Morgan on October 23, 1852. De Morgan was pleased with
this and felt it was new. The very same day, De Morgan wrote the following letter to the celebrated
mathematician William Rowan Hamilton:

A student of mine asked me to day to give him a reason for a fact which I did not know was
a fact – and do not yet. He says that if a figure be anyhow divided and the compartments
differently coloured so that figures with any portion of common boundary line are
differently coloured – four colours may be wanted but not more – the following is his case
in which four are wanted.



Query cannot a necessity for five or more be invented.

Hamilton replied on October 26, 1852:

I am not likely to attempt your “quaternion” of colours very soon.

Although this problem (which was to become known as the Four Color Problem) apparently did
not excite Hamilton, De Morgan continued to be interested in it. Overall interest in this problem
subsided during the next several years however.

During this period, in 1865, the London Mathematical Society was founded at University College
London and Augustus De Morgan served as its first president. The second president of the Society
was the mathematician James Joseph Sylvester and Arthur Cayley became the third president of the
Society. Much of Cayley’s early work on algebra had in fact been done with Sylvester.

James Joseph Sylvester was born in London on September 3, 1814. In 1833 Sylvester attended St.
John’s College, Cambridge where he excelled in mathematics. This was a time when a student was
required to sign a religious oath to the Church of England before he could graduate. Being Jewish,
Sylvester refused to take the oath and was not permitted to graduate. For the same reason, he was
ineligible for a fellowship. During 1838-1841 Sylvester taught physics at the University of London
where his religion did not work against him. One of his colleagues there was De Morgan, who had
earlier been Sylvester’s teacher.

After a short stay in the United States in 1841, Sylvester returned to England where he worked as
a lawyer and actuary. He did tutoring in mathematics, however and, curiously, one of his students was
Florence Nightingale, well known for her pioneering work in nursing and hospital reform. Arthur
Cayley was also a lawyer at that time and he and Sylvester often discussed mathematics. Despite
having very different personalities, the two became life-long friends.

Sylvester tried hard to obtain a mathematics position and only secured one, at the Royal Military
Academy at Woolwich, when the successful applicant died. Sylvester went on to do important work
in matrix theory and the theory of equations and he introduced the terms matrix and discriminant into
mathematics. Being at a military academy, however, Sylvester was required to retire at half-pay at
age 55.

Sylvester was about to give up mathematics and concentrate on writing poetry when his life took a
major turn in 1876, with the founding of a new university in the United States: the Johns Hopkins
University in Baltimore, Maryland. He was offered the position of the University’s first professor of
mathematics. Sylvester became the most senior of the original faculty of this university, both in terms
of age and prior accomplishments. Employing Sylvester turned out to be a wise decision for the
University as he was instrumental in hiring many faculty members who became prominent
mathematicians themselves. In 1878 he founded the American Journal of Mathematics, the first
mathematics journal in the United States. Cayley was among the first to publish his research in this
journal.

Meanwhile, interest in the Four Color Problem was revived during an 1878 meeting of the London
Mathematical Society presided over by Henry Smith of Exeter College, Oxford. One of Smith’s
students there was Percy John Heawood, whom we will soon encounter. On June 13, 1878 Cayley
asked if this problem had been solved. One of the people attending this meeting was a bright but
amateur mathematician by the name of Alfred Bray Kempe (pronounced KEMP).

The next year on July 17, 1879 Kempe announced in the magazine Nature that he had solved the



problem and that every map could indeed be colored with four or fewer colors. Kempe (1849–1922)
had graduated from Cambridge University in 1872 and studied mathematics under Cayley. He later
became a barrister (a lawyer) with a specialty in ecclestical law. He continued his interest in
mathematics, however. Cayley suggested that Kempe should publish his discovery, which he did in
1879 in the second volume of the American Journal of Mathematics.

In his approach, Kempe used a technique which involved a concept that was later to be called
Kempe chains. The idea goes something like the following: Suppose that we have a map in which all
regions except one, say region X, have been colored with four colors (red, blue, green and yellow)
and we would like to color region X with one of these colors as well. Of course, if not all four colors
have been used to color the regions that surround X, then there is a color available for X. Hence we
may assume that all four colors have been used for the ring of regions that surround X. It may occur
that there are exactly four regions in such a ring, say A, B, C, D (in clockwise order), which are
colored red, blue, green and yellow, respectively. (See Figure 10.2.)

Figure 10.2: A region surrounded by a ring of four regions

There are two possibilities: (1) There is no chain of neighboring regions from A to C that are
alternately colored red and green. (2) There is a chain of neighboring regions from A to C that are
alternately colored red and green. Should (1) occur, then interchange the colors red and green in all
chains of neighboring regions beginning at A and which are alternately colored red and green. Since C
does not appear in any such chain, once the colors are interchanged, both A and C are colored green
and the color red is available for X. If (2) should occur, then there cannot be a chain of neighboring
regions from B to D whose colors are alternately blue and yellow. The technique used in (1) can now
be applied to chains of neighboring regions colored blue and yellow to produce a new coloring of all
regions of the map (except X) in which both B and D are colored yellow, leaving blue available for
X.

Of course, this only takes care of the situation where exactly four regions occur in the ring about X
(and where all four colors are used to color these surrounding regions). What if there are more than
four regions in this ring? We will see later that we can assume that the number of regions in a ring
about X does not exceed 5. But this still leaves us with one other situation: There are five regions in a
ring about X and all four colors are used to color these surrounding regions. Of course, some color
would have to be used twice in this case (though not for neighboring regions). Kempe believed that an
argument similar to the one used for when four regions surround X could be used for the situation
when five regions surround X and this was the key to (and the downfall of) his proof.

Kempe was honored for his accomplishment. He was elected Fellow of the Royal Society in 1881
and served as its treasurer for a number of years. He published two refinements of his proof, one of
which sparked the interest of the mathematician Peter Guthrie Tait (1831–1901), who provided his
own solutions of the Four Color Problem. Tait had many interests and many friends (including



Hamilton). Despite being involved with so many projects, he always seemed to find time to get things
done. One of Tait’s four sons, Frederick Guthrie Tait, excelled in golf and was known to the golfing
world as Freddie Tait. Frederick was the amateur champion of the British Open Golf Tournaments in
1896 and 1898. There is an international tournament held in his honor in Kimberley, South Africa as
Frederick was killed in the Anglo-Boer War of 1899-1902. Peter Tait, in fact, wrote a research paper
on the trajectory of golf balls. He was also interested in knots and how they crossed. One of Tait’s
personal problems, however, was that he was often involved in arguments with his colleagues.

The next major event in the history of the Four Color Problem involved the British mathematician
Percy John Heawood (pronounced HAY-wood). Heawood (1861–1955) studied at Oxford University
and was a faculty member at Durham College (later Durham University) for more than fifty years.
Heawood was known for his large moustache and for permitting his dog to attend his lectures. He did
not retire until he was 78 and lived for another 16 years. In 1890 Heawood published a paper “Map
colouring theorem” in which he pointed out a “defect” in Kempe’s celebrated solution of the Four
Color Problem by producing a counterexample to Kempe’s proof in the case where region X is
surrounded by five regions. (Additional discussion of Heawood’s paper occurs in Section 10.4.)

Kempe agreed that Heawood had discovered an error in his paper. In what must have been a very
difficult thing for him to do, Kempe reported Heawood’s work to the London Mathematical Society
himself and said that he was unable to correct the error he had made. Heawood couldn’t correct
Kempe’s error either. However, Heawood became so intrigued with the Four Color Problem that he
continued working on it for the rest of his life – another six decades.

It turned out that Tait’s “solutions” were also incorrect. In addition to the “proofs” by Kempe and
Tait, there was yet another published incorrect proof – by Frederick Temple, who was Bishop of
London at the time and who would later become the Archbishop of Canterbury.

The conjecture that every map can be colored with four or fewer colors became known as the
Four Color Conjecture. Many believed the conjecture to be true. Heawood’s example was only a
counterexample to Kempe’s technique, not a counterexample to the Four Color Conjecture. Indeed, it
was not that difficult to show that the map constructed by Heawood could be colored with four
colors. Even though Kempe’s method was unsuccessful, Heawood was able to use this method to
prove that every map could be colored with five or fewer colors. (This topic will be discussed in
more detail in Section 10.4.) On the other hand, whether any map actually required five colors was
not known and would not be known for another 86 years.

After Heawood’s paper, attempts to settle the Four Color Conjecture slowed considerably. In his
attempted proof, Kempe used the fact that some region was surrounded by a ring of five or fewer
regions. Only the case where there was a region surrounded by exactly five regions caused any
difficulties. However, the obstacles in that case were severe. As time went on, mathematicians who
attempted to prove the conjecture divided the proof into a larger number of more detailed cases
dealing with configurations of regions that might occur in the map. The idea was to find a set of
configurations of regions (rather than a single region) surrounded by a ring of regions such that every
map contains at least one of these configurations and such that if the regions on and outside the ring
can be colored with four colors, then the entire map can be colored with four colors. Such a set was
later referred to as an unavoidable set of reducible configurations.

The concept of reducibility was introduced in a paper of one of the well-known mathematicians of
the 20th century: George David Birkhoff (1884–1944). His son, Garrett Birkhoff, would also become
a prominent mathematician. Garrett became interested in algebra and obtained a Ph.D. from
Cambridge University under the supervision of Philip Hall. Garrett Birkhoff went on to join Saunders



Mac Lane to co-author the popular textbook Survey of Modern Algebra, which introduced abstract
algebra to many undergraduate mathematics students.

George David Birkhoff received his Ph.D. from the University of Chicago in 1907, with his thesis
in the areas of ordinary differential equations and boundary value problems. He went on to become a
faculty member at the University of Wisconsin at Madison, Princeton and Harvard, where he became
Dean of the Faculty of Arts and Science. Although Birkhoff worked in a wide range of areas, he was
fascinated with the work of Jules Henri Poincaré on dynamical systems, an area that Birkhoff studied
extensively. Poincaré died in 1912 and in his last paper, he showed that the existence of periodic
solutions of the restricted problem of three bodies could be deduced from a certain geometric
theorem. He was unable to prove this theorem, however, except in a special case. Within a few
months, Birkhoff had given a simple but insightful proof of “Poincaré’s Last Geometric Theorem,”
which was published in the January 1913 issue of the Transactions of the American Mathematical
Society, an accomplishment that would bring Birkhoff lasting fame. In that same year, Birkhoff
published his paper on the reducibility of graphs.

As we have mentioned, in Kempe’s attempted proof of the Four Color Theorem, he used the fact
that every map contains a region surrounded by five or fewer regions. That is, such configurations
were “unavoidable.” If a proof by minimum counterexample of the Four Color Theorem was being
attempted and we were assured that a map with a minimum number of regions could not be colored
with four or fewer colors and that map contained a region surrounded by four or fewer regions, then
we could show that the entire map could be colored with four colors, producing a contradiction and
arriving at a proof of the Four Color Theorem. Therefore, in a minimum counterexample, all regions
must be surrounded by five or more regions.

A reducible configuration is any arrangement of regions that cannot occur in a minimum
counterexample. For example, a single region surrounded by exactly four regions is reducible. This
means that if some map under consideration contains a certain reducible configuration, then any
coloring of the regions of the map that lie outside this configuration with four or fewer colors can be
extended to a coloring of the entire map with four or fewer colors. Consequently, if an unavoidable
set of reducible configurations could be found, the Four Color Theorem would be proved. This was
the approach that eventually would prove to be successful.

Philip Franklin used Birkhoff’s idea to show that every map with 25 or fewer regions was 4-
colorable. This was increased to 39 by Oystein Ore and Joel Stemple in 1970 and to 95 by Jean
Mayer in 1976. By the 1970s, configurations with ring sizes ranging from 13 to 15 were being
studied.

The German mathematician Heinrich Heesch (1906–1995) developed a more systematic way to
search for an unavoidable set of reducible configurations. He became increasingly convinced that this
was a method that would lead to a solution of the Four Color Problem and presented this view at
seminars at the Universities of Hamburg and Kiel shortly after World War II. One of the students at
the University of Kiel who attended these seminars was Wolfgang Haken.

Heesch estimated that an unavoidable set of reducible configurations could possibly contain as
many as 10,000 elements. Furthermore, manually verifying that such a large number of configurations
were reducible did not appear to be practical. One of Heesch’s techniques, called D-reducibility, to
show that a configuration is reducible was sufficiently algorithmic to lend itself to a computerized
approach. This technique required consideration of every 4-coloring of the regions in the ring and
showing that each of these could be extended to a 4-coloring of the entire map. For example, if the
ring contained 14 regions, then there would be a total of 199,291 different colorings of the regions of



the ring. Computers were used to verify D-reduction in the 1960s. Even for a single configuration, the
computer took many hours. To make matters worse, even if the D-reduction program failed on a
configuration, this did not mean that the configuration was not reducible. Heesch discovered another
method for establishing reducibility, which he called C-reducibility. This was a major positive step.

By the late 1960s, a major effort was underway to solve the Four Color Problem with the aid of
computers. The people involved in this approach included Heesch, Haken, Karl Dürre and Yoshio
Shimamoto, Chair of the Applied Mathematics Department of the United States Atomic Energy
Commission at their Brookhaven Laboratory. The Commission had access to a Control Data 6600
(developed by Stephen Cray), the fastest computer at that time. Shimamoto constructed a
configuration (that eventually became known as the Shimamoto horseshoe) which if D-reducible
would establish the truth of the Four Color Conjecture. For some time it seemed that this
configuration was D-reducible. In fact, Heesch had encountered this configuration earlier and had
been convinced by testing it on a computer that it was D-reducible. However, William Tutte and
Hassler Whitney had believed for some time that if Shimamoto’s approach was correct, then there
must be a considerably simpler proof. Since they could find no error in Shimamoto’s logic, they
became convinced that the problem was with the computer. Since the proof of the Four Color
Conjecture was now resting on the D-reducibility of this single configuration, it became essential that
i t s D-reducibility be confirmed. Haken had studied this and also found nothing wrong with
Shimamoto’s reasoning. Even as this configuration was being tested for D-reducibility, a rumor
surfaced that the Four Color Problem had been solved. At this moment the final step in a proof of the
Four Color Conjecture was relying on a computer. Finally the Cray computer came up with the sad
news that the Shimamoto horseshoe was not D-reducible, a fact that Tutte and Whitney would also
establish.

During the early 1970s, those attempting a reducibility proof of the Four Color Conjecture
included Heesch, Frank Allaire and Edward Swart, Frank Bernhart and Haken. After the failure of
Shimamoto’s attempt to find an easier way to solve the Four Color Problem, Haken’s interest in using
the computer for a solution diminished. However, Haken had a doctoral student at the time and one of
the members of the thesis committee was Kenneth Appel. Unlike Haken, Appel was a very
knowledgeable computer programmer. Appel was more optimistic and suggested to Haken that the
two of them should return to a computer approach. Appel and Haken developed an algorithm in which
they tested for “reduction obstacles.” This gave them an approach that saved a great deal of computer
time. They were also assisted by John Koch, a computer science graduate student, who wrote
efficient programs to test for reducibility. While Appel and Haken were working feverishly on the
problem, Appel was able to gain access to the IBM 370-168, an extremely powerful computer used
by the administration at the University of Illinois. While all of this was going on, others continued
working on a solution and it wasn’t clear who would obtain a proof first. In June 1976, Appel and
Haken finally succeeded in constructing an unavoidable set of 1936 reducible configurations, which
was verified using 1200 hours of computer time on three computers. Appel (now retired from the
University of New Hampshine) and Haken (now retired from the University of Illinois) announced
their success to the world at the 1976 Summer Meeting of the American Mathematical Society and the
Mathematical Association of America at the University of Toronto.

To be sure, not all mathematicians were happy with this proof. In fact, many were highly skeptical
and uncomfortable with it. This initiated numerous discussions of what a mathematical proof is. A
major step in the acceptance of their proof, however, was its acceptance by the distinguished
mathematician William Tutte, who, as Blanche Descartes, wrote in the third issue of the first volume



of the Journal of Graph Theory the poem that we stated earlier:

Wolfgang Haken
Smote the Kraken
One! Two! Three! Four!
Quoth he: ‘The monster is no more’.

It is perhaps comical and an understatement of major proportions that Tutte titled his short poem
“Some Recent Progress in Combinatorics.”

Thus the Four Color Problem had been solved. In fact, a simpler solution (still computer-
assisted), employing an unavoidable set of 633 reducible configurations, was given in 1993 by Neil
Robertson, Daniel P. Sanders, Paul Seymour and Robin Thomas.

10.2 Vertex Coloring

It is not particularly difficult to show that the map drawn in Figure 10.3 can be colored with four
colors, that is, each region of the map can be assigned one of four given colors such that neighboring
regions are colored differently. Indeed, one such coloring is shown in the figure, where r, b, g and y
denote red, blue, green and yellow, respectively. What does coloring the regions of a map have to do
with graphs? Actually, there is a close connection. With each map, there is associated a graph G,
called the dual of the map, whose vertices are the regions of the map and such that two vertices of G
are adjacent if the corresponding regions are neighboring regions. The dual of the map in Figure 10.3
is also shown in the figure. Observe that the graph G of Figure 10.3 is a connected planar graph. In
fact, the dual of every map is a connected planar graph. Conversely, every connected planar graph is
the dual of some map. Indeed, representing the regions of a map and adjacency of regions by a graph
actually occurred in the 1879 paper of Kempe. The term “graph” was evidently used for the first time
only a year earlier by James Joseph Sylvester.



Figure 10.3: A map and its dual

Coloring the regions of a map suggests coloring the vertices of its dual. Indeed, it suggests
coloring the vertices of any graph. By a proper coloring (or, more simply, a coloring) of a graph G,
we mean an assignment of colors (elements of some set) to the vertices of G, one color to each vertex,
such that adjacent vertices are colored differently. The smallest number of colors in any coloring of a
graph G is called the chromatic number of G and is denoted by (G). (The symbol  is the Greek
letter “chi.”) If it is possible to color (the vertices of) G from a set of k colors, then G is said to be
k-colorable. A coloring that uses k colors is called a k-coloring. If (G) = k, then G is said to be k-
chromatic and every k-coloring of G is a minimum coloring of G.

Figure 10.3 shows a coloring of a graph G, namely, a coloring of the dual of the map in Figure
10.3. Necessarily then, G is 4-colorable; indeed, G is 4-chromatic. In fact, the coloring of G in Figure
10.3 is suggested by the coloring of the map. Hence the Four Color Theorem gives us the following
result, which is then a restatement of this famous theorem.

Theorem 10.1 (The Four Color Theorem) The chromatic number of every planar graph is at
most 4.

We have already mentioned that the origin of the Four Color Conjecture goes back to 1852. At one
time, however, there were some who believed the origin went back even farther. This is not so, but
the confusion may be understandable. In 1840 August Möbius (1790–1868) posed a problem that is
sometimes referred to as:

The Problem of the Five Princes
There once was a king who had five sons. In his will he stated that on his death his
kingdom should be divided into five regions for his sons in such a way that each region



should have a common boundary with the other four. How can this be done?

If a solution to this problem is not evident, then it might be interesting to look at an extension of
this problem that was posed by Heinrich Tietze (1880-1964), a prominent topologist:

The Problem of the Five Palaces
The king additionally required each of his five sons to build a palace in his region and the
sons should link each pair of palaces by roads so that no two roads cross. How can this be
done?

The Problem of the Five Palaces can be modeled by a graph G whose vertices are the palaces and
whose edges are the roads. Then G = K5. A solution to this problem requires G to be planar, which it
is not. The graph G is the dual graph of any solution to the Problem of the Five Princes. This says that
neither problem has a solution. To divide the kingdom into five regions in this manner would require
five colors to color the regions. However, there is no such configuration of five regions. What this
statement says is that no map can contain five regions, every two of which are neighboring. This does
not solve the Four Color Problem, however, because what the statement does not say is that there
can’t be some other configuration of regions that might require five colors. This is where the
difficulty lies.

Let’s make a few observations about coloring graphs and the chromatic numbers of some familiar
graphs. First, if a graph G contains even one edge, then at least two colors are required to color G.
That is, (G) = 1 if and only if  for some positive integer n.

In any coloring of a graph G, no two vertices that are colored the same can be adjacent. Sets of
vertices, no two of which are adjacent, are necessarily of interest to us when discussing coloring.
Recall that a set S of vertices in a graph G is independent if no two vertices of S are adjacent.
Ordinarily, a graph has many independent sets of vertices. Recall also that a maximum independent
set is an independent set of maximum cardinality. The number of vertices in a maximum independent
set of G is denoted by (G) and is called the vertex independence number (or, more simply, the
independence number) of G. For the graph G = C6 of Figure 10.4, S1 = {v1, v4} and S2 = {v2, v4, v6}
are both independent sets. Since no independent set of G contains more than three vertices, (G) = 3.

If G is a k-chromatic graph, then it is possible to partition V(G) into k independent sets V1, V2, …,
Vk, called color classes, but it is not possible to partition V(G) into k − 1 independent sets.
Typically, we think of the vertices in the color class Vi (1 ≤ i ≤ k) as being assigned color i.
Conversely, if G is a

Figure 10.4: Independent sets

graph whose vertex set can be partitioned into k independent sets, but no fewer, then (G) = k.



Therefore, in order for a graph G to have chromatic number 2, the graph G must be nonempty and it
must be possible to partition V(G) into two independent sets V1 and V2. Consequently, every edge of
G must join a vertex of V1 and a vertex of V2. But this means that G is a bipartite graph with partite
sets V1 and V2.

Theorem 10.2 A graph G has chromatic number 2 if and only if G is a nonempty bipartite
graph.

By Theorem 1.12, a graph G is bipartite if and only if G has no odd cycles. So if a graph G
contains an odd cycle, then (G) ≥ 3. Of course, if G = Cn for some even integer n ≥ 4, then (G) = 2.
On the other hand, if n ≥ 3 is an odd integer, then (Cn) = 3. We already know that (Cn) ≥ 3 when n
≥ 3 is an odd integer. To show that (Cn) = 3, we need only show that there exists a 3-coloring of Cn.
Actually, we can color some vertex of Cn with the color 3 and alternate the colors 1 and 2 for the
remaining vertices (see Figure 10.5).

Figure 10.5: The chromatic numbers of odd cycles

The way we established the chromatic number of Cn for each odd integer n ≥ 3 illustrates how to
establish the chromatic number of any graph. To show that (G) = k for some graph G and some
integer k ≥ 3, we must show that

(1) at least k colors are needed to color G (or, equivalently, show that it is impossible to color G
with k − 1 colors) and

(2) there is a k-coloring of G.

Example 10.3 The graph G shown in Figure 10.6 is 3-chromatic.

Figure 10.6: A 3-chromatic graph G

Solution. Since G contains a triangle, it follows that (G) ≥ 3. On the other hand, a 3-coloring of G
is shown in Figure 10.6, implying that (G) ≤ 3. Therefore, (G) = 3.



Some comments concerning the solution of Example 10.3 may be useful. As we said, G contains a
triangle, which implies that (G) ≥ 3. Therefore, to show that (G) = 3, it suffices to present a 3-
coloring of G. Of course, a 3-coloring of G is shown in Figure 10.6. However, we didn’t initially
know that such a coloring was possible. This graph G also contains a 5-cycle, which requires three
colors. Perhaps we thought of 3-coloring this 5-cycle first. There is a number of ways to 3-color this
5-cycle. One of these is shown in Figure 10.7(a). If we now attempt to color the remaining vertices of
G so that only three colors are used, then the resulting coloring produces two adjacent vertices that
are colored 3 as shown in Figure 10.7(b), which is impossible. This might have led us to conclude
(incorrectly) that (G) = 4. This indicates that care must be taken when coloring a graph.

Figure 10.7: Coloring a graph

A useful application of coloring occurs in certain kinds of scheduling problems.

Example 10.4 The mathematics department of a certain college plans to schedule the classes
Graph Theory (GT), Statistics (S), Linear Algebra (LA), Advanced Calculus (AC), Geometry (G)
and Modern Algebra (MA) this summer. Ten students  (see below) have indicated the courses
they plan to take. With this information, use graph theory to determine the minimum number of
time periods needed to offer these courses so that every two classes having a student in common
are taught at different time periods during the day. Of course, two classes having no students in
common can be taught during the same period.

Solution. First, we construct a graph H whose vertices are the six subjects. Two vertices
(subjects) are joined by an edge if some student is taking both classes (see Figure 10.8). The
minimum number of time periods is (H). Since H contains the odd cycle (GT, S, AC, G, MA,
GT), it follows that three colors are needed to color the vertices on this cycle. Since LA is
adjacent to all vertices of this cycle, a fourth color is needed for LA. Thus (H) ≥ 4. However,
there is a 4-coloring of H shown in Figure 10.8 and so (H) = 4. This also tells us one way to
schedule these six classes during four time periods, namely, Period 1: Graph Theory, Advanced
Calculus; Period 2: Geometry; Period 3: Statistics, Modern Algebra; Period 4: Linear Algebra.



Figure 10.8: The graph of Example 10.4

Certainly, every graph G of order n is n-colorable. If G = Kn, then every two vertices must be
assigned different colors and so (Kn) = n. If G has order n and G ≠ Kn, then G contains two
nonadjacent vertices, say u and v. Assigning u and v the color 1 and the remaining n − 2 vertices the
colors 2, 3, …, n − 1 produces an (n − 1)-coloring of G and so (G) ≤ n − 1. That is, a graph G of
order n has chromatic number n if and only if G = Kn.

Another observation is useful. If H is a subgraph of a graph G, then any coloring of G produces a
coloring of H as well. Since it may be possible to color H with even fewer colors, it follows that

Opposite to an independent set of vertices in a graph is a clique. A clique in a graph G is a complete
subgraph of G. The order of the largest clique in a graph G is its clique number, which is denoted by
ω(G). (The symbol ω is the Greek letter “omega.”) In fact,

In general, there is no formula for the chromatic number of a graph. In fact, determining the
chromatic number of even a relatively small graph is often an extremely challenging problem.
However, lower bounds for the chromatic number of a graph G can be given in terms of the clique
number and the independence number and order of G.

Theorem 10.5 For every graph G of order n,

Proof. Let H be a clique of G having order ω(G). Then (H) = ω(G). Since H is a subgraph of G, it
follows that (H) ≤ (G), that is, ω(G) ≤ (G).

Suppose that (G) = k. Then V(G) can be partitioned into k independent sets V1, V2, …, Vk. Hence

Therefore, (G) = k ≥ n/ (G).

To establish sharpness for the bounds given in Theorem 10.5, consider the graph G = K3, 3, 3, 3 with



partite sets V1, V2, V3, V4, as illustrated in Figure 10.9. The order of G is n = 12, its independence
number is (G) = 3 and its clique number is ω(G) = 4. In fact, (G) = 4 = ω(G) = n/ (G). A 4-
coloring of G can be given by coloring the vertices in Vi with the color i for 1 ≤ i ≤ 4.

Figure 10.9: Coloring the graph K3, 3, 3, 3

I n Example 1.5 (in Chapter 1) we showed how a graph could model the traffic lanes at the
intersection of two streets. We now revisit this example and consider a question that is relevant to
this situation.

Example 10.6 Figure 10.10 shows the traffic lanes L1, L2, …, L9 at the intersection of two busy
streets. A traffic light is located at this intersection. During a certain phase of the traffic light,
those cars in lanes for which the light is green may proceed safely through the intersection.
What is the minimum number of phases needed for the traffic light so that (eventually) all cars
may proceed through the intersection?

Figure 10.10: Traffic lanes at street intersections

Solution. Construct a graph G to model this situation (see Figure 10.10), where V(G) = {L1, L2,
…, L9} and two vertices (lanes) are joined by an edge if vehicles in these two lanes cannot safely
enter the intersection at the same time, as there is a possibility of an accident.

Answering this question requires determining the chromatic number of the graph G in Figure
10.10. First notice that if S = {L2, L4, L6, L8}, then G[S] = K4 and so (G) ≥ 4. Since there exists a
4-coloring of G, as indicated in the graph of Figure 10.10, (G) = 4.



Since the vertex set of the graph G of Figure 10.10 can be partitioned quite obviously into the four
independent sets {L1, L2, L3}, {L4, L5}, {L6, L7} and {L8, L9}, one might be led to say that the
answer to the question in Example 10.6 is clearly 4. However, this observation (while also providing
another 4-coloring of G) again only shows that (G) ≤ 4.

A coloring of a graph G can also be thought of as a function c from V(G) to the set N of positive
integers (or natural numbers) such that adjacent vertices have distinct functional values, that is, a
coloring of G is a function c : V(G) → N such that uv  E(G) implies that c(u) ≠ c(v).

We now present an upper bound for the chromatic number of a graph in terms of its maximum
degree. The technique used in the proof of the following result is algorithmic and Greedy in nature, in
the sense that colors are assigned to the vertices, one vertex at a time, in what appears to be an
optimal manner.

Theorem 10.7 For every graph G,

Proof. Let V(G) = {v1, v2, …, vn}. Define a coloring c : V(G) → N recursively as follows: c(v1) =
1. Once c(vi) has been defined, 1 ≤ i ≤ n, define c(vi+1) as the smallest positive integer not already
used to color any of the neighbors of vi+1. Since vi+1 has deg vi+1 neighbors, at least one of the
integers 1, 2, …, 1 + deg vi+1 is available for c(vi+1). Therefore, c(vi+1) ≤ 1 + deg vi+1. If the
maximum color assigned to the vertices of G is c(vj), say, then

as desired.

We have already noted that if n ≥ 3 is odd, then (Cn) = 3. Also, (Kn) = n. Hence (Cn) = 1 +
Δ(Cn) if n ≥ 3 is odd and (Kn) = 1 + Δ(Kn). Therefore, the bound presented in Theorem 10.7 is
attained for odd cycles and complete graphs. There is a theorem due to Rowland Leonard Brooks,
which tells us that these are the only connected graphs for which the bound is attained. Since the proof
is a bit involved, we do not include it.

Theorem 10.8 (Brooks’ Theorem) For every connected graph G that is not an odd cycle or a
complete graph,

There is an upper bound for the chromatic number of a graph that is ordinarily superior to that
given in Theorems 10.7 and 10.8 and which can be proved using an approach similar to that given for
the proof of Theorem 10.7.

Theorem 10.9 For every graph G,



where the maximum is taken over all induced subgraphs H of G.

Proof. Among all induced subgraphs of G, let k denote the maximum of their minimum degrees.
Suppose that G has order n and let vn be a vertex of Gn = G such that degG vn = (G). Thus degG vn
≤ k. Therefore, Gn−1 = G − vn contains a vertex vn−1 such that . Continuing in
this manner, we construct a sequence v1, v2, …, vn of all vertices of G and a sequence G1, G2, …,
Gn of induced subgraphs of G such that vi  V(Gi) for 1 ≤ i ≤ n and .

Define a coloring c : V(G) → N recursively as follows: c(v1) = 1. Once c(vi) has been defined, 1
≤ i < n, define c(vi+1) as the smallest positive integer not already used to color any of the neighbors of
vi+1. Since vi+1 has  vi+1 neighbors among the vertices v1, v2, …, vi and  vi+1 ≤
k, at least one of the integers 1, 2, …, k + 1 is available for c(vi+1). Hence every vertex of G is
assigned one of the colors 1, 2, …, 1 + k and so (G) ≤ 1 + k, as desired.

Let’s return to the inequality (G) ≥ ω(G) in Theorem 10.5. Although the lower bound ω(G) for 
(G) is attained when G = K3, 3, 3, 3 and, in fact, is attained for every complete multipartite graph, there
are numerous examples of graphs G for which (G) ≠ ω(G). For example, for G = C5, we have seen
that (G) = 3;

Figure 10.11: The Grötzsch graph: A triangle-free graph with chromatic number 4

yet ω(G) = 2. The graph G of Figure 10.11 is known as the Grötzsch graph. This graph is triangle-
free (it has no triangles) but has chromatic number 4. So (G) = 4 and ω(G) = 2.

It may seem that graphs with a large chromatic number must have large cliques, but this is not so.
In fact, triangle-free graphs can have large chromatic numbers. This fact has been observed by a
number of mathematicians. The following proof is due to Jan Mycielski, a mathematician who spent
many years at the University of Colorado and who is known for his work in sets and logic. In the
proof, we make use of a graph, sometimes called the shadow graph of a graph. The shadow graph
S(G) of a graph G is obtained from G by adding, for each vertex v of G, a new vertex v′, called the
shadow vertex of v, and joining v′ to the neighbors of v in G. Observe that (1) a vertex of G and its
shadow vertex are not adjacent in S(G) and (2) no two shadow vertices are adjacent in S(G). The
shadow graph S(C5) of C5 is shown in Figure 10.12. The Grötzsch graph of Figure 10.11 is then
obtained by adding a new vertex z to S(C5) and joining z to the shadow vertices in S(C5).



Figure 10.12: The shadow graph of C5

Theorem 10.10 For every integer k ≥ 3, there exists a triangle-free graph with chromatic
number k.

Proof. We proceed by induction on k. We have already seen that the result is true for k = 3 and k =
4. Assume that there is a triangle-free (k − 1)-chromatic graph F, where k ≥ 5 is an integer. Let G
be the graph obtained by adding a new vertex z to the shadow graph S(F) of F and joining z to the
shadow vertices in S(F). We show that G is a triangle-free graph with (G) = k.

First, we verify that G is triangle-free. Assume, to the contrary, that there is a set U of three
vertices of G such that G[U] = K3. Since no two shadow vertices are adjacent in G, it follows that U
contains at most one shadow vertex. Because z is adjacent only to shadow vertices and U contains at
least one vertex that is not a shadow vertex, z  U. On the other hand, F is triangle-free and so at least
one vertex of U is not in F. Therefore, U = {u, v, w′}, where u and v are adjacent vertices of F and w′
is a shadow vertex that is adjacent to u and v. Thus w ≠ u, v. However then, w is adjacent to u and v,
producing a triangle in F, which is impossible since F is triangle-free.

It remains to show that (G) = k. Let c* be a (k − 1)-coloring of F. We extend c* to a k-coloring of
G by defining c*(x′) = c*(x) for each x  V(F) and defining c*(z) = k. Thus (G) ≤ k. Next we show
that (G) ≥ k. Since F is a subgraph of G, it follows that k − 1 = (F) ≤ (G). Assume, to the
contrary, that (G) = k − 1. Let there be given a (k − 1)-coloring c of G, say with colors 1, 2, …, k −
1. We may assume that c(z) = k − 1. Since z is adjacent to every shadow vertex in G, it follows that
the shadow vertices are colored with the colors 1, 2, …, k − 2. For every shadow vertex x′ of G, the
color c(x′) is different from the colors assigned to the neighbors of x. Therefore, if for each vertex y
of G belonging to F, the color c(y) is replaced by c(y′), we have a (k − 2)-coloring of F. This is
impossible, however, since (F) = k − 1.

Theorem 10.10 therefore shows the existence of graphs G for which (G) is considerably larger
than ω(G). While there has been much interest in graphs G for which (G) > ω(G), there has even
been more interest in graphs G for which not only (G) = ω(G) but (H) = ω(H) for every induced
subgraph H of G. A graph G is called perfect if (H) = ω(H) for every induced subgraph H of G.
This concept was introduced in 1963 by the French mathematician Claude Berge. From our earlier
remarks, every complete multipartite graph is perfect and so every complete bipartite graph is
perfect. In fact, every bipartite graph is perfect (see Exercise 10.16).

Claude Berge made two conjectures concerning perfect graphs. The first of these was verified in
1972 by László Lovász and the second was verified in 2002 by Maria Chudnovsky, Neil Robertson,
Paul Seymour and Robin Thomas.



The Perfect Graph Theorem A graph is perfect if and only if its complement is perfect.

The Strong Perfect Graph Theorem A graph G is perfect if and only if neither G nor  contains
an induced odd cycle of length 5 or more.

Exercises for Section 10.2

10.1 Determine the chromatic number of each of the graphs in Figure 10.13.

Figure 10.13: Graphs in Exercise 10.1

10.2 Determine the chromatic number of each of the following:

(a) the Petersen graph, (b) the n-cube Qn, (c) the wheel Wn = Cn + K1.

10.3 What is the chromatic number of a tree?

10.4 Prove or disprove:

(a) If a planar graph contains a triangle, then its chromatic number is 3.
(b) If there is a 4-coloring of a graph G, then (G) = 4.
(c) If it can be shown that there is no a 3-coloring of a graph G, then (G) = 4.
(d) If G is a graph with (G) ≤ 4, then G is planar.

10.5 Prove that every graph of order 6 with chromatic number 3 has at most 12 edges.

10.6 Prove or disprove:

(a) If a graph G contains a subgraph isomorphic to the complete graph Kr, then (G) ≥ r.

(b) If G is a graph with (G) ≥ r, then G contains a subgraph isomorphic to the complete graph
Kr.

10.7 Show that there exists no graph G with (G) = 6 whose vertices have degrees 3, 3, 3, 3, 3, 3,
4, 4, 5, 5, 5, 5.

10.8 Give an example of the following or explain why no such example exists:

(a) a planar graph with chromatic number 5,



(b) a nonplanar graph with chromatic number 3,
(c) a graph G with Δ(G) = 2 (G),
(d) a graph G with (G) = 2Δ(G),
(e) a noncomplete graph of order n with chromatic number n.

10.9 Prove or disprove:

(a) There exists a nonplanar graph G such that G−v is planar and (G) = (G−v) + 1 for every
vertex v of G.

(b) There exists a nonplanar graph G such that G−v is planar and (G) = (G−v) for every
vertex v of G.

10.10 Eight mathematics majors at a small college are permitted to attend a meeting dealing with
undergraduate research during final exam week provided they make up all the exams missed
on the Monday after they return. The possible time periods for these exams on Monday are

Use graph theory to determine the earliest time on Monday that all eight students can finish their
exams if two exams cannot be given during the same time period if some student must take both
exams. The eight students and the courses [Advanced Calculus (AC), Differential Equations
(DE), Geometry (G), Graph Theory (GT), Linear Programming (LP), Modern Algebra (MA),
Statistics (S), Topology (T)] each student is taking are listed below:

10.11 Eight chemicals are to be shipped across country by air express. The cost of doing this
depends on the number of containers shipped. The cost of shipping one container is $125. For
each additional container the cost increases by $85. Some chemicals interact with one another
and it is too risky to ship them in the same container. The chemicals are labeled by c1, c2, …,
c8 and chemicals that interact with a given chemical are given below:

What is the minimum cost of shipping the chemicals and how should the chemicals be packed
into containers?

10.12 The road intersection shown in Figure 10.14 needs a traffic signal to handle the traffic flow. If
cars from two different lanes could collide, then cars from these two lanes will not be
permitted to enter the intersection at the same time. What is the minimum number of signal
phases that are needed to ensure safe traffic?



Figure 10.14: A road intersection in Exercise 10.12

10.13 A graph G of order n has (G) = (G) = k, where (G) is the independence number of G.
Furthermore, for every k-coloring of G, there is a unique partition of V(G) into color classes
such that every two distinct color classes have different cardinality. Show that Δ(G) = n − 1,
where Δ(G) is the maximum degree of G.

10.14 For a class  of graphs, define ( ) as the maximum value of (G) among all graphs G in 
 (if this maximum exists). A class G of graphs consists of all graphs G of order n and size m

for which m ≤ 4n − 4 and having the property that if G   and H is an induced subgraph of
G, then H  . Determine ( ). [Hint: First determine an upper bound for ( ) from the fact
that (G) ≤ 1 + max{ (H)}, where the maximum is taken over all induced subgraphs H of G.]

10.15 Let A be a set of cardinality n ≥ 1, say A = {a1, a2, …, an} and let S be a collection of pairs of
elements of A. Consider those functions f : A → N having the property that the two elements in
each pair in S have distinct images. Among these functions, let g be one whose range has
minimum cardinality. How is this related to a problem in graph theory?

10.16 (a) Prove that every bipartite graph is perfect.

(b) Determine whether the complement of the Petersen graph is perfect.

10.3 Edge Coloring

In addition to coloring the regions of a map and coloring the vertices of a graph, it is also of interest
to color the edges of a graph. An edge coloring of a nonempty graph G is an assignment of colors to
the edges of G, one color to each edge, such that adjacent edges are assigned different colors. The
minimum number of colors that can be used to color the edges of G is called the chromatic index (or
sometimes the edge chromatic number) and is denoted by ′(G). An edge coloring that uses k colors
is a k-edge coloring. In Figure 10.15, a 4-edge coloring of a graph G is given.



Figure 10.15: A 4-edge coloring of a graph

Let G be a graph containing a vertex v with deg v = k ≥ 1. Then there are k edges incident with v.
Any edge coloring must assign k distinct colors to the edges incident with v and so ′(G) ≥ deg v = k.
In particular,

for every nonempty graph G.

Example 10.11 The graph G of Figure 10.15 has chromatic index 4.

Solution. Since Δ(G) = 3 for the graph G of Figure 10.15, it follows that ′(G) ≥ 3. Since there is a
4-edge coloring of G shown in Figure 10.15, it follows that ′(G) ≤ 4. Hence ′(G) = 3 or ′(G) =
4. But which is it? We show that ′(G) = 4.

Assume, to the contrary, that there exists a 3-edge coloring of G, using the colors 1, 2 and 3, say.
Then every vertex of degree 3 is incident with edges colored 1, 2 and 3. In particular, the three edges
incident with u are colored 1, 2 and 3. We may assume, without loss of generality, that uv is colored
1, ux is colored 2 and uz is colored 3. Since vx is adjacent to both uv and ux, the edge vx must be
colored 3. Similarly, vz must be colored 2. Since xy is adjacent to both ux and vx, the edge xy must be
colored 1. By the same reasoning, the edge yz must be colored 1. However, xy and yz are adjacent
edges colored 1. This is impossible. Therefore, ′(G) = 4, as we claimed.

For the graph G of Figure 10.15, we now know that ′(G) = 1 + Δ(G). Of course, we knew that 
′(G) ≥ Δ(G), as this inequality holds for all nonempty graphs. In what must be considered the
fundamental theorem on edge colorings, Vadim G. Vizing showed that if one knows the maximum
degree of a graph (which, of course, is very easy to determine), then we are very close to knowing the
chromatic index of the graph. Since the proof of Vizing’s theorem is quite involved, we omit it.

Theorem 10.12 (Vizing’s Theorem) For every nonempty graph G, either

Vadim Vizing was born on March 25, 1937 in Kiev in Ukraine. After World War II his family was
forced to move to the Novosibirsk region of Siberia because his mother was half-German. He began
his study of mathematics at the University of Tomsk in 1954 and graduated in 1959. He was then sent
to the famous Steklov Institute in Moscow to study for a Ph.D. His area of research was function
approximation, which he did not like. Because his request to change his area of research was not
granted, he did not complete his degree and returned to Novosibirsk in 1962. He then studied at the
Mathemtical Institute of the Academy of Sciences in Academgorodoc, where he obtained a Ph.D. in



1966 without a formal supervisor but with the assistance of Alexander Zykov. (Like many
mathematicians, Vizing’s interests included music, books and chess.)

While in Novosibirsk, Vizing started working on a problem that involved coloring the wires of a
network. As he studied the problem, he became interested in more theoretical questions. He then
proved the famous theorem which bears his name (Theorem 10.12). This paper was submitted to the
prestigious journal Doklady, only to have it rejected because of the referee found it to be
uninteresting. The paper was finally published in 1964 in the journal Metody Diskretnogo Analiza, a
local journal in Novosibirsk. By the time it appeared, the result had already become quite well
known, primarily because it had been mentioned to others by Zykov. When Vizing was asked what
makes a mathematical result outstanding, he replied:

A mathematician should do research and find new results, and then time will decide what is
important and what is not!

By Vizing’s theorem then, the chromatic index of every nonempty graph G is one of two numbers,
namely Δ(G) or Δ(G) + 1. Let’s look at some well-known graphs, beginning with cycles. For every
cycle Cn, n ≥ 3, we have Δ(Cn) = 2, so ′(Cn) = 2 or ′(Cn) = 3. If n is even, then we may simply
alternate the colors 1 and 2 about the edges of Cn, arriving at an edge coloring. On the other hand, if n
is odd and we attempt to alternate the colors 1 and 2 about the edges of Cn, then the final edge of Cn
will be colored the same as the first edge. Since these two edges are adjacent, a contradiction is
produced. Thus, ′(Cn) = 3 if n ≥ 3 is odd. Edge colorings of some cycles are illustrated in Figure
10.16.

A simple observation concerning edge colorings will be useful. Let there be given an edge
coloring of a graph G of order n. Any two edges of G that are

Figure 10.16: Coloring the edges of cycles

colored the same cannot be adjacent, of course. This says that we can never have more than n/2 edges
of G that are colored the same. If n is odd, then the maximum number of edges that can be colored the
same is therefore (n − 1)/2. In particular, for the graph Cn, where n ≥ 3 is odd, no more than (n − 1)/2
edges can be colored the same and no more (n − 1)/2 + (n − 1)/2 = n − 1 edges can be colored with
two colors. This observation says that ′(Cn) ≥ 3 if n ≥ 3 is odd.

The observation above provides us with the following more general result.

Theorem 10.13 Let G be a graph of odd order n and size m. If

then ′(G) = 1 + Δ(G).



Proof. In any edge coloring of G, no more than (n − 1)/2 edges can be colored the same. Therefore,
no more than (n − 1)Δ(G)/2 edges can be colored with Δ(G) colors. Since m > (n − 1)Δ(G)/2, it
follows that ′(G) > Δ(G). By Vizing’s theorem, ′(G) ≤ 1 + Δ(G) and so ′(G) = 1 + Δ(G).

Perhaps you have already observed that determining the chromatic index of a graph G is the same
as attempting to partition the edge set of G into a minimum number of independent sets of edges
(matchings) or to decompose G into a minimum number of 1-regular subgraphs. If each 1-regular
subgraph in the decomposition is a spanning subgraph of G, then we are now asking is whether G is
1-factorable. Consequently, there is a very close connection between the chromatic index of a graph
and several topics we discussed in Chapter 8. As with 1-factorizations of graphs, there are
applications of graphs involving scheduling that are related to edge colorings.

Example 10.14 Alvin (A) has invited three married couples to his summer house for a week: Bob
(B) and Carrie (C) Hanson, David (D) and Edith (E) Irwin and Frank (F) and Gena (G)
Jackson. Since all six guests enjoy playing tennis, he decides to set up some tennis matches.
Each of his six guests will play a tennis match against every other guest except his/her spouse.
In addition, Alvin will play a match against each of David, Edith, Frank and Gena. If no one is
to play two matches on the same day, what is a schedule of matches over the smallest number of
days?

Solution. First, we construct a graph H whose vertices are the people at Alvin’s summer house, so
V(H) = {A, B, C, D, E, F, G}, where two vertices of H are adjacent if the two vertices (people)
are to play a tennis match. (The graph H is shown in Figure 10.17.) To answer the question, we
determine the chromatic index of H.

Figure 10.17: The graph H in Example 10.14

First, observe that Δ(H) = 5. By Theorem 10.12, ′(H) = 5 or ′(H) = 6. Also, the order of H is n
= 7 and its size is m = 16. Since

it follows by Theorem 10.13 that ′(H) = 6. Figure 10.17 gives a 6-edge coloring of H, which
provides a schedule of matches



that takes place over the smallest number of days (namely six).

We now make an observation about the chromatic index of regular graphs. By Vizing’s theorem, if
G is an r-regular graph, r ≥ 1, then ′(G) = r or ′(G) = r + 1. Furthermore, ′(G) = r if and only if G
is 1-factorable. Specifically,

An r-regular graph G, r ≥1, has chromatic index r if and only if G is 1-factorable.

Let’s now turn to edge colorings of complete graphs. Certainly, ′(K2) = 1 = Δ(K2). Since K3 = C3,
it follows that ′(K3) = 3 = 1+ Δ(K3). However, ′(K4) = 3 as the edge coloring in Figure 10.18
shows.

Since Kn is (n − 1)-regular, it follows that ′(Kn) = n − 1 or ′(Kn) = n. Necessarily, ′(Kn) = n −
1 if and only if Kn is 1-factorable. By Theorem 8.18, this only occurs when n is even.

Figure 10.18: An edge coloring of K4

Theorem 10.15 For every integer n ≥ 2,

We now consider another scheduling problem.

Example 10.16 Five individuals have been invited to a bridge tournament (bridge is a game of
cards): Allen (A), Brian (B), Charles (C), Doug (D), Ed (E). A game of bridge is played between
two 2-person teams. Every 2-person team {X, Y} is to play against all other 2-person teams {W,
Z}, where, of course, neither W nor Z is X or Y. If the same team cannot play bridge more than
once on the same day, then what is the fewest number of days needed for all possible games of
bridge to be played. Set up a schedule for doing this in the smallest number of days. What graph
models this situation?

Solution. We construct a graph G whose vertices consist of all 2-person teams, where we denote a
vertex by XY rather than {X, Y}. Two vertices (2-person teams) XY and WZ are adjacent in G if
they will be playing a game of bridge. The graph G is shown in Figure 10.19. Observe that G is
isomorphic to the Petersen graph.



Figure 10.19: The graph in Example 10.16

We now determine the chromatic index of G. Since G is 3-regular, ′(G) = 3 if and only if G is 1-
factorable. However, as Petersen himself pointed out, G is not 1-factorable. Therefore, ′(G) = 4. A
4-edge coloring of G is shown in Figure 10.19. This creates a schedule of games

that takes place over the smallest number of days.

We have already observed that ′(Cn) = Δ(Cn) if n ≥ 4 is even. Of course, Cn is a bipartite graph
if n ≥ 4 is even. Denes König observed that ′(G) = Δ(G) for every bipartite graph. There are several
different proofs of this result. In the proof given below, we use the fact that every r-regular bipartite
graph, r ≥ 1, is 1-factorable (Theorem 8.15). This proof uses an argument that is reminiscent of the
proof of Theorem 2.7.

Theorem 10.17 (König’s Theorem) If G is a nonempty bipartite graph, then

Proof. Suppose that Δ(G) = r ≥ 1. First, we show that there exists an r-regular bipartite graph H
containing G as a subgraph. This is certainly true if G is r-regular, in which case, we let H = G. So
we can assume that (G) < r. Suppose that the partite sets of G are UO and WO. Let G′ be another
copy of G where the partite set UO is denoted by U′O and WO is denoted by W′O in G′. Join each
vertex in G whose degree is less than r to the corresponding vertex in G′, producing a bipartite
graph G1 with partite sets U1 = UO W′O and W1 = WO U′O such that (G1) = (G) + 1. If G is r-
regular, then H = G has the desired property. If (G1) ‹ r, then let G′1 be another copy of G1 where
the partite set U1 is denoted by U′1 and W1 is denoted by W′1 in G′1. Join each vertex in G1 whose
degree is less than r to the corresponding vertex in G′

1, producing a bipartite graph G2 with partite
sets U2 = U1  W′1 and W2 = W1  U′1 such that (G2) = 2 + (G). We continue this until we arrive
at an r-regular bipartite graph Gk, where k = r − (G), containing G as a subgraph, in which case
we let H = Gk.



By Theorem 8.15, H is 1-factorable and so contains r 1-factors F′1, F′2, …, F′r. For 1 ≤ i ≤ r, let
Fi be the 1-regular subgraph of G where E(Fi) = E(F′i)  E(G). Then E(F1) , E(F2), …, E(Fr) are
edge color classes of G and so ′(G) ≤ r. Since Δ(G) = r, it follows that ′(G) ≥ r and so ′(G) = r.

Interest in edge colorings of graphs was undoubtedly inspired by the Four Color Problem. We
have seen that coloring the regions of a map is equivalent to coloring the vertices of a certain
connected planar graph (the dual of the map). To be sure, research in coloring graphs was motivated
by the Four Color Problem. We have seen that Alfred Bray Kempe’s “proof” of the Four Color
Theorem, although incorrect, contained some important ideas, which were expanded upon and
eventually led to a correct proof of the theorem. We mentioned earlier that another mathematician
who gave an incorrect “proof” of the Four Color Theorem was Peter Guthrie Tait. However, he too
developed several interesting ideas that gave rise to new areas of study.

By a cubic map is meant a connected 3-regular, bridgeless, plane graph. Tait observed that if the
regions of all cubic maps can be colored with four or fewer colors, then the regions of all plane
graphs can be colored with four or fewer colors. Certainly, there is no reason to consider maps
(plane graphs) containing vertices of degree 1 or 2. If a plane graph H contains vertices of degree 4
or more, then a cubic map G can be constructed from H by drawing a sufficiently small circle C about
each such vertex v of H, identifying a new vertex at each point of intersection of C with the edges
incident with v and deleting v and its incident edges (see Figure 10.20(a)). Now if the regions of the
resulting cubic map G can be colored with four or fewer colors, then such a coloring can be used to
produce a coloring of the regions of H using four or fewer colors (see Figure 10.20(b)).

Figure 10.20: Coloring the regions of cubic maps

Of course, concentrating on cubic maps (rather than arbitrary maps) would only be useful if it
could be proved that the regions of every cubic map could be colored with four or fewer colors.
What Tait proved is the following.

Theorem 10.18 The regions of a cubic map G can be colored with four or fewer colors if and only
if ′(G) = 3.

Indeed, 3-edge colorings of 3-regular graphs became known as Tait colorings. Certainly, every 3-



regular graph G has even order and if G is Hamiltonian, then the edges of a Hamiltonian cycle C can
be colored alternately red and blue, say. Removing these edges yields a 1-factor, whose edges can be
colored green, say. Tait was able to show that if all 3-connected, 3-regular planar graphs are 3-edge
colorable, then all cubic maps are 3-edge colorable. By Theorem 10.18, to prove the Four Color
Theorem, it suffices to show therefore that every 3-connected, 3-regular planar graph has chromatic
index 3. Of course, if every 3-connected, 3-regular planar graph is Hamiltonian, then the proof is
complete. Since Tait believed these graphs were Hamiltonian, he had convinced himself that he had
proved the Four Color Theorem. Although the defect in Tait’s “proof” was eventually recognized, it
wasn’t until 1946 when William Tutte presented an example of a 3-connected, 3-regular planar graph
that is not Hamiltonian. See Figure 10.21.

Figure 10.21: The Tutte graph

Exercises for Section 10.3

10.17 Determine the chromatic index of each graph in Exercise 10.1.

10.18 For a positive integer k, let H be a 2k-regular graph of order 4k + 1. Let G be obtained from H
by removing a set of k − 1 independent edges from H. Prove that ′(G) = Δ(G) + 1.

10.19 Seven softball teams from Atlanta, Boston, Chicago, Denver, Louisville, Miami and Nashville
have been invited to participate in tournaments, where each team is scheduled to play a
certain number of the other teams (given below). No team is to play more than one game each
day. Set up a schedule of games over the smallest number of days.

10.20 Let G be a bipartite graph with partite sets U and W where Δ(G) = r ≥ 1 and (G) < r.

(a) Use Theorem 8.15 to show that if there is an r-regular bipartite graph H containing G as a
subgraph such that at least one of the partite sets of H is U or W, then ′(G) = Δ(G)



(thereby giving an alternative proof of König’s Theorem 10.17 for such graphs G).
(b) Show that there need not be an r-regular bipartite graph H containing G as a subgraph such

that at least one of the partite sets of H is U or W.

10.4 Excursion: The Heawood Map Coloring Theorem

We mentioned that during an 11-year period in the 19th century (1879-1890), the Four Color Theorem
was considered to have been verified by Alfred Bray Kempe. However, all this changed in 1890
when Percy John Heawood wrote that he had discovered an error Kempe had made in the way he
interchanged colors in what were to be called Kempe chains. It was not accidental that Heawood had
read Kempe’s paper. When Arthur Cayley asked, at a meeting of the London Mathematical Society in
1878, for the status of the Four Color Conjecture, Henry Smith was presiding over the meeting. Smith
was a Professor of Geometry at Oxford University who would mention this conjecture during his
lectures. Soon afterwards, Heawood became a student of Smith and Heawood became interested in
this problem after hearing about it from Smith.

In his paper, Heawood produced a counterexample (see Figure 10.22), not to the statement Kempe
was trying to prove (the Four Color Theorem) but to the proof Kempe had given. Indeed, Kempe’s
proof was quite ingenious and Heawood was able to use Kempe’s technique to show that every map
could be colored with five or fewer colors. We’ve seen that this is equivalent to showing that every
planar graph can be colored with five or fewer colors.

Figure 10.22: A counterexample to Kempe’s proof

Theorem 10.19 (The Five Color Theorem) Every planar graph is 5-colorable.

Proof. Assume, to the contrary, that this statement is false. Then among all planar graphs that are
not 5-colorable, let G be the one of smallest order. Since G is not 5-colorable, the order of G is
necessarily 6 or more.



By Corollary 9.3, the minimum degree of every planar graph never exceeds 5. Now let v be a
vertex of G such that deg v = (G). Therefore, deg v ≤ 5. The graph G − v is clearly planar and since
the order of G − v is less than the order of G, the graph G − v is 5-colorable. Let a 5-coloring of G −
v be given. If either degv ≤ 4 or deg v = 5 and the number of colors used to color the neighbors of v is
less than 5, then one of these five colors is available for v. Assigning v this color produces a 5-
coloring of G, which is a contradiction. Hence we may assume that deg v = 5 and all five colors have
been used for the neighbors of v. Consequently, we have the situation pictured in Figure 10.23.

Figure 10.23: A step in the proof of Theorem 10.19

Suppose that there is no v2 − v5 path in G − v, all of whose vertices are colored red or blue (so
there is no red-blue Kempe chain in G − v containing both v2 to v5). In this case, let S be the set of all
red and blue vertices of G − v connected to v5 by a red-blue path. Certainly, v5  S but, by
assumption, v2  S. Now interchange the colors of the vertices belonging to S. Therefore, v5 is now
colored red but v2 remains red. Hence the color blue is now available for v. Coloring v blue produces
a 5-coloring of G. However, this is impossible; so there must be a v2 − v5 red-blue path in G − v.

Since G − v contains a red-blue path from v2 to v5, there can be no green-yellow path from v1 to v3.
Let S′ be the set of vertices in G − v connected v1 by a green-yellow path. Then v1  S′ but v3  S′.
Interchanging the colors of the vertices in S′ results in v1 being colored yellow but does not change the
color of v3. However, the color green in now available for v. Coloring v green produces a 5-coloring
of G, which is a contradiction.

Heawood’s paper, which pointed out Kempe’s error and which contained a proof of the Five
Color Theorem, did not stop with these however. Heawood went on to consider other ideas in his
paper. Of course, a major consequence of Heawood’s paper is that doubt had returned to the value of
the largest chromatic number of a graph that could be embedded on the sphere. In his paper Heawood
turned his attention to determining these values for other surfaces.

For a nonnegative integer k, let

where the maximum is taken over all graphs G that can be embedded on Sk. After Kempe’s 1879
paper, it was believed that (S0) = 4. Following Heawood’s 1890 paper, it was only known that 
(S0) = 4 or (S0) = 5. After Appel and Haken’s announcement in 1976, it was known once and for all
that (S0) = 4 (the Four Color Theorem). In his 1890 paper, Heawood attempted to obtain a formula
for (Sk) when k is a positive integer; in fact, he thought he had done this. What he did do, however,



was to obtain an upper bound for (Sk).

Theorem 10.20 For every positive integer k,

Proof. Let G be a graph that can be embedded on Sk and let

From this definition of h, one can show that

(This observation will be useful later.) We show that (G) ≤ h.
Among the induced subgraphs of G, let H be one having the largest minimum degree. By Theorem

10.9, (G) ≤ 1 + (H). Suppose that H has order n and size m. If n ≤ h, then (H) ≤ n − 1 and (G) ≤
n ≤ h. So we may assume that n > h.

Since G is embeddable on Sk, so too is H. Hence by Corollary 9.11,

Thus m ≤ 3n + 6 (k − 1). Therefore,

and so

Consequently,

giving the desired result.
According to Theorem 10.20, (S1) ≤ 7. To show that (S1) = 7, it is necessary to show that there

is a graph having chromatic number 7 that can be embedded on the torus. As it turns out, there is such
a graph, namely K7 (see Figure 10.24). Therefore,  for k = 1, as Heawood

showed. To show that this formula holds for every positive integer k would take another 78 years.
The proof was accomplished by considering a large number of cases involving many individuals. The
two mathematicians who were the most instrumental in completing the proof, however, were Gerhard
Ringel and Ted Youngs.



Figure 10.24: Embedding K7 on S1

Theorem 10.21 (The Heawood Map Coloring Theorem) For every positive integer k,

Proof. By Theorem 10.20, . Since (Sk) is an integer, it follows that

To verify that , we need only show that there exists a graph that can be

embedded on Sk and has chromatic number . There is a natural candidate. Let

Certainly,

Next, we show that Kn can be embedded on Sk. By Theorem 9.12,

By (10.1),

and so . Solving this inequality for k, we obtain

Since k is an integer,



that is, the genus of Kn is at most k and Kn can be can be embedded on Sk. 

Therefore, we see that the proof we gave of Theorem 10.21 relies on knowing a formula for γ(Kn).
This is precisely what required the efforts of so many for so long. Combining Theorem 10.21 and the
Four Color Theorem allows us to state the following.

Corollary 10.22 For every nonnegative integer k,

Exercises for Section 10.4

10.21 Show that the proof of Theorem 10.20 fails when k = 0.

10.22 It is known that the Petersen graph P is not planar. Thus P cannot be embedded on the sphere.

(a) Show that P can be embedded on the torus however.
(b) How many regions does P have when it’s embedded on the torus?
(c) What is the minimum number of colors that can be assigned to these regions so that every

two adjacent regions are colored differently?

10.23 Prove or disprove: If G is a graph such that (G) ≤ (Sk) for some positive integer k, then G
can be embedded on Sk.

10.5 Exploration: Modular Coloring

The fundamental problem concerning coloring the vertices of a graph G deals with finding the
smallest positive integer k such that each vertex of G can be assigned one of the “colors” 1, 2, …, k in
such a way that every two adjacent vertices of G are assigned different colors. This smallest integer k
is then the chromatic number (G) of G. The idea here is to distinguish every pair of adjacent vertices
of G in some way. In this manner, this has been accomplished by means of a proper coloring the
vertices of G. That is, every two adjacent vertices are distinguished because they are colored
differently. There are many ways, however, of distinguishing every two adjacent vertices of a graph
by means of coloring and many ways of generalizing the idea of coloring. Some of these ways involve
different choices for the elements that are used for colors.

For an integer k ≥ 2, the set Zk of integers modulo k consists of the elements 0, 1, 2, …, k − 1,
where addition in Zk is defined for a, b  Zk by a + b = c if 0 ≥ c ≥ k − 1 and c = a + b (mod k). For
example, 1 + 1 = 0 in Z2, 2 + 3 = 1 in Z4 and 3 + 4 = 2 in Z5.



For a nontrivial connected graph G, let c : V(G) → Zk be a vertex coloring where adjacent
vertices of G can be assigned the same color. By the color sum σ(v) of a vertex v in G is meant the
sum in Zk of the colors of the vertices adjacent to v, that is,

The coloring c is called a modular k-coloring if σ(x) ≠ σ(y) for each pair x, y of adjacent vertices of
G. Thus every two adjacent vertices of G are distinguished by the fact that they have different color
sums. The modular chromatic number mc(G) of a graph G is the minimum k for which G has a
modular k-coloring.

Theorem 10.23 Every nontrivial connected graph has a modular k-coloring for some integer k ≥
2.

Proof. Let G be a nontrivial connected graph with V(G) ={v1, v2, …, vn}. Define a coloring c of G
by c(vi) = 2i−1 for 1 ≤ i ≤ n. Let

Considering c : V(G) → Zk, it follows that 1 ≤ σ(vi) ≤ k for all i (1 ≤ i ≤ n) and σ(vi) ≠ σ(vj) when
vi and vj are adjacent. Hence c is a modular k-coloring of G.

As a consequence of Theorem 10.23, we have the following.

Corollary 10.24 For every nontrivial connected graph G, the modular chromatic number of G
exists.

If mc(G) = k for a nontrivial connected graph G, then every modular k-coloring c of G results in a
vertex coloring using the elements of Zk as colors and such that every two adjacent vertices are
colored differently. Therefore, this is a proper coloring of G using k colors. From this, it follows that

for every nontrivial connected graph G.
For example, the modular chromatic number of the graph G = P4 × P2 in Figure 10.25 is 2. The

color assigned to a vertex v is placed within the circle representing v and σ(v) is placed next to the
vertex.



Figure 10.25: A modular coloring of P4 × P2

That mc(P4 × P2) = 2 may not be surprising since P4 × P2 is bipartite. However, the graph G of
Figure 10.25 is also bipartite but mc(G) ≠ 2.

Figure 10.26: A modular coloring of a bipartite graph

While each nontrivial path is a tree with modular chromatic number 2, not every tree has modular
chromatic number 2. We show for the tree T in Figure 10.27(a) that mc(T) = 3. Assume, to the
contrary, that mc(T) = 2. Then there exists a modular 2-coloring c of T. Because of the symmetry of
the structure of T, the color sums of the vertices of T are those shown in Figure 10.27(b). Since σ(w2)
= σ(v8) = 1, it follows that c(v5) = c(v7) = 1. This, however, contradicts the fact that σ(v6) = 1. Hence
mc(T) ≠ 2 and so mc(T) = 3. A modular 3-coloring of T is shown in Figure 10.27(c). On the other
hand, every nontrivial tree has modular chromatic number 2 or 3.

Figure 10.27: A tree T with mc(T) = 3

Theorem 10.25 If T is a nontrivial tree, then mc(T) = 2 or mc(T) = 3.

The modular chromatic number of each cycle is also either 2 or 3. However, it may be a bit
surprising which cycles have modular chromatic number 3 (see Exercise 10.25).

Theorem 10.26 For each integer n ≥ 3,



Exercises for Section 10.5

10.24 Prove that each nontrivial path has modular chromatic number 2.

10.25 For each n ≥ 3, prove that mc(Cn) = 2 if n ≡ 0 (mod 4) and mc(Cn) = 3 if n  0 (mod 4).

10.26 Prove that if G is a complete multipartite graph, then mc(G) = (G).



Chapter 11

Ramsey Numbers

11.1 The Ramsey Number of Graphs

Except for a 3-year period during World War II, the William Lowell Putnam mathematical
competition for undergraduates has taken place every year since 1938. This exam, administered by
the Mathematical Association of America, consists of (since 1962) twelve challenging mathematical
problems. This competition was designed to stimulate a healthy rivalry in colleges and universities
throughout the United States and Canada. The 1953 exam contained the following problem.

Problem A2 The complete graph with 6 points (vertices) and 15 edges has each edge colored
red or blue. Show that we can find 3 points such that the 3 edges joining them are the same
color.

This problem concerns the topic of Ramsey numbers in graph theory, which is named for Frank
Plumpton Ramsey, who was born on February 22, 1903 in Cambridge, Cambridgeshire, England.
Ramsey entered Winchester College in 1915. After completing his education there in 1920, he went to
Trinity College, Cambridge on a scholarship to study mathematics. In 1924 he was elected as a
Fellow of King’s College, Cambridge, an especially notable honor since he never attended King’s
College.

In 1925 Ramsey published his first major work: “The Foundations of Mathematics.” It was
Ramsey’s intent to improve on Principia Mathematica by Bertrand Russell and Alfred North
Whitehead. His second paper “On a problem of formal logic” was presented to the London
Mathematical Society. It was this paper that was to lead to concepts and a theory that bear his name.

In addition to mathematics, Ramsey was deeply interested in economics and philosophy. His work
on economics included probability, the theory of taxation and optimal saving. Philosophy was his
main interest, however. He worked so intensely that he only studied four hours per day, which left
him time to do other things he enjoyed: tennis, walking, listening to music. His promising future ended
abruptly at age 26 when he died on January 19, 1930.

Although Frank Ramsey proved an even more general theorem, we state a restricted version that is
more closely connected to our investigation of graphs.

Theorem 11.1 (Ramsey’s Theorem) For any k + 1 ≥ 3 positive integers t, n1, n2, …, nk, there
exists a positive integer n such that if each of the t-element subsets of the set {1, 2, …, n} is
colored with one of the k colors 1, 2, …, k, then for some integer i with 1 ≤ i ≤ k, there is a
subset S of {1, 2, …, n} containing ni elements such that every t-element subset of S is colored i.

To understand how Ramsey’s Theorem ties in with graph theory, suppose that {1, 2, …, n} is the



vertex set of the complete graph Kn. Let’s see what Ramsey’s Theorem says when t = 1. According to
Ramsey’s Theorem, there is a positive integer n such that if each of the 1-element subsets of the set
{1, 2, …, n}, that is, if each of the vertices of Kn, is colored with one of the k colors 1, 2, …, k, then
there are ni vertices colored i for some integer i (1 ≤ i ≤ k). This is simply a variation of the
Pigeonhole Principle (see Appendix 1). In fact, the integer

satisfies the condition.
What Ramsey’s Theorem says when t = 2 is considerably more intriguing. In this case, each 2-

element subset of the set {1, 2, …, n} is assigned one of the colors 1, 2, …, k, which can be
interpreted as coloring the edges of the complete graph Kn. The statement of Ramsey’s Theorem in
this case is now given.

Theorem 11.2 (Ramsey’s Theorem) For any k ≥ 2 positive integers n1, n2, …, nk, there exists a
positive integer n such that if each edge of Kn is colored with one of the colors 1, 2, …, k, then
for some integer i with 1 ≤ i ≤ k, there exists a complete subgraph  such that every edge of 

 is colored i.

A nontechnical interpretation of Ramsey’s Theorem might go something like this: Every
sufficiently large structure, regardless of how disorderly it may appear to be, contains an orderly
substructure of any prescribed size.

The special case of Ramsey’s Theorem when there are two colors (k = 2) will be of particular
interest to us. By a red-blue coloring of a graph G is meant an assignment of the colors red and blue
to the edges of G, one color to each edge. Now let F be a graph. A subgraph of G that is isomorphic
to F all of whose edges are colored red is called a red F. If all of the edges of a subgraph of G that is
isomorphic to F are colored blue, then the subgraph is called a blue F. Let F1 and F2 be two
nonempty graphs and let Kn be the complete graph of order n for some integer n. Now let there be
given a red-blue coloring of Kn. It’s possible that a red F1 has been produced in Kn or a blue F2 or
both − or neither!

By Ramsey’s theorem then, if we begin with two complete graphs Ks and Kt and color the edges of
a sufficiently large complete graph Kn red or blue in any manner whatsoever, then we must have
either a red Ks or a blue Kt. Therefore, if F1 is a graph of order s and F2 is a graph of order t, then in
Kn we must have either a red F1 or a blue F2.

For two nonempty graphs F1 and F2, the Ramsey number r(F1, F2) is defined as the smallest
positive integer n such that if every edge of Kn is colored red or blue in any manner whatsoever, then
either a red F1 or a blue F2 is produced. From what was mentioned above, the Ramsey number r(F1,
F2) is defined.

In order to show that r(F1, F2) = n, say, two statements must be verified:

(1) every red-blue coloring of Kn contains either a red F1 or a blue F2 (which shows that r(F1, F2)



≤ n) and

(2) there exists some red-blue coloring of Kn−1 having neither a red F1 nor a blue F2 (which shows
that r(F1, F2) ≥ n).

We illustrate this by determining the Ramsey number r(K3, K3), which is directly related to the
problem in the 1953 Putnam competition mentioned earlier.

Example 11.3 r(K3, K3) = 6.

Solution. Let there be given a red-blue coloring of K6. Consider some vertex v1 of K6. Since v1 is
incident with five edges, it follows by the Pigeonhole Principle that at least three of these five
edges are colored the same, say red. Suppose that v1 v2, v1 v3, v1 v4 are red edges, as shown in
Figure 11.1. If any of the edges v2 v3, v2 v4 and v3 v4 is colored red, then we have a red K3:
otherwise, all of these edges are colored blue and a blue K3 is formed. Hence r(K3, K3) ≤ 6.

Figure 11.1: Three red edges in K6

To verify that r(K3, K3) ≥ 6, we must show that there exists a red-blue coloring of K5 that produces
neither a red K3 nor a blue K3. Suppose that V(K5) = {v1, v2, …v5}. Define a red-blue coloring of K5
by coloring each edge of the 5-cycle (v1, v2, …, v5, v1) red and the remaining edges blue, as shown in
Figure 11.2, where the red edges are drawn in bold. Since this red-blue coloring produces neither a
red K3 nor a blue K3, it follows that r(K3, K3) ≥ 6.

Figure 11.2: A red-blue coloring of K5 that avoids a red K3 and a blue K3

For two nonempty graphs F1 and F2, there is an important observation concerning the Ramsey
number r(F1, F2). Suppose that F1 has order n1 and F2 has order n2 and that max{n1, n2} = n1, say. If
we were to color all of the edges of  red, then no red F1 can be produced because 
doesn’t have enough vertices. No blue F2 can be produced either because no edges of  are



colored blue. Therefore,

That is, the Ramsey number r(F1, F2) of two graphs F1 and F2 is always at least as large as the larger
of the orders of F1 and F2.

We now determine the Ramsey numbers r(K2, Kt) for every integer t > 2.

Example 11.4 For every integer t ≥ 2,

Solution. Since t is the maximum of the orders of K2 and Kt, it follows that r(K2, Kt) ≥ t. Now, let
there be given a red-blue coloring of Kt. If any edge of Kt is colored red, then a red K2 is produced.
Otherwise, all edges of Kt are colored blue and a blue Kt is produced. Therefore, r(K2, Kt) ≤ t.

Let F1 and F2 be two nonempty graphs and suppose that r(F1, F2) = n. Therefore, n is the smallest
positive integer for which every red-blue coloring of Kn produces either a red F1 or a blue F2. Since
the actual colors used when discussing Ramsey numbers are irrelevant, n is also the smallest positive
integer such that every red-blue coloring of Kn produces either a blue F1 or a red F2 (or equivalently,
a red F2 or a blue F1). Therefore,

that is, the order of the graphs F1 and F2 in r(F1, F2) doesn’t matter. In particular, r(Kt, K2) = t for t ≥
2.

In Example 11.3, it was shown that r(K3, K3) = 6. This Ramsey number has a well-known popular
interpretation:

How many people must be present at a party to be guaranteed that there are three mutual
acquaintances or three mutual strangers?

For any gathering of n people, say, we construct the complete graph Kn whose vertices are the people
and where a red edge joins two vertices (people) if the two people are acquaintances and a blue edge
joins two vertices (people) if the two people are strangers. That is, the answer to this problem is the
Ramsey number r(K3, K3), which we have seen is 6. How many people must be present at the party to
be guaranteed that there are three mutual acquaintances or four mutual strangers?

Example 11.5 r(K3, K4) = 9.

Solution. Let there be given a red-blue coloring of G = K9. We show that there is either a red K3 or
a blue K4. First, observe that it cannot occur that every vertex of K9 is incident with exactly three
red edges; for otherwise, the subgraph of K9 induced by the red edges of K9 is 3-regular of order 9,
but there is no such graph. Therefore, there are two possibilities.



Case 1. There exists a vertex v1 that is incident with 4 red edges. Let v1v2, v1v3, v1v4 and v1v5 be
red edges in K9. If any two of the vertices v2, v3, v4 and v5 are joined by a red edge, then a red K3 is
produced; otherwise, every two of the vertices v2, v3, v4 and v5 are joined by a blue edge, producing a
blue K4.

Case 2. There exists a vertex v1 that is incident with 6 blue edges. Let v1v2, v1v3, v1v4, v1v5, v1 v6
and v1 v7 be blue edges and let

Since r(K3, K3) = 6, the subgraph H = G[S] = K6 contains either a red K3 or a blue K3. If H contains a
red K3, so does K9. If H contains a blue K3, then K9 contains a blue K4.

Therefore, r(K3, K4) ≤ 9. Consider the red-blue coloring of K8 in which the red and blue
subgraphs of K8 are shown in Figures 11.3(a) and 11.3(b), respectively. That is, the blue subgraph is
the graph  of C8 (see Section 5.5). Since there is neither a red K3 nor a blue K4, it follows that
r(K3, K4) ≥ 9.

Figure 11.3: A red-blue coloring of K8

Recall that the complement  of a graph G is that graph having the same vertex set as G and such
that two vertices are adjacent in  if and only if these vertices are not adjacent in G. If G has order n,
then  has order n as well. Furthermore, every edge of Kn belongs either to G or to . If we think of
the edges of G as being colored red and the edges of  as being colored blue, then we have a
reformulation of the Ramsey number of two graphs. Let F1 and F2 be two nonempty graphs. The
Ramsey number r(F1, F2) is the smallest positive integer n such that if G is any graph of order n,
then G contains a subgraph isomorphic to F1 or G contains a subgraph isomorphic to F2. Despite the
fact that Ramsey numbers can be studied in terms of graphs and their complements, we will continue
study them by means of red-blue colorings of complete graphs.

We know that r(K2, Kt) = t for every integer t ≥ 2, r(K3, K3) = 6 and r(K3, K4) = 9. The numbers
r(Ks, Kt) were the first Ramsey numbers to be studied extensively and, consequently, are often
referred to as the classical Ramsey numbers. In fact, r(Ks, Kt) is commonly expressed as r(s, t).
Despite the fact that the Ramsey numbers r(Ks, Kt) have been studied for decades, relatively few are
known for s, t ≥ 3. Indeed, the only known Ramsey numbers r(Ks, Kt) for 3 ≤ s ≥ t are



In particular, r(K5, K5) is not known. However, it is known that

For many Ramsey numbers r(Ks, Kt) whose values are unknown, bounds are known that are often far
apart. For example,

Recall that a set S of vertices in a graph G is independent if every two vertices in S are
nonadjacent in G. In particular, if S is a set of s vertices of G such that G[S] = Ks, then S is an
independent set in the graph . Expressed in terms of graphs and their complements, the Ramsey
number r(Ks, Kt) is the smallest positive integer n such that for every graph G of order n, either Ks is
a subgraph of G or Kt is a subgraph of . Equivalently, the Ramsey number r(Ks, Kt) is the smallest
positive integer n such that every graph of order n contains either a complete subgraph of order s or
an independent set of t vertices. For example, since r(K3, K3) = 6 and r(K3, K4) = 9, if G is a graph of
order 6, 7 or 8 that does not contain a triangle, then G must contain an independent set of three
vertices; while if G is a graph of order 9 that does not contain a complete subgraph of order 4, then G
must contain an independent set of three vertices.

We now look at some Ramsey numbers r(F1, F2) where F1 and F2 are not both complete. Our next
example is to determine the Ramsey number r(P3, K3). The two graphs P3 and K3 are shown in Figure
11.4. How do we begin to determine r(P3, K3)? Since the maximum of the orders of P3 and K3 is 3, it
follows that r(P3, K3) ≥ 3. If we color one edge of K3 red and the other two edges blue, then there is
neither a red P3 nor a blue K3; that is, we’ve been able to avoid both a red P3 and a blue K3.
Therefore, r(P3, K3) ≥ 4.

Figure 11.4: Determining r(P3, K3)

On the other hand, the red-blue coloring of K4 shown in Figure 11.5 (where, again, a bold edge
represents a red edge) also avoids a red P3 and a blue K3. So r(P3, K3) ≥ 5. If we have (great)
difficulty finding a red-blue coloring of K5 that avoids both a red P3 and a blue K3, then there is
reason to suspect that r(P3, K3) = 5. We now give a formal argument that 5 is, in fact, the Ramsey
number of these two graphs.



Figure 11.5: A red-blue coloring of K4 that avoids a red P3 and a blue K3

Example 11.6 r(P3, K3) = 5.

Solution. First we show that r(P3, K3) ≥ 5. As we saw, the red-blue coloring of K4 shown in Figure
11.5 avoids both a red P3 and a blue K3 and so r(P3, K3) ≥ 5.

It remains therefore to show that r(P3, K3) ≤ 5. Let a red-blue coloring of K5 be given. Consider a
vertex v1 in K5. If v1 is incident with two red edges, then a red P3 is produced. Otherwise, v1 is
incident with at most one red edge. So there are three blue edges incident with v1, say v1v2, v1v3 and
v1v4 are blue edges. If there is a blue edge joining any two of the vertices v2, v3 and v4, a blue K3 is
produced. Otherwise, v2v3 and v3v4 are red edges, producing a red P3. Therefore, r(P3, K3) ≤ 5.

Of course, P3 = K1, 2 and so r(K1, 2, K3) = 5. We now determine r(K1, 3, K3) by providing an
argument different from those that we’ve previously given.

Example 11.7 r(K1, 3, K3) = 7.

Solution. First we show that r(K1, 3, K3) ≥ 7. Consider the red-blue coloring of K6 shown in Figure
11.6, where again each red edge of K6 is drawn as a bold edge. Since the red subgraph is 2K3 and
the blue subgraph is K3,3, there is neither a red K1, 3 nor a blue K3 in this coloring and so r(K1, 3, K3)
≥ 7.

Next we show that r(K1, 3, K3) ≤ 7. Assume, to the contrary, that there is a red-blue coloring of K7
that produces neither a red K1, 3 nor a blue K3. Consider a vertex v1 in K7. Then at most two red edges
are incident with v1 and so at least four blue edges are incident with v1, say v1vi (2 ≤ i ≤ 5) are blue
edges. If any edge joining two of the vertices in {v2, v3, v4, v5} is colored blue, then we

Figure 11.6: A red-blue coloring of K6 that avoids a red K1, 3 and a blue K3

have a blue K3, which is a contradiction. Hence all edges joining any two of the vertices in {v2, v3, v4,
v5} are colored red. In particular, the edges v2v3, v2v4 and v2v5 are colored red and so we have a red
K1, 3, which is a contradiction.

The two Ramsey numbers that we have just determined are of the type r(F1, F2), where F1 is a tree
and F2 is a complete graph. Remarkably, in the very first issue of the Journal of Graph Theory (in



1977), Vašek Chvátal established a simple formula for r(F1, F2), where F1 is any tree and F2 is any
complete graph. Although the proof is a bit intricate, it is simpler than one might expect for such a
general result. Recall, by Theorem 4.9, that if G is a graph such that deg v ≤ k − 1 for every vertex v
of G and T is a tree of order k, then the graph G contains a subgraph isomorphic to T.

Theorem 11.8 For every tree Tm of order m ≥ 2 and every integer n ≥ 2,

Proof. First, we show that r(Tm, Kn) ≥ (m − 1)(n − 1) + 1. Let there be given a red-blue coloring of
the complete graph K(m−1)(n−1) of order (m − 1)(n − 1) such that the resulting red subgraph is (n −
1)Km−1, that is, the red subgraph consists of n − 1 copies of Km−1. Since each component of the red
subgraph has order m − 1, it contains no connected subgraph of order greater than m − 1. In
particular, there is no red tree of order m. The blue subgraph is then the complete (n − 1)-partite
graph Km−1,m−1, …, m−1, where every partite set contains exactly m − 1 vertices. There is no blue Kn
either. Since this red-blue coloring avoids every red tree of order m and a blue Kn, it follows that

Next, we show that r(Tm, Kn) ≤ (m − 1)(n − 1) + 1. We proceed by induction on the order of the
complete graph Kn. First, we let n = 2 and show that

Let there be given a red-blue coloring of Km. If any edge of Km is colored blue, then a blue K2 is
produced. Otherwise, every edge of Km is colored red and a red Tm is produced. Thus r(Tm, K2) ≤ m.
Therefore, the inequality

holds when n = 2. Assume, for every tree Tm of order m and an integer k ≥ 2, that

In particular, this says that every red-blue coloring of K(m−1)(k−1)+1 contains either a red Tm or a blue
Kk. We show that

Let there be given a red-blue coloring of K(m−1)k+1. We consider two cases.

Case 1. There exists a vertex v1 in the complete graph K(m−1)k+1 that is incident with (m − 1)(k
− 1) + 1 blue edges. Suppose that v1vi is a blue edge for 2 ≤ i ≤ (m − 1)(k − 1) + 2 and let

Consider the subgraph



By the induction hypothesis, H contains either a red Tm or a blue Kk. If H contains a red Tm, then so
does K(m−1)k+1. Otherwise H contains a blue Kk. Since v1 is joined to every vertex of H by a blue
edge, it follows that there is a blue Kk+1 in K(m−1)k+1

Case 2. Every vertex of K(m−1)k+1 is incident with at most (m − 1)(k − 1) blue edges. So every
vertex of K(m−1)k+1 is incident with at least (m − 1) red edges. Thus the red subgraph of K(m−1)k+1 has
minimum degree at least (m − 1). By Theorem 4.9, this red subgraph contains a red Tm. Therefore,
K(m−1)k+1 contains a red Tm.

As a consequence of Theorem 11.8, for every positive integer s and every integer t ≥ 2, it follows
that

The next example deals with a Ramsey number r(F1, F2), where neither F1 nor F2 is complete.

Example 11.9 r(K1, 3, C4) = 6.

Proof. Since the red-blue coloring of K5 shown in Figure 11.7 produces neither a red K1, 3 nor a
blue C4, it follows that r(K1, 3, C4) ≥ 6.

It remains to verify that r(K1, 3, C4) ≤ 6. Let a red-blue coloring of K6 be given, where we denote
the vertices of K6 by v1, v2, …, v6. Since r(K3, K3) = 6, either a red K3 or a blue K3 is produced. We
consider these two cases.

Case 1. There is a red K3 in K6. We may assume that v1, v2 and v3 are the vertices of a red K3. If
there is no red K1, 3, then every edge joining a vertex in {v1, v2, v3} and a vertex in {v4, v5, v6} is
colored blue, producing a blue C4.

Figure 11.7: A red-blue coloring of K5 that avoids a red K1, 3 and a blue C4

Case 2. There is a blue K3 in K6. Assume that v1, v2 and v3 are the vertices of a blue K3. If some
vertex in {v4, v5, v6} is joined to two vertices in {v1, v2, v3} by blue edges, then a blue C4 is
produced. If some vertex in {v4, v5, v6} is joined to all three vertices in {v1, v2, v3} by red edges, then
a red K1, 3 is produced. Thus, we may assume that each vertex in {v4, v5, v6} is joined to one vertex in
{v1, v2, v3} by a blue edge and two vertices in {v1, v2, v3} by red edges. If any of the edges v4v5, v4v6
and v5v6 is red, then there is a red K1, 3. So we may assume that v4, v5 and v6 are the vertices of a blue



K3. Then any two blue edges that join a vertex in {v1, v2, v3} and a vertex in {v4, v5, v6} lie on a blue
C4.

Exercises for Section 11.1

11.1 Let F1 be a graph of order s and F2 a graph of order t. Prove that .

11.2 It was stated that r(K4, K5) = 25. Show that if G is a graph of order 25 that does not contain K4
as a subgraph, then G contains five vertices no two of which are adjacent.

11.3 Show that r(K4, K4) ≤ 18.

11.4 Determine r(P3, P3).

11.5 Determine r(2K2, P3).

11.6 Determine r(K1, 3, P3).

11.7 Determine r(2K2, 2K2).

11.8 Determine r(2K2, 3K2).

11.9 Determine r(K1, 3, K1, 3).

11.10 Determine r(P3, P3  P2).

11.11 Determine r (K1, 4, K1, 4).

11.12 Determine r(P4, P4).

11.13 Determine r(C4, C4).

11.14 Prove that r(K1, 3, C4) = 6 by a method different from that used in Example 11.9, namely, by
(1) assuming that there is a red-blue coloring of K6 that has no red K1, 3 and (2) using the fact
that the only 3-regular graphs of order 6 are K3, 3 and K3 × K2.

11.15 Let G be a complete graph of order r(Ks, Kt) − 1, where s, t ≥ 2. Prove that every red-blue
coloring of G produces either a red Ks−1 or a blue Kt−1.

11.16 Prove that  for every integer n ≥ 2. [Hint: Observe that 

11.17 According to Exercise 11.16, every red-blue coloring of a complete graph of order 
results in a red K3 or a blue Kn. Use this fact and the combinatorial identity 

 to obtain a result involving Ramsey numbers. [Note: For integers
k and n with 0 ≤ k ≤ n,  and .]



11.2 Turán’s Theorem

For integers s, t ≥ 2, suppose that r(Ks, Kt) = n. Then every graph of order n contains either an
independent set of s vertices or a complete subgraph of order t. Therefore, every graph of order n (or
more) that fails to contain an independent set of s vertices must contain Kt as a subgraph. There is
even a more natural sufficient condition for a graph of a certain order to contain a complete graph of a
specified order as a subgraph.

Suppose that G is a graph of order n ≥ 3 and size m. Then . Of course, if 
, then G = Kn. Consequently, for any graph H of order n, the graph G contains a subgraph

isomorphic to H. Therefore, if G has enough edges, then G has a subgraph isomorphic to H. In
particular, if G has enough edges, then G contains a triangle. But what is “enough” in this case? Of
course, if n = 3, then G needs three edges to guarantee that G has a triangle. Let’s next answer this
question for n = 4.

The 4-cycle C4 in Figure 11.8 certainly doesn’t contain a triangle. Indeed, C4 is the only graph of
order 4 and size 4 that doesn’t contain a triangle. Consequently, if a graph G of order 4 has four
edges, then there is no guarantee that G contains a triangle. There is only one graph of order 4 and
size 5 and this graph, denoted by G1, is shown in Figure 11.8. Since G1 has a triangle, it follows that
every graph of order 4 whose size is at least 5 contains a triangle.

Figure 11.8: The graphs C4, G1 and H

Let’s next consider graphs of order 5. Notice that the graph H = K2, 3 of Figure 11.8 has order 5
and size 6 but does not contain a triangle. But what about graphs of order 5 and size 7? Let G be such
a graph where uv  E(G) and x, y and z are the remaining three vertices of G. If G does not contain a
triangle, then each vertex in S = {x, y, z} is adjacent to at most one of u and v. Furthermore, G[S]
contains at most two edges. Thus the size of G is at most 6, a contradiction. That is, every graph of
order 5 and size 7 contains a triangle. The graph H = K3,3 has order 6 and size 9 and does not contain
a triangle. It can be shown that every graph of order 6 and size 10 contains a triangle. Therefore, if G
is a graph of order n where 3 ≤ n ≤ 6 and size , then G contains a triangle. In 1907 the Dutch
mathematician Willem Mantel showed that this is true in general.

Theorem 11.10 If G is a graph of order n ≥ 3 and size , then G contains a
triangle.

Proof. Suppose that the theorem is false. Then there is a smallest integer n for which the statement
is false. So there is some graph G of order n and size  that contains no a triangle.

Let uv  E(G) and let v1, v2, …, vn−2 be the remaining vertices of G. Since G contains no triangle,



at most one u and v is adjacent to vi for each i with 1 ≤ i ≤ n − 2. This implies that deg u + deg v ≤ n.
Let H = G − u − v. Then H has order n − 2 and size m where

and so

Consequently, H contains a triangle, as does G. This is a contradiction.

If n is even in Theorem 11.10, say n = 2k, then every graph of order n and size m > k2 contains a
triangle. This bound can’t be improved because the graph Kk, k has order 2k, size k2 and contains no
triangles. In fact, the graph Kk, k is the only graph of order 2k and size k2 containing no triangle. The
proof of this fact is similar to that of the preceding result.

Theorem 11.11 For every integer k ≥ 2, the only graph of order 2k and size k2 that contains no
triangle is Kk, k.

Proof. Suppose that the theorem is false. Then there is a smallest integer k ≥ 2 such that there exists
a graph G ≠ Kk, k having order 2k and size k2 that contains no triangle. Since K2, 2 is the only graph
of order 4 and size 4 that contains no triangle, it follows that k ≥ 3.

Let uv be an edge of G. Each of the remaining 2k − 2 vertices different from u and v is adjacent to
at most one of u and v. Thus at most 2k − 2 edges are adjacent to uv. Hence, the graph H = G − u − v
contains at least k2 − (2k −1) = (k − 1)2 edges. If H contains at least (k − 1)2 + 1 edges, then it follows
b y Theorem 11.10 that H contains a triangle and so G contains a triangle, which is impossible.
Therefore, H must contain exactly (k − 1)2 edges. Since H contains no triangles, H = Kk−1, k−1. Let U1
and V1 be the partite sets of H. Furthermore, every vertex of V(H) = U1  V1 is adjacent to exactly
one of u and v. If u (or v) is adjacent to both a vertex of U1 and a vertex of V1, then G contains a
triangle, which is impossible. Thus u is adjacent only to the vertices in U1 or to the vertices in V1;
while v is adjacent only to the vertices in the other set, say u is adjacent to the vertices in V1 and v is
adjacent to the vertices in U1. Thus G = Kk , k, whose partite sets are U1  {u} and V1  {v}.

Combining Theorems 11.10 and 11.11, we have the following.

Theorem 11.12 Let G be a graph of order 2k ≥ 4. If the size of G is at least k2 + 1 or if the size
of G is k2 and G ≠ Kk , k, then G contains a triangle.

By proceeding in the same manner as above for graphs of odd order, the following result can be
established.

Theorem 11.13 Let G be a graph of order 2k + 1 ≥ 3. If the size of G is at least k2 + k + 1 or the



size of G is k2 + k and G ≠ Kk, k+1, then G contains a triangle.

Theorems 11.10–11.13 can be then combined into a single theorem.

Corollary 11.14 Let G be a graph of order n ≥ 3. If the size of G is at least  or the size of
G is  then G contains a triangle.

For example, according to Corollary 11.14, if G is a graph of order 7 and the size of G is at least
13 or the size of G is 12 and G ≠ K3, 4, then G contains a triangle.

We have been discussing the number of edges required of a graph G of order n ≥ 3 which
guarantees that G contains K3 as a subgraph. There are more general questions. For example, for
integers k and n with 2 ≤ k ≤ n, what is the smallest positive integer m such that every graph of order
n and size m contains Kk+1 as a subgraph?

While the problem for the case k = 2 was solved by Mantel, the origin of the more general
problem goes back to Paul Turán, a mathematician we encountered earlier. Turán was born on August
28, 1910 in Budapest, Hungary. While a student, he became friends with Paul Erd s, Tibor Gallai,
George Szekeres and Esther Klein. Although Turán was to become best known for his work in
probabilistic and analytic number theory, what he accomplished in graph theory was to lead to the
creation of the area of extremal graph theory.

In 1940, Szekeres wrote a letter to Paul Turán in which he described his unsuccessful attempt to
prove a conjecture of William Burnside. After receiving the letter and thinking about it, Turán was
led to the following question:

What is the maximum number of edges in a graph with n vertices not containing a complete
subgraph with k vertices?

Although Turán found the question interesting, he was mainly concerned with analytic number theory
at that time. However, in September 1940 he was placed in a labor camp for the first time. One day,
one of his comrades in the labor camp mentioned Turán by name. An officer heard this and
recognized the name as that of a mathematician. This officer was able to assign tasks to Turán that
were not as physical and which kept Turán outdoors. While this was occurring, the problem he
thought of returned to him; however, he had no paper to explore the details of his ideas. Nevertheless,
he felt great pleasure dealing with this unusual and beautiful problem. Finally, he obtained a complete
solution, which gave Turán a sense of elation. Paul Turán spent some 32 months during World War II
in a labor camp. From 1949 he was a professor at Budapest University. He died on September 26,
1976.

We consider Turán’s question in the following form: For integers k and n with 2 ≤ k < n, what is
the maximum size of a graph of order n that fails to contain Kk+1 as a subgraph? First we show, for
any two integers k and n with 2 ≤ k < n, that among the graphs of order n which fail to contain Kk+1 as
a subgraph, one of those of maximum size is a k-partite graph. Recall that a graph G is k-partite if
V(G) can be partitioned into k independent subsets. Before presenting this result, let’s recall some
other facts.

If G is a graph of order n and size m, then the First Theorem of Graph Theory tells us that



Let V1 be a nonempty proper set of V(G) and let G1 = G [V1]. Suppose that G1 has size m1 and that
there are m2 edges joining the vertices in V1 and vertices not in V1. Therefore, the sum 

 counts each edge in G1 twice and each edge joining a vertex of V1 and a vertex of
V(G) − V1 once; that is

This is illustrated in Figure 11.9.

Theorem 11.15 Let k and n be integers with 2 ≤ k < n. Among all graphs of order n that do not
contain Kk+1 as a subgraph, at least one of those having maximum size is a k-partite graph.

Figure 11.9: Summing the degrees of the vertices in a subgraph

Proof. Suppose that the result is false. Then there is a smallest integer k ≥ 2 and an integer n > k
such that among the graphs of order n and not containing Kk+1 as a subgraph, none of those having
maximum size m is k-partite. By Corollary 11.14, k ≥ 3.

Let G be a graph of order n and size m that does not contain Kk+1 as a subgraph. Therefore, by
assumption, G is not a k-partite graph. Let v be a vertex of maximum degree in G, say deg v = Δ, and
let F be the subgraph induced by the neighbors of v in G, that is, F = G[N(v)]. Therefore, the order of
F is Δ. Suppose that the size of F is s. Since G does not contain Kk+1 as a subgraph and v is adjacent
to every vertex of F, it follows that F does not contain Kk as a subgraph. By assumption, among all
graphs of order Δ that do not contain Kk as a subgraph, one of those of maximum size, say s′, is a (k −
1)-partite graph F′. Thus s′≥ s.

Define the graph H to be the join of F′ and , that is,

Since F′ is a (k − 1)-partite graph, H is a k-partite graph of order n and size s′ + Δ(n − Δ) that does
not contain Kk+1 as a subgraph. Therefore, m > s′ + Δ(n − Δ). Now observe that



which is a contradiction.

Let n ≥ 3 be an integer. For each positive integer k ≤ n, let t1, t2, …, tk be k integers such that

For every two integers k and n with 1 ≤ k ≤ n, the integers t1, t2, …, tk are unique. For example, if n =
11 and k = 3, then t1, t2, t3 is 3, 4, 4; while if n = 14 and k = 6, then t1, t2, …, t6 is 2, 2, 2, 2, 3, 3. The
complete k-partite graph  is the Turán graph Tn, k. Thus the Turán graph Tn, k is the complete k-
partite graph of order n, the cardinalities of whose partite sets differ by at most 1. The cardinality of
each partite set of Tn, k is either n/k  or n/k . If n/k is an integer, then n/k  = n/k ; while if n/k is
not an integer and r is the remainder when n is divided by k, then exactly r of the partite sets of Tn, k

have cardinality n/k .

Theorem 11.16 Let k and n be integers with 1 ≤ k ≤ n and n ≥ 3. Among all k-partite graphs of
order n, the Turán graph Tn, k is the unique graph of maximum size.

Proof. Among all k-partite graphs of order n, let G be one of maximum size. Suppose that the
partite sets of G are V1, V2, …, Vk, where |Vi | = ni(1 ≤ i ≤ k) and 1 ≤ n1 ≤ n2 ≤ … ≤ nk. Certainly

Suppose that nk − n1 ≥ 2. Let , that is, H can be considered to be the
complete k-partite graph of order n obtained from G by moving a vertex v in the largest partite set Vk
of G to the smallest partite set V1. This transfer results in a loss of n1 edges in G that are incident with
v and a gain of nk − 1 new edges in H but with no other changes. Since nk − n1 ≥ 2, it follows that H
has more edges then G. This contradiction implies that nk − n1 ≤ 1 and that G is isomorphic to the
Turán graph Tn, k.

More generally, we have the following result of Turán.

Theorem 11.17 (Turán’s Theorem) Let k and n be integers with 2 ≤ k < n. Among all graphs of
order n ≥ 3 that do not contain Kk+1 as a subgraph, the Turán graph Tn, k is the unique graph of
maximum size.

We mentioned earlier that for a given positive integer n and a graph F of order at most n, there is a
smallest positive integer m such that every graph of order n and size m contains a subgraph
isomorphic to F. Turán’s theorem determines the exact value of m when F = Kk+1 for every pair k, n
of integers with 2 ≤ k < n.

We now look at another example of this type, namely, F = Cn for n ≥ 3. That is, we are
investigating the question: How many edges must a graph of order n ≥ 3 have to be certain that it is
Hamiltonian? If n = 3, then the only Hamiltonian graph is K3. For n = 4, four edges is not enough as
the graph G1 of Figure 11.10 shows. We have seen that there is only one graph of order 4 and size 5



(the graph G2 of Figure 11.10) and this graph is Hamiltonian. For n = 5, the situation is a bit more
complicated. However, the graph G3 of order 5 and size 7 is not Hamiltonian, so the number of edges
needed for a graph G of order 5 to be Hamiltonian is certainly at least 8. If turns out that 8 is the
answer. Consequently, if G is a graph of order n where 3 ≤ n ≤ 5 and size at least m, where 

, then G is Hamiltonian. This is the correct number for every integer n ≥ 3. Before
showing this, we need to recall a couple of things. First, by Theorem 6.6, if G is a graph of order n ≥
3 such that deg u + deg v ≥ n for every pair u, v of nonadjacent vertices of G, then G is Hamiltonian.
Also for every integer k ≥ 2,

Figure 11.10: Investigating the maximum size of a non-Hamiltonian graph

Theorem 11.18 Every graph of order n ≥ 3 and size at least  is Hamiltonian.

Proof. Assume that the statement is false. Then there is a smallest positive integer n for which
there exists a graph G of order n and size  that is not Hamiltonian. Because the result is
true for graphs of orders 3, 4 and 5, it follows that n ≥ 6. Since G is not Hamiltonian, certainly, G
is not complete.

Let u and v be any two nonadjacent vertices of G. Then the size of H = G − u − v is  −
deg u − deg v. Since the order of H is n − 2, the size of H cannot exceed  and so

Therefore,

By Theorem 6.6, G is Hamiltonian, which is a contradiction.

Exercises for Section 11.2



11.18 Prove Theorem 11.13: Let G be a graph of order 2k + 1 ≥ 3. If the size of G is at least k2 + k
+ 1 or the size of G is k2 + k and G ≠ Kk , k+1, then G contains a triangle.

11.19 (a) There is a unique graph G of order 10 and maximum size that fails to contain K4 as a
subgraph. What is G and what is its size?

(b) What is the smallest possible integer m such that every graph of order 10 and size m
contains K4 as a subgraph.

11.20 Prove that every graph of order n ≥ 4 and size at least 2n − 3 contains a subdivision of K4 − e
as a subgraph.

11.21 Determine the Turán graph Tn, k when

(a) n = 5 and k = 1
(b) n = 7 and k = 2
(c) n = 6 and k = 3
(d) n = 6 and k = 4
(e) n = k = 5

11.22 Let n ≥ 3 be an integer. What is the smallest positive integer m for which every graph G of
order n and size m
(a) contains P3 as a subgraph?

(b) contains P3 as an induced subgraph?

11.23 Let n ≥ 2 be an integer. What is the smallest positive integer m for which every graph G of
order n and size m contains a vertex of degree at least k (where 1 ≤ k < n)?

11.24 Let n ≥ 2 be an even integer. What is the smallest positive integer m for which every graph G
of order n and size m contains a 1-factor?

11.25 Let n ≥ 2 be an integer. What is the smallest positive integer m for which every graph G of
order n and size m contains a Hamiltonian path. [Hint: Use Theorem 11.18].

11.26 Let n ≥ 4 be an integer. What is the smallest positive integer m for which every graph G of
order n and size m contains a cycle of each of the lengths 3, 4, …, n. [Hint: Consider Exercise
11.25.]

11.27 Use mathematical induction to prove Theorem 11.18: Every graph of order n ≥ 3 and size at
least  is Hamiltonian.

11.3 Exploration: Modified Ramsey Numbers

Recall for graphs F and H that the Ramsey number r(F, H) is the smallest positive integer n such that
for every red-blue coloring of Kn there is either a red F or a blue H. For example, we saw that r(K1, 3,



K3) = 7; that is, for every red-blue coloring of K7, there is either a red K1, 3 or a blue K3. Furthermore,
the fact that r(K1, 3, K3) = 7 implies that there is a red-blue coloring of K6 that produces neither a red
K1, 3 nor a blue K3. In fact, the red-blue coloring of K6 for which the red graph is 2K3 (and the blue
graph is K3,3) has this property. Since r(F, H ) = r(H, F) for all pairs F, H  of graphs, it therefore
follows that r(K3, K1, 3) = 7, implying that every red-blue coloring of K7 produces either a red K3 or a
blue K1, 3.

Suppose that we are given an edge coloring of a graph G (where adjacent edges may be colored
the same). If the edges of some subgraph F of G are colored the same, then this is called a
monochromatic F. In fact, if F and H are graphs such that F ≅ H, then r(F, H ) = r(H, F) = r(F, F )
may be stated as the smallest positive integer n such that if each edge of Kn is colored with one of
two colors, then a monochromatic F results. This leads to the following definition.

For two graphs F and H, the monochromatic Ramsey number mr(F, H ) is the smallest positive
integer n such that if each edge of Kn is colored with one of two colors, then a monochromatic F or a
monochromatic H results. Certainly,

for every two graphs F and H. Also,

Furthermore, if F ≅ H, then mr(F, H) = r(F, H) and if F  H, then mr(F, H) = r(F, F). Since r(K3, K1,

3) = 7, it follows that mr(K3, K1, 3) ≤ 7.

Example 11.19 mr(K3, K1, 3) = 6.

Solution. The red-blue coloring of K5 for which the red subgraph of K5 is C5 (and so the blue
subgraph is C5 as well) has neither a monochromatic K3 nor a monochromatic K1, 3. Therefore,
mr(K3, K1, 3) ≥ 6.

Next, let there be given a red-blue coloring of K6. Since r(K3, K3) = 6 by Example 11.3, it follows
that K6 has a red K3 or a blue K3, that is, a monochromatic K3 and so mr(K3, K1, 3) = 6.

Let the vertex set of the complete graph Kn be a set of n distinct positive integers. A coloring of
the edges of Kn is called a minimum coloring if two edges ij and k  are colored the same if and only
if min{i, j} = min{k, }: while a coloring of the edges of Kn is called a maximum coloring if two
edges ij and k  are colored the same if and only if max{i, j} = max{k, }.

If, in an edge-colored graph G, the edges of a subgraph F in G are colored differently, then F is
called a rainbow F. A coloring of the edges of the graph K5, with vertex set {1, 2, 3, 4, 5}, is shown
in Figure 11.11. This graph contains a monochromatic triangle and a rainbow triangle, as well as a
triangle with a minimum coloring and a triangle with a maximum coloring.

Paul Erd s and Richard Rado showed for a sufficiently large integer n and a complete graph of
order n whose vertices are 1, 2, …, n and whose edges are colored from the set of positive integers
that there must be a complete subgraph of prescribed order that is monochromatic or rainbow or has a



minimum or maximum coloring.

Theorem 11.20 For every positive integer k, there exists a positive integer n such that if each
edge of Kn with vertex set {1, 2, …, n} is colored from the set of positive integers, then there is
a complete subgraph of order k that is either monochromatic or rainbow or has a minimum or
maximum coloring.

Figure 11.11: A coloring of K5

Arie Bialostocki and William Voxman defined, for a nonempty graph F, the rainbow Ramsey
number RR(F) of F as the smallest positive integer n such that if each edge of the complete graph Kn
is colored from any number of colors, then either a monochromatic F or a rainbow F is produced.
Rainbow Ramsey numbers are not defined for all graphs, however.

Theorem 11.21 Let F be a graph without isolated vertices. The rainbow Ramsey number RR(F)
is defined if and only if F is a forest.

Proof. First, assume that F is not a forest. Then F contains a cycle C, of length k ≥ 3 say. Let n be
an integer with n ≥ k. Let the vertex set of a complete graph Kn be {1, 2, …, n} and for 1 ≤ i ≤ j ≤
n, assign the color i to the edge ij. This is then a minimum coloring of Kn. We may assume that C =
(v1, v2, …, vk, v1), where {v1, v2, …, vk}  {1, 2, …, n} and

Consequently, the edges v1v2 and v1vk are colored v1 and the edge v2v3 is not colored v1. That is, with
this coloring of edges of Kn, no cycle has a monochromatic or a rainbow coloring. Therefore, if F is
any graph containing a cycle, then RR(F) is not defined.

Next, we verify the converse. Let F be a forest, say of order k. By Theorem 11.20, there exists a
positive integer n such that if the edges of Kn are colored from the set of positive integers in any way
whatsoever, then there is a complete subgraph G of order k that is either monochromatic or rainbow
or has a minimum or maximum coloring. Since G contains subgraphs that are isomorphic to F, if there
is either a monochromatic G or a rainbow G, then there is either a monochromatic F or a rainbow F.



Suppose then that G has either a minimum coloring or a maximum coloring. Assume, without loss
of generality, that G has a minimum coloring. We show in this case that G contains a rainbow F. If F
is disconnected, then edges can be added to F to produce a tree T of order k. Select some vertex r of
T as the root of T. Suppose that V(G) = {v1, v2, …, vk}, where

Label the vertices of T in the order vk, vk−1, vk−2, …, v1, according to the distances of the vertices of
T from r. That is, the root r is labeled vk, some vertex adjacent to r is labeled vk−1 and so on, up to a
vertex of T farthest from r, which is labeled v1. (See Figure 11.12 for an illustration of this when k =
8.)

Figure 11.12: A step in the proof of Theorem 11.21

The minimum coloring of G then assigns the colors v1, v2, …, vk−1to the edges of T. Since this
produces a rainbow T, there is a rainbow F. Hence in any case the rainbow Ramsey number RR(F) is
defined.

Let’s consider an example of this.

Example 11.22 RR(K1, 3) = 6.

Solution. Since the red-blue coloring of K5 shown in Figure 11.13 has neither a monochromatic K1,

3 nor a rainbow K1, 3, it follows that RR(K1, 3) ≥ 6. It remains to show that RR(K1, 3) ≤ 6. Let there
be given a coloring of the edges of K6 with no monochromatic K1, 3. Consider a vertex v of K6.
Since v is incident with five edges and at most two of these edges can be colored the same, there
are three edges incident with v that are colored differently, producing a rainbow K1, 3.



Figure 11.13: A red-blue coloring of K5

Rainbow Ramsey numbers for a single graph (a forest) were extended in the following way to
rainbow Ramsey numbers for two graphs. For two nonempty graphs F1 and F2, the rainbow Ramsey
number RR(F1, F2) is defined as the smallest positive integer n such that if each edge of Kn is
colored from any number of colors, then there is either a monochromatic F1 or a rainbow F2. In view
o f Theorem 11.21, it wouldn’t be expected that RR(F1, F2) is defined for every pair F1, F2 of
nonempty graphs. The conditions under which RR(F1, F2) is defined is a consequence of a result of
Erdös and Rado.

Theorem 11.23 Let F1 and F2 be two graphs without isolated vertices. The rainbow Ramsey
number RR(F1, F2) exists if and only if F1 is a star or F2 is a forest.

I f F1 and F2 are nonempty graphs of orders n1 and n2, respectively, for which RR(F1, F2) is
defined, then

Let’s consider two examples of these rainbow Ramsey numbers involving the path P3 of order 3 and
the graph F shown in Figure 11.14.

Figure 11.14: The graphs F and P3

Example 11.24 RR(F, P3) = 4.

Solution. Since P3 is a forest, it follows by Theorem 11.23 that RR(F, P 3) exists. Because the
order of F is 4, RR(F, P3) ≥ 4. First, we color each edge of K4 from any number of colors. Suppose
that there is no rainbow P3. Since every two adjacent edges of K4 must be colored the same, it
follows that every two edges of K4 are colored the same. Consequently, there is a monochromatic
F and so RR(F, P3) = 4.

We now reverse the order of the graphs F and P3.

Example 11.25 RR(P3, F) = 5.

Solution. Since P3 = K1, 2 is a star, it follows by Theorem 11.23 that RR(F, P 3) exists. In the
coloring of the edges of K4 shown in Figure 11.15 using colors 1, 2, 3, there is neither a
monochromatic P3 nor a rainbow F and so RR(P3, F) ≤ 5.



Let there be given a coloring of the edges of K5 and suppose that there is no monochromatic P3.
Let the vertices of K5 be v, v1, v2, v3, v4. Since there is no monochromatic P3, we may assume that the
edge vvi is colored i for i = 1, 2, 3, 4 (see Figure 11.16).

Figure 11.15: A coloring of K4 that avoids a monochromatic P3 and a rainbow F

Figure 11.16: Coloring the edges vvi (i = 1, 2, 3, 4) in K5

Since K5 contains no monochromatic P3, the edge v1v2 is not colored 1 or 2. However, regardless
of whether v1v2 is colored 3, 4 or some other color, a rainbow F is produced. Therefore, RR(P3, F) =
5.

Examples 11.24 and 11.25 illustrate that, unlike Ramsey numbers, even if RR(F1, F2) and RR(F2,
F1) are both defined, then these rainbow Ramsey numbers need not be equal.

Let F1 and F2 be two graphs without isolated vertices, where F2 has size m. For an integer k ≥ m,
the k-rainbow Ramsey number RRk(F1, F2) is the smallest positive integer n such that if the edges of
Kn are colored in any manner whatsoever from the set {1, 2, …, k}, then either a monochromatic F1
or a rainbow F2 is produced. It turns out that RRk(F1, F2) exists for every two graphs F1 and F2
without isolated vertices, where F2 has size m, and for any integer k ≥ m. Thus, even though r(K3, K3)
= 6 and RR(K3, K3) is not defined, RRk(K3, K3) is defined for all k ≥ 3. (See Exercise 11.39.)

As an illustration, we compute RR3(2K2, K3). Observe that the only connected graphs F not
containing 2K2 are those where every two edges are adjacent, which is then either a star or K3.

Example 11.26 RR3(2K2, K3) = 6.

Solution. The coloring of K5 with three colors, say red, blue and green, shown in Figure 11.17
(where bold edges are red, standard edges are blue and dashed edges are green) has no
monochromatic 2K2. Any rainbow K3 must contain a red edge and therefore the vertex v1.
However, v1 is incident only with red edges and so any K3 containing v1 has two red edges. Thus
there is no rainbow K3, implying that RR3(2K2, K3) ≥ 6.



To show that RR3(2K2, K3) ≤ 6, let there be given a coloring of K6 with three colors, say red, blue
and green. Since K6 has 15 edges, at least five edges of

Figure 11.17: A red-blue-green coloring of K5

K6 are colored the same. If there are six or more edges of K6 colored the same, then there are two
nonadjacent edges that are colored the same and we have a monochromatic 2K2. Thus we may assume
that for each color, exactly five edges in K6 are colored with this color and that these five edges are
incident with a common vertex. Suppose that the five red edges are incident with a vertex v and the
five blue edges are incident with a vertex u. Then a contradiction is obtained for the edge uv, as it is
colored both red and blue.

Exercises for Section 11.3

11.28 Determine mr(C3, C4).

11.29 Determine mr(K1, 4, P4).

11.30 Determine RR(K1, 4).

11.31 For the tree T in Figure 11.18, determine RR(T).

Figure 11.18: The tree T in Exercise 11.29

11.32 (a) Determine RR(P3, 2K2).



(b) Determine RR(2K2, P3).

11.33 Determine RR(K2, mK2).

11.34 Determine RR(Cn, P2).

11.35 Determine RR(Cn, P3).

11.36 Determine RR(K1,n, P3).

11.37 Let F1 be a subgraph of a graph G1 and F2 be a subgraph of a graph G2 such that RR(F1, F2)
and RR(G1, G2) both exist. Prove that RR(F1, F2) ≤ RR(G1, G2).

11.38 Show that RR(K1, 3, 3 K2) ≥ 7.

11.39 It is known that RR3(K3, K3) = 11. Show that RR3(K3, K3) ≥ 11.

11.4 Excursion: Erd s Numbers

Within a day or two after September 20, 1996, the news appeared on computer screens of
mathematicians around the world that Paul Erd s had died while attending a graph theory workshop
at the Banach Center in Warsaw, Poland. Thus ended the life of a unique and most unusual
mathematician whose accomplishments were notable by any standards.

Paul Erd s was born on March 26, 1913 of Jewish parents in Budapest, Hungary. Shortly before
Erd s was born, his two older sisters died of scarlet fever. In 1914 World War I started in Europe.
Erd s’ father was captured by the Russians and was taken as a prisoner of war to Siberia. He was to
remain there for six years. There is little doubt that Erd s was a child prodigy as far as mathematics
was concerned. He showed interest in and uncanny ability with numbers as early as 4 years old, when
he discovered negative numbers on his own. He could multiply 4-digit numbers in his head.

Erd s’ mother and father were both mathematics teachers and were responsible for his early
education. At age 16, his father introduced him to infinite series and set theory, subjects that remained
among his favorites throughout his life.

While in high school, Erd s was an ardent problem solver. As a winner of national mathematical
competitions, he (along with Paul Turán and Tibor Gallai) was admitted to Pázmány University in
Budapest. Erd s and his friends would journey to the hills of Budapest to discuss a variety of topics.
Mathematics was always the main subject of their conversations, however.

By age 19, Erd s had essentially completed his Ph.D. in number theory under the direction of
Leopold Fejér (although Fejér was well known for his work in analysis). Erd s gave an elegant
proof of a theorem of Pafnuty Lvovich Chebyshev (the renowned Russian mathematician who made
important contributions to number theory, probability theory and approximation theory): For every
integer n ≥ 2, there is a prime between n and 2n. Indeed, Erd s showed the existence of prime
numbers between n and 2n belonging to certain arithmetic progressions.

We have often mentioned how graph theory has been influenced by the accomplishments of
Hungarian mathematicians. Indeed, the master problem-solver and mathematics educator George
Pólya (1887 - 1985) was also born in Budapest. Pólya was the author of the famous book How to



Solve It, which sold over a million copies (and for whose English language version he had great
difficulty finding a publisher). Pólya gave several reasons why Hungarians were so influential in
mathematics: (1) there were mathematical journals for high school students that stimulated their
interest in mathematics, (2) there were mathematical competitions for students and (3) there was
Leopold Fejér, who was responsible for attracting many young people to mathematics.

When Erd s graduated in 1934, he was already considered a leading number theorist. He went to
Manchester in Britain on a 4-year fellowship. While there, he became a frequent traveler, visiting
universities to do research. With World War II on the horizon in Europe, he left for the United States,
not to return to Europe for another decade. He held a fellowship at the Institute for Advanced Study
during 1938-39. Erd s felt this was his best year mathematically. During that year the subject of
probabilistic number theory was born. He also solved an outstanding unsolved problem in dimension
theory. Despite these and other major accomplishments, Erd s’ fellowship was not renewed. He
survived on small loans from colleagues.

Erd s received a research instructorship from Purdue University in 1943, only to be unemployed
again in 1945. None of these ever slowed his research accomplishments, however. In 1946 his work
with others led to the initiation of extremal graph theory.

While all of this was going on, World War II was in progress and Erd s anguished over the fate
of his parents and friends. In fact, Erd s’ father died of a heart attack in 1942 and his mother fell into
depression. However, his mother survived the war, as did his close friends Paul Turán and Tibor
Gallai. Vera Sós, a student of Gallai, also survived. Later she married Turán and became a
collaborator of Erd s.

In 1948, Erd s met the young mathematician Atle Selberg at the Institute for Advanced Study and
this led to independent proofs of the Prime Number Theorem: For a positive integer n, let (n) denote
the number of primes less than n.

This was conjectured to be true by the famous mathematician Carl Friedrich Gauss in 1791, but it
was not proved until 1896 when Jacques Hadamard and Charles de la Vallée Poussin gave
independent proofs (using complex analysis). In 1949, Erd s and Selberg gave independent
elementary proofs (that is, not using modern complex analysis methods). In 1950 Selberg was a
recipient of the Fields Medal, the mathematical equivalent of a Nobel Prize.

Although most mathematicians are associated with the places they have worked and lived, for
much of his life Erd s had no job and no home. He traveled from university to university, country to
country, continent to continent, visiting one mathematician after another to discuss, pose and solve
research problems. He worked with the famous and not-so-famous, with established mathematicians
and with students. During much of his life, he traveled with his mother. After she died in 1971 at the
age of 91, he traveled on his own. Since he had little interest in material things, his mathematics
friends, of whom there were many, took care of or assisted him with the everyday items, such as
clothing, food and money.

Erd s was a problem solver, often working on several challenging problems at the same time.
Although he was not one to develop theory, the problems he worked on frequently led to theory
developed by others. These problems were primarily in the areas of combinatorics, graph theory and
number theory. He was not satisfied with simply solving problems, however. He sought proofs that
provided insight as to why the result was true. Although a person of limited wealth, he enjoyed



offering monetary incentives for others to solve these problems. For solutions to some problems, he
would sometimes offer thousands of dollars. He was not good at keeping mathematical secrets though.
If there was a problem he found intriguing, he would tell those with whom he came in contract. One
anecdote of this type occurred in the 1980s. A conjecture had been made at Western Michigan
University just minutes before Erd s arrived to give a colloquium talk. When he heard about the
conjecture, he mentioned it to the audience and offered $5 for a proof or a counterexample.

Erd s authored or co-authored some 1500 papers, the largest number by any mathematician.
Because he traveled so much and encountered so many mathematicians, he had a large number of co-
authors - more than 500. This is contrary to the way many mathematicians work, especially the early
mathematicians, who did research on their own. To Erd s, working on research was a social event,
to be done with others. There are more than 4600 individuals who never co-authored a paper with
Erd s but who did write a paper with a co-author of his. Such occurrences inspired the definition of
Erd s numbers. Only Paul Erd s has Erd s number 0. Any mathematician who co-authored a paper
with Erd s has Erd s number 1. Any mathematician who does not have Erd s number 1 but who co-
authored a paper with someone who has Erd s number 1 has Erd s number 2. More generally, for an
integer k ≥ 3, a mathematician has Erd s number k if the mathematician does not have Erd s number
less than k but has co-authored a paper with a mathematician having Erd s number k−1.

Erd s numbers can be considered from another point of view. The collaboration graph G has the
set of all mathematicians as its vertex set and two vertices (mathematicians) are adjacent if they have
co-authored a paper (possibly with other co-authors). The Erd s number of a mathematician (vertex)
is the distance from that vertex to the Erd s vertex in the collaboration graph. A very small subgraph
of this graph is shown in Figure 11.19. Not only is the Erd s number a dynamic concept (its value
varies with time), so too is the collaboration graph.

Figure 11.19: A subgraph of the collaboration graph

For example, the mathematician Ernst Straus wrote separate papers with both Erd s and Albert
Einstein, so Straus has Erd s number 1. Since Einstein never wrote a paper with Erd s, his Erd s
number is 2. Indeed, Erd s and Einstein met on only one occasion, at which time they discussed



religion (not mathematics or physics). As of this writing, the web site developed by Jerrold
Grossman of Oakland University, contains a multitude of information on Erd s numbers:
http://www.oakland.edu/enp/.

Augustin-Louis Cauchy, Leonhard Euler, Arthur Cayley, Paul Erd s. These are the four
mathematicians who are credited with authoring or co-authoring the largest number of mathematical
papers. Curiously, the last three of these famous mathematicians have connections to graph theory, as
we have seen. Indeed, the last three of these four individuals had numerous and important connections
to graph theory.

There are other related graphs and numbers that can be associated with individuals in certain
occupations. Perhaps the best known of these occurs in what is called the Kevin Bacon Game,
named for the movie actor Kevin Bacon. In this case, the associated graph has movie actors as its
vertices and two actors (vertices) are adjacent if the two individuals appeared in the same feature
movie. The Kevin Bacon number of an actor is the distance in this graph from that actor (vertex) to
the Kevin Bacon vertex. Therefore, only Kevin Bacon has Kevin Bacon Number 0. Tom Hanks has
Kevin Bacon number 1 since he acted with Kevin Bacon in the movie Apollo 13, while Sarah Jessica
Parker has Kevin Bacon number 1 since she appeared in the movie Footloose with Kevin Bacon. On
the other hand, Cary Grant has Kevin Bacon number 2 as he never appeared in a movie with Kevin
Bacon; however, Cary Grant appeared with Walter Matthau in Charade and Walter Matthau
appeared with Kevin Bacon in the movie JFK. As of this writing, the interactive web site
http://oracleofbacon.org allows one to determine the Kevin Bacon numbers of many movie actors.

Erd s numbers and Kevin Bacon numbers have their origins in a 1967 experiment of the
psychologist Stanley Milgram (1933-1984) who tracked chains of acquaintances in the United States.
Because people know people, who know people, etc., Milgram claimed that on the average, every
two people could be connected by a path of length 6, which gave rise to the phrase: six degrees of
separation.

There is also a play and a movie with the title Six Degrees of Separation, written by John Guare
and starring Will Smith. The story is based on the real-life story of David Hampton, a con man who
convinced a number of people in the 1980s that he was the son of movie actor Sidney Poitier.

Actually in recent years Erd s numbers and Kevin Bacon numbers have been extended to Erd s–
Bacon numbers. People who have acted in feature films and who have co-authored mathematical
papers have the possibility of having a defined Erd s-Bacon number, which is the sum of their Erd s
and Kevin Bacon numbers. For example, the physicist Brian Greene appeared in the movie
Frequency with John Di Benedetto, who was in Sleepers with Kevin Bacon. Also, Greene wrote a
paper with Shing-Tung Yau, who wrote a paper with Ronald Graham who has Erd s number 1. Thus
the Erd s-Bacon number of Greene is 2 + 3 = 5.

Ronald Graham has made major contributions to many areas of graph theory, to many subjects in
mathematics and to the mathematical community. Ronald Graham did undergraduate work in
electrical engineering at the University of Chicago and in physics at the University of Alaska at
Fairbanks. As an undergraduate Graham supported himself as a circus performer and worked for
Cirque du Soleil. Graham received his Ph.D. in 1962 from the University of California at Berkeley
under the direction of Derrick Lehmer. Graham went to Bell Laboratories where he worked for 37
years. In 1999 he became the Irwin and Joan Jacobs Professor of Computer Science and Engineering
at the University of California at San Diego.

In 2003 Ronald Graham became president of the Mathematical Association of America, thereby

http://www.oakland.edu/enp/
http://oracleofbacon.org


becoming only the sixth person to hold that position as well as president of the American
Mathematical Society, a position he held during 1993-1995.

Among his non-mathematical accomplishments, Graham is a skilled juggler and at one time served
as president of the International Juggler’s Association. Graham has lectured often and in many places,
including at Walt Disney World.



Chapter 12

Distance

12.1 The Center of a Graph

We’ve mentioned a number of times of how a graph can be used to model the street system of a town.
Of course, as a town grows in size, so too does the graph that models it. As a reminder, we see in
Figure 12.1 the street system of a town T and a graph GT that models it.

Figure 12.1: Town T and a graph modeling town T

As a town grows into a city, new questions arise. For example, when a town is small, it might be
appropriate to rely on and pay for the services of the fire department of a neighboring city. However,
when a town reaches a certain size (and is able to afford it), it becomes necessary for that town to
have its own fire department. Assuming that the decision has been made by the town to build its own
firehouse, we now have another question: Where in the town should we build it? Let’s assume that we
decide to build the firehouse at some street intersection in the town. This, however, does not answer
our question. Of course, the main reason for building the firehouse is so that all citizens of the town
are protected in the event of a fire. Consequently, no location in the town should be too far from this
new firehouse. We see that answering our question concerns distances in town T and, therefore,
distances in the graph GT as well.

Let’s review the definition of distance in a graph. For two vertices u and v in a graph G, the
distance d(u, v) from u to v is the length of a shortest u − v path in G. A u − v path of length d(u, v) is
called a u − v geodesic. In order for d(u, v) to be defined for all pairs u, v of vertices in G, the graph
G must be connected. We therefore assume that G is a connected graph. The term distance that we just
defined satisfies all four of the following properties in any connected graph G.

1. d(u, v) ≥ 0 for all u, v  V(G).



2. d(u, v) = 0 if and only if u = v.

3. d(u, v) = d(v, u) for all u, v  V(G) [the symmetric property].

4. d(u, w) ≤ d(u, v)+d(v, w) for all u, v, w  V(G) [the triangle inequality].

That a connected graph satisfies all four of these properties should be clear, with the possible
exception of property 4 (the triangle inequality), which we now verify. Let P1 be a u − v geodesic
and P2 a v − w geodesic in the graph G. The path P1 followed by P2 produces a u − w walk of
length d(u, v) + d(v, w). By Theorem 1.6, G contains a u − w path whose length is at most d(u, v) +
d(v, w). Therefore, d(u, w) ≤ d(u, v) + d(v, w). Since the distance d satisfies property 2 (the
symmetric property), we can refer to the distance between two vertices rather than the distance
from one vertex to another.

The fact that the distance d satisfies properties 1–4 means that d is a metric and (V(G) , d) is a
metric space. It is ordinarily very useful when a distance is a metric as this concept has been studied
widely. There are many concepts involving connected graphs that are defined in terms of distance and
which are valuable in providing information about these graphs.

For a vertex v in a connected graph G, the eccentricity e(v) of v is the distance between v and a
vertex farthest from v in G. The minimum eccentricity among the vertices of G is its radius and the
maximum eccentricity is its diameter, which are denoted by rad(G) and diam(G), respectively. A
vertex v in G is a central vertex if e(v) = rad(G) and the subgraph induced by the central vertices of
G is the center Cen(G) of G. If every vertex of G is a central vertex, then Cen(G) = G and G is called
self-centered. For example, if G = Cn where n ≥ 3, then G is self-centered.

To illustrate the concepts we have just presented, consider the graph H of Figure 12.2, where each
vertex is labeled by its eccentricity. Since the smallest eccentricity is 2, rad(H) = 2. Because the
largest eccentricity is 4, diam(H) = 4. The center of H is also shown in Figure 12.2.

There are a number of observations that can be made about the graph H of Figure 12.2. We have
already mentioned that rad(H) = 2 and diam(H) = 4. The terms “radius” and “diameter” are familiar
because of circles, where, of course,

Figure 12.2: The eccentricities of the vertices of a graph

the diameter is always twice the radius. This fact together with the knowledge that diam(H) = 2
rad(H) for the graph H of Figure 12.2 might reasonably suggest that diam(G) = 2 rad(G) for every
connected graph G. Such is not the case, however. Figure 12.3 shows three graphs G2, G3 and G4,
each of which has radius 2, where diam(Gk) = k for k = 2, 3, 4. There is, therefore, no identity that



relates the radius and the diameter of a graph. As we now show, Figure 12.3 illustrates the only
possible diameters for a graph having radius 2.

Figure 12.3: Three graphs having radius 2

Theorem 12.1 For every nontrivial connected graph G,

Proof. The inequality rad(G) ≤ diam(G) is immediate since the smallest eccentricity cannot exceed
the largest eccentricity. Let u and v be two vertices such that d(u, v) = diam(G) and let w be a
central vertex of G. Therefore, e(w) = rad(G). Hence the distance between w and any other vertex
of G is at most rad(G). By the triangle inequality,

  diam(G) = d(u, v) ≤ d(u, w) + d(w, v) ≤ rad(G) + rad(G) = 2 rad(G).

Another observation about the graph H in Figure 12.2 is that the eccentricities of every two
adjacent vertices differ by at most 1. This statement too is true for all connected graphs.

Theorem 12.2 For every two adjacent vertices u and v in a connected graph,

Proof. Assume, without loss of generality, that e(u) ≥ e(v). Let x be a vertex that is farthest from u.
So d(u, x) = e(u). By the triangle inequality,

Hence e(u) ≤ 1 + e(v), which implies that 0 ≤ e(u) − e(v) ≤ 1. Therefore, |e(u) − e(v)| ≤ 1.

In much the same way, the following can be proved (see Exercise 12.10).

Theorem 12.3 Let u and v be adjacent vertices in a connected graph G. Then

for every vertex x of G.

Returning once again to the graph H of Figure 12.2, we see that Cen(H) = K2. This brings up a
natural question. Which graphs can be the center of some graph? Stephen Hedetniemi showed that
“every graph” is the answer to this question.

Theorem 12.4 Every graph is the center of some graph.



Proof. Let G be a graph. We show that G is the center of some graph. First, add two new vertices u
and v to G and join them to every vertex of G but not to each other. Next, we add two other vertices
u1 and v1, where we join u1 to u and join v1 to v. The resulting graph is denoted by F (see Figure
12.4).

Figure 12.4: The graph F in the proof of Theorem 12.4

Since e(u1) = e(v1) = 4, e(u) = e(v) = 3 and eF(x) = 2 for every vertex x in G, it follows that V(G)
is the set of central vertices of F and so Cen(F) = G.

Stephen Hedetniemi was born on February 7, 1939 in Washington, D.C. His father, who at one
time worked for U.S. Supreme Court Justice Frank Murphy, encouraged his four sons and daughter to
pursue higher education. Hedetniemi became an undergraduate at the University of Michigan and
majored in mathematics but became interested in the new field of computer science. While an
undergraduate at the University of Michigan, he took a course in graph theory from a professor who
was teaching it for the first time: Frank Harary. In 1966, Hedetniemi received his Ph.D. with co-
supervisors Frank Harary and John Holland. Holland, a computer scientist, would later become the
founder of the field of genetic algorithms.

After working in the computer science departments at the Universities of Iowa, Virginia and
Oregon, Hedetniemi went to Clemson University in 1982, where he taught until he retired. While he
contributed not only to graph theory but to the areas of algorithms, computation theory, combinatorial
optimization and parallel processing, Hedetniemi is known for initiating several areas of study within
graph theory. The area for which he is probably best known will be visited in the next chapter.

Although every graph can be the center of some connected graph, there are some restrictions as to
where the center of a graph G can be located in G.

Theorem 12.5 The center of every connected graph G is a subgraph of some block of G.

Proof. Assume, to the contrary, that G is a connected graph whose center Cen(G) is not a subgraph
of a single block of G. Then there is a cut-vertex v of G such that G − v contains two components
G1 and G2, each of which contains vertices of Cen(G). Let u be a vertex of G such that d(u, v) =
e(v) and let P1 be a u − v geodesic in G. At least one of G1 and G2 contains no vertices of P1, say
G2 contains no vertices of P1. Let w be a central vertex of G that belongs to G2 and let P2 be a v −
w geodesic. Then P1 followed by P2 produces a u − w geodesic, whose length is greater than that
of P1. Hence e(w) > e(v), which contradicts the fact that w is a central vertex of G.

The graph GT of Figure 12.1 (which, recall, models town T in that figure) is shown again in Figure
12.5, where in this case, every vertex is labeled with its eccentricity. We asked earlier where a
firehouse should be built so that no location in the town is too far from the firehouse. We now see that
an appropriate answer is for the firehouse to be built at any of the three intersections that correspond



to central vertices (vertices having eccentricity 5) in GT.

Figure 12.5: The eccentricities of the vertices of GT

Exercises for Section 12.1

12.1 Find the radius and diameter of the graph G in Figure 12.6. What is the center of G?

Figure 12.6: The graph in Exercise 12.1

12.2 (a) Find the radius and diameter of Cn for n ≥ 3.

(b) Find the radius and diameter of Pn for n ≥ 3. What is the center of Pn?

(c) Find the radius and diameter of Qn for n ≥ 2.

12.3 Find the radius and diameter of Ks,t for 1 ≤ s ≤ t. What is the center of Ks,t?

12.4 Find the radius and diameter of the Petersen graph PG. What is the center of PG?

12.5 Give an example of a connected graph G such that Cen(G) is disconnected.

12.6 Show that every graph of order n is the center of some graph of order 2n.

12.7 (a) Prove that if G is a connected graph with diam(G) ≥ 3, then diam( ) ≤ 3.

(b) Give an example of a connected graph G with diam(G) = diam( ) = 3.



12.8 Prove that for each pair a, b of positive integers with a ≤ b ≤ 2a, there exists a graph G with
rad(G) = a and diam(G) = b.

12.9 Prove the following generalization of Theorem 12.2: For every two vertices u and v in a
connected graph, |e(u) − e(v)| ≤ d(u, v).

12.10 (a) Prove Theorem 12.3: Let u and v be adjacent vertices in a connected graph G. Then |d(u,
x) − d(v, x)| ≤ 1 for every vertex x of G.

(b) Let G be a connected graph and suppose that d(u, x) = k for some u, x  V(G). Show that if
v is a neighbor of u, then d(v, x) is k − 1, k or k + 1.

12.11 Let G be a connected graph and k an integer with rad(G) < k < diam(G). Use Theorem 12.2 to
prove that there is a vertex v of G with e(v) = k.

12.12 Prove that if T is a tree of order n ≥ 3, then Δ(T) + diam(T) ≤ n + 1.

12.13 (a) Let T be a tree of order n ≥ 3 and let T′ be the tree obtained from T by deleting the end-
vertices of T. Prove that Cen(T) = Cen(T′).

(b) Prove that the center of a tree T is either K1 or K2.

(c) Prove that if the center of a tree T is K1, then diam(T) = 2 rad(T).

12.14 Show that for every pair r, s of positive integers, there exists a positive integer n such that for
every connected graph G of order n, either Δ(G) ≥ r or diam(G) ≥ s.

12.2 Distant Vertices

If we were to find ourselves at a certain location in some town (such as in town T of Figure 12.1) and
ask for a location in the town that is farthest from where we are, then this is the same question as: For
a given vertex u in a connected graph G, what is a vertex v in G that is farthest from u? Of course,
what we’re seeking is a vertex v such that d(u, v) = e(u). Depending on where u is located in G, the
distance between u and v might be as small as rad(G), as large as diam(G) or some number between
these two.

A vertex v in a connected graph G is called a peripheral vertex if e(v) = diam(G). Thus, in
certain sense, a peripheral vertex is opposite to a central vertex. The subgraph of G induced by its
peripheral vertices is the periphery Per(G) of G. For the graph H of Figure 12.2, which is redrawn in
Figure 12.7, the periphery of H is shown in Figure 12.7.



Figure 12.7: The eccentricities of the vertices of a graph

The periphery of the graph H of Figure 12.7 is 2K1 (that is, it consists of two isolated vertices)
and so it is disconnected. Is the periphery of every graph disconnected? The answer is no, as the
graph F of Figure 12.8 shows. Each vertex of F is labeled with its eccentricity. Since diam(F) = 3, it
follows that Per(F) = C6, which is connected. In fact, if G = Cn, where then n ≥ 3, it follows that
Per(G) = Cn. Could it be then that as with centers, every graph is the periphery of some graph? Halina
Bielak and Maciej Syslo showed that the answer to this question is no.

Figure 12.8: A graph F with Per(F) = C6

Theorem 12.6 A nontrivial graph G is the periphery of some graph if and only if every vertex of
G has eccentricity 1 or no vertex of G has eccentricity 1.

Proof. Assume first that every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1. If
every vertex of G has eccentricity 1, then G is complete and Per(G) = G. Now assume that no
vertex of G has eccentricity 1. This implies that for every vertex u of G, there is a vertex v in G that
is not adjacent to u. Let H be the graph obtained by adding a new vertex w and joining w to every
vertex of G. Then eH(w) = 1. Since eH(x) = 2 for every vertex x of G, it follows that every vertex of
G is a peripheral vertex of H and so Per(H) = G.

For the converse, let G be a graph that contains some vertices of eccentricity 1 and some vertices
whose eccentricity is not 1. Assume, to the contrary, that there exists a graph H such that Per(H) = G.
Necessarily, G is a proper induced subgraph of H. Then there exists an integer k ≥ 2 such that eH(v) =
k for every vertex v of G, while eH(v) < k for every vertex v of H that is not in G. Let x be a vertex of
G such that eG(x) = 1 and let w be a vertex of H such that d(x, w) = eH(x) = k ≥ 2. Since w is not
adjacent to x, it follows that w is not in G. However, d(w,x) = k and so eH(w) ≥ k, contradicting the
fact that w is not in the periphery of H.

According to Theorem 12.6 then, no star of order 3 or more is the periphery of any graph. For a
given vertex u in a connected graph G, we have discussed seeking a vertex v such that d(u, v) = e(u),
that is, v is a vertex that is farthest from u. Such a vertex v is called an eccentric vertex of u. A
vertex v is an eccentric vertex of the graph G if v is an eccentric vertex of some vertex of G. In
other words, a vertex v is an eccentric vertex of G if v is farthest from some vertex of G.

Consider the graph G of Figure 12.9, where each vertex is labeled with its eccentricity. For
example, e(u) = 3. Since d(u, v) = 3, it follows that v is an eccentric vertex of u. Because there is a u



− v path of length 3 in G, there is certainly a v − u path of length 3 in G. This does not mean, however,
that u is an eccentric vertex of v as there may be a vertex farther from v than u is. This only implies
therefore that e(v) ≥ 3. In fact, e(v) = 4 and so u is not an eccentric vertex of v, although w is an
eccentric vertex of v. More generally, if a vertex y is an eccentric vertex of a vertex x in a connected
graph, then e(y) ≥ e(x).

Figure 12.9: An eccentric vertex in G

If a vertex x in a connected graph G is a peripheral vertex of G, then, as we have seen, e(x) =
diam(G). Necessarily then, there exists a vertex y such that d(x, y) = e(x) = diam(G). This also
implies, however, that d(x, y) = e(y) = diam(G) and that y is a peripheral vertex of G as well.
Therefore, every peripheral vertex of G is an eccentric vertex. The converse is not true, however. We
saw that the vertex v in the graph G of Figure 12.9 is an eccentric vertex of G but that v is not a
peripheral vertex of G.

Consider next the graph H shown in Figure 12.10, where rad(H) = 2 and diam(H) = 4. Since q and
r are peripheral vertices (the only peripheral vertices of H), they are also eccentric vertices of H.
The vertices x and z are also eccentric vertices of each other; while t and u are both eccentric
vertices of x and z. Furthermore, w and y are eccentric vertices of each other; while s and v are both
eccentric vertices of w and y. That is, every vertex of H is an eccentric vertex.

Figure 12.10: A graph each of whose vertices is an eccentric vertex

If every vertex of some graph G has the same eccentricity (and is therefore a peripheral vertex),
then certainly every vertex of G is an eccentric vertex. However, the graph H of Figure 12.10 shows
that every vertex of a graph can be an eccentric vertex without all the eccentricities being the same.

A connected graph G is an eccentric graph if every vertex of G is an eccentric vertex. Therefore,
the graph H of Figure 12.10 is an eccentric graph, as is every graph all of whose vertices have the
same eccentricity. Ordinarily, however, only some of the vertices of a graph are eccentric.

Let G be a connected graph. The eccentric subgraph Ecc(G) of G is the subgraph of G induced by
the set of eccentric vertices of G. For example, a connected graph F and its eccentric subgraph are
shown in Figure 12.11. If every vertex of a graph G is an eccentric vertex, then Ecc(G) = G.



Figure 12.11: A graph and its eccentric subgraph

In the graph F of Figure 12.11, Ecc(F) = 2P3. This brings up the question: Which graphs are
eccentric subgraphs of some graph? Perhaps surprisingly, this question has the same answer as the
question: Which graphs are the peripheries of some graph?

Theorem 12.7 A nontrivial graph G is the eccentric subgraph of some graph if and only if every
vertex of G has eccentricity 1 or no vertex of G has eccentricity 1.

Proof. Assume, first, that every vertex of a graph G has eccentricity 1 or no vertex of G has
eccentricity 1. If every vertex of G has eccentricity 1, then G is complete and G is an eccentric
graph. Thus Ecc(G) = G. Next, assume that no vertex of G has eccentricity 1. Let H be the graph
obtained by adding a new vertex w and joining w to every vertex of G. Since every vertex v in H
that belongs to G is an eccentric vertex of w but w is not an eccentric vertex of any vertex of H, it
follows that Ecc(H) = G.

For the converse, let G be a graph such that some but not all of its vertices have eccentricity 1.
Then G is connected. Assume, to the contrary, that there exists a connected graph H such that Ecc(H)
= G. Let u be a vertex of G that is adjacent to all other vertices of G and let v be an eccentric vertex
of u in H. Since all eccentric vertices of H belong to G, it follows that v is in G. However, v is
adjacent to u; so eH(u) = 1, which implies that u is adjacent all other vertices in H and that all
vertices of H that are not in G also belong to Ecc(H). This is a contradiction.

If v is an eccentric vertex of a vertex u in a connected graph G, then no vertex of G is farther from
u than v is. In particular, if w is a neighbor of v, then d(u, w) ≤ d(u, v). However, a vertex can have
this particular property without being an eccentric vertex of u.

A vertex v in a connected graph G is a boundary vertex of a vertex u if d(u, w) ≤ d(u, v) for
each neighbor w of v; while a vertex v is a boundary vertex of the graph G if v is a boundary vertex
of some vertex of G.

We have mentioned that in a connected graph, every peripheral vertex is an eccentric vertex, but
not conversely. Also, every eccentric vertex is a boundary vertex, but a boundary vertex need not be
an eccentric vertex. Consider the graph G in Figure 12.12. The vertex z is an eccentric vertex of the
vertex w, which in turn is a boundary vertex of the vertex s. However, z is not a peripheral vertex of
G and w is not an eccentric vertex of G.

Figure 12.12: Peripheral, eccentric and boundary vertices in a graph



While the distance from a vertex u of a graph G to an eccentric vertex v of u attains the absolute
maximum maxw V(G){d(u, w)}, the distance from u to a boundary vertex v of u attains the local
maximum maxw N[v]{d(u, w)}. Equivalently, a vertex v is a boundary vertex of u if no u − v geodesic
can be extended at v to a longer geodesic. Intuitively, beginning at u, a boundary vertex of u is
reached when, locally, it is not possible to proceed farther from u.

There are certain vertices in a nontrivial connected graph that cannot be boundary vertices.

Theorem 12.8 No cut-vertex is a boundary vertex of any connected graph.

Proof. Assume, to the contrary, that there exists a connected graph G and a cut-vertex v of G such
that v is a boundary vertex of some vertex u in G. Let G1 be component of G − v that contains u and
let G2 be another component of G − v. If w is a neighbor of v that belongs to G2, then d(w, u) = d(u,
v) + 1, which contradicts our assumption that v is a boundary vertex of u.

Since no cut-vertex can be a boundary vertex, no cut-vertex can be an eccentric vertex or a
peripheral vertex either. There are certain vertices, however, that must be boundary vertices.

A vertex v in a graph G is called a complete vertex (or an extreme or simplicial vertex) if the
subgraph of G induced by the neighbors of v is complete. In particular, every end-vertex is complete.
Therefore, if v is a complete vertex and u is a neighbor of v, then d(w, u) = d(w, v) = 1 for every w 
N(v). Thus v is a boundary vertex of u. A complete vertex v is not only a boundary vertex of each
neighbor of v, it is a boundary vertex of every vertex different from v.

Theorem 12.9 Let G be a connected graph. A vertex v of G is a boundary vertex of every vertex
distinct from v if and only if v is a complete vertex of G.

Proof. First, let v be a complete vertex in G and let u be a vertex distinct from v. Also, let (u = v0,
v1, …, vk = v) be a u − v geodesic and let w be a neighbor of v. If w = vk−1, then d(u, w) < d(u, v).
So we may assume that w ≠ vk  − 1. Since v is complete, w vk−1  E(G) and (u = v0, v1, …, vk−1, w)
is a u − w path in G, implying that d(u, w) ≤ d(u, v). Hence v is a boundary vertex of u.

For the converse, let v be a vertex of G that is not a complete vertex. Then there exist nonadjacent
vertices u, w  N(v). Since d(u, w) > d(u,v), it follows that v is not a boundary vertex of u.

We now present a result which deals with a question that is opposite to that considered in
Theorem 12.9.

Theorem 12.10 Let G be nontrivial connected graph and let u be a vertex of G. Every vertex
distinct from u is a boundary vertex of u if and only if e(u) = 1.

Proof. Assume first that e(u) = 1 and let v be a vertex of G distinct from u. Let w be a neighbor of
v. Then d(u, w) ≤ 1 and d(u, v) = 1. Hence v is a boundary vertex of u. For the converse, assume, to
the contrary, that every vertex of G different from u is a boundary vertex of u but e(u) ≠ 1. Then
there exists a vertex x in G such that d(u, x) = 2. Let (u, y, x) be a u − x geodesic in G. Then d(u, y)
= 1 and x is a neighbor of y but d(u, x) = 2 > 1 = d(u, y). Thus y is not a boundary vertex of u,
which is a contradiction.



There are certain vertices in a connected graph G that have a close connection with boundary
vertices. Let x and z be two distinct vertices in G. A vertex y distinct from x and z is said to lie
between x and z if

that is, the triangle inequality becomes an equality. A vertex v is an interior vertex of G if for every
vertex u distinct from v, there exists a vertex w such that v lies between u and w. The interior Int(G)
of G is the subgraph of G induced by interior vertices. For example, for the graph G of Figure 12.13
(which is also shown in Figure 12.12), the vertices s, v and x are the interior vertices of G and so
Int(G) = P3, as shown in Figure 12.13.

Figure 12.13: The interior of a graph

We now see that the interior vertices are precisely those vertices that are not boundary vertices.

Theorem 12.11 Let G be a connected graph. A vertex v is a boundary vertex of G if and only if v
is not an interior vertex of G.

Proof. Let v be a boundary vertex of G, say v is a boundary vertex of the vertex u. Assume, to the
contrary, that v is also an interior vertex of G. Since v is an interior vertex of G, there exists a
vertex w distinct from u and v such that v lies between u and w. Let

be a u − v path, where 1 < j < k. However, vj+1  N(v) and d(u,vj+1) = d(u,v) + 1, a contradiction.
For the converse, let v be a vertex that is not an interior vertex of G. Hence there exists some

vertex u such that for every vertex w distinct from u and v, the vertex v does not lie between u and w.
Let x  N(v). Then

Since v does not lie between u and x, this inequality is strict and so d(u, x) ≤ d(u, v), that is, v is a
boundary vertex of u.

Exercises for Section 12.2

12.15 What is the periphery of the graph G of Figure 12.6 in Exercise 12.1.



12.16 What is the periphery of Pn for n ≥ 2?

12.17 What is the periphery of Ks,t for 1 ≤ s ≤ t?

12.18 What is the periphery of the Petersen graph?

12.19 Give an example of a connected graph G and a vertex v of G such that (1) v does not belong to
the center of G, (2) v does not belong to the periphery of G and (3) v is neither adjacent to a
vertex in the center nor adjacent to a vertex in the periphery of G.

12.20 Prove or disprove: There exists a connected graph whose center and periphery are distinct but
not disjoint.

12.21 Let G be a connected graph for which some but not all vertices of G have eccentricity 1. Does
there exist a connected graph H such that Per(H) = G, where every vertex of H has
eccentricity 2 or 3?

12.22 Let G be a connected graph of order n ≥ 3 that is not complete. Prove that G is the periphery
of some graph if and only if Δ(G) ≤ n − 2.

12.23 Show that a connected graph G of diameter 2 is the periphery of some graph if and only if G is
self-centered.

12.24 Show that for every integer n ≥ 3, there is exactly one tree of order n that is not the periphery
of some graph.

12.25 If a graph G is the eccentric subgraph of a graph H, does it follows that G is the periphery of
H?

12.26 For the graph G of Figure 12.14, determine

(a) the set of peripheral vertices of G,

(b) the set of eccentric vertices of G,

(c) the set of boundary vertices of G,

(d) the periphery, eccentric subgraph and boundary of G.

Figure 12.14: The graph in Exercise 12.26

12.27 Give an example of a connected graph G and a set S = {v1, v2, v3, v4} of vertices of G such
that vi+1 is an eccentric vertex of vi for i = 1, 2, 3 but no vertex of S is an eccentric vertex of
any other vertex of S.

12.28 Let F be a nontrivial connected graph with no vertices of eccentricity 1 and let G = F + Kk,



where k = 1, 2.

(a) Prove that the boundary of G is F if k = 1.

(b) Prove that the boundary of G is G itself if k = 2.

12.29 For each of the graphs Gi, i = 1, 2, in Figure 12.15, show that the boundary of Gi is Gi.

Figure 12.15: Graphs in Exercise 12.29

12.30 Show that for every positive integer k, there exists a connected graph G and an eccentric
vertex v of G such that diam(G) − e(v) ≥ k.

12.31 Prove that for every graph G, there exists a connected graph H such that Cen(H) = Int(H) = G.

12.3 Excursion: Locating Numbers

Suppose that a certain facility consists of five rooms R1, R2, R3, R4, R5 (shown in Figure 12.16). The
distance between rooms R1 and R3 is 2 and the distance between R2 and R4 is also 2. The distance
between all other pairs of distinct rooms is 1. The distance between a room and itself is 0. A certain
(red) sensor is placed in one of the rooms. If an unauthorized individual should enter a room, then the
sensor is able to detect the distance from the room with the red sensor to the room containing the
intruder. Suppose, for example, that the sensor is placed in R1. If an intruder enters room R3, then the
sensor alerts us that an intruder has entered a room at distance 2 from R1; that is, the intruder is in R3
since R3 is the only room at distance 2 from R1. If the intruder is in R1, then the sensor indicates that
an intruder has entered a room at distance 0 from R1; that is, the intruder is in R1. However, if the
intruder is in any of the other three rooms, then the sensor tells us that there is an intruder in a room at
distance 1 from R1. But with this information, we cannot determine the precise room containing the
intruder. In fact, there is no room in which the (red) sensor can be placed to identify the exact location
of an intruder in every instance.

Figure 12.16: A facility consisting of five rooms



On the other hand, if we place the red sensor in R1 and a blue sensor in R2 and an intruder enters
R5, say, then the red sensor in R1 tells us that there is an intruder in a room at distance 1 from R1,
while the blue sensor tells us that the intruder is in a room at distance 1 from R2, that is, the ordered
pair (1, 1) is produced for R4. Since these ordered pairs are distinct for all rooms, the minimum
number of sensors required to detect the exact location of an intruder is 2. Care must be taken,
however, as to where the two sensors are placed. For example, we cannot place sensors in R1 and R3
since, in this case, the ordered pairs for R2, R4 and R5 are all (1, 1), and we cannot determine the
precise location of a possible intruder.

The facility that we have just described can be modeled by the graph of Figure 12.17, whose
vertices are the rooms and such that two vertices in this graph are adjacent if the corresponding two
rooms are adjacent. This gives rise to a problem involving graphs.

Let G be a connected graph. For an ordered set W = {w1, w2, …, wk} of vertices of G and a vertex
v of G, the locating code (or simply the code) of v

Figure 12.17: A graph modeling a facility with five rooms

with respect to W is the k-vector

The set W is a locating set (also called a resolving set) for G if distinct vertices have distinct codes.
A locating set containing a minimum number of vertices is a minimum locating set (or metric basis)
for G. The location number loc(G) of G (also called the metric dimension) is the number of vertices
in a minimum locating set for G. For example, consider the graph G shown in Figure 12.18, which
you will notice is isomorphic to the graph of Figure 12.17. The ordered set W1 = {v1, v3} is not a
locating set for G since cW1

(v2) = (1, 1) = cW1
(v4), that is, G contains two vertices with the same code

with respect to W1. On the other hand, W2 = {v1, v2, v5} is a locating set for G since the codes for the
vertices of G with respect to W2 are

However, W2 is not a minimum locating set for G since W3 = {v1, v2} is also a locating set. The codes
for the vertices of G with respect to W3 are

Since no single vertex constitutes a locating set for G, it follows that W3 is a minimum locating set for
this graph G and so loc(G) = 2.



Figure 12.18: Resolving sets in a graph G

Peter Slater described the usefulness of these ideas in connection with U.S. sonar and Coast Guard
Loran (long range aids to navigation) stations. We can think of a locating set of a connected graph G
as a set W of vertices in G so that each vertex in G is uniquely determined by its distances to the
vertices of W.

For every ordered set W = {w1, w2, …, wk} of vertices in a connected graph G of order n ≥ 2, the
only vertex of G whose code with respect to W has 0 in its ith coordinate is wi. So the vertices of W
necessarily have distinct codes. Since only vertices of G that are not in W have coordinates all of
which are positive, it is only these vertices that need to be examined to determine if their codes are
distinct. This implies that the locating number of G is at most n − 1. In fact, for every connected graph
G of order n ≤ 2,

Only one connected graph of order n ≤ 2 has locating number 1.

Theorem 12.12 A connected graph G of order n has locating number 1 if and only if G = Pn.

Proof. Let Pn = (v1, v2, …, vn). Since d(vi, v1) = i − 1 for 1 ≤ i ≤ n, it follows that {v1} is a
minimum locating set of Pn and so loc(Pn) = 1. For the converse, assume that G is a connected
graph of order n with locating number 1 and let W = {w} be a minimum locating set for G. For each
vertex v of G, cW(v) = d(v, w) is a nonnegative integer less than n. Since the codes of the vertices
o f G with respect to W are distinct, there exists a vertex u of G such that d(u, w) = n − 1.
Consequently, the diameter of G is n − 1. This implies that G = Pn.

At the other extreme, only one connected graph of order n ≥ 2 has locating number n − 1.

Theorem 12.13 A connected graph G of order n ≥ 2 has locati ng number n − 1 if and only if G =
Kn.

Proof. Assume first that G = Kn and let W be a minimum locating set for G. If u  W, then every
coordinate of cW(u) is 1. Therefore, every minimum locating set for G must contain all but one
vertex of G and so loc(G) = n − 1. For the converse, assume that G ≠ Kn. Then G contains two
vertices u and v with d(u, v) = 2. Let (u, x, v) be a u − v geodesic in G and let W = V(G) − {x, v}.
Since d(v, u) = 2 and d(x, u) = 1, it follows that cW(x) ≠ cW(v) and so W is a locating set.
Therefore, loc(G) ≤ n − 2.

As we mentioned, if G is a connected graph of order n ≥ 2, then 1 ≤ loc(G) ≤ n − 1. Furthermore,
we know exactly the graphs for which the two extreme values are attainable. If, in addition to the



order of G, we also know the diameter and maximum degree of G, then bounds for the locating
number of G can be improved.

Theorem 12.14 Let G be a nontrivial connected graph of order n ≥ 2, diameter d and maximum
degree Δ. Then

Proof. First, we establish the upper bound. Let u and v be vertices of G for which d(u, v) = d and
let (u = v0, v1, …, vd = v) be a u − v geodesic. Let

Since u  W and d(vi, u) = i for 1 ≤ i ≤ d, it follows that W is a locating set of cardinality n − d for G.
Thus loc(G) ≤ n − d.

Next, we consider the lower bound. Let loc(G) = k and let v  V(G) with deg v = Δ. Moreover, let
N(v) be the neighborhood of v and let W = {w1, w2, …, wk} be a locating set of G. Observe that if u 
N(v), then for each i, 1 ≤ i ≤ k, the distance d(u, wi) is one of the numbers d(v, wi), d(v, wi) + 1 or d(v,
wi) − 1 by Theorem 12.3. Moreover, since W is a locating set, cW(u) ≠ cW(v) for all u  N(v). Thus
there are three possible numbers for each of the k coordinates of cW(u). On the other hand, since it
cannot occur that d(u, wi) = d(v, wi) for all i (1 ≤ i ≤ k), it follows that there are at most 3k − 1 distinct
codes of the vertices in N(v) with respect to W. Therefore, |N(v)| = Δ ≤ 3k − 1, which implies that

Since loc(G) is an integer, loc(G) ≥ [log3 (Δ + 1)].

Since the path Pn, n ≥ 2, has maximum degree Δ = 2 and diameter d = n − 1, the inequalities in
(12.1) say that

and both bounds are sharp for Pn. Furthermore, the complete graph Kn has diameter 1 and locating
number n − 1, so the upper bound is attainable in this case. Each of the two bounds is sharp for other
graphs as well.

Let G be a connected graph of order n ≥ 2. Two vertices u and v of G are distance similar if d(u,
x) = d(v, x) for all x  V(G) − {u,v}. Two distinct vertices u and v are therefore distance similar if
either

(1) uv  E(G) and N(u) = N(v) or

(2) uv  E(G) and N[u] = N[v].

Distance similarity is an equivalence relation on V(G) (see Exercise 12.36). Consequently, V(G)
can be partitioned into k distinct distance similar equivalence classes, say V1, V2, …, Vk. For each
integer i (1 ≤ i ≤ k), the set Vi is either independent in G or induces a complete subgraph of G.



Necessarily, each locating set of G either contains all or all but one vertex in each equivalence
class V. Therefore,

Consider the graph G of Figure 12.19, which has order n = 11. Three of the distance similar
equivalence classes are V1 = {u1, w1}, V2 = {u2, w2} and V3 = {u3, w3}. Each of the remaining five
classes consists of a single vertex. Thus there are k = 8 equivalence classes and so loc(G) ≥ n − k =
3. We may assume that any locating set for G contains w1, w2 and w3. In fact, W = {w1, w2, w3} is a
locating set and consequently is a minimum locating set. Therefore, loc(G) = n − k. The codes for the
vertices of V(G) − W with respect to W are

Figure 12.19: The graphs G and H

Next, consider the graph H of order n = 9 of Figure 12.19. In this graph, V1 = {x1, y1} and V2 =
{x2, y2} are distance similar equivalence classes, while each of the remaining classes consists of a
single vertex. Thus, there are k = 7 equivalence classes and so loc(H) ≥ n − k = 2. Let W = {x1, x2}.
The codes for the vertices of V(G) − W with respect to W are

Since cW(y3) = cW(y4) and cW(y5) = cW(y6), the set W is not a locating set for H. On the other hand, if
W′ = {x1, x2, y3}, then W is a locating set and so loc(H) = 3. Therefore, loc(H) > n − k.

Exercises for Section 12.3

12.32 Determine loc(Cn) for n ≥ 3.

12.33 Determine loc(Ks,t) for 1 ≤ s ≤ t.

12.34 (a) Give an example of a connected graph of order n ≥ 3 (different from Pn and Kn) with
diameter d such that loc(G) = n − d.

(b) Give an example of a connected graph of order n ≥ 3 (different from Pn and Kn) with



maximum degree Δ such that loc(G) = [log3 (Δ + 1)].

12.35 Prove that for each pair k, n of integers with 1 ≤ k ≤ n − 1, there exists a connected graph G of
order n with loc(G) = k.

12.36 Let G be a connected graph. Show that distance similarity is an equivalence relation on V(G).

12.37 Determine the locating number of the graph G of Figure 12.20. Find a minimum locating set W
for G and indicate the code of each vertex of G with respect to W.

Figure 12.20: The graph G in Exercise 12.37

12.4 Excursion: Detour and Directed Distance

While the standard distance d(u, v) from a vertex u to a vertex v in a connected graph G is the length
of a shortest u − v path in G, it is by no means the only definition of distance. For two vertices u and v
in a connected graph G of order n, the detour distance D(u, v) from u to v is defined as the length of
a longest u − v path in G. A u − v path of length D(u, v) is called a u − v detour. For example, for the
graph G of Figure 12.21 d(u, v) = 3 while D(u, v) = 8. A u − v detour (drawn in bold) is also shown
in that figure.

Figure 12.21: Illustrating detour distance

As with standard distance, detour distance is also a metric on the vertex set of every connected
graph.

Theorem 12.15 Detour distance is a metric on the vertex set of every connected graph.

Proof. Let G be a connected graph. Since (1) D(u, v) ≥ 0, (2) D(u, v) = 0 if and only if u = v and
(3) D(u, v) = D(v, u) for every pair u, v of vertices of G, it remains only to show that detour
distance satisfies the triangle inequality.



Let u, v and w be any three vertices of G. Since the inequality D(u, w) ≤ D(u, v) + D(v, w) holds if
any two of these three vertices are the same vertex, we assume that u, v and w are distinct. Let P be a
u − w detour in G of length k = D(u, w). We consider two cases.

Case 1. v lies on P. Let P1 be the u − v subpath of P and let P2 be the v − w subpath of P. Suppose
that the length of P1 is s and the length of P2 is t. So s + t = k. Therefore,

Case 2. v does not lie on P. Since G is connected, there is a shortest path Q from v to a vertex of
P. Suppose that Q is a v − x path. Thus x lies on P but no other vertex of Q lies on P. Let r be the
length of Q. Thus r > 0 (see Figure 12.22).

Figure 12.22: A step in the proof of Case 2

Let the u − x subpath P′ of P have length a and the x − w subpath P″ of P have length b. Then a ≥ 0
and b ≥ 0. Therefore, D(u, v) ≥ a + r and D(v, w) ≥ b + r. So

establishing the triangle inequality.

The detour eccentricity, detour radius and detour diameter are defined as expected. Let G be a
connected graph and let v be a vertex of G. The detour eccentricity eD(v) of v is the maximum detour
distance from v to a vertex of G. The minimum detour eccentricity among the vertices of G is the
detour radius radD(G) of G and the maximum detour eccentricity is its detour diameter diamD(G).
There are upper and lower bounds for diamD(G) that are analogues (as are the proofs) to those given
for the standard diameter of G in Theorem 12.1.

Theorem 12.16 For every nontrivial connected graph G,

Proof. The definitions of radD(G) and diamD(G) give the inequality radD(G) ≤ diamD(G). Now let
u and v be two vertices of G such that D(u, v) = diamD(G) and let w be a vertex of G such that
eD(w) = radD(G). Since detour distance is a metric on V(G),

as desired.



Every pair a, b of positive integers can be realized as the detour radius and detour diameter,
respectively, of some connected graph provided a ≤ b ≤ 2a.

Theorem 12.17 For each pair a, b of positive integers with a ≤ b ≤ 2a, there exists a connected
graph G with

Proof. For a = b = k ≥ 1, the complete graph Kk+1 has the desired property. For a < b ≤ 2a, let G
be the graph of order b + 1 obtained by identifying a vertex v of Ka+1 and a vertex of Kb−a+1 (see
Figure 12.23 for a = 3 and b = 5). Since b ≤ 2a, it follows that b − a + 1 ≤ a + 1. Thus eD(v) = a.
Since there is a Hamiltonian path in G with initial vertex x for every vertex x  V(G) − {v}, it
follows that eD(x) = b. Hence radD(G) = a and diamD(G) = b.

Figure 12.23: The graph G of Theorem 12.17 for a = 2 and b = 5

For integers a and b with a < b ≤ 2a, each vertex in the graph G in the proof of Theorem 12.17 has
eccentricity a or b. So unlike ordinary eccentricity if k is an integer such that radD(G) < k <
diamD(G), there may not be a vertex x of G such that eD(x) = k.

We have now seen two definitions of distance in connected graphs, both of which are metrics on
the vertex set of the graph. We now turn to digraphs.

Let D be a connected digraph. For two vertices u and v of D, recall that the directed distance 
(u, v) from u to v is the length of a shortest directed u − v path in D. Actually, when we refer to a u −
v path in a digraph D, we always refer to a directed u − v path and when we refer to the distance from
a vertex u to a vertex v in D, we mean the directed distance from u to v. A u − v path of length (u, v)
is a u − v geodesic. The fact that D is connected does not guarantee the existence of a u − v path in D.
For this reason, when discussing distance in digraphs, we ordinarily assume that D is strong.
Typically, we take D to be a strong oriented graph. For example, for the strong tournament T of order
3 in Figure 12.24, (u, v) = 1. Since (v, u) = 2, however, it follows that (u, v) ≠ (v, u), that is,
this distance is not symmetric and is therefore not a metric on the vertex set of a nontrivial strong
oriented graph.

Figure 12.24: Directed distance in strong digraphs



Directed distance does satisfy the triangle inequality however. Let u, v and w be vertices of a
strong digraph D. Let P1 be a u − v geodesic and P2 a v − w geodesic in D. Then P1 followed by P2
produces a u − w walk W of length (u, v) + (v, w). By Theorem 7.2, D contains a u − w path
whose length is at most the length of W and so

For directed distance, the eccentricities of the vertices of a strong digraph are defined as
expected. Let D be a strong digraph and let v be a vertex of D. The eccentricity e(v) of v is the length
of a longest geodesic from v to a vertex of D. The minimum eccentricity among the vertices of D is its
radius rad(D) and the maximum eccentricity is its diameter diam(D).

To illustrate these concepts, let r and d be positive integers with r ≤ d and let Cr+1 be the directed
(r)-cycle, say Cr+1 =(u1, u2, …, ur+1, u1). Notice that e(ui) = r for 1 ≤ i ≤ r + 1. Next, let Pd =(v1, v2,
…, vd) be a path of order d. The digraph D is constructed from Cr+1 and Pd by joining every vertex of
Cr+1 to vi for 1 ≤ i ≤ d − r + 1 and joining vd to every vertex of Cr+1 (see Figure 12.25). Thus

In particular, this shows that the diameter of D can be more than twice its radius and so for directed
distance, there are no theorems analogous to Theorems 12.1 and 12.2 in this case.

Figure 12.25: A digraph D with rad(D) = r and diam(D) = d

Exercises for Section 12.4

12.38 (a) Give an example of a connected graph G of order 5 or more such that D(u, v) = d(u, v) for
every pair u, v of vertices of G.

(b) Determine all connected graphs G for which D(u, v) = d(u, v) for every pair u, v of



vertices of G.

12.39 Give an example of a connected graph G and a positive constant K such that D(u, v) = d(u,
v)+K for every pair u, v of distinct vertices of G.

12.40 Give an example of a connected graph G having the property that for every pair u, v of distinct
vertices of G, each u − v geodesic and u − v detour have only u and v in common.

12.41 Determine radD(G) and diamD(G) for G = Kn, Cn, Qn (n ≥ 3) and for G = Kr,s (2 ≤ r ≤ s).

12.42 Prove that |eD(u) − eD(v)| ≤ D(u, v) for every two vertices u and v in a connected graph D.

12.43 Prove that the detour center of every connected graph G lies in a single block of G.

12.44 Let G be a connected graph and define (u, v) = d(u, v) + D(u, v). Is  a metric on V(G)?

12.45 Let G be a connected graph and let d′ be any metric on V(G).

(a) Define radd′(G) and diamd′(G).

(b) Prove or disprove: radd′(G) ≤ diamd′(G) ≤ 2 radd′(G).

12.46 Let G be a connected graph with cut-vertices and let v, w  V(G). Prove or disprove:

(a) If eD(v) = radD(G), then v is a cut-vertex of G.

(b) If eD(w) = diamD(G), then w is not a cut-vertex of G.

12.47 For a given integer n ≥ 3, find all integers k with 1 ≤ k ≤ n − 1 for which there exists a
connected graph G of order n such that D(u, v) = k for every pair u, v of distinct vertices of G.

12.48 Give an example of an integer n ≥ 4 for which there exist two non-isomorphic graphs G1 and
G2 of order n such that d(u, v) + D(u, v) = n for every pair u, v of distinct vertices of both G1
and G2.

12.49 Prove that for every pair a, b of integers with 1 ≤ a ≤ b, there exists

(a) a connected graph F for which rad(F) = a and radD(F) = b;
(b) a connected graph H for which diam(H) = a and diamD(H) = b.

12.50 For vertices u and v in a strong digraph D, define ds(u, v) =  (u, v) + (v, u).

(a) Is this distance a metric on V(D)?
(b) Ask and answer a question of your own concerning this concept.

12.51 For vertices u and v in a strong digraph D, define dp(u, v) = (u, v) · (v, u). Is this distance
a metric on V(D)?

12.5 Exploration: Channel Assignment

Radio waves, which are electromagnetic waves propagated by antennas, have different frequencies.



When a radio receiver is tuned to a particular frequency, a specific signal can be accessed. In the
United States, it is the responsibility of the Federal Communications Commission (FCC) to decide
which frequencies are used for which purposes. It is also the FCC that licenses specific frequencies
to radio stations as well as call letters for the stations. AM (amplitude modulated) radio is in a band
of 550 kHz (kilohertz) to 1700 kHz which means that AM radio broadcasts in a frequency band of
550,000 to 1,700,000 cycles per second. The first radio broadcasts occurred around 1906. Frequency
allocation for AM radio began in the 1920s. Because radio technology was not highly developed
during that period, low frequencies for AM radio were appropriate then.

Perhaps the major inventor in the early days of radio was Edwin Armstrong (1890-1954). It was
Armstrong who in 1933 developed the complete FM (frequency modulated) system. All FM radio
stations transmit radio waves in a band of frequencies between 88 MHz (megahertz) and 108 MHz,
that is, the transmitter of an FM radio station oscillates at an assigned frequency between 88,000,000
and 108,000,000 cycles per second. Only FM radio stations are permitted to use these frequencies.
Certain frequencies above and below these are reserved for television stations. For example, the
band 54 MHz to 88 MHz is for channels 2 through 6, while the band 174 MHz to 220 MHz is for
channels 7 through 13.

The FM radio frequency band, which, as we said, begins at 88.0 MHz and ends at 108.0 MHz, is
divided into 100 channels, each having a width of 0.2 MHz (or 200 kHz). The frequency that is
identified with an FM radio station is the midpoint of its 200 kHz channel. For example, in the state of
Michigan, the FM radio station WVTI is located near the city of Holland and broadcasts on the
frequency 96.1 MHz, while the FM radio station WFAT located in the city of Portage broadcasts on
96.5 MHz. It is not uncommon for radio stations to give themselves names (actually nicknames). For
example, the station WVTI calls itself “the new I-96” and the nickname of WFAT is “the fat one.”
Each FM radio station is assigned a station class that depends on a number of factors, including its
antenna height and the effective radiated power of its signal. Five common station classes A, B1, B,
C1 and C are described in Figure 12.26. For each class, the maximum Effective Radiated Power
(ERP) of the signal, measured in kilowatts (kW), and the maximum antenna Height Above Average
Terrain (HAAT) of the station, measured in meters (m), are indicated in Figure 12.26 as well. The
station classes for FM radio stations WVTI and WFAT are shown in Figure 12.27.

Figure 12.26: Examples of FM station classes

Figure 12.27: ERP and HAAT of two stations



Channels assigned to FM radio stations depend not only on the effective radiated power of their
signals and the heights of their antennas but also on their distances from other stations. In particular,
two stations that share the same channel (called co-channel stations) must be separated by at least 115
kilometers (or 71 miles); however, the required separation depends on the classes of the two stations.
Two channels are first-adjacent, or simply adjacent, if their frequencies differ by 200 kHz, that is, if
they are consecutive on the FM radio dial. For example, FM stations on channels 105.7 MHz and
105.9 MHz are adjacent. The distance between two radio stations on adjacent channels must be at
least 72 kilometers (or 45 miles). Again, this distance varies according to the classes of the two
stations. Moreover, the distance between two radio stations whose channels differ by 400 kHz or 600
kHz (so-called second- or third-adjacent channels) must be at least 31 kilometers. The actual
minimum distance between stations on such channels is shown in Figure 12.28.

Since the FM station WFAT is a Class A station broadcasting on channel 96.5 MHz and WVTI is
a Class B station broadcasting on channel 96.1 MHz, they are second-adjacent station and the
distance between them is required to be at least 69 kilometers. This condition is met, though just
barely.

In general then, FM radio stations located within a certain proximity of one another must be
assigned distinct channels. The nearer two stations are to each other, the greater the difference must
be in their assigned channels. The task of efficiently allocating channels to transmitters is called the
Channel Assignment Problem.

The use of graph theory to study the Channel Assignment Problem dates back to at least 1970. In
1980 William Hale provided a model of the Channel Assignment Problem. Most often the Channel
Assignment Problem has been

Figure 12.28: Required distance (in kilometers) between FM radio stations

modeled as a graph coloring problem, where (1) the transmitters are the vertices of a graph, (2) two
vertices (transmitters) are adjacent if they are sufficiency close to each other, (3) the colors of the
vertices are the channels assigned to the transmitters and (4) some sort of minimum separation rule is
stipulated, that is, for every pair of colors, there is a minimum allowable distance between two
distinct vertices assigned these colors.

We consider one of these models that was inspired by the Channel Assignment Problem. For a



connected graph G of order n and an integer k with 1 ≤ k ≤ diam(G), a radio k-coloring of G is a
function c : V(G) → N for which

for every two distinct vertices u and v of G. For k = 2, a radio 2-coloring then requires that

for every two distinct vertices u and v of G. This says that
(1) the colors assigned to adjacent vertices must differ by at least 2,
(2) the colors assigned to vertices whose distance is 2 must differ and
(3) there is no restriction on colors assigned to vertices whose distance is 3 or more.

A radio 2-coloring of a graph H is shown in Figure 12.29.
The value rck(c) of a radio k-coloring c of a connected graph G is the maximum color assigned to

a vertex of G, while the radio k-chromatic number rck(G) of G is min{rck(c)} over all radio k-
colorings c of G. A radio k-coloring c of G is a minimum radio k-coloring if rck(c) = rck(G). For any
minimum radio k-coloring c of a connected graph, there are necessarily vertices u and v such that c(u)
= 1 and c(v) = rck(c).

Figure 12.29: A radio 2-coloring of a graph

For the radio 2-coloring c of the graph H of Figure 12.29, rc2(c) = 7. However, the radio 2-
chromatic number of H is not 7. A radio 2-coloring having value 6 is shown in Figure 12.30. In fact,
rc2(H) = 6.

Figure 12.30: A minimum radio 2-coloring of a graph

Example 12.18 For the graph H of Figure 12.29, rc2(H) = 6.

Solution. The radio 2-coloring given in Figure 12.30 has a value of 6 and so rc2(H) ≤ 6. Assume,



to the contrary, that there is a radio 2-coloring of H using only the colors 1, 2, 3, 4, 5. Since the
vertices of degree 3 in H form a triangle, they must be colored 1, 3, 5. Let y be the vertex colored 3
and let v be the end-vertex of H that is adjacent to y (see Figure 12.31). Since |c(v) − c(y)| ≥ 2 and
1 ≤ c(v) ≤ 5, it follows that either c(v) = 1 or c(v) = 5. However, there is a contradiction in both
cases since d(v, x) = d(v, w) = 2, implying that c(v) ≠ 1 and c(v) ≠ 5.

Figure 12.31: A step in showing rc2(H) = 6 in Example 12.18

There are some values of k for which radio k-colorings are well-studied parameters. For k = 1, a
radio 1-coloring of a connected graph G requires that

for every two distinct vertices u and v of G. This says that different colors must be assigned to
adjacent vertices and there is no restriction on vertices whose distance is 2 or more. However, this is
the standard definition of a proper vertex coloring and shows that radio k-coloring is a generalization
of standard vertex coloring.

Radio 2-colorings have also been studied and are also referred to as labelings at distance 2 and
L(2, 1)-labelings. For connected graphs of diameter d, a radio d-coloring of G is also called a radio
labeling. More specifically, a radio labeling of a connected graph G is a function c : V(G) → N with
the property that

for every two distinct vertices u and v of G. Since d(u, v) ≤ diam(G) for every two vertices u and v of
G, it follows that no two vertices are colored (or labeled) the same in a radio labeling.

For a radio labeling c of a connected graph G, the value rn(c) of c is the maximum label (or color)
assigned to a vertex of G, while the radio number rn(G) of the graph G is the minimum value of a
radio labeling of G. A radio labeling c with rn(c) = rn(G) is a minimum radio labeling. To illustrate
these concepts, we consider the following example.

Example 12.19 Determine rn(G) for the the graph G of Figure 12.32(a).



Figure 12.32: A radio labeling of a graph

Solution. Since diam(G) = 3, it follows that in any radio labeling of G, the labels of every two
adjacent vertices must differ by at least 3 and the labels of every two vertices whose distance is 2
must differ by at least 2. The colors of two vertices can differ by exactly 1 only if their distance is
3. Thus the labeling of G given in Figure 12.32(b) is a radio labeling. Consequently, rn(G) ≤ 8. On
the other hand, rn(G) ≠ 7, for assume, to the contrary, that there is a radio labeling c of G with rn(c)
= rn(G) = 7. Since exactly two of the integers 2, 3, 4, 5, 6 are not used in this labeling, either three
consecutive integers in {1, 2, …, 7} are labels for the vertices of G or two pairs of consecutive
integers are labels, both of which are impossible since u and v are the only two vertices of G
whose distance is 3. Therefore, rn(G) = 8 and the labeling given in Figure 12.32(b) is a minimum
radio labeling.

Let G be a connected graph with V(G) = {v1, v2, …, vn} and d = diam (G). Let c be a radio
labeling of G. The complementary labeling  of c is defined by

for all i with 1 ≤ i ≤ n. The complementary labeling of the labeling of the graph G in Figure 12.32(b)
is shown in Figure 12.33.

Figure 12.33: illustrating a complementary labeling

Since | (vi) − (vj)| = | (vi) − c(vj)| for all i, j with 1 ≤ i < j ≤ n, we have the following
observation.

Theorem 12.20 Let G be a connected graph. If c is a radio labeling of G, then  is also a radio
labeling of G.

Hence if c is a minimum radio labeling of a connected graph G, then so too is  and rn( ) = rn(c).

Exercises for Section 12.5

12.52 Show that if there exists a radio labeling of a graph G having value k, then there exists a radio
labeling of G having value k + 1.

12.53 Determine rn(Kn) for n ≥ 3.

12.54 Determine rck(Kr,s), where 1 ≤ r ≤ s, for k = 1, 2.



12.55 Determine rck(Pn) for 3 ≤ n ≤ 7 and 1 ≤ k ≤ n − 1.

12.56 Determine rck(Cn) for 3 ≤ n ≤ 7 and 1 ≤ k ≤ n/2.

12.6 Exploration: Distance Between Graphs

Two graphs G and H are, of course, either isomorphic or they are not. For two graphs G and H, we
often ask (and are satisfied with the answer to) the question:

Since the answer is obvious if G and H have different orders or different sizes, the question is only
interesting if G and H have the same order and same size. Once the question is answered, one way or
the other, we probably just go on to consider other questions. However, if the answer is no, that is, if
G and H are not isomorphic, other questions may occur to us. For example, showing that G and H are
not isomorphic may have been quite easy (as the graphs were clearly different) or extraordinarily
difficult (as the graphs were strikingly similar). This suggests the problem of comparing two graphs,
at least two graphs of the same order and same size. That is, how close to being isomorphic are two
non-isomorphic graphs? There are several ways of answering this. We look at one of these.

Let G and H be two graphs of order n and size m for positive integers n and m, where then 
. We define a distance d(G, H) between them, called the rotation distance. If G ≅ H, then

define d(G, H) = 0. Suppose then that G  H. We say that G can be transformed into H by an edge
rotation (or G can be rotated into H) if G contains distinct vertices u, v and w such that uv  E(G),
uw  E(G) and H ≅ G − uv + uw. For example, the graph G of Figure 12.34 can be rotated into H but
G cannot be rotated into F.

Figure 12.34: Edge rotations

For two graphs G and H of the same order and same size, the rotation distance d(G, H) between
G and H is defined as the smallest nonnegative integer k for which there exists a sequence G0, G1, …,
Gk of graphs such that G0 ≅ G, Gk ≅ H and Gi can be rotated into Gi+1 for i = 0, 1, …, k − 1. Thus for
the graphs G, H and F of Figure 12.34, d(G, H) = 1 and d(G, F) = 2. For the graphs G and H′ of
Figure 12.35, d(G, H′) = 3.



Figure 12.35: Graphs G and H′ with rotation distance 3

The rotation distance is a metric on the set of all graphs having a fixed order and fixed size and
provides a measure of how close two graphs are to being isomorphic – the smaller the distance, the
closer the graphs are to being isomorphic.

Another concept occurs quite naturally when discussing this distance. For two nonempty graphs G1
and G2 (not necessarily having the same order or same size), a graph G is called a greatest common
subgraph of G1 and G2 if G is a graph of maximum size that is isomorphic to both an edge-induced
subgraph of G1 and an edge-induced subgraph of G2. The graphs G1 and G2 of Figure 12.36 have three
distinct greatest common subgraphs, namely G, G′ and G″.

Figure 12.36: Greatest common subgraphs

There is an upper bound for the rotation distance between two graphs in terms of the size of a
greatest common subgraph of these graphs.

Theorem 12.21 Let G and H be graphs of order n and size m for positive integers n and m and
let F be a greatest common subgraph of G and H, where F has size s. Then

Proof. If s = m, then G = H and d(G, H) = 0. Hence we may assume that 1 ≤ s < m. Let G* and H*
be edge-induced subgraphs of G and H, respectively, such that G* ≅ H* ≅ F. Furthermore, assume
that V(G) = V(H) = {v1, v2, …, vn} and that the subgraphs G* and H* are identically labeled. Since
G  H, the graph G contains an edge vivj that is not in H and H contains an edge vpvq that is not in
G. Suppose that {vi, vj}  {vp, vq} ≠ Ø, say vj = vp. Then G can be rotated into G1 = G − vivj + vjvq
and d(G, G1) = 1. Next, suppose that {vi, vj}  {vp, vq} = Ø.

Suppose that at least one of vi and vj is not adjacent in G to at least one of vp and vq, say vivp 
E(G). Then G can be rotated into G′ = G − vivj + vivp and G′ can be rotated into G″ = G′ − vivp + vpvq
and so d(G, G″) ≤ 2.

If, on the other hand, each of vi and vj is adjacent to both vp and vq, then G can be rotated into G1 =
G − vivp + vpvq and G1 can be rotated into G2 = G1 − vivj + vivp and so d(G, G2) ≤ 2.

In any case, G can be transformed into H′ = G − vivj + vpvq by at most two rotations and so d(G,
H′) ≤ 2. The graphs H′ and H have s + 1 edges in common. Continuing in this manner, we have d(G,



H) ≤ 2(m − s).

How a collection of graphs, all of the same order and same size, are related to each other in terms
of rotation can itself be modeled by a graph. Let S = {G1, G2, …, Gk} be such a set. Then the rotation
distance graph D(S) of S has S as its vertex set and vertices (graphs) Gi and Gj are adjacent if d(Gi,
Gj) = 1. The distance graph D(S) is shown for the set S = {G1, G2, G3, G4} of Figure 12.37.

A graph G is a rotation distance graph if G ≅ D(S) for some set S of graphs. Consequently, the
graph G = K4 − e of Figure 12.37 is a rotation distance graph.

Figure 12.37: A rotation distance graph

Exercises for Section 12.6

12.57 For each positive integer k, show, with justification, that there exist two graphs G and H such
that d(G, H) = k.

12.58 Give an example of two graphs G and H that have a unique greatest common subgraph.

12.59 For each positive integer k, give an example of two graphs G and H that have exactly k
greatest common subgraphs.

12.60 Show that the bound in Theorem 12.21 is sharp.

12.61 Show that K3 is a rotation distance graph.

12.62 Show that C4 is a rotation distance graph.

12.63 Define another distance d′ between graphs of a fixed order and fixed size and give an example
of two graphs G and H for which d′(G, H) does not equal the rotation distance between these
graphs.



Chapter 13

Domination

13.1 The Domination Number of a Graph

For a vertex v of a graph G, recall that a neighbor of v is a vertex adjacent to v in G. Also, the
neighborhood (or open neighborhood) N(v) of v is the set of neighbors of v. The closed
neighborhood N[v] is defined as N[v] = N(v) {v}. A vertex v in a graph G is said to dominate itself
and each of its neighbors, that is, v dominates the vertices in its closed neighborhood N[v]. Therefore,
v dominates 1 + deg v vertices of G.

A set S of vertices of G is a dominating set of G if every vertex of G is dominated by some vertex
in S. Equivalently, a set S of vertices of G is a dominating set of G if every vertex in V(G) − S is
adjacent to some vertex in S. Consider the graph G of Figure 13.1. The sets S1 = {u, v, w} and S2 =
{u1, u4, v1, v4}, indicated by solid vertices, are both dominating sets in G.

Figure 13.1: Two dominating sets in a graph G

A minimum dominating set in a graph G is a dominating set of minimum cardinality. The
cardinality of a minimum dominating set in G is called the domination number of G and is denoted
by γ(G). (The notation used to denote the domination number of a graph is the same as that used for its
genus. However, this is the common notation in both instances. There should be no confusion as
domination and genus will not occur in the same discussion.)

The topic of domination began with Claude Berge in 1958 and Oystein Ore in 1962, with Ore
actually using that term. However, it wasn’t until 1977, following an article by Ernie Cockayne and
Stephen Hedetniemi, that domination became an area of study by many. In 1998, a book devoted to
this subject was written by Teresa Haynes, Hedetniemi and Peter Slater. Well over 2000 articles
have been written on domination.



Since the vertex set of a graph is always a dominating set, the domination number is defined for
every graph. If G is a graph of order n, then 1 ≤ γ(G) ≤ n. A graph G of order n has domination
number 1 if and only if G contains a vertex v of degree n − 1, in which case {v} is a minimum
dominating set; while γ(G) = n if and only if G = n, in which case V(G) is the unique (minimum)
dominating set.

Let’s return to the graph G of Figure 13.1. We saw that the set S1 = {u, v, w} is a dominating set
for G. Therefore, γ(G) ≤ 3. To show that the domination number of G is actually 3, it is required to
show that there is no dominating set with two vertices. Notice that the order of G is 11 and that the
degree of every vertex of G is at most 4. This means that no vertex can dominate more than 5 vertices
and that every two vertices dominate at most 10 vertices. That is, γ(G) > 2 and so γ(G) = 3.

Let’s look at a practical example involving domination. Figure 13.2 shows a portion of a city,
consisting of six city blocks, determined by three horizontal streets and four vertical streets. A
security protection agency has been retained to watch over the street intersections. A security guard
stationed at an intersection can observe the intersection where he or she is located as well as all
intersections up to one block away in straight line view from this intersection. The question is: What
is the minimum number of security officers needed to guard all 12 intersections? Figure 13.2 shows
four intersections where security guards can be placed (labeled by SG) so that all 12 intersections are
under observation.

Figure 13.2: A city map

This situation can be modeled by the graph G of Figure 13.3. The graph G is actually the Cartesian
product P3 × P4, which is a bipartite graph. The street intersections are the vertices of G and two
vertices are adjacent if the vertices represent intersections on the same street at opposite ends of a
city block. Looking for the smallest number of security guards in the city of Figure 13.2 is the same
problem as seeking the domination number of the graph G in Figure 13.3. The solid vertices in Figure
13.3 correspond to the placement of security officers in Figure 13.2.

Figure 13.3: A graph modeling a city map

Example 13.1 For the graph G in Figure 13.3, γ(G) = 4.

Solution. Since the four solid vertices in Figure 13.3 form a dominating set of G, it follows that
γ(G) ≤ 4. To verify that γ(G) ≥ 4, it is necessary to show that there is no dominating set with three



vertices in G.
The graph G has 12 vertices, two of which have degree 4 and six have degree 3. The remaining

four vertices have degree 2. Therefore, there are two vertices that dominate five vertices each and six
vertices that dominate four vertices each. Conceivably, then, there is some set of three vertices that
together dominate all 12 vertices of G. However, we have already noticed that G is bipartite and so
its vertices can be colored with two colors, say red (R) and blue (B). Without loss of generality, we
can assume that the vertices of G are colored as in Figure 13.4. Notice that the neighbors of each
vertex have a color that is different from the color assigned to this vertex.

Figure 13.4: The graph P3 × P4

Assume, to the contrary, that G has a dominating set S containing three vertices. At least two
vertices of S are colored the same. If all three vertices of S are colored the same, say red, then only
three of the six red vertices will be dominated. Therefore, exactly two vertices of S are colored the
same, say red, with the third vertex colored blue. If the blue vertex of S has degree at most 3, then it
can dominate at most three red vertices and S dominates at most five red vertices of G, which is
impossible. Hence S must contain x (see Figure 13.4) as its only blue vertex. Since y and z are the
only two red vertices not dominated by x, it follows that S = {x, y, z}. However, u and v are not
dominated by any vertex of S, which cannot occur. Therefore, γ(G) = 4.

Showing that γ(P3 × P4) = 4 illustrates the general procedure for establishing the domination
number of a graph. To show that γ(G) = k, say, for some graph G, we need to find a dominating set for
G with k vertices (which shows that γ(G) ≤ k) and, in addition, we must verify that every dominating
set of G must contain at least k vertices (which shows that γ(G) ≥ k).

As we have mentioned, a graph G of order n has domination number 1 if and only if G contains a
vertex v of degree n − 1. Thus all complete graphs and all stars have domination number 1. The next
example provides the domination numbers of graphs belonging to another familiar class.

Example 13.2 γ(Cn) = n/3  for n ≥ 3.

Solution. First, write n = 3q + r, where 0 ≤ r ≤ 2. Since Cn is 2-regular, every vertex of Cn
dominates exactly three vertices. Therefore, any q vertices of Cn dominate at most 3q vertices of
Cn. If r = 0, then this says that γ(Cn) ≥ q = [n/3]. If r = 1 or r = 2, then γ(Cn) ≥ q + 1 = n/3 .

We now show that γ(Cn) ≤ n/3 , where n = 3q + r. Suppose first that r = 0. Let S be the set
consisting of any vertex v of Cn and every third vertex of Cn begining with v as we proceed cyclically
about Cn in some direction. Then every vertex of Cn is dominated by exactly one vertex of S. Since S



contains exactly q vertices, γ(Cn) ≤ q = n/3 . Next suppose that r = 1 or r = 2. Now let S be the set
consisting of any vertex v of Cn and every third vertex of Cn begining with v as we proceed cyclically
about Cn in some direction until we have a total of q + 1 vertices (see Figure 13.5). Then, every
vertex of Cn is dominated by at least one vertex of S. So S is a dominating set of Cn and γ(Cn) ≤ q +1
= n/3 . In both cases, γ(Cn) = n/3 .

Figure 13.5: A minimum dominating set in Cn for 6 ≤ n ≤ 8

In the following result, both a lower bound and an upper bound are established for the domination
number of a graph, each in terms of the order and the maximum degree of the graph.

Theorem 13.3 If G is a graph of order n, then

Proof. We have already mentioned that each vertex v in a graph G of order n dominates 1 + deg v
vertices. If v is chosen so that deg v = Δ(G), then v dominates 1 + Δ(G) vertices, that is, v
dominates all but n − (1 + Δ(G)) vertices of G. Since each of the n − (1 + Δ(G)) vertices not
dominated by v dominates itself, there is certainly a dominating set for G with n − (1 + Δ(G)) + 1 =
n − Δ(G) vertices. So

Next, suppose that γ(G) = k. Let S = {v1, v2, …, vk} be a minimum dominating set for G. Since vi
dominates 1 + deg vi vertices of G for 1 ≤ i ≤ k and the vertices of S dominate all n vertices of G,

However, 1 + deg vi ≤ 1 + Δ(G) for 1 ≤ i ≤ k. So

and k(1 + Δ(G)) ≥ n. Since γ(G) = k, it follows that



as desired.

Both bounds for γ(G) in Theorem 13.3 are sharp. For positive integers r and n with r ≤ n − 2, let
G consist of n − r components, one of which is the star K1, r and each remaining component is an
isolated vertex, that is, G = K1, r  (n − r − 1)K1. The central vertex of K1, r dominates all vertices of
K1, r and each isolated vertex can only be dominated by itself. Thus γ(G) = n − r = n − Δ(G).

We show that the lower bound is sharp even for regular graphs. The graph  consists of n
isolated vertices; so G is 0-regular and Δ(G) = 0. Thus

For n even, let n = 2k, where k ≥ 1 and let G = kK2, that is, G consists of k components, all
isomorphic to K2. Thus G is 1-regular and Δ(G) = 1. The two vertices of each component are
dominated by either vertex in the component and so

We have seen that γ(Cn) = n/3 . So if n = 3k for some k ≥ 1, then γ(Cn) = k. Since Cn is 2-regular,
Δ(G) = 2 and

Let’s turn to the 3-regular graph G of order 20 shown in Figure 13.6. Since {u0, u4, v0, v4, w0, w4}
is a dominating set of G, it follows that γ(G) ≤ 6. Next, let U = {u1, u2, …, u5} and consider the
induced subgraph F = G[U] of G. Since each vertex of G dominates four vertices and |U| = 5, at least
two vertices from U  {u0} are needed to dominate the vertices of U. Applying this argument to the
other two subgraphs isomorphic to F in G, we see that γ(G) ≥ 3 · 2 = 6. Hence for the graph G of
Figure 13.6,



Figure 13.6: A 3-regular graph of order 20

Let S be a dominating set in a graph G. Then, of course, every vertex of G is dominated by at least
one vertex of S. It may occur that the vertices dominated by some vertex v of S are also dominated by
some other vertex of S. In this case, v is not needed to dominate the vertices of G, that is, S − {v} is
also a dominating set for G. In other words, v can be deleted from S and the remaining set is a
dominating set. We can continue to delete vertices from S in this manner until we have found a subset
S′ of S such that S′ is a dominating set for G and no proper subset of S′ is a dominating set. This does
not mean that S′ is a minimum dominating set, however.

If S is a dominating set of a graph G and no proper subset of S is a dominating set of G, then S is
called a minimal dominating set. Every minimum dominating set is minimal, but the converse is not
true in general. For example, consider the graph C8 in Figure 13.7. The set S = {v1, v2, v5, v6} is a
dominating set. If we were to delete any vertex from S, however, then the resulting set is not a
dominating set, that is, S is a minimal dominating set. Since γ(C8) = 8/3  = 3, it follows that S is not a
minimum dominating set of C8. The dominating set S2 in the graph G of Figure 13.1 is also a minimal
dominating set that is not a minimum dominating set.

Since each isolated vertex in a graph G can only be dominated by itself,

Figure 13.7: A minimal dominating set in C8

every dominating set in G must contain its isolated vertices. For graphs without isolated vertices,
however, there are always two disjoint dominating sets.

Theorem 13.4 Let G be a graph without isolated vertices. If S is a minimal dominating set of G,



then V(G) − S is a dominating set of G.

Proof. We show that V(G) − S is a dominating set of G. Let v  V(G). If v  V(G) − S, then v is
dominated by itself. Thus we may assume that v  V(G) − S and so v  S. We show that v is
dominated by some vertex in V(G) − S. Assume, to the contrary, that v is not dominated by any
vertex in V(G) − S. Therefore, v is not adjacent to any vertex in V(G) − S. Since S is a dominating
set of G, each vertex in V(G) − S is adjacent to some vertex in S different from v. Thus, each vertex
in V(G) − S is dominated by some vertex in S − {v}. On the other hand, G has no isolated vertices
and so v is not an isolated vertex of G. Since v is not adjacent to any vertex in V(G) − S, the vertex
v must be adjacent to some vertex in S − {v}. Thus v is dominated by some vertex in S − {v}.
Therefore, S − {v} is a dominating set of G, which contradicts the fact that S is a minimal
dominating set of G.

For graphs without isolated vertices, we now present an upper bound for the domination number
of a graph in terms of its order.

Corollary 13.5 If G is a graph of order n without isolated vertices, then

Proof. Let S be a minimum dominating set of G. By Theorem 13.4, V(G) − S is also a dominating
set of G. Since |S| + |V(G) − S| = n and |S| ≤ |V(G) − S|, it follows that γ(G) = |S| ≤ n/2.

We have seen that a vertex u dominates a vertex v in a graph if either u = v or v is a neighbor of u.
However, there are a number of variations of domination. We consider one of the best known of
these. In this variation, a vertex u dominates a vertex v only if v is a neighbor of u. (In this context, a
vertex does not dominate itself.) This type of domination is called total domination. A set S of
vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to at least one
vertex of S. Therefore, a graph G has a total dominating set if and only if G contains no isolated
vertices. Furthermore, if S is a total dominating set of G, then the subgraph G[S] induced by S
contains no isolated vertices. The minimum cardinality of a total dominating set is the total
domination number γt(G) of G. A total dominating set of cardinality γ t(G) is a minimum total
dominating set for G. For example, for the graph G of Figure 13.1, which is redrawn in Figure 13.8,
the set S = {u1, v, w, v4} is a minimum total dominating set of G and so γt(G) = 4.



Figure 13.8: A minimum total dominating set in a graph

In Example 13.2, we saw that γ(Cn) = n/3  for n ≥ 3. We now determine γt(Cn).

Example 13.6 For n ≥ 3,

Solution. Let Cn = (v1, v2, …, vn, vn + 1 = v1). Since Cn is 2-regular, every vertex of Cn dominates
exactly two vertices of Cn in this case, namely its two neightbors. Therefore, γt(Cn) ≥ n/2 .
Suppose first that n  2 (mod 4). We consider three cases.

Case 1. n ≡ 0 (mod 4). Thus n = 4k ≥ 4. Then {v1, v2, v5, v6, …, v4k  − 3, v4k  −2} is a total
dominating set of 2k = n/2 vertices.

Case 2. n ≡ 1 (mod 4). Thus n = 4k + 1 ≥ 5. Then {v1, v2, v5, v6, …, v4k  − 3, v4k  − 2, v4k  + 1} is a
total dominating set of 2k + 1 = n/2  vertices.

Case 3. n ≡ 3 (mod 4). Thus n = 4k + 3 ≥ 3. Then {v1, v2, v5, v6, …, v4k  + 1, v4k  + 2} is a total
dominating set of 2k + 2 = n/2  vertices.

Therefore, if n  2 (mod 4), then γt(Cn) = n/2 . It remains to show that γt(Cn) = (n + 2)/2 if n ≡ 2
(mod 4). Then n = 4k + 2 for some positive integer k. Since {v1, v2, v5, v6, …, v4k  + 1, v4k  + 2} is a
total dominating set with 2k + 2 = (n + 2)/2 vertices, it follows that γt(Cn) ≤ (n + 2)/2. Therefore,
γt(Cn) = n/ 2 or γt(Cn) = (n + 2)/2. Assume, to the contrary, that γ t(Cn) = n/2 = 2k + 1. Let S be a
minimum total dominating set of Cn.

We make some observations about the set S. First, let vi, vi + 1, vi + 2, vi + 3 (1 ≤ i ≤ n) be four
consecutive vertices on Cn, where the addition in the subscripts is performed modulo n. The vertex vi

+ 1 can be dominated only by vi or vi + 2, while vi + 2 can be dominated only by vi + 1 or vi +3. Let

From our observation, |Si| ≥ 2 and there exist vr, vt  Si, where r is even and t is odd. In particular,
there exists an integer j with 1 ≤ j ≤ n such that vj, vj + 1  S. This implies that vj − 2, vj −1, vj + 2, vj +3 
S. Let

Then |S′| = (4k + 2) − 6 = 4(k − 1). Hence S contains at least 2(k − 1) vertices of S′ and 4 vertices of
{vj − 2, vj −1,.., vj + 3}. However then, |S| ≥ 2(k − 1) + 4 = 2k + 2, a contradiction. Therefore, γt(Cn) =
(n + 2)/2 if n ≡ 2 (mod 4).

Minimum total dominating sets are indicated for Cn, 6 ≤ n ≤ 9, in Figure 13.9.



Figure 13.9: Minimum total dominating sets for Cn, 6 ≤ n ≤ 9

Since every total dominating set of a graph G contains at least two vertices,

for every graph G of order n containing no isolated vertices. The lower bound in (13.1) can be
attained if G is a star or a double star, while the upper bound in (13.1) is attainable if G = kK2 for a
positive integer k.

There are bounds for the total domination number of a graph (without isolated vertices) in terms of
of its domination number.

Theorem 13.7 For every graph G containing no isolated vertices,

Proof. Since every total dominating set in G is also a dominating set, γ(G) ≤ γt(G). It remains to
show that γt(G) ≤ 2γ(G). Let S = {v1, v2, …, vk} be a minimum dominating set of G. Each vertex in
V(G) − S is therefore adjacent to some vertex of S. Since G contains no isolated vertices, each
open neighborhood N(vi) is nonempty. Now let ui  N(vi) (1 ≤ i ≤ k) and let S′ = {u1, u2, …, uk}.
Thus the vertices of S are dominated by the vertices of S′. Therefore, the set S  S′ is a total
dominating set of G. Hence γt(G) ≤ |S  S′| ≤ 2|S| = 2γ(G).

Both bounds in Theorem 13.7 are sharp. For example, the domination number and total domination
number of every double star is 2. For the graph G of Figure 13.10, let S = {v1, v2, v3, v4, v5} and S′ =
{u1, u2, u3, u4, u5}. Then S is a minimum dominating set of G, while S  S′ is a minimum total
dominating set. Therefore, γ(G) = 5 and γt(G) = 10.



Figure 13.10: A graph G with γt(G) = 2γ(G)

Corollary 13.5 states that the domination number of a graph G of order n having no isolated
vertices is at most n/2. For total domination, Ernie Cockayne, Robyn Dawes and Stephen Hedetniemi
showed that the best upper bound of this type is 2n/3.

Theorem 13.8 If G is a connected graph of order n ≥ 3, then

The graph G of Figure 13.10 also illustrates the sharpness of the bound in Theorem 13.8.

Exercises for Section 13.1

13.1 For the graph G of Figure 13.11, determine

(a) the domination number of G,
(b) the total domination number of G.

13.2 For the graph G of Figure 13.12, determine

Figure 13.11: The graph G in Exercise 13.1

(a) the domination number of G,
(b) the total domination number of G.



Figure 13.12: The graph in Exercise 13.2

13.3 Determine the domination number and the total domination number for each of the following
graphs.

(1) Kn, n ≥ 2, (2) Pn, n ≥ 2, (3) Ks, t (4) Q3, (5) the Petersen graph.

13.4 For each positive integer n, show that there exists a connected graph G of order n such that

(a) γ(G) = n − Δ(G), (b) γ(G) = n/(1 + Δ(G)).

13.5 Give an example of

(a) a graph G of some order n, without isolated vertices and with Δ(G) ≤ n − 2 and containing
a minimum dominating set S such that for each v in S, there is no w in V(G) − S such that
N(w)  S = {v}.

(b) a graph G of odd order n ≥ 9 without isolated vertices having the maximum possible
domination number.

13.6 Prove for each pair k, n of integers with 1 ≤ k ≤ n that there exists a graph G of order n with
γ(G) = k.

13.7 Prove for each pair k, n of integers with 1 ≤ k ≤ n/2 that there exists a connected graph G of
order n with γ(G) = k.

13.8 Give an example of a minimal dominating set that is not a minimum dominating set in each of
the following graphs

(a) P9, (b) the graph G in Figure 13.11 (see Exercise 13.1).

13.9 Prove that if every two vertices in a dominating set S of a graph G are not adjacent, then S is
necessarily a minimal dominating set but not necessarily a minimum dominating set.

13.10 Show that there exists a graph G and a minimal dominating set S of G such that |S| − γ(G) ≥ 2.

13.11 (a) Prove that if G is a graph of order n ≥ 2, then 3 ≤ γ(G)+γ( ) ≤ n +1.

(b) Show for each integer n ≥ 2 that there exists a graph G of order n such that γ(G) + γ( ) =
3.

(c) Show for each integer n ≥ 2 that there exists a graph G of order n such that γ(G) + γ( ) =
n + 1.

13.12 Prove that if G is a graph with γ(G) ≥ 3 and γ( ) ≥ 3, then diam G = 2. [Hint: First show that
G must be connected.]

13.13 For each integer k ≥ 2, give an example of a connected graph G for which γ(G) = γt(G) = k.

13.14 For each positive integer k, give an example of a connected graph G for which γ(G) = k and
γt(G) = 2k.

13.15 Give an example of a connected graph G for which γt(G) = 1.5γ(G).

13.16 For each integer n ≥ 3 with n ≡ 0 (mod 3), give an example of a connected graph G of order n



for which γt(G) = 2n/3.

13.2 Exploration: Stratification

We have seen examples where the vertex set of a graph has been divided into classes in some
manner. This might be as fundamental as separating the vertices into even and odd vertices or perhaps
distinguishing the vertices that are cut-vertices from those that are not. The best known example of
this, however, occurs with graph coloring, when the vertex set of a graph is partitioned into
independent sets in some manner.

A graph G whose vertex set has been partitioned in some manner is referred to as a stratified
graph. If V(G) is partitioned into k subsets, say V1, V2, …, Vk, then G is a k-stratified graph and
these subsets are called the strata or the color classes of G. Unlike vertex coloring, no condition is
placed on the subsets Vi, 1 ≤ i ≤ k. If G is 2-stratified, then we commonly color the vertices of one
color class red and those of the other color class blue. For a given graph G, a partition of the vertices
of G (that is, a coloring of the vertices of G) is called a stratification of G (or a k-stratification of G
if the partition is into k subsets). For example, for the graph G of Figure 13.13, two 2-stratifications
G1 and G2 of G are shown, where the solid vertices represent red vertices and the open vertices
represent blue vertices.

Figure 13.13: Two 2-stratifications of a graph

Two k-stratified graphs G and H are isomorphic if there exists a bijective function  : V(G) →
V(H) such that

(1) u and v are adjacent in G if and only if (u) and (v) are adjacent in H and

(2) x and (x) are colored the same for all x  V(G).

The function  is then called a color-preserving isomorphism.
In this context, a red-blue coloring of a graph G is an assignment of the colors red and blue to the

vertices of G, one color to each vertex of G. In a red-blue coloring of G, it may occur that every
vertex is red or that every vertex is blue. If there is at least one vertex of each color, then the red-blue
coloring produces a 2-stratification of G.

The study of stratified graphs was initiated in the 1990s by Reza Rashidi and Naveed Sherwani
when it was observed that it was desirable to use graphs whose vertex sets are partitioned into
classes in the design of algorithms to solve multilayer routing problems that occur when transistors
are being assembled in Very Large Scale Integrated (VLSI) circuit chips.



There is a close connection between domination in graphs and stratification of graphs, in
particular 2-stratification of graphs. Let F be a 2-stratified graph. Therefore, F contains one or more
red vertices and one or more blue vertices. One of the blue vertices of F is selected as the root of F,
which we denote by v. Another 2-stratification G3 of the graph G of Figure 13.13 is shown in Figure
13.14. Since G3 contains two nonsimilar blue vertices, we distinguish between these, according to
which blue vertex is selected as the root. We denote these 2-stratified rooted graphs by F′ and F″.

Figure 13.14: 2-stratified rooted graphs

Now, let F be a 2-stratified rooted graph, that is, a 2-stratified graph in which some blue vertex v
of F has been designated as the root. By an F-coloring of a graph G, we mean a red-blue coloring of
G such that for every blue vertex w of G, there is a copy of F in G with v at w. That is, for every blue
vertex w of G, there exists a 2-stratified subgraph G′ of G containing w and a color-preserving
isomorphism  from F to G′ such that (v) = w. The red-blue coloring of G in which every vertex is
colored red is vacuously an F-coloring for every 2-stratified rooted graph F.

For example, for the 2-stratified rooted graph F′ of Figure 13.15 and the graph G of the same
figure, an F′-coloring is given. This is illustrated when the root v of F′ is placed at the blue vertex u2
of G.

Figure 13.15: An F′-coloring of a graph G

Let F be a 2-stratified graph rooted at some blue vertex v and let G be a graph. The set of red
vertices in an F-coloring of G is an F-dominating set of G. An F-dominating set of minimum
cardinality is a minimum F-dominating set and the number of vertices in minimum F-dominating set
is the F-domination number γF(G) of G. Note that γF(G) is defined for every graph G, even if G
contains no subgraph isomorphic to the (uncolored) graph F, since the red-blue coloring of G in



which every vertex is colored red is an F-coloring of G. An F-coloring of G in which there are γF(G)
red vertices is called a minimum F-coloring.

Let’s see what γF(G) means for some small connected 2-stratified rooted graphs F. Of course, the
simplest example is when F is a 2-stratified K2 (see Figure 13.16). For this 2-stratified graph F, the
F-domination number of a graph is a familiar parameter.

Theorem 13.9 Let F be the 2-stratified K2. For every graph G,

Figure 13.16: The 2-stratified K2

Proof. Let G be a graph and let there be given a minimum F-coloring of G. This implies that every
blue vertex of G is adjacent to a red vertex of G. Hence the red vertices form a dominating set for
G and so γ(G) ≤ γF(G). Next, consider a minimum dominating set S and color all of the vertices in
S red and the remaining vertices blue. Since every blue vertex is adjacent to at least one red vertex,
this red-blue coloring is an F-coloring of G. Hence γF(G) ≤ γ(G) and so γF(G) = γ(G).

By Theorem 13.9, ordinary domination can be considered as F-domination for an appropriately
chosen 2-stratified rooted graph F. We now turn to 2-stratified rooted graphs P3. Actually, there are
five possibilities in this case, all of which are shown in Figure 13.17.

Figure 13.17: The 2-stratified rooted graphs P3

The values of the five domination parameters associated with the 2-stratified rooted graphs Fi in
Figure 13.17 are given for the graph G of Figure 13.18. A minimum Fi-dominating set for this graph G
is shown in Figure 13.18 for i = 1, 2, 3, 4, 5.

For the 2-stratified rooted graph F1 of Figure 13.17, the corresponding domination parameter is
also a familiar one.

Theorem 13.10 Let F1 be the 2-stratified rooted graph shown in Figure 13.17. If G is a graph
without isolated vertices, then the F1-domination number of G is the total domination number of
G, that is,



Proof. Since G has no isolated vertices, G has an total dominating set. Let S be a minimum total
dominating set in G. Color the vertices of S red and color the remaining vertices of G blue. Now
let v be a blue vertex of G. Since v  S, the vertex v is adjacent to a vertex u in S, that is, v is
adjacent to a red vertex u. Since u must be adjacent to a vertex w in S distinct from v, it follows
that v

Figure 13.18: A minimum Fi-dominating set (1 ≤ i ≤ 5) in a graph G

is a root of a copy of F1. Therefore, this red-blue coloring of G is an F1-coloring and so 
.

Next, we show that . Among all minimum F1-colorings of G, let c be one for
which the subgraph induced by the red vertices contains a minimum number of isolated vertices. Let
Rc be the set of red vertices of G colored by c. Thus . Since every blue vertex v in G
is adjacent to a red vertex, Rc is a dominating set in G. We claim that every red vertex in Rc is also
adjacent to a red vertex. Assume, to the contrary, that there is a red vertex u  Rc that is adjacent only
to blue vertices. Let v be a neighbor of u. Then v belongs to a copy of F rooted at v. Thus, v must be
adjacent to a red vertex w which itself is adjacent to some other red vertex, which implies that u ≠ w.
Interchanging the colors of u and v produces a new γF-coloring of G having fewer isolated vertices in
the subgraph induced by its red vertices, contradicting the choice of c. Hence, as claimed, every red
vertex in Rc is adjacent to some other red vertex. Therefore, Rc is a total dominating set of G. This
implies that . Consequently, γt(G) = γF(G).

While the total domination number is defined only for graphs without isolated vertices, the F1-
domination number is defined for all graphs. By Theorem 13.10, for graphs where both of these
domination numbers are defined, the values are the same.

For the 2-stratified rooted graph F2 of Figure 13.17, we once agian have a familiar parameter. We
do not include the proof in this case.

Theorem 13.11 For every connected graph G of order 3 or more,



If F is a 2-stratified rooted graph and G is a graph of order n containing no subgraph isomorphic
to the (uncolored) graph F, then surely, γF(G) = n. The converse of this statement is not true,
however. Consider the 2-stratified rooted graph F3 of Figure 13.17. Certainly, the star K1, n − 1, n ≥ 3,
contains many subgraphs isomorphic to P3; indeed, it contains  such subgraphs. However, there
is no F3-coloring of K1, n − 1 in which any vertex can be colored blue. Therefore, 
.

Exercises for Section 13.2

13.17 For the graph G of Figure 13.19, determine  for each 2-stratified graph Fi in Figure
13.17.

Figure 13.19: The graph G in Exercise 13.17

13.18 For the Petersen graph PG, determine  for each 2-stratified graph Fi in Figure
13.17.

13.19 Consider the 2-stratified graph F3 in Figure 13.17.

(a) Give an example of a graph of at least 3 such that .

(b) Prove that if G is a graph with , then diam(G) ≤ 4.

(c) Prove that if G is a bipartite graph, then .

13.20 Study F4-domination and F5-domination for the 2-stratified graphs F4 and F5 in Figure 13.17.

13.21 Choose a 2-stratified rooted graph F and several graphs G of your own. Determine the F-
domination number of each such graph G.

13.3 Exploration: Lights Out

On a certain floor of a business building, a firm occupies three offices A, B and C located in a row.
Each office has a large ceiling light and a light button which, when pressed, reverses the light in that
office (on to off or off to on) as well as the light in each adjacent office. So if we begin the day, as in
Figure 13.20(a), with all lights off and push the light button in the central office B, then we arrive at



the situation in Figure 13.20(b), where all lights are on.

Figure 13.20: Lights Out and Lights On

Each light arrangement of the three offices can be represented by an ordered triple (a, b, c) or abc,
where a, b and c can be 0 or 1, with 0 meaning that the light is off in the particular office and 1
meaning that the light is on. The eight possibilities are shown in Figure 13.21.

Figure 13.21: The possible light arrangements of the three offices

This situation can be represented by a graph G of order 8, whose vertices are the ordered triples
abc, where a, b, c  {0, 1}. If we can change from one light arrangement to another by pressing a
single light button, then we draw an edge between the two vertices representing these arrangements.
The graph G is shown in Figure 13.22. You might notice that G is the 3-cube Q3. The graph Q3 of
Figure 13.22 shows that, beginning with lights out in all three offices, we can obtain any light pattern
we desire, although it may require pressing as many as three buttons.

Figure 13.22: The graph Q3

The situation that we have just described can be interpreted in terms of graphs from the beginning.
Consider the graph G in Figure 13.23, where the vertices are drawn as solid vertices, indicating that
all lights are on. If we “press” the solid vertex in the middle, this causes all lights to go out and we
obtain the graph H.

So the general situation might go something like this. Let G be a connected graph where there is a
light as well as a light button at each vertex. For each vertex, the light at that vertex is either on or off.
When the light button at that



Figure 13.23: The graphs G and H

vertex is pressed, it reverses the light (changing it from on to off or off to on) not only at that vertex
but at all vertices adjacent to that vertex. There is a variety of questions that can be asked here but our
chief question concerns the following:

The Lights Out Puzzle: Let G be a graph. If all vertex lights of G are on, does there exist a
collection of light buttons which when pressed will turn out all vertex lights? If so, what is the
smallest number of light buttons in such a collection?

There is an electronic game called Lights Out marketed by Tiger Electronics of Hasbro, Inc. that
gave rise to the more general graph theory puzzle mentioned above. Earlier manufactured as a cube,
the current Lights Out game is played on a grid with multi-colored LEDs and digitized sound. Indeed,
there are interactive web sites where various versions of the game can be played.

In terms of the Lights Out Puzzle on a graph G mentioned above, what we are asking is whether
there is a dominating set of G such that every vertex of G is dominated by an odd number of vertices.
The following (possibly unexpected) result of Klaus Sutner says that this game always has a solution.

Theorem 13.12 If G is a connected graph all of whose vertex lights are on, then there exists a
set S of vertices of G such that if the light button is pressed at each vertex of S, then all vertex
lights of G will be out.

Exercises for Section 13.3

13.22 Draw the graph that represents all light arrangements when playing Lights Out on the path G1
of Figure 13.24. What is the fewest number of light buttons that need to be pressed to go from
all lights on to all lights out?

13.23 Repeat Exercise 13.22 for the cycle G2 of Figure 13.24.

13.24 What is the fewest number of light buttons that need to be pressed to go from all lights on to
all lights out for the path G3 of Figure 13.24.

13.25 What is the fewest number of light buttons that need to be pressed to go from all lights on to
all lights out for the graph G4 of Figure 13.24.

13.26 Choose a graph of your own on which to play Lights Out.



Figure 13.24: Graphs for Exercises 13.22–13.25

13.27 Consider the graph G of Figure 13.25 where all lights of G are on.

(a) What is the smallest number of vertices whose light buttons need to be pressed to turn off
all the lights?

(b) Let S = {v1, v2, v3, v4}. Show that if the light buttons of S are pressed, then all lights of G
are out. Is there a proper subset of S that will turn out all lights of G? Does this suggest
another question to you?

Figure 13.25: The graph for Exercise 13.27

13.28 Observe that the graph H of Figure 13.26 has one light on, namely the light at v1. However, we
would like all lights to be out. What do we do?

Figure 13.26: The graph for Exercise 13.28

13.29 Prove that in the game of Lights Out, the order in which the buttons are pressed is immaterial.

13.30 (a) Change the rules for Lights Out and play the game under the new rules for a graph that you
choose.

(b) Define a set of rules for playing Lights Out on a digraph and play this game on a digraph of
your choice.

13.4 Excursion: And Still It Grows More Colorful

We have seen that graph theory originated with a number of isolated and disconnected results from
unexpected sources. Recreational results and truly mathematical theorems alike played major roles in



the development of the subject. Authors of the early textbooks on graph theory organized many of the
existing theorems and set the stage for what was to follow. Progress in graph theory was greatly aided
by numerous attempts to solve a simple-sounding but deceptively difficult problem involving the
coloring of maps. Graph theory had the good fortune, however, of attracting a number of talented and
dedicated mathematicians to this fascinating subject.

As graph theory progressed further into the 20th century, some well-defined areas of the subject
blossomed. Also, the number of mathematicians working in the subject continued to grow. This
included researchers who obtained deep results, those who studied graph theory from applied points
of view, those who created new and interesting problems to study, those who wrote of the historical
perspectives of the subject and its relationships to other more established areas of mathematics and
those who wrote and lectured of the many aesthetic aspects of the subject, thereby introducing graph
theory to a new generation of mathematicians. That graph theory had grown into a more prominent
area of mathematics became increasingly evident during the latter portion of the 20th century and into
the 21st century.

In the 1960s a series of conferences that emphasized graph theory came into prominence. One of
these was the 1963 Czechoslovak Symposium on Graph Theory held in Smolenice. In 1968 the first of
nine Kalamazoo (Michigan) Graph Theory Conferences was held and would continue to take place
every fourth year at Western Michigan University throughout the remainder of the 20th century.
Yousef Alavi played a leading role in organizing these conferences. In 1969 the first of the
Southeastern International Conferences on Combinatorics, Graph Theory and Computing, primarily at
Florida Atlantic University and organized by Frederick Hoffman. The British Combinatorial
Conferences also began in 1969 and have been held during odd-numbered years since 1973. In more
recent times, during even-numbered years, the SIAM (Society for Industrial and Applied
Mathematics) Conferences on Discrete Mathematics have taken place.

In 1977 graph theory acquired its own journal when the Journal of Graph Theory, founded by
Frank Harary, began publication. On the first page of the first issue of the first volume, the publishers
(John Wiley & Sons, Inc.) wrote:

GRAPH THEORY has definitely emerged as a distinct entity within combinatorial theory.…
We are confident that the journal will fill the need for current information dealing with
this branch of applicable mathematics.

The Journal of Graph Theory went on to receive an award from the Association of American
Publishers for the best new journal published in 1977 in the scientific, medical and technical
category.

Another important milestone for graph theory occurred in 1990 when the Institute of
Combinatorics and Its Applications was established. The aim of this organization is to promote
combinatorics (including graph theory). The mathematician who played the central role in the
founding of the Institute was Ralph G. Stanton (1923–2010) who was Distinguished Professor of
Computer Science at the University of Manitoba in Winnipeg, Canada.

In 1991 the official journal of the Institute began publication: The Bulletin of the Institute of
Combinatorics and Its Applications. In its initial volume, the then-president of the Institute and
respected mathematician William Tutte, whom we have met often, argued that graph theory (indeed,
any area of mathematics) is not separate from the rest of mathematics but that mathematics is a single
unified subject.



The Handbook of Graph Theory, now in its second edition and edited by Jonathan Gross, Jay
Yellen and Ping Zhang, is considered by many as the most comprehensive single-source guide to
graph theory ever published. In it are described numerous applications of graph theory to diverse
areas of study.

And what lies ahead for graph theory? This is difficult to predict, but whatever the future holds is
certain to be interesting … and colorful.



Appendix 1: Sets and Logic

1.1 Sets

Many of the sets that are dealt with in graph theory are finite. As for familiar infinite sets, we
write Z for the set of integers, N for the set of positive integers (natural numbers), Q for the set of
rational numbers and R for the set of real numbers. Among the infinite sets, we are, by far, most
interested in the integers. Even when dealing with a rational number or real number, we are often
concerned with a nearby integer. For a real number x, the floor x  of x is the greatest integer less than
or equal to x. So, for example, 5  = 5, ,  = 3 and

The ceiling x  of x is the smallest integer greater than or equal to x. For example, 5  = 5, , 
 = 4 and

For a finite set S, we denote its cardinality (the number of elements in S) by |S|. If |S| = n for some
n  N, then we can write S = {s1, s2, …, sn}. The set with cardinality 0 is the empty set, which is
denoted by ø. Thus ø = { }.

For two sets A and B, the Cartesian product A × B of A and B is the set

Therefore, A × A is the set of all ordered pairs of elements of A. For example, if A = {a1, a2} and B =
{b1, b2, b3}, then

and

Two sets S and T are equal, written S = T, if they consist of the same elements. A set T is a subset
of a set S if every element of T belongs to S. This is denoted by writing T  S. The number of k-
element subsets of an n-element set is given by the binomial coefficient

where n! = n(n − 1)(n − 2) … 3 · 2 · 1 if n  N and 0! = 1. In particular,



Consequently, the number of 3-element subsets of the set S = {1, 2, 3, 4, 5} is 10. These subsets are

The number of 2-element subsets of an n-element set is therefore given by

S o  and . If we were to add the first n − 1
positive integers, then the result is , that is,

Another familiar and useful identity is

Since every subset of an n-element set contains k elements for some k with 0 ≤ k ≤ n,(1) states that the
total number of subsets of an n-element set is 2n. For example, there are 23 = 8 subsets of the set S =
{1, 2, 3}, namely,

A partition of a nonempty set S is a collection  of nonempty subsets of S such that every element
of S belongs to exactly one of the elements of . For the set S ={1, 2, 3, 4, 5, 6},

is a partition of S. A well-known theorem concerning partitions of sets is the following.

The Pigeonhole Principle If  is a partition of an n-element set S into k subsets, then some
subset of S in  must contain at least  elements.

In particular, if S is a set with 17 elements and  is a partition of S into five subsets, then some
subset of S in  must contain at least [17/5] = 4 elements. A related version of the Pigeonhole
Principle due to Frank Ramsey is also useful to know.

Ramsey’s Theorem Let  = {S1, S2, …, Sk} be a partition of a set S into k subsets and let n1, n2,
…, nk be k positive integers such that |Si| ≥ ni for every integer i with 1 ≤ i ≤ k. Then there exists a



positive integer n such that every n-element subset of S contains at least ni elements of Si for some
i (1 ≤ i ≤ k).

In particular, the integer

has this property. Indeed, it is the smallest integer with this property.
For example, if  = {S1, S2, S3, S4} is a partition of S = S1  S2  S3  S4, where |S1| = 5, |S2| = 6,

|S3| = 4, |S4| = 7 and n1 = 4, n2 = 3, n3 = 3, n4 = 5, then every 12-element subset of S must contain
either (1) 4 elements of S1, (2) 3 elements of S2, (3) 3 elements of S3 or (4) 5 elements of S4.

1.2 Logic

A statement P is a declarative sentence that is true or false but not both. If P is a true statement,
then its truth value is true; otherwise, its truth value is false. The negation ∼ P (not P) of P has the
opposite truth value of P. The disjunction P ∨ Q (P or Q) of two statements P and Q is true if at
least one of P and Q is true and is false otherwise. The conjunction P ∧ Q (P and Q) of P and Q is
true if both P and Q are true and is false otherwise. Two statements constructed from P and Q and
logical connectives (such as ∼, ∨ and ∧) are logically equivalent if they have the same truth values
for all possible combinations of truth values for P and Q. According to De Morgan’s laws, for
statements P and Q,

For statements P and Q, the implication P ⇒ Q often expressed as “If P, then Q.” is true for all
combinations of truth values P and Q except when P is true and Q is false. Other ways to express P
⇒ Q in words are: (1) P implies Q; (2) P only if Q; (3) P is sufficient for Q; (4) Q is necessary for
P. In this case, P is a sufficient condition for Q and Q is a necessary condition for P.

A declarative sentence containing one or more variables is often referred to as an open sentence.
When the variables are assigned values (from some prescribed set or sets), the open sentence is
converted into a statement whose truth value depends on the values assigned to the variables. An open
sentence expressed in terms of a real number variable x might be denoted by P(x) or Q(x). Since P(x)
and Q(x) are open sentences and not statements, they do not have truth values. Similarly ∼P(x), P(x)
Q(x), P(x) Q(x) and P(x) ⇒ Q(x) are then also open sentences, not statements. While

is an open sentence with a real number variable x, assigning x the values −1 and 1/2 produces the
statements



both of which are true. For every real number , however, P(r) is a false statement.
Open sentences can also be converted into statements by means of quantifiers, resulting in a

quantified statement. For example, suppose that P(n) is an open sentence expressed in terms of an
integer variable n. The universal quantifier, denoted by ∀, represents for all, for each or for
every. Therefore,

is a quantified statement. This statement is true if P(n) is true for every integer n. The quantified
statement ∀n  Z, P(n) can also be expressed as the implication:

The existential quantifier, denoted by ∃, represents there exists, for some or for at least one.
Thus

is a quantified statement. This statement is true if P(n) is true for one or more integers n.
For an integer variable n,

is an open sentence and

is a false statement since P(2) is false. As we saw, this statement can be expressed as the implication:

On the other hand,

is true since P(3) is true for example.
If the open sentence P(n) is an implication, say R(n) ⇒ Q(n), then the quantified statement

is often expressed as

Then ∀n  Z, R(n) ⇒ Q(n) is true if R(n) ⇒ Q(n) is true for every integer n.
For statements P and Q, the converse of the implication P ⇒ Q is the implication Q ⇒ P, while

the contrapositive of P ⇒ Q is the implication (∼ Q) ⇒ (∼ P). While an implication and its
contrapositive are logically equivalent, such is not the case for an implication and its converse.

For open sentences P(n) and Q(n), where n is an integer variable, the converse of ∀n  Z, P(n)
⇒ Q(n) is ∀n  Z, Q(n) ⇒ P(n), while the contrapositive of ∀n  Z, P(n) ⇒ Q(n) is ∀n  Z, (∼



Q(n)) ⇒ (∼ P(n)).
Consider the statement

Its converse is

and its contrapositive (using one of De Morgan’s laws) is

For statements P and Q, we write P ⇔ Q to mean (P ⇒ Q) ∧ (Q ⇒ P). In words, P ⇔ Q is
expressed as

P if and only if Q.

or as

P is necessary and sufficient for Q.

In the case of the quantified statement,

can be stated as

As a specific example, we have



Appendix 2: Equivalence Relations and
Functions

2.1: Equivalence Relations

For nonempty sets A and B, a relation R from A to B is a subset of the Cartesian product of A and
B, that is,

A relation R on A is then a relation from A to A, that is, R is a collection of ordered pairs of elements
of A. If (a, b)  R, then a and b are said to be related by R. This is also expressed by writing a R b.
For example, if A = {1, 2, 3, 4}, then

is a relation on A. So 1 R 2, that is, 1 is related to 2 by R.
A relation R on a nonempty set A is an equivalence relation if R has the following three

properties:

(1) R is reflexive, that is, x R x for every x  A.

(2) R is symmetric, that is, whenever x R y, then y R x for all x, y  A.

(2) R is transitive, that is, whenever x R y and y R z, then x R z for all x, y, z  A.

The relation

is an equivalence relation on the set A = {1, 2, 3, 4}.
The following provides an example of an equivalence relation on an infinite set.

Example 2.1 A relation R on the set Z of integers is defined by x R y if x + y is even. Show that R
is an equivalence relation on Z.

Solution. First, we show that R is reflexive. Let x  Z. Since x + x = 2x is even, x R x and so R is
reflexive. Next we show that R is symmetric. Assume that x R y, where x, y  Z. Then x + y is even.
Since y + x = x + y, it follows that y + x is also even. Therefore, y R x and R is symmetric.

Finally, we show that R is transitive. Assume that x R y and y R z, where x, y, z  Z. Therefore,
both x + y and y + z are even. So x + y = 2a and y + z = 2b for integers a and b. Adding x + y and y +
z, we obtain (x + y) + (y + z) = 2a + 2b. Therefore,



Since a + b − y is an integer, x + z is even. Hence x R z and R is transitive.

For an equivalence relation R defined on a nonempty set A and for an element a  A, the
equivalence class [a] is defined by

Since a  [a], every equivalence class is nonempty.
For an equivalence relation defined on a nonempty set A, the resulting distinct equivalence classes

produce a partition of A, where two elements of A belong to the same equivalence class if and only if
they are related. For the relation R1 defined above in (2) on the set A = {1, 2, 3, 4}, the distinct
equivalence classes are [1] = {1, 3, 4} and [2] = {2}. In this case, [4] = [3] = [1]. For the relation R
on Z defined in Example 2.1 by x R y if x + y is even, the distinct equivalence classes are

A common type of equivalence relation is given in the next example.

Example 2.2 A relation R defined on a nonempty set A of integers by x R y if x ≡ y (mod 3) is an
equivalence relation.

For example, if

is the set of integers in Example 2.2, then the distinct equivalence classes resulting from the
equivalence relation R are

Examples of equivalence relations seen in the text are:

  (1) Two vertices u and  in a graph are related if u is connected to . This is discussed in Section
1.2.

  (2) Two graphs G and H are related if they are isomorphic. This is discussed in Section 3.2.

  (3) Two vertices u and  in a graph G are related if they are similar (that is, if there exists an
automorphism  of G for which (u) = v). This is discussed in Section 3.4.

  (4) Two edges e and f in a nontrivial connected graph G are related if e and f lie on a common
cycle in G. This is discussed in Section 5.2.

  (5) Two vertices u and  in a connected graph G are related if they are distance similar (that is, if
d(u, x) = d( , x) for every vertex x  V(G) − {u, }). This is discussed in Section 12.3.

2.2 Functions

For nonempty sets A and B, a function f from A to B, written as f : A → B, is a relation from A to B



in which each element of A appears as the first coordinate in exactly one ordered pair in f. If the
ordered pair (a, b) belongs to f, then we write b = f(a) and b is called the image of a. The set of all
images of f is called the range of f. For example, for A1 = {r, s, t} and B1 = {w, x, y, z},

is a function from A1 to B1. The range of f1 is {x, z}.
A function f : A → B is one-to-one (or injective) if distinct elements of A have distinct images in

B. Therefore, f is one-to-one if for every two (distinct) elements a1 and a2 in A, it follows that f(a1) ≠
f(a2). Using the contrapositive, we can also say that f is one-to-one if for a1, a2  A, whenever f(a1) =
f(a2), it follows that a1 = a2. The function f1 in (3) is not one-to-one since s and t have the same
image, that is, f1(s) = f1(t). However, for the sets A1 and B1 above, the function

is one-to-one.
A function f : A → B is called onto (or surjective) if every element of B is the image of some

element of A, that is, if the range of f is B. The function f1 above is not onto since neither w nor y is an
image of any element in A1. The function g1 in (4) is not onto either since the range of g1 is not B1 as x
is not in the range of g1. On the other hand, for A2 = {1, 2, 3} and B2 = {4, 5, 6}, the function

is both one-to-one and onto.
A function that is both one-to-one and onto is called a bijective function or a one-to-one

correspondence. Therefore, the function f2 in (5) is bijective. The following gives an example of a
bijective function involving an infinite set.

Example 2.3 Show that the function f : R → R defined by f(x) = 3x − 8 for all x  R is bijective.

Solution. First, we show that f is one-to-one. Assume that f(a) = f(b), where a, b  R. Then 3a − 8
= 3b − 8. Adding 8 to both sides of this equation and dividing by 3, we obtain a = b. Therefore, f is
one-to-one.

Next, we show that f is onto. Let r be a real number. Then x = (r + 8)/3 is also a real number.
Furthermore,

and so f is onto.
Consequently, f is bijective.

For sets A, B and C and functions f : A − B and g : B → C, the composition g  f of f and g is the
function from A to C defined by



for all a  A.
For example, let A = {1, 2, 3}, B = {a, b, c, d} and C = {x, y, z} and let f : A → B and g : B → C

be the functions

Then (g  f)(1) = g(f(1)) = g(c) = z and, in general,

An important theorem involving composition of functions is the following.

Theorem 2.4 If f : A → B and g : B → C are bijective functions, then g  f is bijective.

For a function f : A → B, the inverse relation f−1 of f is defined by

The most important theorem in this connection is the following.

Theorem 2.5 For a function f : A → B, the inverse relation f−1 is a function from B to A if and
only if f is bijective. Furthermore, if f is bijective, then f−1 is also bijective.

For a nonempty set A, a bijective function f : A → A is a permutation of A. The function f
considered in Example 2.3 is therefore a permutation of R.

Example 2.6 Let A = {1, 2, 3, 4, 5, 6}. The function f : A → A, where

a permutation of A.

The function f in Example 2.6 can also be expressed in terms of permutation cycles, namely, f =
(134)(26), which indicates that 1 is mapped into 3, which is mapped into 4 and which is mapped into
1. The integers 2 and 6 map into each other, while 5 is fixed (it maps into itself).

Examples of functions seen in the text are:

(1) isomorphisms (Chapter 3),

(2) automorphisms (Section 3.4),

(3) matchings (Section 8.1),

(4) colorings (Sections 10.2 and 10.3),

(5) the Channel Assignment Problem (Section 12.5).



Appendix 3: Methods of Proof

3.1 Direct Proof

Many, indeed most, theorems in mathematics are (or can be) stated as an implication, typically as
a quantified statement ∀x  S, P(x) ⇒ Q(x), where P(x) and Q(x) are open sentences involving a
variable x whose values are taken from a set S. The most common proof technique is a direct proof,
where P(x) is assumed to be true for an arbitrary element x  S and then Q(x) is shown to be true. An
example of a direct proof is given next.

Example 3.1 If n is an even integer, then 5n + 7 is an odd integer.

Proof. Assume that n is an even integer. Then n = 2k for some integer k. Therefore,

Since 5k + 3 is an integer, 5n + 7 is odd.

A few comments about Example 3.1 and its proof might be useful. First, the implication in
Example 3.1 can be restated as follows:

For every even integer n, the integer 5n + 7 is odd.
If we let T denote the set of even integers and define

P(n): 5n + 7 is odd.

then the implication in Example 3.1 can be restated more symbolically as:

When we gave a direct proof of the implication in Example 3.1, we began by assuming that n is an
even integer (or letting n be an even integer). Therefore, we began with an arbitrary element in the set
T. We then showed that 5n + 7 is an odd integer.

Two examples in the text in which a direct proof is employed are Theorems 1.11 and 2.1.

Theorem 1.11 If G is a disconnected graph, then  is connected.

As expected for a direct proof, we began by assuming that G is a disconnected graph and then
showed that  is connected.

Theorem 2.1 (The First Theorem of Graph Theory) If G is a graph of size m, then



Here we started with a graph G of size m and showed that if the degrees of the vertices of G are
summed, then 2m is obtained.

3.2 Counterexamples

A mathematical statement that can be expressed as an implication can be shown to be false by
providing a counterexample. Suppose that a statement we are considering is expressed as ∀x  S,
P(x) ⇒ Q(x) where P(x) and Q(x) are open sentences concerning a variable x whose values belong
to a set S. If some specific element x  S can be discovered for which P(x) is true and Q(x) is false,
then x is a counterexample to the statement ∀x  S, P(x) ⇒ Q(x). Counterexamples often occur
when a conjecture is made (that is, a statement that is believed to be true) and an example is found to
show that, in fact, the statement is false. This is illustrated below.

Example 3.2 Determine whether the following statement is true.

                        If n is an integer, then 6n + 3 is not prime.

Solution This statement is false. For n = 0, it follows that 6n + 3 = 3, which is a prime. Therefore,
n = 0 is a counterexample to this statement.

If the statement in Example 3.2 had read:

              If n is a positive integer, then 6n + 3 is not prime.,

then the statement would be true.
One instance of a counterexample in the text occurs in Section 10.3, where it was mentioned that

Peter Guthrie Tait believed that if G is a 3-regular, 3-connected, planar graph, then G is Hamiltonian.
However, William Tutte produced an example (a counterexample) of a 3-regular, 3-connected, planar
graph (the Tutte graph) that is not Hamiltonian.

3.3 Proof by Contrapositive

Recall for statements P and Q that the contrapositive of the implication P ⇒ Q is the implication
(∼ Q) ⇒ (∼ P). Since these two implications are logically equivalent, the statement ∀x  S, P(x) ⇒
Q(x) can be established by verifying the statement ∀x  S,(∼ Q(x)) ⇒ (∼ P(x)) is true. In a proof by
contrapositive of the statement ∀x  S, P(x) ⇒ Q(x), we assume that Q(x) is false for an arbitrary
element x  S and show that P(x) is false. That is, a proof by contrapositive of the statement ∀x  S,
P(x) ∼ Q(x) is a direct proof of its contrapositive ∀x  S,(∼ Q(x)) ⇒ (∼ P(x)). An example of a
proof by contrapositive is given next.

Example 3.3 Let n  Z. If 11n − 5 is odd, then n is even.



Proof. Assume that n is an odd integer. Then n = 2k + 1 for some integer k.

So

Since 11k + 3  Z is an integer, 11n − 5 is even.

A theorem in the text where a proof by contrapositive is employed (in fact, twice) is Theorem 4.1.

Theorem 4.1 Let G be a connected graph. An edge e of G is a bridge if and only if e lies on no
cycle of G.

To verify the implication “If an edge e of G is a bridge, then e lies on no cycle of G” using a proof
by contrapositive, we assume that e lies on a cycle of G and show that e is not a bridge. To verify the
converse “If an edge e lies on no cycle of G, then e is a bridge” using a proof by contrapositive, we
assume that e is not a bridge and show that e lies on a cycle of G.

3.4 Proof by Contradiction

In a proof by contradiction of some mathematical statement A, we assume that A is false and show
that this leads to a contradiction. If A is expressed as ∀x,  S, P(x) ⇒ Q(x), then assuming that ∀x 
S, P(x) ⇒ Q(x) is false means assuming that there exists some element x  S such that P(x) is true and
Q(x) is false. An example of a proof by contradiction is given next.

Example 3.4 Let n be a positive integer. If n3 + 1 is prime, then n = 1.

Proof. Assume, to the contrary, that there is a positive integer n different from 1 such that n3 + 1 be
prime. Thus n ≥ 2. Now n3 + 1 = (n + 1)(n2 − n + 1). Since n + 1 > 1 and n2 − n + 1 = n(n − 1) + 1
> 1, it follows that neither n + 1 or n2 − n + 1 is 1 and so n3 + 1 is not prime, producing a
contradiction.

Proofs by contradiction are often used to prove negative-sounding results. A theorem in the text
that illustrates this is Theorem 5.5.

Theorem 5.5 Let G be a nontrivial connected graph and u  V(G). If v is a vertex that is farthest
from u in G, then v is not a cut-vertex of G.

To use a proof by contradiction, we assume that v is a vertex that is farthest from u and that v is a
cut-vertex of G. We then produce a contradiction.

In the following theorem in the text, a proof by contrapositive and a proof by contradiction are
both used.

Theorem 5.1 Let v be a vertex incident with a bridge in a connected graph G. Then v is a cut-



vertex of G if and only if deg v ≥ 2.

A proof by contrapositive is used to verify the implication “If v is a cut-vertex of G, then deg v ≥
2.” Thus, we assume that deg v = 1 and show that v is not a cut-vertex of G. A proof by contradiction
is used to show the converse “If deg v ≥ 2, then v is a cut-vertex of G”. So we assume that deg v ≥ 2
and that v is not a cut-vertex. We then show that these lead to a contradiction.

3.5 Proof by Minimum Counterexample

A particular type of proof by contradiction is proof by minimum counterexample. This proof
technique is often related to the following principle.

The Well-Ordering Principle  The set N of positive integers is well-ordered, that is, every
nonempty subset of N has a smallest element.

Suppose that we have a sequence S1, S2, S3, … of statements, one for each positive integer, that we
wish to prove are true. If we assume, to the contrary, that not all of these statements are true, then it
follows by the Well-Ordering Principle that there is a smallest positive integer n for which Sn is
false. The idea is to use this information to arrive at a contradiction. An example of a proof by
minimum counterexample is given next.

Example 3.5 For every positive integer n, the integer n2 − 3n is even.

Proof. Assume that this statement is false. Then among the positive integers n such that n2 − 3n is
odd, let m be the smallest one. If n = 1, then n2 − 3n = −2, which is even. Therefore, m ≥ 2. So we
can write m = k + 1, where 1 ≤ k < m. Since 1 ≤ k < m, it follows that k2 − 3k is even. Hence k2 −
3k = 2x for some integer x. Observe that

Since x + k − 1 is an integer, m2 − 3m is even, which produces a contradiction.

A theorem in the text that uses a proof by minimum counterexample is Theorem 11.18.

Theorem 11.18 Every graph of order n ≥ 3 and size at least  is Hamiltonian.

To prove Theorem 11.18 using a proof by minimum counterexample, we assume that the statement
is false. Then there is a smallest positive integer n ≥ 3 for which there exists a graph G of order n and
size  that is not Hamiltonian. We then show that G is, in fact, Hamiltonian, producing a
contradiction.



3.6 Proof by Mathematical Induction

Let S1, S2, S3, … be statements, one for each positive integer. To prove that these statements are
true using a proof by mathematical induction, we

(1) show that S1 is true (the basis step) and

(2) verify that the following implication is true:

An example of a proof by mathematical induction is given next.

Example 3.6 For every positive integer n, 2n + 2 ≥ 7n + 1.

Proof. We proceed by induction. For n = 1, we have 21+2 = 23 = 8 = 7 · 1 + 1, which verifies the
statement for n = 1. Assume that 2k  + 2 ≥ 7k + 1 for some integer k ≥ 1. We show that 2 (k  + 1) + 2 ≥
7(k + 1) + 1 = 7k + 8. Now

as desired.

A theorem in the text that uses a proof by mathematical induction is the following.

Theorem 4.4. Every tree of order n has size n − 1.

To use a proof by induction, we show first that result is true for n = 1. Then we show that if the
size of every tree of order k is k − 1 for an arbitrary positive integer k, then every tree of order k + 1
has size k.

There is a variation of the standard proof by mathematical induction that is used in the text and is
useful to know in general. The Strong Form of Induction (or the Strong Principle of Mathematical
Induction) can be used to show that each of the statements S1, S2, S3, … is true. In this case, we need
to

(1) show that S1 is true (the basis step) and

(2) verify the implication:

      For each k  N, if the statements S1, S2, …, Sk are true, then Sk+1 is true.

An example of a theorem that uses the Strong Form of Induction is the following.

Example 3.7 Every integer n ≥ 2 is either prime or can be expressed as a product of primes;
that is, n = p1 p2… pm, where p1, p2, …, pm are primes.



Proof. We employ the Strong Form of Induction. Since 2 is prime, the statement is certainly true for
n = 2.

For an arbitrary integer k ≥ 2, assume that every integer i, with 2 ≤ i ≤ k, is either prime or can be
expressed as a product of primes. We show that k + 1 is either prime or can be expressed as a
product of primes. Of course, if k + 1 is prime, then there is nothing further to prove. We may assume,
then, that k + 1 is composite. Then there exist integers a and b such that k + 1 = ab, where 2 ≤ a ≤ k
and 2 ≤ b ≤ k. Therefore, by the induction hypothesis, each of a and b is prime or can be expressed as
a product of primes. In either case, k + 1 = ab is a product of primes.

A theorem in the text that employs the Strong Form of Induction is Menger’s Theorem (Theorem
5.16).

Menger’s Theorem Let u and v be nonadjacent vertices in a graph G. The minimum number of
vertices in a u − v separating set equals the maximum number of internally disjoint u − v paths
in G.

To prove Menger’s Theorem using the Strong Form of Induction, we first show that the result is
true for all empty graphs, that is, graphs of size 0. We then assume that the result is true for all graphs
of size less than m, where m is a positive integer, and then prove that the result is true for every graph
of size m.

3.7 Existence Proofs

There are numerous statements in mathematics that are formed by using an existential quantifier
(there exists, there is, for some, there is at least one). To verify such a statement, it suffices to display
an appropriate example (or alternatively, to show theoretically that an appropriate example must exist
even though a specific example hasn’t been found). This is illustrated below.

Example 3.8 There exist integers a, b and c greater than 1 such that a2 + b3 + c4 is prime.

Proof. Letting a = 7 and b = c = 2, we have a2 + b3 + c4 = 49 + 8 + 16 = 73, which is prime.

Existential quantifiers can occur within an implication. An example of this is stated next.

Example 3.9 If  is a positive number, then there exists a positive number  such that if |x − 2| < 
, then | (2x + 3) − 7| < .

Proof. Let  be given. Consider  = /2 and suppose that |x − 2| < . Then

For the function f : R → R defined by f(x) = 2x + 3 for all x  R, Example 3.9 would probably be
stated more commonly as: For every positive number , there exists a positive number  such that if |x
− 2| < , then |(2x + 3) − 7| < . What Example 3.9 shows is that f is continuous at 2.



A theorem in the text where an existential quantifier is encountered is the following.

Theorem 2.7 For every graph G and every integer r ≥ Δ(G), there exists an r-regular graph H
containing G as an induced subgraph.

In the proof of Theorem 2.7, we actually construct an r-regular graph H such that the given graph
G is an induced subgraph of H.

Although showing an implication is false can be accomplished by means of an example (a
counterexample), showing an existence statement is false requires a proof (to verify that no example
of the type being claimed exists).

Example 3.10 There exists a prime p such that n2 − n + p is prime for every positive integer n.

Solution This statement is false. Let p be a prime and let n = p. Then n2 − n + p = p2 − p + p = p2,
which is not prime.



Solutions and Hints for Odd-Numbered
Exercises



Chapter 1: Graphs and Graph Models

1.1 Can the seven committees meet during the three time periods? Yes. (An explanation is
required.)

1.3 See Figure 1.

Figure 1: The graph in Exercise 1.3

1.7 (b) S = {CUP, CAP, TAP, PAT, PUT} (c) S = {RAT, TAR, TAP, CAP, CAT}

1.11 See Figure 2.

Figure 2: The graph in Exercise 1.11

1.13 (a) See Figure 3.

Figure 3: The graph in Exercise 1.13

1.15 Hint: There is only one such graph.

1.17 (a) Hint: Assume, to the contrary, that there exists a connected graph G containing two longest
paths P and Q that have no vertex in common. Since G is connected, there exists a u − v
path P′ where u is on P, v is on Q and no interior vertex (a vertex that is not an end-vertex)
of P′ belongs to P or Q.

(b) Hint: The statement is false.

1.19 Hint: No.



1.21 See Figure 4.

Figure 4: The graph in Exercise 1.21

1.23 (a) Consider the 5-cycle (u, v, x, w, y, u) for k = 1 and the 5-cycle (u, x, y, v, z, u) for k = 2.

(b) Hint: Note that k ≥ 3. Consider P4 = (u, x, y, v).

1.25 Proof. If G is not bipartite, then we have the desired result. Thus, we may assume that G is
bipartite. Let V1 and V2 be two bipartite sets of G. Since the order of G is at least 5, at least one
of V1 and V2 contains 3 or more vertices, say |V1| = k ≥ 3. Since the subgraph of  induced by
V1 is the complete graph Kk and k ≥ 3, it follows that  contains a triangle. By Theorem 1.12, 

 is not bipartite.

1.27 (a) K5 + K2 = K7 and K5 × K2 is shown in Figure 5(a).

(b)  and 
(c) C5 + K1 is shown in Figure 5(b) and C5 × K1 = C5.

Figure 5: The graphs in Exercise 1.27

1.29 (a) See the multigraph M in Figure 6. (b) Add a loop at vertex 2.

Figure 6: The multigraph and digraph in Exercises 1.29 and 1.33

1.33 See the digraph D in Figure 6.



Chapter 2: Degrees

2.1 (a) No such graph exists. By Corollary 2.3, there is no graph containing an odd number of odd
vertices.

(b) No such graph exists since Δ(G) ≤ 6 for every graph G of order 7.
(c) No such graph exists. Assume, to the contrary, that such a graph G exists. Let V(G) = {v1,

v2, v3, v4}. We may assume that deg vi = 3 for 1 ≤ i ≤ 3 and deg v4 = 1. Then each vertex vi,
1 ≤ i ≤ 3, is adjacent to all other vertices of G, including v4, which is impossible.

2.3 Solution. Let x be the number of vertices of degree 4. By the First Theorem of Graph Theory,
(12 − x) · 6 + 4x = 2 · 31 and so x = 5.

2.5 Solution. Let x be a number of vertices of degree 5. By the First Theorem of Graph Theory, (12
− x) · 3 + 2 · 4 + 5x + 6 · 11 = 2 · 62 and so x = 7.

2.7 (a) Since every edge of G joins a vertex of U and a vertex of W, both sums  and 
 count every edge of G exactly once, giving the desired result.

(b) The size of G is 3|U| = 3 · 12 = 36. Let x be the number of vertices of degree 2. Then 2 · x +
(10 − x) · 4 = 36 and so x = 2.

2.9 Proof. Assume, to the contrary, that these two odd vertices are in different components of G.
Then some component of G (which is itself a graph) contains exactly one odd vertex. This
contradicts Corollary 2.3.

2.11 The bound is sharp. Consider G = K5  K5. Then n = 10 and (G) = 4 = (n − 2)/2.

2.13 (a) Proof. Assume, to the contrary, that G contains at least three components. Let G1, G2 and G3
be any three components of G. Let vi  V(Gi) for 1 ≤ i ≤ 3. Since deg vi ≥ (n − 2)/3, each
component Gi (1 ≤ i ≤ 3) contains at least (n − 2)/3 + 1 = (n + 1)/3 vertices. Then G
contains at least 3 · (n + 1)/3 = n + 1 vertices, contradicting the fact that G has order n.

Alternative Proof. Assume, to the contrary, that G contains at least three components. Then
G contains a component G1 of order at most n/3. Let v  V(G1). Then deg v ≤ (n/3) − 1 = (n
− 3)/3, contradicting that (G) ≥ (n − 2)/3.

(b) Consider G = 3K3.

2.15 Proof. Assume that G is not bipartite. Then G contains an odd cycle C. Let u and v be any two
vertices on C. There are two u − v paths on C, one of which has even length and one of odd
length.

2.17 Proof. Assume, to the contrary, that G contains a vertex x such that deg x ≡ 0 (mod 3). Since G



is connected, G contains a w − x path, say P = (w = w0, w1, …, wk = x). Let t be the smallest
positive integer such that deg wt ≡ 0 (mod 3). Then deg wt − 1  0 (mod 3). However, then, deg
wt − 1 + deg wt  0 (mod 3), a contradiction.

2.21 For (a) and (b), see Figure 7.

Figure 7: The graph in Exercise 2.21

(c) Find four induced subgraphs F0, F1, F2, F3 of maximum order in the Petersen graph, where
Fr is r-regular for 0 ≤ r ≤ 3

2.23 See Figure 8.

Figure 8: The graphs in Exercise 2.23

2.25 (a) Since G − v is 3-regular, the order of G − v is even and so the order of G is odd.

2.27 The size of G is r|U| = r|W|. Dividing by r, we obtain |U| = |W|.

2.29 (a) Let v be any vertex of G and let degGv = k. Then . So (G) + ( ) ≤ k
+ (n − 1 − k) = n − 1.

(b) Proof. Assume that G is regular, say r-regular. Then  is (n − 1 − r)-regular. Therefore, 
(G) = r and ( ) = n − 1 − r; so (G) + ( ) = n − 1.

For the converse, assume that G is not regular. Then G contains two vertices u and v such
that a = degGu > degGv = b. Therefore, (G) ≤ a. Now  and so 

. Hence (G) + ( ) ≤ a + (n − 1 − b) = n − 1 − (b − a) < n − 1.

(c) Proof. If G r-regular of order n, then  is (n − 1 − r)-regular. For every vertex v of G,
degGv = r = (G) and . For the converse, suppose that degGv



= r. Then . Let u be any other vertex of G. Then degG u ≥ r and 
. Thus 

. This implies that degGu = r
and . Thus G r-regular.

(d) Solution. Suppose that G has order n. Let u1, u2, …, uk be the vertices of G such that degG
ui = (G) = r for 1 ≤ i ≤ k and let v1, v2, …, v  be such that  for 1
≤ i ≤ . Then degG vi = n − 1 − s > r. Hence every vertex of G has one of two distinct
degrees.

2.31 Hint: For a vertex v of a graph G of order n, we have . Thus, if d1,
d2, …, dn is a degree sequence of a graph G of order n, then (n − 1) − d1, (n − 1) − d2, …, (n −
1) − dn is a degree sequence of .

2.33 Hint: If there exists a graph G with degree sequence x, 1, 2, 3, 5, 5, then the order of G is 6.
Since there are two vertices of degree 5, it follows that (G) ≥ 2 and so no vertex of G has
degree 1.

2.35 Hint: If there exists a graph G with degree sequence x, 7, 7, 5, 5, 4, 3, 2, then (G) ≥ 2. Since
every graph has an even number of odd vertices, x must be odd and so the only possible values
of x are 3, 5, 7. Apply the Havel-Hakimi Theorem to show that x = 5 or x = 3.



Chapter 3: Isomorphic Graphs

3.1 See Figure 9.

Figure 9: The graphs in Exercise 3.1

3.3 (a) , (b) .

3.5 We cannot conclude that  from this information. For example, perhaps some vertex of
G2 other than v2 has degree 3 and is adjacent to a vertex of degree 2. See Figure 10.

3.7 The solution is not correct. In fact, . That there is no path of length 2 lying inside a 5-
cycle of G2 is only a feature of the way G2 is drawn.

3.9 The graphs G1 and G2 are not isomorphic. For example, the two vertices of degree 2 in G1 are
mutually adjacent to two vertices, while the two vertices of degree 2 in G2 are not.

Figure 10: The graphs in Exercise 3.5

3.11 Proof. Suppose that |W| = a. Then |U| = a. Consider a vertex v  W. Then degGv ≥ n/2.
Therefore, . Since there are a vertices v in G with
degGv ≥ n/2, there are a vertices v in G with degGv ≤ n/2 − 1. Because there are a vertices v in
G with degGv ≤ n/2, it follows that there are no vertices v in G with degGv = n/2.

3.13 The graphs G and H are isomorphic.

Proof. The function  is one-to-one and onto. Consider any two vertices u and v of G. Then uv 
 E(G) or uv  E(G). Assume first that uv  E(G) and so dG(u, v) = 1. Since dH( (u), (v)) =

1, it follows that (u) and (v) are adjacent in H. Next, assume that uv  E(G). Since dG(u, v)
≥ 2, we have dH( (u), (v)) ≥ 2. That is, if u and v are nonadjacent in G, then (u) and (v)
are nonadjacent in H. So  is an isomorphism.

3.15 The statement is false. Let G1 = P3 = (u1, v1, w1) and G2 = P3 = (u2, v2, w2). Then .



Define a one-to-one correspondence  : V(G1) → V(G2) by (u1) = u2, (v1) = w2 and (w1) =
v2. Then , while .

3.17 (a) Yes, (b) No, (c) Yes.

3.19 Construct a graph G with V(G) = {v1, v2, …, vn} and where vivj  E(G) if and only if Gi is
isomorphic to Gj. Since G is a graph, it contains an even number of odd vertices.



Chapter 4: Trees

4.1 Consider the graph G obtained from the graph K3 with V(K3) = {v1, v2, v3} by adding two new
vertices x and y and the two edges v1x and v2y.

4.3 Proof. Since e = uv is an edge, G contains the u − v path P = (u, v). We show that P is the only
u − v path in G. Assume, to the contrary, that G contains another u − v path P′. Observe that P′ ≠
P and so the path P′ contains at least three vertices. Since u and v are the end-vertices of P′ and
P′ is a path, it follows that u, v  V(P′) − {u, v} and so e  E(P′). Thus P′ together with e = uv
form a cycle containing e. Since e is a bridge in G, a contradiction is produced.

4.5 (a) The size of G is n − 1. Hint: If e1 is an edge of G, then G1 = G − e1 has two components. If
e2 is an edge of G1, then G2 = G1 − e2 contains three components.

(b) The size of G is n − k.

4.7 (a) There are three trees of order 5.

(b) There are six forests of order 6 with one component, six forests of order 6 with two
components, four forests of order 6 with three components, two forests of order 6 with four
components, one forest of order 6 with five components and one forest of order 6 with six
components. So there are 20 forests of order 6.

4.9 Let G = Cn −1  K1 for n ≤ 4.

4.11 Hint: T2 = P4.

4.13 Let x be the number of vertices of degree 5. Thus 21 − 15 − 1 − x = 5 − x vertices of T have
degree 3. Since the size of T is 21 − 1 = 20, it follows by the First Theorem of Graph Theory
that . So x = 2.

4.15 Let x be the number of vertices of degree 2. Then the order of T is n = 50 + 4x. Thus m = 49 +
4x. Summing the degrees, we obtain 50 · 1 + 2x + 3x + 4x + 5x = 2(49 + 4x) and so x = 8. Thus
n = 50 + 4·8 = 82.

4.17 (a) The graph T is a double star with two vertices of degree 4.

(b) Let T be a tree of order n where 75% of the vertices have degree 1 and the remaining 25%
vertices have degree 4. Then (3n/4) · 1 + (n/4) · 4 = 2(n − 1). Solving for n, we have n =
8. Therefore, T is the double star in (a).

(c) Let T be a tree of order n where 75% of the vertices have degree 1 and the remaining 25%
vertices have a fixed degree x. Then (3n/4) · 1 + (n/4) · x = 2(n − 1). Then n(5 − x) = 8,
implying that x ≥ 4. So x = 2, 3, 4. Since n is an integer, x ≠ 2. Thus x = 3 or x = 4. If x = 3,
then n = 4 and T = K1, 3; while if x = 4, then n = 8 and T is the double star in (a).

4.19 (a) Hint: Since  and , it follows that 
 and so . Thus, 

. Simplifying, we have 



.

(b) n1 = 5 + 2·2 + 2 = 11.

4.21 The graph  is (n − 1)-regular. Since , it follows by Theorem 4.9 that
T is isomorphic to a subgraph of .

4.23 Solution. T = K1 or T = P4.

Proof. Let T be a tree of order n. Since T and  are both trees of order n, it follows that the
sizes of T and  are n − 1. Thus . Hence 4(n − 1)
= n(n − 1) and so (n − 1)(n − 4) = 0, implying that n = 1 or n = 4. If n = 1, then T = K1. If n = 4,
then T = P4 or T = K1, 3. Since  and  is not a tree, it follows that T = P4.

4.25 (a) There are 8 spanning trees of G and two nonisomorphic spanning trees.

(b) There are 9 spanning trees of G and three nonisomorphic spanning trees.

4.27 See Figure 11 for one example.

Figure 11: The graph in Exercise 4.27

4.29 Hint: By Kruskal’s algorithm, there is only one choice at each step for the edge selected.

4.31 For k = 2, let G = C3 with weights 1, 2, 2. For k ≥ 3, let G = Ck such that each edge of G has the
same weight.



Chapter 5: Connectivity

5.1 (a) Every nontrivial tree has this property.

(b) See the three graphs in Figure 12, where v is a cut-vertex in each graph.

Figure 12: The graphs in Exercise 5.1(b)

5.3 Each of the statements (a)-(d) is false.

(a) Let G be any graph in Figure 12.
(b) Let v be an end-vertex of G.
(c) Let G = K1, n − 1 (n ≥ 3).

(d) Every tree of order n has n − 1 bridges and at most n − 2 cut-vertices.

5.5 (a) Let G = K1, 12.

(b) Let G be either of the first two graphs in Figure 12.
(c) Let G be either of the first two graphs in Figure 12.
(d) Let G = K2.

5.7 Proof. Let x and y be two vertices of T such that d(x, y) = diam(T) ≥ 2. Then x and y are not cut-
vertices by Theorem 5.5 and so x and y are end-vertices of T. Let v be a vertex on the x − y
geodesic P that is adjacent to y. Then v is a cut-vertex. Assume, to the contrary, that v is
adjacent to two cut-vertices. Then v is adjacent to a cut-vertex w that is not on P. Then G − w
has a component containing a vertex z that does not lie on the x − v subpath of P. Since T has a
unique x − z path, the length of this path is d(x, z) = d(x, y) + 1 = diam(T) + 1, which is
impossible.

5.9 The cut-vertices of G are r, t, w and the bridges of G are qr, tw . The blocks of G are shown in
Figure 13.

Figure 13: The graphs in Exercise 5.9

5.11 Proof. By Corollary 2.5, G is connected. Thus it remains only to show that no vertex of G is a
cut-vertex. Let v  V(G). Let u and w be any two vertices of G that are distinct from v. We
show that G contains a u – w path that does not contain v. This is obvious if uw  E(G), so we



can assume that u and w are nonadjacent vertices. The set N(u) of vertices adjacent to u
contains at least n/2 elements, as does N(w). Since G contains n vertices, N(u)  N(w) must
contain at least two vertices, at least one of which, say x, is not v. Then (u, x, w) is a u − w path
not containing v.

5.13 The statement is false. See Figure 14.

Figure 14: The graph in Exercise 5.13

5.15 Hint: Let B be a nonseparable subgraph of G that is not a proper subgraph of any other
nonseparable subgraph of G. Let e and f be two edges of B. We show that either e = f or e and f
lie on a common cycle of G. Suppose that e ≠ f. Let C be a cycle that contains e. If f is on C,
then the proof is complete. Otherwise, there is a u − v path P = (u = u0, u1, …, uk = v) in B with
f = u0u1 such that ui is not on C for 0 ≤ i ≤ k ≤ 1. Since uk is not a cut-vertex in B, there is a uk  −

1 − w path P′ not containing uk such that w is the only vertex of P′ on C. (Show that there is a
cycle of B containing both e and uk−1 uk. Then complete the proof in this direction.)

For the converse, let B be the subgraph of a nontrivial connected graph G induced by the edges
in an equivalence class resulting from the equivalence relation defined in Theorem 5.8. We
show that B is a nonseparable subgraph of G that is not a proper subgraph of any other
nonseparable subgraph of G. Since this is true if B consists of a single edge, we assume that the
order of B is 3 or more. Since every two edges of B lie on a common cycle, B is connected. Let
w be a vertex of B. (Show that if w is a cut-vertex of B, then there exist vertices u and v, both
adjacent to w, such that every u − v path contains w. Show that this is impossible.) Thus w is
not a cut-vertex and B is nonseparable. (It now remains to show that B is not a proper subgraph
of any other nonseparable subgraph of G.)

5.17 A vertex-cut U of a connected graph G is minimal if no proper subset of U is a vertex-cut of G.
Then every minimum vertex-cut is minimal, but the converse is not true. One question to ask is
what is the maximum cardinality of a minimal vertex-cut in a graph G.

5.19 The statement is false. For example, let G = K1 + (K1  K2).

5.21 (a) Let G = C5.

(b) No such example exists.
(c) Let G = C5.

(d) No such example exists

5.23 (a) Proof. Let H = G + K1, where v is a vertex of H that is not in G. We show that k(H) ≥ k + 1.
Let S be a set of vertices H with |S| = k. There are two cases.



Case 1. v  S. Since every vertex in G is adjacent to v in H, every vertex in H − S is
adjacent to − in H − S and so H − S is connected.
Case 2. v  S. Then H − S = G − (S − {v}). Since k(G) ≥ k and |S − {v}| = k − 1, it follows
that G − (S − {v}) connected.
In either case, S is not a vertex-cut of H. Thus the removal of k or fewer vertices from H
does not disconnect H and so k(H) ≥ k + 1. Therefore, H is (k + 1)-connected.

(b) Hint: Use an argument similar to the one in (a).

5.25 (a) See Figure 15(a).

Figure 15: The graphs in Exercise 5.25(a) and (d)

(b) No such example exists.
(c) No such example exists.
(d) See Figure 15(d).

5.27 (a) Hint: Let G be a (connected) graph with connectivity k ≥ 1. Then there exists a vertex v1 of
G that is not a cut-vertex. Thus G1 = G − v1 is connected. Let v2 be a vertex of G1 that is not
a cut-vertex.

(b) Hint: The answer depends on k and G.
(c) The statement is false. Let G = K1, 3.

(d) The statement is true.

Proof. Assume, to the contrary, that there is a vertex-cut W such that v  W. Since v is
adjacent to every vertex in G − W, it follows that G v W is connected, a contradiction.

(e) Hint: The statement is true.

5.29 (a) Let G = P3 × K2. (b) Let G = K2,3.

5.31 (a) k = 2 = λ(G) − 1. (b) k = 1 = (G) − 1.

5.33 Proof. Since G is 5-connected, G − w is 4-connected. Therefore, there are four internally
disjoint u − v paths in G − w, each pair of which produces a cycle. Let P1, P2, P3, P4 denote
these four paths and let C be the cycle produced by P1 and P2 and C′ be the cycle produced by
P3 and P4. These cycles have only u and v in common and neither contains w since the paths
occur in G − w.

5.35 Proof. Construct a new graph H by adding a new vertex w and joining w to vi for 1 ≤ i ≤ k.
Since G is k-connected, it follows by Corollary 5.18 that H is k-connected. By Theorem 5.17,
there are k internally disjoint u − w paths in H. The restriction of these paths to G yields the



desired internally disjoint u − vi paths (1 ≤ i ≤ k).

5.37 Hint: (Qn) = λ(Qn) = n.



Chapter 6: Traversability

6.1 Solution. A multigraph M can be constructed that models this situation, where V(M) is the set of
rooms and two vertices of M are joined by the number of edges equal to the number of
doorways between the rooms in Figure 16. Since M is connected and contains exactly two odd
vertices (R3 and R6), it follows that M contains an Eulerian trail. So such a walk is possible,
either starting at R3 and ending at R6 or starting at R6 and ending at R3.

Figure 16: The multigraph M in Exercise 6.1

6.3 Proof. Let Gi be ri-regular of order ni(i = 1, 2, 3). Since G1 is Eulerian, r1 is even. Since  is
Eulerian, n1 − r1 − 1 is even. Thus n1 is odd. Since G2 is not Eulerian, r2 is odd and so n2 is
even. Similarly, r3 is odd and n3 is even. Observe that

(1) every vertex of G1 in G has degree r1 + n2 + n3, which is even,

(2) every vertex of G2 in G has degree r2 + n1 + n3, which is even,

(3) every vertex of G3 in G has degree r3 + n1 + n2, which is even.

Since G is connected and every vertex has even degree, G is Eulerian.

6.5 Let G = K5 − e.

6.7 Solution. (b) is true. Since n is odd, r is even and n − 1 − r is even. In H, every vertex of G has
degree r + 2 and every vertex of  has degree (n − 1 − r) + 2, both of which are even. Both u
and v have degree 2n + 1. Thus H is a connected graph having exactly two vertices of odd
degree.

6.9 Solution. Assume, to the contrary, that there is a nonempty subset S of V(G) such that k(G − S) >
|S|. Since G contains no cut-vertices, |S| ≥ 2. Moreover, since z is adjacent to all other vertices
o f G, we must have z  S; otherwise, G—S is connected. Also, since the order of G is 7,
removing four or more vertices from G results in a graph with three or less components. So |S|
= 2 or |S| = 3. The graph G − z is in Figure 17. If |S| = 2, then G − S is disconnected only if the
remaining vertex of S is u, w or y but then, k(G − S) = |S| = 2. If |S| = 3, then G − S can only have
more than two components if the remaining vertices of S are selected from {u, w, y} in which
case k(G − S) = |S| = 3. This says that the condition for G to be Hamiltonian is only necessary
and not sufficient, that is, the converse of this theorem does not hold.



6.11 Hint: Note that n is a (n − 3)-regular graph. If n = 5, then 5 = C5, which is Hamiltonian. If n
≥ 6, then n − 3 ≥ n/2.

Figure 17: The graph G − z in Exercise 6.9

6.13 (a) Let G = K2, 4. Removing the vertices in the partite set having cardinality 2 produces a graph
with four components.

(b) Let G = K4 − e. This graph contains two odd vertices.

(c) Let G = K4 − e.

(d) Let G = P3.

6.15 Solution. Yes, it is true.

Proof. Let F be the subdivision graph of the graph G. First, observe that if F is Hamiltonian,
then G must be connected. If G contains an end-vertex, then F does as well. So (G) ≥ 2. If G
contains a vertex of degree 3 or more, then F contains a vertex adjacent to at least three
vertices of degree 2. Since no Hamiltonian graph has such a vertex, Δ(G) ≤ 2. So G is a
connected, 2-regular graph; that is, G = Cn for some integer n ≥ 3. Hence G is Eulerian.

6.17 Solution. All graphs of order 4 together with C3 and P3.

Proof. First, if G has order 3 and contains an isolated vertex, then G(3) is not Hamiltonian;
otherwise, G is connected and G(3) is Hamiltonian. If G = 4, then G(3) = Q3, which is
Hamiltonian. So if G has order 4, then G(3) is Hamiltonian. So let n ≥ 5 and let G be a graph of
order n. Let V(G(3)) = V(G)  W, where W = {vS : S  V(G), |S| = 3}. Then  and
the number of components in G(3) − V(G) is k(G(3) - V(G))= |W|. It is known that if k(G(3) −
V(G)) > |V(G)| (that is, if , then G(3) is not Hamiltonian. For a positive integer n, the
inequality  is equivalent to n > 4. Since n ≥ 5, the graph G(3) is not Hamiltonian.

6.19 Proof. First, observe that the order of G is 2n. Since (G1) ≥ n/2 and (G2) ≥ n/2, the degree of
every vertex of G (in G1 or G2) is at least n/2 + n/2 = n. So G is Hamiltonian by Dirac’s
Theorem.

6.21 Hint: Consider G′ = G + K1, where V(K1) = {x}. Then degG′ u + degG′ v ≥ n + 1 for every two
nonadjacent vertices u and v in G′. Thus G′ contains a Hamiltonian cycle C and so G contains
the Hamiltonian path C − x.

6.23 Hint: (a) Yes (b) No.



Chapter 7: Digraphs

7.1 (a) Proof. Let v be a vertex of D. By hypothesis, D − v is a strong oriented graph. Hence D − v
is a directed cycle (see Figure 18(a)). On the other hand, D − u is strong, so it is a directed
cycle as well. Since (w, x) is a directed edge, D − u is the directed cycle shown in Figure
18(b). Thus D contains the digraph of Figure 18(c) as a subdigraph and so D is strong.

Figure 18: A directed cycle in the proof of Exercise 7.1(a)

(b) From (a), D contains the digraph of Figure 18(c) as a subdigraph. Regardless of whether u
and v are adjacent or not, D − w is not strong.

7.3 See Figure 19.

Figure 19: The graphs of Exercise 7.3

7.5 Proof. Let D be a strong digraph. Assume, to the contrary, that there exists an edge-cut S of the
underlying graph G of D separating V(G − S) into two sets A and B such that there are no arcs
directed from A to B. Let u  A and v  B. Then there is no u − v path in D, contradicting the
fact that D is strong. For the converse, assume that D is not strong. Then D contains two
vertices u and v such that there is no u − v path in D. Let A = {x  V(D) : D contains a u − x
path} and B = V(D) − A. Since u  A and v  B, it follows that A ≠  and B ≠ . The set S of
edges of G joining a vertex of A and a vertex of B is an edge-cut of G. Since D contains a u − x
path for all x  A and no u − x path for all x  B, there is no arc in D directed from A to B.

7.7 Proof. First observe that since T is strong, T contains no vertex x with od x = 0 or id x = 0.
Also, since T − (u, v) + (v, u) is strong for every arc (u, v) of T, it follows that T contains no
vertex x with od x = 1 or id x = 1. Consequently, od x ≥ 2 and id x ≥ 2 for every vertex x of T.
Since the order of T is n, where 3 ≤ n ≤ 5, it follows that n = 5 and every vertex x of T has od x
= id x = 2. There is a unique tournament of order 5 with this property.

7.9 Proof. First, assume that T is a transitive tournament. Let u and v be two vertices of T. Assume,
without loss of generality, that (u, v) is an arc of T. Let U be the set of all vertices to which v is



adjacent. Then od v = |U|. Therefore, if x  U, then (v, x) is an arc of T. Because T is transitive
and (u, v) and (v, x) are arcs, it follows that (u, x) is an arc of T. Therefore, u is adjacent to
every vertex of U and so od u ≥ 1 + |U|, implying that od u ≠ od v.

For the converse, assume that T is a tournament of order n whose vertices have distinct
outdegrees. Then these outdegrees are 0, 1, 2, …, n − 1. Hence we may assume that V(T) = {v1,
v2, …, vn}, where od vi = n – i for 1 ≤ i ≤ n. We claim that each vertex vi(1 ≤ i ≤ n − 1) is
adjacent to vi + 1, vi + 2, …, vn, which we verify by induction. Since od v1 = n − 1, this is
certainly true for the vertex v1. Assume that vi is adjacent to vi + 1, vi + 2, …, vn for all vertices
vi, where 1 ≤ i ≤ k and 1 ≤ k > n. Consider vk  + 1. By the induction hypothesis, all of the vertices
v1, v2, …, vk are adjacent to vk  + 1. Since od vk  + 1 = n − k − 1, it follows that −k  + 1 is adjacent
to vk  + 2, vk  + 3, …, vn. We now show that T is transitive. Let (u, v) and (v, w) be arcs of T. Then
u = vr, v = vs and w = vt, where r < s < t. Since r ≤ t, it follows that (u, w) is an arc of T and so
T is transitive.

7.11 Proof. Recall that . Now

Therefore, id vn − od vn ≥ n − 1, which implies that id vn = n − 1 and od vn = 0. Since od vn =
0, it follows that T is not strong.

7.13 Solution. Let u and v be two distinct vertices in a tournament T. We may assume that (u, v) 
E(T) and so (v, u)  E(T). Then  and . Therefore, .

7.15 Proof. We proceed by induction. Let T be a strong tournament of order n ≥ 3 and let v be a
vertex of T. We first show that T contains a cycle of length 3. Since T is strong, od v > 0 and id
v > 0. Let N+(v) be the set of all vertices to which v is adjacent and let N−(v) be the set of all
vertices from which v is adjacent. Thus N+(v) and N−(v) are nonempty. For the same reason,
there is a vertex u  N+(v) that is adjacent to some vertex w in N−(v). Hence (v, u, w, v) is a
cycle of length 3.

Suppose that T contains a cycle of length k, where 3 ≤ k < n. We show that T contains a cycle
of length k + 1.
Let C = (v = v1, v2, …, vk, v1) be a cycle of length k. Suppose that there exists a vertex u of T
not on C such that u is adjacent from some vertex of C and is adjacent to some other vertex of
C. Then there exists a pair of adjacent vertices of C, say vi and vi + 1 (where the subscripts are
expressed modulo k) such that (vi, u) and (u, vi + 1) are both arcs of T. In this case, (v1, v2, …,
vi, u, vi + 1, …, vk, v1) is a cycle of length k + 1 containing v.

Assume now that every vertex of T not on C is either adjacent from all vertices of C or is



adjacent to all vertices of C. Let U be the set of vertices of V(T) − V(C) that are adjacent from
all vertices of C and let W be the set of vertices of V(T) − V(C) that are adjacent to all vertices
of C. Since T is strong, there is some vertex u  U that is adjacent to some vertex w  W.
However then, (v1, v2, …, vk  − 1, u, w, v1) is a cycle of length k + 1 containing v.



Chapter 8: Matchings and Factorization

8.1 (a) See Figure 20.

Figure 20: The graph G in Exercise 8.1

(b) A perfect matching of G is M = {u0w6, u1w1, u2w0, u3w5, u4w2, u5w4, u6w3}.

8.3 For the graph G1, the set U can be matched to W as M = {av, bw, cy, dz, ex} is a matching. The
set U in G2 cannot be matched to W since U is not neighborly. For example, let X = {v, x, y}.
Then N(X) = {a, c}.

8.5 Proof. Assume, to the contrary, that there exists a tree T having two distinct perfect matchings
M1 and M2. Hence there exists a vertex v incident with distinct edges e1 and e2 such that e1 
M1 and e2  M2, where, say, e1 = uv and e2 = vw and u ≠ w. Therefore, T contains a path of
length 2 whose edges are alternately in M1 − M2 and M2 − M1. Let P be a path of greatest
length whose edges are alternately in M1 − M2 and M2 − M1. Suppose that P is an x − y path
and x is incident with an edge of M1 − M2 on P. Since M2 is a perfect matching, there is an
edge e of M2 − M1 not on P incident with x, say e = xz. If z is not on P, then z, P is a z − y path
whose edges are alternately in M1 − M2 and M2 − M1 and whose length is greater than that of P.
This is impossible. If z is on P (which can only occur if z = y and y is incident with an edge of
M1 − M2), then a cycle is formed in T, which is also impossible.

8.7 Consider the graph (see Figure 21). Let M1 = {uv, ws, tx, yz} and M2 = {us, vw, xy, tz}.

Figure 21: A graph for Exercise 8.7

8.9 Consider G1 = K8, G2 = K6 − e, G3 = P5, G4 = K1, 4.

8.11 If G is a complete bipartite graph, then (G) = ′(G).

8.13 Observe that (H) = ′(H) = 2 and (H) = ′(H) = 5. The set {t, u} is a minimum vertex cover,



{u, w, x, y, z} is a maximum independent set of vertices, {uv, tw, tx, ty, tz} is a minimum edge
cover and {uv, tw} is a maximum independent set of edges.

8.15 Observe that ′(G) = (n1 + n2)/2. By Theorem 8.7, ′(G) = (n1 + n2)/2.

8.17 The graph G1 has a 1-factor but is not 1-factorable, G2 does not have a 1-factor (and therefore
is not 1-factorable either) and G3 has a 1-factor but is not 1-factorable.

8.19 Hint: Construct a Hamiltonian factorization of K9.

8.21 Hint: Let S be the partite set of K3, 5 with |S| = 3. Then ko(G − S) = 5.

8.23 Hint: By Theorem 8.11, G has a 1-factor if G has no bridges; otherwise, let P = (u = u0, u1, …,
uk = v) be a u − v path containing all bridges of G. Without loss of generality, we may assume
that uu1 and uk  − 1v are bridges. Let G1 be the component of G − uu1 containing u and let G2 be
the component of G − uk  − 1v containing v. For each i = 1, 2, let ei = xiyi be an edge of Gi.
Furthermore, let G′ be the graph obtained from G by deleting the edges ei and adding a new
vertex wi and the edges xiwi and wiyi for i = 1, 2. Thus w1 and w2 are the only vertices of degree
2 in G′. Let F1, F2 and F3 are three copies of G′. For each j with 1 ≤ j ≤ 3, let w1 j be the vertex
in Fj corresponding to w1 in G′ and w2, j be the vertex in Fj corresponding to w2 in G′. Construct
a graph F from F1, F2 and F3 by (1) adding two new vertices z1 and z2 and (2) joining z1 to w1 j
for 1 ≤ j ≤ 3 and joining z2 to w2 j for 1 ≤ j ≤ 3. Then F is 3-regular and bridgeless and so F has
a 1-factor by Theorem 8.11. Complete the proof by showing that at least one of F1, F2 and F3
has a 1-factor.

8.25 Hint: If n is even, then Cn is 1-factorable. If n is odd, consider two n-cycles C = (v1, v2, …,
vn, v1) and  in Cn × K2, where  is an edge for 1 ≤ i ≤ n.
Consider three subgraphs F1, F2 and F3 of Cn X K2, where 
and  for 3 ≤ i ≤ n.

8.27 Hint: Consider C* = (v1, v2, v3, v5, v4, v6, v1, v4, v2, v5, v6, v3, v1).

8.29 Hint: Observe that Kn + 1 = Kn + K1.

8.31 Hint: The graph K7 can be decomposed into three copies of C3  C4.

8.33 Hint: If K2, 2, 2 were K1, 4-decomposable, then K2, 2, 2 could be decomposed into three copies of
K1, 4 and so there are vertices of K2, 2, 2 that are not the center of any star K1, 4.

8.35 Hint: The graph C6 is not graceful. Consider the parity of the labels as one moves cyclically
about C6. On the other hand, C8 is graceful. Let C8 = (v1, v2, …, v8, v1). Consider the labeling f
defined by f(v1) = 0, f(v2) = 8, f(v3) = 1, f(v4) = 4, f(v5) = 5, f(v6) = 7, f(v7) = 2 and f(v8) = 6.

8.37 Hint: Show that T is a graceful tree of size 5 and then use Theorem 8.24.



Chapter 9: Planarity

9.1 See Figure 22. For G1, n = 6, m = 10, r = 6. For G2, n = 10, m = 17, r = 9. For G3, n = 6, m =
12, r = 8. In each case, we have n − m + r = 2.

Figure 22: Graphs for Exercise 9.1

9.3 (a) Solution. The graph G has order n = 7 and size m = 16. Thus m = 16 > 3 · 7 − 6 = 15. By
Theorem 9.2, the graph G is nonplanar.

(b) Solution. The graph G has order n = 12 and size m = 33. Thus m = 33 > 3 · 12 − 6 = 30. By
Theorem 9.2, the graph G is nonplanar.

9.5 (a) The graph of the octahedron is a 4-regular planar graph and the complete bipartite graph K4,

4 is a 4-regular nonplanar graph.

(b) The graph of the icosahedron is a 5-regular planar graph and the complete bipartite graph
K5, 5 is a 5-regular nonplanar graph.

(c) By Corollary 9.3, every planar graph contains a vertex of degree 5 or less.

Figure 23: Graphs for Exercise 9.5(a) and (b)

9.7 (a) C4.

(b) No such graph exists since a nonplanar graph must have at least five vertices to contain K5
or K3,3 (or a subdivision of either) as a subgraph.

(c) A graph obtained by subdividing a single edge of K5 exactly once.

(d) No such graph exists. If G has 5 vertices and 10 edges, then G = K5, which is nonplanar.
(Note that the Euler Identity may appear to hold since n − m + r = 5 − 10 + 7 = 2, but there



is no such planar graph.)
(e) Let G = K3.

(f) Let G = K6  K1.

9.9 The graph G is nonplanar since G contains a subdivision of K3,3 as shown in Figure 24.

Figure 24: The graphs in Exercise 9.9

9.11 The graph is planar as shown in Figure 25.

9.13 (a) Proof. First, suppose that G is connected. Note that the inequality holds if m = 2, 3. Thus,
we may assume that m ≥ 4. We draw the graph G as a plane graph and denote the number of
regions of G by r. For each region R of G, we determine the number of edges lying on the
boundary of R and then sum these numbers over all regions of G. We denote this number by
M. Since G has no triangle, there are at least 4 edges belonging to the boundary of each
region. Thus M ≥ 4r. On the other hand, the number M counts every edge of G

Figure 25: The graph in Exercise 9.11

once or twice, that is M ≤ 2m. Hence 4r ≤ M ≤ 2m or 2r ≤ m. Since n − m + r = 2, it
follows that

Therefore, m ≤ 2n − 4.
If G is disconnected, then edges can be added to G to produce a connected plane graph of
order n and size m′ without triangles, where m′ > m. Then m′ ≤ 2n − 4 and so m ≤ 2n − 4.

(b) Since K3,3 is bipartite, K3,3 has no triangles. The order of K3,3 is n = 6 and the size is m = 9.
Since 9 > 8 = 2 · 6 − 4 = 2n − 4, it follows by (a) that K3,3 is nonplanar.

(c) Proof. Assume, to the contrary, that there exists a planar bipartite G of order n and size m



such that (G) ≥ 4. Then 2m ≥ 4n and so m ≥ 2n. On the other hand, G is bipartite and so G
has no triangles. By (a), m ≤ 2n − 4, which is impossible.

9.15 Proof. Assume, to the contrary, that there exists a planar graph G of order of n ≤ 11 such that 
(G) ≥ 5. Thus 2m ≥ 5n. On the other hand, G is planar and so m ≤ 3n − 6. Therefore, 5n ≤ 2m ≤
6n − 12, implying that n ≥ 12, which is a contradiction.

9.17 Hint: The graph  is planar. The graph  contains a subdivision of K3,3 and is nonplanar.
The graph  is nonplanar since  and m > 3n
− 6.

9.19 Hint: Since G is maximal planar, m = 3n − 6. Then use the Euler Identity.

9.21 Proof. Assume, to the contrary, that G contains a vertex v with deg v ≤ 2. Suppose that G has
order n and size m. Since G is maximal planar, m = 3n − 6. Then G − v is planar. Hence G − v
has order n and size m′ ≥ m − 2. Thus m′ ≤ 3(n − 1) −6 and so m − 2 ≤ 3n − 3 − 6 and m ≤ 3n −
7, a contradiction.

9.23 See Figure 26.

Figure 26: Embedding the graph in the torus in Exercise 9.23

9.25 Solution. Since K3,3 is a subgraph of K4, 4, it follows that K4, 4 is non-planar and so γ(K4, 4) ≥ 1.
Since K4, 4 can be embedded in the torus, γ(K4, 4) = 1.

Figure 27: Embedding K4, 4 in the torus in Exercise 9.25



9.27 (a) False. Every planar graph can be embedded on the sphere and therefore on the torus as
well.

(b) True. The complete graph K8 has genus 2 (by Theorem 9.12).

(c) True. Draw G on the sphere (possibly with edges crossing). For each edge, insert a handle
and draw that edge only on the handle.

(d) False. Every planar graph can be embedded on the torus.



Chapter 10: Colorings

10.1 (G1) = (G4) = 3, (G2) = (G3) = (G5) = 4. Since G1 contains a triangle,  (G1) ≥ 3.
Because there is a 3-coloring of G1, (G1) ≤ 3. Since G2 contains K4 as a subgraph, (G2) ≥
4. Since G2 is planar, (G2) ≤ 4. Since G3 contains K4 as a subgraph, (G3) ≥ 4. Because
there is a 4-coloring of G3, (G3) ≤ 4. Since G4 contains a triangle, (G4) ≥ 3 Because there
is a 3-coloring of G4, (G4) ≤ 3. Since G5 contains K4 as a subgraph, (G5) ≥ 4. Since there is
a 4-coloring of G5, (G5) ≤ 4.

10.3 The chromatic number of a tree of order at least 2 is 2 since a tree is a bipartite graph.

10.5 Proof. Let G be a graph of order 6 and chromatic number 3 and let there be a 3-coloring of G.
If there are three (or more) vertices that are assigned the same color, then G has an
independent set of three or more vertices. Thus the size of G is at most .
Otherwise, V(G) can be partitioned into three independent sets of two vertices each and the
size of G is at most .

The result cannot be improved since G = K2, 2, 2 is a graph of order 6 and size 12 having
chromatic number 3.

10.7 Since Δ(G) = 5 and G is neither complete nor an odd cycle, (G) ≤ Δ(G) = 5.

10.9 (a) Proof. Let G = K5. Then G is nonplanar and (G) = 5. Observe that G − v = K4 is planar for
every vertex v of G and (K4) = 4.

(b) Proof. Let G = K3,3. Then G is nonplanar and (G) = 2. Observe that G − v = K2,3 is planar
for every vertex v of G and (K2,3) = 2.

10.11 Solution. Let G be a graph whose vertex set is the set of chemicals. Place an edge between
two vertices (chemicals) in G if it is risky to ship them in the same container. The graph G is
shown in Figure 28. Since (G) = 4, the minimum cost of shipping the chemicals is 125 + 3 ·
85 = 380. Container 1: c1, c7; Container 2: c4, c5; Container 3: c2, c8; Container 4; c3, c6.

Figure 28: The graph G in Exercise 10.11



10.13 Proof. Let V1, V2, …, Vk be the k color classes resulting from a k-coloring of G, where the
vertices of Vi are colored i (1 ≤ i ≤ k). Then every two distinct color classes have different
cardinalities. Hence we may assume that 1 ≤ |V1 | < |V2 | < … < |Vk |. Since (G) = k, it
follows that |Vk | ≤ k. This implies that |Vi | = i for every i (1 ≤ i ≤ k). Hence V1 consists of only
one vertex v, which is colored 1. If there is a vertex u  Vi (i ≠ 1) that is not adjacent to v,
then u could be colored 1, which would produce a contradiction. Thus v is adjacent to all
other vertices of G and so deg v = n − 1.

10.15 Let G be the graph with vertex set A and two vertices ai and aj are adjacent in G if {ai, aj}  S.
Then f is a coloring of G. The cardinality of the range of f is (G).

10.17 ′(G1) = ′(G2) = ′(G5) = 4 and ′(G3) = ′(G4) = 5,

10.19 Solution Draw an edge between two vertices (teams) if the teams have to play each other. The
graph G has odd order n = 7, size m = 13, and Δ(G) = 4. Since , it follows
that ′(G) = 1 + Δ(G) = 5, which is the minimum number of days to schedule all 13 games. A
coloring of the edges of G is given in Figure 29.

Figure 29: The graph in Exercise 10.19



Chapter 11: The Ramsey Number of Graphs

11.1 Hint: F1 is a subgraph of Ks and F2 is a subgraph of Kt.

11.3 Proof. Let there be given a red-blue coloring of G = K18. For v  V(G), there are 9 edges
incident with v that are colored the same color. Suppose that v is joined to each vertex of S =
{v1, v2, …, v9} by a red edge. Since r(K3, K4) = 9, there is a red K3 or a blue K4 in H = G [S]
= K9. If there is a red K3 in H, then G has a red K4; if there is a blue K4 in H, then G has a blue
K4. Therefore, r(K4, K4) ≤ 18.

11.5 r(2K2, P3) = 4. Proof. Since the order of 2K2 is 4, it follows that r(2K2,P3) ≥ 4. Next we show
that r(2K2, P3) ≤ 4. Let there be given a red-blue coloring of K4. If all edges of K4 are colored
red, then we have a red 2K2. Thus we may assume that at least one edge is colored blue, say
uv is colored blue as shown in Figure 30(a). If either ux or vy is colored blue, then we have a
blue P3 as shown in Figure 30(b). Otherwise, both ux and vy are colored red and we have a
red 2K2 as shown in Figure 30(c).

Figure 30: A red-blue coloring of K4 in Exercise 11.5

11.7 r(2K2, 2K2) = 5. Proof. In the coloring of K4 as shown in Figure 31(a) where each red edge of
K4 is drawn as a bold edge, there is no red 2K2 and no blue 2K2. Thus r(2K2, 2K2) ≥ 5.

Figure 31: Red-blue colorings of K4 and K5 in Exercise 11.7

Next we show that r(2K2, 2K2) ≤ 5. Let there be given a red-blue coloring of K5 and suppose
that there is no red 2K2 and no blue 2K2. If all edges of K5 are colored blue, then we have a



blue 2K2. Thus we may assume that at least one edge is colored red, say xy is colored red as
shown in Figure 31(b). Since there is no red 2K2, all edges uv, uw, vw are colored blue. Since
uw is blue, vx must be red. Since uv is blue, wy is red. But vx and wy produce a red 2K2, which
is a contradiction.

11.9 r(K1, 3, K1, 3) = 6. Proof. There is a red-blue coloring of K5 such that the red subgraph and blue
subgraph are both C5 and so contains no red K1, 3 and no blue K1, 3. Thus r(K1, 3, K1, 3) ≥ 6. Let
there be given a red-blue coloring of K6. For a vertex v of K6, there are 5 edges incident with
v. Thus at least three of these 5 edges are colored same, say red, and so it contains a red K1, 3.
Therefore, r(K1, 3, K1, 3) = 6.

11.11 r(K1, 4, K1, 4) = 7. Proof. Consider the red-blue coloring of K6 in which the red subgraph is
C6. Since the blue subgraph is 3-regular, there is no red K1, 4 and no blue K1, 4. Thus r(K1, 4,
K1, 4) ≥ 7.

Next we show r(K1, 4, K1, 4) ≤ 7. Assume, to the contrary, that there is a red-blue coloring of K7
with no red K1, 4 and no blue K1, 4. Then every vertex of K7 must be incident with exactly three
red edges and three blue edges, for otherwise, K7 contains a red K1, 4 or a blue K1, 4. However
then, the red subgraph of K7 is 3-regular of order 7, which is impossible.

11.13 r(C4, C4) = 6. Proof. The coloring of K5 of Figure 32(a) contains no red C4 and no blue C4.
Thus r(C4, C4) ≥ 6.

Figure 32: A red-blue coloring of K5 and a subgraph of K6 in Exercise 11.13

Next we show that r(C4, C4) ≤ 6. Assume, to the contrary, that there is a red-blue coloring of K6
with no red C4 and no blue C4, where V(K6) = {v1, v2, …, v6}. Since r(K3, K3) = 6, there is
either a red K3 or a blue K3, say the former. Let the subgraph induced by {v1, v2, v3} be a red
K3. If there is a vertex in {v4, v5, v6} that is joined to two vertices in {v1, v2, v3} by red edges,
then K6 contains a red C4. Thus each vertex in {v4, v5, v6} is joined to at least two vertices in
{v1, v2, v3} by blue edges. Furthermore, no two vertices in {v4, v5, v6} are joined by blue edges
to the same two vertices in {v1, v2, v3}, for otherwise, a blue C4 is produced, giving a
contradiction. This implies that every vertex in {v4, v5, v6} is joined to exactly two vertices in
{v1, v2, v3} by blue edges and joined to one vertex in {v1, v2, v3} by a red edge. Thus K6



contains the red subgraph shown in Figure 32(b). If there is a red edge joining two vertices in
{v4, v5, v6}, then K6 contains a red C4, a contradiction. Thus the subgraph induced by {v4, v5,
v6} is a blue K3 as shown in Figure 32(c). However, then this produces a blue C4, a
contradiction.

11.15 Proof. Let p = r(Ks, Kt) and let G = Kp − 1 Now let there be given red-blue coloring of G.
Furthermore, let H be the graph obtained from G by adding a new vertex v and joining v to
every vertex of G by a red edge. Then H = Kp. Since p = r(Ks, Kt), it follows that H has a red
Ks or a blue Kt. If H has a blue Kt, then G contains a blue Kt and therefore a blue Kt − 1.
Otherwise, H contains a red Ks. If the red Ks does not contain v, then G contains a red Ks and
therefore a red Ks − 1. If the red Ks in H contain v, then G contains a red Ks − 1.

11.19 (a) The graph G = K3, 3, 4, which has size 33.

(b) The smallest such positive integer m is 33 + 1 = 34.

11.21 T5, 1 = 5, T7, 2 = K3, 4, T6, 3 = K2, 2, 2, T6, 4 = K1, 1, 2, 2, T5, 5 = K5.

11.23 Hint: 1+ k(n − 1)/2 .

11.25 The smallest positive integer m for which every graph of order n ≥ 2 and size m contains a
Hamiltonian path is .

Proof. First observe that the disconnected graph Kn − 1  K1 has order n and size  but
contains no Hamiltonian path. Next we show that every graph of order n and size  + 1 has
a Hamiltonian path. Let G be such a graph and let H = G + K1, where H is obtained by adding a
vertex v to G and joining v to every vertex of G. Then H has order n + 1 and size 

. By Theorem 11.18, H has a Hamiltonian cycle C. Deleting v from
C produces a Hamiltonian path in G.



Chapter 12: Distance

12.1 rad(G) = diam(G) = 5 and Cen(G) = G.

12.3 Note that rad(Ks, t) = 1 if s = 1 and rad(Ks, t) = 2 if s ≥ 2, while diam(Ks, t) = 1 if t = 1 and
diam(Ks, t) = 2 if t ≥ 2. Thus Cen(Ks, t) = K1 if s = 1 and t ≥ 2 and Cen(Ks, t) = Ks, t otherwise.

12.5 Consider the graph G4 in Figure 12.3.

12.7 (a) Hint: Let v  V(G) such that e(v) = diam(G). Fir each i with 0 ≤ i ≤ 2, let Si = {u  V(G) :
d(v, u) = i} and let S3 = {u  V(G) : d(v, u) ≥ 3}. Then {S0, S1, S2, S3} is a partition of V(G).
Complete the proof by showing that d  (x, y) ≤ 3 for all x, y  V(G).

(b) Let G = P4.

12.9 Proof. Assume, without loss of generality, that e(u) ≥ e(v). Let x be a vertex that is farthest
from u. So d(u, x) = e(u). By the triangle inequality,

Hence e(u) ≤ d(u, v) + e(v), which implies that 0 ≤ e(u) − e(v) ≤ d(u, v). Therefore, |e(u) −
e(v)| ≤ d(u, v).

12.11 Proof. Let x, y  V(G) such that e(x) = rad G and e(y) = diam G and let P =(x = u0, u1, u2, …,
ua = y) be an x − y path. By Theorem 12.2, |e(uj) − e(uj+ 1)| ≤ 1 for 0 ≤ j ≤ a − 1. Let i be the
greatest integer with 0 ≤ i ≤ a − 1 such that e(ui) < k. Therefore, e(ui) ≤ k − 1 and e(ui + 1) ≥ k.
Thus e(ui + 1) − e(ui) ≥ 1. Since e(ui + 1) − e(ui) ≤ 1 by Theorem 12.2, it follows that e(ui + 1) −
e(ui) = 1 and so e(ui + 1) = 1 + e(ui) = k.

12.13 (a) Proof. Let v be a vertex of T′ and suppose that eT (v) = k. Let u be a vertex of T such that
d(v, u) = k. Necessarily, u is an end-vertex of T, for otherwise the v − u path in T could be
extended to a longer path in T, contradicting the fact that eT (v) = k. So eT, (v) = k − 1.
Therefore, a vertex of minimum eccentricity in T′ is a vertex of minimum eccentricity in T
and so Cen(T) = Cen(T′).

(b) Hint: Note that the center of a graph G lies in a block of G For a tree T, the only blocks are
K1 and K2.

(c) Hint: Observe that if the end-vertices of a tree T are removed, producing a tree T′, then
diam T ′ = diam T − 2.

12.15 Per(G) = G
12.17 Per(Ks, t) = t if s = 1 and t ≥ 2, while Per(Ks, t) = Ks, t otherwise.

12.19 Consider P9 = (v1, v2, …, v9) and let v = v3.

12.21 Hint: No.



12.23 Hint: If G is self-centered, then Per(G) = G. For the converse, use Theorem 12.7 to show that
e(v) = 2 for every vertex v of G.

12.25 Hint: No.

12.27 See Figure 33.

Figure 33: The graph G in Exercise 12.27

12.31 Hint: Let V(G) = {u1, u2, …, un} and let G′ be the graph obtained from G by adding n vertices
v1, v2, …, vn and joining each vi to ui for 1 ≤ i ≤ n. Let P and Q be two copies of the path P5,
where P = (x1, x2, …, x5) and Q = (y1, y2, …, y5). Let H be the graph obtained from G ′, P and
Q by joining each end-vertex of P and Q to every vertex of G. Show that Cen(H) = Int(H) = G.



Chapter 13: Domination

13.1 (a) γ(G) = 3. (b) γo (G)= 4.

13.3 For n ≥ 2, γ(Kn) = 1, γ(Pn) = n/3 , γ(Ks, t) = 1 if min{s, t} = 1 and γ(Ks, t) = 2 if min{s, t} ≥ 2,
γ(Q3) = 2, γ(PG) = 3. For n ≥ 2, γo (Kn) = 2 and

γo (Kr, s) = 2, γo (Q3) = 3 and γo (PG) = 4.

13.5 (a) Let G = C4 = (u, x, v, y, u). Then S = {u, v} is a minimum dominating set for G, where
N(x)  S = S and N(y) S = S.

(b) Hint: Let n = 2k + 1, where k ≥ 1 and let G be the graph obtained by subdividing each
edge of K1, k. Then v(G) = k.

13.7 Hint: Let G be the graph obtained from Kn − k with V(Kn − k) = {v1, v2, …, vn − k} by adding k
new vertices u1, u2, …, uk and k new edges ui vi for 1 ≤ i ≤ k. Then G is a connected graph of
order n with γ(G) = k.

13.9 Hint: For each v  S, the vertex v is not dominated by any vertex in S − v and so S − v is not a
dominating set for G. Thus S is necessarily a minimal dominating set. But S is not necessarily
a minimum dominating set. For example, let G = C6 = (v1, v2, …, v6, v1) and let S = {v1, v3,
v5}.

13.11 (a) Proof. The lower bound follows immediately from the observation that if γ(G) = 1, then γ(
) ≥ 2. It remains to verify the upper bound. If G has an isolated vertex, then γ(G) ≤ n and

γ( ) = 1; while if  has an isolated vertex, then γ( ) ≤ n and γ(G) = 1. So in these cases,
γ(G) + γ( ) ≤ n + 1. If neither G nor  has an isolated vertex, then γ(G) ≤ n/2 and γ(G) ≤
n/2 by Corollary 13.5 and so γ(G) + γ( ) ≤ n.

(b) Let G = K1, n − 1, where n ≥ 2.

(c) Let G = n.

13.13 For n > k ≥ 2, let G be the graph obtained from Pk+ 2 = (v0, v1, v2, …, γk  + 1) by adding k new
vertices u1, u2, …, uk and k new edges uivi for 1 ≤ i ≤ k. Then G is a connected graph without
isolated vertices for which γ(G) = γo (G) = k.

13.15 Let G be the graph obtained from the 4-cycle (v1, v2, v3, v4, v1) by adding the vertices u1 and
u3 and joining ui and vi for i = 1, 3. Then γ(G) = 2 and γo(G) = 3.
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