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Preface

In the excitement and rapid pace of developments, writing pedagogical texts
has low priority for most researchers. However, in transforming my lecture
notes! into this book, I found a personal benefit: the organization of what I
understand in a (hopefully simple) logical sequence. Very little in this text
is my original contribution. Most of the knowledge was collected from the
research literature. Some was acquired by conversations with colleagues; a
kind of physics oral tradition passed between disciples of a similar faith.

For many years, diagramatic perturbation theory has been the major
theoretical tool for treating interactions in metals, semiconductors, itiner-
ant magnets, and superconductors. It is in essence a weak coupling expan-
sion about free quasiparticles. Many experimental discoveries during the
last decade, including heavy fermions, fractional quantum Hall effect, high-
temperature superconductivity, and quantum spin chains, are not readily
accessible from the weak coupling point of view. Therefore, recent years
have seen vigorous development of alternative, nonperturbative tools for
handling strong electron—electron interactions.

I concentrate on two basic paradigms of strongly interacting (or con-
strained) quantum systems: the Hubbard model and the Heisenberg model.
These models are vehicles for fundamental concepts, such as effective Ha-
miltonians, variational ground states, spontaneous symmetry breaking, and
quantum disorder. In addition, they are used as test grounds for various
nonperturbative approximation schemes that have found applications in
diverse areas of theoretical physics.

The level of the text should be appropriate for a graduate student with
some background in solid state physics (single electron theory) and fa-
miliarity with second quantization. The exercises vary in difficulty and
complement the text with specific examples and corollaries. Some of the
mathematical background material is relegated to the appendices.

I owe most to the relentless efforts of Maxim Raykin, whose careful proof-
reading weeded out inconsistencies and helped clarify numerous points. I
am also heavily indebted to Duncan Haldane, who introduced me to quan-
tum magnetism, and to my friend and colleague, Dan Arovas, who taught
me about parent Hamiltonians, the single mode approximation, and many

'for a graduate course on Quantum Many Particle Systems given at Boston
University and at the Technion during 1990-1993.
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other things,? and for his critical comments. I am grateful for the support
of the Alfred P. Sloan Foundation, which enabled me to complete this book.

Assa Auerbach
Haifa, 1994

2including the use of phantomn daggers.



Contents

Preface

Basic Models

Electron Interactions in Solids

1.1
1.2
1.3
14
1.5

Single Electron Theory . . . . . ... ... ... ... ....
Fields and Interactions . . . . . . ... ... ... ......
Magnitude of Interactions in Metals . . . ... .. .. ...
Effective Models . . . . .. .. .. ... ... .. ......
Exercises . . . . . . ... e

Spin Exchange

2.1
2.2
2.3
24

Ferromagnetic Exchange . . . . .. ... ... ........
Antiferromagnetic Exchange . . . . . ... ... ... ....
Superexchange . . . . .. ... .. ... .. ... .
Exercises . . . . . . . .. e

The Hubbard Model and Its Descendants

3.1
3.2
3.3

3.4

Truncating the Interactions . . . . . ... ... ... ....
At Large U: Thet~JModel . . . . . ... .. .. ... ...
The Negative-U Model . . . . .. .. ... ... .......
3.3.1 The Pseudo-spin Model and Superconductivity . . .
Exercises . . . .. .. . . . ... e

II Wave Functions and Correlations

4

Ground States of the Hubbard Model

4.1
4.2
4.3

Variational Magnetic States . . . . . .. ... ... ... ..
Some Ground State Theorems . . . . . . . ... ... ....
EXercises . . . . . v v i i e e e e e e e e e e e

Ground States of the Heisenberg Model

5.1
5.2

The Antiferromagnet . . . . . . . ... ... .........
Half-Odd Integer Spin Chains . . . . ... ... . ... ...

vii



b'd Contents

53 Exercises . . . . . . . . e e e e e e e e e e

6 Disorder in Low Dimensions
6.1 Spontaneously Broken Symmetry . . . . . . ... ... ...
6.2 Mermin and Wagner’s Theorem . . . . . .. .. ... .. ..
6.3 Quantum Disorderat T=0 . . .. ... ... ... .....
6.4 ExXercises . . . . . . . . i i e e e e e

7 Spin Representations
7.1 Holstein—Primakoff Bosons. . . . . . ... ... .......
7.2 SchwingerBosons . . . . .. ... ... .. ..........
72.1 SpinRotations . ... .................
7.3 Spin Coherent States . . . . . ... ... ... .. ......
731 ThefIntegrals . . ... ... ... ... ... .....
74 Exercises . . . .. .. . . .. e

8 Variational Wave Functions and Parent Hamiltonians
8.1 Valence Bond States . . .. .. .. ... ...........
82 S=12States . .......... ... ... ...
8.2.1 The Majumdar-Ghosh Hamiltonian . ... ... ..
8.2.2 Square Lattice RVB States . . ... ... ......
8.3 Valence Bond Solids and AKLT Models . . . ... ... ..
8.3.1 Correlations in Valence Bond Solids . . .. .. ...
84 Exercises . . . . . . . e e e e

9 From Ground States to Excitations
9.1 The Single Mode Approximation . . ... ... ... ....
92 GoldstoneModes . . . . . .. .. ... o oo
9.3 The Haldane Gapandthe SMA . . . . ... .. .. .....

IIT Path Integral Approximations

10 The Spin Path Integral
10.1 Construction of the Path Integral . . . . . . ... .. .. ..
10.1.1 The Green’s Function . ... ... ... ... .. ..
10.2 The Large S Expansion . . . ... ... ...........
10.2.1 Semiclassical Dynamics . . .. ... ... ......
10.2.2 Semiclassical Spectrum . . . . . ... ... ... ..
10.3 Exercises . . . . . . . . ... e

11 Spin Wave Theory
11.1 Spin Waves: Path Integral Approach . . .. .. .. ... ..
11.1.1 The Ferromagnet . . . . . . . ... ... .. .....
11.1.2 The Antiferromagnet . . . . . . .. .. ... .....
11.2 Spin Waves: Holstein—Primakoff Approach . . . . . ... ..

61
61
62
66
68

69
69
70
72
72
75
75

79
79
81
83
84
85
87
88

93
94
95
96



Contents

11.2.1 The Ferromagnet . . . . . .. . .. .. ... .....
11.2.2 The Antiferromagnet . . . . . . . .. ... ... ...

11.3 Exercises

12 The Continuum Approximation
12.1 Haldane’s Mapping . . . . . . . .. .. ... ... ......
12.2 The Continuum Hamiltonian . . .. .. ... ... ... ..
123 The Kinetic Term . . . . . . . . .. .. ... ... . .....
12.4 Partition Function and Correlations . . ... .. ... ...

12.5 Exercises

13 Nonlinear Sigma Model: Weak Coupling
13.1 The Lattice Regularization . ... ... ... ... .....
13.2 Weak Coupling Expansion . . . . . .. ... ... ......
13.3 Poor Man’s Renormalization . . .. .. ... ........
134 The S Function . . . . . .. ... ... ... . ........

13.5 Exercises

14 The Nonlinear Sigma Model: Large N
14.1 The CP! Formulation . . . ... ...............
142 CPN-!Modelsat Large N . . . . ... ... ........

14.3 Exercises

15 Quantum Antiferromagnets: Continuum Results
15.1 One Dimension, the ® Term . . . . . . .. ... ... ....
15.2 One Dimension, Integer Spins . . . . . ... ... ... ...
15.3 Two Dimensions . . . . . .. . ... ... ... .......

16 SU(N) Heisenberg Models
16.1 Ferromagnet, Schwinger Bosons . . . . . . . ... ... ...
16.2 Antiferromagnet, Schwinger Bosons . . . . . . . .. ... ..
16.3 Antiferromagnet, Constrained Fermions . . . . .. ... ..
16.4 The Generating Functional . . . .. ... ... ... ....
16.5 The Hubbard-Stratonovich Transformation . . . ... . ..
16.6 Correlation Functions . . . ... ... ... ... ......

17 The Large N Expansion
17.1 Fluctuations and Gauge Fields . . ... ... .. ... ...
17.2 1/N Expansion Diagrams . . . . .. ... .. ... .....

17.3 Sum Rules

17.3.1 Absence of Charge Fluctuations . ... .. ... ..
17.3.2 On-Site Spin Fluctuations . . . . . ... .. ... ..

17.4 Exercises

xi



xii Contents

18 Schwinger Bosons Mean Field Theory
18.1 The Case of the Ferromagnet . . . . . ... ... ... ...
18.1.1 One Dimension . . . . . . .. ... ... .......
18.1.2 Two Dimensions . . .. ... ... ..........
18.2 The Case of the Antiferromagnet . . . . ... .. ... ...
18.2.1 Long-Range Antiferromagnetic Order . . . . . . ..
18.2.2 One Dimension . . . . . . .. ... ... ... ....
18.2.3 Two Dimensions . . . . ... .. .. .. ... ....
18.3 Exercises . . . . . . . . ...

19 The Semiclassical Theory of the ¢ — J Model
19.1 Schwinger Bosons and Slave Fermions . . . ... ... ...
19.2 Spin-Hole Coherent States . . . . . . ... ... ... ....
19.3 The Classical Theory: Small Polarons . . ... ... .. ..
19.4 Polaron Dynamics and Spin Tunneling . .. . .. ... ...
195 Thet! —JModel . . . ... .. ... ... ... .......

19.6 EXErciSes . . . v v v v v v e e e e e e e e e e e e e

IV Mathematical Appendices

Appendix A
Second Quantization
Al FockStates . . ... ... .. ... ..
A.2 Normal Bilinear Operators . . . . . . ... ... .......
A.3 Noninteracting Hamiltonians . . . . ... ... ... .. ..
A4 Exercises . . . . . . . e

Appendix B
Linear Response and Generating Functionals

B.1 Spin Response Function . . . .. ... ... .........
B.2 Fluctuations and Dissipation . .. ... ... ........
B.3 The Generating Functional . ... ... ...........

Appendix C
Bose and Fermi Coherent States

C.1 Complex Integration . . . ... ... ... ..........
C.2 QGrassmann Variables . . . . ... ... ... .........
C.3 Coherent States . . . . . .. . ... . .. ... ...
C4 EXErCiSES . . . v v v v e it et e e e e e e e e e

Appendix D
Coherent State Path Integrals
D.1 Constructing the Path Integral . . . . ... ... ... ...
D.2 Normal Bilinear Hamiltonians . . . . . .. ... .... ...
D.3 Matsubara Representation . . . . . . ... .. .. ......
D.4 MatsubaraSums . . . .. .. ... .. ...

187
187
191
192
194
198
200
201
203

205
206
207
211
214
218
220
221

223

225
225
226
227
228

231
231
233
233

237
237
237
239
240



Contents xiii

D5 Exercises . . ... .. ... .. ... ... ... 246
Appendix E
The Method of Steepest Descents 249

Index 253



Part 1

Basic Models

Illustration by Dick Codor.



1

Electron Interactions in Solids

1.1 Single Electron Theory

A single electron moving in a periodic potential is described by the band
structure equation

Hy,(x) = [—:—mv"’ + Vi) | ¢y, (X) = b, (%), (1.1)

where ¢, and ¢ are the Bloch wave function and band energy, respec-
tively. k is the electron’s lattice momentum, and s =1, | is its spin in the S*
direction. Here we supress the band index and ignore spin orbit coupling.

For N, electrons, the Schrodinger equation can be reduced to a set of
band structure equations (1.1) only if the Hamiltonian is a separable sum
of single particle Hamiltonians,

Ne
0 = EHO[Vi,xi]. (1'2)

The eigenstates of (1.2) are Fock states (see Appendix A) constructed by
Slater determinants:

Vot (s, xn,) = det gy, (%)) (13)

and the eigenenergies are

Ne

Ey = E ek, - (1.4)

i=1

In the ground state the lowest N, states are occupied, and the uppermost
energy is called the Fermi energy,

max 6k=6F. (1.5)

Equation (1.5) defines the Fermi surface in k space.
The Hamiltonian that includes interactions between electrons is

1
H =H"+ 3 Zvel"e‘(xi,x_,-). (1.6)
i#j
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vet—el spoils the separability of (1.2) and makes the H much harder to
diagonalize than H°.

Much of the Coulomb interaction effects can be incorporated into the
single particle part of H by modifying the ion potential

N.
H — H =D (H°Vixi] +V(x:) +v¥7[x;,0] ), (1.7)

i=1

where v°// is a functional of the ground state density p(x). There are vari-
ous approximation schemes for v°//[p] which are reviewed in the literature
(see bibliography). Most band structure calculations for specific materials
take v®f/ to be local, i.e., to depend on p (and perhaps its spatial deriva-
tives) at x. p, in turn, is determined self-consistently by solving for the
ground state of (1.7).

The residual interactions are

B = v % (xy, %5) — [0 (xi) + v 7 (x;)] /Ne. (1.8)

The transformation v®~¢ — § represents screening. In reality, screening
is a dynamical process which involves collective charge fluctuations with
a plasma frequency scale. If the plasma frequency is higher than excita-
tion energies of interest, ¥ can be taken to be instantaneous. In metals, the
screened interaction decays exponentially within a Thomas—Fermi screen-
ing length ATF,

Single electron approximation schemes, which ignore %;;, have enjoyed a
large amount of success in predicting bulk energies and structures of many
materials. However, for systems that exhibit magnetism or superconduc-
tivity, the residual interactions are crucial.

The effects of 7;; can be calculated perturbatively by Feynman diagrams
and time-ordered Green’s functions. Resummation of classes of diagrams
(such as in random phase approximations) may be used to describe insta-
bilities of the noninteracting system towards ordered ground states. These
methods are covered in detail in many textbooks, some of which are listed
in the bibliography. The techniques that will be emphasized in this book
are specifically designed to complement perturbation theory and to treat
strong electron—electron interactions.

1.2 Fields and Interactions

In the many electron Hilbert space, it is convenient to use second quantized
operators which enforce the antisymmetry of all states (see Appendix A).
The field operator 1} (x) creates a particle localized at x in a spin state s:

(X's'| Y1(x) |0) = 8,0 6(x — X'). (1.9)



1.2. Fields and Interactions 5

Using (A.10) we can expand the field operator in terms of any orthonormal
single particle basis {¢}:

¥l =D i), (1.10)

where cf,c are anticommuting creation and annihilation operators. The
field operators therefore obey

{d’l(x), Yy (x")} = 8(x —x')bss- (1.11)

The local density operator is defined as
px) = D vlx)v,x) (112)
= )i ()ss(x)ckey, (1.13)

ii’s

p measures the probability density of finding a particle of either spin at
position x. Note that the local density operator has, in general, off-diagonal
terms i # i'. p(x) is the second quantized representation of the Schrodinger
density operator, whose expectation value in coordinate space is

p(x) =Z§(x—x;) . (1.14)

The Fock state specified by |x;,X2,...) is an eigenstate of p(x) with the
eigenvalue p(x). Therefore it is natural to represent the local operator H
using the local field and density operators (1.10) and (1.13). Separating
the single particle and the residual interactions parts as in (1.7 and 1.8) we
write

H =H +vel=el (1.15)

where
-y [ #4160 [—éh%vz PV L) 0, (116)
and
P = 2 / Bzdy i(x,y) [p(x)Ay) — 8(x—y)p(x)]
- / Brdy i(x,y) 3 vIXDL 38, )9, ).

8s’

(1.17)

In the second line of (1.17) the field operators are normal ordered, which
eliminates the self-interaction term #(0)§(x — y)p.
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FIGURE 1.1. Conduction electron density for (a) s and p electrons and (b) d and
f electrons. Solid lines are effective ionic potentials.

1.3 Magnitude of Interactions in Metals

It must be emphasized that it is not easy to ascertain a priori whether
the residual interactions in a given system are to be considered “weak”
or “strong.” The appropriate question to ask is whether their effect on
the ground state correlations and low-lying excitations is dramatic or not.
Perturbation theory can serve as a guide to estimate interaction effects.
Crudely speaking, the dimensionless parameter for the Coulomb interaction
effects in a metal is 5
e
g rer () (1.18)
where e is the electron charge, x is the static dielectric constant, (ri;) is
average interelectron distance, and e is the fermi energy measured from
the bottom of the conduction band. As the ions that contribute the con-
duction electrons are lower in the Periodic Table, the relative interaction
strengths increase. The effect of the ionic potential on the s and p con-
duction electrons is weak. Therefore, the conduction band wave functions
are delocalized and the density is quite uniform throughout the crystal, as
illustrated in Fig. 1.1(a). As a consequence, interactions between electrons
are relatively weak.

In contrast, transition metals and mixed valence rare earth compounds
contribute d and f electrons to the conduction band. There, the electrons
are mostly localized within a small radius (r;;) << @ around the ions, where
a is the lattice spacing. At the same time, the Fermi energy e is reduced
by large interatomic potential barriers, as shown in Fig. 1.1(b). Thus, one
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expects transition metals and mixed valence rare earth compounds to have
large values of g, and to be considered strongly interacting electron systems.

This classification scheme is only a rough rule of thumb. It cannot predict
whether a particular compound is a paramagnetic metal, or has magnetic,
charge density or superconducting order. Obviously, a noninteracting de-
generate ground state is highly susceptible to degeneracy lifting perturba-
tions. Therefore, the ground state depends sensitively on the details of the
band structure and near degeneracies in HO.

1.4 Effective Models

The quartic interactions in Vei=el make H a truly many-particle problem
and therefore very hard to diagonalize. Numerical methods are restricted to
very small systems, since the Hilbert space size grows ezponentially with the
number of electrons and the size of the single-particle basis set. Theorists
resort to simplified models (see illustration on title page of Part I), where
only a reduced set of single-particle states and interaction matrix elements
are included.

The replacement of H by an effective model can be put on firmer footing
when formulated as a renormalization group transformation.! When one is
interested in the low-frequency and low-temperature correlations, the high-
energy states can be eliminated by projecting the Green’s function onto the
low-energy sector. This results in an effective Hamiltonian H¢ff which acts
within the lower energies subspace.? In a path integral formulation, the
high-frequency modes can be integrated out, leaving us with an effective
Lagrangian for the low-frequency modes.3

The transformation H — He¢ff is called renormalization. Under renor-
malization, certain interactions (called irrelevant) are suppressed relative to
others. The interactions that grow or stay constant are relevant or marginal,
respectively. Thus many of the microscopic details of the band structure
and interactions drop out of the effective Hamiltonian which includes only
the most relevant interactions. If renormalization results in a model with
fewer single-particle states and interactions, it goes a long way toward ob-
taining the low-energy correlations. The parameters of the effective model
could be determined from the microscopic Hamiltonian by solving for the
renormalization group flow. Admittedly, such calculations have rarely been
done for real materials, and model partameters have been determined by
fitting experiments. In the absence of reliable calculations, the relevancy

!See Shankar’s review.

ZFor example: in Section 3.2 the ¢ — J model is derived as the effective Hamil-
tonian of the large-U Hubbard model.

3See for example the renormalization of the nonlinear sigma model in Chapter
13.
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or irrelevancy of certain interactions is a source of unsettled controversies
between proponents of different models.

One of the minimal models of interacting electrons is the Hubbard model,
which will be described in Chapter 3. However, even the Hubbard model
has only been solved in one dimension. A simpler model, which still includes
many-particle interactions, is the quantum Heisenberg model, which is de-
rived in Chapter 3 as a special limit of the Hubbard model. Although it
describes only spin degrees of freedom, its ground state and excitations are
highly correlated (i.e. far from a combination of a few Fock states). The rich
physical properties of the Heisenberg model come under the name “Quan-
tum Magnetism,” which is a major subject of this book. We shall devote
considerable discussion to spin interactions and their effect on quantum
and thermal fluctuations. In a broader context, the quantum Heisenberg
model will be used to demonstrate fundamental physical concepts. As a
pedagogical tool, we shall test on it various mathematical techniques and
approximation schemes that are common to other quantum many-particle
systems.

1.5 Exercises

1. Find the total number N = 8F/du, entropy S = ~0F/8T, and specific
heat C, = T8S/8T of free bosons and free fermions using (A.24) of Ap-
pendix A.

Bibliography

For general background on the electronic structure of solids, there are numerous
excellent textbooks, for example:

e N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart, and
Winston, 1976);

e C. Kittel, Quantum Theory of Solids (John Wiley and Sons, 1987);
e J. Callaway, Quantum Theory of the Solid State (Academic Press, 1992);
e W. Jones and N.H. March, Theoretical Solid State Physics (Dover, 1973).

The basic techniques of many-particle diagramatic perturbation theory for con-
densed matter are given by, e.g.:

e A. Fetter and J.D. Walecka, Quantum Theory of Many Particle Systems
(McGraw-Hill, 1971);

e G. Mahan, Many Particle Physics (Pienum Press, 1981);

A recent book by
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o P. Fulde, Electron Correlations in Molecules and Solids (Springer-Verlag,
1991);

is also recommended as a contemporary theoretical and experimental reference.

Suggested further background reading:

e P.W. Anderson, Concepts in Solids (Addison-Wesley, 1963).
An excellent recent tutorial on the renormalization group for interacting electrons
is

e R. Shankar, Rev. Mod. Phys. 66, 129 (1994).



2

Spin Exchange

Ferromagnetism is obtained in solids when the magnetic moments of many
electrons align. Antiferromagnetism and spin density waves describe os-
cillatory ordering of magnetic moments. The classical dipolar interaction
between the electron moments (which is of order 10~%eV) is far too weak to
explain the observed magnetic transition temperatures (which are of order
102-10% °K in transition metal and rare earth compounds).

It was therefore realized in the early days of quantum mechanics that the
coupling mechanism that gives rise to magnetism derives from the following
fundamental properties of electrons:

1. The electron’s spin.

2. The electron’s kinetic (delocalization) energy.
3. Pauli exclusion principle (Fermi statistics).

4. Coulomb repulsion between electrons.

As an introductory example, we study two electrons that are spatially
localized by an external potential and repel each other via the Coulomb
interaction. We shall find that couplings between the spins of the two elec-
trons can be either ferromagnetic or antiferromagnetic, depending on the
nature of the noninteracting states. These are the underlying mechanisms
with which systems of interacting electrons may produce a variety of mag-
netic structures.

2.1 Ferromagnetic Exchange

We consider two electrons in two nearly degenerate single-particle orbitals
¢, and ¢, with energies €; and e;, respectively. We assume that the rest of
the spectrum is separated from these states by a large energy gap. In Fig.
2.1 we depict a one-dimensional example for such states. In reality, they
might be members of a low-lying angular momentum multiplet of an atom
or a molecule. We also assume that we have two electrons which can occupy
either or both of these states. The degeneracy of the different configurations
is lifted by the Coulomb interactions. We write the electron fields in the ¢;
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0,

2

FIGURE 2.1. States of two electrons that couple ferromagnetically.

basis:
¥l(@) = qu. e e=T 1. (2.1)

The two-body Coulomb interaction in the second quantized form is given
by (see (1.17))

V= %/ Pzd®y o(x,y) D YIYL e WYs(x).  (2:2)

8g’
We use (2.1) to express (2.2) in the i representation as
v = Z Usiepipr + ZU"p‘Tp‘l + Z JF CisCo s’c 5/Cirg (23)
£ 88’ i#i’

where n; = Y pis. The interaction parameters are given by the direct
integrals:

1
Ui =5 [ 2y 0,y) 1060 0 0P (24)

and the ferromagnetic exchange constant:

Jh= % / Pz d®y 9(x,y) ¢:(x); (X0 (¥); (¥) - (2.5)

It is easy to see that U;;/ is positive and that J is real. It is obvious that for
a short-range interaction # = §(x —y), JF > 0. For long-range Coulomb
interactions v = e?/|x — y|, the positivity of J is proved as follows. The
eigenvalues of the symmetric operator v°(x,y) are given by

2

; e _ 4me ’



2.1. Ferromagnetic Exchange 13

Thus, all expectation values of v¢ are positive, particularly the expectation
value in the state ®(x) = ¢}, ¢;, i.e., (2.5) is positive. Thus we have shown
that (2.5) is positive for two limiting cases: (i) complete screening, and (ii)
no screening at all.
Now, if
€1 + €2 + U2 < min [261 + Un1,2e2 4+ Us), (27)
then the ground state mostly contains two electrons occupying different

orbitals, i.e., n; ~ 1 and the low-lying states are given by

{ls1,82)}, si=T,1 . (2.8)

The exchange interaction J¥ acts in the space (2.8) as a Heisenberg
interaction:

1
JFZCISCLSICiSICi’B = _2JF (Sl . S;’ + Zninl’) . (2.9)

sa’

S, a = z,y, z are the components of spin one half operators (see (A.19)):

1 "
3 Z czsass:cis, . (2.10)

88’

S;

The exchange integrals (2.5) depend on the spatial overlap between the
orbitals. Equations (2.3) and (2.9) explicitly demonstrate the ferromagnetic
coupling between electron spins that occupy such orbitals.

A physical argument. By aligning with each other and forming a sym-
metric spin state, the spins reduce the effect of the Coulomb repulsion.
The two electron state is antisymmetric, and therefore their orbital wave
function would have to vanish at x —y = 0, where the Coulomb potential
is largest.

This effect appears at first order in perturbation theory and shares the
same underlying physics as Hund’s rules for atoms: Electrons occupy or-
bitals in an open shell so as to maximize their total spin.!

2.2 Antiferromagnetic Exchange

The simplest system that exhibits antiferromagnetic coupling between two
electrons is the Hy molecule, which was first discussed by Heitler and
London.?

!The second Hund’s rule says that ambiguities in the first rule are settled by
maximizing the total orbital angular momentum.
ZHere we follow the discussion in Mattis’ book.



14 2. Spin Exchange

o, 02

! l
Rl RZ

FIGURE 2.2. States of two electrons that couple antiferromagnetically.

Let us freeze the protons at their equilibrium position R;, and denote
the electron coordinates at x;, for £ = 1,2. The full Hamiltonian is

2
H = Y H® +AH , (2.11)
i=1
K2 e?
H® = -2v2__ ¢
2m |x; — Ry .
e? e? e?
AH = - + + . (212
2R P FR-mE (212

The two atomic wave functions are ¢, and ¢, which are centered on
atoms 1 and 2, respectively, as depicted in Fig. 2.2. They obey the atomic
Schrodinger equations:

Hf"qb,-(x,-) = 60¢,'(x,'), 1= 1,2. (2.13)

For finite interatomic distance |R; —R2| < 00, ¢; and ¢, are not orthogonal
and their overlap is

A= /d3a: 1 (x)d2(x). (2.14)
We use ¢; to construct the orbital wave functions

Y = $i1(x1)da(x2) , (2.15)

Yo = ¢1(x2)d2(x1), (2.16)

with x as a yet unknown spin wave function. Equation (2.16) describes
electrons at different sites. We can use them to construct variational wave
functions that avoid the large on-site Coulomb repulsion (later we shall
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enforce the antisymmetry constraint using the spin part of the wave func-
tion),
T = cy® + cPyb. (2.17)

The variational energy is given by
E = (U|H|T)/(T|T). (2.18)

Minimizing E[c?, c®] with respect to the c’s, we obtain a matrix equation:
vt v 1 A2 Y _
[((Uo)t Ud) - (E - 260) (Aa2 1 )] (Cb) = 0, (219)

vt = / d3z, d®z, AH [¢°? (2.20)

where

U°e = / d3z) Pz, AH (¥°)*y° (2.21)

are the diagonal and off-diagonal terms. Since * and 1® can be made real
(they are made out of hydrogen atom ground states), A and U® can also be
made real. The solutions of (2.19) are

Ut+U°
1£A2 7

() - w8

Now we impose the antisymmetry condition: the product of ¥ and the spin
part of the wave function x(x;, x2) must be antisymmetric with respect to
exchange of the electrons coordinates:

E:I:

20 + (2.22)

ot = %(W’ F)xt
- % [61(x1)2(x2) F ¢1(x2)b2(x1)] x*

xE o= T (x)at(x2) £ xT(xe)xH (x1) (2.24)

where x* describe antiparallel spins. It is readily verified that ¥ are
linear combinations of two Slater determinants, which can be written as
Fock states.? Thus, in second quantized notations we can write

1
ot = % (c}Tc;l +cf lc;T) l0). (2.25)

3Strictly speaking, in order to define these as Fock states, ¢1 and ¢2 must be
first orthogonalized.
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It is apparent from this form that ¥+ and ¥~ are simply the triplet and
singlet eigenstates of the total spin operator

2
1 "
Stet = Z 3 Z cl FusrCiyr - (2.26)
i=1

88’

The energy splitting between the singlet and the triplet is given by

EY—-E- = J
Ud /\2 —_ye
= 2— - 2.2

J Y (2.27)
It can be shown, by an explicit calculation of the parameters U¢ and U?®,
that J is positive (antiferromagnetic) for all R;;. Therefore, the ground
state is the singlet, and the higher state is the triplet, and the effective
Hamiltonian can be represented by the Heisenberg antiferromagnet,

HOHEM - JS,.S,

Loz 3| _[3d S =1
J [E(S ) —Z = —%J Gtot -0 (228)

Physical argument: The antiparallel spins can take advantage of the hy-
bridization and reduce their kinetic energy by hopping to the second site,
while the other electron is there. Parallel spins are restricted by the Pauli
principle from this virtual process, which makes the triplet higher in energy
than the singlet.

Summary: When two electrons are localized on energetically close or-
bitals and are interacting repulsively, their magnetic coupling will be:

1. Ferromagnetic: if the orbits are orthogonal but occupy the same re-
gion in space. Here the alignment of the spins reduces the interaction

enerygy.

2. Antiferromagnetic: if the orbits are not orthogonal but spatially sepa-
rated. Here the anti-alignment of the spins reduces the kinetic energy.

2.3 Superexchange

In the previous section, we have seen that two electrons on nearby hydrogen
atoms tend to couple antiferromagnetically due to the interplay between
on-site repulsion and their delocalization energy. This effect can be derived
in a simple manner using second quantized operators by expanding the
energy to second order in the hopping matrix element. Let us consider two
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orthogonal orbitals localized on two atoms labelled by 7 = 1,2. Tunnelling
between the two states is described by a hopping Hamiltonian:

Ht = _tz (CIBCZS + 612‘.'1(:1:1) . (229)
8
For simplicity, we consider an on-site (Hubbard) interaction:

U =U> naqny . (2.30)

For large values of U/t, we choose U to be our zeroth-order Hamiltonian,
whose ground state manifold is fourfold degenerate:

{0} =ls1,82), s:i=1,l, i=1,2. (2.31)

The energies of the doubly occupied orbitals are higher by U than the
multiplet (2.31). The first-order perturbation theory in H* takes us out of
the ground state manifold, since it puts one electron on top of the other.
Second-order perturbation theory in the subspace (2.31) yields an effective
Hamiltonian given by the standard expression*
(2) _ el —Fo, . _ t t
(@HPb) = —(a|H'——H']p) = - Y (a|H'|n)——— (n|H']b),
u AT i
(2.32)
where a, b denote states in the subspace {0} whose projector is Py. Thus
|n) contain double occupancies. Each term in this sum can be represented
by an “exchange path.” For example,

Ht 1% Ht
11,0 = [1L0) — [L71)
- 10,1 — L7 (2.33)

Each of the two paths in (2.33) yields a contribution —t2/U. However, there
are paths that are blocked by the Pauli exclusion principle, such as

Ht
LY - o (2:34)
Therefore, the triplet states do not gain second-order energy by virtual
double occupation. The operators that connect these initial and final states

can be written as products of S=1/2 spin operators S; S;. When the paths
that describe the matrix elements of S; S;" and S7S% are included, we find

4See Landau and Lifshitz, the bibliography.
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FIGURE 2.3. Superexchange in copper oxides. (a) A member of the low-energy
manifold. (b) A high energy configuration in the superexchange path.

that the effective Hamiltonian in the ground state subspace can be written
as an isotropic antiferromagnetic Heisenberg exchange:
442

H(z) = JSl . Sz , = 7 . (2,35)

This discussion is easily generalized to a multi-site system. The antiferro-
magnetic coupling will be generated between any two spins that are coupled
by a hopping term H:.

The process of virtual double occupation is called “superezchange.” The
analysis of the hydrogen molecule given in the previous section used a vari-
ational method to describe the same effect. We distinguish the superex-
change from the ferromagnetic direct exchange or Hund’s rule given in
Section 2.1. The latter is a consequence of first-order perturbation in the
interactions.5,

Superexchange couplings are generated in many other systems with un-
paired spins. Notable examples with much current interest are the copper-
oxide antiferromagnets. The unpaired spins are on Cu?* ions, and between
them there is an oxygen “bridge” ion, with average ionization state close
to O%~. We illustrate such a triad in Fig. 2.3.

In the absence hopping between the coppers and oxygens, the degenerate
ground state manifold on-bond is

{l0)} ={ICu®*s,,0*",Cu’*s3), s =1,l. (2.36)

The lowest-order correction to the ground state energy that lifts the de-
generacy of (2.36) is fourth order in the copper—oxygen hopping. Examples

5In his original paper (see bibliography), Anderson considered several ex-
change mechanisms. There, superexchange was defined as the coupling that in-
volved an intermediate ion.
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of intermediate states in the superexchange paths and their energies are

|Cu'*, 0%, Cu®t 1), E=1U,, (2.37)
and another, with different energy denominator, is
|Cu't,0 1],Cu'"), E =2(e, —ea) + Up, (2.38)

where €,4(,) and Uy(y,) are the single-particle energy and interaction energy
on the copper (oxygen), respectively. As in (2.34), the parallel spin states
are blocked from hopping into either of these intermediate states. This lifts
the degeneracy between the singlet and the triplet states in (2.36), which
is described by a Heisenberg Hamiltonian. The antiferromagnetic coupling
is given by the sum over all superexchange paths. It is dominated therefore
by the intermediate states with the lowest energy.

2.4 Exercises

1. The fermion representation of spin operators is given in (2.10). Prove the
important identity in (2.9):

1
Z Cl4ChyrCrgrCas = —5{nin2 +48: - Sa}, (2.39)
ss’
where n; = Zs c:.fscis, i=12.
2. Prove that S; obey the angular momentum commutation relations. Find a
simple expression for 82 as a function of n;.
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The Hubbard Model and Its
Descendants

Many theorists have devoted a considerable part of their careers to the
Hubbard model. Nevertheless, it remains a source of much fascination and
bewilderment. Perhaps it is because the Hubbard model is the simplest
many-particle model one can write down, which cannot be reduced to a
single-particle theory.

The ground state is known to be complicated (i.e., a superposition of
many Fock states). In most cases its analytic form is unknown, except in
one dimension (see the bibliography). There the ground state correlations
and excitations have been understood in several ways. The methods used
for one dimension are innovative and diverse: the Bethe ansatz solution,
bosonization, field theoretical methods, the Luttinger and Tomonaga mod-
els, and the perturbative renormalization group. Unfortunately, the meth-
ods listed above are specialized to one dimension and their application to
two and three dimensions has yet to produce conclusive results.

Nevertheless, in two and three dimensions, progress has been made in
several regimes of parameter space using combinations of theorems, con-
trolled approximation schemes, and numerical results extrapolated to large
lattices. For further background, see the bibliography for a recent book on
the Hubbard model.

We shall see in Section 3.1 that some of the truncations in the Hubbard
model are justified in the “atomic limit.” It incorporates the short-range
part of the Coulomb interactions, while avoiding the high complexity (such
as screening effects) of the long-range Coulomb force.

However, the Hubbard model ignores terms that are not obviously small
in the microscopic Hamiltonian. It should therefore be regarded as an ef-
fective Hamiltonian which includes only the most relevant couplings at low
energies. Its parameters could, in principle, be determined by integrating
out the high-energy modes in a renormalization group scheme. Unfortu-
nately, this is a hard task which has not yet been carried out quantitatively
for realistic band structures.

In the strongly interacting (large-U) limit at half filling, the Hubbard
Hamiltonian is reduced to a purely spin model as we shall see in Section
3.2. In Section 3.3 we discuss the attractive (negative-U) Hubbard model.
This model is used for understanding superconductivity and charge density
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wave ordering. We prove that the negative-U model maps into a positive-
U model at half filling. Thus, the negative-U model is translated into a
problem of quantum magnetism.

3.1 Truncating the Interactions

In the following, we shall attempt to partially justify the truncation of
terms that are missing in the Hubbard model. It would be correct, but
of little use, to start with the bare ion—electron potential in H° and the
long-range Coulomb interaction v(r) = e€2?/r for the interaction terms. The
collective screening of the core and valence electrons is large. As discussed
in Section 1.1, much of the screening effect is to renormalize the effective
electron—ion potential. The interactions are thus taken to be

pei-el — % / Bz dy d(x,y) Y Y1)l )ee W)e(x).  (3.1)

ss’!

Here spin—orbit interactions (relativistic corrections) were ignored for sim-
plicity. We should remember, however, that these interactions can be im-
portant for obtaining the correct magnetic moment crystal field splittings
and anisotropic exchanges for d and f shells.

We use the band structure energies and Bloch wave functions given by
the self-consistent single-particle Hamiltonian (1.7):

0 - {Eakv ¢ak}v (32)
where a is the band index. The Wannier states derived from ¢ ) are
1 _ikx
Pai(X) = —= ) e T ¢ 1 (x), (3.3)
() = — g k(%)

where N is the number of lattice sites. Wannier states are a single-particle
basis labelled by the lattice site index 7 and the band index . The Wannier
operators are

hie = [ 0ail¥(x) (3.4)

Since the transformation (3.4) is unitary, the sets {c_,, }, {c!;,} obey canon-
ical anticommutation relations (see (A.10)). Inverting (3.4) we have

Pi(x) = Zasm (3.5)

The field operators in the interacting Hamiltonian (1.16 and 1.17) are re-
placed by Wannier operators to yield

UoBrs .t
Ztaﬂcatscags + Z ijkl atscﬂ]s’c'yks’céls ’ (36)
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where the summations are over all repeated indices. ¢;; are the hopping
matrix elements given by

3 1 —i(X;—X; a
taij = _(¢ai3|H0|¢ais) = N Ze (X; x|)k€k , (37)
k

which by hermiticity of the Hamiltonian obey t;; = t};. In the absence of
external gauge fields, ¢;; can be chosen to be real. The interaction param-
eters are given by

Uk’ = % / d*z d®y 5(%, y)$5: (%) B5;(¥) byk (¥) b61(X). (3-8)

An optimal choice of Wannier states (through the choice of H°) would
minimize the range and magnitude of Uj;x;. From this point onward, many
terms in (3.6) will be omitted.

When the Fermi surface lies within a single conduction band, a = 1, it
may be justified to ignore matrix elements that couple to other bands if
they are well separated from the Fermi energy. This truncation leads to the
one-band Hubbard model.

For f-electron metals (rare earth compounds), the single-band model is
not justified since the interaction parameters are larger than the interband
splittings. For those systems, there are charge fluctuations between the
deeply localized f levels and the delocalized s and p bands. Such models
are given by the Anderson and Kondo Hamiltonians, which have been used
to describe mixed valence and heavy Fermion systems (see bibliography).

There are two classes of interactions that are omitted: the direct terms
and the exchange terms.

The direct terms involve integrals over square moduli of Wannier func-
tions (ie., |¢;| in (3.8)). They are

V = Z V,-jn,-nj. (39)
i
The intersite interactions V;; = Uj;;; couple density fluctuations at differ-

ent sites. Vj; are not necessarily smaller than ¢;;. When the interactions
are poorly screened they do not decrease rapidly with distance. Thus, by
considerations of magnitude, we are not justified in neglecting V. On the
other hand, we note that V couples charge fluctuations rather than spin
fluctuations. In the vicinity of magnetic phase transitions, the contribution
of such terms to the free energy is not singular. They are expected to be
relevant near charge density instabilities.

The exchange terms include intersite magnetic couplings. For example,
the two-site terms can be written as

1 1
J =) Usijclhclutiness = =53 J§ (Sisj + Zn,.nj) , (3.0
i#] i#]
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where Jg = Ujji;. This ferromagnetic exchange term has been previously
found in (2.9) for two electrons in two orbitals. As argued by Hirsch (see
bibliography), these terms can contribute to ferromagnetic tendencies in
transition metals. Nevertheless, they are customarily ignored in the Hub-
bard model, and the reasoning is as follows. The exchange integrals in-
volve one or two off-diagonal products of Wannier functions (i.e., ¢;¢;.).
The intersite ferromagnetic exchanges such as (3.10) are suppressed in the
atomic limit, where the Wannier orbitals are approximately superpositions
of atomic orbitals’:

Pk (%) = Z eI p(x — x;). (3.11)

This cannot be an equality since atomic wave functions in the lattice are
not orthogonal. There overlaps are of order

/dscv |pi(x)*dj(x)| =~ e~ 1Xi=X;l/la , (3.12)

where [, is the average radius of the atomic orbital.

Thus, the parameters t;; and J;;, which involve integrals over overlap
factors, are also small. The atomic limit is consistent with two additional
limits of the Hubbard model:

1. The tight binding limit, where one retains a minimal set of short-range
bonds {t;;} on the lattice.

2. The large-U limit. The on-site Hubbard interaction increases as the
atomic wave functions become more localized. Thus, we expect

N

U ~Z >> t,',j . (313)

=

In conclusion, the minimal Hubbard model for a band structure in the
atomic limit is given by the tight binding hopping parameters ¢;;, the on-
site interaction U = 2Uj;;, and the number of electrons Ne:

H =- Ztijczscjs + UZniTnil. (314)
ij8 i

The simplicity of (3.14) is highly deceiving. The interaction term gives rise
to highly correlated ground states. In the following chapters, we shall study
different types of magnetic correlations that are produced in this model.

In this limit, the suppressed band index corresponds to an atomic energy
level.
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3.2 At Large U: The t—J Model

Here we derive the effective Hamiltonian, which governs the low-energy
excitations of the Hubbard model in the large U/t regime. We introduce
the concept of an effective Hamiltonian for the low-energy excitations and
expand it in powers of t/U. At half filling (one electron per site), for U/t >>
1 there are primarily spin excitations at low energies. These will be shown
to be governed by the antiferromagnetic Heisenberg model of spin one half.
At other fillings, there are low-energy spin and charge excitations which
are governed by the so-called t—J model.
We start by choosing the zeroth-order Hamiltonian to be

U = UZn,-Tn,-l. (315)

The eigenstates of U are Fock states in the Wannier representation. U
divides the Fock space into two subspaces:

S = [lanvnllvn2T"') : Vi, ngp +n; < 1] , (3,16)
D = [ |n11,n11,‘n21 ) : 3, it + Ny = 2] . (317)

D contains at least one doubly occupied site, and S are all configurations
with either one or zero electrons per site.
The hopping term
T =— Z t,;jCIsts (318)
ijs

is considered as a perturbation. 7 couples S to D by hopping an elec-
tron into, or out of, a doubly occupied site. i is diagonal and T lifts the
enormous degeneracy in the two subspaces. H is partitioned as

H =(Ps(7+u)P,, P,TP; )

P TP,  PyT+U)P, (3.19)

where P 4 are projection operators onto the subspaces & and D, respec-
tively.
The resolvent operator is

G(E) =(E -H)™". (3.20)
The following matrix identity is useful:

l(é g)_ll =(A-BD™'0)7, (3.21)

88
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where ( )55 denotes singly occupied subspace in the upper left quadrant.
The projection of G into the subspace S is

P,G(E)P, = P,JE - H|™'P, = [E - K/ (B)™. (3.22)

Using (3.21) and that P,U = UP; = 0, the effective Hamiltonian is given
explicitly by

xS = P,TP,
+ P,T{P;JE-U+T)| P} ' TP, (3.23)

The eigenenergies of H (which correspond to states with nonzero weights
in S) are given by the zeros of the characteristic polynomial

det|E, —Hff(E,)| =0. (3.24)

Note that E,, are not eigenvalues of H®f, since H*ff depends paramet-
rically on E. If we ignore (for the moment) problems arising from a large
number of sites, it is possible to expand P, (E — H) ™" P, to zeroth order
in E/U and to second order in t/U. This allows us to replace (3.24) by an
eigenvalue equation of an energy independent Hamiltonian:

H M 1+ O(E/U) + O@/U)]

- 1
HY = P, |T - T Z t,‘jtjkczscjsannle}s,Cks, P,. (325)
ijkas’

H*~J is commonly called the t—J model.

Let us pause for a minute to recognize that for a large number of lattice
sites N' — 0o. When the number of electrons scales as N, the ground state
energy Ej is extensive, i.e., it involves a sum over zero-point energies which
scales as A/. Hence it is not sensible to expand H/f(E) about E = 0.
However, it is still possible to derive an effective Hamiltonian for low-lying
excitations by shifting the zero of energy to

E® - E, =E¢-U. (3.26)

E¢, which is also extensive, is the lowest energy of the Hubbard model
in the doubly occupied sector. We do not need to actually calculate Eg
if we forego the knowledge of the Hubbard model’s ground state energy.
We therefore restrict our use of H!~7 to describe low-lying elementary
excitations and wave functions. Now, we repeat the procedure described
above and expand the energy for small

|E - E}| << U. (3.27)
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This allows us to study the low-frequency and temperature response using
an energy independent effective Hamiltonian.?

A more transparent form for the t — J model is obtained by rearranging
the fermion operators:

WS o= B (T +HHM 1 7') P, (3.28)
T = —Ztu Cis _137 (3_29)
ij8
1 n‘n
QHM  _ (s..g, Ml
H = QZJU (s:-8 - =), (3.30)
i£k
J = ZUZtU ik lZ(cwckan) CIECI: c c] (3.31)
ijk

where the spin operators S; have been defined in (2.10), and the superez-
change coupling constants are

Jij = 485 /U. (3.32)

At half filling we have n; = 1. In that limit, P, annihilates 7 and J’.
(There can be no low-energy hopping processes if every site has exactly
one electron.) This is a Mott insulator phase. The only terms that survive
the projection P, are the magnetic interactions of H2HM  the quantum
Heisenberg model. Thus we find antiferromagnetic interactions in the Hub-
bard model which are important (at least for large U/t) near half filling.
We shall discuss the Heisenberg Hamiltonian extensively in this book.

The effects of the additional electrons or holes (as measured from the
half-filled limit) on the quantum antiferromagnet are a current subject
of intense investigations, particularly in the context of high-temperature
superconductivity in copper oxides.

One of the effects of doping is believed to be the reduction of antiferro-
magnetic correlations. Loosely speaking, the holes prefer a ferromagnetic
spin environment where they can lower their kinetic energy by being more
“mobile.” This effect is most prominent in the infinite-U limit, as shown
by Nagaoka’s theorem in Section 4.2.

In the literature, the J’ terms are frequently omitted. It has been as-
sumed that their effects are small in comparison to the ¢ hoppings. However,
for two-sublattices models with nearest neighbor ¢t hoppings, vacancies (or
holes) can move under T between different sublattices, thereby disturbing
the antiferromagnetic correlations. This is loosely illustrated in Fig. 3.1.
The J’ hoppings do not “mess up” the spins, since they move holes on the

?The shift in Eo is the difference between Brillouin-Wigner and Rayleigh—
Schrodinger perturbation theories, see, e.g., Problem 3.6 in J.W. Negele and H.
Orland, Quantum Many Particle Systems (Addison-Wesley, 1988).
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FIGURE 3.1. Interactions between a hole and spins in the {—J model.

same sublattice.
Before leaving the t—J model we write it once more: this time in its
normal-ordered form

_ 1
H =P, | T - T Zt,-jtjk(c:ch;l - cflc;.T)(cjlckT ~¢;1¢y) | Po:
ijk
(3.33)
In Chapter 19, we shall treat the t—J model using spin-hole coherent states.
After defining its large spin generalization, we shall derive the semiclassical
theory for a dilute density of holes.

3.3 The Negative-U Model

The negative-U Hubbard model describes local attractive interactions be-
tween electrons. As in the repulsive case, one should think of this model
as an effective model with renormalized parameters which applies at low
frequencies and temperatures. When electrons polarize a collective degree
of freedom, they can obtain a negative pair-binding energy —U by sharing
this polarization.

There have been several polarization mechanisms proposed for producing
attraction between electrons. To list a few: lattice deformations (phonons),
collective charge oscillations (plasmons), or spin fluctuations (paramag-
nons). In the negative-U interaction, the timescale for the polarization
mechanism (e.g., the Debye frequency for phonons) is considered to be
instantaneous relative to the hopping time.3

3This is the opposite regime to Migdal-Eliashberg’s approximation for super-
conductivity, see Schrieffer’s book.
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We discuss a Hamiltonian of the form

H_U = - Ztijc:!scjs - £2j_ Z(ni - 1)2

ij8 i

+% D Vilni—1(n—1) —p3 ni  (339)

The negative-U term favors local pairs of up and down spins on the same
site. However, the hopping term tijc:fscjs competes with this tendency since
it delocalizes the electrons and unbinds the pairs. The intersite interactions
Vi; repel electrons at different sites. Vj; are important in selecting the
ground state especially near half filling.

Our first step is to transform (3.34) to a positive-U model by a particle-
hole transformation only on the down-spin electrons:

[
¢ - 6:.‘1. (3.35)

ciT —

This is a canonical Bogoliubov transformation (see Section A.1) since the
“pseudo-electrons” & obey Fermi anticommutation relations. Using 12, =
fiss, (3.34) readily transforms to a positive-U Hamiltonian

_ ~ 4~ 4~ U -
HY—HY = - Ztij(cIchT - &) + > Z(”i -1)
ij i
1 a Qz Oz oz
+3 2 J58i8; — kY 8 -NAE,  (336)
¥ T

where the Ising anisotropy is

Ji = 4Vy, (3.37)
the magnetic field is
h =2u, (3.38)
and the energy shift is
AE =p+ %U. (3.39)

We now define a bipartite lattice for the hopping parameters t;;.

Definition 3.1 A bipartite lattice can be separated into two disjoint sub-
lattices A and B, where t;; connect onlyi € Atoje€ Borie Bto
jeA.

Common examples of bipartite lattices are the square and cubic lattices.
Nonbipartite parameters are, e.g., the bonds of the triangular and the face
centered cubic (FCC) lattices.
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Notice that the interaction term in (3.36) is positive and that the hopping
matrix elements have spin-dependent signs. This is physically important
for nonbipartite lattices where the signs cannot be eliminated by a simple
gauge transformation.

3.3.1 THE PSEUDO-SPIN MODEL AND
SUPERCONDUCTIVITY

Transformation (3.35) maps the charge operators of the negative-U model
into pseudo-spin operators of the positive-U counterpart. In particular, the
local charge fluctuation maps into a pseudo-spin in the z direction,

%(n,. ~1) & & (3.40)

Thus, a deviation from half filling in the negative-U model translates to
a uniform magnetization in the S* direction. Similarly, a charge density
wave in the negative-U model corresponds to a z-spin density wave in the
positive-U model. _

The pseudo-spin components S%, $¥ correspond to the pairing operators

1 -

E(CITCL +cilciT) & ST,

Lot ot &y

E{(CiTCil -c ) & SY (3.41)

Thus, ordering of the pseudo-spins in the z—y plane represents supercon-
ductivity in the negative-U model,

U(x;) = A(x;)e*X) & (§F). (3.42)

The magnitude of the ordered moments is the BCS order parameter A, and
their angle in the z—y plane is the superconducting phase ¢ (see Schrieffer’s
book, bibliography). ¥ is coupled to an external electromagnetic gauge field
with a charge of 2e. The free-energy expansion of a slowly varying ¥(x)
yields the Ginzburg-Landau free-energy functional. The Ginzburg-Landau
theory produces much of the macroscopic phenomenology of superconduc-
tivity (e.g., flux quantization, persistent currents, etc.).

Note that the chemical potential of H*U is zero. Now we prove an im-
portant theorem.

Theorem 3.2 For any electron filling of H~U, the positive-U/ model H*+V
is exactly at half filling.

The proof is very simple. Consider the transformation

&, —a_, s=1,1. (3.43)
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It can easily be verified that H*U is invariant under this transformation:
HHU[E] = MY, (3.44)

while
iy — 2 — L. (3.45)

The number of electrons is given by the thermodynamic average

1 z 1 =t
(i) = —Z‘Tfa (e_ﬂHW[C]ﬁi) = ETraf [e—ﬂ‘H“’[c (2 -7} ] ,  (3.46)
which by the invariance of Tr under (3.43) (since it is a canonical transfor-
mation) implies that*

N"(Zﬁ,-) =N—1<Z(2—ﬁ,-)) =1, (3.47)

Q.E.D.

Theorem 3.2 is important since the half-filled limit of the positive-U
Hubbard model can be reduced to a pure spin problem at large U. Following
the derivations of Section 3.2, the effective pseudo-spin Hamiltonian is

R B O
7_"‘—::—::: — 2 Z [ i+ Ja zS; _ Jij (S’fS’f + S',yg;l)] - h;gtz,
(3.48)

where the superexchange coupling is again J;; = 4¢2 / U. We have dropped

the constant energy shift. H~*~%% is an anisotropic Heisenberg model. It
has ferromagnetic couplings for the z,y spin components, and antiferro-
magnetic couplings between the z components.

The Hamiltonian (3.48) is a model of quantum magnetism that can be
treated by many of the methods described in this book. In Chapter 11, we
learn that the semiclassical approximation is suitable for broken symmetry
phases in two and three dimensions. The classical ground state is given
by minimizing the classical Hamiltonian H~%~2%[S], where S are vectors of
magnitude S. For the nearest neighbor model on nonbipartite lattices, such
as the triangular or face centered cubic (FCC) lattices, the z spin couplings
are frustrated (see the bottom bond of the left triangle in Fig. 3.2). At the
same time, the ferromagnetic z—y couplings can be fully satisfied, as seen
in the right triangle. As a result, the classical approximation yields z—y
pseudo-spin ordering, i.e., superconductivity at low temperatures. As we

4Here we avoid subtleties of local spontaneous symmetry breaking, i.e. phase
separation, by defining our averages on finite lattices.
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S S

FIGURE 3.2. Frustrated z-spin couplings (left triangle) and satisfied z—y cou-
plings (right triangle) of the pseudo-spin Hamiltonian H~*~**,

shall see, large quantum and thermal fluctuations can disorder magnetic
order especially in low dimensions. Hence, superconductivity is subject to
the same disordering mechanisms.

For bipartite lattices,® a rotation of m about the z axis of all spins on
sublattice B will bring H~%=%% t0 the Ising-Heisenberg form

H™=7% o H2 = % Z (Jijsi -85+ ngfg;) - hz 8.
ij i
(3.49)

The ground state of H**%[S] is antiferromagnetic: the pseudo-spins point
in opposite directions on the two sublattices. For J* = 0 and A = 0, the
classical ground state of (3.49) is O(3)-degenerate, as the order parameter
can point anywhere on the sphere. This degeneracy is reduced to O(2) for
h > 0, since a uniform magnetic field in the 2z direction prefers the spins
to lie mostly in the z—y plane, where their canting allows a gain in energy
which is linear in h; see Fig. 3.3.

However, at finite Ising anisotropy J* > 0, the spins prefer to align in
the z direction even in the presence of a small magnetic field. The compe-
tition between the magnetic field and the Ising anisotropy determines the
direction of the ordered moments. The transition between the Ising and
the z—y ordering may be first or second order in the field h. This transition
was well studied theoretically and experimentally in real magnetic systems
and applied to theories of superconductivity in bismuthate superconduc-
tors and to superfluidity in helium-4 (see bibliography). In the classical
mean field approximation, the order of the transition depends on the sign

SWe use definition 3.1 with t;; — Ji;.
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FIGURE 3.3. Spin-flop state of an antiferromagnet in a uniform magnetic field.

of the next nearest neighbor interaction. A first-order transition is called
a spin-flop, and implies a bicritical point in the field-temperature phase
diagram. A second-order transition implies an intermediate mixed phase,
where the order parameter has both z and z—y components (i.e., coexisting
charge density wave and superconductivity). For helium, the mixed phase is
called “supersolid,” which to date has not been experimentally discovered.

The effective Hamiltonian (3.48) was derived here for large |U| >> ¢. It
describes tightly bound pairs of electrons on a scale of one lattice constant.
For weak coupling |U| < t, it is better to use perturbation theory in the
interaction strength, or variational magnetic states of the kind described in
Section 4.1. Both weak and strong coupling are qualitatively similar when
there is a gap for charge excitations. At weak coupling, such a gap may arise
if large portions of the Fermi surface are parallel (nesting). The pseudo-spin
model H~*~%% can then be used as an effective model, coarse grained over
the size of a Cooper pair. That is to say, the “lattice constant” should be
replaced by the superconducting correlation length.

3.4 Exercises

1. Prove the identity that was used for deriving the Heisenberg Hamiltonian
(3.30):

P, |3 dlejnsrmsicl, e,y ] P, = —2P, [s.-.s,. - "“4"" ] P,.  (3.50)

a8’

2. Show, by rearranging the fermion operators, that the t—J model of (3.33)
is equal to that of (3.25).

3. Find all the eigenenergies and eigenstates of the two-site Hubbard model
(3.14) (: = 1,2), for N.=1, 2, and 3 electrons. For N.=2, what is the
singlet—triplet splitting? This is the effective spin superexchange constant.
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Hint: At each filling N., diagonalize the Hamiltonian as a matriz in the
relevant Fock states. What is the size of this matriz for a 4 X 4 lattice?

4. Prove that the Hubbard Hamiltonian (3.14) is rotationally invariant by
showing that it commutes with the total spin S;,: = Ei S:. What quantum
numbers classify its eigenstates on a one-dimensional ring with N sites?
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4

Ground States of the Hubbard
Model

A first step toward understanding a quantum Hamiltonian is to search for
its ground state. In the absence of an exact solution, a judicial choice of a
family of variational states ¥”, where  are variational parameters, can be
fruitful. The variational theorem states that

(W H|E) _ o,
ey L 2 Ee (4.1)
where Ej is the exact ground state energy. A systematic improvement of
the ground state energy and wave function can be achieved by minimizing
the left-hand side of (4.1) with respect to ever larger families of variational
states. The variational approach is conceptually straightforward and avoids
the mathematically subtle convergence problems that plague perturbation
theories and asymptotic expansions.

On the other hand, we must remember that the variational approach for
the ground state order may be grossly misleading. The energy is mostly
sensitive to short-range correlations. Therefore, within a restricted family
of trial states, the state with the lowest energy might have wrong long-range
correlations.

In this chapter, our emphasis is on the magnetic correlations of the Hub-
bard model. In Section 4.1 the variational approach is demonstrated using
spin density wave Fock states. This provides a variational derivation for
Hartree—Fock theory at zero temperature.

The second section presents (without proofs) some relevant theorems for
the total spin of the ground states on finite lattices. Subsequent chapters
are devoted to the magnetic behavior at half filling, i.e., the Heisenberg
model. The reader who is interested in the Hubbard model away from half
filling may find Chapter 19 useful. There the two-dimensional doped anti-
ferromagnet (relevant to cuprate superconductors) is treated semiclassically
using the large spin extension of the t — J model.
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4.1 Variational Magnetic States

We consider the Hubbard model in the form

H = Z Ekc{(scks +UZTZ,'TTZ,'1. (4.2)

k,s=11

The simplest variational states are Fock states (see Section A.1):

[{na}), (4.3)

where a label the single-particle states {¢2}, and v is a set of variational
parameters. The expectation values of four Fermi operators in (4.3) factor-
ize as’

(cleleqes) = (clea)(ches) — (cleg)(chen)- (4.4)
Fock states that describe magnetic ordering are called spin density wave
states. Such states can be constructed by transforming the original electron
operators ks into magnetic quasiparticles oy, by the canonical transfor-
mation

aI(+ cos OkGLT + sin OkGIqu ,
ai‘(_ = —sin OkGLT + cos OkGIqu. (4.5)
The variational spin density wave states are given by the family
9%y = [ ol 0. (4.6)
o=+kext

The variational parameters of ¥ are the ordering wave vector q, the angles
6y, and the occupation numbers nli( = 1,0. The latter define the two Fermi

surfaces Tf which enclose nA occupied states:

1 o
" /T/’an ’
ak
1 k € 5%
ny = o - 4.7
k {o k ¢ T% (47)

The variational parameters are determined by minimizing the energy of W.
¥ can support nonzero magnetization in the z—y direction at wave vector
q and also uniform magnetization in the z direction. This can be seen by

1We do not include here the possibility of anomalous expectation values such
as {cfc!), which are present in BCS states.
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FIGURE 4.1. Spiralling spin order of wave vector q.

evaluating the following spin operators:

(sH = ﬁ‘:e-"‘f"" §<"L10k+q’1)

41

= —iq'X; i t
= ; e Z (sm Ok +q—q’ 08 by (o +%+q-q +)

k
— sin 6y, cos 6y +q-q' (ai‘(_ o +q~q’—))
= Nmqe ¥ |
mq = 5y 3 (@) (i = i)

The spin operators in momentum space obey

(S*(q)) =(S~(—q))".

(4.8)

(4.9)

mq # 0 describes spiralling spins in the z—y plane with the angles of the

spins given by q - x; as shown in Fig. 4.1.

A magnetization in the z direction is described by the order parameter

UL U t
(0) = 5;6 a §<ck10k+q'T ~ % kvt
= Nmz »
1
m. = o7 Zcos(20k) (nlt - nl"()
k

The expectation value of the Hubbard interaction, using (4.4), is

(UZnnnu) = UZ("t’T)(nil) - Z(Sﬁ)(si)

(4.10)
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2
n
/\/UI - NUm; — NUmg. (4.11)
The expectation value of the kinetic term is given by

T = (Zekci‘(scks)
k,s

k t%k+q _ [k~ ‘k+q +
Zk [# + (——2—) cos(20k)] n- (4.12)
+

By subtracting —2(NUm; — NUmg) from T and adding it to the energy,
we obtain the variational expression for the ground state energy:

E[q,0),%%] = E® + N'm? +N’mfl + Nn?/4, (4.13)
where
E® =) Epni. (4.14)
+k

Elf are the “magnetic band energies” defined as?

€ + € € — €

Eli( _k +2k+q + [( k 2k+q _ m,) cos(20) ) — Umqsin(26y) | .
(4.15)

It is easy to verify that minimization of (4.14) with respect to mq and m,

leads to (4.8) and (4.10), respectively. Thus, we can treat m, and mq as free

variational parameters, which are independent of cos(26y ). We must now

minimize the functional E[mq,m.,q, Bk,E?]. It is clear from (4.14) that

the minimal Ef. are those that enclose the lowest magnetic band energies.

The variational function cos(26 ) is determined by

OFE €k — 6k‘{-q. + _
= — z — = 0,
Boos(20,) [ 3 Um, + Umgcot(26y) (nk nk)
(4.16)
which yields the explicit dependence of cos(26).) on m, and m,,
‘k ‘k+q U
cos(20y) = 2 e (4.17)

€1, —€ 2 ’
(R )+ @y

Inserting (4.17) in (4.15), one obtains the magnetic bands

ek + €Ky €k ~ ¢k ?

2Here, E) are variational parameters for the ground state and not true exci-
tations of the model.
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The two order parameters, m, and mq, determine the magnetic bands, the
Fermi surfaces, and E(m., mq). Minimizing with respect to these param-
eters yields the coupled equations

dE dE°
48 _ 4 —2NUm, =0 ,
qu qu

E 0

b _ dE —2NUm, =0.

dm, ~ dm,
(4.19)

Equations (4.19) are known as the zero temperature Hartree-Fock mean
field egquations. They can be solved (numerically, in most cases) for any
noninteracting band structure €, filling n and interaction U.

From (4.19) we can get an instability criterion for the paramagnetic
state with respect to formation of a magnetic state. By assuming mq =0,
and expanding (4.19) to linear order in m,, we obtain the condition for a
uniform magnetization in the z direction (m, # 0),

dE°

= 4 2 zX|m,= 2
= Wmmmo +O(m)

= 2m,U, (4.20)

where x is the uniform magnetic susceptibility for noninteracting electrons

X0 =353 - 20, (a.21)
k

where n(e) = (e¥/T + 1)~! is the Fermi function, and p;(0) is the non-
interacting, single spin density of states at the Fermi energy. Equation
(4.21) yields the famous Stoner’s criterion for a ferromagnetic instability:

2Ux(0) = 1. (4.22)

We must also check for an instability toward a spin density wave state of
mq # 0. By assuming m, = 0, and expanding (4.19) to linear order in mq,
we obtain the condition for a solution with mq # 0 when

dE°

g " W*mqx(@)lmg=0 + O(mq)

= 2mqU , (4.23)

where x(q) is the susceptibility at wave vector q,

1 (e ) — ()
x(@) =5 % — (4.24)
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Equation (4.23) also yields a Stoner’s criterion for the spin density wave
instability at wave vector q:

2Ux(q) = 1. (4.25)

Maximizing x(q) therefore determines the ordering wave vector at which
the magnetic instability first occurs as we increase the magnitude of U.
By (4.24) we see that while x(0) depends on the Fermi surface density
of states, x(q) at finite |q| is sensitive to the Fermi surface geometry, in
particular its nesting properties. “Nesting” refers to the existence of par-
allel sections on the Fermi surface which are separated by the wave vector
Qnest- These effects are most dramatic in one dimension, and for the two-
dimensional square lattice near half filling. The nesting provides a large
number of small energy denominators |e} — €} Jrqnm| << W in the sum

(4.24) which enhances x(Qnest). This divergence may produce a magnetic
ground state even for very small U/t!

The magnetic states presented above are commonly used to model metal-
lic ferromagnets (e.g., iron) and spin density wave systems (e.g., chromium).
In the Hartree-Fock mean field theory for the excitations, an absence of a
gap in the magnetic band structure implies that there are low-lying current
carrying excitations. Such systems are called itinerant magnets.

All the variational analysis really tells us is that the lowest spin den-
sity wave state has lower energy than other trial Fock states, including the
nonmagnetic band structure. However, Stoner’s criterion is known to over-
estimate the magnetic ordering and underestimate quantum disordering
effects due to spin fluctuations. The Hartree—-Fock equations at finite tem-
peratures find long-range magnetic order even in one and two dimensions.
This violates Mermin and Wagner’s theorem, which is given in Chapter 6.
Therefore, we can only conclude that when the Stoner criterion is satisfied,
there is at least short-range magnetic ordering in the Hubbard model.

We have concentrated here only on magnetic variational Fock states.
In addition, there are other variational Fock states which describe charge
density ordering, superconductivity, or a mixture of several different order-
ings. They are obtained by performing other canonical transformations on
the electrons, in analogy to (4.5). For example: we could consider mixing
same-spin particles at different momenta to obtain a charge density wave.
Mixing particles and holes will yield a superconducting state that breaks
gauge symmetry.? Each possibility adds variational parameters and mean
field equations. Solving for the angles and order parameters is a cumber-
some yet straightforward generalization of the calculation we have outlined
above.

Before leaving the subject of variational states we should mention an

3See Schrieffer’s book, bibliography of Chapter 3.
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important family of non-Fock states, the Gutzwiller states

w9 =TJ] 1 - gninyy] €, (4.26)

where WFock i any variational Fock state, for instance (4.6). g is an addi-
tional parameter which reduces the relative weights of states with doubly
occupied sites. g — 1 completely eliminates doubly occupied states. A par-
ticularly well-studied member of this family is the Gutzwiller projected
Fermi gas in one dimension:

GOPFG _ H(l—nzmu) II kT°k1|0 (4.27)
k|<n/a

WGPFG j5 a purely spin variational state. It is, in fact, the exact ground

state of the Haldane-Shastry Heisenberg model of S = 1 which has anti-
ferromagnetic couplings that decay with distance as 1 /r22

The calculation of energy and correlations in Gutzwiller states is far from
trivial, since they do not factorize as in (4.4). The perturbative expansion
(in g) involves large products of gn;;n;;. Such calculations have been ana-

lytically performed in one dimension by Vollhardt and Metzner.

4.2 Some Ground State Theorems

The total spin and magnetization of the ground state of the Hubbard model
obey certain general theorems. Here we shall present some of these theorems
without their detailed proofs. The steps of the proofs are instructive in their
own right, and the reader is encouraged to learn them directly from the
original papers. All the following theorems are restricted to finite lattices
of size N and fixed number of electrons N,.

Nagaoka’s Theorem 4.1 The ground states of the infinite-U model on a
bipartite lattice (see definition 3.1),

i eff — _
Jim H ) " tij| Paclyc;o Po, (4.28)

ijs

for N, =N —1, are the fully polarized ferromagnets with total spin:
1
S = E(N_ 1). (4.29)

One of the (unnormalized) ground states with the maximal magnetization

12 —Z( 1 I chsl0) - (4.30)

g
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FIGURE 4.2. Two hops of a hole in a spin background.
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The ground state energy is —z¢, where z is the number of nearest neighbors,
and their total spin is given by (4.29).

The proof of this theorem was given by Yosuke Nagaoka,* and we shall
not repeat it here. We just mention that it constructs the dynamical one-
particle Green’s function for several types of lattices by summing over all
closed hopping paths of the hole. As direct corollaries, Theorem 4.1 can
be extended to bipartite lattices with one electron above half filling, by
applying a particle-hole transformation:

{1 i€ A

-1 ieB’ (4.31)

Cis "ic:!s ’ i =
which preserves the Hamiltonian (4.28) and sends N, — N + 1.

Nagaoka ferromagnetism is purely kinetic in origin: it derives from the
minimization of the hole’s kinetic energy in a purely aligned spin configu-
ration. The argument goes as follows. For an arbitrary spin configuration,
a hole that hops around leaves a string of translated spins. Thus, many
closed paths do not restore the spins to their initial configuration and are
therefore excluded from the kinetic energy. This is depicted in Fig. 4.2. On
the other hand, the ferromagnetic spin configuration returns to its original
state for any closed loop, and thus its kinetic energy is minimal. More could
be found in Nagaoka’s original paper and in the bibliography.

This result, however, is not readily extendable to either finite-U or other
hole densities. The Nagaoka Hamiltonian (4.28) is somewhat pathological
in its excitation spectrum. At N, = N, the ground state has 2V-fold de-
generacy of A independent spin-half degrees of freedom. This degeneracy
is strongly affected by most deviations from the strict conditions of the the-
orem, be it a finite temperature, a finite-U, or a different filling. Thus, it is

4See Y. Nagaoka, Phys. Rev. 147, 392 (1966).
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far from clear under which perturbation Nagaoka ferromagnetism survives.
The main lesson to learn from this theorem is that mobile holes tend to
align the background spins in some range or over some timescale. It sug-
gests that localized ferromagnetic polarons can form around holes in the
t — J model (see Chapter 19).

We also mention without proof two theorems by Elliot Lieb.5

Lieb’s Theorem 4.2 Consider the positive-U Hubbard model with bipar-
tite hopping parameters t;; (see Definition 3.1),
H = _Ztijczscjs +Z|Ui|n,~Tn,-l. (4.32)
8ij i

N4 and Ng are the number of sites on sublattices A and B, respectively.
Assuming that the number of electrons is Ne = Na + N (half filling), the
ground state |¥q) has total spin

S%|Wo) = S(S+1)[%)
§ = LINa-Nsl, (433)

and also |Wo) is unique up to a trivial (25 + 1)-fold rotational degeneracy.

Corollary 4.3 The ground state of a bipartite lattice with Ny = Ng is
therefore a total singlet (S = 0) and nondegenerate. Thus, there cannot be
any level crossing (for the ground state) at finite U.

In other words, the small-U and large-U ground states at half filling are
“adiabatically connected,” i.e., under increase of U the ground state evolves
continuously from the free electron gas into the ground state of the Heisen-
berg antiferromagnet as expected from Section 3.2. Chapter 5 describes
Marshall’s theorem for the Heisenberg model, which closely resembles Lieb’s
Theorem 4.2. Both theorems use a particular property of the Hamiltonian:
its off-diagonal matrix elements are nonpositive in a certain basis. This
property results in a ground state that is positive definite on that basis.
Consequently, its uniqueness and the value of its total spin can be proven.

We have seen in Section 3.3 that the negative-U Hubbard model at all
fillings is related to the positive-U model at half filling. Therefore, Theorem
4.2 is closely related to the following theorem.

Lieb’s Theorem 4.4 Consider the negative-U Hubbard model on a finite
lattice (N < ),

H = —Zt,-jc:-'scjs —~Z|U,-|n,-Tn,-l, (434)

8ij

SE. Lieb, Phys. Rev. Lett. 62, 1201 (1989); Erratum, ibid. 62, 1927 (1989).
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for an even number of electrons with any hopping parameters t;; = tj;.
The ground state |¥o) of (4.94) is a singlet of total spin S =3, S;:

S2.|¥o) =0, (4.35)

and, in addition, it is unique.

This theorem is not surprising for |U/t| >> 1, since the ground state is
expected to be a system of locally paired electrons. The uniqueness of the
ground state and its spin at smaller |U/t| is a nontrivial result of Theorem
4.4. As discussed in Section 3.3, the negative-U Hamiltonian describes a
competition between charge density ordering and superconductivity. Unfor-
tunately, the spin of the ground state cannot help us to distinguish between
the possible symmetry breakings in the thermodynamic limit. Those must
be established by other means (see Chapter 6).

4.3 Exercises
1. Find the expectation value of H of (4.2) in the Fermi gas paramagnetic

state
v = ] 4.0, (4.36)

a,ke}] F
where X r is the Fermi surface which encloses %N n k values.

2. Compare the energy of (4.36) to the energy of the fully polarized ferromag-

netic state
T t
L | 4,10, (4.37)
kex]
where EL is the single spin Fermi surface which encloses N, k states. What

is the size of U/t for which the ferromagnetic state is favored? Compare this
variational criterion to Stoner’s criterion (4.22). Is it stronger or weaker?

3. What is the relation and difference between Stoner’s condition (4.22) and
Hund’s rule for ferromagnetic coupling (see Section 2.1)?
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5.

Ground States of the
Heisenberg Model

In Section 3.2, the antiferromagnetic Heisenberg model of spin half emerged
as an effective Hamiltonian for Mott insulators. In general, the Heisen-
berg Hamiltonian is a fundamental model for quantum magnetism, as well
as other phenomena that can be effectively described by quantum spin
operators.! A wide range of concepts and techniques can be learned from
studies of its ground state, excitations, and thermodynamic phases.

The Hamiltonian for a lattice of N spins of size S is

H = ’H"" H,
H* = ZJ 5287,

HY = 42.7,3 (SFS; +575F),

Stor = Z (5.1)

where J;; = Jj;, where J;; has the lattice translational symmetry. H is
rotationally invariant since it commutes with all three components of the

total spin
St = _S:. (5.2)

Thus, the eigenstates are labelled by

‘I’ == |Stot7Ma---) y
M = =S, —Sie+1, ..., St ,
St < NS, (5.3)

where M is the eigenvalue of total magnetization S7,, and

S2,, = Siot(Stot +1). (5.4)

1For example: superconductivity and charge density waves, as shown in Sec-
tion 3.3.
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If the couplings J;; are invariant under lattice translations of ¢ and j, the
lattice momentum k is also a good quantum number.

This chapter concentrates on two aspects of the ground state of the
Heisenberg model. In Section 5.1, Marshall’s theorems for the total spin and
signs of the wave function are proven. Section 5.2 proves gapless behavior
in the large A limit of half-odd integer spin chains.

5.1 The Antiferromagnet

The antiferromagnetic ground state is, in general, far more complicated
than the ferromagnetic ground state. The following theorems derive strong
conditions on the ground state of bipartite antiferromagnetic Hamiltonians
(see definition 3.1). The staggered magnetization operator on sublattices A

and B is
Setass =N "5z N "8 (5.5)
icA i€B
The Ising configurations form the basis set

Oy =[5, mih [§,m3)2--, |8, MmN (5.6)

where |S, m;); denotes an eigenstate of S?, S7 with eigenvalues S(S+1),m;,
respectively. The Néel state (which maximizes S%¢99) is the Ising configu-
ration

Néel _ Q\. _J1 i€eA
v = ]_:_[|S»TI:S)1 y i = { -1 ieB" (57)
Generally, however, ¥Née! s not an eigenstate of H. The “spoilers” are
the spin flip terms S;" S; in H*¥, which connect WNéel 6 other Ising con-
figurations. For our purposes, it is convenient to rotate the spin axes on

sublattice B about the z axis, which amounts to the unitary transformation

i € B,
sy - -5,
5 - +87, (5.8)

which transforms the Ising configurations into

~ |S, my)i i€ A
|S, mi)i e d |S, mi)i = {(_1)(S+m,) |S, mi)i 2 € B s (5-9)

where 7, are eigenvalues of S7 and S'f on sublattices A and B, respectively.
We restrict ourselves to a subspace M and expand all wave functions as

wM =N e (5.10)
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where 3
M= I 15m).. (5.11)
2 =M
Now we present Marshall’s theorems, which were extended by Lieb and
Mattis (see the bibliography).

Marshall’s Theorem 5.1 Consider the Hamiltonian (5.1), with antifer-
romagnetic exchanges J;; > 0 which connect between sublattices A and B
(bipartite), such that any two sites on the lattice are connected by a se-
quence of finite exchanges between intermediary sites. In any allowed M
sector, the lowest energy state ¥} can be chosen to have positive definite
coefficients in the rotated Ising basis @34 , i.e.,

v = "fMeM , fM >0, Va. (5.12)

Therefore, by (5.8), the coefficients of ¥} in terms of the unrotated Ising
configurations |®,) obey the Marshall sign criterion

To= D0 (-1 fM2.),

> (S+me) . (5.13)

ieB

LS

Marshall’s Theorem 5.2 The absolute ground state Vg, for equal size
sublattices A and B, is a singlet of total spin

Stot|¥o) = 0. (5.14)

We first must emphasize that not all total singlets obey the Marshall sign
criterion (5.12), and conversely not all Marshall sign obeying states are
singlets of total spin. The ground state of our Heisenberg antiferromagnet,
however, must obey both conditions.

Proof: Using the sublattice rotated operators (5.8), the Hamiltonian (5.1)
transforms into

M o= R,
H* = + Y |88,

icA,jeB
- 1 -
Y = - > 155l(SF Sy + 87 87). (5.15)
icA,jeB
We note that 7** is diagonal in the Ising configurations:

H?|®,) = eo|®a) (5.16)
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where the superscript M has been dropped off ™, until it is needed. The
crucial point is that in this sublattice-rotated representation, H*¥ has only
nonpositive matrix elements:

(®a|H™|®p) = —|Kapl- (5.17)

The eigenvalue equation for the coefficients f is

_ZlKaﬁlfﬁ t+eafo = Efa- (5.18)
B

Consider the trial function

'] =Z|fa||@a)’ (519)

whose energy is

(T|H|T)

ZealfaP ZlKaﬁnfanm
Zealfal —ZlKaﬁlfafﬁ —E. (520

IA

Therefore, it must also be a ground state and satisfy the eigenvalue equation

_ZlKaﬁllfﬁ|+ea|fa| = E|fal- (5.21)
B

Since ®,, are not eigenstates® of ’ft, e, are larger than its lowest energy,
ie.,

Va, ea~E > 0. (5.22)
Rewriting (5.18 and 5.21) as
(ea~E)fa = Z |Kaglfs (5.23)
B
(ea = E)lfal = _IKapllfsl: (5.24)
B
and taking the absolute value of both sides of the equations, we find
Y Kaplfs| =D |Kapllfsl; (5.25)
B B
which implies that
fs=0. (5.26)

Thus, the trial state and the ground state are one and the same: ¥ = +¥.
We can prove the stronger condition on fg as follows.

Zexcept for the case M = NS, which is a space of one state.
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Lemma 5.3
v 8, fa>0. (5.27)

Proof: 1t could be readily verified that any Ising configuration with total
magnetization M is connected to all other configurations in the same sector
by successive application of the pairwise spin flip operator K,g. Thus, if f,
vanished for some a, by (5.22) and (5.23), fg should also vanish for all 3
in the same M sector. Since we need at least one coefficient to be nonzero,
all fg must also be nonzero. This proves Lemma 5.3 and finishes the proof
of Theorem 5.1. Q.E.D.

Corollary 5.4 For any fized M, ¥, is nondegenerate.

This follows from (5.27), since there cannot be an orthogonal state to ¥
that has only positive definite coefficients in the M subspace.

In order to prove Theorem 5.2, we first need to show that the ground
state of the M sector has the minimally possible total spin.

Lemma 5.5
(Stor)? [¥M) = M(M +1)[¥M). (5.28)

Proof: We examine the infinite range Hamiltonian on a bipartite lattice
with equal number of sites on the two sublattices:

H>®=J Z Si - S; = JStot,4 - Stot,B- (5.29)
icA,jeB

This model is thus trivially solvable as a two spin problem using
Stot = Siot,a + Stot,B. (5.30)
The possible values of the total spin operators are
Stot, A, Stot,p =0,1,...,NS/2, (5.31)
which for equal size sublattices means that
0 < S <NS, (5.32)
and the eigenvalues of (5.29) are

J
E*®(St0) = b} [Stot(Stot + 1) — Stot,a(Stot, 4 + 1) — Stot, B(Stot,B + 1)].

(5.33)
Since (5.33) monotonically increases with Si., and S;or > M, the ground
state in a given M sector has

Stot =M . (5.34)
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Both H and H* satisfy the requirements for Marshall’s theorem (5.1),
and thus their ground states have Marshall signs (5.12). Therefore, their
overlap, which involves a sum over positive numbers, cannot vanish, and
they must have the same total spin quantum numbers. Thus, we have
proven that the lowest energy state of H in the sector M has spin S;,; = M.
Since all allowed values of total spin S;,, > M have members in the sector
with magnetization M, E(S;,) obeys

V‘Szot > Stot = E(Szot) >E(Stot), (535)

i.e., the energy is a monotonically increasing function of Sio:. Now consider
the sector of M = 0. Inequality (5.35) proves that the ground state must
have the minimal possible S;,;, which by (5.32) is at S;,: = 0, which proves
Theorem 5.2. Q.E.D.

The non-negativity property of the Heisenberg antiferromagnet on bi-
paratite lattices is shared by the Hubbard model at half filling and the
negative-U Hubbard model at all fillings as discussed in Section 4.2. It is
also a property of the Heisenberg ferromagnet on all lattices.

Corollary 5.6 For the ferromagnetic model with nonpositive exchanges,
1
H==2> |78 S5, (5.36)
ij

‘I’FM

the fully ferromagnetic state is a member of the ground state multi-

plet, where

N
M =T]IS.9): - (5.37)
i=1

The proof, which is given as an exercise, closely follows the proof for the
antiferromagnet.

As a member of a degenerate multiplet, ¥¥M spontaneously breaks the
rotational symmetry of the Hamiltonian. This symmetry breaking is special
in that the operator 57, commutes with the Hamiltonian and M is a “good
quantum number” (i.e., it labels the eigenstates of H). In this respect, the
antiferromagnet differs from the ferromagnet. The staggered magnetization
does not commute in general with the Hamiltonian. Spontaneous symmetry
breaking, however, is still possible for the antiferromagnet in the strict
thermodynamic limit (N = o0), as will be discussed in Section 6.1.

5.2 Half-Odd Integer Spin Chains

Particles with half-odd integer spins, such as electrons, have a peculiar
quantum property: their wave function acquires a minus sign under rota-
tions of 2r about any spin axis. When the wave function is localized about
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any particular direction in spin space, this effect is hardly noticeable. In
low dimensions, however, the zero point fluctuations are large. This will be
demonstrated by the semiclassical spin wave theory in Chapter 11. Con-
sequently, interference effects due to these negative signs may become im-
portant. For example, we shall see that the one-dimensional Heisenberg
antiferromagnet has qualitatively different spectra for integer and half odd
integer spins. The following theorem by Lieb, Schultz, and Mattis (see bib-
liography) establishes this difference.

Lieb, Schultz and Mattis Theorem 5.7 Consider the Heisenberg an-
tiferromagnet (J > 0) on a chain,

N
H =7 8;-Sju1 +JSy -8, (5.38)

Jj=1
where N is even. For half-odd integer spins, e.g., S = 1/2,3/2,..., there
exists an excited state with energy that vanishes as N' — oo.

¥, is the ground state of H. Consider the twist operator
27 N
0! =exp zﬁ ZjS; , (5.39)
=1

which rotates each spin incrementally in the z—y plane, such that between
the first and last site the spin coordinates are rotated by 27 about the z
axis. A “twisted state” is constructed as

U, = O'¥). (5.40)

Our proof consists of two propositions:

Proposition 5.8
(¥,|¥) =0 (5.41)

and

Proposition 5.9

lim [<‘I’1|'H|‘111) — Eo] — 0, (5.42)
N—oo

where Ey is the energy of ¥y.

Proposition 5.8 is proved by showing that the state ¥, is orthogonal
to ¥y, because their lattice momenta differ by n. Thus, by expanding ¥,
in terms of exact eigenstates (which do not include W), we could use
Proposition 5.9 to prove that there exists at least one excited state with
an excitation energy that vanishes in the large lattice limit.
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The lattice translation operator U, translates the spins by one lattice
constant:

US;U;' = Sju,
UsSNUSD = 8. (5.43)
The Hamiltonian is translationally invariant:
M,Uz] =0, (5.44)

and by Corollary 5.6, ¥, is nondegenerate. Thus, ¥ must be an eigenfunc-
tion of Uy, i.e., )
U, ¥y = ek, (5.45)

ko is the ground state lattice momentum. The overlap of the twisted state
with the ground state is

(Tol¥1) = (¥|O"To)
(Wo|U,0'U; W), (5.46)
However,
U,0'U;! = O exp(i27S7) exp (—izﬁwaot) . (5.47)

By Marshall’s theorem 5.2, ¥ is a singlet of total spin and thus

2
exp (—iFwaot) [¥o) = |¥o). (5.48)

We also use the identity

1 =0,1,2..
exp (i2n57) = { 1 §_ Y% (5.49)
=222
Thus (5.47) yields
ot S=0,12...
-1 _ 1,
U0V, —{_01 S=%,%%)“- . (5.50)
Thus, for half-odd integer S we find that
(ol¥1) = —(To|¥1) = O, (5.51)

which proves Proposition 5.8, Q.E.D.
O! is unitary, and thus ¥, is normalized. The energy of the twisted state
is

N
(Wi[HT) = Eo+(¥o| [cos(2m/N) = 1] D (S751 +5¥SY41)

i=1

N
+sin(2r/N) ) (S7SY,, — SYS5,,) [Wo).  (5.52)
i=1
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Since ¥ is a singlet of total spin, and therefore rotationally invariant, the
expectation value of any operator that is odd under rotations is zero. In
particular, a global rotation that takes S* — SY and SY — S* leads to

‘I’0|Z S78Y,, —8¥S2,,) [Wo) =0. (5.53)

Expanding the cosine in (5.52), and using the inequality
<Sm 7+l + S;IS;I.g.l) < S2, (554)
we find that
212 J 52
N

(U, [H|®,) —Ey < + ON3), (5.55)

which proves Proposition 5.9. Q.E.D.

In the thermodynamic limit, the admixture of the ground state and this
low-lying excited state may break a symmetry of H. For example, the
ground state and first excited state of the Majumdar-Gosh model® are
superpositions of dimer configurations that break lattice symmetry. An al-
ternative scenario occurs in the nearest neighbor Heisenberg model of spin
half. des Cloizeaux and Pearson have found (from the exact solution) that
magnon excitations are gapless. These excitations, which are labelled by
lattice momentum k, have energies

= (m/2)|sink|, (5.56)

which vanish in the thermodynamic limit at £ — 0 and &k — 7. These exci-
tations are not spin waves [see (11.40)] since they are not small fluctuations
about a ground state with broken spin symmetry.

In contrast to half-odd integer spin chains, we shall learn in Chapter
15 that integer spin chains have a gap in the excitation spectrum, called
the Haldane gap. Historically, des Cloizeaux and Pearson’s excitations were
known before Haldane predicted the gap for integer spin chains. Nowadays,
however, the semiclassical approach makes the integer cases conceptually
simpler than the half-odd integer cases. Gaplessness in the latter systems
is understood as quantum interference between topological Berry phases,
a subject we shall return to in Secion 15.1.

5.3 Exercises

1. Consider the infinite range bipartite Hamiltonian,

H=+J] ) 88, (5.57)

i€A,j€B

3A Heisenberg model with next nearest neighbor interactions of particular
strength, see Section 8.2.1.



60 5. Ground States of the Heisenberg Model

Find the ground state and ground state energy. Verify Marshall’s theorem
5.1.

2. Follow the proof of Marshall’s theorem for the antiferromagnet to show
that for the ferromagnet (5.36), an expansion in Ising configurations (for
fixed magnetization M) yields finite coefficients f, of the same sign.

3. Find the energy and spin of the ground state of the long-range ferromagnet,

H =—|J)_8:-8; (5.58)
ij

and use the result with Exercise 1 to prove Corollary 5.6.
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Disorder in Low Dimensions

6.1 Spontaneously Broken Symmetry

Spontaneously broken symmetry is a general phenomenon in statistical
mechanics and particle physics. It can occur at finite temperatures and
when the order parameter does not commute with the Hamiltonian. To
focus our discussion, we consider a spin density wave in the z direction
defined by the operator

Sq =2 IS, (61)

where ¢ labels the lattice sites and q is the ordering wave vector.
We add a symmetry breaking term to the rotationally invariant Hamil-
tonian H° using an ordering field h:

H(h) =Ho — hS. (6.2)

The magnetization per site is

mq(h) = A%Tr [T ]
zZ = 'I‘r[e—"i(h)/T]. 63)

For convenience, we restrict our discussion to lattices that are symmetric
under reflection about the origin, and thus 5§ in (6.3) is Hermitian and
mq s real.

At finite fields, mq(h) > 0 since the magnetization is induced by the
ordering field.

Definition 6.1 The system has spontaneously broken symmetry if it sus-
tains a finite magnetization in the thermodynamic limit even as we take
the ordering field to zero from above:

Jim  lim mq(h,N,T) # 0. (6.4)

The order of limits is crucial in (6.4). Spontaneously broken symmetry can
be found in the absence of an ordering field by examining the two point
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correlation function

_ —-H(R)/T qa qa
S%%(q) = 11151 —ZN.'I‘r [ SqS__q] , a€{z,y,z} (6.5)
In the absence of the ordering field, the correlations are isotropic in spin
space, i.e., independent on the direction a. It can be shown (see the exer-
cises) that spontaneously broken symmetry at momentum q implies true
long-range order in the two point correlation function:

Jlim [N~158*(q)] >0, (6.6)

or alternatively,
li li S;-S; 0, 6.7
A (Si-8;) # (6.7)
where |x; — x;| is the distance between sites ¢ and j. The term “true long-
range order” distinguishes (6.7) from “gquasi-long-range order,” which refers
to a power law decay of the correlations at large distances.

6.2 Mermin and Wagner’s Theorem

It is expected that for a system with an ordered ground state, thermally
excited states reduce the spin correlations at finite temperatures. This hap-
pens in classical and quantum systems alike. When the temperature is much
higher than the typical coupling energy scale J, we expect the spins to be
uncorrelated at large distances and the magnetization mq to vanish in
the absence of an ordering field. This requires a phase transition at some
temperature T, between the ordered and disordered phases.

The ordered ground state of the Heisenberg model breaks a continuous
O(3) symmetry in spin space. The spontaneous magnetization could be
made to point anywhere on the sphere by choosing the orientation of the
ordering field in that direction. The consequences of this continuous sym-
metry are especially pronounced in lattices of low dimensionality. In fact,
it turns out, as we shall see, that for one and two dimensions the phase
transition is exactly at T=0, i.e., thermal excitations disorder the spins at
infinitesimally low temperatures.

In 1966, Hohenberg utilized Bogoliubov’s inequality (defined below) to
prove the absence of superfluidity at finite temperatures in one and two
dimensions (see bibliography). Following essentially the same approach,
Mermin and Wagner showed that for short-range spin models in one and
two dimensions there cannot be spontaneous ordering at any finite temper-
ature. Their proof, which is presented below, is specialized to the quantum
Heisenberg model. It can be readily generalized to a larger class of models
with continuous symmetries.
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Mermin and Wagner’s Theorem 6.2 For the quantum Heisenberg mo-
del

1
H =5 JiySi-S; ~hSG (6.8)
ij
with short-range interactions that obey
- 1 .
J = WZ |J,'j| |x,- — lez < o0, (69)
ij

there can be no spontaneously broken spin symmelry at finite temperatures
in one and two dimensions,

lim A}Enmmq(h,N) =0. (6.10)

h—0t

A scalar product between any two operators A and B is defined by

1< X ¢=Em/T _ g=En/T
(4.8) =z S dmmisin) (5 =), @)

where {E,, |n)} are the energies and eigenstates of H. 3" excludes termes
with FE,, = FE,,. It is easy to see that the weight in the parentheses is
nonnegative. Thus (6.11) is a proper scalar product in the product Hilbert
space {|n)} x {|n)}. For A = B, (6.11) is the square norm of A, and by
(B.27) and (B.10), it is the susceptibility of the A operator:

(A,A) = Re RAA(O) = XAA- (6.12)

Using the inequality tanh(z) < z it is easy to verify that

¢=Em/T _ g=En/T 1 .
< — (e Bm/T ‘E"/T) : 1
0<( o )_2T(e te (6.13)

Thus, we obtain the inequality
(4,4) < 2lT<ATA +A4h, (6.14)
We use the Cauchy-Schwartz inequality for scalar products and (6.14) to
obtain
I(4,B)* < (A A)(B,B)

1
ET<ATA + AAY(B, B). (6.15)

Let us define an operator C such that

<

B =[ChH]. (6.16)
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Thus,
(4,B) = ([cCt Al),
(B,B) = ([C"[.Cl)), (6.17)
which by (6.15) yields Bogoliubov’s inequality:
1
[([ct, a)|* < (AT A+ AAN([C", [, CT)). (6.18)
Now we choose the following operators:
C =5, A= Szk—q , (6.19)
which yield
1
~(A? h = v v
2<A A+ AAYY = <Sk+qS—l_(—q>
= NSW(k+q). (6.20)
SVY is the equal-time correlation function as defined in (6.5).
Using (6.19) on the left-hand side of (6.18) we find
<[CT’ AT]) = <[Sik’ Sil(+q])
= i(Sg) =iNmq. (6.21)
F(k) is the double commutator function
F() = NN[87y, (1, SEI])- (6:22)
Now the Bogoliubov inequality (6.18) reads
my < %Sw(k + q) F(k). (6.23)

F(k) can be bounded by using the Hamiltonian (6.8) as follows:

F(k)

IA

himg +iN~F Y kX0 7, (57 (525Y — 5Y8F)])
ijl
hmq + N1 T {cosk(x; — xi)] — 1} (SYSY + S;SF)

3l

k|2 o
hmq + _lzjl/’ Z | el ~ x| |<S;.’S{’ + 835 )| . (6.24)
Jl

An upper bound

|(SYSY + S287)| <I(8;-S)| <S(S+1) (6.25)
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is obtained by considering the maximal eigenvalues of (S; + S;)% and SZ.
Using this bound we obtain

F(k) < hmq +8(S+1)J [k, (6.26)

where J was defined in (6.9).

The double commutator function F(k) contains dynamical information
since it explicitly depends on H. By (6.26), a finite bound for F(k) can be
obtained only if J is finite, i.e., the interactions decay sufficiently rapidly
at large distances.

Combining (6.20), (6.21), (6.23), and (6.26) yields

1 -
mfl < iSW(k +4q) [hmq +S(S+1)J|k?] (6.27)
or
Sv¥(k > Tmfl 6.28
kt+aq) 2 hmq +S(S +1)J|k[2 (6.28)
The sum over S¥?(k) is bounded by the size of the spins
NI SWk+q) =N ((SY)?) <S(S+1). (6.29)
k i
By summing over k on both sides of (6.28) using (6.29) we obtain
Tmg [* dkk?-1
5(5+1) > —d / ___ 30
$+1) 2 Gna J, hmgq +SE+DINE (6.30)

where we have transformed the momenta sum into an integral, and esti-
mated a lower bound by choosing k to be smaller than the Brillouin zone
edge wave vector. This yields an analytical estimate for the right-hand side
of (6.30). In one dimension, one obtains

Tm2
S(S+1) > d tan |kv/JS(S + 1)/h
(5+1) o '—fS(S+1)hmancan[ VIS(S +1)/ mQ]

Tm3/?
4 (d=1), (6.31)

TR0 TS 1)

where c is a numerical constant. Inverting (6.31), one obtains

S(S +1)J/3 /3,

mq <c T%/s (6.32)
In two dimensions, a similar analysis yields
Tmg JS(S + 1)k2
S(S+1) >—-3 1422707 , 33
(S+1) _41rS(S+1)Jn( T hmq ) (6:33)
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which can be inverted to obtain the bound
e <o S(S+1)Jv2 1
q = T1/2 /l In hl )

Equations (6.32) and (6.34) prove that the magnetization must vanish with
the ordering field for all finite values of T, S, J. Since these bounds do not
depend on the lattice size, this result holds in the thermodynamic limit.
Q.E.D.

Since Theorem 6.2 holds for all S, we can deduce that it holds also for
the classical (S-independent) limit of the Heisenberg model

(6.34)

1 A .
HY = 5 ) TG0y - kg, (6.35)

where 2 are c-number unit vectors. The correspondence between (6.8) and
(6.35) is given by scaling the parameters:
J,'jS(S-l- 1) — Je s
hS — A,
mq/S — mfi. (6.36)
Using these parameters eliminates S from inequalities (6.32) and (6.34).
Thus, Theorem 6.2 directly applies for the classical model (6.35), Q.E.D.
In d=3, the integral in (6.30) does not diverge for A — 0. Thus, it is
possible to satisfy the inequality at some finite temperature. Therefore,

spontaneous symmetry breaking and an ordered phase is expected at low
temperatures in three dimensions.

6.3 Quantum Disorder at T =0

Mermin and Wagner’s theorem does not apply at T' = 0. Let us assume
that in the presence of an infinitesimal ordering field, there is a unique
ground state |0). At T = 0, the expectation value of any operator is

(A) = (0|A|0). (6.37)
The scalar product (6.11) is thus

Z 0|A1|m Y(m|B|0)

(4,B) = e

(6.38)

m#0
We choose the operators A, B, and C as in (6.15) and (6.19). The suscep-
tibility is given by

Xk) = NS SY))
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[ 1szIm)|* +| 0157 Im)
E,. — E,

|2

- Ny

m5#0

(6.39)

Using (6.39) in the first line of (6.15) and (6.26), we obtain the zero tem-
perature Bogoliubov inequality as

mg < x*(k+q) F(k)
< XY [kmq+S(S+1)J k)] (6.40)

Inverting the equation and summing over the Brillouin zone, we obtain

my [F dk ké-1
3 = < N7? vy
@n? Jo gt 5@+ DIRE = N %x (k). (6.41)
Therefore, if
N_lzxyy(k) =C <w, (6-42)
k

and we are in one or two dimensions, mq must vanish with % in order to
satisfy (6.41). In that case there will be no long-range order even at T = 0.
We can prove that if there is a gap in the excitation spectrum,

Em—Ey >A, Y m#0, (6.43)

where A is independent of A, N, the ground state of the Heisenberg model
must be disordered. The gap allows us to bound the susceptibility (6.39)
by the correlation function:

) < o3 foisglm” =250, e

and since N ! 37 S < §(S + 1), condition (6.42) would be satisfied.
Interestingly, A plays the role of T in inequality (6.14).

As an example, the antiferromagnetic integer spin chains are known to ex-
hibit the “Haldane gap” in their excitation spectrum. The Mermin—-Wagner
theorem at T = 0 implies that these models do not possess true long-range
order in their ground states. In fact, the nonlinear sigma model analysis
predicts that their correlations decay exponentially at large distances (see
Section 15.2).

The converse statement (gapless excitations imply long-range order) is
false. For example, the spin half Heisenberg antiferromagnet in one dimen-
sion has gapless excitations but no long-range order at T' = 0.
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6.4 Exercises

1. Show that since by (6.3)

Ii = — lim y 6.45
pim mq = - lim mq (6.45)

long-range order requires the divergence of the zero frequency susceptibility

lim x**(q,w) = oo. (6.46)
h,w—0t

Is the opposite true? (i.e., does a diverging susceptibility imply long-range
order?)

2. Using the definition of broken symmetry (6.4) and Marshall’s theorem,
show that there cannot be any broken spin symmetry for the Heisenberg
antiferromagnet on a finite bipartite lattice with two equal size sublattices.

3. Show that spontaneously broken symmetry (6.4) implies true long-range
order (6.6). Hint: Use the Cauchy-Schwartz inequality to show that in a
finite ordering field hq:

2
(8q-S_q) =N*|mgq|” . (6.47)
Show that for a rotationally symmetric Hamiltonian the limit |hq| — 0 of

(6.47) exists and leads to (6.6).

4. Show that (6.47) implies (6.7). Hint: Use the Cauchy-Schwartz inequality
to show that
(S:-8;) <8(S+1), (6.48)

and prove (6.7) by contradiction.
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Spin Representations

7.1 Holstein—Primakoff Bosons

The spin is a vector operator. In a broken symmetry phase, the expectation
value of at least one of its component is nonzero. It is natural to describe
the ordered phase in terms of small fluctuations of the spins about their
expectation values. This is the content of spin wave theory. In order to
carry out that task, Holstein and Primakoff introduced a boson operator b
which represents the three spin component operators as

st = (V25-m) b,
S~ = bvV2S-m,

S* = —ny+S, (7.1)

where n, = btb. Using [b,b] = 1, the operators in (7.1) indeed obey the
spin commutation relations

[S%, 8P =iePrSY | (7.2)

where the latin indices run over z, y, 2, and €*#7 is the totally antisymmetric
tensor. The Fock space of b is too large. The physical subspace is spanned

by the states
{lns)}s = {l0),[1)...]25)}. (7.3)

Spurious Fock states with n, > 2S5 are eliminated by a projector Ps. In
this subspace one can verify that S2 = S(S + 1). The spin operators (7.1)
do not connect the physical to the unphysical subspaces.

The Holstein-Primakoff representation is useful to describe the broken
symmetry phases of the quantum Heisenberg model. The square root fac-
tors in (7.1) can be expanded in powers of 1/S,

VIS =vaS (1- 2 - ), (7.9)

4S 328277

which is a semiclassical expansion of the spin fluctuations about the 2 direc-
tion. By inserting (7.4) into the Hamiltonian and keeping up to quadratic
terms, one obtains a noninteracting “spin wave” Hamiltonian. The higher-
order terms introduce interactions between spin waves. The truncation will



70 7. Spin Representations

couple the physical and unphysical subspaces. Nevertheless, low-order spin
wave approximation has been found to be remarkably successful in certain
ordered phases of the Heisenberg ferromagnet and antiferromagnet. In the
bibliography, we refer the reader to some milestone papers on this sub-
ject. In Chapter 11, spin wave theory is derived in two ways: from the spin
coherent states path integral and by expanding Holstein and Primakoff’s
operators.

7.2 Schwinger Bosons

The symmetric phases of the Heisenberg model are easier to describe using
representations in which the rotational invariance of the Hamiltonian is
manifested. Two Schwinger bosons, a and b, represent the spin operators
as follows:

8% +iS¥ = alb,
8% —iSY = bla,
57 = %(afa—bfb). (7.5)

It is easy to verify that the spin components, as defined above, satisfy (7.2).
The spin magnitude S defines the physical subspace

{|na,ns) : nq+np =2S}. (7.6)
This subspace is given by the projector (or “constraint”) Pg,
Ps(a'a+b'b —2S) =0. (7.7)
In the projected subspace, the spin magnitude is well defined, i.e.,
S? Ps = S(S+1) Ps. (7.8)

In Fig. 7.1 the subspace projected by Pg is depicted in the Fock space
Ng, Np.
The spin states are given by

H\S+m t\S—m
N Gau )
V(S +m)! /(S —m)!
where |S,m) label the S? and S* eigenvalues, and |0) is the Schwinger

bosons vaccuum. For example: the spin-% states are given in the second
quantized notation as

|0}, (7.9)

1T = alo) ,
|1y = bl0). (7.10)
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FIGURE 7.1. Projected subspace of spin S in the Schwinger bosons Fock space.

Schwinger bosons are useful for calculating matrix elements of spin op-
erators. Since they do not contain square roots (in contrast to Holstein—
Primakoff bosons), the matrix elements of spin operators between Fock
states factorize as for free bosons. However, this does not necessarily sim-
plify the calculation of spin correlations in non-Fock wave functions. The
local constraints on the Hilbert space (7.6) introduce correlations between
a and b occupation numbers.

A generalization of representation (7.5) to N flavors defines the genera-
tors of SU(N) as generalized “spins”; see Chapter 16. The large N gener-
alizations are amenable to simple mean field theories which are controlled
by the small parameter 1/N. These will be reviewed in Chapters 17 and
18. The large-N mean field theories are described by effectively noninter-
acting Bose quasiparticles where correlations between different flavors are
ignored.

The Schwinger bosons (SB) and Holstein—Primakoff (HP) bosons (7.1)
are closely related. By eliminating the a boson using the constraint (7.7),
the correspondence is found to be

SB HP
b & b
a o 25 — ny. (7.11)

While Schwinger bosons provide a symmetric representation in spin space,
Holstein—Primakoff bosons single out the S* direction, which defines their
vacuum. Therefore, the two representations lend themselves to different
approximation schemes: HP for the broken symmetry phases and SB for
the symmetric phases.
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7.2.1 SPIN ROTATIONS

Since spin operators are generators of the SU(2) group of transformations.
The group members R are parametrized by three Euler angles ¢, 8, x

R = €957 95" xS, (7.12)

S are normal bilinear operators. The Schwinger boson creation operators
transform as wvectors in SU(2)!:

at\’ at 1
(b’r = R (b’r R
= X0 gi300Y gifgo” (ZI)

u ex/2 v ex/2 al
= —u* e X/2 gy e—ix/2 pt )

(7.13)
where the functions u and v are defined as
u(@,¢) = cos(8/2)e’? |
v(0,¢) = sin(0/2)e_id’/2. (7.14)

7.3 Spin Coherent States

Spin coherent states are a family of spin states created by applying the
rotation operator R of (7.12) to the maximally polarized state |S, S):

) = R(x.9,9)IS,5)
¢iS"#¢i5"0¢iS x| S, §),
(7.15)
where the unit vector
! = (sin@ cos ¢, sin O sin ¢, cos §) (7.16)

parametrizes the spin coherent state. We have the freedom to define x
arbitrarily. This is a gauge freedom, which we can eliminate by fixing .
The two independent angles are @, the “latitude,” and ¢, the “longitude,”
which are defined within the domains

{6€0,n], ¢ €[-mm) }. (7.17)

1See (A.17) in Appendix A.
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Using (7.13), Schwinger bosons are transformed into the rotated frame
a— aéy 4> Which yields an explicit representation of the coherent states as

A\ iSx G _ iSx (“af‘*‘”bt)zs
= e vasy
_ #Sx/@8) " smy, (1.18)

Z\/(S+ m)i(S —m)!

where u and v were previously defined in (7.14).
Using (7.18), we can evaluate the overlap of any two coherent states:

<Q|QI) — e—iS(x—x’)(u-ul+vtvl)2S

A ANS
(1+Q'Q) e—iSY
2

¢— ¢’) cos[3(8 +¢)]

v 2 ) coslL(0—0)]

2 arctan [ta.n ( ] +x-x, (7.19)

where ¥, x’ depend on the gauge convention.

The coherent states are not orthogonal, as seen in (7.19). Now we show
that they span the space of states of spin S. The measure of integration
over the group parameters is defined as

25 +1 - 25+1
dQ =
4 4

This is the Haar measure of the SU(2) Lie group. Using this measure, the
resolution of identity is provided by the integral?

BrL a0

- (”TH)/_I 0s 0 Z (1 +coso)5+m (%So)s_m

@s)!
B +m)(S —m)!
=Y _1S,m)}(S,m| =1 (7.21)

d9sinfde. (7.20)

S, m)(S, m|

Thus the coherent states form an overcomplete basis.
Another useful relation can be proven in the same fashion,3

(S+1)(2S +1) /dn Q* IQ = 8%, a=z,y,2 (7.22)

2See Subsection 7.3.1 for the evaluation of the 8 integrals.
3See Exercise 3.
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The relations above are easily extended to many spins. Consider a lattice
of spins on N sites, which are labelled by i. The many spin coherent states
are products of the single spin states:

N
) = [T1). (7.23)
i=1
Their overlap is
1+0-00\° 4 6

The resolution of the identity in the product space is

/H(stdQ) )@ = 1. (7.25)

The spin correlations of any wave function ¥ can be computed by the
integral:

U[S; - S;|¥ S+1-6;)(S+1 .
(¥ v _ (S+ Z)(+)/1:[dﬂi

(¥]¥)
e

where we have used (7.22). The representation ¥[2] = (¥|{}) is continuous
(like Schrédinger wave functions), and in Exercise 4 it is shown that all spin
operators are represented by differential operators in the variables u(6, ¢)
and v(60, #). Spin coherent states can be used to evaluate the trace of any
operator. If |n) is any orthonormal basis, then

Z(nloln)

(2S+1

N N
Q; -,

zZ

(7.26)

Tr O

) /dQ/dQ’ 3 (Rl QUOIY ) (€ |n)

25 +1
- ¥ /dQ(Q|O|Q). (7.27)

The coherent states elucidate the correspondence between classical and
quantum spins. The classical limit is achieved by sending § — oo. In that
limit, according to (7.24), the overlap of different coherent states vanishes
exponentially with S. The expectation values of spin operators are functions
of unit vectors, exactly like classical spins. Quantum effects are therefore
associated with the nonorthogonality of coherent states, which also implies
a finite width of W[ in Q space.
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7.3.1 THE 6 INTEGRALS
We define the 6 integral in (7.21) as

T S+m _ S—m
Ism =1 / d0sin0(w) (ﬂ) : (7.28)
A 2 2

We change integration variables by defining

1
s = %, (7.29)

and show that

IS,m /(;ldwxs+m(1 _ :E)S_m
= (S+m)(S—m)/(2S+1)! . (7.30)

This is verified by constructing the generating function

fs(2) = Z (25(287);')| lsn-s 2" (7.31)

Then, we insert (7.30) into (7.31) and use the binomial expansion to obtain
25 +1)fs(z) = (251 -1)/(z-1)
= 1+z+...4+2%. (7.32)

But by (7.31), Is.m is given by the coefficient of :™*S in fg(z), which
proves (7.30).

7.4 Exercises

1. Verify, directly from the definition (7.15), that |Q) is an eigenstate of the
spin component in the {2 direction:

Q-8|) =S|Q). (7.33)

Hint: Use the O(3) (vector) transformation properties of the three spin
operators (S%,S5Y, 5%).

2. Using (7.33), show that the expectation value of the Heisenberg model in
a coherent state is

HIO = (@0 = SzZJ., Q. (7.34)

Hint: For each of the spins, write its components in the Q) direction and
two transverse directions.
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3. Following the derivation of (7.21), prove identity (7.22).

4. Show that for an arbitrary wave function of a single spin, the following

relations hold:

(w|STI) = va.¥(Q) ,
(BISTIR) = udu(¥) ,
(W|S* Q) = %.(uau—va.,)q/(ﬁ). (7.35)

. You are given a differential operator

T =) Tu;okdluttiv', (7.36)
klj

whose matrix elements between any two spin-S wave functions are

(B|T|V') = 254:1 / (@) [T V(@) . (7.37)
Prove that one can evaluate (7.37) by substituting
(T = 254:1 / a0 ¥ (@) Tlu*,v*, u, 0], ¥ (), (7.38)
where o
Tlu*,v*,u,0] = Z CriThju v u* iyt (7.39)
klj
and
k+i41
Cu = H (28 +m). (7.40)
m=2

Hint: expand ¥,V into binomials of u,v, integrate first over d¢, and then
over df for both (7.37) and (7.40).
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Variational Wave Functions
and Parent Hamiltonians

We do not know the ground state for most nonferromagnetic Heisenberg
models. Even those that are known in analytical form, such as the Bethe
solution in one dimension, require numerical computations for their spin
correlations. Variational wave functions provide educated guesses for the
ground state. Physical insight can be gained by a variational calculation,
where the energy is minimized with respect to a chosen set of parame-
ters. The variational approach takes us beyond the regimes of any particu-
lar expansion scheme—semiclassical, large N, or others. As shown for the
Hubbard model (see Section 4.1), the primary advantage of the variational
approach is that it is conceptuallly simple and clear.

Here, we shall tie the variational wave functions to the concept of a
“parent Hamiltonian.” This is the Hamiltonian for which a particular wave
function happens to be the exact ground state. Although the Hamilto-
nian may differ from the physical model by extra interactions, it serves to
enhance our understanding of the latter. It brings to light the relation be-
tween interactions and ground state correlations. Extension of the parent
Hamiltonian method to understanding the excitations will be the topic of
Chapter 9.

As shown in the bibliography, much of the philosophy of the variational
states and parent Hamiltonians is shared with other highly correlated quan-
tum systems. In particular, the methods explained in this chapter are

closely analogous to well-known treatments of the fractional quantum Hall
effect.

8.1 Valence Bond States

The valence bond states are variational wave functions for antiferromagnetic
Heisenberg models. They have been studied extensively in the context of
quantum magnetism and high-temperature superconductivity. Their gen-

eral form is
|{Ca},S) = anla) y (81)
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Aq

FIGURE 8.1. A configuration of valence bonds for S = 1.

where ¢, are variational parameters and

|y = H (a:rb;[ — b:ra;[) |0} . (8.2)

(ij)EAL

a;,b; are Schwinger bosons! on site i. A, is a particular configuration of

bonds (ij) on the lattice, as, e.g., depicted in Fig. 8.1. The condition on A,
is that precisely 2S5 bonds will emanate from each site. In certain cases, the
sum in (8.1) is dominated by a finite number of configurations in the large
lattice limit. The cases where there are macroscopically many configura-
tions in (8.1) have been denoted “resonating valence bonds states” (RVB)
by Anderson.

By (7.13), it is easy to verify that all bond operators a:.r b;[ — b:r a;[ are
invariant under global spin rotations. Therefore, |{c,},S) is a singlet of
total spin. A special class of valence bond states is given by

[a,8) = | T willed. (83)

a \(ij)ea

There are up to N (N —1)/2 independent variational parameters u,;, where
N is the number of lattice sites.
If the bond parameters are bipartite and positive

(8.4)

W = u,-j>0 1€ A and j€B
710 i, j on the same sublattice ,

then (8.3) obeys the Marshall sign criterion (5.13) as required for the
ground state of a bipartite Heisenberg antiferromagnet.

1See Section 7.2.
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A Schwinger boson mean field state is defined as

la) = exp Zu,]( To] — bla T) 10, (8.5)

where u;; = —u;i. Such states are generated by the Schwinger boson mean
field theory of the Heisenberg antiferromagnet, which will be reviewed in
Chapter 18. |&) includes contributions of different spin sizes at all sites,
and is therefore not a bona fide spin state. It can be transformed by a
Bogoliubov transformation on the Schwinger bosons, into a factorizable
Fock state (which is in fact a vaccuum of the transformed bosons). As seen
in the exercises, the correlations of the mean field states can be evaluated
analytically. The valence bond state |4, S) can be constructed from (8.5)
by projecting it with Ps of (7.7):

|4, S) = Ps|i). (8.6)

The projected state, however, is not factorizable, due to the correlations
introduced by Psg.

It is much easier to evaluate the correlations in |&) than in |4, S). The
methods that can be used to calculate the spin correlations of valence bond
states are diverse. There are numerical methods, which involve either com-
binatorial computations or a Monte Carlo sampling of the wave function.
Then there are exact calculations using the spin coherent states representa-
tion (see Subsection 8.3.1). Also, there is a 1/N expansion, where N is the
number of Schwinger boson flavors. The overall magnitude of the matrix
{i} is fixed to yield an average of 2S bosons per site. The spin correla-
tions of the mean field state |i) are the zeroth-order approximation in this
expansion. This approximation can be systematically improved by a 1/N
expansion of the constrained generating functional, in close analogy to the
large-N expansion of the partition function in Chapter 16. Samples of these
approaches are listed in the bibliography.

Certain valence bond states are exact ground states of known “parent”
Hamiltonians. In the following, we describe the projectors technique, which
is generally useful for constructing parent Hamiltonians.?

82 S= % States

S= % states at any site will be denoted by the spinor states

| 1) =allo), |L:)=0dl0) . (8.7)

2The projectors method was used by Haldane to justify Laughlin’s wave func-
tion for the fractional quantum Hall effect, see bibliography.
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=111 ]

FIGURE 8.2. Overlap of two valence bond configurations (S = %

Any bipartite valence bond configuration (8.2) that obeys the Marshall sign
can be written in a normalized form as a product of singlet bonds:

i€A,jeB

s=3 = I (1) =11l 1)/ (8.8)

(ij)€Aa

o) g

The spin correlations of (8.8) are simply

B, o
(8:8) ={ -2 (ij)eAa - (8.9)

0 (i§) ¢ Aa
Thus if the bonds in A, are of short range, |a) s=1 is a disordered “spin

liquid” state. Different valence bond configurations are not orthogonal since
their finite overlap is given by?

(lpy = ] 2™
le{alB)
= NN (8.10)

where the first line is a product over all loops [ of length L; found in the
overlap of the two configurations. The overlap can be depicted by overlaying
the two valence bond configurations as shown in Fig. 8.2. Two identical
bonds in a and § produce a loop of length L = 2. In the second line of
(8.10) Ny, is the total number of loops and A is the number of sites on the
lattice.

3See Sutherland.
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FIGURE 8.3. The two dimer states |d)+ depicted with solid and dashed lines,
respectively.

Since |a) contains one bond per site, and the coordination number of all
simple lattices is equal to or larger than two, |a) breaks lattice translational
symmetry. This symmetry can be restored in (8.1) by summing over a.

Henceforth we restrict ourselves to valence bond states with nearest
neighbor bonds or “dimers.” We discuss the one and two-dimensional cases
separately.

8.2.1 THE MAJUMDAR-GHOSH HAMILTONIAN
Majumdar and Ghosh introduced the Hamiltonian

N
4K 1 1
MG _ |3 |Z(S,~-Si+1 +§Si'si+2) +5N, (8.11)
i=1

where i labels the sites of a one-dimensional chain with even number of sites
and Spr41 = S;. Below we shall see that HMC is the parent Hamiltonian
of the two dimer states, which are depicted in Fig. 8.3,

N/2

|d)+ = H(| Tan)| lont1) = | l2n)| T2n1))/V2 . (8.12)

‘We shall prove that
HMC|d), =0, (8.13)

and that all other eigenenergies are positive. Thus, |d). span the ground
state manifold of HMG. HMC includes antiferromagnetic interactions be-
tween next nearest neighbors, which partially frustrates the nearest neigh-
bor correlations. Thus, we can expect the ground state to be more disor-
dered than the pure nearest neighbor model. Indeed, the correlations of
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the Bethe wave function of the nearest neighbor model decay as an in-
verse power of distance, while by (8.9), the dimer state correlations vanish
beyond a single lattice constant.

The proof of (8.13) is instructive since it demonstrates a general tech-
nique in constructing parent Hamiltonians. The total spin of a triad of spins
at sites (i — 1,4,i+1) is

Ji =Si-1+ S +Siq, (8.14)

whose square has eigenvalues J(J + 1), where J = 1, 3. The basic idea is
to express H MG a5 a sum of projection operators:

HMS = |K|Y Pypli—1,i,i+1), (8.15)
where
1
Paja(i — 1,4, +1) = 3 J2 - %)
1 2
= 3%3 (8i—1-8i +8i-1-8Siy1+8; - Siy1).

(8.16)

Clearly, P3/, annihilates any state with total spin J = % of the triad
(i — 1,4,i + 1). Also, dimer states (8.12) do not contain states with total
J? > % of any three sites, since two of the three spins have cancelling S*
quantum numbers.

This implies that there are no triads with total spin J > %, due to the
following argument: assume a triad with J* = 1 but J = 3. Now perform a
global rotation on |d). This will admix (by applications of J;) a component
of J? = 2 into the wave function, which contradicts the rotational invari-
ance of |d) (see discussion before (8.3)). Thus, there cannot be any J > 1
component in |d), and therefore each operator Pz, annihilates |d).. Since
| K| P32 are non-negative operators, |d)1 span the ground state manifold

of HM¢ Q.E.D.

8.2.2 SQUARE LATTICE RVB STATES

On the square lattice of S = 1, the resonating valence bond (RVB) states
(8.3) fulfill all the requirements of Marshall’s theorems 5.1 and 5.2 for the
quantum antiferromagnet. These states were proposed as candidates for
spin liquid ground states by P.W. Anderson. Although the nearest neigh-
bor antiferromagnet on the square lattice is (by all indications) ordered at
T = 0, these states have been very popular in the context of doped antifer-
romagnets and high-temperature superconductivity (see bibliography and

Chapter 19).
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Unfortunately, it is not easy to evaluate correlations of RVB states. One
can see, by (8.10), that their components |¢) are not orthogonal. The num-
ber of different bond coverings on the square lattice increases exponentially
with the number of sites. M.E. Fisher has calculated (see bibliography) that
the number of dimer configurations on the square lattice of size A’ grows
as

Number of dimers ~ (1.791623)V/2. (8.17)

Numerical Monte Carlo simulations by Liang, Doucot, and Anderson on
finite lattices suggest that the RVB state has no long-range order for bonds
that decay at least as rapidly as

ui; o |xi — %577, p > 5. (8.18)

The RVB states can thus be used as variational ground states for both
ordered and disordered phases. This makes them appealing candidates for
studying the transition from the Néel antiferromagnet to a paramagnetic
phase.

8.3 Valence Bond Solids and AKLT Models

The valence bond solids (VBS) are

wvES) ~ ] (aj.b} - b}a})M o), (8.19)
(i5)
where (ij) are all the nearest neighbor bonds of the lattice and M is an
integer which obeys
M =25/z. (8.20)
z is the lattice coordination number. It is clear that (8.20) restricts S
to values depending on the lattice structure. For instance, for the one-
dimensional lattice S = 1,2..., while for the square lattice S = 2,4... .
Some VBS states are depicted in Fig. 8.4.
Affleck, Kennedy, Lieb, and Tasaki (AKLT) have constructed the parent
Hamiltonians for the VBS states as follows:

28
HAKIT =8N~ N~ KyPs(5), K;>0. (8.21)
(ij) J=25—M+1

The bond projector P;(ij) projects the bond spin J;; = S; + S; onto the
subspace of magnitude J. Any power of m = 0,1,2,... of S; - S; can be
written in terms of powers of J ?j and expanded as a linear combination of
bond projection operators

28
(S:-S;)™ = Z[%J(J 1) - S(S+1)™PsiG) . (822)
J=0
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FIGURE 8.4. Some valence bond solids.

Conversely, (8.22) can be inverted to express the bond projection operators
as polynomials of S; - S;.

To prove that (8.19) is the ground state of (8.21), we show that

HAKLT |‘I,VBS) — 0, (823)

which holds if |¥V25) has no component with bond spin J(ij) > 25 — M,
for any (ij).

Let us consider the contribution to ) from the term with the max-
imally possible number of a!’s on a particular bond (ij):

|\I,VBS

M
e (@) M (alo] - bla})" (a)= ... (8.24)

By counting the power of a!’s minus b!’s on the bond, we find that the
maximal eigenvalue of J7 in (8.19) is

JZ.. =2S— M. (8.25)

If |¥VBS) had a component with bond spin J > JZ,,, a global rotation
of the full wave function would produce a component with J?' = J. But
|V BS) is invariant under global rotations, and therefore (8.25) would be
contradicted. Thus, Jmez = 25 — M, and we have proven that |¥VB5)
is annihilated by HAKLT  which contains only projection operators with
J > Jimae- Since K in (8.21) are non-negative, the eigenvalues of HAXLT
are non-negative and | ¥V B5) is a ground state. Q.E.D.

An important example is the case of the spin one chain, where § = 1
and M = 1. By (8.22), the explicit form of the Hamiltonian reads

HAKET = Ky Pa(ij)
)
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= KY, [s S+ (s S;)% + ] (8.26)
(ig)
This model adds a biquadratic term to the standard Heisenberg model. We
shall see that the ground state and excitations of this model resemble those
predicted by other approaches for the standard Heisenberg model. In that
respect, one may conclude that the biquadratic perturbation is effectively
“small.”

8.3.1 (CORRELATIONS IN VALENCE BOND SOLIDS

In order to calculate the correlations of the VBS states (8.19), we use the
spin coherent states |{2), defined in (7.18). This basis allows us to express
the VBS correlations as a classical statistical mechanics average.

The overlap of a VBS state with a spin coherent state is

VBS[&  _ a a M (u,a +v;b])%5
RS = <0|(];[)(, b [ 10

Vv (25)! H(uivj — vu; )M

(ig)

- N M/2
\/(25)|H( ‘;Q) , (8.27)

(7}

where u(0, ¢),v(0, ¢) were defined in (7.14). The explicit expression for the
VBS wave function in terms of unit vectors is very useful for understanding
its correlations. By (7.26), the spin correlations are given by

(8:-8;) = Z7H(S+1-6;)(S+1)
R ]2 4 R
x / T4 |\1/VBS [Q]| 0;-Q;,  (8.28)
where the normalization denominator is

_ / 1Y |\I/VBS[Q]|2. (8.29)

An explicit calculation of (8.28) on an open one-dimensional lattice is pos-
sible by an iterative procedure.* For a distance of n lattice spacings, the
result is

_ ~1)*(S+1)%exp[—«ln|]] n#0
(So-8n) = {L(S'(S+1) Pl n=0’
K(S) = In (1 + %) : (8.30)

4See Arovas, Auerbach, and Haldane in the bibliography.
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The magnitude of the correlations decays in a purely exponential fashion.
We shall see in subsequent chapters that this behavior is similar to the
prediction of Haldane’s continuum approximation for the Heisenberg anti-
ferromagnet, reviewed in Chapters 12 and 13. This supports our previous
contention that (8.26) is not “far” from the standard Heisenberg model.

For higher dimensions one can understand the correlations by considering
an equivalent classical statistical mechanics system. We define the classical
Boltzmann weight as

(3] o
exp (_T) < |eVES[Q)?, (8.31)
where the effective “temperature” is
1
T — 8.
adivE (8.32)

The classical “energy” is given by expanding near the Néel correlations,
i.e., for small values of (1 + ; - €;),

& = —) In[(1-0:-0y)/2
{i5)

Z [';‘ + %(Qi-ﬁj)+0(1+ﬁi QJ)2:| . (8.33)
(i3

® is a classical Heisenberg-like Hamiltonian with short-range antiferromag-
netic interactions and O(3) rotational symmetry. By the classical version of
Mermin and Wagner’s Theorem 6.2 (see (6.35)), we expect no long-range
order for finite T' (or M) in one and two dimensions. Thus, the VBS states
on one- and two-dimensional lattices have only short-range order, i.e., they
describe “quantum spin liquids.” On the other hand, on three-dimensional
lattices, for large enough M (i.e., low “temperatures”), we expect the clas-
sical Hamiltonian to produce long-range antiferromagnetic order. In that
case, the VBS state describes a rotationally invariant state but with true
antiferromagnetic long-range order.’

X

8.4 Exercises

1. Draw the valence bond states for the linear chain, the square, the honey-
comb, the triangular, and the cubic lattices. What are the allowed values
of S for each lattice?

2. For bipartite lattices, show that the valence bond solids (8.19) satisfy Mar-
shall’s sign criterion (5.13).

5A similar classical analogy trick was used by Laughlin for the fractional
quantum Hall effect; see bibliography.
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3. Prove the identity

2

. 1
m@n:sr&+3@r&f+§. (8.34)

4. The generating functional for correlations in the Schwinger boson mean
field states is given by the functional

Z[j] = (afexp [Z almjimaim] |). (8.35)

im
Prove that
- 4 a|—~1/2
Z[j] = det (1 — die’ ie’ , (8.36)
mm
where
jim,i’m’ = ii’amm’jim- (837)

Hint: Insert resolutions of the identity using boson coherent states (see
Appendiz C) and express Z as a complez Gaussian integral.

5. Consider the one-dimensional mean field state |i) where
i = u (65,441 + 60-1)- (8.38)

Use (8.36) with diagonal sources jim = j, and write the average occupation
equation as

n(w) =Y m;j—f‘” =28. (8.39)

Solve for the function u(S).
6. Using
S§i = %(ni,é — 4 (8.40)
show by differentiating Z(j) with respect to the appropriate source terms

that the on-site mean field fluctuations are given by

(aV25|(55)*)a" 59)
(ﬁVBSlﬁVBS)

= 38(S+1). (8.41)

Using rotational invariance, relate the result to (S2). What is the error due
to the neglect of the local constraints?

7. Using Z(j) of (8.36), calculate the mean field correlation function of the
one-dimensional valence bond state:

(M 1A

(ﬁVBS |ﬁVBS) 4 (842)

and compare your result to the exact VBS correlations in (8.30).
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From Ground States to
Excitations

The focus of previous chapters has been primarily on the ground states
of the Heisenberg model. Knowledge of the exact ground state—or in lack
of one, of a good variational state—enables us to calculate the equal time
spin correlations at T' = 0. Experiments, however, can measure dynam-
ical responses at finite frequencies and at finite temperatures. It is clear
from linear response theory (see Appendix B) that dynamical correlations
depend on the ezcited states and energies.

In this chapter, we shall use the ground state correlations to construct
certain approximate low-lying excitations. This approach is called the single
mode approzimation (SMA).!

The Heisenberg antiferromagnet provides an opportunity to demonstrate
the SMA for a system with a highly correlated ground state.

The information about spin excitations and correlations is embodied in
the dynamical structure factor (B.15):

S(qw) = N—l/oo dt et Zeiq(X.‘—Xj)<Siz(t)S;(0))

—o0 ij

2
= 77 ¢ 5T (alSIB)(BIS gle) 6w+ Ea— Ep) .

aj
(9.1)
The equal-time correlation function is
too g,
s@ = [ 5 S@w
= N7 (S§S%q), (9.2)

which depends only on the ground state wave function. Another useful
function is the “double-commutator” correlation function, previously en-
countered in the proof of Mermin and Wagner’s theorem (see (6.22)):

Fla) = N7 ([ 55]])

!The SMA was originally used by Bijl and Feynman to determine the phonon-
roton dispersion curve in superfluid *He.
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+o0 g4,
= /_oo o S(q,w). 9.3)
(The different choice of spin direction here and in (6.22) is unimportant
for a rotationally invariant Hamiltonian.) Although F(q) is a static ground
state expectation value, it contains dynamical information through H.

Equations (9.2) and (9.3) show that S(q) and F(q) describe the average
and the first frequency moment of S(q,w), respectively. Thus, a character-
istic frequency for spin excitations at momentum q is defined as

C)

oq = Sa)’ (9.4)

9.1 The Single Mode Approximation

We denote the ground state by |0). By translational invariance, all excita-
tions can be labelled by the lattice momentum q. A “single mode” state is
constructed by

la) = 5gl0). (9.5)
The single mode state approximates a true excitation of the system if
S(q,w) at T = 0, is sharply peaked about w = &@q, i.e.,

S(q,w) = 27S(q)é(w — @q) - (9.6)
By the second line in (9.1), (9.6) will be precise if

(H - Eo)lq) =d&q|a)- (9.7)

In general, even if (9.7) holds exactly, the single mode states are only
a small subset of all excitations—those connected to the ground state via
S&. The number of single mode states increases with the size of the sys-
tem. If their products are also approximate excitations, they can be con-
sidered as weakly interacting elementary ezcitations. Thus, their energies
approximately determine the low-frequency response and low-temperature
thermodynamics of the model.

In Section 6.3, we saw that a gap A between the ground state, and the
lowest excited state which does not vanish in the thermodynamic limit,
implies absence of long-range order at T = 0. In this case, the structure
factor, by (9.1), vanishes below the gap frequency:

S(q,w) =0, w € (0,4), (9.8)

and by (9.2) - (9.4), the single-mode energy wq is an upper bound on the
lowest excitation energy at momentum q:

min, F,(q) < &q- (9.9)
q
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Unfortunately, even if there is a gap ASM4 in the single-mode spectrum
ASMA < 3q, Ve (9.10)

This does not imply a true gap for the exact eigenenergies E,.

9.2 Goldstone Modes

Inequality (9.9) cannot prove the existence of a gap, but it can prove gap-
lessness. Here we shall use it to prove the lattice version of Goldstone’s
theorem for the Heisenberg model. The essence of Goldstone’s theorem is
that for a Hamiltonian with short-range interactions (and no gauge fields)
spontaneously broken continuous symmetry implies the existence of low-
energy excitations called Goldstone modes. If the ground state has momen-
tum q, the energy of the Goldstone mode vanishes as q — @. For example,
q = 0 for the ferromagnet, and § = 7 for the Néel antiferromagnet in
the cubic lattice. In relativistic field theories, Goldstone modes represent
massless particles. In condensed matter physics, Goldstone modes appear
in many systems: e.g., acoustic phonons in solids that break translational
symmetry, spin waves in O(n) Heisenberg models, n > 1, where n is the
dimension of the spins.

The proof of the Goldstone theorem is given in detail by Lange (see
bibliography). Here we shall present a shorter version,? which makes use of
the SMA bound (9.9).

We consider the short-range Heisenberg Hamiltonian which satisfies the
conditions for the Mermin and Wagner theorem (see Section 6.2):

1
H =3 Eij:J,-jsi '8, (9.11)
where 1
;o N T
J = W E“J |J1]| |x, x]| < 00. (912)

Goldstone’s Theorem 9.1 If the spin correlation diverges at some wave
vector q:
lim S(@) — oo, 9.13
am (9.13)

then there exists a Goldstone mode labelled by the momentum q, whose
energy E(q) vanishes at q:

lim FE =0. 9.14
Jim_ B(q) (9.14)

2The author thanks Daniel Arovas for this proof.
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We use the bound on F(q) given by (6.26) for h = 0:
F(q) <25(S+1)J |ql%, (9.15)
and using (9.4) and (9.15) we find that

__25(S+1)J |q)?
wg < 5@ (9.16)

Thus, by (9.9) and (9.13), Eq. (9.14) is proven. Q.E.D.

Corollary 9.2 If the ground state has broken symmetry, there exist Gold-
stone modes as in Theorem 9.2.

This follows directly from (6.6), which shows that broken symmetry imples
true long-range order and the divergence of S(q) as N' — oo. Q.E.D.

It is important to note that the converse of Goldstone’s theorem is false,
i.e., existence of gapless excitations does not imply true long-range order.
Notable counterexamples are the Fermi gas which has gapless particle-
hole excitations but no long-range order.® Also, the S = 1 Heisenberg
antiferromagnet in one dimension has gapless excitations which vanish at
qg=0,m:

wq  |sing| . (9.17)

However, its correlations decay algebraically at long distances.

9.3 The Haldane Gap and the SMA

In Section 8.3, the ground states of the AKLT models have been shown to
be valence bond solids. The one-dimensional model for § =1 is

1 2
AKLT _ 0S4 =(S;-S.)2 4+ 2
H _KZ [s, S;+3(8:-8;)" + 3]. (9.18)
(ij)
The correlation function for the S = 1 VBS states was given in (8.30).
Taking its Fourier transform, we obtain

_ 2(1 —cosq)

Sla) = (5+3cosq)

(9.19)

F(q) can also be evaluated for the valence bond wave function. The result*

F(q) = %’TK@ — cosq). (9.20)

3Fermi liquids (when they exist) are also gapless, with no broken symmetry.
4See Arovas, Auerbach, and Haldane, bibliography of Chapter 8.
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By (9.4), we find that the single-mode energies are

@q = %(5 +3cosq) > 0.370K. (9.21)

As discussed earlier, although the single-mode spectrum has a gap of mag-
nitude 0.370K, this does not imply that a gap actually exists in the exact
spectrum. However, numerical simulations for the AKLT model of S =1
support the existence of a gap of magnitude A = 0.350K.%> The same sim-
ulation for the standard Heisenberg model is found to possess a gap of size
A = 0.325K. Since the AKLT model has a gap in the SMA spectrum, it
suggests that the additional biquadratic terms £(S; - S;)? do not drasti-
cally alter the ground state correlations and low excitations of the S =1
Heisenberg model in one dimension.5

The gap, which is commonly called Haldane’s gap, survives in the ther-
modynamic limit (N — 00). It is a general feature of integer spin quantum
antiferromagnets in low dimensions, which is explained by the continuum
theory of Haldane in Chapters 12 and 15.
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10
The Spin Path Integral

It is always hard to define what is meant by “understanding” a particular
system. Even an exact analytical form for the ground state wave function
and energy may not ezplain their physical properties. For instance, the
Bethe ansatz wave functions for the S = % Heisenberg model require a
numerical computation of their correlations. Understanding a particular
model sometimes means having a simple approximation to its properties.
An approximation, though imprecise or perhaps plagued with mathemati-
cal ambiguities, can be more illuminating than the exact solution. In par-
ticular, an approximation can unify a family of models and treat an open
neighborhood of an exactly soluble point in parameter space.

Path integrals provide formal expressions which lead to useful approxi-
mation schemes. Usually, they cannot be evaluated in closed analytic form.!
Nevertheless, in spite of their shortcomings, they are valuable tools in the-
oretical physics. By providing compact expressions and notations, path in-
tegrals are often used to generate asymptotic expansions and to formulate
mean field theories.

The spin coherent states path integral describes quantum spins in terms
of time-dependent histories of unit vectors. This picture is highly intuitive
since it connects the classical description and quantum phenomena. As
such, it is a natural starting point for semiclassical approximations, which
will be described in Chapters 11, 12, and 19.

10.1 Construction of the Path Integral

Spin coherent states can be used to construct a path integral representation
of the Heisenberg model. The generating functional in the imaginary time

formulation is?
s
zlj] = TT, (exp l— /0 drH(r)D

'In the words of A.M. Polyakov: “There are no tables for path integrals.”
2See (B.17) in Appendix B.



102 10. The Spin Path Integral

N.—1
= lim TT, J] 1 - eH(r)], (10.1)
n=0

N.—o00

where 3 is the inverse temperature, T, is the time ordering operator, € =
B/N, is the timestep, and 7, = ne is the discrete imaginary time. The
generating Hamiltonian includes source currents

H(r) =H — Z j&(r)SsE, r€l0,8). (10.2)

The basic ingredient in the construction of the path integral is the res-
olution of the identity provided by (7.25). Using (7.27), and inserting N,
resolutions of the identity between the factors in (10.1) we obtain the mul-
tidimensional integral

B
Z[j] = lim Hds‘),-f [T©@@)Ir - €) [1 - eH(7))] (10.3)

N.—o00
T=¢€

where ) = (Q Lo N), and the “classical Hamiltonian” is defined as

QNHDIA(T —e)

H(r)= = =
™) (Qn)[Q(T —€))

(10.4)
We define X X
Q(B) = Q(0) (10.5)

and note that the measure includes only one integration for both times.

A priori, () is an arbitrary discrete function of 7. In the following, we
shall do a blatantly illegal manipulation. We shall treat it as a continuous
and differentiable function in the limit of N, — oo by substituting its
differences by derivatives:

= Qu(r) +O(e). (10.6)

Qu(r+e) — Qi(‘r)

The implicit assulpption in (10.6) is that Z is dominated by paths that

are smooth, i.e., || < co. This turns out to be unjustified.? By ignoring
discontinuous paths, we lose information about ordering of operators in
the quantum Hamiltonian. Nonetheless, we shall proceed to manipulate
the “time derivatives” using the rules of differentiable functions. We must
keep in mind that we are on shaky mathematical grounds. For that reason,
path integral results should be checked whenever possible against operator
methods which do not suffer from ordering ambiguities.

3See Klauder, and Chapter 31 in Shulman’s book.
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Using (7.19), we write and expand the overlap between coherent states
at nearby timesteps to leading order in € as follows:

(Qr+olr) = exp (—iSGZ# cos[f;()] + Xi) ,  (10.7)

where x(7) is an arbitrary gauge convention. The classical Hamiltonian
(10.4) multiplies €, and can be evaluated at equal times:

HIQ(T)] = (QUn)[H(T)I(r)). (10.8)

The limit N, — oo will transform (10.3) into a path integral. The path
integration measure is defined as

D) = Jim_ [T du(m). (10.9)

By exponentiating the Hamiltonian, and discarding higher-order terms in
¢, we take the formal continuum limit of (10.3) and write

2lil = §Dr) exp (-S100)
- P
S0 = —is Y wlul + /0 dr H[O()] . (10.10)

The notation f reflects the periodic boundary condition (10.5). For the
gauge convention x;(r) = 0, the functional w depends on the history of a
single spin as follows:

B
wiQ] = —/ dr ¢cosb

]

= —/%dqb cos(fy) - (10.11)

0

We see that w is geometric: it depends on the trajectory of {3;(r) on the
sphere and not on its explicit time dependence. The functional Sw is also
called the Berry phase of the spin history, since it describes the phase
acquired by a spin that aligns with an adiabatically rotating external mag-
netic field* which is parallel to (7).

Now we shall see that the Berry phase measures the area enclosed by
the path Q(‘r) on the unit sphere. A path increment dS} is connected to the
north pole (as shown in Fig. 10.1) by the longitudes ¢ and ¢ + d¢. This
area increment is a triangle on the sphere whose area is given by

dw’' = (1 - cosf)d¢. (10.12)
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FIGURE 10.1. A spin history as an orbit on the unit sphere.

Thus, the area enclosed by the closed orbit parametrized by 8(r),¢(r) is
given by

W o= /Bd‘rq'b[l — cosO(1)]. (10.13)
0

w’A is therefore the area enclosed on the left of the counterclockwise orbit
{Q(7)}5. The identity
W =w (10.14)

holds if ¢(8) does not cross the “date line” boundary +m, as required by
the convention (7.17).5

It is useful to express the Berry phase w in a gauge invariant form, that
is to say without specifying any parametrization of the sphere such as 6§, ¢.
We introduce a vector potential A({2) which satisfies

w = / ir A (10.15)
0

A(Q) is a unit magnetic monopole vector potential whose line integral over
the orbit {€2(7)} is equal to the solid angle w subtended by that orbit. By
Stokes theorem, A satisfies

afy 04P

VxA-Q =¢ —0 =1, (10.16)
e

“See the Exercises, and Shapere and Wilczek.
5See Exercise 2 for a clarification of the difference between w and w'.
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where €227 is the fully antisymmetric tensor, a, 8,7 € {z,y, z}, and sum-
mation over repeated indices is assumed. Two standard choices for A are

cosf ,
A* = _— 1
sin0¢ ’ (10.17)
1—cosf -
A = ———
sin ¢
7 x Q
= =X (10.18)
2-Q+1
The gauge A’ differs from A® by the location of its singularities. A® is
singular at the north and south poles. The domain of ¢ is [, 7), and thus
paths that cross the “date line” at ¢ = +x are not allowed. On the other
hand, A® has only one singularity at the south pole Q = —2. This is where
the “Dirac string,” which carries the magnetic monopole’s flux, enters the
sphere. For an infinitesimal orbit around the south pole, the value of Sw
is equal to 4wS. Since S is an integer multiple of half, exp[—iSw] is a
continuous functional of the orbit even as it crosses the singularity of the

gauge field at the south pole.

10.1.1 THE GREEN’S FUNCTION

The Green’s function G(t) describes real-time evolution at zero tempera-
ture. It is given by the matrix element of the evolution operator between
two coherent states:

C(Qo, Qit) = (Qu|To (exp [—i /0 tdt”H(t’)]) 190, (10.19)

where Ty is the real-time ordering operator (see B.3). G(¢) can be repre-
sented by a path integral in close analogy to the path integral of Z. In the
derivations of (10.1)-(10.10), one replaces the imaginary time variable T by
real time t,

r — gt
t e [o,¢], (10.20)

and the interval [0, ¢] is discretized into N timesteps of width e. After in-
serting resolutions of the identity between factors of (1 — ieH), and taking
the continuum limit N, — oo (which introduces the aforementioned math-
ematical ambiguities due to the time derivatives), we obtain the formal
expression )
£ .
Git) = | D) exp [iS[Q]] : (10.21)
Qo
where S is the real-time action

S| = /0 t dt’ (SZA-() - H[Q(t’),t']). (10.22)
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10.2 The Large S Expansion

The spin coherent states path integrals, (10.10) and (10.21), are conve-
nient starting points for deriving the semiclassical approximation. The co-
ordinates are unit vectors, i.e., classical spins. The quantum effects enter
through their (real or imaginary) time dependence. We can scale the param-
eters of H [Q] to be independent of S, i.e., use the corresponding classical
Hamiltonian H<[{Q2]°. Thus, by sending S — oo, all time-dependent paths

with 0 # 0 are suppressed by the rapid oscillations of the Berry phase
factor. Thus, the classical partition function is recovered:

Jim Z[j] ~ 2z / DA exp [—ﬂHC‘[Q]], (10.23)

where Z’ includes normalization factors and higher-order quantum correc-
tions. The integral on the right-hand side is the generating functional for
the classical Hamiltonian.

It is also possible to use S as the control parameter for a systematic
asymptotic expansion of the Green’s function. This semiclassical expansion
introduces the quantum corrections to the classical theory. The first step
is to rescale the time variable

T — St=7,

B — SB=p. (10.24)

The classical inverse temperature 3 is taken to be independent of S. This
allows us to scale S out of the action

2() = § ) exp (-5 5 [047), ).
st = /0 Bd‘? (zZAQ + HCI[Q('F)]). (10.25)

Now we can apply the method of steepest descents to Z (see AppendiJE E),
using S as the large parameter. We obtain a sum over saddle points 2>
(see E.14):

Z ~Y exp (—S Setfebe, B]) z', (10.26)
where the saddle point equations are
cl
) ~0. (10.27)
69 ﬁzﬁcl,a

5See, for example, (6.35) and (6.36).
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The prefactors Z/, contain subdominant corrections in powers of S~!. These
can be evaluated by expanding the fluctuation integrals

- }f Dé Qexp [—S (S°‘ 6] — s¢ [ch,a])] : (10.28)
where 6§ = Q — Qche.

10.2.1 SEMICLASSICAL DYNAMICS

The large S expansion of the Green’s function requires us to scale
t— St =1, (10.29)

which yields

Git) = (:i'DQ(t_') exp (iS S [Q]) ,
s = /0 dr (Z:A-Q - HC‘[Q(F)]). (10.30)

G(t) is dominated by time-dependent paths {2, (¢'), which extremize the
action. Henceforth we shall replace £ — t. The method of steepest descents
yields a sum over saddle points (see E.14):

G~ exp (iS sie,1) G, (10.31)

where Q¢ (t') are determined by the saddle point equations

=0, (10.32)

69 Qelia
which are subject to the boundary conditions

Qd’a(O) = Qo,
Qb = Q. (10.33)

The variation of the Berry phase part of the action is given by

t .
dt'6 (A -
[ as(a-9)
/ dt’ [aA 5084 + Al ma]
0 ons

a:p a.B
+ [BA Q 60~ — 04 Q 69"‘]

swl[€)]

o0 o0
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,0A® A A d A
— P el _ .
/0 dt 5@ x 60), / dt'— (A-60)
- / dt' Q- () x &). (10.34)
0
The integral over the total derivative vanishes since the endpoints are fixed
by (10.33). In (10.34), we have also used (10.16) and the constant length
of €2, which yields
0.0 = 0.0 =0,
QxsQ | Q. (10.35)

Applying (10.34) to (10.32) yields the classical Fuler-Lagrange equations
of motion

. Ael
et x go = 2HEN
20
S A%y = ey x 28 (10.36)
aQi(tl) Qe

Equations (10.36) describe a system of classical rotators in the “fast top”
limit, i.e., when the rotators’ internal rotational energy is much larger than
the typical inter-rotator interaction energy. The right-hand side of the sec-
ond row is the torque applied to rotator €2;, which changes its direction but
not its magnitude.”

Using (10.36) we can verify that the Hamiltonian is a constant of motion
on the classical path

d ride g OH Lo (4
I )] z,.:aa,.(tf) Q' ()

~ OH [oa,n . OH
R lﬂ (t)x aﬁ,-(t')]
_— (10.37)

which ensures conservation of energy H[Q%(t)] = H[{}] along the classical
trajectory.

At this point, we encounter a problem: the equations of motion (10.36)
are first order in time, but the solution must satisfy two boundary con-
ditions (10.33) at ¢ = 0 and t' = t. This is impossible for almost all
boundary conditions (e.g., when H[] # H[{]). Klauder has suggested
a way to overcome this problem by including second-order transient terms

7See Goldstein’s book for the classical mechanics of rotators.
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of order ¢ in the classical equations of motion. This allows one to solve a
second-order equation, with the fixed boundary conditions, calculate the
classical action and at the end, take the limit ¢ — 0.

10.2.2 SEMICLASSICAL SPECTRUM

The energy dependent Green’s function is defined as
GO0, E) =i / dt G(Qo, Qu; ) E+HOIE, (10.38)
0

The spectral function I'(E) is given by

(E) = / d% G(,Q; E)
_ _ (10.39)
- & E—E,+i0+ ’

The poles of I'(E) are the eigenenergies {E,} of the Hamiltonian.

Here we derive in a very sketchy manner the leading-order semiclassical
approximation for E, using classical periodic orbits. The original derivation
of the semiclassical spectrum using the path integral was by Gutzwiller, and
his formula is widely used in quantizing Hamiltonians with chaotic classical
dynamics.®

The path integral representation of I'(E) has the additional d{)y and
dt integrations. The semiclassical approximation to I'(E) was derived by
Gutzwiller. The classical paths have duration tZ, which is determined by
the saddle point approximation for the dt integral

S
ot

+E =0. (10.40)

t=tE
Since the Berry phase term w is geometric it does not depend on tZ. Thus,
H[QY =E, (10.41)
and

SU(tE) + EtF = Zw[ﬁi]' (10.42)

Consider a periodic orbit Q of energy E which is traversed once. As seen
in the exercises, the sa.ddle point equation for the trace over §)y implies

that Q(O) = Q(tE ). Therefore, I' is given by summing over all repetitions

8An area of research called “Quantum Chaos”; see bibliography.



110 10. The Spin Path Integral

of Q,-E’a:

r ~ Z Z exp (inS Zw[ﬂf’a])

— P (iSZi w[ﬂf’a]) . (10.43)
o 1—exp (iS le[ﬂf“])

We compare (10.39) and (10.43). The semiclassical spectrum can be ob-
tained from the poles of (10.43), E,, which are determined by the Bohr-
Sommerfeld quantization condition

> W[ =2nr/S = EZ. (10.44)

We use the theorem that two functions are the same, upto a constant, if
they share the same poles and residues. Thus, for energies E5° that are of
order one (i.e., n = O(S)), (10.44) approximates the quantum spectrum by

E, =E* +0(1/S). (10.45)

10.3 Exercises

1. The gauge convention for the Euler angle x = 0 in the definition (7.15) of
the coherent states leads to the expression (10.11) for the Berry phase. For
the choice of x = —¢, show that w is now given by (10.13).

2. (Patrick Lee’s query): The angle ¢ is defined in (7.17) to be in the half
closed interval [—m, 7). Show that if the orbit {(t) is allowed to cross the
“date line” ¢ = —m, the two expressions for w, (10.11) and (10.13) differ
by 2n. This corresponds to an overall factor of exp(27S) = —1 for half-odd
integer S. To resolve this difficulty, calculate the line integral of (10.11)
which surrounds the date line as follows: At longitude ¢ = —7 + ¢ it goes
from @ to the north pole, surrounds the north pole, and comes down to 6
on the other side of the date line at ¢ = —w — €.

3. Consider a slowly varying magnetic interaction
H[(r),7] = —h(r)Q(r)-8, (10.46)

where 7 € [0, 3] parametrizes the field’s trajectory. Assuming that k(r)>0
for all 7, we define the nondegenerate adiabatic ground state as Wo(T).
Show that Berry’s phase, as defined by

e
Sw = lim / dTIm(Ed;_-\I/o(T)l\I/O(T», (10.47)
0

dh/dr—0

is equal to the expression (10.11).
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Spin Wave Theory

In Chapter 10, we constructed the spin path integral and demonstrated
that its large-S limit recovers the thermodynamics and dynamics of clas-
sical spins. Here we shall specialize to the quantum Heisenberg model and
derive the low-order (harmonic) spin wave theory. This approach allows a
physically appealing treatment of the long-range ordered phases, since the
quantum effects enter as (real or imaginary) time dependent fluctuations
about the classical ground state. The spin wave modes and dispersions
are obtained from the linearized classical equations of motion. To lowest
order in 1/S, spin waves are independent harmonic oscillators which can
be quantized semiclassically. A great advantage of this approach is that it
can be followed for any frustrated Heisenberg model with a complicated
ground state. We shall later specialize to the simpler ferromagnetic and
antiferromagnetic cases.

The path integral, however, suffers from the ambiguity in operator or-
dering due to the continuous definition of the time derivative in the kinetic
term (10.6). We shall rederive spin wave theory using Holstein-Primakoff
bosons, previously introduced in Section 11.2. This will settle the ambiguity
in the quantum correction to the ground state energy.

11.1 Spin Waves: Path Integral Approach
We consider the quantum Heisenberg Hamiltonian

1
H =3 XJ: JijSi - S;. (11.1)

Using (7.34) (in Exercise 2), the expectation value of H in the coherent
state |2) is

~ ~ ~ S2 ~ ~
HIO] = @QHIQ) =23 i Q. (11.2)
i’j

The classical ground states of H depend on the details of the coupling
constants J;;. By the O(3) symmetry of the model, global spin rotations
generate a continuous manifold of degenerate ground states. Certain models
have additional ground state degeneracies due to frustration. Frustration
occurs when no configuration can minimize all individual bond interactions
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FIGURE 11.1. Parametrization of spin fluctuations about .

simultaneously. Degeneracies that are not related to symmetries of H are
usually lifted by thermal and quantum fluctuations.! Here we shall not
discuss frustrated cases.

The basic assumption of spin wave theory is that we can choose a member
of the classical ground state manifold ¢, and expand the partition function
and Green’s function about it in a saddle point expansion, controlled by
the size of the spin S as explained in Section 10.2.

We choose the two transverse unit vectors at each site $i, 6;, which de-
scribe the azimuthal and longitudinal directions at ¢!, as shown in Fig.
11.1:

é: x 6; =Q¢. (11.3)

The spin fluctuations 6 = — Q< are parametrized by two sets of vari-
ables given by the projections

q={a:}
p={p:}

We assume that the path integral is dominated by small fluctuations, i.e.,
|6t| << 1. Thus, we replace its measure by the phase-space measure

{6(), : q;t}le ’
{568 - 6;}Y. (11.4)

(11.5)

25 + 1\ NN
47 S

DéQ — vDq Dp, 1/=(

N, is the number of timesteps, and thus v is an infinite (but uninteresting)
normalization constant. The domain of integration for the p’s and ¢’s may

!This has been called in the literature “order due to disorder”; see
bibliography.
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be extended to f_°°°o, and we obtain a phase-space path integral.?

) . i
G x e"sl"“’l/Dq Dp exp [g/ dt' (q,p)L® (g)] [1+0(p,a)°],
0

(11.6)
where £(? is the spin wave Lagrangian matrix, expanded about a fixed
ground state configuration Q<. The cubic and higher-order fluctuations
introduce corrections which are higher order in S~!. Since G%Qd =0, the
lowest-order contribution to the Berry phase is

t "
sZw,- SZ/Odt’ (ch-mxm)

1 [t L
- ;[ @-a-b-a, (11.7)
0

Q

where we have used (10.34). The kinetic term (11.7) implies that q and p
play the role of coordinates and canonical momenta, respectively.

The second-order expansion of the Hamiltonian yields the spin wave
Hamiltonian matrix

H — H[QY

Q

1
= @ (4

(}ﬁ‘; MP_I) . (11.8)

H® is a dynamical matrix of coupled harmonic oscillators, where K and
M are the mass and force constant matrices, respectively,

H®

0*H
dqdq

K =

k4

O’H

M =
dpdp

(11.9)

q=p=0

P couples coordinates and momenta,
_ 0*H
~ dpdq

(11.10)

Combining (11.7) and (11.8), we obtain the small oscillations contribution
to the action

t
s@ ::580+/dt’ (q,p)L@ (g) , (11.11)
0

ZSee Schulman, bibliography of Chapter 10.
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where

K 3 +P
L?® = — (_at . pT (o ) ) (11.12)

The spin wave modes (gy ,,Pk ,) are obtained by solving the classical
equations of motion for small oscillations,

68®@ (p,q) @2 [ 9%« .
=—2d (Pk:a> exp (i, t) =0. (11.13)

If ¢ (and thus L(®) are periodic on the lattice, the spin waves are labelled
by momentum k and band index a. The spin wave frequencies are given
by the characteristic equation

K iw+ P _
det (—iw+PT M1 )wz“)k =0. (11.14)

The harmonic spin waves are noninteracting bosons. Their eigenmodes
and energies allow us to calculate all thermodynamic averages and dynam-
ical response functions. In particular, the spin wave correction to the free
energy is given by

F® = '12: Indet L&)
- inh (“k
= TkZIn sinh (2T) . (11.15)

We can transform the spin wave to Bose coherent states variables (see
Appendix C) as follows:

(20) =m0 %) () (11.16)

The z variables transform the phase-space path integral (11.6) into a Bose
coherent states path integral.®> The measures are related by

DpDq = D%z (11.17)
and the kinetic term is
i

¢ ' . . 1 1o - x
2/0dt(p-q—p-q) =-2-/0dt (z*z — 2*2). (11.18)

Thus, the Green’s function is given by

G =/'D2zexp [Z% /Otdt’ (z*% — 2*2) —H[z*,z]], (11.19)

3See Schulman’s book for the real-time coherent states path integral.
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where the harmonic Bose Hamiltonian is
1 ~ z
* o~ T a* (2)
HEd ~ e 9 (1)

1 _1 1 1 .
1®) = g(K+M™)  3(K-M7")+iP
" (%(K—M-‘)—iP LK + M) , (11.20)

which has both normal (i.e., z*2) and anomalous (2*z* and zz) terms.
Using the transformation from real to imaginary time,

' -  —iT,
t — —iB. (11.21)

The path integral for G in (11.19) is transformed into the partition function
(10.10). The spin wave contribution to the partition function (defined in
(10.23)) is

VAR f"Dzz‘,, exp{—ﬂz [iw,,z*z - —;—(z*,z)fl(z) (;)]}
= TJaet|(% ° ) -g@ -
- U o —iw,

wn, = 2nm/B. (11.22)

wn are Bose Matsubara frequencies, and )"  is a discrete Matsubara sum
defined in Appendix D, Section D.3.

Working backwards from the coherent state Hamiltonian (11.20) to a
second quantized Bose Hamiltonian, we obtain

1 K +MY S(K—M1)+iP\ (b
@ — 2 2 0
R =30L0 H (%(K—M‘l) —ip  Mk+MYy )\t ) TP

(11.23)
which contains both normal and anomalous terms. Ej is an unknown con-
stant. The action (11.22) contains no information about the correct way to
order the operators b and b in H(?, hence the ambiguity in the constant
E}. In the next section we shall resolve this ambiguity by using Holstein
and Primakoff bosons.

Equations (11.13) or (11.23) are of general use. They determine the spin
wave modes of any Heisenberg model once 1 has been specified. In the
following, we restrict ourselves to the simplest models of Heisenberg fer-
romagnets and antiferromagnets on cubic lattices in one, two, and three
dimensions:

H

|82 -y

(i5)
= J§? Z [cos 0; cos 0; + sinf; sin 6; cos(¢; — ¢;)], (11.24)
(#)
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where (i) denotes a nearest neighbor bond on the cubic lattice. The spin
wave expansions of these Hamiltonians are particularly simple since their
classical ground states are either uniform ferromagnets or Néel antiferro-
magnets.

11.1.1 THE FERROMAGNET

Assuming that a spin wave expansion of the path integral is valid about
the ordered classical ground state, we can polarize the spins (with a small
magnetic field, or boundary conditions) to point in the & direction, i.e.,

Q¢ = (8%, ¢ = (n/2,0). (11.25)
The fluctuations are parametrized by
G = ¢
pi = Scosb;. (11.26)

We expand the ferromagnetic (—|J|) Hamiltonian (11.24) for small
|cosf| << 1, |di|<<m (11.27)

and obtain to second (harmonic) order

~ Nz 2, 1 2 (Pi—PJ')2 2
H ~ -==|J|$*+51JIS ;[T +(@—g)°| +..., (11.28)
ij

where A is the number of sites and z = 2d is the coordination number in
d dimensions. By (11.9) and (11.10) we find that P = 0 and that

-1 2
M;; —2|J|Vi;

7 ?
Ki; —z|J|S2V2 (11.29)

YR

where the lattice Laplacian is given by the matrix

V?j =z Z(6i+n,j —8i ;). (11.30)
7

n are the nearest neighbor vectors. The eigenvalues of V? are given by

Vf{ = NI Ze_k'(x‘_xj)V?j

i
= 213 % -1 =y -1, (11.31)
n

which defines the “tight binding” function vy . Using (11.29) with (11.14),
we have

—2|J[S%* (v - 1) Wi _
det ( i ik ) =0 (11.32)
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NN I

(a) (b)

FIGURE 11.2. Ferromagnetic spin waves. (a) Dispersion in d = 1. (b) Polarization
for k =~ 0.

whose zeros are at

wi = 2|J|S(1 = 7). (11.33)
As shown in Exercise 1 and Fig. 11.2, the spin wave is described by a time
dependent precession of all spins about £ with angular frequency Wk-

11.1.2 THE ANTIFERROMAGNET

We assume the path integral can be expanded about the classical Néel
state. Without loss of generality, we choose the Néel state to point in the
& (—&) directions in sublattice A (B):

6, ¢8") = {gﬁﬂr) zég . (11.34)

(Here, it is convenient to define the singularity of vector potential to be
far from both £ and —g, i.e., use the gauge potential (10.18), which has a
singularity only at the south pole.) The small fluctuations are defined by

o ¢,’ i€A
% = ¢;+m t€B’
pi = Scosé;. (11.35)

The second-order expansion of the antiferromagnetic (+|J|) Hamiltonian
(11.24) is
Nz v 1 0o (pi +p5)* 2
H ~ —==|J|8% + 5 |JIS Z [T + (i —g)*| +.... (11.36)
(i)
The mass and force constant matrices are

Mzt = 2J (V5 +26;),
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(a) (b)

FIGURE 11.3. Antiferromagnetic spin waves. (a) Dispersion in d = 1. (b) Polar-
izations of two degenerate modes.

Ki; = =-2J8*V? (11.37)

i
which can be simultaneously diagonalized in Fourier space as

Mt = 2J (14,

Ky = 2J8%(1—-7m) - (11.38)
The spin wave spectrum is found by solving (11.14),
—2|J|8%(n — 1) i
det [ 215" O “k =0, 11.39
(TMESETY it (11.39)

which yields for the cubic lattice the two modes

wg = 2JS/1-m 2 ~ck-k], (11.40)

where k., = 0,7, and # = (m,7,...). The spin wave velocity for a cubic
lattice in d dimensions is

c=VdJS. (11.41)

The antiferromagnetic spin waves are unit vectors which precess about the
classical directions +Z. As worked out in Exercise 2 and depicted in Fig.
11.3, the spins precess in opposite directions on the two sublattices. Unlike
ferromagnetic spin waves (11.33), there are two degenerate antiferromag-
netic spin wave modes whose frequencies vanish at k — 0 and k — 7,
respectively.

11.2 Spin Waves: Holstein—Primakoff Approach

We have seen in the previous section that the low-order spin waves can be
written as noninteracting bosons. For a quantitative quantum theory, the
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correct order of the Bose operators in the Hamiltonian must be determined.
To that end, we use Holstein and Primakoff (HP) bosons to represent the
quantum model. HP bosons we previously defined in (7.1) with respect to
the 2 direction in spin space. Here we shall generalize this definition for
arbitrary classical configuration Q¢! which minimizes H[{2]. Using Q¢! we
can define three basis vectors (e!,e2, 1) at every site such that

el xe? =Q¢. (11.42)

1

The raising and lowering operators in this coordinate frame are
St=8.e' +iS-e’% (11.43)

Similar to (7.1), the spin components (with respect to the triad in (11.42))
can be represented by HP bosons:

st = (V25—m) b,
S~ = b'y25-m,,

S Q4 = —ny+ 8. (11.44)

This representation is exact in the Hilbert subspace of ny < S. However, the
square-root function represents an infinite power series of number operators
multiplied by factors of 1/S. The truncatation of the series to low orders
can be justified if one can show a posteriori that

(npy) << 28, (11.45)

i.e., that the spin fluctuations about the classical directions are small.

Next the spin operators in the Hamiltonian are substituted by expres-
sions (11.42), and terms of the same order in 1/S are combined. Terms up
to quadratic order in the bosons constitute the spin wave Hamiltonian.

11.2.1 THE FERROMAGNET

Without loss of generality, we choose the classical direction in the 2 direc-
tion and substitute the HP operators into the ferromagnetic Hamiltonian

H = _llesi'S_‘h
)

= -SJNz/2 - |J]D le,T\A —n;/25,/1—n;/25 b;

(i3

1
—§S(n,- + n_,-) + -;—ni.nj] . (1146)
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By expanding the square roots using (7.4), and collecting terms up to order
1/89, we obtain

H ~ —S%|J|INz/2+ H,+ Hy + O(1/S),
H = ) weblb,
k
Hy, = |J|/4Z[b,fb}(b,.—bj)2+(b,f—b})2b,.bj], (11.47)
(i3)
where 1
—ik.x;
b, =— e ib, 11.48
and

v =8z [1 -2 3 XK =512 (1 — ), (11.49)

J,<ij>

which agrees with (11.33). H; describes noninteracting spin waves with
dispersion wy . Hz and the higher-order terms describe interactions between
spin waves, which can be treated by perturbation theory or by mean field
approximations. At T = 0, it is clear from (11.47) that the energy is equal
to the classical energy

Ey = -8%|J|Nz/2. (11.50)

This is in agreement with Theorem 5.1 in Chapter 5, which proves that the
ground state of the quantum ferromagnet is the classical ground state.
The long-wavelength limit of the ferromagnetic spin wave dispersion van-
ishes as
wi ~ S|JI|k|* . (11.51)

This is the gapless Goldstone mode, which is a consequence of the broken
symmetry of the ferromagnetic ground state, as shown in Section 9.2. The
Goldstone mode dominates the low-temperature and long-wavelength cor-
relations of the ferromagnet. The lowest-order corrections to the ground
state magnetization at finite temperatures is given by

1
Amo = 2:(Siu) =S

= —(ns) =—ank, (11.52)

where the Bose-Einstein occupation number is (see (A.25))

1

SR (11.53)
kT _1

’nk=
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The asymptotic low-T' behavior of the sum in (11.52) is found by introduc-
ing a small “infrared’ cutoff k. We choose an additional small but finite
momentum k > kg which is well inside the region where (11.51) holds, i.e.,

wip <<T << |J|S. (11.54)

Now we break up the sum in (11.52) into ko < |k| < k and |k| > k and
find that

k d—1
dk k T 1
Amg ~— |~ 5o - N7 _—. 11.
e /ko (2m)¢  JSk? N Z_ explwy /T] -1 (11.55)
k|>k
For T > 0in d = 1,2, the first integral diverges at low kg as

t
amo=o { K E 4Th (11.56)
where t = T/(JS). The second sum in (11.55) is finite, and does not af-
fect the infrared singularity. The most important conclusion emerging from
(11.56) is that the magnetization correction due to fluctuations diverges as
the infrared cutoff ky vanishes in one and two dimensions. Therefore, our
initial assumption that the spin fluctuations ((S? — S)?) are small is found
to be wrong for these cases. Thus, the truncation of the expansion of the HP
operators at low orders is unjustified. The breakdown of spin wave theory
is consistent with Mermin and Wagner’s Theorem 6.2, which does rule out
a finite spontaneous magnetization in d=1,2 at all nonzero temperatures.
In d = 3 there are no infrared divergences. The leading temperature
dependence of M can be calculated by writing the Bose function (11.53)
as a geometric sum and integrating over momenta up to infinity as follows:

_[FakR &

s = - [(EE S explomitl 1+ 0(0)
3/2 oo 3/2
_% (%) ’;n—s/z = _% (%) ¢(3/2), (11.57)

where ¢ is the Riemann zeta function ((s) = ), n™°. Thus, in three di-
mensions the leading temperature correction to the ordered moment is
proportional to —T3/2,

11.2.2 THE ANTIFERROMAGNET

Here we choose the classical Néel state to be in the Z and —2 directions on
sublattices A and B, respectively. We define the rotated spins as S:

j €B,
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5 = -5
5 = s
g = s (11.58)

It is clear that §* obey the same commutation relations as S* and there-
fore can be represented by Holstein-Primakoff bosons. Using the sublattice
rotated representation, the antiferromagnetic Hamiltonian reads

H = —|J|)_ sF-5;
(i)
L + &+ -G-
+513 (S,. St +878; ) . (11.59)
(&)
Using the HP boson representation (11.44) for S on sublattice A and S for
sublattice B, one obtains

H = —SzJNZ/2 +H; +H2 + O(1/8),
- t Tk gt pt
Hy = JSz% [ bl by + (3" ) + bkb_k)] ,
J
=5 3 [ohee} + )%, + ;! + b)?b|.  (11.60)
(i)
‘H, is a quadratic Hamiltonian which includes normal and anomalous terms

(e.g., such as ata’). We can diagonalize H; by a Boguliubov transformation.
Let us define the spin wave operator a) such that

Ha

ax = cosh 0kak — sinh 0kaf_k ,
a) = coshfyay +sinh 0kat_k. (11.61)

The parameters 6 are real, and even in k — —k. Equation (11.61) is a
canonical transformation since

[ak, 0‘{(,] = byk»
[og, o] = [a{(,a{(l] =0. (11.62)
In terms of spin wave operators, H; is given by
H, = |J|S= Z [(cosh 20y + v sinh 20k)a{(ak
k

1 .
+5 (sinh 20y + vy cosh 26y ) (a{(af_k + aka_k)

+sinh?® 6y + 7—;‘ sinh 26 ] : (11.63)
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Now, we choose ) so that the anomalous terms atat and aa vanish. This
amounts to the condition

tanh 26y = -, (11.64)

which yields

1 JSzN
R S
k

1J1Sz2y/1 — m2, (11.65)

which agrees with (11.40). By (11.65) we see that unlike the case of the
ferromagnet (11.50), H; contains a quantum zero-point energy of size

E, =Eo- (—§N|J|S2) = %Z 17|S2 (,/1 - 1) . (11.66)
K

Note that Ej is negative, i.e., quantum fluctuations reduce the energy of
the antiferromagnet. We can understand this phenomenon by considering
the simplest case of two sites. While the classical ground state energy is
—JS?, the quantum energy is considerably lower: —JS(S + 1).

The ground state of the quantum antiferromagnet is the vaccuum of the
a bosons. The Boguliubov transformation introduces arbitrary numbers
of HP bosons in the ground state. In the spin language, the ground state
admixes configurations with arbitrary numbers of spin-flips relative to the
Néel state. This reduces the long-range Néel order at T' = 0.

Near k = 0, and near k = 7 = (m, w, ...), the spin wave spectrum vanishes

as
o ~ {JS\/E K| k| ~ 0 (11.67)

“Yk

JSV2z |k - (m,7,...)| k= (mm,..)"

The order parameter is the staggered magnetization. Its low-order correc-
tions are given by H; as follows:

Amg = %(Z FFXigH _ g

= (e

1
= 4= —

1 1 1
- = (g +35) ——- (11.68)
2 N ” 2" T—y?
As in the case of the ferromagnet, the truncation of the HP expansion to
quadratic order is justified only when Amg << S.
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The leading infrared singularities in Am§ at low temperatures is evalu-
ated by expanding the Bose function near wy =~ 0. Using ko to cut off the
momentum sum near k ~ 0 and k =~ #, we obtain

% d=1
Amg ~<{ —cg+tlogky d=2, (11.69)
—c3 +C§t2 d=3
where
1 1
Cq = — — -1, d=2,3,
2N¥ V1I- 7?2
&y = 67522

T
JISva (11.70)

As in the case of the ferromagnet, the truncation of the HP expansion is
justified only when we have true long-range order and Am§ << §. We note
that the staggered magnetization correction actually diverges as kg — 0 in
one dimension. This signals the failure of spin wave theory and no long-
range order in the ground state. Later, we shall see that the absence of
long-range order in the ground state of the d-dimensional quantum model
is related to the Mermin and Wagner theorem for the classical Heisenberg
model in d + 1 dimensions at finite temperatures.

We also note that by (11.69), the existence of long-range order in the
ground state for d = 2,3 depends on the relative sizes of ¢ and S. d=3
is the lowest dimension where long range spin order can possibly exist at
finite temperatures.

11.3 Exercises

1. Use (11.13) for the ferromagnetic spin wave modes, and show that the
directions of the precessing spins at k = 0 are given by Fig. 11.2.

2. Repeat the previous Exercise for the two spin wave modes at k = 0 and
k = 7 of the one-dimensional antiferromagnet, and compare them to Fig.
11.3.

3. The Néel vector for a nearest neighbor bond is defined as
A = %(Q,- — Q). (11.71)

Show that n approximately executes periodic planar oscillations. Find the
planes of polarizations of fi for k =0 and k = 7.

4. Consider the ferrimagnet on a cubic lattice in which the spins on sublattice
A, of size S4, couple antiferromagnetically to their neighbors on sublattice
B, which have size Sp. Following subsection 11.1.2, use spin wave theory
to compute the dispersions of the elementary excitations.
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5. The ground state of the antiferromagnetic spin wave Hamiltonian H,; (see
(11.60)) must obey
oK ¥y = 0, v k. (11.72)

Using the definition of o in (11.61), prove that

Wo

1
vexp | Zukbir(bf_k [0) ,
k

u = tanhf) . (11.73)

Find the normalization constant v. Note: ¥q in (11.73) is not a pure spin
state since it has contributions from nonphysical states with ny > 28.
Proper variational spin states can be defined by replacing the HP bosons
by spin raising and lowering operators.

6. Evaluate the asymptotic decay of u;; for large |x; — x;|,

uy; = _)\if Zuk exp [—ik - (xi — x;)] , (11.74)
k

where u). is defined in (11.73). Hint: use dimensional analysis to scale
powers of |X: — X;| out of the integral.

7. Expand the isotropic spin correlation function
S(q) =N '(Sq-S_q) (11.75)

up to the four bosons terms using the HP representation for the ferromag-
net. Use pairwise contractions to write S(q) at finite temperatures as a
single momentum sum.
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The Continuum
Approximation

In Chapter 11, we derived spin wave theory in a semiclassical expansion of
the spin path integral. Spin wave theory, however, is not applicable to the
disordered (or “rotationally symmetric”) phases of the Heisenberg model
since it assumes that the O(3) symmetry is spontaneously broken. Accord-
ing to Mermin and Wagner’s Theorem 6.2, there can be no spontaneously
broken symmetry at T' > 0 in one and two dimensions. Moreover, we know
that for the Heisenberg antiferromagnet in one dimension, we do not expect
long-range spin order even at T' = 0.

The first question that comes to mind is: can one use the semiclassical
approximation in the absence of spontaneously broken symmetry? In this
chapter, we shall see that the answer is yes. A short-range classical Hamilto-
nian is sensitive mostly to short-range correlations. Thus, for the Heisenberg
antiferromagnet, the important configurations in the semiclassical (large S)
limit (i.e., “semiclassical configurations”) have at least short-range antifer-
romagnetic order. At longer length scales the semiclassical configurations
can deviate largely from the Néel state. Thus, we should not break the
rotational symmetry of the path integral a priori, as we have done in the
spin wave expansion. Instead, we shall eliminate the short length scale
fluctuations and keep the full rotational symmetry of the long-wavelength
semiclassical modes.

We consider the imaginary time path integral (10.10):

21l = [ D) exp (-3181) |
. . B
S0 = —isS wit] + / dr H(r), (12.1)
7 0
and specialize in the Heisenberg antiferromagnet
H[Q] = %S2ZJ,-J-Q,-.QJ-. (12.2)
j

We shall consider here cubic lattices of dimension d with lattice constant
a, number of sites A/, and even number of sites in each dimension. We use
units where h = Kp =1. The interactions J;; have the full lattice symmetry,
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and give rise to a Néel ground state for the classical Hamiltonian H[)]. We
also assume that Jj; are short range such that

1
% Z |J,-_,-||x_,- - x,-|2 < 00. (12.3)
J

12.1 Haldane’s Mapping

Haldane has mapped the effective long-wavelength action of the quantum
Heisenberg antiferromagnet in d dimensions into the nonlinear sigma model
(NLSM) in d + 1 dimensions. The NLSM is a field theory that has been
extensively studied in statistical mechanics and particle physics, and we
shall discuss it in following chapters.

The essence of Haldane’s mapping is the separation between short and
long length scale fluctuations. This separation is made possible by a suitable
choice of coordinates. The first step is to define two continuous vector fields
N and L, which parametrize the spins as follows:

L(x;)
S

2 + L(x,-)’

U = ma(x)4/1—
w1~ >

(12.4)

where 7; = ¢*+® has opposite signs on the two sublattices, and 0 is the
unimodular Néel field,

|fax;)| = 1. (12.5)
L is the transverse canting field, which is chosen to obey
L(x;) -n(x;) =0. (12.6)

In (12.4) it seems that we have replaced two independent degrees of freedom
per site (8;, ¢;), with four variables (six degrees of freedom for (i1;, L;) minus
two constraints (12.5) and (12.6)). This discrepancy is resolved by fixing
the number of Fourier components in the measure:

DO = [] dhqdLqé(L-0)J[h,L, (12.7)
[dI<ABz

where J is the Jacobian of transformation (12.4), and the Fourier transform
is defined as

Xq =Ze-*q'xiX(x,-), X =a,L..., (12.8)

Apz is the spherical Brillouin zone radius chosen such that

N=4 ) . (12.9)

[dI<ABz
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The left- and right-hand sides of (12.9) count the degrees of freedom for
the left- and right-hand sides of (12.7), respectively.

In the short-range ordered phases, Z is dominated by configurations with
sizeable antiferromagnetic correlations for distances below the correlation
length £. For large £/a we assume that we can find an intermediate mo-
mentum cutoff scale A that is much smaller than the microscopic cutoff
momenta but also much larger than the inverse correlation length,

£ << A << Apz,2r/Ry, (12.10)

where R is the characteristic range of J; ;. This is equivalent to assuming
that the dominant configurations in the path integral are slowly varying on
the scale of A~!, or that they have negligble Fourier components for

|fq>a| << 1. (12.11)

Therefore we are permitted to replace the cubic Brillouin zone of the lat-
tice by the spherical zone in (12.7) and (12.9). Equation (12.11) is also
consistent with assuming that the canting field is small,

|L;/S| << 1. (12.12)

To leading order in |L|/S, the Jacobian of (12.7) is constant:
T~ 8N, (12.13)

Notice that we do not need to assume that L varies slowly in space. Our
main assumption is encapsulated in the ezistence of a wave vector scale A.
We must check the consistency of this assumption by evaluating £(A) and
verifying that inequality (12.10) is satisfied.
12.2 The Continuum Hamiltonian

We proceed to write the Hamiltonian using i and L. By expanding the
interactions to quadratic order in |L/S|?, we obtain

1 ..
G- = omm— 5711'713'(“1' —1i;)?
1\? 1
+ (g) |:L,'Lj - 57],'7]_1'(14? + L?)
1 " R .
+§ (n_,-L,-n_,- + n,-L_,-n,-) + 0 (|L|2|n,- - n_,-|) . (12.14)
The differences of Néel fields can be approximated by derivatives

L R 1 R
n; —n; ~ gn(x;) zﬁj + 5(6,6“1) zﬂjzfj +..., (12.15)
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where x;; = x; — x; and summation over repeated spatial indices [,k =
1,...,d is assumed. Using (12.10), we can see that the higher derivatives
in (12.15) are higher order in the small parameter AR; << 1.

The first derivative cancels in the cross terms by the symmetry of the
Hamiltonian, which leads to

N " " 1 N
Z JiymLn; = Zn,-J,-_,-L_,- (n + 6ma:£j + ialaknxf-jzfj .. )
ij ij

1 -
5 Z J,'_—,'T],'Lj(azakn) :125_1.'1:5 ~ O(ARJ)2 s (12.16)

i

Q

which are negligible.
We now replace the lattice sums by integrals:

S F —a™ / d%Z&(x —x;)F(x), (12.17)

1

and arrive at the continuum representation

H ~ B +; / dio lp,Z|3zﬁ|2+ / e (sz;zl:Lz')]-
1

(12.18)
The classical energy is
1
E¢ = 525 ZJ Jimim; (12.19)
and the “stiffness constant™ is
§2 2
P = _2d./\/ad'\;jJimmjlxt' - x*. (12.20)

The inverse uniform susceptibility is

1 ' '
x,_(,lx, = Vi E Jij [6(x — x:)6(x" — x;) — 8(x" — x)6(x — x;)min;] -
ij

(12.21)
In Fourier space, the canting field term is given by

4 g ) 9<ABz ddq )
/d .'B/d z’ Lxx . Lx =/ W qu_ (q)L_q, (12.22)

1The notation p, originates from the continuum theory of Bose superfluids,
where the stiffness constant equals the superfluid density.
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where
1
X9 = Sg-i@

Ja) = Y 4% gy, (12.23)
J

12.3 The Kinetic Term
The kinetic Berry phase term in the spin path integral is (see (10.15))
B A A
~i8Y w; =-iS / dr > A (12.24)
i 0 i

For convenience, we use a vector potential that is symmetric under inver-
sion,

A(Q) = A(-0), (12.25)
such as (see (10.17))
A= —:;’;gq"s. (12.26)

We expand (12.24) in terms of i and L using (10.34) and obtain
—iSY wi = —i8> nwldy +7:(Li/S)]

= _isg [n,-w[ﬁ,-] + ;—; : (Li/S)]

B
—iT — / dr " (B x 8,0 - Ly),  (12.27)
0 i

where

T =8 mwlb(x:)]. (12.28)
T is a topological Berry phase associated with the Néel field n. In the
rotationally symmetric phases, interference between Berry phases can give

rise to dramatic consequences on ground state degeneracy and low-energy
spectrum. We shall discuss them in Chapter 15.

12.4 Partition Function and Correlations

The second term in (12.27) couples L to 1 x 0,;1n. This implies that the two
fields are canonical conjugates.? The constraint §(L - i) is automatically

21t is similar to the kinetic term (p- 4 — q - p)/2 in (11.7).
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satisfied in the second term of (12.27). By completing the square, perform-
ing the Gaussian integration on L, and ignoring overall normalization
constants, we obtain

) 8 d
Z = /Dﬁe”[mexp —/ dr/dda: &Z|6,ﬁ|2 ¢[a],
0 A 2
[ ] N ﬂd A ddq s ) L
n = DL ex —/ T/—ﬁx.,.ﬁ_'
C Apz P 0 (27r)d( 1 a
1 d%q 1
3, (q)LqL‘q]

A gd
X exp l—% /dr/ ((217:;‘1 x(q)(h x 8-0)q - (A x Bfﬁ)_q] .

(12.29)

By (12.23) the variation of x(q) is small on the scale of A. Thus, we can
replace it by its zero momentum limit and write

B
¢[A] =~ exp (—1 / dr / d%z xo |a,ﬁ|2> , (12.30)
2Jo A

where xo = a~%x(0), and [, d%z is understood to contain only the Fourier
components of the integrand which obey |g| < A. In the last line of (12.30),
we used the identity

la(x) x 8n(x)[* = |0-h(x)*. (12.31)

Thus, we arrive at a local interaction for the n fields.
By combining (12.27) and (12.30), we derive the semiclassical partition
function

7 / Dn T
A

1 [P i
X exp ——/ dr/dda: X0|0-10)% + ps opn|? .
-5 [ o [t (oo + 0.0
(12.32)

The spin wave velocity is defined as

¢ =vps/xo - (12.33)

The Euclidean “relativistic” notation unifies the spatial and imaginary time
coordinates
(zla"'azdaCT) _'(zla"'azd+1)' (12'34)
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Using this notation, the action of Z is the Nonlinear Sigma Model (NLSM)
of d + 1 dimensions, with Berry phases:

Z /A Di e’ exp (— / dz Ej’&‘w) ,

D AD-2 D A A
LXrsm = 2fn E Ouf - 9,1, (12.35)
“

=1

where f is the dimensionless coupling constant

fo = SADP-2, (12.36)
8
The spin correlation function of the Heisenberg antiferromagnet at long
distances and at low temperatures is given by

(S¢83(m)) TS / Dh
i 9 (TR ——7——
j NZ |

. B
xn(0, O)n"‘(x_,-,cv')efr exp (—/0 drg4 /dd:z: Ejiv*ilSM) .
(12.37)

The imaginary-time ground state correlations of the QHA are given by

zy (Wo|(0)|¥m)|? exp[—(Em — Eo)r] = (2(0,0)i(0,7)). (12.38)

The NLSM is rotationally symmetric in space-time. If the correlations decay
exponentially at large distance with correlation length £, the imaginary
time decay period is given by ¢/c. By (12.38), the lowest excitation energy
A determines the fastest decay rate, and therefore

A =mingy, [E, — Eo] =ct L (12.39)

If A does not vanish with the size of the system, it is a thermodynamically
meaningful gap in the excitation spectrum called Haldane’s gap.

In the absence of topological Berry phases T, the ground state of the
quantum antiferromagnet is described by the classical energy of the d+1
dimensional NLSM, where f is the coupling constant of the classical prob-
lem, At finite (but low) temperature 3!, the quantum antiferromagnet
is mapped onto the NLSM on a slab of finite width ¢3 in the imaginary
time dimension. In Chapters 13 and 14, we study the NLSM and derive its
long-range correlations. In Chapter 15, we discuss the correlations in the
quantum Heisenberg antiferromagnet with the effects of the Berry phases.

One must be cautioned that Haldane’s mapping is valid under the re-
strictive condition (12.10), which can be achieved in the limit of § >>1.
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TABLE 12.1. The Nonlinear sigma model parameters for the nearest neighbor

Heisenberg antiferromagnet.

12. The Continuum Approximation

parameter value
A a-?!
Ps JS242-4d
X0 (4dJa%)™!
c 2JSa d-%
f 2v/d §-1

Thus the large S (semiclassical) limit corresponds to the weak coupling
limit of the NLSM, f<<1.

As a concrete example, we list in Table 12.1 the NLSM parameters for
the simplest nearest neighbor Heisenberg antiferromagnet on a cubic lattice.
These are given by the definitions and equations of this chapter.

12.5 Exercises

1. Following the derivation of the contiunuum approximation for Z (12.32),

show that the Green’s function (10.21) can be approximated by the real-
time path integral of the NLSM field theory:

t
G(t) « / Dh 6(]a| — 1) €T exp (—i / dt' / dzdcﬁgm) ,
A 0

d+1
Ad—l
£d+l _

NLsM = o Ouir- 3",

u=1

(12.40)

where z441 = ict, and z,2* = x - x — 23 +1 18 the Minkowski product.

. Derive the classical dynamics for the field fi(x, t) by varying the total action

in (12.40) with respect to h. Show that the equation of motion is

8,8"n =0. (12.41)
Linearize (12.41) for small fluctuations about A = &, and solve for the
eigenmodes (spin waves). Relate these spin wave modes to the polarizations
and dispersions of Heisenberg spins.



12.5. Exercises 137
Bibliography

Much of this chapter follows Haldane’s lecture notes:

e F.D.M. Haldane, Two-Dimensional Strongly Correlated Electron Systems
edited by Z.Z. Gan and Z.B. Su (Gordon and Breach, 1988), p. 249,

The original derivations of Haldane’s mapping used Holstein-Primakoff operators
and semiclassical equations of motion; see

e F.D.M. Haldane, Phys. Lett. A93, 464 (1983);
e F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).



13

Nonlinear Sigma Model:
Weak Coupling

13.1 The Lattice Regularization

In the previous chapter, the Nonlinear Sigma Model (NLSM) in d dimen-
sions has emerged as the continuum approximation to the quantum Heisen-
berg antiferromagnet in d— 1 dimensions with additional Berry phases. The
partition function is

R Ad-2 g d ) )
ZNLSM = /A'Dn exp (— 57 /d zE@m-@m) : (13.1)

|a(x)| = 1 is a unit vector and x € R%. A is the momentum cutoff, i.e.,
the shortest wavelength included in the Df. The path integral (13.1) is
not well defined until we specify a regularization procedure. We consider a
classical Heisenberg model on a d-dimensional cubic lattice, with A sites
and lattice constant a. Its partition function is

N =
ZHM =/HdQ, €xp (%ZQJ QJ) . (13.2)
i=1

(5

The continuum limit of Zg s is given by the substitutions
Qi - n,-ﬁ(x,-), (133)

where 7; is 1 (¢**¢%) for the ferromagnet (antiferromagnet). Sums and dif-
ferences are substituted by

ZF(x,-) — a™¢ /ddz F(x),
O(x; + azy) — Qx;) —  ad,n, (13.4)

and a dimensionless coupling constant is given by

T
Wi — f. (13.5)
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The measure is replaced by
DO — [] daq, (13.6)
[qI<A

where A is the radius of a spherical (sph) Brillouin zone that has the same
number of degrees of freedom as the cubic zone (cube) of the lattice

cube sph
NTEST =Nty =1 (13.7)
[kul<Z [k|<A

This determines the spherical Brillouin zone’s radius to be

(672)/3/a d=3

Expanding the Hamiltonian in (13.2) in terms of gradients of fi and keeping
up to quadratic terms, the relation

ZHM(T/ja a') = ZNLSM(f> A_l) edJV/f (13.9)

is established at low temperatures (f << 1). The factor e?¥// is the Boltz-
mann weight of the classical ground state. The continuum approximation
holds also for the generating functional (see Appendix B) and for the long-
wavelength spin correlations, as long as the spin correlation length £ is
much larger than A~!. In this regime, the NLSM properties are weakly de-
pendent on the regularization procedure, and therefore it serves as a model
for diverse Heisenberg models. The crucial features of these models are
their O(3) symmetry of the ground state manifold and their short-range
interactions. Other details will primarily affect the choice of f and A.

The “nonlinearity” of the NLSM is due to the unimodular constraint
|fi(x)| =1. One can write, say the first component, in terms of the other
components as

T/a d=1
A= {2ﬁ/a d=2 . (13.8)

nM(x) = /1 - PO X)]? - [r@ )] (13.10)
The measure is then replaced by
O [1 - (n®)2 — (n®)2
/ Dh = / Dr@pp® &L= ) - @] (13.11)
V1= (n®)2 — (n())2

The constraint introduces anharmonic interactions between the field com-
ponents. Thus, we can expect that the correlations of the NLSM may differ
from a free (Gaussian) model, where the measure is Dn?Dn(®), An im-
portant effect of the unimodular constraint is the existence of topologically
stable excitations (“solitons”) in two dimensions.!

!Gee Skyrme, and Belavin and Polyakov.
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As a continuum limit of the classical Heisenberg model, the O(3) NLSM
must obey the Mermin and Wagner theorem, which was proven in Section
6.2. That theorem forbids spontaneously broken symmetry at any finite
temperature (or f > 0)in d=1,2.

In the next section, we shall demonstrate how the O(n) NLSM is disor-
dered by fluctuations of the order parameter using a weak coupling expan-
sion in f.

13.2 Weak Coupling Expansion

First, we generalize the NLSM from O(3) to O(n) symmetry. Since the
following calculations do not entail any extra work for general n, we might
as well keep n arbitrary. We define n orthonormal basis vectors:

e a=0,...,n—-1,

n* = n-e”. (13.12)
The partition function is
d-2
Zowm) = /'Dﬁ exp |— /d‘ia:Z(B#n"‘)2 ,
f =
n—1
Da = [[Dn*6 l1— Z(na?]. (13.13)
a a=0

At low temperatures, i.e., weak coupling f << 1, we expect the dominant
configurations to be close to an ordered ground state. This requires us to
break the O(n) symmetry of the path integral and choose a particular
uniform ground state configuration, say

=

= &% (13.14)

The small fluctuations, | — &°| << 1, are parametrized by

n—1
h=én/1-@ + > ¢%", (13.15)
a=1
where .
¢ = Z (¢°). (13.16)

Here and henceforth we use Latin indices (e.g., a,b) to denote tra.nsverse
flucuations which exclude the longitudinal & direction. N
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The expansion of the NLSM to leading order in |611| yields

z ~ [Doexp(-sPla)) 1+ 001
d—
S@ A 2/dda:2(3,¢¢°) + 0(¢*)
- 2fA2’NZ K éid i (13.17)
Ka
where
¢ =A? / diz e~ KX g (x), (13.18)

S@) is the harmonic or “spin wave” energy functional. Using (13.15) and
(13.17), we can calculate the spin wave contribution to the local fluctua-
tions:

5 1 5 4G 4G
B8O ~ 7373 [Dh 3o exp (-5P14))
ka

(n — 1)A2f A ddg
@ imeli P
(n—l)fhmA_,OA =00 d=

~ gn—lL limg_,,1 InA=o00 d= (13.19)

n-1)7A < 00 d=

2w

The spin wave fluctuations diverge for n > 2 in one and two dimensions for
all f > 0. Thus, naive weak coupling expansion fails since the assumption
of spontaneously broken symmetry is invalid. This we have known all along
by Mermin and Wagner’s Theorem 6.2. By Haldane’s mapping, the ground
state of the quantum Heisenberg antiferromagnet in one dimension should
be disordered (a spin liquid) for all finite spin sizes § < oc.

We have used the term “naive expansion” to hint that more sophisticated
methods can treat the infrared divergences in (13.19), as we shall see in the
following section.

13.3 Poor Man’s Renormalization

The infrared divergences in (13.19) indicate that it is necessary to abandon
the assumption of broken symmetry and to preserve the O(n) symmetry of
the path integral. It is still possible, however, to use the smallness of f for
approximating the correlations in the disordered phase. This will be done by
expanding the integrand about slowly varying configurations A°(x), which
still need to be integrated over. A sequential elimination of the modes of
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large momenta (the “fast modes”) renormalizes the energy functional of
the remaining “slow” modes. In this section, we derive the renormalization
group transformation which is embodied in the 8 function. In the following
section, we use the 3 function to determine the correlation length.

Following Polyakov, we separate 0 into its slow and fast degrees of free-
dom, 1° and ¢°, respectively:

A = 8°00y/1-F+ 3 %),

n—1
& = D)7, (13.20)
a=1
where a comoving basis is defined as
x) = n’(x),
é*(x) - #(x) = bag, a@=0,1,...,n—1. (13.21)

Greek indices include the longitudinal direction A°, while Latin indices are
restricted to the transverse directions a,b=1,...,n — 1.

The relation between the coordinate systems at nearby points in space
defines the Gauge potentials®

AP =8*.9,8" | (13.22)
which describe the variations of the moving orthonormal basis by
8,a° = )" Al
9,8° = i(ﬁfﬁé") — AR, (13.23)
b
Since é* are orthonormal, fizﬂ must be antisymmetric:

AP = _ fbe (13.24)

We note a useful identity which will be used shortly:

> (A20)? = (8,°)2 . (13.25)

An intermediate momentum scale A is chosen,

0<A<<A, (13.26)

?In differential geometry they are called connections.
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which separates between the “fast” fields, i.e.,

¢*(x)= > explikx] of, (13.27)
A<iki<A
and the slow fields
X(x)= Y explikx] X}, X=eé% A" (13.28)
o<k|<A

Inserting (13.20) into the NLSM Lagrangian, we obtain

L = Ad_ /dd Y 8,0 9,n

p=1,d

- 55| (aiE e

pab
+ (6,@“ + Asbgb + 420 M)Z] . (13.29)
We expand the Lagrangian® to quadratic order in ¢, which yields
/_ Di’ exp (— / déz c[ﬁO]) ZAMO [1+0(¢% F16%)],
VA / D¢ exp ( / dz £ [@ ¢]) (13.30)

where relation (13.25) yields the term L[i°] and the fast (“spin wave”)
Lagrangian is given by

() Ad2 o, zabb\> Za0 b0 ( 4a b 72
£ ==3F > (0ue® + A¢%) + ARAR (¢°6° - 8ud%) | . (1331)

pab

We neglect the cubic and higher powers of ¢ and confine the present analysis
to the leading-order terms in f. In the renormalization group jargon, we
are performing a “one loop level” calculation.

In (13.31), we have also neglected the cross terms

AZ ey q,&io , (13.32)
which couple slow and fast fields. By choosing A << A, we make sure that

the contribution of such terms is small since they vanish for all k > 24,
i.e., for most of the Brillouin zone.

3The Jacobian of transformation (13.20) does not contribute to the quadratic
corrections.
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L describes the high momenta fluctuations about i°. The alert reader
will notice that for n > 2 there is a certain degree of arbitrariness in the
choice of the transverse unit vectors & in (13.20). For n > 2, one can con-
tinuously rotate the transverse coordinate system in the n — 1 dimensional
subspace at each point in space using any orthogonal (n — 1) x (n — 1)
matrix R such that

¢* — R*®®¢®, RTR =1, (13.33)

which transforms the covariant derivative in the first term of (13.31) as
Bubab + A% — 8,60, + A% + [(0,R)R7]%. (13.34)

The invariance of £(?) under (13.34) is a gauge symmetry of the fast modes
Lagrangian. It is easy to see that £(2) can only depend on derivatives of
fizb. Since these potentials are slow fields, these terms are higher-order
derivatives of i° than the leading term £[fi°]. Therefore, for the following
discussion we shall neglect the gauge potentials in £(?). In the Exercises,
we shall see that the gauge potentials are important when expanding about
a slow field with finite topological density.
By performing the Gaussian integral in (13.30), we obtain

Z@[ o exp [—%’I‘r In (IT, — nl)] . (13.35)

The overall normalization constants are independent on 7, and unimpor-
tant for the correlation functions. Il and II; are matrices in the fast mode
space |k| > A:

—(82)bap = K* Ok _k:0ab »

(Ho)ie v
Mk = & x lfi;:%f? ~ ab Z(A:‘?)?] . (13.36)
We can expand the exponential in Z(®) in powers of A%® using the identity

Tr (I 'IL)".  (13.37)

N =
M s
S| =

1 1
- E’I‘rln (Ho - Hl) = —-2-’1‘1‘1111—10 +

n=1

It is consistent with our earlier approximation to neglect higher derivatives
and thus we may keep only up to the n = 1 term, which is

1 1 1 " -
ST(E'm) = o 3 5 3[4 - (- 1)(A42Y
A<k<a Ha

Ad—zAd

~ > ;(aﬂﬁ")z, (13.38)
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where we have used (13.25), and defined the dimensionless constant

_ d
M = oW f
2 [A/A)2-1] d=1
= ¢ -2 In(A/A) d=2, (13.39)
2 1~ R/A)?] da=3

where (, =7, (3 = 27, and (3 = 272,

By (13.38), we find that the correction to the NLSM from integrating
out the fast modes is proportional to the NLSM Lagrangian itself! By
incorporating the corrections into the NLSM and replacing the cutoff A —
A, we obtain

Ad—2
Z =~ / Dit® exp _AT / d?z(8,0°)?|, (13.40)
A 2f J&
where the renormalized coupling constant is
NV
f=A/N)F2——° . (13.41)
1~ fAq4(A/A)

Equation (13.41) is valid deep in the perturbative regime f, f << 1. Oth-
erwise, it is not justified to neglect the cubic and higher terms in the La-
grangian as we have done in (13.30). _

For d > 2, A does not diverge in the infrared limit A — 0, and the
correction to f is small. On the other hand, for d < 2 and n > 3, Ay
diverges in the infrared limit.

A comparison of (13.19) to (13.39) is instructive. Although for d=1,2,
the ground state fluctuations diverge as n — 1, the infrared divergences of
Ay in (13.39) occur only for n > 3. Thus, we see that the n = 2 case is
special. For n = 2 there is only one transverse spin wave mode, and to
first loop order, the spin wave theory is effectively noninteracting. On the
other hand, for n>2 the interactions between spin wave modes flow under
renormalization to the strong coupling regime.

The O(2) NLSM is the continuum limit of the zy model

Moy =J Y (F0E +Q¥0Y) ~ Lo (13.42)

{i3)
For d=2, the 3 function of Lo(z) is governed by the higher-order (cubic)
power of f, which was not calculated above. It turns out that the con-

tinuum theory has a weak coupling phase, with “quasi-long-range order”
for f >0, i.e.,, power law decaying correlations. At higher temperatures
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(larger f), the continuum approximation (13.42) breaks down, and vor-
tex singularities become important. Kosterlitz and Thouless (KT) have
shown that unbinding of vortex pairs destroys the quasi-long-range order
at the Kosterlitz—Thouless temperature, whereupon the spin correlations
decay exponentially at long distances. O(2) models and the KT transition
are very important in the context of many physical phenomena, including
superfluidity and superconductivity. They are reviewed at length in the
literature. Here we shall confine our further discussions to Heisenberg-type
models with n > 3.

In summary, to leading order in f, the NLSM scales onto itself under
a change of the upper cutoff, and we have obtained (approximately) the
renormalization equation for the coupling constant. Qur analysis assumes
that the only coupling constant that grows as we renormalize the model
is f, i.e., the higher-order interactions, and higher derivatives terms, are
either “irrelevant” or “marginal.” This assumption should be verified by an
explicit calculation. Here we blissfully ignore this issue, which is why this
type of analysis is called “Poor Man’s Scaling”.* A more careful treatment
of the generating functional using a d—2 expansion was carried out by
Brezin and Zinn-Justin.

13.4 The (8 Function

Here we drop the tilde off f , and denote the cutoff dependent coupling con-
stant by f(A) . In (13.41) we have found the leading-order renormalization
of f under changing A — A. The 3 function, which governs the “fow” of
the coupling constant under renormalization, is defined as

df

TN = B, (13.43)

which by ((13.41) yields

n—2
ﬂ—(d*2)f—<—d

Thus 3 depends explicitly only on f and not on A or A. This property is
called “universality.” The zeros of the 3 function are “fized points” of the
renormalization transformation:

B(f)=0 . (13.45)

fi (13.44)

4The term was coined by P.W. Anderson in reference to Anderson, Yuval, and
Hamman'’s renormalization of the Kondo model.
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FIGURE 13.1. The 8 function and the flow of f as A is reduced.

For 3 < 0 the coupling constant decreases and for 3 > 0 it increases under
downward renormalization of A. The fixed points are:

d=1: f.=0 unstable,
d=2 : f.=0 |unstable,

=3 {fc=0 stable

fe= :L_zz unstable °

(13.46)

where “stable” and “unstable” refer to the flow of f ~ f, under renormal-
ization, whether toward or away from the fixed point. As shown in Fig. 13.1,
in one and two dimensions the coupling constant flows to strong coupling.
In three dimensions, there is a weak coupling phase and a strong coupling
phase. For f < f., the coupling flows to the weakly interacting fixed point.
This implies that perturbation theory works well and low-order spin wave
theory about the ordered ground state is valid. As shown in Fig. 13.1, for
f > fc, the system flows to strong coupling, which is disordered. f, is the
critical coupling constant which separates between the broken symmetry
and disordered phases.

Deep in the strong coupling phase, we assume that the momentum de-
pendent structure factor is smooth, and the short-range order is manifested
by a maximum at q = 0, parametrized by

1 c

7 Bab-a) ¥ e )

(13.47)

where C is a dimensional constant. The Fourier transform of (13.47) is
the “Ornstein-Zernicke” correlation function. Its asymptotic form at large
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|| /€ is®

||

where the correlation length £ governs the exponential decay of the correla-
tions at large distances. £ is a characteristic length scale of the correlations.
It should not matter whether we evaluate £ using the NLSM with the high
cutoff A and bare coupling constant f(A) or the renormalized model with
A and f(A). This invariance can be phrased as a functional identity:

E[f(A),A] = €[f(A), Al (13.49)

The derivative of the left-hand side with respect to In(A) vanishes. There-
fore, we obtain
€

@Oa60) o D exp (<o) (14 £22) e

_ o€
aln(A)

Now, since £ has dimensions of distance and f is dimensionless, by dimen-
sional analysis we know that

+853 (13.50)

¢A, f) =A7'6(f), (13.51)
where ¢ is a dimensionless function. Thus,
_%€_ __

on(k) '3 (13.52)

whereupon (13.50) has the explicit solution

/‘% _ [T
© € Jg BU)
_ T df
— & = &oexp (/fo ﬂ(f))' (13.53)

& and f; are constants of integration which can be fixed by knowing the
correlation length at strong coupling, as discussed shortly.
In three dimensions, [ vanishes linearly at f., and thus ¢ diverges as a

power law,
i3 f-f 1/8'(fc)
s o (1)

fo
B'(f.) -1+0(1). (13.54)

5See Fisher’s paper in the bibliography.
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In two dimensions, by (13.44) the 3 function vanishes quadratically at
fo = 0. We can integrate the right-hand side of (13.53) from the strong
coupling regime where f; >> 1, and the correlation length is £, = O(a),
to the physical value of f:

€t ~ oo (7). (1355)

In order to determine & for a given lattice model, one can fit (13.55) to
a numerically determined correlation length at strong coupling (i.e., high
temperatures). €o/a is a numerical constant which will depend on the short-
range details of the lattice model.®

In one dimension (13.53) integrates to yield

bk

g4=! o (13.56)

where & f; is of the order of A~1.

13.5 Exercises

1. For the O(3) model, write the two spin wave coordinates as a single complex
field:
Y(x) = ¢'(x) +id*(x), (13.57)
and define a U(1) gauge field as

Au[R°] = —%Am[ﬁ“]. (13.58)
Find the spin wave eigenvalues ¢, in the presence of finite Gauge potentials
by diagonalizing the quadratic form in £® of (13.31):
/ d'z (8u0° + A2¢%). (13.59)
Show that ¢, can be obtained from the equation
(Bu —i24,)% . = €ntn. (13.60)

Note: (15.60) describes a free boson of charge 2 in the presence of an elec-
tromagnetic vector potential A,.

2. Prove that 1
(8,4, — OLAL) = 56,,1‘1 X O,f - D (13.61)

for the O(3) NLSM gauge field A(fi) as defined in (13.58).

5See Shenker and Tobochnik.
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3. For a two-dimensional system, assume a uniform topological density B =
Oz X Gyh - N, such as found near the center of a large Skyrmion config-
uration. Choose a convenient gauge to express A, Ay, and solve for the
eigenvalues of (13.60). Hint: Use the theory of Landau levels of a particle
in a uniform magnetic field.”
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The Nonlinear Sigma Model:
Large N

Chapter 13 solved for the correlations of the d-dimensional Nonlinear Sigma
Model (NLSM) in the weak coupling f << 1 regime. The weak coupling
regime coincides with the low-temperature limit of the classical Heisenberg
model on a d-dimensional lattice. By Haldane’s mapping (see Chapter 12)
it is also equivalent to the large S limit of the d—1 dimensional quantum
Heisenberg antiferromagnet, i.e., the semiclassical limit. In this chapter,
we study an alternative approach to the NLSM. We introduce the compler
projective representations called the CPN—1 models, where N is the number
of complex fields. The physical O(3) model is described by N = 2. Basically,
the large N limit is given by a saddle point of the path integral, i.e., a
mean field theory. This mean field theory recovers the correlation length £
obtained earlier by poor man’s scaling in Section 13.4.

14.1 The CP! Formulation

The O(3) NLSM can be represented by two complex (spinor) fields

z(x) = [21(x), 22(x)] (14.1)
such that the components of i1 are given by the bilinear forms
n%(x) =zl (x)o%z(x), a=z,1y,z, (14.2)

where o are 2x 2 Pauli matrices (see (A.20)). The unimodular condition
on n translates to the constraint

| = |z[* = |z]* + ]2 =1. (14.3)

Some straightforward algebra is required to show that by (14.2) and (14.3)
the following identity holds:

1, .
2100 = (Buz") - (0u2) — [Au(z", 2)]", (144)
where A, is the bilinear form:

A, = —3 (28,2 — (8,2")z] . (14.5)
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The measure of the NLSM partition function is

Dn =

dRe z;, (x) dImz,,,(x)é(|z|2 1)
X,m=1,2 7('
D%26 (|z* — 1). (14.6)

The CP! representation is thus

ZNLSM = /'D2z6(|z|2—1)

d-2
X exp (—2Af /dda: Z |[0n — 1A,(2", 2)] z|2> .

(14.7)

The constraints in the measure and the interactions in the action are the
sources of difficulty in solving for the correlations of (14.7). We can replace
the é-function constraints by introducing a real constraint field A(x) and
the identity

6 (2> -1) = /D,\exp [i /dda: A(|z)* - 1)] . (14.8)

We can decouple the four-field interactions .Ai by introducing auxiliary
gauge fields A, and using the Hubbard-Stratonovich identity:

exp (cA2) =\/7/ dA, exp(—cA% —2cA,A,). (14.9)

By (14.7), (14.8) and (14.9), the partition function is given (up to overall
normalization) by

Zepr = / D2zDADA

— dy 24972 —1 z|2 — ix(|z|? -
exp{ /d l G ;l(aﬂ A#)| ’\(|| 1)]}

(14.10)

The integrand is Gaussian in the z fields. The price we pay is the additional
gauge fields A = {A,} and constraint field A. Their spatial fluctuations in-
troduce interactions between the z variables. The next section will describe
the mean field approximation where these fluctuations are ignored at the
saddle point.
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14.2 CPN-! Models at Large N

We first generalize the C P! model to the CPY~! model by extending the
number of complex fields from 2 — N:

z = (21,22,.. .,ZN) y N > 2. (1411)

The constraint (14.3) is generalized to

N N
2 _ 2 _
2> = m§=; zml® = 3 (14.12)

The N dependence of (14.12) ensures a nontrivial large N theory. Thus,
(14.10) is generalized to

d—2
Zepn-1 = /'Dzz'DA'D/\expl—zAf /dda: > (0 — iAL) 2
I

—iA (|z|2 - g) ] (14.13)

Formally, we can integrate out the z fields and obtain

ZCPN—I = /DADA exp (—NS[A,A]) ’

2 iAd_2
SIAN = Trin[-(9,—i4,)] - - / dizx.  (14.14)
Note that N multiplies an N-independent action S. As explained in Ap-
pendix E, this justifies, at large N, a saddle point approximation for (14.14):
Z =~exp(—NS[Ag, No]) 2’ , (14.15)
where the saddle point equations are

[
6A

_ 88

Ao)\o 8 Ao)\o

Assuming no broken gauge or translational symmetry in the saddle point
action S[Ay, Ao|, we take

=0. (14.16)

A0 = 0’
X = —ik (14.17)
The saddle point action is the free energy of a noninteracting field 2:
S0,2) =) In[k*+1] - NATES. (14.18)

k
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The saddle point equation for X is

1 I 1 _
N 21? W3R 7 0, (14.19)

which yields
214 d
X = 1AZexp (—47") d
102 (2 _ ar)?
2A (; - 7) d
We generalize the O(3) correlation function (of N = 2) to N > 2 by
defining

1
2 (14.20)
3

St (x) = ([2°(0) +ia¥(0)] [A"(x) — ¥ (x)])
= (2 (0)zm (0) 27 (X) 2m (x))
= S (x). (14.21)

Since the flavors are decoupled in the saddle point action (14.18) , we obtain
s (x) = G,
Gx) = z7! /'Dzz z'(0) - z(x)

d-2 d—2
X exp (— 2Af Z (k% +X) zp 2z — %:\)
k

= e—ik-x
= ML e
(14.22)

The Fourier sum can be evaluated asymptotically for large distances fol-
lowing (13.48),

G(x) ~ const |x|7(¢"1/2exp (—|x|\//:\) (14.23)
Taking the square of G(x), we obtain the asymptotic correlation function

lim S™*™(x) ~ const |x|~@" D exp(—|x|/€), (14.24)
X|>>¢

where
E = ——. (14.25)
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By (14.20) we find that

-1

At d=1
¢ ={ A ten(+ 7") d=2 (14.26)
1A (,r— ;) d=3

These results (applied to the N = 2 case) reproduce the correlation
lengths of the O(3) NLSM given by (13.54) and (13.55). That is to say,
the large IV approximation coincides with the weak coupling renormaliza-
tion group results up to one loop order.

It is apparent that the large N theory of the CPN~! is not at all bad
for describing the prominent long-wavelength features of the Heisenberg
model. This is reassuring since large N approximations are often applied
in condensed matter theory and particle physics to describe physically in-
teresting systems with N = 2.! We must note, however, that the large
N approximation does not recover the preexponential dependence of £(f)
and St~ (x) found in more detailed two loop order renormalization group
results. These differences are presumably due to Z’, which includes the
higher-order terms in the 1/N expansion.

14.3 Exercises
1. Prove that for the CP! model
BuAy —8,A,) = %6,,:‘1 x Byh - &, (14.27)

where A(z) is the CP! gauge field defined by (14.5).

2. Compare (13.61) and (14.27), and show that the definitions (13.58) and
(14.5) of the gauge fields are equivalent up to a total derivative term. Use
this comparison to show that the charge of the z spinors is half the charge
of the spin wave modes .
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Quantum Antiferromagnets:
Continuum Results

In Chapter 12, we have used Haldane’s mapping to relate the long-wave-
length correlations of the quantum Heisenberg antiferromagnet (QHA) in d
dimensions to those of the Nonlinear Sigma Model (NLSM) in d+1 dimen-
sions with additional Berry phases. In Chapters 13 and 14, the correlation
length £ for the NLSM was found for d=1,2,3 using the continuum approx-
imation.

In principle, Haldane’s mapping holds when the continuum approxima-
tion is justified, i.e.,

Enrsm >> A7, foua >>a, (15.1)
where A and a are the high-momentum cutoff and lattice constant, respec-
tively.

Before we can use the NLSM results of Chapters 13 and 14, we must

understand the effects of the Berry phase term e*T on the right-hand side
of (12.37).

15.1 One Dimension, the © Term

We examine the Berry phase T defined in (12.28) for the one-dimensional
chain. For slowly varying fi(z), this term is expanded:

Td=l = —SZw [ﬁ(zzi)] —w [ﬁ(zzi_l)]
S [ dxébw .
= 3/ 2 %P
= 2780 [n(z,7)]. (15.2)
We use (10.34) to derive the functional form of © as
0= %/dT/da: (. x 8,1 - 9,R). (15.3)

O is the topological “winding number” or “Pontryagin index” of the map-
ping

" L L

n: {[_5’5)’[0"3)} — 52, (154)
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where S2 is the surface of the unit sphere. O[fi] is the area of the range of
N divided by 4. If the domain has periodic boundary conditions, i must
cover the sphere an integer number of times, and therefore © must be an
integer. This integer is topologically stable, i.e., it cannot be changed by
any continuous deformation of fin. Changing © from 1 to 0 is analogous to
unwrapping a sphere, which is impossible unless one makes a hole or a tear
in the wrapping paper.

The © term also appears in the path integral representation of the
Green’s function, where 7 — it (see the Exercises). As a topological in-
variant its variation is zero, and it cannot affect the classical equations of
motion. The phase factor 2759 is unity for all integer spins, but it can be
positive or negative for half-odd integer spins S = %, %, .... This causes in-
terference effects in the path integral, which dramatically alter the ground
state correlations and excitations from that of the pure NLSM.

The continuum theory in the presence of alternating Berry phases is hard
to solve. However, we know from the Lieb, Schultz, and Mattis theorem (see
Section 5.2), that the lowest excitation energy of the half-odd integer spin
chain vanishes as the inverse number of sites. From Bethe’s solution of
the integrable S = % chain, the spectrum is known to be gapless, and the
ground state correlations decay asymptotically as

1
TS
(S;i-8;) ~ (—1)“-1’)%&‘ (15.5)
i -4l
Thus we can conclude that the © term destroys Haldane’s gap and changes
the asymptotic correlations.!

Now we present a heuristic argument for the relation between a topolog-
ical interference term and the ground state degeneracy. Consider a spinless
particle moving on a circle pierced by a magnetic flux tube of flux ¢ as
depicted in Fig. 15.1. The Hamiltonian is simply

h2 ) ¢ 2
H = om (—26;,; + TQSO) , (15.6)

where ¢9 = hc/me is the flux quantum. The spectrum is labelled by integers
n (see Fig. 15.1),

2 2
E(n):z—gL—z(n+£) . 4n=0,1,2.... (15.7)

For integer ¢, the ground state is

Ino) = | — &/¢0), (15.8)

1See Affleck, and Shankar and Read.
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¢o

! )

E(n)

FIGURE 15.1. Analogy of the © term: a particle on a ring pierced by a magnetic
flux tube. Half-odd integer flux quanta yield ground state degeneracy.

and it is nondegenerate. On the other hand, for half-odd integer ¢/¢o, the
ground states are the two degenerate states

|~ 6/d0=3)» 1= 8/do+3). (15.9)

The analogy between the particle on a circle and the two-dimensional
NLSM with a © term is seen in the path integral representation of (15.6),

B ;2
zZ =/'DzeiT["(T)] exp —T/ dr = , (15.10)
k Jo 2

where T is the pure gauge coupling between the particle and the flux tube
(i.e., an Aharonov-Bohm phase)

27 B .

T = 2%

L¢0/0de
@

— 2%, 4n=01,2.... (15.11)
do

n is the winding number of z(7), i.e., the number of times the particle has
circulated around the ring. It is the one-dimensional analogue of the two-
dimensional Pontryagin index © of (15.3). Thus for half-odd integer flux
quantums ¢ and half-odd integer spins S, the two systems have destructive
interference between even and odd topological sectors. In both systems this
interference is responsible for their ground state degeneracies.
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15.2 One Dimension, Integer Spins

By (15.2), we can ignore the Berry phase factor e for one-dimensional
quantum Heisenberg antiferromagnets (QHA) of integer spins. By Hal-
dane’s mapping, the continuum approximation to the QHA is the d=2
NLSM which by Section 13.1 is the continuum limit of the classical Heisen-
berg model. By Mermin and Wagner’s Theorem 6.2, the latter has no long-
range order for all finite temperatures, which translates to no long-range
order for the QHA ground state for all S < co.

The correlation length énpsa(f) was evaluated in (13.55). The same
result was also obtained by the large N approximation (14.26). Thus,

€oua(d=1,8) = Enpsm(d=2,f)

2

x aexp(T), §$=0,1,.... (15.12)

By Table 12.1, the coupling constant f for the nearest neighbor model is
f =2/8, (15.13)
which yields

€ona(S,T=0) =~ aexp(nS),
A gexp(-mS') (15.14)

where A is Haldane’s gap given by (12.39). Equation (15.14) demonstrates
that correlation length and Haldane’s gap are nonperturbative in the semi-
classical parameter, i.e., they cannot be obtained as a spin wave expansion
in powers of 1/S. The formation of a disordered (spin liquid) ground state
with a gap to all excitations is a purely quantum phenomenon with no clas-
sical analogue. It is similar in that respect to tunneling of a single particle
under an energy barrier.?

We recall that ground states of the AKLT Heisenberg models in one di-
mension (see Chapter 8, (8.26)) were found to have exponentially decaying
correlations (8.30). Also, within the single-mode approximation (see Section
9.3), we have estimated their gap in (9.21). Thus, the AKLT model of S =1
with its valence bonds ground states is qualitatively similar to other integer
spin Heisenberg antiferromagnets, which map onto the NLSM. Since the
AKLT models have S dependent interactions, they scale differently from
the standard Heisenberg models at large S.

2Tunneling rates go as exp [—%()] , where F is the semiclassical parameter.
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15.3 Two Dimensions

At zero temperature, the QHA on the square lattice maps onto the three-
dimensional NLSM, which, according to (13.46), has a disordered phase
at

fo >2nt (15.15)

For the nearest neighbor (nn) model, Neves and Perez proved that the
ground state is ordered for all S > 1. In addition, series expansions and
numerical simulations indicate an ordered ground state for S = %

Unfortunately, the precise determination of f(S, A) for extended Heisen-
berg models depends on the details of the short-wavelength regularization
procedure (i.e., is “nonuniversal”). We recall that the continuum approx-
imation itself depends on inequalities (12.10) and (15.16). Since near the
critical temperature T, = f.JS? even the nearest neighbor correlations are
substantially degraded, the use of the NLSM field theory is questionable in
this regime.

The first corrections to the continuum approximation involve point sin-
gularities in the Néel field. These “hedgehogs” are expected to be thermally
excited in the disordered phase. Haldane has shown?® that hedgehogs intro-
duce nontrivial Berry phases T(2S mod 4), which may give rise to ground
state degeneracy, for S= %, 1, but not, e.g., S=2. Large N approaches by
Read and Sachdev agree with Haldane’s scenario and predict spin Peierls
ordering due to the hedgehog Berry phases.*

By symmetry of the NLSM under rotations in d+1 dimensions, for a d-
dimensional momentum cutoff A, the shortest timescale in the path integral
is 2m/(cA). Thus, in the regime

T << cA, (15.16)

the correlation length can be calculated by the renormalization group equa-
tions for the d=3 NLSM on a finite slab of width c¢B. This was carried out
by Chakaravarty, Halperin, and Nelson (CHN) up to two-loop order in the
B function. CHN found that in the weak coupling regime, f flows to the
Néel fixed point f. = 0, and the ground state has long-range order. At
finite temperatures, they calculated the correlation length to be

534 = 0.9(c/T)exp (27;’”) : (15.17)

‘We can compare Qi;,:Hz 4 to the classical result for the two-dimensional Heisen-
berg model given by (13.5) and (13.55). The essential effect of the quantum
fluctuations is to renormalize the stiffness constant by a constant Z,:

ps = Zopf . (15.18)

3See bibliography of Chapter 12.
4See bibliography of Chapter 18.
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The correlation length (15.17) is called a renormalized classical correlation.
Z, for S =1/2 was calculated by series expansions® to be 0.183.

Many of the predictions of the NLSM for the S = 7 QHA have been
confirmed both numerically and experimentally in quasi-two-dimensional
systems of Lap;CuQ4. The experimental and theoretical aspects of possible
quantum disordered ground states (quantum spin liquids) in two dimen-
sions are still unsettled.
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16
SU(N) Heisenberg Models

The use of large N approximations to treat strongly interacting quantum
systems been very extensive in the last decade. The approach originated
in elementary particles theory, but has found many applications in con-
densed matter physics (see bibliography). Initially, the large N expansion
was developed for the Kondo and Anderson models of magnetic impurities
in metals. Soon thereafter it was extended to the Kondo and Anderson lat-
tice models for mixed valence and heavy fermions phenomena in rare earth
compounds. The approach was also applied to treat the strong Coulomb
interactions in high T, cuprate superconductors.

In the present chapter and in Chapters 17 and 18, we shall formulate and
apply the large N approach to the quantum Heisenberg model. This method
provides an additional avenue to the static and dynamical correlations of
quantum magnets. The mean field theories derived below can describe both
ordered and disordered phases, at zero and at finite temperatures, and they
complement the semiclassical approaches of Chapters 11-15.

Generally speaking, the parameter N labels an internal SU(N) symmetry
at each lattice site (i.e., the number of “flavors” a Schwinger boson or a
constrained fermion can have). In most cases, the large N approximation
has been applied to treat spin Hamiltonians, where the symmetry is SU(2),
and N is therefore not a truly large parameter. Nevertheless, the 1/N
expansion provides an easy method for obtaining simple mean field theories.
These have been found to be either surprisingly successful or completely
wrong, depending on the system. For example: we shall see in Chapter 18
that the Schwinger boson mean field theory in one dimension works well
for the ferromagnet and for the antiferromagnet of integer spin but fails for
the half-odd integer spin antiferromagnet.

The large N approach handles strong local interactions in terms of con-
straints. It is not a perturbative expansion in the size of the interactions
but rather a saddle point expansion which usually preserves the spin sym-
metry of the Hamiltonian. At the mean field level, the constraints are en-
forced only on average. Their effects are systematically reintroduced by the
higher-order corrections in 1/N.

The 1/N corrections to mean field theory can be calculated by Feynman
diagrams, which describe interactions between the free quasiparticles of the
mean field theory. In Section 17.3, we use the unique structure of the 1/N
expansion to derive certain sum rules to all orders.
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It turns out that different large N generalizations are suitable for differ-
ent Heisenberg models, depending on the sign of couplings, spin size, and
lattice. By “suitable” we mean that the corresponding mean field theories
produce the correct qualitative features of the ground states. Below, we
introduce three large N generalizations of the Heisenberg model. We begin
by the Schwinger boson representation of the ferromagnet.

16.1 Ferromagnet, Schwinger Bosons

Following Section 7.2, we introduce two Schwinger bosons per site a;, b;
and enforce the local constraints on their Fock space,

ala; + blb, = 28. (16.1)
A bond operator is defined as
Fij =ala; +blb;. (16.2)

The ferromagnetic Heisenberg model of spin S is written as
H = -JY S-S,
(i5)
J
= -2 [.ﬂj.}'ij —25(5 + 1)]
(i)
J
= -3 (: 77y -28%). (16.3)
(i5)
The sum E(i ;) is over bonds with endpoints (%, j), and : : denotes normal

ordering (see (C.18)). Equation (16.3) is generalized to SU(N) by increasing
the number of Schwinger boson flavors from 2 to N:

(ai,bi) - (a,-l, Q244 ,am) . (16.4)

The bond operator is generalized to

N
Fi =Y alajm (16.5)
m=1
and the constraints are
N
> alam =NS =0,1,2,.... (16.6)

m=1
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The SU(N) ferromagnetic boson (FM-B) Heisenberg model is

J
FM-B _ .t .
HFMB(N) = -3 (: FF, NS
(35}
_ J mm’' om/m NS2
= %2 Zs,. Spm—NS?|,  (16.7)
(7] mm/’

where the second line is given by rearranging the operators and defining
the SU(N) generators as
s™™ —qla (16.8)

mYm!*

Smm’ obey the SU(N) algebra
[smm’, s##’] = Oy S™ — Epyr ™. (16.9)

A particular “spin size” S is defined by the constraint (16.6). For SU(2)
we recognize the usual spin operators as §!2 = §*, §%! = §~ and S =
S*+ 8.

It can be verified that H¥M~B ig invariant under uniform SU(N) trans-
formations on the spins. We have intentionally written the Hamiltonian as
a negative quadratic form —.7-"3.7-',_1 As we shall see, this allows a natural
starting point for decoupling the interactions in the mean field theory.

16.2 Antiferromagnet, Schwinger Bosons

We consider the case of nearest neighbor antiferromagnetic interaction J >
0, on a bipartite lattice with sublattices A, B. A bond (ij) is defined such
that ¢ € A and j € B. The antiferromagnetic bond operator is defined as

/T,'j = aibj - biaj. (16.10)

The arrow — denotes the antisymmetry with respect to interchange of
i — j. We define a spin rotation by n about the y axis on sublattice B
which sends
a; — -—bj ) bj —>aj . (1611)

This is a canonical transformation which preserves the constraint (16.1).
The antiferromagnetic bond operator transforms into a symmetric opera-
tor:

.A,'j — .A,'j =a;a; + bib_—,’. (16.12)
The SU(2) Heisenberg model is written in the form

H = J; Si-S_—,'
l"..)
(45
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J 1 2
ij

As in the ferromagnetic case, H can be generalized to N > 2 models
by adding Schwinger boson flavors. The constraint is generalized to (16.6),
and the bond operator is generalized to

N
Aij = ) GimGjm. (16.14)
m=1

The SU(N) antiferromagnetic bosons (AFM-B) Heisenberg model is

J t 2
(5)
J mm' Gm'm 2
-~ > spmSrm —NST|, (16.15)
(i5)

mm/

HAFM—B(N) —

where ., .
S;"m = QjnGjm (16.16)

are the generators of the conjugate representation on sublattice B. One
should note that HAFM~B of (16.15) is not invariant under uniform SU(N)
transformations U but only under staggered conjugate rotations U and U'
on sublattices A and B, respectively.

16.3 Antiferromagnet, Constrained Fermions

In Chapter 2, we first encountered quantum spins which are bilinear elec-
tron operators. Spin half operators can be represented by two states per
site ¢, 1), 7, |), which are occupied by a single fermion, i.e.,

Nyt +n;y = 1 (= 25) (1617)

This representation is limited to S = % due to the Pauli principle.! The
spin operators are (see (2.10))

sF = CITCw

S, = CILCiT’

SF = 1(T fe) (16.18)
i = 2 ciTciT —_ c'-‘:lcil . .

I Representations of S > % can be constructed by adding orbitals and addi-
tional constraints.
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The bond operator is defined as
+
Dij = cjCjy +c11 i1 (16.19)
and the Heisenberg model is written as
H o= J) S-S,
(i)
- Iy ipip. . 16.2
= -5 :DiDy:. (16.20)
(i)

It is possible to generalize representation (16.18) to SU(V) by introduc-
ing N flavors of fermions, ¢;;m, m = 1,..., N, such that

1

smm =clc ., (16.21)

which obey the SU(N) algebra (16.9). The constraint on the fermions is
generalized to

Z CimCim = NS, ~ (16.22)
where S is the generalized “spin size.” The bond operator is defined by

Z C}nCim- (16.23)

The SU(N) antiferromagnetic fermions (AFM-F) Heisenberg model is given
by generalizing (16.20),

HAFM—F(N) — _Zzsmmsmm

(i) mm/

= __Z s (16.24)

(5)

16.4 The Generating Functional

The generating Hamiltonian is defined by
H[]] =H- Z -7"'""' (T) atm im/’) (1625)

where 7 € [0, 8) is the imaginary time. The constraints (16.6) or (16.22) are
enforced by the projector Ps, which commutes with H[j]. The imaginary
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time generating functional (see (D.1)) is

Zlj] = TrPsT. |:exp (— /: dr 'H[]])]

8
lim Ty T, I1 [Ps(7)exp (—eM[i(ra))].  (16.26)

Tn =€

We use an integral representation of the constraint

Ps(r) = /’D/\ exp [—zeZ/\ (m) (am im — )] , (16.27)

where the measure of the constraint field is

/ DA —hmH /_ D (16.28)

The exponential of (16.27) and H[j] can be combined in the exponent since
they commute.

Following Appendix D, we construct a coherent states path integral for
the generating functional which has unified notations for the Schwinger
bosons and constrained fermion Hamiltonians:

2lj] = /_ZD,\ /’D2zexp{ —/:dr[;z{mafzim+HLj]
+zZ/\ (T)(ZimZim — )]},

(16.29)

where z are complex variables for the bosons or Grassmann variables for
the fermions. The Hamiltonian function is

H[]] ___Z ij 1_1 Z jimm’(T)z:mZiml, (1630)

(i3) imm/

where

z,mz_,m AFM-B
Em im Jm AFM-F

where the FM-B, AFM-B, and AFM-F Hamiltonians were defined in (16.7),
(16.15), and (16.24), respectively.

Em im Jm FM-B
Z = , (16.31)
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16.5 The Hubbard-Stratonovich Transformation

Biquadratic (four-variable) terms in the Lagrangian cannot be readily in-
tegrated in the path integral. These terms can be decoupled into bilinear
terms using the Hubbard—Stratonovich identity

exp [%Z'Ze] = /_.(:d2Q
X exp [_ <z 0+ 20" +N|Q|2) ]
(16.32)

where

d*Q = ReQ dimQ . (16.33)

A complex variable Q;;(7) is introduced for each bond (ij) at each timestep,
and the integration measure is defined as

D2Q = [] 4°Q:; (7). (16.34)
(i5)T

Using (16.27), (16.29), and (16.32), we obtain
/ D’QDAD?z

X exp [—/ﬂdT (L[]] +N—|Qj]—j|2 —iNSZ/\,-)] ,
0 i
(16.35)

where the Lagrangian is quadratic in the 2 variables,

Liz*,2, 5] sza Zim + 3 (25Qu + 25Q3 )
(i3)

3" Gimm + iAimm ) 2im 2oy (16.36)

imm/’

For normal Lagrangians which contain only 2*z terms, e.g., the FM-B and
AFM-F cases, the Green’s function matrix G is defined by
L = z*G7Yj=z,
G' = 8, +) +0 -], (16.37)

where 8, is defined in (D.9) and A, Q, ; are read from (16.36).
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For anomalous Lagrangians, such as the AFM-B, one has
£ = @oanel(2),
Zp

A-1 a‘r 'hi_j QAA R
G = ( ot s, _l_/\_j), (16.38)

where z 4, 2p are the variables of sublattices A and B, respectively.
Following (C.13) and (D.11), we integrate the z variables and obtain a
path integral of the auxiliary fields,

zlj) = / D2Q DAexp[~NSIA, @, 5]

_ n Al o Qi1 .
§ = —3Trim (lnG[]]) +/0 dr (%;T —zSXi:/\i).
(16.39)

This expression is the starting point for a steepest descents expansion con-
trolled by N as the large parameter. The large N expansion will be reviewed
in Chapters 17 and 18.

16.6 Correlation Functions

The connected two spins correlation function is given by

Rmm'(1’2) = (aIn,lam’,laIn’,2am,2>
_ g1 8z
6jmm’,16jm’m,2 j=0
2

= Z_I/D2QDA —NL

6]mm’,16]m’m,2
S 6S

+N2 N N ex _NS Aa L]
6]mm’,l 6]m’m,2 p( [ Q])
(16.40)

where 1,2 are points in space-time, and all functions in the integrand are
evaluated at 5 = 0. By the symmetry of S with respect to flavor indices, the
second term is proportional to my,, and Rm#m' is independent on m,m’'.
For SU(2), the FM-B and AFM-F correlations are related to the usual spin
correlations by

sz;nl(l, 2) = (S{t(Tl)S,; (72))- (16.41)
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For the AFM-B case, the sublattice rotation (16.11) implies that

o ! + - . .
sz;n (1,2) = { (S (n)5;,(m2)) iz €A

—(S:(Tl)Sj;(Tz)) 1 € A, i€ B ) (1642)
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The Large N Expansion

In Chapter 16, we derived the functional integral representations of the
generating functional and correlation functions for three families of SU(N)
Heisenberg models. Expressions (16.39) and (16.40) are exact, but the inte-
gration over () and A involves a complicated nongaussian weight exp(—NS).
The path integral can be expanded by the method of steepest descents as
explained in Appendix E, where N is the large control parameter. A large
value of N suppresses contributions from large fluctuations about the sad-
dle point. N plays a role similar to the spin size S in the semiclassical
expansion.! In contrast, however, the large N mean field theory is by no
means “classical”: it includes the disordering effects of quantum fluctua-
tions.

The saddle point configurations are denoted by A, Q. For fixed auxiliary
fields, the Gaussian Lagrangian L(X, Q) describes noninteracting z parti-
cles. A\, Q are determined by the saddle point equations?

8S
| = (m)-5=0 (17.1)
A’Q
LN - 6—68— =0, (17.2)
2Qil5q 4150

which are commonly called the “mean field equations.” (n) denotes a mean
field expectation value using the saddle point Lagrangian L(A,Q). In mean
field theories described in Chapter 18, X, Q are static and uniform fields,
i.e., one has only two variational parameters whose inputs are the lattice
structure, spin, and temperature.

Loosely speaking, the physical meaning of mean field theory is the “best”
quadratic Lagrangian that approximates the energy and correlations of
the Heisenberg model. However, we emphasize that it is not a variational
theory. The mean field Hamiltonian and ground state admix unphysical
wave functions which violate the local constraints. Also, the mean field
excitations (“quasiparticles”) violate the constraints by including density

See (10.25).
2There are cases where the saddle points of the fields Q and Q* are not
complex conjugates; see Auerbach and Larson.
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fluctuations of Schwinger bosons or constrained fermions. Constraint con-
serving excitations are composites of even numbers of quasiparticles. The
local constraints are reintroduced into the theory through the dynamical
fluctuations of the field A. This statement will be made precise in Section
17.3.1.

Q;; are effective fields which couple to the quasiparticles. The physical
interpretation of these fields is given by the mean field equation (17.2),

(Fi;) FM-B
(Ai;) AFM-B. (17.3)

6S
= Qi = {
x,Q N<Di.‘i> AFM-F

0=~
5Q;,

ZjwZl

Thus Q;; depend self-consistently on the expectation values of the bond
operators.

17.1 Fluctuations and Gauge Fields

We restrict the discussion of this section to the Schwinger boson models
FM-B and AFM-B. There is a semiclassical interpretation for the fluctu-
ations of the Hubbard-Stratonovich fields Q;; in terms of physical spin
correlations. This is elucidated by the matrix elements of F;; and A;; for
N =2, between spin coherent states defined in Section 7.3. The ferromag-
netic bond operator yields

F J

ij = §<Qi|S(QJ'|S—% i Q) s-31Q)s

= JSemX)/2 (yru, + v}v))
= JSexp (—%wg) |(1+fz,~-fz,-)/25, (17.4)

where |28, ¢))s and u(6, $),v(6, ¢) are defined in (7.18) and (7.14), re-
spectively. The phase ¥ is given by (7.19). By (17.4) we see that Q is
maximized for ferromagnetically correlated spins €; = Q_,-.

For smoothly varying configurations, wfjf can be expanded to linear order
in the spin deviations (see (7.19)),

U’fiw“ = —cos(6:)(¢i — dits,) + Xi — Xits, +O (6,17
A(Qi) ) auQil‘sul- (17-5)

1R

{6.} are the nearest neighbor vectors on the lattice. A is the monopole
vector potential defined in (10.18), and x;’s are arbitrary gauge choices.
A continuous gauge field is defined by

1 N N
Au(xi,r) = EA(Q,) . BuQ,- , n = 0, 1, e ,d s (176)
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where 0y = 0,. The gauge invariant (“electromagnetic”) field describes
chiral spin correlations

F, =0,A,-0,A, = %a,‘fz x 3,0 - Q. (17.7)

A finite value Fj,,, # 0 implies noncoplanarity of the local spin correlations
in the p — v plane. That is to say: the spins in a finite area on the u — v
plane subtend a finite area on the unit sphere.

For the antiferromagnetic case, the bond operator yields

J o A . it
b= g sy sy Ay [ Q5)s = JSe Ot x)/2 (w05 — viuy)

= JSexp (—gw{}) |(1—fz,~-fzj)/2%. (17.8)

Q" is maximized for antiferromagnetically (Néel) correlated spins Q ~
—€2;. The Néel field is defined as

N 1 ~ _ ~ 1 i€eA
i(x;) ~ 2 ni82; + (2d) 1627){+6,.Qi+6,. , o M= {_1 ic B’ (17.9)
3
For antiferromagnetically correlated configurations, fi is approximately a
unit vector field parametrized by (6, ¢). The bond phases wg are approxi-
mately given by

Yivs, = —mcos(8:)(d: — dirs,) + (i — Xits,)

~ mA(R) - 9,018, (17.10)
The Néel gauge field AV is defined as in (17.6):
AV (x;,7) = %A(ﬁ) - 9,8, (17.11)

where again 8y = 8,. The Néel “electromagnetic” field describes chiral
fluctuations of the staggered magnetization,

1, . A
FN =0,A) -98,AY) = 58,‘n X O, - f. (17.12)
In one dimension, the “electric field” Fy) is
1
FY = 5a,;a X Oy0- A, (17.13)

where the right-hand side is proportional to the “topological density” in
the (z, 7) plane.?

The association between the phases of Qfg and chiral Néel correlations
has been useful for understanding the correspondence between the large N
and the semiclassical continuum approaches.*

3See Section 15.1, and Exercises 2 and 3 of Chapter 13.
“See Read and Sachdev, bibliography of Chapter 18.
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17.2 1/N Expansion Diagrams
We denote the fluctuations about the saddle points by
Ta = [iXi(7) — A, ReQij(1) —ReQ, ImQ;;(r) —Im Q] , (17.14)

where o includes field, space, and time indices. By (17.1) and (17.2), the
Taylor expansion of the action about the saddle point has no linear terms,

«

1 N
§ =89 4+ 8Qrare +5™, (17.15)

where summation over repeated indices is assumed. S includes third-
and higher-order terms:

[o o)

in 1 n
St = Z msgzl?..an Tai " "Tay,: (17’16)

n=3

8™ are determined as follows. The action is written as

S So + %’Iﬂn (1 + Gograﬁa) :

S = Inmeyt+ [ d Yl o5,
O—Nn0+07- J_"'Zti

GO = GA(Q_aQ_*a’_\)a

(17.17)

where G was defined in (16.37) and (16.38). Gy is the mean field Green’s
function. The matrices ?,, are “internal vertices,” which conserve m-flavor
and connect the field r,, to two Gg’s. Using the identity

oo _1 n
Trin(l + A) = —Z( ) Tr (A)", (17.18)
n=1
we obtain an explicit expression for
n+1
o U 5 Go.--6
Sort oy = N XP:U'IY (90, Go * * * 0, Go) - (17.19)

> p is a sum over all permutations of (aj,...a,). The trace sums over
space, time, and m-flavors. S(™) are diagramatically depicted as “loops” of
mean field Green’s functions of the same m index with n internal vertices,
see Fig. 17.1.
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FIGURE 17.1. §® — a loop with five internal vertices.

The “RPA propagator” is the inverse of the quadratic form

-1
Dgo = (%5(”) = (o - 1), (17.20)
where
Mo = %’h(ﬁaGoe&,Go) . (17.21)

II, is diagonal in momentum and Matsubara space. In the auxiliary field
representation (Re @Q,Im Q, A), it is given by

100
I, =0 1 of. (17.22)
000

The term “RPA” (random phase approximation) is commonly used to de-
scribe Gaussian fluctuations about mean field theory. det D should always
be calculated in order to verify that

Redet D > 0. (17.23)

Zeros and negative values of Redet D are dangerous, since they invalidate
the mean field theory as a legitimate saddle point.

By expanding the prefactors and exponential in (16.40) in powers of 4,
the correlation function is given by the sums

R™'(1,2) = RI(1, 2) + bmm RT1(1,2),

('n+2)
/Dr ( 12a1,a"ra1“'ran
n=0 n!

L
© N (&1
X Z ( ) (Z msg:?..a" Tay "'ran) exP(__S(ﬂrarﬂ)
L=0

n=3
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FIGURE 17.2. A Loop of five vertices, two of which are external.

/ > (Z LS e ) (S St e

n=0

L
0o 0o 1
(Z Esg:?..a" Ta, *** 'I’a") exp (_ _S(grarﬂ)

L=0 n=3

(17.24)

where we have disregarded the constant —NS in the action. We define
the external loops which contain one or two current vertices (see Fig. 17.2)

6 1
(n) = _—gcn+l
6]'7"(1)8&1,0!" Nsl,al,a,, ’
52
— % sm = gD 17.95
8im(1)65:m(2) Saijan 1,2,01,0n ( )

The integrals in (17.24) are sums of multidimensional Gaussian integrals.
The property of Gaussian integrals is that an integral over an even number
of fields can be written as a sum over pairwise “contractions”

—N—
T = Z Tilip ©o0 TkTigy (17.26)
in,.. 0k

where the contraction of two variables yields

PN N -
rre = z-! /Dr TairTa'i'r! €EXP <_7ra a,}jrﬂ)
1
= —Dos. 17.27
NP2 (17.27)

The propagator is depicted as a wavy line which connects two vertices in
Fig. 17.3. Given a certain number of loops, diagrams are constructed where
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FIGURE 17.3. Diagrams with contracted internal fields.

the vertices are connected by D’s in all possible ways. A disconnected part
of the diagram contains loops that are not connected to the external loops
(17.25). For the correlation function, we need only consider the connected
diagrams, since the disconnected parts cancel the normalization factor Z~!.
This is the “linked cluster theorem.” Thus, calculating any particular di-
agram involves multiplying all possible loops with vertices contracted by
propagators and summing over internal indices. An important condition is
that the internal loops (which do not contain an external vertex) must have
at least three vertices. External loops might have any number (including
zero) of internal vertices. The order in 1/N of any particular diagram is

given by
1\P-L
<N) , (17.28)

where L is the number of internal loops, and P is the number of propa-
gators. After summing over all diagrams at order 1/NP, we obtain R(P),
which are the coefficients of the series

R™™(1,2) ~ Y NPR™™()(1,2). (17.29)
p=0

The ~ denotes an asymptotic series. Equation (17.29) may not converge,
and it may miss essentially singular terms such as e~V (),

17.3 Sum Rules

The diagramatic expansion of the 1/N series has a special structure that
allows us to obtain certain identities, or sum rules, which hold at each order
in the 1/N series. By the very definition of D, the constraint of no charge
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fluctuations is enforced order by order. We shall see how this works below
for both Schwinger bosons and constrained fermions. In addition, we derive
a sum rule for the local SU(N) spin fluctuations, for all N.

17.3.1 ABSENCE OF CHARGE FLUCTUATIONS

Here we shall demonstrate that the constraint is imposed exactly to each
order in 1/N. In other words, the density fluctuations vanish identically
after all diagrams of a given order are summed, yielding

(1 A) = NS (A), (17.30)

for any operator A, where {(-)) is the exact expectation value at any tem-
perature.

It is instructive to see how (17.30) is derived by the diagramatic expan-
sion. The Lagrangian in the presence of the corresponding source current
contains the term

(Jr +iA1) (Z z{'mzlm) —iANS. (17.31)

The external vertex with respect to j; is identical to the internal vertex
of the constraint field A;. By differentiating S[j] twice using (17.25), we
obtain

8P = —illy, o (17.32)

and by (17.20) and (17.22), we obtain
D My aDae =—(D)aer + (MoD)ry,ar = —(Mrer,  (17:33)

where I projects onto the A field sector. In order to evaluate (17.30) diagr-
mmatically, we consider the connected diagrams that contain the external
loop S™*+Y . n > 0. Let us first consider all possible diagrams with n > 1.
We define a ‘“tail” of a diagram as the combination of a propagator at-
tached in series to a loop II,, , which was defined in (17.21). All diagrams
can be separated into two classes: ones with a tail, and ones without a
tail. It is easy to identify for each diagram without a tail, say, I'(ny,.4), a
counterterm I'(n;,.A) by attaching a tail to the j; vertex, as depicted in
Fig. 17.4. By (17.28) they are both of the same order in 1/N, since they
have the same number of loops minus propagators. Using (17.33) we prove
that the term and the counterterm must precisely cancel:

f(nl,A) = NZH,\laDa,a’F(nl’A)

aa’

= Z _6A1,a’+Z(HO)A1,aDa,a’ F(a,aA)

o

= -I'(m,A). (17.34)
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n A
r — hll
+

=0

FIGURE 17.4. A charge fluctuation diagram and its counterterm.

Thus, to any order of 1/N the counterterms cancel the connected terms
in the charge fluctuation diagrams. The only terms that survive are the
disconnected diagrams with n; on the loop S(1). The diagram rules exclude
a counterterm to the loop NSV since there can be no internal loop with
one or two vertices. The saddle point condition (17.1) implies that

(n1) = NS, (17.35)

which completes the proof of (17.30). Q.E.D.

17.3.2 ON-SITE SPIN FLUCTUATIONS

Here we shall evaluate the on-site spin fluctuations. For SU(2), we are
familiar with the “spin square” operator S, which when projected to the
S sector yields S(S + 1) times the identity matrix. The SU(N) generators

S::nm’ = aImaim: (1736)
define the on-site fluctuations as
g™ = (S Sy, (17.37)

where ((-)) is the exact expectation value, at any temperature. Using the
constraint, it is easy to determine the expectation value, of the “spin
square” operator,

Z Smm’ — «Z [nim’(l + ‘I]‘I'Lim) - nsmm’nim’]»

mm/’ mm/’

= N2?5(1+1S)—-nNS. (17.38)

(For the constrained fermions case, we have used the identity n2,, = n;m,.)
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m
FIGURE 17.5. S™*™ — the sum of all propagator irreducible diagrams.

Since the path integral is SU(N) invariant, we can determine the in-
dividual correlations S™™ as follows. First, we find the relation between
diagonal fluctuations S™™ and the off-diagonal fluctuations S™#™ . In a
rotationally symmetric system, these quantities cannot depend on m or m'.

By (17.24), S™#™' is given by the path integral R!. Since internal vertices
conserve the m index, all diagrams in S™*™  are connected and cannot
be separated into two parts by cutting any number of propagator lines.
We denote these diagrams as propagator irreducible (PI) and depict them
in Fig. 17.5. All PI diagrams that constitute S™*™' also appear in the
connected part of the diagonal correlations ST'™, i.e.,

if TP7 ¢ §™*™  then I'P! ¢ g™, (17.39)

However, for each I'”*, S™™ also contains a counterterm I'P7 which has a
tail attached to it on one end, see Fig. 17.6. Using (17.33), the term and
its counterpart add up to

TP(3,8) + TP1(5,5) = TPIG,i) + Z TP1(i,0) Do ars,
aa'

(1 —1/NTP1(i,4). (17.40)

In addition to PI diagrams and their counterterms, there are contribu-
tions to S;*™ that have the two external vertices on different loops. These
are propagator reducible (PR) diagrams. However, it is easy to show that all
PR diagrams cancel exactly with counterterms, as shown in Fig. 17.7. This
is done by adding a tail to one of the loops and seeing that the counterterm
is of the same order in 1/N due to the additional m/-summation for the
loop that became internal. This proves that all the diagrams that do not
cancel are PI. Using (17.38), we obtain the following important identity:

Smm(i4) = (1 - %) SmEM (5 3). (17.41)
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FIGURE 17.6. S7*™ — propagator irreducible diagrams and their counterterms.

FIGURE 17.7. S7™ — cancellation of propagator reducible diagrams.

By separating the connected and disconnected parts of S™™ and using
(17.41), we obtain the on-site fluctuations as

S = 3 ST + 3 (STTD + ()]

mm/’ m#m’

[N(N -1+ NQ- N)] S™A™ (i 4) + NS2.
(17.42)

Equating (17.38) and (17.42), we obtain the desired identity

§mFm(1,1) = —N- S(1+ 1S). (17.43)
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For N = 2, (17.43) reduces to the known result:

2
(S+S7) = { S (S+1) Schwinger bosons (17.44)

3 constrained fermions °

(17.43) can be used to check diagramatic calculations of spin correlations at
any order in 1/N. In momentum and Matsubara frequency representation,
the sum of all the diagrams of order (1/N)P must obey the total moment
sum rule:

O T D n) = (5) (CaPSA+08), P02
kn

(17.45)

17.4 Exercises

1. Evaluate the spin correlations for the one-dimensional half filled Fermi gas

197 = J] clelil0)- (17.46)
\kj<x/2

Hint: Prove the following identity and evaluate it:
- 1
§T (@)= N Z(CLTCk+qlCL+qlckT)' (17.47)
k

2. By summing over g, evaluate the on-site fluctuations (S;"S; ). Compare
the result to the sum rule (17.44). Explain the discrepancy.
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Schwinger Bosons Mean Field
Theory

In this chapter, we review the large-N Schwinger bosons mean field theory
(SBMFT) for the case of the Heisenberg ferromagnet (FM-B) and antiferro-
magnet (AFM-B) in one dimension and on the square lattice. The SBMFT
(in contrast to spin wave theory of Chapter 11) maintains an explicit SU(2)
symmetry of the effective Hamiltonian.! We shall see that the SBMFT re-
covers the main results of the continuum approaches (except for © term
effects) described in Chapter 15.

In the following, N is held as an independent parameter. We set N — 2
when evaluating spin correlations of the physical Heisenberg model.

The SBMFT is given by replacing the auxiliary fields in the action of
(16.39) by static and uniform saddle point parameters:

NS [Qij(T), A1(7—)] - NSO(Q, _'LA) = ﬁFMF(Q, A) (181)
FMF s the mean field free energy, which can be written as
FME(Q,X) =~ InTr;m, [exp (-BHMF[Q,N])], (18.2)

where HMF is the mean field Hamiltonian of N decoupled boson flavors.

18.1 The Case of the Ferromagnet

Using (18.1) and (16.36), the mean field Hamiltonian for the FM-B in the
absence of external current sources is as follows:

Z Aa‘1,ma“”'n -Q Z ( 2m%im + a;mazm)

(ig);m
2
+NN—— — NNSX
Q2
= D g a +NN —NNSA. (18.3)

k,m

! A modified spin wave theory which is similar to the SBMFT but breaks spin
rotational symmetry was developed by M. Takahashi.
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N and z are the number of lattice points and number of nearest neighbors,
respectively, k is the lattice momentum, and

€k = A-2Qv,
ne = 2y ek (18.4)
]

71 are the nearest neighbor vectors.
The mean field free energy is

2
MF _ _e kT 2Q°
F N%ln (1 e ) + NNZ5 — NNSA. (18.5)

The saddle point equations (17.1) and (17.2) are obtained by minimizing
F with respect to A and Q:

%[an = S, (18.6)
k
1
Nan'yk = Q/J, (18.7)
k
where 1
e -

Equations (18.6) and (18.7) uniquely determine the mean field parameters
Q(T, S) and (T, S).

It is convenient to use the more physical parametrization of the mean
field variables,

€k ZQ(]. %t énz)’
K2 42(A\/2Q —1). (18.9)

2@, k describe the bandwidth and the inverse correlation length, respec-
tively. In Fig. 18.1 the mean field dispersion for the ferromagnet in one
dimension is shown.

By subtracting (18.7) from (18.6), one obtains an explicit expression for

Q:
J
Q=JS-+ % nc(1 = me)- (18.10)
Although at small arguments ny ~ (B¢ )", the integrand on the right-

hand side is bounded at k — 0, and the sum has a regular power series in
T. At low temperatures T << z(), one obtains

Q=JS +O(T/JS). (18.11)
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-t 0 Tt

FIGURE 18.1. Mean field dispersion for the one-dimensional ferromagnet.

At finite temperatures, x > 0 and ¢ has a gap of 2Qr?/8 at k = 0. As
we take T — 0, and N’ — oo (the thermodynamic limit), the Bose function
vanishes for all k # 0. In order to satisfy the constraint equation (18.6),
there must be a macroscopic occupation at k = 0:

1 1 4T )
S = NXk:nkrano— Visz T o), (18.12)

) [ 4T
7111_1'1;})5 = m. (18.13)

In order to study the spin correlations, we restrict ourselves to N = 2,
and introduce a magnetic field in the z direction, which couples as the term

HMF _, pgMF _ h’z Sz

1

which implies that

HMF_p " sdl,a,. (18.14)

is=+3%

The field splits the degeneracy between the two Schwinger boson disper-
sions
€km = €k — hs. (18.15)

The constraint equation yields

§ = %%%N_ik: (et ) + mlerc _y)]

1
— EN_ln(eo,+%), (18.16)
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and the magnetization is given by?

1, .. ..
me = 5j\[ ! hh_ngr %: [n(fk,+%) - "(fk,-%)]
1 .
= EN ln(60,+%) =S. (1817)

Thus, under an infinitesimal magnetic field the Bose condensation at T=0
occursat k =0,8 = +%. The Bose condensate is complete in the sense that
all the available Schwinger boson density (25 per site) is accumulated in
that single mode. The order parameter for the Schwinger boson condensate

is
(ak = v/2N'mqb, ;6k0 (18.18)

This order parameter violates the constraint (i.e., it connects states of
different spins). Nevertheless, it has a precise meaning within the mean
field theory and the 1/N expansion.

The condensation of all bosons into the lowest state translates to the
spin state

F =]‘[(aj.,+%)23|o> =1S,5,...), (18.19)

which agrees with the exact ground state as given by Corollary 5.6 of
Marshall’s Theorem; see (5.37).

We note that the SBMFT dispersion € reduces at T — 0 to ferromag-
netic spin waves, which vanish as (see (11.49)):

%1_1{1()61( —wp = 2JS(1-)
~ JSk® +O(K*). (18.20)
The vanishing of the Schwinger boson energy at k = 0 is expected by

Goldstone’s Theorem; see Section 9.2.
The susceptibility is given by

_d?F(h) 1 d*F(h)
2h AN &2

ﬁ 3 (g + 1). (18.21)
k

XMF = N

The mean field spin correlations are given by the free boson expression

(SHS7Imr =

1
(a i+3%-1%,-4 J,+l>

2See (6.3).
3See Hirsch and Tang.
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|R.'j|2 +S6.'j ,

Ry = g2 me, (18.22)
k

where we have used the identity (18.6). By (18.6) and (18.22) the local spin
fluctuations are

_ 1
(SFSTImF = 57 > nplmye +1) =SS +1). (18.23)
kk
For SU(2), the exact result is, of course, 25(S+1). By the sum rule (17.43),

we verify that (18.23) recovers the correct (1/N)° contribution to the fluc-
tuations.

18.1.1 ONE DIMENSION

In one dimension at low temperature T' << JS, the sum in the constraint
equation (18.6) is dominated by the region of small energies and momenta.
For small k,

€ =~ JS(inz+k2+...) ,
n(e) ~ Tle. (18.24)

At low temperatures, we replace the upper momentum cutoff by infinity.
This yields the leading-order temperature dependence of the constraint sum

T [ 1
—1 2
N %nk —JSW/O dk preswe +0O(T?)
~ T/(JSK) ~8S. (18.25)

Thus, we obtain
k ~T/(JS?) +O(T?). (18.26)
The low-temperature susceptibility is also dominated by the small-mom-

enta part of the integral. By expanding the term (18.21) in powers of k, we
can calculate its leading temperature dependence:

1 ["dk
MF _
X 2T/ 2m mk(ne +1)

JSs4

T2
The exact susceptibility x of the S = % Heisenberg ferromagnet has been
calculated by Takahashi using Bethe’s solution. He finds that

(18.27)

-1 J, 2
x5=13 ~ 5T 2 o gxMF (18.28)
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This discrepancy of 2/3 was previously found in the local spin fluctuations
(18.23). It is surprising, however, to find the same factor for a long-range
spin correlation function such as y.

R;; of (18.22) can be evaluated at large distances by the behavior of the
integrand at low momenta:

T (o gikli-il ~ dntims]
R-,'j ~ m‘/o dk W =Se 2 , (1829)

where we have used (18.26). At low temperatures and large distances, using
(18.6) we obtain

(SES)aer ~ 5%, (18.30)
which establishes that the parameter x is the inverse correlation length
€ =71 ~JS?T. (18.31)

This result agrees with the exact correlation length of the classical Heisen-
berg ferromagnet in one dimension evaluated by M. Fisher.

18.1.2 Two DIMENSIONS

We consider the square lattice, where 2 = 4. A useful function for evaluating
momenta sums is

o) =N Y6y —m) = K177,  (18.32)
k

which describes the density of states of the tight binding hopping matrix
on the square lattice, where

T = %(cos kz + cosky). (18.33)

K(m) is the “Complete Elliptic Integral of the First Kind™ defined by

1 1

K(m) = / dt [(1—2)(1 - me2)] "}
0
6(m) [3 + Em + O(m)?] m<<1

{%m [167(1 > m)] 1—m|<<1 (1834
The important features of p(-y) are the step function discontinuities at v =
%1 and the logarithmic divergence near ), = 0. This function is plotted
in Fig. 18.2. Since the dominant low-temperature correlations depend on

4See Abramowitz and Stegun, p. 590.
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1/m 4

I T !
-1 0 1

Y

FIGURE 18.2. Density of states for the tight binding dispersion ), on the square
lattice.

p(v) at ¥ = 1, we simplify further calculations by replacing
_ 1
pY) = p = —, ell-m]],

/1 dvo(y) = 1, (18.35)

-

where we have extended the domain of 4 to keep a unit total density.
With this quite harmless approximation, it is easy to solve the constraint
equation:

T 1 1
—1 ~ o - -
N %:"k ~ 4JSx /1_,,‘17 41— ) +x2/4
T
JST

Inverting this equation and using (18.11), we obtain the leading order in
temperature solution:

In(167/x%) + O(T?) = S. (18.36)

T

The spin correlations at large distances can be evaluated using the Orn-
stein-Zernicke approximation® to Ry,

_ 2
Kk = V16wexp (27r—JS) . (18.37)

R, T [ &k K%
d JS J (2m)% 1k2 + k2

o (xis1/€)~F exp (=i w/2) (1+ﬁ) (18.38)

1)

5See (13.48).
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where x;; = x; — x;. By (18.22), we find that

(S25F)mr o lxie—lev'/ﬁ : (18.39)
ij
where
E=xk"1 | (18.40)

i.e., k7! is the spin correlation length. We therefore conclude that the
correlation length increases exponentially with decreasing temperature and
that there is no long-range order at any finite T > 0, in accordance with
Mermin and Wagner’s theorem.

Recall that we have seen in Section 13.1 that the classical Heisenbery
ferromagnet is described at long distances and low temperatures by the
nonlinear sigma model with coupling constant:

T
JS§?°
We find that (18.37) recovers the renormalization group result to one loop
order (13.55) and the large N approximation to the CP¥~! model (14.26).

f= (18.41)

18.2 The Case of the Antiferromagnet
By (16.31) and (18.2), the mean field Hamiltonian for the AFM-B repre-

sentation is
ZAatm Cim +Q Z ( Cim Jm+atma3m)

(ij).m

+NN

> ['\“Lmakm + 520 (“km“_km + akma—km)]

m

2
zQ — NNSA

zQ2

+NNZ5 ~ NNSX. (18.42)

For N = 2, the SBMFT Hamiltonian resembles the Holstein—-Primakoff spin
wave Hamiltonian H; given in (11.60), except that here two Schwinger bo-
son flavors replace the single Holstein—Primakoff boson. In close analogy to
the spin wave problem, HM¥ can be diagonalized by a canonical Bogoliubov
transformation

oy =coshbya; ~—sinh Bkaf_km, (18.43)

or inversely,
ay ~ =coshbycy +sinhfyal, . (18.44)
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By inserting (18.44) in (18.42), one obtains a normal diagonal Hamiltonian
in terms of the a bosons,

1 .
HMF _ 3 g: [(,\ cosh 26 + zQy sinh 20k)(ai'(makm + akmai'(m)

+(Asinh 26) + 2Qy cosh 20k)(ai'(maf_km + akma_km)]
2Q? 1
+NNW - NN (S + 5) A (18.45)

Now, we choose 6 so that the anomalous terms afal and aa vanish. This
amounts to the following condition on 6y :

tanh 26 = —zQ;k. (18.46)

Having solved for 6, we can substitute the hyperbolic functions in (18.45)
by rational functions of the right-hand side of (18.46). This yields a normal
and diagonal Hamiltonian:

MF _ } 1 ZQ 1
H = g:wk (akmakm+§) +NN NN(S+§)/\,

wp = /A% —(2@m)* (18.47)

The mean field free energy is given by

IZm [2s1nh( )] NN( ),\+NNZQ (18.48)

The mean field equations are given by differentiating (18.48) with respect
to A and Q:

1 A 1 1
1 . 2Q
NE s (szk ( ) - = (18.50)

The mean field ground state ¥MF is the vacuum of all o’s,

o BT =0,  Vkm. (18.51)

\I»’MF

Using (18.43), one can write explicitly in terms of the original Schwinger

bosons as

1
MF — Cexp l? E uij (E a:.'ma;-m):l |0},
i m
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1 .
W o= 370 e'KXis tanh gy . (18.52)
k

For N = 2, using the unrotated operators af,bf, ¥MF is the Schwinger
bosons mean field state (8.5),

ME, = i) = exp Z Uij (ajb} - bIa}) |0). (18.53)
i€A,jJEB
UMF contains many configurations with occupations different from 2S and
is therefore not a pure spin state. As shown in Chapter 8, under Gutzwiller
projection it reduces to a valence bond state. Since

tanh(fy, ;) = — tanh(fy) , (18.54)

where ¥ = (m,w,...), the bond parameters u;; only connect sublattice A to
B. Furthermore, one can verify that for the nearest neighbor model above,
ui; > 0, and therefore the valence bond states obey Marshall’s sign as
defined in (5.13).

Although ¥MF are manifestly rotationally invariant, they may or may
not have long-range antiferromagnetic order. This depends on the long-
distance decay of u;;. As we shall see, the SBMFT ground state for the
nearest neighbor model is disordered in one dimension and has long-range
order in two dimensions.

For further calculations, it is convenient to introduce the parametriza-
tions:

o = ofte22 420 -m),

QV2z,
k= VR GAR

c

T

t = —. (18.55)

2Q
¢, K, t describe the spin wave velocity, the inverse correlation length, and
the dimensionless temperature, respectively. In Fig. 18.3 the dispersion for
the one-dimensional antiferromagnet is drawn. By (18.48), we see that near
the zone center and zone corner the mean field dispersions are those of free
massive relativistic bosons,

)
1l

W~ c\/(n/2)2 +k—k2, k,=0,7 (18.56)

When the gap (or “mass” ck/2) vanishes, w) ® are Goldstone modes which
reduce to dispersions of antiferromagnetic spin waves (11.65).
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- 0 /1"

FIGURE 18.3. Mean field dispersion for the one-dimensional antiferromagnet.

The spin correlation function is given by inserting the a operators instead
of a’s in (16.40) using (18.44). This yields

1
SMF(a) = 1-(S§Sqimr
1
1y { cost [2 (B + Oy )
k
1 1\ 1
X (TLk-}-E) (nk+q+1~r +§) - Z}

(18.57)
Using (18.49), we confirm the large N limit of the sum rule (17.43),

1
v > SMF(q) =S(S +1). (18.58)
q
For N=2, the mean field sum rule exceeds the exact result by a familiar

factor of g

The spatial dependence of the spin correlations at x;; = x; — x; is given
by

1
SMF () = |£Geig)? — lgeig)® = 71 (18.59)
where at low temperatures and long distances,
(my +3) e
V1-=m3K2/(22) +1]71

flxi;) = N_lz
k
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d%k eikX.-j
(2m)? (5/2)? + |K|?
X (1 + ei*x‘j) (x.-j|/§)_(d_1)/2 exp (—|x,-j|n/2) s (1860)

~ 2zt (1 +€'™%9)

where we have used (13.48) for the long-distance behavior at small s and
low temperatures. Similarly,

; (g + )
Xij = N
g( ) %:’Yk\/]. _,Yk2[n2/(2z)+1]—1

o< (1— ™) (|xi5]/€) 74/ exp (—|xi5]5/2) . (18.61)

Thus, for « > 0,

d—1
SMF(xi;) o €% (l,f—l) exp (—xij|/£), (18.62)

where the correlation length is £ = k1.

The uniform susceptibility is obtained directly from (18.57) using the
identity

1 1
x§F = =5MF(a=0) = = > np(ny +1). (18.63)
k

18.2.1 LONG-RANGE ANTIFERROMAGNETIC ORDER

In the absence of any magnetic fields, the ground state is a singlet. In two
dimensions and higher, we have seen in Chapter 11 that the nearest neigh-
bor antiferromagnet has long-range order for all § > % To investigate the
possibility of spontaneously broken symmetry, we introduce an infinites-
imal ordering field h which couples to the staggered magnetization. We
restrict ourselves to NV = 2 ; thus

HMF = HMF—-hZSf

1
HMF—p " sdla,, (18.64)
i73=_%1%

where we recall that the Schwinger bosons are defined using sublattice ro-
tated spin directions in (16.11). Equation (18.64) can be diagonalized using
spin dependent transformation angles Bk,a. Repeating the steps leading to
(18.47), we obtain

Wk, = \/ (A = 8h)? — (2Q)?. (18.65)
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The spontaneous staggered magnetization is given by the limit
mo = hl_i.rg m(h) ’
m(h) = lim - Zs al,0,,)
. —sh 1
- Iy e 3]
(18.66)

The constraint equation (18.49) is

— sh 1 1
2N Z < /0= sh)z On) [n(wk,,,) + 5] =S+5.  (1867)

Again, we parametrize the dispersions in terms of ¢, s, h,

wy, = c\/n2/4—(s——)zh+ (1 - me2) +O(h?),
c = V22Q,
= 2o In-cer,
h = h(z%)z. (18.68)
It
Jim r>0, (18.69)

then both summands in (18.66), with s = :i:%, are continuous at h = 0,
and therefore
lim m(h,k) =0 , (18.70)
h—0+

i.e., no spontaneous symmetry breaking. On the other hand, if
k=0WN)"! (18.71)

the s = +% summand at k = 0,7 contributes a term of order A. This
yields a macroscopic contribution (i.e., order one) to the staggered magne-
tization (18.66). Since it also represents a macroscopic contribution to the
Schwinger bosons density (18.67), we can say that there is Bose condensa-
tion of the s = +3 bosons at k = 0,7 (see discussion after (18.18)). The
order parameter for the condensate is thus

(o) = (air“) =y Nm05 4 (5](,0 + 6k,1?) . (18.72)
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To evaluate mq = limy,_,q m(h), we subtract (18.66) from (18.67), elimi-

nate the diverging s = % summand, and obtain

1
mgy = S+’2-
i 2
- 11m+ fim N7 = 2t2htr/ [n(aJk;)+%].
h=0 I \/2h+R2/4+2(1 - 7?) :

(18.73)

By keeping h > 0, we maintain a gap in the spectrum and in the denomina-
tor of the summand. Thus, we are allowed to replace (18.73) by an integral
in the thermodynamic limit, and at T = 0 we can set n(w) +%) = 0 and

& = 0. This yields
1 1 fd% 1
2 2) @m)/T-y2

The integral yields for cubic lattices in d dimensions the numerical results

mo =28+ (18.74)

0 d=1

mo(d) = { 5—-0.19660 d=2. (18.75)
S —0.078 d=3

Notice that, in contrast to the ferromagnetic case (18.17), the ordered mo-

ment is always less than the classical value S. This is due to the quantum

zero-point motion, which has its origin in the noncommutability of the

Hamiltonian and the staggered magnetization. The SBMFT results for mq
agree with low-order spin wave theory given in (11.69).

18.2.2 ONE DIMENSION
At zero temperature, we set nj =0 and expand (18.49) as

S+l — l/ﬂ.‘ﬁ 1
2 —n 27 \/1 - ﬁ,‘i’27§ cos?(k)
1 1
- ()
~ %m (8‘/_) +0O(r), (18.76)

which results in

k ~V32exp [—7r (S + %)] : (18.77)
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In (18.75), we found that there cannot be long-range order in the SBMFT
ground state of the one-dimensional antiferromagnet. Since x decreases ex-
ponentially with S, we can neglect s as we neglect higher-order corrections
in S~1. By subtracting (18.50) from (18.49) one obtains

™ 202
c = J S+1—1/ g_k_—smk
2 2/ T \/K2/8 +sin® k
1 2 .
~ J S+§—;+O(I€,S ) - (18.78)

While ¢ does not differ drastically from its classical value ¢ = JS (see
(11.41)), the ground state correlations decay exponentially. The correlation
length x~! as given by (18.77) agrees with the correlation length given by
the continuum approach in (15.14).

The mean field excitations are not physical excitations of the Heisenberg
model (for example, they include constraint violating charge fluctuations).
Nevertheless, the gap in their spectrum ck/2 is consistent with the exis-
tence of Haldane’s gap for one-dimensional integer spin chains. The physical
magnon spectrum can be deduced from the peaks in Im S(q,w) . Since spin
one excitations involve at least two Schwinger bosons, the physical magnons
have a gap of

A = ck. (18.79)

Thus, the SBMFT recovers Haldane’s continuum results in the absence of
a O term (see Chapter 15).

One must beware that the SBMFT fails for half-odd integer spin chains.
The effects of the © term (15.3), which destroys Haldane’s gap, are appar-
ently absent in the mean field theory. The SBMFT has a nondegenerate
ground state in violation of Lieb, Schultz, and Mattis’ theorem of Section
5.2 for half-odd integer spins. Read and Sachdev overcame this problem by
introducing the © term into the large N theory. They developed a contin-
uum gauge theory for the @, A fluctuations (see bibliography).

18.2.3 Two0 DIMENSIONS

In two dimensions, we expect no long-range order at finite temperatures
due to Mermin and Wagner’s theorem. Indeed, we shall find that, at low
temperatures, the mean field equations yield a finite value for the inverse
correlation length (T, S).

The mean field equations can be solved to obtain x(T, S),c(T,S). It is
convenient to use the fact that wp = w(7yy) and replace

1 1
ﬁXk:F (wy) —2 /0 dy p(7)F [w(¥)] » (18.80)
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where for the square lattice

p(y) = %K (1-7). (18.81)

It turns out that at temperatures above T,q, > 0.91J, the mean field
equations have no nontrivial (Q # 0) solution.® This reflects a failure of
the SBMFT to describe the disordered phase at high temperatures, where
nearest neighbor correlations are destroyed. At temperatures where the
correlation length is large, i.e.,

K<<t <<, (18.82)
the constraint equation can be expanded following Takahashi:
1 1! 2 2\~ % 2 2\
S+5 = 3 [ dveln) (1+#*/8-7) coth[(1+n/8—'y)2/2t]
-1

- ter() ()]
+% /_ 11d7(1 —)"IK(1—4?) +O(t, k). (18.83)

Similarly, by subtracting (18.50) from (18.49) and expanding the integrals
to low order in «, ¢, we obtain

1 4Q
S+3-7

> % /_lld'yp('y) (1+x%/8 - 72)% coth [(1 +K2/8 — ’72)%/2t]
~ /l dy(1 - ) K(1 - %) + O, k) . (18.84)
™ Ja
By (18.74) and (18.75) the ordered moment is given by
mo=S+ % - % /_11d7(1 —4%)"3K(1—+%) =85-0.19660. (18.85)

The spin wave velocity at zero temperature is

c=+v8JSZ, , (18.86)
where the spin wave velocity renormalization factor is given using (18.84),
Z. = 1+87! 1_ i/ld'y(l - )EK(1 - ~?)
¢ 2 7r2 1
= 1+40.078974/S . (18.87)

6See Arovas and Auerbach.
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The asymptotic spin correlations are given by (18.62), where the corre-
lation length is £ = k1. By inverting (18.83) and using (18.84), we obtain
the temperature dependent correlation length

V2JSZ, [ o2rZ.JSmg
= ——exXp|——F—

¢ T T

] [1+0%)] . (18.88)
In comparing (18.88) to the continuum approximation value” (15.17), we
can determine the renormalized stiffness constant p,(S) for the square lat-
tice model as follows:

. T
Ps = 7111_1% 5 log(¢) = JSmoZ,, (18.89)

where mg and Z, are given by (18.85) and (18.87), respectively. It properly
recovers the classical value p, — JS? in the limit of large S.

18.3 Exercises

1. Using the explicit solutions for  and A\ at zero tempearture, prove that
the ground state energies for the FM-B and the AFM-B mean field theories
are given by

EMF = lim FMF = —NNLQz (18.90)
T T—o - 2J ’

Adding the constant 2A/JS?/2, which was dropped from the Hamiltonian
(see (16.7)), show that the correct ferromagnetic ground state energy for
N = 2 is recovered.

2. Prove that a staggered magnetic field term (18.64) for the antiferromagnetic
SBMFT results in the dispersions w), of (18.65). Hint: Find the zeros of
the determinant of the quadratic matriz

_ t o5 w—A+ 3k, N Q i,
L = Z(st’ % k) ( z'ka2 —w—A+ 1k, Zik ’
(18.91)

where z and z are coherent state variables of sublattices A and B, respec-
tively.

3. For the antiferromagnetic model, add a uniform magnetic field to HM¥ of
(18.42) as follows:

HME _, gMF _p Z se™Xig! g (18.92)

i87°18"°
is=:f:%

Allow the constraint field to have uniform and staggered components:

Ai = A+ exp(iTx;) As. (18.93)

"See Chakravarty, Halperin, and Nelson, bibliography of Chapter 15,
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Show that the mean field ground state energy is minimized for A, = —%h.
Discuss how A, can be interpreted as a uniform precession at angular fre-
quency w = —3h of all spins in the zy plane.

4. Using the results of the previous exercise, derive the uniform susceptibility
xofF of (18.63) as a second derivative of the free energy with respect to
ho. Note that it is necessary to keep the temperature finite before taking the
thermodynamic limit. Why?
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The Semiclassical Theory of
the t — J Model

The discovery of high-temperature superconductivity in layered copper ox-
ides (e.g., Lag_,Sr.CuQ,) has spurred intense investigations of the quasi-
two-dimensional Hubbard model near half filling. The basic problem is
to understand the evolution of the antiferromagnetic Mott-type insulator
such as LapCuQO4 into a metal or superconductor at hole concentrations
of z=5-20%.

As shown in Section 3.2, the low-lying excitations of the Hubbard model
at large U can be described by the ¢ — J Hamiltonian (3.29)

H) =P, (T +H9HM + 7 P,, (19.1)

where P, projects the Hilbert space onto the subspace of zero and one
electron per site, and

T = —tz (cwc”+c ¢ ),
if)s
QHM _ .8, My
e = JZ (-8 -55).
(ig)
i#k
J = Z tijtik (Z(czsckspj) - ctté‘ck ) C}&‘Cj) )
(m,
(19.2)

(ij) are nearest neighbor bonds, and (%, j, k) denotes a sum over sites 1, j, k,
which are triads of nearest neighbors. At half filling, n; — 1, the hopping
terms 7 and J' vanish in the projected subspace, and the t — J model
reduces to the quantum Heisenberg antiferromagnet of spin half.

Away from half filling, the ¢ — J model describes a system of interacting
spins and mobile holes, also called the “doped antiferromagnet.”

Since large U/t implies ¢ >> J, the t-hopping term is not small. More-
over, hopping of holes between opposite sublattices disturbs the antifer-
romagnetic correlations. This presents a fundamental theoretical difficulty:
the Heisenberg model, which we believe we understand quite well, is strong-
ly perturbed by addition of mobile holes. This is especially manifested in
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the extreme Nagaoka limit! J = 0, where the ground state of a single hole
is totally ferromagnetic!

When choosing an approximation scheme for the ¢ — J model, it would
be useful to identify a control parameter with which to estimate our errors.
Since we are interested in low doping concentrations, and our knowledge
of the Heisenberg limit is quite secure, an obvious small parameter is the
number of holes. Another small parameter is the inverse spin size 1/S,
which controls the semiclassical expansion.

In this chapter, we extend the semiclassical analysis from the Heisenberg
model to the {— J model for a small number of holes. We begin by generaliz-
ing (19.1) from spin half to arbitrary spin S. We derive a spin-hole coherent
state path integral representation which can be expanded by the method
of steepest descents using S as the large parameter. The classical solutions
are found to be small ferromagnetic polarons in the physically accessible
regime of t/J. The semiclassical quantization of small polarons leads to an
effective ¢’ — J Hamiltonian for the low-energy spin and charge excitations
(in the ordered phase). A scenario for high-temperature superconductivity
in the spin-liquid phase is mentioned.

19.1 Schwinger Bosons and Slave Fermions
The projector P; is a nonholonomic constraint on the electron states:
N |TL,) n; S 1
Py|n;) = {0 ni=2 " (19.3)
Usually, it is easier to handle holonomic constraints that are equalities
rather than inequalities. This can be achieved by introducing two commut-

ing Schwinger bosons (a;, b;), and a “slave fermion” f;, at each site i, which
obey the standard algebra

[a,-, a}] = b
[bia b;:l = 61']',
{fi7f}} = bij. (19.4)
The electronic states in the singly occupied space are represented by
{c};10),¢},10),10)} = {al|0),8}(0), £110)}, (19.5)

where |0) is the vacuum of all Schwinger bosons and slave fermions. The
projector P, becomes a holonomic constraint on the Schwinger boson and

1See Theorem 4.1.
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slave fermion product Fock space
P, (ala, +blb o fHf - 1) =0, Vi (19.6)
We can represent the projected electron operators by
ciTPs — fi*aiP., .
¢y Ps —  fibP,. (19.7)

Thus, substituting (19.7) into the normal-ordered ¢ — J model of (3.33), we
obtain

H = P, l:tz (fz'Tfij'i + f;f,fw)
(i3)
J
=7 2 G — fif) AlAy (1- f}fj)] P, (19.8)
(i,j,k>
where (ij) denotes a nearest neighbor bond, and (i, 4, k) denotes a sequence

of three neighboring sites. The bond operators are defined as in (16.2) and
(16.10):

Fij = ala;+blb;,
-A'ij = a,-bj—b,-aj .

(19.9)

In the half filled (undoped) case, n;f = 0, the Schwinger bosons repre-
sent pure spin half operators. The hopping term in (19.8) vanishes, and
the second term reduces to the antiferromagnetic Heisenberg model (see
(16.13)).

Using this representation, we can generalize the ¢t — J model from spin
one half to any spin S by simply replacing the constraint (19.6) by

Ps (ala, +blb, + £, —28) =0, Vi (19.10)

This constraint implies that in the presence of a hole at site ¢, the spin at
that site gets reduced by % Incidentally, the large S spin hole representation
may be realized in transition metal ions.?

19.2 Spin-Hole Coherent States

We wish to construct a representation of the ¢ — J model of spin S (19.8)
that obeys the constraint (19.10). Let us first recall the spin coherent states

2where several d electrons are coupled ferromagnetically by Hund’s rule; see
Section 2.1.



208 19. The Semiclassical Theory of the t — J Model

of Section 7.3:
s = eSX[28)]72 [u(8, p)at +v(8,4)b1]*° [0,0) . (19.11)

X is an arbitrary phase, and {2 is a unit vector at latitude 8 and longitude
¢, and
u = cos(8/2)ei?/?
= sin(6/2)e"*%/2 , (19.12)
The spin coherent states provide a resolution of the identity in the subspace

of spin S:
25 +1

4

where d§? = d¢ dcos 8. In Chapter 10, this identity has been used to con-
struct the spin coherent states path integral. Here we extend this basis to
the Hilbert space of (19.10) and define the “spin-hole coherent states”:

12,6)s = s 100 + [Rs_y E7110)s, (19.14)

/dﬂ Q| =1, (19.13)

where £ is an anticommuting Grassmann variable.3
The overlap of two states, with Q ~ €/, is

(@.E0,€) = (@5 [1+€€ (@)
exp (—isw[s‘z, )+ ei%'“ﬂf"lg*g') . (19.15)

1

where

¢ - o (£ T

-A- (-, (19.16)

1R

and A is the familiar monopole vector potential given by (10.17) or (10.18).
It obeys .
VxA-Q =1 (19.17)

The freedom in choosing x(£2) in (19.11) is equivalent to the gauge free-
dom of A. Thus, by (19.15) a gauge transformation on A must be accom-
panied by a U(1) phase transformation on the Grassmann variable and vice
versa,

X - X@,
A - A =A+Va(X-x),
€ — X—0/2¢ (19.18)

3See Appendix C.
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This demonstrates the close relation between a gauge covariant coupling in
(19.15) and the local constraints (19.10).

The spin-hole coherent states provide a resolution of the identity in the
constrained Hilbert space

2 N . .
= / d0de e exp [—as €€ [0, E =1,  (19.19)

where we have used (19.14) and the Gaussian Grassmann integral (C.10).
The Gaussian normalization factor is

e — 25+1
728
We can now construct a path integral representation of the imaginary

time generating functional using the resolution of the identity between each
discrete timestep ¢ = 3/N,. Thus, we obtain?

(19.20)

7 = NPan ’DQ'D2§ exp —Zasﬁf (7')51'(7')

B
x JT(r), &) 1 — €M [T —€),&(7 — €)). (19.21)

T=¢€

The continuum limit is given by

- B 1 N 2
z = / DD exp { / dry [i(s — SETE)A() - —5:6&“’5,]
0 p 2

—H7Q, 60,6 + uZ&Z‘&} : (19.22)
We recall® that treating the time derivative as if () is differentiable is
being careless about operator ordering, which leads to uncertainties in the

ground state energy. For the fermions, we do not need to assume continuity
of £(7). The discrete time derivative is

[argoe) = Y e asen) - -9]. (1929
(Do not worry about ag # 1; it will soon be fixed.)

“See Chapter 10 and Appendix D.
5See discussions of the spin kinetic term in Chapters 10 and 11.
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The Hamiltonian function is

(2, €1t 710,6)

Ht—J — 1 _ =Ht +HJ,
(9 £, €)
Ht = Z\/1+Q 6y (edhege +e e )
(tJ
HJ = —-—— Z 62(1‘0 ﬁ‘)\/(l—ﬁjﬁk)(l—ﬂlﬁj)

(m, )

x(1 = &5€5)E €k (19.24)

where the (gauge dependent) phases ¥, 4" were defined in (17.5) and
(17.10).

In order to obtain a finite classical limit for H*~7 at large S, we absorb
the S dependence of (19.24) into the classical parameters, which scale as

4J 52

J,
2tS L

(19.25)

(These definitions reduce to the original parameters J, ¢ for S = 3.)

HY' includes fourth powers of Grassmann variables. These terms are
hard to integrate, and an approximation is needed. In a Fock basis, the
magnitude of a quartic term is

|<f:fkf}fj)Fock = |pirlpjj — bikpijpjis (19.26)

where p is the hole density matrix. In our classical solutions, we shall find
that the hole density is primarily located in ferromagnetic regions where

\/1— % - Q; ~ 0. By (19.24) these are the regions where the p;; is par-

ticularly small. Thus it is safe to replace H*~ by the simplified bilinear

Hamiltonian®:

Ht—J

Q

Zﬁ:jssej +H1Q,0],

Hj; = \/_ 1+Q;-0; e
H = 1 Z(Qi A = 1)1 - p)(1 - py)-
(i3)
(19.27)

SHamiltonian (19.27) often appears in the literature as the ¢ — J model.
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In the third line we replaced the sum over triads (i, j,k) by a sum over
bonds (ij) and omitted nondiagonal hopping terms since they are small
compared to the #-hopping terms.

Now we integrate out the Grassmann variables” and obtain a pure spin
path integral:

. 8 .2 .
zZ = /'DQexp{/O d’r[iZ(S—Piﬂ)A(Qi) - — B[]
—FI[f), ;/]]} : (19.28)

Ff[y] is the holes’ (retarded) free energy functional

£ -1 “ rt ¢
FI' = 87Ty In|asl+T,exp —/0 dr (Hij[ﬂ('r)] —u6,~j)
8 o
= —B7'Tr; In|I+T,exp —/0 dr (H,-"’J-[Q(T)] _ﬂl6ij)]]

1
—;N ln(as). (19.29)
In the second line we absorb an infinite constant into the chemical potential
, 1
p=p- Inag. (19.30)

The chemical potential and ground state energy shifts are irrelevant for the
correlation functions, and we shall henceforth ignore them and set ag — 1
and p’ — p.

Equation (19.28) is a useful starting point for the semiclassical approx-
imation. As we take S — oo the coeflicient of the kinetic term increases,
which suppresses time dependent spin fluctuations. This allows us to con-
sider F/[{2] and the density p[{] as adiabatic functions of $2(r). That is to
say: the large S justifies both semiclassical and adiabatic approximations.

19.3 The Classical Theory: Small Polarons

In the strict classical limit, the path integral is dominated solely by time-
independent configurations

Q(r) — (0) = Q(8). (19.31)

"See Appendix D, Section D.2.
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By (10.23) Z is proportional to a classical partition function:
Z-2 / [T a6 exp [~ (B710] + F/[90)] (19.32)

At zero temperature, the classical ground state for a fixed number of holes
(NY) is

EYQ = B[O+ Jim FI[Q],

Eg ming E , (19.33)

ch’ NS
We first examine the case of a single hole.

The minimization of E§' for one hole is conceptually straightforward.
Physically, there are two competing interactions: Ff prefers the largest
number of highly connected ferromagnetic bonds in order to minimize the
hole’s kinetic energy. HY prefers, of course, antiferromagnetic correlations.
Candidate classical configurations may be either:

1. weakly distorted (canted or spiralling) Néel configurations, where the
hole density is spread over the whole lattice, or

2. localized defects, where the hole density and the spin distortion are
concentrated about a particular lattice position.

A variational minimization® has found that for
1</J<4 (19.34)

the classical configuration is of the second kind: a five site polaron, which
is depicted in Fig. 19.1. At large values of £/J >> 1, the polaron’s radius
grows as®

R, ~ (f/J)Y/4. (19.35)

In the limit of £/J = oo, the whole lattice turns into a fully polarized
ferromagnet. Interestingly, this agrees with the exact result of Nagaoka’s
Theorem 4.1 for the infinite U Hubbard model. We also learn that to achieve
Nagaoka’s limit for one hole requires U/t to exceed O(N?).

The five site polaron does not distort the antiferromagnetic correlations
of the background configuration. (Unlike, e.g., a single ferromagnetic bond,
which induces a dipole shape distortion at large distances.) The “sharpness”
of the polaron boundary is explained as follows: Both hole and Heisenberg
energies depend quadratically on distortions at the polaron boundary. Since
the stronger energy wins, the boundary spins are perectly aligned with the

8See Auerbach and Larson.
9See Exercise 1.
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FIGURE 19.1. The five site polaron. Circles depict the hole density.

Néel directions. This implies that, beyond a short distance, two polarons
have no classical interactions.

There is a gap of approximately 2f in the fermion spectrum of the hole.
The typical spin frequencies are

w~ OIS << OF), (19.36)

and therefore the adiabatic approximation for the holes’ free energy is justi-
fied. This is similar to Born—-Oppenheimer’s approximation: The slow spins
are like heavy nuclei, and the holes are like the fast electrons that determine
an effective potential for the slow variables.

The spin-hole wave function of the five site polaron centered at site i is
given by

= 3 Vel @ yafioy, TT (1950610, ), G937

J=i,(ij) J'#3

where p[Q’] 1s the ground state hole density for the polaron configuration
Q. For § = 3» (19.37) can be created from the pure Néel state ON by

|Ql, ) p;g‘lﬂN) (19'38)
where p! is Dagotto and Schrieffer’s quasiparticle operator
pw. =V [Ql] + Z V Pi [Q cw'cgs' Cis - (1939)
(i5),s

s; = +1 is the spin direction of {2}".
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SR B
b AL
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FIGURE 19.2. A polaron’s tunneling path.

19.4 Polaron Dynamics and Spin Tunneling

The five site polaron breaks the spin rotational symmetry and lattice trans-
lational symmetry of the Hamiltonian. At finite S, even at zero tempera-
ture, symmetry can be restored by quantum fluctuations of the spins. The
symmetry restoring fluctuations are classified into two distinct effects:

1. Spin waves, which tend to restore the spin symmetry. They contribute
at order O(1/85).

2. Spin tunneling effects, which move the polaron’s center and restore

lattice translational symmetry. These are nonperturbative effects of
order O(e~5()).

Spin wave dynamics can be treated by the methods of Chapter 11 or 12
for the ordered and disordered phases, respectively.

The polaron’s translational symmetry is discrete, and any motion of the
spins involves climbing over an energy barrier. However, lattice symmetry
can be restored by tunneling events where the central spin of the polaron
rotates into an antiferromagnetic correlation with its neighbors, while an-
other spin rotates and forms a five site ferromagnetic polaron elsewhere (see
Fig. 19.2). The semiclassical tunneling matrix element for polaron motion
from site i to k is!®

T o (QFIG(ES)IQ*)

10The correct multidimensional tunneling matrix element involves restricted
wave functions and flux operators (see Auerbach and Kivelson). These will pro-
duce the correct prefactor I'o, but (19.40) can be used for the leading-order
behavior.
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Q- ) .
= | DOt)exp {i / dt [Z (8 — pi/2)(1 — cosb;)d;
Qs 0 i
—(@’ +Ef - Eg’)]} , (19.40)

where G(E) is the energy dependent Green'’s function defined in (10.38). By
rotational symmetry, H|[?] is invariant under a global shift in all azimuthal
angles

¢i =+ (19.41)
We integrate the kinetic term by parts and obtain

/ Dg(t) exp l—i / dt ¢(t)0: (Z [S — pi/2()][1 — cos 0,-(t)])]
) (Mz (€] — M* [s‘zk]) , (19.42)
where

M) = SIS - pi(0)/2[1 - cos ;0] = MO (19.43)
J
That is to say, the z magnetization is conserved for any matrix element of
G(E). Of course, this is an exact consequence of the Hamiltonian’s rota-
tional invariance.

An important conclusion is that in the long range ordered phase, five
site polarons cannot tunnel between sublattices A and B, since that would
change the total magnetization. In other words, there is a selection rule that
forbids intersublattice hopping of polarons. This strong result is somewhat
surprising, since the original t — J Hamiltonian (19.27) had large intersub-
lattice hopping terms. Physically, the original f holes are strongly bound to
a local spin defect. This restricts the charge mobility at low energies to in-
trasublattice hopping. We note, however, that polarons can tunnel between
two remote sites on opposite sublattices if their local envirnoments have
reversed Néel fields. (For example, the center and the tail of a Skyrmion
configuration.)

The tunneling path is a saddle point of (19.40), which connects 2} — QF
and obeys the variational equations of motion

— cos - E¢ .
s b o (=m0 -contyi - E0l] =0 (o

(We have fixed the gauge choice of A to carry out the tunneling rate cal-
culation.)

In order to determine the tunneling path, we can make use of at least
two conservation rules:
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1. Conservation of energy along the classical path (see (10.37)),
E Q" (1)) = ES. (19.45)

2. Conservation of total magnetization (19.43).

Since Qt“" traverses a classically forbidden region, a solution can only be
found by complexifying its coordinates.!! We assume that the spins are or-
dered in the +§ direction and parametrize the tunneling path by {{“"(¢)},
where ¢ is the azimuthal rotation angle of spin i.

Now we complexify the ¢ variables of the tunneling path:

B(p) = ¢ () + 1™ (). (19.46)

Using (19.45), the leading-order steepest descents approximation to (19.40)
yields

T ~ —) T§exp(—Wg+iT%),
[»3

Wik

/d<pZ dji’" (8 —p;/2)(1 — cos b;),

e = / Z 495" (s p;/2)(1 — cosb;), (19.47)

where a labels the tunneling paths. I'§ are positive prefactors, and the
overall negative sign is general to tunneling matrix elements between de-
generate minima in a time reversal invariant Hamiltonian.

From expressions (19.47) we deduce some qualitative information. First,
we note that |T;x| decreases exponentially with S. Second, we see that
the sign of I' is determined by T, which is a Berry phase. Now we shall
determine Y for the tunneling of the five site polaron.

By symmetry under ¢; — —¢;, there are two tunneling paths t*™+ and
Qtvn— which involve clockwise and counterclockwise rotations in the Ty

plane:
P () = =41 (). (19.48)

Thus, the two paths have the same values of Wj; but opposite phases T.
By summing over both paths
m]

Fix = —Foexpl / d<pZ( )

U The spin path integral is analogous to a phase-space path integral, where
the conjugate variables are cos 8, ¢, see (11.7) and (11.5). Allowing ¢ to become
imaginary is equivalent to making the momentum imaginary, i.e., continuing time
to the imaginary axis in Feynman’s path integral.
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x;exp li/O d<pZ(S—&) (1 — cos#;) ¢re]

— _2ei21r5 |Fik| ,

(19.49)

where

+m R e
Tl = —Tocos (/0 dw;%dj; )
™ ¢zm
_ — cos b;
X exp l /0 d<p¥ ( ) (1 —cos8;) ]

(19.50)

We use that 3, p; =1 to establish that the factor cos(f dy...) is positive.
The phase 2nS comes from the total rotations ¢; and ¢;. Other spins
retrace their paths. Their Berry phases either vanish, or the contribution
cancels by interference with a symmetric counterpart.

In (19.49) we discover that for half-odd integer spins, the sign of the
polaron hopping is positive. This affects the ground state momentum as
follows.

Assume a perfect Néel background. The band structure of the polaron
hopping is

€ = Z Fij exp[ik(xi - xj)]

J
2T (2,0)[cos(2k) + cos(2ky)]
+20 (1, 1ylcos(kz + ky) + cos(k, — k)], (19.51)

Q

where (1,1),(2,0) denote first and second nearest neighbor sites on the
same sublattice (see Fig. 19.3). We neglect further range hoppings which
have a smaller tunneling rate. By (19.49) we see that for integer spins (and
I' < 0) ¢ is minimized at k = 0. For half-odd integer spins, the ground
state momentum is located somewhere on the line

ko € {k: cosky+cosk, =0}. (19.52)

The sign of I';; matters because intrasublattice hopping involves triangles,
as seen, e.g., in Fig. 19.3. Therefore, its negative sign cannot be “gauged
away” by redefining the wave function or choosing a different gauge con-
vention in (19.44).

The semiclassical theory explains numerical studies of the spin half, t —J
model on small clusters.!? First, the ground state momentum is found at

12G¢e Dagotto and Schrieffer.
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0 0
FIGURE 19.3. Dominant polaron hopping paths.

(0,7) or (r/2,7/2) (and their symmetric reflections), which agrees with
(19.52). Second, the quasiparticle weight factor

.12 )
Zn = (L5 I} 198 )| /(X5 Ipy i U6 (19.53)
kos kos kos

can be measured on small lattices. Here

ol =D e kxipl, (19.54)

and p}s is given by (19.39). \II(?HM ,\IIB_J are exact ground states of the
Heisenberg model and the ¢ — J model with one hole, respectively. In the
large S limit, we expect Zp — 1. Dagotto and Schrieffer numerically com-
puted Z;, for the t — J model on the 4 x 4 square lattice. For the parameter
regime (19.34), they found

0.7 < Zn < 0.94. (19.55)

This is a success of the semiclassical approximation for the S = %, t—J
model. The difference 1 — Z; measures the quantum corrections to the
short-range correlations of the five site polaron.

19.5 The t' — J Model

For more than one hole, the classical ground states are obtained by filling
the N/ lowest states of H* and minimizing E* of (19.33).

We have found in Section 19.3 that the single polaron does not induce
long-range distortions of the classical Néel state. Also, since the hole density
is localized near the ferromagnetic bonds, the classical interactions between
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polarons are of short range. One must note, however, that quantum fluctu-
ations (i.e., spin waves) will introduce longer-range interactions at higher
orders in 1/S.

For a finite density of holes, i.e., limyx_, Nf/N > 0, one must consider
the possibility of phase separation. The system may reduce its energy by
crowding the holes into domains that share the distortions of the Néel
background.!3

Bearing in mind that the original Hubbard model neglects intersite repul-
sive Coulomb interactions, the short-range forces obtained by the classical
approximation and the phase separation instability may be suppressed in
the real copper oxide layers.

With the information at hand, however, it is possible to construct an
effective low-energy Hamiltonian for the polaron quasiparticles. We substi-
tute |QV) in (19.39) by a slowly varying antiferromagnetically correlated
configuration, and compute the polaron hopping rate as

Tt & a0, (UIQF) Tue (QFIQF) (19.56)

where T is the unperturbed tunneling rate given by (19.49). ¢ and Q¥
denote translated five site polarons centered at i and k, whose spins are
precisely parallel to a common direction. This direction maximizes the over-
laps with € and Qk, respectively. The phases of the two overlap factors in
(19.56) cancel for every spin except where the density of holes is different
between ¥ and €. Using (19.37), one obtains

Q

(€| ) (% |0k exp %Z(ZS’ - pj-) cosé;'-(d);'- - ¢_>;)
J

X exp —% 2(25 — p¥) cosB5 (% — 8%)

j
= exp [—% cos (¢t — ¢£)] , (19.57)

where we have used that the total hole density in a polaron is unity. The
lattice definition of the Néel gauge field AN was given in (17.11). Here we
find that polaron hopping is coupled to the Néel gauge field in a gauge

covariant manner!4:

Tix = Tir exp (in,— ZAN -x,-k) ) (19.58)

m

138¢e Emery, Kivelson, and Lin.
14Gee Shankar.
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where 7; = sign(s;) is the effective “charge” of the polaron, which depends
on its sublattice index.

The polaron operators p} of (19.39) anticommute at distances greater
than two lattice constants, Thus, the low-energy properties of a dilute sys-
tem of polarons in the long-range ordered phase are described by

. 8 : j . oA
Z x /’DQ’sz exp / iZ2SA-Q,— - %ZQ,--QJ- —IP |, (19.59)
0 (id)
where LP is a Lagrangian of spinless Grassmann variables p;,

. in AN X,
P = Y pr (0 +imAY +p)p+ Y T AT X plp
i (i,4,k)
+ Ui; pip; P}p;- (19.60)
ij
Ui; are the two-polaron effective interactions. The gauge invariance of L?
reflects the local constraints on the spin and charges as shown in (19.18).
We can approximate the polarons and spin degrees of freedom by effective

slave fermion and Schwinger boson operators that obey (19.10). A minimal
Hamiltonian that corresponds to (19.60) is the t’ — J model,

HY-* = P, jZSi -8 + Z Tup!p; (aiak + bztbk) P, (19.61)
(i3) (i,k)

or for spin half:

Ht'_J — Ps jZSl . SJ — Z FikC,T.,Cks Ps- (1962)
(i) (i,k),s

c;, are electron operators. The ¢’ — J model differs from the initial £ — J
model by the absence of intersublattice hopping. The t’ hopping has weaker
local interaction with the spins, since the hole does not leave a trail of
reversed spins when hopping on the same sublattice. This makes the ¢/ — J
model more amenable to a weak coupling treatment of the hopping term,
at least in the antiferromagnetic phase. Also, as noted in the following, it is
possible to appeal to continuum approximations to describe the low-energy
dynamics at low hole concentrations.

19.5.1 SUPERCONDUCTIVITY?

Following Haldane’s mapping,'® the spin interactions are described by the
(2+1)-dimensional nonlinear sigma model with concentration dependent

158ee Chapter 12.
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stiffness constants and spin wave velocity. One expects that above some
critical density, long-range spin order disappears but antiferromagnetic cor-
relations survive at short length scales. As shown in (19.60), the low-energy
spin fluctuations are coupled to the polarons via the Néel gauge field. An
effective field theory for the coupled system has been proposed by Wieg-
mann, Wen, Shankar, and Lee (WWSL):

1
WWSL _ o s N 9
c = a§3 LP[-i8, + na Ay + —3 ; (F.)?, (19.63)

where LP'® is the long-wavelength Lagrangian of polarons on sublattice «,
and the chiral spin fluctuations are described by an “electromagnetic field”
derived from the Néel gauge field,

F,,=08,A) —8,A]. (19.64)

m is the effective coupling constant of the Néel gauge field, which is roughly
proportional to the inverse spin correlation length.!6

WWSL have proposed that the ground state of (19.63) may be a high-
temperature superconductor. The basic argument is that the polarons on
different sublattices are oppositely charged with respect to the Néel gauge
field. This gives rise to an electromagnetic-like attraction between polarons.
It is a kinematical pairing mechanism which is not sensitive to the short-
range interactions of the effective model. In addition, the scenario is valid
in the magnetically disordered phase. This is particularly pleasing since,
experimentally, antiferromagnetism does not seem to coexist with super-
conductivity in the cuprate superconductors.

19.6 Exercises

1. Assume a large circular region of radius R., where all spins are ferromag-
netica.lly_ correlated. Calculate the classical ground state energy E° for
large £/J. Minimize the energy with respect to R. to prove (19.35).
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Appendix A

Second Quantization

Here we review some standard definitions and basic relations of second
quantization, which are used throughout the text.

A.1 Fock States

One is given an orthonormal single-particle basis, {|¢:)}¥ :

(bilg;) = bij. (A.1)

The creation operator of state i is a} and its Hermitian conjugate is the
annthilation operator a;. Both are defined with respect to the vacuum state
|0);, such that

) =all0)i, a;0)i =0. (A.2)
The number operator is defined as
n; = ala,. (A.3)
Using the commutation rule
[la;, (ah)"] =n(ahr, (A1)

one verifies that repeated application of a} (a;) increases (decreases) the
number of particles in the state ¢;. Fock states, labelled by occupation
numbers n;, are defined by

In1, n, . ..) =H (az)m |0): (A.5)
I (T Jad i .

For many bosons (or fermions), the symmetry (or antisymmetry) of the
Fock states is enforced by commutation (or anticommutation) relations

i

[ai,a;]" = aia} —na}ai = bij , (A.6)

[ai,aj]" = 0, (A7)
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where

n = {1 bosons (A.8)

—1 fermions
The occupation numbers are restricted by the total number constraint

> ni =N. (A.9)

The commutation (or anticommutation) relations define an algebra of sec-
ond quantized operators. This algebra is invariant under canonical transfor-
mations of the second quantized operators. Here we shall consider only nor-
mal transformations.! Consider a unitary transformation U on the single-
particle basis
al, =) Uwua!, UV =1 (A.10)
1

It is easy to verify that {a!} and {a,} satisfy the canonical algebra (A.6)
and (A.7).

A.2 Normal Bilinear Operators

Bilinear operators are given by
A =) alAya; =a'-A.a, (A.11)
ij
where A is a Hermitian matrix in the basis set ¢;, i.e., a single-particle
operator.
The commutation relations of bilinear operators of bosons or fermions

with linear operators are particularly simple. The vector v defines a linear
operator v as

vl = Zv,—a} =v-al . (A.12)
By commuting (A.11) with (A.12) we find that
[A, o*] = (Av)-al. (A.13)
If v is an eigenvector of A with eigenvalue v, then ¥! is an eigenoperator
of [A,-] with eigenvalue v. This can be used to transform ¥! under the
rotation:
2 . 2 -~ L 2 -~ -~
ef4 ¥t e794 = ¥t 19[4, v1] + @- [A, [4, o*]] +...
= vl (A.14)

1For a treatise on Bogoliubov transformations, see the bibliography.
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A unitary matrix U can be written in terms of a set of Hermitian gener-
ators A, and parameters 8,:

Up = ¢ 2uafada, (A.15)
A corresponding many-particle operator U is defined as
Up = ¢ 2oafaha, (A.16)

Using (A.14), it is easy to show that ¥! transforms under U in a simple
manner:

UgvtUy! = (Upv) - al. (A.17)
The commutation relation between two bilinear operators is
[A, B] = a'[4, Bla. (A.18)
(A.17) and (A.18) hold for both fermions and bosons.

EXAMPLE: SPIN ALGEBRA

The bilinear spin operators are

2
1
S = 3 Z alo®,ay, a=zy,z2, (A.19)

g8'=1

R () N N Y

By evaluating the commutation relations of the Pauli matrices, and by
using (A.18), we can verify that S* obeys the angular momentum relations

where

[8%,8%] =iePr ST, (A.21)

where € is the totally antisymmetric tensor.

A.3 Noninteracting Hamiltonians

Normal quadratic Hamiltonians are given by

H = Z alHipa, = Z(ek — wala,, (A.22)

i’ k
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where H is Hermitian, €, a, are its energies and eigenoperators, respec-
tively, and p is the chemical potential. The partition Function is given by

Z = Tre™T = Hnizexp[ (e~ )""]

k ngp=0
= JJ@ - ne~(ax=r/Ty=n, (A.23)
k

In (A.23), Nypqs is infinity for bosons and one for fermions.
From (A.23), the free energies are

F=-TmZ =Ty In(1- ne-(fk—“)/T) . (A.24)
k
The equilibrium occupation probabilities are given by
_ 11+ _mr) _ OF
(ng) = Z'I‘r [akake ] = 9
-1
= (e(e"_“)/T - n) , (A.25)

which are the Bose and Fermi functions for n = %1, respectively.

A.4 Exercises

1. Two Fock states of N bosons ®; = |{n:}) and ®; = |{na}) are defined with
respect to the basis sets {¢;} and {¢a}, which are related by the unitary

matrix U:
o= Uaits. (A.26)

Express the overlap (®1|®) in terms of the matrix U.
2. Repeat Exercise 1, for the overlap of two fermion Fock states.

3. The operator of spin rotations is given by
R = exp[iS™¢] exp[iSY6] exp[iS™x]. (A27)

Note that R is an operator defined in the fermion Fock (occupation number)
space. Using (A.17), find the expicit expression for the SU(2) transforma-
tion matrix U,,,

(Cl)a = (RCR_l)a = Z Uaa'(¢v0vX)c," (A28)

4. Find the transformation under global spin rotation of the bilinear form:

CITC'L - c'{lc;T, (A.29)

where ¢, and cg, represent electrons at two different orbitals.
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5. Show that, for any global rotation given by (A.28), the paramagnetic Fermi
gas state remains invariant:

II <y = I .o (A.30)

8,|k|<n/2 8,|k|<n/2
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Appendix B

Linear Response and
Generating Functionals

B.1 Spin Response Function

The spin response function describes the dynamics of the spins, in response
to an arbitrary weak space-time dependent magnetic field (or “source cur-
rent”) j&(t), which is turned on at ¢ > 0. The full source dependent Hamil-

tonian is
H[j] =Ho— ) i&()SE, (B.1)
q

where a = z,y,z. At ¢t > 0 all states in the Hilbert space evolve under the
Schrédinger equation:

.0 .
iz b(®) = MU [$(). (B2)
The solution of (B.2) is given by the evolution operator
lw(t) = UL, jl¥0),
Ultj] = Tuexp (—z‘ /0 ) ) : (B.3)

where Ho(p) is the noninteracting Hamiltonian in the grand canonical for-
mulation, and the time ordered exponential is defined as the limit of the
discretized expression

Ty exp [—i/o dt"H(t')]
= lim [1 = iH(@)e] [1 —iH(t — 2¢)¢] ...[1 —iH(e)e],

s

N,

(B.4)

where ¢ =t/N, is an infinitesimal timestep.
The expectation value of an operator S& evolves under H[j) as

(S2@); =27 T (p U7 L, 51SPUIL]) (B.5)
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where Z = Trp is the partition function and p is the density matrix. To
linear order in the source current j, (B.5) yields

(se); = (S2(0)) /dtZJu ([se@, 88 )] +0G%, ®B8)

ia

where {-) is defined with respect to Hp. The kernel of the integral in (B.6)
is the response function

R (¢ —t) = —ib(t - t') ([SE(2), S2(¢"))- (B.7)

Due to the 8 function, R is also called the “retarded” correlation function.
Henceforth we shall drop the superscripts a, o'.
It is possible to calculate R using the eigenstates and eigenenergies of
Ho:
Ho(k) la) = Eala). (B.8)

In the eigenstates representation, (B.7) is given by

R (t) = —w(t)Z“Ze‘E°/T(e"‘E°—Eﬁ>‘<a|sr|ﬂ><ﬂ| 2la)
af

—e'(Fe=Fall(q] 3|ﬂ>(ﬂ|SE’|a>)- (B-9)

Translational invariance of the Hamiltonian yields R;; = R(x;—x;s), where
x; is the position of lattice site 7. The space-time Fourier transform of R is

R(q,w+i0+) — -1 Z/ dt e~ AX:—X, ;)+t(w+10+)tR(x - Xy, t)
Ea/T —EB/T
— 7 -1 a a
(B.10)
where '
=) etdXgp, (B.11)

The infinitesimal positive number 0% ensures convergence of the Fourier
integral at large times. The real and imaginary parts of R are given by the
identity

1



B.1. Spin Response Function 233

where P takes the principal part of its argument. Applying (B.12) to (B.10),
one can prove the Kramers—Kronig relations

Re Riqu) = / du’ Ime(_q:U )’
Im R(qw) = -P / d“"RER(q"") (B.13)

B.2 Fluctuations and Dissipation

The imaginary part of the spectral response function Im Rj;(w) is the
dissipative part, which describes the damping of the external oscillations
at frequency w by exciting internal modes of the system. The correlation
function between two spin fluctuations at equilibrium is

Seg (t—t') = (Sg(t)- S (t)). (B.14)

Its Fourier transform is called the dynamical structure factor:

52 (q,w)

N—l Z/ dt e—;q(x -X, /)+;wtsaa (t)

i/

= %Zl;e‘“”wsawx 1Sala) 8w + Ea — Ey).

(B.15)

For Hermitian observables, the structure factor S(q,w) is real. It describes
the spontaneous fluctuations at frequency w and is measurable by scattering
experiments. For example, a polarized inelastic neutron scattering cross
section measures the electronic spin structure factor.

By comparing the explicit expressions (B.10) and (B.15), we obtain a
simple relation between the dissipative response function and the structure
factor (dropping the superscripts)

2
S(qvw) = _WMR(CLW)* (B16)

This relation is called the fluctuation-dissipation theorem.

B.3 The Generating Functional

Theorists are interested in calculating response functions or structure fac-
tors from the microscopic model. A useful device which allows such calcula-
tions in interacting many-particle systems is the imaginary time generating
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functional. In the text, we encounter path integral representations of the
generating functional, which are amenable to the semiclassical or large N
approximations. Here we derive the response function R(q,w) as a second
derivative of the generating functional.

The grand canonical generating functional is defined as

B8
Zlju] = Tt T, (exp l- /0 dr 'H[j(‘r)]]), (B.17)

where

H[G(7)] = Ho(w) - Z]’?(T) 5%, T€[0,p). (B.18)

The time ordering operator T'(e), previously used in (B.4), orders the op-
erators such that 7 increases from right to left.

For a rotationally symmetric Hy, (S¥) = 0. The imaginary correlation
function is defined as

2lnZ
837 (1)63E (7') |, _,
= Z7'Tr{e P T, [S2(1)S2(T)]},  (B.19)

RS (1,7) =

1,1’

where
S&(1) = eMoTSae Mo, (B.20)

and the time ordering is defined as

7, 14nBE) = { g T30 (B.21)

From (B.19), using the cyclic property of the trace, we verify that
R(r,7") =R(r —7',0) = R(r —7'), (B.22)
and that R(r) is periodic on the interval [0, 8):
Tl_ifg_ R(r) = lim R(7). (B.23)

For translationally invariant Hamiltonians in space and time, it is con-
venient to use the Fourier representation of R;y/(7) given by

- B . L.
Rgiws) = NT'Y / dr e XX (), (B.24)
0

i/

wpn = 2nmfl, n=0,+£1,%2,.... (B.25)

The frequencies w, are the Bose-Matsubara frequencies. By inserting a
complete set of eigenstates between the operators in (B.19) and performing
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the dr integration in (B.24), we find that R(q,iw,) is indeed the analytic
continuation of the spectral response function given by (B.10):

R(q,2) = Re R(q,w) + i¢Im R(q,w). (B.26)
z—w+i0t
The functions on the right-hand side are the physically measurable quan-
tities that describe the system’s response and dissipation at frequency w.
These are related to the structure factor by the fluctuation-dissipation the-
orem (B.16). The left-hand side can be obtained from theory, using, e.g.,
the imaginary time generating functional.
Finally, we define the static susceptibility as the response of the magne-
tization at momentum q to an ordering field in the a direction, of wave
vector q:

X**(a) = 5Re B**(q,0). (B.27)
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Appendix C

Bose and Fermi Coherent
States

Coherent states form overcomplete bases, which are labelled by a contin-
uous parameter or variable. The resolution of the identity in the coherent
state basis is often useful for evaluating matrix elements and traces of op-
erators. Here we shall define the states and present several useful identities
which follow directly from the definitions.

C.1 Complex Integration

Bose coherent states are parametrized by complex vectors
Z=(21,22,...,2N)s 2i =Z;i+iyi, (C.1)

where z;,y; are real and N is the number of single-particle states. The
complex integration is defined as

/dzz = /_(:];[ (_d_:c}#) . (C.2)

A useful identity of complex integration over a single variable z is
1
} /dzz(z')"z’" exp(—2z"2) = 6nm. (C.3)

Using this definition, it follows that for any complex matrix G, whose Her-
mitian part has only positive eigenvalues, the Gaussian integral is given
by

/dzz e~ % GZ ~Z.Z—Z % _ (ot |G|—1ez;G—lzb, (C.4)

where z, z; are any complex vectors.

C.2 Grassmann Variables

Fermion coherent states are parametrized by conjugated pairs of Grass-
mann vectors

z=(z1,22,...,2x), Z' =(2],25,-..,2), (C.5)
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where A is the number of single-particle states. These variables are opera-
tors which can be added and multiplied. They commute with any scalar c,
but anticommute with each other:

cz = z2c,
zizj = —iji,
- -

(C.6)

(The conjugate of a Grassmann variable is treated as a different variable.)
Equation (C.6) implies that
22 =0. (C.7)
Thus, any function of Grassmann variables can be expanded as a finite
sum.
The “Grassmann integration” is a counting operation which acts on a
product of Grassmann variables as follows:

N N N N
/ dzy [z [ =na [T 2 [[(z5)™ e, (C.8)
i=1 j=1 i=2 =1

where n;,m; = 0,1, and c is any scalar number. For a general product of
Grassmann’s, we first anticommute the variable to be integrated to the left,
and obtain an overall sign factor of the permutation. Since 2; and 2] are
treated as two different variables, we define the integration over d?z; as

/ 22,0(z",7) = / dzt [ / dzlo(z‘,z)] , (C.9)

where O is a sum of products. It follows from (C.8) that the contribution
of each product vanishes unless it contains exactly one power of z; and one
power of 2}. From the definitions above, it follows that for one variable and
its complex conjugate, the Grassmann Gaussian integral is

/dzz exp (—2*2) z2™(2*)" =bmn, n,m =0,1, (C.10)

which is formally similar to the complex integral (C.3). The multidimen-
sional Gaussian integral is

/dzz exp(—z*Gz +z.z +2'z) =det|G| exp(z;G 'z), (C.11)

where 27,2, are Grassmann vectors. Equations (C.4) and (C.11) can be
unified by the single expression

/dzz exp(—2*Gz +z5z +2'%) =det|G|™" exp (.G 'z), (C.12)
where

_f1  bosons
= { —1 fermions’ (C.13)
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C.3 Coherent States

Coherent states are defined as
|z) = exp (zal)|0), (C.14)

where a is a vector of Bose (Fermi) creation operators, and z is a vector of
complex numbers (Grassmann variables). Coherent states are eigenstates
of annihilation operators

a;|z) = z|z). (C.15)
The overlap of two coherent states is
(z]z') = %% (C.16)

Thus, the basis {|z)} is not orthogonal but it spans Fock space, as can be
seen by resolution of the identity given by the integral

/ & 2657 |z)(g| =1, (C.17)

which follows from (C.3) and (C.10).

Any operator that can be expanded in terms of creation and annihilation
operators can be normal ordered, i.e., written as a sum of products where
each product has the creation operators to the left of the annihilation op-
erators. We therefore restrict our discussion to normal ordered operators
of the form

O[aT,a] = Z Otnim:} [(aJ{)"1 .- (a_;rv)"'“’ ai™ - --a_',\"/v] ,
{ni,m;}

= :0;, (C.18)

where for fermions, n;,m; < 1. Using (C.15), the matrix element of any
normal ordered operator between coherent states is

(z|Ofat, a]lz’) = O(z*,z")e® %, (C.19)
where
0@2) = Y Otnma [(E)™ - ()™ 21 --23¥],  (C.20)
{ni,mi}

where for fermions, n;,m; < 1.
Finally, it is easy to prove, using (C.17), that the trace of any operator
in Fock space is given by

TA = / d?z e~ %% (z|O|nz). (C.21)

Note the sign factor 77, which arises from changing the order of Grassmann
variables in the process of proving this equality.
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C.4 Exercises

1.

Prove the identities given in the text for complex integrals and Bose co-
herent states (n = 1): (C.3), (C.4), (C.16), (C.17), and (C.19).

. Prove the identities for the Grassmann integrals and Fermi coherent states

(n = -1): (C.10), (C.11), (C.16), (C.17), and (C.19).

Use the resolutions of the identity (C.17) to show that two operators having
the same matrix elements between any two boson or fermion coherent states
are identical.

Normal ordering of exponentials. You are given an exponential bilinear
operator of one state (either Bose or Fermi statistics):

B =exp [Ad'a]. (C.22)
Show that both for the Bose and Fermi cases,
(z|B|2') = exp [e’\z'z'] . (C.23)
Use the previous problem and (C.19) to show that B can be written as
B =:exp [(e’\ - l)afa] :, (C.24)

where : O : is given by normal ordering each product of operators in O.

. Generalize (C.24) to many particles, and show that for a Hermitian matrix

A:
B = exp[a'Aa]
= :exp[al (" -TI)a]: . (C.25)
(Hint: use the eigenbasis of A.)
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Appendix D
Coherent State Path Integrals

D.1 Constructing the Path Integral

The imaginary time generating functional (see (B.17)) is

B8
Zlju] =TT, (exp l- /0 dr 'H[j(‘r)]]), (D.1)
where

H(D)] =Ho(w) — Y 3&(7)a} 0%, » T E0,B). (D.2)

i,a

The source currents j are coupled to spin operators.! The trace formula
(C.21) yields the representation

B
Z = Tr T, (exp l-/o d‘r'H[j(‘r)]])
. 8
= [#aem it (exp l— [ o H(T>])|nzo>, (D.3)

where z = (21, ..., zxr) are the Bose (Fermi) coherent state variables defined
on a single-particle basis set of N states. n = 1 (n = —1) for bosons
(fermions).

The time ordered exponential is defined as
JE ar mm i
T, (e 0 ) = 11_13(1) T,.E [1 — €H(ne)], (D.4)

where ¢ = /N, is the timestep, and T, orders the factors such that n
decreases from left to right. Between each factor in (D.4) we can insert a
resolution of the identity using Bose or Fermi coherent states (see (C.17)).

LHere we restrict ourselves to spin source terms. The formalism can be applied
to source terms of any operators.
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This introduces N, integration variables z,. The endpoints are identified
(up to a factor of 7), such that

Zg = NZo. (D.5)

The discrete generating functional is expressed as a multivariate complex
or Grassmann integral:

B B B
Z(e) = /H(dzz"')exp l_zz:(zr - z‘r—e) - ZH(T)G] ) (D6)

where we used (C.19) to define H[z*,z] as
(2, [Mlz,_) = H[z},2,_,§(7)] %%, (D.7)

and (1 —eH) = e + O(¢). The limit of € — 0 is formally denoted by the
path integral

Z = liII(l) Z(¢)

B
/’Dzz(‘r)exp (—/0 dr {z*0,z +H[_1(‘r)]}) . (D)

The “time derivative” or “kinetic term” is defined in the discrete formula-
tion

Or = (br7— 67— rr)/e. (D.9)
The kinetic term partially suppresses the contributions of rapidly varying
paths.
Caution: Since the integration variables at consecutive timesteps are totally
independent, one cannot assume continuity or smoothness of the paths z(7)!

D.2 Normal Bilinear Hamiltonians

An important subset of generating functionals involves normal bilinear
Hamiltonians,

8
drH(t) = 23 hi i (T)24,_, €
/0 (1) = 3 et hiu(r)

(D.10)

The generating functional Z(e) for normal bilinear Hamiltonians is a mul-
tidimensional Gaussian integral, which by (C.12) yields

Z(e) = /H(d%,)exp —€ Z z,-‘,G’;}i,T,zi,T,
=0

= (detGe)”
= exp[nTrin(Ge)], (D.11)
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where the Green’s function is given by
G le= (8, + h)e . (D.12)

G can be written explicitly as a matrix of size (N.N)Z, in the spatial and
temporal representation:

I 0 0 e n(—I + eh(B))
—I + €h(0) I 0 e 0
G le= 0 —I+eh(e) T 0
0 —I +eh(B —€) I
(D.13)
By successively eliminating the last timestep blocks using the identity
A B —
det (C D) =detDdet (A— BD™'C), (D.14)

it is possible to write Z(¢) as a determinant over spatial indices of a time
ordered product

Ne "
Z(e) = det |I-nT JJlI- eh(ne)]]
— det (I —nT, (exp l— /ﬁ dr h(‘r)])] i . (D.15)
0

For time independent Hamiltonians, we can diagonalize Ry
hiyy — (ek - u)&kkl, (D.16)
and recover the free energy of noninteracting bosons or fermions:

o B3 In(1—ePlex=)  bosons
—B7 13, In(1+ePlx=#) fermions’

which has been derived previously in (A.24).

For finite lattices at finite temperature, Z[j(7)] can be computed numer-
ically for arbitrary time dependent source terms. Formulas such as (D.15)
are useful, for example, in quantum Monte Carlo simulations of the Hub-
bard model.? The functional Z[Q(r)], where Q(7) is an auxiliary field that
decouples the four fermion interactions, is computed using (D.15). The re-
sult yields an effective Boltzmann weight for Q(7), which is updated using a
Monte Carlo (Metropolis) algorithm. However, one is cautioned that Z[Q]
is not positive definite, and its negative signs are highly problematic for
these simulations.

(D.17)

2See Chapter 5 in The Hubbard Model, bibliography of Chapter 3.
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D.3 Matsubara Representation

For evaluation of dynamic response functions, it is useful to diagonalize
G(7,7') using the Matsubara representation. One defines the Fourier trans-
form into Matsubara representation by the limit of infinite timesteps

B—e
— s —iwT
X, = 611_13(1) Z e X, e

=0

s .
/ dr e 7 X (7). (D.18)
0

The inverse transformation is given by the Matsubara sum

XM =g Y X, (D.19)

n=—oo
where w,, are the Bose or Fermi Matsubara frequencies:

| 2nr/pB Bose
Wn = { (2n+1)rr/8 Fermi’ (D-20)

The measure of the path integral can be changed to Matsubara represen-
tation

D’z =[[d*a, =] —2=, (D.21)

1,7 in

and the generating functional is given by

B
Z = f’Dzz exp l—z (—if 'wnz2,,) —/0 d‘rH[j]] .
(D.22)

Using (D.12) and (D.18), the Matsubara representation of the Green’s func-
tion for a time independent bilinear Hamiltonian is given by

6nn’6kk’

Go(k, iw) = — (D.23)

iw—hk'

D.4 Matsubara Sums

For complex analytic functions g(z) that are bounded at infinity by

lg(2)| < ﬁ » |2[ > Ro, (D.24)
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the Matsubara sum for 7 > 0 is given by the Cauchy integral formula:

ﬂ_IZei“’""g(iwn) = —UZCZ"T"I(Zu) Res[g(za)]
L / dz e*"n(2)g(z) , (D.25)

where z,, Res[g(24)] and C are the poles, residues, and cuts of g(z) in the
complex plane, respectively. n(z) is the Bose or Fermi function

1
n(z) = o (D.26)

which has simple poles at the Matsubara frequencies z = iwy,. Its residues
are

Res [n(iw,)] = (D.27)

n
5

The imaginary time Green’s function, for 7 > 0, is given by performing
the Matsubara sum over (D.23),

Go(k,7) = B €™~ Go(k,wn)
= e n(h) = nel* ¥ 7n(e, — p). (D.28)

Another useful example is the calculation of the dynamical spin sus-
ceptibility of a noninteracting system of spin 3 1 bosons or fermions. The
eigenstates are labelled by lattice momentum k and spin index s = +3 1
The source terms are written in the Matsubara representation as

B8
/ 3 1)

- _'B Z ]q(l/m) Z zkw 8033 zk+qw"+um,s'
knqm ss’

= zljz, (D.29)
where

s —
igw) = /0 dr g (r)e” P (D.30)

Since we choose j&(T) to be periodic on the interval [0, §], its Matsubara
frequencies are of the Bose type:

Vm = 2mn/p. (D.31)
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The generating functional is given by

In Z[j] —nTrln [e(Gal - 3)]

nTrln(eGo) + Y %T& (Goj')" . (D.32)
n=0

By (B.19) and (B.24), the susceptibility is given by the second-order term
in this expansion. Thus,
2z
qu(iu)aj_q(—iu)
T Z Go(k,iwn)Go(k + q, iwn, +iv)
k,n

—-n
= -2 Z k+q (D.33)
€ — €k+q +iv’

xX**(q,iv) =

where nj = n(ey — p). As shown in (B.26) the analytic continuation iv —
w + 107 yields the real and imaginary dynamical spin susceptibilities

1 ne —n
o5 kT "kiq

Rex”(qw) = —3 kg 9
Im x**(q,w) = g %(nk - nk+q)6(ek —€kiqt w).
(D.34)
D.5 Exercises
1. The equal time Green’s function is defined as the limit
lim G(kk,7) = (aal) . (D.35)
Evaluate the Matsubara sum
Go(k,—7) = -nB~ Z P— (D.36)
by the contour integration method outlined above and verify that
(acal —mala,) =1. (D.37)

Hint: The summand in (D.36) is not invariant under iwn — —iwn!
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Appendix E

The Method of Steepest
Descents

The method of steepest descents has several names in the literature, such
as the saddle point expansion and the stationary phase approzimation. The
basic principle is illustrated by the expansion of a contour integral of a
single complex variable:

I(g) =/Cdz e~9f(2), (E.1)

where z = 2+ iy runs on the contour C in the complex plane and connects
two points where Ref — oo.

We assume that f(z) is analytic in the complex plane. The Cauchy-
Riemann conditions are

8,Ref = 8,Imf,
8,Ref = —d,Imf, (E.2)

which also implies that neither the real nor the imaginary part of any
analytic function can possess an absolute minimum since

V2Ref = V2Imf =0. (E.3)

However, Ref(2) can acquire a minimum along a contour. Since e~9/(#) is
also analytic, we can deform C — C' in the complex plane and make it
pass through the saddle point 2zp, which obeys

d:Ref(20) = ByRef(z0) = 0. (E-4)
C' must obey the following conditions:
1. The endpoints of C’ are the same as those of C.
2. Ref(2) has a minimum on the contour at 2.

3. Imf is constant along the contour near zp.

The paths C and C’ are illustrated in Fig. E.1.

By (E.2) and (E.4), the third condition is equivalent to the path being
parallel to VRef, i.e., C' is the path of steepest descents of exp(—gRef),
hence the name of this method.
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FIGURE E.1. The saddle point and its path of steepest descents.

We determine C' by rewriting our integral as

Ig) = e I'),

I'(g) = / dz exp{—g[f(z + z0) — f(20)]} , (E.5)
Cl
f(2) is expanded in a Taylor series about 2o:
X f(n)
FE+20) -~ fl) = 3@+ 3 Lo (E6)
n=3 i

The contour Z € C’ is chosen such that

O =17 =4 (E.7)

C' is (to second order) the path of stationary phase,
Imf(Z + 20) = Imf(20) + O(F%). (E.8)

I' is expanded in powers of g—! as follows:

’ _ 27 e dy —lyz
o = \ 97@ /_oo\/27re i

o o] o o] f(ﬂ) . m
x 2 m! (‘Zn!—ﬁwy ) . (E.9)

m=0 n=3
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All odd powers of y vanish by symmetry. The integrand is rewritten as a
power series in y?" with coefficients az,,. The Gaussian integrals are given
by

/ i;’—yzﬂe-%y’ =1-3-5...2n—1) =(2n - 1)1, (E.10)
7
which yields
I'(g) = f(2 ll + Z g "ag(2n — 1) . (E.11)
There are cases where multiple saddle points exist,
d:Ref| =0, a=1,2,... . (E.12)
zg

If the distance between saddle points is much larger than the typical fluc-
tuations in I',

28 — 28| >> (E.13)

1
\/gf(z)’

one can sum over saddle points as independent integrals. This yields

I(g) = e s!C=)1.(g), (E14)

where I, is the fluctuation integral about z§.
The generalization of the steepest descents expansion to a multidimen-
sional integral is straightforward. Given an integral of the form

I(g) = / Dze 9@, (E.15)
where z = (z1,...,2x), we search for the saddle point
O, Ref| =0, i=1,...,N. (E.16)
Zy

The saddle point zo is, in general, a complex vector, which minimizes
Ref(z) along the N contours parametrized by z;. The contours are cho-
sen such that Imf is constant near the saddle point. Equations (E.16) are
N coupled nonlinear equations. In the literature they have many names:
“saddle point equations,” “classical equations of motion,” “mean field equa-
tions,” etc., depending on the integral in question and the large parameter
that controls its expansion.
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The quadratic form of f about a saddle point zy defines the inverse
“propagator” D:

1 -1
Dij =5 (03,03, f), ; - (E.17)
D generalizes the inverse of the Gaussian coefficient f(?). It describes ef-

fective interactions between the fluctuations in the variables Z. It is often
called in the literature the “RPA propagator.”™

Bibliography
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Index

adiabatic approximation, 213
Aharonov-Bohm phase, 161
AKLT Hamiltonians, 85
annihilation operator, 225

band structure, 3

£ function, 147

Berry phase, 103, 133, 216
topological, 133

bilinear Hamiltonians, generating func-

tionals, 242
bilinear operators, 227
bipartite lattice, 29
Bogoliubov inequality, 64
Bogoliubov transformation, 124, 194
Bohr-Sommerfeld quantization, 110
Bose coherent states, 237
Bose condensation, 190, 199

canting field, 130
Cauchy-Schwartz inequality, 63
coherent states

Bose, 239

Fermi, 239

spin, 72, 101
conjugate representation, 168
constrained fermions, 168
constraint field, 154, 170
constraints, holonomic, 206
continuum approximation, 159
continuum hamiltonian, 131
continuum limit, 139
correlation function

dynamical structure factor, 93,

233
dynamical susceptibility, 246
mean field theory, 197

onsite fluctuations, 183
Ornstein-Zernicke, 148
renormalized classical, 164
spin, 64, 172
sum rules, 181
correlation length, 131, 135, 140, 149,
162, 192, 203
Coulomb interaction, 4, 6, 21
CP71 models, 153
large N, 155
creation operator, 225
cutoff scale, 131

density fluctuations, 23

des Cloizeaux and Pearson excita-
tions, 59

dimer states, 83

doped antiferromagnet, 205

effective Hamiltonian, 26
elementary excitations, 94

Fermi energy, 3

Fermi surface, 3

Fermi surface nesting, 44
ferrimagnet, 126

field operator, 4

fixed points, 148
fluctuation-dissipation theorem, 233
Fock states, 3, 225

free energy, noninteracting, 243
frustration, 113

gauge field, 176
gauge freedom, 72
gauge potentials, 143



254 Index

gauge symmetry, 145
gaussian contractions, 180
Gaussian integrals, 251
generating functional, 170, 234
coherent states, 170
generating Hamiltonian, 169
Goldstone’s Theorem, 95
Grassmann integration, 238
Grassmann variables, 208, 237
Green’s function, 105
ground state
antiferromagnet, 52
ferromagnet, 56
Schwinger bosons mean field, 195
variational theorem, 39
Gutzwiller projection, 196
Gutzwiller states, 45

Haar measure, 73
Haldane gap, 59, 67, 96, 162
Haldane’s mapping, 130
Haldane-Shastry model, 45
half-odd integer spins, 56, 160, 161
Hartree—Fock equations, 39
hedgehogs, 163
Heisenberg ferromagnet, classical , 192
Heisenberg model, 8, 51
Holstein and Primakoff operators, 69
hopping matrix elements, 23
Hubbard model, 8 ,21
negative-U, 28
two-dimensional, 205
Hubbard-Stratonovich fields, 176
Hubbard-Stratonovich identity, 171

infrared divergence, 142
interactions
irrelevant, 7
marginal, 7
Ising configurations, 52
itinerant magnetism, 44

Kosterlitz—Thouless temperature, 147
Kramers—Kronig relations, 233

lagrangian, normal, 171

lagrangians, anomalous, 172

large N approximations, 165, 173

large N expansion, 175

lattice Laplacian, 118

Laughlin state, 91

Lieb, Schultz and Mattis Theorem,

57, 201

Lieb’s Theorem, Hubbard model, 47

linked cluster theorem, 181

local density, 5

long range order, 62, 126, 198
quasi, 62

magnetic bands, 42

Majumdar—Ghosh Hamiltonian, 83

Marshall’s Theorem, 53

Matsubara frequencies, 117, 234, 244

mean field equations, 175

Mermin and Wagner’s Theorem, 62,
126

monopole vector potential, 104, 208

Mott insulator, 27, 205

Néel field, 130
Néel gauge field, 154, 177, 219, 221
Néel state, 52
Nagaoka’s Theorem, 45
nonlinear sigma model, 135
large N, 153
weak coupling, 139
normal ordering, 239

ordered moment, 202
Ornstein—Zernicke correlations, 148,
193

path integral
Bose coherent states, 116
coherent state, 241
imaginary time, 129
phase-space, 115
spin, 101
t — J model, 209
polaron hopping, 217
Pontryagin index, 159
pseudo-spin, 30



quantum disorder, 66

quantum Hall effect, 91, 97

quantum Heisenberg model, 27

quantum Monte Carlo simulations,
243

renormalization, 7

one loop level, 144

poor man’s, 147, 151
resolution of identity, 73

spin-hole coherent states, 209
resolvent operator, 25
resonating valence bond states, 80,

84

response function, 231
RPA propagator, 179, 252

saddle point equations, 175, 251

saddle point expansion, 249

Schrédinger equation, 3

Schwinger boson mean field state, 81

Schwinger bosons, 70, 206
antiferromagnet, 166
ferromagnet, 166

Schwinger bosons mean field theory
antiferromagnet, 194
ferromagnet, 187

screening, 4

second quantization, 225

semiclassical approximation, 106

semiclassical configurations, 129

semiclassical spectrum, 109

short-range interactions, 63

single mode approximation, 93

slave fermion, 206

solitons, 140

spin coherent states, 207

spin density wave, 40

spin exchange, 11
antiferromagnetic, 13
ferromagnetic, 11
intersite, 23
superexchange, 18

spin liquids, 82, 88, 164

spin operators, 227

spin polaron, 212

spin wave fluctuations, 142
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spin wave theory, 113
spin wave velocity, 134, 202
spin waves
antiferromagnet, 125
ferromagnet, 119, 122, 190
spin-flop transition, 33
spin-hole coherent states, 208
spiral states, 41
spontaneously broken symmetry, 61
stationary phase approximation, 249
steepest descents method, 249
stiffness constant, 132, 203
Stoner’s criterion, 43
superconductivity, 30, 220
high-temperature, 205
superexchange, 18, 27, 31
superexchange path, 19
supersolid, 33
susceptibility, 43, 63, 132, 190, 191,
235

O term, 159
t — J model, 25, 205
classical Hamiltonian, 210
spin S, 207
time ordered exponential, 231, 241
tunneling
multidimensional, 214, 222
path, 215
spin, 214

universality, 147

valence bond solids, 85
valence bond states, 79

Wannier states, 22
winding number, 159

=y model, 146, 151





