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Preface

People learn by observing things around them. When the telescope and
the microscope were invented, people aimed them at different objects, large
and small, and discovered a new world that had been hidden from them.
Interesting patterns gradually take shape and theories gradually come into
being, through innovative ways of looking at things.

A computer program for data analysis is analogous to a telescope or a
microscope. We use the program to look at the data set, to reveal the patterns
that have been hidden from us, and to derive new insights that would
otherwise be beyond our imagination. The computer program (DAMBE) that
I am promoting in this book is for data analysis in molecular biology,
ecology, and evolution, and I hope that it will help you see interesting
patterns that have been hidden from you.

The last decade has witnessed an explosive growth of molecular data
which, according to bioinformaticians, will be the most important resources
in the next century. However, after travelling along the so-called information
superhighway for some time, most of us have come to realize that
information is not equivalent to knowledge. Indeed, an overwhelming
amount of undigested information may not only dazzle our eyes, but also
confuse our mind. It is for this reason that many computer programs have
been developed in the last decade to facilitate our effort to extract valuable
knowledge from the bewildering jungle of information. DAMBE is one of
such programs, and this book will take advantage of the powerful analytical
features in DAMBE to illustrate innovative ways of treasure hunting in the
field of molecular evolution and computational molecular biology.

The book is structured in five parts. Chapter 1 provides a brief
introduction to DAMBE, a user-friendly computer program for molecular
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data analysis. Chapters 2-5 cover routine techniques for retrieving,
manipulating, converting, organizing, and aligning molecular sequence data.
Chapters 6-11 introduce the concept of a substitution model which typically
has two categories of parameters called frequency parameters and rate ratio
parameter. The emphasis is on factors that affect the frequency parameters
and lead to nucleotide, codon and amino acid usage bias. Recent studies on
the effect of maximizing transcriptional and translational efficiencies on
codon usage bias were described in detail in an effort to guide the reader to
problems that remain unsolved. Chapters 12-16 cover fundamentals of
comparative sequence analysis, with the main objective of offering the
reader an intuitive understanding of the rate ratio parameters in substitution
models. Some evolutionary controversies were outlined, and possible
solutions illustrated, to stimulate and encourage the reader to find his or her
own answers. Chapters 17-22 guide the reader along a smooth path to some
more advanced topics in molecular data analysis, including phylogenetic
reconstruction, testing alternative phylogenetic hypotheses, and fitting
discrete and continuous probability distributions to substitution data.

Two thirds of the book is suitable for an advanced undergraduate course
in molecular biology and evolution, and one third ranges from the level of a
graduate course to that of a professional reference. The book offers students
the opportunity of deriving basic concepts and principles of molecular
biology, ecology, and evolution from actual data analysis. It guides students
to make their own discoveries and build their own conceptual framework of
the rapidly expanding interdisciplinary science. In short, the material is
developed in the spirit of the student-centered learning which is now gaining
acceptance and popularity in universities around the world.

We teachers typically would try to convince our students that the
teaching materials they receive from us are the best they could ever find,
much in the same way as a merchant selling a spade. A spade-selling
merchant will not tell us that the spade he sells is good for digging our own
graves. Instead, he would try to persuade us into believing that there are
treasures hidden somewhere, that the spade is a handy tool for digging up the
treasure, that almost everyone has already acquired a spade, and that we
would be at a terrible disadvantage if we do not acquire a spade quickly.
Now to demonstrate the salesmanship that I have acquired during the last 20
years in various universities, let me share with you the secret that there is
indeed much treasure hidden in large databases like GenBank, that computer
programs are indeed handy tools for digging up the treasure, that almost
everyone has already been using these computer programs, and that you
would be at a terrible disadvantage if you fail to acquire such programs or
the efficiency in using them, especially if you are going to be a student in
molecular biology, ecology, and evolution.
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The unique combination of the book and the computer program will
allow biologists to not only understand the rationale underlying a variety of
computational tools in molecular biology and evolution, but also gain instant
access to these computational tools. Most of the difficult concepts were
illustrated with concrete examples, and a great deal of effort has been taken
to minimize the need for abstract reasoning. If you happen to belong to the
unfortunate category of lesser folks who, like me, cannot see the beauty of
equations without rendering them to numbers, then you may find this book
exactly what you have been looking for.
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Chapter 1

Installation of DAMBE and a Quick Start

DAMBE (Data Analysis in Molecular Biology and Evolution) is an
integrated software package for retrieving, converting, manipulating,
aligning, statistically and graphically describing and analyzing molecular
sequence data, on the user-friendly Windows 95/98/ME/NT/2000 platform.
The software package has been improved dramatically since its first release
in February, 1999. Extensive statistical tests of phylogenetic hypotheses
have since been added, and network accessing has been much enhanced for
directly accessing GenBank files or files on your networked workstations
such as UNIX or Macintosh.

This chapter shows how to install DAMBE and how to get a jump start.
If you have already installed DAMBE and encountered no problem, then just
skip the first section and proceed to the second. Subsequent chapters will
introduce more advanced techniques in descriptive and comparative analyses
of molecular sequences by using DAMBE.

1. INSTALLATION

Go to my site at http://web.hku.hk/~xxia/software/software.htm. There
are two installation packages available, one using the Windows Installer and
other using the conventional installation method. The former is preferred.
You are strongly advised to follow the “Using Windows Installer” link to
install DAMBE.

Click the DAMBE.msi link. At the dialog asking you whether to open or
save the file, choose the "Open…" option and click OK. If your system
already has Windows Installer, which is a component of the Microsoft
Windows ME and Windows 2000, it will begin to install DAMBE. If your
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computer does not recognize DAMBE.msi as an installation file, then do the
following exactly.

First, if you have installed a previous version of DAMBE, I suggest that
you first uninstall DAMBE before installing the new version. Click
Start|Settings|Control Panel, and then click the Add/Remove Programs
icon. Under the Install/Uninstall tag, you will find DAMBE. Click to
highlight it, and then click Add/Remove button. Follow the prompt to
completely remove DAMBE except for those shared files. If you have
created additional files in the DAMBE directory, then these files will not be
removed, and the uninstallation program will say that DAMBE is not
completely removed. This is OK.

Second, create a directory, download the relevant installation files to the
directory and run the setup.exe program. The setup.exe program will check
to see if the Windows Installer is already on your computer. If not, it will
install the correct Installer for the operating system of the target computer.
(To download, right-click your mouse and choose "Save target as ..." or
something like this. If you are a MAC user running the Virtual PC software,
hold down the Control key and click).

For Windows 95/98/NT, download the following files:
1. DAMBE.msi: compressed installation file.
2. setup.exe: the installation file that determines whether the Windows

Installer resides on your computer. If not, it installs the Windows Installer.
3. setup.ini: the file that tells setup.exe the name of your .msi file to

install.
4. Either InstMsiA.exe (for Windows 95/98) or InstMsiW.exe (for

Windows NT).
After installation, a program icon will be added to the Start menu. You

may now run the program from the Windows desktop by click Start|Dambe.
I have included a number of sample files for you to try out DAMBE’s
functions.

2. A JUMP START

After the installation, you will find a number of data files in the directory
where DAMBE.EXE resides. These data files are for you to practice with
DAMBE, but it would be better if you have your own data files in some of
your directories. The various file formats represented by the sample files
may be confusing at first, and you should ignore them for the time being.
Chapter 2 provides an introduction to the plethora of file formats, the
rationale underlying these various file formats, and how to use DAMBE to
convert these formats into each other.
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You can now start the program by clicking the program icon from the
program start menu. A standard Windows interface appears (fig. 1), waiting
for your input. The display window will automatically show scroll bars when
there are more text than can be displayed in the window.

Click the File menu, then click the Open menu item (which will be
abbreviated as File|Open in subsequent chapters). The standard WINDOWS
file/open dialog box appears (fig. 2). This dialog box is used in DAMBE for
all file input/output. Note that, by default, only files with .FAS extension are
shown, to avoid cluttering of the screen. If you click the Files of Type
dropdown listbox and select another file type, say MEGA files, then only
files with file extension .MEG will be shown. For the time being, just leave
the file type as .FAS. Double-click the file INVERT.FAS, which contains
seven nucleotide sequences of the elongation factor gene from seven
invertebrate species. Alternatively, you can click the file once to highlight it,
and then click the OPEN button.

This standard file/open dialog box can perform some simple file
management tasks. For example, if you want to delete a file, just right-click
your mouse and then click delete in the pop-up menu, and the file will be
deleted to the wastebasket. If you wish to delete the file completely, then
hold down the shift key and then click delete. If you wish to change a file
name, just click the file to highlight it, and then click it once more. Now you
can just type in the new file name. But please do not delete any file in the
DAMBE directory or change any file name.
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After you have opened a file (either by double-clicking it or by first
highlighting it and then clicking the Open button), a dialog box appears
requesting the nature of the sequences (fig. 3), i.e., whether the input file
contains non-protein-coding sequences (e.g., rRNA sequences), amino acid
sequences or protein-coding nucleotide sequences. The reason for DAMBE
to request this information is because different types of sequences are often
associated with different analytical methods. DAMBE will make different
analytical options available according to the type of input sequences.

If your sequences are protein-coding nucleotide sequences, as are the
sequences in the invert.fas file, then you should click the option for protein-
coding sequences. Because different organisms may use different genetic
codes to translate mRNA molecules to proteins, DAMBE will present
another set of options for you to choose which genetic code is associated
with your protein-coding sequences, i.e., whether it is universal or
mammalian mitochondrial or any of the other ten genetic codes (fig. 4).
Click the appropriate radio button, and then click Go!. If the sequences are
not aligned, then you will be asked whether you wish to aligned the
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sequences. The sequences are then shown in the display window, and are
now stored in the computer memory waiting for you to apply analyses to
them. Do whatever you consider sensible, otherwise please proceed to read
the next chapter, or just click File|Exit for now and come back later
(File|Exit means that you first click the File menu and then click the Exit
item).



Chapter 2

File Conversion

Molecular data come in many different formats, some of which are
represented by sample files that come with DAMBE. These sample files are
located in the directory where DAMBE.EXE resides. If you have already
used PHYLIP and PAUP, then you already know at least two file formats
and the difference between them. If you have retrieved sequences from
GenBank, you might have already noted the difference between the
GenBank format (one of the most complicated sequence formats) and the
FASTA format (one of the simplest sequence formats), which are the only
two formats in which GenBank delivers the sequences to your networked
computer. Sequences in the PHYLIP or PAUP formats are aligned, and are
typically represented in interleaved format. Sequences in the GenBank
format are typically not aligned and are represented in sequential format.
Sequences in FASTA format can either be aligned or not aligned, and are
represented in sequential format. One should use interleaved format to
represent aligned sequences.

If you have not encountered any of these file formats, then it is now a
good time to have a look at these files, all of which are plain text files. There
is an ugly but convenient built-in file viewer in DAMBE under the Tools
menu which you can use to view most text or graphics files. These sample
files are provided in case you have not yet engaged in any real data analysis
in molecular evolution and phylogenetics, and consequently have not
accumulated a private collection of data files.

If you have wondered why DAMBE should support so many different
file formats, here is the answer. Although DAMBE covers a substantial
amount of computational tools used in molecular biology and evolution,
many users will certainly find other special-purpose programs with functions
not available in DAMBE. Many of these special-purpose programs use
nucleotide or amino acid sequence files with special (or even weird) input
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formats. For this reason, DAMBE provides you with an extensive file
conversion utility to facilitate your data analysis with other programs.

This chapter will first bring you into contact with a plethora of commonly
used computer programs used in bioinformatics and molecular biology and
evolution, and the commonly used sequence formats associated with these
computer programs. It wi l l then introduce you to one of the commonly used
file conversion uti l i ty, READSEQ, and outline some of its limitations.
Finally, you will learn how to convert files between different file formats
using DAMBE.

Two file conversion utilities are available in DAMBE, one converting all
sequences in a file from one format to another, and the other converting a
subset of sequences in your file from one format to another. You can also
convert protein-coding nucleotide sequences in one format into amino acid
sequences in another format.

1. A PLETHORA OF COMPUTER PROGRAMS

Scientists in the field of molecular biology and evolution use a variety of
computer programs, with functions covering comparative sequence analysis,
sequence alignment, protein and RNA structure, gene identification, data
mining, and so on. You should learn to take advantage of the power of these
programs in carrying out data analysis of molecular data. Most programs are
written by active researchers who wish to solve specialized problems in their
own research but then feel that the resulting programs might be useful to
others as well. The following URLs list computer programs commonly used
in data analysis in molecular biology and evolution, as well as links to other
software listings:

http://evolution.genetics.washington.edu/phylip/software.html
http://biosci.biosc.lsu.edu/general/software.html
http://darwin.eeb.uconn.edu/molecular-evolution.html
http://www.york.biosis.org/zrdocs/zoolinfo/software.htm
http://www-biol.univ-mrs.fr/english/ftp.html
http://iubio.bio.indiana.edu:81/soft/biosoft-catalog/

2. A PLETHORA OF SEQUENCE FORMATS

The plethora of computer programs results in a plethora of file formats.
There are currently 18 file formats in common use in molecular biology and
evolution, and I hope that the number will become stabilized. These 18
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formats, together with what DAMBE can read in and convert to, are listed
below. It is good practice to associate each file format with one particular
file type. If you have used Microsoft Office, you will notice that WORD
files are associated with the .DOC file type, EXCEL files with the .XLS file
type, and PowerPoint files with the .PPT file type.

If you hate to read this chapter, or confused by the preponderance of file
formats, then try to persuade programmers not to create more file formats.
Don Gilbert has made this appeal a long time ago, unfortunately without
much effect.

3. READSEQ

READSEQ is an excellent program written by Don Gilbert, and can
automatically recognize and convert many file formats into each other. I
personally have benefited greatly from using the excellent yet free program.
However, it has five major limitations:
1. READSEQ cannot read or write the following sequence formats that can

be processed by DAMBE:
– MEGA: sequential and interleaved formats
– PAML: sequential and interleaved formats, and the RST format which

contains a tree structure and the reconstructed ancestral sequences,
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generated in PAML or DAMBE when the user chooses to reconstruct
ancestral sequences using the maximum likelihood method (Yang et
al. 1995)

–    CLUSTAL: the aligned sequences
–    PHYLTEST: a very special format that is easy to output with

DAMBE.
2. READSEQ does poorly with GenBank files, which contains a lot of

information (e.g., beginning and ending sites of a coding sequence, an
intron, an exon, a rRNA sequence, etc) about the sequences. READSEQ
simply ignores all this information and read in the whole sequence. In
contrast, when DAMBE reads in a GenBank file, it automatically takes in
all these pieces of information and allows you to splice out the desired
sequence segments. See the chapter entitled "PROCESSING GENBANK
FILES" for details.

3. READSEQ, being a text-based program, is clumsy at saving a subset of
sequences. In contrast, DAMBE allows you to list all sequences and
simply click a subset of sequences for saving into any specified file
format.

4. READSEQ does not read in long sequence names in several formats,
resulting in truncation of sequence names.

5. READSEQ is slow when reading large sequence files.

4. FILE CONVERSION USING DAMBE

DAMBE provides two convenient ways for you to convert your sequence
files from one format to another. The first allows you to convert all the
sequences, and the second allows you to save a subset of sequences in your
file. The latter is useful in the following situations:
–   You wish to do a phylogenetic analysis, but the phylogenetic program

complains that there are too many sequences in your file. Some
phylogenetic programs, such as CODEML in the PAML package, are
very slow and simply cannot deal practically with more than 10
sequences.

–   The sequences in your file is heterogeneous, e.g., contain sequences for
two or more different genes. This is particularly true when you retrieve
sequences from GenBank by searching with keywords. You consequently
may wish to save them into different files, each containing orthologous
sequences for one gene.
The input sequences for DAMBE may contain characters such as "-", "?"

and ".", which are interpreted, respectively, as a gap, an unresolved base, and
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a base identical to the first sequence at the same site. All saved files are plain
text files. All occurrences of  T are changed to U in the computer buffer.

4.1 Convert all sequences from one format to another

Start DAMBE, and open a sequence file according to the instruction
close to the end of the last chapter. The sequences will be displayed in the
display window. Click File|Save As (Converting sequence format). The
standard file/open dialog box appears. Choose the appropriate file format
and click OK. You will be informed that the file has been saved into a text
file. Click OK, and the converted file will be shown on the screen (so that
you are sure of the correctness of the conversion). You see that the program
is very user-friendly. This is true also when you perform more complex data
manipulation and analyses using DAMBE.

Here are some particulars pertaining to some formats:
MEGA: MEGA file format allows some comments. You will be

prompted to enter a description.
PIR: PIR format is for amino acid sequences. If the sequences you are

converting are nucleotide sequences, you will be informed that the PIR
format is for protein sequences and prompted as to whether you want to
translate the nucleotide sequences into amino acid sequences. In the latter
case, the user needs to tell DAMBE at which nucleotide site to begin
translation. This is necessary for the following reason. Take the following
nucleotide sequence GCU GGU AUG U for example. The resulting amino
acid sequence is Ala-Gly-Met if DAMBE starts translation from the first
nucleotide site (the trailing partial codon represented by U is ignored).
However, the sequence would be translated to Leu-Val-Cys if DAMBE
starts translation at the second nucleotide site. PIR output is in single-letter
notation, i.e., each amino acid is represented by a single letter.

GCG: There are two file formats in GCG, the single file format with file
extension .GCG, and the multi-sequence file format with the file extension
.MSF. If your original sequence file contains multiple sequences and you
choose the file type .GCG, you will be asked whether you actually wish to
save the sequences into the multi-sequence format. If you choose Yes, then
the file, with multiple sequences, will be saved in GCG MSF format,
otherwise the sequences will be saved to the file in GCG single sequence
format.
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4.2 Converting a subset of sequences

Start DAMBE, and open a sequence file if you have not done so already.
The sequences will be displayed in the display window. Now click File|Save
a subset of sequences. A dialog box appears for sequence selection (fig. 1).
A similar dialog box (or slight variation of it) will also appear when you
choose sequences for other types of manipulation or analysis. It is therefore
worthwhile to pause a minute to get familiar with this dialog box.

There are two lists in the dialog box. The one on the left shows the
sequences that are available for selection. The one on the right displays
sequences selected for output. At this moment, the list on the right is empty.
–   To select a single sequence, just click to highlight it, and then click the

button to move it to the right. If you have made a mistake and transferred
a wrong sequence to the right, then just click to highlight the sequence
and click the button to move it back to the left.

–   To select neighboring sequences, click the first of the neighboring
sequences to highlight it and then, while holding down the shift key, click
the last of the neighboring sequences. All the neighboring sequences will
then be highlighted. Click the button to move them to the right.
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–    To select disjoint sequences, click each sequence while holding down the
Ctrl key, and then click the button to move the highlighted sequences
to the right.
This selection procedure is the same when you perform other functions

involving sequence selection. Once you have finished your selection, click
the Go! button. A standard file/save dialog box appears. Choose the desired
file type (sequence format). Type in the file name for saving the result, or
simply use the default. Then click the Save button. The file is saved in text
format, and also displayed in the display window (to assure you of the
correctness of  the conversion).

You can translate any protein-coding nucleotide sequences into amino
acid sequences by using any one of the 12 implemented genetic codes.
Translation depends on which genetic code you use. All 12 known genetic
codes have been implemented in DAMBE (Details of these genetic codes are
listed in http://web.hku.hk/~xxia/software/GenCode.htm):
1. universal
2. vertebrate mitochondrial
3. yeast mitochondrial
4. mold mitochondrial
5. invertebrate mitochondrial
6. ciliate nuclear
7. echinoderm mitochondrial
8. euplotid mitochondrial
9. alternative yeast nuclear
10.ascidian mitochondrial
11.flat worm mitochondrial
12.blepharisma nuclear

4.3 Output PHYLTEST files

You might want to skip the rest of the chapter if you do not use
PHYLTEST written by Sudhir Kumar. The program is primarily developed
to facilitate the use of statistical tests of phylogenetic hypotheses based on
the minimum evolution (ME) principle. For further theoretical
considerations and for mathematical formulae, you may refer to relevant
literature for the ME method (Rzhetsky et al. 1995; Rzhetsky and Nei 1992;
Rzhetsky and Nei 1993).

PHYLTEST can take nucleotide sequences, amino acid sequences, or a
distance matrix as input. The file format involving nucleotide sequences is
rather complicated, but can be easily generated by using DAMBE. All
descriptions below pertain to molecular sequence data.
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4.3.1 A PHYLTEST sample file

12S rRNA data from Cooper et al.
nucleotide

13 370

#emu_{emu}

GCTTAGCCCTAAATCTTGATACTCACCTTACCAGAGCATCCGCCTGAGAACTACGAGCACAA

ACGCTTAAAACTCTAAGGACTTGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAA

TCGATAACCCACGATACACCCAGCCATCTCTTGCCACAGCCTACATACCGCCGTCGCCAGCC

CGCCTATGAAAGATAGCGAGCACAATAGCCCGCTAACAAGACAGGTCAAGGTATAGCGTATG

AGATGGAAGAAATGGGCTACATTTTCTAACATAGAATAACGAAAGAAGATGTGAAATCCTTC

AGAAGGCGGATTTAGCAGTAAAACAGAATAAGAGAGTCTATTTTAAACTGGCTCTAGGGC

#cassowary_{cassowary)

ACGCTTAAAACTCTAAGGACTTGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAA

TCGATAACCCACGATACACCCAACCATCTCTTGCCACAGCCTACATACCGCCGTCGCCAGCC

CGCCTGTGAGAGATAGCGAGCATAACAGCCCGCTAACAAGACAGGTCAAGGTATAGCGTATG

AGATGGAAGAAATGGGCTACATTTTCTAACATAGAATAACGAAAAAGGATGTGAAATTCCTT

AGAAGGCGGATTTAGCAGTAAAACAGAACAAGAGAGTCTATTTTAAACCGGCCCTAGGGC

#kiwil_{kiwi}

GCTTAGCCCTAAATCCTGGTACTTACGTTACCTAAGTACCCGCCCGAGAACTACGAGCACAA

ACGCTTAAAACTCTAAGGACTTGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAA

TCGATAACCCACGATACACCCAACCATCTCTTGCCACAGCCTATATACCGCCGTCGCCAGCT

CGCCTATGAGAGACAGCGAACACAACAGCTAGCTAACAAGACAGGTCAAGGTATAGCCTATG

AGATGGAAGAAATGGGCTACATTTTCTAAAATAGAATAACGAAAAAGGGTGTGAAATCCCTT

AGAAGGCGGATTTAGCAGTAAAACAGAATAAGAGAGTCTATTTTAAGCTGGCCCTAGGGC

#kiwi2_{kiwi}
GCTTAGCCCTAAATCCTGGTGCTTACATTACCTAAGTACCCGCCCGAGAACTACGAGCACAA

ACGCTTAAAACTCTAAGGACTTGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAA

TCGATAACCCACGATACACCCAACCATCTCTTGCCACAGCCTATATACCGCCGTCGCCAGCT

CGCCTATGAGAGACAGCGAACACAACAGCTAGCTAACAAGACAGGTCAAGGTATAGCCTATG

AGATGGAAGAAATGGGCTACATTTTCTAAAATAGAATAACGAAAAAGGGTGTGAAATCCCTT

AGAAGGCGGATTTAGCAGTAAAACAGAATAAGAGAGTCTATTTTAAGCTGGCCCTAGGGC

#rheal_{rhea}
GCTTAGCCCTAAATCCTGATACTTACCCCACCTAAGTATCCGCCCGAGAACTACGAGCACAA

ACGCTTAAAACTCTAAGGACTTGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAA

TCGATAACCCACGATACACCCGACCATCTCTTGCCCCAGCCTACATACCGCCGTCCCCAGCC

CGCCTGTGAAAGACAGCAGGCATAATAGCTCGCTAACAAGACAGGTCAAGGTATAGCATATG

GGATGGAAGAAATGGGCTACATTTTCTAATCTAGAACAACGGAAGAGGGCATGAAACCCCTC

CGAAGGCGGATTTAGCAGTAAAGTAGGATCAGAAAGCCCACTTTAAGCCGGCCCTAGGGC

#rhea2_{rhea}
GCTTAGCCCTAAATCCCGATACTTACCCCACCCAAGTATCCGCCCGAGAACTACGAGCACAA

   

GCTTAGCCCTAAATCTTGATACTCGCTATACCTGAGTATCCGCCCGAGAACTACGAGCACAA
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ACGCTTAAAACTCTAAGGACTTGGCGGTGCCCTAAACCCACCTAGAGGAGCCTGTTCTATAA

TCGATAACCCACGATACACCCGACCATCTCTTGCCCCAGCCTACATACCGCCGTCCCCAGCC

CGCCTATGAGAGACAGCAAGCATAATAGCTCGCTAGCAAGACAGGTCAAGGTATAGCATATG

AGATGGAAGAAATGGGCTACATTTTCTAGTCTAGAACAACGAAAGAGGGCATGAAACCCCTC

CGAAGGCGGATTTAGCAGTAAAGTGGGATCAGAAAGCCCACTTTAAGCCGGCCCTAGGGC

4.3.2 Generating PHYLTEST files with DAMBE

Start DAMBE and read in a sequence file. Click File|Save As, and a
standard File/Save dialog box will show up. Click the Save as type
dropdown menu, and choose the PHYLTEST file type (the second last in
the dropdown list). A dialog box is then displayed (fig. 2). Click a set of
sequences that you know are monophyletic and then click the button to
move them to the right. Now enter a one-word ID for the group and click the
Done button. Continue this process until all sequences have been processed.
The finished file will be automatically displayed in the display window to
assure you of the correctness of the conversion.
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Processing GenBank Files

If  you ask an expert in bioinformatics what is the most important resource
in the modern world, he will most likely give you a surprising answer. He
will tell you that the most important resources are not whales in the ocean, or
minerals on land or petroleum underground. The most important resource, he
will argue, lies in molecular databanks such as GenBank. What modern
people should do is not to make giant ocean fleets to kill those already
threatened or endangered marine species, neither should they drill deep
underground to take up the already depleted petroleum reserves. What
modern people should be doing is to design efficient software to get at the
treasures hidden in those large and ever-expanding molecular databanks.

The wisdom in the assertion by the bioinformatics expert may not be
immediately obvious to you. However, it is my belief  that you wi l l very soon
be making the same assertion, and will find GenBank a part of  your life.

DAMBE allows you to read molecular sequences directly from GenBank
if your computer is connected to internet. This function has been handy and
time-saving for me. For example, if I come across a paper that listed a
number of protein-coding sequences with either GenBank accession numbers
or LOCUS names, and if I want to verify the claims made by the author(s),
all I need to do is simply click File|Read sequences from GenBank and
type in the accession numbers or LOCUS names. DAMBE will splice out the
introns and join the CDS automatically by taking advantage of the
FEATURES table in the GenBank sequence file, align the sequences and
allow me to carry out comparative sequence analyses with no hassle.

The power of DAMBE will be better appreciated if you know something
basic about the GenBank sequence format and how the information is stored
in GenBank files.

Sequence files in GenBank can be retrieved in one of two formats via
Internet. One format is the FASTA format, which is one of the simplest
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sequence formats, and the other is the GenBank format, which is one of the
most complicated sequence formats. These two file formats can both be
directly read into DAMBE. Sequence files in the FASTA format contain just
plain sequences as well as sequence names to designate each of the
sequences. The sample file invert.fas is a typical sequence file in FASTA
format.

The GenBank format, designated by the file type .GB in DAMBE,
features rich annotations for the molecular sequence. Each sequence in the
file has a LOCUS name, and may have one or more accession numbers.
Each of the sequences may contain multiple coding regions (CDS), multiple
introns and exons, and multiple rRNA genes. These different segments
within the same sequence are specified in what is known as the FEATURES
table in GenBank files.

Because of the complexity of the GB files and the frequent necessity of
utilizing the rich information contained in GB files, I have written this
chapter entirely on how to deal with GB files. You will first learn some
basics about the FEATURES table of a typical GB file, and then learn how
to use DAMBE to read in GB files while taking advantage of  the information
contained in the FEATURES table. You may skip this chapter if  you are not
going to work with GB files in the near future.

1. GENBANK FILE FORMAT

A typical, but abridged, GenBank file, which contains the elongation
is shown below. The complete file can be found in the

file EF1A.GB in the installation directory of DAMBE. GB files are plain text
files which you can view within DAMBE by using the built-in file viewer
under the Tools menu.

LOCUS  MRTEF2 2263 bp DNA PLN 17-FEB-1997

DEFINITION Mucor racemosus TEF-2 gene for elongation factor 1-alpha

ACCESSION X17476

FEATURES Location/Qualifiers

source 1..2263

/organism="Rhizomucor racemosus"

CDS join(464..517,646..1735,1933..2165)

/codon_start=l

/product="EF-l-alpha"

exon <464..517

......

......

......
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/number=l
intron 518..645

/number=l

exon 646..1735

/number=2

intron 1736..1932

/number=2

exon 1933..>2165

/number=3

BASE COUNT 572 a 511 c 480 g 700 t

ORIGIN

1 tttttctcat tgggaatcca ttggaatgaa aggacaaatg cactctcgca atgagatgct
61 ttaaatgctg gcaaatttga aggatgtaca atcgaaactt tccaaatgtc ctcaaacaag

2161 aataaattgc tacatagtag ttttttcttt cccattgctg tcagtatata gtaaaagccc

2221 ttgtacagtg tgctttggat ttaaattatt caaaataaat caa

//

LOCUS MRTEF3 1881 bp DNA PLN 10-APR-1993

DEFINITION Mucor racemosus TEF-3 gene for elongation factor 1-alpha

ACCESSION X17475

FEATURES Location/Qualifiers

CDS join(88..141,200..1289,1490..1719)

/codon_start=l

/product="EF-1-alpha"

exon <88..141

/number=l
intron 142..199

/number=l
exon 200..1289

/number=2

intron 1290..1489

/number=2

exon 1490..>1719

/number=3

BASE COUNT 459 a 436 c 413 g 573 t

ORIGIN

1 ggatccatcc atgccacaaa tcagcataaa tgctatccat ccatccatca aacatactta

61 catgtatcat ctttcattat agtcgcaatg ggtaaggaga agactcacgt taacgtcgtc

......

......

......

......

......

......

......

......
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1801 ataatctgta taagttgtgt tgtccatgac gtgatgtgag gtgtgtttat tgagtggtgc
1861 acatcagttc gtatattagg a

//

LOCUS ......

Every molecular sequence in GenBank is assigned a LOCUS name, e.g.,
MRTEF2 is the LOCUS name for the first DNA sequence in the GB file
shown above. It contains a nucleotide sequence with 2263 bases, which are
numbered from 1 to 2263. Notice that the genes in the two sequences
each contain three exons, and the final coding mRNA results from the
splicing out of the introns and the joining of these three exons. The CDS
entry in the FEATURES table specifies the location of these three coding
segments, with the first starting and ending at positions 464 and 517,
respectively, the second starting and ending at positions 646 and 1735,
respectively, and so on. The complete coding sequence specifying the
translation of the nucleotide sequence into the amino acid sequence results
from the joining of these three segments.

For those of us who study molecular biology and evolution, it is often
necessary to splice out a particular DNA sequence from a variety of species
and make interspecific comparisons. For example, to study the evolution or
functional changes of the coding sequences of the elongation it is
necessary to splice out the CDS regions of and join them together,
and repeat this process for a variety of organisms in order to make
interspecific comparisons. Similarly, to study the evolution of introns of EF-

one would need to splice out the introns from a variety of organisms and
make comparisons among them. To cut out and join these different sequence
segments manually or with the aid of a text editor would be very
cumbersome and error-prone. DAMBE fully automates the whole process in
an elegant and pleasing way. What you need is just a few simple clicks of a
mouse button.

2. REANDING GENBANK FILES WITH DAMBE

The best way to proceed now is to run DAMBE and see how it works.
Start DAMBE and click File|Open. A standard file dialog box appears. Go to
the installation directory of DAMBE where the EF-1A.GB file is located. It
should be in the directory C:\Program Files\DAMBE if you installed the
program by default. In the File of type dropdown listbox, choose (click)
GenBank file format. You will see EF-1 A.GB file in the dialog box. Double-
click it, or single-click it to highlight it and then click the Open button. A
dialog box appears (fig. 1), prompting you to choose whether to read in the
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whole sequence or specific segments within each sequence specified in the
FEATURES table in the GenBank file. Occasionally you may have GenBank
files that do not have the FEATURES table, in which case you should choose
the default, i.e., reading the whole sequence. Note that some GenBank
sequences may take several megabytes of space and you should be cautious
about reading in the whole sequence. If the GenBank file contains amino acid
sequences, then you may click the last option, i.e., Amino acid sequence.

If you choose to read in the whole sequence (the first option), or if the
input file contains amino acid sequences only (the last option), then the
sequences in the GenBank file will be read in sequentially, with the LOCUS
name used as the sequence name. If your input file contains nucleotide
sequences with a FEATURES table specifying the nature of individual
segments (e.g., CDS, exon, intron, rRNA, etc.), then you can choose to read
in particular segments from each sequence.

For practice, let's assume that you wish to get the coding sequences
(CDS) specifying the protein from the two nucleotide sequences
contained in the file EF1A.GB. Click the CDS button and then click the
Proceed button, Another interactive dialog appears and is partially shown in
fig. 2. There are five list boxes, with two listboxes not shown in fig. 2. The
first column shows the LOCUS name of each GenBank sequence, the second
shows the length of each sequence, and the third is taken from the
DEFINITION entry of the GenBank sequence. The fourth and the fifth list
boxes are currently empty. What you wish to get out of the GenBank file is
specified under Splice, which is CDS for this operation.
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There are also some hidden boxes. For example, some sequences were
deposited as complementary strand, and the GenBank file will state so in the
FEATURES table. DAMBE will take this information and automatically get
the correct opposite strand, i.e., the actually transcribed RNA sequence. In
this case, a text box with the word COMPLEMENT will be displayed in red.
Because our sequences are not the complementary sequence, this text box
will remain hidden.

The list boxes will display vertical scroll bars when there are many
sequences in the GenBank file. Clicking the Help button brings up extensive
online help information.

Now click the first LOCUS name, i.e., MRTEF2. The dialog box will
change to display sequence-specific information for the LOCUS MRTEF2
(fig. 3). The fourth list box displays the name of the target CDS sequence in
MRTEF2. In our sample file EF1A.GB, there is only one CDS named EF-
1 alpha, whose three segments are specified in the fifth list box. Let me
explain briefly the numbers on the fifth listbox. The  gene in the two
Mucor species is made of several exons with introns in between. At the
beginning and the end of the coding sequence there are also untranslated
sequences. What we have retrieved from GenBank are two sequences with
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each specifying where the coding segments are located. For example, the
MRTEF2 sequence is 2263 bases long, with the first coding segment
beginning at position 464 and ending at 517, the second coding segment
starting from 646 and ending at 1735, and the third coding segment starting
from 1933 and ending at 2165. The complete coding sequence is made by
joining these three segments.

The text box in the lower panel displays the complete sequence with the
three segments color-coded in red (fig. 3). You might have noticed that the
first codon is ATG, which is the initiation codon, and the last codon is TAA,
which is the termination codon. This means that our CDS specifies a
complete protein-coding sequence.

Click the Splice button to splice out and join these three segments, and
repeat this process for the second LOCUS, i.e., MRTEF3. There are only two
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LOCUSes in the EF1 A.GB file, so we have finished our operation of splicing
and joining. Click the Done button, and you will be prompted to confirm the
type of sequences, which we have encountered several times already. Just
click the option button Protein-coding Nuc. Seq. and then choose Universal
as the genetic code.

A bell rings, and a dialog box comes up telling you that the two CDS
sequences are not of equal length, and asking if you wish to align the
sequences with CLUSTALW (Thompson et al. 1994). I recommend that you
click NO because we have not yet learned anything about how to specify the
parameters for alignment. The unaligned sequences will then be shown in the
display winhdow. If you are adventurous, you may click YES and use the
default parameter specification for sequence alignment. DAMBE includes a
large part of ClustalW codes for multiple sequence alignment. The multiple
alignment is slow. Once the alignment is done, the aligned sequences will be
shown in the display window for you to apply any analysis on them. Usually
at this stage you should first save your file in one of your favourite formats.

What we have just done is to splice the CDS sequences in the two
LOCUSes. You can also splice out introns, exons, rRNA, etc, in the same
way. You should now start from the beginning by re-opening the EF1A.GB
file and try to splice out the exons as an exercise. If you wish to do a more
adventurous exercise, click File|Read sequences directly from GenBank,
which we will cover in the next chapter.
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Accessing GenBank or Other Networked Computers

1. INTRODUCTION

In this chapter you wil l learn two skills related to internet. One is to read
molecular sequences directly from GenBank, and the other is to read files of
molecular sequences from, or write files to, your networked computers. The
latter is useful when you want to use DAMBE to analyze your data stored on
another computer, or when you want to use DAMBE to format sequences for
further analysis by using special software installed on another computer.
DAMBE essentially makes GenBank or your networked computer behave
like another hard drive on your local Windows-based PC.

2. READING MOLECULAR SEQUENCES
DIRECTLY FROM GENBANK

Start DAMBE if you have not done so. Click File|Read Sequences from
GenBank, and a dialog box appears (Fig. 1) for specifying options. GenBank
sequences can be accessed by the accession number, the LOCUS name or
keywords. Consequently, you have two search methods, one by using
GenBank accession number or LOCUS name or the combination of the two,
and the other by using keywords. It is important to keep in mind that there
are now many sequences in GenBank and a keyword search may produce a
large number of hits. For example, if you use Homo sapiens as keywords,
then you will get more than a million sequences in the current release of
GenBank. Of course your hard disk will be filled up long before you could
ever get that many sequences. It is for this reason that I have included an
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option for setting the upper limit of hits, which can range from 10 to 1000.
Make sure that you formulate the keywords carefully to get what you want.
An example of searching with keywords is illustrated in fig. 1. The search
string tells DAMBE to retrieve the first 20 nucleotide sequences in GenBank
that contain words “Geomys” and “cytochrome”. “Geomys” is the generic
name for a group of small rodents called pocket gophers.

It is simpler to search with the GenBank accession number or LOCUS
name. Each sequence deposited in GenBank is associated with one LOCUS
name and at least one accession number. For each LOCUS name or accession
number, you will generally get just one sequence. Thus, you know roughly
how many sequences you will get back from GenBank. To search GenBank
by using accession numbers or LOCUS names or a combination of the two,
just click the top option button and type in the accession numbers and/or
LOCUS names, separated by a comma.

There are two output formats that you can choose. GenBank sequences
can be delivered to your computer in either GenBank format or FASTA
format. The FASTA format is one of the simplest sequence formats and
sequences in this format can be delivered to your computer in a shorter time
compared to sequences in GenBank format. However, sequences in FASTA
format carry little information specific to the sequences, which severely
restricts sequence analysis. For example, the coding region of the
gene is made of several exons interspersed in long stretches of introns. When
you retrieve the sequences in FASTA format, you get a whole sequence with
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no specification on where each exon begins and ends. Consequently you will
not be able to translate the nucleotide sequence into an amino acid sequence,
and cannot use any codon-based or amino acid-based phylogenetic methods.
Besides, because of the variation in intron lengths, you will have trouble
aligning the sequences. Only when you know that you want to work on the
entire sequences should you choose the FASTA format.

In contrast to the FASTA format, sequences in the GenBank format
contain detailed annotation about the sequences in the FEATURES table,
which is briefly explained in the previous chapter. DAMBE takes advantage
of this information to splice out and join the coding sequences of the gene.
The GenBank format is selected in this exercise (fig. 1).

You may also specify whether you wish to get nucleotide sequences or
amino acid sequences. The former will search through the GenBank
databases of nucleotide sequences, and the latter will search the databases of
amino acid sequences.

Click the Retrieve button and the search will begin. Some sequences in
the GenBank could be as long as several megabytes, and consequently could
take a long time before the sequences were fully delivered to your computer.
Once the target sequences have been retrieved, a standard file/save dialog
will appear for you to save the retrieved sequences. Save the sequnces to a
file. You will be presented with another dialog box (fig. 2). Because we are
interested only in coding sequences, just click the CDS button and click
Proceed.
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Another interactive dialog (fig. 3) is shown. There are five list boxes,
with first column showing the LOCUS name of each GenBank sequence, the
second showing the length of each sequence, and the third being taken from
the DEFINITION entry of the GenBank sequence. The fourth and the fifth
list boxes are currently empty. What you wish to get out of the GenBank file
is specified under Splice, which is CDS for this operation. Note that the
search specification with the word “cytochrome” is not very specific and the
retrieved sequences could be either cytochrome b sequences or cytochrome
oxidase subunit I, II, or III. Suppose we are really just interested in the
coding sequences (CDS) of the cytochrome b gene.

There are also some hidden boxes. For example, some deposited
sequences are complementary strands, and the GenBank file will so specify
in the FEATURES table. DAMBE will take this information and
automatically get the correct opposite strand, i.e, the actually transcribed
RNA sequence. In this case, a text box with the word COMPLEMENT will
be displayed. Because our sequences are not the complementary sequences,
this text box is hidden.

Now click the first LOCUS name, i.e., AF158698. The dialog will change
to display sequence-specific information for the LOCUS AF158698 (Fig. 4).
The fourth list box displays the name of the target CDS sequence in
AF158698. In our example, there is only one CDS named cytochrome b
made of a continuous stretch of DNA. If the gene is made of several
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segments separated by introns, then the last listbox will display the numeric
specification of the beginning and ending of each segment. The text box in
the lower panel displays the complete sequence (Fig. 4).

Click the Splice button and the sequence will be read into DAMBE.
When there are several dispersed exons, the Splice button will cut the exons
out and join them together, so as to read in a complete coding sequence into
DAMBE. Repeat this process for the rest of the LOCUSes. Click the Done
button, and you will be prompted to confirm the type of sequences, which we
have encountered several times already. Just click the option button Protein-
coding Nuc. Seq. and then choose Mammalian mitochondrial as the
genetic code.

Click the Done button, and the sequences are read into DAMBE, ready
for you to apply any data analysis to them. For example, you may click
Phylogenetics|Distance methods|Nucleotide sequences, and then click the
Done button in the ensuing dialog box. A phylogenetic tree will be
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displayed, showing you the phylogenetic relationships among the DNA
sequences that you have just retrieved.

GenBank sequences can be retrieved in many ways, even through a web
page. What is convenient in DAMBE is that it will immediately process the
sequences and give you a set of sequences ready to run.

3. READING FILES FROM, AND WRITING FILES
TO, ANOTHER NETWORKED COMPUTER

Start DAMBE and click File|Reading data from networked computer.
A dialog box (fig. 5) appears for you to type in the IP address of your server,
your login ID and password. Your password will not be displayed in the
Password input field. Any character you type into this field will be replaced
by the character "*" as a placeholder. If your password is "GoDAMBE",
then the password input field will only display "*******". This is for
protecting your network security.

Click the Login button and DAMBE will go through the regular
checking of your networked computer and the validity of your user ID and
password. The text window below the Login button will display the
interaction between your computer and the networked computer. Once the
connection is established, which is generally guaranteed if you have entered
the server IP, login ID and password correctly, DAMBE will present a
dialog box (fig. 6) displaying the directory of your server, as well as other
input fields relevant for reading files from your networked computer.
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The dialog box contains four components. On the top-left is the directory
structure, where an item followed by “/” is a subdirectory, otherwise it is a
file. The first line “./” means the current directory, and the second line “../”,
when clicked, will bring you one directory up. Clicking any directory will
bring you into that directory, clicking any file will have the file content
displayed in the display window on the right side. The content of the file
coii.fas was displayed.

What files are listed is controlled by the Select file type dropdown box.
The default is to display files with file extension .FAS, .FST, or .FASTA
(either in upper case or lower case). Clicking the downward arrow will show
all other file types. For example, if you choose GCG multiple sequence
format (.MSF), then only files with file extension .MSF will be displayed in
the directory listbox.

Click the Open button located at the lower left Conner of the dialog box,
and DAMBE will read in the highlighted sequence file, e.g., coii.fas in fig.
6, just as you would read in a file from your local hard drive. The content of
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the file will be shown in DAMBE’s display window and ready for you to
apply analytical methods to it.

4. EXERCISE

A recent article on arthropod phylogeny (Regier and Shultz 1997) used
the DNA sequences of the elongation factor from representative
arthropod species and their purative sister taxa such as annelids and
molluscs. The following GenBank accession numbers are listed in the paper:
U90045, U90052, U90047, U90048, U90055, U90053, U90057, U90049,
X03349, U90058, U90054, U90059, U90062, U90063, U90046, U90050,
U90056, U90060, U90051, U90061 and U90064.

Retrieve the nucleotide sequences of the sequences and splice out
the CDS. Save these sequences in FASTA format. We will use these
sequences to illustrate various factors affecting phylogenetic reconstruction.
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Pair-wise and Multiple Sequence Alignment

1. INTRODUCTION

This chapter will only cover the most basic concepts of pair-wise and
multiple sequence alignment so that you know what to do when using
DAMBE to align your nucleotide or amino acid sequences. DAMBE uses
codes in ClustalW (Thompson et al. 1994) for pair-wise and multiple
sequence alignment. However, the implementation is rudimentary. One
advantage of DAMBE over ClustalW is when you wish to align protein-
coding nucleotide sequences against aligned amino acid sequences so that
you will not have the annoying frameshifting indels introduced as alignment
artefact.

1.1 The dot-matrix approach

The dot-matrix method is for quickly aligning sequences that are very
similar. For illustration purpose, let’s start from the simplest case, with two
identical sequences:

Seql: ATTCCGGTACGT
Seq2: ATTCCGGTACGT

Write the two sequences to be aligned as row and column headings in the
matrix (or grid) below. Look from left to right. If a column heading matches
the row heading, then put a dot at the intersecting cell. This results in the
“dot-matrix” shown below.
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Note that there is a dot in all 12 diagonal cells, i.e., the dots can be
connected by a straight line. This means that there is no gap (indels) needed
for aligning the two sequences.

Now suppose the two sequences are slightly different:

Seql: ATTCCGGTGCGT
Seq2: ATTGCGGTACGA

Again write the two sequences to be aligned as row and column headings
in the matrix (or grid) below and put a dot in the cell in which a column
heading matches the row heading. Now we have nine dots in the 12 diagonal
cells. When most of the diagonal cells are filled with dots that can be
connected by a straight line, there is no need for inserting gaps (indels)
although some bases do not match.

Now suppose we have two messy sequences like the following:
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Seq1: ATTCCGGTACGT
Seq2: ATTCCAAAGGTACGT

Following the previous protocol of putting down dots in the grid, you
will arrive at the following dot-matrix:

Note that there are consecutive dots in the first five diagonal cells, and
there are consecutive dots in the last seven diagonal cells. However, we
cannot connect the 12 dots with a straight line. This means that there must be
indels somewhere. Note that we can connect the first five dots, shift down
three cells, and then connect the last seven dots. This shifting down of three
cells, after the fifth base, means the insertion of three gaps in Seq1 after the
fifth base. So we have:

Seql: ATTCC---GGTACGT
Seq2: ATTCCAAAGGTACGT

Note that if we need to shift horizontally three cells, rather than shifting
down three cells, then it would mean an insertion of three gaps in Seq2.

Let us now deal with a more complicated case. Suppose we have the
follow sequences that 1 have taken from Li (1997):

Seql: ATGCGTCGTT
Seq2: ATCCGCGTC

Now work out the dot matrix and decide what alignment you should
choose. You will find two alternative alignments, shown below, that are
better than others:
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Alignment 1:

Seq1:

Seq2:

Alignment 2:

Seq1:

Both alignments have seven matched pairs, but the first alignment has
more gaps (indels). Because the indels are generally considered rare, we tend
to take the second alignment as more likely. This brings in the concept of
gap penalty that will be dealt with in the next section.

Note that in all dot-matrix illustrations above, each nucleotide occupies a
cell. In practice, one can often divide long sequences into equal-length
segments and each segment can then occupy a cell. The dots will then
represent matched segments. If the segment contains n nucleotides or amino
acids, then each segment is one n-tuple. The default value for n in ClustalW
(and also in DAMBE) is three for nucleotide sequences and one for amino
acid sequences.

1.2 Similarity or distance method

Let’s first define a similarity index (S) that measures the similarity
between the two sequences to be aligned:

where is the number of matched pairs, the penalty for a gap of k
nucleotides, the number of gaps with length k, and the maximum gap
length allowed. The gap penalty is expressed as an increasing function of
k. A simple form of is where a is called the gap open
penalty and b the gap extension penalty. The similarity method of sequence
alignment is a protocol of finding an alignment with the maximum S. It is
clear that if we use different values for a and b, we may get different optimal
alignments because S is a function of a and b. This is why an alignment

Seq2:
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program will typically prompt the user for input on the gap open and gap
extension penalties.

The distance method of sequence alignment is similar. First we define a
distance index (D) that measures the difference between the two sequences
to be aligned:

The distance method is a protocol for finding the alignment with the
smallest D. One of the advantages of using the distance method is that, in
multiple sequence alignment, the matrix of pair-wise D values can be used to
find an approximate phylogenetic tree by using any one of the distance
methods in phylogenetic reconstruction. For example, CLUSTALW uses
neighbor-joining method to find the phylogenetic tree before proceeding to
multiple sequence alignment.

2. SEQUENCE ALIGNMENT USING DAMBE

Sequence alignment is slow, especially with long nucleotide sequences.
For this reason, you should start with short and few sequences just to get a
feel of how time-consuming DAMBE is when doing multiple alignment.

2.1 Align nucleotide or amino acid sequences

Start DAMBE and open a file containing unaligned sequences. You will
be told that the sequences are unaligned and whether you wish to align the
sequences. Click Yes, and a dialog box (fig. 1) will appear for you to specify
options. For a first try, it is better just use all default options. Note that the
dialog box in fig. 1 is for nucleotide sequences. If the input file contains
amino acid sequences, then the DNA weight matrix will be replaced by
Protein weight matrix. Click the Go! button and wait for a while. You will
then be asked if you wish to save the aligned sequences. Choose Yes and
save the file. The aligned sequences will then replace the original sequences
in DAMBE’s buffer.

Procedures for aligning amino acid sequences are the same as those for
aligning nucleotide sequences. If you have read in a set of unaligned
sequences without first aligning them, you can do the alignment by clicking
Sequences|Align sequences using ClustalW.
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2.2 Align nucleotide sequences against amino acid
sequences

One frustrating experience I have often had with aligning protein-coding
nucleotide sequences is the introduction of many frameshift indels in the
aligned sequences, even if the protein genes are known to be all functional
and do not have these frameshifting indels. In other words, the introduced
frameshifting indels in the aligned sequences are alignment artefacts, and the
correctly aligned sequences should have complete codons, not one or two
nucleotides, inserted or deleted.

One way to avoid the above alignment problem is to align the protein-
coding nucleotide sequences against amino acid sequences. This obviously
requires amino acid sequences which can be obtained in two ways. First, if
you have nucleotide sequences of good quality, then you can translate the
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sequences into amino acid sequences, which can be done automatically in
DAMBE. Second, if you are working on nucleotide sequences deposited in
GenBank, then typically you will find the corresponding translated amino
acid sequences. DAMBE can read both the nucleotide sequence and the
corresponding amino acid sequence in a GenBank sequence.

Here I illustrate the use of this special feature by assuming that you
already have a file containing unaligned protein-coding nucleotide
sequences, say unaligned.fas, in your hard disk.

Start DAMBE, and open the unaligned.fas file. When asked whether to
align the sequences, click No. The unaligned sequences will then be read
into DAMBE’s buffer. Now click Sequences|Work on Amino Acid
Sequences to translate the protein-coding nucleotide sequences into amino
acid sequences. If the translation results in a number of termination codons
embedded in the sequences (represented by “*”), then either your nucleotide
sequences are of poor quality or they might be from pseudogenes. In either
case you should give up aligning your nucleotide sequences against these
junky amino acid sequences.

If the translation looks good, then click Sequence|Align sequences with
Clustal to align the translated amino acid sequences. Once this is done, you
have a set of aligned amino acid sequences in the DAMBE buffer for you to
align your nucleotide sequences against.

Click Sequence|Align nuc. seq. against aligned aa seq. A standard file
Open/Save dialog box will appear. Choose the unaligned.fas file again,
which contains the unaligned nucleotide sequences. DAMBE will align the
nucleotide sequences against the aligned amino acid sequences in the buffer.
This procedure ensures that no frameshifting indel is introduced as an
alignment artefact.

If your sequences were retrieved from GenBank, then most protein-
coding genes will already have been translated amino acid sequences
included in the FEATURES table of GenBank files. You can use DAMBE to
first read in all amino acid sequences, align these amino acid sequences, and
then ask DAMBE to splice out the corresponding CDS, and align the CDS
sequences against aligned amino acid sequences in the DAMBE buffer.
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Factors Affecting Nucleotide And Di-Nucleotide
Frequencies

1. INTRODUCTION

You have now familiarized yourself with molecular data in various
forms. The rest of the book will focus on the analysis of molecular
sequences. Molecular sequences are information-rich and there are many
different ways of extracting useful information out of them. For evolutionary
biologists who wish to obtain historical information from DNA, one of the
main objectives of studying molecular sequences is to understand the
dynamic nature of the sequences, i.e., how the molecular sequences change
over geological time. The change of molecular sequences over time is
typically characterized by a substitution model, and how well the model fits
the observed substitution pattern reflects how well we have understood the
dynamic nature of molecular sequences.

A model, be it a substitution model or any other model, has at least one
parameter. For example, a linear equation, has two parameters,
i.e., the intercept α and the slope A substitution model has two categories
of parameters, the frequency parameters and the rate ratio parameters. This
chapter and the next two chapters will deal specifically with the frequency
parameters, and the rate ratio parameters will be introduced in later chapters.

1.1 The frequency parameters

There are four nucleotides, 20 amino acids, and about 60 sense codons.
The frequency parameters refer to the frequencies of these nucleotides,
amino acids, or codons in nucleotide, amino acid or codon sequences,
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respectively. If you have encountered a few nucleotide-based substitution
models, such as the JC69 (Jukes and Cantor 1969) and the K80 (Kimura
1980) models, you might have already realized that these models assume
equal nucleotide frequencies at equilibrium. Such substitution models have
no frequency parameters to be estimated because they are all assumed to be
0.25, which you wi l l soon find out to be a very unrealistic assumption. The
simplest substitution models that allow frequency parameters to be different
from each other are the F81 (Felsenstein 1981) and the TN84 (Tajima and
Nei 1984) models. Because frequency parameters have to sum up to one,
there are only frequency parameters to be estimated for
nucleotide sequences and 19 frequency parameters for amino acid
sequences. For codon-based models, if we ignore termination codons, the
number of frequency parameters is the number of sense codons minus one.

If you have already explored a substantial part of the landscape of
molecular biology and evolution, you might have come across terms such as
stationarity. If the stochastic process governing the evolution of nucleotide,
amino acid or codon sequences does not alter the nucleotide, amino acid or
codon frequencies, respectively, then the stochastic process is stationary. A
stationary process implies that the probability of a particular substitution,
e.g., an transition, remains the same during the evolutionary history.
All substitution models implemented in existing computer programs based
on the maximum likelihood method share the stationarity assumption. If the
assumption is violated, then the results from phylogenetic analyses using the
maximum likelihood method should be interpreted with caution.

1.2 Factors that might change the frequency parameters

Different genomes often differ much in nucleotide and dinucleotide
frequencies, and some of these differences can be interpreted in light of
molecular adaptation. One such example concerns the evolution of GC
content in prokaryotes. Thermophilic bacteria tend to have high GC content,
which can be interpreted as an adaptation against DNA denaturation under
high temperature because G/C pairs have three hydrogen bonds whereas A/T
pairs have only two. Another interpretation is that GC-rich codons tend to
code for thermally stable amino acids and GC-poor codons tend to code for
thermally unstable amino acids (Argos et al. 1979).

An alternative interpretation of the association of high GC-content with
high ambient temperature is that ancient organisms are GC-rich, and these
GC-rich bacteria have maintained their GC-richness because of their
evolutionary inertia. I do not think this explanation plausible. Those
thermophilic bacteria are not mutation free. In all likelihood they should
have higher mutation rate due to the high temperature. Random mutations
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tend to favour AT, not GC. In short, these organisms are not expected to
maintain their GC-richness without involvement of selection.

Another evolutionary hypothesis that is related to dinucleotide
frequencies in the genome concerns T-T dimers produced by UV radiation
(Singer and Ames 1970). It is hypothesized that organisms exposed to
sunlight should have a lower frequency of genomic TT dinucleotides to
avoid the deleterious effect of T-T dimers than those that do not expose to
sunlight (e.g., intestinal bacteria such as E. coli). This hypothesis can be
tested by examining dinucleotide frequencies between organisms exposed to
UV light and those that do not.

Vertebrate genomes tend to show a dramatic deficiency in CpG
dinucleotides (CpG is shorthand for 5’-CG-3’), which is a likely
consequence of heavy DNA methylation in vertebrate genomes. DNA
methylation is a ubiquitous biochemical process observed in both
prokaryotes (Noyer-Weidner and Trautner 1993) and eukaryotes (Antequera
and Bird 1993). In vertebrates, DNA methylation mainly involves the
methylation of C in the CpG dinucleotide, which greatly elevates the
mutation rate of C to T through spontaneous deamination of the resultant 5-
methylcytosine (Barker et al. 1984; Cooper and Krawczak 1989; Cooper and
Krawczak 1990; Cooper and Schmidtke 1984; Cooper and Youssoufian
1988; Ehrlich 1986; Ehrlich et al. 1990; Rideout et al. 1990; Schaaper et al.
1986; Sved and Bird 1990; Wiebauer et al. 1993). Thus, the origin of
methylation must have resulted in a nonstationary substitution process in
which the probability of transitions is substantially increased. Because
a transition in one strand will lead to a transition on the opposite
strand, we expect DNA methylation to reduce GC content and increase AT
content.

1.3 Frequency parameters and phylogenetic analyses

It is important to appreciate the variation in nucleotide frequencies
among different organisms when you work on phylogenetic reconstruction,
for three reasons. First, some measures of genetic distances assume equal
nucleotide frequencies of e.g., those models characterized by a
symmetrical substitution rate matrix, such as that for Jukes and Cantor’s
(1969) one-parameter model and Kimura’s (1980) two-parameter model. If
nucleotide frequencies differ much from then these distances would not
be appropriate.

Second, when your OTUs have diverged for a long time, then multiple
substitutions would occur at the same nucleotide site, leading to what is
know as substitution saturation. Obviously, when sequences have reached
full substitution saturation, then their similarity will depend entirely on
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similarity in nucleotide frequencies. Because the similarity in nucleotide
frequencies has little to do with phylogenetic relationship, the phylogenetic
trees you produce would be misleading. When your sequences have diverged
for a long time, then it is very important to examine the nucleotide
frequencies to see if the resulting phylogenetic relationship exhibits any
dependence on the nucleotide frequencies. I will illustrate this issue with a
case study after this chapter.

Third, even if your OTUs have not experienced substitution saturation,
they may differ much in nucleotide frequencies. Most computer programs
for phylogenetic reconstruction assume a stationary Markov process of
nucleotide substitution with the nucleotide frequencies remaining unchanged
during sequence divergence. When different OTUs have very different
nucleotide frequencies, this assumption obviously is violated and the result
of phylogenetic analysis based on these programs will be misleading. It is
important to at least have a look at the difference of nucleotide frequencies
of your OTUs before subjecting them to computer programs for
phylogenetic reconstruction. A few substitution models have relaxed this
assumption of stationarity. For example, the models underlying the
paralinear distance (Lake 1994) and the LogDet distance (Lockhart et al.
1994) are presumably applicable to the situation when nucleotide
frequencies have changed during the divergence of different lineages. They
should be used in situations where nucleotide frequencies differ much
among OTUs. Lake’s paralinear distance is implemented in DAMBE for
nucleotide sequences. We will learn later how to use the distance, as well as
many other distances implemented in DAMBE, to carry out phylogenetic
analysis.

Please don't skip this chapter just because you think that you'll never
need to do something as simple as counting nucleotide and dinucleotide
frequencies. This chapter has two objectives. The first is to let you have a
better appreciation of the questions of molecular evolution and phylogenetics
mentioned above. The second is to get you familiar with DAMBE’s user
interface. You wi l l feel more comfortable with DAMBE after going through
this chapter.

2. COUNTING NUCLEOTIDE AND
DINUCLEOTIDE FREQUENCIES WITH DAMBE

Start DAMBE, and open a file containing nucleotide sequences (if you
have not done so already). If you do not have your own sequences, then just
open the virus.fas file that came with DAMBE. The file is in the same
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directory as dambe.exe and contains protein-coding nucleotide sequences of
a hemaglutinin gene from Influenza A viruses infecting mammalian species.
The viral gene shares the same universal genetic code as the nuclear genome
of their mammalian host.

Click the Seq. Analysis menu, and then click the Nucleotide Frequency
menu item. A dialog box appears (fig. 1). Such a dialog box (or slight
variation of it) will also appear when you click other menu items under the
Seq. Analysis menu. So take this opportunity to become familiar with it.
There are two lists in the dialog box. The one on the left shows the
sequences that are available for selection. The one on the right displays
sequences selected for computing nucleotide and di-nucleotide frequencies.
At this moment, the list on the right is empty.
– To select a single sequence, just click to highlight it, and then click the

button to move it to the right.
– To select neighboring sequences, click the first of the neighboring

sequences to highlight it and then, holding down the shift key, click the
last of the neighboring sequences. All the neighboring sequences will
then be highlighted. Click the button to move them to the right.

– To selection disjoint sequences, click each sequence while holding down
the Ctrl key, and then click the button to move the highlighted
sequences to the right.
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Once you have finished your selection, click the Done button. After a
few seconds, the standard file/open dialog box appears. Type in a file name
for saving the result, or simply use the default. Then click the Save button.
The file is then saved in text format, and also displayed in the display
window. A part of a sample output (for one sequence) is shown below:

The output is of two parts for each sequence, the first part lists the
nucleotide frequencies, with "Other" stands for all characters that are not
"acgtu", e.g., "-?". The second part lists the di-nucleotide frequencies, and
the expected frequencies when there is no association or repulsion between
nucleotides (i.e., the probability of two nucleotides sitting next to each other
depends entirely on their frequencies). The di-nucleotides are counted from
the beginning to the end of the sequence, with the nucleotides on the left
column being the first, and those on the top row being the second, of the
dinucleotide.

From the first part of the output, we note that A is used more frequently
than other nucleotides. Should you choose the JC69 or the K80 model for
data analysis involving this group of sequences?



Nucleotide And Di-Nucleotide Frequencies 47

The high frequency of nucleotide A might be caused by the
preponderance of Asn and Lys (which are coded by AAN codons, where N
stands for any of the four nucleotides) in the protein-coding gene, or it might
be caused by codon usage bias favoring A-ending codons for more efficient
transcription (Xia 1996). Which of these two possible scenarios is likely true
can be revealed by going through the chapter on computing codon
frequencies.

We also note that there is a deficiency of CG dinucleotides (fewer then
expected), and a surplus of TG dinucleotides (more than expected). This
pattern is readily explainable by invoking DNA methylation in mammalian
species. The gene, labelled FLAHAOHF, is a hemaglutinin gene from an
Influenza A virus infecting mammalian species, ad all mammalian species
studied show high levels of DNA methylation. DNA methylation is a
ubiquitous biochemical process observed in both prokaryotes (Noyer-
Weidner and Trautner 1993) and eukaryotes (Antequera and Bird 1993). In
vertebrates, DNA methylation mainly involves the methylation of C in the
CpG dinucleotide, which greatly elevates the mutation rate of C to T through
spontaneous deamination of the resultant 5-methylcytosine (Cooper and
Krawczak 1989; Cooper and Krawczak 1990; Rideout et al. 1990; Sved and
Bird 1990; Wiebauer et al. 1993). This biochemical process accounts for the
deficiency of CG dinucleotides and a surplus of TG dinucleotides in the
gene. You see that even a very simple procedure can lead us to some
biological insights.

One of the assumptions of most substitution models implemented in
computer programs states that substitutions occur independently in different
sites. This assumption is no longer tenable given the effect of DNA
methylation, because the substitution of C by T occurs at a much faster rate
with a downstream neighboring G than with the G being replaced by other
nucleotides.

Did you notice that the TA dinucleotide is also rare? Can you think of
some reasons to explain its rarity? In protein-coding genes, a TA
dinucleotide can occur only in three situations, in TAN codons, NTA
codons, and NNT ANN double codons, where N stands for any of the four
dinucleotides. We know that TAR are termination codons that can occur
only once in a protein-coding sequence. This might contribute to the rarity of
TA dinucleotides. Now you see that to understand nucleotide and
dinucleotide frequencies, it is often necessary to know codon usage bias. The
chapter after the next will introduce you to the interplay of mutation and
selection operating on codons.
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Case Study 1
Elongation Factor-1  And The Arthropod Phylogeny

1. INTRODUCTION

This case study illustrates the consequence of ignoring differences in
nucleotide frequencies among species in phylogenetic studies. To fully
understand this case study, you would need to use phylogenetic methods in
DAMBE that we have not yet covered. However, sometimes it is beneficial
to do something ahead of time.

Elongation factor-1 (EF-1 ) is one of the most abundant proteins in
eukaryotes (Lenstra et al. 1986) and catalyzes the GTP-dependent bindings
of charged tRNAs to the ribosomal acceptor site (Graessmann et al. 1992).
Because of its fundamental importance for cell metabolism in eukaryotic
cells, the genes coding for the protein are evolutionarily conservative
(Walldorf and Hovemann 1990), and consequently have been used
frequently in resolving deep-branching phylogenies such as the arthropod
phylogeny (Regier and Shultz 1997).

Arthropods are conventionally classified into three major groups:
Atelocerata (Hexapoda + Myriapoda), Chelicerata, and Crustacea
(Branchiopoda + Malacostraca). The phylogenetic relationship among these
three major groups have been controversial (Fryer 1998), and the
controversy is further complicated by a recent claim that Atelocerata and
Crustacea are both polyphyletic (Regier and Shultz 1997). Specifically,
Hexapoda and Myriapoda do not form a monophyletic group, neither do
Branchiopoda and Malacostraca.
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Arthropods have been around for a long time, and the sequences used in
Regier and Shultz (1997) have diverged so much that substitution
saturation is substantial, especially at the third codon positions. Recall that
sequence similarity becomes highly dependent on similarity in nucleotide
frequencies in sequences having experienced substitution saturation. We will
use their data set to illustrate the problem of heterogeneity in nucleotide
frequencies among species in phylogenetics.

2. OBTAIN DATA FROM GENBANK

Molecular sequences can be retrieved from GenBank by using either
GenBank accession number or LOCUS name, or by using keyword
searching. The accession numbers for the EF-1 gene sequences from 21
invertebrate species are U90045, U90052, U90047, U90048, U90055,
U90053, U90057, U90049, X03349, U90058, U90054, U90059, U90062,
U90063, U90046, U90050, U90056, U90060, U90051, U90061 and
U90064. These are taken from Table 1 in Regier and Shultz (1997).
Accession numbers and GenBank LOCUS names are unique identification
tags for sequences deposited in GenBank. We will now retrieve these
sequences from GenBank by using DAMBE’s network function.

Start DAMBE and click File|Read sequences from GenBank. A dialog
box (fig. 1) appears for you to specify options. The default is to search by
using GenBank accession number or LOCUS name, which is what we want.
The second option, shown in the lower left corner, concerns whether to get
the retrieved file in the complicated GenBank format or the simple FASTA
format. The default is GenBank format, which is also what we want. The
third option allows the user to specify whether to search protein data banks
or the nucleotide data banks. The latter is what we want. Enter the accession
numbers listed in the previous paragraph into the text box, separated by a
comma, as shown in fig. 1. Click the Retrieve button and the 21 sequences
wi l l be retrieved in GenBank format. When the retrieval is complete, which
may take several minutes, you wil l be prompted to save the retrieved
sequences. Just enter a file name and leave the .GB file type as default.

In the dialog box that comes next, click the CDS option and then click
the Proceed button. CDS stands for the coding sequence, i.e., the nucleotide
sequence that specifies the amino acid sequence.
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You will now be staring at a seemingly rather complicated dialog box
(fig. 2). Only part of the dialog box is shown. Let me explain each item
briefly.

Each of the 21 sequences has a LOCUS name, which is shown in the first
listbox (fig. 2). The second list box shows the length of the sequence for
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each LOCUS. The third column is descriptive, taken from the DEFINITION
clause of the GenBank sequence. The right side of fig. 2, which is in fact in
the middle of the dialog box if the whole dialog box is shown, shows
specific segments that we are interested, i.e., CDS for coding sequences.
There are also two listboxes (not shown) on the right of the dialog. These
listboxes will show additional information when we click a LOCUS name in
the first column.

There is also a textbox immediately below what is shown in fig. 2. For
the time being, the textbox shown a few simple instructions about how you
should proceed. When you click a LOCUS name, the textbox will change to
display the sequence associated with the LOCUS. If a CDS is made of
several segments (exons) separated by introns, these exons will be
highlighted in red, so that you can visually see where each exon starts and
ends.

Now click the first LOCUS in the left most listbox, i.e., ACU90045. The
dialog will change to display sequence-specific information for the LOCUS
ACU90045 (fig. 3). The fourth listbox (i.e., the left listbox in fig. 3) displays
the name of the target CDS sequence in ACU90045. In our case, there is
only one CDS named elongation factor-1 alpha. The “<” and “>” symbol
in the fifth listbox tell us that the sequence does not contain the complete
coding sequence of EF-1 with “<” signalling a missing segment at the
beginning and the “>” signalling the missing segment at the end.

Click the Splice button and the sequence is extracted from the GenBank
file. If the CDS is made of several segments, then all these segments will be
displayed in the last listbox, with each segment specified by a starting
number and an ending number. When you click the Splice button, DAMBE
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wil l extract these segments and join them together to form a complete CDS
specifying the amino acid sequence of the protein.

Once you have clicked the Splice button, the phrase “elongation factor-1
alpha in the fourth column will change to “Done”. Click the next LOCUS
name, and then click the Splice button again, until you have finished
extracting all sequences. Click the Done button.

You will be prompted for sequence type. Click the option button for
Protein-coding nuc. sequences. The dialog will expand to show the 12
genetic codes implemented in DAMBE. Click the Universal option and then
the Go! button. You will be told that the sequences are not aligned, and
asked if you wish to align the sequences using ClustalW. DAMBE
incorporates most of the codes for pair-wise and multiple alignments in
ClustalW. If you click Yes, then the nucleotide sequences will be aligned,
but the alignment will be poor, with many frameshifting insertions and
deletions (indels) resulting from artefacts introduced by ClustalW. DAMBE
can align protein-coding nucleotide sequences against aligned amino acid
sequences, which is better then aligning nucleotide sequences directly. For
this reason, Click No when prompted to align sequences.

You wil l be reminded that many functions in DAMBE assume that the
sequences are aligned. Click OK to put it away. The extracted sequences for
elongation factor-1 alpha (EF-1 ) will be displayed. You should now save
your sequences. To do so, click File|Save as (convert sequence format),
choose one of many output formats (e.g., FASTA) supported in DAMBE,
type in a file name (e.g., arthropod.fas), and click the Save button.

3. ALIGN THE SEQUENCES

I mentioned that DAMBE can align nucleotide sequences against aligned
amino acid sequences, but we do not yet have aligned amino acid sequences.
So how should we proceed? Let me show you.

Click Sequences|Work on amino acid sequences to translate the
nucleotide sequences into amino acid sequences. You may wonder how
would DAMBE know where to begin translation. The answer is that
DAMBE does not. What DAMBE does is simply to do extra work by
translating each nucleotide sequence into an amino acid sequence at all three
possible positions, i.e., starting from the first, the second, and the third
nucleotide sites separately. A good protein-coding nucleotide sequence
should have no embedded termination codon. DAMBE simply picks up the
translation with the fewest termination codons.

Once the translation is done, you can now align the amino acid sequences
by clicking Sequence|Align sequences using ClustalW. A dialog box
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appears (fig. 4). There are two sets of options that you can specify, one for
pair-wise alignment and one for multiple alignment. If you do not know
much about the values in the input fields, then just leave them as is for the
time being and click Go!. The sequences will be aligned and displayed.
Click File|Save as (converting sequence format) to save the aligned amino
acid sequences in FASTA format.

The protocol of multiple alignment is typically done as follows. First, all
possible pair-wise alignment is done, and a dissimilarity score is generated
for each pair of sequences. These dissimilarity scores are used as genetic
distances to reconstruct a phylogenetic tree by using a distance method such
as the neighbor-joining method. Multiple alignment is then carried out along
the branches of the phylogenetic tree, starting from the more closely related
taxa and progress to more distantly related taxa. The quality of the alignment
therefore partially depends on the quality of the phylogenetic tree. After the
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multiple sequence alignment, DAMBE will ask you if you wish to look at
the phylogenetic tree used for alignment. If you click Yes, then the tree is
displayed (fig. 5).

The tree looks reasonable, except for the ancient divergence involving
Annelids and Molluscs. The tree can be rerooted or printed in high quality,
but we have little time to lose. So please just click Tree|Exit to quit the tree-
display window.

We have not yet finished with sequence alignment. What we have just
done is to obtain aligned amino acid sequences, which are now residing in
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DAMBE’s buffer. We still have not aligned the nucleotide sequences against
the aligned amino acid sequences.

Click Sequence|Align nuc sequences to aligned AA sequences in
buffer. You will be warned that the sequence names for the nucleotide
sequences and the amino acid sequences should match, and that the amino
acid sequences in DAMBE’s buffer are really translated from the nucleotide
sequences. If the amino acid sequences are for haemoglobin genes while
nucleotide sequences are albumin genes, then aligning the albumin-coding
nucleotide sequences against the amino acid sequences for the haemoglobin
genes will generate unpredictable results. In our case, both conditions are
met. So just click Yes to proceed.

A standard File/Open dialog box appears. Double click the nucleotide
sequence file that you have previously saved (e.g., arthropod.fas) and the
nucleotide sequences wil l be aligned against the aligned amino acid
sequences. These sequences are now ready for comparative sequence
analysis. Save the aligned nucleotide sequences. These sequences wil l now
be used to illustrate the point that sequence similarity becomes dependent on
similarity in nucleotide frequencies when the sequences approach
substitution saturation.

4. DATA ANALYSIS

Click Sequences|Work on codon position 3. DAMBE will now pick up
all nucleotides at the third codon position and form a set of new sequences.
You will note that the new sequences are just one third of the length of the
original sequences. The reason for using only the third codon position is
because this codon position is the most likely to experience substitution
saturation among the three codon positions, and is therefore better suited for
illustrating the effect of nucleotide frequencies on phylogenetic analysis.

Click Seq. Analysis|Nucleotide Frequencies. In the next dialog box,
click the Add All button, and then click the Go! button. Nucleotide
frequencies for each of the 21 sequences will be generated. Go directly to the
very last part of the output where we get a summary of nucleotide
frequencies shown in Table 1. Three species have been shown in bold in
Table 1 because of their similarity in nucleotide frequencies. They have the
lowest A and T frequencies, the highest frequency of C, and a relatively high
frequency of G. With substitution saturation, these three sequences are
expected to cluster together, to the exclusion of their respective sister taxa
that do not have similar nucleotide frequencies.
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To perform a simplest phylogenetic analysis, click
Phylogenetics|Distance methods|Nucleotide sequences. In the next dialog
box, choose K80 as the genetic distance (K80 refers to Kimura’s two-
parameter distance). Click the Done button. A neighbor-joining tree (Fig. 6),
from genetic distances based on the K80 model, supported the expectation
that species of similar nucleotide frequencies will be grouped together.

Two things are obvious. First, the tree is absurd, which is what we would
have expected if all historical information has already been completely
obliterated by substitution saturation. Second, the three sequences having
similar nucleotide frequencies and shown in bold in Table 1 form a
monophyletic taxon to the exclusion of their respective sister taxa.

All genetic distances that either ignore the frequency parameters (e.g.,
JC69 and K80), or ignore the transition bias (e.g., TN84) will group these
three taxa together. If you try to use the maximum parsimony (MP) method,
then two MP trees wil l be found, both grouping the three species to the
exclusion of their true sister taxa. This is what we would have expected
because the maximum parsimony method pays no attention to nucleotide
frequencies or transition/transversion bias.
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Compare the tree topology in fig. 6 with that in fig. 5. Should you include
the third codon position in your phylogenetic analysis when sequences have
experienced a long divergence time and consequently substitution
saturation? The tree in fig. 5 is based on amino acid sequences. What would
the tree be like if we use only the first and second codon positions in a
phylogenetic reconstruction?
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Factors Affecting Codon Frequencies and Codon
Usage Bias

1. INTRODUCTION

An amino acid is specified by a codon, and a protein is specified by a
codon sequence. Because of the degeneracy of genetic codes, an amino acid
is typically coded by several synonymous codons, which constitute what we
call a synonymous codon family. For example, the synonymous codon
family for the amino acid glycine is made of four codons: GGA, GGC,
GGG, GGU.

Synonymous codons are not equivalent and there is often preferential use
of one over the other. For example, the glycine is predominantly coded by
GGC and GGU in the E. coli genome, but by GGA in mammalian
mitochondrial genome. Why should there be such a difference?

It is now well known that genomes from distantly related organisms often
exhibit different patterns of synonymous codon usage (Grantham et al. 1981;
Grantham et al. 1980). In addition to this inter-genome difference, there are
substantial inter-gene differences within the same genome (Gouy and
Gautier 1982; Ikemura 1985; Ikemura 1992; Sharp et al. 1988; Sharp and Li
1987; Sharp and Mosurski 1986). How is this diversity of codon usage
generated and maintained?

I will attempt to give you some possible answers to these questions, but
first of all, we have to learn how to quantify the codon usage of genes or
genomes so that comparisons can be made. Simply put, codon usage is
characterized by the frequencies of the 64 codons. A comparison of codon
usage among genes or genomes is simply a comparison of codon frequency
tables.
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There is another reason for studying codon frequencies. Recall that we
need to know both the frequency parameters and rate ratio parameters in
order to understand the substitution process. In previous chapters, we have
briefly mentioned nucleotide-based models, which could have no more than
three frequency parameters to estimate. You will learn later that nucleotide-
based models are insufficient to describe evolution of protein-coding genes
and that we need to have codon-based models which are much more
complicated. There are 64 codons and consequently 63 frequency parameters
to estimate. Ignoring termination codons still leaves us with about 60
frequency parameters. These frequency parameters are typically quite
different from each other, and we need to appreciate the variation among
them in order to understand the substitution process involving codons. It is
these frequency parameters that we will examine in detail in this chapter.
The rate ratio parameters of codon-based models will be left to later
chapters.

If you find it outrageous that I should bother you with such a simple task
of generating codon frequency tables, consider a Chinese proverb saying that
"Familiarity begets insights". By forcing you to generate codon frequency
tables and to stare at them, you will soon be able to discern subtle difference
in codon usage patterns between genes and genomes.

2. GENERATING CODON USAGE TABLE WITH
DAMBE

Start DAMBE, and open a file containing protein-coding nucleotide
sequences. Click Analysis|Codon Frequency. A dialog box appears (Fig.
1). There are two lists in the dialog box. The one on the left lists the
sequences that are available for selection. The one on the right lists
sequences selected for computing codon frequencies. At this moment, the
list on the right is empty.

–   To select a single sequence, just click to highlight it, and then click the
button to move it to the right.

–  To select neighboring sequences, click the first of the neighboring
sequences to highlight it and then, holding down the shift key, click the
last of the neighboring sequences. All the neighboring sequences will
then be highlighted. Click the button to move them to the right.

–   To selection disjoint sequences, click each sequence while holding down
the Ctrl key, and then click the button to move the highlighted
sequences to the right.
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–    If you have moved an unwanted sequence to the right, don’t worry. Just
highlight the sequence and click the button to move it back to the left.

There are three options (radio buttons) on the top of the dialog box (Fig.
1). Clicking the option labelled Individual sequence will generate codon
frequencies for each of the selected sequences. Clicking the option Pooled
will generate codon frequencies for all selected sequences pooled together,
i.e., you will get just one table of pooled codon frequencies no matter how
many sequences you have selected. The third option, labelled Both, is for
outputting codon frequencies of individual sequences as well as the pooled
codon frequency table. The default is Pooled.

Once you have finished your selection, click the Done button. After a
few seconds, the standard file/save dialog box appears. Type in the file name
for saving the result, or simply use the default. Click the Save button. The
file is saved in text format, and also automatically displayed on screen. A
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part of a default sample output, based on a segment of the Influenza A
viruses, is shown below:

Output from sequences in file C:\MS\virus\virus.fas on
Tuesday, March 17, 1998

Sequence length = 969 (After excluding '?', '-' and 'n'.)
Number of codons = 323

From pooled sequences

AA Codon Mean Number(Sum) RSCU

A

R

N

D

C

E

Q

G

H

I

L

GCA

GCC

GCG

GCU

AGA

AGG

CGA

CGC

CGG

CGU

AAC

AAU

GAC

GAU

UGC

UGU

GAA

GAG

CAA

CAG

GGA

GGC

GGG

GGU

CAC

CAU

AUA

AUC

AUU

CUA

CUG

CUU

8 ( 32 )
3.3( 13 )
2.3( 9 )

3.5( 14 )

6.3( 25 )

4.8( 19 )

.3( 1 )

0 ( 0 )

.3( 1 )

.5( 2 )
13.8( 55 )
11.3( 45 )
7.5( 30 )
3.3( 13 )
4 .8( 19 )
4 ( 16 )
12.5( 50 )
6.3( 25 )
6.3( 25 )

2.5( 10 )

12.3( 49 )
2.3( 9 )

5.3( 21 )

2.8( 11 )

3.8( 15 )
5.5( 22 )
9.5( 38 )
4.8( 19 )
3.8( 15 )
6.3( 25 )
2.8( 11 )
6.5( 26 )
3 ( 12 )

1.87
.75
.56

.82

3.11
2.34
.17

0
.17

.22

1.1

.9

1.45
.55

1.08
.92

1.34
.66

1.43
.57

2.18
.41

.94

.47

.82

1.18
1.57

.81

.62
1.46

.61
1.5
.7

CUC
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K

M

F

P

S

T

W

Y

V

UUA

UUG

AAA

AAG

AUG

UUC

UUU

CCA

CCC

CCG

AGC

AGU

UCA

UCC

UCG

UCU

ACA

ACC

ACG
ACU

UGG

UAC
UAU

GUA

GUC

GUG

GUU

3.8( 15 )

3.8( 15 )
12.3( 49 )
7 ( 28 )
2.3( 9 )
5.5( 22 )
4.5( 18 )
9 ( 36 )
5 ( 20 )
1 (  4 )
2.8 ( 11 )
4.5( 18 )
5.5( 22 )
10.8 ( 43 )
4.8( 19 )
1.3( 5 )

5.3( 21 )
11.8( 47 )

5.3( 21 )
2 ( 8 )
3.8 ( 15 )
6.8( 27 )

8 ( 32 )

7.3( 29 )
6. 5( 26 )
4 ( 16 )

5.3( 21 )

4.5( 18 )

.85

.88
1.27

.73
1

1.1
.9

2.02
1.13
.23
.63
.85

1.02
2.02
.89
.23
.99

2.09
.93
.36
.63

1
1.05
.95

1.29
.8

1.04
.88

The codon usage table is based on the following sequences:
1
2
3
4

FLAHAOHF
FLAHA1N

IAU11858

IVHATG391

CodSite A C G U Sum

1

2

3

Freq.
Prop.

Freq.
Prop.

Freq.
Prop.

433
.34

428
.33

461

.36

221
.17

318
.25

319

.25

357
.28

240
.19

228
.18

281
.22

306
.24

284
.22

1292
1

1292
1

1292

1

CCU
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The output is in two parts. The first is a table of codon frequencies
categorized into codon families, and the second lists nucleotide frequencies
separately for each of the three codon positions designated as CodSite in the
output. There will be no second part if the sequences are not protein-coding
nucleotide sequences. The 20 amino acids are designated by the one-letter
notation (Table 1).

Below I will show you two interesting patterns as well as their possible
interpretations. You are encouraged to discover other patterns that I have
failed to discern.

3. DNA METHYLATION AND USAGE OF
ARGININE CODONS

One obvious pattern from the codon frequency table above is the
abundance of AGR codons relative to CGN codons, both coding for amino
acid arginine. This can be interpreted as an evolutionary consequence of
DNA methylation. DNA methylation is a ubiquitous biochemical process
observed in both prokaryotes (Noyer-Weidner and Trautner 1993) and
eukaryotes (Antequera and Bird 1993). In vertebrates, DNA methylation
mainly involves the methylation of C in the CpG dinucleotide, which greatly
elevates the mutation rate of C to T through spontaneous deamination of the
resultant 5-methylcytosine (Barker et al. 1984; Cooper and Krawczak 1989;
Cooper and Krawczak 1990; Cooper and Schmidtke 1984; Cooper and
Youssoufian 1988; Ehrlich 1986; Ehrlich et al. 1990; Rideout et al. 1990;
Schaaper et al. 1986; Sved and Bird 1990; Wiebauer et al. 1993). The
elevated mutation pressure implies that a gene with many CpG dinucleotides
would be unreliable. Thus, if an arginine is needed, then the protein gene is
better off to have the arginine coded by AGR codons rather than by CGN
codons. This is a selectionist explanation, i.e., it is evolutionarily more
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advantageous for the genome to code arginine by the AGR codon than by the
synonymous CGN codons.

Because the gene the produced the result above is from a virus infecting
mammalian species, i.e., the viral DNA will also be heavily methylated as its
host DNA, we expect a high AGR usage relative to CGN usage for coding
arginine.

For a quick comparison, I have list below a partial output for the EF-
gene from the seven invertebrate species in the file invert.fas that comes
with DAMBE. The level of DNA methylation is very low in invertebrate
species. If the above interpretation is correct, then we should expect the
relative frequency of AGR codons to CGN codons to be less AGR-biased in
the invertebrate species than that observed in the gene from a virus infecting
mammalian species. This is true. About 92% of arginine codons are AGR in
the former, whereas only about 32% of arginine codons are AGR in the
latter.

AA Codon Mean Number(Sum) RSCU

R AGA
AGG

CGA

CGC

CGG

CGU

2.9( 20 )

1.6( 11 )

0.7( 5 )

0.6( 4 )

0.4( 3 )

7.9( 55 )

1.25
0.65

0.31

0.24
0.18
3.37

I hope that by this time you should come up with two criticisms for the
arguments presented above. First, the comparison is between two totally
different genes, which is the same as comparing apples and oranges. It is
highly likely that the ratio of AGR codons over CGN codons is different
among genes, even within the same genome. A valid comparison should be
done either by many comparisons between homologous genes, or by taking a
random (representative) sample of codons from heavily methylated and
lightly methylated genomes. Second, even if such a valid comparison is
made and the result is consistent with the pattern shown above, the
selectionist interpretation is not necessary because we can explain the pattern
equally well by invoking mutation along. For example, if we start with 100
arginine codons, coded by 50 AGR codons and 50 CGN codons, i.e., the
original ratio of AGR codons over CGN codons is 1. Now methylation will
increase the mutation rate of CGN codons to TGN codons, which will
obviously increase the ratio of AGR codons over CGN codons. Can you
come up with a test that can distinguish between the mutationist explanation
and the selectionist explanation?
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4. TRANSCRIPTION EFFICIENCY AND CODON
USAGE BIAS

Another pattern from the first part that is immediately obvious and
interesting is that, for almost all codon families, the A-ending codon is used
most often. This answers one question that we raised before. Let me refresh
your memory just in case you forget. When we analyzed nucleotide
frequencies of the same set of sequences, we noticed that A is the most
frequent nucleotide in the Influenza A viruses. We proposed two possibilities
for the preponderance of A. First, it might be caused by the preponderance of
A-rich codons, e.g., Asn and Lys (which are coded by AAN codons), in the
protein-coding gene. Alternatively, it might be caused by codon usage bias
favoring A-ending codons for more efficient transcription (Xia 1996). By
comparing the codon frequencies of the viruses with those from their hosts,
we can conclude that both possibilities are likely true. The protein-coding
genes in the viruses use significantly more amino acids coded by A-rich
codons than those from the hosts, and the A-ending codon is almost
invariably the more preferred codon in the viruses than in the hosts.

The over-use of A in the viral genes would increase the transcription
efficiency because it is well known that ATP is much more abundant in the
cellular medium than any other ribonucleotides (Bridger and Henderson
1983, pp. 4-5). It would be evolutionarily disadvantageous if the viral genes
need a lot of rare ribonucleotides for transcription. This interpretation of
codon usage bias has been termed the transcription hypothesis of codon
usage, or THCU (Xia 1996) , which is featured in the first of the two case
studies following this chapter.

5. TRANSLATIONAL EFFICIENCY AND CODON
USAGE BIAS

We were briefly introduced to the translational efficiency hypothesis of
codon usage bias in the previous section. To better appreciate the hypothesis,
let us compile a codon frequency table from an E. coli gene, groEL that
codes for a protein affecting mRNA stability and is known to be highly
expressed (Ikemura 1992).

Start DAMBE if you have not done so. Click File|Read sequences from
GenBank. In the ensuing dialog box, enter ECOGROELA (which is the
LOCUS name for the DNA sequence of the groEL gene) into the textbox.
Click the Retrieve button. In the next dialog box, click the CDS option
button and then the Proceed button to get the coding sequences. In the next
dialog box with five columns, click the LOCUS name, i.e., ECOGROELA
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in the first column. In the last column of the dialog box, we see that the
coding sequence starts at position 28, with an ATG codon, which codes for
methionine and is the initiation codon for initiating translation. The coding
sequence ends at position 477, with a TGA codon, which is the termination
codon signalling the end of the translation. In the bottom panel, the whole
sequence is displayed with the coding sequence highlighted in red. Click the
Splice button and then the Done button. The coding sequence wil l be
extracted and displayed in DAMBE’s display window. Save the sequence to
a file in FASTA format.

To obtain a codon usage table, just click Seq. Analysis|Codon
frequency. Click the Individual option button because we have just a single
sequence. Click the sequence name in the left listbox and then the  button.
Click the Done button and a table of codon frequencies is displayed.

Take a look at the glycine codons. Is the A-ending codon used most
frequently among the four synonymous codons? Is the observed data
consistent with the transcription efficiency hypothesis of codon usage? Can
you offer an alternative hypothesis to explain the codon usage pattern in E.
coli?

About 20 years ago, a Japanese biologist named Ikemura was asking
himself the same set of questions, and he proposed what is now known as the
translational efficiency hypothesis. The hypothesis states that there is strong
selection favouring increased rate of protein synthesis and that a coding
strategy that increases the rate of translation initiation and peptide elongation
(and consequently increases the rate of protein synthesis) is favoured by
natural selection. But what coding strategy would maximize translational
efficiency?

The efficiency of translation depends mainly on the concentration of
three chemical components participating in the translational process: the
ribosome where translation takes place, the 20 amino acids that are the
building blocks, and tRNA molecules that carry amino acids to the
translation site. These tRNA molecules each have an anticodon to pair with a
codon. For example, a glycine-carrying tRNA in Escherichia coli and
Salmonella typhimurium may have an anticodon of CCA to pair with GGU,
and another glycine-carrying tRNA may have an anticodon CCC to pair with
GGG. In short, different tRNA molecules carrying the same amino acid may
recognize different synonymous codons.

Suppose we have a GGG codon to be translated into glycine, but most
glycine-carrying tRNA molecules in the cytoplasm recognize the
synonymous GGU codon, but not the GGG codon. This implies that the
GGG codon will , on average, be translated slowly. In contrast, a GGU codon
is expected to be translated relatively fast. To maximize translational
efficiency, and consequently the rate of biosynthesis, the synonymous codon
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usage should be biased towards the codon recognized by the most abundant
tRNA species.

Ikemura did not stop at the hypothesis, but instead proceeded to test the
hypothesis by measuring the concentration of various tRNA species and
correlating it with codon usage. An elementary introduction to subsequent
theoretical elaboration of codon usage and translational efficiency can be
found in Xia (1998a). A more extensive and lucidly written review is also
available (Akashi and Eyre Walker 1998). Case study 3 illustrates the basic
ideas of the existing theory concerning codon usage bias.

6. CODON FREQUENCY AND THE MEAN AND
VARIANCE OF PEPTIDE LENGTH IN ANCIENT
PROTEINS

The frequency of the 64 trinucleotides in the primitive RNA or DNA
sequences, before the genetic code is fixed, is expected to be with
Pi, Pj, and Pk being the frequency of the nucleotide i, j and k (i, j, k = {A, C,
G, T or U}) in the RNA or DNA sequences. This implies that, at the fixation
of the genetic code, the ancient peptide-coding genes should have codon
frequencies depending only on nucleotide frequencies. This has strong
implications on the mean and variance of the length of ancient peptides.

If we take the universal genetic code for example and assume that the
four nucleotide occurs in equal frequencies in the ancestral DNA or RNA
sequences, then the stop codon is expected to occur once in about every 20
triplet codons, with the consequence that the peptide is, on average, just
about 20 amino acids long. The distribution of the peptide length (1) follows
the geometric distribution:

where p is the proportion of stop codons and is equal to 3/64 for the
universal genetic code with the assumption of equal codon usage. Note that
an mRNA made of L codons (including the termination codon) will generate
a peptide length of only L-l amino acid residuals. The expected mean and
variance of the ancient peptide length, assuming equal codon usage, are then
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For the universal genetic code with p = 3/64, the expected mean and
variance of the peptide length are 21.3 and 433.8, respectively, with less than
5% of the sequences longer than 120 amino acids.

By consulting the universal genetic code, we find that stop codons are
coded by TAA, TAG and TGA. If we designate the four nucleotide
frequencies by and then p in equation (8.2) equals

Noting that termination codons are AT-rich, we can
immediately make one general prediction. If the frequency of T and A
increases, then the frequency of stop codons will increase as a consequence,
and the peptides should get shorter. This leads to three subpredictions. First,
proteins in AT-rich genomes should be shorter than those in AT-poor
genomes. Second, in vertebrate genomes with AT-rich and AT-poor
isochores, we should expect proteins coded in AT-rich isochores to be
shorter than those coded in AT-poor isochores. Third, mutations favouring T
and A would lead to shorter peptides.

So far we have derived several predictions by completely ignoring the
effect of selection. It is important to realize that, to understand the effect of
selection, we need to know what would be the case in the lack of selection.
Once we have recognized the pattern without selection, then any deviation
from this pattern is likely to be caused by selection.

Let us review the predictions that we have so far derived. First, we have
predicted, assuming no selection against stop codons, the mean peptide
length is 1/p, and the associated variance is where p is the
frequency of stop codons and can be expressed as
We further predicted that, in AT-rich DNA, p should be large and proteins,
on average, should be shorter than those in AT-poor DNA. These predictions
have been partially confirmed empirically (Oliver and Marin 1996).

In GenBank, there are many DNA sequences from a variety of genomes
with very different AT content. There are a number of human protein-coding
genes from GC-rich isochores and also many from AT-rich isochores. The
former is expected to produce longer peptides than the latter. Can you
compile a number of protein-coding genes to see if this prediction is
favoured by empirical evidence?
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Case Study 2
Transcription Efficiency and Codon Usage Bias

1. INTRODUCTION

Genomes from distantly related organisms exhibit different patterns of
synonymous codon usage (Grantham et al. 1981; Grantham et al. 1980). In
addition to this inter-genome difference, there are substantial inter-gene
differences within the same genome (Gouy and Gautier 1982; Ikemura 1985;
Ikemura 1992; Sharp et al. 1988; Sharp and Li 1986; Sharp and Li 1987).
Natural selection for increased translational efficiency has been proposed as
the major hypothesis for the inter-genome and inter-gene differences in
codon usage (Bulmer 1991; Kimura 1983; Kurland 1987a; Kurland 1987b;
Robinson 1984; Xia 1998a). Three lines of evidence appear to support this
hypothesis. First, the frequency of codon usage is positively correlated with
tRNA availability (Gouy and Gautier 1982; Ikemura 1981; Ikemura 1982;
Ikemura 1985; Ikemura 1992; Ikemura and Ozeki 1983). Second, the degree
of codon usage bias is related to the level of gene expression, with highly
expressed genes exhibiting greater codon bias than lowly expressed genes
(Bennetzen and Hall. 1982; Sharp et al. 1988; Sharp and Devine 1989).
Third, mRNA consisting of preferred codons is translated faster than mRNA
artificially modified to contain rare codons (Sorensen et al. 1989).

Not only are there differences in codon usage bias among genomes and
among genes within the same genome, but there are also differences in
codon usage among different regions of the same gene. For example, gene
regions of greater amino acid conservation tend to exhibit more dramatic
codon usage bias than do regions of less amino acid conservation (Akashi
1994). This has been proposed as resulting from selection for increased
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translational accuracy (Akashi 1994; Hartl et al. 1994), because selection for
maximum translational efficiency does not seem satisfactory to explain the
phenomenon. However, this can be accommodated by the translational
efficiency hypothesis if one defines what is maximized as the rate of
production of correctly translated proteins.

What all these studies have shown is that there is strong selection
favouring increased rate of protein synthesis and that a coding strategy that
increases the peptide elongation rate (and consequently increases the rate of
protein synthesis) is favoured by natural selection. However, efficient
protein synthesis depends not only on the peptide elongation rate, but also on
the initiation rate. Moreover, four lines of evidence support the claim that the
initiation of protein synthesis, rather than elongation of the peptide chain, is
rate-limiting (Bulmer 1991). Thus, if there is selection for increased rate of
protein synthesis, then we should expect selection to favour an increase of
not only elongation rate, but also initiation rate. The evolutionary
consequence of selection for increased elongation rate has been investigated
and empirically documented extensively (Bulmer 1991; Gouy and Gautier
1982; Ikemura 1985; Ikemura 1992; Sharp et al. 1988; Sharp and Devine
1989; Sharp and Li 1986; Sharp and Li 1987; Xia 1998a). In contrast, the
evolutionary consequence of selection for increased initiation rate has not
been equally well studied.

The initiation rate is directly proportional to the encountering rate
between mRNA molecules and ribosomes, and this encountering rate
depends on the concentration of mRNA and ribosomes. Thus, the initiation
rate of protein synthesis can be efficiently increased by increasing mRNA
concentration. Both theoretical reasoning and empirical evidence suggest
that the number of mRNA copies available is a rate-limiting factor in protein
synthesis (Xia 1995). It is conceivable that natural selection should favour
increased rate of transcription, and that a coding strategy leading to
increased transcriptional efficiency should be at a selective advantage. Thus,
studying the pattern of codon usage from the perspective of transcription
adds one more dimension to our understanding of the evolution of genetic
information.

2. CONSEQUENCES OF MAXIMIZING
TRANSCRIPTIONAL EFFICIENCY

I here present an optimality model showing the effect of maximizing
transcription rate on codon usage bias. Suppose that an mRNA molecule of
length L is composed of A, C, G, and U with frequencies and
respectively In terms of a chemical equation,
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where k is the velocity constant of the transcriptional process. Let C be the
concentration of transcribed mRNA, and let and be the
concentration of A, C, G, and U, respectively, in the cellular matrix
surrounding the active transcription site. Then, according to the law of mass
action, the rate of transcription is

Evidently, if is greater than and then the transcription rate
is increased by increasing and decreasing and with the
constraint that where {A, C, G, U}. Consequently, the
maximum transcription rate is reached when and

Equation (9.2) links the nucleotide composition of mRNA, i.e.,
and to the relative nucleotide concentration in the cellular matrix at

the transcription site, i.e., and The equation predicts that the
most frequently used nucleotide in mRNA molecules should be the same as
the most abundant nucleotide in the cellular matrix. This implies that the
relative concentration of the four nucleotides in the cellular matrix can affect
patterns of synonymous codon usage. This hypothesis will hereafter be
referred to as the transcription hypothesis of codon usage (THCU).

The same conclusion can be derived from a deterministic model with
more explicit assumptions. Consider the time required to transcribe a single
nucleotide i. Let r be the rate of nucleotides diffusing to the transcription site
and  Pi be the probability that the arriving nucleotide is nucleotide i. Note that
Pi where {A, C, G, U}, simply represents the relative availability of the
four nucleotides. Let be the time spent in linking this nucleotide to the
elongating mRNA chain, and be the time spent in rejecting each of the
wrong nucleotides that diffuse to the transcription site prior to the arrival of
the nucleotide i. Now the total time spent in transcribing nucleotide i is:

where the first term on the right-hand side of the equation is the time needed
for the correct nucleotide to arrive at the transcription site, and the third term
represents time spent in rejecting the wrong nucleotides prior to the arrival
of the correct nucleotide. The total time (T) required to transcribe L
nucleotides (total elongation time) can be shown to be:
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where

Note that is a property of the mRNA, whereas Pi is a property of the
cellular matrix.

Our objective, then, is to find the conditions that minimize T. Because
tr  and L are not dependent on Ni and Pi , they are treated as constants. Thus,
minimizing T in equation (9.4) is equivalent to minimizing Y. We rewrite Y
as:

If is the largest of the four, then is smaller than either (PA

or It is therefore obvious that minimization of
Y in equation (9.5), given that is the largest of the four, requires an
increase in and a decrease in and with the minimum of Y
reached when and The general prediction from the
optimality model, therefore, states that whenever different nucleotides in the
cellular matrix differ in relative availability, the codon usage of the mRNA
should evolve towards increasing the frequency of the most abundant
nucleotide in the cellular matrix. Thus, we reached the same conclusion as
that from the law of mass action.

Most synonymous codons differ at the third codon site. According to the
general prediction above, we expect that, within each codon family, a codon
ending with a nucleotide that is the most abundant in the cellular medium
should be used the most frequently. This leads to three testable predictions
(Predictions One to Three below). In addition, because introns are also
transcribed and should be subject to selection maximizing transcription
efficiency, we expect a nucleotide species to be used more frequently in
introns when the concentration of that nucleotide species increases in the
cellular medium (Prediction Four below).
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3. PREDICTIONS AND EMPIRICAL TESTS

Prediction One: A-ending codons should be more frequent than
alternative synonymous codons in mitochondrial protein genes: The
concentration of cellular ATP is much higher than that of the other three
nucleotides (C, G, and U), and the ATP concentration in mitochondria is still
higher than that in cytosol (Bridger and Henderson 1983, pp. 4-5). The high
ATP concentration in mitochondria might be caused by many factors, and
one of these factors is that mitochondria have an efficient transport system to
bring ADP into mitochondria for ATP production, but the transport system
does not carry non-adenine nucleotides (Bridger and Henderson 1983; Olson
1986). Given that ATP concentration is higher than that of the other three
nucleotides in mitochondria, we should expect synonymous codon usage to
be biased toward A-ending codons in mitochondria to facilitate transcription,
according to THCU.

How to test this prediction by directly accessing molecular data already
available in GenBank? What we need is to get a few complete mitochondrial
genomes, splice out the protein-coding sequences and obtain a codon table.
You can hardly think of anything simpler.

Start DAMBE if you have not yet done so. Click File|Read sequences
from GenBank. A dialog box (fig. 1) appears for you to choose relevant
options that we have already discussed in detail in the chapter dealing with
GenBank accessing. If you click the General Search option button and type
in a search string such as "complete+mitochondrial+genome", you may get
too many hits because there are now many mitochondrial genomes
sequenced and deposited in GenBank. For example, there are now at least 25
completely sequenced mitochondrial genomes from mammalian species
alone in GenBank.

For illustrating the test of the first prediction, we will just get a single
complete mitochondrial genome from the cow, with accession number
J01394. Click the top option button, labelled Search GenBank with
accession number or LOCUS name, and type in J01394 in the text box.
Leave everything as default as shown in fig. 1. Click the Retrieve button and
the complete mitochondrial genome from the cow will be retrieved, which
may take a minute or two depending on the speed of your network.
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As we have learned in the chapter dealing with processing GenBank files,
DAMBE can take advantage of the rich information contained in the
FEATURES table of a GenBank file and splice specific gene segments, such
as CDS, introns, rRNA, etc. This is why we specified the GenBank format
rather than the FASTA format (lower left in fig. 1).

After you have retrieved the GenBank file, the following dialog box
appears (fig. 2). The default is Whole sequence, which is not what we need.
What we want to have are the coding sequences, i.e., CDS for the 13 protein-
coding genes in the mitochondrial genome. So click the CDS option button
and click the Proceed button. Another dialog box will appear, with the forth
column (the second one from the right) showing the name of each protein-
coding gene in the cow mitochondrial genome. There should be a total of 13
protein-coding genes in the mitochondrial genome. This forth column is for
you to specify which gene you wish to extract from the lengthy genome. Just
highlight all the genes in the forth column and click the Splice button.
DAMBE will search through the FEATURES table in the GenBank file and
extract all protein-coding genes from the GenBank file. Click the Done
button to end the extraction.
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You will be told that the genes are of different lengths, and asked if you
wish to align the sequences. Click No because there is no point in aligning
non-orthologous genes. All DNA sequences from the 13 protein-coding
genes will be displayed in DAMBE's display window. To verify that the
extraction is correct, click Sequences|Working on amino acid sequences to
translate the protein-coding nucleotide sequences into amino acid sequences.
The reason for doing this is not because DAMBE may make mistakes in
extracting, but because some sequences in GenBank have been entered
wrongly. For example, if the cytochrome-b sequence starts from position N
and ends at position M of the complete mitochondrial sequence, the
FEATURES table might specify the numbers wrong. For protein-coding
genes, the worst thing that could happen is when N is wrongly entered by
one or two nucleotides, which introduces an artefact of a frame-shifting
mutation. Such mistakes will lead to several stop codons embedded in the
nucleotide sequence, which will be translated into "*". If you see more than
one "*" in the translated sequence, then you should check whether the
FEATURES table has been entered properly.

If everything goes well, and all 13 protein-coding sequences are correctly
extracted, then click Seq. Analysis|Codon frequencies. This produces
codon frequencies and relative synonymous codon usage (RSCU),
reformatted in Table 1. We note immediately the excess of A-ending codons
(shown in bold type) in all synonymous codon families. The probability that
RSCU for A-ending codons is not greater than 1 is less than 0.0001. The
pattern is similar for mitochondrial genomes from other mammalian species,
such as rat, rabbit, sheep, human, and macaque. The empirical data thus
strongly support the first prediction.
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Prediction Two: The proportion of A-ending codons in each
synonymous codon family should be smaller in nuclear protein genes
than in mitochondrial protein genes: Whereas ATP concentration should
be much higher than the concentration of non-ATP nucleotides in
mitochondria for reasons stated in the previous paragraph, the difference in
concentration between ATP and non-ATP nucleotides should be relatively
small in the nucleus because ATP concentration is lower in nucleus than in
mitochondria. ATP concentrations in rat liver cytosol and mitochondria were
6.2±0.63 and 7.5±0.73 water), respectively (Bridger and
Henderson 1983, p. 5). The actual difference is expected to be greater
because mitochondrial preparation was not absolutely free of cytosol
contamination and vice versa. It is believed that little difference exists in
ATP concentration between nucleus and cytoplasm (Bridger and Henderson
1983, p. 5), i.e., the difference in ATP concentration between mitochondria
and cytosol is also the difference between mitochondria and nucleus.



Case Study 2 79

Given the lower concentration of ATP in nucleus than in mitochondria,
we should expect A-ending codons to be less frequent in the nuclear genome
than in the mitochondrial genome, which is also true (Table 2). Thus, the
difference in synonymous codon usage between the nuclear genome and the
mitochondrial genome appears to be explained, at least partially, by the
difference in relative ATP concentration between the nuclear medium and
the mitochondrial medium. Can you collect your own data to test this second
prediction?

An alternative explanation for the difference between mtDNA and
nuclear DNA in Table 2 is that the prokaryotic ancestor of mtDNA had a
high frequency of A-ending codons, and that this high frequency of A-
ending codons has been maintained through evolutionary inertia rather than
through any optimization process suggested by THCU. If this is true, then
we would expect prokaryotic genomes, which presumably share the same
ancestor with the mitochondrial genome, also to exhibit a high frequency of
A-ending codons. This expectation is clearly not fulfilled (Table 2). The
frequency of A-ending codons in E. coli genome is significantly smaller (p <
0.0001, Table 2) than that of the mitochondrial genome in the cow. The
pattern in Table 2 holds true if the cow in Table 2 is replaced by other
eukaryotic organisms such as rat, rabbit, sheep, human, Macaca,
Saccharomyces, or Drosophila. Note that the mtDNA and nuclear genome
have diverged a very long time. So an explanation of evolutionary inertia is
perhaps unnecessary in the first place.
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Prediction Three: The proportion of A-ending codons should be
greater in organisms with a high weight-specific metabolic rate (SMR)
than in organisms with a low SMR: Different animal species differ greatly
in SMR (measured as consumption in unit of ). In
mammals, SMR is inversely correlated with body size, with the mouse having
much higher SMR than the cow (Altman and Dittmer 1972, pp. 1613-1616).
Differences in SMR among animals of different body sizes are correlated with
the number of mitochondria per unit volume of tissue, with mammals of high
SMR having more mitochondria per unit volume of tissue than mammals of
small SMR (Ekert and Randall 1983, pp. 698-699; Mathieu 1981; Smith 1956).
According to Weibel's (1984) authoritative review, the cell's potential for ATP
production is proportional to the volume density of its mitochondria. This
explains the rapid decrease of maximum sustainable metabolic rate with
increasing body weight (decreasing volume density of mitochondria) in
mammalian species (Hochachka 1991). In light of all these related lines of
evidence, I think it reasonable to assume that nucleotide production is more
ATP-biased in small mammalian species with a high SMR than in large
mammalian species with a low SMR. In other words, the availability of cellular
ATP (relative to the other three nucleotides, C, G, and U) is greater in small
mammalian species with a high SMR than in large mammalian species with a
low SMR.

If the inference above is correct, then we should expect a greater
proportion of A-ending codons in small mammals, such as the mouse with
SMR equal to 1.59, than in large mammals, such as the cow and sheep with
SMR equal to 0.127 and 0.206, respectively (Altman and Dittmer 1972, pp.
1613-1616). We will now test this expectation empirically by using the
erythropoietin gene from the mouse, cow and sheep. You may choose
alternative genes to check for the generality of the conclusion derived from
the erythropoietin gene alone.

The erythropoietin gene has already been sequenced for the cow, sheep
and mouse, and the DNA sequences have been deposited in GenBank with
accession numbers L41354, Z24681, and M12482. We will now read these
sequences from GenBank.

Start DAMBE and click File|Read sequences from GenBank. When a
dialog box (fig. 3) appears, just type in the three accession numbers in the
text box and click the Retrieve button. The data retrieval may take from a
few seconds to a few minutes, depending on the speed of your computer
network. Bearing in mind that a sequence file retrieved from GenBank may
contain not only protein-coding genes, but also RNA sequences. Even for
protein-coding genes, there are introns and untranslated 5' beginning or 3'
ending sequences. The DNA sequence that specify the linear sequence of the
protein is designated as CDS in GenBank files. Thus, when you are
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prompted for which kind of sequences you wish to extract from GenBank
files, just click the CDS option button and then click the Proceed button.

You will be presented with another dialog box, which has been explained
in detail in the short chapter dealing with processing GenBank files, which
you should consult if you intend to use GenBank files in the future. If  you do
not wish to consult that chapter, then just follow the instruction on the screen
and extract the CDS sequences for the erythropoietin gene from the three
mammalian species.

Once the CDS sequences have been extracted, you will be asked whether
to align the sequences if the three sequences are not of equal length. If you
click Yes, then the nucleotide sequences will be aligned. However, such
alignment may introduce gaps of one or two nucleotides that are clearly
artefacts. For protein-coding genes, it is always better to first translate the
nucleotide sequences into amino acid sequences, align the amino acid
sequences and then align the unaligned nucleotide sequences against aligned
amino acid sequences. In short, when you are asked whether to align the
sequences, click No instead, and the sequences will be displayed on screen.

Now first save the sequences to a file, say erythro.fas, in the FASTA
format by clicking File|Save or convert sequence format. We will now
translate the nucleotide sequences into amino acid sequences, Click
Sequences|Work on amino acid sequences. DAMBE will automatically
translate these nucleotide sequences into amino acid sequences. Click
Sequences|Align sequences with ClustalW to align the sequences.

Once the amino acid sequences have been aligned, click
Sequences|Align Nuc. Seq. against aligned AA seq in the buffer. When
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prompted for the input file name, just click the erythro.fas file that you have
saved a moment ago. The nucleotide sequences will be aligned, and ready
for further analysis.

Click Seq. Analysis|Codon frequencies to obtain the relative
synonymous codon usage (RSCU) for the three genes. A large RSCU value
means more frequent usage. Part of the output is summarized in Table 3. A-
ending codons are used significantly more frequently in the mouse gene than
in the cow and sheep gene. Complete DNA sequences are also available for
the erythropoietin receptor gene from the mouse and human (accession
numbers J04843 and M60459), with the mouse gene having a significantly
greater RSCU values for A-ending codons than the human gene. SMR for
the human is 0.228, which is much smaller than that for the mouse.

The test in Table 3 is weak for two reasons. First, the test is based on one
gene. One cannot make generalizations based on one or few genes. To
address this problem, I have compared codon usage between the mouse
(SMR = 1.59) and the rat (SMR = 0.84) based on 877 and 833 genes,
respectively, from the mouse and the rat. The mouse genes use A-ending
codons significantly more frequently than the rat genes (P = 0.0006). These
data strongly supported the third prediction.

The second problem with the test in Table 3 is that the mouse differs
from the cow and sheep not only in metabolic rate, but also in many other
ways, each of which could potentially be responsible for the difference in the
usage of A-ending codons. One thing we can do to overcome this problem is
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to make more comparisons. I have also compared codon usage between the
rabbit (SMR = 0.47) and the cow (SMR = 0.13) based on 133 and 261 genes,
respectively, from the rabbit and the cow. There are 36417 and 58199
codons for the rabbit and the cow, respectively, of which 7614 and 11762
codons, respectively, are A-ending codons. A -test showed that rabbit
genes contain significantly more A-ending codons than the cow genes
6.699, DF = 1, P = 0.0096), which is again consistent with the third
prediction. A similar comparison between the human (1952 genes) and the
macaque (19 genes) did not show any significant difference, which is
perhaps attributable to the small number of macaque genes and to the fact
that the difference in SMR between the two species are not as great as that
between the rat and the mouse or between the rabbit and the cow. In short,
when two species differ much in SMR, they also differ in the use of A-
ending codons in the direction predicted by THCU; when two species differ
little in SMR, they also have similar codon usage.

You will be better equipped to test the predictions above after you have
learned phylogenetic reconstruction and comparative methods.

Prediction Four: The A-content of introns should be greater in
organisms with a high weight-specific metabolic rate (SMR) than in
organisms with a low SMR: This prediction is interesting in two aspects.
First, its confirmation would strengthen THCU. Secondly, it helps to
distinguish between the transcription hypothesis and translational hypothesis
concerning codon usage. The transcription hypothesis predicts that both
introns and coding sequences should show the predicted "nucleotide usage
bias", whereas the translation hypothesis predicts that only coding sequences
should exhibit nucleotide usage bias (or codon usage bias).

The test of Prediction Four can be illustrated with the cytoplasmic -actin
gene, which has been sequenced for the human and the rat, with GenBank
LOCUS names HUMACCYBB and RATACCYB, respectively. The gene in
both the human and the rat contains five introns, which are spliced out,
joined, and the percentage of A nucleotide calculated. Because the rat has a
much high metabolic rate (0.84) than the human (0.23), Prediction Four
would be supported if the introns of the rat gene have a higher percentage of
A nucleotide than those of the human gene. Such a test should be applied to
many genes to increase the generality of the test results.

I retrieved DNA sequences from GenBank by using proteins listed in
Table 1 of chapter 4 in Li and Graur (1991) as keywords, which resulted in a
total of 756 DNA sequences for various mammalian species. Many protein-
coding sequences in GenBank do not contain sequence information on
introns. Some genes have intron sequences for only one species, which are
useless for our comparative purpose (which requires intron information from
at least two species differing in metabolic rate, SMR). Some genes contain
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only partial intron sequences, which are discarded. Also discarded are those
intron sequences with long stretches of unresolved sites, i.e., marked by

For the few genes that do contain complete intron sequences
from multiple species, only five (skeletal actin, cytoplasmic -actin,
growth hormone, and -globin genes) can have their exons and introns
aligned properly for valid comparisons.

The percentage of A nucleotide in introns for each of the five genes
representing multiple mammalian species was displayed in Table 4, together
with the corresponding SMR values. Although the data are limited, we do
find a consistent pattern for each of the five genes that the A-content of
introns is greater in organisms with a high weight-specific metabolic rate
(SMR) than in organisms with a low SMR (Table 4). For example, rodents
have higher than the human and the ungulates.
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4. AN ALTERNATIVE EXPLANATION

One alternative hypothesis for the patterns shown in Tables 1-4 is that of
mutation bias. For example, a greater mutational pressure favouring A
against G in the mitochondrial genomes than in the nuclear genomes would
result in a greater proportion of A-ending codons in the mitochondrial genes
than in the nuclear genes. Martin (1995) has argued that organisms of high
metabolic rate should experience higher mutation rate favouring A than
organisms of low metabolic rate.

The mutation hypothesis can be distinguished from THCU because the
two hypotheses have different predictions. Let us first focus on the
consequence of mutation favouring A against G. Suppose a protein gene
with equal number of A, C, G, and T distributed randomly on both template
and non-template strands (i.e., the original sequence in fig. 4). When five G's
are replaced by five A's through mutation on the template strand, five C's
will consequently be replaced by five T's on the non-template strand.
Because mutation occurs randomly on both template and non-template
strand of the gene, we also expect five G's to be replaced by five A's on the
non-template strand and five C's to be consequently replaced by five T's on
the template strand. The net result is that on either template or non-template
strand, the increment in the number of A nucleotides (five in our fictitious
case) is matched by the increment in the number of T nucleotides (also five
in our fictitious case). In other words, on both template and
non-template strands (fig. 4), so that A-ending codons and T-ending codons
will be used equally frequently, and both used more frequently than G-ending
and C-ending codons.

In contrast to the mutation hypothesis, THCU predicts that, with ATP
more readily available than other nucleotides, the protein gene should evolve
towards maximizing the use of A in mRNA (i.e., maximizing the number of
A on the non-template strand of the coding sequence, fig. 4). This will result
in an increase in the number of A, and a decrease in the number of T in the
non-template strand of the gene (fig. 4). In short, although both THCU and
the mutation hypothesis would predict that A-ending codons should be much
more frequent than G-ending codons, the two hypotheses differ in that
THCU predicts A-rich and T-poor on the non-template strand, whereas the
mutation hypothesis (e.g., with mutation favouring A against G) predicts that
both strands should be AT-rich and GC-poor, with A's and T's distributed
equally on the two strand (fig. 4).
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The mutation hypothesis seems to explain satisfactorily the pattern of
codon usage in Drosophila mitochondrial DNA. The number of codons
ending with A, C, G, and T in Drosophila yakuba is 1052, 107, 45, and
1092, respectively, for protein genes on the H-strand, and is 403, 6, 31, and
428, respectively, for protein genes on the L-strand. Thus, Drosophila
mtDNA is AT-rich, with A-ending and T-ending codons used roughly
equally, and both used much more frequently than C-ending and G-ending



Case Study 2 87

codons. These fulfi l the prediction based on mutation hypothesis (top panel
of fig. 4). In neither strand do we observe A-richness and T-poorness
expected from THCU (fig. 4).

Additional evidence confirming that codon usage in Drosophila is mainly
controlled by mutations favouring A or T comes from an AT-rich region
flanking the origin of replication. This region spans 1.0-5.1 kb and is
homologous in various Drosophila species (Fauron and Wolstenholme
1980a; Fauron and Wolstenholme 1980b; Goddard and Wolstenholme
1980). The region exhibits extensive sequence divergence, suggesting that
the nucleotide sequence is mainly under the control of mutation bias
(Goddard et al. 1982). The fact that the region is made of almost entirely of
AT pairs implies that the mutation spectrum in Drosophila is strongly AT-
biased, and that the preponderance of A-ending and T-ending codons in
Drosophila mtDNA can be explained as a consequence of the mutation bias.

Another DNA region that appears to be strongly affected by mutation
bias is the D-loop of mammalian mtDNA. Goddard et al. (1982) has
suggested that the D-loop is homologous to the highly variable AT-rich
region in Drosophila mtDNA mentioned above. Like the AT-rich region in
Drosophila, the D-loop also flanks the replication origin, is also highly
variable in nucleotide sequences (Avise et al. 1994), and is not transcribed
except for perhaps a few bases. Thus, the nucleotide composition of the D-
loop should reflect the mutation spectrum in the mammalian mtDNA. The
number of A, C, G, and T in the mouse D-loop is 258, 104, 218, and 299,
respectively. This is consistent with what we would expect if the D-loop is
under mutation bias favouring A or T (top panel of fig. 4).

The mutation hypothesis, however, fails in explaining the pattern of
codon usage in mammalian mtDNA. The data in Table 1 shows that A-
ending codons are always much more frequently used than T (or U)-ending
codons in bovine mtDNA, in contrast to what we see in Drosophila mtDNA
where A-ending and T-ending codons are used equally frequently, and also
in contrast to the D-loop region where T is more frequent than A.

The data from mouse mtDNA further highlight the inadequacy of the
mutation hypothesis. The number of codons ending with A, C, G, and T in
the mouse mtDNA is 1677, 1000, 117, and 825, respectively, with A-ending
codons far outnumbering not only G-ending codons, but also T-ending
codons. This pattern is the same as what we see in Table 1 for the cow and is
expected from THCU, but not from the mutation hypothesis. (Note that there
are more NNY codons than NNR codons in mammalian mtDNA, with the
difference > 300. So the observed excess of A-ending codons and deficiency
of T-ending codons in mammalian mtDNA is not a consequence of protein
genes made of mostly NNR codons).
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Although the pattern of codon usage in mtDNA is more satisfactorily
explained by THCU than by the mutation hypothesis, one can still argue that
the difference in codon usage between mtDNA and nuclear DNA (Table 2)
is attributable to mutations in mtDNA more biased in favour of A than
mutations in nuclear genome, which could result in more A-ending codons
in mtDNA than in nuclear genome. A new finding summarized below
appears to favour THCU.

Zischler et al. (1995) discovered a segment (540 bp) of the human
mitochondrial D-loop to have been inserted into the nuclear genome, and
that the inserted sequence has presumably existed as non-functional DNA.
The nucleotide frequencies of the insert for A, C, G, and T are 30.7%,
32.6%, 13.9%, and 22.8%, respectively. The equivalent values for the
homologous 540 bp D-loop segment (from LOCUS HUMMTCG in
GenBank) are 30.4%, 32.8%, 14.1%, and 22.8%, respectively. If mutations
are more biased in favour of A in mtDNA than in nuclear genome, then we
should expect a reduction of the proportion of A in the insert, which is not
true.

Zischler et al. (1995) also sequenced the nuclear DNA sequences
flanking the insert. The two flanking regions add up to a total of 385 bp, with
the nucleotide frequencies being 41.3%, 18.2%, 13.5%, and 27.0%,
respectively, for A, C, G, and T. Thus, the A-content of the non-functional
DNA of nuclear origin appears to be in excess rather than in deficiency in
comparison with the equivalent values in mitochondrial D-loop. This
suggests that mutations in mtDNA is not more biased in favour of A than
those in the nuclear genome. In short, the larger proportion of A-ending
codons in mtDNA relative to nuclear DNA is not due to mutation bias
favouring A in mtDNA.

It is much more difficult to distinguish THCU from the mutation
hypothesis regarding the differences in codon usage among mammalian
species of different metabolic rates (Tables 3-4). For example, although the
proportion of A-ending codons is greater for mouse genes than for rat genes,
the proportion of T-ending codons also seems to be greater for the
mouse genes than for the rat genes. This concurrent increase in both and

in animals of higher metabolic rate (i.e., the mouse) is compatible with
the mutation hypothesis (Martin 1995) invoking mutation bias favouring A
or T in animals of higher metabolic rate (SRM). However, for the nine codon
families with both A-ending and T-ending codons, for the mouse genes is
significantly larger than for the rat genes (P = 0.017, paired T-Test, one-
tailed), whereas the difference in PT between the mouse genes and the rat
genes is not significant (P = 0.507). This suggests that THCU is a plausible
alternative to the mutation hypothesis.



Case Study 2 89

The data of introns (Table 4) are almost entirely compatible with the
mutation hypothesis in that a concurrent increase in both A-content and T-
content is observed in genes from mammalian species with a high metabolic
rate relative to those from mammalian species with a low metabolic rate. The
only exception involves comparisons between human and mouse for the
globin gene. The mouse introns for the -globin gene show higher A-content
and lower T-content than human introns. This is expected under THCU, but
not under the mutation hypothesis. However, such a single case should not
be taken as a rejection of the mutation hypothesis, which to me remains a
plausible hypothesis in many other cases.

I conclude that THCU is a sufficient, and perhaps unique, explanation for
the biased codon usage favouring A-ending codons in mammalian mtDNA
(Table 1), and the differences in codon usage between the mitochondrial
genomes and the nuclear genomes (Table 2). My results further suggest that
THCU is a plausible hypothesis in explaining the differences in codon usage
in nuclear genomes among mammalian species of different metabolic rates
(Table 3-4).

5. DISCUSSION

The prevailing hypothesis on the evolution of codon usage suggests that
the pattern of synonymous codon bias is a consequence of adaptation of
codon usage to relative availability of tRNA's in the cellular matrix
(reviewed by Ikemura 1992). A more relaxed hypothesis invokes the mutual
adaptation of codon usage and tRNA availability (Bulmer 1988). According
to this second hypothesis, there are three elements in the system determining
the evolution of codon usage: mutation bias, tRNA availability, and random
genetic drift (Bulmer 1991). Random genetic drift could lead to biased
codon usage and unequal availability of different tRNA's in the absence of
natural selection. If a synonymous codon that drifts to high frequency
happens to be the one recognized by the most abundant tRNA, or if a tRNA
that drifts to high abundance happens to be the one that recognizes the most
frequently used codon, then these genetic drifts would result in increased
translational efficiency and accuracy, and would therefore be favoured by
natural selection. This would ultimately result in the most frequently used
synonymous codon being recognized by the most abundant tRNA's (Gouy
and Gautier 1982; Ikemura 1981; Ikemura 1982; Ikemura 1985; Ikemura
1992; Ikemura and Ozeki 1983). In short, the second hypothesis suggests
that mutation bias, tRNA availability and random genetic drift form a self-
contained system such that the interaction among the three elements is
sufficient to explain the pattern of codon usage.
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The results in this chapter indicate that this second hypothesis is too
restrictive because some features of codon usage, such as the usage of A-
ending codons, depend on factors that are not contained in the system of the
three elements specified in that hypothesis. Specifically, our optimality
model of the transcriptional process predicts that the pattern of synonymous
codon usage should depend on the relative concentration of nucleotides in
the cellular medium. This is consistent with the findings that the
mitochondrial genome has a greater proportion of A-ending codons than the
nuclear genome and that the nuclear genome in organisms with a high
metabolic rate has a greater proportion of A-ending codons than the nuclear
genome in organisms with a low metabolic rate. Thus, a more complete
theory of the evolution of codon usage should consider the relative
availability of ribonucleotides in the cellular matrix.

One potential misunderstanding concerning THCU and its predictions on
biased usage of ATP in transcription is that, because ATP and GTP were
used as energy sources in cellular processes, the use of ATP would tend to
deplete available energy sources. The benefit of using ATP to enhance the
transcription would consequently be offset by the cost of depleting the
available energy sources. This argument arises from a misunderstanding that
CTP and UTP can come free without spending ATP to synthesize them. It is
in fact energetically more efficient to use ATP directly to fill a nucleotide
site than to use ATP to synthesize an alternative NTP and then use that
alternative NTP to fill in the nucleotide site. In other word, using ATP
directly in transcription not only speeds up transcription, it also conserves
available energy sources.

I should admit here that, although predictions from the model appears
consistent with empirical data, the construction of the model itself is not
vigorous because of simplifying assumptions. Protein synthesis is a multi-
step process including initiation of transcription, elongation of the mRNA
chain, initiation of translation, and elongation of the peptide chain. By
assuming that the rate of transcription rate is limiting, we have reduced the
multi-step process to a one-step process, which obviously is a distortion of
the reality. However, the recognition that even a very simple model could
account for a substantial amount of variation in codon (nucleotide) usage
would help to reduce the mystique surrounding the operation of natural
selection on the biochemical systems in the living cell.
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Case Study 3
Translational Efficiency and Codon Usage Bias

1. INTRODUCTION

Synonymous codon usage differs among different genomes (Grantham et
al. 1981; Grantham et al. 1980; Martin 1995; Moriyama and Hartl 1993; Xia
1996), among different genes within the same genome (Gouy and Gautier
1982; Ikemura 1985; Ikemura 1992; Sharp et al. 1988; Sharp and Li 1987;
Sharp and Mosurski 1986), and even among different segments of the same
gene (Akashi 1994). Three hypotheses have been proposed to account for
this variation of synonymous codon usage (or various components of the
variation): the mutation bias hypothesis (Martin 1995), the transcription-
maximization hypothesis (Xia 1996) and translational efficiency hypothesis
(Bulmer 1988; Bulmer 1991; Ikemura 1981; Kimura 1983; Kurland 1987a;
Kurland 1987b; Robinson 1984; Xia 1998a).

Of these three hypotheses, the translational efficiency hypothesis
(hereafter referred to as TEH) is the most general and has received the most
empirical support. In verbal forms, the hypothesis states that there is strong
selection favouring increased rate of protein synthesis and that a coding
strategy that increases the rate of translation initiation and peptide elongation
(and consequently increases the rate of protein synthesis) is favoured by
natural selection. The hypothesis is favoured by three independent lines of
evidence. First, the frequency of codon usage is positively correlated with
tRNA availability (Gouy and Gautier 1982; Ikemura 1981; Ikemura 1982;
Ikemura 1985; Ikemura 1992; Ikemura and Ozeki 1983). Second, the degree
of codon usage bias is related to the level of gene expression, with highly
expressed genes exhibiting greater codon bias than lowly expressed genes
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(Bennetzen and Hall. 1982; Ikemura 1985; Sharp et al. 1988; Sharp and
Devine 1989). Third, mRNA consisting of preferred codons is translated
faster than mRNA artificially modified to contain rare codons (Robinson et
al. 1984;Sorensenetal. 1989).

Many models of TEH have been presented that can be called either
initiation models or elongation models. Initiation models assume that the
initiation of translation is rate-limiting (e.g., Bulmer 1991; Liljenström and
vonHeijne 1987; Xia 1996), whereas elongation models assume that the
elongation of the peptide chain is rate-limiting (Bulmer 1988; Varenne et al.
1984). Empirical data and theoretical considerations suggest that both
initiation and elongation are rate-limiting.

The model presented here is strictly a deterministic elongation model,
because I think that previous elongation models are not well presented and
that expectations are often only vaguely specified. This has resulted in some
confusion. For example, Kimura (1983) assumed that the translational
efficiency is maximized when the proportion of different synonymous
codons matches exactly the proportion of isoaccepting tRNAs. The
assumption is unwarranted, and the translational efficiency, given the perfect
matching, will be shown later to be the same as the presumably less adaptive
scenario when different tRNA species are present in equal amount and codon
usage drifts freely in any direction.

Another reason for presenting the model is to relate amino acid usage to
the availability of tRNA species carrying different amino acids. From an
evolutionary point of view, one would intuitively expect an efficient
translational machinery to have more tRNA coding for more frequently used
amino acids, but this intuition has not been formally established or rejected.

Below I present the elongation model, from which a few specific
predictions concerning mutual adaptation between tRNA content and codon
usage are derived. Also derived is a relationship between tRNA content and
amino acid usage. Empirical data from Escherichia coli were used to test the
predictions.

2. THE ELONGATION MODEL, ITS
PREDICTIONS, AND EMPIRICAL TESTS

Consider the time required to translate a single codon coding for amino
acid i Designate this codon as
where is the number of synonymous codons for Let r be the rate of
aminoacyl-tRNA diffusing to the A site of the ribosome during translation,

be the probability that the arriving aminoacyl-tRNA carries
be the conditional probability that the aminoacyl-tRNA

recognizes the synonymous codon given that the tRNA carries
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for each given i). Let be the time spent in linking the right
amino acid to the elongating protein chain, and be the time spent in
rejecting each wrong aminoacyl-tRNA. Now the total time spent in
translating is:

where the first term on the right-hand side of the equation is the time
needed for an aminoacyl-tRNA carrying the right amino acid and the right
cognate anti-codon to arrive at the A site of the ribosome, and the third term
represents time spent in rejecting all the wrong aminoacyl-tRNA prior to the
arrival of the right aminoacyl-tRNA. Similar formulation can be found in
Varenne et al. (1984) and Bulmer (1988). The total time (T) required to
translate L codons (total elongation time) can be shown to be

where

The term is the frequency of synonymous  for amino acid i in
the mRNA molecule is the number of codons for
amino acid and is the proportion of
synonymous  for amino acid i in the mRNA molecule. Note that is
a property of the mRNA whereas and are properties of the tRNA pool,
with being the proportion of tRNA carrying and being the fraction
of tRNA that recognizes synonymous codon j among all tRNA species that
carry

Our objective is to find the condition (i.e., the relationship among
and that minimizes T. Because and L are not dependent on and

they are treated as constants. Thus, minimizing T in equation (10.2) is
equivalent to minimizing Y. Specifically, we are interested in three
relationships. First, given the relative availability of different tRNA and

find what pattern of codon usage in the mRNA would minimize Y.
Second, given the pattern of codon usage ( find what values for and

would minimize Y. Third, given amino acid usage, find the distribution of
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that would minimize Y. Intuitively, we would expect frequently used
amino acids to correspond to large values, but the exact relationship has
not been derived, let alone tested against empirical evidence.

2.1 Adaptation of Codon Usage to tRNA Content

Suppose that an mRNA molecule specifies N residues of the same amino
acid with n synonymous codons, and that the associated frequency
distribution of synonymous codons is For simplicity, we
assume that there are also n types of tRNA species for the amino acid, with
each type recognizing just one of the n synonymous codons. The proportion
of the n types of tRNA species is Now we have Y (which is the
term to be minimized) below:

First consider what values should take when One might
intuitively think that, to make full use of the equal availability of the n types
of tRNA, should match and should all be equal to l/n. This is false.
When values are equal, Y is equal to (n*N /P) no matter what value
takes as long as values sum to 1. Thus, is a neutral character when
values are all equal. I reiterate this point because some confusion has been
introduced by Kimura (1983) who wrongly assumed that the highest
translational efficiency is achieved when the relative frequencies of
synonymous codons exactly match those of the cognate tRNAs.

When values are not equal, then the smallest Y is achieved when the
codon recognized by the most abundant tRNA becomes fixed, with the
consequent loss of other synonymous codons. To see this more clearly, we
re-write equation (10.3) as follows:

If is the largest of all values, then the first  term (i.e., the one
associated with on the numerator of equation (10.4) is the smallest of all
II terms. It is therefore obvious that minimization of Y in equation (10.4)
requires that equal 1 and that all other values equal zero. This means
that whenever the availability of different tRNA species for an amino



acid is different, the codon usage of this amino acid should evolve towards
increasing the frequency of the synonymous codon that is recognized by the
most abundant cognate tRNA species. The minimum of Y achievable
through adaptation of codon usage to tRNA content is:

where designates the most abundant tRNA species for the amino acid,
reaches its minimum value when which requires not only the
adaptation of codon usage to tRNA content, but also adaptation of tRNA
content to extremely biased codon usage.

For the special case with n = 2, Y in equation (10.3) can be written as

The term within the parenthesis is plotted against and (fig. 1). Two
conclusions can be drawn. First, When values are all equal to l/n (i.e.,
when = 0.5 in fig. 1 for n = 2), then can take any value between 0 and 1
without affecting translational efficiency, and Y is relatively small. We will
call this condition with equal values as the baseline condition. For unequal

values (i.e., for in fig. 1), Y values will be larger than that in the
baseline condition whenever values are smaller than values for
(e.g, when = 0.8 and = 0.9 in fig. 1) or larger than values for < 1/n
(e.g, when = 0.9 and = 0.1, in fig. 1), in which case the reduction in
translational efficiency (i.e., the increase in Y) is outstanding (fig. 1). Y will
be the same as that in the baseline condition when exactly matches
(e.g., when in fig. 1). The baseline condition therefore seems to
guarantee a relatively small Y value over a wide fluctuation of values. Y
will be smaller than the baseline condition only when values are larger
than values for > 1/n (e.g, when = 0.9 and = 0.8 in fig. 1) or
smaller than values for < 1/n (e.g, when =0.1 and = 0.2, in fig. 1).

We have now reached a specific and intuitively appealing prediction, that
codon usage bias should be more extreme than the bias in tRNA content. If

is larger than lln, then should be larger than if is smaller than 1/n,
then should be smaller than If this is not the case, then the translational
efficiency is lower than that for the baseline condition.
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An empirical test of this prediction has several requirements. First, we
need codon families in which a codon will not be recognized by both the
common and the rare tRNA, otherwise would be impossible to calculate
in any meaningful way. Among the 23 codon families (i.e., when we split
each of the six-member codon families for Leu, Ser, and Arg into two), only
six meet this criterion (Table 1). Secondly, we need codon usage of genes
that are highly expressed, otherwise we should not expect any mutual
adaptations between tRNA content and codon usage bias. Ikemura (1992)
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compiled codon usage of presumably highly expressed genes in E. coli (five
genes), which are used to generate Table 1.

For all three species, the values are always larger than the values
(Table 1). This guarantees that the resulting Y is smaller than that in the
baseline condition. The adaptation of codon usage to tRNA content in the
highly expressed genes in the three unicellular species is almost perfect (the
optimal is when = 1), suggesting that the effect of mutation on codon
usage bias must be very weak for these genes. However, if we ignore the
expressivity of the genes and pool the codon usage of all genes in the gene
bank, then most values are smaller than the values (data not shown),
suggesting that, for most genes, the translational efficiency is lower than that
in the baseline condition.
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2.2 Adaptation of tRNA to Codon Usage

When values are fixed (e.g., when codon bias is maintained by
mutation bias), the values that pj should take to minimize Y can be found as
follows. We first re-write Y in equation (10.3):

The condition that minimizes Y is found by taking partial derivatives of Y
with respect to and setting the partial derivatives to zero. This yields:

Expressed in another way, the condition implies:

i.e., the bias in tRNA availability for an amino acid should not be as
dramatic as that in codon usage. In other words, selection driving tRNA
adaptation to codon usage guarantees that tRNA bias will not be as extreme
as codon bias. Results similar to equation (10.9) have been derived before
(Bulmer 1988).

The relationship between p and Q in equation (10.9) can also be written
as where a is a constant. Ikemura (1992) plotted an equivalent
measure of Q versus an equivalent measure of p (fig. 3 in Ikemura 1992) for
a highly expressed gene in E. coli (groEL), and the result confirmed the
predicted quadratic relationship between p and Q.

We should now note that the baseline condition depicted in fig. 1 is not
stable because, with all values equal to values can drift to any value
without affecting translational efficiency (equation (10.3) and fig. 1. When

values differ from 1/n, there will then be selection favouring adaptation of
tRNA content to codon usage (equation (10.9)), which would drive values
away from l /n . Note that this selection pressure will not drive values more
extreme than values (equation (10.9)), otherwise the selection would
result in a less efficient translational machinery. The resulting unequal
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values, in turn, creates selection pressure for codon usage adaptation
(equation (10.5)).

2.3 Evolution of tRNA in Response to Amino Acid Usage

To my knowledge, none of the TEH models linked tRNA availability to
amino acid usage, The 20 amino acids are not used equally in proteins, and
we intuitively would expect those frequently used amino acids to be carried
by more tRNA than those rarely used amino acids. To better visualize the
effect of amino acid usage on Pi , which is the proportion of tRNA species
carrying amino acid i in the total tRNA pool, we write Y in equation (10.2) in
the expanded form:

where Ni is the total number of codons for amino acid i. When codon usage
is perfectly adapted to tRNA availability for each amino acid, which is
approximately true based on empirical data in Table 1, Y becomes:

according to equation (10.5). The minimization of Y requires

where and designate the proportion of tRNA carrying amino acids i and
j, respectively; and and are the number of amino acids i and j,
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respectively. When tRNA concentration for each amino acid is well adapted
to codon usage, all values approach 1 and become nearly equal, so that
equation (10.12) becomes:

Empirical data for testing the above prediction is readily available. The
values can be derived from data in Table 2 in Ikemura (1992) for E. coli.
Ikemura (1992) also compiled the codon usage of 937 E. coli genes, from
which one can derive values in equation (10.13). The 20 pairs of and

values are plotted on fig. 2 for E. coli. The fit is quite remarkable.

Such a seemingly straightforward interpretation, however, has a major
difficulty. The argument requires that all values be either approximately
one (which should hold only for highly expressed genes), or approximately
equal (which we have no reason to expect), so as to cancel each other out.
Only a few loci are deemed highly expressed, yet 937 loci from E. coli were
used for fig. 2. Why should lowly expressed genes contribute to the linear
relationship? The simplifying assumption, that seems unjustified. It is
therefore necessary to work out the relationship between P and N when the
assumption of does not hold.
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I propose the following equation, which is more general than equation
(10.13) and does not require to describe the relationship between P
and N:

If the parameter b is shown to be = 1/2, then equation (10.14) is reduced
to equation (10.13). Given equation (10.14), we have

After some algebraic manipulation, we obtain

where

As expected, the relationship between P and N depends on the magnitude of
Z, which in turn depends on the relationship between and N. If is
independent of N and approaches 1, then Z = 0, and P - which is
equation (10.13). If and N are positively correlated, then Z < 0. If Z lies
within (-1, 0), then P will increase with N at a decreasing rate. If Z = -1, then
there will be no relationship between P and N, which we know to be false from
fig. 2. If Z < -1, then P will decrease with N at a decreasing rate, which we also
know to be false from fig. 2. If and N are negatively correlated, then Z > 0. If
Z is between 0 and 1, then P will increase with N at a decreasing rate. If Z = 1,
then P will increase linearly with N, rather than with the square-root of N as
predicted from equation (10.13). If Z > 1, then P will increase with N at an
increasing rate.

There seems to be a slightly negative relationship between and N for
data from the two prokaryotic species (fig. 3), which is not statistically
significant. Based on the relationship between and N for the two prokaryotic
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species, we expect Z in equations (10.16) and (10.17) to be slightly larger than
0. Consequently, the coefficient b in P = should be slightly larger than 1/2.
The b values that provide the best fit to the data points in fig. 2 are 1.10 (i.e., Z
= 1.20). Equation (10.14), however, does not fit the empirical data significantly
better than equation (10.13).

2.4 Translational Efficiency and Translational Accuracy

Translational accuracy has recently been suggested to be an important
factor related to codon usage bias (Akashi 1994; Bulmer 1991). This
proposal received empirical substantiation from a study of protein-coding
genes in Drosophila that revealed differences in codon usage among
different regions of the same gene. For example, gene regions of greater
amino acid conservation tend to exhibit more dramatic codon usage bias than
do regions of lower amino acid conservation (Akashi 1994).

Translational efficiency and translational accuracy are inextricably
coupled in their effect on codon usage bias. To reduce translational error,
one needs to reduce the number of wrong aminoacyl-tRNA species that have
to be rejected before the arrival of the right aminoacyl-tRNA. Equation
(10.1) shows this number to be
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for each codon translated. To translate an mRNA with L codons, the total
number of wrong aminoacyl-tRNA species that translational machinery
needs to reject is

where Y is exactly the same as the Y in equation (10.2). To minimize the
number of translational errors, we minimize Y, which leads to exactly the
same predictions that we have already attributed to TEH. The rationale for
separating the effect of maximizing translational accuracy on codon usage
bias from that of maximizing translational efficiency is discussed latter.

3. DISCUSSION

3 .1 Validity of the Model

Protein synthesis is a multi-step process including initiation of
transcription, elongation of mRNA chain, initiation of translation, and
elongation of the peptide chain. Opinions differ concerning which step might
be rate-limiting. Xia (1996) argued that the rate of protein synthesis depends
much on the rate of initiation of translation. He reasoned that the rate of
initiation depends on the encountering rate between ribosomes and mRNA,
which in turn depends on the concentration of ribosomes and mRNA. Thus,
patterns of codon usage that increase transcriptional efficiency should
increase mRNA concentration, which in turn would increase the initiation
rate and the rate of protein synthesis. He presented a model predicting that
the most frequently used ribonucleotide at the third codon sites in mRNA
molecules should be the same as the most abundant ribonucleotide in the
cellular matrix where mRNA is transcribed. This prediction is supported by
several lines of evidence. That the initiation step is rate-limiting has also
been suggested by other studies (Bulmer 1991; Liljenström and vonHeijne
1987).

While not denying the possibility that initiation of translation may be
rate-limiting, the model presented here explicitly assumes that the elongation
of the peptide chain is rate-limiting. There is a substantial amount of
empirical evidence supporting this assumption (Bonekamp et al. 1985;
Bonekamp and Jensen 1988; Pedersen 1984; Williams et al. 1988). In
particular, mRNA consisting of preferred codons is translated faster than
mRNA artificially modified to contain rare codons (Robinson et al. 1984;
Sorensen et al. 1989). That elongation is a rate-limiting process has also
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been suggested on the basis of theoretical considerations (Liljenström and
vonHeijne 1987).

Bulmer (1991), however, argued that initiation rather than elongation is
rate-limiting. He reasoned that, for elongation to be rate-limiting, there
should be so many ribosomes that would bind to all free mRNA molecules
as soon as the latter become available for binding. Since ribosomes form the
largest part of the protein translational machinery (and therefore likely to be
costly and time-consuming to make), it would be inefficient to saturate the
system with them. He summarized empirical evidence that seems to suggest
that ribosomes are far from saturating the system. For example, there are an
average of 225 bases per ribosome in a polysome (Ingraham et al. 1983), and
each ribosome covers only about 30 bases (Kozak 1983). This Bulmer
(1991) interprets to mean that it is very rare for more than one ribosome to
compete for the free binding site of the mRNA. Thus, there is no need for the
ribosome to travel down the length of the mRNA in a hurry (i.e., there is
little benefit associated with more efficient elongation.

There are two weaknesses in such arguments. First, Kozak’s (1983) study
does not necessarily mean that a ribosome needs clear only 30 bases to free
the initiation site for the binding of the next ribosome. Secondly, even if the
ribosome needs to move only 30 bases to free the initiation site, there is still
some probability for more than one ribosomes to arrive at the free initiation
site. Only one of the arriving ribosomes would have a chance to bind to the
initiation site, while the rest would have to be turned away. Increased
elongation rate would reduce the occurrence of such events.

In addition to the assumption that elongation is rate-limiting, the model
also assumes that either r (i.e., the rate of aminoacyl-tRNA diffusing to the
A site of the ribosome during translation) is not extremely large, or (i.e.,
the time spent in rejecting each wrong aminoacyl-tRNA) is not negligibly
small. These seem to be reasonable assumptions, although tr might indeed be
very small (Bilgin et al. 1988).

3.2 Relative Importance of Translational Efficiency and
Accuracy on Codon Usage Bias

Although the model of maximizing translational accuracy and that of
maximizing translational efficiency produce the same set of predictions, it is
still possible to separate the effect of maximizing translational accuracy on
codon usage bias from that of maximizing translational efficiency. For
example, a protein gene could have arginine codons in different domains of
different functional importance. Being in the same protein gene, these
arginine codons are subject to the same selection pressure exerted by
maximizing translational efficiency, and consequently should have the same
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codon usage bias according to the model of maximizing translational
efficiency. However, those arginine codons located in the functionally
important domains are subject to greater selection pressure exerted by
maximizing translational accuracy than those located in the functionally
unimportant domains. Consequently, the former codons will be more biased
towards using the optimal codon than the latter. Some preliminary findings
along this line of reasoning have already been reported (Akashi 1994).

The reasoning above leaves one question unanswered. Why is it
necessary to invoke translational efficiency to account for codon usage bias?
Can't we attribute all the codon usage bias to the effect of maximizing
translational accuracy and forget about translational efficiency? The answer
is that the effect of maximizing translational accuracy is insufficient to
account for the observed codon usage bias. For example, highly expressed
genes exhibit greater codon bias than lowly expressed genes, but the former
are not necessarily more conservative than the latter (greater
conservativeness presumably implies greater demand for accuracy). We can
rank protein genes according to their conservativeness, or rank them
according to their expressivity, and find out which ranking explains codon
usage bias better. Preliminary results (unpublished) suggest that the
expressivity is the more important of the two.

It should be noted that the within-gene variation in codon usage bias
found in Drosophila (Akashi 1994) does not seem to be general. For
example, it is not observed in E. coli and S. typhimurium (Hartl et al. 1994).
More empirical studies are needed to assess the effect of maximizing
translational accuracy on codon usage bias.

3.3 How Optimized Are the Translational Machinery?

From our results, we can say that codon usage in those highly expressed
genes are almost as optimal as possible, with the values larger than
values and almost equal to 1. However, for the majority of genes, the
values are smaller than (data not shown), which implies that the
translational efficiency for the majority of the genes is less than in the
seemingly less adaptive scenario when different tRNA species are present in
equal amounts and codon usage drifts freely in any direction.

We should note that selection for codon adaptation to tRNA content
operates on individual genes, whereas selection for the adaptation of tRNA
content to codon usage operates at the genome level. Thus, although
equation (10.5) suggests that the optimal condition is when both the most
abundant tRNA and its cognate codon become fixed, equation (10.9) shows
that selection for tRNA adaptation to codon usage will always lag behind
codon usage bias.
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The most remarkable feature from the model is the prediction relating
amino acid usage to tRNA content which is strongly supported by
empirical evidence (fig. 2). A more extensive study is underway to confirm
the generality of the relationship.
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Evolution of Amino Acid Usage

1. INTRODUCTION

Suppose you know nothing more than the fact that proteins are made of
20 amino acids. Now if someone asks you about the amino acid usage of one
particular protein, say cytochrome-b in human mitochondria, what would be
your response? In the lack of any further information, the best guess is
simply that each amino acid should account for 5% ( = 1/20) of the total
number of amino acids in the protein.

But this guess of 5% is a rather uneducated guess. As you have already
learned quite a bit about the codons and genetic code, it might have occurred
to you that some amino acids are coded by many codons while some others
are coded by few. Take the universal genetic code for example, the amino
acid methionine is coded by a single codon, i.e., AUG, whereas amino acids
arginine and serine are coded by six codons. It therefore seems reasonable to
predict that arginine and serine should be used more frequently than
methionine. In the extreme (although fictitious) case when one amino acid is
coded by all 61 sense codons, then that amino acid would account for 100%
of all amino acids used in the protein and the rest of the 19 amino acid would
all have a frequency of zero. In short, we are predicting a positive correlation
between the frequency of amino acids where i = 1, 2, ..., 20
corresponding to the 20 amino acids) with the number of codons per amino
acid Because would be zero if is zero, the relationship
between and may be represented simply as
You will have a chance to empirically test this prediction and to find out
which amino acids deviate from this rule.
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The prediction above misses some important information. For example,
lycine is coded by only two codons, AAA and AAG, in the universal genetic
code, and we consequently expect the amino acid to be used rarely relative
to those amino acids coded by four or more codons. However, mutation
pressure might favour A and G in some particular genomes, and we may
consequently find AAA and AAG codons quite frequent. This would imply
frequent usage of lycine in spite of the fact that the amino acid is coded by
only two codons.

Predictions in published scientific journals are typically less
straightforward as those shown above. For example, Xia and Li (1998)
postulated that typical amino acids should be used more frequently than
idiosyncratic amino acids. This prediction may not make sense at first sight.
However, once you know what they mean by "typical" and "idiosyncratic",
then the prediction becomes quite comprehensible, or even quite natural.

Some amino acids, such as Leu, are "typical" in that they have a number
of similar alternative amino acids which they can mutate to through a single
nucleotide replacement. Such a single-step replacement is often called
single-step nonsynonymous codon mutation, or SSNCM. Note that "similar"
amino acids mean amino acids that are similar in physico-chemical
properties. When a SSNCM occurs at the amino acid site occupied by these
typical amino acids, there is a large probability that the replacement amino
acid is similar in physico-chemical properties to the original. Such changes
typically have very minor effects on the normal function of the protein. In
contrast, some other amino acids, such as Arg, are idiosyncratic in that they
have few similar alternative amino acids. For such amino acids, almost any
SSNCM is a mutation of a large effect and may disrupt the function of the
protein. If a protein-coding gene contains a large number of typical amino
acids and few idiosyncratic amino acids, then the effect of SSNCM would be
reduced. In other words, the protein would be more reliable, and the gene
coding the protein will therefore be favoured by natural selection against
those that use a lot of idiosyncratic amino acids. This leads to the prediction
that typical amino acids should be used more frequently than idiosyncratic
amino acids. You will also have a chance to test this prediction using
DAMBE.

In contrast to the predictions mentioned above that are rather general,
there are scientific predictions (or hypotheses) that are very specific. One
specific prediction based on the same reasoning as above goes like this.
Suppose that certain sites in a protein require a polar amino acid to maintain
the normal function. Consider Glu and Asp, both of which are polar. When a
SSNCM occurs, Asp has a higher probability (0.56), but Glu a lower
probability (0.44), of being replaced by another polar amino acid (Epstein
1967). If the protein gene uses more Asp codons and fewer Glu codons for
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such sites, the function of the protein would less likely be disrupted by
mutation. It is therefore beneficial for the fictitious protein gene to use more
Asp codons but fewer Glu codons. Are you interested in testing this
prediction by using DAMBE?

There are many predictions that could be proposed concerning amino
acid usage, but we will stop temporarily here to avoid the dreadful
consequence of exhausting your brain and diminishing your interest. Let us
now develop a good appreciation of biased amino acid usage.

2. AMINO ACID USAGE BIAS

Start DAMBE if you have not yet done so. Open a file containing either
amino acid sequences or protein-coding nucleotide sequences. In the latter
case, click Sequence|Work on amino acid sequences to translate the
nucleotide sequences into amino acid sequences. If you do not have your
own sequences, then just open the virus.fas file which contains protein-
coding nucleotide sequences for the hemaglutinin gene from Influenza A
viruses infecting mammalian species. Translate the sequences into amino
acid sequences. Note that if you choose, instead of the universal genetic
code, any of the other 11 genetic codes, then the translation will be all
wrong.

You will be prompted as to where to start translation if the sequences are
already aligned, as is the case for virus.fas. This is necessary because your
sequences may begin with an incomplete codon. For example, the first codon
in a complete protein gene is typically AUG, but your sequences may miss
the first two nucleotides. Consequently, your sequences, written in codon
form, will look like this: G CCC GGA ....... In this case you should
translate from the second nucleotide, i.e., beginning with the first complete
codon CCC, because the first nucleotide, G, is not translatable. If your
sequence is like this: UG CCC GGA ... ..., then you should translate from
the third nucleotide. If you have translated wrong, click Sequence|Work on
codon sequences to revert back to the original nucleotide sequences and re-
do the translation with a different starting site.

If your sequences are not aligned, then it is possible that one sequence
will be AUG CCC GGA ... ..., while another may be G CCC GGA ... ...,
and the third UG CCC GGA ... ..., and so on. DAMBE will not ask you
where to start translation, but instead will try to identify where to start. For
each sequence, DAMBE will carry out translations three times, starting with
first, second or third nucleotide position, respectively. Note that there are
only these three possibilities. The translation that have the fewest "*" (for
stop codon) in the translated sequence will be taken as the best one. A wrong
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translation typically has many "*" embedded in it. An ideal translated
sequence should contain just one terminating "*" at the end.

Now that you have got amino acid sequences in the DAMBE buffer,
click Seq. Analylsis|Amino acid frequency. The familiar dialog box
appears for you to select which sequences you wish to apply the analysis.
Just click the Add All button to apply the analysis to all sequences. Click the
Done button. You will be asked if you wish to plot the frequency of amino
acids versus the number of codons per amino acids Recall
that we have predicted a positive correlation between and So
click Yes to get the graphic output (fig. 1). Is our prediction fulfilled?

We first note a positive correlation between and which
partially confirms our prediction. Second, if we do stick to our prediction
and draw a straight regression line across the (0, 0) origin, we see a number
of points deviating substantially from the line. In particular, four amino acids
(asparagine, glutamine, isoleucine and lycine) have their values much
above the line whereas one amino acid (arginine) has its FreqAA much
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below the line. We will come back latter to see if we can offer a satisfactory
explanation for the five amino acids that have their deviating so
much from the prediction.

In addition to the graphic output, other results are saved in a text file and
wi l l also be displayed in DAMBE's display window. The output is in two
parts. The first (not shown) is a codon-usage table for each of the sequences,
and the second is a summary table after pooling all data together. Only the
summary output is shown below (and plotted in fig. 1):
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The first part of the output shows mainly a table of amino acid
frequencies, designated hereafter as We note that the 20 amino acids
are not used equally. Although this is not really surprising to those of us who
have already compiled amino acid frequencies for a large number of
proteins, very few of us are well versed to explain the variation in
The fourth column shows the number of synonymous codons per amino
acid, referred to as NumCod hereafter. Note that NumCod values depend on
what genetic code you use. The output above is for the elongation factor-
from the nuclear genome of invertebrate species. Note that there is only one
codon coding for methionine (Met). The value would be two if the sequences
are protein-coding genes from mammalian mitochondria. DAMBE
implemented 12 different genetic codes.

We have predicted previously that should be positively correlated
with NumCod. The second part of the output tests whether this prediction is
true by calculating the Pearson correlation coefficient and doing a simple
linear regression of on NumCod. Because we have already predicted
a positive correlation between the two, the test is one-tailed, and is
marginally significant for most of the genes that I have encountered. The
regression typically would account for about 20% of the total variation in
amino acid frequencies. In our particular case, the regression accounted for

30% of the total variation in amino acid frequency, i.e., the total
variation in the column headed by Number.

In the unlikely case that you do not know, the total variation of a variable
in statistics refers to the sum of squared deviations of individual values from
the grand mean. In our case, there are 20 individual values, and the mean is
simply the length of the peptide divided by 20. If we know nothing more
than the mean, then our best predictor of amino acid usage is simply the
mean. In this case the total variation is a measure of our ignorance.

The ignorance about is reduced significantly when we know
NumCod and have established the fact that and NumCod are
positively correlated. We can incorporate NumCod in predicting the value of

The predicted value is also shown in the output under the heading
“Pred.”, and the residual, which is the observed minus the predicted

is shown in the column headed by “Resid.”. The sum of squared
residuals is the remaining variation in that we cannot explain, and is
now the new measure of our ignorance about

A visual display of the relationship between and NumCod shows
one point that is particularly off mark. The point is for arginine, which is
coded by six codons and is expected to have a large value. Note that
the regression line is supposed to go through the (0,0) point because
is necessarily zero if NumCod/AA is zero. We note that increases
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roughly linearly with NumCod, which is what we have expected. But why
does arginine have such a small value?

Do you have an explanation for this pattern? Interestingly, nobody in the
whole world has a ready answer for the reduced amino acid usage for
arginine. If you can think of a good answer, then you are right at the frontier
of molecular evolution.

One may suggest that it is likely that one family of codons may become
evolutionary disadvantageous when used to code for one particular amino
acid, and natural selection would therefore favour the evolution of
alternative codons for the same amino acid. For example, it may be
deleterious to code the amino acid arginine using CGN codons, and natural
selection would therefore favour the evolution of alternative codons such as
AGR for the same amino acid. This hypothesis will hereafter be referred to
as the codon-switching hypothesis. Can we find some corroborative
evidence for this hypothesis?

If the hypothesis is correct, then we should expect very biased codon
usage. We should expect very few CGN codons but relatively abundant
AGR codons. Now use DAMBE to compile a codon usage table to see if this
expectation is correct. Click Sequences|Work on codon sequences to
restore the nucleotide sequences. Then click Seq. Analysis|Codon
frequency. Based on the DAMBE output, can you make a judgement on
whether the expectation is supported?

The results are consistent with the expectation. Of the 30 arginine
residues in the peptide sequences, 20 were coded by the two AGR codons
and only 10 were coded by the four CGN codons.

But why is it not a good idea for the five mammalian species to use CGN
codons to code arginine? If we cannot answer this question, then the codon-
switching hypothesis remains speculative.

One possible explanation to the observation that CGN codons are rarely
used invokes DNA methylation. DNA methylation is a ubiquitous
biochemical process observed in both prokaryotes (Noyer-Weidner and
Trautner 1993) and eukaryotes (Antequera and Bird 1993). In vertebrates,
DNA methylation mainly involves the methylation of C in the CpG
dinucleotide, which greatly elevates the mutation rate of C to T through
spontaneous deamination of the resultant 5-methylcytosine (Barker et al.
1984; Cooper and Krawczak 1989; Cooper and Krawczak 1990; Cooper and
Schmidtke 1984; Cooper and Youssoufian 1988; Ehrlich 1986; Ehrlich et al.
1990; Rideout et al. 1990; Schaaper et al. 1986; Sved and Bird 1990;
Wiebauer et al. 1993). This is the mutation effect mediated by methylation
that reduces the number of CGN codons in vertebrate genomes.

The elevated mutation pressure implies that a gene with many CpG
dinucleotides would be unreliable, especially when the dinucleotide occupies
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the first and second (CGN) or the second and third (NCG) positions of a
codon because a mutation from C in the CpG dinucleotide to T is always
nonsynonymous in such cases. Thus, we expect purifying selection to
minimize the usage of codons with an embedded CpG dinucleotide. This is
the selection effect mediated by methylation that would also reduce the
usage of CGN codons.

We are now in a good position to explain why the value is so
small for arginine (fig. 1). The answer is simply that arginine effectively is
not coded by six codons. It is mainly coded by only two AGR codons, with a
small contribution from the four CGN codons. In short, the ancestral codons
for arginine may be CGN, but CGN codons become unreliable because of
the high mutation rate of CGN codons to TON codons. Natural selection
therefore would favour the coding of arginine by alternative codons, which
resulted in arginine being coded also by AGR codons. Because AGR codons
do not have the problem of high mutation rate of CGN codons, they become
the favoured codons for arginine. Therefore, the NumCod value for arginine
should really be just two codons, AGA and AGO, or slightly more than two
because CGN codons still code a small fraction of arginine. Given a
NumCod value of slightly larger than two, it is not all that extraordinary for
arginine to have a small value.

So far the codon-switching hypothesis seems to be a story well told.
However, it is important to realize that a story well told is not a theory well
established. In fact, the reasoning above embedded many jumps of faith. The
hypothesis is presented mainly for you to identify its weak points as an
exercise to foster critical thinking. Can you present a critical test of the
codon-switching hypothesis?

Let us derive one more prediction based on the hypothesis. If the low use
of CGN codons in the mammalian species is due to DNA methylation, then
we expect a relatively high usage of CGN codons in invertebrate genomes
because DNA methylation is week in invertebrate species. We therefore
expect arginine to be used more frequently in the invertebrate genomes than
in the mammalian species. Can you use DAMBE to test this expectation?

Look at fig. 1 once more. There are four points that are way above the
line, and we have not offered any explanation for why the points should be
where they are. These points are for asparagine, glutamine, isoleucine and
lycine, with the highest point being asparagine. I have searched thoroughly
through literature hoping to find an existing answer for you but have failed.
If you could find the reason for why asparagine should be used so very
frequently, then that is new discovery in science and new knowledge for the
human kind.
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Pattern of Nucleotide Substitutions
The rate ratio parameters in substitution models

1. INTRODUCTION

In previous chapters we have learned that a substitution model has two
categories of parameters, the frequency parameters and the rate ratio
parameters. We have also learned much about the variation in frequency
parameters and the factors that affect the frequency parameters. This chapter
and the next two chapters will cover fundamentals of the rate ratio
parameters. Understanding these chapters will help you better understand the
chapter dealing with genetic distances and phylogenetic analysis in later
chapters.

The DNA in an organism is like a very long book specifying the
development and l ife cycle of the organism. Every time when a cell divides,
the whole "book" is copied, and some copying errors (i.e., mutations) get
incorporated in the new "book". If the mutations occur in a somatic cell, then
the new "book" is destroyed when the organism dies. However, when the
mutations occur in the germ line, then the new "book" has a chance to be
passed on to the next generation. The propensity of the "book" being passed
on to the next generation is defined in population genetics as the fitness,
which obviously depends on the constituent genes in the genome. Whether
the "book" carrying the new mutation will be passed on to the next
generation again is mainly determined by natural selection and random
genetic drift. When a book carrying one particular mutation out-competes all
the alternative books carrying other forms of the gene at the same locus, we
say that the gene is fixed, and the replacement event is then called a
substitution.
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What kind of substitutions is the most likely to happen? At the nucleotide
level, which is the most fundamental level for any mutation, there are 12
possible changes, with four being transitional changes and eight being
transversional changes (Table. 1). Are these 12 different kind of genetic
changes equally likely to happen? Or do they all have different substitution
rates?

There are two categories of variables that affect the number of observed
substitution event. The first category is the nucleotide frequencies. For
example, if DNA sequences are extremely GC-rich, then obviously most
observed substitutions will involve G and C. In other words, the observed
substitution rate depends on nucleotide frequencies. A nucleotide having a
higher frequency than others is more likely to be involved in nucleotide
substitutions, everything else being equal. Nucleotide frequencies are
referred to as frequency parameters in a substitution model and represent the
first category of variables affecting the observed substitution rate. The
frequency parameters are generally represented as and You
have already been introduced to the frequency parameters in the chapter
dealing with nucleotide frequencies. The amino acid frequencies and codon
frequencies that we have compiled from empirical data in previous chapters
represent frequency parameters for amino acid-based and codon-based
substitution models, respectively.

The second category of variables that affect the substitution rate are
typically represented by Greek letters etc., or simply

If, on average, a C changes to a T in 10,000 years, whereas an A changes
to a G in 30,000 years, then is three times greater than In other
words, if we set to 1, then is 3. If  nucleotide frequencies are
equal, we would expect more substitutions than substitutions.
Because is the ratio of the number of substitutions over that  of

substitutions, it is named a rate ratio parameter to reflect this fact. For
this reason, the 12 values in Table 1 will yield 11 rate ratio  parameters
because one of the 12 wil l be set to 1. The number of the  rate ratio
parameters is one fewer than that of the rate parameters.

It should be clear to you now that a substitution model is characterized by
two categories of parameters: the frequency parameters and the rate ratio
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parameters. The full model of nucleotide substitutions has three free
frequency parameters and 11 free rate ratio parameters.

All nucleotide-based models differ from each other only in their
assumptions concerning these two categories of parameters. The Jukes and
Cantor's one-parameter model (Jukes and Cantor 1969) and Kimura's two-
parameter model (Kimura 1980) assume equal frequency parameters,
whereas all the other published models have three frequency parameters.
Jukes and Cantor's model has only one rate parameter, and consequently no
rate ratio parameter. Kimura's two-parameter model, the F84 model
(Felsenstein 1993) and the HKY85 model (Hasegawa et al. 1985) have two
rate parameters, one for transition and one for transversion. These models
consequently have one rate ratio parameter, i.e., the transition/transversion
ratio or κ, to estimate. The TN93 model (Tamura and Nei 1993) has three
rate parameters, one for the transition, one for the  transition,
and one for all transversions. The ratio of transversion is typically set to one,
so that the TN93 model will have two rate ratio parameters designated as
and The REV (Yang 1994) or GTR (general time-reversible) model has
six rate parameters, two for the two kinds of transitions and four for the four
kinds of transversions. If the time-reversibility assumption cannot be met,
then we have 11 (=12 - 1) rate ratio parameters corresponding to the model
underlying the paralinear distance (Lake 1994) and the LogDet distance
(Lockhart et al. 1994).

Given this plethora of substitution models, which one is appropriate for
your sequences? A statistically rigorous approach is to do a likelihood ratio
test for comparing two candidate models. For example, if you suspect that

transitions occur much more frequently than the transitions, or
vise versa, and therefore wish to know if the TN93 model provides
significantly better fit than a simpler model, say, F84, that ignores the rate
heterogeneity between and transitions, then a likelihood ratio
test would help you make the decision. The likelihood ratio test and its
applications will be covered in later chapters.

What you will learn in this chapter is to empirically document a
substitution pattern to help you understand the frequency and the rate ratio
parameters. Upon finishing this paper, you should be able to quickly identify
which substitution model is appropriate for your phylogenetic analysis. Note
that a substitution model is an abstraction of the true substitution pattern. A
substitution pattern can be observed, although in a distorted way because of
multiple hits at the same site. One of the objectives of the chapter is to help
you gain an intuitive appreciation of the frequency parameters and rate ratio
parameters in most substitution models. You will also understand that people
did not present more and more complicated models for no good reason.
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2. USE DAMBE TO DOCUMENT EMPIRICAL
SUBSTITUTION PATTERNS

DAMBE provides two kinds of output for pair-wise nucleotide
differences between sequences, one simple and one detailed. The simple
output includes the number of different nucleotide sites between the two
sequences, the number of nucleotide differences per nucleotide site, and the
Jukes and Cantor’s (1969) distance. This output is implemented for teaching
purposes only, so that students can appreciate the effect of correcting for
multiple hits at the same sites. The detailed output breaks the nucleotide
differences into two kinds of transitions and four kinds of transversions.

2.1 Simple output

Start DAMBE, and open a sequence file (if you have not done so). From
the menu, click Seq. Analysis|Nucleotide Difference|Simple Output. The
standard file Open/Save dialog box appears. Type in the file name for
saving the result, or simply use the default. Then click the Save button. The
file is saved in text format, and a partial sample output (for only two pair-
wise comparisons) is shown below:

Output from pairwise comparisons for sequences in file:
C:\MS\DAMBE\Diverse.fas

N.Diff - the number of nucleotide differences between the two
sequences.

Raw D - N.Diff divided by sequence length.

JC - Jukes and Cantor's distance

N.Diff Raw D JC

XELEF1A1 vs. XELEF1ALA                 3   0.0022    0.0022

XELEF1A1 vs. XLEF1A 47 0.0344 0.0352
XELEF1A1 vs. MMEF1A 215   0.1572    0.1764

XELEF1A1 vs. MUSMS1X 292   0.2135    0.2512

XELEF1A1 vs. XLEF1AB 280    0.2047     0.2390

XELEF1A1 vs. ASEF1A 327 0.2390     0.2878

XELEF1A1 vs. MRTEF2 349   0.2551 0.3118

The output is self-explanatory. The left of the output shows the sequence
pairs, with the number of possible sequence pairs being N*(N-l)/2, where  N
is the number of sequences. For example, if you have 8 sequences, then the
number of possible sequence pairs is 8*(8-l)/2 = 28. One can see from the
output that when pair-wise nucleotide differences are small, Jukes and
Cantor's distance is similar to Raw D, which is simply the percentage
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difference. However, when the differences increase, then the saturation
effect begins to show, and the JC distance, which corrects for multiple hits,
becomes larger than Raw D.

2.2 Detailed Output

2.2.1 The Observed Substitution Pattern

Start DAMBE, and open a sequence file (if you have not done so). From
the menu, click Analysis|Nucleotide Difference|Detailed Output. A dialog
box appears with two lists (Fig. 1). The one on the left has the sequence pairs
that are available for selection. Each number represents one sequence in the
file, with number 1 representing the first sequence in the file, number 2 the
second, number 3 the third, and so on. The one on the right lists sequence
pairs selected for computing pair-wise nucleotide differences between the
two sequences. At this moment, the list on the right is empty.
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The sequence pairs available for selection on the left list depend on what
input file format you use. If your input format is NOT the RST format (the
output file generated by DAMBE when you choose to reconstruct ancestral
sequences by using the maximum likelihood method), then the number of
possible sequence pairs is simply N*(N-l)/2. The substitution patterns
derived from such pair-wise comparisons may introduce biases because the
comparisons are not independent (Felsenstein 1992; Nee et al.  1996; Xia et
al. 1996). For example, if there is one species that has recently experienced a
large number of transitions and few other substitutions, then all pair-
wise comparisons between this species and the other species will each
contribute one data point with a large transition bias.

One way to avoid such a problem of non-independence is to
reconstruct ancestral states of DNA sequences and estimate the number of
substitutions between neighboring nodes on the phylogenetic tree (Gojobori
et al. 1982; Tamura and Nei 1993; Xia 1998b; Xia et al. 1996; Xia and Li
1998). This approach requires a phylogenetic tree for reconstructing
ancestral states of internal nodes. DAMBE uses the codes in the BASEML
program in the PAML (Yang 2000) package for reconstructing ancestral
DNA sequences. The output file includes a tree topology together with DNA
sequences for all terminal taxa and internal nodes (the latter being
reconstructed from sequences for the terminal nodes).

DAMBE can read in the tree topology and all the DNA sequences (for
terminal taxa and the internal nodes) and make pair-wise comparisons
between neighboring nodes along the tree. For a rooted tree with 8 species
(DNA sequences), there are a total of 14 (=8*2 – 2) pair-wise comparisons,
with 8 comparisons between a terminal node and an internal node, and 6
comparisons between internal nodes. These 14 pair-wise comparisons are
independent of each other, in contrast to all possible pair-wise comparisons
which amounts to 28. This topology-based pair-wise comparison has been
used in studying transition bias (Xia et al. 1996), rate heterogeneity over
sites (Xia 1998b), and the relative importance of amino acid properties (Xia
and Li 1998).

The output from DAMBE incorporating the tree topology will be referred
hereafter as the tree-based output, and the output involving all possible pair-
wise comparisons will be referred to as the treeless output. The treeless
output always results from pair-wise comparisons between terminal
sequences, whereas the tree-based output always results from comparisons
between terminal sequences and their immediate ancestors, or between
ancestral sequences.

Regardless of which input file format you use, the selection of sequence
pairs is similar to what you have done with getting nucleotide frequencies.
Once you have finished your selection, click the Done button. After a  few
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seconds, the standard file/open dialog box appears. Type in the file name for
saving the result, or simply use the default. Then click the Save button. The
file is saved in text format, and a partial sample output for a set of elongation
factor sequences (for only one pair-wise comparison between two
chelicerate species) is shown below:

The sample output is produced from DNA sequences of the gene
from chelicerate species. You can see that the output is treeless because the
comparisons are between terminal taxa. The result for each pair-wise
comparison is presented in three parts. The first part lists the observed
number of identical pairs, pairs differing by a transition and pairs differing
by a transversion. The expected numbers, based on nucleotide frequencies
only, is shown below the observed numbers. Nucleotides of high frequencies
are expected to be involved in substitutions more frequently than rare
nucleotides. In the extreme case when a nucleotide is not found in the
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sequences, then obviously it will not be observed in a substitution. In our
data, A and T have the highest frequencies, and substitutions are
expected to occur most frequently, everything else being equal.

Notice that the two types of transitions occur more frequently than
expected, and the four types of transversions all occur less frequently than
expected. This empirical evidence favours substitution models incorporating
the s/v ratio (e.g., F84 and HKY85 models) against simpler models such as
the JC69 and TN84 models.

We further notice that transitions are expected to occur more
frequently than transitions because the frequencies of A and G are
greater than those of C and T. However, the observed pattern is the opposite,
with (i.e., transitions far outnumbers the transitions.
This empirical evidence favours the TN93 model against the simpler F84
and HKY85 models.

There is also heterogeneity among the transversions. For example,
transversions involving G are rare relative to transversions involving A. This
suggests that even the TN93 model may not be realistic enough and we need
to have models that do not assume the same rate for all four kinds of
transversions. Many researchers choose particular substitution models just
because these models happen to be available in the computer program they
use. This is poor practice. One should always make a judicious choice of
substitution models based on empirical evidence. A number of  researchers
believed that the maximum likelihood method would recover the correct
topology even if the underlying model is false. Such a belief is based on
myth rather than reason.

The second part of the output is a summary of substitution patterns in two
matrices, the lower-triangle matrix and a square matrix. These matrices
allow one to quickly identify which substitution is appropriate for the
sequences. For example, if nucleotide frequencies are roughly equal, but the
numbers on either side of the diagonal in the square matrix are not at al
symmetrical, i.e., when the matrix differ greatly from its transverse, then the
assumption of time reversibility may not hold.

A substitution pattern is said to be time-reversible if the probability of
forward mutation equals the backward mutation, i.e., the probability of
observing an transition is the same as observing a transition.
Many substitution models, from the simple Jukes and Cantor’s (1969) one-
parameter model to the complicated REV model (Yang 1994), assume time-
reversibility.

The number of observed nucleotide substitutions is also broken down
into the three codon positions for protein-coding genes, but the output is  not
reproduced here. The reader is expected to read the output and make his own
discoveries. For example, it will be clear that most substitutions occur at  the
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third codon  position, fewer at the first position, and fewest at the second
position.

Because the gene is a protein-coding gene, the most appropriate
substitution model should be codon-based (Goldman and Yang 1994; Muse
and Gaut 1994) rather than nucleotide-based. However, the current
implementation of codon-based model is not quite practical.

The third part of the output is a plot of the number of transitions and
transversions versus Kimura’s two-parameter distance If we take

as a measure of divergence, then both the transitional and transversional
substitutions should increase with with the former increasing faster
than the latter. However, with the increase of divergence time, multiple
substitutions at the same site would occur, and transversions will gradually
outnumber transitions. This is a visual way of detecting substitution
saturation.
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Preamble to the Pattern of Codon Substitution
The default pattern when there is no purifying selection

1. INTRODUCTION

In a previous chapter dealing with codon frequencies, we have developed
basic appreciation of factors affecting codon frequencies. In this chapter and
the one that follows, we study the rate of codon substitution and factors
affecting the rate of codon substitutions. We know that substitutions are
affected by both mutation and selection, and the observed codon usage
pattern and codon substitution pattern are the result of mutation-selection
balance. Before we use DAMBE to study observed patterns of codon
substitutions, it is helpful for us to develop the expected codon substitution
pattern when there is no purifying selection.

You will find that such an attempt will help us to resolve some old
controversies between Kimura (1983, p. 159) and Gillespie (1991, p. 43).
Kimura, being a neutralist, argued that the most frequent nonsynonymous
substitutions were those involving similar amino acids and the substitution
rate would decrease as involved amino acids were more different (fig. 7.1 in
Kimura 1983). This is of course what one would expect from the neutral
theory of molecular evolution, in which positive selection plays a negligible
role in molecular evolution and purifying (negative) selection eliminates
those mutations with major effects. Gillespie, on the other hand, argued that
the most frequent nonsynonymous substitutions were not between the
chemically most similar amino acids, but instead were between a group of
amino acids with a Miyata's distance (Miyata et al. 1979) near one (fig. 1.12
in Gillespie 1991). In short, Kimura found the substitution pattern consistent
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with the effect of purifying selection whereas Gillespie found the evidence
consistent with positive selection.

Both Kimura and Gillespie based their conclusions on a plot of observed
rate of amino acid substitutions versus amino acid dissimilarity. What would
the plot be like if there is no selection at all? There are 196 possible
nonsynonymous codon substitutions involving a single nucleotide
substitution. How many of them involve very similar or very different amino
acids? Is it likely that we will obtain substitution patterns similar to those
documented by Kimura or Gillespie even when there is no selection at all?

2. DEFAULT SUBSTITUTION PATTERNS WITH NO
SELECTION

Start DAMBE and open a sequence file, e.g., invert.rst that comes with
DAMBE. This file contains protein-coding nucleotide sequences of the
elongation factor- gene (EF- ) from seven invertebrate species  as well
as reconstructed ancestral sequences for internal nodes. The file also
contains a topology used for the reconstruction of ancestral sequences. You
will learn how to use DAMBE to reconstruct ancestral sequences in a later
chapter on molecular phylogenetics. The resulting file from such
reconstruction has a .rst file type by default. Such files are referred to as the
RST format in this book.

Click Seq. Analysis|Expected (Freq. unadjusted). This requests
expected codon substitution pattern with respect to amino acid dissimilarity
measured by Grantham's distances. DAMBE will ask you to name a file for
saving the output. Enter a name in the dialog box and click the Save button.
You will also be asked to input a transition/transversion ratio. Just use the
default value of 1. The output, which actually has nothing to do with your
input sequences, is in two parts. Although only Part II is relevant to our
discussion, information contained in Part I might be interesting to you, too.
So let us have a quick look at it.
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The expected pattern of codon substitution tells us that 42.3% of the 196
SSNCS (i.e., single-step nonsynonymous codon substitutions) should fall at
the first codon position, 44.9% at the second, and only 12.8% at the third.
Similarly, we expect 29.6% of SSNCS to be transitions and 70.4% to be
transversions. You wil l learn in the next chapter that the observed SSNCS
differ quite much from this expectation.

The second part of the output, reproduced below, shows the distribution
of the 196 possible SSNCS over Grantham's distances. For example, there
are four SSNCS that have Grantham's distance equal to 5. The third column
is simply the frequency value divided by the total of 196. Note that the total
will be different if you use a different genetic code. For example, there will
be only 190 possible SSNCS for mammalian mitochondrial code.



128 Chapter     13



Preamble to codon substitution    129

DAMBE will ask you if you wish to obtain a plot of the Proportion
versus Grantham's distance. Click Yes to generate the plot (fig. 1). Few of
the 196 possible SSNCS have a large Grantham's distance. In other words,
the genetic code has constrained the codon substitution in such a way that a
single nucleotide mutation will most likely lead to either a synonymous
substitution (in which case Grantham's distance = 0) or to a nonsynonymous
substitution involving two similar amino acids. We should expect to see few
nonsynonymous codon substitutions of large effects even if all 196 SSNCS
occur equally frequently, with no involvement of any selection. It is
unnecessary for Kimura to invoke purifying selection to explain the rarity of
nonsynonymous substitutions of large effects.

We also notice that most of these 196 SSNCS have a Grantham's D near
82, which is equivalent to Miyata's distance of 1. In other words, the plot
produced by Gillespie does not really need to invoke positive selection to
explain.

The relationship between Proportion and  Grantham's D is not adjusted
for codon frequencies. However, the adjustment makes very little difference.
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You can verify that by clicking Seq. Analysis|Expected P123 (Freq.
Adjusted). A sample plot with the expected substitutions adjusted for the
codon frequencies in the input sequences in the invert.rst file is shown in
fig. 2. Note that it conforms even better to Gillespie's selectionist scenario
than fig. 1. Both Kimura and Gillespie did adjust their data according to
amino acid frequencies.
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Factors Affecting Codon Substitutions

1. INTRODUCTION

In previous chapters we developed an empirical appreciation of biased
codon usage and factors affecting codon usage as well as codon substitution.
Also covered in previous chapters are some controversies concerning
nonsynonymous substitution and how an understanding of possible codon
substitutions can help us to have a better appreciation of evolutionary
dynamics of codon sequences. In this chapter we study further the rate of
codon substitution and factors affecting the rate of codon substitutions.
DAMBE features a number of functions that can help us to reveal the
dynamic nature of codons during evolution.

1.1 The Rate of Codon Substitutions and its
Determinants

The likelihood of a codon substitution depends mainly on the difference
between the original codon and the replacement codon. The difference
between two codons depends on two factors. One is the number of codon
positions at which they differ. For example, everything else being equal,
substitutions between codons differing by one codon position is more likely
to occur than between codons differing by three codon positions. Thus, if we
designated ( = 0, 1, 2, 3) as the number of codon positions differing
between codons i and j, then the substitution rate between codons i and j
should be a decreasing function of

Another difference between two codons is reflected in the amino acids
they code for. For example, a codon coding for amino acid phenylalanine
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(e.g., UUU) is more likely to be replaced by a tyrosine codon (e.g., UAU)
than by a serine codon (e.g., UCU) although in both cases the replacement
involves a single nucleotide change. The reason behind this is that
phenylalanine is similar to tyrosine in physico-chemical properties, but very
different from serine codons. It has been experimentally shown that the
replacement of tyrosine by phenylalanine (both having an aromatic ring on
the side chain) at position 2 of oxytocin has little effect on the oxytocic
activity of the peptide (Boissonnas and Guttmann 1960; Jaquenoud and
Boissonnas 1959), but the replacement by serine (lacking the aromatic ring)
reduces the oxytocic activity to an undetectable level (Guttmann and
Boissonnas 1960). Thus, if we designated as the amino acid dissimilarity
between the two amino acids coded for by codons i and j, then the
substitution rate between the two codons should be a decreasing function of

(Clarke 1970; Epstein 1967; Grantham 1974; Kimura 1983, p. 152;
Miyata et al. 1979; Sneath 1966; Xia and Li 1998; Zuckerkand1 and Pauling
1965).

There are two common measures of amino acid dissimilarity, one being
Grantham’s (1974) distance and the other being Miyata's distance (Miyata et
al. 1979). The former is based on three physico-chemical properties of amino
acids: volume, polarity and chemical composition of the side chain; the latter
is based on the first two of the three properties. Both have some undesirable
aspects (Xia and Li 1998) and better measures of amino acid dissimilarity
needs to be developed. Both distances are implemented in DAMBE.

In summary, we learned that the rate of substitution between codons i and
j    is affected by both     and    with   being a decreasing function of
both and

1.2 Models of Codon Substitution

Although it is not difficult to see that      is affected by both       and       it
is difficult to arrive at a good functional relationship between and the two
independent variables. There are two complications. The first is that and

are correlated, which you can immediately verify as follows. Start
DAMBE and open a protein-coding nucleotide sequences. Click Seq.
Analysis|AA distance vs. nuc. sites different. The following result is
generated:

Relationship between amino acid dissimilarity and
the number of codon sites different.

Dg - Grantham's distance
Dm - Miyata's distance
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For the universal genetic code, there are 196 possible codon mutations
involving a single codon sites, 770 involving two, and 777 involving three
codon sites. The mean Grantham's distance is 82.031 for codon replacements
with 90.674 with and 104.560 with Thus, the more
sites by which the two codon differ from each other, the greater the amino
acid dissimilarity. The difference in mean Grantham's distance or mean
Miyata's distance is highly significant (P = 0.0000) among the three groups.

The second complication of incorporating     into the model is that its
observed effect decreases with divergence time. When you compare two
sequences, the number of codon substitutions will be less dependent on
when the two sequences have diverged for a long time. For such sequences,
the number of codon substitutions depends almost entirely on

Two models of codon substitution have been proposed, one incorporating
the effect of (Goldman and Yang 1994) and the other (Muse and Gaut
1994) does not. The former, referred to as the GY94 model, has been
implemented in the PAML package (Yang 2000) for phylogenetic
reconstruction and model testing, and the latter implemented in the program
CODRATES for relative rate tests. The GY94 model has recently been
revised (Yang et al. 1998), and the revised model will be referred to as
YNH98 model.

Codon-based thinking is often not expressed in a model of codon
substitution. For example, all methods that estimate the number of
synonymous and nonsynonymous nucleotide substitutions (Li 1993; Li et al.
1985a; Miyata and Yasunaga 1980; Nei and Gojobori 1986; Perler et al.
1980) used codon as a unit of substitution. These distance measures, at least
for the time being, makes better use of and than the two explicitly
presented codon-based models. For example, two codons differing by two
codon positions can be treated by these methods as two possible
evolutionary pathways.
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A good codon-based model, or codon-based thinking, is potentially better
than a nucleotide-based model for the reason that the latter makes use of
only the information in but ignores the information in Take codons
GAU (coding for Asp) and GGU (coding for Gly) for example. The third
codon position (U) in both codons would be treated as equivalent in a
nucleotide-based model and expected to have the same substitution rate.
However, a substitution in the former is nonsynonymous and occurs
rarely, whereas the same substitution in the latter is synonymous

and occurs relatively frequently.
You might also note that almost all nucleotide-based models assume that

nucleotide substitutions occur independently among sites. In other words,
whether a nucleotide substitution will occur at site i is independent of what
nucleotide is found at site j. This is often not the case. In the example above
involving codons GAU and GGU, whether a substitution will occur
depends much on whether the second position is an A or a G. The
substitution is rare when the second codon position is A, but relatively
frequent when the second codon position is G. This violates the assumption
that nucleotide substitutions occur independently among sites.

A codon-based model is also potentially better than an amino acid-based
model because the latter makes use of only information in but ignores
most of the information in This disadvantage would be particularly
pronounced with recently diverged lineages.

To be fair, nucleotide-based or amino acid-based models also have
advantages over codon-based models. First, they have fewer parameters to
estimate than the codon-based models, and consequently would be expected
to have more robust estimates when sequences are short. Second, the former
require less computation time than the latter. Also, because  and are
positively correlated, the disadvantage I mentioned above is reduced. In
other words, if the information in one of the two variables, i.e.,  and is
incorporated in the model, then the information in the other is at least
partially incorporated.

1.3 The Expected Pattern of Nonsynonymous Codon
Substitutions With No Purifying Selection

DAMBE can help you to describe the observed pattern of codon
substitutions. However, the observed pattern would make little sense if we
do not have some expectations. Let us use an example from our daily life.
When we see a baby lamb, we expect it to have parents, otherwise we would
find ourselves intrigued and wish to come up with some explanations or
theories, e.g, the lamb might have been a clone. The theories will then guide
us to do some experiments, which might prove that the lamb is indeed a
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clone. If we do not have any expectation, then we will be mentally passive
and will not be involved in active learning.

Let us now develop some basic expectations of nonsynonymous codon
substitutions when there is no purifying selection. For illustration, we will
use mammalian mtDNA to begin with. Of the 60 mitochondrial codons,
there are 190 possible nonsynonymous codon pairs in which one codon can
mutate into the other through a single nucleotide substitution, e.g., ACU-
GCU (Reciprocal codon pairs, e.g., ACU-GCU and GCU-ACU, are treated
as the same type of nonsynonymous codon substitutions, otherwise there
would have been 380 possible nonsynonymous codon pairs differing at one
codon position.) These 190 nonsynonymous codon pairs are grouped into
five categories according to whether the nonsynonymous substitution occurs
at the first, second or third codon position, and whether it is a transition or
transversion. The result (Table 1) shows that, when we compare two DNA
sequences and count nonsynonymous codon pairs that differ at one codon
position, we should expect, assuming equal codon usage and equal
probability of nonsynonymous substitutions, 43.2% (=82/190) of the
nonsynonymous codon pairs to differ at the first codon position, 44.2% at
the second codon position, and only 12.6% at the third codon position.
Similarly, we should expect 28.4% of nonsynonymous codon pairs to differ
by a transition, and 71.6% to differ by a transversion (Table 1).

The expected pattern (Table 1) can be directly generated for any of the 12
genetic codes implemented in DAMBE. Click Sequence|Change Sequence
Type to choose appropriate genetic code, and then click Seq.
Analysis|Expected P123 (Freq. unadjusted). You will see Table 1 right in
the display window.



136 Chapter     14

The expected pattern of nonsynonymous codon substitution shown in
Table 1 assumes equal usage of the sense codons. In reality, some codons are
used much more frequently than others. For example, idiosyncratic amino
acids (e.g, Cys, Trp) and their codons are used less frequently than “typical”
amino acids such as Leu and Thr and their codons (Xia and Li 1998). Thus it
seems necessary to adjust for codon usage. Such adjustment, however, only
results in minor differences (Xia 1998b). You can verify this by open a file
containing protein-coding nucleotide sequences and obtain the equivalent of
Table 1 adjusted for codon frequencies by clicking Seq. Analysis|Expected
P123 (Freq. Adjusted).

If there is strong purifying selection, then those nonsynonymous codon
substitutions resulting in replacement of very different amino acids will be
selected against, and only those nonsynonymous codon substitutions
resulting in replacement of very similar amino acids will have a chance to be
fixed and observed.

2. CODON COMPARISON WITH DAMBE

2.1 Tracing evolutionary history

We often see evolutionary information, such as the number of
nonsynonymous substitutions superimposed on a phylogenetic tree (fig. 1).
The values on each branch (fig. 1) is obtained by first constructing ancestral
sequences and then perform pair-wise comparisons between neighboring
nodes along the tree. Why is such branch-specific information important?
One particular way of using the branch-specific information is to correlate
the information, e.g., the number of synonymous or nonsynonymous changes
with phenotypic characters. For example, a neutralist would argue that most
substitutions at the nucleotide or amino acid level are nearly neutral and the
number of changes of synonymous or nonsynonymous substitutions would
have little to do with changes in phenotypic characters. In contrast, a
selectionist would argue that a substantial fraction of substitutions,
especially nonsynonymous substitutions, may have phenotypic
consequences. For example, a large number of nonsynonymous substitutions
along one particular branch may result in a corresponding change in
morphological, physiological or behavioural changes. The comparative
method (Felsenstein 1985c; Felsenstein 1988a; Harvey and Pagel 1991)
allows one to partition the observed variation of any particular phenotypic
character along the branches so that correlation between any particular
phenotypic trait such as developmental symmetry, and any particular genetic
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character such as nonsynonymous substitutions can be calculated and tested
for significance.

Sometimes it is not sufficient to put just a number on each branch of a
tree. One may need to know exactly which kind of nonsynonymous
substitutions have occurred at which position. DAMBE provides a
convenient way for you to generate different kinds of branch-specific
information.

Start DAMBE, and open a protein-coding sequence file, e.g., the
invert.rst file that comes with DAMBE. This file contains protein-coding
nucleotide sequences of the elongation factor-l α gene (EF-       from seven
invertebrate species as well as reconstructed ancestral sequences for internal
nodes. The file also contains a topology used for the reconstruction of
ancestral sequences. You will learn how to use DAMBE to reconstruct
ancestral sequences in a later chapter on molecular phylogenetics. The
resulting file from such reconstruction has a .rst file type by default. Such
files are referred to as RST files in this book.

Click the Seq. Analysis|Codon Difference|Nonsynonymous codon
substitution with AA dissimilarity. A dialog box appears for you to choose
which sequence pairs you wish to perform pair-wise comparisons. The
listbox on the left has the sequence pairs that are available for selection.
Each number represents one sequence in the file, with number 1 representing
the first sequence in the file, number 2 the second, number 3 the third, and so
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on. The listbox on the right lists sequence pairs selected for computing pair-
wise nucleotide differences between the two sequences, and is empty at the
very beginning.

The sequence pairs available for selection on the left listbox depend on
what input file format you use. If your input format is NOT the RST format,
then the number of possible sequence pairs is simply where N is
the number of sequences. The substitution patterns derived from such pair-
wise comparisons may introduce biases because the comparisons are not
independent (Felsenstein 1992; Nee et al. 1996; Xia et al. 1996). For
example, if there is one species that has recently experienced a large number
of transitions and few other substitutions, then all pair-wise

comparisons between this species and the other species will each contribute
one data point with a large transition bias.

One way to avoid such a problem of non-independence is to
reconstruct ancestral states of DNA sequences and estimate the number of
substitutions between neighboring nodes on the phylogenetic tree (Gojobori
et al. 1982; Tamura and Nei 1993; Xia 1998b; Xia et al. 1996; Xia and Li
1998). This approach requires a phylogenetic tree for reconstructing
ancestral states of internal nodes. DAMBE used the codes in the BASEML
program in the PAML (Yang 2000) package for reconstructing ancestral
DNA sequences. The output file includes a tree topology together with DNA
sequences for all terminal taxa and internal nodes (the latter being
reconstructed from sequences for the terminal nodes).

DAMBE can read in the tree topology and all the DNA sequences (for
terminal taxa and the internal nodes) and make pair-wise comparisons
between neighboring nodes along the tree. For a rooted tree with 8 species
(DNA sequences), there are a total of pair-wise comparisons,
with 8 comparisons between terminal nodes and internal nodes, and 6
comparisons between internal nodes. These 14 pair-wise comparisons are
independent of each other, in contrast to all possible pair-wise comparisons
which amounts to 28. This topology-based pair-wise comparison has been
used in studying transition bias in mammalian mitochondrial genes (Xia et
al. 1996), rate heterogeneity over sites (Xia 1998b), and the relative
importance of amino acid properties on protein evolution (Xia and Li 1998).

The output from DAMBE incorporating the tree topology will be referred
hereafter as the tree-based output, and the output involving all possible pair-
wise comparisons will be referred to as the treeless output. The treeless
output always results from pair-wise comparisons between terminal
sequences, whereas tree-based output always results from comparisons
between terminal sequences and their immediate ancestors, or between
ancestral sequences.
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Regardless of which input file format you use, the selection of sequence
pairs is similar to what you have done with getting nucleotide frequencies.
Once you have finished your selection, click the Done button. DAMBE will
compare each sequence pairs codon by codon and display information on
nonsynonymous codon pairs. After a few seconds, the standard file/open
dialog box appears. Type in the file name for saving the result, or simply use
the default. Then click the Save button. The file is saved in text format, and a
partial sample output for a set of elongation factor sequences is shown
below:
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Pair-wise comparisons along the tree are either between internal nodes,
or between an internal node and a terminal node. This information is shown
at the beginning of each pair-wise comparisons. The first column shows the
sequential numbering of codons along the DNA sequences (after deleting
unresolved codons). The second and third columns show which codon pairs
are involved in the substitution, and the fourth and fifth columns show the
corresponding amino acids.

The second and the last columns are, respectively, the Grantham’s and
Miyata's distances between the two amino acids. Grantham’s distance is
scaled to have a mean of 100, so that, if amino acid substitutions are random,
then the mean Grantham’s distance should be roughly 100. The mean of the
Grantham’s distances in the output is significantly smaller than 100 (P <
0.001), by either the parametric t-test or the nonparametric Mann-Whitney’s
test or sign test.

The number of nonsynonymous substitutions is also presented in the
output. This number is what we can superimpose onto a phylogenetic tree
(fig. 1). Don't quit DAMBE yet.

2.2 Summary of codon substitution pattern

While the invert.rst file is still in DAMBE's buffer, click Seq.
Analysis|Codon Difference|Summary output. DAMBE will carry out pair-
wise, codon by codon comparisons and produce a summary of the codon
substitution pattern for each pair of sequences compared. An overall
summary is also generated at the end of the output and is partially
reproduced below:
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The output might look a bit confusing at first, but you will soon find it
quite simple. There are three types of codon pairs from the pair-wise
comparisons: identical (N = 3046), synonymous (N = 713) and
nonsynonymous (N = 234). The details of the 234 nonsynonymous
substitutions can be obtained by using the method introduced in the previous
section. The three digits under DifflD refers to codon positions 1, 2, and 3,
with a "1" meaning different nucleotides and a "0" meaning an identical 
nucleotide. If two codons differ by codon position 1 and 3, DiffID will be
written as 101.

Of  the 713 synonymous codon substitutions, most involve a change at the
third codon position (N = 650). This is because the probability of a
nucleotide substitution at the third codon position being synonymous is by
far the largest compared to a substitution at the first and second codon
position. The probability of a synonymous substitution is in fact zero for
substitutions occurring at the second codon position.

There are two patterns that you can recognize. First, most codon
substitutions are synonymous and, for nonsynonymous codon substitutions,
those resulting in replacement of similar amino acids, with small Grantham’s
distances, occur more frequently than those resulting in replacement of very
different amino acids. For example, among the codon pairs that differ by a
single nucleotide, those differ at the first codon position have occurred most
frequently and also have the smallest Grantham’s distance ( = 49.21) and
Miyata’s distance ( = 0.84). This pattern is also true for codon pairs that
differ at two codon positions, with those differing at the first and third codon
positions occurring most frequently and having the smallest Grantham’s and
Miyata’s distances. Thus, the effect of (the difference in physico-
chemical properties between amino acids), plays a significant part in
determining the rate of codon substitution. Second, most codon substitutions
involve codon pairs differing at one codon position (N = 807), fewer
differing at two codon positions (N = 122), and still fewer differing at all
three positions (N = 18). This illustrates the effect of (the number of
codon positions by which two codons differ), on the rate of substitution.

Of the 234 nonsynonymous substitutions, 131 involve codon pairs
differing at a single codon position. We will have a closer look at these 131
“single-step” nonsynonymous codon substitutions in the next section. Please
continue on.
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2.3 Single-step Nonsynonymous Codon Substitutions

While the invert.rst file is still in DAMBE's buffer, click Seq.
Analysis|Codon difference|One-step nonsyn codon substitution. DAMBE
wil l perform pair-wise comparisons and pick up all those nonsynonymous
substitutions involving a single nucleotide change. The summary output is in
two part, with Part I reproduced below:

Remember that, of the 234 nonsynonymous codon substitutions, 131
involve codon pairs differing at one codon position, which is often termed
SSNCS (for single-step nonsynonymous codon substitution). The output
consists of two parts. Part 1 of the output breaks down these SSNCSs
according to codon positions and whether it is a transition or transversion.
We see that 28 SSNCSs involve a transition at the first codon position, with
a mean Grantham’s distance of 46, forty-two SSNCSs involve a transversion
at the first codon position, with a mean Grantham’s distance of 51.36, and so
on.

These values by themselves make little sense. However, we can compare
these observed pattern of SSNCS with the expected pattern. If DAMBE is
still running and your sequences are still in the buffer, click Seq.
Analysis|Expected (Freq. adjusted). This will generate the expected
pattern of nonsynonymous codon substitutions involving a single nucleotide
change, when there is no purifying selection. The differential codon usage
has already been adjusted for. DAMBE will ask you to input a name for
saving the output. Enter a name in the dialog box and the output will be
saved in text format. The output, with its format similar to the previous
sample output, is partially shown below:
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The expected pattern of codon substitution tells us that 41.5% of the
SSNCSs should fall at the first codon position, 44.8% at the second, and
only 13.7% at the third. The observed SSNCS has 53.4%, 21.4%, and 25.2%
falling at the first, second and third codon positions, respectively. In other
words, there is a surplus of SSNCSs at the first and third codon positions,
and a deficiency of SSNCSs at the second codon position. This deviation
from the expected pattern, tested by a chi-square test, is highly significant (P
= 0.000).

The pattern can be easily explained by examining the mean Grantham's
distance at the three codon positions, which is 62.67, 96.45, and 63.81,
respectively, for the first, second and third codon positions. Nonsynonymous
substitutions at the second codon position apparently involve amino acid
replacements of larger effects than those at the first or the third codon
position. In other words, nonsynonymous substitutions at the second codon
position are subject to stronger purifying selection than those at the first and
third codon positions, which is why we see fewer nonsynonymous
substitutions at the second codon position than expected.

Part II of the output, reproduced below, deserves a closer look. DAMBE
plots the observed frequency of nonsynonymous substitutions (the column
headed by Proportion in the output, designated hereafter as versus
Grantham's distance (fig. 2) which measures amino acid dissimilarity. The
plot shows that nonsynonymous substitutions involving very different amino
acids (i.e., a large Grantham's distance) tend to be rare, which is consistent
with the neutral theory of molecular evolution. However, nonsynonymous
substitutions involving Grantham's distances of 58 and 61 are particularly
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frequent, with the frequencies equal to 0.16 and 0.11, respectively, much
more frequent than those with smaller Grantham's distance. Is this evidence
against the neutral theory of molecular evolution?
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The relationship between the frequency of nonsynonymous substitutions
and amino acid dissimilarity (measured by Grantham's distance) shown in
fig. 2 is very similar to the one in Figure 1.12 in Gillespie (1991). A slightly
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different plot was produced by Kimura (1983) and was interpreted to mean
that nonsynonymous substitutions involving similar amino acids occur more
frequently than those involving different amino acids. This interpretation is
consistent with the neutral theory of molecular evolution. Gillespie,
however, argued that most frequent substitutions were not those involving
most similar amino acids, but those with Miyata's distance (which is another
measure of amino acid dissimilarity and is positively correlated with
Grantham's distance) near 1. This interpretation is similar to what is
suggested in fig. 2, i.e., the most frequent nonsynonymous substitutions are
not those involving the smallest Grantham's D, but those with Grantham's D
near 60. Can we conclude that the result favours Gillespie's interpretation
against Kimura's interpretation?

We have learned in the previous chapter that nonsynonymous
substitutions with different Grantham's distances are not expected to occur
equally frequently, even when there is no purifying or positive selection. If
we compute the expected frequencies of nonsynonymous substitutions
assuming no selection  and subtract  from the observed frequencies
of nonsynonymous substitution then the residuals may be attributed to
the effect of selection.

can be obtained by clicking Seq. Analysis|Expected P123 (Freq.
Adjusted). The last column of the output is Surprisingly, the
relationship between and Grantham's distance (fig. 3) still
supports Gillespie's interpretations, with the most frequent nonsynonymous
substitutions being those with Grantham's distances near 60.
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Case Study 4
Transition bias in mitochondrial genes of pocket gophers

1. INTRODUCTION

Transition bias in nucleotide substitution is a ubiquitous phenomenon in
animal mitochondrial DNA (mtDNA), having been reported in both
vertebrate species (Aquadro and Greenberg 1983; Bechkenbach et al. 1990;
Brown and Simpson 1982; Brown et al. 1982; Edwards and Wilson 1990;
Irwin et al. 1991; Thomas and Beckenbach 1989) and invertebrate species
(DeSalle et al. 1987; Satta et al. 1987; Thomas et al. 1989; Thomas and
Wilson 1991). Although the phenomenon of transition bias is poorly
understood, two contributing factors have been suggested. One is that the
spontaneous mutation rate involving a transitional change is much greater
than that involving a transversional change (Bechkenbach et al. 1990; Brown
et al. 1982; DeSalle et al. 1987; Li et al. 1984). The second is purifying
selection (Li et al. 1985a), and is applicable only to protein-coding genes.
Purifying selection can affect the transition bias because: 1) purifying
selection tolerates synonymous mutations and eliminates nonsynonymous
mutations; and 2) transitional mutations are more likely to be synonymous
than transversional mutations.

The relative contribution of these two factors to the
transition/transversion (s/v) ratio has not been studied in a quantitative way.
We here summarize the joint effect of the two factors on the s/v ratio as
follows:



148 Chapter     15

where and are the mutation rate of transitions and transversions,
respectively, and and are the fixation probability of a transitional
mutation and a transversional mutation, respectively. Thus, transition bias
can arise either from differential mutation pressure favouring transitions
(i.e., a large ratio), or from differential purifying selection against
transversions, which would decrease and consequently increase the
ratio.

At four-fold degenerate sites, both transitions and transversions are
synonymous and may be assumed to be nearly neutral, with where
the subscript 4 denotes four-fold degenerate sites. This leads to

Similarly, if we assume that purifying selection acts roughly equally
against nonsynonymous transitions and nonsynonymous transversions, then

(where the subscript 0 denotes nondegenerate sites), so that

The ratio in equations (15.2) and the ratio in equation (15.3)
offer two independent estimates of the ratio, which measures
mutational contribution to transition bias. Thus, the ratio and the
ratio are expected to be similar because they both reflect the same
ratio. An s/v ratio close to one at four-fold degenerate sites and at
nondegenerate sites would suggest little mutational contribution to transition
bias.

At two-fold degenerate sites,

where the subscript 2 denotes two-fold degenerate sites. Because transitions
are synonymous and transversions are nonsynonymous at two-fold
degenerate sites in animal mitochondrial genes, is expected to be larger
than under neutral theory (Kimura 1983), so that the ratio



Case Study 4 149

should be larger than one for functional genes. This ratio can serve
as a measure of the contribution of purifying selection to transition bias. The
s/v ratio at two-fold degenerate sites is expected to increase with increasing
intensity of purifying selection against nonsynonymous transversions. An s/v
ratio at two-fold degenerate sites similar to that at nondegenerate and four-
fold degenerate sites suggests the absence of purifying selection.

The intensity of purifying selection against nonsynonymous substitutions
can be assessed by the following three ratios:

These three ratios are expected to be the same if we assume that
(i.e., all nonsynonymous mutations are subject to equally

intense purifying selection and have the same probability of fixation regardless
of whether they occur at nondegenerate or two-fold degenerate sites), and

(i.e., all synonymous mutations are nearly neutral and have the
same probability of fixation regardless of whether they occur at two-fold
degenerate or four-fold degenerate sites). These assumptions have never been
critically examined, although they are generally accepted as true when
calculating the rate of synonymous and nonsynonymous substitutions (Li 1993;
Li et al. 1985a; Nei and Gojobori 1986).

It is possible for the first assumption to be violated
because, when a nonsynonymous mutation occurs, the original and the
replacement amino acids could be very similar to each other in physical and
chemical properties, or they could be very different. If nonsynonymous
mutations at two-fold degenerate sites tend to involve amino acid pairs that are
more similar to (or more different from) each other than do nonsynonymous
mutations at nondegenerate sites, then would be larger (or smaller) than
either so that the ratio would be smaller (or larger) than
the other two ratios. This could bias estimates of the rate of synonymous and
nonsynonymous substitutions.
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The three ratios in equations (15.5)-(15.7) can be used to study
differential purifying selection acting on different genes in the same genome.
The three ratios can all be considered as measures of the strength of
purifying selection, with stronger purifying selection being correlated with
larger ratios.

There are at least two more reasons for a detailed study of the relative
contribution of mutation and purifying selection to transition bias. First, if
purifying selection is a dominant factor shaping the rate of nucleotide
substitution, then about 72% of the nucleotide sites (i.e., the proportion of
nonsynonymous sites) are constrained. Such a large proportion of
constrained sites would bring into question the concept of the molecular
clock, because the presence of such a clock would now depend largely on
the constancy of purifying selection. At present, there is little evidence that
purifying selection is constant over geological time.

An understanding of the relative contribution of mutation and purifying
selection to transition bias would also help us to choose phylogenetic method
for systematic analysis. For example, certain computer programs such as
DNAML and DNADIST in the PHYLIP package (Felsenstein 1993) include
a correction for transition bias by allowing the user to input a single s/v ratio.
Such implementation would be adequate if mutation is the dominant factor
shaping the transition bias, but would be insufficient if there is strong
purifying selection generating great heterogeneity in the s/v ratio at
nondegenerate, two-fold degenerate, and four-fold degenerate sites. For
nuclear genes, this heterogeneity appears to be small, with s/v ratios equal to

at two-fold degenerate sites and at nondegenerate and four-fold
degenerate sites (Li et al. 1985a). How great the heterogeneity is in
mitochondrial genes is unknown. Considering that the ratio of synonymous
to nonsynonymous substitutions is much greater in mitochondrial genes than
in nuclear genes (Thomas and Beckenbach 1989), we suspect that the effect
of purifying selection is greater in mitochondrial genes than in nuclear
genes, which would lead to greater heterogeneity in the s/v ratio at
nondegenerate, two-fold degenerate, and four-fold degenerate sites.

In this case study, we will investigate the relative contribution of
mutation and purifying selection to transition bias by using mtDNA
sequence data for the cytochrome-b gene (cyt-b) in 15 species of pocket
gophers (Rodentia: Geomyidae). The published study (Xia et al. 1996) also
includes the cytochrome oxidase subunit I (COI) gene. The results from the
two genes are similar and I choose only one of them to save space. We ask
the following questions: (1) Is the s/v ratio at nondegenerate sites similar to
that at four-fold degenerate sites as expected? (2) Is the s/v ratio at two-fold
degenerate sites greater than that at four-fold degenerate and nondegenerate
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sites? (3) Are the three ratios in equations (15.5)-(15.7) similar to each
other?

The original paper, which includes both the COI and the cyt-b genes, also
asked two additional questions: 1) Are the three ratios larger for the COI
gene than for the cyt-b gene? and 2) Has COI experienced stronger purifying
selection than cyt-b in the evolution of the 15 species of pocket gophers?
Interested reader may consult the original paper for answers to these
questions.

2. GET SEQUENCE DATA

We study mtDNA from the cyt-b gene in 15 species of pocket gopher
representing six genera. These sequences (402 bp) have been deposited in
GenBank with accession numbers of L11900, L11902, L11906 and L38465-
L38476. It is easy to get the DNA sequences once we have GenBank
accession numbers. Make sure that your computer is connected to internet
either by a network card, or by a modem via PPP or SLIP. Start DAMBE
and click File Read sequences from GenBank. A dialog box appears (fig.
1). Type in the accession numbers separated by a comma into the text box,
choose FASTA format in the dropdown box, and click the Retrieve button.
The reason for using the FASTA format is that the retrieval can be much
faster because sequences in the FASTA format do not contain detailed
sequence description seen in the GenBank format.
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Once DAMBE has retrieved sequences, and if sequences are not aligned,
you will be asked whether to align the sequences or not. If you click Yes,
then DAMBE will align the nucleotide sequences by using ClustalW.
However, because the nucleotide sequences that we have retrieved are from
protein-coding genes, it is better to first translate the nucleotide sequences
into amino acid sequences, align the amino acid sequences, and then align
the nucleotide sequences against the aligned amino acid sequences. This
procedure is described in detail in the chapter dealing with sequence
alignment. Save the aligned sequences to a file.

3. DATA ANALYSIS

Published estimates of the s/v ratio are typically based on pair-wide
comparisons. For example, with 15 DNA sequences from pocket gopher
species, we could make 105 pair-wise comparisons and report the average.
However, there are two major disadvantages with this type of pair-wise
comparisons in studying transition bias. First, the estimates are not
statistically independent. For example, if there is one species that has
recently experienced a large number of transitions and few transversions,
then all 14 pair-wise comparisons between this species and the other 14
species will each contribute one data point with a large transition bias.
Second, one has to assume that the nondegenerate, two-fold degenerate, and
four-fold degenerate sites have remained nondegenerate, two-fold
degenerate, and four-fold degenerate throughout the entire evolutionary
history of the species studied. This is a tenuous assumption because the three
categories of sites could potentially change into each other (i.e., a
nondegenerate site could become a two-fold degenerate site, which in turn
could become a four-fold degenerate site). One way to avoid these problems
is to reconstruct ancestral states of DNA sequences and estimate the number
of transitions and transversions between neighbouring nodes on the
phylogenetic tree. Thus, first of all, we need a tree.

3.1 Phylogeny reconstruction

We need to do two types of phylogenetic reconstruction. The first is to
find the best tree, and the second is to use the best tree to reconstruct
ancestral sequences. Both are rather complicated processes and you should
get ready for a rough ride.
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3.1.1 Finding the best tree

We have not yet dealt with the conceptual issues of phylogenetic
reconstruction. However, you have already leaned how to produce a tree in
the case study dealing with Elongation Factor- It is good for you to have
more exposure to phylogenetic methods implemented in DAMBE at this
point, in spite of the fact that you have not yet been formally introduced to
molecular phylogenetics. This will help you appreciate the great potential of
applying phylogenetic methods. For the time being, just remember that there
are three major categories of phylogenetic reconstruction: the distance
method, the maximum parsimony method, and the maximum likelihood
method. What we are going to do now is to use the maximum parsimony
method to reconstruct a tree, and then use this tree to reconstruct ancestral
states using the maximum likelihood method.

If DAMBE is still active, and if the aligned sequences are still in
DAMBE's buffer, then just click Phylogenetics|Maximum
parsimony|DNAMP. A dialog box appears (fig. 2) for you to choose
options used in the maximum parsimony reconstruction. Use one of the two
Thomomys species as the outgroup and leave everything else untouched.
Click the Go! button to do a phylogenetic reconstruction using the
parsimony criterion.

DAMBE will find three most parsimonious trees for the cyt-b gene. You
will be asked to save trees to a file, with the file extension .nhm, which
stands for multiple trees in PHYLIP format. DAMBE's convention is to use
the file extension .dnd for tree files with just a single tree, but .nhm for tree
files with multiple trees. The equally parsimonious trees will be plotted on
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the screen. You may just close the tree window after viewing it, although it
is harmless to click some menu items to do some exploration of tree
manipulation.

It is troublesome to have multiple trees that are equally good
(parsimonious), because now you do not know how to proceed. You need
just one tree for reconstructing ancestral sequences and for pair-wise
comparisons between neighboring nodes along the tree, but now you are
presented with several trees. Which tree should you choose?

One way to proceed is to use the maximum likelihood method to evaluate
these three most parsimonious trees and see which one has the largest
likelihood. Click Phylogenetics|Maximum likelihood|Nucleotide
sequences. A dialog box appears for you to choose options (fig. 3). Note that
the default Run mode is Search for best tree. Click the dropdown arrow of
the Run Mode combo box and choose User tree. This is the option that we
can use to evaluate relative statistical support of alternative hypotheses.

Click the Go! button and wait for a few minutes. You will be asked if
you wish to evaluate relative statistical support. Click Yes. Wait for another
minute or two, and the result will be displayed in DAMBE's display window.
The following is at the end of the output:



Case Study 4 155

The output might appear confusing to you at this moment because we
have not yet covered any statistical test of phylogenetic hypotheses. For the
time being, just note that Tree 1 is the best tree and will be used for
phylogenetic reconstruction of ancestral sequences. Also note that the best
tree is not significantly better than the other two alternative trees.

It is always a good practice to have a look at the trees before carrying out
further analysis. In the display window, find Tree #1 and its text
representation, shown in bold below. Select the tree so that it will be
highlighted, and click Edit|Copy.  Then click Phylogenetics|Paste tree into 

window (fig. 4). The tree makes sense to me, so we will save it to a tree file
for reconstructing ancestral sequences, which requires a file with a single
tree. Click Tree|Save tree for future viewing, and a standard File/Save
dialog box appears. Type in cytb-anc.dnd as a file name. The file type .dnd
is short for dendrogram and is DAMBE's choice for files with a single tree.

An alternative of saving the tree is to simply select the tree in the output
above, so that the bolded text will be highlighted in the display window.
Now click File|Save display buffer. DAMBE will notice that you have
selected a tree and will pop up a File/Save dialog box to save the selected
tree. If there is only one tree is selected, then the default file type is .dnd. If
consecutive trees are selected, then the default file type is .nhm.

tree display panel, and the tree will be displayed in DAMBE's tree-viewing
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3.1.2 Reconstructing ancestral sequences

We wil l now use the saved tree, named cytb-anc.dnd, to reconstruct
ancestral sequences using the maximum likelihood method. Click
Phylogenetics|Maximum likelihood|Nucleotide sequences. A dialog box
appears. Click the Run mode dropdown menu and change the default to
User tree. Check the Get ancestral sequences checkbox (fig. 5). Finally,
click the Go! button to begin reconstruction, which will take quite a long
while. If you wish to use the computer for other purposes, such as word
processing using Microsoft WORD, remember to open WORD before
clicking the Go! button. You cannot open another program once the
reconstruction process is initiated.
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Once the reconstruction process is finished, you will be prompted to save
the reconstructed file. The reconstructed ancestral sequences, together with
the original sequences and the tree topology used for reconstruction, are
saved in what I call the RST format earmarked in DAMBE by the .rst file
extension. All the sequences and the tree are now ready for you to do pair-
wise comparisons between neighboring nodes along the tree. Note that the
ancestral species are named Node#i, where i is a number. If you have N
sequences, then i will start from N+l.

3.2 Pair-wise comparisons between neighboring nodes

Recall that our objective is to obtain the transition/transversion (s/v) ratio
at the nondegenerate, two-fold degenerate, and four-fold degenerate sites in
equations(15.1)-(15.7). This is essentially a codon-based analysis, with the
counting procedure detailed in Li et al. (1985a) and Li (1993). Click Seq.
Analysis|Codon differences|Li93 detail. You will be asked to let DAMBE
carry out site-wise deletion of unresolved codons. This is necessary to carry
out the codon-based analysis, so click Yes, otherwise the operation will be
aborted. A dialog box (fig. 6) with two lists appears for you to select
sequence pairs for analysis. Note that the sequence pairs shown in the left
listbox are not all possible pairs, but instead are pairs of neighboring nodes
along the phylogenetic tree. Click the Add all button, and then the Go!
button.
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You will be prompted for a file name to save the result. Just type in any
file name and click the Save button. The result will be saved and a partial
output for a single pair comparison is reproduced below:
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Estimated synonymous and nonsynonymous substitutions
according to the Li93 method are shown as Ks and Ka,
together with their respective standard error.

The i-fold in the output with three categories 0, 2 and 4 designates the
nondegenerate, two-fold degenerate and four-fold degenerate sites. Num.
Sites shows the actual counted sites averaged between the two sequences.
Ns, Nv, A(i) and B(i) have already been explained in the output. We are
interested only in the estimated number of transitions and transversions at
the nondegenerate, two-fold degenerate and four-fold degenerate sites, i.e.,
A(0), A(2), A(4) and B(0), B(2) and B(4), which have been shown in bold
above. These estimates were summarized in Table 1.
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There are altogether 28 such pair-wise comparisons along the
phylogenetic tree, each taking up one data line in Table 1. Note that the
substitution rate is high at the four-fold degenerate sites, and low at the
nondegenerate sites.

The maximum likelihood estimate of the s/v ratio based on the data in
Table 1 is

where N is the number of branches, and and are the estimated number of
transitions and transversions, respectively, between two neighbouring nodes
of the ith branch. For example, the s/v ratio at two-fold degenerate sites is

4. RESULTS

The s/v ratio at nondegenerate sites is similar to that at four-fold
degenerate sites for the cyt-b gene (Table 2), which is consistent with
expectations based on equations (15.2)-(15.3). That is, both are estimates of
the same parameter, i.e., mutation bias The s/v ratio at two-fold
degenerate sites is much greater (Table 2), suggesting that nucleotide
substitution at the two-fold degenerate sites is constrained by strong
purifying selection against transversions, which are nonsynonymous at these
sites.
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The high rate of nucleotide substitutions at the four-fold degenerate sites
for the cyt-b genes (Table 1-2) indicates substitutional saturation. Because
substitutional saturation eventually leads to a reduction of available
information for estimating the number of transitions and transversions, the
s/v ratio for the four-fold degenerate sites based on all pair-wise comparisons
between neighbouring nodes may be a biased estimate. To obtain a less
biased estimate of the s/v ratio for the four-fold degenerate sites, we need
data with negligible substitutional saturation (i.e., recently diverged taxa)
and without mutual statistical dependence among data points. For this
reason, you may select a subset of pair-wise comparisons involving more
closely related species. The resulting s/v ratio is expected to be greater
and closer to that observed at the nondegenerate sites (Table 1), where little
substitutional saturation should have occurred. Try it.

Our results show that the contribution of mutation to the s/v ratio
is relatively small, and clearly cannot explain the much larger s/v ratio
observed at the two-fold degenerate sites (Table 1 and Fig. 2). Given that the

ratio estimated from the four-fold degenerate and nondegenerate sites
is about two, the ratio should be for cyt-b to account for the
observed s/v ratio at the two-fold degenerate sites according to equation (15.4)
and Table 1-2. Because transitions are synonymous and transversions
nonsynonymous at two-fold degenerate sites, the observed transition bias at
two-fold degenerate sites is attributable to purifying selection acting against
amino acid substitutions.

Three ratios in equations (15.5)-(15.7) are estimates of the intensity of
purifying selection. has already been calculated as 20, given that the

ratio is around 2. The ratio is also around 20 because the
ratio is 41.8 from data in Table 2. The ratio, however, is only

about 15, which seems much smaller than the other two ratios. Do you have an
explanation for this difference?

One possible explanation is simply substitution saturation. There are a lot of
transversions occurring at the four-fold degenerate sites (Table 1-2). An
increase in transversions will necessarily lead to a reduction in observed
number of transitions. For example, suppose that two sequences (Seq 1 and
Seq2) originally have a “homologous” nucleotide site occupied by A. In Seql,
a transition occurs at this site, changing A to G, which is followed by a
transversion, changing G to T. When we compare Seql and Seq2 at this
particular site, we see A on Seq2 and T on Seql. So we score a transversion,
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but miss the previous transition. If a subsequent transition changes the T
to C at this site of Seql, then we will observe A on Seq2 (the original
nucleotide) and C on Seql (the nucleotide after three changes). So we will still
score a transversion, in spite of the fact that two transitions have also occurred
at this site. In short, increasing number of transversions will result in a decrease
in observed transitions.

At the four-fold degenerate sites, many transversions have occurred, with
the sum of transversions being 1.6596 (Table 2), much greater than the
corresponding values at the nondegenerate and two-fold degenerate sites. It is
therefore not surprising that the ratio, when estimated from
the ratio, should be smaller than the ratio or the

ratio because is severely underestimated due to the large number
of transversions that have occurred at the four-fold degenerate sites.

5. DISCUSSION

Our results suggest that transition bias in protein-coding sequences of
mtDNA is mainly caused by strong purifying selection acting against
transversions at two-fold degenerate sites. However, differential mutation
pressure also may have contributed to the transition bias. The s/v ratio at
nondegenerate and four-fold degenerate sites is approximately 2 (Table 1),
which suggests a higher spontaneous rate of transitional mutations relative to
transversional mutations in these species of pocket gophers. Whether our
conclusions are generally applicable requires further empirical studies.

The s/v ratio at two-fold degenerate sites in the two mitochondrial genes
studied is much greater (= 40) than that reported for mammalian nuclear
genes, where the s/v ratio at these sites is about 4 (Li et al. 1985a). However,
the s/v ratios at nondegenerate and four-fold degenerate sites for our
mitochondrial genes (about 2) are comparable to those for nuclear genes (Li
et al. 1985a). This suggests that the mutational contribution to transition bias
is similar between nuclear DNA and mtDNA, and that the dramatic
difference in the s/v ratio at the two-fold degenerate sites between
mitochondrial genes and nuclear genes is attributable to much stronger
purifying selection against nonsynonymous mutations in mitochondrial DNA
than in nuclear DNA. This is corroborated by our result that the
and ratios are also much greater for the mitochondrial gene than for
the nuclear genes.

The dramatic heterogeneity in the s/v ratio among nondegenerate, two-
fold degenerate and four-fold degenerate sites shown in the cyt-b gene
(Tables 1) argues strongly against the common practice of lumping all
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transitions and all transversions together to obtain an overall s/v ratio. Such a
ratio is of little meaning, and it obscures important biological information.

A substitutional process is characterized by the rate of transition and the
rate of transversion, and it is evident that substitutional processes at
nondegenerate, two-fold degenerate, and four-fold degenerate sites differ.
For example, the substitutional process at nondegenerate sites differs from
that at two-fold degenerate sites mainly in the rate of transitional
substitution, and it differs from that at four-fold degenerate sites in the rate
of both transitional and transversional substitutions. Finally, the process at
two-fold degenerate sites differs from that at four-fold degenerate sites in the
rate of transversional substitution. Thus, the overall process of nucleotide
substitution in protein-coding sequences is much more complex than is
assumed in current computer programs used for phylogenetic analysis. To
reduce this heterogeneity in nucleotide substitution at nondegenerate, two-
fold degenerate, and four-fold degenerate sites, one should either use the
amino acid-based maximum likelihood method (e.g., Kishino et al. 1990) for
phylogenetic reconstruction, or use the codon-based maximum likelihood
method (Goldman and Yang 1994).
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Substitution Pattern in Amino Acid Sequences

DAMBE offers two ways to look at the substitution pattern of amino acid
sequences. One is more suitable for sequences in the RST format, which
contains the sequences from extant OTUs, a phylogenetic tree, and the
ancestral sequences reconstructed from the extant sequences based on the
phylogenetic tree. Pair-wise sequence comparisons are made only between
neighboring nodes along the tree. The other output is more appropriate for
all other sequence formats without a tree structure and ancestral sequences,
and the output is an empirical substitution matrix from all pair-wise
comparisons.

1. SUBSTITUTION PATTERN FROM SEQUENCES
IN RST FORMAT

Start DAMBE and open a file containing amino acid sequences and
reconstructed ancestral sequences. If you do not have such a file, then just
open the invert.rst file that comes with DAMBE and translate the nucleotide
sequences into amino acid sequences by click Sequences|Work on amino
acid sequence. Now click Seq. Analysis|Amino Acid Difference. A dialog
box (fig. 1) will appear for you to specify which sequence pairs you wish to
study. Note that the invert.rst file contains seven original sequences,
labelled as 1 to 7, and five reconstructed ancestral sequences, labelled 8 to
12. Each sequence pair in the left listbox represents a pair of neighboring
nodes on the phylogenetic tree. Typically you would want to study all these
sequences pairs, so just click the Add all bottom to move all the sequence
pairs to the right. There are two option buttons for you to specify output
format, either in column format or matrix format. The latter is meaningful
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only for sequences not in the RST format. The default is the column format
when the input file is in RST format, and you should leave it as is.

Click the Go! button. A standard File/Save dialog box will appear for
you to enter a file name for saving the output. The column output is in two
parts, and is partially reproduced below:

Part I:

Output from pairwise comparisons for sequences in file:
D:\MS\DAMBE\inv7.RST

Dg - Grantham's distance
F(obs) - Observed number of substitutions
F(exp) - Expected number of substitutions based on amino acid

frequencies only

AA1 AA2 F(obs) Dg

(node#8 vs. node#9)

Gln Asp 1 61
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Lys Gln 1 53
Ser Arg 1 109
Ser Pro 1 73
Thr Ala 1 58
Val Leu 1 32

(node#8 vs. Che90052)

Arg Ala 1 111
Asp Asn 1 23
Gln Ala 1 91

Part II:
Pooled output:

AA1 AA2 Dg F(obs) F(exp) Fobs-Fexp

Arg Ala 111 2 1.53 0.47
Asn Ala 110 6 1.57 4.43
Asn Arg   85        0    1.01 -1.01
Asp Ala  126   4 1.67 2.33
Asp Arg   96   0    1.11 -1.11

Val Pro 68 0 1.78 -1.78
Val Ser 123 2 1.56 0.44
Val Thr 69 2 1.80 0.20
Val Trp 88 0 1.13 -1.13
Val Tyr 55 0 1.31 -1.31

The first part consists of detailed information on amino acid substitution
for individual pair-wise comparisons, e.g., the two ancestral sequences, node
#8 and  node #9, differ by six amino acid sites. Grantham’s (1974) distance is
also listed. Most amino acid substitutions should be between similar amino
acids with small Grantham’s distances.

The second part presents pooled results from all individual pair-wise
comparisons. The neutral theory of molecular evolution expects the
substitution rate to decrease with increasing amino acid dissimilarity. If
Grantham’s distance is a good measure of amino acid dissimilarity, then the
rate of substitution should decrease with increasing Grantham’s distance.
One might therefore be eager to see a plot of F(obs) versus Grantham’s
distance. However, such a plot may be misleading because there is no
adjustment for amino acid frequencies. For example, the amino acid pair
with the smallest Grantham’s distance ( = 5) is between leucine and

......

......



168 Chapter      16

isoleucine. If the amino acid sequences do not have leucine or isoleucine,
then obviously there will be no substitution between leucine or isoleucine,
and the number of observed substitutions for Grantham’s distance equal to
five will be zero. This might mislead you to think that substitutions between
the most similar amino acids are very unlikely.

The column headed by F(exp) lists the expected number of substitutions
based on amino acid frequencies only. If  there is no leucine and isoleucine in
the sequences, then F(exp) will be zero. If there are many leucine and
isoleucine residues in the sequences, then F(exp) will be large. The column
headed by Fobs. - Fexp. is the difference between the observed and the
expected number of substitutions. If Grantham’s distance is small, then the
difference should large, otherwise the difference will be small or negative. A
plot of (Fobs - Fexp) versus Grantham’s distance is shown in fig. 2.

Note that most substitutions are between similar amino acids (i.e., with a
small Grantham’s distance between them) and few are between very
different amino acids (fig. 2). Kimura (1983) and Gillespie (Gillespie 1991)
have each produced a similar plot, but offered different interpretations.
Kimura claimed that this is consistent with the neutral theory of molecular
evolution which predicted that most substitutions should be neutral and few
should have a large effect (i.e., a large Grantham’s distance). Gillespie,
however, claimed that most frequent substitutions are not between the most
similar amino acids, but between those that have a Miyata’s distance (Miyata
et al. 1979) near 1 (which roughly correspond to Grantham’s distance near
70-80). With the huge amount of data available now in molecular databases,



Pattern of Amino Acid Substitution 169

it should now be easy to discriminate between these two alternative
interpretations.

2. SUBSTITUTION PATTERN FROM ALL PAIR-
WISE COMPARISONS

If your input file is not in RST format, then the default output is the
matrix output rather than the column output as shown in fig. 1. To see how it
looks like, just open a file with amino acid sequences. If you do not have
such a file, then just open the invert.fas file that comes with DAMBE, and
translate the nucleotide sequences into amino acid sequences by click
Sequences|Work on amino acid sequence. Now click Seq.
Analysis|Amino Acid Difference. A dialog box (fig. 1) appears. Note that
the listbox on the left side now lists all possible pair-wise comparisons. Also
note that the default output is now Matrix output rather than Column
output. Click the Add all button to move all sequence pairs to the right.

Now click the Go! button. You will again be asked to enter a file name
for saving the result, which is partially displayed below:

Output from pairwise comparisons for sequences in file:
D:\MS\DAMBE\Invert5.FAS

(Chelicerl vs. Branchipod)

Ala Arg Asn Asp ......
Ala 20

Arg 1 13
Asn 1 1 11
Asp 1 0 1 16
Cys 1 0 0 0 5
Gin 0 0 1 2 0 22
Glu 0 0 0 1 0 2 6

This output allows you to quickly identify which amino acid has been
involved in substitutions most frequently. However, the information is much
more limited than the column output. This function is mainly for
documenting empirical substitution patterns when you have a lot of amino
acid sequences.
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A Statistical Digression

1. INTRODUCTION

Although this book is intended for readers with little mathematical or
statistical background, it is important at this point for the reader to gain some
familiarity with some basic concepts of statistics such as probability
distribution, statistical estimation and hypothesis testing, in order to better
appreciate subsequent chapters. You are assumed to know some basic
calculus such as how to take derivatives or partial derivatives. Those who are
already familiar with probability distributions and statistical estimation can
skip this chapter.

We will review two probability distributions that you might have already
been familiar with, the binomial distribution and the multinomial
distribution, and use them to introduce the maximum likelihood method.
Several additional probability distributions (i.e., the Poisson, the negative
binomial and the gamma) for modelling the frequency distribution of
substitutions over sites will be introduced in later chapters.

The maximum likelihood method has been used extensively for
parameter estimation in molecular data analysis, and the likelihood ratio test
features prominently in discriminating between alternative substitution
models. It is beneficial to understand the fundamental rationale of the
maximum likelihood method and to get familiar with the relevant
terminology.
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2. TWO DISCRETE PROBABILITY
DISTRIBUTIONS

2.1 The Binomial Distribution and the Goodness-of-fit
test.

Probability distributions model the frequency distribution of various
events from statistical experiments. An event is the simplest outcome in a
statistical experiment such as tossing a coin. The coin-tossing experiment
has only two simplest outcomes, head or tail. A statistical experiment, or
trial, with only two possible outcomes is called a Bernoulli trial, and an
experiment consisting of a series of independent and identical Bernoulli
trials is call a Bernoulli process. Strictly speaking, a Bernoulli process
consists of n independent and identical dichotomous trials, where p is the
probability of one outcome (typically designated as “success”) on a given
trial and remains constant from trial to trial. The restriction that p remains
constant implies that the Bernoulli process is stationary. In comparative
sequence analysis, a substitution model is said to be stationary if the
probability of a character state, e.g., a nucleotide A or an amino acid glycine,
changing into another remains constant during the evolutionary history. All
substitution models, except for those underlying the paralinear (Lake 1994)
and the LogDet (Lockhart et al. 1994) distances, share the stationarity
assumption.

A Bernoulli process is characterized by two parameters, the number of
trials (n) and the probability of success in each trial (p). The probability of
failure is often designated as Note that the labelling of one of the
two dichotomous outcomes as “success” and the other outcome as “failure”
does not have any implication on their desirability.

If you throw the fair coin only once, then there are only two possible
outcomes, and the probability distribution is simply 0.5 for success and 0.5
for failure. If you throw the coin twice and record the outcome, then there
are three possible outcomes. Designate head as H and tail as T, the three
outcomes are HH, HT and TT, with the associated probability distribution
having three values, 0.25, 0.5 and 0.25, respectively. These are the
probabilities of having 2, 1 and 0 heads (successes) in the Bernoulli process
consisting of two Bernoulli trials. Note that the probabilities are obtained by
the expansion of

The probability of observing exactly r successes out of n independent and
identical Bernoulli trials is
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where R is a random variable representing the number of successes in n trials
from a Bernoulli process. Note that this term is one of the terms from the
expansion of

If n = 2 and p = 0.5, then

The mean and the variance of the binomial distribution are easy to derive.
In statistics, we use E(x) to designate the expected value of x such as the
mean of x. If we take a single Bernoulli trial, then P(l) = p and P(0) = 1- p,
and we have

For n independent Bernoulli trials, the mean of the binomial distribution
is the sum of the means of the individual Bernoulli trials, and the variance is
similarly the sum of variances of individual Bernoulli trials, i.e.,

Let us now introduce a simple goodness-of-fit test. Suppose a fish
population in a very large lake with a 1:1 sex ratio. If we take a random
sample of six fish, the probability of getting 0, 1 , 2 , ..., 6 males in the
sample, according to equation (17.1), is shown in the second column of
Table 1.
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We can test whether the random variable, i.e., the number of males in the
sample, really follows the binomial distribution by taking multiple samples
of six each. Suppose we have taken 100 such samples and the frequency
distribution of the number of samples containing various number of males
are shown in the last column of Table 1.

Note that the total number of fish sampled is 600 and the total number of
males in the sample happens to be exactly 300. So our assumption of equal
sex ratio appears to be valid. However, the assumption of binomial
distribution clearly does not hold. Two many samples have roughly equal
number of males and females and two few have extreme sex ratios in
comparison with what we would expect from a binomial distribution (Table
2). Whether the deviation of the observed values from the expected values is
statistically significant is tested by a chi-square goodness-of-fit test:

With seven groups and the assumption of equal numbers of the two
sexes, the test has six degrees of freedom. If we have not assumed an equal
sex ratio, but instead would estimate the proportion of males from the
sample data, then one more degree of freedom will be lost so that the test
will have only five degrees of freedom. The resulting P is 0.0000, so we
reject the null hypothesis and conclude that our random variable, i.e., the
number of males in the sample, does not follow the binomial distribution.

2.2 The Multinomial Distribution

The multinomial distribution is a generalization of the binomial
distribution. Consider a nucleotide sequence completely randomized by
mutation. We now sample this nucleotide sequence site by site. In contrast to
the coin-tossing or fish-sampling experiment where there are only two
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possible outcomes, now we have four outcomes represented by A, C, G, T.
Suppose that, at each site, the probabilities of getting A, C, G, or T are

and respectively, and these probabilities do not change from site to
site. If we sample n nucleotide sites, then the probability of getting of
nucleotide A, of nucleotide C, of nucleotide G and n4 of nucleotide T,
where is given by

Note that the right-hand term results from the expansion of
This example is one special case of the so-called multinomial

distribution in which the number of outcomes may be any value larger than
two.

3. THE SIMPLEST PRESENTATION OF THE
MAXIMUM LIKELIHOOD METHOD

The maximum likelihood method is one of the methods for parameter
estimation. The random variable whose parameters are to be estimated is
assumed to follow an explicit probability model. In the section on the
binomial distribution, we have learned a random variable which is the
number of successes in a random sample. We know that the parameter p is
an important parameter in a binomial distribution. How to derive a
maximum likelihood estimate of p and its variance?

Suppose we wish to estimate the proportion of males of a fish population
in a large lake. If we sample one fish randomly, then the sampling
constitutes one Bernoulli trial. If we take 20 fish sequentially and randomly,
and get 12 male fish, what is a maximum likelihood estimate of the
proportion of males in the population and the variance of the proportion?

You may readily answer that the proportion of males is simply p = 12/20
= 0.6, and the variance is Var(p) = pq/n = 0.6*0.4/20. The two estimates you
have just offered happen to be maximum likelihood estimates of the two
parameters. Let us see how they are derived by the maximum likelihood
method.

We first need to have a likelihood function which is the probability
density of this particular sampling outcome:
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The principle of maximum likelihood requires us to choose as our
estimate the value of p that maximizes the likelihood value. To facilitate this
maximization process, we first take the natural logarithm of the likelihood
function, take its derivative with respect to p and set it to zero. Solving the
resulting equation gives us the maximum likelihood estimate of p:

The likelihood estimate of the variance of p is equal to

which is equal to 0.6(1 -0.6)/20 = pq/n, i.e., the variance of p for the binomial
distribution that you have already suggested previously.

Suppose we sample another 16 fish and found 10 to be males. Then the
likelihood function is

You can demonstrate that the maximum likelihood estimate of p from the
two samples is
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It might seem that we have done much calculation just to derive
something that you already know. However, there are two points that I wish
to make. First, an appreciation of the derivation above may help you derive
your own maximum likelihood estimators of unknown parameters, or at least
help you to understand maximum likelihood estimators derived by others.
Second, we see that the maximum likelihood method does not incorporate
any prior knowledge. If we get 20 fish with no female, the maximum
likelihood method will lead us to p = 1, which we know to be wrong based
on our biological knowledge, i.e., a population cannot be made of all males.
This is where the Bayesian approach is more preferable.

4. BIAS IN THE MAXIMUM LIKELIHOOD
METHOD

The maximum likelihood estimate can be biased, which can be
demonstrated by a random variable following the normal distribution whose
probability density function is determined by the mean and the variance

Suppose we take a random sample of size n from the population,
what is the likelihood estimate of the mean and variance of the variable

x?
The likelihood function is:
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Take the partial derivative of lnL with respect to set it to zero and
solve the resulting equation for we obtain our estimate of (designated by

)as

We can also take the partial derivative of lnL with respect with set it
to zero and solve the resulting equation for which gives us a biased
estimate (designated by of

The unbiased estimate should have the denominator n replaced by (n - 1).
However, if n is very large, then the bias is negligible. In other words, the s
in equation (17.17) converges to the unbiased estimate asymptotically as n
approaches infinity.

5. EXERCISE

Given the relationship in equation (17.7) for the multinomial distribution,
prove that is a maximum likelihood estimate of If we take
another m sites and find the observed frequencies of A, C, G, T to be

respectively, what is the maximum likelihood estimate of with the
data of two samples?
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Theoretical Background of Genetic Distances

1. INTRODUCTION

Genetic distances are measures of the genetic differences between
individuals, species or higher taxa. Consequently, the most frequent
application of genetic distances is in phylogenetic reconstruction by using
one of the distance methods, such as the unweighted pair-group method with
arithmetic mean (UPGMA), the neighbor-joining (Saitou and Nei 1987), or
the more complicated Fitch-Margoliash method (Fitch and Margoliash
1967). Genetic distances are also used in conservation biology because
genetic uniqueness is a major criterion for species conservation. For
example, the closest relatives of the giant panda are species in the bear
family, yet the giant panda has a large genetic distance between itself and all
those bear species. The giant panda is therefore not only an endangered, but
also genetically unique species, and should consequently be given high
priority in its conservation.

Genetic distances can be estimated by using the following kinds of data:
(1) nucleotide sequences which include both non-protein-coding sequences
and protein-coding sequences or codon sequences, (2) amino acid sequences
and (3) allele frequencies. Different genetic distances are based on different
substitution patterns of the molecular sequences or genes concerned.

DAMBE can compute genetic distances by using nucleotide, amino acid
or codon sequences as well as allele frequency data, and the resulting
distance matrix can be used directly in phylogenetic reconstruction using
various distance methods implemented in DAMBE.

Different measures of genetic distances assume different models of
nucleotide, amino acid or allele substitutions in the population. This chapter
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provides an elementary treatment of conceptual issues underlying these
genetic distances.

2. GENETIC DISTANCES FROM NUCLEOTIDE
SEQUENCES

Genetic distances based on nucleotide sequences are computed after you
have read in a nucleotide sequence file and then clicked Sequence
Analysis|Nucleotide Difference|Detailed Output. Six kinds of distances
are generated: the Jukes and Cantor’s (1969) one-parameter distance
Kimura’s (1980) two-parameter distance Tajima and Nei’s (1984)
distance the distance based on the F84 model (Felsenstein 1993),
Tamura and Nei’s (1993) distance, and Lake’s (1994) paralinear distance

For the F84 and TN93 models, the distances based on the gamma-
distributed substitution rates are also computed for phylogenetic analysis
using distance methods.

These estimates of genetic distances have a few common assumptions:
(1) the substitutions occur independently in different lineages; (2)
substitutions occur independently among sites; (3) the process of substitution
is described by a time-homogeneous Markov process, and (4) except for

the process of substitution is stationary. In other words, the
frequencies of nucleotides have remained constant over the time period
covered by the data. JC60 and K80 models also assume equal nucleotide
frequencies.

A substitution model typically has two categories of parameters for
describing a substitution pattern (Kumar et al. 1993; Li 1997, p. 67; Yang
2000), i.e., the rate ratio parameters (often symbolized by  etc.) and
the frequency parameters, i.e., and It is important to realize at
the very beginning that the validity of a genetic distance depends much on
how close its underlying model of substitutions approximates reality. So it
may be helpful to spend just a bit more time to have a closer look at those
assumptions of substitution models.

The first assumption, that substitutions occur independently in different
lineages, is the least problematic, and is expected to be true excluding the
following two cases. First, two different lineages may come to interbreed in
a reticulate speciation event. Second, horizontal transfer of genes happens
which is typically mediated by viral agents. Most people would agree that
these two events are so rare in evolution that we can generally ignore their
effect.
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The second assumption, that substitutions occur independently among
sites, is obviously not true. Take two codons, GAT and GGT, for example.
Both codons end with a T. Whether a substitution would occur
depends much on whether the second position is an A or a G. The
substitution is rare when the second codon position is A because a
mutation in the GAT codon is nonsynonymous, but relatively frequent when
the second codon position is G because such a mutation in a GGT
codon is synonymous. This violates the assumption that nucleotide
substitutions occur independently among sites. One can easily come up with
many other examples in which the assumption does not hold.

The third assumption that the process of substitution is described by a
time-homogeneous Markov process is also unlikely to be true. The recent
proposal of punctuated equilibrium based on fossil records suggests that
evolution occurs very sporadically, rather than continuously. Limited
molecular evidence also favour episodic evolution (Gillespie 1991).

The fourth assumption, that the process of substitution is stationary, is
also problematic. For example, there are GC-rich and AT-rich isochores in
vertebrate genomes, which are presumably maintained by differential
mutation pressure, with GC-rich isochores having GC-biased mutation and
AT-rich isochores having AT-biased mutations. When a gene originally
located in a GC-rich isochore gets relocated to an AT-rich isochore, then we
expect directional GC to AT mutations so that the relocated gene will
eventually become AT-rich. This substitution process, which leads to a
decrease of the frequencies of C and G and an increase in the frequencies of
A and T, is clearly not stationary.

2.1 JC69 and TN84 distances

Jukes and Cantor's (1969) model assumes independent nucleotide
substitutions at all sites with equal probability. Whether a base changes is
independent of its identity, and when it changes there is an equal probability
of ending up with each of  the other three bases.

A maximum likelihood estimator for the Jukes and Cantor’s distance is

where p is assumed to be equal to the observed proportion of nucleotide
differences between the two sequences. The large-sample variance of is
given in Kimura and Ohta (1972) in the following form:
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where L is the length of the nucleotide sequences. Notice that all genetic
distances here, except for Lake’s paralinear distance, is expressed as the
number of nucleotide substitutions per site, and is therefore independent of
sequence length. The variance decreases with the increase in sequence
length, as our intuition would have told us.

When nucleotide sequences have diverged so much that they have
reached full substitution saturation, then p is expected to be 0.75, and  is
infinite and cannot be represented in computer or in output. Whenever a
genetic distance is too large to be coded by the computer, it is coded 9 and
its variance is coded 0 in DAMBE. Note that is expressed as the number
of substitutions per site, and is highly unlikely to reach a value as large as 9.

Jukes and Cantor’s distance performs better in phylogenetic
reconstruction than distances based on more complicated models when the
nucleotide sequences are short (Zharkikh 1994). This is understandable
because the JC model has the smallest number of parameters to estimate
among all substitution models. The variance should consequently be smaller
if  the JC model is in fact the correct model of nucleotide substitution.

The JC69 distance assumes equal equilibrium frequencies of the four
nucleotides, which is often not true. Tajima and Nei (1984) proposed a
method that does not require this assumption. Their genetic distance and its
large-sample variance are

where
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where is the proportion of pairs of nucleotides i and j between the two
orthologous DNA sequences, and is the equilibrium frequency of the ith
nucleotide (i = 1, 2, 3, 4 corresponding to A, G, T, C).

Although is based on the equal input model in which the rate of
substitution of a base to any other bases is assumed to be the same,
regardless of the original nucleotide, the distance gives good estimates of the
number of nucleotide substitutions for a variety of other substitution models
(Nei 1987).

2.2 Kimura’s two parameter distance

Kimura’s (1980) distance is based on his two-parameter model, which
was proposed to take into account the recognized fact that transitions and
transversions occur at rather different rates, with the former occurring
significantly more frequently than the latter. In protein-coding genes, this
difference in substitution rate between transitional and transversional
substitutions is caused mainly by transitions being mostly synonymous and
transversions mostly nonsynonymous at the third codon positions (Xia et al.
1996).

Another cause of the transition bias is DNA methylation, which greatly
elevates the transition. Each transition in one strand also leads to
an transition in the opposite strand, with the net effect of a much
elevated rate of transitional mutations relative to that of transversional
mutations.

The two-parameter model is symmetric and consequently necessitates an
equal equilibrium frequencies of the four nucleotides. If we designate P as
the proportion of transitional differences and Q the proportion of
transversional differences between the two sequences, Kimura’s distance and
its sampling variance are expressed as:
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where

With the increase of divergence time between the two sequences, P and
Q would increase to approach 0.25 and 0.5, respectively. Because of
stochastic effect, Q could occasionally be equal to, or even greater than, 0.5,
and (2P + Q) could occasionally be equal to, or greater than, 1. Under such
rare situations, is infinite and is coded as 9, and its variance coded as 0
in DAMBE.

2.3 F84 distance

The F84 distance is based on the nucleotide substitution model
implemented in DNAML since 1984 (PHYLIP Version 2.6). It is based on
the following substitution matrix with the four nucleotides arranged in the
order of T, C, A, G:
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where and The element represents the
rate of substitution from nucleotide i to j. The diagonals are specified by
the mathematical requirement that row sums of Q are zero. Note that the
model has three frequency parameters and one rate ratio parameter.
Designate the observed transitions and transversions as P and Q,
respectively, the F84 distance is calculated according to the following
formula:

2.4 TN93 distance

The TN93 distance is based on the nucleotide substitution model
proposed to accommodate heterogeneity between the two kinds of
transitions, i.e., and (Tamura and Nei 1993). Empirical data
suggest that transitions occur more frequently than   transitions,
which we have already encountered when counting pair-wise nucleotide
substitutions in a previous chapter dealing with the pattern of nucleotide
substitutions. These two rates of transitional substitutions are represented as

and below:
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Note that and are estimated as ratios of the transitional substitution
rates over the transversional substitution rate, with the latter being set to 1.
So the TN93 model has two rate ratio parameters. Designate the observed
proportions of and transitions as and and the observed
transversions as Q, then the TN93 distance is equal to

2.5 Lake’s paralinear distance

Lake's (1994) paralinear distance is based on one of the most complicated
model of nucleotide substitution. Let be the number of sites where the
nucleotide is i in the first sequence and j in the second sequence and let J be
the determinant defined by
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Lake’s paralinear distance can now be expressed as

where

with being the frequency of nucleotide N in sequence i (i = 1 and 2).
Lake’s (1994) paralinear distance has three main advantages. First, it is

additive. Second, it is general and can accommodate all heterogeneity in
substitution rates among nucleotides. Third, it is presumably applicable in
situations in which nucleotide frequencies change over time. The distance,
however, also has two disadvantages. First, it is not explicitly expressed as
the number of nucleotide substitutions per nucleotide site. Second, the
distance is not always defined for two nucleotide sequences because J in
equation (18.20) could be equal or even smaller than zero. Such inapplicable
cases occur more frequently with Lake’s distance than with other genetic
distances implemented in DAMBE (Zharkikh 1994).

3. DISTANCES BASED ON CODON SEQUENCES

All distances from the previous section can also be computed for codon
sequences because codon sequences are nucleotide sequences after all.
However, all distances in the previous section are derived from nucleotide-
based substitution models, which are inherently awkward in describing
substitution patterns in protein-coding genes for the following reason. The
substitution rate at nucleotide sites of a protein-coding gene depends not
only on whether the substitution is a transition or transversion and whether
the site is located in a functionally important segment or not, but also
depends on codon-specific properties, such as which codon position the site
is at, whether the substitution is synonymous or nonsynonymous, and how
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similar the two coded amino acids are to each other when the substitution is
nonsynonymous. (Xia 1998b; Yang 1996b). In short, a more realistic
codon-based model is needed to handle the complexity of substitutions
involving codons.

A good substitution model should incorporate two categories of variables
that affect the rate of substitution. The first category is referred to as
frequency parameters. For example, if nucleotide sequences are extremely
GC rich, then almost all substitutions we observe will be
transversions. For codon substitutions, we need consider not only nucleotide
frequencies, but also codon frequencies. Take the universal genetic code for
example, in the extreme case when an ancestral protein is made of entirely of
methionine (coded by AUG only), then any nucleotide substitution will lead
to a nonsynonymous substitution. If we ignore codon frequencies, we may
conclude, based on the observation that nonsynonymous substitutions far
outweigh synonymous substitutions, that the sequences are under strong
positive selection. Such conclusions have in fact been made numerous times
in literature without any reference to codon frequencies.

The second category of parameters are rate parameters or rate ratio
parameters (because we can estimate only the relative rate but not the
absolute rate). The most important factor determining the rate parameter of
codon substitution is how much the amino acid coded by the new codon
differ from the amino acid coded by the original codon. If the substitution is
synonymous, then the difference is zero. If the substitution is
nonsynonymous, then the substitution rate depends much on the similarity in
physico-chemical properties of the two amino acids involved.

There are two categories of methods that calculate synonymous and
nonsynonymous substitution rates while taking into consideration amino
acid dissimilarities. The first is what I call the empirical counting approach,
and the second is the model-based maximum likelihood approach.

3.1 The empirical counting approach

Five methods (Li 1993; Li et al. 1985b; Miyata and Yasunaga 1980; Nei
and Gojobori 1986; Perler et al. 1980) belong to this category. In general,
they all involve counting the number of synonymous and nonsynonymous
sites, and synonymous and nonsynonymous nucleotide substitutions from
codon by codon comparisons. The methods differ in two perhaps minor
aspects. First, some methods (Nei and Gojobori 1986; Perler et al. 1980)
give an equal weight to different codon substitution pathways. Let me
explain what a pathway is. When we have two codons differing at a single
position, e.g., AAA and AAG, then there is only one simplest pathway for
one codon to change into the other. When two codons differ by more than
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one position, e.g., TTT and GTA, then we have two simplest pathways (Nei
1987, p.75):

Pathway I:
Pathway II:

Pathway I involves one synonymous substitution and one
nonsynonymous substitution, whereas Pathway II involves two
nonsynonymous substitutions. The question is whether we should consider
these two pathways equally likely or not. Methods that treat different
pathways as equally likely (Nei and Gojobori 1986; Perler et al. 1980) are
called unweighted pathway methods, otherwise they are called weighted
pathway methods (Li 1993; Li et al. 1985b; Miyata and Yasunaga 1980).

As we know that nonsynonymous substitutions are much less likely to
happen than synonymous substitutions, weighted pathway methods seem to
be more reasonable. However, the difference in the resulting estimates is
rather small because in many cases alternative pathways are similar. Take
codons AAA and ACG for example. We have two simplest pathways:

Pathway I: AAA (Lys) ACA (Thr) ACG (Thr)
Pathway II: AAA (Lys) AAG (Lys) ACG (Thr)

Both pathways involve one synonymous substitution and one
nonsynonymous substitution between lysine and threonine. It is therefore
quite reasonable to give an equal weight to the two pathways.

Another difference between the methods is the correction for multiple
hits. Some (e.g., Nei and Gojobori 1986) uses the Jukes-Cantor one-
parameter model to correct for multiple hits, whereas others (e.g., Li 1993)
uses Kimura’s two-parameter model. The method by Li et al. (1993) is
implemented in DAMBE.

One should be aware that Kimura’s two-parameter model cannot be used
in all situations for correcting for multiple hits. When Kimura's two
parameter correction is not applicable, the JC69 correction is applied in
DAMBE. There are two situations when Kimura's two-parameter correction
is not applicable: (1) when in which case there is no justification (no
need) for Kimura's two-parameter method, and (2) when When
substitution saturation is so severe that p reaches 0.75, then even JC69
correction is inapplicable. DAMBE will inform you of the problem, and the
incalculable distance will be set to be 1.2 times the largest calculable
distance in the matrix.

As I mentioned before, a good codon-based method should consider both
the frequency parameters and the rate ratio parameters. All the empirical
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counting methods that I have mentioned ignore the frequency parameters,
i.e., they do not adjust for biased nucleotide frequencies or codon
frequencies. If you recall, both the JC69 model and the K80 model used in
these empirical counting methods do not take into account frequency
parameters, and the TN84 model (Tajima and Nei 1984) is the simplest
model that incorporates frequency parameters (nucleotide frequencies but
not codon frequencies). In previous chapters, we have learned that
nucleotide usage and codon usage are both typically biased. The unequal
nucleotide and codon frequencies may well bias the estimate of synonymous
and nonsynonymous substitutions. Some progress has been made to remedy
this problem (Ina 1995; Moriyama and Powell 1997).

3.2 Codon-based maximum likelihood method

Two codon-based models (Goldman and Yang 1994; Muse and Gaut
1994) have been proposed and implemented in phylogenetic analysis by
maximum likelihood. They can potentially be used for estimating
synonymous and nonsynonymous substitution rates. One model (Muse and
Gaut 1994) is restrictive in two ways. First, it does not have separate rate
parameters for transitions and transversions. Second, it assumes that
nonsynonymous substitutions occur equally likely. For example, two very
different nonsynonymous substitutions, one involving
(resulting in with a Grantham’s distance = 23 between the two
amino acids) and the other involving (resulting in
respectively, with Grantham’s distance = 180), were considered by the
model to have the same substitution rate.

This assumption is known to be false. Amino acid substitutions occur
more frequently between similar amino acids than between dissimilar ones
(Clarke 1970; Epstein 1967; Grantham 1974; Kimura 1983, p. 152;
Miyata et al. 1979; Sneath 1966; Xia and Li 1998; Zuckerkandl and
Pauling 1965). This has been verified empirically in previous chapters
dealing with codon and amino acid substitution. A codon substitution model
that ignores this relationship is not a realistic model.

The other codon-based model (Goldman and Yang 1994), commonly
referred to as the GY94 model, accommodates potentially different
substitution rates among different amino acid replacements by using
dissimilarity measures between amino acids. This model does not fit
empirical codon substitution data well, and has subsequently been modified
into a more general geometric relationship (Yang et al. 1998) which I will
referred to as the YRH98 model.

The YRH98 model uses dissimilarity indices between amino acids to
accommodate the rate heterogeneity among different kinds of amino acid



Genetic Distances 191

substitutions. In this aspect it is the same as the GY94 model. There are
currently two amino acid dissimilarity indices in use, Grantham’s distance
(Grantham 1974) and Miyata’s distance (Miyata et al. 1979). The GY94
model used Grantham's distance, whereas Miyata's distance was claimed to
fit codon substitution data better than Grantham’s distance for
mammalian mitochondrial DNA (Yang et al. 1998). The YRH98
model consequently uses Miyata's distance as a measure of amino acid
dissimilarity.

There is a major problem with the existing codon-based model (including
the most recent YRH 98 model). Suppose we have a number of arginine and
glycine codons (coded by CGN and GGN codons, respectively) in the
ancestral sequence. Also suppose that the protein domain harbouring these
arginine and glycine residues happens to be unimportant for normal function
of the protein. Consequently, CGN and GGN codons would substitute each
other at a nearly neutral rate. Because arginine and glycine are rather
different amino acids, all codon-based models incorporating amino acid
dissimilarities would predict that arginine codons and glycine codons should
rarely mutate into each other. Consequently, these models will greatly
overestimate the nonsynonymous substitution rate for our fictitious but not
unrealistic example. Note that this problem is shared by the empirical
counting methods presented in the previous section that adjusted the
estimates by amino acid dissimilarities. DAMBE offers a graphic display of
substitutions over sites for detecting conserved or variable domains.

Codon-based models can easily incorporate both the frequency and rate
parameters. However, because of the large number of parameters, a codon-
based maximum likelihood method is necessarily slow, and will most likely
suffer from the undesirable consequence of overfitting the model if the
sequences are not extremely long. This is a major problem because a typical
protein-coding gene has just a few hundred codons. If one concatenate
different protein-coding genes together to increase sample size, then one
runs into the problem of obscuring the heterogeneity among the genes. For
example, if some genes are from GC-rich isochores and others from AT-rich
isochores, then the concatenation of these genes together will simply obscure
the distinct evolutionary dynamics of these two categories of genes and
defeat the original purpose of incorporating the frequency parameters.
Similarly, if some genes are important and evolve slowly while others are
unimportant and evolve fast, the concatenation of these genes defeats the
original purpose of incorporating different rate parameters.
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4. DISTANCES BASED ON AMINO ACID
SEQUENCES

There are two measures of genetic distance based on amino acid
sequences. The first is based on the Dayhoff RAM matrix, and the second is
Kimura’s (1983) empirical distance expressed in the following form

where p is the fraction of amino acids differing between the two sequences.
Both distances are not difficult to compute, but I have strong reservation

about their use. There are great rate differences among different amino acid
substitutions. Amino acid substitutions occur more frequently between
similar amino acids than between dissimilar ones (Clarke 1970; Epstein
1967; Grantham 1974; Miyata et al. 1979; Sneath 1966; Xia and Li 1998;
Zuckerkandl and Pauling 1965). Kimura’s formulation does not take this rate
heterogeneity into consideration, and the equation is derived from a biased
sample of substitution data.

Various approaches have been proposed to accommodate the rate
heterogeneity among different amino acid substitutions, such as the use of
empirical transition models for amino acids (Dayhoff et al. 1978) or use a
mechanical substitution model based on transition probabilities derived from
empirical substitution data (Adachi and Hasegawa 1996). Both assume that
the empirical transition model for amino acids is sufficiently general to be
applied to all proteins. Given the large variation in substitution rates among
genes (Wu and Li 1985) and among lineages (Gaut et al. 1992), this
assumption is almost certainly false.

Different amino acids can differ in many physico-chemical properties;
indeed, 134 properties were enumerated (Sneath 1966). Xia and Li (1998)
studies 10 amino acid properties, and all have significant effect on
substitution rate of codons, and some appeared to have played a significant
role in the evolution of genetic code and amino acid composition. A good
estimate of genetic distance based on amino acid sequences need to take into
account the differences in physico-chemical properties between amino acids.

DAMBE implemented a few distances that are different from
conventional distances based on amino acid sequences. So some explanation
is due. Suppose two amino acid sequences each with N residues, and each
residue has a polarity value. So we have two columns of data each with N
polarity values. The correlation coefficient can be calculated for the two
columns of data, which represents the phenetic similarity between the two
amino acid sequences. If two amino acid sequences are identical, then the
correlation is 1, otherwise the correlation will be smaller than 1. A distance
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measure can be defined as D = 1-r, where r is the correlation coefficient. A
matrix of D values can be computed with DAMBE and used directly for
phylogenetic reconstruction (including tree reconstruction, bootstrap and
jackknife, and statistical tests of alternative phylogenetic hypothesis). The D
matrix can be computed from a number of different amino acid properties, as
well as combinations of amino acid properties. Surprisingly or expected, this
method tends to produce more sensible trees than alternatives.

5. GENETIC DISTANCES FROM ALLELE
FREQUENCIES

This section deals with estimating genetic distances by using allele
frequency data. Three commonly used genetic distances can be computed by
using DAMBE: Nei’s (1972) distance, Cavalli-Sforza’s (1967) chord
measure, designated as and Reynolds, Weir, and Cockerham’s (1983)
genetic distance, designated as All three assume that genetic
divergence between OTUs arise from genetic drift, and assumptions specific
to each distance measure are listed in sections dealing with individual
distances.

The three genetic distances are based on models of genetic drift and were
intended for measuring genetic divergence between populations. The use of
these genetic distances for measuring genetic divergence between species
requires another major assumption (in fact a major jump of faith) that the
genetic variation we observe within populations, between population or
between species are really of the same variation, shaped by the same
evolutionary process. This assumption gained increasing acceptance with the
increased popularity of the neutral theory of molecular evolution (Kimura
1983). However, the assumption may not be true. For example, if the
genetic variation within and between populations is mainly shaped by
genetic drift, whereas speciation is caused by rapid fixation of one or very
few highly favourable mutations, then the three genetic distances clearly
would not be appropriate for measuring divergence between species.

One disadvantage shared by all these distances is the use of allele
frequencies rather than genotypic frequencies, which contains much more
information. For example, suppose we have a locus with two alleles, with
allele frequencies being and respectively. The information contained in
the allele frequencies is
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where stands for logarithm with base 2, and the unit for is bit in
information science, with eight bits making a byte. The information in the
genotypic frequencies, assuming Hardy-Weinberg equilibrium, is

When approaches 0 or 1, then both and will approach 0. When
is between 0 and 1, then is always smaller then For example, if

= 0.5, then and The loss of information could therefore be
very substantial.

Students often question the genetic distances by the following example.
Suppose one population has genotypic frequencies for the three genotypes,
A A, Aa and aa, equal to 1000, 0, and 1000, whereas the corresponding
values from another population is 0, 1000, 0. Both would then have the same
allele frequencies which completely obscure the difference between the two
populations. In response to this critique, we note that the first population is
under strong selection against heterozygotes and the second population is
under strong selection against homozygotes. These kinds of selection are
assumed to be either absent or so rare as to be negligible in evolutionary
models underlying the genetic distances.

5.1 Nei’s genetic distance:

Nei’s genetic distance (Nei 1972) is formulated in the following form:

where is the number of alleles for locus i and m is the number of alleles
surveyed, is the frequency of allele j for locus i for OTU 1 and is the
corresponding frequency for OTU2. can take values from 0 to infinite.
Because we cannot take logarithm of values equal or smaller than 0, the
numerator cannot be zero. This implies that the two OTU’s cannot be
completely different. For example, suppose we surveyed 5 loci, each with
two alleles. If OTU 1 is fixed for one allele in all 5 loci, whereas OTU 2 is
fixed for an alternative allele for all 5 loci, then Nei’s distance is infinite and
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cannot be represented in the computer. In practise, such situations must be
extremely rare unless one sampled very few loci.

Nei's distance is formulated for an infinite-isoallele model of mutation, in
which there is a rate of neutral mutation and each mutant represents a new
allele. For protein electrophoretic data, these assumptions may not be true.
For example, protein mobility depends on size, shape and charge of the
protein molecule. If one mutation increases the charge, another mutation
may decrease the charge. The mobility of the new protein is then reversed
back to the original state, with the consequence that the new mutant is not
scored as a new allele. Ohta and Kimura (1973) proposed a stepwise-
mutation model which might be more appropriate for electrophoresis data.

Nei’s distance also has other assumptions that are difficult to assess, such
as equal rates of neutral mutation for all loci, equilibrium between mutation
and genetic drift for the genetic variability initially in the population, and
constant population size.

Nei et al. (1983) proposed another distance that seems to perform well in
phylogenetic analysis. It is expressed as

This distance takes the value between 0 and 1 and therefore is not
linearly related to the number of gene substitutions. However, when  is
small, it increases roughly linearly with evolutionary time. This distance is
not implemented in DAMBE.

5.2 Cavalli-Sforza’s chord measure

The cord measure (Cavalli-Sforza and Edwards 1967), designated as
is expressed as

assumes that there is no mutation, and that all gene frequency
changes are by genetic drift alone. However, it does not assume that
population sizes have remained constant and equal in all populations, as does
Nei’s distance. It copes with changing population size by having
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expectations that rise linearly not with time, but with the sum over time of
1/N, where N is the effective population size. This seems to be a rather
awkward way of relaxing the assumption of the constant populations size,
because, by so doing, the distance will no longer be linearly related to
evolutionary time (Latter 1972).

5.3 Reynolds, Weir, and Cockerham’s genetic distance

Reynolds, Weir, and Cockerham’s (1983) genetic distance, designated as
is expressed as

Because it is just a different estimator of the same parameter as the
two distances share similar assumptions. Nei (1987), Li (1997), and the
documentation for PHYLIP (Felsenstein 1993) provide illuminating
discussions of various genetic distances based on allele frequencies. This
chapter is in a large part a summary of their discussions on genetic distances.

One should be aware of the fact that, when these distances are to be
inputted into computer programs for phylogenetic reconstruction, these
phylogenetic programs have additional assumptions about these distances.
For example, the statistical model underlying the Fitch-Margoliash method
and neighbour-joining method implicitly assumes that the distances in the
input distance matrix have independent errors. This obviously cannot be true
because OTU’s are phylogenetically related and share some ancestral
lineages for various periods.
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Molecular Phylogenetics: Concepts and Practice

Molecular phylogenetics has been developed to solve two related
problems. The first is to infer the branching pattern of different species from
their common ancestor, and the second is to infer when such branching
events, or cladogenic speciation events, have occurred during geological
time. Three categories of methods are commonly used for these two
purposes: distance methods, maximum parsimony methods, and the
maximum likelihood methods. These methods have been implemented in
DAMBE. This chapter covers the fundamentals of using these methods.

The DNA in an organism is like a very long book, which has been passed
on along the germ line to the present generation from time immemorial.
Whenever a cell replicates, the book is copied from the beginning to the end.
Some copying errors (mutations) would occur during the copying process. If
such a mutation becomes fixed in the species, then the species has diverged
from its closest relative by one substitution. It is these changes recorded on
the DNA book that we can use to infer phylogenetic relationships among
organisms sharing a common ancestor.

Molecular phylogenetics has been developed rapidly, and its application
has already generated many successful stories. One of the successes that may
come to your mind is perhaps the establishment of the three-kingdom
classification. However, there is a much more interesting success story that
you may not have heard of. It is this story that I will tell you now.

Off the western coast of South America there is a volcano island called
Chiloé Island on which a special kind of fox, named Darwin’s fox (Dusicyon
fulvipes), was found. On the mainland opposite the island thrives another fox
species, the gray fox (Urocyon cinereoargenteus). For a long time it has
been thought that Darwin’s fox is descended from the gray fox. In other
words, when the volcano island was formed, some gray foxes have somehow
got onto the island. They then diverged independently to become Darwin’s
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fox after the last glaciation period when seawater rose isolating the island
from the mainland. Because the last glaciation ended only about 10000-
15000 years ago, the divergence time between Darwin’s fox on the island
and gray fox on the mainland was thought to be just about 10000-15000
years. It is partly for this reason that Darwin’s fox had been classified as a
subspecies of the gray fox because a period of 10000-15000 years of
isolation does not seem sufficient for the evolution of a new mammalian
species (Yahnke et al. 1996).

In 1980s when molecular techniques became widely available to field
biologists, researchers began to reconstruct phylogenetic trees for various
fox species and dating their speciation events. They were surprised to find
that the divergence time between Darwin’s fox and the gray fox was about
one million years, much longer than the originally hypothesized 10000-
15000 years. This is clearly incompatible with the original hypothesis

One possible hypothesis is that Darwin’s fox had diverged from the gray
fox a long time ago on the mainland, long before the island was formed.
After the formation of Chiloé Island, some Darwin’s foxes, not gray foxes,
migrated to the island and became established. Meanwhile, the mainland
population had gone extinct.

This is a bold hypothesis. It predicted the existence of a species on the
mainland that nobody had seen. However, researchers had faith in the
prediction and went on looking for historical footprints (e.g., fossils) of
Darwin’s fox left on the mainland. It is in search of these footprints that
researchers found themselves face to face with a living population of
Darwin’s fox on the mainland. What a reward! They have boldly predicted
the existence of Darwin’s fox on the mainland, at least in the past. Now the
prediction is confirmed with a pleasant surprise. This discovery, in my
opinion, rivals the success of predicting the existence of an unseen planet
based on the orbits of other visible planets.

You might be thinking privately that perhaps some Darwin’s foxes might
have been recently transported from the island to the mainland. However, the
genetic variation that exists between the island and the mainland populations
is consistent with a divergence time of 10000-15000 years.

Although the real story is not exactly like this, all the essential elements
are there. May you make the same or even more exciting discovery!

1. THE MOLECULAR CLOCK AND ITS
CALIBRATION

A molecular clock is in some way similar to a conventional mechanical
clock. We measure the lapse of time with a mechanical clock by counting
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the number of ticks. With a molecular clock, we measure the time by
counting the number of substitutions of nucleotides or amino acids, which is
measured by various kinds of genetic distances detailed in a previous
chapter. Each substitution is equivalent to one tick in a mechanical clock.
The more substitutions, the longer the elapsed time is.

A mechanical clock is read with reference to midnight, which is defined
to be zero o’clock. When it is 12 o’clock, we know that 12 hours have
elapsed since midnight. With a molecular clock we have no idea about its
initial state. So the state of the molecular sequence by itself does not allow
us to read time from it. For this reason we assume that all living beings on
earth share a common ancestor and all molecular clocks in different
organisms begin to tick in their own way since the divergence of organisms
from their common ancestor (fig. 1). In this way, we can compare the
molecular sequences from different organisms and count the number of sites
differing between organisms. This number of different sites divided by 2 is
the crudest estimate of the number of ticks in a molecular clock since the
ancestral time.

Let’s look at the sequence evolution depicted in Fig. 1, The sequence is
of 24 bases long. The information available to us are the two bottom
sequences, representing the current states of the two diverging lineages. The
comparison of the two bottom sequences site by site yields seven sites that
are different between the two sequences. So on average, the two sequences
have diverged for 3.5 (=7/2) nucleotide substitutions along each genealogical
lineage. If expressed in the number of substitutions per site, then we have a
genetic distance between the two species being 7/24 substitution per site.

Can you use the two sequences on the bottom of fig. 1 to reconstruct the
ancestral sequences on the top, with the criterion that the maximum number
of substitutions being no more than seven? Do you find just a single
sequence, or several sequences, satisfying the criterion?
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1.1 Calibrating a molecular clock

A statement that two species have diverged for 3.5 nucleotide
substitutions is not as satisfying as a statement that they have diverged for
two mil l ion years. How to translate these 3.5 nucleotide substitutions into
years or millions of years? This translation is achieved by calibrating the
molecular clock.

Before calibrating a molecular clock, let’s have a short digression into
geology. It is generally true that sedimentary rocks form on top of older
rocks, often with fossils buried inside. If fossils of rats and mice are found in
one stratum, but not in any older strata everywhere on earth, then we may
assume that it is during the period when that sedimentary stratum was
formed when ancestors of mice and rats diverged. If the stratum is found to
be one mill ion years old, we can infer that mice and rats must have diverged
one million years ago. This allows us to fill in the second column in Table 1.
There is one pair of species, numbered 10, that do not have any fossil record.
How many mill ion years have these two taxa diverged from each other?

The data in Table 1 would allow us to calibrate our molecular clock for
estimating the divergence time between the two species in the 10th pair. Now
for each species pair, we can obtain the DNA sequences from orthologous
genes and compute genetic distances, which are shown in the last column of
Table 1.

Plotting the genetic distances versus the divergence time obtained from
geological dating leads to fig. 2. We are pretty lucky that the relationship
between TD and DG is roughly linear. A simple linear regression, with the
intercept forced to be zero, yields
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where TD is the divergence time and DG is the genetic distance. The equation
means that a genetic distance of 1 is equivalent to 21.98 million years. For
our species pair #10, the divergence time equals 6.37 (=21.98 * 0.29) million
years. In summary, as long as we have a number of species pairs with well-
dated fossil record, we can obtain divergence time from a molecular clock
for any given pair of species that left no trace in the fossil record.

There are some complications involving dating speciation event, some
being related to genetic distances and some to the calibration procedure. The
calculation of various genetic distances have been detailed in a previous
chapter. Here we briefly outline problems associated with the calibration.

1.2 Complications in calibrating a molecular clock

There are three main complications in calibrating molecular clock. The
first is the generation time, which manifests at the genome level. The second
is the differential cell-replication rate between male and female germ lines,
which manifests at chromosome level, and will be referred to as germ-line
effect. The third is the effect of genetic context, which manifests at the gene
level.
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1.2.1 The generation time effect

It is important to note that most mutations occur when the DNA is
duplicated, especially during meiosis. Some lineages have short generation
time, e.g., E. coli replicate once every 20 minutes in favorable conditions,
while some others, such as human, have relatively long generations. The
DNA in the former is consequently duplicated more frequently, and
therefore is expected to experience many more changes, than the latter given
the same period of time. Consequently, the calculated genetic distance,
which is typically expressed as the number of substitutions per site for
molecular sequences, will also be much greater in the former than in the
latter given the same evolutionary time. Thus, it is possible that a genetic
distance of 0.2 may be equivalent to one million years in the E. coli lineage
but be equivalent to three million years in the lineage leading to human. If
the nine species pairs with the known geological time are all mammalian
species, whereas the 10th species pair are two bacterial species, then the
divergence time between the two bacterial species may be severely
overestimated.

The effect of the generation time effect has been demonstrated by
comparing evolutionary lineages with different generation time, e.g.,
between humans and monkeys (Ellsworth et al. 1993; Seino et al. 1992), and
between rodents and primates (Gu and Li 1992). For this reason, whenever
we are interested in dating the speciation events between two or more
species (i.e., target species), we should always calibrate the molecular clock
by using data from species pairs that are phylogenetically similar to the
target species.

1.2.2 The germ-line effect

In mammalian species, mutation rate is much higher in the male germ
line than in the female germ line because the male germ line experiences
many more cell replications than the female germ line. Human germ cells
during spermatogenesis divide continuously and reach a number of
approximately Ad spermatogonia at about 13 years of age (Vogel
and Motulsky 1986). This requires about 30 cell generations of dichotomous
divisions with no cell loss. Ad spermatogonia undergo continuous divisions
and divide once about every 16 days. One of the two products of the division
continues to produce Ad spermatogonia whereas the other gives rise to two
Ap spermatogonia that, after 3 more mitotic divisions and 2 divisions
involved in meiosis, become haploid spermatids. This implies that the
number of cell generations (designated by n) a sperm has left behind
depends on the age of the male and follows the following equation:
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for Age > 13.
Because n increases with the age in men, we expect that the number of

mutations accumulated in the male germ cells should also increase linearly
with increasing age. The prediction is supported by empirical data on human
genetic diseases. An extensive review (Vogel and Motulsky 1986, sections
5.1.3.3) revealed that (1) the mutation load accumulated in male germ cells
increased with age of the male and (2) the mutation load increased with the
age of the male at an increasing rate.

In contrast to the male germ line, the germ line of the human female
experiences cell proliferation only in the early part of her life, with the
number of cells increasing to a peak of about 7 millions in the fifth month.
Few cells are eliminated during this proliferation process. This requires
approximately 23 dichotomous cell divisions, with no cell loss.

Equation (19.2) shows that the number of cell divisions a sperm has
undergone from early embryonic development up to the age of 28 is about
378, which is about 16 times greater than the number of divisions in the life
history on an egg. Consequently, such a sperm would accumulate many
more mutations than the egg. Molecular evolution in mammals is indeed
mostly male-driven, with males serving as a major source of nearly neutral
mutations (Miyata et al. 1987). Interestingly, for conserved (presumably
functionally important) genes, the amount of mutations contributed by the
male is not different from that contributed by the female. This indicates that
selection is more stringent on the male germ line than on the female germ
line.

The reasoning above suggests that the genome in an average sperm in
human male is poorer than that in an egg, which allows us to understand why
the environment of the reproductive tract of females is very unfriendly to the
sperm. Take human being for example. After entering the reproductive tract
of the female, the sperm has to survive the acidic environment in the vagina
of the female, swim vigorously against the downward flow in the female
reproductive tract, and escape the attack of the self-defence system of the
female. Half of the sperm is killed instantly upon entering the female
reproductive tract. Only about 50 out of 200 million sperms may eventually
reach the egg and only one can secure the fertilization. We can interpret
those barriers in female reproductive tract as selection mechanisms to filter
out sperms of poor genotypes. This also corroborates the finding that
selection is more stringent against male gametes than against the female
gametes.

What does this have to do with the calibration of the molecular clock?
We expect the genes on the Y-chromosome to evolve at a much faster rate
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than those on the autosomes. If one gene that was originally located on the
Y-chromosome has relocated to other chromosome in one lineage, but
remained on the Y-chromosome in other lineages, then we should expect the
gene to change much faster when carried on the Y-chromosome than its
counterpart relocated to other chromosomes.

1.2.3 The Effect of Genetic Context

Vertebrate genomes have GC-rich and AT-rich isochores. Mutation
spectrum is GC-biased in the former but AT-biased in the latter. If one gene
originally located in an AT-rich isochore subsequently moved to a GC-rich
isochore, then it will experience many AT to GC mutations. Such changes in
genetic context will result in very different evolution rates among different
lineages. We have previously encountered a case in which the DNA
sequences of the elongation factor-1 gene differ greatly in nucleotide
frequencies. It is likely that these DNA sequences have evolved in different
genetic context and one should be cautious when using them to make
phylogenetic inferences.

It would seem appropriate to show you how to test the molecular clock
hypothesis at this point. However, the test requires the knowledge of
phylogenetic relationships among the lineages. Even for the simplest relative
rate test, you still need to specify which taxon should be the outgroup.
Although it is very simple to do the test in DAMBE, I prefer to delay its
introduction to later chapters, after you have learned how to use DAMBE for
phylogenetic reconstruction.

2. COMMON APPROACHES IN MOLECULAR
PHYLOGENETICS

There are many approaches to molecular phylogenetic reconstruction, but
most can be classified into one of three categories: the distance methods, the
maximum parsimony methods and the maximum likelihood methods. In this
section you will learn how to use DAMBE to reconstruct phylogenetic trees
using any one of these methods. Testing the molecular hypothesis, as well as
statistical evaluation of alternative phylogenetic hypotheses, will be dealt
with in later chapters.

2.1 Distance methods

Distance methods operate on a matrix of genetic distances, which are
typically calculated from molecular sequence data or allele frequency data



Molecular Phylogenetics 205

on the basis of certain substitution models. The matrix of genetic distances is
then fed into a phylogenetic algorithm to generate a tree.

2.1.1 Genetic distances implemented in DAMBE

There are three types of molecular sequence data: non-protein-coding
nucleotide sequences, protein-coding codon sequences, and amino acid
sequences. These sequences are associated with different substitution
models and consequently different genetic distances. Aside from these
molecular sequence data, allele frequencies are also frequently used in
phylogenetic reconstruction and commonly used genetic distances based on
allele frequencies are also implemented in DAMBE.

For non-protein-coding nucleotide sequences, commonly used genetic
distances are Jukes and Cantor’s (1969) one-parameter distance, Kimura’s
(Kimura 1980) two-parameter distance, Tajima and Nei’s (1984) distance,
the F84 distance (Felsenstein 1993), Tamura and Nei's (Tamura and Nei
1993) distance, and Lake’s (1994) paralinear distance. These distances are
all derived from nucleotide-based models.

The genetic distances above can also be computed for codon sequences.
However, nucleotide-based models and distances from such models are
inherently awkward in describing substitution patterns in codon sequences
because the substitution rate at nucleotide sites of a protein-coding gene
depends not only on whether the substitution is a transition or transversion
and whether the site is located in a functionally important segment or not,
but also depends on codon-specific properties, such as which codon position
the site is at, whether the substitution is synonymous or nonsynonymous, and
how similar the two amino acids are to each other when the substitution is
nonsynonymous. (Xia 1998b; Yang 1996b). In short, the nucleotide-based
substitution model cannot handle the complexity of substitutions involving
codons and codon-based substitution models are called for.

It is known that substitution rates vary much over sites, and such rate
heterogeneity would result in underestimation of genetic distances. A
gamma distribution has often been used to model the rate heterogeneity for
correcting the underestimation. The gamma-corrected distances are
implemented in DAMBE for the F84 and the TN93 models.

For protein-coding nucleotide sequences, genetic distances based on
synonymous and nonsynonymous substitution (Li 1993; Li et al. 1985b;
Miyata and Yasunaga 1980; Nei and Gojobori 1986; Perler et al. 1980) are
often used in phylogenetic reconstruction. These methods differ in two
minor ways. First, some methods (Nei and Gojobori 1986; Perler et al. 1980)
give an equal weight to different codon substitution pathways, while others
consider codon substitutions involving similar amino acids to be more likely
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than codon substitutions involving different amino acids. Second, the
methods differ in the correction for multiple hits. Some (e.g., Nei and
Gojobori 1986) uses the Jukes-Cantor one-parameter model to correct for
multiple hits, whereas others (e.g., Li 1993) uses Kimura’s two-parameter
model. Only the Li93 method is implemented in DAMBE because it is more
general.

For amino acid sequences, a few ‘phenetic’ distances that are different
from conventional distances are implemented, and some explanation is
perhaps necessary. Suppose two amino acid sequences each with N residues,
and each residue has a polarity value. So we have two columns of data each
with N polarity values. The correlation coefficient can be calculated for the
two columns of data, which represents the phenetic similarity between the
two amino acid sequences. If the two sequences are identical, then the
correlation is 1, otherwise the correlation will be smaller than 1. A distance
measure can be defined as D = 1-r, where r is the correlation coefficient. A
matrix of D values can be computed with DAMBE and used directly for
phylogenetic reconstruction (including tree reconstruction, bootstrap and
jackknife, and statistical tests of alternative phylogenetic hypothesis). The D
matrix can be computed from a number of different amino acid properties, as
well as combinations of amino acid properties.

DAMBE can also perform phylogenetic reconstruction by using allele
frequency data. Three commonly used genetic distances based on allele
frequencies can be computed by using DAMBE: Nei’s (1972) distance,
Cavalli-Sforza’s (1967) chord measure, designated as DCE, and Reynolds,
Weir, and Cockerham’s (1983) genetic distance, designated as DRWC.

Various genetic distances, including those based on nucleotide, codon,
and amino acid sequences, as well as those based on allele frequencies, have
been reviewed in the chapter dealing specifically with genetic distances.
Please refer to that chapter for further information.

Sometimes it is argued that distance methods can use more information
in molecular sequences. For example, if we have six OTUs with one of them
having a deletion of 10 bases from sites 20-30, then maximum likelihood
methods, being site-oriented, will simply delete sites 20-30 for all sequences.
Thus we lose all information contained in the stretch of 10 sites. With the
distance methods, the pair-wise distance can still be computed between any
two of the five OTUs with no deletions. However, there is one major
problem with this approach. If that stretch of 10 bases happens to be highly
variable, and all the rest of the sequences high conservative, then we will
have a small genetic distance between the sequence with the deletion and
each of the other five sequences without the deletion, but a large genetic
distance between any two from the five sequences without the deletion. This
difference in genetic distances is an artefact that will bias phylogenetic



Molecular Phylogenetics 207

estimation. It is generally a good idea to do a site-wise deletion of all
unresolved sites and gaps.

I should quickly add that site-wise deletion might also bias phylogenetic
estimation as well. Take the 18S rRNA gene for example. Both substitution
and indel events occur almost exclusively in just a few variable domains of
the 18S rRNA sequences. The variable domains have nucleotide frequencies
different from the conserved domains in the 18S rRNA gene. In
phylogenetic analysis involving the distance and maximum likelihood
methods, we need to have the frequency parameters most appropriate for the
underlying substitution model. It is obvious that the most appropriate
estimate of the frequency parameters should be from the sites where
substitution occurs, i.e., from the variable domains. However, the variable
domains also contain a number of indels. If we perform a site-wise deletion,
then many sites in the variable domains are deleted, leaving the estimates of
frequency parameters mostly dependent on the nucleotide frequencies of the
conserved domains. Such frequency parameters are really irrelevant to the
underlying substitution models.

2.1.2 Phylogenetic algorithms for genetic distances

Two commonly used distance methods, the neighbor-joining (Saitou and
Nei 1987) and the Fitch-Margoliash (Fitch and Margoliash 1967), are
implemented in DAMBE. The neighbor-joining (NJ) method is much faster
than the Fitch-Margoliash (FM) method.

The NJ method starts from a star tree, and we decide which two OTUs
should be clustered first. For N OTUs, there are N(N-2)/2 ways of picking
up two OTUs. The criterion for clustering two OTUs, OTUi and OTUj, is
that the resulting tree should have the smallest sum of branch lengths
(designated Sij) among N(N-2)/2 possible ways of clustering.

In actual computation, we do not evaluate all Sij values and pick up the
smallest one because this is not efficient. Instead, we use the Q criterion
(Studier and Keppler 1988) which, if OTU1 and OTU2 are clustered, is
defined as

The criterion of minimizing Sij is the same as that of minimizing Qij

(Gascuel 1994), but the latter is computationally more efficient than the
former. The NEIGHBOR program in PHYLIP (Felsenstein 1993) also uses
the Q criterion.
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The FM algorithm is much more complicated than the NJ algorithm. The
phylogenetic reconstruction starts with an unrooted tree of three OTUs. The
tree is then traversed and a new OTU is inserted. For an unrooted tree with
three OTUs, there are three alternative ways of inserting the new OTU,
resulting in three alternative four-OTU trees. The branch lengths are
evaluated by a weighted least squares method for each of the three
alternative trees. At this point we have two sets of genetic distances, one
being the "observed" distances represented by the original input matrix, and
the other being the "expected" or "predicted" distances obtained by the least
squares method. The sum of squared differences (SSobs-exp) between the
observed and the expected distances is then calculated for each of the three
alternative four-OTU trees, and the tree with the smallest SSobs-exp is taken as
the best tree and used for the next round of finding the best five-OTU tree.

2.1.3 Distance methods based on molecular sequences

Start DAMBE, and open a nucleotide sequence file, such as the
invert.fas file that comes with DAMBE. Click Phylogenetics|Distance
methods|Nucleotide sequences. A dialog box appears (fig. 3) for you to
select options.

You may wonder why the bottom part of the dialog box is blank. It is not.
Relevant options and checkboxes will appear in response to your choices. I
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wil l explain all the option buttons, checkboxes, and dropdown menus in a
moment. You may click the Choose outgroup dropdown menu to select
annelid as an outgroup, and click the Genetic distance dropdown menu to
select F84, which is the nucleotide-based substitution model implemented in
PHYLIP’s DNAML program since 1984. An additional input field, labelled
Alpha value, will appear when you choose the F84 or TN93 distances. This
is for you to input an alpha value to correct the underestimation of genetic
distances when there is substantial rate heterogeneity over sites. Alpha is
called the shape parameter in a gamma distribution. Its default value is 0,
which actually means infinite. The zero is used simply because a computer
cannot represent an infinitely large value. An infinitely large alpha value
means that there is no rate heterogeneity, and a decreasing alpha value
corresponds to increasing rate heterogeneity. Because we have not yet
learned how to estimate the alpha parameter, just leave the field as is and
click the Done button. A phylogenetic tree will be displayed in the tree
window (fig. 4)

Some basic tree manipulations, such as tree re-rooting, node numbering,
font and line thickness changes, etc., are implemented. The tree can also be
printed in high quality to a printer attached to your computer.

Other information related to tree reconstruction, such as what genetic
distance has been used, what options you have chosen, which species is used
as outgroup species, and the matrix of genetic distances used in
reconstruction, is shown in DAMBE’s display window. Also shown in the
display window is the tree written in PHYLIP format. A sample of the text
display is shown below.



210 Chapter     19

You see that phylogenetic reconstruction is very easy by using DAMBE.
Below I explain various options you can choose before clicking the Done
button. To understand the concepts involved in tree construction is much
more difficult than to click a few mouse buttons.

2.1.3.1 Select phylogenetic algorithm
You can choose either the neighbor-joining or the Fitch-Margoliash

method. The former is much faster than the latter, but the latter has a well
specified global optimization criterion, i.e., the least sum of squared
differences between the observed and estimated genetic distances. Besides,
you can do global optimization and input user trees with the Fitch-
Margoliash method, but not with the neighbor-joining method. User trees are
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essential for evaluating relative statistical support for alternative
phylogenetic hypotheses.

The default is the neighbor-joining method. If you click the option button
for the Fitch-Margoliash method, then additional checkboxes (Global
optimization and User tree) will be displayed. These checkboxes will
disappear if you click the option button for the neighbor-joining method.

2.1.3.2 Select a genetic distance
There are many genetic distances that you can choose for using with

either one of the two algorithms (Table 1). The simpler distances such as P,
PoissonP, and JC69 are implemented only for teaching purposes and are
rarely used in practical research. Please refer to the chapter dealing with
genetic distances for more information on these distances.

2.1.3.3 Choose an outgroup
All the OTUs in the sequence file are listed in the Choose outgroup

dropdown menu. You can select any one of them by clicking the dropdown
arrow. Someone has asked the possibility of forcing more than one outgroup
species. I do not think this a good idea. If  you are sure that species 1 and 2
should be outgroups coming out from the deepest node, it is a good idea to
use either species 1 or species 2 as an outgroup and see if  your sequence data
can correctly put the other species close to the root. This can serve as a
rough method of quality control. If species 1 and 2 end up in different
lineages in your phylogenetic tree, and if you are absolutely sure that they
should both come out from the deepest node, then your sequences must be
poor. In other words, your sequences has failed to recover the true tree.
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2.1.3.4 Choose other options
If you click the Resampling statistics checkbox, a dialog box will

prompt you for how many data sets you wish to sample from the original
data set. The default is 100. Two option button will also be displayed for you
to choose either Bootstrap or Jackknife resampling method. If you have
made relevant selections, clicking the Done button will produce a tree with
bootstrap or jackknife values that we often encounter in literature. These
resampling techniques are used both for the purpose of data validation and
statistical tests. More details on bootstrap and jackknife are presented in later
chapters on testing alternative phylogenetic hypotheses.

Click the Randomize Input Order checkbox will do the phylogenetic
analysis repeatedly with randomized input order of OTUs.

Click the Global optimization check box, which appears only when the
Fitch-Margoliash method is selected, will do the following. After the last
species is added to the tree, each possible clade is removed and re-added to
the tree. This improves the result, since the tree space is explored much
more thoroughly with this option than without.

If you click the User tree checkbox, the three checkboxes mentioned
above will disappear, and two new option buttons, Trees from a file and All
possible trees, appear. Note that the number of possible rooted and unrooted
trees, designated by NR and NU, respectively, increases rapidly with
increasing number of species according the following equations:

There are 2,027,025 rooted trees for only 9 species, so you should exert
caution when clicking the All possible trees option button. If you are
specialized in some particular groups of organisms, you generally know it is
unnecessary to consider all possible topologies. For example, if you have a
DNA sequence from orthologous genes from two identical twins and two
other unrelated individuals, it is unnecessary to consider the possibility of
the two identical twins each clustering with one of the two unrelated
individuals. It is generally true that phylogenetic controversies can be
formulated into just a few alternative phylogenetic hypotheses. These
hypotheses can be written down as user trees in PHYLIP format, which can
be read into DAMBE for evaluation of relative statistical support. The user
trees should be all unrooted. DAMBE will check the first tree. If it is rooted,
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you will get a warning. If it is unrooted, DAMBE will assume that all the
rest of trees wil l be the same, i.e., unrooted. Do not check the User tree
checkbox for the time being because the use of user trees will be dealt with
ful ly in later chapters on testing alternative phylogenetic hypotheses.

2.1.4 Distance methods based on allele frequencies

A file containing allele frequency data is typically in the following
PHYLIP format:

The two numbers on the first line indicates, respectively, the number of
OTUs and the number of loci. The second line shows the number of alleles
per locus, i.e., the first, second and forth locus each have 2 alleles, and the
third locus has 3 alleles. The next five data lines show the allele frequencies
of the five loci, typically with one allele omitted for each locus. For
example, one allele for first locus has a frequency of 0.7285, and the
frequency of the other allele is simply 1 - 0.7285 and is omitted. Similarly,
the first two alleles of the third locus have frequencies 0.0205 and 0.8055,
respectively, and the frequency of the third allele is simply one minus these
two frequencies and is omitted.

To use allele frequency data for phylogenetic reconstruction using
DAMBE, click File|Open. A standard File/Open dialog appears. In the Files
of type dropdown menu, click the last item Allele frequency files (*.FRE).
All files with the extension .FRE will be displayed. Double-click a file will
read the data into DAMBE. Or you can click the file once to highlight it and
then click the Open button.

A dialog box is displayed (fig. 5). The two option buttons at the top is for
you to specify your file format, i.e., whether the input data file contains all
gene frequencies or with one allele omitted at each locus. The three different
genetic distances based on allele frequency data have been presented in the
chapter dealing with genetic distances, which should be consulted if you are
to use allele frequency data for phylogenetic reconstruction. All other
options are the same as in the previous section, and the user tree should be
unrooted. DAMBE will check the first tree. If it is rooted, you will be issued
a warning. The User tree checkbox appears only when the Fitch-
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Margoliash method is chosen. Do not check the User tree checkbox for the
time being because the use of user trees will be dealt with fully in the next
chapter on testing alternative phylogenetic hypotheses. Click the Go! button
and a phylogenetic tree will be generated.

The selection of options is the same as that for phylogenetic
reconstruction using molecular sequence data in the previous section. Note
that resampling methods such as the bootstrap and the jackknife are
implemented in for the distance methods for nucleotide sequence data, but
not for allele frequency data. There is little point of doing resampling for
allele frequency data because the number of loci sampled is generally small
(~20).

2.2 Maximum parsimony method

The maximum parsimony method can be viewed as an approximation to
the maximum likelihood method (Baldi and Brunak 1998, p. 226). It
implicitly assumes that substitutions are rare (which implies that sequences
need to be very long to have sufficient number of informative sites), that the
substitutions are uniform over sites, and that the substitution rate is constant
over time in different lineages. There are a number of cases in which the
maximum parsimony approach would be positively misleading (Felsenstein
1978; Nei 1991; Takezaki and Nei 1994). Because of these assumptions, the
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maximum parsimony approach is not good for reconstructing ancient
phylogenies.

The parsimony algorithm implemented in DAMBE is the same as the
DNAPARS program in PHYLIP. In fact I copied almost all codes in
DNAPARS into my mktree.dll program with little modification. For this
reason, the reader is referred to the documentation for DNAPARS in
PHYLIP for further information. This section provides a brief introduction
on how to do a maximum parsimony reconstruction by using DAMBE.

Start DAMBE and open a file with nucleotide sequences, e.g., the
invert.fas file that comes with DAMBE. Click Phylogenetics|DNAMP and
a dialog box (fig. 6) appears for you to select options available for doing a
maximum parsimony analysis.

All the options are the same as those shown in fig. 3, except that the user
tree should now be rooted, in contrast to the unrooted user tree used for the
Fitch-Margoliash method. DAMBE will check the first tree in the tree file. If
it is unrooted, you will be issued a warning. Click the Go! button will
generate a tree, with no branch lengths. The tree display window will display
the tree with equal branch lengths, just to remind you that there is no branch
length estimate.

Just as in the Fitch-Margoliash method, the User Tree checkbox can be
used for evaluating relative statistical support for alternative topologies. This
will be dealt with in later chapters.
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2.3 Maximum likelihood method

2.3.1 Preamble

The substitution models assumed by various implementations of the
maximum likelihood method in phylogenetics share the following
assumptions: (1) the substitutions occur independently in different lineages;
(2) substitutions occur independently among sites; (3) the process of
substitution is described by a time-homogeneous Markov process, and (4)
the process of substitution is stationary. It is important to realize at the very
beginning that the validity of maximum likelihood reconstruction depends
much on how close its assumed substitution model approximates reality.

Except for the first assumption, assumptions 2, 3, and 4 are often false.
The second assumption, that substitutions occur independently among sites,
is obviously not true. Take two codons, GAT and GGT, for example. Both
codons end with a T. Whether a substitution would occur depends
much on whether the second position is an A or a G. The substitution
is rare when the second codon position is A because a mutation in the
GAT codon is nonsynonymous, but relatively frequent when the second
codon position is G because such a mutation in a GGT codon is
synonymous. This violates the assumption that nucleotide substitutions occur
independently among sites. One can easily come up with many other
examples in which the assumption does not hold.

The third assumption, that the process of substitution is described by a
time-homogeneous Markov process, is also unlikely to be true. The recent
proposal of punctuated equilibrium (Eldredge 1989) based on fossil records
suggests that evolution occurs very sporadically, rather than continuously. It
is likely that the tempo and mode of morphological changes seen in fossils
do not have much relevance to molecular evolution. However, a compilation
of molecular evidence appears to suggest sporadic evolution at the molecular
level as well (Gillespie 1991).

The fourth assumption, that the process of substitution is stationary, is
also problematic. Suppose we wish to reconstruct a tree from a group of
orthologous sequences from both invertebrate and vertebrate species. There
is little DNA methylation in invertebrate genomes, but heavy DNA
methylation in some vertebrate genomes. DNA methylation greatly
enhanced the transition (and consequently the transition on the
opposite strand. The net result is a much elevated transition/transversion bias
in the lineages with DNA methylation, as well as an increased nucleotide
frequencies for nucleotides A and T. This substitution process is clearly not
stationary. If your sequences differ much in nucleotide frequencies, then you
should use a distance method with the paralinear (Lake 1994) or LogDet
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(Lockhart et al. 1994) distance which is based on a substitution model that
does not assume stationarity.

2.3.2 Phylogenetic reconstruction with DAMBE

The maximum likelihood algorithm implemented in DAMBE is the same
as the BASEML program in the PAML package (Yang 2000). I copied
almost all the code in the BASEML program into my mktree3.dll file with
little modification. Consequently, the output is almost exactly the same as
the output from the BASEML program in PAML. The BASEML program
has rather limited tree-searching algorithms, but features a rich
implementation of substitution models. It is best not at finding the best tree,
but at testing phylogenetic hypotheses.

Start DAMBE and open a file containing aligned nucleotide sequences.
Click Phylogenetics|Maximum Likelihood|Nucleotide Sequences. A
dialog box appears (fig. 7). In the Run Mode dropdown menu, you can
choose either Search Best Tree, or Semi-automatic (for resolving a
partially resolved tree) or User tree. Do not check the User tree checkbox
for the time being because the use of user trees will be dealt with fully in the
later chapter on reconstruction of ancestral sequences and on testing
alternative phylogenetic hypotheses.

There are three nucleotide-based substitution models available: the F84
model in the DNAML program in the PHYLIP package since 1984
(Felsenstein 1993), the HKY85 model (Hasegawa et al. 1985), and the TN93
model (Tamura and Nei 1993). Simpler models, such as JC69 and K2
models, are not included because they are known to be unrealistic.

It cannot be emphasized enough that the validity of phylogenetic analyses
using the maximum likelihood method depends on how close the underlying
substitution model can approximate reality. A substitution model typically
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has two categories of parameters for describing a substitution pattern
(Kumar et al. 1993; Li 1997; Yang 2000), i.e., the rate ratio parameters
(often symbolized by etc.) and the frequency parameters, i.e.,

and The JC69 and K80 models assume equal frequency
parameters. The number of rate ratio parameters for JC69, K80, F84,
HKY85 and TN93 models are 0, 1, 1, 1, and 2, respectively.

The F84 and HKY85 models are the simplest models that include both
frequency parameters as well as a rate ratio parameter to accommodate the
s/v bias. It has been found that transitions are also heterogeneous, with

transitions having a different rate from transitions (Tamura and
Nei 1993), and the TN93 model is proposed to accommodate this rate
heterogeneity among transitions.

The Clock checkbox, when checked, will impose a molecular clock. A
phylogenetic tree with a molecular clock can be used to date speciation
events, but you should remember to test the molecular clock hypothesis first.
Details of testing the molecular clock hypothesis is presented in later
chapters. When the run mode is User tree, then the Clock checkbox will
disappear. Whether a clock is assumed depends on whether the user trees are
rooted or unrooted, with a rooted tree imposing a molecular clock. Do not
mix rooted and unrooted trees in the same tree file.

If the Get SE of Estimates is checked when the run mode is set to User
tree, then the standard error (SE) of estimated parameters will be calculated
as the square roots of the large sample variances. These SE’s can be used for
hypothesis testing. This will be illustrated latter when we interpret the
output.

If the run mode is User tree, another checkbox, Get ancestral
sequences, will appear. If checked, ancestral sequences will be
reconstructed, and stored in a file together with original sequences. Such a
file will have a .RST file extension by default to avoid confusion with other
types of sequence files. This file can be used for quantifying empirical
substitution pattern or fitting statistical distributions (e.g., the Poisson, the
negative binomial, or the gamma) to substitution data.

2.3.3 Interpret output

The output below is produced by choosing run mode Search for best
tree, and the F84 model, and have the Clock checkbox unchecked. I used
only five sequences in the file to save space. The output is slightly modified
so that it will fit the page size. The output is of two parts, one being a
phylogenetic tree shown in DAMBE’s tree display window, and the other
being text output shown in DAMBE’s text display window. Only the latter
part is duplicated below:
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Check the nucleotide frequencies to make sure that they are similar, i.e., conform to the
assumption of stationarity. The average values are often used as empirical estimates of
frequency parameters and

“alpha” above refers to the α parameter in a gamma distribution. Its value, 0.00, means that
rate heterogeneity over sites is ignored This results in underestimates of genetic distances, but
avoids inflation of bias.

Tree reconstruction begins with a star tree. We pick up all possible pairs from the five OTUs,
group them together, and see which resulting topology has the largest likelihood. There are

combinations.
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The eighth topology has the largest likelihood and is chosen as the best partially resolved tree
for the next stage. This algorithm is called star decomposition. The numbers under the
branches are branch lengths, except for the last value which is the estimated which
measures transition/transversion bias Note that under the F84 model is NOT the
conventional ratio of , which can be obtained approximately by using the following
equation:

where values are frequency parameters. You may use the four nucleotide frequencies
averaged over the five sequences as estimates of   values and obtain a ratio of about 2.

As the equation has shown, the value under the HKY85 model is the conventional ratio of
, which makes it easy to test whether there is transition bias. If you set run mode to User

tree and check the Get SE checkbox, then the standard error of will be calculated for you to
compute the z-score:

If  z is > 1.96, then there is significant transition bias at the 0 05 level. Under the TN93 model,
there will be two values, for transitions and for transitions. If you wish to
test the null hypothesis of , the z score is computed as
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which, if larger than 1.96, can be declared as significant at the 0.05 level. Note that the
denominator, the summation of the two variances, implies that there is no covariance between

and . A better test is the likelihood ratio test, carried out as follows You use the same
tree to obtain the log-likelihood for the two models, e.g., HKY85 and TN93, and

We then calculate which can be examined against chi-
square distribution with one degree of freedom (because Tn93 model has one more parameter
than the HKY85 model). If is larger than 3.84, then we can declare that the two values
are significantly different at 0.05 level.

The resulting tree is displayed in DAMBE’s tree display window.

2.4 Reconstructing Ancestral Sequences

There are two situations where reconstructed ancestral sequences may be
useful. First, when one wishes to estimate parameters (e.g., rate ratio
parameters, the shape parameter in a gamma distribution,
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transition/transversion ratio, etc.) in various substitution patterns, one
typically needs substitution data obtained from pair-wise comparisons
between neighboring nodes along a phylogenetic tree, which requires
ancestral states of internal nodes. Second, ancestral sequences are needed
when one wants to infer which nucleotide or amino acid sites have
experienced which kind of substitution during which evolutionary period.

DAMBE uses codes in the BASEML program (Yang 2000; Yang et al.
1995) for reconstructing ancestral sequences. You need a tree topology in
PHYLIP format as well as an aligned sequence file, e.g., the invert.fas file
that comes with DAMBE, for reconstructing ancestral sequences. If you do
not have a file with a tree, then just use one of the phylogenetic methods we
have just covered to obtain a tree and save it in a file. For ease of
presentation, let us assume that you have already obtained such a tree and
saved it in a file named invert.dnd.

Start DAMBE and open a sequence file, e.g., the invert.fas file that
comes with DAMBE. Once the sequences are displayed in DAMBE, click
Phylogenetics|Maximum  Likelihood|Nucleotide sequences. A dialog box
(fig. 7) appears for you to specify options. Under Run Mode, choose User
tree. A standard File/Open dialog box will appear for you to specify which
file contains the user tree. Click the file, e.g., invert.dnd, that contains the
tree for the seven invertebrate species and then click the Open button. Check
the Get ancestral sequences checkbox and click the Go! button. After
waiting for one minute or two, you will be prompted to enter a file name to
save the reconstructed sequences. The file will then be saved in text format,
and the ancestral sequences will be added to the existing sequences for you
to apply further pair-wise comparisons between neighboring nodes along the
tree. For example, if you click Seq. Analysis|Nucleotide
difference|Detailed output, only sequence pairs that are neighbors along the
phylogenetic tree wil l be shown in the ensuing dialog box. If you do not
have ancestral sequences, then all possible sequence pairs will be shown in
the dialog box.

After reconstructing the ancestral sequences, DAMBE will disable the
Phylogenetics menu. There are two reasons for this. First, it makes little
sense to perform phylogenetic reconstruction on reconstructed ancestral
sequences. Second, some reconstructed ancestral sequences will be the same
as the existing sequences, but some phylogenetic functions in DAMBE
assume that all sequences are different from each other.

Now that we have learned how to reconstruct phylogenetic trees by using
the distance, maximum parsimony and maximum likelihood methods, it is
time for your read a few comparative studies that assess the performance of
different phylogenetic methods by simulation (Felsenstein 1988b; Kuhner
and Felsenstein 1994; Nei 1991). Results from these simulation studies are
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not always consistent. Below I will just highlight five thorny problems that a
practising phylogeneticist should pay attention to. The first two concern the
quality of the sequence data, and the last three concerns phylogenetic
algorithms.

The first problem that is often neglected concerns sequence alignment,
which is the beginning of all comparative sequence analyses. If we cannot
obtain reliable sequence alignment, then all subsequent analyses will be
nonsense. In particular, alignment of rRNA and tRNA sequences is almost
always a nightmare, especially when the sequences have diverged over a
long time. For this reason, it is often necessary to incorporate the secondary
structure of the RNA molecules in the multiple sequence alignment (Dixon
and Hillis 1993; Gutell et al. 1990; James et al. 1989; Pace et al. 1989;
Srikantha et al. 1994; Xia 2000).

The second problem is substitution saturation. Substitution saturation
decreases phylogenetic information contained in the sequences, and has
plagued the phylogenetic analysis involving deep branches, such as major
arthropod groups. When sequences have reached full substitution saturation,
then the genetic distances among the sequences will depend entirely on
nucleotide frequencies among sequences, and nucleotide frequencies are
generally not phylogenetic indicators.

There are currently two main approaches for finding whether molecular
sequences contain phylogenetic information. The first approach involves the
randomization test or permutation test (Archie 1989; Faith 1991), the second
employs the standard g1 statistic for measuring the skewness of branch
lengths of alternative trees (Hillis and Huelsenbeck 1992). Both approaches
suffer from the problem that, as long as we have two closely related species,
the tests will lead us to conclude the presence of significant phylogenetic
information in the data set even if all the other sequences have experienced
full substitution saturation. Besides, these methods do not measure
substitution saturation directly, i.e., they only assess one of the possible
consequences of substitution saturation. DAMBE provides an alternative
measure of sequence saturation based on entropy, implemented under the
Seq. Analysis|Measure substitution saturation.

The third problem arises from the violation of the molecular clock
assumption. Some lineages occasionally would evolve much faster than
their sister lineages, and create what is known as the long-branch attraction
problem. This is nicely illustrated by a simple data set in Swofford et al.
(1996). The maximum likelihood method has been shown to be very robust
against nonconstant substitution rates among different lineages.

The four problem is the rate heterogeneity over sites, which defeats
virtually all methods currently available for phylogenetic reconstruction
(Kuhner and Felsenstein 1994). Although the use of a gamma distribution to
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accommodate the rate heterogeneity has been suggested to improve
phylogenetic estimation in some particular situations, results from simulation
studies are not encouraging (Yang 1997).

The fifth problem occurs when the stationarity assumption of the
substitution process is violated. I have already mentioned the problem and
the solution in the section on maximum likelihood and will not repeat here.

3. EXERCISE

Open the ape5.fas file that comes with DAMBE. This file contains the
cytochrome oxidase subunit I (COI) sequences from five primate species.
Establish a phylogenetic tree using distance, maximum parsimony and
maximum likelihood methods. For distance methods (neighbor-joining and
Fitch-Margoliash), use different genetic distances and decide which genetic
distance is more appropriate. Based on your exploration, discuss the
advantage and disadvantage of different phylogenetic methods. Save a
rooted tree to a file named ape5r.dnd and an unrooted tree to a file named
ape5ur.dnd.

You must have read news stories about the mitochondrial Eve. The
dating of when the mitochondrial Eve lived assumes a valid molecular clock,
i.e., the mitochondrial genes have evolved at similar rates in different human
lineage. The two tree files you have just saved will be used in later chapters
for testing whether the molecular clock represented by the COI gene is
constant or not in different primate lineages.
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Testing the Molecular Clock Hypothesis

In previous chapters we have learned the concept of the molecular clock
and the fundamentals of phylogenetic reconstruction. We used the molecular
clock without checking its validity, and we reconstructed phylogenetic trees
without evaluating their statistical support relative to alternative trees. This
chapter introduces a method for testing the validity of the molecular clock
hypothesis. Evaluating relative statistical support for alternative
phylogenetic hypotheses is treated in a later chapter.

Evolutionary biologists often use a molecular clock to date speciation
events, or infer when and where the common ancestor of a population has
lived. For example, a few years ago, it has been claimed that the
mitochondrial Eve lived somewhere in Africa about 200,000 years ago
(Cann et al. 1987). This is based on the assumption that mitochondrial clock
is constant in different human lineages. Is this a valid assumption? In the
previous chapter on molecular phylogenetics, we have already mentioned
several factors causing the molecular clock to tick at different rates in
different lineages, i.e., the generation time effect (Ellsworth et al. 1993; Gu
and Li 1992; Seino et al. 1992), the germ line effect (Miyata et al. 1987) and
the effect of genetic context (see the chapter on molecular phylogenetics for
more details). Will the molecular clock still works in spite of all these
distorting factors?

The molecular clock hypothesis is typically formulated as the null
hypothesis of equal evolution rates along different lineages, which can be
tested by using the likelihood ratio test implemented in DAMBE. A
likelihood ratio test is a significance test. We will first refresh your memory
of basic concepts of statistical significance tests by reviewing the simple t-
test. The t-test is then cast in the framework of a likelihood ratio test. The
only purpose of presenting this simple t-test is just to let you see the
similarity between a simple t-test and a more involved likelihood ratio test so
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that you wil l be more courageous in future statistical endeavours. The last
part of the chapter deals with how to use DAMBE to carry out a likelihood
ratio test of the molecular clock hypothesis.

1. THE T-TEST

Suppose we have a normally distributed variable x with sample values
and we are interested in whether the mean value of x is

significantly different from This is a typical situation for a t-test, with the
null hypothesis being The test is done as follows:

We see that if then t = 0. If is very different from then the
absolute value of t will be large and the likelihood of the null hypothesis
being true becomes smaller. Thus, we can view the absolute value of the t
statistic as a measure of the difference between the observed value and the
expected value under the null hypothesis. A large t means a great deviation
of the observation from the expectation. If the absolute value of t is larger
than a predetermined value (i.e., the critical value), then we reject the nul l
hypothesis.

The t statistic has a probability distribution called the t distribution,
which is similar to the normal distribution except that it is flatter and with
longer tails. If the sample size is infinitely large, then the t distribution
converges to the normal distribution. The t-test is invented for small samples
from which the estimated mean and variance have a small chance of being
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identical to the population mean and variance. It is necessary to know the
distribution of the test statistic in order to carry out a valid statistical
significance test. If we do not know the t distribution, then the t statistic will
be no more than an index of differences between the observation and the
expectation, and will not allow us to make any probabilistic statement.

You might have learned the story about how Charles Darwin was
frustrated about his inability to reach a statistical conclusion from his
breeding data (Peters 1987, pp. 110-111). Darwin wanted to know the effect
of outcrossing on the effect of plant size. So he chose 15 plant species for an
experiment. For each species, he forced some individuals to inbreed and
some to outbreed. He measured the growth characters for the inbred
individuals and the outbred ones. So he obtained 15 pairs of data over 11
years. When he presented his hard-earned data to his cousin, Francis Galton,
he was disappointed to be told that much more data were needed for him “to
be in a position to deduce fair results.” Galton was not able to deduce fair
results from Darwin’s data because the t distribution is unknown at that time.

In summary, to make a significance test, we need to have two things.
First, we need a test statistic, such as t, that measures the difference between
the observed value and the expected value. Second, we need to know the
probability distribution of the test statistic, such as the t distribution, from
which we can draw probability statement. Below we look at what test
statistic is used in a likelihood ratio test and what probability distribution is
used to draw probability statement.

2. THE LIKELIHOOD RATIO TEST

Like the t-test, the likelihood ratio test is also a significance test. It tests
whether a simpler model fits the observed data as well as a more general
model, where the simpler model is a special case of the more general model.
For example, the simple model could be y = x, and the general model could
be You see that the simple model is a special case of the general
model when b = 1. Obviously, the general model will fit the observed data at
least as good as the simple model.

In the example above involving the t-test, the simple model sets
which is the null hypothesis. The alternative hypothesis is The
general model is the union of the null hypothesis and the alternative
hypothesis, i.e., where can take any real value including In a
likelihood ratio test, the set of values a parameter (e.g., ) can take given
the null hypothesis is often designated by In our example of t-test,
contains a single value of The set of values a parameter can take given
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the alternative hypothesis is designated by which is any value other than
in our example of t-test. The general model has
In the t-test, we calculate the t statistic. In a likelihood ratio test, we

calculate a statistic which is defined as

where and denote the likelihood functions for the simple model
and the general model, respectively. Given the set of sample values

for the normally distributed random variable x, we can write the
likelihood function as

is obtained by replacing by and by which is calculated
the same way as in equation except that is replaced by Similarly,

is obtained by replacing by and by With some algebraic
manipulation, it can be shown that

where t is the t statistic in equation (20.1). Recall that we have viewed the
absolute value of the t statistic as a measure of the difference between the
observed value and the expected value (expected under the null hypothesis),
with t = 0 implying a perfect match between the observed and the expected
value. The statistic is the opposite of t, and reaches the maximum value of
1 when t = 0. A value of    close to zero means that the likelihood of the null
hypothesis being true is very small.

In a t-test, the difference between and is declared as significant
when the absolute t value is larger than a predetermined value such as
Similarly, the value in a likelihood ratio test is declared as significant if it
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is smaller than a predetermined value. For the normal distribution and large
n, has approximately a distribution with degrees of freedom equal
to where N and are, respectively, the number of parameters to be
estimated in the general and the specific model. In the t-test example, the
general model estimates whereas the specific hypothesis assumes

So
Equation (20.4) shows that the statistic and the t statistic have one to

one correspondence, i.e., the likelihood ratio test employing the statistic
can be translated into a t-test using the t statistic. Alternatively, a t-test can
be transformed into a likelihood ratio test. In short, the likelihood ratio test
and the t-test presented above are identical tests.

Just like the t-test, the corresponding likelihood ratio test is a parametric
test and has assumptions concerning the distribution of the x variable. We
can do a t-test without checking its assumptions, such as normality and, in
the two-sample t-test, homoscedasticity (equal variance), but the result of the
significance test may be misleading. Similarly, we can do a likelihood ratio
test without checking its assumptions, producing potentially misleading
results.

One illustrative example may help you appreciate this point. Suppose you
have a variable x with four sampling values, 1, 2, 2, and 3, and you are
interested in if the mean of x is significantly different from zero. You can
carry out a t-test or a likelihood ratio test by assuming a normal distribution,
and the significance test wil l show that ( = 2) is significantly different
from zero, with p = 0.0163. Suppose we take one more observation and
obtain a value of 10. Now becomes 3.6, much larger than the previous
mean of 2. Intuitively, we would expect the new to be even more
significantly different from zero. However, if you do a t-test or a likelihood
ratio test, you will find that the new is no longer significantly different
from zero, with p = 0.1144.

The counter-intuitive result arose because the variable x may not be
normally distributed. The five values, including the new value of 10, might
well be from a right-skewed distribution, i.e., the normality assumption for
the t-test or the equivalent likelihood ratio test is violated. It is often said that
a likelihood-based method is robust, but robust to what extent? One can
easily verify that a nonparametric test employing ranked data would be much
better than the parametric tests given the five fictitious data points.

Likelihood-based methods are generally robust when the sample size is
very large. In our t-test example, even if the underlying distribution is not
normal, the distribution of the sample means will be approximately normal if
the sample size is large. Given the increasingly longer sequences in modern
comparative sequence analysis, one might argue that sample sizes are large
in phylogenetic analysis. This is again a misconception. The sequence data
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are typically heterogeneous among sites, and this heterogeneity increases
with sequence length. For example, when you have a set of short
orthologous intron sequences, there might be little heterogeneity among
sites. However, if you include the flanking exons to make sequences longer,
the heterogeneity greatly increases. Pooling heterogeneous data together
almost always leads to violation of assumptions underlying parametric
methods.

Let me reiterate the point that statistics is best taught and written about
by professional statisticians who can always explain statistical matters in a
more terse and lucid manner than a biologist like me. For this reason you are
strongly encouraged to learn from authoritative statistical books. I personally
feel guilty for “smuggling” some not-so-good statistics to your hands.

3. TEST THE MOLECULAR CLOCK HYPOTHESIS

In testing a molecular clock, the simple model is one with constant
evolutionary rate along different lineages, so that all extant species have the
same genetic distance back to the common ancestor. The general model does
not assume a constant rate and allows different lineages to have different
branch lengths. For a tree with n OTUs, there are 2n - 3 time parameters to
estimate without the clock assumption, but only n - 2 time parameters with
the clock assumption. Thus, in a likelihood ratio test of the molecular clock
hypothesis, the degree of freedom is (2n - 3) - (n-2) = n -1 .

At the end of the chapter on molecular phylogenetics, you are asked to do
an exercise by applying phylogenetic analysis to a sequence data file,
Ape5.fas, containing the mitochondrial COI gene from five primate species.
We will use the same sequence file and the phylogenetic tree that you have
derived from the sequences. So please read the Ape5.fas file into DAMBE.
A test of the molecular clock hypothesis should always be done with the
same tree, otherwise it is meaningless. The following tree is from my own
phylogenetic analysis of the sequences:

((((CHBCO1,HSMC01),GGMCO1),ORACO1),HLMC01);

You should have a file containing such a tree, with or without branch
lengths, in plain text format. If your file contains multiple trees, then only
the first tree will be used. It is always recommended to have a well
established phylogenetic tree, preferably derived from alternative sources of
data, for a serious test of the molecular clock hypothesis, because the test
result is topology-dependent. For ease of presentation, let us assume that the
name of your tree file is Ape5.dnd.
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Click Phylogenetics|Test Molecular Clock, and you will be reminded of
the requirement of a topology saved in a file. As you have already obtained
such a file, just click the Yes button to proceed. A dialog box will then
appear for you to choose which substitution model to use in the test. Choose
the F84 model (or any other model) and click the Go! button. A standard
File/Open dialog box appears prompting you to choose your tree file. Click
the Ape5.dnd file and then click the Open button. Wait for a few second for
DAMBE to finish the test. You will again be prompted for a file name, this
time a file for saving the test result. Enter whatever name you like, and the
result will be saved as well as displayed in DAMBE’s display window,
reproduced below:

Testing the null hypothesis that different lineages
evolve at the same rate.

The topology used for the test:
((((CHBCO1, HSMCO1),GGMCO1), ORACO1),HLMCO1) ;

Relevant statistics:

Substitution model: F84

Likelihood with no clock: -4441.0482
Likelihood with clock: -4442.8850
Likelihood ratio chisquare: 3.6737
Degree of freedom: 4
Prob.: 0.4520

Note: Prob. above is the probability that you would be wrong
if you reject the null hypothesis that there is no difference
in evolutionary rate among different lineages.

DAMBE computes, using codes in the BASEML program in the PAML
package, the log-likelihood (lnL) for the tree with or without the molecular
clock assumption. The resulting lnL is -4442.89 with the clock and -4441.05
without the clock. The likelihood ratio chi-square is calculated as

which follows a chi-square distribution with n -1 degrees of
freedom, where n is the number of species. Note that the likelihood ratio chi-
square is the same as previously defined, i.e.,

Based on the sample output, we clearly cannot reject the null hypothesis.
In other words, the COI clock does not tick at significantly different rates in
different hominoid lineages. This may also be true among different human
lineages. This lends some indirect empirical support for the search for the
mitochondrial Eve.
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Testing Phylogenetic Hypotheses

In previous chapters we have learned the fundamentals of phylogenetic
reconstruction. We reconstructed phylogenetic trees without evaluating their
statistical support relative to alternative trees. In this chapter we will learn
the fundamentals of hypothesis testing in phylogenetics.

The true phylogeny can only be approximated. In phylogenetics, we often
have quite a number of approximations represented by alternative
phylogenetic hypotheses. One major task for phylogeneticists is to evaluate
statistical support for each of the alternative hypotheses, with the hope that
the majority of the alternative hypotheses can be eliminated and, in the ideal
situation, only one will come out unrejected. This remaining hypothesis can
then be used as a working hypothesis for other phylogeny-based studies,
such as those using the comparative methods (Felsenstein 1985b; Felsenstein
1988a; Harvey and Keymer 1991; Harvey and Pagel 1991; Harvey and
Purvis 1991).

Three subjects will be covered in this chapter. We first review some basic
statistical concepts related to significance tests, especially those involving
multiple comparisons. These concepts include Type I and Type II errors and
the comparisonwise and experimentwise error rates. We then proceed to
learn how to evaluate relative support for alternative phylogenetic
relationships and the rationale behind such evaluation. This evaluation can
be carried out by using either the distance method, the maximum parsimony
method, or the maximum likelihood method. Finally, resampling techniques
such as bootstrapping and jackknifing will be briefly discussed.
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1. BASIC STATISTICAL CONCEPTS

A statistical significance test is always associated with a null hypothesis.
A beginning student often think that a null hypothesis should be something
absurd, proposed only to be rejected. This is not true. A nul l hypothesis that
is absurd should never be formulated because the rejection of such a nul l
hypothesis does not improve our understanding of nature. A good null
hypothesis should always represent the conventional belief prior to our work,
so that the rejection of the null hypothesis leads to a revision of our existing
knowledge. We formulate a nu l l hypothesis in science only when we have
sufficient evidence to challenge the conventional wisdom.

The Type I error in a significance test is the error of rejecting a correct
nul l hypothesis, and the Type I error rate is the probability of making a Type
I error and is typically represented by the Greek letter Type II error is the
error of accepting a false null hypothesis, and the error rate is typically
represented by the Greek letter Type II error is also called the consumer's
error. For example, suppose a manufacturer puts only one kilogram of sugar
into a package labelled as two kilogram, and suppose that everyone believes
that the label on a package is a reliable indicator of the content inside. If we
accept this conventional belief and pay the price of two kilograms of sugar
for this one-kilogram package, then we, as consumers, are committing a
Type II error. One can avoid making Type II errors by not accepting any
hypothesis when the null hypothesis is not rejected. The two types of error is
often summarized in the following table:

When we carry out a significance test, we typically would report a p
value such as This p value is the Type I error
rate. In other words, it is the probability that we would be wrong if we reject
the null hypothesis. What does it mean if the p value is nearly 1? Surely it
means that we would be almost 100% wrong if we reject the null hypothesis.
But doesn’t it also mean that we would be almost 100% correct if we accept
the null hypothesis?

The answer is no. A p value of 1 only means that the evidence we have is
perfectly consistent with the null hypothesis, but the evidence does not prove
that the null hypothesis is true. For example, suppose a psychologist wanted
to know if there is any difference in IQ score between adult males and
females. He measured IQ for four males and three females and found the
mean for the males to be identical to that for the females. If he used the t-test
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to test the null hypothesis of equal IQ between males and females, then the t
statistic would be zero and the p value be 1. The data set is perfectly
compatible with the null hypothesis, but its support for the null hypothesis is
actually quite weak given the small sample size. So the psychologist is not
guaranteed to be 100% correct if he accepts the null hypothesis as true.

This book only requires the reader to know when to reject a null
hypothesis, not when to accept a null hypothesis. Consequently, we do not
need to be concerned with the Type II error rate.

When a statistical test involves multiple comparisons, two confusing
concepts arise: the Type I comparisonwise error rate and the Type I
experimentwise error rate The former refers to the probability of
making a Type I error in a single experiment, and the latter refers to the
probability of making at least one type I error in N experiments. Let me offer
an illustrative example where the failure to control for experimentwise error
rate would lead to wrong conclusions.

Suppose we take two samples from the same normally distributed
population, and test the difference in means between the two sample. As the
two samples are taken from the same population, we expect them to have the
same mean. However, the two means will typically not be identical because
of sampling error, especially when sample size is small. If we repeat the
sampling infinitely, then eventually we will obtain two samples with means
significantly different from each other by a conventional t-test. If we then
conclude that the two samples are from two different populations with
different means, then we would be drawing a wrong conclusion - we know a
priori that the two samples are from the same population.

If and N hypotheses are tested, then If we
have five trees, then there are a total of 10 pair-wise comparisons between
the trees. Thus, would imply  That is, if all trees are in
fact equally good, there is still a probability of 0.4 that at least one tree will
be incorrectly rejected. If N is infinite, then              i.e., we are doomed to
make an experimentwise error if  is not infinitely small.

If we are to control the experimentwise error rate below 0.05, we can set
so that

and solve the equation, which yields This of course would
increase the difficulty to reject a null hypothesis, even if the null hypothesis
is false.

The Student-Newman-Keuls test is appropriate for significance test
involving multiple comparisons. It is used in DAMBE for all tests of
alternative phylogenetic hypotheses implemented in DAMBE, including the
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distance, maximum parsimony, and maximum likelihood methods. The test
statistic, q, is based on the same statistic as in Tukey’s HSD test (Zar 1996).
The rationale of the significance tests is outlined in the following sections
dealing with individual tests using the distance, maximum parsimony and
maximum likelihood methods.

2. TESTING PHYLOGENETIC HYPOTHESES
WITH DISTANCE METHODS

2.1 The Rationale

Both neighbor-joining and Fitch-Margoliash method can be used for
testing alternative phylogenetic hypotheses. The method for testing
phylogenetic hypotheses by using the neighboring-joining (NJ) method
together with the minimum evolution (ME) criterion has already been
developed and implemented in a computer program (Rzetsky and and Nei
1992; Rzhetsky and Nei 1994). Four steps are involved. First, one makes a
heuristic search of all topologies that are close to the NJ tree, with the hope
that the ME tree will be represented by one of the candidate topologies.
Second, branch lengths are estimated by the least-squares method. Third, the
variance of branch lengths is estimated by resampling methods such as
bootstrapping or jackknifing. Fourth, comparisons are made between the tree
with the shortest branch lengths and alternative trees to see if the former is
significantly shorter than all alternative trees.

The test implemented in DAMBE is different. It uses the Fitch-
Margoliash method with user-specified topologies. The test is based on the
fit to the original distance matrix. DAMBE reads in each of the unrooted
user trees in a tree file. These user trees represent alternative phylogenetic
hypotheses to be evaluated.

Based on any one of many genetic distances you choose, DAMBE will
calculates the distance matrix and evaluate tree branch lengths for each of
the unrooted topologies in the user tree file, by using the least-squares
method. From the reconstructed phylogenetic tree with optimized branch
lengths, DAMBE then obtains the pairwise distances based on the estimated
branch lengths. We thus have two matrices, one being the original distance
matrix used for phylogenetic reconstruction, and the other being the
reconstituted matrix derived from the reconstructed tree.

Let us designate the original matrix as x and the reconstituted matrix as y.
Every element in x has one corresponding element in y. Elements in the x
matrix represent observed values, and those in the y matrix represent the
estimated or expected values. If for all i and j, then the fit between
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the observed and the estimated values is perfect, and the tree is considered to
be the best possible.

DAMBE calculates the error variance as

where n is the number of species, and m is the number of OTU pairs
separated by one internal node. Such OTU pairs will have when
evaluated by the least square method and will not contribute to VarE. No
weighting by branch lengths is used. VarE is equivalent to the variance of
( = (xjj - yij) because the mean D is expected to be zero. In other words,

If then the tree is the best possible. For k alternative
phylogenetic hypotheses, there are k VarE values. If these VarE values are
all equal, then all trees are equally supported. If these VarE values are
significantly different, then at least one of the trees is worse than the best-fit
tree.

Testing whether all alternative topologies are equally good is now
reduced to a test of heterogeneity of variance for which we have the standard
Bartlett’s test (Zar 1996, p. 204 and the references therein). The test is based
on where
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In our case, the number of degree of freedom, is always the same and
equals (N - m - 1), where N is the number of values in either a lower or
an upper triangular matrix. The distribution of  is approximated by the chi-
square distribution with k-1 degrees of freedom (Nagasenker 1984), where k
is the number of phylogenetic hypotheses.

The Bartlett’s test is an overall test of homogeneity of variance. If the
null hypothesis of equal variance is not rejected, then one should not proceed
further. However, if the null hypothesis is rejected, i.e., some trees are
significantly better (having smaller variances) than others, then one naturally
would like to know if the best tree is better than all the others. It is not
appropriate to do an F-test between VarE of the best tree and each of the (k-
1) values because this does not control for experimentwise error rate.

To adjust for the experimentwise error rate associated with multiple
comparisons, a test analogous to Newman-Keuls test is applied with the test
statistic q (Zar 1996) calculated as

The main advantage of the test is that it should be very powerful in
rejecting poor topologies. The quality of the test, of course, depends much
on how appropriate the genetic distances are. The main weakness of the test
is that the distances in the distance matrix are not statistically independent of
each other, with the consequence that the test is overly conservative. Data
from a limited simulation study (unpublished) suggest that this test, with an
obviously wrong assumption, yields results very similar to the maximum
likelihood method introduced later in the chapter.

2.2 Test alternative phylogenetic hypotheses with the
distance method by using DAMBE

Suppose we are interested in the phylogenetic relationships among the
human, the chimpanzee and the gorilla. There are only three possible
phylogenetic groupings, i.e., human-chimpanzee, human-gorilla, and
chimpanzee-gorilla. We will use the mitochondrial cytochrome oxidase
subunit I (COI) gene for testing the three alternative phylogenetic
hypotheses.
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Start DAMBE and open a sequence file, e.g., the Ape5.fas file that
comes with DAMBE. Click Phylogenetics|Distance methods|nucleotide
sequences (You could choose a codon-based distance if your input
sequences code for a protein gene, as is the case for the Ape5.fas file). A
dialog box appears for you to choose options (fig. 1). The User tree appears
only when the Fitch-Margoliash option is chosen because the neighbor-
joining method does not take user trees. The user trees can either come from
a file containing unrooted trees in PHYLIP format or, when the number of
OTU's is small, from all possible trees generated by DAMBE (fig. 1). We
will use the following three alternative trees saved in a file named
Ape5ur.nhm (where ur stands for unrooted):

(((CHBCO1,GGMC01),HSMCO1),ORACO1,HLMCO1);
(((CHBCO1,HSMCO1),GGMCO1),ORACO1,HLMCO1);
(((HSMCO1,GGMCO1),CHBCO1),ORACO1,HLMCO1);

When you click the Trees from a file option, a standard File/Open
dialog box will appear for you to choose the tree file containing alternative
trees to be evaluated. Click the Ape5ur.nhm file or any other relevant tree
file containing unrooted trees. It is important that the name of the OTU's in
the tree file is the same as the name of OTU's in the sequence data file that
we have just read into DAMBE.

Click the Done button, and DAMBE will evaluate the branch lengths of
alternative phylogenetic hypotheses one by one. You will be asked to enter
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the name of the file containing the re-evaluated trees, and of a file for saving
output. Part of the output is reproduced below:
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The Bartlett's test shows whether anyone of the three alternative trees is
significantly better or worse than any other trees. There are only two degrees
of freedom because we have only three trees. The result shows that the three
trees are not significantly different from each other, i.e., they fit the observed
data roughly equally well.

The Prob. value in the output is the probability that we would be wrong
if we reject the null hypothesis. Here the null hypothesis is simply that the
three values are the same. Our data set is insufficient to reject the null
hypothesis.

The Bartlett's test is an overall test, and we need not proceed further if the
test result is not significant, which is true in our case. However, if Bartlett's
test is significant, then we would like to know which tree is significantly
better (or worse) than others and, in particular, whether the best tree is
significantly better than all the other alternatives. This test is done in two
parts. Part I is simply a conventional F-test which do not control for
experimentwise error rate. Part II presents the Newman-Keuls test for
multiple comparisons, which does control for experimentwise error rate.

3. TESTING PHYLOGENETIC HYPOTHESES
WITH THE MAXIMUM PARSIMONY METHOD

For the maximum parsimony method, a ROOTED tree is required to
represent alternative topologies. This limitation arises from DAMBE’s
inheritance of the code from DNAPARS in PHYLIP. DNAPARS has
already provided a significance test if you include user trees in the infile. In
short, DNAPARS computes the number of steps (changes in character states)
for each topology, the difference in the number of steps between the best and
each alternative topology, and the associated (large-sample) variance of the
differences. The z-score is computed and declared as significant if it is larger
than 1.96 (Felsenstein 1985b). The main problem with this test is that the
result can be interpreted probabilistically only when you have just two
topologies and is not appropriate with multiple comparisons. DAMBE uses
Newman-Keuls test that is valid for multiple comparisons.

Start DAMBE and open a sequence file, e.g., the Ape5.fas file that
comes with DAMBE. Click Phylogenetics|DNAMP |Nucleotide sequences.
A dialog box appears for you to choose options (fig. 2). Check the User
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Tree, and the two User Tree option buttons appear. Click the Trees from a
file option. A standard File/Open dialog box appears for you to choose the
tree file containing rooted trees to be evaluated. We will use the following
three alternative trees saved in a file named Ape5.nhm:

((((CHBCO1,GGMCO1),HSMCO1),ORACO1),HLMCO1);
((((CHBCO1,HSMCO1),GGMCO1),ORACO1),HLMCO1);
((((HSMCO1,GGMCO1),CHBCO1),ORACO1),HLMCO1);

Click the Ape5.nhm file or any other relevant tree file containing rooted
trees. It is important that the name of the OTU's in the tree file is the same as
the name of OTU's in the sequence data file that we have just read into
DAMBE.

Click the Go! button, and DAMBE will evaluate the number of steps and
its associated variance for each of the alternative phylogenetic hypotheses
one by one. You will be asked to enter the name of a file for saving output.
Part of the output is reproduced below:

Phylogenetic analysis using the maximum-parsimony method
implemented in Joe's DNAPARS, with minor modifications.

Evaluating 3 user trees.
Outgroup: HLMCO1

3 ROOTED trees evaluated:
((((CHBCO1,GGMCO1),HSMCO1),ORACO1),HLMCO1);

((((CHBCO1,HSMCO1),GGMCO1),ORACO1),HLMCO1);

((((HSMCO1,GGMCO1),CHBCO1),ORACO1),HLMCO1);
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Although the first tree requires the smallest number of changes, the
difference is not significant between this tree and the other alternative trees.
In this sense the result is consistent with the previous result from the distance
method, i.e., the three trees describe data roughly equally well. However,
you should remember that the test involving the distance method uses
unrooted trees, and the test involving the maximum parsimony method uses
rooted trees. Thus, the results are not really comparable between the distance
method and the maximum parsimony method.

4. TESTING PHYLOGENETIC HYPOTHESES
WITH THE MAXIMUM LIKELIHOOD
METHODS

For the maximum likelihood method, the Kishino-Hasegawa test
(Kishino and Hasegawa 1989) which is also called the RELL test, is
implemented as in PAML (Yang 2000) from which I have taken part of the
code, again with the adjustment for multiple comparisons. The Kishino-
Hasegawa test, as is practised in literature, is analogous to the test in
DNAPARS, except that the test is based on the likelihood values rather than
on the number of steps. In short, you calculate the log-likelihood for each
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topology, the difference in log-likelihood between the best tree and each of
the alternative topologies, and the variance of the differences estimated by
resampling methods such as bootstrapping. The z-score is then calculated
and declared as significant if it is larger than 1.96. Again, such interpretation
is heuristic and is not appropriate probabilistically if there are more than two
topologies being compared. DAMBE uses Newman-Keuls test that is more
appropriate for multiple comparisons.

To perform the test in DAMBE, you open a sequence file with aligned
sequences, such as the ape5.fas file that comes with DAMBE. Click
Phylogenetics|Maximum likelihood|Nucleotide sequences. When the
dialog box (fig. 3) appears, click the User tree option. A standard File/Open
dialog box appears for you to choose the file containing user trees in the
PHYLIP format (alternatively you may click the option for all possible trees
if the number of OTUs is small, e.g., 5 or 6). Let us again use the following
three alternative trees saved in a file named Ape5ur.nhm (the same tree file
used with the distance method):

(((CHBCO1,GGMCO1),HSMCO1),ORACO1,HLMCO1);

(((CHBCO1,HSMCO1),GGMCO1),ORACO1,HLMCO1);
(((HSMCO1,GGMCO1),CHBCO1),ORACO1,HLMCO1);

Note that as soon as you have opened the tree file, the clock checkbox
disappears. DAMBE will decide whether to impose a molecular clock or not
by checking the first tree in the tree file. If the tree is rooted, i.e., the deepest
node is bifurcating, then the tree is taken as rooted and a molecular clock is
imposed. If the deepest node is multifurcating, then the tree is taken as
unrooted and no clock is imposed. According to this criterion, the trees in the
file Ape5ur.nhm are taken as unrooted and no clock is imposed.
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Note that imposing a molecular clock may change the log-likelihood
value substantially. Tree 1 could have a larger log-likelihood value than tree
2 when no molecular clock is imposed, but the reverse may be true when a
molecular clock is imposed. It is important to have alternative phylogenetic
hypotheses expressed either as all rooted trees or all unrooted trees, but not
as a mixture of both because it is meaningless to compare relative statistical
support for a rooted topology with that for an unrooted topology.

Also note that the test involving maximum likelihood method can take a
tree file with either all rooted or all unrooted trees. We will use the unrooted
trees in the Ape5ur.nhm first. The tree file Ape5.nhm contains all rooted
trees and will be used later for evaluating alternative hypotheses.

Click the Go! button and DAMBE will compute the log-likelihood for
each topology, the difference in log-likelihood between the best tree and all
alternative trees, the variance of the difference by bootstrapping, and then
perform the Student-Newman-Keuls test (It may take a long time with the
maximum likelihood method). Part of the output is shown below:

Note that the result is similar to that derived from the test using the Fitch-
Margoliash method, with the second tree being the best. However, there is
no significant difference among the three trees. Note that the trees tested
with the distance and the maximum likelihood methods are unrooted, and
the results are similar. As the distance method is much faster than the
likelihood method, and the number of sequences used in phylogenetic
analysis is increasing rapidly, I expect the distance method to be used more
frequently than it is today.
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We have learned how to evaluate alternative phylogenetic hypotheses
expressed in alternative unrooted trees. The maximum likelihood method
can also be used to evaluate phylogenetic hypotheses expressed in rooted
trees, which is what we are going to do now.

Click Phylogenetics|Maximum likelihood|Nucleotide sequences. When
the dialog box (fig. 3) appears, click the User tree option. A standard
File/Open dialog box appears for you to choose the file containing user trees
in the PHYLIP format. Click the Ape5.nhm (the same tree file as is used
with the maximum parsimony method).

Click the Go! button and DAMBE will compute the log-likelihood for
each topology, the difference in log-likelihood between the best tree and all
alternative trees, the variance of the difference by bootstrapping, and then
perform the Student-Newman-Keuls test. Part of the output is shown below:

By comparing the output with that from the maximum likelihood method,
we notice that the maximum likelihood method seems to be more sensitive
in detecting the difference among trees than the maximum parsimony
method, with Prob(i) being smaller in the latter than in the former. The
difference, however, is negligible. The results are comparable because both
are based on the same set of rooted trees.
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5. RESAMPLING METHODS

A tree (i.e., a phylogenetic hypothesis) is made of one or more subtrees
(i.e., subhypotheses). It is of interest to know the relative statistical support
of alternative subtrees. Resampling methods in phylogenetics are for
attaching confidence limits to these subtrees (Felsenstein 1985a).

There are two kinds of commonly used resampling methods (Efron
1982), one being bootstrapping and the other being delete-half jackknifing.
The bootstrap resampling involves re-sampling the sample with replacement,
so that sequences of N sites long will be resampled N times to generate new
sequences of the same length, with some sites in the original sequences
sampled one or more times while some other sites do not get sampled. The
delete-half jackknifing technique will randomly purge off half of the sites
from the original sequences so that the new sequences will be half as long as
the original. Such resampling procedure will typically be repeated a large
number of times to generate a large number of new samples.

Each new sample (i.e., new set of sequences), no matter whether it is
from bootstrapping or jackknifing, will then be subject to regular
phylogenetic reconstruction. The frequencies of subtrees will then be
counted from reconstructed trees. If a subtree appears in all reconstructed
trees, then the bootstrapping or jackknifing value is 100%, i.e., the strongest
possible support for the subtree.

Although the bootstrap and the jackknife generally produce similar
results, there are some subtle differences. Suppose that we have a set of
aligned sequences of N sites long. For the bootstrap resampling, the
probability of each site being sampled is 1/N, and the mean number of times
a site gets sampled in each bootstrapping resampling is simply one. Thus, a
site gets sampled 0, 1, 2, ..., N times follows a Poisson distribution with
mean equal to one. This implies that about 37% of the sites will not be
sampled, while 63% of the sites will be sampled at least once. In jackknifing,
we have 50% of the sites not sampled and the other 50% of the sites sampled
just once. Thus, a jackknived sample is expected to be less similar to the
original sample than a bootstrapped sample. Consequently, jackknived
samples should be less similar to each other than bootstrapped samples.

Both the bootstrap and the jackknife resampling methods are
implemented in DAMBE in conjunction with phylogenetic analysis using the
distance, the maximum parsimony and the maximum likelihood methods. To
see how it works, just start DAMBE and open an aligned sequence file, e.g.,
the invert.fas file that comes with DAMBE. Click Phylogenetics|Distance
methods|Nucleotide sequences. A dialog box appears for you to specify
options. Click the Resampling statistics checkbox. Two option buttons will
appear, one labelled Bootstrap and the other Jackknife, with the default
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being the bootstrap. Below the option buttons is a text-input field for you to
specify the number of resampled data sets. The default value is 100. Click
the Done button, and DAMBE will resample the data and produce a
consensus tree showing resampling support for the subtrees.

The implementation and the use of the resampling methods in
conjunction with the maximum parsimony and the maximum likelihood
method is essentially the same as above. Just click
Phylogenetics|DNAMP|Nucleotide sequences or Phylogenetics|Maximum
Likelihood|Nucleotide sequences|DNAML and follow what you have done
with the distance method.

6. EXERCISE

Find a paper on phylogenetic analysis involving DNA sequences. Derive
from the paper alternative phylogenetic hypotheses and express these
hypotheses in tree topologies in PHYLIP format. Evaluate these alternative
phylogenetic hypotheses by using various distance, maximum parsimony
and maximum likelihood methods. Write a report to elaborate your results in
reference to the conclusions drawn by the author(s) of the paper.



Chapter 22

Fitting Probability Distributions To Substitutions
Over Sites

1. INTRODUCTION

This chapter deals with fitting probability distributions to the pattern of
nucleotide, amino acid and codon substitutions along the molecular
sequences. It is important to know if the substitution rates vary among sites,
because such rate heterogeneity, according to a comparative study based on
simulated data (Kuhner and Felsenstein 1994), would results in failure to
recover the true phylogenetic relationships in virtually all commonly used
phylogenetic programs (or algorithms), including maximum likelihood
method (e.g., PHYLIP), maximum parsimony (e.g., PAUP), or neighbor-
joining (e.g., MEGA) methods.

Fitting probability distributions to substitution data requires a sequence
file with reconstructed ancestral sequences as well as a tree that has been
used for reconstruction of ancestral sequences. Please read the last section of
the chapter dealing with molecular phylogenetics on how to reconstruct
ancestral sequences by using DAMBE. If you use the PAML package, then
the output file for saving ancestral sequences is named rst by default.
DAMBE can read this file directly if you rename the file to SomeName.rst
(SomeName means any valid file name for the Windows platform).

Two discrete probability distributions, the Poisson and the negative
binomial, have been used to fit the distribution of substitutions along the
molecular sequences. A continuous distribution, i.e., the gamma distribution,
has recently been used extensively in modelling the heterogeneity of
substitution rates over sites. I will first provide some statistical background
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for these discrete and continuous distributions and then illustrate their use in
analysing molecular data.

1.1 The Poisson distribution

Nucleotide or amino acid substitutions are stochastic events, and the
Poisson process is one of the simplest stochastic processes. The Poisson
process is often described in two ways, one by the discrete Poisson
distribution and one by the continuous gamma distribution. In the first case,
the random variable is typically the number of events (e.g., substitutions)
occurring during a fixed length of time, and is therefore discrete. In the
second case, the random variable is the typically length of time until the rth

occurrence of an event or the time interval between two successive events,
and is therefore continuous. We will first concentrate on the discrete Poisson
distribution.

The Poisson distribution can be viewed as a special case of the binomial
distribution that we have already studied in the chapter entitled “A statistical
digression”. The binomial theorem states that if the probability of a success
in a single trial is p, then the probabilities of 0, 1, 2, ... successes out of n
trials are given by the successive terms from the expansion of where
q = l - p :

Equation (22.1) looks complicated but is in fact a simple equation. Just
replace n by 2 or 3 and you see how simple it is. The binomial distribution
has the mean equal to n•p and the variance equal to n•p•q, i.e., the mean is
greater than the variance. For this reason, ecologists often use it to model
even distributions of organisms in space.

Suppose we are observing the occurrence of stochastic events, such as
nucleotide substitutions, over a time period t. We may divide the period t
into n intervals and record the number of occurrences of the event. The event
has a probability of p to occur within each of n fixed time interval.
Obviously the number of events that could happen within the time interval
could be 0, 1, 2, ...x, with the mean equal to n·p. This is beyond what a
binomial distribution can handle because a binomial distribution deals with
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statistical experiments with only two dichotomous outcomes, represented as
the success and the failure.

One way to proceed is to divide the time period t into an infinitely large
number of intervals, i.e., so that each interval will be so short that the
probability of having more than one occurrence of the event within each
fixed time period is negligible. Now we can view each fixed time interval as
an independent Bernoulli trial, and the stochastic process during the time
period t as a Bernoulli process with n very large and p very small.

Given that p is very small and n very large in a binomial distribution,
then the right-hand term of equation (22.1) can be written as:

Three approximations were used to convert the right hand side of
equation (22.1) to that of equation (22.2). First, when p is very small, then q

Second, if n is very large, then Third, when p is
small and n larger, Notice that the summation inside the
brackets happens to So the sum of all the terms in the equation above is
one, which makes sense because the probabilities are supposed to sum up to
one. The successive terms represent the same meaning as in the binomial
distribution, i.e., they are probabilities that there are 0, 1, 2, ... successes out
of n trials. The probability distribution specified by these successive terms is
called the Poisson distribution defined by

The Poisson distribution has the mean equal to the variance. It has been
used in ecology for modelling a random distribution of individuals in space.
We use it to discover whether substitutions are in fact randomly distributed
along the molecular sequence (which I use to refer to either the nucleotide or
amino acid sequence).

Fitting the Poisson distribution to substitution data is done as follows.
First, molecular sequences of length N are divided into N sample sites, or
N/n sample sites if we use n neighbouring sites as a single sampling unit.
Second, the number of substitutions in each sampling site (unit) is counted
by pair-wise comparison between neighboring nodes along a phylogenetic
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tree. Third, the number of sampling sites (units) containing 0, 1, 2 ...
substitutions are compared with the number expected according to the
Poisson distribution. The extent of match between the expected numbers and
the observed numbers can be tested by a Chi-squared goodness-of-fit test. If
the two sets of numbers match well, then we conclude that the substitution
pattern does not deviate significantly from the Poisson process. In other
words, we do not reject the null hypothesis that the same Poisson clock ticks
in all sites.

The Poisson distribution, when applied to model substitutions along
molecular sequences, assumes that the probability of multiple substitutions
at the same nucleotide or amino acid site is negligible, and that the
substitution at one site is independent of other sites. These assumptions often
cannot be met by substitutions along molecular sequences. Multiple
substitutions at the same site is a reality, and the effect of neighboring
nucleotides on the substitution rate is well documented (Bulmer 1986;
Motion and Clegg 1995). However, there is nothing wrong in using the
Poisson distribution as a null model for the distribution of substitutions along
molecular sequences.

1.2 The negative binomial distribution

There are two reasons that the distribution of substitutions along
molecular sequences should deviate from the Poisson distribution. First,
some sites are more important than others, and consequently would be
subject to stronger purifying selection and evolve more slowly than others.
Take a codon for example, a nucleotide mutation at the second codon
position invariably results in a nonsynonymous substitution, whereas a
nucleotide mutation at the third codon position is frequently silent.
Consequently, the substitution at the third codon position occurs much more
frequently than that at the second codon position. Secondly, a gene at the
DNA level is typically a structured entity, with some segments functionally
more important than others. Consequently, some segments will be more
conservative than others. For example, most mitochondrial proteins are
transmembrane proteins made of hydrophobic and hydrophilic domains
associated with different nonsynonymous substitution rates (Irwin et al.
1991; Kyte and Doolittle 1982). Hydrophobic domains are typically
embedded inside the membrane and not associated with reaction centres.
Consequently, these domains have higher nonsynonymous substitution rates
than hydrophilic domains that are often associated with reaction centres.

The recognition of hydrophobic or hydrophilic segments is aided by a
polarity plot, which I have done (by using DAMBE) for the ATPase 6 from
human mitochondrial genome (Fig. 1). The structural heterogeneity of the
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protein molecule is obvious in Fig. 1. The distribution of nonsynonymous
substitutions along the DNA sequences also exhibits apparent discontinuity,
especially at the second codon position (Xia 1998b) where long stretches of
the DNA sequences harbour no nonsynonymous substitutions at all for all 35
pair-wise comparisons among 19 mammalian species (Xia 1998b). This rate
heterogeneity would results in variable substitution rate among sites, which
in turn would lead to substitution patterns deviating significantly from the
Poisson distribution.

The pattern of substitutions clumped at certain segments but lacking in
other segments of molecular sequences will generate a right-skewed
distribution for the number of substitutions per site. Such a distribution can
be fitted by the negative binomial distribution, which is right-skewed and
has the variance greater than the mean. The distribution has been used in
ecology to model the clumped distribution of individuals in space (e.g.,
Krebs 1999; Xia and Boonstra 1992).

In contrast to the Poisson distribution which has just one parameter, the
negative binomial distribution has two parameters, p and k, with the mean
= kp and Both parameters affect the shape of the negative
binomial distribution. When increases (i.e., when p and k increases), the
negative binomial distribution will gradually converge to the normal
distribution with and When p is constant, then the
parameter k, which is often called the negative binomial parameter,
determines the shape of the distribution. The smaller the k, the greater the
clumping. In terms of rate heterogeneity of substitutions over sites, a small k
means a great rate heterogeneity and vice versa. In this aspect, k is similar to
the shape parameter in the gamma distribution where rate heterogeneity
increases as decreases. In general, the rate heterogeneity is greater among
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the second codon positions of protein-coding genes than that among the third
codon positions, which you can easily verify by using DAMBE.

There is no analytical solution for the maximum likelihood estimator of
k. DAMBE uses the maximum-likelihood estimator in Johnson et al (1992,
p. 216) to estimate the negative binomial parameter k through computer
iteration:

where is the observed number of sites experiencing j substitutions. The
iteration stops when the difference between the two sides of the equation is
smaller than 0.00001.

Procedures involved in fitting the negative binomial distribution to
substitution data is similar to that for fitting the Poisson distribution, except
that the two parameters characterizing the negative binomial distribution are
estimated and used to compute the expected frequency distributions.
Multiple substitutions at the same site is also assumed to be negligible.

1.3 The gamma distribution

One problem with fitting the discrete distributions to substitution data is
as follows. Suppose you have made pair-wise sequence comparisons
between neighboring nodes along a tree and found three substitutions at site
2, with two being transitions and one being transversions. What you have got
is the minimum number of substitutions required to explain the molecular
evolution at this site, but the sequences may well have experienced multiple
hits at the same sites, with latter substitutions erasing previous ones. It is for
this reason that many substitution models have been proposed to correct for
multiple hits. If you apply one of these correction methods to correct for
multiple hits, then you will get an estimated number of substitutions being
larger than just three, and the estimated number will not be an integer. In
other words, the number of substitutions at each site will be continuous
rather than discrete. So discrete distributions such as the Poisson and the
negative binomial will no longer be applicable.

The gamma distribution is a continuous distribution, and is similar to the
discrete negative binomial distribution in that both are right-skewed. This
makes it appropriate for modelling substitution patterns where some sites
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(e.g., functionally important DNA segments) vary little while some other
sites (e.g., non-functional DNA segments) experience a lot of substitutions.

Many continuous random variables have a right-skewed distribution, e.g.,
the lengths of time between malfunction for aircraft engine, the lengths of
time between arrivals at a supermarket checkout queue, the life span of
electronic components such as fuses, or the lengths of time to complete a
maintenance checkout for an automobile engine. These variables are
frequently modelled by the gamma distribution.

The gamma distribution has recently been used extensively in
phylogenetics. The distribution has two parameters, one being the shape
parameter, often symbolized by the Greek letter and the other being the
scale parameter, often symbolized by

Let me explain why the parameter is called the scale parameter.
Suppose you have a random variable X that has the gamma distribution with
shape parameter and scale parameter It can be shown that the variable
cX, where c is a constant larger than 0, also follows a gamma distribution,
with the shape parameter and scale parameter If we divide X by the
scale parameter then the distribution of the resulting variable also
follows a gamma distribution and is called a standard gamma distribution.

The shape of the gamma distribution is determined by the parameter
Hence its name as the shape parameter. This represents one additional
advantage of the gamma distribution over the negative binomial distribution
where both parameters affect the shape of the distribution. When is equal
or smaller than 1, the mode of the distribution is at the smallest possible
value, zero (fig. 2). When is larger than 1, then the mode equals
The gamma distribution converges to the normal distribution with mean
and variance when approaches infinity (fig. 2).

There are several probability distributions that are special cases of the
gamma distribution. The chi-square distribution is a special gamma
distribution with and The exponential distribution is also a
special gamma distribution with Now we have come to appreciate
why the gamma distribution is a parametric family of distributions with a
rich variety of shapes and why is called a shape parameter.
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The parameter can be used to measure the rate heterogeneity over sites.
The smaller the value, the greater the rate heterogeneity. Most sequences
yield an value near 0.5. For protein-coding genes, the value is around
0.2 when estimated from second positions, but much larger when estimated
from third codon positions.

It is important to remember that the observed substitution data is always
discrete, and it is inherently awkward to fit a continuous distribution to the
observed substitution data. First, the estimated number of substitutions
(designated for a given site, after correcting for multiple hits, cannot take
a value larger than 0 but smaller than or equal to 1. For example, if the
observed then the estimated after correction for multiple hits, will
take a value greater than one. If we observe then its estimated value
will be zero regardless of what substitution model you use. Second, when the
number of sequences is small, then we will have a number of sites with the
estimated values slightly larger than 1, slightly larger than 2, and so on,
with no site having values in between (fig. 3). Such a distribution is hardly
continuous.
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1.4 Some general guidelines for fitting statistical
distributions

One should be aware that fitting statistical distributions to empirically
derived substitution data requires the substitution data to be derived from
pair-wise comparisons between neighboring nodes along a phylogenetic tree.
It is simply meaningless to fit statistical distributions to substitution data
derived from all possible pair-wise comparisons between input sequences.
For example, if you have 8 sequences in your file, there are 28 possible pair-
wise comparisons. When you look at the number of sites that have
experienced 0, 1, 2, ..., N substitutions, you will find a number of sites with
0 substitutions, no sites experiencing 1, 2, 3, 4, 5, or 6 substitutions, yet a
number of sites experiencing 7 substitutions (i.e., when one substitution
occurred in one sequence but not in any of the other 7 sequences).

To do a proper fitting of statistical distribution to your sequences, you
should make only independent comparisons. This can be done in two ways.
First, if your input file has a tree topology (i.e., in RST format), then
DAMBE will automatically take this tree topology and make comparisons
only between neighboring nodes. This is the preferred method. Second, if
your file is not in RST format, then you should choose sequence pairs in
such a way that a sequence is compared with another sequence only once.
Doing anything else is likely to lead to erroneous conclusions.

DAMBE provides three types of output when fitting statistical
distributions, one for nucleotide-based sequences (i.e., sequences not coding
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for proteins), one for amino acid sequences, and the third for protein coding
sequences. In the latter case, one can fit statistical distributions either to all
substitutions or to nonsynonymous substitutions only.

2. FITTING DISCRETE DISTRIBUTIONS WITH
DAMBE

DAMBE provides you with a few tools that you can use to test the
distribution pattern of nucleotide or codon substitutions along the sequences.
One can use DAMBE to first test whether the Poisson distribution can
provide a reasonable fit to the substitution data. If the Poisson distribution is
rejected, then one can test whether the negative binomial distribution
provides an adequate fit. The fit to the gamma distribution is only for
estimating the shape parameter as a descriptive statistic of rate
heterogeneity among sites. The shape parameter can also be used to correct
the estimation of genetic distances. The gamma-corrected distances are
implemented in DAMBE only with the F84 and TN93 models.

Start DAMBE and open a file. Preferably you should open a file in RST
format (e.g., the invert.rst file that comes with DAMBE) so that all pair-
wise comparisons of nucleotide, amino acid, or codon differences will be
carried out between neighboring nodes along the tree topology. Once the
sequences are displayed in DAMBE's display window, click Seq.
Analysis|Fit discrete distributions to substitutions. A dialog box (fig. 4)
appears for you to specify options. The first is to decide whether to use the
Poisson distribution or the negative binomial distribution. The default is the
Poisson distribution. The next option is the window size, i.e., you decide
whether you should use a single site as a sampling unit, or several
neighboring sites as a single sampling unit. If the window size is 3, then 3
consecutive nucleotide or amino acid sites are used as a single sampling unit,
and nucleotide sequences of 900 bases long would have 300 non-
overlapping sampling units. The last option, i.e., Nucleotide-based or
Codon-based, might be confusing to you. If your nucleotide sequences are
from protein-coding genes and you have chosen the codon-based option,
then DAMBE will present two more options, i.e., whether to fit the Poisson
distribution only to nonsynonymous substitutions or to all substitutions over
sites. The rate heterogeneity is usually greater for the nonsynonymous
substitutions than for the synonymous substitutions (Xia 1998b). For the
time being, we will do just a nucleotide-based analysis.
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Click the Run button, and DAMBE will prompt you for an output file for
saving results. Enter a file name and the result will be saved in text format.
Part of the result is shown below based on sequences in the invert.rst file
that comes with DAMBE.

Fitting Poisson distribution to observed substitutions
along the nucleotide sequences.
Input file: D:\MS\DAMBE\invert.RST

Sequence Length: 1089 (after deleting gaps and unresolved
sites. )

P = 0.0000 with 4 degree(s) of freedom.
Lambda = 1.01. Variance = 1.65. Window size = 1
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We see that 576 sites have not experienced any substitution. However,
four sites have experienced five or more substitutions. The goodness-of-fit
test shows that the Poisson distribution fits the observed substitution data
poorly (P = 0.0000). Note that there are six groups, but only four degrees of
freedom for the chi-square test. The reason for the loss of two degrees of
freedom is as follows. First, we need the total number of sites to compute the
expected values. Once the total is known, then only five of the observed
frequencies are free to vary. For example, given that the total number of
sampling sites is 1089, 1 need to have only five observed frequencies in order
to deduce the sixth. Hence the loss of one degree of freedom. We also
estimated the Poisson parameter, lambda which is also needed for
computing the expected values. Hence the loss of another degree of freedom.
So the degree of freedom associated with the chi-square test is down to four.
Remember that a degree of freedom is lost whenever we estimate a
parameter needed for carrying out the significance test.

The output is what we would have expected. The substitution rate of the
three codon positions differs greatly from each other, with the third codon
position the least conservative and the second codon position the most
conservative (Xia 1998b; Yang 1996b). The result above calls for a
goodness-of-fit test with the negative binomial distribution, which yields the
following result:

Fitting negative binomial distribution to observed
substitutions along the nucleotide sequences.
Input file: D:\MS\DAMBE\invert.RST

Sequence Length: 1089 (after deleting gaps and unresolved
sites.)
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P = 0.0000 with 7 degree(s) of freedom.
k = 0.9988

There are 10 frequencies, but only seven degrees of freedom associated
with the chi-square test, i.e., we lost three degrees of freedom with the
negative binomial distribution in contrast to the Poisson distribution where
we lost only two degrees of freedom. This is because the negative binomial
distribution is characterized by two parameters (k and p) and the Poisson
distribution is a single-parameter distribution. For each parameter we
estimate from the sample, we lose one degree of freedom. The fit is better
than before, but still not satisfactory (P = 0.0000).

3. ESTIMATING THE SHAPE PARAMETER OF
THE GAMMA DISTRIBUTION FROM
SUBSTITUTION DATA

Start DAMBE and open a sequence file in RST format, e.g., the
invert.rst file that conies with DAMBE. Once the sequences are displayed,
click Ana. Sequences|Fit gamma distribution to substitutions. A standard
File/Open dialog box will come up for you to enter a file name for saving
results. You will also be asked whether you wish to have a graphic output of
the empirical frequency distribution of the estimated number of substitutions
per site. One such graphic output is shown in fig. 5.
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What DAMBE has done is as follows. First, the numbers of transitions
and transversions, symbolized as N(s) and N(v), respectively, in the output,
are counted for each site from pair-wise comparisons between neighboring
nodes along the phylogenetic tree. Second, the estimated number of
substitutions per site is then calculated by using Kimura's two-parameter
method. These estimated numbers of substitutions per site are then used to
obtain the shape parameter of the gamma distribution. Part of the output is
shown below:

Estimating the alpha parameter for the gamma
distribution, based on file:
D:\MS\DAMBE\inv7.RST

Computing the number of substitutions per site.
N(s) - number of transitions.
N(v) - number of transversions.
N(diff) - number of substitutions after correction
with Kimura's 2-parameter model.

The estimated ( = 0.6014) is what we would have expected by looking
at the empirical frequency distribution in fig. 5. Recall that the mode of a
gamma distribution will be at the zero point when is equal or smaller than
1. The mode in the frequency distribution in fig. 5 is clearly zero, so that
should be smaller than 1. The frequency distribution (fig. 5) also shows that,
while most sites are conservative, some sites have changed extremely fast,
with one site having the estimated number of substitutions greater than 14.
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4. EXERCISE

It has been shown for protein-coding genes that rate heterogeneity is the
greatest at the second codon position, and the smallest at the third codon
position (Xia 1998b; Yang 1996a). Use a set of protein-coding genes to
estimate the alpha value for the first, second and third codon positions. Is the
estimated alpha value the smallest at the second position and greatest at the
third codon position? What could have caused this pattern?
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